WorldWideScience

Sample records for greenhouse-grown soybeans fumigated

  1. Metabolite changes in nine different soybean varieties grown under field and greenhouse conditions.

    Science.gov (United States)

    Maria John, K M; Natarajan, Savithiry; Luthria, Devanand L

    2016-11-15

    Global food security remains a worldwide concern due to changing climate, increasing population, and reduced agriculture acreages. Greenhouse cultivation increases productivity by extending growing seasons, reducing pest infestations and providing protection against short term drastic weather fluctuations like frost, heat, rain, and wind. In the present study, we examined and compared the metabolic responses of nine soybean varieties grown under field and greenhouse conditions. Extracts were assayed by GC-FID, GC-MS, and LC-MS for the identification of 10 primary (amino acids, organic acids, and sugars) and 10 secondary (isoflavones, fatty acid methyl esters) metabolites. Sugar molecules (glucose, sucrose, and pinitol) and isoflavone aglycons were increased but the isoflavones glucoside content decreased in the greenhouse cultivated soybeans. The amino acids and organic acids varied between the varieties. The results show that clustering (PCA and PLS-DA) patterns of soybean metabolites were significantly influenced by the genetic variation and growing conditions. Published by Elsevier Ltd.

  2. Comparing effects of low levels of herbicides on greenhouse- and field-grown potatoes (Solanum tuberosum L.), soybeans (Glycine max L.), and peas (Pisum sativum L.).

    Science.gov (United States)

    Pfleeger, Thomas; Olszyk, David; Lee, E Henry; Plocher, Milton

    2011-02-01

    Although laboratory toxicology tests are generally easy to perform, cost effective, and readily interpreted, they have been questioned for their environmental relevance. In contrast, field tests are considered realistic while producing results that are difficult to interpret and expensive to obtain. Toxicology tests were conducted on potatoes, peas, and soybeans grown in a native soil in pots in the greenhouse and were compared to plants grown outside under natural environmental conditions to determine toxicological differences between environments, whether different plant developmental stages were more sensitive to herbicides, and whether these species were good candidates for plant reproductive tests. The reproductive and vegetative endpoints of the greenhouse plants and field-grown plants were also compared. The herbicides bromoxynil, glyphosate, MCPA ([4-chloro-2-methylphenoxy] acetic acid), and sulfometuron-methyl were applied at below field application rates to potato plants at two developmental stages. Peas and soybeans were exposed to sulfometuron-methyl at similar rates at three developmental stages. The effective herbicide concentrations producing a 25% reduction in a given measure differed between experimental conditions but were generally within a single order of magnitude within a species, even though there were differences in plant morphology. This study demonstrated that potatoes, peas, and soybeans grown in pots in a greenhouse produce phytotoxicity results similar to those grown outside in pots; that reproductive endpoints in many cases were more sensitive than vegetative ones; and that potato and pea plants are reasonable candidates for asexual and sexual reproductive phytotoxicity tests, respectively. Plants grown in pots in a greenhouse and outside varied little in toxicity. However, extrapolating those toxicity results to native plant communities in the field is basically unknown and in need of research. © 2010 SETAC.

  3. Exposure to methyl bromide during greenhouse fumigation on Crete, Greece

    NARCIS (Netherlands)

    Vreede, J.A.F. de; Boeft, J. den; Hemmen, J.J. van

    1998-01-01

    In agricultural areas where greenhouses and dwellings are intermixed, the general population as well as the professional applicators may be exposed to pesticides. In a field study on Crete, exposure to methyl bromide during soil fumigation was assessed. Exposure of applicators (both contractors and

  4. Effects of physical agitation on yield of greenhouse-grown soybean

    Science.gov (United States)

    Jones, R. S.; Mitchell, C. A.

    1992-01-01

    Agronomic and horticultural crop species experience reductions in growth and harvestable yield after exposure to physical agitation (also known as mechanical stress), as by wind or rain. A greenhouse study was conducted to test the influence of mechanical stress on soybean yield and to determine if exposure to mechanical stress during discrete growth periods has differential effects on seed yield. A modified rotatory shaker was used to apply seismic (i.e., shaking) stress. Brief, periodic episodes of seismic stress reduced stem length, total seed dry weight, and seed number of soybean [Glycine max (L.) Merr.]. Lodging resistance was greater for plants stressed during vegetative growth or throughout vegetative and reproductive growth than during reproductive growth only. Seed dry weight yield was reduced regardless of the timing or duration of stress application, but was lowest when applied during reproductive development. Seismic stress applied during reproductive growth stages R1 to R2 (Days 3 to 4) was as detrimental to seed dry weight accumulation as was stress applied during growth stages R1 to R6 (Days 39 to 42). Seed dry weight per plant was highly correlated with seed number per plant, and seed number was correlated with the seed number of two- and three-seeded pods. Dry weight per 100 seeds was unaffected by seismic-stress treatment. Growth and yield reductions resulting from treatments applied only during the vegetative stage imply that long-term mechanical effects were induced, from which the plants did not fully recover. It is unclear which yield-controlling physiological processes were affected by mechanical stress. Both transient and long-term effects on yield-controlling processes remain to be elucidated.

  5. Liquid organomineral fertilizer containing humic substances on soybean grown under water stress

    Directory of Open Access Journals (Sweden)

    Marcelo R. V. Prado

    2016-05-01

    Full Text Available ABSTRACT This study evaluated the effect of an organomineral fertilizer enriched with humic substances on soybean grown under water stress. The experiment was performed in a greenhouse using a Red Latosol (Oxisol with adequate fertility as substrate, in which soybean plants were cultivated with and without water stress. The experimental design was randomized blocks, in a 2 x 5 factorial scheme (two moisture levels and five fertilizer doses: 0, 1, 2, 4 and 8 mL dm-3, totaling 10 treatments, with four replicates. The organomineral fertilizer was applied in the soil 21 days after plant emergence and the water regimes were established one week thereafter. The fertilizer was not able to attenuate the effects of water stress, reducing soybean grain yield by more than 50% compared with plants cultivated under no stress. Fertilizer doses caused positive response on soybean nutrition and grain yield and, under water stress condition, the most efficient dose was 5.4 mL dm-3. There were lower leaf concentrations of nitrogen, phosphorus and potassium and higher concentrations of sulfur in plants under stress. Humic substances favor the absorption of micronutrients.

  6. GREENHOUSE-GROWN CAPE GOOSEBERRY

    African Journals Online (AJOL)

    /2006 S 4,00. Printed in Uganda. All rights reserved O2006, African Crop Science Society. SHORT COMMINICATION. EFFECT OF GIBBERRELLIC ACID ON GROWTH AND FRUIT YIELD OF. GREENHOUSE-GROWN CAPE GOOSEBERRY.

  7. Factors Affecting Isoflavone Content in Soybean Seeds Grown in Thailand

    Directory of Open Access Journals (Sweden)

    Supanimit Teekachunhatean

    2013-01-01

    Full Text Available Soybeans are the most common source of isoflavones in human foods. The objectives of this study were to determine the effects of Thai soybean variety, planting date, physical seed quality, storage condition, planting location, and crop year on isoflavone content, as well as to analyze the relationship between seed viability and isoflavone content in soybean seeds grown in Thailand. Isoflavone content in Thai soybeans varied considerably depending on such factors as variety, physical seed quality, crop year, planting date (even in the same crop year, and planting location. Most varieties (except for Nakhon Sawan 1 and Sukhothai 1 had significantly higher isoflavone content when planted in early rather than in late dry season. Additionally, seed viability as well as long-term storage at 10∘C or at ambient condition seemed unlikely to affect isoflavone content in Thai soybean varieties. Isoflavone content in soybean seeds grown in Thailand depends on multiple genetic and environmental factors. Some varieties (Nakhon Sawan 1 and Sukhothai 1 exhibited moderately high isoflavone content regardless of sowing date. Soybeans with decreased seed viability still retained their isoflavone content.

  8. Factors Affecting Isoflavone Content in Soybean Seeds Grown in Thailand

    OpenAIRE

    Teekachunhatean, Supanimit; Hanprasertpong, Nutthiya; Teekachunhatean, Thawatchai

    2013-01-01

    Soybeans are the most common source of isoflavones in human foods. The objectives of this study were to determine the effects of Thai soybean variety, planting date, physical seed quality, storage condition, planting location, and crop year on isoflavone content, as well as to analyze the relationship between seed viability and isoflavone content in soybean seeds grown in Thailand. Isoflavone content in Thai soybeans varied considerably depending on such factors as variety, physical seed qual...

  9. Synthesis and Secretion of Isoflavones by Field-Grown Soybean.

    Science.gov (United States)

    Sugiyama, Akifumi; Yamazaki, Yumi; Hamamoto, Shoichiro; Takase, Hisabumi; Yazaki, Kazufumi

    2017-09-01

    Isoflavones play important roles in rhizosphere plant-microbe interactions. Daidzein and genistein secreted by soybean roots induce the symbiotic interaction with rhizobia and may modulate rhizosphere interactions with microbes. Yet despite their important roles, little is known about the biosynthesis, secretion and fate of isoflavones in field-grown soybeans. Here, we analyzed isoflavone contents and the expression of isoflavone biosynthesis genes in field-grown soybeans. In roots, isoflavone contents and composition did not change with crop growth, but the expression of UGT4, an isoflavone-specific 7-O-glucosyltransferase, and of ICHG (isoflavone conjugates hydrolyzing beta-glucosidase) was decreased during the reproductive stages. Isoflavone contents were higher in rhizosphere soil than in bulk soil during both vegetative and reproductive stages, and were comparable in the rhizosphere soil between these two stages. We analyzed the degradation dynamics of daidzein and its glucosides to develop a model for predicting rhizosphere isoflavone contents from the amount of isoflavones secreted in hydroponic culture. Conjugates of daidzein were degraded much faster than daidzein, with degradation rate constants of 8.51 d-1 for malonyldaidzin and 11.6 d-1 for daidzin, vs. 9.15 × 10-2 d-1 for daidzein. The model suggested that secretion of isoflavones into the rhizosphere is higher during vegetative stages than during reproductive stages in field-grown soybean. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  10. Potential of greenhouse gas emission reductions in soybean farming

    DEFF Research Database (Denmark)

    Mohammadi, Ali; Dalgaard, Tommy; Knudsen, Marie Trydeman

    2013-01-01

    Joint implementation of Life Cycle Assessment (LCA) and Data Envelopment Analysis (DEA) has recently showed to be a suitable tool for measuring efficiency in agri-food systems. In the present study, LCA + DEA methodologies were applied for a total of 94 soybean farms in Iran to benchmark the leve...... residue in the field generate significantly more greenhouse gas emissions than other farms. The raising of operational input efficiency and limiting of crop residue burning in the field are recommended options to ensure more environmental friendly soybean farming systems in the region....

  11. Growth of soybean at future tropospheric ozone concentrations decreases canopy evapotranspiration and soil water depletion

    Energy Technology Data Exchange (ETDEWEB)

    Bernacchi, Carl J., E-mail: bernacch@illinois.edu [Global Change and Photosynthesis Research Unit, United States Department of Agriculture Agricultural Research Service, Urbana, IL 61801 (United States); Institute for Genomic Biology and Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Leakey, Andrew D.B. [Institute for Genomic Biology and Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Kimball, Bruce A. [USDA-ARS US Arid-Land Agricultural Research Center, 21881 N. Cardon Lane, Maricopa, AZ 85238 (United States); Ort, Donald R. [Global Change and Photosynthesis Research Unit, United States Department of Agriculture Agricultural Research Service, Urbana, IL 61801 (United States); Institute for Genomic Biology and Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States)

    2011-06-15

    Tropospheric ozone is increasing in many agricultural regions resulting in decreased stomatal conductance and overall biomass of sensitive crop species. These physiological effects of ozone forecast changes in evapotranspiration and thus in the terrestrial hydrological cycle, particularly in intercontinental interiors. Soybean plots were fumigated with ozone to achieve concentrations above ambient levels over five growing seasons in open-air field conditions. Mean season increases in ozone concentrations ([O{sub 3}]) varied between growing seasons from 22 to 37% above background concentrations. The objective of this experiment was to examine the effects of future [O{sub 3}] on crop ecosystem energy fluxes and water use. Elevated [O{sub 3}] caused decreases in canopy evapotranspiration resulting in decreased water use by as much as 15% in high ozone years and decreased soil water removal. In addition, ozone treatment resulted in increased sensible heat flux in all years indicative of day-time increase in canopy temperature of up to 0.7 deg. C. - Highlights: > Globally, tropospheric ozone is currently and will likely continue to increase into the future. > We examine the impact of elevated ozone on water use by soybean at the SoyFACE research facility. > High ozone grown soybean had reduced rates of evapotranspiration and higher soil moisture. > Increases in ozone have the potential to impact the hydrologic cycle where these crops are grown. - Soybean grown in elevated concentrations of ozone is shown to evapotranspire less water compared with soybean canopies grown under current atmospheric conditions.

  12. Growth of soybean at future tropospheric ozone concentrations decreases canopy evapotranspiration and soil water depletion

    International Nuclear Information System (INIS)

    Bernacchi, Carl J.; Leakey, Andrew D.B.; Kimball, Bruce A.; Ort, Donald R.

    2011-01-01

    Tropospheric ozone is increasing in many agricultural regions resulting in decreased stomatal conductance and overall biomass of sensitive crop species. These physiological effects of ozone forecast changes in evapotranspiration and thus in the terrestrial hydrological cycle, particularly in intercontinental interiors. Soybean plots were fumigated with ozone to achieve concentrations above ambient levels over five growing seasons in open-air field conditions. Mean season increases in ozone concentrations ([O 3 ]) varied between growing seasons from 22 to 37% above background concentrations. The objective of this experiment was to examine the effects of future [O 3 ] on crop ecosystem energy fluxes and water use. Elevated [O 3 ] caused decreases in canopy evapotranspiration resulting in decreased water use by as much as 15% in high ozone years and decreased soil water removal. In addition, ozone treatment resulted in increased sensible heat flux in all years indicative of day-time increase in canopy temperature of up to 0.7 deg. C. - Highlights: → Globally, tropospheric ozone is currently and will likely continue to increase into the future. → We examine the impact of elevated ozone on water use by soybean at the SoyFACE research facility. → High ozone grown soybean had reduced rates of evapotranspiration and higher soil moisture. → Increases in ozone have the potential to impact the hydrologic cycle where these crops are grown. - Soybean grown in elevated concentrations of ozone is shown to evapotranspire less water compared with soybean canopies grown under current atmospheric conditions.

  13. Quantification of Fusarium oxysporum in fumigated soils by a newly developed real-time PCR assay to assess the efficacy of fumigants for Fusarium wilt disease in strawberry plants.

    Science.gov (United States)

    Li, Yuan; Mao, Liangang; Yan, Dongdong; Ma, Taotao; Shen, Jin; Guo, Meixia; Wang, Qiuxia; Ouyang, Canbin; Cao, Aocheng

    2014-11-01

    Two soil fumigants, chloropicrin (CP) and dimethyl disulfide (DMDS), were used to control Fusarium wilt disease (FWD) which caused large economic losses in strawberries. The fumigants were evaluated alone and in combination in a laboratory study and in strawberry greenhouses. Laboratory tests found that combinations of CP and DMDS indicated a positive synergistic activity on Fusarium oxysporum. A newly developed quantitative assay for F. oxysporum involving real-time PCR was used successfully to evaluate F. oxysporum control by the fumigants; it provided similar results to the selective medium but was less time-consuming and less labor intensive. Greenhouse trials revealed that the combination of CP and DMDS successfully suppressed the incidence of FWD and sharply reduced the population density of F. oxysporum, which significantly increased fruit branch number and maintained a good strawberry yield, higher than methyl bromide (MB) treatment. All of the treatments provided significantly better results than the non-treated control. This study confirms that the newly developed real-time PCR quantitative assay for F. oxysporum was suitable for the control efficacy evaluation of soil fumigants and that the novel fumigant combination of CP and DMDS offers a promising effective alternative to MB for the control of F. oxysporum in strawberry greenhouses. © 2013 Society of Chemical Industry.

  14. Growth reponses of eggplant and soybean seedlings to mechanical stress in greenhouse and outdoor environments

    Science.gov (United States)

    Latimer, J. G.; Pappas, T.; Mitchell, C. A.

    1986-01-01

    Eggplant (Solanum melongena L. var. esculentum 'Burpee's Black Beauty') and soybean [Glycine max (L.) Merr. 'Wells II'] seedlings were assigned to a greenhouse or a windless or windy outdoor environment. Plants within each environment received either periodic seismic (shaking) or thigmic (flexing or rubbing) treatment, or were left undisturbed. Productivity (dry weight) and dimensional (leaf area and stem length) growth parameters generally were reduced more by mechanical stress in the greenhouse (soybean) or outdoor-windless environment (eggplant) than in the outdoor windy environment. Outdoor exposure enhanced both stem and leaf specific weights, whereas mechanical stress enhanced only leaf specific weight. Although both forms of controlled mechanical stress tended to reduce node and internode diameters of soybean, outdoor exposure increased stem diameter.

  15. Culturable endophytic bacterial communities associated with field-grown soybean.

    Science.gov (United States)

    de Almeida Lopes, K B; Carpentieri-Pipolo, V; Oro, T H; Stefani Pagliosa, E; Degrassi, G

    2016-03-01

    Assess the diversity of the culturable endophytic bacterial population associated with transgenic and nontransgenic soybean grown in field trial sites in Brazil and characterize them phenotypically and genotypically focusing on characteristics related to plant growth promotion. Endophytic bacteria were isolated from roots, stems and leaves of soybean cultivars (nontransgenic (C) and glyphosate-resistant (GR) transgenic soybean), including the isogenic BRS133 and BRS245RR. Significant differences were observed in bacterial densities in relation to genotype and tissue from which the isolates were obtained. The highest number of bacteria was observed in roots and in GR soybean. Based on characteristics related to plant growth promotion, 54 strains were identified by partial 16S rRNA sequence analysis, with most of the isolates belonging to the species Enterobacter ludwigii and Variovorax paradoxus. Among the isolates, 44·4% were able to either produce indoleacetic acid (IAA) or solubilize phosphates, and 9·2% (all from GR soybean) presented both plant growth-promoting activities. The results from this study indicate that the abundance of endophytic bacterial communities of soybean differs between cultivars and in general it was higher in the transgenic cultivars than in nontransgenic cultivars. BRS 245 RR exhibited no significant difference in abundance compared to nontransgenic BRS133. This suggests that the impact of the management used in the GR soybean fields was comparable with the impacts of some enviromental factors. However, the bacterial endophytes associated to GR and nontransgenic soybean were different. The soybean-associated bacteria showing characteristics related to plant growth promotion were identified as belonging to the species Pantoea agglomerans and Variovorax paradoxus. Our study demonstrated differences concerning compostion of culturable endophytic bacterial population in nontransgenic and transgenic soybean. © 2016 The Society for Applied

  16. Influence of Maize Rotations on the Yield of Soybean Grown in Meloidogyne incognita Infested Soil

    OpenAIRE

    Kinloch, Robert A.

    1983-01-01

    A replicated field study was conducted from 1972 to 1980 involving soybeans grown in 2-, 3-, and 4-year rotations with maize in soil infested with Meloidogyne incognita. Monocultured soybeans were maintained as controls. Cropping regimes involved root-knot nematode susceptible and resistant soybean cultivars and soybeans treated and not treated with nematicides. Yields of susceptible cultivars declined with reduced length of rotation. Nematicide treatment significantly increased yields of sus...

  17. Soybean growth responses to enhanced levels of ultraviolet-B radiation under greenhouse conditions

    International Nuclear Information System (INIS)

    Teramura, A.H.; Sullivan, J.H.

    1987-01-01

    Soybean (Glycine max [L.] Merr. cv. Essex) was grown in an unshaded greenhouse under three levels of biologically effective ultraviolet-B (UV-BBE) radiation (effective daily dose: 0, 11.5 and 13.6 kJ m -2 ) for 91 days. Plants were harvested at regular intervals beginning 10 days after germination until reproductive maturity. Mathematical growth analysis revealed that the effects of UV-B radiation varied with plant growth stage. The transition period between vegetative and reproductive growth was the most sensitive to UV-B radiation. Intermediate levels of UV-B had deleterious effects on plant height, leaf area, and total plant dry weight at late vegetative and reproductive stages of development. Specific leaf weight increased during vegetative growth but was unaffected by UV-B during reproductive growth stages. Relative growth, net assimilation, and stem elongation rates were decreased by UV-B radiation during vegetative and early reproductive growth stages. Variation in plant responses may be due in part to changes in microclimate within the plant canopy or to differences in repair or protection mechanisms at differing developmental stages. (author)

  18. Biogenic greenhouse gas emissions linked to the life cycles of biodiesel derived from European rapeseed and Brazilian soybeans

    NARCIS (Netherlands)

    Reijnders, L.; Huijbregts, M.A.J.

    2008-01-01

    Biogenic emissions of carbonaceous greenhouse gases and N2O turn out to be important determinants of life cycle emissions of greenhouse gases linked to the life cycle of biodiesel from European rapeseed and Brazilian soybeans. For biodiesel from European rapeseed and for biodiesel from Brazilian

  19. Assessing the greenhouse gas emissions of Brazilian soybean biodiesel production

    Science.gov (United States)

    You, Xin; Cherubin, Maurício Roberto; Moreira, Cindy Silva; Raucci, Guilherme Silva; Castigioni, Bruno de Almeida; Alves, Priscila Aparecida; Cerri, Domingos Guilherme Pellegrino; Mello, Francisco Fujita de Castro; Cerri, Carlos Clemente

    2017-01-01

    Soybean biodiesel (B100) has been playing an important role in Brazilian energy matrix towards the national bio-based economy. Greenhouse gas (GHG) emissions is the most widely used indicator for assessing the environmental sustainability of biodiesels and received particular attention among decision makers in business and politics, as well as consumers. Former studies have been mainly focused on the GHG emissions from the soybean cultivation, excluding other stages of the biodiesel production. Here, we present a holistic view of the total GHG emissions in four life cycle stages for soybean biodiesel. The aim of this study was to assess the GHG emissions of Brazilian soybean biodiesel production system with an integrated life cycle approach of four stages: agriculture, extraction, production and distribution. Allocation of mass and energy was applied and special attention was paid to the integrated and non-integrated industrial production chain. The results indicated that the largest source of GHG emissions, among four life cycle stages, is the agricultural stage (42–51%) for B100 produced in integrated systems and the production stage (46–52%) for B100 produced in non-integrated systems. Integration of industrial units resulted in significant reduction in life cycle GHG emissions. Without the consideration of LUC and assuming biogenic CO2 emissions is carbon neutral in our study, the calculated life cycle GHG emissions for domestic soybean biodiesel varied from 23.1 to 25.8 gCO2eq. MJ-1 B100 and those for soybean biodiesel exported to EU ranged from 26.5 to 29.2 gCO2eq. MJ-1 B100, which represent reductions by 65% up to 72% (depending on the delivery route) of GHG emissions compared with the EU benchmark for diesel fuel. Our findings from a life cycle perspective contributed to identify the major GHG sources in Brazilian soybean biodiesel production system and they can be used to guide mitigation priority for policy and decision-making. Projected scenarios in

  20. Assessing the greenhouse gas emissions of Brazilian soybean biodiesel production.

    Science.gov (United States)

    Cerri, Carlos Eduardo Pellegrino; You, Xin; Cherubin, Maurício Roberto; Moreira, Cindy Silva; Raucci, Guilherme Silva; Castigioni, Bruno de Almeida; Alves, Priscila Aparecida; Cerri, Domingos Guilherme Pellegrino; Mello, Francisco Fujita de Castro; Cerri, Carlos Clemente

    2017-01-01

    Soybean biodiesel (B100) has been playing an important role in Brazilian energy matrix towards the national bio-based economy. Greenhouse gas (GHG) emissions is the most widely used indicator for assessing the environmental sustainability of biodiesels and received particular attention among decision makers in business and politics, as well as consumers. Former studies have been mainly focused on the GHG emissions from the soybean cultivation, excluding other stages of the biodiesel production. Here, we present a holistic view of the total GHG emissions in four life cycle stages for soybean biodiesel. The aim of this study was to assess the GHG emissions of Brazilian soybean biodiesel production system with an integrated life cycle approach of four stages: agriculture, extraction, production and distribution. Allocation of mass and energy was applied and special attention was paid to the integrated and non-integrated industrial production chain. The results indicated that the largest source of GHG emissions, among four life cycle stages, is the agricultural stage (42-51%) for B100 produced in integrated systems and the production stage (46-52%) for B100 produced in non-integrated systems. Integration of industrial units resulted in significant reduction in life cycle GHG emissions. Without the consideration of LUC and assuming biogenic CO2 emissions is carbon neutral in our study, the calculated life cycle GHG emissions for domestic soybean biodiesel varied from 23.1 to 25.8 gCO2eq. MJ-1 B100 and those for soybean biodiesel exported to EU ranged from 26.5 to 29.2 gCO2eq. MJ-1 B100, which represent reductions by 65% up to 72% (depending on the delivery route) of GHG emissions compared with the EU benchmark for diesel fuel. Our findings from a life cycle perspective contributed to identify the major GHG sources in Brazilian soybean biodiesel production system and they can be used to guide mitigation priority for policy and decision-making. Projected scenarios in this

  1. Assessing the greenhouse gas emissions of Brazilian soybean biodiesel production.

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo Pellegrino Cerri

    Full Text Available Soybean biodiesel (B100 has been playing an important role in Brazilian energy matrix towards the national bio-based economy. Greenhouse gas (GHG emissions is the most widely used indicator for assessing the environmental sustainability of biodiesels and received particular attention among decision makers in business and politics, as well as consumers. Former studies have been mainly focused on the GHG emissions from the soybean cultivation, excluding other stages of the biodiesel production. Here, we present a holistic view of the total GHG emissions in four life cycle stages for soybean biodiesel. The aim of this study was to assess the GHG emissions of Brazilian soybean biodiesel production system with an integrated life cycle approach of four stages: agriculture, extraction, production and distribution. Allocation of mass and energy was applied and special attention was paid to the integrated and non-integrated industrial production chain. The results indicated that the largest source of GHG emissions, among four life cycle stages, is the agricultural stage (42-51% for B100 produced in integrated systems and the production stage (46-52% for B100 produced in non-integrated systems. Integration of industrial units resulted in significant reduction in life cycle GHG emissions. Without the consideration of LUC and assuming biogenic CO2 emissions is carbon neutral in our study, the calculated life cycle GHG emissions for domestic soybean biodiesel varied from 23.1 to 25.8 gCO2eq. MJ-1 B100 and those for soybean biodiesel exported to EU ranged from 26.5 to 29.2 gCO2eq. MJ-1 B100, which represent reductions by 65% up to 72% (depending on the delivery route of GHG emissions compared with the EU benchmark for diesel fuel. Our findings from a life cycle perspective contributed to identify the major GHG sources in Brazilian soybean biodiesel production system and they can be used to guide mitigation priority for policy and decision-making. Projected

  2. Reproductive characteristics of citrus rootstocks grown under greenhouse and field environments

    Directory of Open Access Journals (Sweden)

    Divanilde Guerra

    2013-01-01

    Full Text Available The aim of the present study was to evaluate the possible effect of environmental factors on meiosis, meiotic index, pollenviability and in vitro germination of pollen from stock plants of the rootstocks Trifoliate, ‘Swingle’, ‘Troyer’, ‘Fepagro C13’, ‘FepagroC37’ and ‘Fepagro C41’ grown in a protected environment in comparison with stock plants grown in the field. The results showed thatvalues for the characteristics analyzed in 2008, 2009 and 2010 were always higher in the field than in the greenhouse conditions. Inthe field, the average of normal meiotic cells was 60.05%, 44.44% and 60.12%, respectively, and in the greenhouse, 52.75%, 30.95%and 52.82%, respectively. Mean pollen viability in the field was 90.28%, 56.23% and 74.74%, and, in the greenhouse, 64.25%, 41.41%and 66.71%, respectively. As temperature oscillations were higher in the greenhouse than in the field, we suggest that this negativelyaffects the reproductive characteristics analyzed.

  3. Quantification of the growth response of light quantity of greenhouse grown crops

    NARCIS (Netherlands)

    Marcelis, L.F.M.; Broekhuijsen, A.G.M.; Nijs, E.M.F.M.; Raaphorst, M.G.M.

    2006-01-01

    Growers have often assumed that a 1% increment in light results in a 1% yield increase. In this study, this rule of thumb has been evaluated for a number of greenhouse grown crops: fruit vegetables (cucumber, tomato, sweet pepper), soil grown vegetables (lettuce, radish), cut flowers (rose,

  4. Remote sensing of soybean stress as an indicator of chemical concentration of biosolid amended surface soils

    Science.gov (United States)

    Sridhar, B. B. Maruthi; Vincent, Robert K.; Roberts, Sheila J.; Czajkowski, Kevin

    2011-08-01

    The accumulation of heavy metals in the biosolid amended soils and the risk of their uptake into different plant parts is a topic of great concern. This study examines the accumulation of several heavy metals and nutrients in soybeans grown on biosolid applied soils and the use of remote sensing to monitor the metal uptake and plant stress. Field and greenhouse studies were conducted with soybeans grown on soils applied with biosolids at varying rates. The plant growth was monitored using Landsat TM imagery and handheld spectroradiometer in field and greenhouse studies, respectively. Soil and plant samples were collected and then analyzed for several elemental concentrations. The chemical concentrations in soils and roots increased significantly with increase in applied biosolid concentrations. Copper (Cu) and Molybdenum (Mo) accumulated significantly in the shoots of the metal-treated plants. Our spectral and Landsat TM image analysis revealed that the Normalized Difference Vegetative Index (NDVI) can be used to distinguish the metal stressed plants. The NDVI showed significant negative correlation with increase in soil Cu concentrations followed by other elements. This study suggests the use of remote sensing to monitor soybean stress patterns and thus indirectly assess soil chemical characteristics.

  5. Productive performance of soybean cultivars grown in different plant densities

    Directory of Open Access Journals (Sweden)

    Augusto Belchior Marchetti Ribeiro

    Full Text Available ABSTRACT: Plants density in soybean cultivation is an important management practice to achieve high grain yield. In this way, the objective was to evaluate the agronomic traits and grain yield in soybean in different plant densities, in two locations in the south of Minas Gerais. The experimental design was in randomized blocks, arranged in a split plot design, with three replications. Plots were composed of four population densities (300, 400, 500 and 600 thousand plants per hectare and the subplots were composed of six cultivars (‘BMX Força RR’, ‘CD 250 RR’, ‘FMT 08 - 60.346/1’, ‘NA 5909 RR’, ‘TMG 7161 RR’ and ‘V - TOP RR’ grown in Lavras and Inconfidentes, both in Minas Gerais. At the time of harvest was determined the plant height, lodging, insertion of the first pod, harvest index, number of pods per plant, number of grains, number of grains per pod and yield. Regardless of the soybean cultivar, the plant density of up to 600,000 per ha does not affect grain yield, plant height, lodging, harvest index, and number of grains per pod. The cultivars ‘V-TOP RR’ and ‘BMX FORÇA RR’ showed high grain yield and good agronomic traits in Lavras and Incofidentes.

  6. Influence of Hydroponically Grown Hoyt Soybeans and Radiation Encountered on Mars Missions on the Yield and Quality of Soymilk and Tofu

    Science.gov (United States)

    Wilson, Lester A.

    2005-01-01

    Soybeans were chosen for hmar and planetary missions due to their nutritive value and ability to produce oil and protein for further food applications. However, soybeans must be processed into foods prior to crew consumption. Wilson et al. (2003) raised questions about (1) the influence of radiation (on germination and functional properties) that the soybeans would be exposed to during bulk storage for a Mars mission, and (2) the impact of using hydroponically grown versus field grown soybeans on the yield and quality of soyfoods. The influence of radiation can be broken down into two components: (A) affect of surface pasteurization to ensure the astronauts safety from food-borne illnesses (a Hazard Analysis Critical Control Point), and (B) affect of the amount of radiation the soybeans receive during a Mars mission. Decreases in the amount of natural antioxidants and free radical formation and oxidation induced changes in the soybean (lipid, protein, etc.) will influence the nutritional value, texture, quality, and safety of soyfoods made from them. The objectives of this project are to (1) evaluate the influence of gamma and electron beam radiation on bulk soybeans (HACCP, CCP) on the microbial load, germination, ease of processing, and quality of soymilk and tofu; (2) provide scale up and mass balance data for Advanced Life Support subsystems including Biomass, Solid Waste Processing, and Water Recovery Systems; and (3) to compare Hoyt field grown to hydroponically grown Hoyt soybeans for soymilk and tofu production. The soybean cultivar Hoyt, a small standing, high protein cultivar that could grow hydroponically in the AIMS facility on Mars) was evaluated for the production of soymilk and tofu. The quality and yield of the soymilk and tofu from hydroponic Hoyt, was compared to Vinton 81 (a soyfood industry standard), field Hoyt, IA 2032LS (lipoxygenase-free), and Proto (high protein and antioxidant potential). Soymilk and tofu were produced using the Japanese

  7. Assessing the Efficiency of Phenotyping Early Traits in a Greenhouse Automated Platform for Predicting Drought Tolerance of Soybean in the Field.

    Science.gov (United States)

    Peirone, Laura S; Pereyra Irujo, Gustavo A; Bolton, Alejandro; Erreguerena, Ignacio; Aguirrezábal, Luis A N

    2018-01-01

    Conventional field phenotyping for drought tolerance, the most important factor limiting yield at a global scale, is labor-intensive and time-consuming. Automated greenhouse platforms can increase the precision and throughput of plant phenotyping and contribute to a faster release of drought tolerant varieties. The aim of this work was to establish a framework of analysis to identify early traits which could be efficiently measured in a greenhouse automated phenotyping platform, for predicting the drought tolerance of field grown soybean genotypes. A group of genotypes was evaluated, which showed variation in their drought susceptibility index (DSI) for final biomass and leaf area. A large number of traits were measured before and after the onset of a water deficit treatment, which were analyzed under several criteria: the significance of the regression with the DSI, phenotyping cost, earliness, and repeatability. The most efficient trait was found to be transpiration efficiency measured at 13 days after emergence. This trait was further tested in a second experiment with different water deficit intensities, and validated using a different set of genotypes against field data from a trial network in a third experiment. The framework applied in this work for assessing traits under different criteria could be helpful for selecting those most efficient for automated phenotyping.

  8. Assessing the Efficiency of Phenotyping Early Traits in a Greenhouse Automated Platform for Predicting Drought Tolerance of Soybean in the Field

    Directory of Open Access Journals (Sweden)

    Laura S. Peirone

    2018-05-01

    Full Text Available Conventional field phenotyping for drought tolerance, the most important factor limiting yield at a global scale, is labor-intensive and time-consuming. Automated greenhouse platforms can increase the precision and throughput of plant phenotyping and contribute to a faster release of drought tolerant varieties. The aim of this work was to establish a framework of analysis to identify early traits which could be efficiently measured in a greenhouse automated phenotyping platform, for predicting the drought tolerance of field grown soybean genotypes. A group of genotypes was evaluated, which showed variation in their drought susceptibility index (DSI for final biomass and leaf area. A large number of traits were measured before and after the onset of a water deficit treatment, which were analyzed under several criteria: the significance of the regression with the DSI, phenotyping cost, earliness, and repeatability. The most efficient trait was found to be transpiration efficiency measured at 13 days after emergence. This trait was further tested in a second experiment with different water deficit intensities, and validated using a different set of genotypes against field data from a trial network in a third experiment. The framework applied in this work for assessing traits under different criteria could be helpful for selecting those most efficient for automated phenotyping.

  9. Increased root production in soybeans grown under space flight conditions.

    Science.gov (United States)

    Levine, H. G.; Piastuch, W. C.

    The GENEX ({Gen}e {Ex}pression) spaceflight experiment (flown on STS-87) was developed to investigate whether direct and/or indirect effects of microgravity are perceived as an external stimulus for soybean seedling response. Protocols were designed to optimize root and shoot formation, gas exchange and moisture uniformity. Six surface sterilized soybean seeds (Glycine max cv McCall) were inserted into each of 32 autoclaved plastic seed growth pouches containing an inner germination paper sleeve (for a total of 192 seeds). The pouches were stowed within a mid-deck locker until Mission Flight Day 10, at which time an astronaut added water to each pouch (thereby initiating the process of seed germination on-orbit), and subsequently transferred them to four passive, light-tight aluminum canisters called BRIC-60s (Biological Research In Canisters). We report here on the morphological characteristics of: (1) the recovered flight material, (2) the corresponding ground control population, plus (3) additional controls grown on the ground under clinostat conditions. No significant growth differences were found between the flight, ground control and clinorotated treatments for either the cotyledons or hypocotyls. There were, however, significantly longer primary roots produced in the flight population relative to the ground control population, which in turn had significantly longer primary roots than the clinorotated population. This same pattern was observed relative to the production of lateral roots (flight > control > clinorotated). Taken together with previous literature reports, we believe that there is now sufficient evidence to conclude that plants grown under conditions of microgravity will generally exhibit enhanced root production relative to their ground control counterparts. The mechanism underlying this phenomenon is open to speculation. Funded under NASA Contract NAS10-12180.

  10. Synthesis of Pisolithus Ectomycorrhizae on Pecan Seedlings in Fumigated Soil

    Science.gov (United States)

    Donald H. Marx

    1979-01-01

    Curtis variety of pecan (Carya illinoensis) seedlings were grown for 8 months in fumigated soil infested at sowing with mycelial inoculum of Pisolithus tinctorius. Pisolithus ectomycorrhizae were formed on all inoculated seedlings and significantly improved their growth over control seedlings. Inoculated and control seedlings also formed ectomycorrhizae with naturally...

  11. Protein and metabolite composition of xylem sap from field-grown soybeans (Glycine max).

    Science.gov (United States)

    Krishnan, Hari B; Natarajan, Savithiry S; Bennett, John O; Sicher, Richard C

    2011-05-01

    The xylem, in addition to transporting water, nutrients and metabolites, is also involved in long-distance signaling in response to pathogens, symbionts and environmental stresses. Xylem sap has been shown to contain a number of proteins including metabolic enzymes, stress-related proteins, signal transduction proteins and putative transcription factors. Previous studies on xylem sap have mostly utilized plants grown in controlled environmental chambers. However, plants in the field are subjected to high light and to environmental stress that is not normally found in growth chambers. In this study, we have examined the protein and metabolite composition of xylem sap from field-grown cultivated soybean plants. One-dimensional gel electrophoresis of xylem sap from determinate, indeterminate, nodulating and non-nodulating soybean cultivars revealed similar protein profiles consisting of about 8-10 prominent polypeptides. Two-dimensional gel electrophoresis of soybean xylem sap resulted in the visualization of about 60 distinct protein spots. A total of 38 protein spots were identified using MALDI-TOF MS and LC-MS/MS. The most abundant proteins present in the xylem sap were identified as 31 and 28 kDa vegetative storage proteins. In addition, several proteins that are conserved among different plant species were also identified. Diurnal changes in the metabolite profile of xylem sap collected during a 24-h cycle revealed that asparagine and aspartate were the two predominant amino acids irrespective of the time collected. Pinitol (D-3-O-methyl-chiro-inositol) was the most abundant carbohydrate present. The possible roles of xylem sap proteins and metabolites as nutrient reserves for sink tissue and as an indicator of biotic stress are also discussed.

  12. Use of 15N in evaluating symbiotic N2 fixation of field-grown soybeans

    International Nuclear Information System (INIS)

    Ham, G.E.

    1978-01-01

    Various methods have been used to estimate N 2 fixation by legumes (i.e. Kjeldahl N and the acetylene-ethylene assay). Recently 'Asub(N)' values by the legume and a non-nodulating crop using 15 N-labelled N fertilizer were used to quantitatively estimate the amount of N 2 fixed by legume crops growing under field conditions. The objective of this research was to evaluate Kjeldahl N procedures, the acetylene-ethylene assay and the 'Asub(N)' technique as estimators of N 2 fixation by field-grown soybeans. The 'Asub(N)' value concept provided a reliable estimate of N 2 fixation by soybeans which agreed with acetylene-ethylene measurements made weekly and the values compared favourably with Kjeldahl N measurements. (author)

  13. Solar UV-B radiation and ethylene play a key role in modulating effective defenses against Anticarsia gemmatalis larvae in field-grown soybean.

    Science.gov (United States)

    Dillon, Francisco M; Tejedor, M Daniela; Ilina, Natalia; Chludil, Hugo D; Mithöfer, Axel; Pagano, Eduardo A; Zavala, Jorge A

    2018-02-01

    Solar UV-B radiation has been reported to enhance plant defenses against herbivore insects in many species. However, the mechanism and traits involved in the UV-B mediated increment of plant resistance are unknown in crops species, such as soybean. Here, we studied defense-related responses in undamaged and Anticarsia gemmatalis larvae-damaged leaves of two soybean cultivars grown under attenuated or full solar UV-B radiation. We determined changes in jasmonates, ethylene (ET), salicylic acid, trypsin protease inhibitor activity, flavonoids, and mRNA expression of genes related with defenses. ET emission induced by Anticarsia gemmatalis damage was synergistically increased in plants grown under solar UV-B radiation and was positively correlated with malonyl genistin concentration, trypsin proteinase inhibitor activity and expression of IFS2, and the pathogenesis protein PR2, while was negatively correlated with leaf consumption. The precursor of ET, aminocyclopropane-carboxylic acid, applied exogenously to soybean was sufficient to strongly induce leaf isoflavonoids. Our results showed that in field-grown soybean isoflavonoids were regulated by both herbivory and solar UV-B inducible ET, whereas flavonols were regulated by solar UV-B radiation only and not by herbivory or ET. Our study suggests that, although ET can modulate UV-B-mediated priming of inducible plant defenses, some plant defenses, such as isoflavonoids, are regulated by ET alone. © 2017 John Wiley & Sons Ltd.

  14. Early perception of stink bug damage in developing seeds of field-grown soybean induces chemical defences and reduces bug attack.

    Science.gov (United States)

    Giacometti, Romina; Barneto, Jesica; Barriga, Lucia G; Sardoy, Pedro M; Balestrasse, Karina; Andrade, Andrea M; Pagano, Eduardo A; Alemano, Sergio G; Zavala, Jorge A

    2016-08-01

    Southern green stink bugs (Nezara viridula L.) invade field-grown soybean crops, where they feed on developing seeds and inject phytotoxic saliva, which causes yield reduction. Although leaf responses to herbivory are well studied, no information is available about the regulation of defences in seeds. This study demonstrated that mitogen-activated protein kinases MPK3, MPK4 and MPK6 are expressed and activated in developing seeds of field-grown soybean and regulate a defensive response after stink bug damage. Although 10-20 min after stink bug feeding on seeds induced the expression of MPK3, MPK6 and MPK4, only MPK6 was phosphorylated after damage. Herbivory induced an early peak of jasmonic acid (JA) accumulation and ethylene (ET) emission after 3 h in developing seeds, whereas salicylic acid (SA) was also induced early, and at increasing levels up to 72 h after damage. Damaged seeds upregulated defensive genes typically modulated by JA/ET or SA, which in turn reduced the activity of digestive enzymes in the gut of stink bugs. Induced seeds were less preferred by stink bugs. This study shows that stink bug damage induces seed defences, which is perceived early by MPKs that may activate defence metabolic pathways in developing seeds of field-grown soybean. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  15. Elevated temperature intensity, timing, and duration of exposure affect soybean internode elongation, mainstem node number, and pod number per plant

    Directory of Open Access Journals (Sweden)

    Leon Hartwell Allen, Jr.

    2018-04-01

    Full Text Available A study was conducted in four compartments of a polycarbonate greenhouse at Gainesville, FL, USA to investigate how a soybean (Glycine max L. Merr. cultivar, Maverick (maturity group III, indeterminate, responded to three elevated temperatures, ELT, (day/night of 34/26 °C, 38/30 °C, and 42/34 °C in comparison to a control growth temperature (30/22 °C. Carbon dioxide (CO2 concentration was maintained at 700 μmol mol−1 in each compartment by a processor controlled air-sampling and CO2-injection system. Three sequential experiments were conducted at different times of year (summer, autumn, and early spring to investigate the effect of intensity, timing, and duration of ELT on soybean node number, internode elongation, mainstem length, and number of pods set per plant. At the control temperature, the soybean plants grown in the polycarbonate greenhouse were taller than field-grown plants. When plants were grown under continuous ELT applied soon after sowing or at initial flowering, the number of nodes increased with increasing ELT intensity, whereas the length of individual internodes decreased. When ELT treatment was applied during the beginning of flowering stage (R1–R2 or earlier, more nodes were produced and the length of affected internodes was decreased. When the ELT was imposed later at reproductive stage R5+ just before the beginning of seed filling, effects on node numbers and internode lengths were negligible. Short-term (10-day duration of ELT applied at four stages from V3 to R5+ did not significantly affect final mean numbers of nodes or mean mainstem lengths. Possible mechanisms of elevated temperature effects on soybean internode elongation and node number (internode number are discussed. Total pod numbers per plant increased linearly with mainstem node numbers and mainstem length. Furthermore, total pod numbers per plant were greatest at 34/26 °C rather than at the control temperature of 30/22 °C (and

  16. Electron-cytochemical study of Ca2+ in cotyledon cells of soybean seedlings grown in microgravity

    Science.gov (United States)

    Nedukha, O.; Brown, C. S.; Kordyum, E.; Piastuch, W. C.; Guikema, J. A. (Principal Investigator)

    1999-01-01

    Microgravity and horizontal clinorotation are known to cause the rearrangement of the structural-functional organization of plant cells, leading to accelerated aging. Altered gravity conditions resulted in an increase in the droplets volume in cells and the destruction of chloroplast structure in Arabidopsis thaliana plants, an enhancement of cytosolic autophagaous processes, an increase in the respiration rate and a greater number of multimolecular forms of succinate- and malate dehydrogenases in cells of the Funaria hygrometrica protonema and Chlorella vulgaris, and changes in calcium balance of cells. Because ethylene is known to be involved in cell aging and microgravity appears to speed the process, and because soybean seedlings grown in space produce higher ethylene levels we asked: 1) does an acceleration of soybean cotyledon cell development and aging occur in microgravity? 2) what roles do Ca2+ ions and the enhanced ethylene level play in these events? Therefore, the goal of our investigation was to examine of the interaction of microgravity and ethylene on the localization of Ca2+ in cotyledon mesophyll of soybean seedlings.

  17. MINERALS, MICROELEMENTS AND POLYPHENOLS CONTENT IN THE SOYBEAN VARIETIES GROWN IN DIFFERENT LOCALITIES OF SLOVAKIA

    Directory of Open Access Journals (Sweden)

    Mária Timoracká

    2015-02-01

    Full Text Available The aim of this study was to evaluate the influence of the grown locality on minerals and risky metal intake from the soil and on polyphenols formation in the soybean seeds. The research was realised in five localities of Slovakia using the seven soybean varieties. From the point of the soil hygiene, all determined values of heavy metals content in soils were lower than given hygienic limits, with the exception of Cd. Minerals and heavy metals contents in the soybean samples show significant differences between cultivars and localities. The values show imbalance between the potassium contents and other minerals. The order of the elements levels was determined as following: Fe > Zn > Mn > Cu > Ni > Pb > Cr ≈ Co > Cd. The risky elements contents, with exception of Cd, Cu, Pb and Ni content (only in some localities, did not exceed a limit for legumes by Food Codex SR. The total polyphenols content ranged from 817.6 to 1281.0 μg eq. tannic acid/g and suggest the variety dependence, but the locality influence was not significantly confirmed.

  18. Management of the soybean cyst nematode Heterodera glycines with combinations of different rhizobacterial strains on soybean.

    Directory of Open Access Journals (Sweden)

    Yuanyuan Zhou

    Full Text Available Soybean cyst nematode (SCN is the most damaging soybean pest worldwide. To improve soybean resistance to SCN, we employed a soybean seed-coating strategy through combination of three rhizobacterial strains, including Bacillus simple, B. megaterium and Sinarhizobium fredii at various ratios. We found seed coating by such rhizobacterial strains at a ratio of 3:1:1 (thereafter called SN101 produced the highest germination rate and the mortality of J2 of nematodes. Then, the role of soybean seed coating by SN101 in nematode control was evaluated under both greenhouse and two field conditions in Northeast China in 2013 and 2014. Our results showed that SN101 treatment greatly reduced SCN reproduction and significantly promoted plant growth and yield production in both greenhouse and field trials, suggesting that SN101 is a promising seed-coating agent that may be used as an alternative bio-nematicide for controlling SCN in soybean fields. Our findings also demonstrate that combination of multiple rhizobacterial strains needs to be considered in the seed coating for better management of plant nematodes.

  19. Endophytic fungal communities associated with field-grown soybean roots and seeds in the Huang-Huai region of China

    Directory of Open Access Journals (Sweden)

    Hongjun Yang

    2018-04-01

    Full Text Available Plants depend on beneficial interactions between roots and fungal endophytes for growth, disease suppression, and stress tolerance. In this study, we characterized the endophytic fungal communities associated with the roots and corresponding seeds of soybeans grown in the Huang-Huai region of China. For the roots, we identified 105 and 50 genera by culture-independent and culture-dependent (CD methods, respectively, and isolated 136 fungal strains (20 genera from the CD samples. Compared with the 52 soybean endophytic fungal genera reported in other countries, 28 of the genera we found were reported, and 90 were newly discovered. Even though Fusarium was the most abundant genus of fungal endophyte in every sample, soybean root samples from three cities exhibited diverse endophytic fungal communities, and the results between samples of roots and seeds were also significantly different. Together, we identified the major endophytic fungal genera in soybean roots and seeds, and revealed that the diversity of soybean endophytic fungal communities was influenced by geographical effects and tissues. The results will facilitate a better understanding of soybean–endophytic fungi interaction systems and will assist in the screening and utilization of beneficial microorganisms to promote healthy of plants such as soybean.

  20. Uptake, translocation, and transformation of pentachlorophenol in soybean and spinach plants

    International Nuclear Information System (INIS)

    Casterline, J.L. Jr.; Barnett, N.M.; Ku, Y.

    1985-01-01

    Soybean plants were grown for 90 days and spinach plants for 64 days in a mixture of sterilized greenhouse soil and sand containing 10 ppm pentachlorophenol. All plant parts and soil samples were extracted and separated into nonpolar and polar fractions. Major nonpolar and polar metabolites were identified by gas-liquid chromatography and mass spectrometry. Nonpolar fractions from both soybean and spinach plants were found to contain pentachlorophenol and its metabolites, 2,3,4,6-tetrachlorophenol, methoxytetrachlorophenol, 2,3,4,6-tetrachloroanisole, and pentachloroanisole. Cleavage of polar metabolites from the soybean plants by acid hydrolysis yielded organic solvent-extractable products. These products were identified as pentachlorophenol, 2,3,4,6-tetrachlorophenol, and methoxytetrachlorophenol. Cleavage of polar materials from spinach plants yielded only pentachlorophenol. The polar metabolites from the soybean plants were also subjected to enzymatic cleavage by beta-glucosidase. The conjugates consisted mostly of O-glucosides of the same metabolites released by acid hydrolysis. Failure of hydrolysis by aryl sulfatase indicated that very little or no sulfates were present. The metabolites found in the plants were not detected in soil samples obtained from pots immediately after the plants were harvested

  1. Regulations and control of in-transit fumigated containers as well as of fumigated cargo ships.

    Science.gov (United States)

    Low, Anthony; Hüsing, Ulf-Peter; Preisser, Alexandra; Baur, Xaver

    2003-01-01

    According to IMO's international regulations, e.g. "Recommendations on the safe use of pesticides in ships", fumigated containers and ship cargoes must be labeled giving specifications about dates of fumigation and the fumigation gas used. Furthermore, appropriate certificates are necessary and these records have to be forwarded to the Port Health Authorities without their explicitly asking for them. According to IMO (DSC/Circ.8.24.7.2001) a recent inspection of containers unloaded in ports showed that some were under fumigation, but not declared as such and in a few cases these ventilated containers arrive with "Degas Certificates" stating that fumigant has been removed, but still have a high fumigant concentration inside when opened. There are similar reports from The Netherlands, where 21% of the fumigated containers had missing or false declarations and contained measurable amounts of toxic gas. In England 6% were mentioned to be allegedly false. Reports exist of a number of other incidents with containers under fumigation arriving in English ports with no accompanying documents on the ship or at the port of discharge as to the type of cargo. In one case several people were hospitalized after exposure to phosphine gas because the fumigant tablets were not yet totally decomposed before the ship arrived at its destination port. In Bavaria, Germany, a bad accident recently occurred through a non declared fumigated container (see press release). Our sample: a large container ship in the Port of Hamburg where 27 of the cargo's containers were found fumigated with 27 non/incomplete/false declarations. These examples show that missing/false labelling is frequent. Clearance of in-transit fumigated containers in ports is complicated and time-consuming for the captain and shipping company. The above mentioned accident and also the results of our spot check prove, as do the experiences in The Netherlands and England, that false declarations of fumigated containers seem

  2. Environmental effects on allergen levels in commercially grown non-genetically modified soybeans: assessing variation across North America

    Directory of Open Access Journals (Sweden)

    Severin E. Stevenson

    2012-08-01

    Full Text Available Soybean (Glycine max is a hugely valuable soft commodity that generates tens of billions of dollars annually. This value is due in part to the balanced composition of the seed which is roughly 1:2:2 oil, starch and protein by weight. In turn, the seeds have many uses with various derivatives appearing broadly in processed food products. As is true with many edible seeds, soybeans contain proteins that are anti-nutritional factors and allergens. Soybean, along with milk, eggs, fish, crustacean shellfish, tree nuts, peanuts and wheat, elicit a majority of food allergy reactions in the United States. Soybean seed composition can be affected by breeding, environmental conditions (e.g. temperature, moisture, insect/pathogen load, and/or soil nutrient levels. The objective of this study was to evaluate the influence of genotype and environment on allergen and anti-nutritional proteins in soybean. To address genetic and environmental effects, four varieties of non-GM soybeans were grown in six geographically distinct regions of North America (Georgia, Iowa, Kansas, Nebraska, Ontario, and Pennsylvania. Absolute quantification of proteins by mass spectrometry can be achieved with a technique called multiple reaction monitoring (MRM, during which signals from an endogenous protein are compared to those from a synthetic heavy-labeled internal standard. Using MRM, eight allergens were absolutely quantified for each variety in each environment. Statistical analyses show that for most allergens, the effects of environment far outweigh the differences between varieties brought about by breeding.

  3. Solar UV-B radiation modulates chemical defenses against Anticarsia gemmatalis larvae in leaves of field-grown soybean.

    Science.gov (United States)

    Dillon, Francisco M; Chludil, Hugo D; Zavala, Jorge A

    2017-09-01

    Although it is well known that solar ultraviolet B (UV-B) radiation enhances plant defenses, there is less knowledge about traits that define insect resistance in field-grown soybean. Here we study the effects of solar UV-B radiation on: a) the induction of phenolic compounds and trypsin proteinase inhibitors (TPI) in soybean undamaged leaves or damaged by Anticarsia gemmatalis neonates during six days, and b) the survival and mass gain of A. gemmatalis larvae that fed on soybean foliage. Two soybean cultivars (cv.), Charata and Williams, were grown under plastic with different transmittance to solar UV-B radiation, which generated two treatments: ambient UV-B (UVB+) and reduced UV-B (UVB-) radiation. Solar UV-B radiation decreased survivorship by 30% and mass gain by 45% of larvae that fed on cv. Charata, but no effect was found in those larvae that fed on cv. Williams. TPI activity and malonyl genistin were induced by A. gemmatalis damage in both cultivars, but solar UV-B radiation and damage only synergistically increased the induction of these compounds in cv. Williams. Although TPI activity and genistein derivatives were induced by herbivory, these results did not explain the differences found in survivorship and mass gain of larvae that fed on cv. Charata. However, we found a positive association between lower larval performance and the presence of two quercetin triglycosides and a kaempferol triglycoside in foliage of cv. Charata, which were identified by HPLC-DAD/MS 2 . We conclude that exclusion of solar UV-B radiation reduce resistance to A. gemmatalis, due to a reduction in flavonol concentration in a cultivar that has low levels of genistein derivatives like cv. Charata. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Methyl halide emissions from greenhouse-grown mangroves

    Science.gov (United States)

    Manley, Steven L.; Wang, Nun-Yii; Walser, Maggie L.; Cicerone, Ralph J.

    2007-01-01

    Two mangrove species, Avicennia germinans and Rhizophora mangle, were greenhouse grown for nearly 1.5 years from saplings. A single individual of each species was monitored for the emission of methyl halides from aerial tissue. During the first 240 days, salinity was incrementally increased with the addition of seawater, and was maintained between 18 and 28‰ for the duration of the study. Exponential growth occurred after 180 days. Methyl halide emissions normalized to leaf area were measured throughout the study and varied dramatically. Emission rates normalized to land area (mg m-2 y-1), assuming a LAI = 5, yielded 82 and 29 for CH3Cl, 10 and 1.6 for CH3Br, and 26 and 11 for CH3I, for A. germinans and R. mangle, respectively. From these preliminary determinations, only CH3I emissions emerge as being of possible global atmospheric significance. This study emphasizes the need for field studies of methyl halide emissions from mangrove forests.

  5. Effects of hydrogen fluoride and wounding on respiratory enzymes in soybean leaves

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C J; Miller, G W; Welkie, G W

    1966-01-01

    Soybeans (Glycine max, merr, Var. Hawkeye) were cultured in Hoagland's solution and fumigated with hydrogen fluoride (ca. 100 ppb). After 24, 96 and 144 hr of fumigation, the enzyme activities of cytochrome oxidase, peroxidase, catalase, polyphenol oxidase, ascorbic acid oxidase and glucose-6-phosphate dehydrogenase were assayed in leaves from fumigated and control plants. The total oxygen uptake after each time of treatment was measured. The effect of mechanically wounding the tissue on the above enzymes was determined by rubbing with carborundum. Glucose-6-phosphate dehydrogenase activity from fumigated leaves showed an average increase of 5 to 22 times that of the control. Cytochrome oxidase, peroxidase and catalase activities were markedly stimulated by fluoride fumigation. Polyphenol oxidase activity was suppressed throughout the fumigation period. Ascorbic acid oxidase was stimulated at the initial state, then showed a steady decrease in activity. In vitro tests revealed that ascorbic acid oxidase and peroxidase were very sensitive to fluoride ions. Polyphenol oxidase was only slightly inhibited by 10/sup -2/M KF solution. Cytochrome oxidase and catalase were not affected by KF up to 10/sup -2/M. Total respiration throughout the treatment period showed an accelerated rate. All enzymes studied were stimulated by wounding. The effect of HF on respiration and specific enzymes is discussed in terms of direct effects and injury. 48 references, 8 tables.

  6. Understanding abiotic stress tolerance mechanisms in soybean: a comparative evaluation of soybean response to drought and flooding stress.

    Science.gov (United States)

    Mutava, Raymond N; Prince, Silvas Jebakumar K; Syed, Naeem Hasan; Song, Li; Valliyodan, Babu; Chen, Wei; Nguyen, Henry T

    2015-01-01

    Many sources of drought and flooding tolerance have been identified in soybean, however underlying molecular and physiological mechanisms are poorly understood. Therefore, it is important to illuminate different plant responses to these abiotic stresses and understand the mechanisms that confer tolerance. Towards this goal we used four contrasting soybean (Glycine max) genotypes (PI 567690--drought tolerant, Pana--drought susceptible, PI 408105A--flooding tolerant, S99-2281--flooding susceptible) grown under greenhouse conditions and compared genotypic responses to drought and flooding at the physiological, biochemical, and cellular level. We also quantified these variations and tried to infer their role in drought and flooding tolerance in soybean. Our results revealed that different mechanisms contribute to reduction in net photosynthesis under drought and flooding stress. Under drought stress, ABA and stomatal conductance are responsible for reduced photosynthetic rate; while under flooding stress, accumulation of starch granules played a major role. Drought tolerant genotypes PI 567690 and PI 408105A had higher plastoglobule numbers than the susceptible Pana and S99-2281. Drought stress increased the number and size of plastoglobules in most of the genotypes pointing to a possible role in stress tolerance. Interestingly, there were seven fibrillin proteins localized within the plastoglobules that were up-regulated in the drought and flooding tolerant genotypes PI 567690 and PI 408105A, respectively, but down-regulated in the drought susceptible genotype Pana. These results suggest a potential role of Fibrillin proteins, FBN1a, 1b and 7a in soybean response to drought and flooding stress. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  7. [Effects of lime-ammonium bicarbonate fumigation and biofertilizer application on Fusarium wilt and biomass of continuous cropping cucumber and watermelon.

    Science.gov (United States)

    Shen, Zong Zhuan; Sun, Li; Wang, Dong Sheng; Lyu, Na Na; Xue, Chao; Li, Rong; Shen, Qi Rong

    2017-10-01

    In this study, the population size of soil microbes was determined using plate counting method after the application of lime-ammonium bicarbonate and ammonium bicarbonate fumigation. In addition, biofertilizer was applied after soil fumigation and population of Fusarium oxysporum, Fusarium wilt disease control efficiency and plant biomass were determined in the cucumber and watermelon continuous cropping soil. The results showed that the population of F. oxysporum in cucumber mono-cropped soil fumigated with lime-ammonium bicarbonate or ammonium bicarbonate was decreased by 95.4% and 71.4%, while that in watermelon mono-cropped soil was decreased by 87.3% and 61.2%, respectively compared with non-fumigated control (CK). Furthermore, the greenhouse experiment showed that biofertilizer application, soil fumigation and crop type showed significant effects on the number of soil F. oxysporum, Fusarium wilt disease incidence, disease control efficiency and plant biomass based on multivariate analysis of variance. In the lime-ammonium bicarbonate fumigated soil amended with biofertilizer (LFB), significant reductions in the numbers of F. oxysporum and Fusarium wilt disease incidence were observed in both cucumber and watermelon cropped soil compared to non-fumigated control soil applied with organic fertilizer. The disease control rate was 91.9% and 92.5% for cucumber and watermelon, respectively. Moreover, LFB also significantly increased the plant height, stem diameter, leaf SPAD, and dry biomass for cucumber and watermelon. It was indicated that biofertilizer application after lime-ammonium bicarbonate fumigation could effectively reduce the abundance of F. oxysporum in soil, control Fusarium wilt disease and improve plant biomass in cucumber and watermelon mono-cropping systems.

  8. Oil accumulation in soybean seeds grown in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    José Leonardo Bruno

    2015-10-01

    Full Text Available The soybean seed presents around 20% of oil and 40% of protein. These levels, during the filling of the seeds, can be influenced by environmental conditions, where are produced changes on its biochemistry composition. The higher temperatures promote the accumulation of protein, and the moderate temperatures favor the oil accumulation. Under in vivo growing conditions the control of these factors is difficult. The in vitro procedure can help the research, because the seed can be isolated from the mother plant in controlled environment. The objective of this experiment was to evaluate the oil content of BRS184 and BRS282in vitro and in vivo. The in vivo procedure, occurred in the greenhouse, with 3plantsper potand seed collectionin R8, and in vitro procedure, developed in the laboratory, where the immature seeds were taken from the mother plant in R5 stage, cultured with a liquid culture medium containing 20 mM, 40 mM and 60 mM glutamine, with a constant agitation, during eight days at 25 ± 0.2 °C, and sucrose concentration of 204.5 mM. After the in vitro cultivation time for, the fresh weight gain of the seeds was evaluated, and after both experiments, was determined by the oil content for cultivation in R5, and R8. The accumulation of oil in soybean seeds presents a complex interaction, ranging between the genotype and the environmental conditions, under in vivo and in vitro cultivation. There is a positive correlation between production and oil content in seeds.

  9. Diurnal depression in leaf hydraulic conductance at ambient and elevated [CO2] reveals anisohydric water management in field-grown soybean

    Science.gov (United States)

    Diurnal cycles of photosynthesis and water use in field-grown soybean (Glycine max) are tied to light intensity and vapor pressure deficit (VPD). At high mid-day VPD, transpiration rates can lead to a decline in leaf water potential if leaf hydraulic conductance is insufficient to supply water to in...

  10. Soybean biomass produced in Argentina

    DEFF Research Database (Denmark)

    Semino, Stella Maris; Paul, Helena; Tomei, Julia

    2009-01-01

    Soybean biomass for biodiesel, produced in Argentina amongst other places, is considered by some to reduce greenhouse gas emissions and mitigate climate change when compared with fossil fuel. To ensure that the production of biofuels is ‘sustainable', EU institutions and national governments...... are currently designing certification schemes for the sustainable production of biomass. This paper questions the validity of proposed environmental standards, using the production of Argentine soybean as a case study. The production of soybean production is associated with profound environmental impacts...

  11. Interference of Selected Palmer Amaranth (Amaranthus palmeri Biotypes in Soybean (Glycine max

    Directory of Open Access Journals (Sweden)

    Aman Chandi

    2012-01-01

    Full Text Available Palmer amaranth (Amaranthus palmeri S. Wats. has become difficult to control in row crops due to selection for biotypes that are no longer controlled by acetolactate synthase inhibiting herbicides and/or glyphosate. Early season interference in soybean [Glycine max (L. Merr.] for 40 days after emergence by three glyphosate-resistant (GR and three glyphosate-susceptible (GS Palmer amaranth biotypes from Georgia and North Carolina was compared in the greenhouse. A field experiment over 2 years compared season-long interference of these biotypes in soybean. The six Palmer amaranth biotypes reduced soybean height similarly in the greenhouse but did not affect soybean height in the field. Reduction in soybean fresh weight and dry weight in the greenhouse; and soybean yield in the field varied by Palmer amaranth biotypes. Soybean yield was reduced 21% by Palmer amaranth at the established field density of 0.37 plant m−2. When Palmer amaranth biotypes were grouped by response to glyphosate, the GS group reduced fresh weight, dry weight, and yield of soybean more than the GR group. The results indicate a possible small competitive disadvantage associated with glyphosate resistance, but observed differences among biotypes might also be associated with characteristics within and among biotypes other than glyphosate resistance.

  12. Greenhouse gas emissions and energy efficiencies for soybeans and maize cultivated in different agronomic zones: A case study of Argentina.

    Science.gov (United States)

    Arrieta, E M; Cuchietti, A; Cabrol, D; González, A D

    2018-06-01

    Of all human activities, agriculture has one of the highest environmental impacts, particularly related to Greenhouse Gas (GHG) emissions, energy use and land use change. Soybean and maize are two of the most commercialized agricultural commodities worldwide. Argentina contributes significantly to this trade, being the third major producer of soybeans, the first exporter of soymeal and soybean oil, and the third exporter of maize. Despite the economic importance of these crops and the products derived, there are very few studies regarding GHG emissions, energy use and efficiencies associated to Argentinean soybean and maize production. Therefore, the aim of this work is to determine the carbon and energy footprint, as well as the carbon and energy efficiencies, of soybeans and maize produced in Argentina, by analyzing 18 agronomic zones covering an agricultural area of 1.53millionkm 2 . Our results show that, for both crops, the GHG and energy efficiencies at the Pampean region were significantly higher than those at the extra-Pampean region. The national average for production of soybeans in Argentina results in 6.06ton/ton CO 2 -eq emitted to the atmosphere, while 0.887ton of soybean were produced per GJ of energy used; and for maize 5.01ton/ton CO 2 -eq emitted to the atmosphere and 0.740ton of maize were produced per each GJ of energy used. We found that the large differences on yields, GHGs and energy efficiencies between agronomic regions for soybean and maize crop production are mainly driven by climate, particularly mean annual precipitation. This study contributes for the first time to understand the carbon and energy footprint of soybean and maize production throughout several agronomic zones in Argentina. The significant differences found in the productive efficiencies questions on the environmental viability of expanding the agricultural frontier to less suitable lands for crop production. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Control of powdery mildew on glasshouse-grown roses and tomatoes in the Netherlands using anhydrous milk fat and soybean oil emulsions

    NARCIS (Netherlands)

    Wurms, K.V.; Hofland-Zijlstra, Jantineke

    2015-01-01

    Powdery mildew (PM) is a very serious disease affecting glasshouse-grown roses and tomatoes in the Netherlands. Control is limited because of resistance to existing fungicides. Anhydrous milk fat (AMF) and soybean oil (SBO) emulsions were evaluated for control of PM in roses and tomatoes. Both

  14. Experimental investigation of performance, exhaust emission and combustion parameters of stationary compression ignition engine using ethanol fumigation in dual fuel mode

    International Nuclear Information System (INIS)

    Jamuwa, D.K.; Sharma, D.; Soni, S.L.

    2016-01-01

    Highlights: • Potential of renewable fuels as diesel replacement is being emphasized. • Effect of ethanol fumigation on the performance of diesel engine is investigated. • NOx, CO_2 and smoke decreases with simultaneous increase in HC and CO. • Increase in ignition delay with decrease in combustion duration for ethanol substitution observed. - Abstract: Dwindling reserves and steeply increasing prices of the fossil-fuels, concern over climatic change due to release of anthropogenic greenhouse gases and the strict environmental regulations have motivated the researchers for the search for renewable alternative fuel that has clean burning characteristics and may be produced indigenously. Alcohols, being oxygenated fuel improve the combustion and reduce greenhouse gas emissions, thus enhancing agrarian economies and encouraging national economy as a whole. The objective of this paper is to investigate the thermal performance, exhaust emissions and combustion behaviour of small capacity compression ignition engine using fumigated ethanol. Fumigated ethanol at different flow rates is supplied to the cylinder during suction with the help of a simplified low cost ethanol fuelling system. With ethanol fumigation, brake thermal efficiency decreased upto 11.2% at low loads due to deteriorated combustion, whereas improved combustion increased efficiency up to 6% at higher loads, as compared to pure diesel. Maximum reduction of 22%, 41% and 27% respectively in nitrogen oxide, smoke and carbon-di-oxide emissions with simultaneous increase in hydrocarbon and carbon-mono-oxide emissions upto maximum of 144% and 139% respectively for different rates of ethanol fumigation have been observed, when compared to pure diesel operation. This is due to the changes in physico-chemical properties of air fuel mixture, viz combustion temperature, oxygen concentration, latent heat of vaporisation, fuel distribution, cetane number and ignition delay, that occurred with addition of

  15. Biological control of Heterodera glycines by spore-forming plant growth-promoting rhizobacteria (PGPR on soybean.

    Directory of Open Access Journals (Sweden)

    Ni Xiang

    Full Text Available Heterodera glycines, the soybean cyst nematode, is the most economically important plant-parasitic nematode on soybean production in the U.S. The objectives of this study were to evaluate the potential of plant growth-promoting rhizobacteria (PGPR strains for mortality of H. glycines J2 in vitro and for reducing nematode population density on soybean in greenhouse, microplot, and field trials. The major group causing mortality to H. glycines in vitro was the genus Bacillus that consisted of 92.6% of the total 663 PGPR strains evaluated. The subsequent greenhouse, microplot, and field trials indicated that B. velezensis strain Bve2 consistently reduced H. glycines cyst population density at 60 DAP. Bacillus mojavensis strain Bmo3 suppressed H. glycines cyst and total H. glycines population density under greenhouse conditions. Bacillus safensis strain Bsa27 and Mixture 1 (Bve2 + Bal13 reduced H. glycines cyst population density at 60 DAP in the field trials. Bacillus subtilis subsp. subtilis strains Bsssu2 and Bsssu3, and B. velezensis strain Bve12 increased early soybean growth including plant height and plant biomass in the greenhouse trials. Bacillus altitudinis strain Bal13 increased early plant growth on soybean in the greenhouse and microplot trials. Mixture 2 (Abamectin + Bve2 + Bal13 increased early plant growth in the microplot trials at 60 DAP, and also enhanced soybean yield at harvest in the field trials. These results demonstrated that individual PGPR strains and mixtures can reduce H. glycines population density in the greenhouse, microplot, and field conditions, and increased yield of soybean.

  16. Biological control of Heterodera glycines by spore-forming plant growth-promoting rhizobacteria (PGPR) on soybean.

    Science.gov (United States)

    Xiang, Ni; Lawrence, Kathy S; Kloepper, Joseph W; Donald, Patricia A; McInroy, John A

    2017-01-01

    Heterodera glycines, the soybean cyst nematode, is the most economically important plant-parasitic nematode on soybean production in the U.S. The objectives of this study were to evaluate the potential of plant growth-promoting rhizobacteria (PGPR) strains for mortality of H. glycines J2 in vitro and for reducing nematode population density on soybean in greenhouse, microplot, and field trials. The major group causing mortality to H. glycines in vitro was the genus Bacillus that consisted of 92.6% of the total 663 PGPR strains evaluated. The subsequent greenhouse, microplot, and field trials indicated that B. velezensis strain Bve2 consistently reduced H. glycines cyst population density at 60 DAP. Bacillus mojavensis strain Bmo3 suppressed H. glycines cyst and total H. glycines population density under greenhouse conditions. Bacillus safensis strain Bsa27 and Mixture 1 (Bve2 + Bal13) reduced H. glycines cyst population density at 60 DAP in the field trials. Bacillus subtilis subsp. subtilis strains Bsssu2 and Bsssu3, and B. velezensis strain Bve12 increased early soybean growth including plant height and plant biomass in the greenhouse trials. Bacillus altitudinis strain Bal13 increased early plant growth on soybean in the greenhouse and microplot trials. Mixture 2 (Abamectin + Bve2 + Bal13) increased early plant growth in the microplot trials at 60 DAP, and also enhanced soybean yield at harvest in the field trials. These results demonstrated that individual PGPR strains and mixtures can reduce H. glycines population density in the greenhouse, microplot, and field conditions, and increased yield of soybean.

  17. Diurnal depression in leaf hydraulic conductance at ambient and elevated [CO2] and reveals anisohydric water management in field-grown soybean

    Science.gov (United States)

    Diurnal cycles of photosynthesis and water use in field-grown soybean (Glycine max) are tied to light intensity and vapor pressure deficit (VPD). At high mid-day VPD, transpiration rates can lead to a decline in leaf water potential ('leaf) if leaf hydraulic conductance (Kleaf) is insufficient to su...

  18. Aboveground feeding by soybean aphid, Aphis glycines, affects soybean cyst nematode, Heterodera glycines, reproduction belowground.

    Directory of Open Access Journals (Sweden)

    Michael T McCarville

    Full Text Available Heterodera glycines is a cyst nematode that causes significant lost soybean yield in the U.S. Recent studies observed the aphid Aphis glycines and H. glycines interacting via their shared host, soybean, Glycine max. A greenhouse experiment was conducted to discern the effect of A. glycines feeding on H. glycines reproduction. An H. glycines-susceptible cultivar, Kenwood 94, and a resistant cultivar, Dekalb 27-52, were grown in H. glycines-infested soil for 30 and 60 d. Ten days after planting, plants were infested with either zero, five, or ten aphids. At 30 and 60 d, the number of H. glycines females and cysts (dead females and the number of eggs within were counted. In general, H. glycines were less abundant on the resistant than the susceptible cultivar, and H. glycines abundance increased from 30 to 60 d. At 30 d, 33% more H. glycines females and eggs were produced on the resistant cultivar in the ten-aphid treatment compared to the zero-aphid treatment. However, at 30 d the susceptible cultivar had 50% fewer H. glycines females and eggs when infested with ten aphids. At 60 d, numbers of H. glycines females and cysts and numbers of eggs on the resistant cultivar were unaffected by A. glycines feeding, while numbers of both were decreased by A. glycines on the susceptible cultivar. These results indicate that A. glycines feeding improves the quality of soybean as a host for H. glycines, but at higher herbivore population densities, this effect is offset by a decrease in resource quantity.

  19. Overexpression of four Arabidopsis thaliana NHLgenes in soybean (Glycine max) roots and their effect over resistance to the soybean cyst nematode (Heterodera glycines)

    Science.gov (United States)

    In the US, the soybean cyst nematode (SCN) is the most destructive pathogen of soybean. Currently grown soybean varieties are not resistant to all field populations of SCN. We genetically engineered soybean roots so they expressed genes from the model plant, Arabidopsis. When the Arabidopsis genes, ...

  20. Effect of bacterial root symbiosis and urea as source of nitrogen on performance of soybean plants grown hydroponically for Bioregenerative Life Support Systems (BLSSs).

    Science.gov (United States)

    Paradiso, Roberta; Buonomo, Roberta; Dixon, Mike A; Barbieri, Giancarlo; De Pascale, Stefania

    2015-01-01

    Soybean is traditionally grown in soil, where root symbiosis with Bradyrhizobium japonicum can supply nitrogen (N), by means of bacterial fixation of atmospheric N2. Nitrogen fertilizers inhibit N-fixing bacteria. However, urea is profitably used in soybean cultivation in soil, where urease enzymes of telluric microbes catalyze the hydrolysis to ammonium, which has a lighter inhibitory effect compared to nitrate. Previous researches demonstrated that soybean can be grown hydroponically with recirculating complete nitrate-based nutrient solutions. In Space, urea derived from crew urine could be used as N source, with positive effects in resource procurement and waste recycling. However, whether the plants are able to use urea as the sole source of N and its effect on root symbiosis with B. japonicum is still unclear in hydroponics. We compared the effect of two N sources, nitrate and urea, on plant growth and physiology, and seed yield and quality of soybean grown in closed-loop Nutrient Film Technique (NFT) in growth chamber, with or without inoculation with B. japonicum. Urea limited plant growth and seed yield compared to nitrate by determining nutrient deficiency, due to its low utilization efficiency in the early developmental stages, and reduced nutrients uptake (K, Ca, and Mg) throughout the whole growing cycle. Root inoculation with B. japonicum did not improve plant performance, regardless of the N source. Specifically, nodulation increased under fertigation with urea compared to nitrate, but this effect did not result in higher leaf N content and better biomass and seed production. Urea was not suitable as sole N source for soybean in closed-loop NFT. However, the ability to use urea increased from young to adult plants, suggesting the possibility to apply it during reproductive phase or in combination with nitrate in earlier developmental stages. Root symbiosis did not contribute significantly to N nutrition and did not enhance the plant ability to use

  1. Insensitivity of soybean photosynthesis to ultraviolet-B radiation under phosphorus deficiency

    International Nuclear Information System (INIS)

    Murali, N.S.; Teramura, A.H.

    1987-01-01

    Soybean [Glycinemax (L.) Merr. cv Essex] was grown in sand in a greenhouse under 2 levels of biologically effective ultraviolet‐B radiation (effective daily dose: 0 and 11.5 kJ/m UV‐BBE and 2 levels of P (6.5 and 52 μM). Plants were grown in each treatment combination up to the fifth trifoliolate stage. UV‐B radiation had no affect on plant growth and net photosynthesis at 6.5 μM P supply but decreased both these parameters when grown in the higher P concentration. Reductions in net photosynthesis were apparently due to direct effects on the photosynthetic machinery, since chlorophyll concentration and stanatal conductance were unaffected by UV‐B radiation. Both UV‐B radiation and reduced P supply increased the level of UV‐B absorbing compounds in leaf tissues and their effects were additive. The reduced sensitivity of P deficient plants to UV‐B radiation may be the result of this increase in UV absorbing compounds and possibly uv protective mechanisms associated with growth inhibition

  2. Evaluation of allyl isothiocyanate as a soil fumigant against soil-borne diseases in commercial tomato (Lycopersicon esculentum Mill.) production in China.

    Science.gov (United States)

    Ren, Zongjie; Li, Yuan; Fang, Wensheng; Yan, Dongdong; Huang, Bin; Zhu, Jiahong; Wang, Xiaoning; Wang, Xianli; Wang, Qiuxia; Guo, Meixia; Cao, Aocheng

    2018-03-12

    Root-knot nematodes (Meloidogyne spp.), soil-borne diseases and weeds seriously reduce the commercial yield of tomatoes grown under protected cultivation in China. Allyl isothiocyanate (AITC), a natural product obtained from damaged Brassica tissues, was evaluated as a potential replacement for the fumigant methyl bromide (MB) for use in the greenhouse production of tomatoes in China. The dose-response assay indicates that AITC has high biological activity against major bacterial and fungal pathogens (EC 50 of 0.225-4.199 mg L -1 ). The bioassay results indicate that AITC has good efficacy against root-knot nematodes (LC 50 of 18.046 mg kg -1 ), and moderate efficacy against fungal pathogens (LC 50 of 27.999-29.497 mg kg -1 ) and weeds (LC 50 of 17.300-47.660 mg kg -1 ). The potting test indicates that AITC significantly improved plant vigor. Field trials indicate that AITC showed good efficacy against Meloidogyne spp. and Fusarium spp. (both ∼ 80%) as well as Phytophthora spp. and Pythium spp. (both ∼ 70%), and improved plant vigor and marketable yield. AITC used as a soil fumigant (30-50 g m -2 ) effectively controlled major bacterial and fungal pathogens, root-knot nematode, weeds and increased plant vigor, yield and farmers' income in tomato cultivated under protected agriculture in China. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  3. Study on the Influence of Sulfur Fumigation on Chemical ...

    African Journals Online (AJOL)

    Purpose: To study the influence of different sulfur fumigation time and ... after sulfur fumigation though sulfur fumigation time and dosage were at low levels – 2 h ... Conclusion: Sulfur fumigation is not a desirable method for field processing of ...

  4. Breeding for high N2 fixation in groundnut and soybean in Viet Nam

    International Nuclear Information System (INIS)

    Nguyen Xuan Hong

    1998-01-01

    Groundnut (Arachis hypogaea L.) and soybean (Glycine max (L.) Mer.) are grown mainly on two types of soil in Viet Nam: coastal-sandy and upland-degraded soils. These soils are deficient in N, and considering that fertilizer N is not only costly to farmers but also a threat to the environment, it is important to maximize productivity by exploiting the ability of these legumes to fix N 2 symbiotically in their root nodules. We initiated programmes of breeding and selection to combine high N 2 fixation and high grain-yielding capacity. In the spring of 1992, breeding lines of groundnut and soybean were tested under greenhouse conditions for varietal differences in the capacity to fix N 2 using the acetylene reduction assay and the 15 N-dilution technique, with upland rice as reference plants. Varietal differences were found in nitrogenase activity, and percent N derived from fixation (%Ndfa) ranged from 11 to 63% for groundnut and from 9 to 79% for soybean. Field experiments in the autumn-winter season of 1992 again revealed significant varietal differences; %Ndfa ranged from 36 to 56% for groundnut and from 28 to 58% for soybean. Gamma-irradiated seeds of soybean were propagated in bulk from M 1 to M 4 . Five high-yielding mutant lines of both species were selected from the M 5 populations, and N 2 fixation was estimated using the 15 N-dilution technique. The average values for %Ndfa of the mutants were 55 and 57%, significant improvements over the parent-cultivar values of 25 and 29% for soybean and groundnut, respectively

  5. Introduction to Soil Fumigant Management Plans

    Science.gov (United States)

    Soil fumigant pesticide labels require users to prepare a site-specific fumigation management plan (FMP) before the application begins. EPA has developed templates that outline the elements required by the labels.

  6. Silicon does not alleviate the adverse effects of drought stress in soybean plants

    Directory of Open Access Journals (Sweden)

    Viviane Ruppenthal

    2016-12-01

    Full Text Available Beneficial effects of silicon (Si in the plants growth under conditions of drought stress have been associated with to uptake and accumulation ability of element by different species. However, the effects of Si on soybean under water stress are still incipient and inconclusive. This study investigated the effect of Si application as a way to confer greater soybean tolerance to drought stress. The experiment was carried out in 20-L pots under greenhouse conditions. Treatments were arranged in a randomized block design in a 2 × 4 factorial: two water regimes (no stress or water stress and four Si rates (0, 50, 100 and 200 mg kg–1. Soybean plants were grown until beginning flowering (R1 growth stage with soil moisture content near at the field capacity, and then it started the differentiation of treatments under drought by the suspension of water supply. Changes in relative water content (RWC in leaf, electrolyte leakage from cells, peroxidase activity, plant nutrition and growth were measured after 7 days of drought stress and 3 days recovery. The RWC in soybean leaves decreased with Si rates in the soil. Silicon supply in soil with average content of this element, reduced dry matter production of soybean under well-irrigated conditions and caused no effect on dry matter under drought stress. The nitrogen uptake by soybean plants is reduced with the Si application under drought stress. The results indicated that the Si application stimulated the defense mechanisms of soybean plants, but was not sufficient to mitigate the negative effects of drought stress on the RWC and dry matter production.

  7. Effect of metal stress on the thermal infrared emission of soybeans: A greenhouse experiment - Possible utility in remote sensing

    Science.gov (United States)

    Suresh, R.; Schwaller, M. R.; Foy, C. D.; Weidner, J. R.; Schnetzler, C. S.

    1989-01-01

    Manganese-sensitive forest and manganese-tolerant lee soybean cultivars were subjected to differential manganese stress in loring soil in a greenhouse experiment. Leaf temperature measurements were made using thermistors for forest and lee. Manganese-stressed plants had higher leaf temperatures than control plants in both forest and lee. Results of this experiment have potential applications in metal stress detection using remote sensing thermal infrared data over large areas of vegetation. This technique can be useful in reconnaissance mineral exploration in densely-vegetated regions where conventional ground-based methods are of little help.

  8. Diurnal photosynthesis and stomatal resistance in field-grown soybeans

    International Nuclear Information System (INIS)

    Miller, J.E.; Muller, R.N.; Seegers, P.

    1976-01-01

    The process of photosynthesis in green plants is the major determinant of crop yield. Although the effects of air pollutants, such as sulfur dioxide, on photosynthesis has been studied, many unsolved questions remain. This is especially true with regard to reduction of photosynthetic rate under conditions of chronic exposure causing little or no visible injury. It was the purpose of these studies to develop techniques suitable for measuring photosynthetic rates of field-grown plants without dramatically altering the microenvironment of the plants. Gross photosynthetic rates of soybeans (Glycine max. cv. Wayne) in the field were measured by exposing a small section of representative leaves for 30 seconds to 14 CO 2 in a normal atmospheric mixture by a technique similar to that of Incoll and Wright. A 1-cm 2 section of the area exposed to 14 CO 2 is punched from the leaf and processed for liquid scintillation counting. Since the treatment period is of such short duration, there is little photorespiratory loss of 14 CO 2 , and thus, the amount of 14 C fixed in the leaf can be related to the gross photosynthetic rate. Other parameters measured during the course of these experiments were stomatal resistance, light intensity, leaf water potential, and air temperature

  9. Phytotoxicity of zinc and manganese to seedlings grown in soil contaminated by zinc smelting

    Science.gov (United States)

    Beyer, W.N.; Green, C.E.; Beyer, M.; Chaney, R.L.

    2013-01-01

    Historic emissions from two zinc smelters have injured the forest on Blue Mountain near Palmerton, Pennsylvania, USA. Seedlings of soybeans and five tree species were grown in a greenhouse in a series of mixtures of smelter-contaminated and reference soils and then phytotoxic thresholds were calculated. As little as 10% Palmerton soil mixed with reference soil killed or greatly stunted seedlings of most species. Zinc was the principal cause of the phytotoxicity to the tree seedlings, although Mn and Cd may also have been phytotoxic in the most contaminated soil mixtures. Calcium deficiency seemed to play a role in the observed phytotoxicity. Exposed soybeans showed symptoms of Mn toxicity. A test of the effect of liming on remediation of the Zn and Mn phytotoxicity caused a striking decrease in Sr-nitrate extractable metals in soils and demonstrated that liming was critical to remediation and restoration.

  10. Soybean-Enriched Snacks Based on African Rice

    Science.gov (United States)

    Marengo, Mauro; Akoto, Hannah F.; Zanoletti, Miriam; Carpen, Aristodemo; Buratti, Simona; Benedetti, Simona; Barbiroli, Alberto; Johnson, Paa-Nii T.; Sakyi-Dawson, Esther O.; Saalia, Firibu K.; Bonomi, Francesco; Pagani, Maria Ambrogina; Manful, John; Iametti, Stefania

    2016-01-01

    Snacks were produced by extruding blends of partially-defatted soybean flour with flours from milled or parboiled African-grown rice. The interplay between composition and processing in producing snacks with a satisfactory sensory profile was addressed by e-sensing, and by molecular and rheological approaches. Soybean proteins play a main role in defining the properties of the protein network in the products. At the same content in soybean flour, use of parboiled rice flour increases the snack’s hardness. Electronic nose and electronic tongue discriminated samples containing a higher amount of soybean flour from those with a lower soybean flour content. PMID:28231133

  11. Microbial community analysis of field-grown soybeans with different nodulation phenotypes.

    Science.gov (United States)

    Ikeda, Seishi; Rallos, Lynn Esther E; Okubo, Takashi; Eda, Shima; Inaba, Shoko; Mitsui, Hisayuki; Minamisawa, Kiwamu

    2008-09-01

    Microorganisms associated with the stems and roots of nonnodulated (Nod(-)), wild-type nodulated (Nod(+)), and hypernodulated (Nod(++)) soybeans [Glycine max (L.) Merril] were analyzed by ribosomal intergenic transcribed spacer analysis (RISA) and automated RISA (ARISA). RISA of stem samples detected no bands specific to the nodulation phenotype, whereas RISA of root samples revealed differential bands for the nodulation phenotypes. Pseudomonas fluorescens was exclusively associated with Nod(+) soybean roots. Fusarium solani was stably associated with nodulated (Nod(+) and Nod(++)) roots and less abundant in Nod(-) soybeans, whereas the abundance of basidiomycetes was just the opposite. The phylogenetic analyses suggested that these basidiomycetous fungi might represent a root-associated group in the Auriculariales. Principal-component analysis of the ARISA results showed that there was no clear relationship between nodulation phenotype and bacterial community structure in the stem. In contrast, both the bacterial and fungal community structures in the roots were related to nodulation phenotype. The principal-component analysis further suggested that bacterial community structure in roots could be classified into three groups according to the nodulation phenotype (Nod(-), Nod(+), or Nod(++)). The analysis of root samples indicated that the microbial community in Nod(-) soybeans was more similar to that in Nod(++) soybeans than to that in Nod(+) soybeans.

  12. Microbial Community Analysis of Field-Grown Soybeans with Different Nodulation Phenotypes▿

    Science.gov (United States)

    Ikeda, Seishi; Rallos, Lynn Esther E.; Okubo, Takashi; Eda, Shima; Inaba, Shoko; Mitsui, Hisayuki; Minamisawa, Kiwamu

    2008-01-01

    Microorganisms associated with the stems and roots of nonnodulated (Nod−), wild-type nodulated (Nod+), and hypernodulated (Nod++) soybeans [Glycine max (L.) Merril] were analyzed by ribosomal intergenic transcribed spacer analysis (RISA) and automated RISA (ARISA). RISA of stem samples detected no bands specific to the nodulation phenotype, whereas RISA of root samples revealed differential bands for the nodulation phenotypes. Pseudomonas fluorescens was exclusively associated with Nod+ soybean roots. Fusarium solani was stably associated with nodulated (Nod+ and Nod++) roots and less abundant in Nod− soybeans, whereas the abundance of basidiomycetes was just the opposite. The phylogenetic analyses suggested that these basidiomycetous fungi might represent a root-associated group in the Auriculariales. Principal-component analysis of the ARISA results showed that there was no clear relationship between nodulation phenotype and bacterial community structure in the stem. In contrast, both the bacterial and fungal community structures in the roots were related to nodulation phenotype. The principal-component analysis further suggested that bacterial community structure in roots could be classified into three groups according to the nodulation phenotype (Nod−, Nod+, or Nod++). The analysis of root samples indicated that the microbial community in Nod− soybeans was more similar to that in Nod++ soybeans than to that in Nod+ soybeans. PMID:18658280

  13. Procedures of Laboratory Fumigation for Pest Control with Nitric Oxide Gas.

    Science.gov (United States)

    Liu, Yong-Biao; Yang, Xiangbing; Masuda, Tiffany

    2017-11-24

    Nitric oxide (NO) is a newly discovered fumigant for postharvest pest control. This paper provides detailed protocols for conducting NO fumigation on fresh products and procedures for residue analysis and product quality evaluation. An airtight fumigation chamber containing fresh fruit and vegetables is first flushed with nitrogen (N2) to establish an ultralow oxygen (ULO) environment followed by injection of NO. The fumigation chamber is then kept at a low temperature of 2 - 5 °C for a specified time period necessary to kill a target pest to complete a fumigation treatment. At the end of a fumigation treatment, the fumigation chamber is flushed with N2 to dilute NO prior to opening the chamber to ambient air to prevent the reaction between NO and O2, which produces NO2 and may damage delicate fresh products. At different times after NO fumigation, NO2 in headspace and nitrate and nitrite in liquid samples were measured as residues. Product quality was evaluated after 2 weeks of post-treatment cold storage to determine effects of NO fumigation on product quality. Keeping O2 from reacting with NO is critical to NO fumigation and is an important part of the protocols. Measuring NO levels is challenging and a practical solution is provided. Possible protocol modifications are also suggested for measuring NO levels in the fumigation chambers as well as residues. NO fumigation has the potential to be a practical alternative to methyl bromide fumigation for postharvest pest control on fresh and stored products. This publication is intended to assist other researchers in conducting NO fumigation research for postharvest pest control and accelerating the development of NO fumigation for practical applications.

  14. Soybean-Enriched Snacks Based on African Rice

    Directory of Open Access Journals (Sweden)

    Mauro Marengo

    2016-05-01

    Full Text Available Snacks were produced by extruding blends of partially-defatted soybean flour with flours from milled or parboiled African-grown rice. The interplay between composition and processing in producing snacks with a satisfactory sensory profile was addressed by e-sensing, and by molecular and rheological approaches. Soybean proteins play a main role in defining the properties of the protein network in the products. At the same content in soybean flour, use of parboiled rice flour increases the snack’s hardness. Electronic nose and electronic tongue discriminated samples containing a higher amount of soybean flour from those with a lower soybean flour content.

  15. Impact of sulphur fumigation on the chemistry of ginger.

    Science.gov (United States)

    Wu, Cheng-Ying; Kong, Ming; Zhang, Wei; Long, Fang; Zhou, Jing; Zhou, Shan-Shan; Xu, Jin-Di; Xu, Jun; Li, Song-Lin

    2018-01-15

    Ginger (Zingiberis Rhizoma), a commonly-consumed food supplement, is often sulphur-fumigated during post-harvest handling, but it remains unknown if sulphur fumigation induces chemical transformations in ginger. In this study, the effects of sulphur fumigation on ginger chemicals were investigated by ultra-high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS/MS)-based metabolomics. The results showed that sulphur fumigation significantly altered the holistic chemical profile of ginger by triggering chemical transformations of certain original components. 6-Gingesulphonic acid, previously reported as a naturally-occurring component in ginger, was revealed to be a sulphur fumigation-induced artificial derivative, which was deduced to be generated by electrophilic addition of 6-shogaol to sulphurous acid. Using UHPLC-QTOF-MS/MS extracting ion analysis with 6-gingesulphonic acid as a characteristic chemical marker, all the commercial ginger samples inspected were determined to be sulphur-fumigated. The research outcomes provide a chemical basis for further comprehensive safety and efficacy evaluations of sulphur-fumigated ginger. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Genetic improvement of soybean through induced mutagenesis

    International Nuclear Information System (INIS)

    Manjaya, J.G.; Nandanwar, R.S.; Thengane, R.J.; Muthiah, A.R.

    2009-01-01

    Soybean (Glycine max (L.) Merril) is one of the important oilseed crops of India. The country produces more than 9.00 million tonnes of soybean per annum and has acquired first place amongst oilseed crops grown in India. Narrow genetic base of cultivated varieties in soybean is of global concern. Efficient mutant production systems, through physical or chemical mutagenesis, have been well established in soybean. A vast amount of genetic variability, of both quantitative and qualitative traits, has been generated through experimental mutagenesis. Two soybean varieties TAMS-38 and TAMS 98-21 have been developed and released for commercial cultivation by Bhabha Atomic Research Centre (BARC). In this paper the role of mutation breeding in soybean improvement has been discussed. (author)

  17. Agriculture: Nurseries and Greenhouses

    Science.gov (United States)

    Nurseries and Greenhouses. Information about environmental requirements specifically relating to the production of many types of agricultural crops grown in nurseries and greenhouses, such as ornamental plants and specialty fruits and vegetables.

  18. Fumigant distribution in forest nursery soils

    Science.gov (United States)

    Dong Wang; Stephen W. Fraedrich; Jennifer Juzwik; Kurt Spokas; Yi Zhang; William C. Koskinen

    2006-01-01

    Adequate concentration, exposure time and distribution uniformity of activated fumigant gases are prerequisites for successful soil fumigation. Field experiments were conducted to evaluate gas phase distributions of methyl isothiocyanate (MITC) and chloropicrin (CP) in two forest-tree nurseries. Concentrations of MITC and CP in soil air were measured from replicated...

  19. Phosphorus bioavailability in soybean grown after pasture under different fertility regimes

    Directory of Open Access Journals (Sweden)

    Diogo Néia Eberhardt

    2017-05-01

    Full Text Available The aim of this study was to evaluate the residual effect of phosphorus (P fertilizer applied to an Urochloa decumbens cv. Basilisk pasture on the P bioavailability to the following soybean crop. Low-productivity pasture, planted on an Oxisol in an experimental field at Embrapa Cerrados, was divided into three strips, each of 1.5 ha and fertilized by broadcasting annual applications of 0, 20 and 40 kg ha-1 of P2O5 for four years. After the pasture was desiccate with herbicide, soybeans were sown and fertilized with 0, 50 and 100 kg ha-1 of P2O5 applied within each strip, making a total of nine (3x3 P treatments. Residual available P content (Mehlich-1 and resin from the pasture fertilization was lower than from soybean fertilization. However, the bioavailable residual P from the pasture, determined by P accumulated in plants, production of dry matter and grain yield, had similar availability to inorganic P applied to the soybean. Early P fertilization applied to pasture is technically feasible and can be used to maintain the pasture: it is recommended to replace corrective fertilization for following soybean crops.

  20. Water utilization of vegetables grown under plastic greenhouse conditions in Ankara using neutron probe technique

    International Nuclear Information System (INIS)

    Halitligil, M.B.; Kislal, H.; Sirin, H.; Sirin, C.; Kilicaslan, A.

    2004-01-01

    Full text: In order to find suitable varieties of tomato, pepper and cucumber for plastic greenhouse conditions in Ankara and ensure both higher yields and lower NO 3 leaching greenhouse experiments were conducted for three years. In the first year (2001) of the experiment four different varieties from each vegetable, namely, Tomato (Ecem F 1 , 9920 F 1 , 2116 F 1 and Yazg1 F 1 ), Cucumber (Hizir F 1 , Rapido, Hana, and Luna) and Pepper (1245 F 1 , 730 F 1 , Serademre 8 and 710 F 1 ) had been grown in the plastic greenhouse using drip irrigation-fertiligation system. Yazg1 F 1 variety for tomato, Hizir F 1 variety for cucumber and Serademre 8 variety for pepper were chosen to be suitable varieties to grow in the plastic greenhouse conditions in Ankara. One access tube in each N 3 and N 0 treatment plots of tomato, cucumber and pepper in 2002 and 2003 experiments were installed for the soil moisture determinations at 30, 60 and 90 cm depths. Readings with the neutron probe were taken before planting and after harvest for the water consumption calculations using the water balance approach and the WUE was calculated on the basis of the ratio of dry matter weight to the amount of water consumed. Tensiometer and suction cups were installed at 15, 30, 45 and 60 cm depths only to N 1 , N 2 and N 3 treatments plots of each vegetable in 2002 and 2003. Tensiometer readings were taken just before irrigation. Also, soil solution samples from suction cups were taken at final harvest and NO 3 determinations were done with RQFLEX nitrate test strips. Significantly higher yields and WUE values were obtained when the same amount of N fertilizer is applied through fertigation compared to the treatment where N fertilizer applied to the soil then drip irrigated. The nitrate concentrations of the soil solution increased as the N rates increased and no NO 3 had been found in the soil solution taken from 75 cm soil depth, indicating that no leaching of N fertilizer occurred beyond 75 cm

  1. Soybeans Grown in the Chernobyl Area Produce Fertile Seeds that Have Increased Heavy Metal Resistance and Modified Carbon Metabolism

    Science.gov (United States)

    Klubicová, Katarína; Danchenko, Maksym; Skultety, Ludovit; Berezhna, Valentyna V.; Uvackova, Lubica; Rashydov, Namik M.; Hajduch, Martin

    2012-01-01

    Plants grow and reproduce in the radioactive Chernobyl area, however there has been no comprehensive characterization of these activities. Herein we report that life in this radioactive environment has led to alteration of the developing soybean seed proteome in a specific way that resulted in the production of fertile seeds with low levels of oil and β-conglycinin seed storage proteins. Soybean seeds were harvested at four, five, and six weeks after flowering, and at maturity from plants grown in either non-radioactive or radioactive plots in the Chernobyl area. The abundance of 211 proteins was determined. The results confirmed previous data indicating that alterations in the proteome include adaptation to heavy metal stress and mobilization of seed storage proteins. The results also suggest that there have been adjustments to carbon metabolism in the cytoplasm and plastids, increased activity of the tricarboxylic acid cycle, and decreased condensation of malonyl-acyl carrier protein during fatty acid biosynthesis. PMID:23110204

  2. Soybeans grown in the Chernobyl area produce fertile seeds that have increased heavy metal resistance and modified carbon metabolism.

    Directory of Open Access Journals (Sweden)

    Katarína Klubicová

    Full Text Available Plants grow and reproduce in the radioactive Chernobyl area, however there has been no comprehensive characterization of these activities. Herein we report that life in this radioactive environment has led to alteration of the developing soybean seed proteome in a specific way that resulted in the production of fertile seeds with low levels of oil and β-conglycinin seed storage proteins. Soybean seeds were harvested at four, five, and six weeks after flowering, and at maturity from plants grown in either non-radioactive or radioactive plots in the Chernobyl area. The abundance of 211 proteins was determined. The results confirmed previous data indicating that alterations in the proteome include adaptation to heavy metal stress and mobilization of seed storage proteins. The results also suggest that there have been adjustments to carbon metabolism in the cytoplasm and plastids, increased activity of the tricarboxylic acid cycle, and decreased condensation of malonyl-acyl carrier protein during fatty acid biosynthesis.

  3. Nodulation-dependent communities of culturable bacterial endophytes from stems of field-grown soybeans.

    Science.gov (United States)

    Okubo, Takashi; Ikeda, Seishi; Kaneko, Takakazu; Eda, Shima; Mitsui, Hisayuki; Sato, Shusei; Tabata, Satoshi; Minamisawa, Kiwamu

    2009-01-01

    Endophytic bacteria (247 isolates) were randomly isolated from surface-sterilized stems of non-nodulated (Nod(-)), wild-type nodulated (Nod(+)), and hypernodulated (Nod(++)) soybeans (Glycine max [L.] Merr) on three agar media (R2A, nutrient agar, and potato dextrose agar). Their diversity was compared on the basis of 16S rRNA gene sequences. The phylogenetic composition depended on the soybean nodulation phenotype, although diversity indexes were not correlated with nodulation phenotype. The most abundant phylum throughout soybean lines tested was Proteobacteria (58-79%). Gammaproteobacteria was the dominant class (21-72%) with a group of Pseudomonas sp. significantly abundant in Nod(+) soybeans. A high abundance of Alphaproteobacteria was observed in Nod(-) soybeans, which was explained by the increase in bacterial isolates of the families Rhizobiaceae and Sphingomonadaceae. A far greater abundance of Firmicutes was observed in Nod(-) and Nod(++) mutant soybeans than in Nod(+) soybeans. An impact of culture media on the diversity of isolated endophytic bacteria was also observed: The highest diversity indexes were obtained on the R2A medium, which enabled us to access Alphaproteobacteria and other phyla more frequently. The above results indicated that the extent of nodulation changes the phylogenetic composition of culturable bacterial endophytes in soybean stems.

  4. A STUDY ON WEED CONTROL IN SOYBEAN

    Directory of Open Access Journals (Sweden)

    S. TJITROSEMITO

    1991-01-01

    Full Text Available Two field experiments on weed control in soybeans were carried out at BIOTROP, Bogor, Indonesia from February to June, 1989. The critical period for weed control was found to be between 20 - 40 days after planting of soybean (c. v. Wilis grown at a planting distance of 40 x 10 cm. It did not coincide with the fastest growth in terms of trifoliate leaf number. Further studies were suggested to understand the physiological growth of soybean related to weed control. Pendimethalin at 660- 1320 g a.e./ha applied one day after sowing did not cause any phytotoxic effect to soybean and had good weed control performance.

  5. Fumigant dosages below maximum label rate control some soilborne pathogens

    Directory of Open Access Journals (Sweden)

    Shachaf Triky-Dotan

    2016-08-01

    Full Text Available The activity of commercial soil fumigants on some key soilborne pathogens was assessed in sandy loam soil under controlled conditions. Seven soil fumigants that are registered in California or are being or have been considered for registration were used in this study: dimethyl disulfide (DMDS mixed with chloropicrin (Pic (79% DMDS and 21% Pic, Tri-Con (50% methyl bromide and 50% Pic, Midas Gold (33% methyl iodide [MI] and 67% Pic, Midas Bronze (50% MI and 50% Pic, Midas (MI, active ingredient [a.i.] 97.8%, Pic (a.i. 99% trichloronitromethane and Pic-Clor 60 (57% Pic and 37% 1,3-dichloropropene [1–3,D]. Dose-response models were calculated for pathogen mortality after 24 hours of exposure to fumigants. Overall, the tested fumigants achieved good efficacy with dosages below the maximum label rate against the tested pathogens. In this study, Pythium ultimum and citrus nematode were sensitive to all the fumigants and Verticillium dahliae was resistant. For most fumigants, California regulations restrict application rates to less than the maximum (federal label rate, meaning that it is possible that the fumigants may not control major plant pathogens. This research provides information on the effectiveness of these alternatives at these lower application rates. The results from this study will help growers optimize application rates for registered fumigants (such as Pic and 1,3-D and will help accelerate the adoption of new fumigants (such as DMDS if they are registered in California.

  6. PIXE analysis of remaining bromine in fumigated old manuscripts and books

    International Nuclear Information System (INIS)

    Kohno, M.; Yoshida, K.; Moritani, K.; Naito, M.; Enami, K.; Kasajima, H.; Takada, J.; Matsushita, R.

    1999-01-01

    Buddhist scriptures in Reeky University Library have been fumigated regularly for protecting them from vermin. Methyl bromide (CH 3 Br) had been used there till 1985. In order to examine whether the chemical remains on the fumigated objects or not, paper fragments of old manuscripts and books, modern paper placed together with them, and non-fumigated ones were analyzed by PIXE. The bromine concentration of fumigated paper was more than from several tens to several hundreds times higher than non-fumigated ones. (author)

  7. Efficacy of Nitric Oxide Fumigation for Controlling Codling Moth in Apples

    Directory of Open Access Journals (Sweden)

    Yong-Biao Liu

    2016-12-01

    Full Text Available Nitric oxide (NO fumigation under ultralow oxygen (ULO conditions was studied for its efficacy in controlling codling moth and effects on postharvest quality of apples. NO fumigation was effective against eggs and larvae of different sizes on artificial diet in 48 h treatments. Small larvae were more susceptible to nitric oxide than other stages at 0.5% NO concentration. There were no significant differences among life stages at 1.0% to 2.0% NO concentrations. In 24 h treatments of eggs, 3.0% NO fumigation at 2 °C achieved 100% egg mortality. Two 24 h fumigation treatments of infested apples containing medium and large larvae with 3.0% and 5.0% NO resulted in 98% and 100% mortalities respectively. Sound apples were also fumigated with 5.0% NO for 24 h at 2 °C to determine effects on apple quality. The fumigation treatment was terminated by flushing with nitrogen and had no negative impact on postharvest quality of apples as measured by firmness and color at 2 and 4 weeks after fumigation. This study demonstrated that NO fumigation was effective against codling moth and safe to apple quality, and therefore has potential to become a practical alternative to methyl bromide fumigation for control of codling moth in apples.

  8. Efficacy of Nitric Oxide Fumigation for Controlling Codling Moth in Apples.

    Science.gov (United States)

    Liu, Yong-Biao; Yang, Xiangbing; Simmons, Gregory

    2016-12-02

    Nitric oxide (NO) fumigation under ultralow oxygen (ULO) conditions was studied for its efficacy in controlling codling moth and effects on postharvest quality of apples. NO fumigation was effective against eggs and larvae of different sizes on artificial diet in 48 h treatments. Small larvae were more susceptible to nitric oxide than other stages at 0.5% NO concentration. There were no significant differences among life stages at 1.0% to 2.0% NO concentrations. In 24 h treatments of eggs, 3.0% NO fumigation at 2 °C achieved 100% egg mortality. Two 24 h fumigation treatments of infested apples containing medium and large larvae with 3.0% and 5.0% NO resulted in 98% and 100% mortalities respectively. Sound apples were also fumigated with 5.0% NO for 24 h at 2 °C to determine effects on apple quality. The fumigation treatment was terminated by flushing with nitrogen and had no negative impact on postharvest quality of apples as measured by firmness and color at 2 and 4 weeks after fumigation. This study demonstrated that NO fumigation was effective against codling moth and safe to apple quality, and therefore has potential to become a practical alternative to methyl bromide fumigation for control of codling moth in apples.

  9. Changes in seed water status as characterized by NMR in developing soybean seed grown under moisture stress conditions

    International Nuclear Information System (INIS)

    Krishnan, P.; Singh, Ravender; Verma, A.P.S.; Joshi, D.K.; Singh, Sheoraj

    2014-01-01

    Highlights: • In developing soybean seeds, moisture stress resulted in more proportion of water to bound state. • These changes are further corroborated by concomitant changes in seed metabolites. • Thus there exists a moisture stress and development stage dependence of seed tissue water status. - Abstract: Changes in water status of developing seeds of Soybean (Glycine max L. Merrill.) grown under different moisture stress conditions were characterized by proton nuclear magnetic resonance (NMR)- spin–spin relaxation time (T 2 ). A comparison of the seed development characteristics, composition and physical properties indicated that, characteristics like seed weight, seed number/ear, rate of seed filling increased with development stages but decreased with moisture stress conditions. The NMR- spin–spin relaxation (T 2 ) component like bound water increased with seed maturation (40–50%) but decreased with moisture stress conditions (30–40%). The changes in seed water status to increasing levels of moisture stress and seed maturity indicates that moisture stress resulted in more proportion of water to bound state and intermediate state and less proportion of water in free-state. These changes are further corroborated by significant changes in protein and starch contents in seeds under high moisture stress treatments. Thus seed water status during its development is not only affected by development processes but also by moisture stress conditions. This study strongly indicated a clear moisture stress and development stage dependence of seed tissue water status in developing soybean seeds

  10. Changes in seed water status as characterized by NMR in developing soybean seed grown under moisture stress conditions

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, P., E-mail: pkrishnan@iari.res.in; Singh, Ravender; Verma, A.P.S.; Joshi, D.K.; Singh, Sheoraj

    2014-02-21

    Highlights: • In developing soybean seeds, moisture stress resulted in more proportion of water to bound state. • These changes are further corroborated by concomitant changes in seed metabolites. • Thus there exists a moisture stress and development stage dependence of seed tissue water status. - Abstract: Changes in water status of developing seeds of Soybean (Glycine max L. Merrill.) grown under different moisture stress conditions were characterized by proton nuclear magnetic resonance (NMR)- spin–spin relaxation time (T{sub 2}). A comparison of the seed development characteristics, composition and physical properties indicated that, characteristics like seed weight, seed number/ear, rate of seed filling increased with development stages but decreased with moisture stress conditions. The NMR- spin–spin relaxation (T{sub 2}) component like bound water increased with seed maturation (40–50%) but decreased with moisture stress conditions (30–40%). The changes in seed water status to increasing levels of moisture stress and seed maturity indicates that moisture stress resulted in more proportion of water to bound state and intermediate state and less proportion of water in free-state. These changes are further corroborated by significant changes in protein and starch contents in seeds under high moisture stress treatments. Thus seed water status during its development is not only affected by development processes but also by moisture stress conditions. This study strongly indicated a clear moisture stress and development stage dependence of seed tissue water status in developing soybean seeds.

  11. Photosynthesis rates, growth, and ginsenoside contents of 2-yr-old Panax ginseng grown at different light transmission rates in a greenhouse.

    Science.gov (United States)

    Jang, In-Bae; Lee, Dae-Young; Yu, Jin; Park, Hong-Woo; Mo, Hwang-Sung; Park, Kee-Choon; Hyun, Dong-Yun; Lee, Eung-Ho; Kim, Kee-Hong; Oh, Chang-Sik

    2015-10-01

    Ginseng is a semishade perennial plant cultivated in sloping, sun-shaded areas in Korea. Recently, owing to air-environmental stress and various fungal diseases, greenhouse cultivation has been suggested as an alternative. However, the optimal light transmission rate (LTR) in the greenhouse has not been established. The effect of LTR on photosynthesis rate, growth, and ginsenoside content of ginseng was examined by growing ginseng at the greenhouse under 6%, 9%, 13%, and 17% of LTR. The light-saturated net photosynthesis rate (A sat) and stomatal conductance (g s) of ginseng increased until the LTR reached 17% in the early stage of growth, whereas they dropped sharply owing to excessive leaf chlorosis at 17% LTR during the hottest summer period in August. Overall, 6-17% of LTR had no effect on the aerial part of plant length or diameter, whereas 17% and 13% of LRT induced the largest leaf area and the highest root weight, respectively. The total ginsenoside content of the ginseng leaves increased as the LTR increased, and the overall content of protopanaxatriol line ginsenosides was higher than that of protopanaxadiol line ginsenosides. The ginsenoside content of the ginseng roots also increased as the LTR increased, and the total ginsenoside content of ginseng grown at 17% LTR increased by 49.7% and 68.3% more than the ginseng grown at 6% LTR in August and final harvest, respectively. These results indicate that 13-17% of LTR should be recommended for greenhouse cultivation of ginseng.

  12. Methods evaluated to minimize emissions from preplant soil fumigation

    Directory of Open Access Journals (Sweden)

    Suduan Gao

    2008-05-01

    Full Text Available Many commodities depend on preplant soil fumigation for pest control to achieve healthy crops and profitable yields. Under California regulations, minimizing emissions is essential to maintain the practical use of soil fumigants, and more stringent regulations are likely in the future. The phase-out of methyl bromide as a broad-spectrum soil fumigant has created formidable challenges. Most alternatives registered today are regulated as volatile organic compounds because of their toxicity and mobile nature. We review research on methods for minimizing emissions from soil fumigation, including the effectiveness of their emission reductions, impacts on pest control and cost. Low-permeability plastic mulches are highly effective but are generally affordable only in high-value cash crops such as strawberry. Crops with low profit margins such as stone-fruit orchards may require lower-cost methods such as water treatment or target-area fumigation.

  13. Early Identification of Herbicide Stress in Soybean (Glycine max (L.) Merr.) Using Chlorophyll Fluorescence Imaging Technology.

    Science.gov (United States)

    Li, Hui; Wang, Pei; Weber, Jonas Felix; Gerhards, Roland

    2017-12-22

    Herbicides may damage soybean in conventional production systems. Chlorophyll fluorescence imaging technology has been applied to identify herbicide stress in weed species a few days after application. In this study, greenhouse experiments followed by field experiments at five sites were conducted to investigate if the chlorophyll fluorescence imaging is capable of identifying herbicide stress in soybean shortly after application. Measurements were carried out from emergence until the three-to-four-leaf stage of the soybean plants. Results showed that maximal photosystem II (PS II) quantum yield and shoot dry biomass was significantly reduced in soybean by herbicides compared to the untreated control plants. The stress of PS II inhibiting herbicides occurred on the cotyledons of soybean and plants recovered after one week. The stress induced by DOXP synthase-, microtubule assembly-, or cell division-inhibitors was measured from the two-leaf stage until four-leaf stage of soybean. We could demonstrate that the chlorophyll fluorescence imaging technology is capable for detecting herbicide stress in soybean. The system can be applied under both greenhouse and field conditions. This helps farmers to select weed control strategies with less phytotoxicity in soybean and avoid yield losses due to herbicide stress.

  14. Soybean Resistance to White Mold: Evaluation of Soybean Germplasm Under Different Conditions and Validation of QTL

    Science.gov (United States)

    Kandel, Ramkrishna; Chen, Charles Y.; Grau, Craig R.; Dorrance, Ann E.; Liu, Jean Q.; Wang, Yang; Wang, Dechun

    2018-01-01

    Soybean (Glycine max L. Merr.) white mold (SWM), caused by Sclerotinia sclerotiorum (Lib) de Barry), is a devastating fungal disease in the Upper Midwest of the United States and southern Canada. Various methods exist to evaluate for SWM resistance and many quantitative trait loci (QTL) with minor effect governing SWM resistance have been identified in prior studies. This study aimed to predict field resistance to SWM using low-cost and efficient greenhouse inoculation methods and to confirm the QTL reported in previous studies. Three related but independent studies were conducted in the field, greenhouse, and laboratory to evaluate for SWM resistance. The first study evaluated 66 soybean plant introductions (PIs) with known field resistance to SWM using the greenhouse drop-mycelium inoculation method. These 66 PIs were significantly (P greenhouse inoculation methods with disease severity index (DSI) in field evaluations. Moderate correlation (r) between PM under drop-mycelium method and DSI in field trials (r = 0.65, p greenhouse inoculation methods and DSI across field trials. These findings suggest that greenhouse inoculation methods could predict the field resistance to SWM. The third study attempted to validate 33 QTL reported in prior studies using seven populations that comprised a total of 392 F4 : 6 lines derived from crosses involving a partially resistant cultivar “Skylla,” five partially resistant PIs, and a known susceptible cultivar “E00290.” The estimates of broad-sense heritability (h2) ranged from 0.39 to 0.66 in the populations. Of the seven populations, four had h2 estimates that were significantly different from zero (p < 0.05). Single marker analysis across populations and inoculation methods identified 11 significant SSRs (p < 0.05) corresponding to 10 QTL identified by prior studies. Thus, these five new PIs could be used as new sources of resistant alleles to develop SWM resistant commercial cultivars. PMID:29731761

  15. Soybean biomass produced in Argentina: Myths and realities

    International Nuclear Information System (INIS)

    Semino, S; Jelsoee, E; Paul, H; Tomei, J; Joensen, L; Monti, M

    2009-01-01

    Soybean biomass for biodiesel, produced in Argentina amongst other places, is considered by some to reduce greenhouse gas emissions and mitigate climate change when compared with fossil fuel alternatives. To ensure that the production of biofuels is 'sustainable', EU institutions and national governments are designing certification schemes for the sustainable production of biomass. In this paper, we question the validity of these proposed environmental standards, using the production of Argentine soybean as a case study. We highlight the negative environmental and social impacts of intensive soybean production, and conclude that certification schemes are unlikely to be able to address the detrimental impacts of increased biofuel production and trade.

  16. Totally impermeable film (TIF reduces emissions in perennial crop fumigation

    Directory of Open Access Journals (Sweden)

    Suduan Gao

    2013-10-01

    Full Text Available Many perennial nursery fields and replanted orchards and vineyards in California are treated with preplant soil fumigants to control soilborne pests. In annual crops, such as strawberry, covering fumigated fields with totally impermeable film (TIF has shown promise in controlling emissions and improving fumigant distribution in soil. The objective of this research was to optimize the use of TIF for perennial crops via three field trials. TIF reduced peak emission flux and cumulative emissions by > 90% relative to polyethylene tarp during a 2-week covering period. After the TIF was cut, emissions were greatly reduced compared to when tarps were cut after 6 days. TIF maintained higher fumigant concentrations under tarp and in the soil than polyethylene film. The results indicate that TIF can increase fumigation efficiency for perennial crop growers.

  17. Use of induced mutations in soybean breeding

    International Nuclear Information System (INIS)

    Zakri, A.H.; Jalani, B.S.; Ng, K.F.

    1981-01-01

    Artificial induction of mutation in plants is carried out using #betta#-irradiation and ethyl metanesulphonate (EMS) to expand the genetic variability of locally-grown soybean. This aspect of mutation breeding complements of conventional breeding approach undertaken by the Joint Malaysia Soybean Breeding Project group. Recovery of agronomically-important mutants such as earliness, lateness, bigger seed size and improved plant architecture were recorded. The significance of these findings is discussed. (author)

  18. Physiological and transcriptomic responses in the seed coat of field-grown soybean (Glycine max L. Merr.) to abiotic stress.

    Science.gov (United States)

    Leisner, Courtney P; Yendrek, Craig R; Ainsworth, Elizabeth A

    2017-12-12

    Understanding how intensification of abiotic stress due to global climate change affects crop yields is important for continued agricultural productivity. Coupling genomic technologies with physiological crop responses in a dynamic field environment is an effective approach to dissect the mechanisms underpinning crop responses to abiotic stress. Soybean (Glycine max L. Merr. cv. Pioneer 93B15) was grown in natural production environments with projected changes to environmental conditions predicted for the end of the century, including decreased precipitation, increased tropospheric ozone concentrations ([O 3 ]), or increased temperature. All three environmental stresses significantly decreased leaf-level photosynthesis and stomatal conductance, leading to significant losses in seed yield. This was driven by a significant decrease in the number of pods per node for all abiotic stress treatments. To understand the underlying transcriptomic response involved in the yield response to environmental stress, RNA-Sequencing analysis was performed on the soybean seed coat, a tissue that plays an essential role in regulating carbon and nitrogen transport to developing seeds. Gene expression analysis revealed 49, 148 and 1,576 differentially expressed genes in the soybean seed coat in response to drought, elevated [O 3 ] and elevated temperature, respectively. Elevated [O 3 ] and drought did not elicit substantive transcriptional changes in the soybean seed coat. However, this may be due to the timing of sampling and does not preclude impacts of those stresses on different tissues or different stages in seed coat development. Expression of genes involved in DNA replication and metabolic processes were enriched in the seed coat under high temperate stress, suggesting that the timing of events that are important for cell division and proper seed development were altered in a stressful growth environment.

  19. Studying Plant–Insect Interactions with Solid Phase Microextraction: Screening for Airborne Volatile Emissions Response of Soybeans to the Soybean Aphid, Aphis glycines Matsumura (Hemiptera: Aphididae

    Directory of Open Access Journals (Sweden)

    Lingshuang Cai

    2015-05-01

    Full Text Available Insects trigger plants to release volatile compounds that mediate the interaction with both pest and beneficial insects. Soybean aphids (Aphis glycines induces soybean (Glycine max leaves to produce volatiles that attract predators of the aphid. In this research, we describe the use of solid-phase microextraction (SPME for extraction of volatiles from A. glycines-infested plant. Objectives were to (1 determine if SPME can be used to collect soybean plant volatiles and to (2 use headspace SPME-GC-MS approach to screen compounds associated with A. glycines-infested soybeans, grown in the laboratory and in the field, to identify previously known and potentially novel chemical markers of infestation. A total of 62 plant volatiles were identified, representing 10 chemical classes. 39 compounds had not been found in previous studies of soybean volatile emissions. 3-hexen-1-ol, dimethyl nonatriene, indole, caryophyllene, benzaldehyde, linalool, methyl salicylate (MeSA, benzene ethanol, and farnesene were considered herbivore-induced plant volatiles (HIPVs. For reproductive field-grown soybeans, three compounds were emitted in greater abundance from leaves infested with A. glycines, cis-3-hexen-1-ol acetate, MeSA and farnesene. In summary, SPME can detect the emission of HIPVs from plants infested with insect herbivores.

  20. Nitrous oxide and carbon dioxide emissions from monoculture and rotational cropping of corn, soybean and winter wheat

    International Nuclear Information System (INIS)

    Drury, C.F.; Yang, X.M.; Reynolds, W.D.; McLaughlin, N.B.

    2008-01-01

    Nitrous oxide (N 2 O) and carbon dioxide (CO 2 ) emissions from agricultural soils are influenced by different types of crops, the amounts and types of nitrogen fertilizers used, and the soil and climatic conditions under which the crops are grown. Crop rotation also has an impact on N 2 O emissions, as the crop residues used to supply soluble carbon to soil biota often differ from the crops being grown. This study compared the influence of crops and residues from preceding crops on N 2 O and CO 2 emissions from monoculture crops of soybeans, corn, and winter wheat at a site in Ontario. The phases of different rotations were compared with 2- and 3-year crop rotations. Results of the study showed that N 2 O emissions were approximately 3.1 to 5.1 times higher in monoculture corn than levels observed in winter wheat or soybean crops. When corn followed corn, average N 2 O emissions twice as high as when corn followed soybeans, and 65 per cent higher than when corn followed winter wheat. The higher levels of both N 2 O and CO 2 were attributed to higher inorganic nitrogen (N) application rates in corn crops. In the corn phase, CO 2 levels were higher when the preceding crop was winter wheat. It was concluded that N 2 O and CO 2 emissions from agricultural fields are influenced by both current and preceding crops, a fact which should be considered and accounted for in estimates and forecasts of agricultural greenhouse gas (GHG) emissions. 21 refs., 3 tabs., 10 figs

  1. Nitrous oxide and carbon dioxide emissions from monoculture and rotational cropping of corn, soybean and winter wheat

    Energy Technology Data Exchange (ETDEWEB)

    Drury, C.F.; Yang, X.M.; Reynolds, W.D. [Agriculture and Agri-Food Canada, Harrow, ON (Canada); McLaughlin, N.B. [Agriculture and Agri-Food Canada, Ottawa, ON (Canada). Eastern Cereal and Oilseed Research Centre

    2008-04-15

    Nitrous oxide (N{sub 2}O) and carbon dioxide (CO{sub 2}) emissions from agricultural soils are influenced by different types of crops, the amounts and types of nitrogen fertilizers used, and the soil and climatic conditions under which the crops are grown. Crop rotation also has an impact on N{sub 2}O emissions, as the crop residues used to supply soluble carbon to soil biota often differ from the crops being grown. This study compared the influence of crops and residues from preceding crops on N{sub 2}O and CO{sub 2} emissions from monoculture crops of soybeans, corn, and winter wheat at a site in Ontario. The phases of different rotations were compared with 2- and 3-year crop rotations. Results of the study showed that N{sub 2}O emissions were approximately 3.1 to 5.1 times higher in monoculture corn than levels observed in winter wheat or soybean crops. When corn followed corn, average N{sub 2}O emissions twice as high as when corn followed soybeans, and 65 per cent higher than when corn followed winter wheat. The higher levels of both N{sub 2}O and CO{sub 2} were attributed to higher inorganic nitrogen (N) application rates in corn crops. In the corn phase, CO{sub 2} levels were higher when the preceding crop was winter wheat. It was concluded that N{sub 2}O and CO{sub 2} emissions from agricultural fields are influenced by both current and preceding crops, a fact which should be considered and accounted for in estimates and forecasts of agricultural greenhouse gas (GHG) emissions. 21 refs., 3 tabs., 10 figs.

  2. Oxygenated phosphine fumigation for control of Nasonovia ribisnigri (Homoptera: Aphididae) on harvested lettuce.

    Science.gov (United States)

    Liu, Yong-Biao

    2012-06-01

    Low temperature regular phosphine fumigations under the normal oxygen level and oxygenated phosphine fumigations under superatmospheric oxygen levels were compared for efficacy against the aphid, Nasonovia ribisnigri (Mosley), and effects on postharvest quality of romaine and head lettuce. Low temperature regular phosphine fumigation was effective against the aphid. However, a 3 d treatment with high phosphine concentrations of > or = 2,000 ppm was needed for complete control of the aphid. Oxygen greatly increased phosphine toxicity and significantly reduced both treatment time and phosphine concentration for control of N. ribisnigri. At 1,000 ppm phosphine, 72 h regular fumigations at 6 degrees C did not achieve 100% mortality of the aphid. The 1,000 ppm phosphine fumigation under 60% O2 killed all aphids in 30 h. Both a 72 h regular fumigation with 2,200 ppm phosphine and a 48 h oxygenated fumigation with 1,000 ppm phosphine under 60% O2 were tested on romaine and head lettuce at 3 degrees C. Both treatments achieved complete control of N. ribisnigri. However, the 72 h regular fumigation resulted in significantly higher percentages of lettuce with injuries and significantly lower lettuce internal quality scores than the 48 h oxygenated phosphine fumigation. Although the oxygenated phosphine fumigation also caused injuries to some treated lettuce, lettuce quality remained very good and the treatment is not expected to have a significant impact on marketability of the lettuce. This study demonstrated that oxygenated phosphine fumigation was more effective and less phytotoxic for controlling N. ribisnigri on harvested lettuce than regular phosphine fumigation and is promising for practical use.

  3. Fumigation in Ayurveda: potential strategy for drug discovery and drug delivery.

    Science.gov (United States)

    Vishnuprasad, Chethala N; Pradeep, Nediyamparambu Sukumaran; Cho, Yong Woo; Gangadharan, Geethalayam Gopinathan; Han, Sung Soo

    2013-09-16

    Ayurveda has its unique perceptions and resultant methodologies for defining and treating human diseases. Fumigation therapy is one of the several treatment methods described in Ayurveda whereby fumes produced from defined drug formulations are inhaled by patients. This therapeutic procedure offers promising research opportunities from phytochemical and ethnopharmacological viewpoints, however, it remains under-noticed. Considering these facts, this review is primarily aimed at introducing said Ayurvedic fumigation therapy and discussing its scientific gaps and future challenges. A search of multiple bibliographical databases and traditional Ayurvedic text books was conducted and the articles analyzed under various key themes, e.g., Ayurvedic fumigation, fumigation therapy, medicinal fumigation, inhalation of drugs and aerosol therapy. Ayurveda recommends fumigation as a method of sterilization and therapeutic procedure for various human diseases including microbial infections and psychological disorders. However, it has not gained much attention as a prospective field with multiple research opportunities. It is necessary to have a more detailed and systematic investigation of the phytochemical and pharmacodynamic properties of Ayurvedic fumigation therapy in order to facilitate the identification of novel bioactive compounds and more effective drug administration methods. © 2013 Elsevier Ireland Ltd. All rights reserved.

  4. Comparison of different strategies for soybean antioxidant extraction.

    Science.gov (United States)

    Chung, Hyun; Ji, Xiangming; Canning, Corene; Sun, Shi; Zhou, Kequan

    2010-04-14

    Three extraction strategies including Soxhlet extraction, conventional solid-liquid extraction, and ultrasonic-assisted extraction (UAE) were compared for their efficiency to extract phenolic antioxidants from Virginia-grown soybean seeds. Five extraction solvents were evaluated in UAE and the conventional extraction. The soybean extracts were compared for their total phenolic contents (TPC), oxygen radical absorbance capacity (ORAC), and 2,2-diphenyl-1-picrylhydrazyl radical (DPPH(*)) scavenging activities. The results showed that UAE improved the extraction of soybean phenolic compounds by >54% compared to the conventional and Soxhlet extractions. Among the tested solvents, 50% acetone was the most efficient for extracting soybean phenolic compounds. There was no significant correlation between the TPC and antioxidant activities of the soybean extracts. The extracts prepared by 70% ethanol had the highest ORAC values. Overall, UAE with 50% acetone or 70% ethanol is recommended for extracting soybean antioxidants on the basis of the TPC and ORAC results.

  5. Determination of Pesticides Residues in Cucumbers Grown in Greenhouse and the Effect of Some Procedures on Their Residues.

    Science.gov (United States)

    Leili, Mostafa; Pirmoghani, Amin; Samadi, Mohammad Taghi; Shokoohi, Reza; Roshanaei, Ghodratollah; Poormohammadi, Ali

    2016-11-01

    The objective of this study was to determine the residual concentrations of ethion and imidacloprid in cucumbers grown in greenhouse. The effect of some simple processing procedures on both ethion and imidacloprid residues were also studied. Ten active greenhouses that produce cucumber were randomly selected. Ethion and imidacloprid as the most widely used pesticides were measured in cucumber samples of studied greenhouses. Moreover, the effect of storing, washing, and peeling as simple processing procedures on both ethion and imidacloprid residues were investigated. One hour after pesticide application; the maximum residue levels (MRLs) of ethion and imidacloprid were higher than that of Codex standard level. One day after pesticide application, the levels of pesticides were decreased about 35 and 31% for ethion and imidacloprid, respectively, which still were higher than the MRL. Washing procedure led to about 51 and 42.5% loss in ethion and imidacloprid residues, respectively. Peeling procedure also led to highest loss of 93.4 and 63.7% in ethion and imidacloprid residues, respectively. The recovery for both target analytes was in the range between 88 and 102%. The residue values in collected samples one hour after pesticides application were higher than standard value. The storing, washing, and peeling procedures lead to the decrease of pesticide residues in greenhouse cucumbers. Among them, the peeling procedure has the greatest impact on residual reduction. Therefore, these procedures can be used as simple and effective processing techniques for reducing and removing pesticides from greenhouse products before their consumption.

  6. RNA-mediated gene silencing signals are not graft transmissible from the rootstock to the scion in greenhouse-grown apple plants Malus sp.

    Science.gov (United States)

    Flachowsky, Henryk; Tränkner, Conny; Szankowski, Iris; Waidmann, Sascha; Hanke, Magda-Viola; Treutter, Dieter; Fischer, Thilo C

    2012-01-01

    RNA silencing describes the sequence specific degradation of RNA targets. Silencing is a non-cell autonomous event that is graft transmissible in different plant species. The present study is the first report on systemic acquired dsRNA-mediated gene silencing of transgenic and endogenous gene sequences in a woody plant like apple. Transgenic apple plants overexpressing a hairpin gene construct of the gusA reporter gene were produced. These plants were used as rootstocks and grafted with scions of the gusA overexpressing transgenic apple clone T355. After grafting, we observed a reduction of the gusA gene expression in T355 scions in vitro, but not in T355 scions grown in the greenhouse. Similar results were obtained after silencing of the endogenous Mdans gene in apple that is responsible for anthocyanin biosynthesis. Subsequently, we performed grafting experiments with Mdans silenced rootstocks and red leaf scions of TNR31-35 in order to evaluate graft transmitted silencing of the endogenous Mdans. The results obtained suggested a graft transmission of silencing signals in in vitro shoots. In contrast, no graft transmission of dsRNA-mediated gene silencing signals was detectable in greenhouse-grown plants and in plants grown in an insect protection tent.

  7. Label-Free Detection of Soybean Rust Spores using Photonic Crystal Biosensors

    Science.gov (United States)

    Soybean rust, caused by the fungus Phakopsora pachyrhizi, is one of the most devastating foliar diseases affecting soybeans grown worldwide. The disease was reported for the first time in the United States in 2004. Early spore detection, prior to the appearance of visible symptoms, is critical to ef...

  8. Phytotoxicity of zinc and manganese to seedlings grown in soil contaminated by zinc smelting

    International Nuclear Information System (INIS)

    Beyer, W.N.; Green, C.E.; Beyer, M.; Chaney, R.L.

    2013-01-01

    Historic emissions from two zinc smelters have injured the forest on Blue Mountain near Palmerton, Pennsylvania, USA. Seedlings of soybeans and five tree species were grown in a greenhouse in a series of mixtures of smelter-contaminated and reference soils and then phytotoxic thresholds were calculated. As little as 10% Palmerton soil mixed with reference soil killed or greatly stunted seedlings of most species. Zinc was the principal cause of the phytotoxicity to the tree seedlings, although Mn and Cd may also have been phytotoxic in the most contaminated soil mixtures. Calcium deficiency seemed to play a role in the observed phytotoxicity. Exposed soybeans showed symptoms of Mn toxicity. A test of the effect of liming on remediation of the Zn and Mn phytotoxicity caused a striking decrease in Sr-nitrate extractable metals in soils and demonstrated that liming was critical to remediation and restoration. -- Highlights: •Zinc in smelter-contaminated acid soil was highly toxic to tree seedlings. •Phytotoxic thresholds (Zn in soil, leaves and roots) were estimated. •Liming greatly ameliorated the phytotoxicity. •Calcium deficiency played a role in the phytotoxicity. •Soybeans showed symptoms of Mn toxicity. -- This work estimates the phytotoxic thresholds of Zn to tree seedlings in smelter-contaminated soil and explains the interactions of Zn with Mn and Ca

  9. Chlorine Dioxide Fumigation of Subway Materials ...

    Science.gov (United States)

    Report This bench scale study observed that a six (6) log reduction in viable spores of a suitable B. anthracis surrogate can be obtained for subway infrastructure materials by ClO2 fumigation if the temperature is at or above 24 °C combined with RH greater than 75%. No six log reduction in viable spores was observed at realistic (winter) temperatures in a subway environment (11-13 °C and 70-80% RH) for periods of fumigation that are otherwise efficacious at 24 °C/ 75% RH.

  10. Soil Fumigant Labels - Chloropicrin

    Science.gov (United States)

    Search by EPA registration number, product name, or company name, and follow the link to the Pesticide Product Label System (PPLS) for details on each fumigant. Updated labels include new safety requirements for buffer zones and related measures.

  11. Experimental studies on fumigation of ethanol in a small capacity Diesel engine

    International Nuclear Information System (INIS)

    Chauhan, Bhupendra Singh; Kumar, Naveen; Pal, Shyam Sunder; Du Jun, Yong

    2011-01-01

    To diversify the mix of domestic energy resources and to reduce dependence on imported oil, ethanol is widely investigated for applying in combination with Diesel fuel to reduce pollutants, including smoke and NO x . Present work aims at developing a fumigation system for introduction of ethanol in a small capacity Diesel engine and to determine its effects on emission. Fumigation was achieved by using a constant volume carburetor. Different percentages of ethanol fumes with air were then introduced in the Diesel engine, under various load conditions. Ethanol is an oxygenated fuel and lead to smooth and efficient combustion. Atomization of ethanol also results in lower combustion temperature. During the present study, gaseous emission has been found to be decreasing with ethanol fumigation. Results from the experiment suggest that ethanol fumigation can be effectively employed in existing compression ignition engine to achieve substantial saving of the limited Diesel oil. Results show that fumigated Diesel engine exhibit better engine performance with lower NOx, CO, CO 2 and exhaust temperature. Ethanol fumigation has resulted in increase of unburned hydrocarbon (HC) emission in the entire load range. Considering the parameters, the optimum percentage was found as 15% for ethanol fumigation. -- Research highlights: → To diversify energy resources and to reduce dependence on imported oil, ethanol is used in Diesel engine to reduce pollutants. → Developing a fumigation system to inject ethanol in a small capacity Diesel engine, to determine its effects on emissions. → Different percentages of ethanol fumes with air were introduced in Diesel engine, under various load conditions by using a constant volume carburetor. → Results show that fumigated Diesel engine exhibits better engine performance with lower NOx, CO, CO 2 and exhaust temperature. → Results show increase of unburned hydrocarbon emission in entire load range. Optimum percentage found as 15% for

  12. [Primary investigation on fumigation and moxibustion in treatment ulcer and sore of yin syndrome].

    Science.gov (United States)

    Zhu, Chao-Jun; Zhang, Zhao-Hui; Ma, Jing; Li, Pin-Chuan; Liu, Xian-Zhou; Yin, Yue; Tian, Ying

    2011-09-01

    To explore the fumigation and moxibustion therapy in treatment of ulcer and sore of yin syndrome. The fumigation and moxibustion therapy is the combination of fumigation and moxibustion, in which, smoking fumigation is provided with warming effect and the actions as moxibustion. This therapy works on the efficacy of both fumigation and moxibustion. In treatment, different herbal medicines can be selected flexibly, acting on dispersing yin and rescuing yang. The fumigation and moxibustion therapy can drain toxin and remove ulcer and sore. It contributes to the treatment of boils and chronic sores of yin syndrome and promotes wound healing.

  13. THE EFFECTS OF OXIDANT AIR POLLUTANTS ON SOYBEANS, SNAP BEANS AND POTATOES

    Science.gov (United States)

    During the past 5 years the impact of photochemical oxidants on soybeans and snap beans in Maryland and on potatoes in Virginia and Delaware was assessed with open-top chambers. The mean yields of four selected soybean varieties grown in open-top chambers with carbon-filtered air...

  14. 40 CFR 180.521 - Fumigants for grain-mill machinery; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Fumigants for grain-mill machinery... Tolerances § 180.521 Fumigants for grain-mill machinery; tolerances for residues. (a) General. Fumigants may be safely used in or on grain-mill machinery in accordance with the following prescribed conditions...

  15. Proximate composition of CELSS crops grown in NASA's Biomass Production Chamber

    Science.gov (United States)

    Wheeler, R. M.; Mackowiak, C. L.; Sager, J. C.; Knott, W. M.; Berry, W. L.

    Edible biomass from four crops of wheat (Triticum aestivum L.), four crops of lettuce (Lactuca sativa L.), four crops of potato (Solanum tuberosum L.), and three crops of soybean (Glycine max (L.) Merr.) grown in NASA's CELSS Biomass Production Chamber were analyzed for proximate composition. All plants were grown using recirculating nutrient (hydroponic) film culture with pH and electrical conductivity automatically controlled. Temperature and humidity were controlled to near optimal levels for each species and atmospheric carbon dioxide partial pressures were maintained near 100 Pa during the light cycles. Soybean seed contained the highest percentage of protein and fat, potato tubers and wheat seed contained the highest levels of carbohydrate, and lettuce leaves contained the highest level of ash. Analyses showed values close to data published for field-grown plants with several exceptions: In comparison with field-grown plants, wheat seed had higher protein levels; soybean seed had higher ash and crude fiber levels; and potato tubers and lettuce leaves had higher protein and ash levels. The higher ash and protein levels may have been a result of the continuous supply of nutrients (e.g., potassium and nitrogen) to the plants by the recirculating hydroponic culture.

  16. Essential oils and whole milk in the control of soybean powdery mildew

    Directory of Open Access Journals (Sweden)

    Fabiano José Perina

    2013-11-01

    Full Text Available This research aimed to evaluate the potential of essential oils (EOs and cow's whole milk (CWM in order to control soybean powdery mildew and to estimate the most effective concentrations of these natural products in reducing the disease severity on soybean plants. Three experiments were carried out: The first experiment evaluated and selected the most effective treatments to reduce the severity of soybean powdery mildew under greenhouse conditions; the second experiment evaluated the effect of CWM and EOs of citronella, lemongrass, eucalyptus, cinnamon and tea tree on the pathogen through the ultrastructure analysis of soybean leaflets infected by Erysiphe diffusa using the scanning electron microscope (SEM and light microscope (LM technology. In the third experiment, the most effective products were tested at several concentrations in order to define the most effective concentrations to reduce disease severity under greenhouse conditions. The treatments CWM (100mL L-1 and EOs of citronella, lemongrass and eucalyptus (1.0mL L-1, reduced the disease severity from 67 to 74%. Direct effects from all natural products tested on the structures of E. diffusa were demonstrated through the SEM and LM analysis. Concentrations at 1.5mL L-1 for EOs of citronella, lemongrass and eucalyptus and also at 180mL L-1 for the treatment CWM were the most effective against E. diffusa on soybean.

  17. Residential greenhouse

    Energy Technology Data Exchange (ETDEWEB)

    1985-02-01

    The following report examines the technical and economic viability of residential greenhouse additions in Whitehorse, Yukon. The greenhouse was constructed using the south facing wall of an existing residence as a common wall. Total construction costs were $18,000, including labour. Annual fuel demand for the residence has been reduced by about 10 per cent for an annual saving of $425. In addition, produce to the value of $1,000 is grown annually in the greenhouse for domestic consumption and commercial resale. Typically the greenhouse operates for nine months each year. There is a net thermal loss during the months of November, December and January as a result of the large area of glazing. As well as supplementing the heating supply solar greenhouses can provide additional cash crops which can be used to offset the cost of construction. Humidity problems are minimal and can be dealt with by exhausting high humidity air. One system which has been considered for the greenhouse is to use a standard residential heat pump to remove excess moisture and to pump heat into the house. This would have a secondary benefit of excluding the need to circulate greenhouse air through the house. Thus any allergenic reactions to the greenhouse air would be prevented. 8 refs., 3 figs, 2 tabs.

  18. Interaction of Heterodera glycines and Glomus mosseae on Soybean.

    Science.gov (United States)

    Todd, T C; Winkler, H E; Wilson, G W

    2001-12-01

    The effects of the arbuscular mycorrhizal (AM) fungus Glomus mosseae on Heterodera glycines-soybean interactions were investigated in greenhouse experiments. Mycorrhizal and nonmycorrhizal soybean cultivars that were either resistant or susceptible to H. glycines were exposed to initial nematode population densities (Pi) of 0, 100, 1,000, or 10,000 eggs and infective juveniles. Soybean growth, nematode reproduction, and AM fungal colonization were determined after 35 (experiment I) and 83 (experiment II) days. Soybean shoot and root weights were reduced an average 29% across H. glycines Pi but were 36% greater overall in the presence of G. mosseae. Analyses of variance indicated that root colonization and stimulation of soybean growth by G. mosseae were inhibited at high H. glycines Pi, while the combined effects of the nematode and fungus on soybean growth were best described as additive in linear regression models. No evidence for increased nematode tolerance of mycorrhizal soybean plants was observed. Nematode population densities and reproduction were lower on a nematode-resistant soybean cultivar than on a susceptible cultivar, but reproduction was comparable on mycorrhizal and nonmycorrhizal plants. Root colonization by G. mosseae was reduced at high nematode Pi. The results suggest that nematode antagonism to the mycorrhizal symbiosis is a more likely consequence of interactions between H. glycines and AM fungi on soybean than is nematode suppression by the fungus.

  19. Assessment of the polytank for fumigation and storage of cowpea

    International Nuclear Information System (INIS)

    Ademang Korletey, Francis

    2009-06-01

    Insect infestation of cowpea (Vigna unguiculata) in storage is identified as a major constraint facing cowpea farmers in Ghana. The major insect pest causing losses to stored cowpea in West Africa is the cowpea weevil (Callosobruchus maculatus). Fumigation is the most effective control method against cowpea weevil considering its mode of infestation. The jute sack lined with a plastic film bag commonly used by farmers for fumigation and storage is very delicate to handle, not sufficiently airtight for fumigation and easily attacked by rodents. The objectives of the project were to (1) assess the polytank for fumigation and storage of cowpea, and (2) compare the storage qualities of stored cowpea using the polytank and jute sack lined with a plastic film bag. The cowpea was fumigated using aluminium phosphide tablets for a period of 7 days and stored for six mouths. Data was collected, analysed and compared between the two storage containers on seed germination, seed vigour, grain moisture content, insect infestation, percentage usable proportion by number and by weight before, mid-storage and after the trial. The levels of phosphine gas concentration in the polytank and the jute sack were assessed daily for 7 days. The results showed no significant differences (1% probability) between the two storage containers in their performance as storage containers in terms of grain moisture content, seed germination, seed vigour, insect infestation, percentage usable proportion by number and by weight. There was also significant difference (5%) in phosphine gas concentration between the two storage containers in their performance as fumigation containers except on day one. However, it was found that fumigation and storage using the polytank had a greater advantage over the jute sack lined with plastic film bag in terms of air tightness, handling and resistance to rodent attacks. (au)

  20. Genome-wide identification of soybean microRNA responsive to soybean cyst nematodes infection by deep sequencing.

    Science.gov (United States)

    Tian, Bin; Wang, Shichen; Todd, Timothy C; Johnson, Charles D; Tang, Guiliang; Trick, Harold N

    2017-08-02

    The soybean cyst nematode (SCN), Heterodera glycines, is one of the most devastating diseases limiting soybean production worldwide. It is known that small RNAs, including microRNAs (miRNAs) and small interfering RNAs (siRNAs), play important roles in regulating plant growth and development, defense against pathogens, and responses to environmental changes. In order to understand the role of soybean miRNAs during SCN infection, we analyzed 24 small RNA libraries including three biological replicates from two soybean cultivars (SCN susceptible KS4607, and SCN HG Type 7 resistant KS4313N) that were grown under SCN-infested and -noninfested soil at two different time points (SCN feeding establishment and egg production). In total, 537 known and 70 putative novel miRNAs in soybean were identified from a total of 0.3 billion reads (average about 13.5 million reads for each sample) with the programs of Bowtie and miRDeep2 mapper. Differential expression analyses were carried out using edgeR to identify miRNAs involved in the soybean-SCN interaction. Comparative analysis of miRNA profiling indicated a total of 60 miRNAs belonging to 25 families that might be specifically related to cultivar responses to SCN. Quantitative RT-PCR validated similar miRNA interaction patterns as sequencing results. These findings suggest that miRNAs are likely to play key roles in soybean response to SCN. The present work could provide a framework for miRNA functional identification and the development of novel approaches for improving soybean SCN resistance in future studies.

  1. Phenotyping soybean plants transformed with rd29A:AtDREB1A for drought tolerance in the greenhouse and field.

    Science.gov (United States)

    de Paiva Rolla, Amanda Alves; de Fátima Corrêa Carvalho, Josirley; Fuganti-Pagliarini, Renata; Engels, Cibelle; do Rio, Alexandre; Marin, Silvana Regina Rockenbach; de Oliveira, Maria Cristina Neves; Beneventi, Magda A; Marcelino-Guimarães, Francismar Corrêa; Farias, José Renato Bouças; Neumaier, Norman; Nakashima, Kazuo; Yamaguchi-Shinozaki, Kazuko; Nepomuceno, Alexandre Lima

    2014-02-01

    The development of drought tolerant plants is a high priority because the area suffering from drought is expected to increase in the future due to global warming. One strategy for the development of drought tolerance is to genetically engineer plants with transcription factors (TFs) that regulate the expression of several genes related to abiotic stress defense responses. This work assessed the performance of soybean plants overexpressing the TF DREB1A under drought conditions in the field and in the greenhouse. Drought was simulated in the greenhouse by progressively drying the soil of pot cultures of the P58 and P1142 lines. In the field, the performance of the P58 line and of 09D-0077, a cross between the cultivars BR16 and P58, was evaluated under four different water regimes: irrigation, natural drought (no irrigation) and water stress created using rain-out shelters in the vegetative or reproductive stages. Although the dehydration-responsive element-binding protein (DREB) plants did not outperform the cultivar BR16 in terms of yield, some yield components were increased when drought was introduced during the vegetative stage, such as the number of seeds, the number of pods with seeds and the total number of pods. The greenhouse data suggest that the higher survival rates of DREB plants are because of lower water use due to lower transpiration rates under well watered conditions. Further studies are needed to better characterize the soil and atmospheric conditions under which these plants may outperform the non-transformed parental plants.

  2. Pseudomonas cichorii as the causal agent of midrib rot, an emerging disease of greenhouse-grown butterhead lettuce in Flanders.

    Science.gov (United States)

    Cottyn, Bart; Heylen, Kim; Heyrman, Jeroen; Vanhouteghem, Katrien; Pauwelyn, Ellen; Bleyaert, Peter; Van Vaerenbergh, Johan; Höfte, Monica; De Vos, Paul; Maes, Martine

    2009-05-01

    Bacterial midrib rot of greenhouse-grown butterhead lettuce (Lactuca sativa L. var. capitata) is an emerging disease in Flanders (Belgium) and fluorescent pseudomonads are suspected to play an important role in the disease. Isolations from infected lettuces, collected from 14 commercial greenhouses in Flanders, yielded 149 isolates that were characterized polyphasically, which included morphological characteristics, pigmentation, pathogenicity tests by both injection and spraying of lettuce, LOPAT characteristics, FAME analysis, BOX-PCR fingerprinting, 16S rRNA and rpoB gene sequencing, as well as DNA-DNA hybridization. Ninety-eight isolates (66%) exhibited a fluorescent pigmentation and were associated with the genus Pseudomonas. Fifty-five of them induced an HR+ (hypersensitive reaction in tobacco leaves) response. The other 43 fluorescent isolates were most probably saprophytic bacteria and about half of them were able to cause rot on potato tuber slices. BOX-PCR genomic fingerprinting was used to assess the genetic diversity of the Pseudomonas midrib rot isolates. The delineated BOX-PCR patterns matched quite well with Pseudomonas morphotypes defined on the basis of colony appearance and variation in fluorescent pigmentation. 16S rRNA and rpoB gene sequence analyses allowed most of the fluorescent isolates to be allocated to Pseudomonas, and they belonged to either the Pseudomonas fluorescens group, Pseudomonas putida group, or the Pseudomonas cichorii/syringae group. In particular, the isolates allocated to this latter group constituted the vast majority of HR+ isolates and were identified as P. cichorii by DNA-DNA hybridization. They were demonstrated by spray-inoculation tests on greenhouse-grown lettuce to induce the midrib rot disease and could be re-isolated from lesions of inoculated plants. Four HR+ non-fluorescent isolates associated with one sample that showed an atypical midrib rot were identified as Dickeya sp.

  3. Zinc in soybeans. Chemical nature and bioavilability

    International Nuclear Information System (INIS)

    Khan, A.

    1987-01-01

    Soybeans were grown hydroponically and intrinsically labeled with 65 Zn through root absorption, stem injection and foliar application. Stem injection resulted in the greatest accumulation of 65 Zn. Regardless of the labeling technique, approximately 40-45% of the seed 65 Zn was associated with the subcellular organelles. The pattern of 65 Zn incorporation into soybeans did not change appreciably as a result of the labelling technique. The major portion of the soluble 65 Zn was either free or associated with very low molecular weight proteins, peptides, or their complexes with phytic acid rather than the major proteins of soybeans. Zinc in soybeans is ionically bound to proteins, peptides and phytic acid. Autoclaving did not affect the chemical association of zinc with soy proteins. Solubility of protein, zinc and phytic acid was studied over the pH range of 3.5-12.0. Bioavailability of zinc to rats from soybeans was lower than from casein and rats adapted to a casein basal diet absorbed more 65 Zn from both casein and soy than rats adapted to a soy basal diet

  4. Protein, free amino acid, phenloic, ß-carotene, and lycopene content, and antioxidative and cancer cell inhibitory effects of 12 greenhouse-grown commercial cherry tomato varieties

    Science.gov (United States)

    The content of water, free amino acids, amino acid metabolites, crude protein, the carotene pigments ß-carotene and lycopene, and 9 characterized and 2 incompletely characterized individual phenolic (flavonoid) compounds of 12 greenhouse-grown cherry tomato varieties of various colors (green, yellow...

  5. THE EFFECT OF FUMIGATION TREATMENT TOWARDS AGAVE CANTALA ROXB FIBRE STRENGTH AND MORPHOLOGY

    Directory of Open Access Journals (Sweden)

    MUSA BONDARIS PALUNGAN

    2017-05-01

    Full Text Available The objective of this study is to reveal the morphology, physical properties and strength of the king pineapple leaf fibre (Agave Cantala Roxb after fumigation treatment. The king pineapple leaf fibres (KPLF before and after the fumigation treatment are then separated into groups. The fumigation treatment on KPLF is given in different durations, and the smoke comes from burning coconut shells. Before and after fumigation, the surface morphology, chemical content, and functional group character of KPLF were observed by SEM, XRD, and FTIR, respectively. While the physical characteristics were identified by measuring fibre density, moisture content and fibre strength were tested by a single fibre tensile strength test. The results show that chemical contents of KPLF were cellulose, hemicellulose and lignin, accounting for as much as 55.8%, 21.27%, and 7.66%, respectively. After fumigation, the KPLF surface morphology becomes rough and grooved, the fibre density increased, and the single fibre tensile strength increased notably at the base of the king pineapple leaf. With the tensile strength increase and a rough and grooved KPLF surface morphology due to fumigation, fumigated KPLF would have the potential to be used as a strengthened composite.

  6. Cover crop rotations in no-till system: short-term CO2 emissions and soybean yield

    Directory of Open Access Journals (Sweden)

    João Paulo Gonsiorkiewicz Rigon

    Full Text Available ABSTRACT: In addition to improving sustainability in cropping systems, the use of a spring and winter crop rotation system may be a viable option for mitigating soil CO2 emissions (ECO2. This study aimed to determine short-term ECO2 as affected by crop rotations and soil management over one soybean cycle in two no-till experiments, and to assess the soybean yields with the lowest ECO2. Two experiments were carried out in fall-winter as follows: i triticale and sunflower were grown in Typic Rhodudalf (TR, and ii ruzigrass, grain sorghum, and ruzigrass + grain sorghum were grown in Rhodic Hapludox (RH. In the spring, pearl millet, sunn hemp, and forage sorghum were grown in both experiments. In addition, in TR a fallow treatment was also applied in the spring. Soybean was grown every year in the summer, and ECO2 were recorded during the growing period. The average ECO2 was 0.58 and 0.84 g m2 h–1 with accumulated ECO2 of 5,268 and 7,813 kg ha–1 C-CO2 in TR and RH, respectively. Sunn hemp, when compared to pearl millet, resulted in lower ECO2 by up to 12 % and an increase in soybean yield of 9% in TR. In RH, under the winter crop Ruzigrazz+Sorghum, ECO2 were lower by 17%, although with the same soybean yield. Soil moisture and N content of crop residues are the main drivers of ECO2 and soil clay content seems to play an important role in ECO2 that is worthy of further studies. In conclusion, sunn hemp in crop rotation may be utilized to mitigate ECO2 and improve soybean yield.

  7. Tractor-mounted, GPS-based spot fumigation system manages Prunus replant disease

    Directory of Open Access Journals (Sweden)

    V. Udompetaikul

    2013-10-01

    Full Text Available Our research goal was to use recent advances in global positioning system (GPS and computer technology to apply just the right amount of fumigant where it is most needed (i.e., in a small target treatment zone in and around each tree replanting site to control Prunus replant disease (PRD. We developed and confirmed the function of (1 GPS-based software that can be used on cleared orchard land to flexibly plan and map all of an orchard's future tree sites and associated spot fumigation treatment zones and 2 a tractor-based GPS-controlled spot fumigation system to quickly and safely treat the targeted tree site treatment zones. In trials in two almond orchards and one peach orchard, our evaluations of the composite mapping and application system, which examined spatial accuracy of the spot treatments, delivery rate accuracy of the spot treatments, and tree growth responses to the spot treatments, all indicated that GPS spot fumigation has excellent potential to greatly reduce fumigant usage while adequately managing the PRD complex.

  8. Interactions of Vesicular-Arbuscular Mycorrhizal Fungi, Phosphorus, and Heterodera glycines on Soybean.

    Science.gov (United States)

    Tylka, G L; Hussey, R S; Roncadori, R W

    1991-01-01

    Effects of vesicular-arbuscular mycorrhizal (VAM) fungi and soil phosphorus (P) fertility on parasitism of soybean cultivars Bragg and Wright by soybean cyst nematode (SCN) were investigated in field micropiot and greenhouse experiments. VAM fungi increased height of both cultivars and yield of Wright in microplot studies in 1986 and 1987. Conversely, yield of mycorrhizal and nonmycorrhizal plants of both cultivars was suppressed by SCN. Soil population densities of SCN were unaffected by VAM fungi in 1986 but were greater in microplots infested with VAM fungi than in control microplots in 1987. Growth of Wright soybean was stimulated by VAM fungi and suppressed by SCN in greenhouse experiments. The effect of VAM fungi on SCN varied with time. Numbers of SCN in roots and soil were decreased by VAM fungi by as much as 73% at the highest SCN inoculum level through 49 days after planting. Later, however, SCN numbers were usually comparable on mycorrhizal and nonmycorrhizal plants. Soil P fertility generally had no effect on SCN. Results of a split-root experiment indicated that VAM fungal suppression of SCN was not systemic.

  9. Gaseous and particle emissions from an ethanol fumigated compression ignition engine

    International Nuclear Information System (INIS)

    Surawski, Nicholas C.; Ristovski, Zoran D.; Brown, Richard J.; Situ, Rong

    2012-01-01

    Highlights: ► Ethanol fumigation system fitted on a direct injection compression ignition engine. ► Ethanol substitutions up to 40% (by energy) were achieved. ► Gaseous and particle emissions were measured at intermediate speed. ► PM and NO emissions significantly reduced, whilst CO and HC increased. ► The number of particles emitted generally higher with ethanol fumigation. - Abstract: A 4-cylinder Ford 2701C test engine was used in this study to explore the impact of ethanol fumigation on gaseous and particle emission concentrations. The fumigation technique delivered vaporised ethanol into the intake manifold of the engine, using an injector, a pump and pressure regulator, a heat exchanger for vaporising ethanol and a separate fuel tank and lines. Gaseous (Nitric oxide (NO), Carbon monoxide (CO) and hydrocarbons (HC)) and particulate emissions (particle mass (PM 2.5 ) and particle number) testing was conducted at intermediate speed (1700 rpm) using 4 load settings with ethanol substitution percentages ranging from 10% to 40% (by energy). With ethanol fumigation, NO and PM 2.5 emissions were reduced, whereas CO and HC emissions increased considerably and particle number emissions increased at most test settings. It was found that ethanol fumigation reduced the excess air factor for the engine and this led to increased emissions of CO and HC, but decreased emissions of NO. PM 2.5 emissions were reduced with ethanol fumigation, as ethanol has a very low “sooting” tendency. This is due to the higher hydrogen-to-carbon ratio of this fuel, and also because ethanol does not contain aromatics, both of which are known soot precursors. The use of a diesel oxidation catalyst (as an after-treatment device) is recommended to achieve a reduction in the four pollutants that are currently regulated for compression ignition engines. The increase in particle number emissions with ethanol fumigation was due to the formation of volatile (organic) particles

  10. Soil Fumigant Labels - Methyl Bromide

    Science.gov (United States)

    Search soil fumigant pesticide labels by EPA registration number, product name, or company, and follow the link to The Pesticide Product Label System (PPLS) for details. Updated labels include new safety requirements for buffer zones and related measures.

  11. Experimental investigation of gasoline fumigation in a single cylinder direct injection (DI) diesel engine

    International Nuclear Information System (INIS)

    Sahin, Z.; Durgun, O.; Bayram, C.

    2008-01-01

    In the presented study, the effects of gasoline fumigation have been investigated experimentally in a single cylinder direct injection (DI) diesel engine. Gasoline has been introduced into the inlet air flow using an elementary carburetor and no other modification on the engine has been done. The effects of 2%, 4%, 6%, 8% and 10% (by vol.) gasoline fumigation have been investigated experimentally at the speeds of (900-1600) (rpm) and at the selected compression ratios of (18-23). From the experimental results it is determined that by application of gasoline fumigation effective power output increases at the levels of 4-9%, effective efficiency increases by approximately 1.5-4% and specific fuel consumption decreases by approximately 1.5-4%. It is also determined that 4-6% fumigation ratio range is the most favorable percentage interval of gasoline at the selected compression ratios for this engine. Because cost of gasoline is higher than diesel fuel in Turkey as well as in many of the other countries and the decrease ratio of specific fuel consumption is low, gasoline fumigation is not economic for this engine. In the presented study, heat balance tests have also been performed for 18 and 21 compression ratios. The heat balance has been investigated experimentally in respect of effective power, heat rejected to the cooling water, heat lost through exhaust, and other losses (unaccounted-for losses). Heat lost through exhaust decreases until 4-6% gasoline fumigation ratios and after these fumigation ratios it starts to increase because of increasing exhaust gas temperature. Heat rejected to the cooling water decreases at low fumigation ratios, but at high fumigation ratios it increases. Other losses generally exhibit an increasing tendency at low fumigation ratios

  12. Characteristics of soybean sprout locally cultivated in the Jeonju region, used for Bibimbap and Kongnamul-gukbap

    Directory of Open Access Journals (Sweden)

    Young-Eun Lee

    2015-06-01

    Conclusion: Soybean sprouts cultivated using Chinese soybeans in Jeonju were better in the overall acceptability than those grown in other regions because the Jeonju product contained two to three times less amino acids, such as leucine, tyrosine, and phenylalanine, than the other regional products, which tasted bitter. The cultivating water may affect the free amino-acid content of soybean sprouts and their taste.

  13. Foliar Reflectance and Fluorescence Responses for Corn and Soybean Plants Under Nitrogen Stress

    Science.gov (United States)

    Middleton, E. M.; Campbell, P. K. Entcheva; Corp, L. A.; Butcher, L. M.; McMurtrey, J. E.

    2003-01-01

    We are investigating the use of spectral indices derived from actively induced fluorescence spectra and passive optical spectra. We examined the influence of photosynthetic pigment, carbon (C) and nitrogen (N) content on the spectral fluorescence and passive optical property characteristics of mature, upper leaves from plants provided different N fertilizer application rates: 20%, 50%, 100% and 150% of recommended N levels. A suite of optical, fluorescence, and biophysical measurements were collected on leaves from field grown corn (Zea mays L.) and soybean plants (Glycine max L.) grown in pots (greenhouse + ambient sunlight. Steady state laser-induced fluorescence emission spectra (5 nm resolution) were obtained from adaxial and abaxial surfaces resulting from excitation at single wavelengths (280, 380 or 360, and 532 nm). For emission spectra produced by each of these excitation wavelengths, ratios of emission peaks were calculated, including the red far-red chlorophyll fluorescence (ChlF) ratio (F685/F740) and the far-red/green (F740/F525) ratio. High resolution (treatment groups was possible with specific fluorescence band ratios (e.g., F740/F525 obtained with 380 nm excitation). Higher ChlF and blue-green emissions were measured from the abaxial leaf surfaces. Abaxial surfaces also produced higher reflectances, in general, in the 400-800 nm spectrum.

  14. Study of the fumigation effect on pollutants over Inshas area

    International Nuclear Information System (INIS)

    Tawfik, F.S.; Ramadan, Abou Bakr. A.; Abdel El-Aal, M.M.

    2004-01-01

    This work aims to investigate the effect of morning fumigation event on the ground level pollutants concentration at inshas area. Monitoring stations for mesuring the hourly continues concetration of some pollutants such sulphur dioxide, carbon monoxide, and ozone were placed near the hot lab in nuclear research center for one complete year, At the same time the hourly averages meteorological parameters were measured continuously at different levels. A fortran computer program was developed to determine the relative relative concentration Assuming accident case in two cases, nonfumigation and morning fumigation. The processing and interpretation of the meteorological data and pollutants concentration revealed that these high pollution events occur almost on daily bassis, usually several hours between sunrise and before afternoon. The maximum fumigation peaks occur earlier in the summer than other seasons owing to theearlier sunrise in addition, ozone concentrations appear to reach their maximum a few hours after intense fumigation events. Maximum hourly concentrations of sulphur dioxide, carbon monoxide and ozone don't exceed threshold values that are considered to be phytotoxic. As sunset pollutant concentration is decrease due to lofting condition

  15. Fungi of the genus Fusarium as pathogens of soybean seedlings

    Directory of Open Access Journals (Sweden)

    Joanna Marcinkowska

    2013-12-01

    Full Text Available Twenty isolates of fungi of the genus Fusarium collected in the period 1980-1982 from various organs of diseased soybean plants were investigated. Eight of them proved pathogenic to soybean seedlings. The species F. culmorum was most numerously represented among the isolated (4 of 8 pathogens. Isolates of F. sambucinum were also pathogenic (2 of 4 and those of F. soloni (1 of 3, too. The only isolate of F. avenaceum also caused seedling blight. Two isolates of F. oxysporum and two of F. arthrosporioides were not pathogenic. Numerous isolates affected seed gernination and one greatly inhibited growth of the infected seedlings. Pathogenicity was tested in the laboratory in Petri plates on isolate cultures and on filter paper imbibed with fungal inoculum and, in the greenhouse on a peat and perlite substrate. The degree of infection and the character of the disease symptoms depended on the experimental conditions. The results of experiments in plates and in the greenhouse supplemented one another.

  16. Physiological responses of lichens to factorial fumigations with nitric acid and ozone

    International Nuclear Information System (INIS)

    Riddell, J.; Padgett, P.E.; Nash, T.H.

    2012-01-01

    This paper addresses the effects of gaseous nitric acid (HNO 3 ) and ozone (O 3 ), two important air pollutants, on six lichen species with different morphological, ecological, and biological characteristics. The treatment chambers were set up in a factorial design consisting of control chambers, chambers fumigated with HNO 3 , with O 3 , and with HNO 3 and O 3 , together. Each species showed a different sensitivity to the fumigations, reflecting the physiological variation among species. Our results clearly indicate that HNO 3 is a strong phytotoxin to many lichens, and that O 3 alone has little effect on the measured parameters. The combined fumigation effects of HNO 3 and O 3 were not significantly different from HNO 3 alone. - Highlights: ► We fumigated 6 lichen species with factorial combinations of nitric acid (HNO 3 ) and ozone (O 3 ). ► Some species were highly sensitive to HNO 3 while others were tolerant. ► No species responded significantly to O 3 . ► The combined fumigation effects of HNO 3 and O 3 were not significantly different from HNO 3 alone. ► HNO 3 may play an important role in lichen community composition in areas with high HNO 3 pollution. - Nitric acid can be highly toxic to lichens through several physiological mechanisms. Ozone is relatively non-toxic to fumigated lichens.

  17. Simulating emissions of 1,3-dichloropropene after soil fumigation under field conditions.

    Science.gov (United States)

    Yates, S R; Ashworth, D J

    2018-04-15

    Soil fumigation is an important agricultural practice used to produce many vegetable and fruit crops. However, fumigating soil can lead to atmospheric emissions which can increase risks to human and environmental health. A complete understanding of the transport, fate, and emissions of fumigants as impacted by soil and environmental processes is needed to mitigate atmospheric emissions. Five large-scale field experiments were conducted to measure emission rates for 1,3-dichloropropene (1,3-D), a soil fumigant commonly used in California. Numerical simulations of these experiments were conducted in predictive mode (i.e., no calibration) to determine if simulation could be used as a substitute for field experimentation to obtain information needed by regulators. The results show that the magnitude of the volatilization rate and the total emissions could be adequately predicted for these experiments, with the exception of a scenario where the field was periodically irrigated after fumigation. In addition, the timing of the daily peak 1,3-D emissions was not accurately predicted for these experiments due to the peak emission rates occurring during the night or early-morning hours. This study revealed that more comprehensive mathematical models (or adjustments to existing models) are needed to fully describe emissions of soil fumigants from field soils under typical agronomic conditions. Published by Elsevier B.V.

  18. Identification and comparative analysis of differential gene expression in soybean leaf tissue under drought and flooding stress revealed by RNA-Seq

    Science.gov (United States)

    Soybean is the second largest crop in the US. Its yield directly impacts US agricultural economics. Drought and flooding are two major causes for soybean yield loss. To better understand their underlying molecular regulatory mechanisms, we sequenced the transcriptomes of soybean grown in drought a...

  19. Water utilization of vegetables grown under plastic greenhouse conditions in Ankara using neutron probe technique

    International Nuclear Information System (INIS)

    Halitligil, M.B.; Kislal, H.; Sirin, H.; Sirin, C.; Kilicaslan, A.

    2004-01-01

    In order to find suitable varieties of tomato, pepper and cucumber for plastic greenhouse conditions in Ankara and ensure both higher yields and lower NO 3 leaching greenhouse experiments were conducted for three years. In the first year (2001) of the experiment four different varieties from each vegetable, namely, Tomato (Ecem F 1 , 9920 F 1 , 2116 F 1 and Yazg1 F 1 ), Cucumber (Hizir F 1 , Rapido, Hana, and Luna) and Pepper (1245 F 1 , 730 F 1 , Serademre 8 and 710 F 1 ) had been grown in the plastic greenhouse using drip irrigation-fertilization system. Yazg1 F 1 variety for tomato, Hizir F 1 variety for cucumber and Serademre 8 variety for pepper were chosen to be suitable varieties to grow in the plastic greenhouse conditions in Ankara. One access tube in each N 3 and N 0 treatment plots of tomato, cucumber and pepper in 2002 and 2003 experiments were installed for the soil moisture determinations at 30, 60 and 90 cm depths. Readings with the neutron probe were taken before planting and after harvest for the water consumption calculations using the water balance approach and the WUE was calculated on the basis of the ratio of dry matter weight to the amount of water consumed. Tensiometer and suction cups were installed at 15, 30, 45 and 60 cm depths only to N 1 , N 2 and N 3 treatments plots of each vegetable in 2002 and 2003. Tensiometer readings were taken just before irrigation. Also, soil solution samples from suction cups were taken at final harvest and NO 3 determinations were done with RQFLEX nitrate test strips. Significantly higher yields and WUE values were obtained when the same amount of N fertilizer is applied through fertigation compared to the treatment where N fertilizer applied to the soil then drip irrigated. The nitrate concentrations of the soil solution increased as the N rates increased and no NO 3 had been found in the soil solution taken from 75 cm soil depth, indicating that no leaching of N fertilizer occurred beyond 75 cm soil depth

  20. Effect of Soil Fumigation on Degradation of Pendimethalin and Oxyfluorfen in Laboratory and Ginger Field Studies.

    Science.gov (United States)

    Huang, Bin; Li, Jun; Fang, Wensheng; Liu, Pengfei; Guo, Meixia; Yan, Dongdong; Wang, Qiuxia; Cao, Aocheng

    2016-11-23

    Herbicides are usually applied to agricultural fields following soil fumigation to provide effective weed control in high-value cash crops. However, phytotoxicity has been observed in ginger seedlings following the application of herbicides in fumigated fields. This study tested a mixture of herbicides (pendimethalin and oxyfluorfen) and several fumigant treatments in laboratory and field studies to determine their effect on the growth of ginger. The results showed that soil fumigation significantly (P oxyfluorfen was extended by an average of about 1.19 times in the field and 1.32 times in the laboratory. Moreover, the extended period of herbicide degradation in the fumigant and nonfumigant treatments significantly reduced ginger plant height, leaf number, stem diameter, and the chlorophyll content. The study concluded that applying a dose below the recommended rate of these herbicides in chloropicrin (CP) or CP + 1,3-dichloropropene fumigated ginger fields is appropriate, as application of the recommended herbicide dose in fumigated soil may be phytotoxic to ginger.

  1. Root interactions in a maize/soybean intercropping system control soybean soil-borne disease, red crown rot.

    Directory of Open Access Journals (Sweden)

    Xiang Gao

    Full Text Available BACKGROUND: Within-field multiple crop species intercropping is well documented and used for disease control, but the underlying mechanisms are still unclear. As roots are the primary organ for perceiving signals in the soil from neighboring plants, root behavior may play an important role in soil-borne disease control. PRINCIPAL FINDINGS: In two years of field experiments, maize/soybean intercropping suppressed the occurrence of soybean red crown rot, a severe soil-borne disease caused by Cylindrocladium parasiticum (C. parasiticum. The suppressive effects decreased with increasing distance between intercropped plants under both low P and high P supply, suggesting that root interactions play a significant role independent of nutrient status. Further detailed quantitative studies revealed that the diversity and intensity of root interactions altered the expression of important soybean PR genes, as well as, the activity of corresponding enzymes in both P treatments. Furthermore, 5 phenolic acids were detected in root exudates of maize/soybean intercropped plants. Among these phenolic acids, cinnamic acid was released in significantly greater concentrations when intercropped maize with soybean compared to either crop grown in monoculture, and this spike in cinnamic acid was found dramatically constrain C. parasiticum growth in vitro. CONCLUSIONS: To the best of our knowledge, this study is the first report to demonstrate that intercropping with maize can promote resistance in soybean to red crown rot in a root-dependent manner. This supports the point that intercropping may be an efficient ecological strategy to control soil-borne plant disease and should be incorporated in sustainable agricultural management practices.

  2. Midas® Fumigant Safe Handling Guide

    Science.gov (United States)

    Handlers or applicators should wear personal protective equipment including respirator and chemical-resistant gloves when working with this soil fumigant, be trained according to the Worker Protection Standard (WPS), and know signs of pesticide exposure.

  3. Methyl jasmonate induced resistance in cheniere rice and soybean plants

    Science.gov (United States)

    Taplin, C.

    2017-12-01

    Methyl jasmonate (MJ) is a compound naturally occurring in certain plants that aids in plant defense. In this study, we examined the difference in herbivory of fall armyworm (FAW) on control plants (treated without MJ) and MJ-treated plants. Seeds of cheniere rice and soybean were soaked in MJ overnight and planted in the greenhouse, although the soybean never grew. Therefore, only the mature plant leaves of cheniere rice were fed to FAW and the difference in herbivory was looked at. Our results show there is no statistical difference in the herbivory of the cheniere rice plant leaves.

  4. Increased SBPase activity improves photosynthesis and grain yield in wheat grown in greenhouse conditions.

    Science.gov (United States)

    Driever, Steven M; Simkin, Andrew J; Alotaibi, Saqer; Fisk, Stuart J; Madgwick, Pippa J; Sparks, Caroline A; Jones, Huw D; Lawson, Tracy; Parry, Martin A J; Raines, Christine A

    2017-09-26

    To meet the growing demand for food, substantial improvements in yields are needed. This is particularly the case for wheat, where global yield has stagnated in recent years. Increasing photosynthesis has been identified as a primary target to achieve yield improvements. To increase leaf photosynthesis in wheat, the level of the Calvin-Benson cycle enzyme sedoheptulose-1,7-biphosphatase (SBPase) has been increased through transformation and expression of a Brachypodium distachyon SBPase gene construct. Transgenic lines with increased SBPase protein levels and activity were grown under greenhouse conditions and showed enhanced leaf photosynthesis and increased total biomass and dry seed yield. This showed the potential of improving yield potential by increasing leaf photosynthesis in a crop species such as wheat. The results are discussed with regard to future strategies for further improvement of photosynthesis in wheat.This article is part of the themed issue 'Enhancing photosynthesis in crop plants: targets for improvement'. © 2017 The Authors.

  5. [Progress of sulfur fumigation and modern processing technology of Chinese traditional medicines].

    Science.gov (United States)

    Lu, Tu-Lin; Shan, Xin; Li, Lin; Mao, Chun-Qin; Ji, De; Yin, Fang-Zhou; Lang, Yong-Ying

    2014-08-01

    Infestation, moldy and other phenomenon in the processing and storage of Chinese herbal medicines is a problem that faced in the production of Chinese traditional medicine. The low productivity of traditional processing methods can not guarantee the quality of Chinese herbal medicines. Sulfur fumigation is the first choice of grassroots to process the Chinese herbal medicine with its low cost and easy operation. Sulfur fumigation can solve some problems in the processing and storage of Chinese herbal medicines, but modern pharmacological studies show that long-term use of Chinese traditional medicine which is fumigated by sulfur can cause some serious harm to human liver, kidney and other organs. This paper conducts a review about the application history of sulfur fumigation, its influence to the quality of Chinese herbal medicines as well as domestic and foreign limits to sulfur quantity, and a brief introduction of the status of modern processing technologies in the processing of food and some Chinese herbal medicines, the problems ex- isting in the Chinese herbal medicines processing, which can provide a reference basis for the further research, development and application of investigating alternative technologies of sulfur fumigation.

  6. Assessment of potential soybean cadmium excluder cultivars at different concentrations of Cd in soils.

    Science.gov (United States)

    Zhi, Yang; He, Kangxin; Sun, Ting; Zhu, Yongqiang; Zhou, Qixing

    2015-09-01

    The selection of cadmium-excluding cultivars has been used to minimize the transfer of cadmium into the human food chain. In this experiment, five Chinese soybean plants were grown in three soils with different concentrations of Cd (0.15, 0.75 and 1.12mg/kg). Variations in uptake, enrichment, and translocation of Cd among these soybean cultivars were studied. The results indicated that the concentration of Cd in seeds that grew at 1.12mg/kg Cd in soils exceeded the permitted maximum levels in soybeans. Therefore, our results indicated that even some soybean cultivars grown on soils with permitted levels of Cd might accumulate higher concentrations of Cd in seeds that are hazardous to human health. The seeds of these five cultivars were further assessed for interactions between Cd and other mineral nutrient elements such as Ca, Cu, Fe, Mg, Mn and Zn. High Cd concentration in soil was found to inhibit the uptake of Mn. Furthermore, Fe and Zn accumulations were found to be enhanced in the seeds of all of the five soybean cultivars in response to high Cd concentration. Cultivar Tiefeng 31 was found to fit the criteria for a Cd-excluding cultivar under different concentrations of Cd in soils. Copyright © 2015. Published by Elsevier B.V.

  7. Heavy metal toxicity in rice and soybean plants cultivated in contaminated soil

    Directory of Open Access Journals (Sweden)

    Maria Lígia de Souza Silva

    2014-04-01

    Full Text Available Heavy metals can accumulate in soil and cause phytotoxicity in plants with some specific symptoms. The present study evaluated the specific symptoms on rice and soybeans plants caused by excess of heavy metals in soil. Rice and soybean were grown in pots containing soil with different levels of heavy metals. A completely randomized design was used, with four replications, using two crop species and seven sample soils with different contamination levels. Rice and soybean exhibited different responses to the high concentrations of heavy metals in the soil. Rice plants accumulated higher Cu, Mn, Pb and Zn concentrations and were more sensitive to high concentrations of these elements in the soil, absorbing them more easily compared to the soybean plants. However, high available Zn concentrations in the soil caused phytotoxicity symptoms in rice and soybean, mainly chlorosis and inhibited plant growth. Further, high Zn concentrations in the soil reduced the Fe concentration in the shoots of soybean and rice plants to levels considered deficient.

  8. Methylation of food commodities during fumigation with methyl bromide

    International Nuclear Information System (INIS)

    Starratt, A.N.; Bond, E.J.

    1990-01-01

    Sites of methylation in several commodities (wheat, oatmeal, peanuts, almonds, apples, oranges, maize, alfalfa and potatoes) during fumigation with 14 C-methyl bromide were studied. Differences were observed in levels of the major volatiles: methanol, dimethyl sulphide and methyl mercaptan, products of O- and S-methylation, resulting from treatment of the fumigated materials with 1N sodium hydroxide. In studies of maize and wheat, histidine was the amino acid which underwent the highest level of N-methylation. (author). 24 refs, 3 tabs

  9. Effect of fumigation methanol and ethanol on the gaseous and particulate emissions of a direct-injection diesel engine

    Science.gov (United States)

    Zhang, Z. H.; Tsang, K. S.; Cheung, C. S.; Chan, T. L.; Yao, C. D.

    2011-02-01

    Experiments were conducted on a four-cylinder direct-injection diesel engine with methanol or ethanol injected into the air intake of each cylinder, to compare their effect on the engine performance, gaseous emissions and particulate emissions of the engine under five engine loads at the maximum torque speed of 1800 rev/min. The methanol or ethanol was injected to top up 10% and 20% of the engine loads under different engine operating conditions. The experimental results show that both fumigation methanol and fumigation ethanol decrease the brake thermal efficiency (BTE) at low engine load but improves it at high engine load; however the fumigation methanol has higher influence on the BTE. Compared with Euro V diesel fuel, fumigation methanol or ethanol could lead to reduction of both NOx and particulate mass and number emissions of the diesel engine, with fumigation methanol being more effective than fumigation ethanol in particulate reduction. The NOx and particulate reduction is more effective with increasing level of fumigation. However, in general, fumigation fuels increase the HC, CO and NO 2 emissions, with fumigation methanol leading to higher increase of these pollutants. Compared with ethanol, the fumigation methanol has stronger influence on the in-cylinder gas temperature, the air/fuel ratio, the combustion processes and hence the emissions of the engine.

  10. Global Warming Can Negate the Expected CO2 Stimulation in Photosynthesis and Productivity for Soybean Grown in the Midwestern United States1[W][OA

    Science.gov (United States)

    Ruiz-Vera, Ursula M.; Siebers, Matthew; Gray, Sharon B.; Drag, David W.; Rosenthal, David M.; Kimball, Bruce A.; Ort, Donald R.; Bernacchi, Carl J.

    2013-01-01

    Extensive evidence shows that increasing carbon dioxide concentration ([CO2]) stimulates, and increasing temperature decreases, both net photosynthetic carbon assimilation (A) and biomass production for C3 plants. However the [CO2]-induced stimulation in A is projected to increase further with warmer temperature. While the influence of increasing temperature and [CO2], independent of each other, on A and biomass production have been widely investigated, the interaction between these two major global changes has not been tested on field-grown crops. Here, the interactive effect of both elevated [CO2] (approximately 585 μmol mol−1) and temperature (+3.5°C) on soybean (Glycine max) A, biomass, and yield were tested over two growing seasons in the Temperature by Free-Air CO2 Enrichment experiment at the Soybean Free Air CO2 Enrichment facility. Measurements of A, stomatal conductance, and intercellular [CO2] were collected along with meteorological, water potential, and growth data. Elevated temperatures caused lower A, which was largely attributed to declines in stomatal conductance and intercellular [CO2] and led in turn to lower yields. Increasing both [CO2] and temperature stimulated A relative to elevated [CO2] alone on only two sampling days during 2009 and on no days in 2011. In 2011, the warmer of the two years, there were no observed increases in yield in the elevated temperature plots regardless of whether [CO2] was elevated. All treatments lowered the harvest index for soybean, although the effect of elevated [CO2] in 2011 was not statistically significant. These results provide a better understanding of the physiological responses of soybean to future climate change conditions and suggest that the potential is limited for elevated [CO2] to mitigate the influence of rising temperatures on photosynthesis, growth, and yields of C3 crops. PMID:23512883

  11. Understanding resistant effect of mosquito on fumigation strategy in dengue control program

    Science.gov (United States)

    Aldila, D.; Situngkir, N.; Nareswari, K.

    2018-01-01

    A mathematical model of dengue disease transmission will be introduced in this talk with involving fumigation intervention into mosquito population. Worsening effect of uncontrolled fumigation in the form of resistance of mosquito to fumigation chemicals will also be included into the model to capture the reality in the field. Deterministic approach in a 9 dimensional of ordinary differential equation will be used. Analytical result about the existence and local stability of the equilibrium points followed with the basic reproduction number will be discussed. Some numerical result will be performed for some scenario to give a better interpretation for the analytical results.

  12. 29 CFR 1917.25 - Fumigants, pesticides, insecticides and hazardous preservatives (see also § 1917.2 Hazardous...

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Fumigants, pesticides, insecticides and hazardous..., DEPARTMENT OF LABOR (CONTINUED) MARINE TERMINALS Marine Terminal Operations § 1917.25 Fumigants, pesticides... fumigants, pesticides or hazardous preservatives have created a hazardous atmosphere. These signs shall note...

  13. Agricultural soil fumigation as a source of atmospheric methyl bromide.

    Science.gov (United States)

    Yagi, K; Williams, J; Wang, N Y; Cicerone, R J

    1993-09-15

    Methyl bromide (MeBr) is used increasingly as a biocidal fumigant, primarily in agricultural soils prior to planting of crops. This usage carries potential for stratospheric ozone reduction due to Br atom catalysis, depending on how much MeBr escapes from fumigated soils to the atmosphere and on details of atmospheric chemical reactions. We present direct field measurements of MeBr escape; 87% of the applied MeBr was emitted within 7 days after a commercial fumigation. Covering the field with plastic sheets retarded MeBr escape somewhat but first-day losses were still 40%; thicker sections of sheets were relatively more effective than thin sections. We also measured gaseous MeBr concentrations versus depth in the soil column; these profiles display diffusion-like evolution. In soil, MeBr is partitioned among gas, liquid, and adsorbed solid phases. Calculated soil inventories agreed only roughly with applied amounts, probably due to nonequilibrium partitioning (during the first 30 min) and to uncertainties in partitioning coefficients. Fumigated fields may release less MeBr if they are covered by more gas-tight plastic films, if injection techniques are improved and injection is deeper, and if soil moistures, organic amounts, and densities are greater than in the soil studied here.

  14. Buffer Zone Requirements for Soil Fumigant Applications

    Science.gov (United States)

    Updated pesticide product labels require fumigant users to establish a buffer zone around treated fields to reduce risks to bystanders. Useful information includes tarp testing guidance and a buffer zone calculator.

  15. Effect of carbon dioxide enrichment on health-promoting compounds and organoleptic properties of tomato fruits grown in greenhouse.

    Science.gov (United States)

    Zhang, Zhiming; Liu, Lihong; Zhang, Min; Zhang, Yongsong; Wang, Qiaomei

    2014-06-15

    The objective of the present study was to evaluate the effect of carbon dioxide (CO2) enrichment on the main health-promoting compounds and organoleptic characteristics of tomato (Solanum lycopersicum) fruits grown in greenhouse. The contents of health-promoting compounds, including lycopene, β-carotene, and ascorbic acid, as well as the flavour, indicated by sugars, titrable acidity, and sugar/acid ratio, were markedly increased in CO2 enrichment fruits. Furthermore, CO2 enrichment significantly enhanced other organoleptic characteristics, including colour, firmness, aroma, and sensory attributes in tomato fruits. The results indicated that CO2 enrichment has potential in promoting the nutritional value and organoleptic characteristics of tomatoes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. EFFECT OF ALUMINUM ON PLANT GROWTH, PHOSPORUS AND CALCIUM UPTAKE OF TROPICAL RICE (Oryza sativa, MAIZE (Zea mays, AND SOYBEAN (Glycine max

    Directory of Open Access Journals (Sweden)

    D. Nursyamsi

    2018-01-01

    Full Text Available Aluminum toxicity is the most limiting factor to plant growth on acid soils. Structural and functional damages in the root system by Al decrease nutrient uptake and lead to reduce plant growth and mineral deficiency in shoot. Greenhouse experiment was conducted to study the effect of Al on plant growth, and P and Ca uptake of rice, maize, and soybean. The plants were grown in hydroponic solution added with 0, 5, 10, and 30 ppm Al, at pH 4.0. The results showed that relative growth of shoots and roots of upland rice, lowland rice, maize, and soybean decreased with an increase of Al level. However, sometimes the low Al level (5 ppm stimulated shoot and root growth of some varieties in these species. According to total AlRG30 values, which is Al concentration in solution when relative growth decreased to 50%, Al tolerance of species was in order of barley < maize < soybean < lowland rice < upland rice. For maize, Al tolerance was in the order of Arjuna < Kalingga < P 3540 < SA 5 < SA 4 < PM 95 A < SA 3 < Antasena; for soybean was Wilis < INPS < Galunggung < Kerinci < Kitamusume; for lowland rice was RD 23 < Kapuas < Cisadane < KDML 105 < IR 66 < RD 13, and for upland rice was Dodokan < JAC165 < Cirata < Orizyca sabana 6 < Danau Tempe < Laut Tawar. Based on the rank of Al tolerance, rice was the useful crop to be planted in acid soils. Antasena (maize, Kitamusume ( soybean , RD 13 (lowland rice, and Laut Tawar (upland rice were also recommended for acid soils. P and Ca concentration in shoots and roots commonly decreased with an increase of Al level. However, the low Al level stimulated absorption of P and Ca concentrations in shoots and roots.

  17. Changes in Leaf Anatomical Traits Enhanced Photosynthetic Activity of Soybean Grown in Hydroponics with Plant Growth-Promoting Microorganisms.

    Science.gov (United States)

    Paradiso, Roberta; Arena, Carmen; De Micco, Veronica; Giordano, Maria; Aronne, Giovanna; De Pascale, Stefania

    2017-01-01

    The use of hydroponic systems for cultivation in controlled climatic conditions and the selection of suitable genotypes for the specific environment help improving crop growth and yield. We hypothesized that plant performance in hydroponics could be further maximized by exploiting the action of plant growth-promoting organisms (PGPMs). However, the effects of PGPMs on plant physiology have been scarcely investigated in hydroponics. Within a series of experiments aimed to identify the best protocol for hydroponic cultivation of soybean [ Glycine max (L.) Merr.], we evaluated the effects of a PGPMs mix, containing bacteria, yeasts, mycorrhiza and trichoderma beneficial species on leaf anatomy, photosynthetic activity and plant growth of soybean cv. 'Pr91m10' in closed nutrient film technique (NFT). Plants were grown in a growth chamber under semi-aseptic conditions and inoculated at seed, seedling and plant stages, and compared to non-inoculated (control) plants. Light and epi-fluorescence microscopy analyses showed that leaves of inoculated plants had higher density of smaller stomata (297 vs. 247 n/mm 2 ), thicker palisade parenchyma (95.0 vs. 85.8 μm), and larger intercellular spaces in the mesophyll (57.5% vs. 52.2%), compared to non-inoculated plants. The modifications in leaf functional anatomical traits affected gas exchanges; in fact starting from the reproductive phase, the rate of leaf net photosynthesis (NP) was higher in inoculated compared to control plants (8.69 vs. 6.13 μmol CO 2 m -2 s -1 at the beginning of flowering). These data are consistent with the better maximal PSII photochemical efficiency observed in inoculated plants (0.807 vs. 0.784 in control); conversely no difference in leaf chlorophyll content was found. The PGPM-induced changes in leaf structure and photosynthesis lead to an improvement of plant growth (+29.9% in plant leaf area) and seed yield (+36.9%) compared to control. Our results confirm that PGPMs may confer benefits in

  18. Changes in Leaf Anatomical Traits Enhanced Photosynthetic Activity of Soybean Grown in Hydroponics with Plant Growth-Promoting Microorganisms

    Directory of Open Access Journals (Sweden)

    Roberta Paradiso

    2017-05-01

    Full Text Available The use of hydroponic systems for cultivation in controlled climatic conditions and the selection of suitable genotypes for the specific environment help improving crop growth and yield. We hypothesized that plant performance in hydroponics could be further maximized by exploiting the action of plant growth-promoting organisms (PGPMs. However, the effects of PGPMs on plant physiology have been scarcely investigated in hydroponics. Within a series of experiments aimed to identify the best protocol for hydroponic cultivation of soybean [Glycine max (L. Merr.], we evaluated the effects of a PGPMs mix, containing bacteria, yeasts, mycorrhiza and trichoderma beneficial species on leaf anatomy, photosynthetic activity and plant growth of soybean cv. ‘Pr91m10’ in closed nutrient film technique (NFT. Plants were grown in a growth chamber under semi-aseptic conditions and inoculated at seed, seedling and plant stages, and compared to non-inoculated (control plants. Light and epi-fluorescence microscopy analyses showed that leaves of inoculated plants had higher density of smaller stomata (297 vs. 247 n/mm2, thicker palisade parenchyma (95.0 vs. 85.8 μm, and larger intercellular spaces in the mesophyll (57.5% vs. 52.2%, compared to non-inoculated plants. The modifications in leaf functional anatomical traits affected gas exchanges; in fact starting from the reproductive phase, the rate of leaf net photosynthesis (NP was higher in inoculated compared to control plants (8.69 vs. 6.13 μmol CO2 m-2 s-1 at the beginning of flowering. These data are consistent with the better maximal PSII photochemical efficiency observed in inoculated plants (0.807 vs. 0.784 in control; conversely no difference in leaf chlorophyll content was found. The PGPM-induced changes in leaf structure and photosynthesis lead to an improvement of plant growth (+29.9% in plant leaf area and seed yield (+36.9% compared to control. Our results confirm that PGPMs may confer benefits in

  19. Beneficial effects of CO2 enrichment to field-grown soybeans under ozone stress

    International Nuclear Information System (INIS)

    Lee, E.H.; Mulchi, C.L.

    1991-01-01

    Damage from gaseous air pollution [e.g. ozone (O 3 ) and sulfur dioxide (SO 2 )] on crops in the US has been estimated to exceed several billion dollars annually. Atmospheric carbon dioxide (CO 2 ) concentrations have increased from about 290 ppm in the late 1800's to current levels of 350 ppm. The combined effects of increased CO 2 and O 3 stress have not been studied under field conditions. The present study was conducted to determine the interactive effects of CO 2 enrichment and O 3 stress on the growth and physiology of 'Clark' soybean, testing the hypothesis that elevated CO 2 will ameliorate the effects of O 3 stress. Experiments with soybeans in open-top field chambers showed that increasing CO 2 levels to 400 parts per million (ppm) negated current ambient ozone harmful effects on soybean yields. When ambient O 3 levels were doubled, it was necessary to increase the atmospheric CO 2 concentration to 500 ppm to negate O 3 damage. Rising CO 2 counteracts O 3 pollution. Reduced stomatal conductance and decreased photosynthesis appear to reverse the CO 2 stimulation

  20. Lignification of the plant and seed quality of RR soybeans sprayed with herbicide glyphosate

    Directory of Open Access Journals (Sweden)

    Cristiane Fortes Gris

    2013-04-01

    Full Text Available Differences in levels of lignin in the plant between conventional and transgenic cultivars RR has been reported by several authors, however, there are few studies evaluating the influence of spraying of glyphosate on the lignin in the plant and RR soybean seeds. The aim of this study was to evaluate the physiological quality of RR transgenic soybean seeds and the lignin contents of plants sprayed with the herbicide glyphosate. The assays were conducted both in greenhouse and field in the municipality of Lavras, MG, in the agricultural year 2007/08. The experiment was arranged in a splitplot design with four replicates, considering the treatments hand weeding and herbicide glyphosate as plots, and five RR soybean cultivars (BRS 245 RR, BRS 247 RR, Valiosa RR, Silvânia RR and Baliza RR as splitplots. In the greenhouse, the cultivars tested were BRS 245 RR and Valiosa RR in a randomized block design with four replicates. The sprayings were carried out at stages V3, V7 and early R5 (3L/ha. The 1000 seed weight, mechanical injury, germination and germination velocity index, emergence velocity index, accelerated aging, electrical conductivity and water soaking seed test, lignin content in the seed coat, in the stem and legumes were determined. The spraying of glyphosate herbicide, in greenhouse and field, did not alter the physiological quality of seeds and the lignin contents in the plant.

  1. Differential Ability of Maize and Soybean to Acquire and Utilize Phosphorus from Sparingly Soluble Forms in Low- and Medium-P Soils Using {sup 32}P

    Energy Technology Data Exchange (ETDEWEB)

    Adu-Gyamfi, J. J.; Aigner, M.; Linic, S. [Soil and Water Management and Crop Nutrition Laboratory, Seibersdorf (Austria); Gludovacz, D. [Nuclear Material Laboratory, Safeguard Analytical Services, International Atomic Energy Agency, Seibersdorf (Austria)

    2013-11-15

    A glasshouse pot experiment was conducted to evaluate the differential ability of maize (Zea mays) and soybean (Glycine max) to utilize soil phosphorus (P) for plant growth from total-P, available-P and inorganic (Ca-P, Al-P and Fe-P) soil P pools using a carrier-free {sup 32}P solution. A maize variety (DK 315) and a soybean variety (TGX 1910-4F) were grown in pots containing 1 kg of a low available P soil (Hungarian) or a medium available P (Waldviertel) soil labelled with {sup 32}P for 42 days or without {sup 32}P (unlabelled) for 42 and 60 days. The shoot and root biomass of maize and soybean were significantly greater when grown on the Waldviertel than on the Hungarian soils. The shoot P concentrations were higher for soybean (1.7-2.2 g kg{sup -1}) than for maize (1.1-1.4 g kg{sup -1}). The total radioactivity (dpm x 10{sup 6}) was higher in plants grown in Waldviertel than in Hungarian soil and the values reflected plant P uptake and shoot biomass of soybean and maize. The L-values ({mu}g P g soil{sup -1}) of maize and soybean were higher in Waldviertel (72-78) than in Hungarian (9.6-20) soil. No significant differences in L-values were observed for maize and soybean grown on the Waldviertel soil, but for the Hungarian soil, the L-values were higher for maize (20.0) than for soybean (9.6) suggesting that in this low-P soil, maize was more efficient than soybean in taking up soil P. The available P (Bray II) and the Ca-P were the fractions most depleted by plants followed by the Fe-P fractions in the two soils, but differences between the crops were not significant. When soil P is limited, maize and soybean are able to access P mainly from the available P (Bray II), Fe- and Ca-P sparingly soluble fractions and not Al-P from the soil. (author)

  2. Molecular physiology of seeds. Author-review of the Thesis

    International Nuclear Information System (INIS)

    Hajduch, M.

    2014-05-01

    Plant development is well described. However, full understanding of the regulation of processes associated with plant development is still missing. Present author-review of the Dr.Sc. thesis advances our understanding of the regulation of plant development by quantitative proteomics analyses of seed development of soybean, canola, castor, flax, and model plant arabidopsis in control and environmentally challenged environments. The analysis of greenhouse-grown soybean, canola, castor, and arabidospis provided complex characterization of metabolic processes during seed development, for instance, of carbon assimilation into fatty acids. Furthermore, the analyses of soybean and flax grown in Chernobyl area provided in-depth characterization of seed development in radio-contaminated environment. Soybean and flax were altered by radio-contaminated environment in different way. However, these alterations resulted into modifications in seed oil content. Further analyses showed that soybean and flax possess alterations of carbon metabolism in cytoplasm and plastids along with increased activity of photosynthetic apparatus. Our present experiments are focused on further characterization of molecular bases that might be responsible for alterations of seed oil content in Chernobyl grown plants. (author)

  3. Molecular physiology of seeds

    International Nuclear Information System (INIS)

    Hajduch, M.

    2014-05-01

    Plant development is well described. However, full understanding of the regulation of processes associated with plant development is still missing. Present Dr.Sc. thesis advances our understanding of the regulation of plant development by quantitative proteomics analyses of seed development of soybean, canola, castor, flax, and model plant arabidopsis in control and environmentally challenged environments. The analysis of greenhouse-grown soybean, canola, castor, and arabidospis provided complex characterization of metabolic processes during seed development, for instance, of carbon assimilation into fatty acids. Furthermore, the analyses of soybean and flax grown in Chernobyl area provided in-depth characterization of seed development in radio-contaminated environment. Soybean and flax were altered by radio-contaminated environment in different way. However, these alterations resulted into modifications in seed oil content. Further analyses showed that soybean and flax possess alterations of carbon metabolism in cytoplasm and plastids along with increased activity of photosynthetic apparatus. Our present experiments are focused on further characterization of molecular bases that might be responsible for alterations of seed oil content in Chernobyl grown plants. (author)

  4. Lignification of the plant and seed quality of RR soybeans sprayed with herbicide glyphosate

    OpenAIRE

    Gris,Cristiane Fortes; Pinho,Edila Vilela de Resende Von; Carvalho,Maria Laene de Moreira; Diniz,Rafael Parreira; Andrade,Thaís de

    2013-01-01

    Differences in levels of lignin in the plant between conventional and transgenic cultivars RR has been reported by several authors, however, there are few studies evaluating the influence of spraying of glyphosate on the lignin in the plant and RR soybean seeds. The aim of this study was to evaluate the physiological quality of RR transgenic soybean seeds and the lignin contents of plants sprayed with the herbicide glyphosate. The assays were conducted both in greenhouse and field in the muni...

  5. Enviromental Effects on Oleic Acid in Soybean Seed Oil of Plant Introductions with Elevated Oleic Concentration

    Science.gov (United States)

    Soybean [Glycine max (L.) Merr.] oil with oleic acid content >500 g per kg is desirable for a broader role in food and industrial uses. Seed oil in commercially grown soybean genotypes averages about 230 g per kg oleic acid (18:1). Some maturity group (MG) II to V plant introductions (PIs) have el...

  6. Estimate of symbiotically fixed nitrogen in field grown soybeans using variations in 15N natural abundance

    International Nuclear Information System (INIS)

    Amarger, N.; Durr, J.C.; Bourguignon, C.; Lagacherie, B.; Mariotti, A.; Mariotti, F.

    1979-01-01

    The use of variations in natural abundance of 15 N between nitrogen fixing and non nitrogen fixing soybeans was investigated for quantitative estimate of symbiotic nitrogen fixation. Isotopic analysis of 4 varieties of inoculated and non-inoculated soybeans growing under field conditions, with and without N-fertilizer was determined. It was found that inoculated soybeans had a significantly lower 15 N content than non-inoculated ones. Estimates of the participation of fixed N to the total nitrogen content of inoculated soybeans were calculated from these differences. They were compared to estimates calculated from differences in N yield between inoculated and non-inoculated plants and to the nitrogenase activity, measured by the C 2 H 2 reduction assay over the growing season. Estimates given by the 15 N measurements were correlated with the C 2 H 2 reducing activity but not with the differences in the N yield. This shows that the isotopic composition was dependent on the amount of fixed nitrogen and consequently that the estimates of fixed nitrogen based on natural 15 N abundance should be reliable. The absence of correlation between estimates based on 15 N content and estimates based on N yield was explained by differences in the uptake of soil nitrogen between inoculated and non inoculated soybeans. (Auth.)

  7. Effects of Soybean Cultivars on Soymilk Quality

    Directory of Open Access Journals (Sweden)

    Aziadekey, M.

    2001-01-01

    Full Text Available Soymilk was prepared from twelve soybean cultivars grown under the same environmental conditions to evaluate their effects on soymilk characteristics. Significant correlations were observed between the Chemical composition of the seeds and the resultant soymilk. Soymilk solids were significantly affected by seed size and seed phosphorus contents. Cultivars with dark hilum produced soymilk with less attractive colour.

  8. In vitro toxicity and control of Meloidogyne incognita in soybean by rosemary extract

    Directory of Open Access Journals (Sweden)

    Mônica Anghinoni Müller

    2016-02-01

    Full Text Available The control of nematodes in plants can be challenging, and there is a need for alternative, environmentally conscious methods for their management. The purpose of this study was to evaluate the effect of rosemary extract (Rosmarinus officinalis on the in vitro toxicity and control of Meloidogyne incognita in CD 206 and CD 215 soybean cultivars. Using an in vitro assay, 500 M. incognita eggs per plate were observed for 15 days after incubation with rosemary extract at concentrations of 1%, 5%, and 10%. Soybean plants were studied under greenhouse conditions, and starting at V3 stage, were sprayed weekly with the same concentration of rosemary extract for 64 days. Three days after the first treatment, each soybean plant was inoculated with 1800 eggs and 400 second-stage juveniles (J2. At the end of this essay, number of eggs and J2 in the roots and soil, number of galls, and the reproduction factor (RF were evaluated. Our results showed that in the in vitro assay, rosemary extract reduced the number of M. incognita eggs that hatched. Under greenhouse conditions, the CD 206 cultivar showed a 48% reduction in the number of galls, as well as fewer eggs in the soil and a lower RF. Similarly, in the CD 215 cultivar, the number of eggs was reduced and the RF was lower. These results indicate the potential for rosemary extract to control M. incognita in soybean crops.

  9. Effect of nitrogen and potassium fertilization on radiocesium absorption in soybean

    International Nuclear Information System (INIS)

    Nihei, Naoto; Hirose, Atsushi; Tanoi, Keitaro; Nakanishi, Tomoko M.

    2015-01-01

    Radioactive materials that were released during the nuclear accident contaminated the soil and agricultural products. It has become clear that potassium fertilization is effective for the reduction of radiocesium concentrations in agricultural crops. However, apart from reports about potassium, few reports have examined how nitrogen, which has a large effect on crop growth, contributes to the radiocesium absorption. Focusing on this point, we studied the effect of nitrogen and potassium fertilizer on the radiocesium absorption in soybean seedlings. The concentration of radiocesium in the seed of soybean was higher in nitrogen-fertilized plants than in plants grown without fertilizer. The radiocesium concentration in the aboveground biomass increased as the amount of nitrogen fertilization increased. But the concentrations of radiocesium were higher in potassium-fertilized plants at high-N than in plants without added nitrogen and potassium. Further study is required to clarify the factors that incur an increase in radiocesium concentration in response to nitrogen fertilization. Special care is required to start farming soybean on fallow fields evacuated after the accident or on fields where rice has been grown before, which tend to have higher available nitrogen than the regularly cultivated fields. (author)

  10. [Quality changes in Gastrodia Rhizoma of different origins and forms before and after sulfur fumigation].

    Science.gov (United States)

    Kang, Chuan-Zhi; Yang, Wan-Zhen; Zhou, Li; Jiang, Jing-Yi; Lv, Chao-Geng; Wang, Sheng; Zhou, Tao; Yang, Ye; Huang, Lu-Qi; Guo, Lan-Ping

    2018-01-01

    As Gastrodiae Rhizoma (GR) is one of the herbs more seriously affected by sulfur fumigation, so its quality has been always of a great concern. In this paper, GR samples collected from eight main producing areas and in three forms were fumigated with sulfur and quantitatively and qualitatively analyzed based on UPLC-Q-TOF-MS/MS. The results showed that the contents of gastrodin, parishin, parishin B and parishin C were decreased, while the content of parishin E was increased after sulfur fumigation treatment. Besides, a new sulfur marker named p-hydroxybenzyl hydrogen sulfite was produced in sulfur-fumigated GR samples. As compared with producing origins, forms had a greater impact on the quality of GR, especially in Hongtianma and Wutianma. Besides, the contents of gastrodins and parishins in Hongtianma from Jilin were lowest as compared with those in other producing areas. This might be correlated with planting patterns and environmental factors. In conclusion, sulfur fumigation has a more obvious impact on the quality of GR than origins and forms, which is attributed to the generation of new sulfur fumigated markers. Copyright© by the Chinese Pharmaceutical Association.

  11. Enhanced iron and zinc accumulation in genetically engineered pineapple plants using soybean ferritin gene.

    Science.gov (United States)

    Mhatre, Minal; Srinivas, Lingam; Ganapathi, Thumballi R

    2011-12-01

    Pineapple (Ananas comosus L. Merr., cv. "Queen") leaf bases were transformed with Agrobacterium tumefaciens strain EHA 105 harboring the pSF and pEFESF plasmids with soybean ferritin cDNA. Four to eight percent of the co-cultivated leaf bases produced multiple shoots 6 weeks after transfer to Murashige and Skoog's medium supplemented with α-naphthalene acetic acid 1.8 mg/l, indole-3-butyric acid 2.0 mg/l, kinetin 2.0 mg/l, cefotaxime 400 mg/l, and kanamycin 50 mg/l. Putatively transformed shoots (1-2 cm) were selected and multiplied on medium of the same composition and elongated shoots (5 cm) were rooted on liquid rooting medium supplemented with cefotaxime 400 mg/l and kanamycin 100 mg/l. The rooted plants were analyzed through PCR, genomic Southern analysis, and reverse transcription PCR. The results clearly confirmed the integration and expression of soybean ferritin gene in the transformed plants. Atomic absorption spectroscopic analysis carried out with six independently transformed lines of pSF and pEFE-SF revealed a maximum of 5.03-fold increase in iron and 2.44-fold increase in zinc accumulation in the leaves of pSF-transformed plants. In pEFE-SF-transformed plants, a 3.65-fold increase in iron and 2.05-fold increase in zinc levels was observed. Few of the transgenic plants were hardened in the greenhouse and are being grown to maturity to determine the enhanced iron and zinc accumulation in the fruits. To the best of our knowledge this is the first report on the transformation of pineapple with soybean ferritin for enhanced accumulation of iron and zinc content in the transgenic plants.

  12. Application of soybean shoot-cutting in SMV-resistance genetic analysis

    Institute of Scientific and Technical Information of China (English)

    Haifeng Chen; Zhihui Shan; Xin'an zhou; Zhonglu Yang; Qiao Wan; Yanyan Yang; Shuilian Chen; Chanjuan Zhang; Limiao Chen; Songli Yuan; Dezhen Qiu

    2016-01-01

    Soybean mosaic virus (SMV) is one of the most serious diseases affecting soy-bean yield. Recombination inbred lines (RILs) are common materials for resistance genetic research. However, the population construction always takes quite a long time which pro-long the breading process. Shoot-cutting is a well-established technique for plant multipli-cation. It has high successful ratio in soybean. In this study, we use shoot-cutting to multiply two F2 populations from the crosses of susceptible and resistant varieties. Soybean plants can be multiplied from 1 into 3 homogenous ones within 30 days, bringing on well-grown plants with normal seeds. The SMV resistance from cutting-shoot plants was consistent with that from original plants. When shoot-cutting is applied in a F2 population, the pheno-typic and genotypic data can be simultaneously collected and corresponding saved during population development. The genetic research and resistant breeding can be effectively promoted by this technology.

  13. Effects of hydrogen fluoride fumigation of bean plants on the growth, development, and reproduction of the Mexican bean beetle

    Energy Technology Data Exchange (ETDEWEB)

    Weinstein, L H; McCune, D C; Mancini, J F; van Leuken, P

    1973-01-01

    The growth and behavior of Mexican bean beetle populations on control and hydrogen fluoride-fumigated bean plants (P. vulgaris L.) were investigated to assess the effects of such fumigation on beetle growth, development and reproduction. Beetles that were cultured on HF-fumigated plants were generally lighter than controls, although the occurrence and magnitude of this effect depended upon stage of development, age, and sex of the adult beetle and the number of generations of culture on HF-fumigated plants. A consistently decreased mass of larvae cultured on HF-fumigated tissue pupated and enclosed three to six days later than controls, and the adults commenced reproductive activity with the same lag in time. Beetles cultured on the fumigated plants also contained greater amounts of fluoride than the controls, and the fluoride content of females was greater than that of males on both HF-fumigated and control plants. Beetles raised on fumigated plants laid fewer egg masses and fewer eggs per mass, although when the first generation was repeated at a later date there was no significant effect. Feeding activity was reduced in both larval and adult stages in beetles cultured on the fumigated plants, and adults showed less flight activity than controls. A difference in color of the elytra was also noted; beetles on HF-fumigated plants were paler than controls.

  14. Oxygenated Phosphine Fumigation for Control of Light Brown Apple Moth (Lepidoptera: Tortricidae) Eggs on Cut-Flowers.

    Science.gov (United States)

    Liu, Samuel S; Liu, Yong-Biao; Simmons, Gregory S

    2015-08-01

    Light brown apple moth, Epiphyas postvittana (Walker), eggs were subjected to oxygenated phosphine fumigation treatments under 70% oxygen on cut flowers to determine efficacy and safety. Five cut flower species: roses, lilies, tulips, gerbera daisy, and pompon chrysanthemums, were fumigated in separate groups with 2,500 ppm phosphine for 72 h at 5°C. Egg mortality and postharvest quality of cut flowers were determined after fumigation. Egg mortalities of 99.7-100% were achieved among the cut flower species. The treatment was safe to all cut flowers except gerbera daisy. A 96-h fumigation treatment with 2,200 ppm phosphine of eggs on chrysanthemums cut flowers also did not achieve complete control of light brown apple moth eggs. A simulation of fumigation in hermetically sealed fumigation chambers with gerbera daisy showed significant accumulations of carbon dioxide and ethylene by the end of 72-h sealing. However, oxygenated phosphine fumigations with carbon dioxide and ethylene absorbents did not reduce the injury to gerbera daisy, indicating that it is likely that phosphine may directly cause the injury to gerbera daisy cut flowers. The study demonstrated that oxygenated phosphine fumigation is effective against light brown apple moth eggs. However, it may not be able to achieve the probit9 quarantine level of control and the treatment was safe to most of the cut flower species. Published by Oxford University Press on behalf of Entomological Society of America 2015. This work is written by US Government employees and is in the public domain in the US.

  15. Exposure of Brown Recluse and Brown Widow Spiders (Araneae: Sicariidae, Theridiidae) to a Commercial Sulfuryl Fluoride Fumigation.

    Science.gov (United States)

    Vetter, Richard S; Hoddle, Mark S; Choe, Dong-Hwan; Thoms, Ellen

    2014-10-01

    The body of pesticide research on spiders is sparse with most studies using topical or residual applications to assess efficacy. Data on the effects of fumigation on spider survivorship are scarce in the scientific literature. In this study, we exposed adult male and female brown recluse spiders, Loxosceles reclusa Gertsch & Mulaik, and female brown widow spiders, Latrodectus geometricus C. L. Koch, to a commercial fumigation event using sulfuryl fluoride directed at termite control. General consensus from the pest control industry is that fumigation is not always effective for control of spiders for a variety of reasons, including insufficient fumigant dosage, particularly, for contents of egg sacs that require a higher fumigant dosage for control. We demonstrated that a sulfuryl fluoride fumigation with an accumulated dosage of 162 oz-h per 1,000 ft(3) at 21°C over 25 h (≈1.7 × the drywood termite dosage) directed at termites was sufficient to kill adult brown recluse and brown widow spiders. The effectiveness of commercial fumigation practices to control spiders, and particularly their egg sacs, warrants further study. © 2014 Entomological Society of America.

  16. Perennial soybean seeds coated with high doses of boron and zinc ...

    African Journals Online (AJOL)

    The objective of this work was to study combinations of high doses of boron (B) and zinc (Zn) in the recoating of perennial soybean seeds, in order to provide these nutrients to the future plants. The physical, physiological and nutritional characteristics of the coated seeds and initial development of plants in a greenhouse ...

  17. Irrigation, Planting Date And Intra-Row Spacing Effects On Soybean Grown Under Dry Farming Systems

    OpenAIRE

    Ismail, A. M. A. [احمد محمد علي اسماعيل; Khalifa, F. M.

    1987-01-01

    Two soybean cultivars (Glycine maxima (L) Merr.) differing in maturity period, leaf size and stem height were sown five times at fortnight intervals during the rainy season at four intra—row spacings under supplementary irrigation at one site and under rainfed conditions at another site in the central rainlands of Sudan. Cultivars responded differently to the system of production. Sowing date and moisture availability were the main factors controlling soybean production. The late maturing cul...

  18. Response of Respiration of Soybean Leaves Grown at Ambient and Elevated Carbon Dioxide Concentrations to Day-to-day Variation in Light and Temperature under Field Conditions

    Science.gov (United States)

    BUNCE, JAMES A.

    2005-01-01

    • Background and Aims Respiration is an important component of plant carbon balance, but it remains uncertain how respiration will respond to increases in atmospheric carbon dioxide concentration, and there are few measurements of respiration for crop plants grown at elevated [CO2] under field conditions. The hypothesis that respiration of leaves of soybeans grown at elevated [CO2] is increased is tested; and the effects of photosynthesis and acclimation to temperature examined. • Methods Net rates of carbon dioxide exchange were recorded every 10 min, 24 h per day for mature upper canopy leaves of soybeans grown in field plots at the current ambient [CO2] and at ambient plus 350 µmol mol−1 [CO2] in open top chambers. Measurements were made on pairs of leaves from both [CO2] treatments on a total of 16 d during the middle of the growing seasons of two years. • Key Results Elevated [CO2] increased daytime net carbon dioxide fixation rates per unit of leaf area by an average of 48 %, but had no effect on night-time respiration expressed per unit of area, which averaged 53 mmol m−2 d−1 (1·4 µmol m−2 s−1) for both the ambient and elevated [CO2] treatments. Leaf dry mass per unit of area was increased on average by 23 % by elevated [CO2], and respiration per unit of mass was significantly lower at elevated [CO2]. Respiration increased by a factor of 2·5 between 18 and 26 °C average night temperature, for both [CO2] treatments. • Conclusions These results do not support predictions that elevated [CO2] would increase respiration per unit of area by increasing photosynthesis or by increasing leaf mass per unit of area, nor the idea that acclimation of respiration to temperature would be rapid enough to make dark respiration insensitive to variation in temperature between nights. PMID:15781437

  19. Distinct transcriptional profiles of ozone stress in soybean (Glycine max) flowers and pods

    Science.gov (United States)

    Tropospheric ozone (O3) is a secondary air pollutant and anthropogenic greenhouse gas. Concentrations of tropospheric O3 ([O3] have more than doubled since the Industrial Revolution, and are high enough to damage plant productivity. Soybean (Glycine max L. Merr.) is the world's most important legume...

  20. Identification and colonization of endophytic fungi from soybean (Glycine max (L. Merril under different environmental conditions

    Directory of Open Access Journals (Sweden)

    Ida Chapaval Pimentel

    2006-09-01

    Full Text Available A total of 297 endophytic fungi were isolated from 1728 leaf and stem fragments collected about twenty and forty days after germination from soybean (Glycine max (L. Merril plants grown in the field and a greenhouse. The fungi belonged to eight groups, six dematiaceous genera (Alternaria, Cladosporium, Chaetomium, Curvularia, Drechslera and Scopulariopsis and the non-dematiaceous genera Acremonium, Aspergillus, Colletotrichum, Fusarium, Paecilomyces and Penicillium along with some Mycelia sterilia.. There were qualitative and quantitative differences in the type and number of isolates obtained from greenhouse and field-grown plants, with more isolates being obtained from the latter. No difference was found in the number of fungi isolated from leaves and stems irrespective of where the plants was grown. For was field-grown plants, the number of isolates decreased as the plants aged and more fungi were found in tissues near the soil, while for greenhouse-grown plants the number of isolates increased as the plants aged but in this case no more fungi were isolated from those tissues nearer the soil. These results could have biotechnological relevance for the biological control of pests or plant growth promotion.A partir de 1728 fragmentos de hastes e folhas de soja (Glycine max (L. Merril. provenientes de plantas do campo e de casa de vegetação, coletadas cerca de 20 e 40 dias após a germinação das sementes, 297 fungos endofíticos foram isolados. Os gêneros encontrados foram: Alternaria, Cladosporium, Curvularia, Chaetomium, Scopulariopsis, Drechslera (todos dematiáceos além de Colletotrichum, Fusarium, Acremonium, Aspergillus, Penicillium, Paecilomyces e Mycelia sterilia. Foram detectadas diferenças qualitativas e quantitativas entre os isolados, em relação a micobiota de hospedeiros provenientes do campo e de casa de vegetação com maior frequência de fungos isolados de plantas no campo em comparação com as de casa de vegeta

  1. Irrigation initiation timing in soybean grown on sandy soils in Northeast Arkansas

    Science.gov (United States)

    Irrigation initiation timing was evaluated in furrow-irrigated soybean field with sandy soils in Mississippi County, AR. A major objective of this 2015 study was to validate and expand irrigation timing recommendations that pair plant growth measures with weather cues including use of local weather ...

  2. Microbial Community Analysis of Field-Grown Soybeans with Different Nodulation Phenotypes▿

    OpenAIRE

    Ikeda, Seishi; Rallos, Lynn Esther E.; Okubo, Takashi; Eda, Shima; Inaba, Shoko; Mitsui, Hisayuki; Minamisawa, Kiwamu

    2008-01-01

    Microorganisms associated with the stems and roots of nonnodulated (Nod−), wild-type nodulated (Nod+), and hypernodulated (Nod++) soybeans [Glycine max (L.) Merril] were analyzed by ribosomal intergenic transcribed spacer analysis (RISA) and automated RISA (ARISA). RISA of stem samples detected no bands specific to the nodulation phenotype, whereas RISA of root samples revealed differential bands for the nodulation phenotypes. Pseudomonas fluorescens was exclusively associated with Nod+ soybe...

  3. Comparative effects of irradiation, fumigation, and storage on the free amino acids and sugar contents of green, black and oolong teas

    International Nuclear Information System (INIS)

    Kausar, Tusneem; Akram, Kashif; Kwon, Joong-Ho

    2013-01-01

    Food irradiation or chemical fumigation can be used to ensure the hygienic quality of teas. The comparative effects of gamma irradiation (5 and 10 kGy) and fumigation (MeBr and PH 3 ) were investigated on the amino acids and sugar contents of Camellia sinensis (green, black and oolong teas) during storage (15±12 °C). The major amino acids found in teas were theanine and glutamic acid. Irradiation increased amino acids such as, leucine, alanine, and glutamic acid, and decreased the histidine. PH 3 fumigation resulted in a decrease of tyrosine content; however, the effect of MeBr fumigation was negligible. Storage showed no significant effect on the amino acid content of the irradiated and fumigated teas. Sucrose, glucose, and fructose contents significantly increased upon gamma irradiation (p≤0.05). However, fumigation and subsequent storage did not affect the sugar contents. Irradiation could be a preferred alternative choice to address food safety problems as fumigation is restricted in many countries. - Highlights: ► Teas were investigated for the changes during storage on irradiation and fumigation. ► The effect on amino acid contents was more prominent on irradiation than fumigation. ► The sucrose, glucose, and fructose contents increased on gamma irradiation. ► Fumigation and storage did not affect the sugar contents in the teas. ► Irradiation could be an effective alternative for fumigants

  4. Control of downy mildew in greenhouse-grown cucumbers using blue photoselective polyethylene sheets

    International Nuclear Information System (INIS)

    Reuveni, R.; Raviv, M.

    1997-01-01

    Six types of polyethylene sheets with or without a blue pigment, having an absorption peak at the yellow part of the spectrum (580 nm), in combination with three levels of UV-B (280 to 320 nm) absorbance, were investigated for their effects on sporangial production and colonization of Pseudoperonospora cubensis on cucumbers in growth chambers. The effect of these photoselective sheets on the epidemiology of downy mildew in greenhouse-grown cucumbers has been investigated in several locations. The addition of the blue pigment to the films resulted in a significant inhibition of colonization and sporangial production of P. cubensis, whereas filtration of the UV spectrum enhanced the colonization but had no effect on the sporangial production. The appearance of the first symptom-bearing plants was delayed under the blue covers, and consequently, a significant reduction in the disease incidence of downy mildew was recorded under all blue sheets at each corresponding level of UV-B transmittance in five different field experiments through four seasons. Regardless of the differences in disease incidence, there were no significant differences among the yields that were obtained under the various sheets, probably due to the lower photosynthetically active radiation transmissivity of the blue films. The optimal features required for a desirable commercial sheet are discussed

  5. Manipulating Sensory and Phytochemical Profiles of Greenhouse Tomatoes Using Environmentally Relevant Doses of Ultraviolet Radiation.

    Science.gov (United States)

    Dzakovich, Michael P; Ferruzzi, Mario G; Mitchell, Cary A

    2016-09-14

    Fruits harvested from off-season, greenhouse-grown tomato plants have a poor reputation compared to their in-season, garden-grown counterparts. Presently, there is a gap in knowledge with regard to the role of UV-B radiation (280-315 nm) in determining greenhouse tomato quality. Knowing that UV-B is a powerful elicitor of secondary metabolism and not transmitted through greenhouse glass and some greenhouse plastics, we tested the hypothesis that supplemental UV-B radiation in the greenhouse will impart quality attributes typically associated with garden-grown tomatoes. Environmentally relevant doses of supplemental UV-B radiation did not strongly affect antioxidant compounds of fruits, although the flavonol quercetin-3-O-rutinoside (rutin) significantly increased in response to UV-B. Physicochemical metrics of fruit quality attributes and consumer sensory panels were used to determine if any such differences altered consumer perception of tomato quality. Supplemental UV-A radiation (315-400 nm) pre-harvest treatments enhanced sensory perception of aroma, acidity, and overall approval, suggesting a compelling opportunity to environmentally enhance the flavor of greenhouse-grown tomatoes. The expression of the genes COP1 and HY5 were indicative of adaptation to UV radiation, which explains the lack of marked effects reported in these studies. To our knowledge, these studies represent the first reported use of environmentally relevant doses of UV radiation throughout the reproductive portion of the tomato plant life cycle to positively enhance the sensory and chemical properties of fruits.

  6. Protein and quality analyses of accessions from the USDA soybean germplasm collection for tofu production.

    Science.gov (United States)

    Meng, Shi; Chang, Sam; Gillen, Anne M; Zhang, Yan

    2016-12-15

    Food-grade soybeans with large seed size, uniformity, clear hilum and a high 11S/7S ratio are favoured by the food industry for making tofu. In order to search for soybean lines with desirable characteristics for making foods, 22 soybean lines were selected from the USDA-Soybean Germplasm Collection, were grown in Stoneville, MS for biochemical analysis and tofu texture and sensory quality tests. Eight lines were identified, from 22 lines harvested in 2014, to be suitable for tofu making, as judged by chemical composition and sensory quality of pressed tofu. In the filled tofu making and texture analysis study, the correlation between A3 subunit content and filled tofu firmness was significant (N=22, r=0.77, Pquality information for the selection of soybean genotypes for improving food quality. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Interference of soybean and corn with Chloris distichophylla

    Directory of Open Access Journals (Sweden)

    Alana Cristina Dorneles Wandscheer

    2013-08-01

    Full Text Available In nature, plants interact with each other and establish positive, negative, and neutral interference relationships. In agricultural ecosystems, crops are usually affected by competition with weeds, and the effects of this process are influenced by the plant population density and proportional abundance and by the species involved. The present study evaluates the competitive interactions of soybean and corn with Chloris distichophylla. Two experiments were conducted in a greenhouse belonging to the University of Passo Fundo during the 2011/12 crop season: one experiment involving corn and C. distichophylla and another involving soybean and C. distichophylla. The experimental units were plastic pots, and the treatments were based on a replacement series, with a constant total density of eight plants per pot. The treatments included five combinations of soybean or corn plants with the weed species (8:0, 6:2, 4:4, 2:6 and 0:8, corresponding to relative abundances of 100, 75, 50, 25 and 0% of the crop species (and the reverse for the weed species. Competitiveness was analyzed using replacement-series experiment diagrams and competitive indices. Total dry matter and plant height were the two variables analyzed. The competitive indices indicated that corn and soybean crops were more competitive than the weed. The plant height was not affected by competition between both the species.

  8. Potassium as topdressing in maize and the residual effects on soybean grown in succession= Potássio em cobertura no milho e efeito residual na soja em sucessão

    Directory of Open Access Journals (Sweden)

    Tiago de Lisboa Parente

    2016-10-01

    Full Text Available Potassium (K is the second most-extracted nutrient by the majority of agricultural crops, and can influence fruiting, grain weight and other physiological processes. However, there are still questions regarding possible residual effects in areas of direct seeding. The aim of this study therefore, was to evaluate the immediate effects of K on second-crop maize, and the possible residual effect on soybean crops grown in succession under a no-tillage system. The experimental design was of randomised blocks with nine doses of K2 O as topdressing (0, 15, 30, 45, 60, 75, 90, 120 and 150 kg ha-1, in the form of KCl applied in the V6 vegetative growth stage of the maize, with four replications. The study was carried out in an area of Cerrado, with soybean grown in succession. Morphological and production characteristics were evaluated in the two crops. There was an increase in maize productivity up to the dose of maximum technical efficiency, 89 kg ha-1 K2 O, and in the soybean, up to 80 kg ha-1, in addition to the increase in the number of pods per plant and thousand grain weight. The results therefore, demonstrate the residual effect of K in soybean crops grown in succession. = O potássio (K é o segundo nutriente mais extraído pela maioria das culturas agrícolas, podendo influenciar na frutificação, peso de grãos e em outros processos fisiológicos. No entanto, ainda há questionamentos quanto ao seu possível efeito residual em áreas de plantio direto. Assim, objetivou-se com esse trabalho avaliar a eficiência imediata do K no milho, segunda safra, e o possível efeito residual na cultura da soja cultivada em sucessão no sistema plantio direto. O delineamento experimental foi em blocos casualizados com nove doses de K2 O em cobertura (0, 15, 30, 45, 60, 75, 90, 120 e 150 kg ha-1 na forma de KCl, aplicadas no estádio vegetativo V6 no milho, com quatro repetições. O estudo foi desenvolvido em área de Cerrado. Foram avaliados os caracteres

  9. A Classification of Basic Helix-Loop-Helix Transcription Factors of Soybean

    Directory of Open Access Journals (Sweden)

    Karen A. Hudson

    2015-01-01

    Full Text Available The complete genome sequence of soybean allows an unprecedented opportunity for the discovery of the genes controlling important traits. In particular, the potential functions of regulatory genes are a priority for analysis. The basic helix-loop-helix (bHLH family of transcription factors is known to be involved in controlling a wide range of systems critical for crop adaptation and quality, including photosynthesis, light signalling, pigment biosynthesis, and seed pod development. Using a hidden Markov model search algorithm, 319 genes with basic helix-loop-helix transcription factor domains were identified within the soybean genome sequence. These were classified with respect to their predicted DNA binding potential, intron/exon structure, and the phylogeny of the bHLH domain. Evidence is presented that the vast majority (281 of these 319 soybean bHLH genes are expressed at the mRNA level. Of these soybean bHLH genes, 67% were found to exist in two or more homeologous copies. This dataset provides a framework for future studies on bHLH gene function in soybean. The challenge for future research remains to define functions for the bHLH factors encoded in the soybean genome, which may allow greater flexibility for genetic selection of growth and environmental adaptation in this widely grown crop.

  10. Effect of source-sink alterations on the characteristics of reproductive abortion in soybeans

    International Nuclear Information System (INIS)

    Heitholt, J.J.

    1984-01-01

    Soybeans (Glycine max (L.) Merr.) were grown in the field in 1982 and 1983 (cv. Kent) and greenhouse (cv. McCall) to characterize the effects of timing and source-sink alterations on flower and immature pod abortion and to study the causes of abortion. Flowers and immature pods were marked during early flowering (R1 to R2) and late flowering (R3 to R4). Nineteen percent of the early flowers aborted in the greenhouse and 31 to 48% aborted in the field. Seventy-six to 92% and 77 to 90% of the late flowers aborted in the greenhouse and field, respectively. Defoliation increased early flower abortion and depodding decreased late flower abortion. Fifteen and 19% of the early immature pods and the late immature pods from depodded plants aborted, respectively. Fifty-seven percent of the late immature pods aborted. Across both years there was not a consistent relationship between the concentrations of ethanol soluble carbohydrates, starch, ethanol soluble nitrogen, ethanol insoluble nitrogen, nitrate, and cations in the flowers or immature pods and abortion. During both early and late flowering, a single leaf located in the middle of the main stem that subtended flowers at anthesis, or immature pods was labeled with 3.7 x 10 5 Bq 14 CO 2 for 1 h. After 24 h the entire plant was harvested, divided into flowers, pods, labeled leaf, and the remainder of the plant and the radioactivity was determined. The low aborting flowers and immature pods contained a greater percentage of the total 14 C recovered than the high aborting flowers and immature pods. The results indirectly support the hypothesis that a signal compound produced by another plant part, perhaps the established pods, inhibits the development of aborting flowers and immature pods

  11. Resistance of Advanced Soybean Lines to Pod Borrer (Etiella zinckenella

    Directory of Open Access Journals (Sweden)

    Heru Kuswantoro

    2017-07-01

    Full Text Available The increasing and stabilizing of soybean product in Indonesia face many limitations. One of the limiting factors is pod borrer (Etiella zinckenella Treitschke infestation that is able to cause yield loss up to 80%. Objective of the research was to find out some advanced soybean lines that resistant to pod borrer. Design was randomized complete block with three replications. Soybean lines were grown gradualy to ensure the simultanously flowering. The plants were caged at 35 days after planting (DAT and infested with the imago of E. zinckenella at 56 DAT. Results showed that different soybean lines affected imago population, eggs population, larvae population, infected pods and infected seeds. Some genotypes were consistantly resistant to E. zinckenella. The resistance of those genotypes were non preference resistance based on eggs population, larvae population, infected pod and infected seeds. This study discovered nine soybean lines that is resistant to E. zinckenella, so that it can be beneficial for improving soybean resistance to this pest through releasing as a new resistant pod borer variety after tested further in potential yield and genetic x environment interaction trials. In addition, there were three varieties and two germplasm accessions that can be used as gene sources for improving the resistance of the varieties. The three varieties are able to be cultivated directly in field to decrease the E. zinckenella occurrence. 

  12. Estimate of symbiotically fixed nitrogen in field grown soybeans using variations in /sup 15/N natural abundance

    Energy Technology Data Exchange (ETDEWEB)

    Amarger, N; Durr, J C; Bourguignon, C; Lagacherie, B [INRA Centre de Recherches de Dijon, 21 (France). Lab. de Microbiologie des Sols; Mariotti, A; Mariotti, F [Paris-6 Univ., 75 (France). Lab. de Geologie Dynamique

    1979-07-01

    The use of variations in natural abundance of /sup 15/N between nitrogen fixing and non nitrogen fixing soybeans was investigated for quantitative estimate of symbiotic nitrogen fixation. Isotopic analysis of 4 varieties of inoculated and non-inoculated soybeans growing under field conditions, with and without N-fertilizer was determined. It was found that inoculated soybeans had a significantly lower /sup 15/N content than non-inoculated ones. Estimates of the participation of fixed N to the total nitrogen content of inoculated soybeans were calculated from these differences. They were compared to estimates calculated from differences in N yield between inoculated and non-inoculated plants and to the nitrogenase activity, measured by the C/sub 2/H/sub 2/ reduction assay over the growing season. Estimates given by the /sup 15/N measurements were correlated with the C/sub 2/H/sub 2/ reducing activity but not with the differences in the N yield. This shows that the isotopic composition was dependent on the amount of fixed nitrogen and consequently that the estimates of fixed nitrogen based on natural /sup 15/N abundance should be reliable. The absence of correlation between estimates based on /sup 15/N content and estimates based on N yield was explained by differences in the uptake of soil nitrogen between inoculated and non inoculated soybeans.

  13. Laboratory Measured Emission Losses of Methyl Isothiocyanate at Pacific Northwest Soil Surface Fumigation Temperatures.

    Science.gov (United States)

    Lu, Zhou; Hebert, Vincent R; Miller, Glenn C

    2017-02-01

    Temperature is a major environmental factor influencing land surface volatilization at the time of agricultural field fumigation. Cooler fumigation soil temperatures relevant to Pacific Northwest (PNW) application practices with metam sodium/potassium should result in appreciably reduced methyl isothiocyanate (MITC) emission rates, thus minimizing off target movement and bystander inhalation exposure. Herein, a series of laboratory controlled flow-through soil column assessments were performed evaluating MITC emissions over the range of cooler temperatures (2-13°C). Assessments were also conducted at the maximum allowed label application temperature of 32°C. All assessments were conducted at registration label-specified field moisture capacity, and no more than 50% cumulative MITC loss was observed over the 2-day post-fumigation timeframe. Three-fold reductions in MITC peak fluxes at cooler PNW application temperatures were observed compared to the label maximum temperature. This study supports current EPA metam sodium/potassium label language that indicates surface fumigations during warmer soil conditions should be discouraged.

  14. Soybean cyst nematode culture collections and field populations from North Carolina and Missouri reveal high incidences of infection by viruses.

    Science.gov (United States)

    Ruark, Casey L; Koenning, Stephen R; Davis, Eric L; Opperman, Charles H; Lommel, Steven A; Mitchum, Melissa G; Sit, Tim L

    2017-01-01

    Five viruses were previously discovered infecting soybean cyst nematodes (SCN; Heterodera glycines) from greenhouse cultures maintained in Illinois. In this study, the five viruses [ScNV, ScPV, ScRV, ScTV, and SbCNV-5] were detected within SCN greenhouse and field populations from North Carolina (NC) and Missouri (MO). The prevalence and titers of viruses in SCN from 43 greenhouse cultures and 25 field populations were analyzed using qRT-PCR. Viral titers within SCN greenhouse cultures were similar throughout juvenile development, and the presence of viral anti-genomic RNAs within egg, second-stage juvenile (J2), and pooled J3 and J4 stages suggests active viral replication within the nematode. Viruses were found at similar or lower levels within field populations of SCN compared with greenhouse cultures of North Carolina populations. Five greenhouse cultures harbored all five known viruses whereas in most populations a mixture of fewer viruses was detected. In contrast, three greenhouse cultures of similar descent to one another did not possess any detectable viruses and primarily differed in location of the cultures (NC versus MO). Several of these SCN viruses were also detected in Heterodera trifolii (clover cyst) and Heterodera schachtii (beet cyst), but not the other cyst, root-knot, or reniform nematode species tested. Viruses were not detected within soybean host plant tissue. If nematode infection with viruses is truly more common than first considered, the potential influence on nematode biology, pathogenicity, ecology, and control warrants continued investigation.

  15. Molecular and phenotypic characterization of transgenic soybean expressing the Arabidopsis ferric chelate reductase gene, FRO2.

    Science.gov (United States)

    Vasconcelos, Marta; Eckert, Helene; Arahana, Venancio; Graef, George; Grusak, Michael A; Clemente, Tom

    2006-10-01

    Soybean (Glycine max Merr.) production is reduced under iron-limiting calcareous soils throughout the upper Midwest regions of the US. Like other dicotyledonous plants, soybean responds to iron-limiting environments by induction of an active proton pump, a ferric iron reductase and an iron transporter. Here we demonstrate that heterologous expression of the Arabidopsis thaliana ferric chelate reductase gene, FRO2, in transgenic soybean significantly enhances Fe(+3) reduction in roots and leaves. Root ferric reductase activity was up to tenfold higher in transgenic plants and was not subjected to post-transcriptional regulation. In leaves, reductase activity was threefold higher in the transgenic plants when compared to control. The enhanced ferric reductase activity led to reduced chlorosis, increased chlorophyll concentration and a lessening in biomass loss in the transgenic events between Fe treatments as compared to control plants grown under hydroponics that mimicked Fe-sufficient and Fe-deficient soil environments. However, the data indicate that constitutive FRO2 expression under non-iron stress conditions may lead to a decrease in plant productivity as reflected by reduced biomass accumulation in the transgenic events under non-iron stress conditions. When grown at Fe(III)-EDDHA levels greater than 10 microM, iron concentration in the shoots of transgenic plants was significantly higher than control. The same observation was found in the roots in plants grown at iron levels higher than 32 microM Fe(III)-EDDHA. These results suggest that heterologous expression of an iron chelate reductase in soybean can provide a route to alleviate iron deficiency chlorosis.

  16. The use of 32P radioisotope techniques for evaluating the relative agronomic effectiveness of phosphate rock materials in a soybean-maize crop rotation in acid soils of Thailand

    International Nuclear Information System (INIS)

    Mahisarakul, J.; Pakkong, P.

    2002-01-01

    A series of greenhouse experiments was conducted over three years to evaluate the relative agronomic effectiveness (RAE) of phosphate rock materials in a soybean - maize crop sequence, using 32 P isotope dilution techniques. For the first two years, the crops were grown in a pot experiment in four acid soils of Thailand. In the first year, four increasing rates of TSP and one rate of four phosphate rocks (PRs) were used. The PRs used were Algerian PR, North Carolina PR, Petchaburi PR, and Ratchaburi PR. Soybean did not respond to P application from TSP, while there was good response in maize which was planted after soybean (1st residual effect). The percent P derived from TSP or PR fertilizer (%Pdff) had the following order: Warin soil > Mae Tang soil > Rangsit soil > Pakchong soil for soybean and Warin soil > Pakchong soil > Rangsit soil > Mae Tang soil for maize. In the second year, the soybean - maize rotation was replanted to study the residual effect of TSP and PRs, both applied at 180 mg P kg -1 . No significant response of soybean and maize to TSP was found in terms of dry matter yield. In terms of %Pdff and %RAE the soils ranked as follows: Rangsit soil > Pakchong soil Mae Tang soil > Warin soil for soybean and Warin soil > Rangsit soil > Mae Tang > Pakchong soil for maize. Both crops absorbed more P from TSP than from PRs. The %RAE in the 2nd year experiment was higher than %RAE in the 1st year In the third year, TSP and two PRs were applied at one P rate to Pakchong and Warin soils. The applied PRs were North Carolina PR (NCPR) and Lamphun phosphate rock (LPPR). PRs were applied either alone or in combination with TSP (50:50). Soybean was planted first, followed by maize. The P-response in terms of dry matter yield and %Pdff was highly significant in both soils. The RAE ranked as follows: TSP > NCPR + TSP > LPPR + TSP > NCPR > LPPR. Maize showed the same trend in RAE as soybean in both soils. The RAE for both crops was highest in Warin soil. (author)

  17. Carbon sequestration in soybean crop soils: the role of hydrogen-coupled CO2 fixation

    Science.gov (United States)

    Graham, A.; Layzell, D. B.; Scott, N. A.; Cen, Y.; Kyser, T. K.

    2011-12-01

    Conversion of native vegetation to agricultural land in order to support the world's growing population is a key factor contributing to global climate change. However, the extent to which agricultural activities contribute to greenhouse gas emissions compared to carbon storage is difficult to ascertain, especially for legume crops, such as soybeans. Soybean establishment often leads to an increase in N2O emissions because N-fixation leads to increased soil available N during decomposition of the low C:N legume biomass. However, soybean establishment may also reduce net greenhouse gas emissions by increasing soil fertility, plant growth, and soil carbon storage. The mechanism behind increased carbon storage, however, remains unclear. One explanation points to hydrogen coupled CO2 fixation; the process by which nitrogen fixation releases H2 into the soil system, thereby promoting chemoautotrophic carbon fixation by soil microbes. We used 13CO2 as a tracer to track the amount and fate of carbon fixed by hydrogen coupled CO2 fixation during one-year field and laboratory incubations. The objectives of the research are to 1) quantify rates of 13CO2 fixation in soil collected from a field used for long-term soybean production 2) examine the impact of H2 gas concentration on rates of 13CO2 fixation, and 3) measure changes in δ13C signature over time in 3 soil fractions: microbial biomass, light fraction, and acid stable fraction. If this newly-fixed carbon is incorporated into the acid-stable soil C fraction, it has a good chance of contributing to long-term soil C sequestration under soybean production. Soil was collected in the field both adjacent to root nodules (nodule soil) and >3cm away (root soil) and labelled with 13CO2 (1% v/v) in the presence and absence of H2 gas. After a two week labelling period, δ13C signatures already revealed differences in the four treatments of bulk soil: -17.1 for root, -17.6 for nodule, -14.2 for root + H2, and -6.1 for nodule + H2

  18. Management of the potato cyst nematode (Globodera pallida) with bio-fumigants/stimulants.

    Science.gov (United States)

    Martin, T J G; Turner, S J; Fleming, C C

    2007-01-01

    Field trials evaluated the effect of four plant-based bio-fumigants/stimulants on population levels of G. pallida and the resulting potato yields and quality. Three formulations contained seaweed biostimulants (Algifol, Nutridip and Metastim) and one bio-fumigant containing mustard and chilli pepper extracts (Dazitol). These were compared with the fumigant nematicide Nemathorin and untreated control plots. The effect of G. pallida on growing potato crops was assessed by recording haulm characteristics which indicated that the nematicide treatment gave most protection. Levels of PCN juveniles and migratory nematodes were assessed during the trial. Plots treated with Nemathorin and Dazitol had fewest PCN, whilst the highest number of migratory nematodes occurred in fallow plots. Sixteen weeks after planting the nematicide treatment produced highest yield and tuber numbers. Dazitol treatment produced a lower yield but the largest tubers.

  19. Partial improvements in the flavor quality of soybean seeds using intercropping systems with appropriate shading.

    Science.gov (United States)

    Liu, Jiang; Yang, Cai-qiong; Zhang, Qing; Lou, Ying; Wu, Hai-jun; Deng, Jun-cai; Yang, Feng; Yang, Wen-yu

    2016-09-15

    The profiles of isoflavone and fatty acids constitute important quality traits in soybean seeds, for making soy-based functional food products, due to their important contributions to the flavor and nutritional value of these products. In general, the composition of these constituents in raw soybeans is affected by cultivation factors, such as sunlight; however, the relationship of the isoflavone and fatty acid profiles with cultivation factors is not well understood. This study evaluated the isoflavone and fatty acid profiles in soybeans grown under a maize-soybean relay strip intercropping system with different row spacings, and with changes in the photosynthetic active radiation (PAR) transmittance. The effects of PAR on the isoflavone and fatty acid contents were found to be quadratic. Appropriate intercropping shading may reduce the bitterness of soybeans caused by soy aglycone and could improve their fatty acid composition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Methyl Bromide Commodity Fumigation Buffer Zone Lookup Tables

    Science.gov (United States)

    Product labels for methyl bromide used in commodity and structural fumigation include requirements for buffer zones around treated areas. The information on this page will allow you to find the appropriate buffer zone for your planned application.

  1. Laboratory evaluations of Lepidopteran-active soybean seed treatments on survivorship of fall armyworm (Lepidoptera:Noctuidae) larvae

    Science.gov (United States)

    Two anthranilic diamide insecticides, chlorantraniliprole and cyantraniliprole, were evaluated as soybean, Glycine max L., seed treatments for control of fall armyworm, Spodoptera frugiperda (J. E. Smith). Bioassays were conducted using 2nd instar larvae and plants from both field and greenhouse gr...

  2. Effects of glyphosate on the mineral content of glyphosate-resistant soybeans (Glycine max).

    Science.gov (United States)

    Duke, Stephen O; Reddy, Krishna N; Bu, Kaixuan; Cizdziel, James V

    2012-07-11

    There are conflicting claims as to whether treatment with glyphosate adversely affects mineral nutrition of glyphosate-resistant (GR) crops. Those who have made claims of adverse effects have argued links between reduced Mn and diseases in these crops. This article describes experiments designed to determine the effects of a recommended rate (0.86 kg ha(-1)) of glyphosate applied once or twice on the mineral content of young and mature leaves, as well as in seeds produced by GR soybeans (Glycine max) in both the greenhouse and field using inductively coupled plasma mass spectrometry (ICP-MS). In the greenhouse, there were no effects of either one application (at 3 weeks after planting, WAP) or two applications (at 3 and 6 WAP) of glyphosate on Ca, Mg, Mn, Zn, Fe, Cu, Sr, Ba, Al, Cd, Cr, Co, or Ni content of young or old leaves sampled at 6, 9, and 12 WAP and in harvested seed. Se concentrations were too low for accurate detection in leaves, but there was also no effect of glyphosate applications on Se in the seeds. In the field study, there were no effects of two applications (at 3 and 6 WAP) of glyphosate on Ca, Mg, Mn, Zn, Fe, Cu, Sr, Ba, Al, Cd, Cr, Co, or Ni content of young or old leaves at either 9 or 12 WAP. There was also no effect on Se in the seeds. There was no difference in yield between control and glyphosate-treated GR soybeans in the field. The results indicate that glyphosate does not influence mineral nutrition of GR soybean at recommended rates for weed management in the field. Furthermore, the field studies confirm the results of greenhouse studies.

  3. Fumigation success for California facility.

    Science.gov (United States)

    Hacker, Robert

    2010-02-01

    As Robert Hacker, at the time director of facilities management at the St John's Regional Medical Center in Oxnard, California, explains, the hospital, one of the area's largest, recently successfully utilised a new technology to eliminate mould, selecting a cost and time-saving fumigation process in place of the traditional "rip and tear" method. Although hospital managers knew the technology had been used extremely effectively in other US buildings, this was reportedly among the first ever healthcare applications.

  4. Introgression of leginsulin, a cysteine-rich protein, and high-protein trait from an Asian soybean plant introduction genotype into a North American experimental soybean line.

    Science.gov (United States)

    Krishnan, Hari B; Kim, Won-Seok; Oehrle, Nathan W; Alaswad, Alaa A; Baxter, Ivan; Wiebold, William J; Nelson, Randall L

    2015-03-25

    Soybean is an important protein source for both humans and animals. However, soybean proteins are relatively poor in the sulfur-containing amino acids, cysteine and methionine. Improving the content of endogenous proteins rich in sulfur-containing amino acids could enhance the nutritive value of soybean meal. Leginsulin, a cysteine-rich peptide, predominantly accumulates in Asian soybean accessions but not in most North American cultivars. By screening diverse soybean accessions from the USDA Soybean Germplasm Collection, we were able to identify one plant introduction, PI 427138, as a high-protein line with relatively high amounts of both elemental sulfur and leginsulin. We introgressed these desirable traits from PI 427138 into an experimental line with the aim of improving the overall protein content and quality of seed proteins. Biochemical characterization of inbred progenies from the cross of LD00-3309 with PI 427138 grown at six locations revealed stable ingression of high protein, high elemental sulfur, and high leginsulin accumulation. Comparison of soybean seed proteins resolved by high-resolution 2-D gel electrophoresis in combination with Delta2D image analysis software revealed preferential accumulation of a few glycinin subunits contributed to the increased protein content in the introgressed lines. Amino acid analysis revealed that even though the leginsulin introgressed lines had higher protein, leginsulin, and elemental sulfur, the overall concentration of sulfur-containing amino acids was not significantly altered when compared with the parental lines. The experimental soybean lines developed during this study (Leg-3, Leg-7, and Leg-8) lack A5, A4, and B3 glycinin subunits and could be utilized in breeding programs to develop high-quality tofu cultivars.

  5. Effects of shading and ethephon on carbon assimilates distribution partitioning in fruit limb of greenhouse-grown 'Dajiubao' peach

    International Nuclear Information System (INIS)

    Kong Yun; Wang Shaohui; Yao Yuncong; Ma Chengwei

    2007-01-01

    The distribution of carbon assimilates and the relative sink strength were studied by 14 C labeling in one-year-old fruiting limbs of greenhouse-grown 'Dajiubao' peach (Prunus persica L. Batsch), under 60% shading and 600 mg/L Ethephon treatment. After 10d shading treatment prior to pulsing of 14 CO 2 percent of assimilates translocation into fruit decreased significantly from fed shoot during fruit-ripening stage, but this partitioning patterns was not observed during stone-hardening stage, although less carbon allocated to seed within fruit components (mesocarp, endocarp and seed). The relative sink strength of each organ nearly followed the same variation trend as carbon assimilates distribution under shading treatment. Application of Ethephon to the surface of fruits under shading conditions promoted more carbon into fruits during fruit-ripening stage, with increasing their relative skink strength. (authors)

  6. Ozone-induced growth suppression in radish plants in relation to pre- and post-fumigation temperatures. [Raphanus sativus L

    Energy Technology Data Exchange (ETDEWEB)

    Adedipe, N.O.; Ormrod, D.P.

    1974-01-01

    Two cultivars of Raphanus sativus L. (radish) were fumigated with ozone at a concentration of 25 parts per hundred million (pphm) for 3 h, before or after subjecting the plants to two growth temperature regimes. In the cultivar ''Cavalier'' ozone decreased leaf weight at the lower pre-fumigation day/night growth temperature regime of 20/15/sup 0/, but had no significant effect when the plants were either pre- or post-fumigation conditioned at the high temperatures of 30/25/sup 0/. In the cultivar ''Cherry Belle'', ozone decreased the leaf weight of only low temperature post-fumigation conditioned plants. Ozone had no significant effect on the total soluble carbohydrate concentration of ''Cherry Belle'', while it increased that of pre-fumigation conditioned ''Cavalier'' plants.

  7. [Symbiotic matching between soybean cultivar Luhuang No. 1 and different rhizobia].

    Science.gov (United States)

    Ji, Zhao-jun; Wang, Fei-meng; Wang, Su-ge; Yang, Sheng-hui; Guo, Rui; Tang, Ru-you; Chen, Wen-xin; Chen, Wen-feng

    2014-12-01

    Soybean plants could establish symbiosis and fix nitrogen with different rhizobial species in the genera of Sinorhizobium and Bradyrhizobium. Studies on the symbiotic matching between soybean cultivars and different rhizobial species are theoretically and practically important for selecting effective strains used to inoculate the plants and improve the soybean production and quality. A total of 27 strains were isolated and purified from a soil sample of Huanghuaihai area by using the soybean cultivar Luhang No. 1, a protein-rich cultivar grown in that area, as the trapping plants. These strains were identified as members of Sinorhizobium (18 strains) and Bradyrhizobium (9 strains) based on the sequence analysis of housekeeping gene recA. Two representative strains (Sinorhizobium fredii S6 and Bradyrhizobium sp. S10) were used to inoculate the seeds of Luhang No. 1 alone or mixed, in pots filled with vermiculite or soil, and in the field trial to investigate their effects on soybean growth, nodulation, nitrogen fixation activity, yield, contents of protein and oil in seeds. The results demonstrated that strain S6 showed better effects on growth-promotion, yield of seeds and seed quality than strain S10. Thus strain S6 was finally regarded as the effective rhizobium matching to soybean Luhuang No. 1, which could be the candidate as a good inoculant for planting the soybean Luhuang No. 1 at a large scale in the Huanghuaihai area.

  8. Rice weevil response to basil oil fumigation

    Science.gov (United States)

    Basil oil, Ocimum basilicum L., is a volatile plant essential oil that is known to have insecticidal activity against stored product pests such as rice weevil, Sitophilus oryzae (L.). Basil oil was diluted in acetone and applied to a sponge held inside a tea strainer for fumigations in containers wi...

  9. Energy saving in greenhouses can be obtained by energy balance-controlled screens

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, N. E. (Univ. of Aarhus, Faculty of Agricultural Sciences, Dept. of Horticulture, Aarslev (Denmark)), e-mail: niels.andersson@agrsci.dk

    2011-03-15

    The energy screens in two greenhouses, one clad with double acrylic and one with single glass, were controlled by an energy balance model. The parameters in the model were heat transmission coefficients, air temperature in the greenhouse and outdoors, irradiance and a single constant for the solar energy efficiency. The energy consumption, screen movements and daily light integral were compared with a glass greenhouse in which the energy screens were controlled by irradiance. In the greenhouse with light-controlled screens the set point for opening and closing of the screens was 5 Wm-2. The energy-saving screens controlled by the energy balance model opened later and closed earlier than in the greenhouse with light-controlled screens. When using the energy balance model the energy saving was 14% for the glass greenhouse and 41% for the double acrylic greenhouse compared with the glass greenhouse with light-controlled screens. The air temperature was on average similar in the three greenhouses, but when the screens were controlled by energy balance the daily light integral was approximately 10% lower and the number of hours the screens were closed was prolonged with 35% for the glass-covered greenhouse and 25% for the double acrylic-covered greenhouse compared with the greenhouse with light-controlled screens. Energy peaks in connection with operation of the screens were not reduced. During the experiment Begonia elatior, Dendranthema grandiflora (Chrysanthemum), Hedera helix, Helianthus annuus, Gerbera jamesonii and Kalanchoe blossfeldiana were grown in the greenhouses. There was a trend in prolongation of the production time when the plants were grown in the glass greenhouse with energy balance control of the screens. A lower number of flowers or inflorescences were observed for some of the plant species produced in the greenhouses with energy balance-controlled screens

  10. Efficacy and residue analysis of nitric oxide fumigation of strawberries for control of Drosophila suzukii

    Science.gov (United States)

    Nitric oxide (NO) has been demonstrated as an effective fumigant against various insect pests on postharvest products under ultralow oxygen (ULO) conditions. NO showed efficacy against all life stages of insect pests with varied fumigation time and temperature, and had feasible cost-effectiveness to...

  11. Interactions in the Agrobacterium-soybean system and capability of some Brazilian soybean cultivars to produce somatic embryos

    Directory of Open Access Journals (Sweden)

    Mauro Antonio Orlando Di

    2000-01-01

    Full Text Available Twenty-five Brazilian soybean cultivars were studied for susceptibility to four strains of Agrobacterium tumefaciens (C58, Ach5, Bo542 and A281 and for their ability to produce somatic embryos. Twelve plants of each cultivar were inoculated in a greenhouse at 4-6 weeks of age, using 12 inoculation sites per plant. The number of galls formed on plants were counted 8-10 weeks after inoculation. To study ability to produce somatic embryos, immature cotyledons, 4-6 mm in length, were plated onto N10 medium for induction of somatic embryogenesis, using four Petri dishes with 20 cotyledons for each cultivar. The embryogenic tissues were transferred onto new N10 medium six times at 15-day intervals and the number of somatic embryos per cultivar determined. Significant interaction between soybean cultivars and A. tumefaciens strains was observed; the most virulent strain was A281. The opine type apparently had no effect on strain virulence, and the most embryogenic cultivars were IAS-5, Cristalina, FT-Cometa, IAC-7 and OC-3.

  12. Photosynthetic and nitrogen fixation capability in several soybean mutant lines

    International Nuclear Information System (INIS)

    Gandanegara, S.; Hendratno, K.

    1987-01-01

    Photosynthetic and nitrogen fixation capability in several soybean mutant lines. A greenhouse experiment has been carried out to study photosynthetic and nitrogen fixation capability of five mutant lines and two soybean varieties. An amount of 330 uCi of 14 CO 2 was fed to the plants including of the non-fixing reference crop (Chippewa non-nodulating isoline). Nitrogen fixation measurements was carried out using 15 N isotope dilution technique according to A-value concept. Results showed that beside variety/mutant lines, plant growth also has important role in photosynthetic and N fixing capability. Better growth and a higher photosynthetic capability in Orba, mutant lines nos. 63 and 65 resulted in a greater amount of N 2 fixed (mg N/plant) than other mutant lines. (author). 12 refs.; 5 figs

  13. Impacts of rising tropospheric ozone on photosynthesis and metabolite levels on field grown soybean.

    Science.gov (United States)

    Sun, Jindong; Feng, Zhaozhong; Ort, Donald R

    2014-09-01

    The response of leaf photosynthesis and metabolite profiles to ozone (O3) exposure ranging from 37 to 116 ppb was investigated in two soybean cultivars Dwight and IA3010 in the field under fully open-air conditions. Leaf photosynthesis, total non-structural carbohydrates (TNC) and total free amino acids (TAA) decreased linearly with increasing O3 levels in both cultivars with average decrease of 7% for an increase in O3 levels by 10 ppb. Ozone interacted with developmental stages and leaf ages, and caused higher damage at later reproductive stages and in older leaves. Ozone affected yield mainly via reduction of maximum rate of Rubisco carboxylation (Vcmax) and maximum rates of electron transport (Jmax) as well as a shorter growing season due to earlier onset of canopy senescence. For all parameters investigated the critical O3 levels (∼50 ppb) for detectable damage fell within O3 levels that occur routinely in soybean fields across the US and elsewhere in the world. Strong correlations were observed in O3-induced changes among yield, photosynthesis, TNC, TAA and many metabolites. The broad range of metabolites that showed O3 dose dependent effect is consistent with multiple interaction loci and thus multiple targets for improving the tolerance of soybean to O3. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. Greenhouse-gas Consequences of US Corn-based Ethanol in a Flat World

    Science.gov (United States)

    Davidson, E. A.; Coe, M. T.; Nepstad, D. C.; Donner, S. D.; Bustamante, M. M.; Neill, C.

    2008-12-01

    Competition for arable land is now occurring among food, fiber, and fuel production sectors. In the USA, increased corn production for ethanol has come primarily at the expense of reduced soybean production. Only a few countries, mainly Brazil, have appropriate soils, climate, and infrastructure needed for large absolute increases in cropped area in the next decade that could make up the lost US soybean production. Our objective is to improve estimates of the potential net greenhouse gas (GHG) consequences, both domestically and in Brazil, of meeting the new goals established by the US Congress for expansion of corn- based ethanol in the USA. To meet this goal of 57 billion liters per year of corn-based ethanol production, an additional 1-7 million hectares will need to be planted in corn, depending upon assumptions regarding future increases in corn yield. Net GHG emissions saved in the USA by substituting ethanol for gasoline are estimated at 14 Tg CO2-equivalents once the production goal of 57 million L/yr is reached. If reduced US soybean production caused by this increase in US corn planting results in a compensatory increase in Brazilian production of soybeans in the Cerrado and Amazon regions, we estimate a potential net release of 1800 to 9100 Tg CO2-equivalents of GHG emissions due to land-use change. Many opportunities exist for agricultural intensification that would minimize new land clearing and its environmental impacts, but if Brazilian deforestation is held to only 15% of the area estimated here to compensate lost US soybean production, the GHG mitigation of US corn-based ethanol production during the next 15 years would be more than offset by emissions from Brazilian land-use change. Other motivations for advancing corn-based ethanol production in the USA, such as reduced reliance on foreign oil and increased prosperity for farming communities, must be considered separately, but the greenhouse-gas-mitigation rationale is clearly unsupportable.

  15. ANALYSIS IMPORT POLICY OF SOYBEAN ON ECONOMICS PERFORMANCE OF INDONESIAN SOYBEAN

    Directory of Open Access Journals (Sweden)

    Muthiah Abda Azizah

    2015-11-01

    Full Text Available Trade liberalization is closely related to the opening of market access for Indonesian products to the world and vice versa. Since the soybean trade out of BULOG control began in 1998, soybean imports increased very rapidly (Sudaryanto and Swastika, 2007. This research aims to determine the general picture of soybean economy, factors analyses that influence the economic performance of Indonesian soybean and findings the alternative of policies that can reduce soybean imports in Indonesia. Methods of data analysis are descriptive analysis, 2SLS simultaneous equations, and simulation of policy alternatives. Results of the analysis of the factors that affect the economic performance of Indonesian soybean, consists of 1 The area of soybean harvest is influenced significantly by the price of domestic soybean and domestic prices of corn, 2 Productivity soybean influenced significantly by the domestic prices of soybean and fertilizer prices, 3 soybean demand influenced significantly by population, domestic prices of soybean, 4 domestic prices of soybean significantly affected by world prices of soybean, exchange rates, and soybean supply, 5 Imports of soybean influenced significantly by the domestic demand of soybean and soybean production. Therefore, policy scenarios should be made to reduce soybean imports, including by carrying out the expansion of soybean harvest policy, the policy of increasing the productivity of soybean, the policy of subsidizing the price of fertilizer.

  16. Weeding volatiles reduce leaf and seed damage to field-grown soybeans and increase seed isoflavones.

    Science.gov (United States)

    Shiojiri, Kaori; Ozawa, Rika; Yamashita, Ken-Ichi; Uefune, Masayoshi; Matsui, Kenji; Tsukamoto, Chigen; Tokumaru, Susumu; Takabayashi, Junji

    2017-01-30

    Field experiments were conducted over 3 years (2012, 2013, and 2015), in which half of the young stage soybean plants were exposed to volatiles from cut goldenrods three times over 2-3 weeks, while the other half remained unexposed. There was a significant reduction in the level of the total leaf damage on exposed soybean plants compared with unexposed ones. In 2015, the proportion of damage to plants by Spodoptera litura larvae, a dominant herbivore, was significantly less in the exposed field plots than in the unexposed plots. Under laboratory conditions, cut goldenrod volatiles induced the direct defenses of soybean plants against S. litura larvae and at least three major compounds, α-pinene, β-myrcene, and limonene, of cut goldenrod volatiles were involved in the induction. The number of undamaged seeds from the exposed plants was significantly higher than that from unexposed ones. Concentrations of isoflavones in the seeds were significantly higher in seeds from the exposed plants than in those from the unexposed plants. Future research evaluating the utility of weeding volatiles, as a form of plant-plant communications, in pest management programs is necessary.

  17. Effect Of Gamma Rays And Growth Regulators On Explants Excised From In Vitro Shoots And Greenhouse Seedlings, Of Pepper (Capsicum Annum L.)

    International Nuclear Information System (INIS)

    Maarouf, A. A.; Kassem, M.

    2004-01-01

    This experiment was conducted on pepper (Capsicum annum L.) to compare the ability of the in vitro explants with those of greenhouse grown seedlings on shoot proliferation and callus formation and their ability to form plantlets and the effect of gamma irradiation and growth regulators on the shoot tip, hypocotyls and leaf tissue was used as laboratory explants, leaf tissue nodes and internodes were taken from greenhouse seedlings. 6- benzyla-minopurine (BAP) in different concentrations was combined with Indoleacertic acid (IAA) to know their effect on shoot proliferation, 2,4 - Dichlorophenoxy acetic acid (2,4- D) was used for callus formation, and use stimulation effect of gamma irradiation, potassium nitrat (KNO 3 ), Thidaiazurom (TDZ) and casine hydrolysate (CH) for plantlet formation. The results showed that the highest percentage of callus was obtained by in vitro hypocotyls and greenhouse grown nodes followed by in vitro leaf tissue thereafter greenhouse leaf tissue. The shoot tips were the lowest efficient explants in producing callus in both in vitro and greenhouse ones. The highest percentage of shooting resulted from shoot tip, hypocotyls and leaf tissue of in vitro explants, followed by shoot tip, nodes and internodes of greenhouse grown explants and the lowest percentage was recorded by leaf tissue. Highest percentage of shoot number was obtained form greenhouse grown shoot tip followed by in vitro shoot tip, hypocotyls and leaf tissue of greenhouse grown seedlings the internodes were the lowest efficient in producing shoots. The highest success in plantlet formation was caused by TDZ followed by gamma irradiation and the other treatments were equaled. (Authors)

  18. Soybean cyst nematode culture collections and field populations from North Carolina and Missouri reveal high incidences of infection by viruses.

    Directory of Open Access Journals (Sweden)

    Casey L Ruark

    Full Text Available Five viruses were previously discovered infecting soybean cyst nematodes (SCN; Heterodera glycines from greenhouse cultures maintained in Illinois. In this study, the five viruses [ScNV, ScPV, ScRV, ScTV, and SbCNV-5] were detected within SCN greenhouse and field populations from North Carolina (NC and Missouri (MO. The prevalence and titers of viruses in SCN from 43 greenhouse cultures and 25 field populations were analyzed using qRT-PCR. Viral titers within SCN greenhouse cultures were similar throughout juvenile development, and the presence of viral anti-genomic RNAs within egg, second-stage juvenile (J2, and pooled J3 and J4 stages suggests active viral replication within the nematode. Viruses were found at similar or lower levels within field populations of SCN compared with greenhouse cultures of North Carolina populations. Five greenhouse cultures harbored all five known viruses whereas in most populations a mixture of fewer viruses was detected. In contrast, three greenhouse cultures of similar descent to one another did not possess any detectable viruses and primarily differed in location of the cultures (NC versus MO. Several of these SCN viruses were also detected in Heterodera trifolii (clover cyst and Heterodera schachtii (beet cyst, but not the other cyst, root-knot, or reniform nematode species tested. Viruses were not detected within soybean host plant tissue. If nematode infection with viruses is truly more common than first considered, the potential influence on nematode biology, pathogenicity, ecology, and control warrants continued investigation.

  19. Expression of pathogenesis-related (PR) genes in avocados fumigated with thyme oil vapours and control of anthracnose.

    Science.gov (United States)

    Bill, Malick; Sivakumar, Dharini; Beukes, Mervyn; Korsten, Lise

    2016-03-01

    Thyme oil (TO) fumigation (96μll(-1)) to cv. Hass and Ryan avocados significantly reduced anthracnose incidence compared to prochloraz and the untreated control. Also, enhanced activities of β-1,3-glucanase, chitinase were noted in both cultivars. TO fumigation induced the expression of both β-1,3-glucanase and chitinase genes in naturally infected fruit of both cultivars, during storage at 7 or 7.5°C for up to 21d and during subsequent simulated market shelf conditions at 20°C for 5d. However, the impact of TO fumigation on the β-1,3-glucanase gene expression was higher in both cultivars. Higher gene regulation and β-1,3-glucanase, chitinase activities were observed in cv. Ryan compared to Hass. Although TO fumigation significantly reduced anthracnose incidence in both naturally infected cultivars, the inhibitory effect was slightly higher in cv. Ryan than Hass. Thus, postharvest TO fumigation had positive effects on enhancing anthracnose disease resistance during storage and also gave a residual effect during the simulated shelf life. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Contributions of Fusarium virguliforme and Heterodera glycines to the Disease Complex of Sudden Death Syndrome of Soybean

    Science.gov (United States)

    Westphal, Andreas; Li, Chunge; Xing, Lijuan; McKay, Alan; Malvick, Dean

    2014-01-01

    Background Sudden death syndrome (SDS) of soybean caused by Fusarium virguliforme spreads and reduces soybean yields through the North Central region of the U.S. The fungal pathogen and Heterodera glycines are difficult to manage. Methodology/Principal Findings The objective was to determine the contributions of H. glycines and F. virguliforme to SDS severity and effects on soybean yield. To quantify DNA of F. virguliforme in soybean roots and soil, a specific real time qPCR assay was developed. The assay was used on materials from soybean field microplots that contained in a four-factor factorial-design: (i) untreated or methyl bromide-fumigated; (ii) non-infested or infested with F. virguliforme; (iii) non-infested or infested with H. glycines; (iv) natural precipitation or additional weekly watering. In years 2 and 3 of the trial, soil and watering treatments were maintained. Roots of soybean ‘Williams 82’ were collected for necrosis ratings at the full seed growth stage R6. Foliar symptoms of SDS (area under the disease progress curve, AUDPC), root necrosis, and seed yield parameters were related to population densities of H. glycines and the relative DNA concentrations of F. virguliforme in the roots and soil. The specific and sensitive real time qPCR was used. Data from microplots were introduced into models of AUDPC, root necrosis, and seed yield parameters with the frequency of H. glycines and F. virguliforme, and among each other. The models confirmed the close interrelationship of H. glycines with the development of SDS, and allowed for predictions of disease risk based on populations of these two pathogens in soil. Conclusions/Significance The results modeled the synergistic interaction between H. glycines and F. virguliforme quantitatively in previously infested field plots and explained previous findings of their interaction. Under these conditions, F. virguliforme was mildly aggressive and depended on infection of H. glycines to cause highly

  1. Effects of irradiation and fumigation on the antioxidative properties of some spices

    International Nuclear Information System (INIS)

    Kuruppu, D.P.; Schmidt, K.; Farkas, J.; Langerak, D.I; Duren, M.D.A. van

    1985-01-01

    The effects of gamma irradiation (5.6 kGy) and ethylene oxide fumigation on the antioxidative activity of marjoram, nutmeg, paprika and black pepper were investigated. Sunflower oil in water emulsion (1:1), dark, at 30 deg C, lard, dark, at 40 deg C, lard, illuminated, at 50 deg C, and lard, dark, at 50 deg C were the substrates utilized for the investigation. Oxidation of the substrates in the presence of 0.2% (by weight) of spices were followed by the determination of peroxide value (PO) and free fatty acide value (FFA). No significant effect of irradiation on the antioxidant activities of spices was revealed. Fumigated marjoram tended to be less antioxidative in lard kept in dark storage at 60 deg C than the non-treated or irradiated spice. Marjoram and nutmeg lost their antioxidant properties in the presence of light. This loss, however, was not influenced by the irradiation or fumigation treatments. (author)

  2. Effects of irradiation and fumigation on the antioxidative properties of some spices

    Energy Technology Data Exchange (ETDEWEB)

    Kuruppu, D P; Schmidt, K; Farkas, J; Langerak, D I; Duren, M D.A. van

    1985-12-01

    The effects of gamma irradiation (5.6 kGy) and ethylene oxide fumigation on the antioxidative activity of marjoram, nutmeg, paprika and black pepper were investigated. Sunflower oil in water emulsion (1:1), dark, at 30 deg C, lard, dark, at 40 deg C, lard, illuminated, at 50 deg C, and lard, dark, at 50 deg C were the substrates utilized for the investigation. Oxidation of the substrates in the presence of 0.2% (by weight) of spices were followed by the determination of peroxide value (PO) and free fatty acid value (FFA). No significant effect of irradiation on the antioxidant activities of spices was revealed. Fumigated marjoram tended to be less antioxidative in lard kept in dark storage at 60 deg C than the non-treated or irradiated spice. Marjoram and nutmeg lost their antioxidant properties in the presence of light. This loss, however, was not influenced by the irradiation or fumigation treatments. 13 references, 4 figures, 5 tables.

  3. Clinical investigation of CT-guided ozone-blowing and fumigation ...

    African Journals Online (AJOL)

    Clinical investigation of CT-guided ozone-blowing and fumigation therapy for the chronic ... African Journal of Biotechnology ... In control group, seven patients were completely cured in 45 days after being treated by traditional surgery.

  4. Soybean yield in relation to distance from the Itaipu reservoir

    Science.gov (United States)

    de Faria, Rogério Teixeira; Junior, Ruy Casão; Werner, Simone Silmara; Junior, Luiz Antônio Zanão; Hoogenboom, Gerrit

    2016-07-01

    Crops close to small water bodies may exhibit changes in yield if the water mass causes significant changes in the microclimate of areas near the reservoir shoreline. The scientific literature describes this effect as occurring gradually, with higher intensity in the sites near the shoreline and decreasing intensity with distance from the reservoir. Experiments with two soybean cultivars were conducted during four crop seasons to evaluate soybean yield in relation to distance from the Itaipu reservoir and determine the effect of air temperature and water availability on soybean crop yield. Fifteen experimental sites were distributed in three transects perpendicular to the Itaipu reservoir, covering an area at approximately 10 km from the shoreline. The yield gradient between the site closest to the reservoir and the sites farther away in each transect did not show a consistent trend, but varied as a function of distance, crop season, and cultivar. This finding indicates that the Itaipu reservoir does not affect the yield of soybean plants grown within approximately 10 km from the shoreline. In addition, the variation in yield among the experimental sites was not attributed to thermal conditions because the temperature was similar within transects. However, the crop water availability was responsible for higher differences in yield among the neighboring experimental sites related to water stress caused by spatial variability in rainfall, especially during the soybean reproductive period in January and February.

  5. Nematode pests threatening soybean production in South Africa, with reference to Meloidogyne

    Directory of Open Access Journals (Sweden)

    Hendrika Fourie

    2015-09-01

    Full Text Available The area planted to soybean in South Africa has increased by 54% since the 2009 growing season, mainly as a result of the increasing demand for protein-rich food and fodder sources. Moreover, the introduction of advanced technology, namely the availability of genetically modified herbicide tolerant soybean cultivars also contributed towards increased soybean production. The omnipresence of plant-parasitic nematodes in local agricultural soils, however, poses a threat to the sustainable expansion and production of soybean and other rotation crops. Meloidogyne incognita and M. javanica are the predominant nematode pests in local soybean production areas and those where other grain-, legume- and/or vegetable crops are grown. The lack of registered nematicides for soybean locally, crop production systems that are conducive to nematode pest build-ups as well as the limited availability of genetic host plant resistance to root-knot nematode pests, complicate their management. Research aimed at various aspects related to soybean-nematode research, namely, audits of nematode assemblages associated with the crop, identification of genetic host plant resistance in soybean germplasm to M. incognita and M. javanica, the use of molecular markers that are linked to such genetic resistance traits as well as agronomic performance of pre-released cultivars that can be valuable to producers and the industry are accentuated in this review. Evaluation of synthetically-derived as well as biological-control agents are also discussed as complementary management tactics. It is important that lessons learned through extensive research on soybean-nematode interactions in South Africa be shared with researchers and industries in other countries as they might experience or expect similar problems and/or challenges.

  6. Soybean leaf hydraulic conductance does not acclimate to growth at elevated [CO2] or temperature in growth chambers or in the field.

    Science.gov (United States)

    Locke, Anna M; Sack, Lawren; Bernacchi, Carl J; Ort, Donald R

    2013-09-01

    Leaf hydraulic properties are strongly linked with transpiration and photosynthesis in many species. However, it is not known if gas exchange and hydraulics will have co-ordinated responses to climate change. The objective of this study was to investigate the responses of leaf hydraulic conductance (Kleaf) in Glycine max (soybean) to growth at elevated [CO2] and increased temperature compared with the responses of leaf gas exchange and leaf water status. Two controlled-environment growth chamber experiments were conducted with soybean to measure Kleaf, stomatal conductance (gs) and photosynthesis (A) during growth at elevated [CO2] and temperature relative to ambient levels. These results were validated with field experiments on soybean grown under free-air elevated [CO2] (FACE) and canopy warming. In chamber studies, Kleaf did not acclimate to growth at elevated [CO2], even though stomatal conductance decreased and photosynthesis increased. Growth at elevated temperature also did not affect Kleaf, although gs and A showed significant but inconsistent decreases. The lack of response of Kleaf to growth at increased [CO2] and temperature in chamber-grown plants was confirmed with field-grown soybean at a FACE facility. Leaf hydraulic and leaf gas exchange responses to these two climate change factors were not strongly linked in soybean, although gs responded to [CO2] and increased temperature as previously reported. This differential behaviour could lead to an imbalance between hydraulic supply and transpiration demand under extreme environmental conditions likely to become more common as global climate continues to change.

  7. Nitrogen cycling under alternate wetting and drying cycles in Arkansas rice

    Science.gov (United States)

    Alternate wetting and drying (AWD) cycles offer potential savings in water use for paddy rice production while reducing both greenhouse gas emissions and lowering grain arsenic content. In a three-year (2011-2013) field study near Stuttgart, AR, one-third of a field previously grown to soybean was b...

  8. Yield and Quality Features of Buckwheat-Soybean Mixtures in Organic Agricultural Conditions

    Directory of Open Access Journals (Sweden)

    Mustafa Sürmen

    2017-12-01

    Full Text Available This study was carried out during the summer of 2014 to determine alternative quality forage sources that could be grown in the Aydın ecological conditions. In the study, effects of 3 different mixtures and 2 pure species (100% Buckwheat, 25% Buckwheat -75% Soybean, 50% Buckwheat -5 0% Soybean, 75% Buckwheat - 25% Soybean, 100% Soybean and 2 different harvesting times (50%-100% flowering/buckwheat on yield and quality characteristics were investigated. According to measurements, the highest average herbage yield was obtained from 75% Buckwheat-25% Soybean application (3100 kg/da at 2nd harvest time. When the average of hay yield was examined, the results were similar to herbage yield. When ADF and NDF were examined, the highest values were seen at the 2nd harvest. When the crude protein ratios were examined, it was found that they decreased at the 2nd harvesting time and the highest value was determined at 100% soybean application at the 1st harvesting time (21.08%. When Digestible Dry Matter (DDM and Relative Feed Value (RFV were examined, the highest values were determined in 100%Soybean applications at first harvest time and when the mixture applications were examined, the highest values were determined to be 75% Buckwheat - 25% Soybean application. As a result of the study, it was determined that the yields obtained at the 2nd harvest time were higher but the forage quality decreased. When the mixtures were examined, it was determined that the mixture having the highest roughage value was 75% buckwheat + 25% soybean application. In this study, the buckwheat which have short vegetation and good quality and the soybean, which is infront of with high quality, mixtures were examined. It has also been found that these mixtures may be important for obtaining high-quality forage in the short and intermediate periods.

  9. Stochastic Corn Yield Response Functions to Nitrogen for Corn after Corn, Corn after Cotton, and Corn after Soybeans

    OpenAIRE

    Boyer, Christopher N.; Larson, James A.; Roberts, Roland K.; McClure, Angela T.; Tyler, Donald D.; Zhou, Vivian

    2013-01-01

    Deterministic and stochastic yield response plateau functions were estimated to determine the expected profit-maximizing nitrogen rates, yields, and net returns for corn grown after corn, cotton, and soybeans. The stochastic response functions were more appropriate than their deterministic counterparts, and the linear response stochastic plateau described the data the best. The profit-maximizing nitrogen rates were similar for corn after corn, cotton, and soybeans, but relative to corn after ...

  10. Vermiculite's strong buffer capacity renders it unsuitable for studies of acidity on soybean (Glycine max L.) nodulation and growth.

    Science.gov (United States)

    Indrasumunar, Arief; Gresshoff, Peter M

    2013-11-14

    Vermiculite is the most common soil-free growing substrate used for plants in horticultural and scientific studies due to its high water holding capacity. However, some studies are not suitable to be conducted in it. The described experiments aimed to test the suitability of vermiculite to study the effect of acidity on nodulation and growth of soybean (Glycine max L.). Two different nutrient solutions (Broughton & Dilworth, and modified Herridge nutrient solutions) with or without MES buffer addition were used to irrigate soybean grown on vermiculite growth substrates. The pH of nutrient solutions was adjusted to either pH 4.0 or 7.0 prior its use. The nodulation and vegetative growth of soybean plants were assessed at 3 and 4 weeks after inoculation. The unsuitability of presumably inert vermiculite as a physical plant growth substrate for studying the effects of acidity on soybean nodulation and plant growth was illustrated. Nodulation and growth of soybean grown in vermiculite were not affected by irrigation with pH-adjusted nutrient solution either at pH 4.0 or 7.0. This was reasonably caused by the ability of vermiculite to neutralise (buffer) the pH of the supplied nutrient solution (pH 2.0-7.0). Due to its buffering capacity, vermiculite cannot be used as growth support to study the effect of acidity on nodulation and plant growth.

  11. Evaluation of the symbiotic nitrogen fixation in soybean by labelling of soil organic matter

    International Nuclear Information System (INIS)

    Ruschel, A.P.; Freitas, J.R. de; Vose, P.B.

    1982-01-01

    An experiment was carried out using the isotopic dilution method to evaluate symbiotic nitrogen fixation in soybean grown in soil labelled with 15 N enriched organic matter. Symbiotic N 2 -fixed was 71-76% of total N in the plant. Non nodulated soybean utilized 56-59% N from organic matter and 40% from soil. Roots of nodulated plants had lower NdN 2 than aereal plant parts. The advantage of using labelled organic matter as compared with 15 N-fertilizer addition in evaluating N 2 -fixation is discussed. (Author) [pt

  12. Case study on the productivity of corn and soybean crops in light of climate variability; Etude de cas sur la productivite des cultures de mais et de soya face a la variabilite climatique

    Energy Technology Data Exchange (ETDEWEB)

    Pattey, E. [Agriculture Canada, Ottawa, ON (Canada); Strachan, I. [McGill Univ., Montreal, PQ (Canada)

    2003-07-01

    Seasonal climate variations have a significant impact on crop growth and productivity. Climate variability is expected to increase with global warming due to the greenhouse effect. A study was conducted to determine how crops adapt to contrasting seasonal conditions. A 30-hectare field located in the Ottawa green belt was used to find a crop adaptation method based on growing seasons interspersed with dry spells. Type C4 corn-grains and type C3 soybeans were tested. In 1998, the corn field was divided into two sections. The first section received the recommended nitrogen dosage, while the second section only received 63 per cent of the nitrogen dosage. Soybeans were grown in the same field in 1999 without modification to the nitrogen. Net carbon dioxide and water vapour flows were measured every half-hour using the turbulent covariance method. The study also involved monitoring of the hydric state, temperature, soil breathing, and meteorological conditions. The following five conclusions were made: (1) soybeans are very sensitive to dryness and have a water efficiency lower than that of corn, (2) biomass accumulation for soybeans is less than half that noted for corn, (3) the corn which had received the recommended nitrogen dosage proved to be more sensitive to dryness than the corn which had received a lower dosage, (4) the recommended nitrogen dosage did not lead to a higher yield because of a water deficit in July and August 1998, and (5) recommended nitrogen dosage should take the climate into account. 5 refs., 7 figs.

  13. Effects of Elevated CO2 on Plant Chemistry, Growth, Yield of Resistant Soybean, and Feeding of a Target Lepidoptera Pest, Spodoptera litura (Lepidoptera: Noctuidae).

    Science.gov (United States)

    Yifei, Zhang; Yang, Dai; Guijun, Wan; Bin, Liu; Guangnan, Xing; Fajun, Chen

    2018-04-25

    Atmospheric CO2 level arising is an indisputable fact in the future climate change, as predicted, it could influence crops and their herbivorous insect pests. The growth and development, reproduction, and consumption of Spodoptera litura (F.) (Lepidoptera: Noctuidae) fed on resistant (cv. Lamar) and susceptible (cv. JLNMH) soybean grown under elevated (732.1 ± 9.99 μl/liter) and ambient (373.6 ± 9.21 μl/liter) CO2 were examined in open-top chambers from 2013 to 2015. Elevated CO2 promoted the above- and belowground-biomass accumulation and increased the root/shoot ratio of two soybean cultivars, and increased the seeds' yield for Lamar. Moreover, elevated CO2 significantly reduced the larval and pupal weight, prolonged the larval and pupal life span, and increased the feeding amount and excretion amount of two soybean cultivars. Significantly lower foliar nitrogen content and higher foliar sugar content and C/N ratio were observed in the sampled foliage of resistant and susceptible soybean cultivars grown under elevated CO2, which brought negative effects on the growth of S. litura, with the increment of foliar sugar content and C/N ratio were greater in the resistant soybean in contrast to the susceptible soybean. Furthermore, the increment of larval consumption was less than 50%, and the larval life span was prolonged more obvious of the larvae fed on resistant soybean compared with susceptible soybean under elevated CO2. It speculated that the future climatic change of atmospheric CO2 level arising would likely cause the increase of the soybean yield and the intake of S. litura, but the resistant soybean would improve the resistance of the target Lepidoptera pest, S. litura.

  14. Morphologic observations on respiratory tracts of chickens after hatchery infectious bronchitis vaccination and formaldehyde fumigation.

    Science.gov (United States)

    Di Matteo, A M; Soñez, M C; Plano, C M; von Lawzewitsch, I

    2000-01-01

    The histologic changes in the respiratory tracts of chickens were evaluated after hatchery fumigation with 40% formaldehyde vapors and vaccination against infectious bronchitis virus with live attenuated vaccine (Massachusetts serotype). One-day-old chickens were housed in four isolation units in controlled environmental conditions, fed and watered ad libitum, and separated into four groups: 1) fumigated and vaccinated birds (FV group); 2) nonfumigated and vaccinated birds (NFV group); 3) fumigated and nonvaccinated birds (FNV group); and 4) control group (C group). All birds were tested to be free from Mycoplasma gallisepticum and Mycoplasma synoviae. After necropsy on the first, eighth, and twenty-sixth days after birth, samples from tracheal upper portion and lungs were conventionally processed for light, scanning, and transmission electron microscopy. Tissue response was monitored by microscopic examination of trachea and lung. On the first day of observation, fumigated and vaccinated birds (FV group) showed extensively damaged tracheal epithelium with exfoliated areas and some active glands with electrodense granules, and in the lung, the primary bronchi epithelium had disorganized cilia and abundant lymphocytes, with emphysematous areas in tertiary bronchus. On day 8 after vaccination, cubical and cylindrical tracheal cell proliferation was observed, and on day 26, ciliated columnar epithelium was almost regenerated with heterophil corion infiltration, and hyaline cartilage nodules appeared in parabronchi. The nonfumigated and vaccinated birds (NFV) revealed less injury on the epithelial surface and a more rapid response to epithelial regeneration than the in only fumigated animals (FNV). The control group did not show remarkable morphologic changes. Postvaccinal and fumigation effects on the upper respiratory tract were temporary, whereas in lungs, increased emphysema, cartilage nodules in the interchange zone, and general lymphocyte infiltration had caused

  15. Carrot, Corn, Lettuce and Soybean Nutrient Contents are ...

    Science.gov (United States)

    Biochar, the carbon-rich material remaining after pyrolysis of cellulosic and manure feedstocks, has the potential as a soil amendment to sequester carbon and to improve soil water-holding and nutrient properties- thereby enhancing plant growth. However, biochar produced from some feedstocks also could adversely affect crop quality by changing soil pH and reducing nutrients (e.g., Ca, K, Mg, N, Na, and P) in plant tissues. To evaluate effects of biochar on the nutrient quality of four crops, we conducted a greenhouse study using pots with: carrot (Daucus carota cv. Tendersweet), corn (Zea mays, cv. Golden Bantam), lettuce (Lactuca sativa, cv. Black-Seeded Simpson) and soybean (Glycine max cv. Viking 2265). Plants were grown in one of two South Carolina sandy Coastal Plain soils (Norfolk and Coxville Soil Series), along with biochar (1% by weight) produced from pine chips (PC), poultry litter (PL), swine solids (SS), switchgrass (SG), and two blends of pine chips plus poultry litter (PC/PL, 50/50% and 80/20%). Each of the feedstocks and feedstock blends was pyrolyzed at 350, 500, and 700 ̊ C to produce the biochar used to amend the Norfolk and Coxville soils. Effects of biochar on leaf nutrients (% dry weight) statistically varied with species, soil, feedstock and temperature and nutrient. For carrot and lettuce, the PL, PL/PC, and SS biochars generally decreased leaf N, Ca, Mg, and P; while PL and PL/PC increased K and Na. Biochars had little effect on lea

  16. Impact of elevated levels of atmospheric CO2 and herbivory on flavonoids of soybean (Glycine max Linnaeus).

    Science.gov (United States)

    O'Neill, Bridget F; Zangerl, Arthur R; Dermody, Orla; Bilgin, Damla D; Casteel, Clare L; Zavala, Jorge A; DeLucia, Evan H; Berenbaum, May R

    2010-01-01

    Atmospheric levels of carbon dioxide (CO2) have been increasing steadily over the last century. Plants grown under elevated CO2 conditions experience physiological changes, particularly in phytochemical content, that can influence their suitability as food for insects. Flavonoids are important plant defense compounds and antioxidants that can have a large effect on leaf palatability and herbivore longevity. In this study, flavonoid content was examined in foliage of soybean (Glycine max Linnaeus) grown under ambient and elevated levels of CO2 and subjected to damage by herbivores in three feeding guilds: leaf skeletonizer (Popillia japonica Newman), leaf chewer (Vanessa cardui Linnaeus), and phloem feeder (Aphis glycines Matsumura). Flavonoid content also was examined in foliage of soybean grown under ambient and elevated levels of O3 and subjected to damage by the leaf skeletonizer P. japonica. The presence of the isoflavones genistein and daidzein and the flavonols quercetin and kaempferol was confirmed in all plants examined, as were their glycosides. All compounds significantly increased in concentration as the growing season progressed. Concentrations of quercetin glycosides were higher in plants grown under elevated levels of CO2. The majority of compounds in foliage were induced in response to leaf skeletonization damage but remained unchanged in response to non-skeletonizing feeding or phloem-feeding. Most compounds increased in concentration in plants grown under elevated levels of O3. Insects feeding on G. max foliage growing under elevated levels of CO2 may derive additional antioxidant benefits from their host plants as a consequence of the change in ratios of flavonoid classes. This nutritional benefit could lead to increased herbivore longevity and increased damage to soybean (and perhaps other crop plants) in the future.

  17. Production of Fungal Mycelial Protein in Submerged Culture of Soybean Whey

    Science.gov (United States)

    Falanghe, Helcio; Smith, A. K.; Rackis, J. J.

    1964-01-01

    Various soybean whey media were tested as substrate for seven species of fungi in submerged culture. Very little mycelial growth was obtained with Morchella hybrida, Collybia velutipes, Cantharellus cibarius, and Xylaria polymorpha. Agaricus campestris failed to grow. Tricholoma nudum and Boletus indecisus showed the greatest rate of growth and production of mycelial protein and the best utilization of soybean whey solids, with much shorter incubation times compared with those of the other species. T. nudum developed as spheres having diameters of about 5 to 8 mm, instead of the usual slurry or yeastlike form, in the presence of added ammonium acetate. B. indecisus always developed as spheres. Mycelial yields and production of protein by T. nudum greatly decreased with the addition of more than 1% glucose to soybean whey, whereas with B. indecisus the yield of protein almost doubled when up to 3% glucose was added. The effect of minerals on mycelial growth was determined. With soybean whey concentrated to 50%, the rate of mycelial growth of T. nudum was nearly doubled, but protein content of mycelia was greatly reduced. Mycelial growth and yield of protein of B. indecisus grown in concentrated whey were increased greatly. About 4 to 6 g of mycelial protein per liter can be obtained from fermentation in soybean whey, depending upon the medium used. Utilization of soybean whey by fungal fermentation may have economic value in whey disposal and in the production of products of high protein content. PMID:14199023

  18. PRODUCTION OF FUNGAL MYCELIAL PROTEIN IN SUBMERGED CULTURE OF SOYBEAN WHEY.

    Science.gov (United States)

    FALANGHE, H; SMITH, A K; RACKIS, J J

    1964-07-01

    Various soybean whey media were tested as substrate for seven species of fungi in submerged culture. Very little mycelial growth was obtained with Morchella hybrida, Collybia velutipes, Cantharellus cibarius, and Xylaria polymorpha. Agaricus campestris failed to grow. Tricholoma nudum and Boletus indecisus showed the greatest rate of growth and production of mycelial protein and the best utilization of soybean whey solids, with much shorter incubation times compared with those of the other species. T. nudum developed as spheres having diameters of about 5 to 8 mm, instead of the usual slurry or yeastlike form, in the presence of added ammonium acetate. B. indecisus always developed as spheres. Mycelial yields and production of protein by T. nudum greatly decreased with the addition of more than 1% glucose to soybean whey, whereas with B. indecisus the yield of protein almost doubled when up to 3% glucose was added. The effect of minerals on mycelial growth was determined. With soybean whey concentrated to 50%, the rate of mycelial growth of T. nudum was nearly doubled, but protein content of mycelia was greatly reduced. Mycelial growth and yield of protein of B. indecisus grown in concentrated whey were increased greatly. About 4 to 6 g of mycelial protein per liter can be obtained from fermentation in soybean whey, depending upon the medium used. Utilization of soybean whey by fungal fermentation may have economic value in whey disposal and in the production of products of high protein content.

  19. Trichoderma harzianum containing 1-aminocyclopropane-1-carboxylate deaminase and chitinase improved growth and diminished adverse effect caused by Fusarium oxysporum in soybean.

    Science.gov (United States)

    Zhang, Fuli; Chen, Can; Zhang, Fan; Gao, Lidong; Liu, Jidong; Chen, Long; Fan, Xiaoning; Liu, Chang; Zhang, Ke; He, Yuting; Chen, Chen; Ji, Xiue

    2017-03-01

    An isolate, named Trichoderma harzianum T-soybean, showed growth-promoting for soybean seedlings and induced resistance to Fusarium oxysporum under greenhouse. Compared to control soybean seedlings, fresh weight, dry weight, lateral root number, chlorophyll content, root activity and soluble protein of plants pretreated with T-soybean increased, but initial pod height reduced. Furthermore, we found that T-soybean inhibited the growth of F. oxysporum by parasitic function. In addition, plate test results showed that culture filtrates of T-soybean also inhibited significantly F. oxysporum growth. Meanwhile, T-soybean treatment obviously reduced disease severity and induced quickly the H 2 O 2 and O 2 - burst as well as pathogenesis related protein gene (PR3) expression after F. oxysporum inoculation, and subsequently diminished the cell damage in soybean caused by the pathogen challenge. Reactive oxygen species (ROS) scavenging enzymes activity analysis showed that the activities of peroxidase (POD), polyphenol oxidase (PPO) and superoxide dismutase (SOD) increased significantly in T-soybean pretreated plants. These results suggested that T-soybean treatment induced resistance in soybean seedlings to F. oxysporum by companying the production of ROS and the increasing of ROS scavenging enzymes activity as well as PR3 expression. Copyright © 2016 Elsevier GmbH. All rights reserved.

  20. Adding Organic Matter Enhanced the Effectiveness of Silicate Rock Fertilizer for Food Crops Grown on Nutritionally Disorder Soils: A Glasshouse Assessment

    Directory of Open Access Journals (Sweden)

    Zaenal Arifin

    2012-05-01

    Full Text Available A glasshouse experiment was carried to identify effects of the application rate of ground silicate rock as a multinutrientfertilizer (SRF with and without organic matter (OM on growth and nutrient status of food crops (rice,corn, and soybean. Those crops were grown on 3 different soils in 2 cropping patterns, i.e., rice – soybean and corn– soybean, providing 6 experimental sets. A completely randomized design was applied in each experimental set.The treatment in each set consisted of 3 rates of SRF (5, 10, and 15 g kg-1, those 3 rates + 5 g kg-1 of OM, and acontrol (without adding SRF or OM. The first crops (rice and corn were grown up to 65 days, while the secondcrop (soybean was up to 40 days. Results indicated that for crops grown on less fertile soils, the application of SRFonly slightly increased growth of crops, mainly of the 2nd crops, and adding OM greatly increased the growth ofboth the 1st and 2nd crops. In those experimental sets, about 60 – 80% of the variation of crop growth was significantlydetermined by concentration of Cu and several other essential nutrients in crop tissue. In contrast, the growth forcrops grown on more fertile soils was not affected by the application of SRF or/and OM. It was concluded thatadding OM enhanced the effectiveness of SRF as a multi-nutrient fertilizer, and that may be used as an appropriatemulti-nutrient fertilizer or general ameliorant to sustain soil quality and remediate the nutritionally disorder soils.

  1. Fate of 15N-urea applied to wheat-soybean succession crop

    International Nuclear Information System (INIS)

    Boaretto, Antonio Enedi; Trivelin, Paulo Cesar Ocheuze; Muraoka, Takashi; Spolidorio, Eduardo Scarpari; Freitas, Jose Guilherme de; Cantarella, Heitor

    2004-01-01

    The wheat crop in Sao Paulo State, Brazil, is fertilized with N, P and K. The rate of applied N (0 to 120 kg.ha -1 ) depends on the previous grown crop and the irrigation possibility. The response of wheat to rates and time of N application and the fate of N applied to irrigated wheat were studied during two years. Residual N recovery by soybean grown after the wheat was also studied. The maximum grain productivity was obtained with 92 kg.ha -1 of N. The efficiency of 15 N-urea utilization ranged from 52% to 85%. The main loss of applied 15 N, 5% to 12% occurred as ammonia volatilized from urea applied on soil surface. The N loss by leaching even at the N rate of 135 kg.ha -1 , was less than 1% of applied 15 N, due to the low amount of rainfall during the wheat grown season and a controlled amount of irrigated water, that were sufficient to moisten only the wheat root zone. The residual 15 N after wheat harvest represents around 40% of N applied as urea: 20% in soil, 3% in wheat root system and 16% in the wheat straw. Soybean recovered less than 2% of the 15 N applied to wheat at sowing or at tillering stage. (author)

  2. Active oxygen participation in chlorophyll destruction and lipid peroxidation in SO/sub 2/-fumigated leaves of spinach

    Energy Technology Data Exchange (ETDEWEB)

    Shimazaki, K; Sakaki, T; Sugahara, K

    1980-01-01

    Chlorophyll a and carotenoids of spinach plants began to be destroyed in 2 to 3 hr after the initiation of fumigation with 2.0 ppM sulfur dioxide (SO/sub 2/) in light, whereas chlorophyll b was apparently undamaged during 8 hr of exposure to SO/sub 2/. The content of pheophytin a, chromatographically determined, was not changed by SO/sub 2/ fumigation. When leaf disks (phi = 10 mm), excised from the leaves fumigated with SO/sub 2/ at 2.0 ppM for 2 hr, were illuminated, chlorophyll a and carotenoids were broken down, but they were not destroyed in darkness. The destruction of chlorophyll a and carotenoids was suppressed under a stream of nitrogen. Chlorophyll a destruction was inhibited by free radical scavengers, 1,2-dihydroxbenzene-3,5-disulfonate (tiron), hydroquinone and ascorbate. The singlet oxygen scavengers, 1,4-diazabicyclo-(2,2,2)-octane (DABCO), methionine and histidine, and hydroxyl radical scavengers, benzoate and formate were without effect on the destruction of chlorophyll a. Chlorophyll a destruction was inhibited by the addition of superoxide dismutase (SOD) to the homogenate of SO/sub 2/-fumigated leaves. SO/sub 2/ fumigation for 2 hr reduced the activity of superoxide dismutase to 40% without producing the significant loss of chlorophyll. From these results we concluded that chlorophyll a destruction by SO/sub 2/ was due to superoxide radicals. Moreover, malondialdehyde (MDA), an indicator of lipid peroxidation, was accumulated in SO/sub 2/-fumigated leaves in light. MDA formation was inhibited by tiron and hydroquinone, and by DABCO but was not inhibited by benzoate and formate. MDA formation was increased by D/sub 2/O. From these results it was concluded that /sup 1/O/sub 2/ was involved in lipid peroxidation in SO/sub 2/-fumigated leaves.

  3. Defining a realistic control for the chloroform fumigation-incubation method using microscopic counting and 14C-substrates

    International Nuclear Information System (INIS)

    Horwath, W.R.; Paul, E.A.; Harris, D.; Norton, J.; Jagger, L.; National Science Foundation, Logan, UT; Horton, K.A.

    1996-01-01

    Chloroform fumigation-incubation (CFI) has made possible the extensive characterization of soil microbial biomass carbon (C) (MBC). Defining the non-microbial C mineralized in soils following fumigation remains the major limitation of CFI. The mineralization of non-microbial C during CFI was examined by adding 14 C-maize to soil before incubation. The decomposition of the 14 C-maize during a 10-d incubation after fumigation was 22.5% that in non-fumigated control soils. Re-inoculation of the fumigated soil raised 14 C-maize decomposition to 77% that of the unfumigated control. A method was developed which varies the proportion of mineralized C from the unfumigated soil (UF c ) that is subtracted in calculating CFI biomass C. The proportion subtracted (P) varies according to a linear function of the ratio of C mineralized in the fumigated (F c ) and unfumigated samples (F c /UF c ) with two parameters K 1 and K 2 (P = K 1 F c /UF c ) + K 2 ). These parameters were estimated by regression of CFI biomass C, calculated according to the equation MBC = (F c - PUF c )/0.41, against that derived by direct microscopy in a series of California soils. Parameter values which gave the best estimate of microscopic biomass from the fumigation data were K 1 = 0.29 and K 2 = 0.23 (R 2 = 0.87). Substituting these parameter values, the equation can be simplified to MBC = 1.73F c - 0.56UF c . The equation was applied to other CFI data to determine its effect on the measurement of MBC. The use of this approach corrected data that were previously difficult to interpret and helped to reveal temporal trends and changes in MBC associated with soil depth. (author). 40 refs., 4 tabs., 3 figs

  4. Influence of Sulfur Fumigation on the Chemical Constituents and Antioxidant Activity of Buds of Lonicera japonica

    Directory of Open Access Journals (Sweden)

    Ai-Li Guo

    2014-10-01

    Full Text Available Lonicera japonica flos is widely used as a pharmaceutical resource and a commonly-employed ingredient in healthy food, soft beverages and cosmetics in China. Sometimes, sulfur fumigation is used during post-harvest handling. In this study, a comprehensive comparison of the chemical profile between sun-dried and sulfur-fumigated samples was conducted by HPLC fingerprints and simultaneous quantification of nine constituents, including secologanic acid, along with another eight usually-analyzed markers. Secologanic acid was destroyed, and its sulfonates were generated, whereas caffeoylquinic acids were protected from being oxidized. The residual sulfur dioxide in sulfur-fumigated samples was significantly higher than that in sun-dried samples, which might increase the potential incidence of toxicity to humans. Meanwhile, compared with sun-dried samples, sulfur-fumigated samples have significantly stronger antioxidant activity, which could be attributed to the joint effect of protected phenolic acids and flavonoids, as well as newly-generated iridoid sulfonates.

  5. Ambient ultraviolet radiation induces protective responses in soybean but does not attenuate indirect defense

    International Nuclear Information System (INIS)

    Winter, Thorsten R.; Rostas, Michael

    2008-01-01

    We investigated the effects of ambient ultraviolet (UV) radiation on (i) the performance and chemistry of soybean plants, (ii) the performance of Spodoptera frugiperda and (iii) the foraging behavior of the herbivore's natural enemy Cotesia marginiventris which exploits herbivore-induced plant volatiles (VOC) for host location. The accumulation of protective phenolics was faster in plants receiving ambient UV than in controls exposed to sun light lacking UV. Accordingly, isorhamnetin- and quercetin-based flavonoids were increased in UV exposed plants. No UV effects were found on the performance and feeding behavior of S. frugiperda. Herbivore-damaged plants emitted the same VOC when grown under ambient or attenuated UV for 5, 10 or 30 days. Consequently, C. marginiventris was attracted but did not discriminate between exposed and unexposed soybeans. In summary, ambient UV radiation affected soybean morphology and physiology but did not destabilize interactions between trophic levels. - Ambient ultraviolet radiation does not alter induced VOC emission in soybean and thus host location of the parasitoid Cotesia marginiventris remains effective

  6. Soybean biomass produced in Argentina : myths and realities. Presented at Beyond Kyoto: Addressing the Challenges of Climate Change, Aarhus University, Danmark

    DEFF Research Database (Denmark)

    Semino, Stella Maris

    2009-01-01

    Soybean biomass for biodiesel, is considered by some to reduce greenhouse gas emissions and mitigate climate change when compared with fossil fuel. To ensure that the production of biofuels is ‘sustainable', EU institutions and national governments are currently designing certification schemes....... This paper questions the validity of proposed environmental standards, using the production of Argentine soybean as a case study. The study concludes that to certify soy monocultures as sustainable would exacerbate existing climatic and environmental problems....

  7. Phytoextraction of cadmium by rice (Oryza sativa L.), soybean (Glycine max (L.) Merr.), and maize (Zea mays L.)

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, M. [Department of Environmental Chemistry, National Institute for Agro-Environmental Sciences, 3-1-3 Kannondai, Tsukuba, Ibaraki 305-0856 (Japan)]. E-mail: simple@affrc.go.jp; Ae, N. [Department of Environmental Chemistry, National Institute for Agro-Environmental Sciences, 3-1-3 Kannondai, Tsukuba, Ibaraki 305-0856 (Japan)]. E-mail: aenoriha@kobe-u.ac.jp; Ishikawa, S. [Department of Environmental Chemistry, National Institute for Agro-Environmental Sciences, 3-1-3 Kannondai, Tsukuba, Ibaraki 305-0856 (Japan)]. E-mail: isatoru@niaes.affrc.go.jp

    2007-01-15

    Selecting a phytoextraction plant with high Cd-accumulating ability based on the plant's compatibility with mechanized cultivation techniques may yield more immediately practical results than selection based on high tolerance to Cd. Rice (Oryza sativa L., cv. Nipponbare and Milyang 23), soybean (Glycine max [L.] Merr., cv. Enrei and Suzuyutaka), and maize (Zea mays L., cv. Gold Dent) were grown on one Andosol and two Fluvisols with low concentration of Cd contamination ranging from 0.83 to 4.29 mg Cd kg{sup -1}, during 60 days in pots (550 mL) placed in a greenhouse. Shoot Cd uptake was as follows: Gold Dent < Enrei and Nipponbare < Suzuyutaka and Milyang 23. Several soil Cd fractions after Milyang 23 harvesting decreased most. Milyang 23 accumulated 10-15% of the total soil Cd in its shoot. The Milyang 23 rice is thus promising for phytoextraction of Cd from paddy soils with low contamination level. - Milyang 23 rice (Oryza sativa L.) accumulated 10-15% of the total soil Cd in its shoot.

  8. Phytoextraction of cadmium by rice (Oryza sativa L.), soybean (Glycine max (L.) Merr.), and maize (Zea mays L.)

    International Nuclear Information System (INIS)

    Murakami, M.; Ae, N.; Ishikawa, S.

    2007-01-01

    Selecting a phytoextraction plant with high Cd-accumulating ability based on the plant's compatibility with mechanized cultivation techniques may yield more immediately practical results than selection based on high tolerance to Cd. Rice (Oryza sativa L., cv. Nipponbare and Milyang 23), soybean (Glycine max [L.] Merr., cv. Enrei and Suzuyutaka), and maize (Zea mays L., cv. Gold Dent) were grown on one Andosol and two Fluvisols with low concentration of Cd contamination ranging from 0.83 to 4.29 mg Cd kg -1 , during 60 days in pots (550 mL) placed in a greenhouse. Shoot Cd uptake was as follows: Gold Dent < Enrei and Nipponbare < Suzuyutaka and Milyang 23. Several soil Cd fractions after Milyang 23 harvesting decreased most. Milyang 23 accumulated 10-15% of the total soil Cd in its shoot. The Milyang 23 rice is thus promising for phytoextraction of Cd from paddy soils with low contamination level. - Milyang 23 rice (Oryza sativa L.) accumulated 10-15% of the total soil Cd in its shoot

  9. PERFORMANCE OF ACID-ADAPTIVE SOYBEAN EXPECTED LINES IN SOUTH LAMPUNG, INDONESIA

    Directory of Open Access Journals (Sweden)

    Heru Kuswantoro

    2014-06-01

    Full Text Available Acid soil area is one of the areas broadly available in Indonesia. However, the complexity of acid soil may lead to low soybean productivity. Hence, soybean variety which is adaptive to acid soil is needed. The objective of this research was to find out expected lines adaptive to acid soil. A number of ten soybean lines and two check varieties were grown in Natar Research Station in dry season II, 2011. This research applied randomized completely block design with four replications. Results showed that 7 of 10 soybean lines had grain yield higher than those of two check varieties. The three lines with the highest grain yield were Tgm/Anj-957, Tgm/Anj-908 and Tgm/Anj-932 with grain yield 1.83, 1.74, and 1.65 t ha-,1 respectively. Tanggamus variety had grain yield higher than Wilis. The highest grain yield line, Tgm/Anj-957, was also supported by the highest number of pods per plant up to 68 pod. Line of Tgm/Anj-995 was the line with the largest seed size, i.e. 16 g per 100 seeds.

  10. Roundup Ready soybean gene concentrations in field soil aggregate size classes.

    Science.gov (United States)

    Levy-Booth, David J; Gulden, Robert H; Campbell, Rachel G; Powell, Jeff R; Klironomos, John N; Pauls, K Peter; Swanton, Clarence J; Trevors, Jack T; Dunfield, Kari E

    2009-02-01

    Roundup Ready (RR) soybeans containing recombinant Agrobacterium spp. CP4 5-enol-pyruvyl-shikimate-3-phosphate synthase (cp4 epsps) genes tolerant to the herbicide glyphosate are extensively grown worldwide. The concentration of recombinant DNA from RR soybeans in soil aggregates was studied due to the possibility of genetic transformation of soil bacteria. This study used real-time PCR to examine the concentration of cp4 epsps in four field soil aggregate size classes (>2000 microm, 2000-500 microm, 500-250 microm and 2000 mum fraction contained between 66.62% and 99.18% of total gene copies, although it only accounted for about 30.00% of the sampled soil. Aggregate formation may facilitate persistence of recombinant DNA.

  11. The USEPA environmental response team TAGA at work at the Hart building fumigation

    Energy Technology Data Exchange (ETDEWEB)

    Mickunas, D.B.; Turpin, R. [United States Environmental Protection Agency, Edison, NJ (United States). Environmental Response Team; Blaze, S.; Wood, J. [Lockheed Martin Inc., Edison, NJ (United States). Response Engineering and Analytical Contract

    2004-07-01

    This paper describes the fumigation activities conducted at the Hart Senate Office building in Washington, DC in October 2001 following the delivery of a letter containing anthrax. Anthrax spores were dispersed in areas within the office. The United States States Environmental Protection Agency Environmental Response Team (USEPA/ERT) was responsible for the decontamination activities. Chlorine dioxide was chosen as the anthrax sporicide after a detailed technical review and consultation with scientific experts. ERT provided continuous, near real-time ambient air monitoring during the fumigation process. The monitoring was conducted to ensure that the nearby residences were not impacted by the chlorine dioxide fumigant. The monitoring plan required the use of a Trace Atmospheric Gas Analyzer (TAGA), a triple quadrupole mass spectrometer mounted in a mobile laboratory. The monitoring activities of ERT's mobile laboratory were outlined in this paper along with the logistical and technical aspects of the air monitoring. More than 130 hours of TAGA monitoring was performed and 2.3 million data points were collected. No chlorine or chlorine dioxide concentrations were observed above the action limits during any fumigation event. The building was cleared by the health and regulatory agencies and re-opened in January 2002. It was concluded that TAGA is an excellent technology to monitor these compounds because is is extremely sensitive and selective. 2 tabs., 5 figs.

  12. 78 FR 36507 - Notice of Availability of a Treatment Evaluation Document; Methyl Bromide Fumigation of Blueberries

    Science.gov (United States)

    2013-06-18

    ... treatment schedule for blueberries at a temperature of 60[emsp14][deg]F at a dosage rate of 2 lbs gas/1,000...] Notice of Availability of a Treatment Evaluation Document; Methyl Bromide Fumigation of Blueberries... and Quarantine Treatment Manual an additional treatment schedule for methyl bromide fumigation of...

  13. Transgenic soybeans and soybean protein analysis: an overview.

    Science.gov (United States)

    Natarajan, Savithiry; Luthria, Devanand; Bae, Hanhong; Lakshman, Dilip; Mitra, Amitava

    2013-12-04

    To meet the increasing global demand for soybeans for food and feed consumption, new high-yield varieties with improved quality traits are needed. To ensure the safety of the crop, it is important to determine the variation in seed proteins along with unintended changes that may occur in the crop as a result various stress stimuli, breeding, and genetic modification. Understanding the variation of seed proteins in the wild and cultivated soybean cultivars is useful for determining unintended protein expression in new varieties of soybeans. Proteomic technology is useful to analyze protein variation due to various stimuli. This short review discusses transgenic soybeans, different soybean proteins, and the approaches used for protein analysis. The characterization of soybean protein will be useful for researchers, nutrition professionals, and regulatory agencies dealing with soy-derived food products.

  14. Soybean resistance to stink bugs (Nezara viridula and Piezodorus guildinii) increases with exposure to solar UV-B radiation and correlates with isoflavonoid content in pods under field conditions.

    Science.gov (United States)

    Zavala, Jorge A; Mazza, Carlos A; Dillon, Francisco M; Chludil, Hugo D; Ballaré, Carlos L

    2015-05-01

    Solar UV-B radiation (280-315 nm) has a significant influence on trophic relationships in natural and managed ecosystems, affecting plant-insect interactions. We explored the effects of ambient UV-B radiation on the levels of herbivory by stink bugs (Nezara viridula and Piezodorus guildinii) in field-grown soybean crops. The experiments included two levels of UV-B radiation (ambient and attenuated UV-B) and four soybean cultivars known to differ in their content of soluble leaf phenolics. Ambient UV-B radiation increased the accumulation of the isoflavonoids daidzin and genistin in the pods of all cultivars. Soybean crops grown under attenuated UV-B had higher numbers of unfilled pods and damaged seeds than crops grown under ambient UV-B radiation. Binary choice experiments with soybean branches demonstrated that stink bugs preferred branches of the attenuated UV-B treatment. We found a positive correlation between percentage of undamaged seeds and the contents of daidzin and genistin in pods. Our results suggest that constitutive and UV-B-induced isoflavonoids increase plant resistance to stink bugs under field conditions. © 2014 John Wiley & Sons Ltd.

  15. Micropropagation, Acclimatization, and Greenhouse Culture of Veratrum californicum.

    Science.gov (United States)

    White, Sarah A; Adelberg, Jeffrey; Naylor-Adelberg, Jacqueline; Mann, David A; Song, Ju Yeon; Sun, Youping

    2016-01-01

    Micropropagation and production of Veratrum californicum is most successful when using a premixed Murishage and Skoog basal medium with vitamins and a 5-week subculture cycle at 16 °C for multiplication. These culture conditions provide the best percent survival after acclimatization in the greenhouse. However, clone response to temperature and light quality within culture conditions varies. Micropropagated plants have mass and morphology similar to 2- or 3-year-old seedlings. Acclimatized plantlets can then be grown in the greenhouse using sub-irrigation (ebb and flood) to maintain substrate volumetric water content > 44 %. Growth cycle in the greenhouse must be about 100 days, followed by dormancy for 5 months at 5 °C.

  16. Integration of gel-based and gel-free proteomic data for functional analysis of proteins through Soybean Proteome Database

    KAUST Repository

    Komatsu, Setsuko

    2017-05-10

    The Soybean Proteome Database (SPD) stores data on soybean proteins obtained with gel-based and gel-free proteomic techniques. The database was constructed to provide information on proteins for functional analyses. The majority of the data is focused on soybean (Glycine max ‘Enrei’). The growth and yield of soybean are strongly affected by environmental stresses such as flooding. The database was originally constructed using data on soybean proteins separated by two-dimensional polyacrylamide gel electrophoresis, which is a gel-based proteomic technique. Since 2015, the database has been expanded to incorporate data obtained by label-free mass spectrometry-based quantitative proteomics, which is a gel-free proteomic technique. Here, the portions of the database consisting of gel-free proteomic data are described. The gel-free proteomic database contains 39,212 proteins identified in 63 sample sets, such as temporal and organ-specific samples of soybean plants grown under flooding stress or non-stressed conditions. In addition, data on organellar proteins identified in mitochondria, nuclei, and endoplasmic reticulum are stored. Furthermore, the database integrates multiple omics data such as genomics, transcriptomics, metabolomics, and proteomics. The SPD database is accessible at http://proteome.dc.affrc.go.jp/Soybean/. Biological significanceThe Soybean Proteome Database stores data obtained from both gel-based and gel-free proteomic techniques. The gel-free proteomic database comprises 39,212 proteins identified in 63 sample sets, such as different organs of soybean plants grown under flooding stress or non-stressed conditions in a time-dependent manner. In addition, organellar proteins identified in mitochondria, nuclei, and endoplasmic reticulum are stored in the gel-free proteomics database. A total of 44,704 proteins, including 5490 proteins identified using a gel-based proteomic technique, are stored in the SPD. It accounts for approximately 80% of all

  17. Integration of gel-based and gel-free proteomic data for functional analysis of proteins through Soybean Proteome Database.

    Science.gov (United States)

    Komatsu, Setsuko; Wang, Xin; Yin, Xiaojian; Nanjo, Yohei; Ohyanagi, Hajime; Sakata, Katsumi

    2017-06-23

    The Soybean Proteome Database (SPD) stores data on soybean proteins obtained with gel-based and gel-free proteomic techniques. The database was constructed to provide information on proteins for functional analyses. The majority of the data is focused on soybean (Glycine max 'Enrei'). The growth and yield of soybean are strongly affected by environmental stresses such as flooding. The database was originally constructed using data on soybean proteins separated by two-dimensional polyacrylamide gel electrophoresis, which is a gel-based proteomic technique. Since 2015, the database has been expanded to incorporate data obtained by label-free mass spectrometry-based quantitative proteomics, which is a gel-free proteomic technique. Here, the portions of the database consisting of gel-free proteomic data are described. The gel-free proteomic database contains 39,212 proteins identified in 63 sample sets, such as temporal and organ-specific samples of soybean plants grown under flooding stress or non-stressed conditions. In addition, data on organellar proteins identified in mitochondria, nuclei, and endoplasmic reticulum are stored. Furthermore, the database integrates multiple omics data such as genomics, transcriptomics, metabolomics, and proteomics. The SPD database is accessible at http://proteome.dc.affrc.go.jp/Soybean/. The Soybean Proteome Database stores data obtained from both gel-based and gel-free proteomic techniques. The gel-free proteomic database comprises 39,212 proteins identified in 63 sample sets, such as different organs of soybean plants grown under flooding stress or non-stressed conditions in a time-dependent manner. In addition, organellar proteins identified in mitochondria, nuclei, and endoplasmic reticulum are stored in the gel-free proteomics database. A total of 44,704 proteins, including 5490 proteins identified using a gel-based proteomic technique, are stored in the SPD. It accounts for approximately 80% of all predicted proteins from

  18. Integration of gel-based and gel-free proteomic data for functional analysis of proteins through Soybean Proteome Database

    KAUST Repository

    Komatsu, Setsuko; Wang, Xin; Yin, Xiaojian; Nanjo, Yohei; Ohyanagi, Hajime; Sakata, Katsumi

    2017-01-01

    The Soybean Proteome Database (SPD) stores data on soybean proteins obtained with gel-based and gel-free proteomic techniques. The database was constructed to provide information on proteins for functional analyses. The majority of the data is focused on soybean (Glycine max ‘Enrei’). The growth and yield of soybean are strongly affected by environmental stresses such as flooding. The database was originally constructed using data on soybean proteins separated by two-dimensional polyacrylamide gel electrophoresis, which is a gel-based proteomic technique. Since 2015, the database has been expanded to incorporate data obtained by label-free mass spectrometry-based quantitative proteomics, which is a gel-free proteomic technique. Here, the portions of the database consisting of gel-free proteomic data are described. The gel-free proteomic database contains 39,212 proteins identified in 63 sample sets, such as temporal and organ-specific samples of soybean plants grown under flooding stress or non-stressed conditions. In addition, data on organellar proteins identified in mitochondria, nuclei, and endoplasmic reticulum are stored. Furthermore, the database integrates multiple omics data such as genomics, transcriptomics, metabolomics, and proteomics. The SPD database is accessible at http://proteome.dc.affrc.go.jp/Soybean/. Biological significanceThe Soybean Proteome Database stores data obtained from both gel-based and gel-free proteomic techniques. The gel-free proteomic database comprises 39,212 proteins identified in 63 sample sets, such as different organs of soybean plants grown under flooding stress or non-stressed conditions in a time-dependent manner. In addition, organellar proteins identified in mitochondria, nuclei, and endoplasmic reticulum are stored in the gel-free proteomics database. A total of 44,704 proteins, including 5490 proteins identified using a gel-based proteomic technique, are stored in the SPD. It accounts for approximately 80% of all

  19. Characterization of Soybean WRKY Gene Family and Identification of Soybean WRKY Genes that Promote Resistance to Soybean Cyst Nematode.

    Science.gov (United States)

    Yang, Yan; Zhou, Yuan; Chi, Yingjun; Fan, Baofang; Chen, Zhixiang

    2017-12-19

    WRKY proteins are a superfamily of plant transcription factors with important roles in plants. WRKY proteins have been extensively analyzed in plant species including Arabidopsis and rice. Here we report characterization of soybean WRKY gene family and their functional analysis in resistance to soybean cyst nematode (SCN), the most important soybean pathogen. Through search of the soybean genome, we identified 174 genes encoding WRKY proteins that can be classified into seven groups as established in other plants. WRKY variants including a WRKY-related protein unique to legumes have also been identified. Expression analysis reveals both diverse expression patterns in different soybean tissues and preferential expression of specific WRKY groups in certain tissues. Furthermore, a large number of soybean WRKY genes were responsive to salicylic acid. To identify soybean WRKY genes that promote soybean resistance to SCN, we first screened soybean WRKY genes for enhancing SCN resistance when over-expressed in transgenic soybean hairy roots. To confirm the results, we transformed five WRKY genes into a SCN-susceptible soybean cultivar and generated transgenic soybean lines. Transgenic soybean lines overexpressing three WRKY transgenes displayed increased resistance to SCN. Thus, WRKY genes could be explored to develop new soybean cultivars with enhanced resistance to SCN.

  20. Effect of tillage and fumigation on Pasteuria penetrans

    Science.gov (United States)

    The endospore-forming bacterium Pasteuria penetrans (Pp) is a parasite of Meloidogyne spp. In this study, the effect of tillage and the fumigant 1,3-dichloropropene (1,3-D) on numbers of Pp and suppression of M. incognita (Mi) was evaluated from 2011-2013. A split-plot experiment was established i...

  1. Impact of Environment on the Biomass Composition of Soybean (Glycine max) seeds.

    Science.gov (United States)

    McClure, Tamara; Cocuron, Jean-Christophe; Osmark, Veronika; McHale, Leah K; Alonso, Ana Paula

    2017-08-16

    Factors including genetics, fertilization, and climatic conditions, can alter the biomass composition of soybean seeds, consequently impacting their market value and usage. This study specifically determined the content of protein and oil, as well as the composition of proteinogenic amino acids and fatty acids in seeds from 10 diverse soybean cultivars grown in four different sites. The results highlighted that different environments produce a different composition for the 10 cultivars under investigation. Specifically, the levels of oleic and linoleic acids, important contributors to oil stability, were negatively correlated. Although the protein and oil contents were higher in some locations, their "quality" was lower in terms of composition of essential amino acids and oleic acid, respectively. Finally, proteinogenic histidine and glutamate were the main contributors to the separation between Central and Northern growing sites. Taken together, these results can guide future breeding and engineering efforts aiming to develop specialized soybean lines.

  2. Rhizosphere acidification of faba bean, soybean and maize

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, L.L. [College of Resources and Environmental Sciences, China Agricultural University, Key Laboratory of Plant and Soil Interactions, Ministry of Education, Beijing, 100094 (China); Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100094 (China); Cao, J. [School of Life Science, Key Laboratory of Arid and Grassland Ecology, Lanzhou University, Lanzhou 730000 (China); Zhang, F.S. [College of Resources and Environmental Sciences, China Agricultural University, Key Laboratory of Plant and Soil Interactions, Ministry of Education, Beijing, 100094 (China); Li, L., E-mail: lilong@cau.edu.cn [College of Resources and Environmental Sciences, China Agricultural University, Key Laboratory of Plant and Soil Interactions, Ministry of Education, Beijing, 100094 (China)

    2009-07-01

    Interspecific facilitation on phosphorus uptake was observed in faba bean/maize intercropping systems in previous studies. The mechanism behind this, however, remained unknown. Under nitrate supply, the difference in rhizosphere acidification potential was studied by directly measuring pH of the solution and by visualizing and quantifying proton efflux of roots between faba bean (Vicia faba L. cv. Lincan No.5), soybean (Glycine max L. cv. Zhonghuang No. 17) and maize (Zea mays L. cv. Zhongdan No.2) in monoculture and intercrop, supplied without or with 0.2 mmol L{sup -1} P as KH{sub 2}PO{sub 4}. The pH of the nutrient solution grown faba bean was lower than initial pH of 6.0 from day 1 to day 22 under P deficiency, whereas the pH of the solution with maize was declined from day 13 after treatment. Growing soybean increased solution pH irrespective of P supply. Under P deficiency, the proton efflux of faba bean both total (315.25 nmol h{sup -1} plant{sup -1}) and specific proton efflux (0.47 nmol h{sup -1} cm{sup -1}) was greater than that those of soybean (21.80 nmol h{sup -1} plant{sup -1} and 0.05 nmol h{sup -1} cm{sup -1}, respectively). Faba bean had much more ability of rhizosphere acidification than soybean and maize. The result can explain partly why faba bean utilizes sparingly soluble P more effectively than soybean and maize do, and has an important implication in understanding the mechanism behind interspecific facilitation on P uptake by intercropped species.

  3. Effects of leaf movement on radiation interception in field grown leguminous crops, 2: Soybean (Glycine max Merr.)

    International Nuclear Information System (INIS)

    Isoda, A.; Yoshimura, T.; Ishikawa, T.; Wang, P.; Nojima, H.; Takasaki, Y.

    1993-01-01

    The effects of the leaf movement on radiation interception were examined by a treatment which restrained the leaf movement in the upper layers of the canopy. Two determinate soybean cultivars with different canopy structures (c.v. Nanbushirome and Miyagishirome) were grown at two planting densities in the field. A pot experiment was also used to evaluate radiation interception under the conditions of no mutual shading. Intercepted radiation of every leaflet of two plants within the canopy and one plant in the pot experiment was measured by the integrated solarimeter films for two consecutive days. The amount of intercepted radiations per unit ground area in the treatments were larger than those in the controls of both cultivars and indicated the ineffectiveness of the leaf movement on radiation interception. In general, Nanbushirome intercepted larger amount of radiation in every layer of the canopy in both field and pot experiments. The differences between the control and the treatment in Nanbushirome were large as compared with Miyagishirome. The leaf temperature of the uppermost layer of the canopy in Nanbushirome was higher than the air temperature in the treatment, whereas it was at par with the air temperature in the control. The leaflets of the upper layer moved paraheliotropically to the sum rays during most of day time, it was therefore assumed that the leaf movement would regulate leaf temperature

  4. Predicting sublethal effects of herbicides on terrestrial non-crop plant species in the field from greenhouse data

    International Nuclear Information System (INIS)

    Riemens, Marleen M.; Dueck, Thom; Kempenaar, Corne

    2008-01-01

    Guidelines provided by OECD and EPPO allow the use of data obtained in greenhouse experiments in the risk assessment for pesticides to non-target terrestrial plants in the field. The present study was undertaken to investigate the predictability of effects on field-grown plants using greenhouse data. In addition, the influence of plant development stage on plant sensitivity and herbicide efficacy, the influence of the surrounding vegetation on individual plant sensitivity and of sublethal herbicide doses on the biomass, recovery and reproduction of non-crop plants was studied. Results show that in the future, it might well be possible to translate results from greenhouse experiments to field situations, given sufficient experimental data. The results also suggest consequences at the population level. Even when only marginal effects on the biomass of non-target plants are expected, their seed production and thereby survival at the population level may be negatively affected. - The response of greenhouse-grown wild plant species to herbicide exposure could be related to the response of the same species when grown in the field

  5. Association of Effector Six6 with Vascular Wilt Symptoms Caused by Fusarium oxysporum on Soybean.

    Science.gov (United States)

    Lanubile, Alessandra; Ellis, Margaret L; Marocco, Adriano; Munkvold, Gary P

    2016-11-01

    The Fusarium oxysporum species complex (FOSC) is a widely distributed group of fungi that includes both pathogenic and nonpathogenic isolates. In a previous study, isolates within the FOSC collected primarily from soybean were assessed for the presence of 12 fungal effector genes. Although none of the assayed genes was significantly associated with wilt symptoms on soybean, the secreted in xylem 6 (Six6) gene was present only in three isolates, which all produced high levels of vascular wilt on soybean. In the current study, a collection of F. oxysporum isolates from soybean roots and F. oxysporum f. sp. phaseoli isolates from common bean was screened for the presence of the Six6 gene. Interestingly, all isolates for which the Six6 amplicon was generated caused wilt symptoms on soybean, and two-thirds of the isolates showed high levels of aggressiveness, indicating a positive association between the presence of the effector gene Six6 and induction of wilt symptoms. The expression profile of the Six6 gene analyzed by quantitative reverse-transcription polymerase chain reaction revealed an enhanced expression for the isolates that caused more severe wilt symptoms on soybean, as established by the greenhouse assay. These findings suggest the suitability of the Six6 gene as a possible locus for pathogenicity-based molecular diagnostics across the various formae speciales.

  6. Fluorescence imaging of soybean flavonol isolines

    Science.gov (United States)

    Kim, Moon S.; Lee, Edward H.; Mulchi, Charles L.; McMurtrey, James E., III; Chappelle, Emmett W.; Rowland, Randy A.

    1998-07-01

    Experiments were conducted to characterize the fluorescence emission of leaves from four soybean ('Harosoy') plants containing different concentrations of flavonols (kaempferol glycosides). The investigation utilized genetically mutated soybean flavonol isolines grown in a constant environment, thus limiting factors known to affect fluorescence emission characteristics other than different kaempferol glycosides concentrations. Flavonol isolines included OX922, OX941, OX942, OX944. The first two isolines contain kaempferol (K) glycosides; K3, K6, and K9, and the latter two did not have K3, K6, and K9. A fluorescence imaging system (FIS) was used to characterize steady state florescence images of the sample leaves measured at wavelengths centered at 450, 550, 680, and 740 nm with an excitation at 360 nm. Images taken with FIS greatly complement non-imaging fluorescence measurements by characterizing the spatial variation of fluorescence within leaves. We also acquired fluorescence emission spectra to characterize spectral features of the soybean flavonol isolines. The emission spectral shape of the fluorescence emission characteristics were not significantly different between the soybeans that contain kaempferol glycosides and the ones that do not contain kaempferol glycosides. Typical emission maxima of green vegetation in the blue, green, red, and far-red bands were noticed in all four soybean isolines. However, plants containing kaempferol glycosides, OX922 and OX941 had significantly lower intensities throughout the wavelength regions. These results imply that fluorescence emission intensities in the fluorescence emission bands studied are significantly affected by the presence and absence of kaempferol glycosides concentrations (UV radiation screening compounds). Pure kaempferol glycoside dissolved in solution show minimal fluorescence emission when excited with the absorption maximum radiation at 365 nm. However, a broad band emission can be seen in the green

  7. 40 CFR 180.522 - Fumigants for processed grains used in production of fermented malt beverage; tolerances for...

    Science.gov (United States)

    2010-07-01

    ... production of fermented malt beverage; tolerances for residues. 180.522 Section 180.522 Protection of... PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.522 Fumigants for processed grains used in production of fermented malt beverage; tolerances for residues. (a) General. Fumigants for processed grain...

  8. Nutritional value of raw soybeans, extruded soybeans, roasted soybeans and tallow as fat sources in early lactating dairy cows.

    Science.gov (United States)

    Amanlou, H; Maheri-Sis, N; Bassiri, S; Mirza-Aghazadeh, A; Salamatdust, R; Moosavi, A; Karimi, V

    2012-01-01

    Thirty multiparous Holstein cows (29.8 ± 4.01days in milk; 671.6 ± 31.47 kg of body weight) were used in a completely randomized design to compare nutritional value of four fat sources including tallow, raw soybeans, extruded soybeans and roasted soybeans for 8 weeks. Experimental diets were a control containing 27.4 % alfalfa silage, 22.5% corn silage, and 50.1% concentrate, and four diets with either tallow, raw soybean, extruded soybean, or roasted soybean added to provide 1.93% supplemental fat. Dry matter and NEL intakes were similar among treatments, while cows fed fat diets had significantly (Pfat. Supplemental fat, whether tallow or full fat soybeans increased milk production (1.89-2.45 kg/d; PMilk fat yield and percentage of cows fed fat-supplemented diets were significantly (Pfat-supplemented diets, roasted soybean caused highest milk fat yield and extruded soybean caused lowest milk fat yield. There was no significant effect of supplemental fat on the milk protein and lactose content and yield. Feed efficiency of fat-supplemented diets was significantly (Pfat sources on production response of cows, fat originating from heat-treated soybean help to minimize imported RUP (rumen undegradable protein) sources level as fish meal in comparison with tallow and raw soybean oil. In the Current study, there was no statistical significance among nutritional values of oil from extruded soybeans and roasted soybeans.

  9. Fumigant emission reductions with TIF warrant regulatory changes

    Directory of Open Access Journals (Sweden)

    Husein Ajwa

    2013-07-01

    Full Text Available With methyl bromide's phase-out, most growers have turned to alternative fumigants, particularly 1,3-dichloropropene (1,3-D and chloropicrin. These alternatives are tightly regulated because they are classified as toxic air contaminants and volatile organic compounds; the latter combine with other substances to produce ground-level ozone (smog. Two ambient air monitoring studies were conducted to evaluate the potential of totally impermeable film (TIF to reduce emissions from shank applications of chloropicrin and 1,3-D. In 2009, a study demonstrated that TIF reduced chloropicrin and 1,3-D peak emissions by 45% and 38%, respectively, but TIF did not reduce total emissions when it was cut after 6 days. In 2011, increasing the tarp period from 5 to 10 days decreased chloropicrin and 1,3-D peak emissions by 88% and 78%, and their total emissions by 64% and 43%, respectively. Concurrent dynamic flux chamber results corroborated the ambient air monitoring data. These studies provide regulatory agencies with mitigation measures that should allow continued fumigant use at efficacious application rates.

  10. Study Quality Protein and Fat in Some Romanian and Foreign Soybean Varieties

    Directory of Open Access Journals (Sweden)

    Daniela Cenan (Pasc

    2014-11-01

    Full Text Available Worldwide soy is one of the most important sources of vegetable protein and vegetable fats supplying plant. Soybean proteins are important both for human food and animal feed industry concentrated. In the last twenty years soybeans have become an irreplaceable product for the food industry. This paper presents the results of the production capacity, protein and oil content of 25 soybean genotypes studied in 2011-2013 at Agricultural Research Station Turda Development. Were calculated  the amounts of protein and oil produced by each genotype in part each year and averaged over three experimental years. Protein content was between 39 per cent and 43.9 per cent and for fat percentage values ​​were between 18.9 per cent and 21.8 per cent. Romanian genotypes quality results are similar to those obtained for foreign genotypes. These genotypes can be grown in climatic conditions of Transylvania resulting quality for there production.

  11. Toxicity of vanadium in soil on soybean at different growth stages.

    Science.gov (United States)

    Yang, Jinyan; Wang, Mei; Jia, Yanbo; Gou, Min; Zeyer, Josef

    2017-12-01

    Vanadium(V) is present in trace amounts in most plants and widely distributed in soils. However, the environmental toxicity of V compound in soils is controversial. A greenhouse study with soybean from germination to bean production under exposure to pentavalent V [V(V)] was conducted to elucidate the interaction of plants and V fractions in soils and to evaluate the toxicity of V at different plant growth stages. Soybean growth has no effect on non-specific-bond and specific-bond fractions of V in soils, but V fractionation occurred in more extraction-resistant phases at high V concentrations. High concentrations of V(V) postponed the germination and growth of the soybeans. Bean production was less than half of that of the control at 500 mg kg -1 spiked V(V). For the 0 mg kg -1 spiked V(V) treated plants, the root was not the main location where V was retained. Vanadium in the soils at ≤ 250 mg kg -1 did not significantly affect the V concentration in the shoot and leaf of soybeans. With the increase in V concentration in soil, V concentrations in roots increased, whereas those in beans and pods decreased. From vegetative growth to the reproductive growth, the soybeans adsorbed more V and accumulated more V in the roots, with soil. Meanwhile, the ratio of V concentration in cell wall to the total V concentration in the root increased with the increase in V(V) concentration in soils. Our results revealed that high concentrations of V inhibited soybean germination and biomass production. However, plants may produce self-defense systems to endure V toxicity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Performance of weed Extracts on Growth Characteristics and Biochemical Activities in Salt Stressed Soybean Plants

    International Nuclear Information System (INIS)

    Moussa, H.R.; Khodary, S.E.A.

    2004-01-01

    The changes induced in the growth parameters and certain metabolic activities in response to both salt (NaCI) shock treatments and foliar spray of weed extracts (jungle rice, cocklebur and purslane) plus salinity were studied, using soybean seedlings grown in Hoagland's nutrient solution supplemented with various concentrations of NaCI. When seedlings were subjected to high salinity (100 and 200 mM NaCI), their growth criteria, the photosynthetic capacity, pigment contents and carbohydrate metabolism were significantly decreased. Under salinized conditions and weed extract treatments, the growth pattern,''1''4CO 2 -fixation rate, pigment as well as carbohydrate contents of soybean plants were significantly increased comparable to NaCI-treated samples. It was suggested that weed extract and in particular jungle rice might oppose the harsh effect of salinity in soybean plants

  13. Essential oils as fumigants for bed bugs (Hemiptera: Cimicidae)

    Science.gov (United States)

    In Petri dish assays, fumigation of a pyrethroid-susceptible strain of bed bugs Cimex lectularius L. (Hemiptera: Cimicidae) with various essential oils resulted in mortality that approached or equaled 100%, after 5 days. However, when bed bugs were exposed to the same essential oils in sealed, comme...

  14. Fumigant Management Plan Templates - Phase 2 Files Listed by Chemical

    Science.gov (United States)

    FMP templates are in PDF and Word formats for each type of soil fumigant pesticide, with samples of filled out plans. Types are by active ingredient chemical: Chloropicrin, dazomet, dimethyl disulfide, metam sodium/potassium, and methyl bromide.

  15. Experimental investigation of regulated and unregulated emissions from a diesel engine fueled with Euro V diesel fuel and fumigation methanol

    Science.gov (United States)

    Zhang, Z. H.; Cheung, C. S.; Chan, T. L.; Yao, C. D.

    2010-03-01

    Experiments were conducted on a four-cylinder direct-injection diesel engine with part of the engine load taken up by fumigation methanol injected into the air intake of each cylinder to investigate the regulated and unregulated gaseous emissions and particulate emission of the engine under five engine loads at an engine speed of 1920 rev min -1. The fumigation methanol was injected to top up 10%, 20% and 30% of the engine load under different engine operating conditions. The experimental results show that at low engine loads, the brake thermal efficiency (BTE) decreases with increase in fumigation methanol; but at high engine loads, the BTE is not significantly affected by fumigation methanol. The fumigation methanol results in significant increase in hydrocarbon (HC), carbon monoxide (CO) and nitrogen dioxide (NO 2) emissions, but decrease in nitrogen oxides (NO x). For the unregulated gaseous emissions, unburned methanol, formaldehyde and BTX (benzene, toluene and xylene) emissions increase but ethyne, ethene and 1,3-butadiene emissions decrease. Particulate mass and number concentrations also decrease with increase in fumigation methanol. A diesel oxidation catalyst (DOC) is found to reduce significantly most of the pollutants, including the air toxics, when the exhaust gas temperature is sufficiently high.

  16. Effects of elevated atmospheric carbon dioxide concentrations on water and acid requirements of soybeans grown in a recirculating hydroponic system

    Science.gov (United States)

    Mackowiak, C. L.; Wheeler, R. M.; Lowery, W.; Sager, J. C.

    1990-01-01

    Establishing mass budgets of various crop needs, i.e. water and nutrients, in different environments is essential for the Controlled Ecological Life Support System (CELSS). The effects of CO2 (500 and 1000 umol mol (exp -1)) on water and acid use (for pH control) by soybeans in a recirculating hydroponic system were examined. Plants of cvs. McCall and Pixie were grown for 90 days using the nutrient film technique (NFT) and a nitrate based nutrient solution. System acid use for both CO2 levels peaked near 4 weeks during a phase of rapid vegetative growth, but acid use decreased more rapidly under 500 compared to 1000 umol mol (exp GR) CO2. Total system water use by 500 and 1000 umol mol (exp -1) plants was similar, leaving off at 5 weeks and declining as plants senesced (ca. 9 weeks). However, single leaf transpiration rates were consistently lower at 1000 umol mol (exp -1). The data suggest that high CO2 concentrations increase system acid (and nutrient) use because of increased vegetative growth, which in turn negates the benefit of reduced water use (lower transpiration rates) per unit leaf area.

  17. Varying response of the concentration and content of soybean seed mineral elements, carbohydrates, organic acids, amino acids, protein, and oil to phosphorus starvation and CO2 enrichment

    Science.gov (United States)

    A detailed investigation of the concentration (g-1 seed weight) and content (g plant-1) of seed mineral elements and metabolic profile under phosphorus (P) starvation at ambient (aCO2) and elevated carbon dioxide (eCO2) in soybean is limited. Soybean plants were grown in a controlled environment at ...

  18. Practical use of the fertigation control based on cumulative solar radiation to decrease the nitrate concentration in spinach [Spinacia oleracea] grown in the greenhouse

    International Nuclear Information System (INIS)

    Shinohara, Y.; Tsukagoshi, S.; Hayashi, N.; Maruo, T.; Hohjo, M.

    2007-01-01

    Spinach plants (Spinacia oleracea L.) were grown in a greenhouse using fertigation based on cumulative solar radiation, and effects on plant growth, nitrate concentration in the leaves, and nitrate utilization/application ratio were studied. The relation of water and NO3-N absorption to cumulative solar radiation was initially determined in hydroponically grown spinach, then the stepwise fertigation program was set to 1.0, 1.2 and 1.4 times the standard quantity. With 1.2 fertigation treatment, plant growth and leaf color did not differ from those of plants cultivated by conventional soil culture. Total nitrate supplied to the soil under fertigation treatment were about half of that at soil culture. The nitrate utilization/application ratio was increased from 44% in soil culture to 82% under fertigation treatment. The nitrate concentration in spinach leaves under fertigation treatments tended to be lower compared to those under soil culture. In addition, the production of spinach with lower nitrate and without effects on growth seemed to be feasible by the withdrawal of NO3-N in the drip solution for several days before harvest

  19. Ambient ultraviolet radiation induces protective responses in soybean but does not attenuate indirect defense

    Energy Technology Data Exchange (ETDEWEB)

    Winter, Thorsten R. [Department of Botany II, Julius-von-Sachs Institute for Biosciences, University of Wuerzburg, Julius-von-Sachs-Platz 3, 97082 Wuerzburg (Germany); Rostas, Michael [Department of Botany II, Julius-von-Sachs Institute for Biosciences, University of Wuerzburg, Julius-von-Sachs-Platz 3, 97082 Wuerzburg (Germany)], E-mail: rostas@botanik.uni-wuerzburg.de

    2008-09-15

    We investigated the effects of ambient ultraviolet (UV) radiation on (i) the performance and chemistry of soybean plants, (ii) the performance of Spodoptera frugiperda and (iii) the foraging behavior of the herbivore's natural enemy Cotesia marginiventris which exploits herbivore-induced plant volatiles (VOC) for host location. The accumulation of protective phenolics was faster in plants receiving ambient UV than in controls exposed to sun light lacking UV. Accordingly, isorhamnetin- and quercetin-based flavonoids were increased in UV exposed plants. No UV effects were found on the performance and feeding behavior of S. frugiperda. Herbivore-damaged plants emitted the same VOC when grown under ambient or attenuated UV for 5, 10 or 30 days. Consequently, C. marginiventris was attracted but did not discriminate between exposed and unexposed soybeans. In summary, ambient UV radiation affected soybean morphology and physiology but did not destabilize interactions between trophic levels. - Ambient ultraviolet radiation does not alter induced VOC emission in soybean and thus host location of the parasitoid Cotesia marginiventris remains effective.

  20. Hydroponic cultivation improves the nutritional quality of soybean and its products.

    Science.gov (United States)

    Palermo, Mariantonella; Paradiso, Roberta; De Pascale, Stefania; Fogliano, Vincenzo

    2012-01-11

    Hydroponic cultivation allows the control of environmental conditions, saves irrigation water, increases productivity, and prevents plant infections. The use of this technique for large commodities such as soybean is not a relevant issue on fertile soils, but hydroponic soybean cultivation could provide proteins and oil in adverse environmental conditions. In this paper, the compositions of four cultivars of soybean seeds and their derivates, soy milk and okara, grown hydroponically were compared to that of the same cultivar obtained from soil cultivation in an open field. Besides proximal composition, the concentrations of phytic acid and isoflavones were monitored in the seeds, soy milk, and okara. Results demonstrated that, independent from the cultivar, hydroponic compared to soil cultivation promoted the accumulation of fats (from 17.37 to 21.94 g/100 g dry matter) and total dietary fiber (from 21.67 to 28.46 g/100 g dry matter) and reduced isoflavones concentration (from 17.04 to 7.66 mg/kg dry matter), whereas protein concentration was unaffected. The differences found in seed composition were confirmed in the respective okara products, but the effect of cultivation system was not significant looking at the soy milk composition. Data showed that hydroponic cultivation improved the nutritional quality of soybean seeds with regard to fats and dietary fiber. They also suggest that specific cultivars should be selected to obtain the desired nutritional features of the soybean raw material depending on its final destination.

  1. Evaluation of soil solarisation and bio-fumigation for the ...

    African Journals Online (AJOL)

    Soil-borne plant pathogens cause heavy losses to all major crops, leading to reductions in both yield and quality. Soil solarisation and bio-fumigation offer disease management options that are safe and reduce the use of pesticides for soil-borne plant pathogens. Mustard plant releases antimicrobial hydrolysis products, ...

  2. Seed and Foliar Application of Amino Acids Improve Variables of Nitrogen Metabolism and Productivity in Soybean Crop.

    Science.gov (United States)

    Teixeira, Walquíria F; Fagan, Evandro B; Soares, Luis H; Soares, Jérssica N; Reichardt, Klaus; Neto, Durval D

    2018-01-01

    The application of amino acids in crops has been a common practice in recent years, although most of the time they are associated with products based on algae extracts or on fermented animal or vegetable wastes. However, little is known about the isolated effect of amino acids on the development of crops. Therefore, the objective of this research was to evaluate the effect of the application of isolated amino acids on the in some steps of the soybean nitrogen metabolism and on productivity. Experiments were carried out in a greenhouse and in the field with the application of the amino acids glutamate (Glu), phenylalanine (Phe), cysteine (Cys) and glycine (Gly) and as a set (Glu+Phe+Cys+Gly), as seed treatment (ST), as foliar application (FA) and both (ST+FA), at the V 4 growth stage. Evaluations consisted of nitrate reductase and urease activities, nitrate, ureide, total amino acids and total nitrogen content in leaves, and productivity. The application of Glu to leaves, Cys as ST and a mixture of Glu+Cys+Phe+Gly as ST+FA in the greenhouse experiment increased the total amino acids content. In the field experiment all treatments increased the amino acid content in leaves. At the V 6 stage in the field experiment, all modes of Gly application, Glu as ST and FA, Cys and Phe as ST+FA and Glu+Cys+Phe+Gly as FA increased the nitrate content in leaves. In the greenhouse, application of Cys and Phe as ST increased the production of soybean plants by at least 21%. The isolated application of Cys, Phe, Gly, Glu and the set of these amino acids as ST increased the productivity of soybean plants in the field experiment by at least 22%.

  3. Seed and Foliar Application of Amino Acids Improve Variables of Nitrogen Metabolism and Productivity in Soybean Crop

    Science.gov (United States)

    Teixeira, Walquíria F.; Fagan, Evandro B.; Soares, Luis H.; Soares, Jérssica N.; Reichardt, Klaus; Neto, Durval D.

    2018-01-01

    The application of amino acids in crops has been a common practice in recent years, although most of the time they are associated with products based on algae extracts or on fermented animal or vegetable wastes. However, little is known about the isolated effect of amino acids on the development of crops. Therefore, the objective of this research was to evaluate the effect of the application of isolated amino acids on the in some steps of the soybean nitrogen metabolism and on productivity. Experiments were carried out in a greenhouse and in the field with the application of the amino acids glutamate (Glu), phenylalanine (Phe), cysteine (Cys) and glycine (Gly) and as a set (Glu+Phe+Cys+Gly), as seed treatment (ST), as foliar application (FA) and both (ST+FA), at the V4 growth stage. Evaluations consisted of nitrate reductase and urease activities, nitrate, ureide, total amino acids and total nitrogen content in leaves, and productivity. The application of Glu to leaves, Cys as ST and a mixture of Glu+Cys+Phe+Gly as ST+FA in the greenhouse experiment increased the total amino acids content. In the field experiment all treatments increased the amino acid content in leaves. At the V6 stage in the field experiment, all modes of Gly application, Glu as ST and FA, Cys and Phe as ST+FA and Glu+Cys+Phe+Gly as FA increased the nitrate content in leaves. In the greenhouse, application of Cys and Phe as ST increased the production of soybean plants by at least 21%. The isolated application of Cys, Phe, Gly, Glu and the set of these amino acids as ST increased the productivity of soybean plants in the field experiment by at least 22%. PMID:29643860

  4. Selection of Rhizobium strain from Wonogiri, Central Java on the growth of soybean (Glycine max L. on the sand sterile medium in greenhouse

    Directory of Open Access Journals (Sweden)

    SRI PURWANINGSIH

    2005-07-01

    Full Text Available An experiment on the selection of Rhizobium strain from Wonogiri, Central Java on the growth of soybean (Glycine max L. on the sand sterile medium in green house. The aim of the experiment the selection and potency of the Rhizobium strain to increase the growth of soybean. The experiment was carried out in green house condition in Microbiology Division, Research Center for Biology-LIPI with sterile sand medium. The research design was Completely Randomized Design with three replications for each treatment. The Rhizobium strains used were 1 W (isolated from bean, Vigna radiata, 2 W (isolated from soybean, 3 W (isolated from bean, 4 W (isolated from soybean, 5 W (isolated from soybean, 6 W (isolated from peanut, Arachis hypogaea, 7 W (isolated from peanut, 8 W (isolated from peanut, the controls were uninoculated with Rhizobium strain and without urea fertilizer (K1, uninoculated and with urea fertilizer equal 100 kg/ha (K2. The plants were harvested after 50 days, the variable of investigation were the dry weight of canopy, roots, nodules root, total plants, number of nodules and ‘symbiotic capacity”. The results showed that all of experiment plant which be inoculated with Rhizobium able to form nodule. Strain of 2 W (isolated from soybean has given the best effects on the growth of soybean.

  5. Influence of soybean pubescence type on radiation balance

    International Nuclear Information System (INIS)

    Nielsen, D.C.; Blad, B.I.; Verma, S.B.; Rosenberg, N.J.; Specht, J.E.

    1984-01-01

    Increasing the density of pubescence on the leaves and stems of soybeans (Glycine max L.) should influence the radiation balance of the soybean canopy and affect the evapotranspiration and photosynthetic rates. This study was undertaken to evaluate the influence of increased pubescence density on various components of the radiation balance. Near-isogenic lines of two soybean cultivars (Clark and Harosoy) were grown in four adjacent small plots (18 m · 18 m) during the 1980, 1981, and 1982 growing seasons near Mead, Nebr. The soil at this site is classified as a Typic Argiudoll. The isolines of each cultivar varied only in the amount of pubescence (dense vs. normal pubescence). Measurements of albedo, reflected photosynthetically active radiation (PAR), emitted longwave radiation, and net radiation were made over the crop surfaces with instruments mounted on a rotating boom located at the intersection of the four plots. Radiative canopy temperatures were measured with a handheld infrared thermometer (IRT). Results show that dense pubescence increased reflection of shortwave radiation and PAR by 3 to 5% and 8 to 11%, respectively. Emitted longwave radiation and radiative canopy temperature were not significantly affected by increased pubescence, although there was a slight tendency for the dense pubescent canopy to be cooler. Increased pubescence decreased net radiation over the canopy by 0.5 to 1.5%. These results suggest that soybeans with dense pubescence may be slightly better adapted to the high radiation, high temperature, and limited moisture conditions of the eastern Great Plains than are those with normal pubescence

  6. Global warming potential and greenhouse gas emission under different soil nutrient management practices in soybean-wheat system of central India.

    Science.gov (United States)

    Lenka, Sangeeta; Lenka, Narendra Kumar; Singh, Amar Bahadur; Singh, B; Raghuwanshi, Jyothi

    2017-02-01

    Soil nutrient management is a key component contributing to the greenhouse gas (GHG) flux and mitigation potential of agricultural production systems. However, the effect of soil nutrient management practices on GHG flux and global warming potential (GWP) is less understood in agricultural soils of India. The present study was conducted to compare three nutrient management systems practiced for nine consecutive years in a soybean-wheat cropping system in the Vertisols of India, in terms of GHG flux and GWP. The treatments were composed of 100% organic (ONM), 100% inorganic (NPK), and integrated nutrient management (INM) with 50% organic + 50% inorganic inputs. The gas samples for GHGs (CO 2 , CH 4 , and N 2 O) were collected by static chamber method at about 15-day interval during 2012-13 growing season. The change in soil organic carbon (SOC) content was estimated in terms of the changes in SOC stock in the 0-15 cm soil over the 9-year period covering 2004 to 2013. There was a net uptake of CH 4 in all the treatments in both soybean and wheat crop seasons. The cumulative N 2 O and CO 2 emissions were in the order of INM > ONM > NPK with significant difference between treatments (p < 0.05) in both the crop seasons. The annual GWP, expressed in terms of CH 4 and N 2 O emission, also followed the same trend and was estimated to be 1126, 1002, and 896 kg CO 2 eq ha -1  year -1 under INM, ONM, and NPK treatments, respectively. However, the change in SOC stock was significantly higher under ONM (1250 kg ha -1  year -1 ) followed by INM (417 kg ha -1  year -1 ) and least under NPK (198 kg ha -1  year -1 ) treatment. The wheat equivalent yield was similar under ONM and INM treatments and was significantly lower under NPK treatment. Thus, the GWP per unit grain yield was lower under ONM followed by NPK and INM treatments and varied from 250, 261, and 307 kg CO 2 eq Mg -1 grain yield under ONM, NPK, and INM treatments, respectively.

  7. Identification of a single gene for seed coat impermeability in soybean PI 594619.

    Science.gov (United States)

    Kebede, Hirut; Smith, James R; Ray, Jeffery D

    2014-09-01

    Inheritance studies and molecular mapping identified a single dominant gene that conditions seed coat impermeability in soybean PI 594619. High temperatures during seed fill increase the occurrence of soybeans with impermeable seed coat, which is associated with non-uniform and delayed germination and emergence. This can be an issue in soybean production areas with excessively high-temperature environments. The objectives of the present study were to investigate the inheritance of impermeable seed coat under a high-temperature environment in the midsouthern United States and to map the gene(s) that affect this trait in a germplasm line with impermeable seed coat (PI 594619). Crosses were made between PI 594619 and an accession with permeable seed coat at Stoneville, MS in 2008. The parental lines and the segregating populations from reciprocal crosses were grown in Stoneville in 2009. Ninety-nine F2:3 families and parents were also grown at Stoneville, MS in 2011. Seeds were assayed for percent impermeable seed coat using the standard germination test. Genetic analysis of the F2 populations and F2:3 families indicated that seed coat impermeability in PI 594619 is controlled by a single major gene, with impermeable seed coat being dominant to permeable seed coat. Molecular mapping positioned this gene on CHR 2 between markers Sat_202 and Satt459. The designation of Isc (impermeable seed coat) for this single gene has been approved by the Soybean Genetics Committee. Selection of the recessive form (isc) may be important in developing cultivars with permeable seed coat for high-heat production environments. The single-gene nature of impermeable seed coat may also have potential for being utilized in reducing seed damage caused by weathering and mold.

  8. Leaf movement, photosynthesis and resource use efficiency responses to multiple environmental stress in Glycine max (soybean)

    International Nuclear Information System (INIS)

    Rosa, L.M.G.

    1993-01-01

    Increases in the concentration of greenhouse gases in the atmosphere, may cause a significant increase in temperature, with implications for general wind patterns and precipitation. Reductions in stratospheric ozone will result in increased levels of UV-B reaching earth's surface. During their lifetime plants must deal with a variety of co-occurring environmental stresses. Accordingly, studies into plant responses to multiple environmental factors is important to our understanding of limits to their growth, productivity, and distribution. Heliotropic leaf movements are a generalized plant response to environmental stresses, and the pattern of these movements can be altered by resource availability (e.g., water, and nitrogen). Previous greenhouse and field studies have demonstrated damaging effects of UV-B radiation in crop species, including soybean. Documented in this paper are Leaf movement and gas exchange responses of four soybean cultivars with different sensitivity to UV-B radiation to enhanced levels of UV-B, and modifications of these responses caused by water stress and nitrogen fertilization. UV-B radiation had no effect on the patterns of leaf orientation in soybean; however, a ranking of the cultivars based on midday leaf angles was the same as the ranking of these cultivars based on their sensitivity to UV-B radiation. Water and nitrogen altered the leaf movement patterns of soybeans. Gas exchange parameters in all four cultivars responded in a similar fashion to changes in leaf water potential. Reductions in water availability resulted in lower discrimination. Nitrogen fertilization in cv Forrest, also resulted in lower discrimination, especially under low water regimes, indicating a higher water use efficiency for fertilized plants. UV-B radiation resulted in lower discrimination in the UV-B sensitive CNS cultivar, indicating a stronger stomatal limitation to photosynthesis under increased UV-B levels

  9. Effect of phytosanitary irradiation and methyl bromide fumigation on the physical, sensory, and microbiological quality of blueberries and sweet cherries.

    Science.gov (United States)

    Thang, Karen; Au, Kimberlee; Rakovski, Cyril; Prakash, Anuradha

    2016-10-01

    The objective of this study was to determine whether irradiation could serve as a suitable phytosanitary treatment alternative to methyl bromide (MB) fumigation for blueberries and sweet cherry and also to determine the effect of phytosanitary irradiation treatment on survival of Salmonella spp. and Listeria monocytogenes on these fruit. 'Bluecrop' blueberries (Vaccinium corymbosum) and 'Sweetheart' cherries (Prunus avium) were irradiated at 0.4 kGy or fumigated with methyl bromide and evaluated for quality attributes during storage. Irradiation caused an immediate decrease in firmness of both fruit without further significant change during storage. Fumigated fruit, in contrast, softened by 11-14% during storage. Irradiation did not adversely affect blueberry and cherry shelf-life. MB fumigation did not impact blueberry and cherry quality attributes initially; however, fumigated fruit exhibited greater damage and mold growth than the control and irradiated samples during storage. Irradiation at 400 Gy resulted in a ∼1 log CFU g(-1) reduction in Salmonella spp. and Listeria monocytogenes counts, indicating that this treatment cannot significantly enhance safety. This study indicates that irradiation at a target dose of 0.4 kGy for phytosanitary treatment does not negatively impact blueberry and cherry quality and can serve as an alternative to methyl bromide fumigation. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  10. Reduction in uptake by rice and soybean of aromatic arsenicals from diphenylarsinic acid contaminated soil amended with activated charcoal

    International Nuclear Information System (INIS)

    Arao, Tomohito; Maejima, Yuji; Baba, Koji

    2011-01-01

    Activated charcoal (AC) amendment has been suggested as a promising method to immobilize organic contaminants in soil. We performed pot experiments with rice and soybean grown in agricultural soil polluted by aromatic arsenicals (AAs). The most abundant AA in rice grains and soybean seeds was methylphenylarsinic acid (MPAA). MPAA concentration in rice grains was significantly reduced to 2% and 3% in 0.2% AC treated soil compared to untreated soil in the first year of rice cultivation. In the second year, MPAA concentration in rice grains was significantly reduced to 15% in 0.2% AC treated soil compared to untreated soil. MPAA concentration in soybean seeds was significantly reduced to 44% in 0.2% AC treated soil compared to untreated soil. AC amendment was effective in reducing AAs in rice and soybean. - Highlights: → Pot experiments using agricultural soil contaminated with aromatic arsenicals (AAs). → Methylphenylarsinic acid (MPAA) was the most abundant AA in rice and soybean. → MPAA concentration in rice grains was dramatically reduced via 0.2% AC amendment. → MPAA concentration in soybean seeds was also reduced via 0.2% AC amendment. → AC amendment effectively reduced AAs in rice and soybean. - Activated charcoal amendment to soil contaminated with diphenylarsinic acid reduced aromatic arsenicals in rice and soybean.

  11. Reduction in uptake by rice and soybean of aromatic arsenicals from diphenylarsinic acid contaminated soil amended with activated charcoal

    Energy Technology Data Exchange (ETDEWEB)

    Arao, Tomohito, E-mail: arao@affrc.go.jp [National Institute for Agro-Environmental Sciences, Soil Environmental Division, 3-1-3 Kannondai, Tsukuba, Ibaraki 305-8604 (Japan); Maejima, Yuji; Baba, Koji [National Institute for Agro-Environmental Sciences, Soil Environmental Division, 3-1-3 Kannondai, Tsukuba, Ibaraki 305-8604 (Japan)

    2011-10-15

    Activated charcoal (AC) amendment has been suggested as a promising method to immobilize organic contaminants in soil. We performed pot experiments with rice and soybean grown in agricultural soil polluted by aromatic arsenicals (AAs). The most abundant AA in rice grains and soybean seeds was methylphenylarsinic acid (MPAA). MPAA concentration in rice grains was significantly reduced to 2% and 3% in 0.2% AC treated soil compared to untreated soil in the first year of rice cultivation. In the second year, MPAA concentration in rice grains was significantly reduced to 15% in 0.2% AC treated soil compared to untreated soil. MPAA concentration in soybean seeds was significantly reduced to 44% in 0.2% AC treated soil compared to untreated soil. AC amendment was effective in reducing AAs in rice and soybean. - Highlights: > Pot experiments using agricultural soil contaminated with aromatic arsenicals (AAs). > Methylphenylarsinic acid (MPAA) was the most abundant AA in rice and soybean. > MPAA concentration in rice grains was dramatically reduced via 0.2% AC amendment. > MPAA concentration in soybean seeds was also reduced via 0.2% AC amendment. > AC amendment effectively reduced AAs in rice and soybean. - Activated charcoal amendment to soil contaminated with diphenylarsinic acid reduced aromatic arsenicals in rice and soybean.

  12. Nutritional value of raw soybeans, extruded soybeans, roasted soybeans and tallow as fat sources in early lactating dairy cows

    Directory of Open Access Journals (Sweden)

    A. Moosavi

    2012-09-01

    Full Text Available Thirty multiparous Holstein cows (29.8 ± 4.01days in milk; 671.6 ± 31.47 kg of body weight were used in a completely randomized design to compare nutritional value of four fat sources including tallow, raw soybeans, extruded soybeans and roasted soybeans for 8 weeks. Experimental diets were a control containing 27.4 % alfalfa silage, 22.5% corn silage, and 50.1% concentrate, and four diets with either tallow, raw soybean, extruded soybean, or roasted soybean added to provide 1.93% supplemental fat. Dry matter and NEL intakes were similar among treatments, while cows fed fat diets had significantly (P<0.05 high NEL intakes when compared to control with no fat. Supplemental fat, whether tallow or full fat soybeans increased milk production (1.89-2.45 kg/d; P<0.01 and FCM production (1.05-2.79; P<0.01. Milk fat yield and percentage of cows fed fat-supplemented diets were significantly (P<0.01 and P<0.05 respectively higher than control. Between fat-supplemented diets, roasted soybean caused highest milk fat yield and extruded soybean caused lowest milk fat yield. There was no significant effect of supplemental fat on the milk protein and lactose content and yield. Feed efficiency of fat-supplemented diets was significantly (P<0.01 higher than control. Body weight, body weight change and BCS (body condition score of cows, as well as energy balance and energy efficiency were similar between treatments. In conclusion, while there was no significant effect of fat sources on production response of cows, fat originating from heat-treated soybean help to minimize imported RUP (rumen undegradable protein sources level as fish meal in comparison with tallow and raw soybean oil. In the Current study, there was no statistical significance among nutritional values of oil from extruded soybeans and roasted soybeans.

  13. Responses of Metabolites in Soybean Shoot Apices to Changing Atmospheric Carbon Dioxide Concentrations

    Directory of Open Access Journals (Sweden)

    Richard Sicher

    2012-01-01

    Full Text Available Soybean seedlings were grown in controlled environment chambers with CO2 partial pressures of 38 (ambient and 72 (elevated Pa. Five or six shoot apices were harvested from individual 21- to 24-day-old plants. Metabolites were analyzed by gas chromatography and, out of 21 compounds, only sucrose and fructose increased in response to CO2 enrichment. One unidentified metabolite, Unk-21.03 decreased up to 80% in soybean apices in response to elevated CO2. Levels of Unk-21.03 decreased progressively when atmospheric CO2 partial pressures were increased from 26 to 100 Pa. Reciprocal transfer experiments showed that Unk-21.03, and sucrose in soybean apices were altered slowly over several days to changes in atmospheric CO2 partial pressures. The mass spectrum of Unk-21.03 indicated that this compound likely contained both an amino and carboxyl group and was structurally related to serine and aspartate. Our findings suggested that CO2 enrichment altered a small number of specific metabolites in soybean apices. This could be an important step in understanding how plant growth and development are affected by carbon dioxide enrichment.

  14. Developmental, nutritional and hormonal anomalies of weightlessness-grown wheat

    Science.gov (United States)

    Carman, J. G.; Hole, P.; Salisbury, F. B.; Bingham, G. E.

    2015-07-01

    The behavior of water in weightlessness, as occurs in orbiting spacecraft, presents multiple challenges for plant growth. Soils remain saturated, impeding aeration, and leaf surfaces remain wet, impeding gas exchange. Herein we report developmental and biochemical anomalies of "Super Dwarf" wheat (Triticum aestivum L.) grown aboard Space Station Mir during the 1996-97 "Greenhouse 2" experiment. Leaves of Mir-grown wheat were hyperhydric, senesced precociously and accumulated aromatic and branched-chain amino acids typical of tissues experiencing oxidative stress. The highest levels of stress-specific amino acids occurred in precociously-senescing leaves. Our results suggest that the leaf ventilation system of the Svet Greenhouse failed to remove sufficient boundary layer water, thus leading to poor gas exchange and onset of oxidative stress. As oxidative stress in plants has been observed in recent space-flight experiments, we recommend that percentage water content in apoplast free-spaces of leaves be used to evaluate leaf ventilation effectiveness. Mir-grown plants also tillered excessively. Crowns and culms of these plants contained low levels of abscisic acid but high levels of cytokinins. High ethylene levels may have suppressed abscisic acid synthesis, thus permitting cytokinins to accumulate and tillering to occur.

  15. Genotypic Variation of Early Maturing Soybean Genotypes for Phosphorus Utilization Efficiency under Field Grown Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Abaidoo, R. C. [Kwame Nkrumah University of Technology, Kumasi (Ghana); International Institute of Tropical Agriculture, Ibadan (Nigeria); Opoku, A.; Boahen, S. [Kwame Nkrumah University of Technology, Kumasi (Ghana); Dare, M. O. [Federal University of Agriculture, Abeokuta (Nigeria)

    2013-11-15

    Variability in the utilization of phosphorus (P) by 64 early-maturing soybean (Glycine max L. Merr.) genotypes under low-P soil conditions were evaluated in 2009 and 2010 at Shika, Nigeria. Fifteen phenotypic variables; number of nodules, nodule dry weight, grain yield, plant biomass, total biomass, biomass N and P content, Phosphorus Utilization Index (PUI), shoot P Utilization efficiency (PUIS), grain P Utilization efficiency (PUIG), Harvest Index (HI), Biological N fixed (BNF), total N fixed and N and P uptake were measured. The four clusters revealed by cluster analysis were basically divided along (1) plant biomass and uptake, (2) nutrient acquisition and utilization and (3) nodulation components. Three early maturing genotypes, TGx1842-14E, TGx1912-11F and TGx1913-5F, were identified as having high P utilization index and low P uptake. These genotypes could be a potential source for breeding for P use efficiency in early maturing soybean genotypes. (author)

  16. Photosynthate partitioning and distribution in soybean plant

    International Nuclear Information System (INIS)

    Latche, J.; Cavalie, G.

    1983-01-01

    Plants were grown in a controlled environment chamber and fed with a modified Hoagland solution containing nitrate as nitrogen source (N+ medium). Soybeans, 33 days old (flowering stage), 45 and 56 days old (pods formation and filling stages) were used for experimentation. In each experiment, the eight trifoliated leaf (F 8 ) was exposed to 14 CO 2 (10 μCi; 400 vpm), in the light (80 W x m -2 ) for 30 min. After a 6 h chase period (22 - 25 0 C; 80 W x m -2 ), the radiocarbon distribution among plant parts was determined and labelled compounds were identified. (orig.)

  17. Fumigant Activity of Sweet Orange Essential Oil Fractions Against Red Imported Fire Ants (Hymenoptera: Formicidae).

    Science.gov (United States)

    Hu, Wei; Zhang, Ning; Chen, Hongli; Zhong, Balian; Yang, Aixue; Kuang, Fan; Ouyang, Zhigang; Chun, Jiong

    2017-08-01

    Sweet orange oil fractions were prepared by molecular distillation of cold-pressed orange oil from sample A (Citrus sinensis (L.) 'Hamlin' from America) and sample B (Citrus sinensis Osbeck 'Newhall' from China) respectively, and their fumigant activities against medium workers of red imported fire ants (Solenopsis invicta Buren) were investigated. The volatile composition of the orange oil fractions was identified and quantified using GC-MS. Fractions from sample A (A1, A2, and A3) contained 23, 37, and 48 chemical constituents, and fractions from sample B (B1, B2, and B3) contained 18, 29, and 26 chemical constituents, respectively. Monoterpenes were the most abundant components, accounting for 73.56% to 94.86% of total orange oil fractions, among which D-limonene (65.28-80.18%), β-pinene (1.71-5.58%), 3-carene (0.41-4.01%), β-phellandrene (0.58-2.10%), and linalool (0.31-2.20%) were major constituents. Fumigant bioassay indicated that all orange oil fractions exerted good fumigant toxicity against workers of fire ants at 3, 5, 10, and 20 mg/centrifuge tubes, and B1 had the strongest insecticidal potential, followed by A1, B2, A2, B3, and A3. The fractions composed of more high volatile molecules (A1 and B1) showed greater fumigant effects than others. Compounds linalool and D-limonene, which were the constituents of the orange oil, exhibited excellent fumigant toxicity against red imported fire ant workers. Linalool killed red imported fire ant workers completely at 5, 10, and 20 mg/tube after 8 h of treatment, and D-limonene induced >86% mortality at 8 h of exposure. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Spectral Detection of Soybean Aphid (Hemiptera: Aphididae) and Confounding Insecticide Effects in Soybean

    Science.gov (United States)

    Alves, Tavvs Micael

    Soybean aphid, Aphis glycines (Hemiptera: Aphididae) is the primary insect pest of soybean in the northcentral United States. Soybean aphid may cause stunted plants, leaf discoloration, plant death, and decrease soybean yield by 40%. Sampling plans have been developed for supporting soybean aphid management. However, growers' perception about time involved in direct insect counts has been contributing to a lower adoption of traditional pest scouting methods and may be associated with the use of prophylactic insecticide applications in soybean. Remote sensing of plant spectral (light-derived) responses to soybean aphid feeding is a promising alternative to estimate injury without direct insect counts and, thus, increase adoption and efficiency of scouting programs. This research explored the use of remote sensing of soybean reflectance for detection of soybean aphids and showed that foliar insecticides may have implications for subsequent use of soybean spectral reflectance for pest detection. (Abstract shortened by ProQuest.).

  19. Changes in soybean phytate content as a result of field growing conditions and influence on tofu texture.

    Science.gov (United States)

    Ishiguro, Takahiro; Ono, Tomotada; Wada, Takahiro; Tsukamoto, Chigen; Kono, Yuhi

    2006-04-01

    It is known that tofu quality tends to vary among soybeans even of the same variety. Cultivation environments can affect the contents of the soybeans. Twenty-seven soybean varieties were grown in a drained paddy field and an upland field, and then their protein and phytate contents were determined using the Fourier transfer infrared spectroscopy (FT-IR) method. The phytate contents of 12 varieties were higher in the drained paddy field than in the upland field. On the other hand, the environmental factor had little effect on the protein contents. In order to determine whether the difference in phytate content affected tofu texture, the hardness of the tofu made from phytate-added soymilk was measured. The tofu texture having more phytate became softer in the range of the common coagulant concentration. We concluded that the difference in the phytate content of the soybeans among the environmental conditions is a factor that causes fluctuation in tofu quality.

  20. The effects of ultraviolet-B radiation on loblolly pine. 1: Growth, photosynthesis and pigment production in greenhouse-grown seedlings

    International Nuclear Information System (INIS)

    Sullivan, J.H.; Teramura, A.H.

    1989-01-01

    One-year old loblolly pine (Pinus taeda L.) seedlings were grown in an unshaded greenhouse for 7 months under 4 levels of ultraviolet-B (UV-B) radiation simulating stratospheric ozone reductions of 16, 25 and 40% and included a control with no UV-B radiation. Periodic measurements were made of growth and gas exchange characteristics and needle chlorophyll and UV-B-absorbing-compound concentrations. The effectiveness of UV-B radiation on seedling growth and physiology varied with the UV-B irradiance level. Seedlings receiving the lowest supplemental UV-B irradiance showed reductions in growth and photosynthetic capacity after only 1 month of irradiation. These reductions persisted and resulted in lower biomass production, while no increases in UV-B-absorbing compounds in needles were observed. Seedlings receiving UV-B radiation which simulated a 25% stratospheric ozone reduction showed an increase in UV-B-absorbing-compound concentrations after 6 months, which paralleled a recovery in photosynthesis and growth after an initial decrease in these characteristics. The seedlings grown at the highest UV-B irradiance (40% stratospheric ozone reduction) showed a more rapid increase in the concentration of UV-B-absorbing compounds and no effects of UV-B radiation on growth or photosynthetic capacity until after 4 months at this irradiance. Changes in photosynthetic capacity were probably the result of direct effects on light-dependent processes, since no effects were observed on either needle chlorophyll concentrations or stomatal conductance. Further studies are necessary to determine whether these responses persist and accumulate over subsequent years. (author)

  1. Comparative effects of gamma irradiation and phosphine fumigation on the quality of white ginseng

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, J.-H.Joong-Ho; Byun, M.-W.Myung-Woo; Kim, K.-S.Kang-Soo; Kang, I.-J.Il-Jun

    2000-03-01

    The hygienic, physicochemical, and organoleptic qualities of white ginseng were monitored during 6 months under accelerated conditions (40 deg. C, 90% r.h.) by observing its microbial populations, disinfestation, and some quality attributes following either gamma irradiation at 2.5-10 kGy or commercial phosphine (PH{sub 3}) fumigation. In a comparative study, both treatments were found to be effective for disinfecting the stored samples. Phosphine showed no appreciable decontaminating effects on microorganisms contaminated including coliforms, while 5 kGy irradiation was sufficient to control all microorganisms related to the quality of the packed samples. Irradiation at 5 kGy caused negligible changes in physicochemical attributes of the samples, such as ginsenosides, amino acids, fatty acids, and organoleptic properties, whereas phosphine fumigation was found detrimental to sensory flavor (P<0.01). Quality deterioration occurred in the commercially-packed samples was in the following order: the control, 10 kGy-, phosphine-, and 2.5-5 kGy-treated samples. Accordingly, irradiation at <5 kGy was found to be an effective alternative to phosphine fumigation for white ginseng. (author)

  2. Fumigant toxicity and acetylcholinesterase inhibitory activity of 4 Asteraceae plant essential oils and their constituents against Japanese termite (Reticulitermes speratus Kolbe).

    Science.gov (United States)

    Seo, Seon-Mi; Kim, Junheon; Kang, Jaesoon; Koh, Sang-Hyun; Ahn, Young-Joon; Kang, Kyu-Suk; Park, Il-Kwon

    2014-07-01

    This study investigated the fumigant toxicity of 4 Asteraceae plant essential oils and their constituents against the Japanese termite Reticulitermes speratus Kolbe. Fumigant toxicity varied with plant essential oils or constituents, exposure time, and concentration. Among the tested essential oils, those from Chamaemelum nobile exhibited the strongest fumigant toxicity, followed by those from Santolina chamaecyparissus, Ormenis multicaulis, and Eriocephalus punctulatus at 2 days after treatment. In all, 15, 24, 19, and 9 compounds were identified in the essential oils from C. nobile, E. punctulatus, O. multicaulis, and S. chamaecyparissus, respectively, by using gas chromatography, gas chromatography-mass spectrometry, or open-column chromatography. The identified compounds were tested individually for their fumigant toxicity against Japanese termites. Among the test compounds, trans-pinocarveol, caryophyllene oxide, sabinene hydrate, and santolina alcohol showed strong fumigant toxicity against Japanese termites. Acetylcholinesterase (AChE) inhibition activity of the identified compounds from C. nobile, E. punctulatus, O. multicaulis, and S. chamaecyparissus essential oils were tested to determine the mode of their action. The IC50 values of (+)-α-pinene, (-)-limonene, (-)-α-pinene, β-pinene, and β-phellandrene against Japanese termite AChE were 0.03, 0.13, 0.41, 0.42, and 0.67mg/mL, respectively. Further studies are warranted to determine the potential of these essential oils and their constituents as fumigants for termite control. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Greenhouse (III): Gas-Exchange and Seed-to-Seed Experiments on the Russian Space Station MIR and Earth-grown, Ethylene-Treated Wheat Plants

    Science.gov (United States)

    Campbell, William F.; Bingham, Gail; Carman, John; Bubenheim, David; Levinskikh, Margarita; Sytchev, Vladimir N.; Podolsky, Igor B.; Chernova, Lola; Nefodova, Yelena

    2001-01-01

    The Mir Space Station provided an outstanding opportunity to study long-term plant responses when exposed to a microgravity environment. Furthermore, if plants can be grown to maturity in a microgravity environment, they might be used in future bioregenerative life-support systems (BLSS). The primary objective of the Greenhouse experiment onboard Mir was to grow Super Dwarf and Apogee wheat through complete life cycles in microgravity; i.e., from seed-to-seed-to-seed. Additional objectives were to study chemical, biochemical, and structural changes in plant tissues as well as photosynthesis, respiration, and transpiration (evaporation of water from plants). Another major objective was to evaluate the suitability clothe facilities on Mir for advanced research with plants. The Greenhouse experiment was conducted in the Russian/Bulgarian plant growth chamber, the Svet, to which the United States added instrumentation systems to monitor changes in CO2 and water vapor caused by the plants (with four infrared gas analyzers monitoring air entering and leaving two small plastic chambers). In addition, the US instrumentation also monitored O2; air, leaf (IR), cabin pressure; photon flux; and substrate temperature and substrate moisture (16 probes in the root module). Facility modifications were first performed during the summer of 1995 during Mir 19, which began after STS-72 left Mir. Plant development was monitored by daily observations and some photographs.

  4. Irradiating of Bulk Soybeans: Influence on Their Functional and Sensory Properties for Soyfood Processing

    Science.gov (United States)

    Chia, Chiew-Ling; Wilson, Lester A.; Boylston, Terri; Perchonok, Michele; French, Stephen

    2006-01-01

    Soybeans were chosen for lunar and planetary missions, where soybeans will be supplied in bulk or grown locally, due to their nutritive value and ability to produce oil and protein for further food applications. However, soybeans must be processed into foods prior to consumption. Radiation that soybeans would be exposed to during bulk storage prior to and during a Mars mission may influence their germination and functional properties. The influence of radiation includes the affect of surface pasteurization to ensure the astronauts safety from food-borne illnesses (HACCP, CCP), and the affect of the amount of radiation the soybeans receive during a Mars mission. Decreases in the amount of natural antioxidants free radical formation, and oxidation-induced changes in the soybean will influence the nutritional value, texture, color, and aroma of soyfoods. The objective of this study was to determine the influence of pasteurization and sterilization surface radiation on whole soybeans using gamma and electron beam radiation. The influence of 0, 1, 5, 10, and 30kGy on microbial load, germination rate, ease of processing, and quality of soymilk and tofu were determined. Surface radiation of whole dry soybeans using electron beam or gamma rays from 1-30kGy did provide microbial safety for the astronauts. However, the lower dose levels had surviving yeasts and molds. These doses caused oxidative changes that resulted in soymilk and tofu with rancid aromas. GC-MS of the aroma compounds using SPME Headspace confirmed the presence of lipid oxidation compounds. Soybean germination ability was reduced as radiation dosage increased. While lower doses may reduce these problems, the ability to insure microbial safety of bulk soybeans will be lost. Counter measures could include vacuum packaging, nitrogen flushing, added antioxidants, and radiating under freezing conditions. Doses below 1kGy need to be investigated further to determine the influence of the radiation encountered

  5. Direct detection of radicals in intact soybean nodules

    DEFF Research Database (Denmark)

    Mathieu, C; Moreau, S; Frendo, P

    1998-01-01

    Electron paramagnetic resonance spectroscopy has been employed to examine the nature of the metal ions and radicals present in intact root nodules of soybean plants grown in the absence of nitrate. The spectra obtained from nodules of different ages using this non-invasive technique show dramatic...... differences, suggesting that there are both qualitative and quantitative changes in the metal ion and radical species present. A major component of the spectra obtained from young nodules is assigned to a complex (Lb-NO) of nitric oxide (NO.) with the heme protein leghemoglobin (Lb). This Lb-NO species, which...... has not been previously detected in intact root nodules of plants grown in the absence of nitrate, is thought to be formed by reaction of nitric oxide with iron(II) leghemoglobin. The nitric oxide may be generated from arginine via a nitric oxide synthase-like activity present in the nodules...

  6. Aspergillus oryzae GB-107 fermentation improves nutritional quality of food soybeans and feed soybean meals.

    Science.gov (United States)

    Hong, Kee-Jong; Lee, Chan-Ho; Kim, Sung Woo

    2004-01-01

    This study evaluated the effect of fermentation on the nutritional quality of food-grade soybeans and feed-grade soybean meals. Soybeans and soybean meals were fermented by Aspergillus oryzae GB-107 in a bed-packed solid fermentor for 48 hours. After fermentation, their nutrient contents as well as trypsin inhibitor were measured and compared with those of raw soybeans and soybean meals. Proteins were extracted from fermented and non-fermented soybeans and soybean meals, and the peptide characteristics were evaluated after electrophoresis. Fermented soybeans and fermented soybean meals contained 10% more (P 60 kDa) (P 60 kDa), whereas 22.1% of peptides in soybean meal were large-size (>60 kDa). Collectively, fermentation increased protein content, eliminated trypsin inhibitors, and reduced peptide size in soybeans and soybean meals. These effects of fermentation might make soy foods more useful in human diets as a functional food and benefit livestock as a novel feed ingredient.

  7. A major and stable QTL associated with seed weight in soybean across multiple environments and genetic backgrounds.

    Science.gov (United States)

    Kato, Shin; Sayama, Takashi; Fujii, Kenichiro; Yumoto, Setsuzo; Kono, Yuhi; Hwang, Tae-Young; Kikuchi, Akio; Takada, Yoshitake; Tanaka, Yu; Shiraiwa, Tatsuhiko; Ishimoto, Masao

    2014-06-01

    We detected a QTL for single seed weight in soybean that was stable across multiple environments and genetic backgrounds with the use of two recombinant inbred line populations. Single seed weight (SSW) in soybean is a key determinant of both seed yield and the quality of soy food products, and it exhibits wide variation. SSW is under genetic control, but the molecular mechanisms of such control remain unclear. We have now investigated quantitative trait loci (QTLs) for SSW in soybean and have identified such a QTL that is stable across multiple environments and genetic backgrounds. Two populations of 225 and 250 recombinant inbred lines were developed from crosses between Japanese and US cultivars of soybean that differ in SSW by a factor of ~2, and these populations were grown in at least three different environments. A whole-genome panel comprising 304 simple sequence repeat (SSR) loci was applied to mapping in each population. We identified 15 significant QTLs for SSW dispersed among 11 chromosomes in the two populations. One QTL located between Sat_284 and Sat_292 on chromosome 17 was detected (3.6 soybean.

  8. Congo grass grown in rotation with soybean affects phosphorus bound to soil carbon

    Directory of Open Access Journals (Sweden)

    Alexandre Merlin

    2014-06-01

    Full Text Available The phosphorus supply to crops in tropical soils is deficient due to its somewhat insoluble nature in soil, and addition of P fertilizers has been necessary to achieve high yields. The objective of this study was to examine the mechanisms through which a cover crop (Congo grass - Brachiaria ruziziensis in rotation with soybean can enhance soil and fertilizer P availability using long-term field trials and laboratory chemical fractionation approaches. The experimental field had been cropped to soybean in rotation with several species under no-till for six years. An application rate of no P or 240 kg ha-1 of P2O5 had been applied as triple superphosphate or as Arad rock phosphate. In April 2009, once more 0.0 or 80.0 kg ha-1 of P2O5 was applied to the same plots when Congo grass was planted. In November 2009, after Congo grass desiccation, soil samples were taken from the 0-5 and 5-10 cm depth layer and soil P was fractionated. Soil-available P increased to the depth of 10 cm through growing Congo grass when P fertilizers were applied. The C:P ratio was also increased by the cover crop. Congo grass cultivation increased P content in the soil humic fraction to the depth of 10 cm. Congo grass increases soil P availability by preventing fertilizer from being adsorbed and by increasing soil organic P.

  9. Impact of water quality and irrigation management on organic greenhouse horticulture

    NARCIS (Netherlands)

    Dorais, M.; Alsanius, B.W.; Voogt, W.; Pepin, S.; Tuzel, Hakki; Tuzel, Yuksel; Möller, Kurt

    2016-01-01

    Water quality and water supply are essential for organic greenhouse grown crops to prevent soil contamination by undesirable chemicals and microorganisms, while providing the correct amount of water required for plant growth. The absence of natural precipitation combined with higher

  10. Influence of environmental, structural, and behavioral factors on the presence of phosphine in worker areas during fumigations in grain elevators.

    Science.gov (United States)

    Reed, C

    2001-02-01

    Data-logging gas monitors with electrochemical cells sensitive to phosphine (PH3) were used to characterize concentrations of this common grain fumigant in and around grain elevators during fumigations. Twenty-four grain fumigations were observed, and each was monitored over a 5- to 8-day period. Phosphine gas, generated from aluminum phosphide fumigant applied to the grain, generally moved upward toward the grain surface and exited the bin at bin-top openings to the outside air or to enclosed worker areas. The upward air currents appeared to be the result of chimney effects, e.g., pressure differences resulting from buoyant air inside the warm grain and cooler, denser, ambient air. Significant wind effects on the PH3 concentration were also observed in the air between the grain surface and the bin roof. In enclosed areas located at the bin-top level, monitors located near the fill port or the fumigant dispenser recorded PH3 concentrations in excess of the exposure limit of 0.3 parts per million (ppm) about 35% of the time during grain fumigations. Phosphine concentrations between 0.31 and 1.0 ppm were observed 17.3% of the time, and concentrations in the ranges of 1.01-3.0, 3.01-10.0, and >10 ppm constituted 11.8%, 5.5%, and 0.3% of all readings, respectively, in bin-top worker areas. The likelihood of recording PH3 concentrations >0.3 ppm depended on ventilation practices. Fans in tunnels and open windows at aboveground locations appeared to greatly reduce the likelihood of high PH3 concentrations in enclosed areas.

  11. Utilizing soybean milk to culture soybean pathogens

    Science.gov (United States)

    Liquid and semi-solid culture media are used to maintain and proliferate bacteria, fungi, and Oomycetes for research in microbiology and plant pathology. In this study, a comparison was made between soybean milk medium, also referred to as soymilk, and media traditionally used for culturing soybean ...

  12. 7 CFR 305.6 - Methyl bromide fumigation treatment schedules.

    Science.gov (United States)

    2010-01-01

    ... 12 40 or above 16 8 T408-g-1 Chamber 60 or above 10 24 60 or above 20 15.5 T408-g-2 Tarpaulin 60 or..., fumigation with methyl bromide for sapote fruit fly. Regulated citrus fruits originating inside an area quarantined for sapote fruit fly that are to be moved outside the quarantined area may be treated with methyl...

  13. Residential proximity to agricultural fumigant use and IQ, attention and hyperactivity in 7-year old children.

    Science.gov (United States)

    Gunier, Robert B; Bradman, Asa; Castorina, Rosemary; Holland, Nina T; Avery, Dylan; Harley, Kim G; Eskenazi, Brenda

    2017-10-01

    Our objective was to examine the relationship between residential proximity to agricultural fumigant use and neurodevelopment in 7-year old children. Participants were living in the agricultural Salinas Valley, California and enrolled in the Center for the Health Assessment of Mothers and Children Of Salinas (CHAMACOS) study. We administered the Wechsler Intelligence Scale for Children (4th Edition) to assess cognition and the Behavioral Assessment System for Children (2nd Edition) to assess behavior. We estimated agricultural fumigant use within 3, 5 and 8km of residences during pregnancy and from birth to age 7 using California's Pesticide Use Report data. We evaluated the association between prenatal (n = 285) and postnatal (n = 255) residential proximity to agricultural use of methyl bromide, chloropicrin, metam sodium and 1,3-dichloropropene with neurodevelopment. We observed decreases of 2.6 points (95% Confidence Interval (CI): -5.2, 0.0) and 2.4 points (95% CI: -4.7, -0.2) in Full-Scale intelligence quotient for each ten-fold increase in methyl bromide and chloropicrin use within 8km of the child's residences from birth to 7-years of age, respectively. There were no associations between residential proximity to use of other fumigants and cognition or proximity to use of any fumigant and hyperactivity or attention problems. These findings should be explored in larger studies. Copyright © 2017. Published by Elsevier Inc.

  14. Honeybees as an aid in improving labour conditions in sweet bell pepper greenhouses: reduction of pollen allergy

    NARCIS (Netherlands)

    Steen, van der J.J.M.; Blacquière, T.; Jong, de N.W.; Groot, de H.

    2004-01-01

    Sweet bell pepper is the most important greenhouse vegetable crop in the Netherlands. It is grown on an area of 10,000 hectares, and about 8000 people are working in these greenhouses. One third of these workers sooner or later develop an occupational allergy to the sweet bell pepper pollen. The

  15. Atmospheric emissions of methyl isothiocyanate and chloropicrin following soil fumigation and surface containment treatment in bare-root forest nurseries

    Science.gov (United States)

    D. Wang; J. Juzwik; S.W. Fraedrich; K. Spokas; Y. Zhang; W.C. Koskinen

    2005-01-01

    Methylisothiocyanate (MITC) and chloropicrin (CP) are alternatives to methyl bromide for soil fumigation. However, surface transport of MITC emission has been cited as the cause for seedling damage in adjacent fields at several bare-root forest-tree nurseries. Field experiments were conducted at nurseries to measure air emissions of MITC and CP after fumigation....

  16. Effects of salinity on substrate grown vegetables and ornamentals in greenhouse horticulture

    NARCIS (Netherlands)

    Sonneveld, C.

    2000-01-01

    Since the mid 1970s substrate growing has become popular in the greenhouse industry in The Netherlands. Because of the small rooting volumes that are used in substrate growing, such systems require an accurate fertilization, but at the same time they offer possibilities for precise control

  17. Insecticidal Activity of Melaleuca alternifolia Essential Oil and RNA-Seq Analysis of Sitophilus zeamais Transcriptome in Response to Oil Fumigation.

    Science.gov (United States)

    Liao, Min; Xiao, Jin-Jing; Zhou, Li-Jun; Liu, Yang; Wu, Xiang-Wei; Hua, Ri-Mao; Wang, Gui-Rong; Cao, Hai-Qun

    2016-01-01

    The cereal weevil, Sitophilus zeamais is one of the most destructive pests of stored cereals worldwide. Frequent use of fumigants for managing stored-product insects has led to the development of resistance in insects. Essential oils from aromatic plants including the tea oil plant, Melaleuca alternifolia may provide environmentally friendly alternatives to currently used pest control agents. However, little is known about molecular events involved in stored-product insects in response to plant essential oil fumigation. M. alternifolia essential oil was shown to possess the fumigant toxicity against S. zeamais. The constituent, terpinen-4-ol was the most effective compound for fumigant toxicity. M. alternifolia essential oil significantly inhibited the activity of three enzymes in S. zeamais, including two detoxifying enzymes, glutathione S-transferase (GST), and carboxylesterase (CarE), as well as a nerve conduction enzyme, acetylcholinesterase (AChE). Comparative transcriptome analysis of S. zeamais through RNA-Seq identified a total of 3,562 differentially expressed genes (DEGs), of which 2,836 and 726 were up-regulated and down-regulated in response to M. alternifolia essential oil fumigation, respectively. Based on gene ontology (GO) analysis, the majority of DEGs were involved in insecticide detoxification and mitochondrial function. Furthermore, an abundance of DEGs mapped into the metabolism pathway in the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database were associated with respiration and metabolism of xenobiotics, including cytochrome P450s, CarEs, GSTs, and ATP-binding cassette transporters (ABC transporters). Some DEGs mapped into the proteasome and phagosome pathway were found to be significantly enriched. These results led us to propose a model of insecticide action that M. alternifolia essential oil likely directly affects the hydrogen carrier to block the electron flow and interfere energy synthesis in mitochondrial respiratory chain

  18. Repellent and Fumigant Activities of Tanacetum nubigenum Wallich. ex DC Essential Oils against Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae).

    Science.gov (United States)

    Haider, S Zafar; Mohan, Manindra; Pandey, Abhay K; Singh, Pooja

    2015-01-01

    The repellent and fumigant toxicity of essential oils of Tanacetum nubigenum Wallich. ex DC collected from three different habitats (Gothing, Burphu and Glacier) of Uttarakhand Himalayas, India named as TNG, TNB and TNM respectively, were investigated against the adults of red flour beetle Tribolium castaneum (Herbst). Among the three samples tested, TNG was found to more potent exhibiting more repellent effect towards the insects and with LC50 values by fumigant bioassay were 13.23 and 8.32 µl per 0.25 L air at 24 and 48 h exposure of insects to the essential oil respectively. In between other two oil samples, TNM was superior in potency showed LC50 value of 14.22 (24 h) & 8.82 µl per 0.25 L air (48 h). During in vivo study all the essential oil samples significantly protected 500 g of wheat grains for 6 months from insect infestation as compared to non fumigated grains and order of efficacy was TNG>TNM>TNB. There were no side effects of essential oils on germination rate of grains (essential oil of T. nubigenum can be explored as novel natural fumigants for the control of stored product insects.

  19. The effects of soil fumigation on the growth and mineral nutrition of weeds and crops=Efeito da fumigação do solo no crescimento e nutrição mineral de plantas daninhas e culturas

    Directory of Open Access Journals (Sweden)

    Marliane de Cássia Soares da Silva

    2012-04-01

    Full Text Available Weeds and soil microorganisms interact with each other in the soil/root interface, promoting the development and establishment of both. The objective of this study was to evaluate the growth and nutrient accumulation in eight species of weeds (Ageratum conyzoides L., Bidens pilosa L., Cenchrus echinatus L., Conyza bonariensis L., Echinochloa crus-galli L., Eleusine indica L. Ipomoea grandifolia L. and Lolium multiflorum L. and in bean and corn crops grown for 50 days in a substrate fumigated with methyl bromide. Assessments relating to the height, leaf area, leaf number, dry weight of shoots and roots and relative content of nutrients were carried out 50 days after seedling emergence. A positive effect of soil fumigation was observed on the growth, leaf number, leaf area, plant height and accumulation of nutrients in monocot weeds in relation to dicots. Conyza bonariensis was the most affected by soil fumigation, with levels of dry matter, leaf number, leaf area, height and accumulation of nutrients approximately 50% lower than plants grown in normal soil. Fumigation also influenced the growth cycle of the plants, which was lower for B. pilosa, E. indica and C. echinatus. We also observed a 20 and 30% lower phosphorus accumulation in Bidens pilosa and Conyza bonariensis, respectively, when grown in the sterilized soil. Overall, the bean and corn crops were less affected by soil fumigation than the weeds.Plantas daninhas e microrganismos do solo se interagem na interface solo/raiz promovendo vantagens para o desenvolvimento e estabelecimento de ambos. Objetivou-se com este trabalho avaliar o crescimento e o acúmulo de nutrientes em oito espécies de plantas daninhas (Ageratum conyzoides L., Bidens pilosa L., Cenchrus echinatus L., Conyza bonariensis L., Echinochloa crus-galli L., Eleusine indica L., Ipomoea grandifolia L. e Lolium multiflorum L. e nas culturas de feijão e milho, cultivadas, por 50 dias, em substrato fumigado com brometo de

  20. Fumigation treatment of Four Yellow Qing Ling Water with artificial tears for dry eyes

    Directory of Open Access Journals (Sweden)

    Yan-Yan Chen

    2018-04-01

    Full Text Available AIM: To observe the clinical efficacy of fumigation treatment of traditional Chinese medicine(Four Yellow Qing Ling Waterfor dry eye, and to provide the reference for clinical treatment of dry eye. METHODS: Totally 82 patients(164 eyeswere randomly divided into two groups from June 2016 to December 2016 in Ophthalmology Department of our hospital. The patients in control group were given artificial tears; the patients in the observation group were given artificial tears and fumigation treatment of traditional Chinese(Four Yellow Qing Ling Wateronce a day. After treatment for 14d, the Schirmer Ⅰ test(SⅠt, break-up time(BUT, cornea fluorescein staining(FLand clinical efficacy of two groups were compared. RESULTS: The efficiency rate of observation group was significantly better than the control group(87.8% vs 70.7%, Pvs 6.38±2.52mm/5min, Pvs 6.35±2.29s, Pvs 1.26±0.84, PCONCLUSION: The fumigation treatment of traditional Chinese medicine(Four Yellow Qing Ling Watercombined with artificial tears for dry eyes can improve the clinical symptoms of dry eye syndrome.

  1. Variability in the growth and nodulation of soybean in response to elevation and soil properties in the himalayan region of kashmir-pakistan

    International Nuclear Information System (INIS)

    Rahim, N.; Abbasi, M.K.

    2017-01-01

    This study was conducted to examine the variability of soybean nodulation and growth in relation to elevation and soil properties across the slopping uplands of the Himalayan region of Rawalakot Azad Jammu and Kashmir (AJK), Pakistan in order to find efficient native N2 fixing bacteria adapted to local soil and climatic characteristics. Soils from twenty two different sites with variable altitude were collected and analyzed for different physico-chemical characteristics including the quantitative estimation of rhizobium population through most probable number (MPN) technique. Soybean cultivar William-82 was grown in these soils under greenhouse condition for determining the nodulation potential (number and mass) and plant growth characteristics. Morphology of the nodules were observed through optical and transmission electron microscopy. Principal component analysis (PCA) and Biplot graph were used to jointly interpret the relationship between variables and soils (treatments). Soil altitude ranged from 855 m to 3000 m while organic matter content varied between 0.8% to 3.5% and pH from 6.0 to 8.1. The indigenous rhizobia population varied between 5.0 x104 to 8.0 x106 CFU g-1 showing the existence of a substantial rhizobial population in these soils. The number of nodules per plant varied from 7 to 40 (CV 38%) suggesting site/location as an important factor contributing towards rhizobia population and impacting root nodulation. The electron microscopy of green plant nodules showed densely populated bacteria in these cells and nodule tissue cells were completely infected with bacteria. The growth characteristics of soybean i.e. shoot length, shoot fresh and dry weight, root length, root fresh and dry weight varied among the sites but in general a vigorous and healthy plant growth was observed reflecting N assimilation from native soils. Results showed a substantial variability between sites and this is likely to be due to inter/intra species diversity, as well as

  2. Field and laboratory evaluations of soybean lines against soybean aphid (Hemiptera: Aphididae).

    Science.gov (United States)

    Hesler, Louis S; Prischmann, Deirdre A; Dashiell, Kenton E

    2012-04-01

    The soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is a major pest of soybean, Glycine max (L.). Merr., that significantly reduces yield in northern production areas of North America. Insecticides are widely used to control soybean aphid outbreaks, but efforts are underway to develop host plant resistance as an effective alternative management strategy. Here, previously identified resistant lines were evaluated in laboratory tests against field-collected populations of soybean aphid and in field-plot tests over 2 yr in South Dakota. Six lines previously identified with resistance to soybean aphid--Jackson, Dowling, K1639, Cobb, Palmetto and Sennari--were resistant in this study, but relatively high aphid counts on Tie-feng 8 in field plots contrasted with its previously reported resistance. Bhart-PI 165989 showed resistance in one of two laboratory tests, but it had relatively large aphid infestations in both years of field tests. Intermediate levels of soybean aphid occurred in field plots on lines previously shown to have strong (Sugao Zairai, PI 230977, and D75-10169) or moderate resistance to soybean aphid (G93-9223, Bragg, Braxton, and Tracy-M). Sugao Zairai also failed to have a significant proportion of resistant plants in two laboratory tests against aphids field-collected in 2008, but it was resistant in laboratory tests with aphids collected in 2002, 2005, and 2006. Overall, results showed that lines with Rag (i.e., Jackson) or Rag1 gene (i.e., Dowling) had low aphid numbers, whereas lines with Rag2 (i.e., Sugao Zairai, Sennari) had mixed results. Collectively, responses of soybean aphid populations in laboratory and field tests in 2008 resembled a virulence pattern reported previously for biotype 3 soybean aphids, but virulence in soybean aphid populations was variable and dynamic over years of the study. These results, coupled with previous reports of biotypes virulent to Rag1, suggest that deployment of lines with a single aphid

  3. Rhodanobacter glycinis sp. nov., a yellow-pigmented gammaproteobacterium isolated from the rhizoplane of field-grown soybean.

    Science.gov (United States)

    Madhaiyan, Munusamy; Poonguzhali, Selvaraj; Saravanan, Venkatakrishnan Sivaraj; Kwon, Soon-Wo

    2014-06-01

    A novel, yellow-pigmented bacterium, designated strain MO64(T), was isolated from the rhizoplane of field-grown soybean, collected from an experimental plot at Coimbatore, India. Cells were Gram-reaction-negative, motile, non-spore-forming rods that produced yellow-pigmented colonies on R2A agar. Phylogenetic analysis, based on 16S rRNA gene sequences, showed that strain MO64(T) belonged to the genus Rhodanobacter. Strain MO64(T) was related most closely to Rhodanobacter ginsengisoli GR17-7(T) (98.0% 16S rRNA gene sequence similarity), Rhodanobacter spathiphylli B39(T) (97.9%), Rhodanobacter panaciterrae LnR5-47(T) (97.7%), Rhodanobacter terrae GP18-1(T) (97.6%), Rhodanobacter soli DCY45(T) (97.3%) and Rhodanobacter caeni MJ01(T) (97.2%); levels of similarity to the type strains of all other recognized species of the genus Rhodanobacter were less than 97.0%. Chemotaxonomic data (Q-8 as the predominant ubiquinone, and iso-C(16 : 0), iso-C(15 : 0), C(17 : 0) cyclo, iso-C(17 : 1)ω9c, iso-C(17 : 0) and iso-C(11 : 0) as the major fatty acids) also supported the affiliation of strain MO64(T) with the genus Rhodanobacter. The G+C content of the genomic DNA was 64 mol%. The results of DNA-DNA hybridization and phenotypic analysis showed that strain MO64(T) can be distinguished from all known species of the genus Rhodanobacter and therefore represents a novel species of the genus, for which the name Rhodanobacter glycinis sp. nov. is proposed. The type strain is MO64(T) ( = ICMP 17626(T) = NBRC 105007(T)). © 2014 IUMS.

  4. Nutritive composition of soybean by-products and nutrient digestibility of soybean pod husk

    Directory of Open Access Journals (Sweden)

    Sompong Sruamsiri

    2008-11-01

    Full Text Available Soybean by-products (soybean germ, soybean milk residue, soybean hull, soybean pod husk and soybean stem were subjected to proximate analysis, and in vitro digestibility of DM (IVDMD, ADF (IVADFD and NDF (IVNDFD were determined after digesting the by-products in buffered rumen fluid for 24 or 48 h in 2 ANKOMII Daisy Incubators using Completely Randomised Design. Four native cattle (body weight 210 + 13.5 kg were used to determine nutrient digestibility of soybean pod husk. They were randomly assigned by Cross-over Design to receive two roughage sources, i.e. guinea grass and guinea grass + soybean pod husk (60:40 DM basis, in two experimental periods. Guinea grass was harvested on the 35th day after the first cut of the year and used as green forage. Total collection method was used to determine the digestibility coefficients and digestibility by difference was used to calculate nutrient digestibility of soybean pod husk.The nutritive composition showed that soybean germ was highest in CP content (42.27% of DM and EE content (5.07% of DM but lowest in NDF and ADF content (20.09 and 21.53% of DM respectively. The average CP content of soybean straw, soybean stem and soybean pod husk was low (4.91, 4.67 and 5.04% respectively, while ADF content was high (42.76, 38.01 and 42.08% respectively. In vitro digestibility of DM (IVDMD, ADF (IVADFD and NDF (IVNDFD showed that all of them, except soybean stem, can be used as cattle feed, e.g. as supplemented feed or admixture in concentrate feed. Digestibility coefficients of guinea grass were higher in CP, CF and EE when compared to the other groups. The apparent digestibility of CP and CF were highly different (P0.05. The digestibility of nutrients (DM, OM, CP, CF, NFE, NDF and ADF of soybean pod husk were 53.81 + 4.3, 59.69 + 4.6, 42.38 + 3.8, 30.71 + 3.2, 50.74 + 4.3, 75.26 + 4.0, 45.78 + 3.7 and 30.53 + 4.2 % respectively. Soybean pod husk was higher in total digestible nutrients (TDN (51.87 + 3.3 vs

  5. Soybean breeding with EMS mutagenesis

    International Nuclear Information System (INIS)

    Gu Aiqiu; Geng Yuxuan; Zhu Baogo

    1990-01-01

    Full text: 'Yudou No. 2' is a good soybean variety grown in the Honan Province. EMS was applied to seeds and valuable mutants were selected among the descendants. In a short period, several genetically stable strains were obtained. In the M 2 population, the early-maturing mutants were the most frequent, followed by short culm mutants. Other mutations altered leaf shape, grain size, habit of pod bearing, number of pods etc. One of the best strains is '86-180'. It is highly disease-resistant and ripens 19 days earlier than the original 'Yodou No. 2'. It bears more pods, although the seeds are a little bit smaller and is highly productive (4110kg/ha). Another good strain is '86-223'. It is also disease-resistant and highly productive (3390kg/ha). (author)

  6. Soybean breeding with EMS mutagenesis

    Energy Technology Data Exchange (ETDEWEB)

    Aiqiu, Gu; Yuxuan, Geng; Baogo, Zhu [Institute of Genetics, Academia Sinica, Beijing (China)

    1990-01-01

    Full text: 'Yudou No. 2' is a good soybean variety grown in the Honan Province. EMS was applied to seeds and valuable mutants were selected among the descendants. In a short period, several genetically stable strains were obtained. In the M{sub 2} population, the early-maturing mutants were the most frequent, followed by short culm mutants. Other mutations altered leaf shape, grain size, habit of pod bearing, number of pods etc. One of the best strains is '86-180'. It is highly disease-resistant and ripens 19 days earlier than the original 'Yodou No. 2'. It bears more pods, although the seeds are a little bit smaller and is highly productive (4110kg/ha). Another good strain is '86-223'. It is also disease-resistant and highly productive (3390kg/ha). (author)

  7. Responses of the lichen Ramalina menziesii Tayl. to ozone fumigations

    Science.gov (United States)

    J. Riddell; T.H. Nash; P. Padgett

    2010-01-01

    Tropospheric ozone (O3) is a strong oxidant, and is known to have serious negative effects on forest health. Lichens have bccn used as biomonitors of the effects of air pollution on forest health for sulfur and nitrogen pollutants. However, effects of O3 on lichens are not well understood, as past fumigation studies and...

  8. EVALUATION OF CASSAVA/SOYBEAN INTERCROPPING SYSTEM ...

    African Journals Online (AJOL)

    Soybean plants were taller when intercropped with NR 8212 or with TMS 30572 than in sole soybean, which had similar height with soybean in soybean/TMS 91934 mixture. The soybean canopy diameter, number of leaves per plant and LAI were higher with sole soybean. Within the soybean intercrops, canopy diameter, ...

  9. Analysis of the direct contamination pathway of 85Sr, 103Ru and 134Cs in soybean

    International Nuclear Information System (INIS)

    Yim, K. M.; Park, D. W.; Park, H. K.; Choi, Y. H.; Choi, S. D.; Lee, C. M.

    2001-01-01

    A solution containing 85 Sr, 103 Cs was sprayed to the aerial part of the soybean plant in a greenhouse at 6 different times before harvest and the direct contamination pathway of the radionuclide analyzed. Plant interception factor showed little difference among radionuclides. The maximum value was 0.93, which was observed at the middle growth stage. Translocation factors 85 Sr, 103 Cs in the soybean seed at harvest were in the range of 4.5x10 -5 ∼2.5x10 -3 , 6.0x10 -5 ∼2.3x10 -4 and 4.5x10 -3 ∼3.0x10 -1 , respectively. They were highest at the 3rd application for 85 Sr and 134 Cs and at the 2nd application for 103 Ru. Translocation factors of 85 Sr and 103 Ru in the soybean shell tended to increase with decreasing time interval between application and harvest but that of 134 Cs was highest at the 2nd application. The fractions of the initial deposition that remained in the soybeam plant at harvest were in the range of 0.14 ∼15.2% for 85 Sr and 103 Ru, 9.9∼41.9% for 134 Cs. These results can be utilized for predicting the radionuclide concentration in mature soybean plant and deciding counter-measures when an accidental deposition of the radionuclides occurs during the growing season of soybean

  10. Responses of Soybean Mutant Lines to Aluminium under In Vitro and In Vivo Condition

    International Nuclear Information System (INIS)

    Yuliasti; Sudarsono

    2011-01-01

    The main limited factors of soybean plants expansion in acid soil are Aluminium (Al) toxicity and low pH. The best approach to solve this problem is by using Al tolerance variety. In vitro or in vivo selections using selective media containing AlCl 3 and induced callus embryonic of mutant lines are reliable methods to develop a new variety. The objectives of this research are to evaluate response of soybean genotypes against AlCl 3 under in vitro and in vivo condition. Addition of 15 part per million (ppm) AlCl 3 into in vitro and in vivo media severely affected plant growth. G3 soybean mutant line was identified as more tolerant than the control soybean cultivar Tanggamus. This mutant line was able to survive under more severe AlCl 3 concentrations (15 ppm) under in vitro conditions. Under in vivo conditions, G1 and G4 mutants were also identified as more tolerant than Tanggamus since they produced more pods and higher dry seed weigh per plant. Moreover, G4 mutant line also produced more dry seed weight per plant than Tanggamus when they were grown on soil containing high Al concentration 8.1 me/100 gr = 81 ppm Al +3 . (author)

  11. Policy and Environmental Implications of Photovoltaic Systems in Farming in Southeast Spain: Can Greenhouses Reduce the Greenhouse Effect?

    Directory of Open Access Journals (Sweden)

    Angel Carreño-Ortega

    2017-05-01

    Full Text Available Solar photovoltaic (PV systems have grown in popularity in the farming sector, primarily because land area and farm structures themselves, such as greenhouses, can be exploited for this purpose, and, moreover, because farms tend to be located in rural areas far from energy production plants. In Spain, despite being a country with enormous potential for this renewable energy source, little is being done to exploit it, and policies of recent years have even restricted its implementation. These factors constitute an obstacle, both for achieving environmental commitments and for socioeconomic development. This study proposes the installation of PV systems on greenhouses in southeast Spain, the location with the highest concentration of greenhouses in Europe. Following a sensitivity analysis, it is estimated that the utilization of this technology in the self-consumption scenario at farm level produces increased profitability for farms, which can range from 0.88% (worst scenario to 52.78% (most favorable scenario. Regarding the Spanish environmental policy, the results obtained demonstrate that the impact of applying this technology mounted on greenhouses would bring the country 38% closer to reaching the 2030 greenhouse gas (GHG target. Furthermore, it would make it possible to nearly achieve the official commitment of 20% renewable energies by 2020. Additionally, it would have considerable effects on the regional socioeconomy, with increases in job creation and contribution to gross domestic product (GDP/R&D (Research and Development, allowing greater profitability in agrifood activities throughout the entire region.

  12. Partitioning carbon fluxes from a Midwestern corn and soybean rotation system using footprint analysis

    Science.gov (United States)

    Dold, C.; Hatfield, J.; Prueger, J. H.; Wacha, K.

    2017-12-01

    Midwestern US agriculture is dominated by corn and soybean production. Corn has typically higher Net Ecosystem Exchange (NEE) than soybean due to increased carboxylation efficiency and different crop management. The conjoined NEE may be measured with eddy covariance (EC) stations covering both crops, however, it is often unclear what the contribution of each crop is, as the CO2 source area remains unknown. The aim of this study was to quantify the contribution of CO2 fluxes from each crop for a conventional corn-soybean rotation system from 2007 - 2015. Therefore, the combined CO2 flux of three adjacent fields with annual corn-soybean rotation was measured with a 9.1 m EC tower (Flux 30). In the center of two of these fields, additional EC towers (Flux 10 and Flux 11) were positioned above the corn and soybean canopy to validate Flux 30 NEE. For each EC system the annual 90% NEE footprint area was calculated, footprints were partitioned among fields, and NEE separated accordingly. The average annual 90% footprint area of Flux 30, and Flux 10/11 corn and soybean was estimated to 206, 11 and 7 ha, respectively. The annual average (±SE) NEE of Flux 30 was -693 ± 47 g CO2 m-2 yr-1, of which 83% out of 90% originated from the three adjacent fields. Corn and soybean NEE measured at Flux 10 and 11 was -1124 ± 95 and 173 ± 73 g CO2 m-2 yr-1, respectively, and 89% and 90% originated from these fields. That demonstrates, that Flux 30 represents the combined NEE of a corn-soybean rotation, and Flux 10 and 11 measured NEE from a single crop. However, the share of Flux 30 NEE originating from corn and soybean grown on the Flux 10/11 fields was -192 ± 16 and -205 ± 18 g CO2 m-2 yr-1, indicating a substantial difference to single crop NEE. While it was possible to measure the NEE of a corn-soybean rotation with a tall EC tower, footprint partitioning could not retrieve NEE for each crop, probably due to differences in measurement height and footprint source area.

  13. Trace gas fluxes from intensively managed rice and soybean fields across three growing seasons in the Brazilian Amazon

    Science.gov (United States)

    R.C. Oliveira Junior; Michael Keller; P. Crill; T. Beldini; J. Van Haren; P. Camargo

    2015-01-01

    The emission of gases that may potentially intensify the greenhouse effect has received special attention due to their ability to raise global temperatures and possibly modify conditions for life on earth. The objectives of this study were the quantification of trace gas flux (N2O, CO2 and CH4) in soils of the lower Amazon basin that are planted with rice and soybean,...

  14. Theoretical investigation of heat balance in direct injection (DI) diesel engines for neat diesel fuel and gasoline fumigation

    International Nuclear Information System (INIS)

    Durgun, O.; Sahin, Z.

    2009-01-01

    The main purpose of the presented study is to evaluate energy balance theoretically in direct injection (DI) diesel engines at different conditions. To analyze energy balance, a zero-dimensional multi-zone thermodynamic model has been developed and used. In this thermodynamic model, zero-dimensional intake and exhaust approximations given by Durgun, zero-dimensional compression and expansion model given by Heywood and quasi-dimensional phenomenological combustion model developed by Shahed and then improved Ottikkutti have been used and developed with new approximations and assumptions. By using the developed model, complete diesel engine cycle, engine performance parameters and exhaust emissions can be determined easily. Also, by using this model energy balance can be analyzed for neat diesel fuel and for light fuel fumigation easily. In the presented study, heat balance has been investigated theoretically for three different engines and various numerical applications have been conducted. In the numerical applications two different turbocharged DI diesel engines and a naturally aspirated DI diesel engine have been used. From these numerical applications, it is determined that, what portion of available fuel energy is converted to useful work, what amount of fuel energy is lost by exhaust gases or lost by heat transfer. In addition, heat balance has been analyzed for gasoline fumigation and some numerical results have been given. Brake effective power and brake specific fuel consumption increase and brake effective efficiency decreases for gasoline fumigation for turbocharged diesel engines used in numerical applications. Combustion duration increases with increasing fumigation ratio and thus heat transfer to the walls increases. Because exhaust temperature increases, exhaust losses also increases for fumigation case

  15. Productivity, total and utilized nitrogen and water use efficiency of soybean grown in reclaimed sandy soil as affected by water regime

    International Nuclear Information System (INIS)

    Abdallah, A.A.G.; Thabet, E.M.A.

    2002-01-01

    Field experiment was performed at the experimental farm, Inshas, atomic energy authority, Egypt, in tafla and sand mixture soil (1:7). The experiment was laid out using sprinkler irrigation system with a line source which allows a gradual variation of irrigation from high to low irrigation, whereas the calculated amount of irrigation water levels were 1565, 1050 and 766.5 (m 3 / feddan). Two soybean varieties (crawford and giza 35) were planted. The obtained results indicated that: a) irrigation with high (1562 m 3 /fed.) and medium (1050 m 3 /fed.) water levels increased total seed wield of the two soybean varieties. b) the highest value of water use efficiency was observed when both soybean varieties irrigated with water level of 1050 m 3 /fed. c) seed protein content in crawford variety was higher in giza 35 variety at the irrigation level of 1562 m 3 /fed. d) seeds of both two soybean varieties showed increase of its atom excess percentage at high and medium water levels, and reflecting increase of nitrogen use efficiency. e) significant increment in seed yield kg/plot. Has been indicated by irrigation with water level of 1050 m 3 /fed. As compared to higher and lower water levels

  16. Greenhouse effect and its climatic consequences: scientific evaluation

    International Nuclear Information System (INIS)

    1994-11-01

    The greenhouse effect plays a major role in climate evolution and the increase observed at present in the concentration of the main gases causing the greenhouse effect (carbon dioxide, chlorofluorocarbons, methane) stems very definitely from human activities. The global warming potential by the various greenhouse effect gases is calculated through restrictive hypotheses. An essential element in the importance given to the growth of the greenhouse effect phenomena was the regular rise in the concentration of carbon dioxide in the atmosphere. The overall carbon cycle balance still needs to be worked out. The aerosols caused by sulfurous releases have grown. The decrease in the amount of ozone in the stratosphere brings on a slight cooling of the surface of the Earth. The local increase of tropospheric ozone brings on a slight local warming with a comparable order of magnitude. Despite all the progress that has been achieved in modelling the phenomena, we cannot affirm today that these predictions are accurate. Recent work involving analyses of the polar ice-caps along with other indications of past climates have given a better understanding of the North Atlantic climate over the past 200,000 years. 119 refs., 10 figs., 6 tabs

  17. Pattern of zinc-65 incorporation into soybean seeds by root absorption, stem injection, and foliar application

    International Nuclear Information System (INIS)

    Khan, A.; Weaver, C.M.

    1989-01-01

    The pattern of 65 Zn incorporation into soybean seeds of plants grown hydroponically and intrinsically labeled with 65 Zn by root absorption, stem injection, and foliar application was studied. Stem injection resulted in the greatest (64.5% of dose) accumulation of 65 Zn while incorporation of 65 Zn through root absorption was the least (23.4%) and through foliar application was intermediate (37.5%). Regardless of the labeling techniques, approximately 40-45% of the seed 65 Zn was associated with the subcellular organelles. The pattern of zinc incorporation did not change appreciably as a result of the labeling technique. The major portion of the soluble zinc was not associated with the major proteins (11S and 7S) of soybeans but either was free or was associated with very low molecular weight amino acids, peptides, or their complexes with phytic acid. Zinc in soybean seems to be ionically bound, and this association is affected by the pH of the extracting buffer

  18. Detection of genetically modified soybean in crude soybean oil.

    Science.gov (United States)

    Nikolić, Zorica; Vasiljević, Ivana; Zdjelar, Gordana; Ðorđević, Vuk; Ignjatov, Maja; Jovičić, Dušica; Milošević, Dragana

    2014-02-15

    In order to detect presence and quantity of Roundup Ready (RR) soybean in crude oil extracted from soybean seed with a different percentage of GMO seed two extraction methods were used, CTAB and DNeasy Plant Mini Kit. The amplifications of lectin gene, used to check the presence of soybean DNA, were not achieved in all CTAB extracts of DNA, while commercial kit gave satisfactory results. Comparing actual and estimated GMO content between two extraction methods, root mean square deviation for kit is 0.208 and for CTAB is 2.127, clearly demonstrated superiority of kit over CTAB extraction. The results of quantification evidently showed that if the oil samples originate from soybean seed with varying percentage of RR, it is possible to monitor the GMO content at the first stage of processing crude oil. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Genome Regions Associated with Functional Performance of Soybean Stem Fibers in Polypropylene Thermoplastic Composites.

    Directory of Open Access Journals (Sweden)

    Yarmilla Reinprecht

    Full Text Available Plant fibers can be used to produce composite materials for automobile parts, thus reducing plastic used in their manufacture, overall vehicle weight and fuel consumption when they replace mineral fillers and glass fibers. Soybean stem residues are, potentially, significant sources of inexpensive, renewable and biodegradable natural fibers, but are not curretly used for biocomposite production due to the functional properties of their fibers in composites being unknown. The current study was initiated to investigate the effects of plant genotype on the performance characteristics of soybean stem fibers when incorporated into a polypropylene (PP matrix using a selective phenotyping approach. Fibers from 50 lines of a recombinant inbred line population (169 RILs grown in different environments were incorporated into PP at 20% (wt/wt by extrusion. Test samples were injection molded and characterized for their mechanical properties. The performance of stem fibers in the composites was significantly affected by genotype and environment. Fibers from different genotypes had significantly different chemical compositions, thus composites prepared with these fibers displayed different physical properties. This study demonstrates that thermoplastic composites with soybean stem-derived fibers have mechanical properties that are equivalent or better than wheat straw fiber composites currently being used for manufacturing interior automotive parts. The addition of soybean stem residues improved flexural, tensile and impact properties of the composites. Furthermore, by linkage and in silico mapping we identified genomic regions to which quantitative trait loci (QTL for compositional and functional properties of soybean stem fibers in thermoplastic composites, as well as genes for cell wall synthesis, were co-localized. These results may lead to the development of high value uses for soybean stem residue.

  20. Improved Soybean Root Association of N-Starved Bradyrhizobium japonicum

    OpenAIRE

    López-García, Silvina L.; Vázquez, Tirso E. E.; Favelukes, Gabriel; Lodeiro, Aníbal R.

    2001-01-01

    In this study, we addressed the effects of N limitation in Bradyrhizobium japonicum for its association with soybean roots. The wild-type strain LP 3001 grew for six generations with a growth rate of 1.2 day−1 in a minimal medium with 28 mM mannitol as the carbon source and with the N source [(NH4)2SO4] limited to only 20 μM. Under these conditions, the glutamine synthetase (GS) activity was five to six times higher than in similar cultures grown with 1 or 0.1 mM (NH4)2SO4. The NtrBC-inducibl...

  1. Insecticidal Activity of Melaleuca alternifolia Essential Oil and RNA-Seq Analysis of Sitophilus zeamais Transcriptome in Response to Oil Fumigation.

    Directory of Open Access Journals (Sweden)

    Min Liao

    Full Text Available The cereal weevil, Sitophilus zeamais is one of the most destructive pests of stored cereals worldwide. Frequent use of fumigants for managing stored-product insects has led to the development of resistance in insects. Essential oils from aromatic plants including the tea oil plant, Melaleuca alternifolia may provide environmentally friendly alternatives to currently used pest control agents. However, little is known about molecular events involved in stored-product insects in response to plant essential oil fumigation.M. alternifolia essential oil was shown to possess the fumigant toxicity against S. zeamais. The constituent, terpinen-4-ol was the most effective compound for fumigant toxicity. M. alternifolia essential oil significantly inhibited the activity of three enzymes in S. zeamais, including two detoxifying enzymes, glutathione S-transferase (GST, and carboxylesterase (CarE, as well as a nerve conduction enzyme, acetylcholinesterase (AChE. Comparative transcriptome analysis of S. zeamais through RNA-Seq identified a total of 3,562 differentially expressed genes (DEGs, of which 2,836 and 726 were up-regulated and down-regulated in response to M. alternifolia essential oil fumigation, respectively. Based on gene ontology (GO analysis, the majority of DEGs were involved in insecticide detoxification and mitochondrial function. Furthermore, an abundance of DEGs mapped into the metabolism pathway in the Kyoto Encyclopedia of Genes and Genomes (KEGG pathway database were associated with respiration and metabolism of xenobiotics, including cytochrome P450s, CarEs, GSTs, and ATP-binding cassette transporters (ABC transporters. Some DEGs mapped into the proteasome and phagosome pathway were found to be significantly enriched. These results led us to propose a model of insecticide action that M. alternifolia essential oil likely directly affects the hydrogen carrier to block the electron flow and interfere energy synthesis in mitochondrial

  2. [Cytoembryologic studies of super dwarf wheat grown in "Svet" greenhouse in the ground-based experiments

    Science.gov (United States)

    Levinskikh, M. A.; Veselova, T. D.; Il'ina, G. M.; Dzhalilova, Kh Kh; Sychev, V. N.; Derendiaeva, T. A.; Salisbury, F.; Cambell, W.; Bubenheim, D.; Campbell, W. (Principal Investigator)

    1998-01-01

    The Project of scientific programs MIR/SHUTTLE and MIR/NASA was allowed for studying the productional, cytoembryological, morphological, biomechanical and other characteristics of superclub wheat on cultivation in the Svet greenhouse on-board orbital complex. This work was aimed at studying the duration of the complete cycle of ontogenesis of wheat and its individual stages, the peculiarities of forming the reproductive organs, processes, fertilization and formation of the seed production while cultivating in the Svet greenhouse under terrestrial conditions. Superclub wheat has been the object of experimentation. On cultivation of superclub wheat in the Svet greenhouse at designated conditions it was found that the cycle duration "from seed to seed" was 90-97 days. The number of granules in the wheat-ears studied was quite low and ranged from 15 to 30%. Performed studies with applying the light microscopy have indicated that in superclub wheat the embryological processes occur in compliance with those regularities which are described for the other forms of soft wheat.

  3. A new strategy for Aedes aegypti (Diptera: Culicidae) control with community participation using a new fumigant formulation.

    Science.gov (United States)

    Harburguer, Laura; Beltrán, Gaston; Goldberg, Lucila; Goldberg, Laura; Zerba, Eduardo; Licastro, Susana; Masuh, Héctor

    2011-05-01

    Dengue and dengue hemorrhagic fever are mosquito-borne viral diseases that coincide with the distribution of Aedes aegypti (L.), the primary vector in the tropical and semitropical world. With no available vaccine, controlling the dengue vector is essential to avoid epidemics. This study evaluates the efficacy of a new smoke-generating formulation containing pyriproxyfen and permethrin in Puerto Libertad, Misiones, Argentina. A fumigant tablet (FT) was applied inside the houses by the community members and compared with a professional application. A treatment combining the application of fumigant tablets indoors and ultralow volume fumigation outdoors was also assessed. The community perceptions and practices about dengue disease and the acceptance of this new nonprofessional FT were evaluated through surveys. Results show >90% adult emergence inhibition and 100% adult mortality with these treatments. More than 80% of the residents applied the FT and preferred participating in a vector control program by using a nonprofessional mosquito control tool, instead of attending meetings and workshops promoting cultural changes.

  4. Solar/Geothermal Saves Energy in Heating and Cooling of Greenhouses

    Science.gov (United States)

    Sanders, Matthew; Thompson, Mark; Sikorski, Yuri

    2010-04-01

    The steady increase in world population and problems associated with conventional agricultural practices demand changes in food production methods and capabilities. Locally grown food minimizes the transportation costs and gas emissions responsible for Global Warming. Greenhouses have the potential to be extremely ecologically friendly by greatly increasing yields per year and facilitating reduced pesticide use. Globally, there are 2.5 million acres of greenhouse cover, including 30,640 acres in North America. In Europe, greenhouses consume 10% of the total energy in agriculture. Most of that energy is utilized for heating. Heating and cooling amount to 35% of greenhouse production costs. This high percentage value can be partially attributed to currently poor insulation values. In moderate-to-cold climate zones, it can take up to 2,500 gallons of propane, currently costing around 5,000, to keep a 2,000 sq. ft. greenhouse producing all winter. Around 350 tons of CO2 per acre per year are released from these structures, contributing to global climate change. Reducing the energy needs of a greenhouse is the first step in saving money and the environment. Therefore, an efficient and environmentally friendly heating and cooling system selection is also crucial. After selecting appropriate energy sources, the next major concern in a greenhouse would be heat loss. Consequently, it is critically important to understand factors contributing to heat loss.

  5. [Effects of Short-time Conservation Tillage Managements on Greenhouse Gases Emissions from Soybean-Winter Wheat Rotation System].

    Science.gov (United States)

    Xie, Yan; Chen, Xi; Hu, Zheng-hua; Chen, Shu-tao; Zhang, Han; Ling, Hui; Shen, Shuang-he

    2016-04-15

    Field experiments including one soybean growing season and one winter-wheat growing season were adopted. The experimental field was divided into four equal-area sub-blocks which differed from each other only in tillage managements, which were conventional tillage (T) , no-tillage with no straw cover ( NT) , conventional tillage with straw cover (TS) , and no-tillage with straw cover (NTS). CO₂ and N₂O emission fluxes from soil-crop system were measured by static chamber-gas chromatograph technique. The results showed that: compared with T, in the soybean growing season, NTS significantly increased the cumulative amount of CO₂ (CAC) from soil-soybean system by 27.9% (P = 0.045) during the flowering-podding stage, while NT significantly declined CAC by 28.9% (P = 0.043) during the grain filling-maturity stage. Compared with T, NT significantly declined the cumulative amount of N₂O (CAN) by 28.3% (P = 0.042) during the grain filling-maturity stage. In the winter-wheat growing season, compared with T, TS and NT significantly declined CAC by 24.3% (P = 0.032) and 36.0% (P = 0.041) during the elongation-booting stage, and also declined CAC by 26.8% (P = 0.027) and 33.1% (P = 0.038) during the maturity stage. During the turning-green stage, compared with T treatment, NT, NTS, and TS treatments had no significant effect on CAN, while NTS significant declined CAN by 42.0% (P = 0.035) compared with NT. Our findings suggested that conservation tillage managements had a more significant impact on CO₂ emission than 20 emission from soil-crop system.

  6. Effects of heavy metal concentrations (Cd, Zn and Pb) in agricultural soils near different emission sources on quality, accumulation and food safety in soybean [Glycine max (L.) Merrill

    International Nuclear Information System (INIS)

    Salazar, María Julieta; Rodriguez, Judith Hebelen; Nieto, Gastón Leonardo; Pignata, María Luisa

    2012-01-01

    Highlights: ► Soybean grown near metal sources presents a toxicological hazard from heavy metals for Chinese consumers. ► Rhizosphere soil is the most suitable compartment for toxicological studies. ► Soil guidelines should be modified considering the exchangeable metals. - Abstract: Argentina is one of the major producers of soybean in the world, this generates a high global demand for this crop leading to find it everywhere, even close to human activities involving pollutant emissions. This study evaluated heavy metal content, the transfer of metals and its relation to crop quality, and the toxicological risk of seed consumption, through soil and soybean sampling. The results show that concentrations of Pb and Cd in soils and soybeans at several sites were above the maximum permissible levels. The heavy metal bioaccumulation depending on the rhizosphere soil compartment showed significant and high regression coefficients. In addition, the similar behavior of Cd and Zn accumulation by plants reinforces the theory of other studies indicating that these metals are incorporated into the plant for a common system of transport. On the other hand, the seed quality parameters did not show a clear pattern of response to metal bioacumulation. Taken together, our results show that soybeans grown nearby to anthropic emission sources might represent a toxicological hazard for human consumption in a potential Chinese consumer. Hence, further studies should be carried out taking into account the potential negative health effects from the consumption of soybeans (direct or indirect through consumption of meat from cattle) in these conditions.

  7. Effects of heavy metal concentrations (Cd, Zn and Pb) in agricultural soils near different emission sources on quality, accumulation and food safety in soybean [Glycine max (L.) Merrill

    Energy Technology Data Exchange (ETDEWEB)

    Salazar, Maria Julieta [Multidisciplinary Institute of Plant Biology, Pollution and Bioindicator Section, Faculty of Physical and Natural Sciences, National University of Cordoba, Av. Velez Sarsfield 1611, X5016CGA Cordoba (Argentina); Rodriguez, Judith Hebelen, E-mail: jrodriguez@com.uncor.edu [Multidisciplinary Institute of Plant Biology, Pollution and Bioindicator Section, Faculty of Physical and Natural Sciences, National University of Cordoba, Av. Velez Sarsfield 1611, X5016CGA Cordoba (Argentina); Nieto, Gaston Leonardo; Pignata, Maria Luisa [Multidisciplinary Institute of Plant Biology, Pollution and Bioindicator Section, Faculty of Physical and Natural Sciences, National University of Cordoba, Av. Velez Sarsfield 1611, X5016CGA Cordoba (Argentina)

    2012-09-30

    Highlights: Black-Right-Pointing-Pointer Soybean grown near metal sources presents a toxicological hazard from heavy metals for Chinese consumers. Black-Right-Pointing-Pointer Rhizosphere soil is the most suitable compartment for toxicological studies. Black-Right-Pointing-Pointer Soil guidelines should be modified considering the exchangeable metals. - Abstract: Argentina is one of the major producers of soybean in the world, this generates a high global demand for this crop leading to find it everywhere, even close to human activities involving pollutant emissions. This study evaluated heavy metal content, the transfer of metals and its relation to crop quality, and the toxicological risk of seed consumption, through soil and soybean sampling. The results show that concentrations of Pb and Cd in soils and soybeans at several sites were above the maximum permissible levels. The heavy metal bioaccumulation depending on the rhizosphere soil compartment showed significant and high regression coefficients. In addition, the similar behavior of Cd and Zn accumulation by plants reinforces the theory of other studies indicating that these metals are incorporated into the plant for a common system of transport. On the other hand, the seed quality parameters did not show a clear pattern of response to metal bioacumulation. Taken together, our results show that soybeans grown nearby to anthropic emission sources might represent a toxicological hazard for human consumption in a potential Chinese consumer. Hence, further studies should be carried out taking into account the potential negative health effects from the consumption of soybeans (direct or indirect through consumption of meat from cattle) in these conditions.

  8. Quantifying residues from postharvest fumigation of almonds and walnuts with propylene oxide

    Science.gov (United States)

    A novel analytical approach, involving solvent extraction with methyl tert-butyl ether (MTBE) followed by gas chromatography (GC), was developed to quantify residues that result from the postharvest fumigation of almonds and walnuts with propylene oxide (PPO). Verification and quantification of PPO,...

  9. Sucrose and raffinose family oligosaccharides (RFOs) in soybean seeds as influenced by genotype and growing location.

    Science.gov (United States)

    Kumar, Vineet; Rani, Anita; Goyal, Lokesh; Dixit, Amit Kumar; Manjaya, J G; Dev, Jai; Swamy, M

    2010-04-28

    Sucrose content in soybean seeds is desired to be high because as a sweetness-imparting component, it helps in wider acceptance of soy-derived food products. Conversely, galactosyl derivatives of sucrose, that is, raffinose and stachyose, which are flatulence-inducing components, need to be in low concentration in soybean seeds not only for augmenting utilization of the crop in food uses but also for delivering soy meal with improved metabolizable energy for monogastric animals. In the present study, analysis of 148 soybean genotypes for sucrose and total raffinose family oligosaccharides (RFOs) contents revealed a higher variation (4.80-fold) for sucrose than for RFOs content (2.63-fold). High-performance liquid chromatography analyses revealed ranges of 0.64-2.53 and 2.09-7.1 mmol/100 g for raffinose and stachyose contents, respectively. As information concerning the environmental effects on the sucrose and RFOs content in soybean seeds is not available, we also investigated a set of seven genotypes raised at widely different geographical locations for these quality traits. Sucrose content was found to be significantly higher at cooler location (Palampur); however, differences observed for raffinose and stachyose contents across the growing locations were genotype-dependent. The results suggest that soybean genotypes grown at cooler locations may be better suited for processing soy food products with improved taste and flavor.

  10. Anti-tumorigenic activity of five culinary and medicinal herbs grown under greenhouse conditions and their combination effects.

    Science.gov (United States)

    Yi, Weiguang; Wetzstein, Hazel Y

    2011-08-15

    Herbs and spices have been used as food preservatives, flavorings, and in traditional medicines for thousands of years. More and more scientific evidence supports the medicinal properties of culinary herbs. Colon cancer is the third leading cause of cancer death in the USA, and the fourth most common form of cancer worldwide. The objectives of this study were to evaluate the antitumor activity of five selected herbs grown under greenhouse conditions, and to study the potential synergistic effects among different herbal extract combinations. Thyme, rosemary, sage, spearmint, and peppermint extracts significantly inhibited SW-480 colon cancer cell growth, with sage extracts exhibiting the highest bioactivity, with 50% inhibition at 35.9 µg mL⁻¹, which was equivalent to 93.9 µg dried leaves mL⁻¹ of culture medium. Some mixtures of different herbal extracts had combination effects on cancer cell growth. The inhibitory effects of peppermint + sage combinations at a 1:1 ratio were significantly higher than rosemary + sage combinations at 1:1 ratio, although peppermint extracts showed lower inhibition than rosemary extracts. Extracts from herb species (thyme, rosemary, sage, spearmint and peppermint) can significantly inhibit the growth of human colon cancer cells. Mixtures of herb extracts can have combination effects on cancer cell growth. The study suggests that these five herbs may have potential health benefits to suppress colon cancer. Copyright © 2011 Society of Chemical Industry.

  11. Emission and soil distribution of fumigants in forest tree nurseries

    Science.gov (United States)

    Dong Wang; Jennifer Juzwik; Stephen Fraedrich

    2005-01-01

    Production of tree seedlings in the majority of forest nurseries in the USA has relied on soil fumigation with methyl bromide (MeBr) to control soil-borne plant pathogens, weeds, parasitic nematodes and insects. Since the announcement of the scheduled MeBr phase-out, a number of nurseries throughout the United States have participated in research programs on MeBr...

  12. Review of potential environmental impacts of transgenic glyphosate-resistant soybean in Brazil.

    Science.gov (United States)

    Cerdeira, Antonio L; Gazziero, Dionsio L P; Duke, Stephen O; Matallo, Marcus B; Spadotto, Claudio A

    2007-01-01

    Transgenic glyphosate-resistant soybeans (GRS) have been commercialized and grown extensively in the Western Hemisphere, including Brazil. Worldwide, several studies have shown that previous and potential effects of glyphosate on contamination of soil, water, and air are minimal, compared to those caused by the herbicides that they replace when GRS are adopted. In the USA and Argentina, the advent of glyphosate-resistant soybeans resulted in a significant shift to reduced- and no-tillage practices, thereby significantly reducing environmental degradation by agriculture. Similar shifts in tillage practiced with GRS might be expected in Brazil. Transgenes encoding glyphosate resistance in soybeans are highly unlikely to be a risk to wild plant species in Brazil. Soybean is almost completely self-pollinated and is a non-native species in Brazil, without wild relatives, making introgression of transgenes from GRS virtually impossible. Probably the highest agricultural risk in adopting GRS in Brazil is related to weed resistance. Weed species in GRS fields have shifted in Brazil to those that can more successfully withstand glyphosate or to those that avoid the time of its application. These include Chamaesyce hirta (erva-de-Santa-Luzia), Commelina benghalensis (trapoeraba), Spermacoce latifolia (erva-quente), Richardia brasiliensis (poaia-branca), and Ipomoea spp. (corda-de-viola). Four weed species, Conyza bonariensis, Conyza Canadensis (buva), Lolium multiflorum (azevem), and Euphorbia heterophylla (amendoim bravo), have evolved resistance to glyphosate in GRS in Brazil and have great potential to become problems.

  13. SOYBEAN PRODUCTION AND ECONOMIC OF INDONESIA

    Directory of Open Access Journals (Sweden)

    Sulistiya

    2014-01-01

    Full Text Available Indonesian soybean production almost never moved, even tended to decrease. Indonesia does not have a specific area of land for planting soybeans. Soybean are generally just a byproduct of plant or land filling vacant after farmers grow rice. In addition soybean price fluctuations that affect tofu and tempe entrepreneurs, it turns soybean farmers are often losers. Policy biased to the consumer sector than soybean production, cause national soybean production declining. The decrease occurred primarily because of the narrowing of soybean plantation land owned by farmers, this happens because soy is less interesting than the business side so that the farmers based on rationality, farmers prefer the other commodities, especially rice. Increasing decline in domestic soybean production resulted in the growing dependence on imports which would deplete foreign exchange. Procurement policies of national soybean stocks through imports is easy to do but its adverse implications for the development of domestic agricultural production, especially soybeans, very bad.

  14. Tractor-mounted, GPS-based spot fumigation system manages Prunus replant disease

    Science.gov (United States)

    Our research goal was to use recent advances in global positioning system (GPS) and computer technology to apply just the right amount of fumigant where it is most needed (i.e., in a small target treatment zone in and around each tree replanting site) to control Prunus replant disease (PRD). We deve...

  15. Nitrogen nutrition and temporal effects of enhanced carbon dioxide on soybean growth

    Science.gov (United States)

    Vessey, J. K.; Henry, L. T.; Raper, C. D. Jr

    1990-01-01

    Plants grown on porous media at elevated CO2 levels generally have low concentrations of tissue N and often appear to require increased levels of external N to maximize growth response. This study determines if soybean [Glycine max (L.) Merr. Ransom'] grown hydroponically at elevated CO2 requires increases in external NO3- concentrations beyond levels that are optimal at ambient CO2 to maintain tissue N concentrations and maximize the growth response. This study also investigates temporal influences of elevated CO2 on growth responses by soybean. Plants were grown vegetatively for 34 d in hydroponic culture at atmospheric CO2 concentrations of 400, 650, and 900 microliters L-1 and during the final 18 d at NO3- concentrations of 0.5, 1.0, 5.0 and 10.0 mM in the culture solution. At 650 and 900 microliters L-1 CO2, plants had maximum increases of 31 and 45% in dry weight during the experimental period. Plant growth at 900 microliters L-1 CO2 was stimulated earlier than at 650 microliters L-1. During the final 18 d of the experiment, the relative growth rates (RGR) of plants grown at elevated CO2 declined. Elevated CO2 caused increases in total N and total NO3(-)-N content and leaf area but not leaf number. Enhancing CO2 levels also caused a decrease in root:shoot ratios. Stomatal resistance increased by 2.1- and 2.8-fold for plants at the 650 and 900 microliters L-1 CO2, respectively. Nitrate level in the culture solutions had no effect on growth or on C:N ratios of tissues, nor did increases in CO2 levels cause a decrease in N concentration of plant tissues. Hence, increases in NO3- concentration of the hydroponic solution were not necessary to maintain the N status of the plants or to maximize the growth response to elevated CO2.

  16. De novo Genome Assembly and Single Nucleotide Variations for Soybean Mosaic Virus Using Soybean Seed Transcriptome Data

    Directory of Open Access Journals (Sweden)

    Yeonhwa Jo

    2017-10-01

    Full Text Available Soybean is the most important legume crop in the world. Several diseases in soybean lead to serious yield losses in major soybean-producing countries. Moreover, soybean can be infected by diverse viruses. Recently, we carried out a large-scale screening to identify viruses infecting soybean using available soybean transcriptome data. Of the screened transcriptomes, a soybean transcriptome for soybean seed development analysis contains several virus-associated sequences. In this study, we identified five viruses, including soybean mosaic virus (SMV, infecting soybean by de novo transcriptome assembly followed by blast search. We assembled a nearly complete consensus genome sequence of SMV China using transcriptome data. Based on phylogenetic analysis, the consensus genome sequence of SMV China was closely related to SMV isolates from South Korea. We examined single nucleotide variations (SNVs for SMVs in the soybean seed transcriptome revealing 780 SNVs, which were evenly distributed on the SMV genome. Four SNVs, C-U, U-C, A-G, and G-A, were frequently identified. This result demonstrated the quasispecies variation of the SMV genome. Taken together, this study carried out bioinformatics analyses to identify viruses using soybean transcriptome data. In addition, we demonstrated the application of soybean transcriptome data for virus genome assembly and SNV analysis.

  17. Physicochemical properties of soybean oil extracted from γ-irradiated soybeans

    International Nuclear Information System (INIS)

    Myung-Woo Byun; Il-Jun Kang; Joong-Ho Kwon; Hayashi, Yukako; Mori, Tomohiko

    1996-01-01

    Physicochemical properties of soybean oil extracted from γ-irradiated soybeans (0-10 kGy) were investigated. No significant changes were observed in the total lipid content, fatty acid composition, acid value, peroxide value and trans fatty acid content at different irradiation doses. A tendency toward increased induction period was observed as irradiation dose increased. At higher dose levels than 10 kGy, n-hexanal increased remarkably as dose levels increased, showing the possibility of a chemical index for over-dose irradiation in soybeans. (author)

  18. Physiochemical properties of soybean oil extracted from γ-irradiated soybeans

    International Nuclear Information System (INIS)

    Byun, M.W.; Kang, I.J.; Kwon, J.H.; Hayashi, Y.; Mori, T.

    1995-01-01

    Physicochemical properties of soybean oil extracted from γ-irradiated soybeans (0-10kGy) were investigated. No significant changes were observed in the total lipid content, fatty acid composition, acid value, peroxide value and trans fatty acid content at different irradiation doses. A tendency toward increased induction period was observed as irradiation dose increased. At higher dose levels than 10 kGy, n-hexagonal content remarkably increased as dose levels increased, showing the possibility of a chemical index for over-dose irradiation in soybeans. (Author)

  19. The strategy of sustainable soybean development to increase soybean needs in North Sumatera

    Science.gov (United States)

    Handayani, L.; Rauf, A.; Rahmawaty; Supriana, T.

    2018-02-01

    The objective of the research was to analyze both internal and external factors influencing the strategy of sustainable soybean development to increase soybean needs in North Sumatera. SWOT analysis was used as the method of the research through identifying internal factors in the development of sustainable soybean the strategy to increase soybean production in research area is aggressive strategy or strategy of SO (Strengths - Oppurtunities) that is using force to exploit existing opportunity with activities as follows: (1). Use certified seeds in accordance with government regulations and policies. (2). Utilizing the level of soil fertility and cropping patterns to be able to meet the demand for soybeans. (3). Utilizing human resources by becoming a member of farmer groups.

  20. Effect of γ irradiation on the fatty acid composition of soybean and soybean oil.

    Science.gov (United States)

    Minami, Ikuko; Nakamura, Yoshimasa; Todoriki, Setsuko; Murata, Yoshiyuki

    2012-01-01

    Food irradiation is a form of food processing to extend the shelf life and reduce spoilage of food. We examined the effects of γ radiation on the fatty acid composition, lipid peroxidation level, and antioxidative activity of soybean and soybean oil which both contain a large amount of unsaturated fatty acids. Irradiation at 10 to 80 kGy under aerobic conditions did not markedly change the fatty acid composition of soybean. While 10-kGy irradiation did not markedly affect the fatty acid composition of soybean oil under either aerobic or anaerobic conditions, 40-kGy irradiation considerably altered the fatty acid composition of soybean oil under aerobic conditions, but not under anaerobic conditions. Moreover, 40-kGy irradiation produced a significant amount of trans fatty acids under aerobic conditions, but not under anaerobic conditions. Irradiating soybean oil induced lipid peroxidation and reduced the radical scavenging activity under aerobic conditions, but had no effect under anaerobic conditions. These results indicate that the fatty acid composition of soybean was not markedly affected by radiation at 10 kGy, and that anaerobic conditions reduced the degradation of soybean oil that occurred with high doses of γ radiation.

  1. Trace gas emissions from a sun and shade grown ornamental crop

    Science.gov (United States)

    Previous work has begun to establish baseline approximations for greenhouse gas (GHG) (CO2, CH4, and N2O) emissions of several horticultural crops, though much work is still needed to expand contingencies for multiple best management practices. In this study, GHG emissions from one shade-grown speci...

  2. Bio fertilization of soybean in sandy soils of egypt using N-15 tracer technique

    Energy Technology Data Exchange (ETDEWEB)

    Soliman, S; Galal, Y G.M.; Elghandour, I [Soil and Water Dept, Atomic Energy Authority, P.O.Box 13756 (Egypt)

    1995-10-01

    The effect of inoculation of soybeans with B. Japonicum and A. brasilense either solely or in mixture, and N fertilizer levels had been studied in pot experiment Nodulation of soybean grown in sandy soil was enhanced by inoculation. The highest values of nodules number and fresh weight were recorded at rate of 20 Kg N ha-1, and decreased with increasing N rate up to 40 kg N ha-1. In contrast, the dry weight of the above ground parts, as well as the N uptake was increased with increasing N fertilizer level. Similar effect was observed for inoculation as compared with the un inoculated treatment. Despite the nodulating and nonnodulating soybeans has almost the same dry weight, the nodulating isoline accumulated more N than the non-nodulating. Percentages of nitrogen derived from air (%Ndfa) was depressed with increasing N rates from 10 to 40 kg N ha-1 either estimated by isotope dilution (I D) or N difference method (D M). Dual inoculation resulted in high percent of N 2-fixed (42.5%) at rate of 10 kg N ha-1. Correlation between I D and D M methods was found to be dependent on inoculation treatments. However, nitrogen utilized by nodulating soybean (FUE%) was enhanced as a function of inoculation with B. Japonicum. 2 figs., 3 tabs.

  3. bio fertilization of soybean in sandy soils of egypt using N-15 tracer technique

    International Nuclear Information System (INIS)

    Soliman, S.; Galal, Y.G.M.; Elghandour, I.

    1995-01-01

    The effect of inoculation of soybeans with B. Japonicum and A. brasilense either solely or in mixture, and N fertilizer levels had been studied in pot experiment Nodulation of soybean grown in sandy soil was enhanced by inoculation. The highest values of nodules number and fresh weight were recorded at rate of 20 Kg N ha-1, and decreased with increasing N rate up to 40 kg N ha-1. In contrast, the dry weight of the above ground parts, as well as the N uptake was increased with increasing N fertilizer level. Similar effect was observed for inoculation as compared with the un inoculated treatment. Despite the nodulating and nonnodulating soybeans has almost the same dry weight, the nodulating isoline accumulated more N than the non-nodulating. Percentages of nitrogen derived from air (%Ndfa) was depressed with increasing N rates from 10 to 40 kg N ha-1 either estimated by isotope dilution (I D) or N difference method (D M). Dual inoculation resulted in high percent of N 2-fixed (42.5%) at rate of 10 kg N ha-1. Correlation between I D and D M methods was found to be dependent on inoculation treatments. However, nitrogen utilized by nodulating soybean (FUE%) was enhanced as a function of inoculation with B. Japonicum. 2 figs., 3 tabs

  4. Improving of diesel combustion-pollution-fuel economy and performance by gasoline fumigation

    International Nuclear Information System (INIS)

    Şahin, Zehra; Durgun, Orhan

    2013-01-01

    Highlights: • The effects of gasoline fumigation on the engine performance and NO x emission were investigated in Ford XLD 418 T automotive diesel engine. • Gasoline at approximately (2, 4, 6, 8 10, and 12)% (by vol.) ratios was injected into intake air by a carburetor. • GF enhances effective power and reduces brake specific fuel consumption, cost, and NO x emission. - Abstract: One of the most important objectives of the studies worldwide is to improve combustion of diesel engine to meet growing energy needs and to reduce increasing environmental pollution. To accomplish this goal, especially to reduce pollutant emissions, researchers have focused their interest on the field of alternative fuels and alternative solutions. Gasoline fumigation (GF) is one of these alternative solutions, by which diesel combustion, fuel economy, and engine performance are improved, and environmental pollution is decreased. In the fumigation method, gasoline is injected into intake air, either by a carburetor, which main nozzle section is adjustable or by a simple injection system. In the present experimental study, a simple carburetor was used, and the effects of gasoline fumigation at (2, 4, 6, 8, 10, 12)% (by vol.) gasoline ratios on the combustion, NO x emission, fuel economy, and engine performance sophisticatedly investigated for a fully instrumented, four-cylinder, water-cooled indirect injection (IDI), Ford XLD 418 T automotive diesel engine. Tests were conducted for each of the above gasoline fumigation ratios at three different speeds and for (1/1, 3/4, and 1/2) fuel delivery ratios (FDRs). GF test results showed that NO x emission is lower than that of neat diesel fuel (NDF). NO x emission decreases approximately 4.20%, 2.50%, and 9.65% for (1/1, 3/4, and 1/2) FDRs, respectively. Effective power increases approximately 2.38% for 1/1 FDR. At (2500 and 3000) rpms, effective power decreases at low gasoline ratios, but it increases at high gasoline ratios for 3/4 and 1

  5. RNA-seq data comparisons of wild soybean genotypes in response to soybean cyst nematode (Heterodera glycines

    Directory of Open Access Journals (Sweden)

    Hengyou Zhang

    2017-12-01

    Full Text Available Soybean [Glycine max (L. Merr.] is an important crop rich in vegetable protein and oil, and is a staple food for human and animals worldwide. However, soybean plants have been challenged by soybean cyst nematode (SCN, Heterodera glycines, one of the most damaging pests found in soybean fields. Applying SCN-resistant cultivars is the most efficient and environmentally friendly strategy to manage SCN. Currently, soybean breeding and further improvement in soybean agriculture are hindered by severely limited genetic diversity in cultivated soybeans. G. soja is a soybean wild progenitor with much higher levels of genetic diversity compared to cultivated soybeans. In this study, transcriptomes of the resistant and susceptible genotypes of the wild soybean, Glycine soja Sieb & Zucc, were sequenced to examine the genetic basis of SCN resistance. Seedling roots were treated with infective second-stage juveniles (J2s of the soybean cyst nematode (HG type 2.5.7 for 3, 5, 8 days and pooled for library construction and RNA sequencing. The transcriptome sequencing generated approximately 245 million (M high quality (Q > 30 raw sequence reads (125 bp in length for twelve libraries. The raw sequence reads were deposited in NCBI sequence read archive (SRA database, with the accession numbers SRR5227314-25. Further analysis of this data would be helpful to improve our understanding of the molecular mechanisms of soybean-SCN interaction and facilitate the development of diverse SCN resistance cultivars.

  6. Physiological responses of lichens to factorial fumigations with nitric acid and ozone

    Science.gov (United States)

    J. Riddell; P.E. Padgett; T. Nash

    2012-01-01

    This paper addresses the effects of gaseous nitric acid (HNO3) and ozone (O3), two important air pollutants, on six lichen species with different morphological, ecological, and biological characteristics. The treatment chambers were set up in a factorial design consisting of control chambers, chambers fumigated with HNO

  7. Study of water management in Maresme greenhouses; Estudio de la gestion del agua en invernaderos del Bajo Maresme

    Energy Technology Data Exchange (ETDEWEB)

    Mora Campillo, A.; Vazquez Lima, F.; Font Segura, X.

    2004-07-01

    In the Maresme, a region of the Barcelona province, intensive agriculture production, especially in greenhouses, has a major impact on the regional economy. This study focuses on the analysis of the use of water in greenhouses. It also attempt to asses the estate of the sector based on the survey of 27 nurseries were ornamental plants and flowers are grown. (Author)

  8. Fumigant Compounds from the Essential Oil of Chinese Blumea balsamifera Leaves against the Maize Weevil (Sitophilus zeamais

    Directory of Open Access Journals (Sweden)

    Sha Sha Chu

    2013-01-01

    Full Text Available Essential oil of Chinese medicinal herb, Blumea balsamifera leaves, was found to possess fumigant toxicity against the maize weevils, Sitophilus zeamais. The main components of the essential oil of B. balsamifera were 1,8-cineole (20.98%, borneol (11.99%, β-caryophyllene (10.38%, camphor (8.06%, 4-terpineol (6.49%, α-terpineol (5.91%, and caryophyllene oxide (5.35%. Bioactivity-guided chromatographic separation of the essential oil on repeated silica gel columns led to isolate five constituent compounds, namely, 1,8-cineole, borneol, camphor, α-terpineol, and 4-terpineol. 1,8-Cineole, 4-terpineol, and α-terpineol showed pronounced fumigant toxicity against S. zeamais adults (LC50 = 2.96 mg/L, 4.79 mg/L, and 7.45 mg/L air, resp. and were more toxic than camphor (LC50 = 21.64 mg/L air and borneol (LC50 = 21.67 mg/L air. The crude essential oil also possessed strong fumigant toxicity against S. zeamais adults (LC50 = 10.71 mg/L air.

  9. Analysis of various quality attributes of sunflower and soybean plants by near infra-red reflectance spectroscopy: Development and validation calibration models

    Science.gov (United States)

    Sunflower and soybean are summer annuals that can be grown as an alternative to corn and may be particularly useful in organic production systems. Rapid and low cost methods of analyzing plant quality would be helpful for crop management. We developed and validated calibration models for Near-infrar...

  10. Salt Tolerance in Soybean

    Institute of Scientific and Technical Information of China (English)

    Tsui-Hung Phang; Guihua Shao; Hon-Ming Lam

    2008-01-01

    Soybean is an Important cash crop and its productivity is significantly hampered by salt stress. High salt Imposes negative impacts on growth, nodulation, agronomy traits, seed quality and quantity, and thus reduces the yield of soybean. To cope with salt stress, soybean has developed several tolerance mechanisms, including: (I) maintenance of ion homeostasis; (ii) adjustment in response to osmotic stress; (iii) restoration of osmotic balance; and (iv) other metabolic and structural adaptations. The regulatory network for abiotic stress responses in higher plants has been studied extensively in model plants such as Arabidopsis thaliana. Some homologous components involved in salt stress responses have been identified in soybean. In this review, we tried to integrate the relevant works on soybean and proposes a working model to descdbe Its salt stress responses at the molecular level.

  11. Changes in transpiration rate of SO/sub 2/-resistant and -sensitive plants with SO/sub 2/ fumigation and the participation of abscisic acid

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, N.; Sugahara, K.

    1978-01-01

    Peanut and tomato plants were resistant to 2.0 ppm SO/sub 2/, while radish, perilla and spinach plants were sensitive. The amounts of SO/sub 2/ absorbed by peanut and tomato were obviously less than those absorbed by radish, perilla and spinach. Transpiration rates of peanut and tomato began to decrease within 5 min after the commencement of SO/sub 2/ fumigation and reached minimum levels, i.e., 10 and 50% for the initial levels, respectively, after initiation of fumigation, then declined. Those of radish and spinach did not change for about 20 and 30 min, then decreased gradually. The content of abscisic acid (ABA) was highest in peanut. The content in tomato was also high, but low in radish, perilla and spinach. Radish supplied with exogenous ABA began to decrease its transpiration rate immediately after SO/sub 2/ fumigation and was markedly resistant to SO/sub 2/. ABA in leaves may control the rapid stomatal closure following SO/sub 2/ fumigation. 26 references.

  12. Yield Traits and Water and Nitrogen Use Efficiencies of Bell Pepper Grown in Plastic-Greenhouse

    Directory of Open Access Journals (Sweden)

    Vincenzo Candido

    2009-09-01

    Full Text Available We report the results of a two-year study assessing the effects of nitrogen fertilization and irrigation regimes on yield traits and on water and nitrogen use efficiency of greenhouse-grown bell pepper (Capsicum annuum L.. The trials involved the combination of four N doses (0, 100, 200, 300 kg ha-1 with two irrigation regimes (100% restitution of ETc; repeated cycles of water stress starting from fruit set. In the second year, the crop was transplanted one month earlier than in the first year and was mulched with plastic sheeting. The highest yield in both years was obtained by associating 100% restitution of ETc and the N dose of 200 kg ha-1. The marketable yields were 37 and 72 t ha-1 in 1998 and 1999, respectively. Doubling of the yield in the second year was probably due to the earlier transplantation and mulching, confirming the numerous benefits of the latter technique. The water deficit imposed during the late flowering-early fruit set phase had negative effects on the crop, with declines of the marketable yield of up to 44% due to the reduced number and weight of the fruit and the increased waste, mainly peppers with blossom-end rot, cracking, sun-burn and malformations. The peppers grown under water stress were richer in dry matter and soluble solids. The yield declines due to water deficit varied in relation to the N dose, as confirmed by the numerous interactions recorded between irrigation regime and nitrogen level.Without nitrogen fertilization, the quantity and quality of the fruits remained unchanged, while the maximum dose (300 kg ha-1 enhanced the negative effects of the water deficit on the number (-52% and weight (-161% of marketable peppers. Moreover, the waste peppers reached 31% of the total production (by weight, with over 21% affected by blossom-end rot. Water stress led to a drastic reduction of the total above-ground dry biomass (40% and a significant decrease of nitrogen absorption by the plant (54% with preferential

  13. Analysis of soybean crop grown in soils contaminated with four transuranic elements

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    The work done in this project has been directed at assessing parameters associated with soil to plant transfer of radionuclides. Seven soils were selected as representing a wide range of soil characteristics, from acidic and mineral soils to alkaline and organic soils. The soils were uniformly contaminated with isotopes of Np, Am, Cm, and Pu, then mixed and placed in 52 gallon containers. Five replicates of each soil were used. The crop investigated was soybeans. The seeds were planted, and the soils were treated with a N fertilizer. The crop was allowed to mature for twenty-seven days, at which time a preliminary harvest was made. The final harvest was taken seventy-three days after planting, except for the plants on the Lyman soil. These were given ninety-one days to mature. The plants were divided into stems, leaves, pods, and seeds, then assayed for neptunium, americium, cerium, and plutonium

  14. Differential transcription and message stability of two genes encoding soybean ribulose 1,5-bisphosphate carboxylase small subunit

    International Nuclear Information System (INIS)

    Shirley, B.W.; Berry-Lowe, S.L.; Grandbastien, M.A.; Zurfluh, L.L.; Shah, D.M.; Meagher, R.B.

    1987-01-01

    The expression of two closely related soybean ribulose bisphosphate carboxylase small subunit (Rubisco ss) genes, SRS1 and SRS4, has been compared. These genes account for approximately 2-4% of the total transcription in light grown leaves, SRS4 being twice as transcriptionally active as SRS1. The transcription of these genes is reduced more than 30 fold after a pulse of far-red light or extended periods of darkness. When etiolated seedlings are shifted to the light the transcription of both genes increases 30-50 fold. Despite this 30-fold range in transcriptional expression the steady state mRNA levels in light and dark grown tissue differ by less than 8 fold. This suggests that the mRNAs are less stable in light grown tissue. 38 refs., 5 figs

  15. Root uptake and translocation of perfluorinated alkyl acids by three hydroponically grown crops

    NARCIS (Netherlands)

    Felizeter, S.; McLachlan, M.S.; de Voogt, P.

    2014-01-01

    Tomato, cabbage, and zucchini plants were grown hydroponically in a greenhouse. They were exposed to 14 perfluorinated alkyl acids (PFAAs) at four different concentrations via the nutrient solution. At maturity the plants were harvested, and the roots, stems, leaves, twigs (where applicable), and

  16. 78 FR 1 - Soybean Promotion and Research: Amend the Order To Adjust Representation on the United Soybean Board

    Science.gov (United States)

    2013-01-02

    ... practice and procedure; Advertising; Agricultural research; Marketing agreements; Soybeans and soybean...] Soybean Promotion and Research: Amend the Order To Adjust Representation on the United Soybean Board... occurred since the Board was reapportioned in 2009. As required by the Soybean Promotion, Research, and...

  17. Foliar Reflectance and Fluorescence Responses for Corn and Soybean Plants Under Nitrogen Stress

    Science.gov (United States)

    Middleton, E. M.; Campbell, P. K. Entcheva; Corp, L. A.; Butcher, L. M.; McMurtrey, J. E.

    2003-01-01

    We are investigating the use of spectral indices derived from actively induced fluorescence spectra and passive optical spectra. We examined the influence of photosynthetic pigment, carbon (C) and nitrogen (N) content on the spectral fluorescence and passive optical property characteristics of mature, upper leaves from plants provided different N fertilizer application rates: 20%, 50%, 100% and 150% of recommended N levels. A suite of optical, fluorescence, and biophysical measurements were collected on leaves from field grown corn (Zea mays L.) and soybean plants (Glycine max L.) grown in pots (greenhouse + ambient sunlight. Steady state laser-induced fluorescence emission spectra (5 nm resolution) were obtained from adaxial and abaxial surfaces resulting from excitation at single wavelengths (280, 380 or 360, and 532 nm). For emission spectra produced by each of these excitation wavelengths, ratios of emission peaks were calculated, including the red far-red chlorophyll fluorescence (ChlF) ratio (F685/F740) and the far-red/green (F740/F525) ratio. High resolution (< 3 nm) optical spectra (350-2500 nm) of reflectance, transmittance, and absorptance were also acquired for both adaxial and abaxial leaf surfaces. Species differences were demonstrated for several optical parameters. A 'red edge' derivative ratio determined from transmittance spectra [as the maximum first deivative, between 650-750 nm, normalized to the value at 744 nm, or Dmax/D744], was strongly associated with the C/N ratio (r(exp 2) = 0.90, P +/- 0.001). This ratio, calculated from reflectance spectra, was inversely related to chlorophyll b content (r(exp 2) = 0.91, P +/- 0.001) as was the ChlF (F685/F740) ratio obtained with 532 nm excitation (r(exp 2) = 0.76, P +/- 0.01). Discrimination of N treatment groups was possible with specific fluorescence band ratios (e.g., F740/F525 obtained with 380 nm excitation). Higher ChlF and blue-green emissions were measured from the abaxial leaf surfaces

  18. The effect of crop sequences on soil microbial, chemical and physical indicators and its relationship with soybean sudden death syndrome (complex of Fusarium species

    Directory of Open Access Journals (Sweden)

    Carolina Perez-Brandan

    2013-12-01

    Full Text Available The effect of crop sequences on soil quality indicators and its relationship with sudden death syndrome (SDS, a complex of Fusarium species was evaluated by physical, chemical, biochemical and molecular techniques. Regarding physical aspects, soybean/maize and maize monoculture exhibited the highest stable aggregate level, with values 41% and 43% higher than in soybean monoculture, respectively, and 133% higher than in bean monoculture. Bulk density (BD was higher in soybean monoculture, being 4% higher than in bean monoculture. The chemical parameters organic matter, total N, P, K, Mg, Ca, and water holding capacity also indicated that soybean/maize and maize monoculture improved soil quality. Fungal and bacterial community fingerprints generated using Terminal Restriction Fragment Length Polymorphism analysis of intergenic transcribed spacer regions of rRNA genes and 16S rRNA genes, respectively, indicated a clear separation between the rotations. Fatty acid profiles evaluated by FAME showed that bean monoculture had higher biomass of Gram (+ bacteria and stress indicators than maize monoculture, while the soybean/maize system showed a significant increase in total microbial biomass (total FAMEs content in comparison with soybean and bean monoculture. The incidence of SDS (Fusarium crassistipitatum was markedly higher (15% under soybean monoculture than when soybean was grown in rotation with maize. In the present work, soil microbial properties were improved under soybean/maize relative to continuous soybean. The improvement of soil health was one of the main causes for the reduction of disease pressure and crop yield improvement due to the benefits that crop rotation produces for soil quality.

  19. The effect of crop sequences on soil microbial, chemical and physical indicators and its relationship with soybean sudden death syndrome (complex of Fusarium species)

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Brandan, C.; Arzeno, J. L.; Huidobro, J.; Conforto, C.; Grumberg, B.; Hilton, S.; Bending, G. D.; Meriles, J. M.; Vargas-Gil, S.

    2014-06-01

    The effect of crop sequences on soil quality indicators and its relationship with sudden death syndrome (SDS, a complex of Fusarium species) was evaluated by physical, chemical, biochemical and molecular techniques. Regarding physical aspects, soybean/maize and maize mono culture exhibited the highest stable aggregate level, with values 41% and 43% higher than in soybean mono culture, respectively, and 133% higher than in bean mono culture. Bulk density (BD) was higher in soybean monoculture, being 4% higher than in bean monoculture. The chemical parameters organic matter, total N, P, K, Mg, Ca, and water holding capacity also indicated that soybean/maize and maize monoculture improved soil quality. Fungal and bacterial community fingerprints generated using Terminal Restriction Fragment Length Polymorphism analysis of intergenic transcribed spacer regions of rRNA genes and 16S rRNA genes, respectively, indicated a clear separation between the rotations. Fatty acid profiles evaluated by FAME showed that bean monoculture had higher biomass of Gram (+) bacteria and stress indicators than maize monoculture, while the soybean/maize system showed a significant increase in total microbial biomass (total FAMEs content) in comparison with soybean and bean monoculture. The incidence of SDS (Fusarium crassistipitatum) was markedly higher (15%) under soybean monoculture than when soybean was grown in rotation with maize. In the present work, soil microbial properties were improved under soybean/maize relative to continuous soybean. The improvement of soil health was one of the main causes for the reduction of disease pressure and crop yield improvement due to the benefits that crop rotation produces for soil quality. (Author)

  20. Fumigant and repellent activities of essential oil extracted from Artemisia dubia and its main compounds against two stored product pests.

    Science.gov (United States)

    Liang, Jun-Yu; Guo, Shan-Shan; Zhang, Wen-Juan; Geng, Zhu-Feng; Deng, Zhi-Wei; Du, Shu-Shan; Zhang, Ji

    2018-05-01

    The major chemical constituents of the essential oil extracted from Artemisia dubia wall. ex Bess. (Family: Asteraceae) were found as terpinolene (19.02%), limonene (17.40%), 2,5-etheno[4.2.2]propella-3,7,9-triene (11.29%), isoelemicin (11.05%) and p-cymene-8-ol (5.93%). Terpinolene and limonene were separated as main components from the essential oil. The essential oil showed fumigant toxicity against Tribolium castaneum and Liposcelis bostrychophila with LC 50 values of 49.54 and 0.74 mg/L, respectively. The essential oil and isolated compounds of A. dubia showed repellency activities against both insects. Terpinolene and limonene showed the fumigant toxicity against T. castaneum. Terpinolene showed obvious fumigant toxicity against L. bostrychophila. The results indicated that the essential oil of A. dubia had potential to be developed into natural insecticides for controlling stored product pests.

  1. The use of 32P to study root growth of soybean as affected by soil compaction

    International Nuclear Information System (INIS)

    Sisworo, Elsje L.; Sisworo, Widjang H.; Syaukat, Sri Harti; Wemay, Johannis; Haryanto

    1996-01-01

    Two greenhouse and two field experiments have been conducted to study the effect of soil compaction on root and plant growth of soybean, by using 32 P in the form of carrier free KH 2 32 PO 4 solution. In the greenhouse experiment it was clearly shown that by increasing soil compaction the growth of roots and shoots was increasingly inhibited. The growth of roots was expressed in √% arcsin converted from 32 P activity (counts per minute, cpm) in the shoots and 32 P activity in the shoots (cpm) without convertion. Plant growth was expressed in plant height, number of leaves, dry weight of pods and shoots. In the field experiment, it was shown distinctively that root growth in the 15 cm soil depth was inhibited whith the increase of soil compaction. Similar with the greenhouse experiments the of plants of roots was expressed in cpm 32 P of roots, shoots, and pods, while, the growth of plants was expressed in plant height, number of pods, and dry weight of pods, seeds, and stover. (author). 19 refs, 4 tabs, 6 figs

  2. Arbuscular mycorrhizal fungi and mycorrhizal stimulant affect dry matter and nutrient accumulation in bean and soybean plants

    Directory of Open Access Journals (Sweden)

    Fabrício Henrique Moreira Salgado

    2016-12-01

    Full Text Available The adoption of biological resources in agriculture may allow less dependence and better use of finite resources. This study aimed at evaluating the effects of inoculation with arbuscular mycorrhizal fungi native to the Brazilian Savannah associated with the application of mycorrhizal stimulant (7-hydroxy, 4'-methoxy-isoflavone, in the early growth of common bean and soybean. The experiment was carried out in a greenhouse, in a completely randomized design, with a 7 x 2 factorial arrangement, consisting of five arbuscular mycorrhizal fungi species, joint inoculation (junction of all species in equal proportions and native fungi (without inoculation, in the presence and absence of stimulant. The following traits were evaluated: shoot dry matter, root dry matter, mycorrhizal colonization, nodules dry matter and accumulation of calcium, zinc and phosphorus in the shoot dry matter. The increase provided by the arbuscular mycorrhizal fungi and the use of stimulant reached over 200 % in bean and over 80 % in soybean plants. The fungi Acaulospora scrobiculata, Dentiscutata heterogama, Gigaspora margarita and Rhizophagus clarus, for bean, and Claroideoglomus etunicatum, Dentiscutata heterogama, Rhizophagus clarus and the joint inoculation, for soybean, increased the dry matter and nutrients accumulation.

  3. Modeling osmotic salinity effects on yield characteristics of substrate-grown greenhouse crops

    NARCIS (Netherlands)

    Sonneveld, C.; Bos, van den A.L.; Voogt, W.

    2004-01-01

    In a series of experiments with different osmotic potentials in the root environment, various vegetables, and ornamentals were grown in a substrate system. The osmotic potential was varied by addition of nutrients. Yield characteristics of the crop were related to the osmotic potential of the

  4. Overexpression of a soybean salicylic acid methlyltransferase gene confers resistance to soybean cyst nematode

    Science.gov (United States)

    Soybean cyst nematode (Heterodera glycines Ichinohe, SCN) is the most pervasive pest of soybean [Glycine max (L.) Merr.] in the USA and worldwide. SCN reduced soybean yields worldwide by an estimated billion dollars annually. These losses remained stable with the use of resistant cultivars but over ...

  5. Discovery of a seventh Rpp soybean rust resistance locus in soybean accession PI 605823

    Science.gov (United States)

    Soybean rust, caused by the obligate biotrophic fungal pathogen Phakopsora pachyrhizi Syd. & Syd, is a disease threat to soybean production in regions of the world with mild winters. Host plant resistance to P. pachyrhizi conditioned by Rpp genes has been found in numerous soybean accessions, and at...

  6. Effects of a soybean-free diet supplied to Italian heavy pigs on fattening performance, and meat and dry-cured ham quality

    Directory of Open Access Journals (Sweden)

    Luca Sardi

    2012-10-01

    Full Text Available The aim of this study was to investigate the effects of a diet containing non-conventional (i.e. alternative to soybean meal vegetable protein sources on fattening performance, and meat and dry-cured ham quality of heavy pigs. Fifty-six (Landrace x Large White castrated males with an initial average body weight of 50 kg were allocated to two experimental groups: a control group in which pigs received a traditional soybean meal-based diet, and a treatment group in which soybean meal was replaced by vegetable protein sources (i.e. sunflower meal, potato protein, corn gluten feed, faba beans and dehydrated alfalfa meal, mainly locally grown and not genetically modified. Pigs were slaughtered at approximately 160 kg body weight. Dietary treatment had no significant effect on fattening performance, or meat, fat or dry-cured ham properties. Results suggest that it is possible to feed heavy pigs a soybean-free diet without impairing fattening performance or the quality of meat and Italian PDO (Protected Designation of Origin hams.

  7. Coregulation of soybean vegetative storage protein gene expression by methyl jasmonate and soluble sugars.

    Science.gov (United States)

    Mason, H S; Dewald, D B; Creelman, R A; Mullet, J E

    1992-03-01

    The soybean vegetative storage protein genes vspA and vspB are highly expressed in developing leaves, stems, flowers, and pods as compared with roots, seeds, and mature leaves and stems. In this paper, we report that physiological levels of methyl jasmonate (MeJA) and soluble sugars synergistically stimulate accumulation of vsp mRNAs. Treatment of excised mature soybean (Glycine max Merr. cv Williams) leaves with 0.2 molar sucrose and 10 micromolar MeJA caused a large accumulation of vsp mRNAs, whereas little accumulation occurred when these compounds were supplied separately. In soybean cell suspension cultures, the synergistic effect of sucrose and MeJA on the accumulation of vspB mRNA was maximal at 58 millimolar sucrose and was observed with fructose or glucose substituted for sucrose. In dark-grown soybean seedlings, the highest levels of vsp mRNAs occurred in the hypocotyl hook, which also contained high levels of MeJA and soluble sugars. Lower levels of vsp mRNAs, MeJA, and soluble sugars were found in the cotyledons, roots, and nongrowing regions of the stem. Wounding of mature soybean leaves induced a large accumulation of vsp mRNAs when wounded plants were incubated in the light. Wounded plants kept in the dark or illuminated plants sprayed with dichlorophenyldimethylurea, an inhibitor of photosynthetic electron transport, showed a greatly reduced accumulation of vsp mRNAs. The time courses for the accumulation of vsp mRNAs induced by wounding or sucrose/MeJA treatment were similar. These results strongly suggest that vsp expression is coregulated by endogenous levels of MeJA (or jasmonic acid) and soluble carbohydrate during normal vegetative development and in wounded leaves.

  8. Nutritional requirements for soybean cyst nematode

    Science.gov (United States)

    Soybeans [Glycine max] are the second largest cash crop in US Agriculture, but the soybean yield is compromised by infections from Heterodera glycines, also known as Soybean Cyst Nematodes [SCN]. SCN are the most devastating pathogen or plant disease soybean producers confront. This obligate parasi...

  9. Comparative studies on fumigation and irradiation of semi-dry date fruits

    International Nuclear Information System (INIS)

    Emam, O.A.; Farag, S.E.A.; Hammad, A.I.

    1994-01-01

    The experiment was carried out on Egyptian semidried date fruits 'El-Seidi CV' which use to process paste of dates. It is aimed to compare the effect of irradiation (1.5, 3.0 kGy) and fumigation with methyl bromide (MB) on physical, chemical and mycological characteristics, especially on aflatoxin production during storage for dates for a long period (8 months). Irradiation was more effective than MB for disinfestation of dates, but caused significant loss in weight of dates. No changes were observed in irradiated samples as well as in MB samples in moisture content, pH-values and titratable acidity, but less significant changes were observed in browning and sugars, as well as in the total, reducing or non-reducing sugar/acid ratio. Irradiation (3,0 kGy) was more effective than other treatments for inhibition the growth of fungi and prevention of aflatoxin production in synthetic born media of date fruits. Therefore, the irradiation dose of 3.0 kGy instead of fumigation (MB) can be recommended to keep date fruits in good quality, free from infestation, contamination and safer for human consumption during a long storage period. (author)

  10. Rendimento de grãos de soja em função de diferentes sistemas de manejo de solo e de rotação de culturas Soybean yield associated to different soil tillage methods and crop rotations systems

    Directory of Open Access Journals (Sweden)

    Henrique Pereira dos Santos

    2006-02-01

    , common vetch/corn or sorghum and white oats/soybean]. An experimental randomized blocks design, with split-plots and three replications, was used. The yield and weight of 1,000 kernels of soybean grown under no-tillage and minimum tillage was higher than soybean grown conventional soil tillage with disk plow and a moldboard plow. Plant height showed higher in the no-tillage. The yield of soybean grown after wheat, in system II, was higher than soybean grown after white oats and after wheat, in system III, and after wheat, in system I. The lowest soybean yield, grain weight/plant, and weight of 1,000 kernels was obtained in monoculture (wheat/soybean.

  11. Ethylene Oxide Commerical Sterilization and Fumigation Operations National Emission Standards for Hazardous Air Pollutants (NESHAP)

    Science.gov (United States)

    The purpose of this document is to provide implementation materials to assist in conducting complete and efficient inspections at ethylene oxide commercial sterilization and fumigation operations to determine compliance with the NESHAP

  12. Fumigant toxicities of essential oils and two monoterpenes against potato tuber moth (Phthorimaea operculella Zeller

    Directory of Open Access Journals (Sweden)

    Tayoub Ghaleb

    2016-12-01

    Full Text Available Introduction: The potato tuber moth (PTM is the major economic pest of potato. Different approaches were tried to prevent and control this pest including natural pesticides and synthetic fumigants.

  13. Methyl Bromide Buffer Zone Distances for Commodity and Structural Fumigation: Treatment Longer than 8 Hours

    Science.gov (United States)

    This document contains buffer zone tables required by certain methyl bromide commodity fumigant product labels that refer to Buffer Zone Lookup Tables located at epa.gov/pesticide-registration/mbcommoditybuffer on the label.

  14. Methyl Bromide Buffer Zone Distances for Commodity and Structural Fumigation: Treatment 8 Hours or Less

    Science.gov (United States)

    This document contains buffer zone tables required by certain methyl bromide commodity fumigant product labels that refer to Buffer Zone Lookup Tables located at epa.gov/pesticide-registration/mbcommoditybuffer on the label.

  15. Nitrogen utilization of vegetables grown under plastic greenhouse conditions in Ankara using 15N technique

    International Nuclear Information System (INIS)

    Halitligil, M.B.; Kislal, H.; Sirin, H.; Sirin, C.; Kilicaslan, A.

    2004-01-01

    In order to find suitable varieties of tomato, pepper and cucumber for plastic greenhouse conditions in Ankara and eventually to identify the best N fertilizer rate greenhouse experiments were conducted for two years. Yazgi F 1 variety for tomato, Hizir F 1 variety for cucumber and Serademre 8 variety for pepper were chosen to be the suitable varieties to grow in the plastic greenhouse conditions in Ankara. Five N treatments [N 0 =0, N 1 =150, N 2 =300, and N 3 =450 kg/ha; also, soil N application treatment (N soil ) equivalent to the fertigation treatment of 300 kg/ha was included for tomato and pepper, however N rates for cucumber was 131, 266 and 339 kg N/ha; N soil being 266 kg N/ha] were investigated using 15 N labeled urea fertilizer. Significantly higher marketable fresh fruit and total dry matter yields and N uptakes values were obtained from N 3 treatments for tomato and cucumber, but from N 2 treatment for pepper. Also, significantly higher yields, N uptakes and % NUE values were obtained when the same amount of N fertilizer is applied through fertigation compared to the treatment where N fertilizer applied to the soil then drip irrigated. (author)

  16. Ozone fumigation for safety and quality of wine grapes in postharvest dehydration.

    Science.gov (United States)

    Botondi, Rinaldo; De Sanctis, Federica; Moscatelli, Niccolò; Vettraino, Anna Maria; Catelli, Cesare; Mencarelli, Fabio

    2015-12-01

    This paper proposes postharvest ozone fumigation (as a method) to control microorganisms and evaluate the effect on polyphenols, anthocyanins, carotenoids and cell wall enzymes during the grape dehydration for wine production. Pignola grapes were ozone-treated (1.5 g/h) for 18 h (A=shock treatment), then dehydrated or ozone-treated (1.5 g/h) for 18 h and at 0.5 g/h for 4 h each day (B=long-term treatment) during dehydration. Treatment and dehydration were performed at 10 °C. No significant difference was found for total carotenoid, total phenolic and total anthocyanin contents after 18 h of O3 treatment. A significant decrease in phenolic and anthocyanin contents occurred during treatment B. Also carotenoids were affected by B ozone treatment. Pectin methylesterase (PME) and polygalacturonase (PG) activities were higher in A-treated grapes during dehydration. Finally, ozone reduced fungi and yeasts by 50%. Shock ozone fumigation (A treatment) before dehydration can be used to reduce the microbial count during dehydration without affecting polyphenol and carotenoid contents. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Carbon Monoxide Fumigation Improved the Quality, Nutrients, and Antioxidant Activities of Postharvest Peach

    Science.gov (United States)

    Li, Ying; Pei, Fei

    2014-01-01

    Peaches (Prunus persica cv. Yanhong) were fumigated with carbon monoxide (CO) at 0, 0.5, 5, 10, and 20 μmol/L for 2 hours. The result showed that low concentration CO (0.5–10 μmol/L) might delay the decrease of firmness and titrable acid content, restrain the increase of decay incidence, and postpone the variation of soluble solids content, but treating peaches with high concentration CO (20 μmol/L) demonstrated adverse effects. Further research exhibited that exogenous CO could induce the phenylalnine ammonialyase activity, maintain nutrient contents such as Vitamin C, total flavonoid, and polyphenol, and enhance antioxidant activity according to reducing power and 2,2-diphenyl-1-(2,4,6-trinitrophenyl) hydrazyl radical scavenging activity. Treating peaches with appropriate concentration CO was beneficial to the quality, nutrients, and antioxidant activity of postharvest peaches during storage time. Therefore, CO fumigation might probably become a novel method to preserve postharvest peach and other fruits in the future. PMID:26904651

  18. Use of lichen fumigation studies to evaluate the effects of new emission sources on class I areas

    International Nuclear Information System (INIS)

    Hart, R.; Webb, P.G.; Biggs, R.H.; Portier, K.M.

    1988-01-01

    Allowable increments of SO 2 from new emission sources near Class I areas are severely limited by the PSD provisions of the Clean Air Act, unless the applicant can prove that the expected emissions will not adversely affect the air quality related values of Class I area. Lichens are considered to be the resource that is most sensitive to SO 2 . If projected concentrations will not injure lichens, other resources should not be affected. Four lichen species native to two Class I area, Cape Romain National Wildlife Refuge and Everglades National Park, were fumigated in the laboratory with SO 2 doses that simulated the frequencies, duration, and concentrations expected from potential new sources. Lichens from Cape Romain were fumigated with 240 μg/m 3 , 400 μg/m 3 , and ambient air 3 hours/week for 6 weeks. No differences in biomass gain, percent electrolyte leakage in solution (an indicator of membrane damage) or 14 CO 2 assimilation were observed among treatments. Lichens from Everglades National Park were fumigated with 100 μg/m 3 , 200 μg/m 3 , 400 μg/m 3 , and ambient air 6 hours/week for 10 weeks. Percent electrolyte leakage of Parmotrema tinctorum was greater at the two high concentrations, but there was no significant effect on biomass gain or 14 CO 2 assimilation. Percent electrolyte leakage increased and biomass gain and 14 CO 2 assimilation decreased in Ramalina denticulata at 400 μg/m 3 SO 2 in comparison with lower concentrations. Studies of fumigation effects on lichens are a useful technique for the evaluation of impacts of emission sources on air quality related values in Class I areas

  19. Irradiation versus methyl bromide fumigation or heating as procedures for increasing shelf life of dry date varieties

    International Nuclear Information System (INIS)

    El-Samahy, S.K.; Abd El-Hady, S.A.; Swailam, H.M.

    2004-01-01

    The objective of this study is to evaluate the use of irradiation as an alternative method and comparing it with the traditional methods such as fumigation and heating for increasing shelf life dry date varieties. two varieties of dry dates, Malakaby and Gandilla, were obtained from Aswan, Upper Egypt and were used in this study. The irradiation was carried out with different doses of gamma rays to select the recommended dose to increase shelf life of dry dates. The fumigated, heated and irradiated samples were stored at room temperature after packaging in polyethylene plus cloth bags. The date characteristics such as insect infestation percent, weight loss, microbiological analyses, and firmness and chemical analyses were evaluated. The results obtained indicated that irradiation as a procedure for insect disinfestation and increasing shelf life of dry dates was better than both fumigation and heating methods. Where, irradiation of date fruits at dose of 1.0 kGy inhibited the insect infestation and improved the microbial quality of the date fruits during storage up to 18 months. Adding cloths to polyethylene packages raised the percentage of intact dry date fruits

  20. Analysis of various quality attributes of sunflower and soybean plants by near infra-red reflectance spectroscopy: Development and validation of calibration models

    Science.gov (United States)

    Soybean and sunflower are summer annuals that can be grown as an alternative to corn and may be particularly useful in organic production systems for forage in addition to their traditional use as protein and/or oil yielding crops. Rapid and low cost methods of analyzing plant quality would be helpf...

  1. Effect of rhizosphere pH condition on cadmium movement in a soybean plant

    International Nuclear Information System (INIS)

    Ohya, T.; Tanoi, K.; Iikura, H.; Rai, H.; Nakanishi, T.M.

    2008-01-01

    To study the effect of rhizosphere pH condition on the cadmium uptake movement, 109 Cd, was applied as a radioisotope tracer to a soybean plant grown in a water culture at pH 4.5 or pH 6.5. The distribution of 109 Cd in the soybean plant was observed radiographically with an imaging plate (IP). The amount of Cd transported from the root to the upper part of the plant at pH 4.5 was approximately two times higher than that at pH 6.5. However, the movement of Cd in the upper part of the plant was similar under both pH conditions. The distribution of Cd inside the internodes at pH 4.5 also showed similar pattern to that at pH 6.5, suggesting that once Cd reached to the vessel of the root, the movement of Cd was not dependent on rhizosphere pH conditions. (author)

  2. Reduced phenylalanine ammonia-lyase and tyrosine ammonia-lyase activities and lignin synthesis in wheat grown under low pressure sodium lamps

    Science.gov (United States)

    Guerra, D.; Anderson, A. J.; Salisbury, F. B.

    1985-01-01

    Wheat (Triticum aestivum L. cv Fremont) grown in hydroponic culture under 24-hour continuous irradiation at 560 to 580 micromoles per square meter per second from either metalhalide (MH), high pressure sodium (HPS), or low pressure sodium (LPS) lamps reached maturity in 70 days. Grain yields were similar under all three lamps, although LPS-grown plants lodged at maturity. Phenylalanine ammonia-lyase (PAL) and a tyrosine ammonia lyase (TAL) with lesser activity were detected in all extracts of leaf, inflorescence, and stem. Ammonia-lyase activities increased with age of the plant, and plants grown under the LPS lamp displayed PAL and TAL activities lower than wheat cultured under MH and HPS radiation. Greenhouse solar-grown wheat had the highest PAL and TAL activities. Lignin content of LPS-grown wheat was also significantly reduced from that of plants grown under MH or HPS lamps or in the greenhouse, showing a correlation with the reduced PAL and TAL activities. Ratios of far red-absorbing phytochrome to total phytochrome were similar for all three lamps, but the data do not yet warrant a conclusion about specific wavelengths missing from the LPS lamps that might have induced PAL and TAL activities in plants under the other lamps.

  3. Vesicular-Arbuscular Mycorrhiza in Field-Grown Crops

    DEFF Research Database (Denmark)

    Jakobsen, Iver

    1986-01-01

    The importance of vesicular-arbuscular mycorrhiza (VAM) and P fertilizer for P nutrition and dry matter production in field peas (Pisum sativum L.) was studied in moderately P-deficient soil. Half of the experimental plots were fumigated to reduce the level of VAM infection. Shoots and 0 to 30 cm...... in fumigated plots, although both it and P uptake were increased by adding P fertilizer. The possible reasons for this discrepancy are discussed. A supplementary survey on infection development at five other field sites showed that peas are extensively colonized by VAM fungi, even in soils where a standard...

  4. Assessing the value and pest management window provided by neonicotinoid seed treatments for management of soybean aphid (Aphis glycines Matsumura) in the Upper Midwestern United States.

    Science.gov (United States)

    Krupke, Christian H; Alford, Adam M; Cullen, Eileen M; Hodgson, Erin W; Knodel, Janet J; McCornack, Brian; Potter, Bruce D; Spigler, Madeline I; Tilmon, Kelley; Welch, Kelton

    2017-10-01

    A 2-year, multi-state study was conducted to assess the benefits of using soybean seed treated with the neonicotinoid thiamethoxam to manage soybean aphid in the upper Midwestern USA and compare this approach with an integrated pest management (IPM) approach that included monitoring soybean aphids and treating with foliar-applied insecticide only when the economic threshold was reached. Concentrations of thiamethoxam in soybean foliage were also quantified throughout the growing season to estimate the pest management window afforded by insecticidal seed treatments. Both the IPM treatment and thiamethoxam-treated seed resulted in significant reductions in cumulative aphid days when soybean aphid populations reached threshold levels. However, only the IPM treatment resulted in significant yield increases. Analysis of soybean foliage from thiamethoxam-treated seeds indicated that tissue concentrations of thiamethoxam were statistically similar to plants grown from untreated seeds beginning at the V2 growth stage, indicating that the period of pest suppression for soybean aphid is likely to be relatively short. These data demonstrate that an IPM approach, combining scouting and foliar-applied insecticide where necessary, remains the best option for treatment of soybean aphids, both in terms of protecting the yield potential of the crop and of break-even probability for producers. Furthermore, we found that thiamethoxam concentrations in foliage are unlikely to effectively manage soybean aphids for most of the pests' activity period across the region. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  5. Methyl salicylate attracts natural enemies and reduces populations of soybean aphids (Hemiptera: Aphididae) in soybean agroecosystems.

    Science.gov (United States)

    Mallinger, Rachel E; Hogg, David B; Gratton, Claudio

    2011-02-01

    Methyl salicylate, an herbivore-induced plant volatile, has been shown to attract natural enemies and affect herbivore behavior. In this study, methyl salicylate was examined for its attractiveness to natural enemies of the soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), and for its direct effects on soybean aphid population growth rates. Methyl salicylate lures were deployed in plots within organic soybean [Glycine max (L.) Merr.] fields. Sticky card traps adjacent to and 1.5 m from the lure measured the relative abundance of natural enemies, and soybean aphid populations were monitored within treated and untreated plots. In addition, exclusion cage studies were conducted to determine methyl salicylate's effect on soybean aphid population growth rates in the absence of natural enemies. Significantly greater numbers of syrphid flies (Diptera: Syrphidae) and green lacewings (Neuroptera: Chrysopidae) were caught on traps adjacent to the methyl salicylate lure, but no differences in abundance were found at traps 1.5 m from the lure. Furthermore, abundance of soybean aphids was significantly lower in methyl salicylate-treated plots. In exclusion cage studies, soybean aphid numbers were significantly reduced on treated soybean plants when all plants were open to natural enemies. When plants were caged, however, soybean aphid numbers and population growth rates did not differ between treated and untreated plants suggesting no effect of methyl salicylate on soybean aphid reproduction and implicating the role of natural enemies in depressing aphid populations. Although aphid populations were reduced locally around methyl salicylate lures, larger scale studies are needed to assess the technology at the whole-field scale.

  6. Soybean cultivation for Bioregenerative Life Support Systems (BLSSs): The effect of hydroponic system and nitrogen source

    Science.gov (United States)

    Paradiso, Roberta; Buonomo, Roberta; Dixon, Mike A.; Barbieri, Giancarlo; De Pascale, Stefania

    2014-02-01

    Soybean [Glycine max (L.) Merr.] is one of the plant species selected within the European Space Agency (ESA) Micro-Ecological Life Support System Alternative (MELiSSA) project for hydroponic cultivation in Biological Life Support Systems (BLSSs), because of the high nutritional value of seeds. Root symbiosis of soybean with Bradirhizobium japonicum contributes to plant nutrition in soil, providing ammonium through the bacterial fixation of atmospheric nitrogen. The aim of this study was to evaluate the effects of two hydroponic systems, Nutrient Film Technique (NFT) and cultivation on rockwool, and two nitrogen sources in the nutrient solution, nitrate (as Ca(NO3)2 and KNO3) and urea (CO(NH2)2), on root symbiosis, plant growth and seeds production of soybean. Plants of cultivar 'OT8914', inoculated with B. japonicum strain BUS-2, were grown in a growth chamber, under controlled environmental conditions. Cultivation on rockwool positively influenced root nodulation and plant growth and yield, without affecting the proximate composition of seeds, compared to NFT. Urea as the sole source of N drastically reduced the seed production and the harvest index of soybean plants, presumably because of ammonium toxicity, even though it enhanced root nodulation and increased the N content of seeds. In the view of large-scale cultivation for space colony on planetary surfaces, the possibility to use porous media, prepared using in situ resources, should be investigated. Urea can be included in the nutrient formulation for soybean in order to promote bacterial activity, however a proper ammonium/nitrate ratio should be maintained.

  7. Pyramids of QTLs enhance host-plant resistance and Bt-mediated resistance to leaf-chewing insects in soybean.

    Science.gov (United States)

    Ortega, María A; All, John N; Boerma, H Roger; Parrott, Wayne A

    2016-04-01

    QTL-M and QTL-E enhance soybean resistance to insects. Pyramiding these QTLs with cry1Ac increases protection against Bt-tolerant pests, presenting an opportunity to effectively deploy Bt with host-plant resistance genes. Plant resistance to leaf-chewing insects minimizes the need for insecticide applications, reducing crop production costs and pesticide concerns. In soybean [Glycine max (L.) Merr.], resistance to a broad range of leaf-chewing insects is found in PI 229358 and PI 227687. PI 229358's resistance is conferred by three quantitative trait loci (QTLs): M, G, and H. PI 227687's resistance is conferred by QTL-E. The letters indicate the soybean Linkage groups (LGs) on which the QTLs are located. This study aimed to determine if pyramiding PI 229358 and PI 227687 QTLs would enhance soybean resistance to leaf-chewing insects, and if pyramiding these QTLs with Bt (cry1Ac) enhances resistance against Bt-tolerant pests. The near-isogenic lines (NILs): Benning(ME), Benning(MGHE), and Benning(ME+cry1Ac) were developed. Benning(ME) and Benning(MGHE) were evaluated in detached-leaf and greenhouse assays with soybean looper [SBL, Chrysodeixis includens (Walker)], corn earworm [CEW, Helicoverpa zea (Boddie)], fall armyworm [FAW, Spodoptera frugiperda (J.E. Smith)], and velvetbean caterpillar [VBC, Anticarsia gemmatalis (Hübner)]; and in field-cage assays with SBL. Benning(ME+cry1Ac) was tested in detached-leaf assays against SBL, VBC, and Southern armyworm [SAW, Spodoptera eridania (Cramer)]. In the detached-leaf assay, Benning(ME) showed the strongest antibiosis against CEW, FAW, and VBC. In field-cage conditions, Benning(ME) and Benning(MGHE) suffered 61 % less defoliation than Benning. Benning(ME+cry1Ac) was more resistant than Benning(ME) and Benning (cry1Ac) against SBL and SAW. Agriculturally relevant levels of resistance in soybean can be achieved with just two loci, QTL-M and QTL-E. ME+cry1Ac could present an opportunity to protect the durability of Bt

  8. Potato (Solanum tuberosum) greenhouse tuber production as an assay for asexual reproduction effects from herbicides

    Science.gov (United States)

    The present study determined whether young potato plants can be used as an assay to indicate potential effects of pesticides on asexual reproduction. Solanum tuberosum (Russet Burbank) plants were grown from seed pieces in a mineral soil in pots under greenhouse conditions. Plant...

  9. Soybean diseases in Poland

    Directory of Open Access Journals (Sweden)

    J. Marcinkowska

    2013-12-01

    Full Text Available Field observations on the occurrence of soybean diseases were undertaken in the southern and central regions of Poland in the period 1976-1980. Most prevalent were foliage diseases caused by Peronospora manshurica, Pseudomonas syrinqae pv. glycinea and soybean mosaic virus (SMV. Sclerotinia sclerotiorum and Ascochyta sojaecola were reported as pathogens of local importance. The following pathogenic fungi: Botrytis cinerea, Fusarium culmorum, F. oxysporum and Rhizoctonia solani were also isolated from soybean.

  10. Comparative Genomic Analysis of Soybean Flowering Genes

    Science.gov (United States)

    Jung, Chol-Hee; Wong, Chui E.; Singh, Mohan B.; Bhalla, Prem L.

    2012-01-01

    Flowering is an important agronomic trait that determines crop yield. Soybean is a major oilseed legume crop used for human and animal feed. Legumes have unique vegetative and floral complexities. Our understanding of the molecular basis of flower initiation and development in legumes is limited. Here, we address this by using a computational approach to examine flowering regulatory genes in the soybean genome in comparison to the most studied model plant, Arabidopsis. For this comparison, a genome-wide analysis of orthologue groups was performed, followed by an in silico gene expression analysis of the identified soybean flowering genes. Phylogenetic analyses of the gene families highlighted the evolutionary relationships among these candidates. Our study identified key flowering genes in soybean and indicates that the vernalisation and the ambient-temperature pathways seem to be the most variant in soybean. A comparison of the orthologue groups containing flowering genes indicated that, on average, each Arabidopsis flowering gene has 2-3 orthologous copies in soybean. Our analysis highlighted that the CDF3, VRN1, SVP, AP3 and PIF3 genes are paralogue-rich genes in soybean. Furthermore, the genome mapping of the soybean flowering genes showed that these genes are scattered randomly across the genome. A paralogue comparison indicated that the soybean genes comprising the largest orthologue group are clustered in a 1.4 Mb region on chromosome 16 of soybean. Furthermore, a comparison with the undomesticated soybean (Glycine soja) revealed that there are hundreds of SNPs that are associated with putative soybean flowering genes and that there are structural variants that may affect the genes of the light-signalling and ambient-temperature pathways in soybean. Our study provides a framework for the soybean flowering pathway and insights into the relationship and evolution of flowering genes between a short-day soybean and the long-day plant, Arabidopsis. PMID:22679494

  11. Plant uptake of 134Cs in relation to soil properties and time

    International Nuclear Information System (INIS)

    Massas, I.; Skarlou, V.; Haidouti, C.

    2002-01-01

    134 Cs uptake by sunflower and soybean plants grown on seven different soils and its relation to soil properties were studied in a greenhouse pot experiment. Soil in each pot was contaminated by dripping the 134 Cs in layers, and sunflower and soybean plants were grown for three and two successive periods, respectively. 134 Cs plant uptake was expressed as the transfer factor (TF) (Bq kg -1 plant/Bq kg -1 soil) and as the daily plant uptake (flux) (Bq pot -1 day -1 ) taking into account biomass production and growth time. For the studied soils and for both plants, no consistent trend of TFs with time was observed. The use of fluxes, in general, provided less variable results than TFs and stronger functional relationships. A negative power functional relationship between exchangeable potassium plus ammonium cations expressed as a percentage of cation exchange capacity of each soil and 134 Cs fluxes was found for the sunflower plants. A similar but weaker relationship was observed for soybean plants. The significant correlation between sunflower and soybean TFs and fluxes, as well as the almost identical highest/lowest 134 Cs flux ratios, in the studied soils, indicated a similar effect of soil characteristics on 134 Cs uptake by both plants. In all the studied soils, sunflower 134 Cs TFs and fluxes were significantly higher than the respective soybean values, while no significant difference was observed in potassium content and daily potassium plant uptake (flux) of the two plants

  12. Glyphosate-tolerant soybeans remain compositionally equivalent to conventional soybeans (Glycine max L.) during three years of field testing.

    Science.gov (United States)

    McCann, Melinda C; Liu, Keshun; Trujillo, William A; Dobert, Raymond C

    2005-06-29

    Previous studies have shown that the composition of glyphosate-tolerant soybeans (GTS) and selected processed fractions was substantially equivalent to that of conventional soybeans over a wide range of analytes. This study was designed to determine if the composition of GTS remains substantially equivalent to conventional soybeans over the course of several years and when introduced into multiple genetic backgrounds. Soybean seed samples of both GTS and conventional varieties were harvested during 2000, 2001, and 2002 and analyzed for the levels of proximates, lectin, trypsin inhibitor, and isoflavones. The measured analytes are representative of the basic nutritional and biologically active components in soybeans. Results show a similar range of natural variability for the GTS soybeans as well as conventional soybeans. It was concluded that the composition of commercial GTS over the three years of breeding into multiple varieties remains equivalent to that of conventional soybeans.

  13. Dependence of the productivity of maize and soybean intercropping systems on hybrid type and plant arrangement pattern

    Directory of Open Access Journals (Sweden)

    Dolijanović Željko

    2013-01-01

    Full Text Available Intercropping systems could improve utilization of the most important resources (soil, water and nutrients, provide a better control of weeds, pests and diseases, and finally higher productivity, especially under rain-fed growing conditions. This study aimed to determine the effects of three maize (Zea mays L. prolific hybrids (FAO 500, 600 and 700 and the spatial intercrop patterns on the above-ground biomass and grain yields of maize and soybean (Glycine max L. Merrill, on chernozem soil type at Zemun Polje, Belgrade, in 2003, 2004 and 2005. The experimental design was a complete randomized block with four replications and three treatments: 3 rows of maize and 3 rows of soybean in strips for each maize hybrid (three variants, 3 rows of maize and 3 rows of soybean in alternate rows for each hybrid (another three variants and monocrops of both maize and soybeans. To optimize the ecological and economic benefits of maize/soybean intercrop in terms of yield, variety selection and compatibility of the component crops should be made using established agronomic management practices involving the two crops. Suitable maize varieties for maize/soybean intercrop systems are varieties that have less dense canopy. These varieties would therefore have lesser shading effect to the understory beans. However, establishment of an appropriate spatial arrangement of the component crops would be essential to alleviate negative effects especially on the less competitive crop. The intercropping system in alternate rows showed significantly higher above-ground biomass and grain yields in comparation with both the strip intercropping system and maize monocrops in 2004. Soybean gave significantly lower above-ground biomass and grain yield in intercrops than in monocrops. Maize prolific hybrid growing in intercropping with soybean as legume crop, increased productivity of cropping system, especially in favourable agroecological conditions. Maize and soybean yields

  14. Compositional differences in soybeans on the market: glyphosate accumulates in Roundup Ready GM soybeans.

    Science.gov (United States)

    Bøhn, T; Cuhra, M; Traavik, T; Sanden, M; Fagan, J; Primicerio, R

    2014-06-15

    This article describes the nutrient and elemental composition, including residues of herbicides and pesticides, of 31 soybean batches from Iowa, USA. The soy samples were grouped into three different categories: (i) genetically modified, glyphosate-tolerant soy (GM-soy); (ii) unmodified soy cultivated using a conventional "chemical" cultivation regime; and (iii) unmodified soy cultivated using an organic cultivation regime. Organic soybeans showed the healthiest nutritional profile with more sugars, such as glucose, fructose, sucrose and maltose, significantly more total protein, zinc and less fibre than both conventional and GM-soy. Organic soybeans also contained less total saturated fat and total omega-6 fatty acids than both conventional and GM-soy. GM-soy contained high residues of glyphosate and AMPA (mean 3.3 and 5.7 mg/kg, respectively). Conventional and organic soybean batches contained none of these agrochemicals. Using 35 different nutritional and elemental variables to characterise each soy sample, we were able to discriminate GM, conventional and organic soybeans without exception, demonstrating "substantial non-equivalence" in compositional characteristics for 'ready-to-market' soybeans. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. The Effects of Fungicide, Soil Fumigant, Bio-Organic Fertilizer and Their Combined Application on Chrysanthemum Fusarium Wilt Controlling, Soil Enzyme Activities and Microbial Properties

    Directory of Open Access Journals (Sweden)

    Shuang Zhao

    2016-04-01

    Full Text Available Sustained monoculture often leads to a decline in soil quality, in particular to the build-up of pathogen populations, a problem that is conventionally addressed by the use of either fungicide and/or soil fumigation. This practice is no longer considered to be either environmentally sustainable or safe. While the application of organic fertilizer is seen as a means of combating declining soil fertility, it has also been suggested as providing some control over certain soil-borne plant pathogens. Here, a greenhouse comparison was made of the Fusarium wilt control efficacy of various treatments given to a soil in which chrysanthemum had been produced continuously for many years. The treatments comprised the fungicide carbendazim (MBC, the soil fumigant dazomet (DAZ, the incorporation of a Paenibacillus polymyxa SQR21 (P. polymyxa SQR21, fungal antagonist enhanced bio-organic fertilizer (BOF, and applications of BOF combined with either MBC or DAZ. Data suggest that all the treatments evaluated show good control over Fusarium wilt. The MBC and DAZ treatments were effective in suppressing the disease, but led to significant decrease in urease activity and no enhancement of catalase activity in the rhizosphere soils. BOF including treatments showed significant enhancement in soil enzyme activities and microbial communities compared to the MBC and DAZ, evidenced by differences in bacterial/fungi (B/F ratios, Shannon–Wiener indexes and urease, catalase and sucrase activities in the rhizosphere soil of chrysanthemum. Of all the treatments evaluated, DAZ/BOF application not only greatly suppressed Fusarium wilt and enhanced soil enzyme activities and microbial communities but also promoted the quality of chrysanthemum obviously. Our findings suggest that combined BOF with DAZ could more effectively control Fusarium wilt disease of chrysanthemum.

  16. Temperature shift experiments suggest that metabolic impairment and enhanced rates of photorespiration decrease organic acid levels in soybean leaflets exposed to supra-optimal growth temperatures

    Science.gov (United States)

    Citrate, malate, malonate, fumarate and succinate in soybean leaflets decreased 40 to 80% when plants were grown continuously in controlled environment chambers at 36/28 compared to 28/20 °C. Glycerate was not temperature responsive in this study. Temperature effects on the above mentioned organi...

  17. Silicon application to the soil on soybean yield and seed physiological quality

    Directory of Open Access Journals (Sweden)

    Sandro de Oliveira

    2015-10-01

    Full Text Available Use of quality seeds, balanced plant nutrition and the adoption of adequate cultivation techniques are critical to the success of the soybean crop. Use of silicon (Si is a clean technology from an environmental point of view, which can confer several benefits to the plants as stimulate growth and plant production, improve tolerance of plants to attack by insects and diseases, reduce perspiration and increase the photosynthetic rate and protect against abiotic stresses. The goal was to evaluate the effect of soil Si application derived from rice husk ash on the agronomic characteristics, productivity and physiological quality of soybean cultivars seeds. The experiment was conducted in pots of 18 L filled with soil, under a randomized block design with four replications. The soybean cultivars were BMX Turbo RR and NA 5909 RR, grown under five doses of silicon (0, 1, 2, 3, and 4 t ha-1. Agronomic traits and seed yield were evaluated (total number of pods on branches, total number of seeds on the branches, the total number of pods on the main stem, total number of seeds on the main stem, total number of pods per plant, total number of seeds per plant, seed weight per plant and seed weight of 1000. Physiological seed quality was evaluated by germination and vigor tests (first count of germination, cold test, accelerated aging, shoot length and root. The soil application of silicon is beneficial for the soybean crop, improving the main agronomic characteristics (total number of pods on branches, total number of seeds in the branches, total number of pods per plant, weight of seeds per plant and increasing seed yield per plant in soybean cultivar BMX Turbo RR. The mass of a thousand seeds is positively influenced by the dose of 1.67 t ha-1 for the cultivar BMX Turbo RR and up to a dose of 2.32 t ha-1 for the cultivar NA 5909 RR. Cultivar BMX Turbo RR seed vigor is increased with the use of silicon in the soil.

  18. Probabilistic risk assessment of nitrate groundwater contamination from greenhouses in Albenga plain (Liguria, Italy) using lysimeters.

    Science.gov (United States)

    Paladino, Ombretta; Seyedsalehi, Mahdi; Massabò, Marco

    2018-04-05

    The use of fertilizers in greenhouse-grown crops can pose a threat to groundwater quality and, consequently, to human beings and subterranean ecosystem, where intensive farming produces pollutants leaching. Albenga plain (Liguria, Italy) is an alluvial area of about 45km 2 historically devoted to farming. Recently the crops have evolved to greenhouses horticulture and floriculture production. In the area high levels of nitrates in groundwater have been detected. Lysimeters with three types of reconstituted soils (loamy sand, sandy clay loam and sandy loam) collected from different areas of Albenga plain were used in this study to evaluate the leaching loss of nitrate (NO 3 - ) over a period of 12weeks. Leaf lettuce (Lactuca sativa L.) was selected as a representative green-grown crop. Each of the soil samples was treated with a slow release fertilizer, simulating the real fertilizing strategy of the tillage. In order to estimate the potential risk for aquifers as well as for organisms exposed via pore water, nitrate concentrations in groundwater were evaluated by applying a simplified attenuation model to the experimental data. Results were refined and extended from comparison of single effects and exposure values (Tier I level) up to the evaluation of probabilistic distributions of exposure and related effects (Tier II, III IV levels). HHRA suggested HI >1 and about 20% probability of exceeding RfD for all the greenhouses, regardless of the soil. ERA suggested HQ>100 for all the greenhouses; 93% probability of PNEC exceedance for greenhouses containing sand clay loam. The probability of exceeding LC50 for 5% of the species was about 40% and the probability corresponding to DBQ of DEC/EC50>0.001 was >90% for all the greenhouses. The significantly high risk, related to the detected nitrate leaching loss, can be attributed to excessive and inappropriate fertigation strategies. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Nod factor supply under water stress conditions modulates cytokinin biosynthesis and enhances nodule formation and N nutrition in soybean.

    Science.gov (United States)

    Prudent, Marion; Salon, Christophe; Smith, Donald L; Emery, R J Neil

    2016-09-01

    Nod factors (NF) are molecules produced by rhizobia which are involved in the N 2 -fixing symbiosis with legume plants, enabling the formation of specific organs called nodules. Under drought conditions, nitrogen acquisition by N 2 -fixation is depressed, resulting in low legume productivity. In this study, we evaluated the effects of NF supply on nitrogen acquisition and on cytokinin biosynthesis of soybean plants grown under drought. NF supply to water stressed soybeans increased the CK content of all organs. The profile of CK metabolites also shifted from t-Z to cis-Z and an accumulation of nucleotide and glucoside conjugates. The changes in CK coincided with enhanced nodule formation with sustained nodule specific activity, which ultimately increased the total nitrogen fixed by the plant.

  20. Perfluoroalkyl acid distribution in various plant compartments of edible crops grown in biosolids-amended soils

    Science.gov (United States)

    Crop uptake of perfluoroalkyl acids (PFAAs) from biosolids-amended soil has been identified as a potential pathway for PFAA entry into the terrestrial food chain. This study compared the uptake of PFAAs in greenhouse-grown radish (Raphanus sativus), celery (Apium graveolens var.d...

  1. Effect of N-rate and P sources on BNF in soybean as affected by rhizobium and VAM fungi lnoculants

    Energy Technology Data Exchange (ETDEWEB)

    Soliman, S; Elghandour, I A [Soil and Water Dept., Atomic Energy Authority, Cairo, (Egypt); Abbady, A K [Soil and Water Inst., Agric. Res. Center, Giza (Egypt)

    1995-10-01

    Greenhouse experiment was made to investigate the influence of phosphate fertilizers on nitrogen fixation in soybean. The N-15 isotope dilution method was used to quantify N 2-fixed. In this concern, seed of nodulated and on-nodulated soybean plant bacterized with Bradyrhizobium japonicum and noculated without or with mycorrhizas in the presence of super or rock phosphate. Ammonium sulphate labelled fertilizer (5% N-15 a.e) was applied o 15 kg sandy soil of egypt at the rate of 20 and 100 kg N/acre. At re-flowering stage, the highest amount of N derived from air (Ndfa) was 66.3 and 470.2 (mg/pot) equivalent 47.6 and 47.1 of total N assimilated for noculated soybean with Rhizobium and fertilized with super or rock phosphate, respectively. While the contributions from 15 N labelled fertilizer (Ndff) accounted for 11 and 10.8, respectively. Use of mycorrhizas could increase the amount of N 2-fixed in the presence of rhizobia. There appears to be a strong case for improving N 2-fixation in the presence of mycorrhizas especially in sandy soil. 4 tabs.

  2. Effect of N-rate and P sources on BNF in soybean as affected by rhizobium and VAM fungi lnoculants

    International Nuclear Information System (INIS)

    Soliman, S.; Elghandour, I.A.; Abbady, A.K.

    1995-01-01

    Greenhouse experiment was made to investigate the influence of phosphate fertilizers on nitrogen fixation in soybean. The N-15 isotope dilution method was used to quantify N 2-fixed. In this concern, seed of nodulated and on-nodulated soybean plant bacterized with Bradyrhizobium japonicum and noculated without or with mycorrhizas in the presence of super or rock phosphate. Ammonium sulphate labelled fertilizer (5% N-15 a.e) was applied o 15 kg sandy soil of egypt at the rate of 20 and 100 kg N/acre. At re-flowering stage, the highest amount of N derived from air (Ndfa) was 66.3 and 470.2 (mg/pot) equivalent 47.6 and 47.1 of total N assimilated for noculated soybean with Rhizobium and fertilized with super or rock phosphate, respectively. While the contributions from 15 N labelled fertilizer (Ndff) accounted for 11 and 10.8, respectively. Use of mycorrhizas could increase the amount of N 2-fixed in the presence of rhizobia. There appears to be a strong case for improving N 2-fixation in the presence of mycorrhizas especially in sandy soil. 4 tabs

  3. Response of carbon assimilation and chlorophyll fluorescence to soybean leaf phosphorus across CO2: Alternative electron sink, nutrient efficiency and critical phosphorus concentration

    Science.gov (United States)

    To evaluate the response of CO2 assimilation (PN) and various chlorophyll fluorescence (CF) parameters to phosphorus (P) nutrition soybean plants were grown in controlled environment growth chambers with sufficient (0.50 mM) and deficient (0.10 and 0.01 mM) P supply under ambient and elevated CO2 (a...

  4. Efficacy and fumigation characteristics of ozone in stored maize.

    Science.gov (United States)

    Kells, S A.; Mason, L J.; Maier, D E.; Woloshuk, C P.

    2001-10-01

    This study evaluated the efficacy of ozone as a fumigant to disinfest stored maize. Treatment of 8.9tonnes (350bu) of maize with 50ppm ozone for 3d resulted in 92-100% mortality of adult red flour beetle, Tribolium castaneum (Herbst), adult maize weevil, Sitophilus zeamais (Motsch.), and larval Indian meal moth, Plodia interpunctella (Hübner) and reduced by 63% the contamination level of the fungus Aspergillus parasiticus Speare on the kernel surface. Ozone fumigation of maize had two distinct phases. Phase 1 was characterized by rapid degradation of the ozone and slow movement through the grain. In Phase 2, the ozone flowed freely through the grain with little degradation and occurred once the molecular sites responsible for ozone degradation became saturated. The rate of saturation depended on the velocity of the ozone/air stream. The optimum apparent velocity for deep penetration of ozone into the grain mass was 0.03m/s, a velocity that is achievable in typical storage structures with current fans and motors. At this velocity 85% of the ozone penetrated 2.7m into the column of grain in 0.8d during Phase 1 and within 5d a stable degradation rate of 1ppm/0.3m was achieved. Optimum velocity for Phase 2 was 0.02m/s. At this velocity, 90% of the ozone dose penetrated 2.7m in less than 0.5d. These data demonstrate the potential usefulness of using ozone in managing stored maize and possibly other grains.

  5. Pot plant production, environmental conditions and energy consumption in insulated greenhouses

    Energy Technology Data Exchange (ETDEWEB)

    Bjerre, H.; Amsen, M.G. (Statens Planteavlsforsoeg, Havebrugscentret, Institut for Vaeksthuskulturer, Aarslev, Denmark)

    1984-01-01

    An energy experiment with 4 different types of greenhouses was carried out in the winter 1980-81 and 1981-82. Three of these greenhouses were insulated. The reference house was a single layer glasshouse with a mobile shading curtain, which was drawn at night. A comparison with the reference house showed the following energy savings for the insulated houses: Double glass 29-32%, double acryllic 39%, and thermal screens 22-24%. On average the air humidity was 80-86% RH in the double acryllic greenhouse and in the double glass house, whereas the levels was 5-10% lower in the 2 greenhouses with single glass. In spite of the high air humidity in the permanently insulated houses, no plant diseases occurred. The dry matter production of seven plant species was recorded in all greenhouses on the same date. Compared with the reference house 3 of the plant species showed a 5-10% higher production in the double acryllic greenhouse as well as the house with thermal screens. The remaining 4 plant species did not show any differences, between the 3 greenhouses. In the double glass house the production was considerably lower. To study the growth in detail, Tagetes plants were grown for 3-week periods during the winter in all houses. The aim of this study was to investigate whether the ratio between the growth in the 4 greenhouses was the same when periods of high light intensity were compared to periods with low light intensity. No characteristic changes with increasing light intensities could be observed between the different greenhouses. The differences between the greenhouses in time of production for the pot plants were generally small. The most remarkable difference in plant quality between the houses could be seen with Chrysanthemum and Kalanchoe. These 2 plant species were considerably less compact in the double acryllic greenhouse. Chrysanthemum was also less compact in the double glass house.

  6. Catalytic degradation of the soil fumigant 1,3-dichloropropene in aqueous biochar slurry

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Jiaolong [School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Cheng, Yuxiao; Sun, Mingxing [Shanghai Entry–Exit Inspection and Quarantine Bureau, Shanghai 200135 (China); Yan, Lili [School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Shen, Guoqing, E-mail: gqsh@sjtu.edu.cn [School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China)

    2016-11-01

    Biochar has been explored as a cost-effective sorbent of contaminants, such as soil fumigant. However, contaminant-loaded biochar probably becomes a source of secondary air pollution. In this study, biochars developed from cow manure and rice husk at 300 °C or 700 °C were used to investigate the catalytic degradation of the soil fumigant 1,3-dichloropropene (1,3-D) in aqueous biochar slurry. Results showed that the adsorption of 1,3-D on the biochars was influenced by Langmuir surface monolayer adsorption. The maximum adsorption capacity of cow manure was greater than that of rice husk at the same pyrolysis temperature. Batch experiments revealed that 1,3-D degradation was improved in aqueous biochar slurry. The most rapid 1,3-D degradation occurred on cow manure-derived biochar produced at 300 °C (C-300), with t{sub 1/2} = 3.47 days. The degradation efficiency of 1,3-D on C-300 was 95.52%. Environmentally persistent free radicals (EPFRs) in biochars were detected via electron paramagnetic resonance (EPR) techniques. Dissolved organic matter (DOM) and hydroxyl radical (·OH) in biochars were detected by using a fluorescence spectrophotometer coupled with a terephthalic acid trapping method. The improvement of 1,3-D degradation efficiency may be attributed to EPFRs and DOM in aqueous biochar slurry. Our results may pose implications in the development of effective reduction strategies for soil fumigant emission with biochar. - Highlights: • Hydrolysis of 1,3-D was accelerated in aqueous biochar slurry. • 1,3-D adsorption kinetics on biochars fitted well with Langmuir model. • Cow manure biochar showed higher catalytic degradation activity for 1,3-D than rice husk biochar did. • EPFRs and DOM have potential roles in 1,3-D degradation on biochar.

  7. Catalytic degradation of the soil fumigant 1,3-dichloropropene in aqueous biochar slurry

    International Nuclear Information System (INIS)

    Qin, Jiaolong; Cheng, Yuxiao; Sun, Mingxing; Yan, Lili; Shen, Guoqing

    2016-01-01

    Biochar has been explored as a cost-effective sorbent of contaminants, such as soil fumigant. However, contaminant-loaded biochar probably becomes a source of secondary air pollution. In this study, biochars developed from cow manure and rice husk at 300 °C or 700 °C were used to investigate the catalytic degradation of the soil fumigant 1,3-dichloropropene (1,3-D) in aqueous biochar slurry. Results showed that the adsorption of 1,3-D on the biochars was influenced by Langmuir surface monolayer adsorption. The maximum adsorption capacity of cow manure was greater than that of rice husk at the same pyrolysis temperature. Batch experiments revealed that 1,3-D degradation was improved in aqueous biochar slurry. The most rapid 1,3-D degradation occurred on cow manure-derived biochar produced at 300 °C (C-300), with t 1/2 = 3.47 days. The degradation efficiency of 1,3-D on C-300 was 95.52%. Environmentally persistent free radicals (EPFRs) in biochars were detected via electron paramagnetic resonance (EPR) techniques. Dissolved organic matter (DOM) and hydroxyl radical (·OH) in biochars were detected by using a fluorescence spectrophotometer coupled with a terephthalic acid trapping method. The improvement of 1,3-D degradation efficiency may be attributed to EPFRs and DOM in aqueous biochar slurry. Our results may pose implications in the development of effective reduction strategies for soil fumigant emission with biochar. - Highlights: • Hydrolysis of 1,3-D was accelerated in aqueous biochar slurry. • 1,3-D adsorption kinetics on biochars fitted well with Langmuir model. • Cow manure biochar showed higher catalytic degradation activity for 1,3-D than rice husk biochar did. • EPFRs and DOM have potential roles in 1,3-D degradation on biochar.

  8. Greenhouse irrigation control system design based on ZigBee and fuzzy PID technology

    Science.gov (United States)

    Zhou, Bing; Yang, Qiliang; Liu, Kenan; Li, Peiqing; Zhang, Jing; Wang, Qijian

    In order to achieve the water demand information accurately detect of the greenhouse crop and its precision irrigation automatic control, this article has designed a set of the irrigated control system based on ZigBee and fuzzy PID technology, which composed by the soil water potential sensor, CC2530F256 wireless microprocessor, IAR Embedded Workbench software development platform. And the time of Irrigation as the output .while the amount of soil water potential and crop growth cycle as the input. The article depended on Greenhouse-grown Jatropha to verify the object, the results show that the system can irrigate timely and appropriately according to the soil water potential and water demend of the different stages of Jatropha growth , which basically meet the design requirements. Therefore, the system has broad application prospects in the amount of greenhouse crop of fine control irrigation.

  9. Gamma Radiation-Induced Mutations in Soybeans

    International Nuclear Information System (INIS)

    Smutkupt, S.

    1998-01-01

    The main objective of soybean radiation experiments was to create genetic variability in soybeans of various cultivars, mutants and mutation-derived lines with the aim of producing superior breeding lines with resistance to soybean rust (Phakopsora pachyhrizi Syd.) It took altogether 12 generations over six years after gamma irradiation if soybean seeds to produce the best resistant line (81-1-038) which a variety could be developed from it. This Line 81-1-038 showed a very good specific resistance to soybean rust, Thai race 2 and moderately resistance to Thai race 1. In the rainy season of 1985, Line 81-1-038 out yielded S.J.4 (a mother line) by 868 kg/ha in a yield trail at Suwan Farm, Pak Chong, Nakorn Rajchasima. This soybean rust mutant was later named D oi Kham

  10. Fumigant toxicity of five essential oils rich in ketones against Sitophilus zeamais (Motschulsky

    Directory of Open Access Journals (Sweden)

    J.M Herrera

    2014-06-01

    Full Text Available Essential oils (EOs and individual compounds act as fumigants against insects found in stored products. In fumigant assays, Sitophilus zeamais Motschulsky adults were treated with essential oils derived from Aphyllocladus decussatus Hieron, Aloysia polystachya Griseb, Minthostachys verticillata Griseb Epling and Tagetes minuta L , which are rich in ketones and their major components: a- thujone, R-carvone, S-carvone, (- menthone, R (+ pulegone and E-Z- ocimenone. M. verticillata oil was the most toxic ( LC50: 116.6 µl /L air characterized by a high percentage of menthone (40.1% and pulegone (43.7%. All ketones showed insecticidal activity against S. zeamais. However, pulegone (LC50: 11.8 µl/L air, R- carvone (LC50: 17.5 µl/L air, S-carvone (LC50: 28.1 µl/L air and E-Z-ocimenone (LC50: 42.3 µl/L air were the most toxic. These ketones are a,b-unsaturated carbonyl. This feature could play a fundamental role in the increase of insecticidal activity against S. zeamais.

  11. Methyl bromide residues in fumigated cocoa beans with particular reference to inorganic bromide

    International Nuclear Information System (INIS)

    Adomako, D.

    1976-01-01

    Inorganic bromide residues and 14 C-labelled methylated products (expressed as CH 3 Br equivalent) in cocoa beans fumigated with [ 14 C]-methyl bromide have been determined by radiometric and chemical methods. Determination of 14 C by direct combustion in an oxygen chamber followed by liquid scintillation counting confirmed previous findings with respect to the magnitude, distribution and chemical nature of the residues. Although recovery of added bromide was good, the values of total bromide obtained by the chemical method were only half of those estimated from the total residual 14 C-activity. This is attributed to loss of organic (presumably, protein-bound) bromide. In agreement with the total 14 C-labelled residue contents, total bromide in shells was 20 times greater than that in nibs. The low levels of residues in the nib (12ppm as CH 3 Br equivalent, 10ppm Br) and the further reduction of organic residues by roasting suggest that no toxicological and nutritional hazards may be expected from fumigation of cocoa beans with methyl bromide. (author)

  12. Genetic architecture of wild soybean (Glycine soja) response to soybean cyst nematode (Heterodera glycines).

    Science.gov (United States)

    Zhang, Hengyou; Song, Qijian; Griffin, Joshua D; Song, Bao-Hua

    2017-12-01

    The soybean cyst nematode (SCN) is one of the most destructive pathogens of soybean plants worldwide. Host-plant resistance is an environmentally friendly method to mitigate SCN damage. To date, the resistant soybean cultivars harbor limited genetic variation, and some are losing resistance. Thus, a better understanding of the genetic mechanisms of the SCN resistance, as well as developing diverse resistant soybean cultivars, is urgently needed. In this study, a genome-wide association study (GWAS) was conducted using 1032 wild soybean (Glycine soja) accessions with over 42,000 single-nucleotide polymorphisms (SNPs) to understand the genetic architecture of G. soja resistance to SCN race 1. Ten SNPs were significantly associated with the response to race 1. Three SNPs on chromosome 18 were localized within the previously identified quantitative trait loci (QTLs), and two of which were localized within a strong linkage disequilibrium block encompassing a nucleotide-binding (NB)-ARC disease resistance gene (Glyma.18G102600). Genes encoding methyltransferases, the calcium-dependent signaling protein, the leucine-rich repeat kinase family protein, and the NB-ARC disease resistance protein, were identified as promising candidate genes. The identified SNPs and candidate genes can not only shed light on the molecular mechanisms underlying SCN resistance, but also can facilitate soybean improvement employing wild genetic resources.

  13. Defining the Insect Pollinator Community Found in Iowa Corn and Soybean Fields: Implications for Pollinator Conservation.

    Science.gov (United States)

    Wheelock, M J; Rey, K P; O'Neal, M E

    2016-10-01

    Although corn (Zea mays L.) and soybeans (Glycine max L.) do not require pollination, they offer floral resources used by insect pollinators. We asked if a similar community of insect pollinators visits these crops in central Iowa, a landscape dominated by corn and soybean production. We used modified pan traps (i.e., bee bowls) in both corn and soybean fields during anthesis and used nonmetric multidimensional scaling (NMS) to compare the communities found in the two crops. Summed across both crops, 6,704 individual insects were captured representing at least 60 species, morphospecies, or higher-level taxa. Thirty-four species were collected in both crops, 19 collected only in corn and seven were collected only in soybean. The most abundant taxa were Lasioglossum [Dialictus] spp., Agapostemon virescens Cresson, Melissodes bimaculata (Lepeletier), and Toxomerus marginatus (Say), which accounted for 65% of the insect pollinators collected from both crops. Although social bees (Apis mellifera L. and Bombus spp.) were found in both crops, they accounted for only 0.5% of all insects captured. The NMS analysis revealed a shared community of pollinators composed of mostly solitary, ground nesting bees. Many of these species have been found in other crop fields throughout North America. Although corn and soybean are grown in landscapes that are often highly disturbed, these data suggest that a community of pollinators can persist within them. We suggest approaches to conserving this community based on partnering with activities that aim to lessen the environmental impact of annual crop production. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Silicon accumulation and distribution in petunia and sunflower grown in a rice hull-amended substrate

    Science.gov (United States)

    Silicon (Si) is a plant beneficial element associated with mitigation of abiotic and biotic stresses. Most greenhouse-grown ornamentals are considered low Si accumulators based on foliar Si concentration. However, Si accumulates in all tissues, and there is little published data on the distributio...

  15. Methyl bromide residues in fumigated cocoa beans

    International Nuclear Information System (INIS)

    Adomako, D.

    1975-01-01

    The 14 C activity in unroasted [ 14 C]-methyl bromide fumigated cocoa beans was used to study the fate and persistence of CH 3 Br in the stored beans. About 70% of the residues occurred in the shells. Unchanged CH 3 Br could not be detected, all the sorbed CH 3 Br having reacted with bean constituents apparently to form 14 C-methylated derivatives and inorganic bromide. No 14 C activity was found in the lipid fraction. Roasting decreased the bound (non-volatile) residues, with corresponding changes in the activities and amounts of free sugars, free and protein amino acids. Roasted nibs and shells showed a two-fold increase in the volatile fraction of the 14 C residue. This fraction may be related to the volatile aroma compounds formed by Maillard-type reactions. (author)

  16. Evaluating the Effects of Elevated CO2 on the Competition Ability between Various C3 and C4 Crops and Weeds in Greenhouse Condition

    Directory of Open Access Journals (Sweden)

    S. Anvarkhah

    2012-04-01

    Full Text Available Since agriculture is both the source and sink of greenhouse gases, and plants show different responses to the elevated CO2 concentration, an experiment was conducted in 2006 at the research greenhouse of the faculty of agriculture of Ferdowsi University of Mashhad. The purpose of the experiment was to examine the effects of elevated CO2 on the competition ability between various crops and weeds in factorial arrangement within a completely randomized design with three replications. The factors included ambient (360ppm CO2 and elevated (700 ppm CO2 concentrations and various combinations of the plantation of crops (millet and soybean and weeds (pigweed and lambsquarters of C3 and C4 species, whether of the pure culture or intercropping. The results of the experiment showed that, as the CO2 concentration increased, the leaf area and root dry weight of millet increased whereas those of other species decreased. Millet,s root length increased whereas those of other species decreased. Root dry weight in each cultural combinations, compared to the ambient CO2 concentration, decreased. The amount of chlorophyll in lambsquarters, increased whereas it decreased in pigweed, millet and soybean.

  17. 40 CFR 180.123 - Inorganic bromide residues resulting from fumigation with methyl bromide; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ..., postharvest 30.0 Lemon, postharvest 30.0 Lime, postharvest 30.0 Mango, postharvest 20.0 Melon, honeydew... methyl bromide or from such fumigation in addition to the authorized use of methyl bromide on the source...

  18. Ozone decreases soybean productivity and water use efficiency

    Science.gov (United States)

    Betzelberger, A. M.; VanLoocke, A. D.; Ainsworth, E. A.; Bernacchi, C. J.

    2011-12-01

    The combination of population growth and climate change will increase pressure on agricultural and water resources throughout this century. An additional consequence of this growth is an increase in anthropogenic emissions that lead to the formation of tropospheric ozone (O3), which in concert with climate change, poses a significant threat to human health and nutrition. In addition to being an important greenhouse gas, O3 reduces plant productivity, an effect that has been particularly pronounced in soybean, which provides over half of the world's oilseed production. Plant productivity is linked to feedbacks in the climate system, indirectly through the carbon cycle, as well as directly through the partitioning of radiation into heat and moisture fluxes. Soybean, along with maize, comprises the largest ecosystem in the contiguous U.S. Therefore, changes in productivity and water use under increasing O3 could impact human nutrition as well as the regional climate. Soybean response to increasing O3 concentrations was tested under open-air agricultural conditions at the SoyFACE research site. During the 2009 growing season, eight 20 m diameter FACE plots were exposed to different O3 concentrations, ranging from 40 to 200 ppb. Canopy growth (leaf area index) and physiological measurements of leaf photosynthesis and stomatal conductance were taken regularly throughout the growing season. Canopy fluxes of heat and moisture were measured using the residual energy balance micrometeorological technique. Our results indicate that as O3 increased from 40 to 200 ppb, rates of photosynthesis and stomatal conductance decreased significantly. Further, the seed yield decreased by over 60%, while water use decreased by 30% and the water-use-efficiency (yield/water-use) declined by 50%. The growing season average canopy temperatures increased by 1°C and midday temperatures increased by 2°C compared to the control. Warmer and drier canopies may result in a positive feedback on O3

  19. Soybean Aphid Infestation Induces Changes in Fatty Acid Metabolism in Soybean.

    Directory of Open Access Journals (Sweden)

    Charles Kanobe

    Full Text Available The soybean aphid (Aphis glycines Matsumura is one of the most important insect pests of soybeans in the North-central region of the US. It has been hypothesized that aphids avoid effective defenses by inhibition of jasmonate-regulated plant responses. Given the role fatty acids play in jasmonate-induced plant defenses, we analyzed the fatty acid profile of soybean leaves and seeds from aphid-infested plants. Aphid infestation reduced levels of polyunsaturated fatty acids in leaves with a concomitant increase in palmitic acid. In seeds, a reduction in polyunsaturated fatty acids was associated with an increase in stearic acid and oleic acid. Soybean plants challenged with the brown stem rot fungus or with soybean cyst nematodes did not present changes in fatty acid levels in leaves or seeds, indicating that the changes induced by aphids are not a general response to pests. One of the polyunsaturated fatty acids, linolenic acid, is the precursor of jasmonate; thus, these changes in fatty acid metabolism may be examples of "metabolic hijacking" by the aphid to avoid the induction of effective defenses. Based on the changes in fatty acid levels observed in seeds and leaves, we hypothesize that aphids potentially induce interference in the fatty acid desaturation pathway, likely reducing FAD2 and FAD6 activity that leads to a reduction in polyunsaturated fatty acids. Our data support the idea that aphids block jasmonate-dependent defenses by reduction of the hormone precursor.

  20. Health monitoring of plants by their emitted volatiles: A temporary increase in the concentration of nethyl salicylate after pathogen inoculation of tomato plants at greenhouse scale

    NARCIS (Netherlands)

    Jansen, R.M.C.; Hofstee, J.W.; Verstappen, F.W.A.; Bouwmeester, H.J.; Posthumus, M.A.; Henten, van E.J.

    2011-01-01

    This paper describes a method to alert growers of the presence of a pathogen infection in their greenhouse based on the detection of pathogen-induced emissions of volatile organic compounds (VOCs) from plants. Greenhouse-grown plants were inoculated with spores of a fungus to learn more about this

  1. Coregulation of Soybean Vegetative Storage Protein Gene Expression by Methyl Jasmonate and Soluble Sugars 1

    Science.gov (United States)

    Mason, Hugh S.; DeWald, Daryll B.; Creelman, Robert A.; Mullet, John E.

    1992-01-01

    The soybean vegetative storage protein genes vspA and vspB are highly expressed in developing leaves, stems, flowers, and pods as compared with roots, seeds, and mature leaves and stems. In this paper, we report that physiological levels of methyl jasmonate (MeJA) and soluble sugars synergistically stimulate accumulation of vsp mRNAs. Treatment of excised mature soybean (Glycine max Merr. cv Williams) leaves with 0.2 molar sucrose and 10 micromolar MeJA caused a large accumulation of vsp mRNAs, whereas little accumulation occurred when these compounds were supplied separately. In soybean cell suspension cultures, the synergistic effect of sucrose and MeJA on the accumulation of vspB mRNA was maximal at 58 millimolar sucrose and was observed with fructose or glucose substituted for sucrose. In dark-grown soybean seedlings, the highest levels of vsp mRNAs occurred in the hypocotyl hook, which also contained high levels of MeJA and soluble sugars. Lower levels of vsp mRNAs, MeJA, and soluble sugars were found in the cotyledons, roots, and nongrowing regions of the stem. Wounding of mature soybean leaves induced a large accumulation of vsp mRNAs when wounded plants were incubated in the light. Wounded plants kept in the dark or illuminated plants sprayed with dichlorophenyldimethylurea, an inhibitor of photosynthetic electron transport, showed a greatly reduced accumulation of vsp mRNAs. The time courses for the accumulation of vsp mRNAs induced by wounding or sucrose/MeJA treatment were similar. These results strongly suggest that vsp expression is coregulated by endogenous levels of MeJA (or jasmonic acid) and soluble carbohydrate during normal vegetative development and in wounded leaves. ImagesFigure 1Figure 4Figure 5 PMID:16668757

  2. Identification of indicator proteins associated with flooding injury in soybean seedlings using label-free quantitative proteomics.

    Science.gov (United States)

    Nanjo, Yohei; Nakamura, Takuji; Komatsu, Setsuko

    2013-11-01

    Flooding injury is one of the abiotic constraints on soybean growth. An experimental system established for evaluating flooding injury in soybean seedlings indicated that the degree of injury is dependent on seedling density in floodwater. Dissolved oxygen levels in the floodwater were decreased by the seedlings and correlated with the degree of injury. To understand the molecular mechanism responsible for the injury, proteomic alterations in soybean seedlings that correlated with severity of stress were analyzed using label-free quantitative proteomics. The analysis showed that the abundance of proteins involved in cell wall modification, such as polygalacturonase inhibitor-like and expansin-like B1-like proteins, which may be associated with the defense system, increased dependence on stress at both the protein and mRNA levels in all organs during flooding. The manner of alteration in abundance of these proteins was distinct from those of other responsive proteins. Furthermore, proteins also showing specific changes in abundance in the root tip included protein phosphatase 2A subunit-like proteins, which are possibly involved in flooding-induced root tip cell death. Additionally, decreases in abundance of cell wall synthesis-related proteins, such as cinnamyl-alcohol dehydrogenase and cellulose synthase-interactive protein-like proteins, were identified in hypocotyls of seedlings grown for 3 days after flooding, and these proteins may be associated with suppression of growth after flooding. These flooding injury-associated proteins can be defined as indicator proteins for severity of flooding stress in soybean.

  3. Effects of biochar application on morphological traits in maize and soybean

    Directory of Open Access Journals (Sweden)

    Šeremešić Srđan I.

    2015-01-01

    Full Text Available This paper analyses the effects of the biochar application morphologi­cal traits in maize and soybean under semi-controlled conditions. During the study, the in­creasing doses of biochar (0%, 0.5%, 1, 3, and 5% were incorporated in three soil types: Alluvium, Humogley and Chernozem to determine plant height and shoot weight. The ex­periment was set up as fully randomized design with three repetitions. The plants were grown in pots of 5 l with controlled watering and N fertilization. The research results have shown that there are differences in terms of biochar effects on soils. The greatest effect on plant height and shoot weight was obtained when the biochar was applied to Humogley soil and lower effects were found on the Alluvium soil. The increase in aboveground mass of maize and soybeans was significantly conditioned by adding different doses of biochar. Based on these results, it can be concluded that adding biochar can significantly affect the growth of plants. This is a consequence of the changes it causes in soil, which requires further tests to complement the current findings. [Projekat Ministarstva nauke Republike Srbije, br. TR031072 i br. TR031073

  4. 21 CFR 172.723 - Epoxidized soybean oil.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Epoxidized soybean oil. 172.723 Section 172.723... CONSUMPTION Other Specific Usage Additives § 172.723 Epoxidized soybean oil. Epoxidized soybean oil may be... reacting soybean oil in toluene with hydrogen peroxide and formic acid. (b) It meets the following...

  5. Seasonal soybean crop reflectance

    Science.gov (United States)

    Lemaster, E. W. (Principal Investigator); Chance, J. E.

    1983-01-01

    Data are presented from field measurements of 1980 including 5 acquisitions of handheld radiometer reflectance measurements, 7 complete sets of parameters for implementing the Suits mode, and other biophysical parameters to characterize the soybean canopy. LANDSAT calculations on the simulated Brazilian soybean reflectance are included along with data collected during the summer and fall on 1981 on soybean single leaf optical parameters for three irrigation treatments. Tests of the Suits vegetative canopy reflectance model for the full hemisphere of observer directions as well as the nadir direction show moderate agreement for the visible channels of the MSS and poor agreement in the near infrared channel. Temporal changes in the spectral characteristics of the single leaves were seen to occur as a function of maturity which demonstrates that the absorptance of a soybean single leaf is more a function of thetransmittancee characteristics than the seasonally consistent single leaf reflectance.

  6. Increased occurrence of pesticide residues on crops grown in protected environments compared to crops grown in open field conditions.

    Science.gov (United States)

    Allen, Gina; Halsall, Crispin J; Ukpebor, Justina; Paul, Nigel D; Ridall, Gareth; Wargent, Jason J

    2015-01-01

    Crops grown under plastic-clad structures or in greenhouses may be prone to an increased frequency of pesticide residue detections and higher concentrations of pesticides relative to equivalent crops grown in the open field. To test this we examined pesticide data for crops selected from the quarterly reports (2004-2009) of the UK's Pesticide Residue Committee. Five comparison crop pairs were identified whereby one crop of each pair was assumed to have been grown primarily under some form of physical protection ('protected') and the other grown primarily in open field conditions ('open'). For each pair, the number of detectable pesticide residues and the proportion of crop samples containing pesticides were statistically compared (n=100 s samples for each crop). The mean concentrations of selected photolabile pesticides were also compared. For the crop pairings of cabbage ('open') vs. lettuce ('protected') and 'berries' ('open') vs. strawberries ('protected') there was a significantly higher number of pesticides and proportion of samples with multiple residues for the protected crops. Statistically higher concentrations of pesticides, including cypermethrin, cyprodinil, fenhexamid, boscalid and iprodione were also found in the protected crops compared to the open crops. The evidence here demonstrates that, in general, the protected crops possess a higher number of detectable pesticides compared to analogous crops grown in the open. This may be due to different pesticide-use regimes, but also due to slower rates of pesticide removal in protected systems. The findings of this study raise implications for pesticide management in protected-crop systems. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Ecology of Fungus Gnats (Bradysia spp.) in Greenhouse Production Systems Associated with Disease-Interactions and Alternative Management Strategies.

    Science.gov (United States)

    Cloyd, Raymond A

    2015-04-09

    Fungus gnats (Bradysia spp.) are major insect pests of greenhouse-grown horticultural crops mainly due to the direct feeding damage caused by the larvae, and the ability of larvae to transmit certain soil-borne plant pathogens. Currently, insecticides and biological control agents are being used successively to deal with fungus gnat populations in greenhouse production systems. However, these strategies may only be effective as long as greenhouse producers also implement alternative management strategies such as cultural, physical, and sanitation. This includes elimination of algae, and plant and growing medium debris; placing physical barriers onto the growing medium surface; and using materials that repel fungus gnat adults. This article describes the disease-interactions associated with fungus gnats and foliar and soil-borne diseases, and the alternative management strategies that should be considered by greenhouse producers in order to alleviate problems with fungus gnats in greenhouse production systems.

  8. Ecology of Fungus Gnats (Bradysia spp. in Greenhouse Production Systems Associated with Disease-Interactions and Alternative Management Strategies

    Directory of Open Access Journals (Sweden)

    Raymond A. Cloyd

    2015-04-01

    Full Text Available Fungus gnats (Bradysia spp. are major insect pests of greenhouse-grown horticultural crops mainly due to the direct feeding damage caused by the larvae, and the ability of larvae to transmit certain soil-borne plant pathogens. Currently, insecticides and biological control agents are being used successively to deal with fungus gnat populations in greenhouse production systems. However, these strategies may only be effective as long as greenhouse producers also implement alternative management strategies such as cultural, physical, and sanitation. This includes elimination of algae, and plant and growing medium debris; placing physical barriers onto the growing medium surface; and using materials that repel fungus gnat adults. This article describes the disease-interactions associated with fungus gnats and foliar and soil-borne diseases, and the alternative management strategies that should be considered by greenhouse producers in order to alleviate problems with fungus gnats in greenhouse production systems.

  9. Fact Sheet in English and Spanish: What Residents in Agricultural Communities Should Know About Soil Fumigants

    Science.gov (United States)

    Learn about fumigant gas from treated fields (often covered with plastic tarps), some chemical and trade names of these agricultural products, signs and symptoms of pesticide exposure, and how to avoid or report or treat pesticide illness.

  10. Endophytic fungi from selected varieties of soybean (Glycine max L. Merr.) and corn (Zea mays L.) grown in an agricultural area of Argentina.

    Science.gov (United States)

    Russo, María L; Pelizza, Sebastián A; Cabello, Marta N; Stenglein, Sebastián A; Vianna, María F; Scorsetti, Ana C

    2016-01-01

    Endophytic fungi are ubiquitous and live within host plants without causing any noticeable symptoms of disease. Little is known about the diversity and function of fungal endophytes in plants, particularly in economically important species. The aim of this study was to determine the identity and diversity of endophytic fungi in leaves, stems and roots of soybean and corn plants and to determine their infection frequencies. Plants were collected in six areas of the provinces of Buenos Aires and Entre Ríos (Argentina) two areas were selected for sampling corn and four for soybean. Leaf, stem and root samples were surface-sterilized, cut into 1cm(2) pieces using a sterile scalpel and aseptically transferred to plates containing potato dextrose agar plus antibiotics. The species were identified using both morphological and molecular data. Fungal endophyte colonization in soybean plants was influenced by tissue type and varieties whereas in corn plants only by tissue type. A greater number of endophytes were isolated from stem tissues than from leaves and root tissues in both species of plants. The most frequently isolated species in all soybean cultivars was Fusarium graminearum and the least isolated one was Scopulariopsis brevicaulis. Furthermore, the most frequently isolated species in corn plants was Aspergillus terreus whereas the least isolated one was Aspergillus flavus. These results could be relevant in the search for endophytic fungi isolates that could be of interest in the control of agricultural pests. Copyright © 2016 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  11. Combined effects of CO2 enrichment and elevated growth temperatures on metabolites in soybean leaflets; evidence for dynamic changes of TCA cycle intermediates

    Science.gov (United States)

    Soybean (Glycine max [Merr.]L.) was grown in indoor chambers with ambient (38 Pa) and elevated (70 Pa) CO2 and day/night temperature treatments of 28/20, 32/24, and 36/28 °C. Net rates of CO2 assimilation increased with growth temperature and were enhanced an additional 25% on average by CO2 enrich...

  12. The degradation of the insecticide Imidacloprid in greenhouse tomatoes and an estimation of the level of residues.

    OpenAIRE

    VJOLLCA VLADI; FATOS HARIZAJ; VALDETE VORPSI; MAGDALENA CARA

    2014-01-01

    A liquid chromatographic (LC) method using UV detection was used to study the degradation of imidacloprid in tomatoes grown in greenhouses. A liquid-liquid extraction with acetonitrile/methanol (60/40, v/v) and a cleanup step with Florisil were combined with LC to isolate, recover, and quantities the pesticide. Average recoveries obtained at spike levels of 0.03 and 0.40 mg/kg were 93.2-94.7%. Determination limits were 0.012 mg/kg. The experiment was conducted in the greenhouses located in Du...

  13. Greenhouse gas emissions from willow-based electricity: a scenario analysis for Portugal and The Netherlands

    NARCIS (Netherlands)

    Rebelo de Mira, R.; Kroeze, C.

    2006-01-01

    This study focuses on greenhouse gas emissions from power plants using willow as fuel compared to those using fossil fuels. More specifically, we quantify emissions of nitrous oxide (N2O) from soils on which willow is grown, and compare these to emissions of carbon dioxide (CO2) from fossil

  14. Laura: Soybean variety lacking Kunitz trypsin inhibitor

    Directory of Open Access Journals (Sweden)

    Srebrić Mirjana

    2010-01-01

    Full Text Available Grain of conventional soybean varieties requires heat processing to break down trypsin inhibitor's activity before using as food or animal feed. At the same time, protein denaturation and other qualitative changes occur in soybean grain, especially if the temperature of heating is not controlled. Two types of trypsin inhibitor were found in soybean grain the Kunitz trypsin inhibitor and the Bowman-Birk inhibitor. Mature grain of soybean Laura is lacking Kunitz trypsin inhibitor. Grain yield of variety Laura is equal to high yielding varieties from the maturity group I, where it belongs. Lacking of Kunitz-trypsin inhibitor makes soybean grain suitable for direct feeding in adult non ruminant animals without previous thermal processing. Grain of variety Laura can be processed for a shorter period of time than conventional soybeans. This way we save energy, and preserve valuable nutritional composition of soybean grain, which is of interest in industrial processing.

  15. Rotylenchulus reniformis on Greenhouse-grown Foliage Plants: Host Range and Sources of Inoculum.

    Science.gov (United States)

    Starr, J L

    1991-10-01

    Two sources of inoculum of reniform nematodes, Rotylenchulus reniformis, were identified for infestation of ornamental foliage plants in commercial greenhouses. These were water from a local canal system and rooted cuttings purchased from other sources. Eight ornamental plant species were identified as good hosts for the reniform nematode, with each species supporting a reniform population density equal to or greater than that supported by 'Rutgers' tomato and a reproduction factor of greater than 1.0. Nine other plant species were identified as poor hosts.

  16. Soybean phytase and nucleic acid encoding the same

    OpenAIRE

    1999-01-01

    Isolated soybean phytase polypeptides and isolated nucleic acids encoding soybean phytases are provided. The invention is also directed to nucleic acid expression constructs, vectors, and host cells comprising the isolated soybean phytase nucleic acids, as well as methods for producing recombinant and non-recombinant purified soybean phytase. The invention also relates to transgenic plants expressing the soybean phytase, particularly expression under seed-specific expression control elements.

  17. INTERCROPPING OF BRAQUIARIA WITH SOYBEAN

    OpenAIRE

    Castagnara, Deise Dalazen; Bulegon, Lucas Guilherme; Zoz, Tiago [UNESP; Rossol, Charles Douglas; Berte, Luiz Neri; Rabello de Oliveira, Paulo Sergio; Neres, Marcela Abbado

    2014-01-01

    The objective of this work was to study the intercropping of Brachiaria brizantha. Marandu with soybeans. The experiment has been planted in a 3 year prevailing area with no-tillage, in eutrophic Oxisol at Maripa - PR. The experimental design was a randomized block with five replications. For the forage study, four treatments were performed which consisted of seeding times brachiaria [early ( seven days before planting soybeans) joint (same day of soybean planting) and after (at stages V-3 an...

  18. Comparison of soybean cultivars for enhancement of the polyamine contents in the fermented soybean natto using Bacillus subtilis (natto).

    Science.gov (United States)

    Kobayashi, Kazuya; Horii, Yuichiro; Watanabe, Satoshi; Kubo, Yuji; Koguchi, Kumiko; Hoshi, Yoshihiro; Matsumoto, Ken-Ichi; Soda, Kuniyasu

    2017-03-01

    Polyamines have beneficial properties to prevent aging-associated diseases. Raw soybean has relatively high polyamine contents; and the fermented soybean natto is a good source of polyamines. However, detailed information of diversity of polyamine content in raw soybean is lacking. The objectives of this study were to evaluate differences of polyamines among raw soybeans and select the high polyamine-containing cultivar for natto production. Polyamine contents were measured chromatographically in 16 samples of soybean, which showed high variation among soybeans as follows: 93-861 nmol/g putrescine, 1055-2306 nmol/g spermidine, and 177-578 nmol/g spermine. We then confirmed the high correlations of polyamine contents between raw soybean and natto (r = 0.96, 0.95, and 0.94 for putrescine, spermidine, and spermine, respectively). Furthermore, comparison of the polyamine contents among 9 Japanese cultivars showed that 'Nakasen-nari' has the highest polyamine contents, suggesting its suitability for enhancement of polyamine contents of natto.

  19. Effect of liming on nickel bioavailability and toxicity to oat and soybean grown in field soils containing aged emissions from a nickel refinery.

    Science.gov (United States)

    Cioccio, Stephen; Gopalapillai, Yamini; Dan, Tereza; Hale, Beverley

    2017-04-01

    Remediation of soils elevated in trace metals so that the soils may provide ecosystems services is typically achieved through pH adjustment or addition of sorbents. The present study aimed to generate higher-tier in situ toxicity data for elevated nickel (Ni) in soils with and without lime addition and to explore the effect of liming on soil chemistry and bioavailability of Ni to plants. A multiyear study of agronomic yield of field-grown oat and soybean occurred in 3 adjacent fields that had received air emissions from a Ni refinery for 66 yr. The soil Ni concentration in the plots ranged between 1300 mg/kg and 4900 mg/kg, and each field was amended with either 50 Mg/ha, 10 Mg/ha, or 0 Mg/ha (or tonnes/ha) of crushed dolomitic limestone. As expected, liming raised the pH of the soils and subsequently reduced the plant availability of Ni. Toxicity thresholds (effective concentrations causing 50% reduction in growth) for limed soils supported the hypothesis that liming reduces toxicity. Relationships were found between relative yield and soil cation exchange capacity and between relative yield and soil pH, corroborating findings of the European Union Risk Assessments and the Metals in Asia studies, respectively. Higher tier ecotoxicity data such as these are a valuable contribution to risk assessment for Ni in soils. Environ Toxicol Chem 2017;36:1110-1119. © 2016 SETAC. © 2016 SETAC.

  20. Ultrasound Assisted Synthesis of Hydroxylated Soybean Lecithin from Crude Soybean Lecithin as an Emulsifier.

    Science.gov (United States)

    Chiplunkar, Pranali P; Pratap, Amit P

    2017-10-01

    Soybean lecithin is a by-product obtained during degumming step of crude soybean oil refining. Crude soybean lecithin (CSL) contains major amount of phospholipids (PLs) along with minor amount of acylglycerols, bioactive components, etc. Due to presence of PLs, CSL can be used as an emulsifier. Crude soybean lecithin (CSL) was utilized to synthesize hydroxylated soybean lecithin (HSL) by hydroxylation using hydrogen peroxide and catalytic amount of lactic acid to enhance the hydrophilicity and emulsifying properties of CSL. To reduce the reaction time and to increase rate of reaction, HSL was synthesized under ultrasound irradiation. The effect of different operating parameters such as lactic acid, hydrogen peroxide, temperature, ultrasonic power and duty cycle in synthesis of HSL were studied and optimized. The surface tension (SFT), interfacial tension (IFT) and the critical micelle concentration (CMC) of the HSL (26.11 mN/m, 2.67 mN/m, 112 mg/L) were compared to CSL (37.53 mN/m, 6.22 mN/m, 291 mg/L) respectively. The HSL has better emulsion stability and low foaming characteristics as compared to CSL. Therefore, the product as an effective emulsifier can be used in food, pharmacy, lubricant, cosmetics, etc.

  1. Overexpression of Soybean Isoflavone Reductase (GmIFR) Enhances Resistance to Phytophthora sojae in Soybean.

    Science.gov (United States)

    Cheng, Qun; Li, Ninghui; Dong, Lidong; Zhang, Dayong; Fan, Sujie; Jiang, Liangyu; Wang, Xin; Xu, Pengfei; Zhang, Shuzhen

    2015-01-01

    Isoflavone reductase (IFR) is an enzyme involved in the biosynthetic pathway of isoflavonoid phytoalexin in plants. IFRs are unique to the plant kingdom and are considered to have crucial roles in plant response to various biotic and abiotic environmental stresses. Here, we report the characterization of a novel member of the soybean isoflavone reductase gene family GmIFR. Overexpression of GmIFR transgenic soybean exhibited enhanced resistance to Phytophthora sojae. Following stress treatments, GmIFR was significantly induced by P. sojae, ethephon (ET), abscisic acid (placeCityABA), salicylic acid (SA). It is located in the cytoplasm when transiently expressed in soybean protoplasts. The daidzein levels reduced greatly for the seeds of transgenic plants, while the relative content of glyceollins in transgenic plants was significantly higher than that of non-transgenic plants. Furthermore, we found that the relative expression levels of reactive oxygen species (ROS) of transgenic soybean plants were significantly lower than those of non-transgenic plants after incubation with P. sojae, suggesting an important role of GmIFR might function as an antioxidant to reduce ROS in soybean. The enzyme activity assay suggested that GmIFR has isoflavone reductase activity.

  2. Antioxidant activity of seedling growth in selected soybean genotypes (Glycine max (L.) Merrill) responses of submergence

    Science.gov (United States)

    Damanik, R. I.; Marbun, P.; Sihombing, L.

    2016-08-01

    In order to better understand the physiological and biochemical responses relating to direct seeding establishment in soybeans, the plant growth rate and antioxidative defense responses of seedlings in seven Indonesian soybean genotypes (Anjasmoro, Detam-1, Detam-2, Dieng, Grobogan, Tanggamus, and Willis) at different submergence periods (4, and 8 days) were examined. Twelve-day old seedlings were hydroponically grown in limited oxygen conditions. The results showed that the chlorophyll content in soybean seedlings was reduced beginning as early as 4 d under submerged condition, except for Detam-1, Detam-2, and Grobogan genotypes. The dry weight and protein concentration of seedlings were significantly higher at control condition (0 d) than those in submerged condition. The activities of superoxide dismutase (SOD) increased linearly until 8 d submerged for all genotypes. On the other hand, our results showed that catalase (CAT) and ascorbate peroxidase (APX) activities did not work together, meaning that CAT is activated and APX deactivated, or vice versa, in response to submergence conditions, except for Grobogan and Tanggamus genotypes which had an effect on both CAT and APX activities. Submergence stress led to a significant increase in glutathione reductase (GR) together with APX activity for Detam-2 and Dieng genotypes at 8 d submerged.

  3. Effect of the nitrogen fertilizer type on the enzyme activity in the rhizosphere of calcic chernozem and soybean production

    Science.gov (United States)

    Emnova, E. E.; Daraban, O. V.; Bizgan, Ya. V.; Toma, S. I.; Vozian, V. I.; Iacobuta, M. D.

    2015-05-01

    Three varieties (Aura, Magie, and Indra) of soybean ( Glycine max [L.] Merr.) were grown in a small-plot experiment on a calcic chernozem with the application of two types of nitrogen fertilizers: ammonium nitrate (Nan) or carbamide (Nc). These fertilizers at the rate of 20 kg N/ha were applied before sowing together with potassium phosphate (60 kg P2O5/ha). The microbial nitrification capacity and the activity of enzymes related to the nitrogen cycle (urease and nitrate reductase) were measured in the rhizosphere (0-20 cm) at the stage of soybean flowering. It was determined that the biological (enzyme) activity of the calcic chernozem in the soybean rhizosphere was more intense on the plots with the Nan fertilizer than on the plots with the Nc fertilizer. The urease activity depended on the type of nitrogen fertilizer (Nan or Nc) under the conditions of soil water deficiency. In the soil under the Aura variety, the urease activity was significantly lower in the treatments with Nc application, and this was accompanied by a decrease in the crop yield. The nitrification capacity of the calcic chernozem was generally low; in the case of the Nc fertilizer, it was significantly lower than in the case of the Nan fertilizer. The nitrate reductase activity of the soil was also lower in the case of the Nc fertilizer. Each of the three soybean varieties had its own response to changes in the nitrogen nutrition aimed at improving the soybean tolerance to fluctuations in the soil water content during the growing season.

  4. Abscisic acid-dependent changes in transpiration rate with SO/sub 2/ fumigation and the effects of sulfite and pH on stomatal aperture

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, N.; Maruta, I.; Sugahara, K.

    1980-01-01

    Transpiration rate of rice plants which contained extremely large amounts of abscisic acid (ABA) decreased rapidly with 2.0 ppm SO/sub 2/ fumigation, reached 20% of the initial level after 5 min exposure, then recovered slightly and thereafter remained constant. SO/sub 2/ fumigation of alday and tobacco (Nicotiana tabacum L. Samsun) which have a lower ABA content showed a 50% decrease in transpiration rate. Similarly, rates for wheat and tobacco (N. tabacum L. Samsun NN) which contained even smaller amounts of ABA than alday and tobacco (Samsun) decreased by 35 and 45%, respectively, 30 min after the beginning of the fumigation. In the cases of broad bean and tobacco (N. glutinosa L.) with low ABA contents, the rates slightly increased immediately after the start of the fumigation and began to decrease gradually 20 and 40 min later, respectively. The transpiration rates of corn and sorghum, in spite of their extremely low ABA contents, decreased significantly with SO/sub 2/ fumigation and reached 65 and 50% of the initial levels after 20 and 40 min exposure, respectively. Foliar application of 0.04 N HCl to peanut leaves remarkably depressed the transpiration rate, while the application of 0.04 M Na/sub 2/SO/sub 3/ decreased the rate only to the same level as water treatment. Foliar application of either HCl or Na/sub 2/SO/sub 3/ to radish leaves exerted no change in the transpiration rate. When 3 X 10/sup -4/ M ABA was applied to radish leaves prior to HCl and Na/sub 2/SO/sub 3/ treatment, the transpiration rate of radish was decreased by HCl application, but not by Na/sub 2/SO/sub 3/.

  5. Re-assessment of net energy production and greenhouse gas emissions avoidance after 40 years of photovoltaics development

    NARCIS (Netherlands)

    Louwen, Atse|info:eu-repo/dai/nl/375268456; Van Sark, Wilfried G J H M|info:eu-repo/dai/nl/074628526; Faaij, André P C; Schropp, Ruud E I|info:eu-repo/dai/nl/072502584

    2016-01-01

    Since the 1970s, installed solar photovoltaic capacity has grown tremendously to 230 gigawatt worldwide in 2015, with a growth rate between 1975 and 2015 of 45%. This rapid growth has led to concerns regarding the energy consumption and greenhouse gas emissions of photovoltaics production. We

  6. Induced mutations and marker assisted breeding in soybean

    Energy Technology Data Exchange (ETDEWEB)

    Chotechuen, Somsong [Prachinburi Rice Research Center, Prachinburi (Thailand); Srisombun, Somsak [Department of Agriculture, Field Crops Research Institute, Bangkok (Thailand); Lamseejan, Siranut [Kasetsart Univ., Department of Applied Radiation and Isotopes, Bangkok (Thailand)

    2002-02-01

    Soybean is one of the important crops in Thailand. Constraints to soybean production include low yield potential, susceptibility to diseases and insects, and non-adoption of appropriate management practices. Mutation induction has been used to improve soybean yield and resistance to major diseases such as rust, purple seed, crinkle leaf, anthracnose and green seed. This paper reviews previous work and achievements of induced mutations in soybean. Successful examples are the release of a soybean variety, Doi Kham, and the development of a mutant CM 60-10kr-71; both are resistant to rust disease. The paper also gives example of the use of soybean SSR markers to identify QTL associated with pod shattering, and emphasizes the integration of mutation techniques and marker assisted selection for soybean improvement. (author)

  7. RELATIVE COMPETITIVENESS OF GOOSEGRASS BIOTYPES AND SOYBEAN CROPS

    Directory of Open Access Journals (Sweden)

    JADER JOB FRANCO

    2017-01-01

    Full Text Available he goosegrass ( Eleusine indica (L. Gaertn is an annual plant that has a low - level resistance to glyphosate (LLRG, resulting in control failure in genetically modified soybean crops for resistance to this herbicide. Alleles related to resistance may cause changes in the plant biotype, such as inferior competitive ability. Thus, the objective of this work was to evaluated the competitive ability of soybean crops and susceptible and resistant (LLRG goosegrass biotypes. Replacement series experiments were conducted with soybean crops and goosegrass biotypes. The ratios of soybean to susceptible or resistant (LLRG goosegrass plants were 100:0, 75:25, 50:50, 25:75 and 0:100, with a total population of 481 plants m - 2 . The leaf area, plant height and shoot dry weight were evaluated at 40 days after emergence of the soybean crops and weeds. The soybean crop had superior competitive ability to the susceptible and resistant (LLRG goosegrass biotypes. The soybean crop showed similar competitive ability in both competitions, either with the susceptible or resistant (LLRG goosegrass biotypes. The intraspecific competition was more harmful to the soybean crop, while the interspecific competition caused greater damage to the goosegrass biotypes competing with the soybean crop

  8. Methyl Bromide Buffer Zone Distances for Commodity and Structural Fumigation: Active Aeration, No Stack, More than 8 Hours

    Science.gov (United States)

    This document contains buffer zone tables required by certain methyl bromide commodity fumigant product labels that refer to Buffer Zone Lookup Tables located at epa.gov/pesticide-registration/mbcommoditybuffer on the label.

  9. Methyl Bromide Buffer Zone Distances for Commodity and Structural Fumigation: Active Aeration, Horizontal Stacks, 8 Hours or Less

    Science.gov (United States)

    This document contains buffer zone tables required by certain methyl bromide commodity fumigant product labels that refer to Buffer Zone Lookup Tables located at epa.gov/pesticide-registration/mbcommoditybuffer on the label.

  10. Methyl Bromide Buffer Zone Distances for Commodity and Structural Fumigation: Active Aeration, No Stack, 8 Hours or Less

    Science.gov (United States)

    This document contains buffer zone tables required by certain methyl bromide commodity fumigant product labels that refer to Buffer Zone Lookup Tables located at epa.gov/pesticide-registration/mbcommoditybuffer on the label.

  11. 77 FR 40529 - Soybean Promotion and Research: Amend the Order To Adjust Representation on the United Soybean Board

    Science.gov (United States)

    2012-07-10

    ... Service 7 CFR Part 1220 [Doc. No. AMS-LS-12-0022] Soybean Promotion and Research: Amend the Order To... in 2009. As required by the Soybean Promotion, Research, and Consumer Information Act (Act... members from 69 to 70. These changes would be reflected in the Soybean Promotion and Research Order (Order...

  12. Postharvest fumigation of California table grapes with ozone to control Western black widow spider (Araneae: Theridiidae)

    Science.gov (United States)

    Ozone fumigations were evaluated for postharvest control of Western black widow spider (BWS), Latrodectus hesperus (Chamberlin and Ivie), in fresh table grapes destined for export from California USA. Mature adult female black widow spiders were contained in separate gas-permeable cages within a flo...

  13. Current development and application of soybean genomics

    Institute of Scientific and Technical Information of China (English)

    Lingli HE; Jing ZHAO; Man ZHAO; Chaoying HE

    2011-01-01

    Soybean (Glycine max),an important domesticated species originated in China,constitutes a major source of edible oils and high-quality plant proteins worldwide.In spite of its complex genome as a consequence of an ancient tetraploidilization,platforms for map-based genomics,sequence-based genomics,comparative genomics and functional genomics have been well developed in the last decade,thus rich repertoires of genomic tools and resources are available,which have been influencing the soybean genetic improvement.Here we mainly review the progresses of soybean (including its wild relative Glycine soja) genomics and its impetus for soybean breeding,and raise the major biological questions needing to be addressed.Genetic maps,physical maps,QTL and EST mapping have been so well achieved that the marker assisted selection and positional cloning in soybean is feasible and even routine.Whole genome sequencing and transcriptomic analyses provide a large collection of molecular markers and predicted genes,which are instrumental to comparative genomics and functional genomics.Comparative genomics has started to reveal the evolution of soybean genome and the molecular basis of soybean domestication process.Microarrays resources,mutagenesis and efficient transformation systems become essential components of soybean functional genomics.Furthermore,phenotypic functional genomics via both forward and reverse genetic approaches has inferred functions of many genes involved in plant and seed development,in response to abiotic stresses,functioning in plant-pathogenic microbe interactions,and controlling the oil and protein content of seed.These achievements have paved the way for generation of transgenic or genetically modified (GM) soybean crops.

  14. Yield and Yield Attributes Responses of Soybean (Glycine max L. Merrill to Elevated CO2 and Arbuscular Mycorrhizal Fungi Inoculation in the Humid Transitory Rainforest

    Directory of Open Access Journals (Sweden)

    Nurudeen ADEYEMI

    2017-06-01

    Full Text Available Variations in yield components and grain yield of arbuscular mycorrhizal fungi (AMF inoculated soybean varieties (Glycine max L. Merrill grown in CO2 enriched environment in the humid rainforest were tested.  A screen house trial was established with soybean varieties (‘TGx 1448-2E’, ‘TGx 1440-1E’ and ‘TGx 1740-2F’, AMF inoculation (with and without and CO2 enrichment (350±50 ppm and 550±50 ppm in open top chamber, arranged in completely randomised design, replicated three times. A field trial was also conducted; the treatments were arranged in a split-split plot configuration fitted into randomised complete block design. In the main plot the variant was CO2 enrichment, the sub-plot consisted of AMF inoculation (with and without, while the sub-sub plot consisted of soybean varieties, replicated three times. Both trials had significantly higher grain yield at elevated CO2 than ambient. This could be attributed to improved yield attributes, more spore count and root colonisation. In both trials, inoculated soybean had significantly higher dry pod weight than un-inoculated, which could suggest the increased grain yield observed on the field. AMF inoculated soybean varieties outperformed un-inoculated in both CO2 enriched and ambient concentrations. AMF inoculated soybean variety ‘TGx 1740-2F’ is most preferable in CO2 enriched environment, while variety ‘TGx 1448-2E’ had the most stable grain yield in all growth environments.

  15. Isoflavone content and antioxidant properties of soybean seeds

    Directory of Open Access Journals (Sweden)

    Edina Šertović

    2011-01-01

    Full Text Available The isoflavone content and antioxidant properties of five Croatian soybean seed cultivars from two locations were analysed. The content of total and individual isofavones was determined by high performance liquid chromatography. For determination of antioxidant properties scavenging capacity on DPPHֹ radicals has been applied. The total phenolic content, oil and protein content in soybean cultivars were also determined. Significant differences in the content of individual isoflavones were observed within the soybean cultivars. The total phenol content in soybean cultivars ranged from 87.2 to 216.3 mg GAE/100g of soybean. The total isoflavone content in soybean seeds ranged from 80.7 to 213.6 mg/100g of soybean. The most abundant isoflavone in soybean seeds was genistein. There was statistically significant difference (p < 0.05 among two locations in total and individual isoflavone contents. The highest contents of total isoflavones were found in cultivar “os55-95”. Conversely, cultivars poor in isoflavones also showed low levels of DPPH-radical scavenging activity.

  16. Methyl bromide fumigation and delayed mortality: safe trade of live pests?

    Science.gov (United States)

    Phillips, C B; Iline, I I; Novoselov, M; McNeill, M R; Richards, N K; van Koten, C; Stephenson, B P

    Live organisms intercepted from treated commodities during phytosanitary inspections usually arouse suspicions of treatment failure, sub-standard treatment application, or post-treatment infestation. The additional possibility that some treatments could kill slowly, meaning commodities might be inspected before pests have succumbed, is seldom considered for treatments other than irradiation. We used a novel biochemical viability assay to measure delays between methyl bromide fumigation and mortality of dipteran eggs, and evaluated the correspondence between egg viability and egg morphological features. Our experimental conditions simulated shipping of rock melons from Australia to New Zealand by sea and air. No eggs survived fumigation, but they took 3-20 days to die, whereas phytosanitary inspections of rock melons occur within 2-7 days. Delays were not influenced by methyl bromide concentration, but were significantly lengthened by cooler storage temperatures. Methyl bromide's preservative effects delayed degradation of egg morphology, so the biochemical assay detected mortality long before morphological signs of egg death appeared. The results show that commodities subjected to effective methyl bromide treatments are at risk of being inspected before all pests have either died, or started to exhibit morphological signs of death. This could cause commodities to be unnecessarily rejected by quarantine authorities. Better methods than inspection for live pests are needed to assist authorities to gain assurance that treated commodities have been effectively disinfested. These could be developed by exploiting biochemical responses of pests and commodities to treatments.

  17. Greenhouse Gases

    Science.gov (United States)

    ... Production of Hydrogen Use of Hydrogen Greenhouse Gases Basics | | Did you know? Without naturally occurring greenhouse gases, the earth would be too cold to support life as we know it. Without the greenhouse effect, ...

  18. Silicon alleviates the adverse effects of salinity and drought stress on growth and endogenous plant growth hormones of soybean (glycine max L.)

    International Nuclear Information System (INIS)

    Hamzyun, M.; Sohn, Eun-Young; Khan, A.L.; Lee, In-Jung

    2010-01-01

    Agricultural industry is subjected to enormous environmental constraints, particularly due to salinity and drought. We evaluated the role of silicon (Si) in alleviating salinity and drought induced physio-hormonal changes in soybean grown in perlite. The plant growth attributes i.e., shoot length, plant fresh weight and dry weight parameters of soybean improved with elevated Si nutrition, while they decreased with NaCl and polyethylene glycol (PEG) application. The adverse effects of NaCl and PEG on plant growth were alleviated by adding 100 mg L/sup -1/ and 200 mg L/sup -1/ Si to salt and drought stressed treatments. It was observed that Si effectively mitigated the adverse effects of NaCl on soybean than that of PEG. The chlorophyll contents were found to be least affected as an insignificant increase was observed with Si application. Bioactive GA1 and GA4 contents of soybean leaves increased, when Si was added to control or stressed plants. Jasmonic acid (JA) contents sharply increased under salinity and drought stress but declined when the plants were supplemented with Si. Similarly, free salicylic acid (SA) level also increased with NaCl and PEG application. However, free SA level further increased with the addition of Si to salt treated plants, but decreased when Si was given to PEG treated plants. It was concluded that Si improves physio-hormonal attributes of soybean and mitigate adverse effects of salt and drought stress. (author)

  19. Transformation of multiple soybean cultivars by infecting ...

    African Journals Online (AJOL)

    Transformation of multiple soybean cultivars by infecting cotyledonary-node with Agrobacterium tumefaciens. ... In our study, the combination of Nannong88-1 with EHA105 is the optimum selection for explant and bacterial inoculum in soybean transformation, which could be applied in future functional study of soybean ...

  20. Soybean in China: adaptating to the liberalization

    Directory of Open Access Journals (Sweden)

    Jamet Jean-Paul

    2016-11-01

    Full Text Available Since 1978 and its opening, China has undergone a process of nutrition transition, animal products taking an increasing share. Anxious to ensure a certain level of food independence, Chinese authorities have developed national livestock production. The increase in volumes and the development of large scale breeding have increased the demand for commercial feed and thus soymeal. Meanwhile, edible oil consumption rose sharply, accentuating the demand for soybeans. To meet this demand, soybean imports were liberalized early, leading the country to become heavily dependent. China has indeed made the choice to maintain its independence in cereals at the expense of other grains, such as soybeans. Competition between corn and soybeans has turned in favor of the cereal, soybean production levelling off then regressing. China’s dependence extends to the crushing sector, controlled by foreign companies. Public supports in place, such as minimum prices, have resulted in increasing the price gap with imported products, leading to a reform of soybean policy in 2014.

  1. Transgenic soybean overexpressing GmSamT1 exhibits resistance to multiple-HG types of soybean cyst nematode Heterodera glycines

    Science.gov (United States)

    Soybean (Glycine max (L.) Merr.) salicylic acid methyl transferase (GmSAMT1) catalyzes the conversion of salicylic acid to methyl salicylate. Prior results showed that when GmSAMT1 was overexpressed in transgenic soybean hairy roots, resistance is conferred against soybean cyst nematode (SCN), Heter...

  2. Comparisonof physicochemical properties of selected locally available legume varieties (mung bean, cowpea and soybean

    Directory of Open Access Journals (Sweden)

    Kulasooriyage Tharuka Gunathilake

    2016-10-01

    Full Text Available Grain legumes are widely used as high-protein contained crops that play a secondary role to cereal or root crops. In Sri Lanka various legume species are cultivated and often utilised in the whole grain boiled form. The objective of present study was to analyse and compare locally grown legumes varieties; Mung bean (MI 5, MI 6, Cowpea (Bombay, Waruni, Dhawal, MICP1, ANKCP1 and soybean (pb1, MISB1 for their morphological characteristics, proximate and mineral composition (Fe, Ca, Zn, K, P. Seed shape, seed coat texture and colour, seed size and 100 seed weight (g were observed morphological characteristics in present study. Most of the characteristics of mung bean and soybean were similar within their species whereas characteristics of cowpea varieties largely differed. Values of 100 seed weight among the varieties of mung bean, soybean and cowpea were ranged from 5.8 - 6.5 g, 13.5 - 14.1 g and 13.4 - 17.2 g, respectively. The moisture content of all legume seeds ranged from 6.81% to 11.99%. Results were shown that the protein content significantly higher in soybean (36.56 - 39.70% followed by mung bean (26.56 - 25.99% and cowpea (25.22 - 22.84% respectively. Range of total carbohydrate, crude fat, crude fibre and total ash contents of nine legume varieties varied from 15.29 - 62.97%, 1.25 - 22.02%, 3.04 - 7.93% and 3.43 - 6.35 respectively. potassium (K, phosphorus (P, calcium (Ca, iron (Fe and zinc (Zn ranged from 1000 - 1900, 360 - 669, 15.0 - 192.3, 2.26 - 11.6 and 1.67 - 4.26 mg.100g-1 respectively in all the species of studied legume varieties. The wide variation in the chemical and physical properties of observed nine legume varieties, suggesting possible applications for various end-use products. 

  3. Soybean Opportunity as Source of New Energy in Indonesia

    Directory of Open Access Journals (Sweden)

    M. Muchlish Adie

    2014-02-01

    Full Text Available These last few years, the name of soybeans soared as a source of biodiesel. Soy biodiesel is an alternative fuel produced from soybean oil. Soybean potential as an alternative renewable energy source because it is expected to have the highest energy content compared to other alternative fuels. Opportunities to develop biodiesel using soybean oil in Indonesia is quite large, considering the soybean is a commodity that is already known and widely cultivated almost in all over Indonesia. In addition, the use of soybean for biofuel feedstock is expected to motivate farmers to cultivate soybeans, so their use is not limited to non-energy raw materials. Soybean varieties that have a high oil content as well as high yield is a source of major biodiesel feedstock. From 73 soybean varieties that have been released in Indonesia, has an average oil content of 18%. Varieties with high oil content can be used as raw material for biodiesel. Research on the use of soy as an ingredient of energy crops (biodiesel have been carried out. In fact, soybean oil is the vegetable oil feedstock for most of the biodiesel being produced in the United States today. With the potential for soybean crops in Indonesia, both in terms of availability of land and varieties, the use of soybean oil for biofuel development in Indonesia is the flagship prospective materials for bio fuel substitute than other plants in the future.

  4. Estimates of genetics and phenotypics parameters for the yield and quality of soybean seeds.

    Science.gov (United States)

    Zambiazzi, E V; Bruzi, A T; Guilherme, S R; Pereira, D R; Lima, J G; Zuffo, A M; Ribeiro, F O; Mendes, A E S; Godinho, S H M; Carvalho, M L M

    2017-09-27

    Estimating genotype x environment (GxE) parameters for quality and yield in soybean seed grown in different environments in Minas Gerais State was the goal of this study, as well as to evaluate interaction effects of GxE for soybean seeds yield and quality. Seeds were produced in three locations in Minas Gerais State (Lavras, Inconfidentes, and Patos de Minas) in 2013/14 and 2014/15 seasons. Field experiments were conducted in randomized blocks in a factorial 17 x 6 (GxE), and three replications. Seed yield and quality were evaluated for germination in substrates paper and sand, seedling emergence, speed emergency index, mechanical damage by sodium hypochlorite, electrical conductivity, speed aging, vigor and viability of seeds by tetrazolium test in laboratory using completely randomized design. Quadratic component genotypic, GXE variance component, genotype determination coefficient, genetic variation coefficient and environmental variation coefficient were estimated using the Genes software. Percentage analysis of genotypes contribution, environments and genotype x environment interaction were conducted by sites combination two by two and three sites combination, using the R software. Considering genotypes selection of broad adaptation, TMG 1179 RR, CD 2737 RR, and CD 237 RR associated better yield performance at high physical and physiological potential of seed. Environmental effect was more expressive for most of the characters related to soybean seed quality. GxE interaction effects were expressive though genotypes did not present coincidental behavior in different environments.

  5. Over-expressing the C3 photosynthesis cycle enzyme Sedoheptulose-1-7 Bisphosphatase improves photosynthetic carbon gain and yield under fully open air CO2 fumigation (FACE)

    Science.gov (United States)

    2011-01-01

    Background Biochemical models predict that photosynthesis in C3 plants is most frequently limited by the slower of two processes, the maximum capacity of the enzyme Rubisco to carboxylate RuBP (Vc,max), or the regeneration of RuBP via electron transport (J). At current atmospheric [CO2] levels Rubisco is not saturated; consequently, elevating [CO2] increases the velocity of carboxylation and inhibits the competing oxygenation reaction which is also catalyzed by Rubisco. In the future, leaf photosynthesis (A) should be increasingly limited by RuBP regeneration, as [CO2] is predicted to exceed 550 ppm by 2050. The C3 cycle enzyme sedoheptulose-1,7 bisphosphatase (SBPase, EC 3.1.3.17) has been shown to exert strong metabolic control over RuBP regeneration at light saturation. Results We tested the hypothesis that tobacco transformed to overexpressing SBPase will exhibit greater stimulation of A than wild type (WT) tobacco when grown under field conditions at elevated [CO2] (585 ppm) under fully open air fumigation. Growth under elevated [CO2] stimulated instantaneous A and the diurnal photosynthetic integral (A') more in transformants than WT. There was evidence of photosynthetic acclimation to elevated [CO2] via downregulation of Vc,max in both WT and transformants. Nevertheless, greater carbon assimilation and electron transport rates (J and Jmax) for transformants led to greater yield increases than WT at elevated [CO2] compared to ambient grown plants. Conclusion These results provide proof of concept that increasing content and activity of a single photosynthesis enzyme can enhance carbon assimilation and yield of C3 crops grown at [CO2] expected by the middle of the 21st century. PMID:21884586

  6. Assessment of the effects of Hirsutella minnesotensis on Soybean Cyst Nematode and growth of soybean

    Science.gov (United States)

    Hirsutella minnesotensis is a fungal endoparasite of nematodes juvenile and parasitizes soybean cyst nematodes (SCN) with high frequency. In this study, the effects of two H. minnesotensis isolates on population and distribution of SCN and growth of soybean were evaluated. Experiments were conducted...

  7. Distribution and Biocontrol Potential of phlD(+) Pseudomonads in Corn and Soybean Fields.

    Science.gov (United States)

    McSpadden Gardener, Brian B; Gutierrez, Laura J; Joshi, Raghavendra; Edema, Richard; Lutton, Elizabeth

    2005-06-01

    ABSTRACT The abundance and diversity of phlD(+) Pseudomonas spp. colonizing the rhizospheres of young, field-grown corn and soybean plants were assayed over a 3-year period. Populations of these bacteria were detected on the large majority of plants sampled in the state of Ohio, but colonization was greater on corn. Although significant variation in the incidence of rhizosphere colonization was observed from site to site and year to year on both crops, the magnitude of the variation was greatest for soybean. The D genotype was detected on plants collected from all 15 counties examined, and it represented the most abundant subpopulation on both crops. Additionally, six other genotypes (A, C, F, I, R, and S) were found to predominate in the rhizosphere of some plants. The most frequently observed of these were the A genotype and a newly discovered S genotype, both of which were found on corn and soybean roots obtained from multiple locations. Multiple isolates of the most abundant genotypes were recovered and characterized. The S genotype was found to be phylogenetically and phenotypically similar to the D genotype. In addition, the novel R genotype was found to be most similar to the A genotype. All of the isolates displayed significant capacities to inhibit the growth of an oomycete pathogen in vitro, but such phenotypes were highly dependent on media used. When tested against multiple oomycete pathogens isolated from soybean, the A genotype was significantly more inhibitory than the D genotype when incubated on 1/10x tryptic soy agar and 1/5x corn meal agar. Seed inoculation with different isolates of the A, D, and S genotypes indicated that significant root colonization, generally in excess of log 5 cells per gram of root, could be attained on both crops. Field trials of the A genotype isolate Wayne1R indicated the capacity of inoculant populations to supplement the activities of native populations so as to increase soybean stands and yields. The relevance of

  8. Effect of dietary soybean oil and soybean protein concentration on the concentration of digestible amino acids in soybean products fed to growing pigs.

    Science.gov (United States)

    Cervantes-Pahm, S K; Stein, H H

    2008-08-01

    An experiment was conducted to measure the effect of adding soybean oil to soybean meal (SBM) and soy protein concentrate (SPC) on apparent (AID) and standardized (SID) ileal digestibility of CP and AA by growing pigs. A second objective was to compare AID and SID of AA in a new high-protein variety of full fat soybeans (FFSB) to values obtained in other soybean products. Commercial sources of FFSB (FFSB-CV), SBM, and SPC, and of a new high-protein variety of FFSB (FFSB-HP) were used in the experiment. Four diets were prepared using each soybean product as the sole source of CP and AA in 1 diet. Two additional diets were formulated by adding soybean oil (7.55 and 7.35%, respectively) to the diets containing SBM and SPC. A nitrogen-free diet was also used to measure basal endogenous losses of CP and AA. The 2 sources of FFSB were extruded at 150 degrees C before being used in the experiment. Seven growing barrows (initial BW = 26.2 kg) were prepared with a T-cannula in the distal ileum and allotted to a 7 x 7 Latin square design. Ileal digesta were collected from the pigs on d 6 and 7 of each period. All digesta samples were lyophilized and analyzed for DM, CP, AA, and chromium, and values for AID and SID of CP and AA were calculated. The addition of oil improved (P oil and SPC, but these values were lower (P oil. In conclusion, the addition of oil improved the SID of most AA in SBM and SPC fed to growing pigs, and the SID of AA in FFSB-HP were greater than in SBM and similar to the SID of AA in SBM with oil and in SPC.

  9. Effect of Aerated Compost Tea on the Growth Promotion of Lettuce, Soybean, and Sweet Corn in Organic Cultivation.

    Science.gov (United States)

    Kim, Min Jeong; Shim, Chang Ki; Kim, Yong Ki; Hong, Sung Jun; Park, Jong Ho; Han, Eun Jung; Kim, Jin Ho; Kim, Suk Chul

    2015-09-01

    This study investigated the chemical characteristics and microbial population during incubation of four kinds of aerated compost teas based on oriental medicinal herbs compost, vermicompost, rice straw compost, and mixtures of three composts (MOVR). It aimed to determine the effects of the aerated compost tea (ACT) based on MOVR on the growth promotion of red leaf lettuce, soybean and sweet corn. Findings showed that the pH level and EC of the compost tea slightly increased based on the incubation time except for rice straw compost tea. All compost teas except for oriental medicinal herbs and rice straw compost tea contained more NO(-) 3-N than NH(+) 4-N. Plate counts of bacteria and fungi were significantly higher than the initial compost in ACT. Microbial communities of all ACT were predominantly bacteria. The dominant bacterial genera were analyzed as Bacillus (63.0%), Ochrobactrum (13.0%), Spingomonas (6.0%) and uncultured bacterium (4.0%) by 16S rDNA analysis. The effect of four concentrations, 0.1%, 0.2%, 0.4% and 0.8% MOVR on the growth of red leaf lettuce, soybean and sweet corn was also studied in the greenhouse. The red leaf lettuce with 0.4% MOVR had the most effective concentration on growth parameters in foliage part. However, 0.8% MOVR significantly promoted the growth of root and shoot of both soybean and sweet corn. The soybean treated with higher MOVR concentration was more effective in increasing the root nodule formation by 7.25 times than in the lower MOVR concentrations Results indicated that ACT could be used as liquid nutrient fertilizer with active microorganisms for culture of variable crops under organic farming condition.

  10. Food type soybean cooking time: a review

    Directory of Open Access Journals (Sweden)

    Deonisio Destro

    2013-01-01

    Full Text Available Soybean is an extensive crop that produces more protein per hectare and, compared to other sources, has the lowest proteincost. This turns soybean into one of the basic foods with the potential to fight malnutrition and hunger in the planet. Even though itrepresents the fourth crop in grain production in the world (261 million tons year-1, most of its production is used as animal fodder.Currently, one of the greatest research challenges is to improve soybean production for human consumption. Cooking time is one theseveral characteristics that need improvement so that soybean can be used more extensively in our everyday diet. The objective of thiswork is to carry out a bibliographic review on the topic, to sensitize researchers in the area of soybean breeding about its importance.

  11. Characterization of the ecological interactions of Roundup Ready 2 Yield® soybean, MON 89788, for use in ecological risk assessment.

    Science.gov (United States)

    Horak, Michael J; Rosenbaum, Eric W; Phillips, Samuel L; Kendrick, Daniel L; Carson, David; Clark, Pete L; Nickson, Thomas E

    2015-01-01

    As part of an ecological risk assessment, Roundup Ready 2 Yield® soybean (MON 89788) was compared to a conventional control soybean variety, A3244, for disease and arthropod damage, plant response to abiotic stress and cold, effects on succeeding plant growth (allelopathic effects), plant response to a bacterial symbiont, and effects on the ability of seed to survive and volunteer in a subsequent growing season. Statistically significant differences between MON 89788 and A3244 were considered in the context of the genetic variation known to occur in soybean and were assessed for their potential impact on plant pest (weed) potential and adverse environmental impact. The results of these studies revealed no effects of the genetic modification that would result in increased pest potential or adverse environmental impact of MON 89788 compared with A3244. This paper illustrates how such characterization studies conducted in a range of environments where the crop is grown are used in an ecological risk assessment of the genetically modified (GM) crop. Furthermore, risk assessors and decision makers use this information when deciding whether to approve a GM crop for cultivation in-or grain import into-their country.

  12. Cooling performance assessment of horizontal earth tube system and effect on planting in tropical greenhouse

    International Nuclear Information System (INIS)

    Mongkon, S.; Thepa, S.; Namprakai, P.; Pratinthong, N.

    2014-01-01

    Graphical abstract: - Highlights: • The cooling ability of HETS is studied for planting in tropical greenhouse. • The effective of system was moderate with COP more than 2.0. • Increasing diameter and air velocity increase COP more than other parameters. • The plant growth with HETS was significantly better than no-HETS plant. - Abstract: The benefit of geothermal energy is used by the horizontal earth tube system (HETS); which is not prevalent in tropical climate. This study evaluated geothermal cooling ability and parameters studied in Thailand by mathematical model. The measurement of the effect on plant cultivation was carried out in two identical greenhouses with 30 m 2 of greenhouse volume. The HETS supplied cooled air to the model greenhouse (MGH), and the plant growth results were compared to the growth results of a conventional greenhouse (CGH). The prediction demonstrated that the coefficient of performance (COP) in clear sky day would be more than 2.0 while in the experiment it was found to be moderately lower. The parameters study could be useful for implementation of a system for maximum performance. Two plants Dahlias and head lettuce were grown satisfactory. The qualities of the plants with the HETS were better than the non-cooled plants. In addition, the quality of production was affected by variations of microclimate in the greenhouses and solar intensity throughout the cultivation period

  13. Major soybean maturity gene haplotypes revealed by SNPViz analysis of 72 sequenced soybean genomes.

    Directory of Open Access Journals (Sweden)

    Tiffany Langewisch

    Full Text Available In this Genomics Era, vast amounts of next-generation sequencing data have become publicly available for multiple genomes across hundreds of species. Analyses of these large-scale datasets can become cumbersome, especially when comparing nucleotide polymorphisms across many samples within a dataset and among different datasets or organisms. To facilitate the exploration of allelic variation and diversity, we have developed and deployed an in-house computer software to categorize and visualize these haplotypes. The SNPViz software enables users to analyze region-specific haplotypes from single nucleotide polymorphism (SNP datasets for different sequenced genomes. The examination of allelic variation and diversity of important soybean [Glycine max (L. Merr.] flowering time and maturity genes may provide additional insight into flowering time regulation and enhance researchers' ability to target soybean breeding for particular environments. For this study, we utilized two available soybean genomic datasets for a total of 72 soybean genotypes encompassing cultivars, landraces, and the wild species Glycine soja. The major soybean maturity genes E1, E2, E3, and E4 along with the Dt1 gene for plant growth architecture were analyzed in an effort to determine the number of major haplotypes for each gene, to evaluate the consistency of the haplotypes with characterized variant alleles, and to identify evidence of artificial selection. The results indicated classification of a small number of predominant haplogroups for each gene and important insights into possible allelic diversity for each gene within the context of known causative mutations. The software has both a stand-alone and web-based version and can be used to analyze other genes, examine additional soybean datasets, and view similar genome sequence and SNP datasets from other species.

  14. Virtual water embodied in international trade of soybean

    DEFF Research Database (Denmark)

    Caro, Dario; Thomsen, Marianne

    This study focuses on hidden water flows embodied in the international trade of soybean. The virtual water content embedded in soybean imported and exported by 174 countries during the period 2000-2013 is estimated.......This study focuses on hidden water flows embodied in the international trade of soybean. The virtual water content embedded in soybean imported and exported by 174 countries during the period 2000-2013 is estimated....

  15. The effect of soybean meal replacement with raw full-fat soybean in diets for broiler chickens

    Czech Academy of Sciences Publication Activity Database

    Rada, V.; Lichovníková, M.; Šafařík, Ivo

    2016-01-01

    Roč. 45, č. 1 (2016), s. 112-117 ISSN 0971-2119 Institutional support: RVO:67179843 Keywords : Raw full-fat soybean * soybean meal * broiler * growth * digestibility Subject RIV: GH - Livestock Nutrition Impact factor: 0.426, year: 2016

  16. The effect of synthetic pesticides and sulfur used in conventional and organically grown strawberry and soybean on Neozygites floridana, a natural enemy of spider mites.