WorldWideScience

Sample records for greenhouse gases methane

  1. Emission and Sink of Greenhouse Gases in Soils of Moscow

    Science.gov (United States)

    Mozharova, N. V.; Kulachkova, S. A.; Lebed'-Sharlevich, Ya. I.

    2018-03-01

    The first inventory and zoning of the emission and sink of methane and carbon dioxide in the urban structure of greenhouse gases from soils and surface technogenic formations (STFs) (Technosols) on technogenic, recrementogenic, and natural sediments have been performed with consideration for the global warming potential under conditions of different formation rate of these gases, underflooding, and sealing. From gas geochemical criteria and anthropogenic pedogenesis features, the main sources of greenhouse gases, their intensity, and mass emission were revealed. The mass fractions of emissions from the sectors of waste and land use in the inventories of greenhouse gas emissions have been determined. New sources of gas emission have been revealed in the first sector, the emissions from which add tens of percent to the literature and state reports. In the second sector, emissions exceed the available data in 70 times. Estimation criteria based on the degree of manifestation and chemical composition of soil-geochemical anomalies and barrier capacities have been proposed. The sink of greenhouse gases from the atmosphere and the internal (latent) sink of methane in soils and STFs have been determined. Ecological functions of soils and STFs have been shown, and the share of latent methane sink has been calculated. The bacterial oxidation of methane in soils and STFs exceeds its emission to the atmosphere in almost hundred times.

  2. An overview on non-CO2 greenhouse gases

    NARCIS (Netherlands)

    Pulles, T.; Amstel, van A.R.

    2010-01-01

    Non-CO2 greenhouse gases, included in the Kyoto Protocol, are methane (CH4), nitrous oxide (N2O), hexafluorocarbons (HFC), perfluorinated compounds (PFC) and sulphur hexafluoride (SF6). Together they account for about 25% of the present global greenhouse gas emissions. Reductions in emissions of

  3. Greenhouse effect gases inventory in France during the years 1990-1999

    International Nuclear Information System (INIS)

    2000-12-01

    The present report supplies emission data, for France and for the period 1990-1999, concerning all the substances involved in the increase in the greenhouse effect and covered under the United Nations' Framework Convention on Climate Change (UNFCCC). The substances are the six direct greenhouse gases covered by the Kyoto protocol: carbon dioxide (CO 2 ), methane (CH 4 ), nitrous oxide (N 2 O), the two species of halogenous substances - hydro-fluorocarbons (HFCs) and per-fluorocarbons (PFCs), and sulphur hexafluoride (SF 6 ). Emissions of sulphur dioxide (SO 2 ), nitrogen oxides (NO x ), non methane volatile organic compounds (NMVOCs), and carbon monoxide (CO), gases which indirectly make a significant contribution to the greenhouse effect, are reported under the Convention. The emissions of the six gases that directly contribute to the greenhouse effect are expressed in terms of Global Warming Potential (GWP) which decreased by 2.1 % in 1999 compared to 1990. The emissions of the four gases that indirectly contribute to the greenhouse effect are moving towards decrease: this is by 17% for NO x , 23% as regards NMVOCs, 33% for CO and by 44% regarding SO 2 . Out of the six greenhouse gases covered by the Kyoto Protocol, CO 2 accounts for the largest share in total GWP emissions (70 %), followed by N 2 O (16 %), CH 4 (12 %), HFCs (0.99 %), SF 6 (0.5 %), and PFCs (0.39 %). (author)

  4. Greenhouse Gases

    Science.gov (United States)

    ... Production of Hydrogen Use of Hydrogen Greenhouse Gases Basics | | Did you know? Without naturally occurring greenhouse gases, the earth would be too cold to support life as we know it. Without the greenhouse effect, ...

  5. Emissions of greenhouse gases in the United States 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-01

    This is the sixth annual report on aggregate US national emissions of greenhouse gases. It covers emissions over the period 1990--1996, with preliminary estimates of emissions for 1997. Chapter one summarizes some background information about global climate change and the greenhouse effect. Important recent developments in global climate change activities are discussed, especially the third Conference of the Parties to the Framework Convention on Climate Change, which was held in December of 1997 in Kyoto, Japan. Chapters two through five cover emissions of carbon dioxide, methane, nitrous oxide, halocarbons and related gases, respectively. Chapter six describes potential sequestration and emissions of greenhouse gases as a result of land use changes. Six appendices are included in the report. 96 refs., 38 tabs.

  6. Greenhouse effect contributions of US landfill methane

    International Nuclear Information System (INIS)

    Augenstein, D.

    1991-01-01

    The greenhouse effect has recently been receiving a great deal of scientific and popular attention. The term refers to a cause-and-effect relationship in which ''heat blanketing'' of the earth, due to trace gas increases in the atmosphere, is expected to result in global warming. The trace gases are increasing as the result of human activities. Carbon dioxide (CO 2 ) is the trace gas contributing most importantly to the ''heat blanketing'' and currently receives the most attention. Less widely recognized has been the high importance of methane (CH 4 ). Methane's contribution to the increased heat blanketing occurring since 1980 is estimated to be over a third as much as that of carbon dioxide. Gas from landfills has in turn been recognized to be a source of methane to the atmospheric buildup. However the magnitude of the landfill methane contribution, and the overall significance of landfill methane to the greenhouse phenomenon has been uncertain and the subject of some debate. (Author)

  7. The terrestrial biosphere as a net source of greenhouse gases to the atmosphere.

    Science.gov (United States)

    Tian, Hanqin; Lu, Chaoqun; Ciais, Philippe; Michalak, Anna M; Canadell, Josep G; Saikawa, Eri; Huntzinger, Deborah N; Gurney, Kevin R; Sitch, Stephen; Zhang, Bowen; Yang, Jia; Bousquet, Philippe; Bruhwiler, Lori; Chen, Guangsheng; Dlugokencky, Edward; Friedlingstein, Pierre; Melillo, Jerry; Pan, Shufen; Poulter, Benjamin; Prinn, Ronald; Saunois, Marielle; Schwalm, Christopher R; Wofsy, Steven C

    2016-03-10

    The terrestrial biosphere can release or absorb the greenhouse gases, carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O), and therefore has an important role in regulating atmospheric composition and climate. Anthropogenic activities such as land-use change, agriculture and waste management have altered terrestrial biogenic greenhouse gas fluxes, and the resulting increases in methane and nitrous oxide emissions in particular can contribute to climate change. The terrestrial biogenic fluxes of individual greenhouse gases have been studied extensively, but the net biogenic greenhouse gas balance resulting from anthropogenic activities and its effect on the climate system remains uncertain. Here we use bottom-up (inventory, statistical extrapolation of local flux measurements, and process-based modelling) and top-down (atmospheric inversions) approaches to quantify the global net biogenic greenhouse gas balance between 1981 and 2010 resulting from anthropogenic activities and its effect on the climate system. We find that the cumulative warming capacity of concurrent biogenic methane and nitrous oxide emissions is a factor of about two larger than the cooling effect resulting from the global land carbon dioxide uptake from 2001 to 2010. This results in a net positive cumulative impact of the three greenhouse gases on the planetary energy budget, with a best estimate (in petagrams of CO2 equivalent per year) of 3.9 ± 3.8 (top down) and 5.4 ± 4.8 (bottom up) based on the GWP100 metric (global warming potential on a 100-year time horizon). Our findings suggest that a reduction in agricultural methane and nitrous oxide emissions, particularly in Southern Asia, may help mitigate climate change.

  8. Emissions of greenhouse gases in the United States, 1985--1990

    International Nuclear Information System (INIS)

    1993-01-01

    The Earth's capacity to support life depends on the moderating influences of gases that envelop the planet and warm its surface and protect it from harmful radiation. These gases are referred to as ''greenhouse gases.'' Their warming capacity, called ''the greenhouse effect,'' is essential to maintaining a climate hospitable to all plant, animal, and human life. In recent years, however, there has been increasing concern that human activity may be affecting the intricate balance between the Earth's absorption of heat from the sun and its capacity to reradiate excess heat back into space. Emissions of greenhouse gases from human activities may be an important mechanism that affects global climate. Thus, research is intensifying to improve our understanding of the role human activities might play in influencing atmospheric concentrations of greenhouse gases. On the basis of scientific findings of the past few decades, the US Government and the international community at large are now taking steps toward stabilizing greenhouse gas emissions. This report contributes to that process. Mandated by Congress this report provides estimates of US emissions of the principal greenhouse gases--carbon dioxide, methane, nitrous oxide, chlorofluorcarbons, carbon monoxide, nitrogen oxides, and nonmethane volatile organic compounds. Estimates are for the period 1985 to 1990. Preliminary estimates for 1991 have also been included, whenever data were available

  9. Emissions of greenhouse gases in the United States, 1985--1990

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-10

    The Earth`s capacity to support life depends on the moderating influences of gases that envelop the planet and warm its surface and protect it from harmful radiation. These gases are referred to as ``greenhouse gases.`` Their warming capacity, called ``the greenhouse effect,`` is essential to maintaining a climate hospitable to all plant, animal, and human life. In recent years, however, there has been increasing concern that human activity may be affecting the intricate balance between the Earth`s absorption of heat from the sun and its capacity to reradiate excess heat back into space. Emissions of greenhouse gases from human activities may be an important mechanism that affects global climate. Thus, research is intensifying to improve our understanding of the role human activities might play in influencing atmospheric concentrations of greenhouse gases. On the basis of scientific findings of the past few decades, the US Government and the international community at large are now taking steps toward stabilizing greenhouse gas emissions. This report contributes to that process. Mandated by Congress this report provides estimates of US emissions of the principal greenhouse gases--carbon dioxide, methane, nitrous oxide, chlorofluorcarbons, carbon monoxide, nitrogen oxides, and nonmethane volatile organic compounds. Estimates are for the period 1985 to 1990. Preliminary estimates for 1991 have also been included, whenever data were available.

  10. Emissions of greenhouse gases in the United States, 1987--1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-25

    The Energy Information Administration (EIA) is required by the Energy Policy Act of 1992 to prepare a report on aggregate US national emissions of greenhouse gases for the period 1987--1992, with annual updates thereafter. This is the third annual update report,covering national emissions over the period 1987--1993, with preliminary estimates of US carbon dioxide and halocarbon emissions for 1994. Calculating national aggregate emissions(or ``national inventories``) of greenhouse gases is a recently developed form of intellectual endeavor. Greenhouse gas emissions are rarely measured directly or reported to statistical agencies. Thus, to prepare emissions inventories usually requires inferring emissions indirectly from information collected for other purposes. Both the available information and the inferences drawn may be of varying reliability. Chapter 1 of this report briefly recapitulates some background information about global climate change and the greenhouse effect and discusses important recent developments in global climate change activities. Chapters 2 through 6 cover emissions of carbon dioxide, methane, nitrous oxide, halocarbons, and criteria pollutants, respectively. Chapter 7 describes potential sequestration and emissions of greenhouse gases as a result of land use changes.

  11. Emissions of greenhouse gases in the United States 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    This is the fourth Energy Information Administration (EIA) annual report on US emissions of greenhouse gases. This report presents estimates of US anthropogenic (human-caused) emissions of carbon dioxide, methane, nitrous oxide, and several other greenhouse gases for 1988 through 1994. Estimates of 1995 carbon dioxide, nitrous oxide, and halocarbon emissions are also provided, although complete 1995 estimates for methane are not yet available. Emissions of carbon dioxide increased by 1.9% from 1993 to 1994 and by an additional 0.8% from 1994 to 1995. Most carbon dioxide emissions are caused by the burning of fossil fuels for energy consumption, which is strongly related to economic growth, energy prices, and weather. The US economy grew rapidly in 1994 and slowed in 1995. Estimated emissions of methane increased slightly in 1994, as a result of a rise in emissions from energy and agricultural sources. Estimated nitrous oxide emissions increased by 1.8% in 1995, primarily due to increased use of nitrogen fertilizers and higher output of chemicals linked to nitrous oxide emissions. Estimated emissions of hydrofluorocarbons (HFCs) and perfluorocarbons (PFCs), which are known to contribute to global warming, increased by nearly 11% in 1995, primarily as a result of increasing substitution for chlorofluorocarbons (CFCs). With the exception of methane, the historical emissions estimates presented in this report are only slightly revised from those in last year`s report.

  12. Greenhouse Gases

    Science.gov (United States)

    ... also produced by human activities. Some, such as industrial gases, are exclusively human made. What are the types ... Carbon dioxide (CO2) Methane (CH4) Nitrous oxide (N2O) Industrial gases: Hydrofluorocarbons (HFCs) Perfluorocarbons (PFCs) Sulfur hexafluoride (SF6 Nitrogen ...

  13. Emissions of greenhouse gases in the United States 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    The Energy Information Administration (EIA) is required by the Energy Policy Act of 1992 to prepare a report on aggregate US national emissions of greenhouse gases for the period 1987--1990, with annual updates thereafter. This report is the fifth annual update, covering national emissions over the period 1989--1995, with preliminary estimates of emissions for 1996. The estimates contained in this report have been revised from those in last year`s report. Emissions estimates for carbon dioxide are reported in metric tons of carbon; estimates for other gases are reported in metric tons of gas. Chapter 1 of this report briefly recapitulates some background information about global climate change and the greenhouse effect and discusses important recent developments in global climate change activities. Chapter 2 through 6 cover emissions of carbon dioxide, methane, nitrous oxide, halocarbons, and criteria pollutants, respectively. Chapter 7 describes potential sequestration and emissions of greenhouse gases as a result of land use changes. Five appendixes are included with this report. 216 refs., 11 figs., 38 tabs.

  14. Greenhouse Gases and Animal Agriculture

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, J. (ed.) [Department of Animal Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido (Japan); Young, B.A. (ed.) [The University of Queensland, Gatton, Queensland 4343 (Australia)

    2002-07-01

    Reports from interdisciplinary areas including microbiology, biochemistry, animal nutrition, agricultural engineering and economics are integrated in this proceedings. The major theme of this book is environmental preservation by controlling release of undesirable greenhouse gases to realize the sustainable development of animal agriculture. Technology exists for the effective collection of methane generated from anaerobic fermentation of animal effluent and its use as a biomass energy source. Fossil fuel consumption can be reduced and there can be increased use of locally available energy sources. In addition, promoting environmentally-conscious agriculture which does not rely on the chemical fertilizer can be realized by effective use of animal manure and compost products.

  15. Effect of Greenhouse Gases Dissolved in Seawater.

    Science.gov (United States)

    Matsunaga, Shigeki

    2015-12-30

    A molecular dynamics simulation has been performed on the greenhouse gases carbon dioxide and methane dissolved in a sodium chloride aqueous solution, as a simple model of seawater. A carbon dioxide molecule is also treated as a hydrogen carbonate ion. The structure, coordination number, diffusion coefficient, shear viscosity, specific heat, and thermal conductivity of the solutions have been discussed. The anomalous behaviors of these properties, especially the negative pressure dependence of thermal conductivity, have been observed in the higher-pressure region.

  16. Emission of greenhouse gases from Danish agriculture

    International Nuclear Information System (INIS)

    Olesen, J.E.; Petersen, S.O.; Fenhann, J.V.; Andersen, J.M.; Jacobsen, B.H.

    2001-01-01

    emission factors for nitrous oxide does not imply a correspondingly large uncertainty in the relative contribution of individual sources to the total emission. The different sources of nitrous oxide in the field are affected by the same mechanisms independent of location, and thus the uncertainty is mainly associated with the level of this emission in Denmark compared with other regions. In Denmark there has not previously been any concerted research effort to quantify emissions of greenhouse gases from agriculture. The existing, somewhat scattered research has mainly been a spin-off from research programmes with other main objectives. Accordingly there is no solid foundation for evaluation of neither emission levels nor mitigation options. A proposal for a research programme on emission of greenhouse gases from agriculture is therefore presented, which should provide a better basis for quantifying individual emission sources, their development over time, and the effect of reduction measures. Emphasis is given to improve our knowledge on emissions of methane and nitrous oxide, and to the possibilities of agriculture in storing carbon and in the reduction and substitution of fossil fuel use. (au)

  17. Methane, a greenhouse gas: measures to reduce and valorize anthropogenic emissions

    International Nuclear Information System (INIS)

    2010-03-01

    This report first presents the greenhouse effect properties of methane (one of the six gases the emissions of which must be reduced according to the Kyoto protocol), comments the available data on methane emission assessment in the World, in Europe and in France, and outlines the possibilities of improvement of data and indicators on a short and middle term. It describes how methane can be captured and valorized, indicates the concerned quantities. Notably, it discussed the management of methane generating and spreading practices (from waste water treatment, from domestic wastes), how to reduce methane emissions in agriculture. It finally proposes elements aimed at elaborating a national and international policy regarding methane emission reductions

  18. Effect of Greenhouse Gases Dissolved in Seawater

    Directory of Open Access Journals (Sweden)

    Shigeki Matsunaga

    2015-12-01

    Full Text Available A molecular dynamics simulation has been performed on the greenhouse gases carbon dioxide and methane dissolved in a sodium chloride aqueous solution, as a simple model of seawater. A carbon dioxide molecule is also treated as a hydrogen carbonate ion. The structure, coordination number, diffusion coefficient, shear viscosity, specific heat, and thermal conductivity of the solutions have been discussed. The anomalous behaviors of these properties, especially the negative pressure dependence of thermal conductivity, have been observed in the higher-pressure region.

  19. Greenhouse gases and global warming

    International Nuclear Information System (INIS)

    1995-01-01

    From previous articles we have learned about the complexities of our environment, its atmosphere and its climate system. we have also learned that climate change and, therefore global warm and cool periods are naturally occurring phenomena. Moreover, all scientific evidence suggests that global warming, are likely to occur again naturally in the future. However, we have not yet considered the role of the rates of climate change in affecting the biosphere. It appears that how quickly the climate changes may be more important than the change itself. In light of this concern, let us now consider the possibility that, is due to human activity. We may over the next century experience global warming at rates and magnitudes unparalleled in recent geologic history. The following questions are answered; What can we learn from past climates? What do we know about global climates over the past 100 years? What causes temperature change? What are the greenhouse gases? How much have concentration of greenhouse gases increased in recent years? Why are increases in concentrations of greenhouse of concern? What is the e nhanced greenhouse effect ? How can human activity impact the global climate? What are some reasons for increased concentrations of greenhouse gases? What are fossil fuel and how do they transform into greenhouse gases? Who are the biggest emitters of greenhouse gases? Why are canada per capita emissions of greenhouse gases relatively high? (Author)

  20. Our changing atmosphere: Trace gases and the greenhouse effect

    International Nuclear Information System (INIS)

    Rowland, F.S.

    1991-01-01

    A very important factor in the scientific evaluation of greenhouse warming during the last decade has been the realization that this is not just a problem of increasing CO 2 but is rather a more general problem of increasing concentrations of many trace gases. CFCs are increasing at 5% per year with CFC-113 going up at a more rapid rate; methane approximately 1% per year; CO 2 by 0.5% per year; N 2 O about 0.2% per year. These rates of increase have been fed into detailed models of the infrared absorbing characteristics of the atmosphere, and have provided the estimated relative contributions from the various trace gases. Carbon dioxide is still the major contributor to the greenhouse effect, and its yearly contribution appears to be increasing. An important question for dealing with the greenhouse effect will be the full understanding of these CO 2 concentration changes. The total amount of carbon from the burning of fossil fuel that is going into the atmosphere is considerably larger than the carbon dioxide increase registered in the atmosphere. Appreciable CO 2 contributions are also being received from the burning of the tropical forests. The procedures necessary to solve the chlorofluorocarbon problem have been put into place on an international scale and have begun to be implemented. We still have left for the future, however, efforts to reduce emissions of carbon dioxide, methane, and nitrous oxide

  1. Interaction and coupling in the emission of greenhouse gases from animal husbandry

    NARCIS (Netherlands)

    Monteny, G.J.; Groenestein, C.M.; Hilhorst, M.A.

    2001-01-01

    The gases methane (CH4) and nitrous oxide (N2O) contribute to global warming, while N2O also affects the ozone layer. Sources of greenhouse gas emissions in animal husbandry include animals, animal houses (indoor storage of animal excreta), outdoor storage, manure and slurry treatment (e.g.,

  2. Emissions of greenhouse gases from the use of transportation fuels and electricity. Volume 2: Appendixes A--S

    Energy Technology Data Exchange (ETDEWEB)

    DeLuchi, M.A. [Argonne National Lab., IL (United States)]|[Univ. of California, Davis, CA (United States). Inst. of Transportation Studies

    1993-11-01

    This volume contains the appendices to the report on Emission of Greenhouse Gases from the Use of Transportation Fuels and Electricity. Emissions of methane, nitrous oxide, carbon monoxide, and other greenhouse gases are discussed. Sources of emission including vehicles, natural gas operations, oil production, coal mines, and power plants are covered. The various energy industries are examined in terms of greenhouse gas production and emissions. Those industries include electricity generation, transport of goods via trains, trucks, ships and pipelines, coal, natural gas and natural gas liquids, petroleum, nuclear energy, and biofuels.

  3. Greenhouse effects due to man-made perturbations of trace gases

    Science.gov (United States)

    Wang, W. C.; Yung, Y. L.; Lacis, A. A.; Mo, T.; Hansen, J. E.

    1976-01-01

    Nitrous oxide, methane, ammonia, and a number of other trace constituents of the earth's atmosphere have infrared absorption bands in the spectral range from 7 to 14 microns. Despite their small amounts, these gases can have a significant effect on the thermal structure of the atmosphere by transmitting most of the thermal radiation from the earth's surface to the lower atmosphere. In the present paper, this greenhouse effect is computed for a number of trace gases. The nature and climatic implications of possible changes in the concentrations of N2O, CH4, NH3, and HNO3 are discussed.

  4. Greatly reduced emission of greenhouse gases from the wood-processing industry

    International Nuclear Information System (INIS)

    2004-01-01

    The strong support for biomass energy in the Norwegian wood-processing industry during the last 10-15 years has contributed greatly to a considerable reduction of the emission of greenhouse gases. The potential for further reductions is primarily linked with the use of oil and involves only a few works. Oil can be replaced by other fuels, and process-technical improvements can reduce the emissions. According to prognoses, emissions will go on decreasing until 2007, when the total emission of greenhouse gases from the wood-processing industry will be about 13 per cent less than in 1998. Carbon dioxide (CO 2 ) amounts to 90 per cent of the total emission, the remaining parts being methane (CH 4 ) from landfills and dumps, and small amounts of N 2 O

  5. Voluntary reporting of greenhouse gases, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    The Voluntary Reporting Program for greenhouse gases is part of an attempt by the U.S. Government to develop innovative, low-cost, and nonregulatory approaches to limit emissions of greenhouse gases. It is one element in an array of such programs introduced in recent years as part of the effort being made by the United States to comply with its national commitment to stabilize emissions of greenhouse gases under the Framework Convention on Climate Change. The Voluntary Reporting Program, developed pursuant to Section 1605(b) of the Energy Policy Act of 1992, permits corporations, government agencies, households, and voluntary organizations to report to the Energy Information Administration (EIA) on actions taken that have reduced or avoided emissions of greenhouse gases.

  6. Persistence of climate changes due to a range of greenhouse gases.

    Science.gov (United States)

    Solomon, Susan; Daniel, John S; Sanford, Todd J; Murphy, Daniel M; Plattner, Gian-Kasper; Knutti, Reto; Friedlingstein, Pierre

    2010-10-26

    Emissions of a broad range of greenhouse gases of varying lifetimes contribute to global climate change. Carbon dioxide displays exceptional persistence that renders its warming nearly irreversible for more than 1,000 y. Here we show that the warming due to non-CO(2) greenhouse gases, although not irreversible, persists notably longer than the anthropogenic changes in the greenhouse gas concentrations themselves. We explore why the persistence of warming depends not just on the decay of a given greenhouse gas concentration but also on climate system behavior, particularly the timescales of heat transfer linked to the ocean. For carbon dioxide and methane, nonlinear optical absorption effects also play a smaller but significant role in prolonging the warming. In effect, dampening factors that slow temperature increase during periods of increasing concentration also slow the loss of energy from the Earth's climate system if radiative forcing is reduced. Approaches to climate change mitigation options through reduction of greenhouse gas or aerosol emissions therefore should not be expected to decrease climate change impacts as rapidly as the gas or aerosol lifetime, even for short-lived species; such actions can have their greatest effect if undertaken soon enough to avoid transfer of heat to the deep ocean.

  7. In-Situ Microbial Conversion of Sequestered Greenhouse Gases

    Energy Technology Data Exchange (ETDEWEB)

    Scott, A R; Mukhopadhyay, M; Balin, D F

    2012-09-06

    The objectives of the project are to use microbiological in situ bioconversion technology to convert sequestered or naturally-occurring greenhouse gases, including carbon dioxide and carbon monoxide, into methane and other useful organic compounds. The key factors affecting coal bioconversion identified in this research include (1) coal properties, (2) thermal maturation and coalification process, (3) microbial population dynamics, (4) hydrodynamics (5) reservoir conditions, and (6) the methodology of getting the nutrients into the coal seams. While nearly all cultures produced methane, we were unable to confirm sustained methane production from the enrichments. We believe that the methane generation may have been derived from readily metabolized organic matter in the coal samples and/or biosoluble organic material in the coal formation water. This raises the intriguing possibility that pretreatment of the coal in the subsurface to bioactivate the coal prior to the injection of microbes and nutrients might be possible. We determined that it would be more cost effective to inject nutrients into coal seams to stimulate indigenous microbes in the coal seams, than to grow microbes in fermentation vats and transport them to the well site. If the coal bioconversion process can be developed on a larger scale, then the cost to generate methane could be less than $1 per Mcf

  8. Non-CO2 greenhouse gas emissions associated with food production: methane (CH4) and nitrous oxide (N2O)

    International Nuclear Information System (INIS)

    Carlsson-Kanyama, Annika

    2007-01-01

    It is well known that the agriculture and livestock sectors are large contributors of N 2 O and CH 4 emissions in countries with agricultural activities and that remedial measures are needed in these sectors in order to curb contributions to global warming. This study examines non- CO 2 greenhouse gas emissions associated with the production of food. Methane (CH 4 ) and nitrous oxide (N 2 O) are the most relevant greenhouse gases in this category, and they are emitted mainly in the agricultural sector. These greenhouse gases have a Global Warming Potential much higher than CO 2 itself (25- and 298-fold higher, respectively, in a 100-year perspective). Emission intensities and the corresponding uncertainties were calculated based on the latest procedures and data published by the Intergovernmental Panel on Climate Change and used to facilitate calculations comparing greenhouse gas emissions for food products and diets. When the proposed emission intensities were applied to agricultural production, the results showed products of animal origin and the cultivation of rice under water to have high emissions compared with products of vegetable origin cultivated on upland soils, such as wheat and beans. In animal production the main source of greenhouse gas emissions was methane from enteric fermentation, while emissions of nitrous oxides from fertilisers were the main sources of greenhouse gas emissions for cereal and legume cultivation. For rice cultivation, methane emissions from flooded rice fields contributed most. Other significant sources of greenhouse gas emissions during animal production were manure storage and management. We suggest that the proposed emission factors, together with the associated uncertainties, can be a tool for better understanding the potential to mitigate emissions of greenhouse gases through changes in the diet

  9. 76 FR 73885 - Mandatory Reporting of Greenhouse Gases

    Science.gov (United States)

    2011-11-29

    ... Mandatory Reporting of Greenhouse Gases; Final Rule #0;#0;Federal Register / Vol. 76, No. 229 / Tuesday... 98 [EPA-HQ-OAR-2011-0147; FRL-9493-9] RIN 2060-AQ85 Mandatory Reporting of Greenhouse Gases AGENCY... the Mandatory Reporting of Greenhouse Gases Rule to correct certain technical and editorial errors...

  10. 76 FR 47391 - Mandatory Reporting of Greenhouse Gases

    Science.gov (United States)

    2011-08-04

    ... Mandatory Reporting of Greenhouse Gases; Proposed Rule #0;#0;Federal Register / Vol. 76, No. 150 / Thursday...-HQ-OAR-2011-0147; FRL-9443-1] RIN 2060-AQ85 Mandatory Reporting of Greenhouse Gases AGENCY... provisions in the Mandatory Reporting of Greenhouse Gases Rule to correct certain technical and editorial...

  11. 75 FR 57669 - Mandatory Reporting of Greenhouse Gases

    Science.gov (United States)

    2010-09-22

    ... Mandatory Reporting of Greenhouse Gases AGENCY: Environmental Protection Agency (EPA). ACTION: Final rule. SUMMARY: This action amends the Final Mandatory Reporting of Greenhouse Gases Rule to require reporters... Numbers GHG greenhouse gas GHGRP Greenhouse Gas Reporting Program HCFC hydrochlorofluorocarbon HFC...

  12. EMISSION MEASUREMENTS OF GEOGENIC GREENHOUSE GASES IN THE AREA OF "PUSTY LAS" ABANDONED OILFIELD (POLISH OUTER CARPATHIANS

    Directory of Open Access Journals (Sweden)

    Piotr Guzy

    2017-07-01

    Full Text Available The emission of geogenic methane and carbon dioxide contributes to the world climate changes. The results of studies run worldwide demonstrate that the emission of geogenic gases strongly influences the increasing concentrations of greenhouse gases in the atmosphere, including methane and carbon dioxide. The Outer Carpathians reveal significant hydrocarbon potential and host numerous macro- and microseepages of hydrocarbons including the natural gas. Migration of hydrocarbons from deep accumulations towards the surface is controlled by diffusion and effusion. It appears that the Carpathians may play significant role as a supplier of greenhouse gases to the atmosphere.Before the World War II, oil macroseepages were the principal premises in petroleum exploration. In the Carpathians, hydrocarbons have been exploited since the XIX century. Unfortunately, most of discovered oil and gas deposits are recently only the historical objects. An example is the Sękowa-Ropica Górna-Siary oil deposit located in the marginal part of the Magura Nappe where oil has been extracted with dug wells until the mid XX century. One of such extraction sites is the "Pusty Las" oilfield. In that area, 10 methane and carbon dioxide emission measurement sites were located, among which 4 in dried dug wells and 6 in dig wells still filled with oil and/or water. Dynamics of methane and carbon dioxide concentration changes were measured with the modified static chambers method. Gas samples were collected immediately after the installation of the chamber and again, after 5 and 10 minutes. In the case of reclaimed or dry dug wells, static chamber was installed directly at the ground surface. In wells still filled with oil and/or water the chamber was equipped with an "apron" mounted on special sticks.The dynamics of concentrations changes varied from -0.871 to 119.924 ppm∙min-1 for methane and from -0.005 to 0.053 %obj∙min-1 for carbon dioxide. Average methane emission was 1

  13. Near and long term prospects for the reduction in the road transport contribution to greenhouse gases

    International Nuclear Information System (INIS)

    Watson, H.C.; Watson, C.R.

    1990-01-01

    Preliminary estimates are made of the likely contributions from various sectors of land transport activity to the greenhouse gases using assumptions about the aggregate performance of the vehicle population and its dynamics. Whilst the estimates of the CO 2 contribution from motor vehicles are likely to be moderately reliable there are much greater uncertainties in the contribution of nitrous oxide because of the lack of recent measurements and of methane, for which there are no measurements. In the analysis, the growth in the demand for passenger and goods transport, which would naturally lead to an increase in fuel consumption and hence the emission of greenhouse gases is counteracted by more energy efficient vehicle designs and the implementation of management and planning strategies. The results are regarded as setting a background for more detailed studies related to costs and better estimates, and particularly of the methane and nitrous oxide contributions. 9 refs., 2 tabs., 6 figs

  14. GREENHOUSE GASES AND MEANS OF PREVENTION

    Directory of Open Access Journals (Sweden)

    Dušica Stojanović

    2013-09-01

    Full Text Available The greenhouse effect can be defined as the consequence of increased heating of the Earth's surface, as well as the lower atmosphere by carbon dioxide, water vapor, and other trace amounts gases. It is well-known that human industrial activities have released large amounts of greenhouse gases in the atmosphere, about 900 billion tons of carbon dioxide, and it is estimated that up to 450 billion are still in the atmosphere. In comparison to greenhouse gases water vapor is one of the greatest contributors to the greenhouse effect on Earth. Many projects, as does the PURGE project, have tendences to build on the already conducted research and to quantify the positive and negative impacts on health and wellbeing of the population with greenhouse gas reduction strategies that are curently being implemented and should be increasingly applied in various sectors and urban areas, having offices in Europe, China and India.

  15. The greenhouse effect gases

    International Nuclear Information System (INIS)

    2006-06-01

    This road-map proposes by the Group Total aims to inform the public on the greenhouse effect gases. It presents the greenhouses effect as a key component of the climate system, the impacts of the human activity, the foreseeable consequences of global warming, the Kyoto protocol and Total commitment in the domain. (A.L.B.)

  16. International collaboration on capture, storage and utilization of greenhouse gases

    International Nuclear Information System (INIS)

    Freund, P.

    1998-01-01

    Climate change will have world-wide implications. So it is highly appropriate that there should be international collaboration to investigate technologies for reducing emissions of greenhouse gases, the root cause of the problem. Sixteen countries, as well as three industrial sponsors, support the IEA Greenhouse Gas R and D Program and, in many cases, industry is also involved indirectly, through the national memberships. This provides a broad range of interest and expertise to guide the management of the Program, as well as ensuring that the results reach a wide audience. The IEA Greenhouse Gas R and D Program has three main activities: (1) evaluation of technologies for mitigation of greenhouse gas emissions from use of fossil fuels; (2) dissemination of the results of these studies; (3) identification of targets for research, development and demonstration and promotion of these findings. In its first five years of operation, the Program has studied the major greenhouse gases, carbon dioxide and methane, and various means of reducing their emissions. The main emphasis has been placed on capture, storage and utilization of CO 2 from power generation. This option is now much better understood and can be compared with more established measures, such as fuel switching, energy efficiency improvements and use of renewable energy. As well as studying abatement of CO 2 emissions, the Program has conducted a series of studies of technologies for reducing CH 4 emissions from man-made sources. The Program's activities are carried out by the Operating Agent, who develops and manages a series of technical studies to meet members' requirements

  17. 75 FR 48743 - Mandatory Reporting of Greenhouse Gases

    Science.gov (United States)

    2010-08-11

    ... Part II Environmental Protection Agency 40 CFR Part 98 Mandatory Reporting of Greenhouse Gases...-AQ33 Mandatory Reporting of Greenhouse Gases AGENCY: Environmental Protection Agency (EPA). ACTION... Greenhouse Gas Reporting Rule Hotline at telephone number: (877) 444-1188; or e-mail: [email protected] . To...

  18. Greenhouse Gases Concentrations in the Atmosphere Along ...

    African Journals Online (AJOL)

    This study investigated effect of vehicular emission on greenhouse gases concentrations along selected roads of different traffic densities in Abeokuta, Ogun State, Nigeria. Nine roads comprised highway, commercial and residential were selected. Greenhouse Gases (GHGs) were determined from both sides of the roads by ...

  19. Methanation of Carbon Dioxide

    OpenAIRE

    Goodman, Daniel Jacob

    2013-01-01

    The emission of greenhouse gases into the atmosphere has been linked to global warming. Carbon dioxide's (CO2) one of the most abundant greenhouse gases. Natural gas, mainly methane, is the cleanest fossil fuel for electricity production helping meet the United States ever growing energy needs. The methanation of CO2 has the potential to address both of these problems if a catalyst can be developed that meets the activity, economic and environmental requirements to industrialize the process. ...

  20. Greenhouse Gas Emissions From Cattle

    Directory of Open Access Journals (Sweden)

    Podkówka Zbigniew

    2015-03-01

    Full Text Available Cattle produce greenhouse gases (GHG which lead to changes in the chemical composition of the atmosphere. These gases which cause greenhouse effect include: methane (CH4, nitrous oxide (N2O, nitrogen oxides (NOx, sulphur dioxide (SO2, ammonia (NH3, dust particles and non-methane volatile organic compounds, commonly described as other than methane hydrocarbons. Fermentation processes taking place in the digestive tract produce ‘digestive gases’, distinguished from gases which are emitted during the decomposition of manure. Among these digestive gases methane and non-methane volatile organic compounds are of particular relevance importance. The amount of gases produced by cows can be reduced by choosing to rear animals with an improved genetically based performance. A dairy cow with higher production efficiency, producing milk with higher protein content and at the same time reduced fat content emits less GHG into the environment. Increasing the ratio of feed mixtures in a feed ration also reduces GHG emissions, especially of methane. By selection of dairy cows with higher production efficiency and appropriate nutrition, the farm's expected milk production target can be achieved while at the same time, the size of the herd is reduced, leading to a reduction of GHG emissions.

  1. Evaluation of emission of greenhouse gases from soils amended with sewage sludge.

    Science.gov (United States)

    Paramasivam, S; Fortenberry, Gamola Z; Julius, Afolabi; Sajwan, Kenneth S; Alva, A K

    2008-02-01

    Increase in concentrations of various greenhouse gases and their possible contributions to the global warming are becoming a serious concern. Anthropogenic activities such as cultivation of flooded rice and application of waste materials, such as sewage sludge which are rich in C and N, as soil amendments could contribute to the increase in emission of greenhouse gases such as methane (CH(4)) and nitrous oxide (N(2)O) into the atmosphere. Therefore, evaluation of flux of various greenhouse gases from soils amended with sewage sludge is essential to quantify their release into the atmosphere. Two soils with contrasting properties (Candler fine sand [CFS] from Florida, and Ogeechee loamy sand [OLS] from Savannah, GA) were amended with varying rates (0, 24.7, 49.4, 98.8, and 148.3 Mg ha(-1)) of 2 types of sewage sludge (industrial [ISS] and domestic [DSS] origin. The amended soil samples were incubated in anaerobic condition at field capacity soil water content in static chamber (Qopak bottles). Gas samples were extracted immediately after amending soils and subsequently on a daily basis to evaluate the emission of CH(4), CO(2) and N(2)O. The results showed that emission rates and cumulative emission of all three gases increased with increasing rates of amendments. Cumulative emission of gases during 25-d incubation of soils amended with different types of sewage sludge decreased in the order: CO(2) > N(2)O > CH(4). The emission of gases was greater from the soils amended with DSS as compared to that with ISS. This may indicate the presence of either low C and N content or possible harmful chemicals in the ISS. The emission of gases was greater from the CFS as compared to that from the OLS. Furthermore, the results clearly depicted the inhibitory effect of acetylene in both soils by producing more N(2)O and CH(4) emission compared to the soils that did not receive acetylene at the rate of 1 mL g(-1) soil. Enumeration of microbial population by fluorescein diacetate

  2. Global climate: Methane contribution to greenhouse effect

    International Nuclear Information System (INIS)

    Metalli, P.

    1992-01-01

    The global atmospheric concentration of methane greatly contributes to the severity of the greenhouse effect. It has been estimated that this concentration, due mainly to human activities, is growing at the rate of roughly 1.1% per year. Environmental scientists suggest that a reduction, even as small as 10%, in global methane emissions would be enough to curtail the hypothetical global warning scenarios forecasted for the up-coming century. Through the recovery of methane from municipal and farm wastes, as well as, through the control of methane leaks and dispersions in coal mining and petrochemical processes, substantial progress towards the abatement of greenhouse gas effects could be achieved without having to resort to economically detrimental limitations on the use of fossil fuels

  3. Greenhouse effect gases inventory in France during the years 1990-1999; Inventaire des emissions de gaz a effet de serre en France au cours de la periode 1990-1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-12-01

    The present report supplies emission data, for France and for the period 1990-1999, concerning all the substances involved in the increase in the greenhouse effect and covered under the United Nations' Framework Convention on Climate Change (UNFCCC). The substances are the six direct greenhouse gases covered by the Kyoto protocol: carbon dioxide (CO{sub 2}), methane (CH{sub 4}), nitrous oxide (N{sub 2}O), the two species of halogenous substances - hydro-fluorocarbons (HFCs) and per-fluorocarbons (PFCs), and sulphur hexafluoride (SF{sub 6}). Emissions of sulphur dioxide (SO{sub 2}), nitrogen oxides (NO{sub x}), non methane volatile organic compounds (NMVOCs), and carbon monoxide (CO), gases which indirectly make a significant contribution to the greenhouse effect, are reported under the Convention. The emissions of the six gases that directly contribute to the greenhouse effect are expressed in terms of Global Warming Potential (GWP) which decreased by 2.1 % in 1999 compared to 1990. The emissions of the four gases that indirectly contribute to the greenhouse effect are moving towards decrease: this is by 17% for NO{sub x}, 23% as regards NMVOCs, 33% for CO and by 44% regarding SO{sub 2}. Out of the six greenhouse gases covered by the Kyoto Protocol, CO{sub 2} accounts for the largest share in total GWP emissions (70 %), followed by N{sub 2}O (16 %), CH{sub 4} (12 %), HFCs (0.99 %), SF{sub 6} (0.5 %), and PFCs (0.39 %). (author)

  4. Veracruz State Preliminary Greenhouse Gases Emissions Inventory

    Science.gov (United States)

    Welsh Rodriguez, C.; Rodriquez Viqueira, L.; Guzman Rojas, S.

    2007-05-01

    At recent years, the international organisms such as United Nations, has discussed that the temperature has increased slightly and the pattern of precipitations has changed in different parts of the world, which cause either extreme droughts or floods and that the extreme events have increased. These are some of the risks of global climate change because of the increase of gas concentration in the atmosphere such as carbon dioxides, nitrogen oxides and methane - which increase the greenhouse effect. Facing the consequences that could emerge because of the global temperature grown, there is a genuine necessity in different sectors of reduction the greenhouse gases and reduced the adverse impacts of climate change. To solve that, many worldwide conventions have been realized (Rio de Janeiro, Kyoto, Montreal) where different countries have established political compromises to stabilize their emissions of greenhouse gases. The mitigation and adaptation policies merge as a response to the effects that the global climate change could have, on the humans as well as the environment. That is the reason to provide the analysis of the areas and geographic zones of the country that present major vulnerability to the climate change. The development of an inventory of emissions that identifies and quantifies the principal sources of greenhouse gases of a country, and also of a region is basic to any study about climate change, also to develop specific political programs that allow to preserve and even improve a quality of the atmospheric environment, and maybe to incorporate to international mechanisms such as the emissions market. To estimate emissions in a systematic and consistent way on a regional, national and international level is a requirement to evaluate the feasibility and the cost-benefit of instrumented possible mitigation strategies and to adopt politics and technologies to reduce emissions. Mexico has two national inventories of emissions, 1990 and 1995, now it is

  5. Methane in German hard coal mining

    International Nuclear Information System (INIS)

    Martens, P.N.; Den Drijver, J.

    1995-01-01

    Worldwide, hard coal mining is being carried out at ever increasing depth, and has, therefore, to cope with correspondingly increasing methane emissions are caused by coal mining. Beside carbon dioxide, chloro-fluoro-carbons (CFCs) and nitrogen oxides, methane is one of the most significant 'greenhouse' gases. It is mainly through the release of such trace gases that the greenhouse effect is brought about. Reducing methane emissions is therefore an important problem to be solved by the coal mining industry. This paper begins by highlighting some of the fundamental principles of methane in hard coal mining. The methane problem in German hard coal mining and the industry's efforts to reduce methane emissions are presented. The future development in German hard coal mining is illustrated by an example which shows how large methane volumes can be managed, while still maintaining high outputs at increasing depth. (author). 7 tabs., 10 figs., 20 refs

  6. Quotation systems for greenhouse gases

    International Nuclear Information System (INIS)

    Trong, Maj Dang

    2000-01-01

    The article surveys recommendations from a Norwegian committee for implementing at a national level, the Kyoto protocol aims for reducing the total emissions of greenhouse gases from the industrial countries through quotation systems

  7. The importance of addressing methane emissions as part of a comprehensive greenhouse gas management strategy

    Energy Technology Data Exchange (ETDEWEB)

    Bylin, Carey [U.S. Environmental Protection Agency (EPA), Washington, DC (United States); Robinson, Donald; Cacho, Mariella; Russo, Ignacio; Stricklin, Eric [ICF International, Fairfax, VA (United States); Rortveit, Geir Johan [Statoil, Stavanger (Norway); Chakraborty, A.B. [Oil and Natural Gas Corporation Ltda. (ONGC), Dehradun (India); Pontiff, Mike [Newfield, The Woodlands, TX, (United States); Smith, Reid [British Petroleum (BP), London (United Kingdom)

    2012-07-01

    Given the climate forcing properties of greenhouse gases (GHGs) and the current state of the global economy, it is imperative to mitigate emissions of GHGs cost-effectively. Typically, CO{sub 2} is the main focus of most companies' and governments' GHG emissions reductions strategies. However, when considering near-term goals, it becomes clear that emissions reductions of other GHGs must be pursued. One such GHG is methane, the primary component of natural gas. Reducing GHG emissions and generating profits are not necessarily a mutually exclusive endeavor as illustrated by the United States Environmental Protection Agency's (EPA) Natural Gas STAR Program. The Program is a worldwide voluntary, flexible partnership of oil and gas companies which promotes cost-effective technologies and practices to reduce methane emissions from oil and natural gas operations. In an effort to meet environmental goals without sacrificing profitability, Natural Gas STAR partner companies have identified over 60 cost-effective best practices to reduce their methane emissions, which they report to the EPA. This paper discusses: 1) the importance of reducing methane emissions and its economic impact, 2) a comparison of methane emission reduction projects relative to other greenhouse gas reduction projects in the oil and gas industry, 3) the value of source-specific methane emissions inventories, and 4) methane emission reduction opportunities from hydraulically fractured gas well completions and centrifugal compressor wet seals. From the analyses and examples in this paper, it can be concluded that methane emission reduction projects can be readily identified, profitable, and effective in mitigating global climate change. (author)

  8. Comparing greenhouse gases for policy purposes

    International Nuclear Information System (INIS)

    Schmalensee, R.

    1993-01-01

    In order to derive optimal policies for greenhouse gas emissions control, the discounted marginal damages of emissions from different gases must be compared. The greenhouse warming potential (GWP) index, which is most often used to compare greenhouse gases, is not based on such a damage comparison. This essay presents assumptions under which ratios of gas-specific discounted marginal damages reduce to ratios of discounted marginal contributions to radiative forcing, where the discount rate is the difference between the discount rate relevant to climate-related damages and the rate of growth of marginal climate-related damages over time. If there are important gas-specific costs or benefits not tied to radiative forcing, however, such as direct effects of carbon dioxide on plant growth, there is in general no shortcut around explicit comparison of discounted net marginal damages. 16 refs

  9. Estimating the benefits of greenhouse gas emission reduction from agricultural policy reform

    International Nuclear Information System (INIS)

    Adger, W.N.; Moran, D.C.

    1993-01-01

    Land use and agricultural activities contribute directly to the increased concentrations of atmospheric greenhouse gases. Economic support in industrialized countries generally increases agriculture's contribution to global greenhouse gas concentrations through fluxes associated with land use change and other sources. Changes in economic support offers opportunities to reduce net emissions, through this so far has gone unaccounted. Estimates are presented here of emissions of methane from livestock in the UK and show that, in monetary terms, when compared to the costs of reducing support, greenhouse gases are a significant factor. As signatory parties to the Climate Change Convection are required to stabilize emissions of all greenhouse gases, options for reduction of emissions of methane and other trace gases from the agricultural sector should form part of these strategies

  10. Methane emissions from grasslands

    NARCIS (Netherlands)

    Pol - van Dasselaar, van den A.

    1998-01-01

    Introduction

    Methane (CH 4 ) is an important greenhouse gas. The concentration of greenhouse gases in the atmosphere has been increasing since pre-industrial times, mainly due to human activities. This increase gives concern,

  11. 75 FR 70254 - PSD and Title V Permitting Guidance for Greenhouse Gases

    Science.gov (United States)

    2010-11-17

    ... Guidance for Greenhouse Gases AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of availability..., ``PSD and Title V Permitting Guidance for Greenhouse Gases'' on its significant guidance Internet Web... guidance titled, ``PSD and Title V Permitting Guidance for Greenhouse Gases.'' This document has been...

  12. FETC Programs for Reducing Greenhouse Gas Emissions

    International Nuclear Information System (INIS)

    Ruether, J.A.

    1998-02-01

    Mark Twain once quipped that everyone talks about the weather but no one does anything about it. With interest in global climate change on the rise, researchers in the fossil-energy sector are feeling the heat to provide new technology to permit continued use of fossil fuels but with reduced emissions of so-called 'greenhouse gases.' Three important greenhouse gases, carbon dioxide, methane, and nitrous oxide, are released to the atmosphere in the course of recovering and combusting fossil fuels. Their importance for trapping radiation, called forcing, is in the order given. In this report, we briefly review how greenhouse gases cause forcing and why this has a warming effect on the Earth's atmosphere. Then we discuss programs underway at FETC that are aimed at reducing emissions of methane and carbon dioxide

  13. Absorption of Greenhouse Gases in Liquids : A Molecular Approach

    NARCIS (Netherlands)

    Balaji, S.P.

    2015-01-01

    The increase in concentrations of greenhouse gases is responsible for global warming over the past few years. A major portion of the emitted greenhouse gases contains carbon dioxide (CO2). The capture of carbon dioxide from the effluent sources, its transport, and storage has been identified as the

  14. Greenhouse effect gases (GEI) by energy consumption; Gases efecto invernadero (GEI) por consumo de energia

    Energy Technology Data Exchange (ETDEWEB)

    Munoz Ledo C, Ramon; Bazan N, Gerardo [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2003-07-01

    The purpose of this article is to present the calculation methodology of greenhouse effect gases (GEI) emissions that are produced by the power sector in Mexico, as well as to discuss its possible impact in the subject of climatic change and the possible mitigating actions to lower the amount of emissions that can be taken and, therefore, the possible climate changes. In Mexico GEI inventories have been made since 1991, year in which the National Inventory of Gases with Greenhouse Effect was obtained for year 1988. The GEI include carbon dioxide (CO2), carbon monoxide (CO), nitrogen oxides (NOx), methane (CH4), nitrous oxide (NO) and volatile organic carbides that are not methane (NMVOC) and are secondary products and harmful that are obtained from the processes that turn fuels into energy (combustion). The main sources of GEI are: fixed sources (industries, residences, commerce, public services and energy transformation, such as power generation); movable sources (that include all type of transport that uses fuel). The fuels that, by their volume and efficiency, generate more emissions of GEI are crude oil, natural gas and solid biomass (firewood-cane bagasse). Any effort to reduce these emissions is very important and remarkable if it affects the consumption of these fuels. [Spanish] El proposito de este articulo es presentar la metodologia de calculo de las emisiones de los gases con efecto invernadero (GEI) que son producidos por el sector energetico en Mexico, asi como discutir su posible impacto en las cuestiones de cambio climatico y las posibles acciones de mitigacion que se pueden realizar para abatir la cantidad de emisiones y, por ende, los posibles cambios de clima. En Mexico se han realizado inventarios de GEI desde 1991, ano en que se obtuvo el Inventario Nacional de Gases con Efecto Invernadero para el ano de 1988. Los GEI comprenden al dioxido de carbono (CO2), monoxido de carbono (CO), oxidos de nitrogeno (NOx), metano (CH4), oxido nitroso (N2O) y

  15. 75 FR 18455 - Mandatory Reporting of Greenhouse Gases

    Science.gov (United States)

    2010-04-12

    ... Mandatory Reporting of Greenhouse Gases AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule amendment. SUMMARY: EPA is proposing to amend the Mandatory Greenhouse Gas (GHG) Reporting Rule, to require.... The Mandatory GHG Reporting Rule requires greenhouse gas emitting facilities and suppliers of fuels...

  16. Accounting for carbon cycle feedbacks in a comparison of the global warming effects of greenhouse gases

    Energy Technology Data Exchange (ETDEWEB)

    Gillett, Nathan P [Canadian Centre for Climate Modelling and Analysis, Environment Canada, University of Victoria, PO Box 1700, STN CSC, Victoria, BC, V8W 3V6 (Canada); Matthews, H Damon, E-mail: nathan.gillett@ec.gc.ca [Department of Geography, Planning and Environment, Concordia University, 1455 de Maisonneuve West, H 1255-26, Montreal, QC, H3G 1M8 (Canada)

    2010-07-15

    Greenhouse gases other than CO{sub 2} make a significant contribution to human-induced climate change, and multi-gas mitigation strategies are cheaper to implement than those which limit CO{sub 2} emissions alone. Most practical multi-gas mitigation strategies require metrics to relate the climate warming effects of CO{sub 2} and other greenhouse gases. Global warming potential (GWP), defined as the ratio of time-integrated radiative forcing of a particular gas to that of CO{sub 2} following a unit mass emission, is the metric used in the Kyoto Protocol, and we define mean global temperature change potential (MGTP) as an equivalent metric of the temperature response. Here we show that carbon-climate feedbacks inflate the GWPs and MGTPs of methane and nitrous oxide by {approx} 20% in coupled carbon-climate model simulations of the response to a pulse of 50 x 1990 emissions, due to a warming-induced release of CO{sub 2} from the land biosphere and ocean. The magnitude of this effect is expected to be dependent on the model, but it is not captured at all by the analytical models usually used to calculate metrics such as GWP. We argue that the omission of carbon cycle dynamics has led to a low bias of uncertain but potentially substantial magnitude in metrics of the global warming effect of other greenhouse gases, and we suggest that the carbon-climate feedback should be considered when greenhouse gas metrics are calculated and applied.

  17. Accounting for carbon cycle feedbacks in a comparison of the global warming effects of greenhouse gases

    International Nuclear Information System (INIS)

    Gillett, Nathan P; Matthews, H Damon

    2010-01-01

    Greenhouse gases other than CO 2 make a significant contribution to human-induced climate change, and multi-gas mitigation strategies are cheaper to implement than those which limit CO 2 emissions alone. Most practical multi-gas mitigation strategies require metrics to relate the climate warming effects of CO 2 and other greenhouse gases. Global warming potential (GWP), defined as the ratio of time-integrated radiative forcing of a particular gas to that of CO 2 following a unit mass emission, is the metric used in the Kyoto Protocol, and we define mean global temperature change potential (MGTP) as an equivalent metric of the temperature response. Here we show that carbon-climate feedbacks inflate the GWPs and MGTPs of methane and nitrous oxide by ∼ 20% in coupled carbon-climate model simulations of the response to a pulse of 50 x 1990 emissions, due to a warming-induced release of CO 2 from the land biosphere and ocean. The magnitude of this effect is expected to be dependent on the model, but it is not captured at all by the analytical models usually used to calculate metrics such as GWP. We argue that the omission of carbon cycle dynamics has led to a low bias of uncertain but potentially substantial magnitude in metrics of the global warming effect of other greenhouse gases, and we suggest that the carbon-climate feedback should be considered when greenhouse gas metrics are calculated and applied.

  18. 75 FR 66433 - Mandatory Reporting of Greenhouse Gases

    Science.gov (United States)

    2010-10-28

    ... Part II Environmental Protection Agency 40 CFR Parts 86 and 98 Mandatory Reporting of Greenhouse...; FRL-9213-5] RIN 2060-A079 Mandatory Reporting of Greenhouse Gases AGENCY: Environmental Protection... Mandatory Greenhouse Gas Reporting rule to correct certain technical and editorial errors that have been...

  19. 75 FR 33949 - Mandatory Reporting of Greenhouse Gases

    Science.gov (United States)

    2010-06-15

    ... Part III Environmental Protection Agency 40 CFR Parts 86 and 98 Mandatory Reporting of Greenhouse...; FRL-9158-6] RIN 2060-A079 Mandatory Reporting of Greenhouse Gases AGENCY: Environmental Protection... Final Mandatory Greenhouse Gas Reporting rule (2009 Final MRR) to correct certain technical and...

  20. Global warming description using Daisyworld model with greenhouse gases.

    Science.gov (United States)

    Paiva, Susana L D; Savi, Marcelo A; Viola, Flavio M; Leiroz, Albino J K

    2014-11-01

    Daisyworld is an archetypal model of the earth that is able to describe the global regulation that can emerge from the interaction between life and environment. This article proposes a model based on the original Daisyworld considering greenhouse gases emission and absorption, allowing the description of the global warming phenomenon. Global and local analyses are discussed evaluating the influence of greenhouse gases in the planet dynamics. Numerical simulations are carried out showing the general qualitative behavior of the Daisyworld for different scenarios that includes solar luminosity variations and greenhouse gases effect. Nonlinear dynamics perspective is of concern discussing a way that helps the comprehension of the global warming phenomenon. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  1. The challenges of the greenhouse gases emissions reduction in buildings

    International Nuclear Information System (INIS)

    Arnaud, E.

    2005-09-01

    The building sector is responsible of 18% of the greenhouse gases emissions in France. This document aims to evaluate the greenhouse gases emissions of the sector and then defines technical and financial avenues worth exploring to reduce them. (A.L.B.)

  2. Model of Emissions of Greenhouse Gases (Ghg's in the Oil and Gas Industry

    Directory of Open Access Journals (Sweden)

    Amarildo da Cruz Fernandes

    2012-06-01

    Full Text Available The warming of Earth's atmosphere is a natural phenomenon and necessary to sustain life on the planet, being caused by the balance between the electromagnetic radiation received by the Earth from the Sun and the infrared radiation emitted by the Earth back into space. Since the mid-eighteenth century, with the advent of the Industrial Revolution and the consequent increase in burning fossil fuels, changes in land use and agriculture, the concentrations of carbon dioxide (CO2, methane (CH4 and nitrous oxide (N2O has increased significantly. By the year 2010, the concentrations of these three gases showed increments respectively in the order of 39%, 158% and 20% (WMO 2009, 2010 and 2011. Such increases in the concentrations of these gases are changing the Earth's radioactive balance, intensifying the natural greenhouse effect, which over millions of years has been essential to support life on the planet. The main objective of this paper is to present the development of a model based on the language of System Dynamics (SD, of how the emission of Greenhouse Gases (GHGs is in complex installations Exploration and Production (E & P of oil and gas. To illustrate one of the results of this modeling process a computer simulation was performed involving emissions from production estimate for the Pilot Production System and Drainage Area Tupi - Tupi Pilot (ICF, 2008.

  3. Greenhouse gases: How does heavy oil stack up?

    International Nuclear Information System (INIS)

    Ottenbreit, R.J.

    1991-01-01

    Life-cycle emissions of direct greenhouse gases (GHG) have been calculated to elucidate the global warming impacts of various fossil fuel feedstocks. Calculations were made for the transportation sector using five fossil fuel sources: natural gas, light crude oil, conventional heavy oil, crude bitumen recovered through in-situ steam stimulation, and crude bitumen recovered through mining. Results suggest that fuels sourced from light crude oil have the lowest GHG emissions, while conventional heavy oil has the highest GHG emission levels for this application. Emissions of methane can constitute a significant portion of the life-cycle GHG emissions of a fossil fuel. For all the fossil fuels examined, except conventional heavy oil, GHG emissions associated with their production, transport, processing, and distribution are less than one third of their total life-cycle emissions. The remainder is associated with end use. This confirms that consumers of fossil fuel products, rather than fossil fuel producers, have the most leverage to reduce GHG emissions. 2 figs

  4. Study of greenhouse gases emission factor for nuclear power chain of China

    International Nuclear Information System (INIS)

    Ma Zhonghai; Pan Ziqiang; Xie Jianlun; Xiu Binglin

    2001-01-01

    The Greenhouse Gases Emission Factor (GGEF) for nuclear power chain of China is calculated based on Life Cycle Analysis method and the definition of full energy chain. There is no greenhouse gases released directly from nuclear power plant. The greenhouse gases emission from nuclear power plant is mainly from coal-fired electricity supply to nuclear power plant for its normal operation and the production of construction materials those are used in the nuclear power plant. The total GGEF of nuclear power chain in China is 13.71 g-co 2 /kWh. It is necessary to regulate un-rational power source mix and to use the energy sources in rational way for reducing the greenhouse gas effect. Nuclear power for electricity generation is one of effective ways to reduce greenhouse gases emission and retard the greenhouse effect

  5. GreenNet: A Global Ground-Based Network of Instruments Measuring Greenhouse Gases in the Atmosphere

    Science.gov (United States)

    Floyd, M.; Grunberg, M.; Wilson, E. L.

    2017-12-01

    Climate change is the most important crisis of our lifetime. For policy makers to take action to combat the effects of climate change, they will need definitive proof that it is occurring globally. We have developed a low-cost ground instrument - a portable miniaturized laser heterodyne radiometer (mini-LHR) - capable of measuring concentrations of two of the most potent anthropogenic greenhouse gases, CO2 and methane, in columns in the atmosphere. They work by combining sunlight that has undergone absorption by gases with light from a laser. This combined light is detected by a photoreciever and a radio frequency beat signal is produced. From this beat signal, concentrations of these gases throughout the atmospheric column can be determined. A network of mini-LHR instruments in locations around the world will give us the data necessary to significantly reduce uncertainty in greenhouse gas sinks and sources contributing to climate change. Each instrument takes one reading per minute while the sun is up. With a goal to establish up to 500 instrument sites, the estimated total data per day will likely exceed 1GB. Every piece of data must be sorted as it comes in to determine whether it is a good or bad reading. The goal of the citizen science project is to collaborate with citizen scientists enrolled with Zooniverse.org to cycle through our data and help sort it, while also learning about the mini-LHR, greenhouse gases and climate change. This data will be used to construct an algorithm to automatically sort data that relies on statistical analyses of the previously sorted data.

  6. Beyond Vienna and Montreal: A global framework convention on greenhouse gases

    International Nuclear Information System (INIS)

    Wirth, D.A.; Lashof, D.A.

    1993-01-01

    This chapter discusses the need for a framework treaty analogous to the Vienna Convention and to the Montreal Protocol for greenhouse gases. Discussed are the following topics: (1) the immediate need for multilateral greenhouse gas controls, including policy implications of scientific uncertainties; (2) recent steps toward a greenhouse gas convention; (3) an environmentally meaningful plan for a greenhouse gase conventions, including the ozone precident, CO 2 targets, resource transfers, trading emissions allocations, institutional issues

  7. Greenhouse gases - observed tendencies contra scenarios

    International Nuclear Information System (INIS)

    Groenaas, Sigbjoern

    2006-01-01

    The article presents a study of the increase in greenhouse gases and concludes that it will be necessary to substantially reduce the CO2 concentrations in the atmosphere in order to avoid serious climatic changes

  8. A Simple Experiment to Demonstrate the Effects of Greenhouse Gases

    Science.gov (United States)

    Keating, C. F.

    2007-01-01

    The role of greenhouse gases in our atmosphere is the subject of considerable discussion and debate. Global warming is well-documented, as is the continually increasing amount of greenhouse gases that human activity puts in the air. Is there a relationship between the two? The simple experiment described in this paper provides a good demonstration…

  9. Greenhouse gases - an up-date on the contribution of automotive fuels

    International Nuclear Information System (INIS)

    Williams, M.L.

    1992-01-01

    This paper examines the contribution to global emissions of greenhouse gases from automotive fuels. The Greenhouse Effect and Climate Change are explained briefly. Data is presented on the global warming potential of automobile emissions, actual measured emission rates and greenhouse gas emissions as CO 2 equivalents. It is concluded that insufficient data exists to assess accurately the contribution of automotive fuel use to all the important greenhouse gases. Over short timescales (say 20 years) low emission technologies do show significant reductions in CO 2 equivalent emissions compared with current technology vehicles. However, in the longer term, fuel economy rather than emissions of non-CO 2 gases, is likely to become the determining factor. (UK)

  10. Agreements on emission of greenhouse gases

    International Nuclear Information System (INIS)

    Aulstad, Johan Greger

    2001-01-01

    Agreements on emission of greenhouse gases is one of the instruments used by Norwegian authorities to meet their obligations with respect to the Climate Convention and the Kyoto Protocol. This book discusses the legal issues raised by these agreements. A main topic is how the industrial emissions conform to the Pollution Act. Does the Pollution Act apply to these emissions? What is the impact of the sanction rules in this act on the emissions? The book also deals with the following general questions that arise in connection with the application of public authority: (1) Can the administration grant concessions and permits in the form of agreements? (2) What commitments can be imposed on a private party by the administration by agreement? (3) Should the procedures set down in the Pollution Act and in the Public Administration Act be followed fully when the pollution authorities make agreements? Is the opportunity of the administration to reverse more restricted when they make agreements than when they make one-sided decisions? Although this discussion primarily deals with the emission of greenhouse gases, the reasoning and conclusions are relevant in many other types of agreements in which the public administration is one of the parties. The agreement that regulates the emissions of greenhouse gases from the Norwegian aluminium industry is described in a special section. The book also gives a brief account of how agreements are used in the Danish climate policy

  11. Formation temperatures of thermogenic and biogenic methane

    Science.gov (United States)

    Stolper, D.A.; Lawson, M.; Davis, C.L.; Ferreira, A.A.; Santos Neto, E. V.; Ellis, G.S.; Lewan, M.D.; Martini, Anna M.; Tang, Y.; Schoell, M.; Sessions, A.L.; Eiler, J.M.

    2014-01-01

    Methane is an important greenhouse gas and energy resource generated dominantly by methanogens at low temperatures and through the breakdown of organic molecules at high temperatures. However, methane-formation temperatures in nature are often poorly constrained. We measured formation temperatures of thermogenic and biogenic methane using a “clumped isotope” technique. Thermogenic gases yield formation temperatures between 157° and 221°C, within the nominal gas window, and biogenic gases yield formation temperatures consistent with their comparatively lower-temperature formational environments (<50°C). In systems where gases have migrated and other proxies for gas-generation temperature yield ambiguous results, methane clumped-isotope temperatures distinguish among and allow for independent tests of possible gas-formation models.

  12. Climate Change, Greenhouse Gases and Aerosols

    Indian Academy of Sciences (India)

    user

    their radiative properties are similar to the glass used in a green- house. Greenhouse gases in the Earth's atmosphere absorb 90% of the radiation emitted .... and wind speed and direction in each box is calculated using the physical laws gov-.

  13. 75 FR 74773 - Mandatory Reporting of Greenhouse Gases: Additional Sources of Fluorinated GHGs

    Science.gov (United States)

    2010-12-01

    ...-mechanical systems (MEMS) manufacturing facilities. Fluorinated Gas Production....... 325120 Industrial gases... of Industrial Greenhouse Gases. Electrical Equipment Use General Stationary Fuel Combustion. Imports and Exports of Fluorinated Suppliers of Industrial Greenhouse GHGs Inside Pre-charged Equipment Gases...

  14. A Simple, Student-Built Spectrometer to Explore Infrared Radiation and Greenhouse Gases

    Science.gov (United States)

    Bruce, Mitchell R. M.; Wilson, Tiffany A.; Bruce, Alice E.; Bessey, S. Max; Flood, Virginia J.

    2016-01-01

    In this experiment, students build a spectrometer to explore infrared radiation and greenhouse gases in an inquiry-based investigation to introduce climate science in a general chemistry lab course. The lab is based on the exploration of the thermal effects of molecular absorption of infrared radiation by greenhouse and non-greenhouse gases. A…

  15. Emissions from animal husbandry. Greenhouse gases, environmental assessment, state of the art; Emissionen der Tierhaltung. Treibhausgase, Umweltbewertung, Stand der Technik

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    Within the KTBL conference (KTBL = Board of trustees for technology and construction science in the field of agriculture, Darmstadt, Federal Republic of Germany) from 6th to 8th December, 2011, in the monastery Banz, Bad Staffelstein (Federal Republic of Germany), the following lectures were held: (1) Development and environmental impacts of livestock production worldwide (Harald Menzl); (2) Methods to assess environmental aspects of livestock (Hayo van der Werf); (3) Methological aspects of environmental assessment of livestock production by Life Cycle Assessment (Lorie Hamelin); (4) Life Cycle Assessment of milk production systems (Gerard Gaillard); (5) Environmental impact assessment of beef production systems demonstrated for greenhouse gases (Monika Ziehetmeier); (6) Environmental impact assessment of pig production systems in Europe - From land use to feed efficiency (Ingrid Strid); (7) Envionmental impact assessment of egg production systems in Europe as seen from the United Kingdom (Adrian Willias); (8) Environmental impacts and improvement options of chicken meat production (Juha-Matti Katajajuuri); (9) Greenhouse gas emissions from livestock farming (Annette Freibauer); (10) Methane and nitrous oxide emissions from livestock manure: The scientific basis (Soeren O. Petersen); (11) Strategic measures to influence methane emissions from livestock (Michael Kreuzer); (12) Enteric methane production - Results from respiration chambers (Michael Derno); (13) Greenhouse gas emissions from cattle housing systems (Inga Schiefler); (14) Towards reduced methane from grass-based Irish milk production systems (Eva Lewis); (15) Greenhouse gas emissions from pig housing (Knut-Haakan Jeppsson); (16) Greenhouse gas emissions from poultry housings and manure management: inventory and update of emission factors (Peter Groot Koerkamp); (17) Greenhouse gas emissions from the storage of liquid and solid manure and abatement strategies (Lena Rodhe); (18) Nitrous oxide emissions

  16. Evaluation of organical fertilizers in relation to minimalization of air polution by greenhouse gases and amonia

    Directory of Open Access Journals (Sweden)

    Patrik Burg

    2006-01-01

    Full Text Available Agricultural production presents one of the biggest producers of greenhouse gases. Between the most significant belongs carbon dioxide (CO2, methane (CH4, nitrous oxide (N2O, ozon (O3 and hydrogen sulphide (H2S. The work deals with classification of quantity by liberate emissions in relation to different variants of fertilization by cultivation of horticultural crops (head cabbage. For the metering was exploited gas analyzer INNOVA 1312. The results demonstrate significant difference between experimental variants by quantity of liberate emission, but also in the height of production.

  17. Methane monitoring from space

    Science.gov (United States)

    Stephan, C.; Alpers, M.; Millet, B.; Ehret, G.; Flamant, P.

    2017-11-01

    Methane is one of the strongest anthropogenic greenhouse gases. It contributes by its radiative forcing significantly to the global warming. For a better understanding of climate changes, it is necessary to apply precise space-based measurement techniques in order to obtain a global view on the complex processes that control the methane concentration in the atmosphere. The MERLIN mission is a joint French-German cooperation, on a micro satellite mission for space-based measurement of spatial and temporal gradients of atmospheric methane columns on a global scale. MERLIN will be the first Integrated Path Differential Absorption LIDAR for greenhouse gas monitoring from space. In contrast to passive methane missions, the LIDAR instrument allows measurements at alllatitudes, all-seasons and during night.

  18. Mitigation of greenhouse gases from agriculture

    DEFF Research Database (Denmark)

    Schils, R.L.M.; Ellis, J. L.; de Klein, C. A. M.

    2013-01-01

    Models are widely used to simulate the emission of greenhouse gases (GHG). They help to identify knowledge gaps, estimate total emissions for inventories, develop mitigation options and policies, raise awareness and encourage adoption. These models vary in scale, scope and methodological approach...

  19. Greenhouse Gas Dynamics in a Salt-Wedge Estuary Revealed by High Resolution Cavity Ring-Down Spectroscopy Observations.

    Science.gov (United States)

    Tait, Douglas R; Maher, Damien T; Wong, WeiWen; Santos, Isaac R; Sadat-Noori, Mahmood; Holloway, Ceylena; Cook, Perran L M

    2017-12-05

    Estuaries are an important source of greenhouse gases to the atmosphere, but uncertainties remain in the flux rates and production pathways of greenhouse gases in these dynamic systems. This study performs simultaneous high resolution measurements of the three major greenhouse gases (carbon dioxide, methane, and nitrous oxide) as well as carbon stable isotope ratios of carbon dioxide and methane, above and below the pycnocline along a salt wedge estuary (Yarra River estuary, Australia). We identified distinct zones of elevated greenhouse gas concentrations. At the tip of salt wedge, average CO 2 and N 2 O concentrations were approximately five and three times higher than in the saline mouth of the estuary. In anaerobic bottom waters, the natural tracer radon ( 222 Rn) revealed that porewater exchange was the likely source of the highest methane concentrations (up to 1302 nM). Isotopic analysis of CH 4 showed a dominance of acetoclastic production in fresh surface waters and hydrogenotrophic production occurring in the saline bottom waters. The atmospheric flux of methane (in CO 2 equivalent units) was a major (35-53%) contributor of atmospheric radiative forcing from the estuary, while N 2 O contributed <2%. We hypothesize that the release of bottom water gases when stratification episodically breaks down will release large pulses of greenhouse gases to the atmosphere.

  20. The state of greenhouse gases in the atmosphere using global observations through 2013

    Science.gov (United States)

    Tarasova, Oksana; Koide, Hiroshi; Dlugokencky, Ed; Montzka, Stephen A.; Keeling, Ralph; Tanhua, Toste; Lorenzoni, Laura

    2015-04-01

    We present results from the tenth annual Greenhouse Gas Bulletin (http://www.wmo.int/pages/prog/arep/gaw/ ghg/GHGbulletin.html) of the World Meteorological Organization (WMO). The results are based on research and observations performed by laboratories contributing to the WMO Global Atmosphere Watch (GAW) Programme (www.wmo.int/gaw). The Bulletin presents results of global analyses of observational data collected according to GAW recommended practices and submitted to the World Data Center for Greenhouse Gases (WDCGG), and for the first time, it includes a summary of ocean acidification. Bulletins are prepared by the WMO/GAW Scientific Advisory Group for Greenhouse Gases (http://www.wmo.int/pages/prog/arep/gaw/ScientificAdvisoryGroups.html) in collaboration with WDCGG. The summary of ocean acidification and trends in ocean pCO2 was jointly produced by the International Ocean Carbon Coordination Project (IOCCP) of the Intergovernmental Oceanographic Commission of UNESCO (IOC-UNESCO), the Scientific Committee on Oceanic Research (SCOR), and the Ocean Acidification International Coordination Centre (OA-ICC) of the International Atomic Energy Agency (IAEA). The tenth Bulletin included a special edition published prior to the United Nations Climate Summit in September 2014. The scope of this edition was to demonstrate the level of emission reduction necessary to stabilize radiative forcing by long-lived greenhouse gases. It shows in particular that a reduction in radiative forcing from its current level (2.92 W m-2 in 2013) requires significant reductions in anthropogenic emissions of all major greenhouse gases. Observations used for global analysis are collected at more than 100 marine and terrestrial sites worldwide for CO2 and CH4 and at a smaller number of sites for other greenhouse gases. Globally averaged dry-air mole fractions of carbon dioxide, methane and nitrous oxide derived from this network reached new highs in 2013, with CO2 at 396.0 ± 0.1 ppm, CH4 at

  1. Greenhouse gas abatement strategies for animal husbandry

    NARCIS (Netherlands)

    Monteny, G.J.; Bannink, A.; Chadwick, D.

    2006-01-01

    Agriculture contributes significantly to the anthropogenic emissions of non-CO2 greenhouse gases methane and nitrous oxide. In this paper, a review is presented of the agriculture related sources of methane and nitrous oxide, and of the main strategies for mitigation. The rumen is the most important

  2. Calibration standards for major greenhouse gases and carbon monoxide: status and challenges.

    Science.gov (United States)

    Zellweger, Christoph; Mohn, Joachim; Wyss, Simon A.; Brewer, Paul; Mace, Tatiana; Nieuwenkamp, Gerard; Pearce-Hill, Ruth; Tarhan, Tanil; Walden, Jari; Emmenegger, Lukas

    2017-04-01

    used by the GAW community. We will show results of the comparison of the HIGHGAS and the WMO reference standards, and put this into the context of the WMO/GAW quality management framework. [1] IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp. [2] WMO: 18th WMO/IAEA Meeting on Carbon Dioxide, Other Greenhouse Gases and Related Tracers Measurement Techniques (GGMT-2015), La Jolla, CA, USA, 13-17 September 2015, GAW Report No. 229, World Meteorological Organization, Geneva, Switzerland, 2016. [3] Zellweger, C., Emmenegger, L., Firdaus, M., Hatakka, J., Heimann, M., Kozlova, E., Spain, T. G., Steinbacher, M., van der Schoot, M. V., and Buchmann, B.: Assessment of recent advances in measurement techniques for atmospheric carbon dioxide and methane observations, Atmos. Meas. Tech., 9, 4737-4757, 2016. [4] Flores, E., Viallon, J., Choteau, T., Moussay, P., Wielgosz, R., Kang, N., Kim, B. M., Zalewska, E., van der Veen, A., Konopelko, L., Wu, H., Han, Q., Rhoderick, G., Guenther, F. R., Watanabe, T., Shimosaka, T., Kato, K., Hall, B., and Brewer, P.: International comparison CCQM-K82: methane in air at ambient level (1800 to 2200) nmol/mol, Metrologia, 52, 08001, 2015.

  3. Mitigating greenhouse gas emissions from beef cattle housing

    Science.gov (United States)

    Beef cattle are potential sources of greenhouse gases (GHG). These emissions include methane produced by fermentation within the gut (enteric), and methane and nitrous oxide emissions from manure. Life Cycle Analysis of North American (NA) beef cattle production systems consistently indicate that...

  4. Voluntary reporting of greenhouse gases 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    The Voluntary Reporting of Greenhouse Gases Program, required by Section 1605(b) of the Energy Policy Act of 1992, records the results of voluntary measures to reduce, avoid, or sequester greenhouse gas emissions. In 1998, 156 US companies and other organizations reported to the Energy information Administration that, during 1997, they had achieved greenhouse gas emission reductions and carbon sequestration equivalent to 166 million tons of carbon dioxide, or about 2.5% of total US emissions for the year. For the 1,229 emission reduction projects reported, reductions usually were measured by comparing an estimate of actual emissions with an estimate of what emissions would have been had the project not been implemented.

  5. Warming Early Mars by Impact Degassing of Reduced Greenhouse Gases

    Science.gov (United States)

    Haberle, R. M.; Zahnle, K.; Barlow, N. G.

    2018-01-01

    Reducing greenhouse gases are once again the latest trend in finding solutions to the early Mars climate dilemma. In its current form collision induced absorptions (CIA) involving H2 and/or CH4 provide enough extra greenhouse power in a predominately CO2 atmosphere to raise global mean surface temperatures to the melting point of water provided the atmosphere is thick enough and the reduced gases are abundant enough. Surface pressures must be at least 500 mb and H2 and/or CH4 concentrations must be at or above the several percent level for CIA to be effective. Atmospheres with 1-2 bars of CO2 and 2- 10% H2 can sustain surface environments favorable for liquid water. Smaller concentrations of H2 are sufficient if CH4 is also present. If thick CO2 atmospheres with percent level concentrations of reduced gases are the solution to the faint young Sun paradox for Mars, then plausible mechanisms must be found to generate and sustain the gases. Possible sources of reducing gases include volcanic outgassing, serpentinization, and impact delivery; sinks include photolyis, oxidation, and escape to space. The viability of the reduced greenhouse hypothesis depends, therefore, on the strength of these sources and sinks. In this paper we focus on impact delivered reduced gases.

  6. Centuries of thermal sea-level rise due to anthropogenic emissions of short-lived greenhouse gases.

    Science.gov (United States)

    Zickfeld, Kirsten; Solomon, Susan; Gilford, Daniel M

    2017-01-24

    Mitigation of anthropogenic greenhouse gases with short lifetimes (order of a year to decades) can contribute to limiting warming, but less attention has been paid to their impacts on longer-term sea-level rise. We show that short-lived greenhouse gases contribute to sea-level rise through thermal expansion (TSLR) over much longer time scales than their atmospheric lifetimes. For example, at least half of the TSLR due to increases in methane is expected to remain present for more than 200 y, even if anthropogenic emissions cease altogether, despite the 10-y atmospheric lifetime of this gas. Chlorofluorocarbons and hydrochlorofluorocarbons have already been phased out under the Montreal Protocol due to concerns about ozone depletion and provide an illustration of how emission reductions avoid multiple centuries of future TSLR. We examine the "world avoided" by the Montreal Protocol by showing that if these gases had instead been eliminated in 2050, additional TSLR of up to about 14 cm would be expected in the 21st century, with continuing contributions lasting more than 500 y. Emissions of the hydrofluorocarbon substitutes in the next half-century would also contribute to centuries of future TSLR. Consideration of the time scales of reversibility of TSLR due to short-lived substances provides insights into physical processes: sea-level rise is often assumed to follow air temperature, but this assumption holds only for TSLR when temperatures are increasing. We present a more complete formulation that is accurate even when atmospheric temperatures are stable or decreasing due to reductions in short-lived gases or net radiative forcing.

  7. On Road Study of Colorado Front Range Greenhouse Gases Distribution and Sources

    Science.gov (United States)

    Petron, G.; Hirsch, A.; Trainer, M. K.; Karion, A.; Kofler, J.; Sweeney, C.; Andrews, A.; Kolodzey, W.; Miller, B. R.; Miller, L.; Montzka, S. A.; Kitzis, D. R.; Patrick, L.; Frost, G. J.; Ryerson, T. B.; Robers, J. M.; Tans, P.

    2008-12-01

    The Global Monitoring Division and Chemical Sciences Division of the NOAA Earth System Research Laboratory have teamed up over the summer 2008 to experiment with a new measurement strategy to characterize greenhouse gases distribution and sources in the Colorado Front Range. Combining expertise in greenhouse gases measurements and in local to regional scales air quality study intensive campaigns, we have built the 'Hybrid Lab'. A continuous CO2 and CH4 cavity ring down spectroscopic analyzer (Picarro, Inc.), a CO gas-filter correlation instrument (Thermo Environmental, Inc.) and a continuous UV absorption ozone monitor (2B Technologies, Inc., model 202SC) have been installed securely onboard a 2006 Toyota Prius Hybrid vehicle with an inlet bringing in outside air from a few meters above the ground. To better characterize point and distributed sources, air samples were taken with a Portable Flask Package (PFP) for later multiple species analysis in the lab. A GPS unit hooked up to the ozone analyzer and another one installed on the PFP kept track of our location allowing us to map measured concentrations on the driving route using Google Earth. The Hybrid Lab went out for several drives in the vicinity of the NOAA Boulder Atmospheric Observatory (BAO) tall tower located in Erie, CO and covering areas from Boulder, Denver, Longmont, Fort Collins and Greeley. Enhancements in CO2, CO and destruction of ozone mainly reflect emissions from traffic. Methane enhancements however are clearly correlated with nearby point sources (landfill, feedlot, natural gas compressor ...) or with larger scale air masses advected from the NE Colorado, where oil and gas drilling operations are widespread. The multiple species analysis (hydrocarbons, CFCs, HFCs) of the air samples collected along the way bring insightful information about the methane sources at play. We will present results of the analysis and interpretation of the Hybrid Lab Front Range Study and conclude with perspectives

  8. 75 FR 17331 - Public Hearings for the Mandatory Reporting Rule for Greenhouse Gases

    Science.gov (United States)

    2010-04-06

    ... for Greenhouse Gases AGENCY: Environmental Protection Agency (EPA). ACTION: Announcement of public... mandatory reporting of greenhouse gases, which will be published separately in the Federal Register. These proposed rules would [[Page 17332

  9. Greenhouse gases mitigation options and strategies for Tanzania

    Energy Technology Data Exchange (ETDEWEB)

    Mwandosya, M.J.; Meena, H.E.

    1996-12-31

    Tanzania became a party to the United Nations Framework on Climate Change (UN FCCC) when she ratified the Convention in March, 1996. Now that Tanzania and other developing countries are Parties to the UN FCCC, compliance with its provisions is mandatory. The legal requirements therefore provide a basis for their participation in climate change studies and policy formulation. All parties to the Convention are required by Article 4.1 of the United Nations Convention on Climate Change (UN FCCC) to develop, periodically update, publish, and make available national inventories of anthropogenic emissions and removal of greenhouse gases that are not controlled by the Montreal Protocol. This study on possible options for the mitigation of greenhouse gases in Tanzania is a preliminary effort towards the fulfilment of the obligation. In order to fulfil their obligations under the UN FCCC and have a meaningful mitigation assessment, identification and quantification of anthropogenic sources of atmospheric emissions of greenhouse gases in the country was undertaken. In this respect, the study of anthropogenic emissions by source and removals by sink of GHGs in Tanzania was done with the main objective of increasing the quantity and quality of base-line data available in order to further scientific understanding of the relationship of greenhouse gas emissions to climate change. Furthermore, the study facilitated identification of national policy and technological options that could reduce the level of emissions in the country.

  10. Roadside management strategies to reduce greenhouse gases.

    Science.gov (United States)

    2010-06-01

    Californias Global Warming Solutions Act of 2006 (AB 32), Sustainable Communities and Climate Protection Act : (SB 375), and Executive Order S-14-08 direct Caltrans to develop actions to reduce greenhouse gases (GHGs). Air : pollution reduction is...

  11. Greenhouse gases accounting and reporting for waste management - A South African perspective

    International Nuclear Information System (INIS)

    Friedrich, Elena; Trois, Cristina

    2010-01-01

    This paper investigates how greenhouse gases are accounted and reported in the waste sector in South Africa. Developing countries (including South Africa) do not have binding emission reduction targets, but many of them publish different greenhouse gas emissions data which have been accounted and reported in different ways. Results show that for South Africa, inventories at national and municipal level are the most important tools in the process of accounting and reporting greenhouse gases from waste. For the development of these inventories international initiatives were important catalysts at national and municipal levels, and assisted in developing local expertise, resulting in increased output quality. However, discrepancies in the methodology used to account greenhouse gases from waste between inventories still remain a concern. This is a challenging issue for developing countries, especially African ones, since higher accuracy methods are more data intensive. Analysis of the South African inventories shows that results from the recent inventories can not be compared with older ones due to the use of different accounting methodologies. More recently the use of Clean Development Mechanism (CDM) procedures in Africa, geared towards direct measurements of greenhouse gases from landfill sites, has increased and resulted in an improvement of the quality of greenhouse gas inventories at municipal level.

  12. The ice-core record - Climate sensitivity and future greenhouse warming

    Science.gov (United States)

    Lorius, C.; Raynaud, D.; Jouzel, J.; Hansen, J.; Le Treut, H.

    1990-01-01

    The prediction of future greenhouse-gas-warming depends critically on the sensitivity of earth's climate to increasing atmospheric concentrations of these gases. Data from cores drilled in polar ice sheets show a remarkable correlation between past glacial-interglacial temperature changes and the inferred atmospheric concentration of gases such as carbon dioxide and methane. These and other palaeoclimate data are used to assess the role of greenhouse gases in explaining past global climate change, and the validity of models predicting the effect of increasing concentrations of such gases in the atmosphere.

  13. Greenhouse Gas Emissions from Intermittently Flooded (Dambo) Rice under Different Tillage Practices in Chiota Smallholder Farming Area of Zimbabwe

    DEFF Research Database (Denmark)

    Nyamadzawo, George; Wuta, Menas; Chirinda, Ngoni

    2013-01-01

    Agriculture is one of the biggest sources of greenhouse gases. Rice production has been identified as one of the major sources of greenhouse gases, especially methane. However, data on the contributions of rice towards greenhouse gas emissions in tropical Africa are limited. In Zimbabwe, as in mo...

  14. Warming of subarctic tundra increases emissions of all three important greenhouse gases - carbon dioxide, methane, and nitrous oxide.

    Science.gov (United States)

    Voigt, Carolina; Lamprecht, Richard E; Marushchak, Maija E; Lind, Saara E; Novakovskiy, Alexander; Aurela, Mika; Martikainen, Pertti J; Biasi, Christina

    2017-08-01

    Rapidly rising temperatures in the Arctic might cause a greater release of greenhouse gases (GHGs) to the atmosphere. To study the effect of warming on GHG dynamics, we deployed open-top chambers in a subarctic tundra site in Northeast European Russia. We determined carbon dioxide (CO 2 ), methane (CH 4 ), and nitrous oxide (N 2 O) fluxes as well as the concentration of those gases, inorganic nitrogen (N) and dissolved organic carbon (DOC) along the soil profile. Studied tundra surfaces ranged from mineral to organic soils and from vegetated to unvegetated areas. As a result of air warming, the seasonal GHG budget of the vegetated tundra surfaces shifted from a GHG sink of -300 to -198 g CO 2 -eq m -2 to a source of 105 to 144 g CO 2 -eq m -2 . At bare peat surfaces, we observed increased release of all three GHGs. While the positive warming response was dominated by CO 2 , we provide here the first in situ evidence of increasing N 2 O emissions from tundra soils with warming. Warming promoted N 2 O release not only from bare peat, previously identified as a strong N 2 O source, but also from the abundant, vegetated peat surfaces that do not emit N 2 O under present climate. At these surfaces, elevated temperatures had an adverse effect on plant growth, resulting in lower plant N uptake and, consequently, better N availability for soil microbes. Although the warming was limited to the soil surface and did not alter thaw depth, it increased concentrations of DOC, CO 2, and CH 4 in the soil down to the permafrost table. This can be attributed to downward DOC leaching, fueling microbial activity at depth. Taken together, our results emphasize the tight linkages between plant and soil processes, and different soil layers, which need to be taken into account when predicting the climate change feedback of the Arctic. © 2016 John Wiley & Sons Ltd.

  15. Detecting Methane From Leaking Pipelines and as Greenhouse Gas in the Atmosphere

    Science.gov (United States)

    Riris, Haris; Numata, Kenji; Li, Steven; Wu, Stewart; Ramanathan, Anand; Dawsey, Martha

    2012-01-01

    Laser remote sensing measurements of trace gases from orbit can provide unprecedented information about important planetary science and answer critical questions about planetary atmospheres. Methane (CH4) is the second most important anthropogenically produced greenhouse gas. Though its atmospheric abundance is much less than that of CO2 (1.78 ppm vs. 380 ppm), it has much larger greenhouse heating potential. CH4 also contributes to pollution in the lower atmosphere through chemical reactions, leading to ozone production. Atmospheric CH4 concentrations have been increasing as a result of increased fossil fuel production, rice farming, livestock, and landfills. Natural sources of CH4 include wetlands, wild fires, and termites, and perhaps other unknown sources. Important sinks for CH4 include non-saturated soils and oxidation by hydroxyl radicals in the atmosphere. Remotely measuring CH4 and other biogenic molecules (such as ethane and formaldehyde) on Mars also has important implications on the existence of life on Mars. Measuring CH4 at very low (ppb) concentrations from orbit will dramatically improve the sensitivity and spatial resolution in the search for CH4 vents and sub-surface life on other planets. A capability has been developed using lasers and spectroscopic detection techniques for the remote measurements of trace gases in open paths. Detection of CH4, CO2, H2O, and CO in absorption cells and in open paths, both in the mid- IR and near-IR region, has been demonstrated using an Optical Parametric Amplifier laser transmitter developed at GSFC. With this transmitter, it would be possible to develop a remote sensing methane instrument. CH4 detection also has very important commercial applications. Pipeline leak detection from an aircraft or a helicopter can significantly reduce cost, response time, and pinpoint the location. The main advantage is the ability to rapidly detect CH4 leaks remotely. This is extremely important for the petrochemical industry

  16. Reference projections for greenhouse gases in the Netherlands: emission projections for 2001 - 2010

    NARCIS (Netherlands)

    Wijngaarden R van den; Ybema JR; Gijsen A; Oude Lohuis JA; Thomas R; Daniels B; Dril AWN van; Volkers CH; Energieonderzoek Centrum; LAE

    2002-01-01

    The results are presented of the project 'reference projection for energy and greenhouse gases' carried out by RIVM and ECN for the Ministries of Housing, Spatial Planning and the Environment, and of Economic Affairs. The reference projection considers emission of greenhouse gases in

  17. Methane cycling in peat bogs: Environmental relevance of methano-Trophs revealed by microbial lipid chemistry

    NARCIS (Netherlands)

    van Winden, J.F.

    2011-01-01

    Global warming is continuing without delay and this is caused by the accumulation of greenhouse gases in the atmosphere. Methane is a strong greenhouse gas, 25 times stronger compared to CO2. The increase in methane concentrations in the atmosphere is largely the result of human influences, but

  18. Greenhouse effect of trace gases, 1970-1980

    Science.gov (United States)

    Lacis, A.; Hansen, J.; Lee, P.; Lebedeff, S.; Mitchell, T.

    1981-01-01

    Increased abundances were measured for several trace atmospheric gases in the decade 1970-1980. The equilibrium greenhouse warming for the measured increments of CH4, chlorofluorocarbons and N2O is between 50% and 100% of the equilibrium warming for the measured increase of atmospheric CO2 during the same 10 years. The combined warming of CO2 and trace gases should exceed natural global temperature variability in the 1980's and cause the global mean temperature to rise above the maximum of the late 1930's.

  19. Greenhouse Gas Emissions from Hydroelectric Reservoirs in Tropical Regions

    International Nuclear Information System (INIS)

    Pinguelli Rosa, L.; Aurelio dos Santos, M.; Oliveira dos Santos, E.; Matvienko, B.; Sikar, E.

    2004-01-01

    This paper discusses emissions by power-dams in the tropics. Greenhouse gas emissions from tropical power-dams are produced underwater through biomass decomposition by bacteria. The gases produced in these dams are mainly nitrogen, carbon dioxide and methane. A methodology was established for measuring greenhouse gases emitted by various power-dams in Brazil. Experimental measurements of gas emissions by dams were made to determine accurately their emissions of methane (CH4) and carbon dioxide (CO2) gases through bubbles formed on the lake bottom by decomposing organic matter, as well as rising up the lake gradient by molecular diffusion. The main source of gas in power-dams reservoirs is the bacterial decomposition (aerobic and anaerobic) of autochthonous and allochthonous organic matter that basically produces CO2 and CH4. The types and modes of gas production and release in the tropics are reviewed

  20. Drip irrigation emitter clogging in Dutch greenhouses as affected by methane and organic acids

    NARCIS (Netherlands)

    Kreij, de C.; Burg, van der A.M.M.; Runia, W.T.

    2003-01-01

    It is believed that the serious clogging of drip irrigation emitters in the Dutch greenhouse industry is caused by methane-oxidising bacteria and/or organic acids used as anti-clogging agents. In this study greenhouses with moderate to severe emitter clogging have been examined. High methane

  1. Climate and greenhouse effect gas: glaciated archives data

    International Nuclear Information System (INIS)

    Lorius, C.

    1991-01-01

    Ice caps in Antarctica or Greenland have recorded the anthropogenic effect on atmospheric composition and especially on greenhouse effect gases such as carbon dioxide and methane. 2000 meter depth drilling samples allowed to study the climates for 150 000 years ago; hot and cold climates are ruled by periodic movement of the Earth around the sun and by more or less elevated concentration of greenhouse effect gases in the atmosphere. Prospects for to morrow climates and anthropogenic contribution are then possible [fr

  2. 75 FR 75059 - Mandatory Reporting of Greenhouse Gases: Injection and Geologic Sequestration of Carbon Dioxide

    Science.gov (United States)

    2010-12-01

    ... Greenhouse Gases: Injection and Geologic Sequestration of Carbon Dioxide; Final Rule #0;#0;Federal Register... Mandatory Reporting of Greenhouse Gases: Injection and Geologic Sequestration of Carbon Dioxide AGENCY... greenhouse gas monitoring and reporting from facilities that conduct geologic sequestration of carbon dioxide...

  3. Stable isotope measurement techniques for atmospheric greenhouse gases

    International Nuclear Information System (INIS)

    2002-01-01

    The technical requirements to perform useful measurements of atmospheric greenhouse gas concentrations and of their isotope ratios are of direct relevance for all laboratories engaged in this field. A meaningful interpretation of isotopes in global models on sources and sinks of CO 2 and other greenhouse gases depends on strict laboratory protocols and data quality control measures ensuring comparable data in time and space. Only with this precondition met, the isotope techniques can serve as a potentially powerful method for reducing uncertainties in the global CO 2 budgets and for tracing pathways and interaction of terrestrial, oceanic, and atmospheric pools of carbon. This publication provides four contributions describing methods for the determination of the isotopic composition of trace gases in atmospheric air and in ice cores. These contributions have been indexed separately

  4. Impact Delivery of Reduced Greenhouse Gases on Early Mars

    Science.gov (United States)

    Haberle, R. M.; Zahnle, K. J.; Barlow, N. G.

    2017-12-01

    Reducing greenhouse gases are the latest trend in finding solutions to the early Mars climate dilemma. In thick CO2 atmospheres with modest concentrations of H2 and/or CH4, collision induced absorptions can reduce the outgoing long wave radiation enough to provide a significant greenhouse effect. To raise surface temperatures significantly by this process, surface pressures must be at least 500 mb and H2 and/or CH4 concentrations must be at or above the several percent level. Volcanism, serpentinization, and impacts are possible sources for reduced gases. Here we investigate the delivery of such gases by impact degassing from comets and asteroids. We use a time-marching stochastic impactor model that reproduces the observed crater size frequency distribution of Noachian surfaces. Following each impact, reduced gases are added to the atmosphere from a production function based on gas equilibrium calculations for several classes of meteorites and comets at typical post-impact temperatures. Escape and photochemistry then remove the reduced greenhouse gases continuously in time throughout each simulation. We then conduct an ensemble of simulations with this simple model varying the surface pressure, impact history, reduced gas production and escape functions, and mix of impactor types, to determine if this could be a potentially important part of the early Mars story. Our goal is to determine the duration of impact events that elevate reduced gas concentrations to significant levels and the total time of such events throughout the Noachian. Our initial simulations indicate that large impactors can raise H2 concentrations above the 10% level - a level high enough for a very strong greenhouse effect in a 1 bar CO2 atmosphere - for millions of years, and that the total time spent at or above that level can be in the 10's of millions of years range. These are interesting results that we plan to explore more thoroughly for the meeting.

  5. Methane anomalies in seawaters of the Ragay Gulf, Philippines: methane cycling and contributions to atmospheric greenhouse gases

    International Nuclear Information System (INIS)

    Heggie, D.T.; Evans, D.; Bishop, J.H.

    1999-01-01

    The vertical distribution of methane has been measured in the water column of a semi-enclosed basin, the Ragay Gulf, in the Philippines archipelago. The methane distribution is characterised by unusual mid-water and bottom-water plumes, between 80 and 100 m thick. The plumes are confined to water depths between about 100 and 220 m. where the temperature-depth (a proxy for seawater density) gradient is steepest. Plumes of high methane are 'trapped' within the main thermocline; these are local features, persisting over kilometre-scale distances. Geochemical and geological evidence suggests that the elevated methane concentrations are thermogenic in origin (although an oxidised biogenic origin cannot be ruled out for some of the methane anomalies), and have migrated from the sea floor into the overlying water. The mid and bottom-water methane maxima support fluxes of methane from depth into surface waters and, subsequently, from the oceans to the atmosphere. The average supersaturation of methane in the top 5 m of the sea, at nine locations, was 206±16.5%; range 178-237%. The average estimated sea-air flux was 101 nmole.cm -2 .y -1 and probably represents a minimum flux, because of low wind speeds of <10 knots. These fluxes, we suggest, are supported by seepage from the sea floor and represent naturally occurring fluxes of mostly fossil methane (in contrast to anthropogenic fossil methane), from the sea to the atmosphere. The estimated minimum fluxes of naturally occurring fossil methane are comparable to those biogenic fluxes measured elsewhere in the surface oceans, but are less than those naturally occurring methane inputs from sediments of the Barents Sea. Ragay Gulf fluxes are also less than anthropogenic fluxes measured in areas of petroleum exploration and development, such as the Texas and Louisiana, USA shelf areas

  6. Greenhouse effect gases and climatic change: quantification and tools to fight against the emissions

    International Nuclear Information System (INIS)

    Bizec, R.F.

    2006-01-01

    The greenhouse effect gases are considered responsible of the climatic change. Their consequences are numerous: increase of the sea level, displacement of the climatic areas, modification of the forests ecosystems, rarefaction of water, progressively decrease of glaciers... This fast modification of the climate would lead to the increase of natural hazards as hurricanes, storms, hails and so on. It is then a necessity to reduce as fast as possible the greenhouse effect gases. The author describes in a first part the methods of the greenhouse effect gases quantification and in the second part the tools to fight these gases, regulations, standards, economic tools, national tools and the projects. (A.L.B.)

  7. Quantification of the greenhouse effect gases at the territorial scale. Final report

    International Nuclear Information System (INIS)

    Magnin, G.; Lacassagne, S.

    2003-07-01

    An efficient action against the greenhouse effect needs the implication of the local collectivities. To implement appropriate energy policies, deciders need information and tools to quantify the greenhouse gases and evaluate the obtained results of their greenhouse gases reduction policies. This study is a feasibility study of the tools realization, adapted to the french context. It was done in three steps: analysis of the existing tools, application to the french context and elaboration of the requirements of appropriate tools. This report presents the study methodology, the information analysis and the conclusions. (A.L.B.)

  8. Avoidance of fluorinated greenhouse gases. Possibilities of an early exit; Fluorierte Treibhausgase vermeiden. Wege zum Ausstieg

    Energy Technology Data Exchange (ETDEWEB)

    Becken, Katja; Graaf, Daniel de; Elsner, Cornelia; Hoffmann, Gabriele; Krueger, Franziska; Martens, Kerstin; Plehn, Wolfgang; Sartorius, Rolf

    2010-11-15

    In comparison to carbon dioxide, fluorinated greenhouse gases are more harmful up to a factor of 24,000. Today the amount of fluorinated greenhouse gases of the world-wide emissions of climatic harmful gases amounts 2 % and increases to 6 % in the year 2050. The authors of the contribution under consideration report on possibilities for the avoidance of the emissions of fluorinated greenhouse gases. The characteristics and ecological effects of fluorinated gases as well as the development of the emission in Germany are presented. Subsequently, the applications of fluorinated hydrocarbons are described.

  9. Fluxed of nitrous oxide and methane in a lake border ecosystem in northern Germany

    Energy Technology Data Exchange (ETDEWEB)

    Rusch, H.; Rembges, D.; Papke, H.; Rennenberg, H. [Fraunhofer Inst. for Atmospheric Environmental Research, Garmisch-Partenkirchen (Germany)

    1995-12-31

    Methane and nitrous oxide are radiatively active trace gases. This accounts for approximately 20 % of the total anticipated greenhouse effect. The atmospheric mixing ratio of both gases has increased significantly during the last decades at a rate of 0.25 % yr{sup -l} for N{sub 2}O and a rate of 1 % yr{sup -1} for CH{sub 4}. Whether this increase is caused by enhanced biogenic production of both gases or is due to decreased global sinks, has not been definitely elucidated. Soils are an important source of methane and nitrous oxide. Natural wetlands, e.g., have a similar global source strength of methane as rice paddies. On the other hand, well aerated grasslands have been shown to be a sink for atmospheric methane due to methane oxidation. Nitrous oxide is emitted by a wide range of soil types. Its rate of emission is strongly enhanced by nitrogen fertilization. In the present study, fluxes of methane and nitrous oxide were determined in a lake border ecosystem along a toposequence from reed to dry pasture. The aim of this study was to characterize the influence of soil type, land use and season on the flux rates of these greenhouse gases. (author)

  10. Fluxed of nitrous oxide and methane in a lake border ecosystem in northern Germany

    Energy Technology Data Exchange (ETDEWEB)

    Rusch, H; Rembges, D; Papke, H; Rennenberg, H [Fraunhofer Inst. for Atmospheric Environmental Research, Garmisch-Partenkirchen (Germany)

    1996-12-31

    Methane and nitrous oxide are radiatively active trace gases. This accounts for approximately 20 % of the total anticipated greenhouse effect. The atmospheric mixing ratio of both gases has increased significantly during the last decades at a rate of 0.25 % yr{sup -l} for N{sub 2}O and a rate of 1 % yr{sup -1} for CH{sub 4}. Whether this increase is caused by enhanced biogenic production of both gases or is due to decreased global sinks, has not been definitely elucidated. Soils are an important source of methane and nitrous oxide. Natural wetlands, e.g., have a similar global source strength of methane as rice paddies. On the other hand, well aerated grasslands have been shown to be a sink for atmospheric methane due to methane oxidation. Nitrous oxide is emitted by a wide range of soil types. Its rate of emission is strongly enhanced by nitrogen fertilization. In the present study, fluxes of methane and nitrous oxide were determined in a lake border ecosystem along a toposequence from reed to dry pasture. The aim of this study was to characterize the influence of soil type, land use and season on the flux rates of these greenhouse gases. (author)

  11. 75 FR 14081 - Mandatory Reporting of Greenhouse Gases: Minor Harmonizing Changes to the General Provisions

    Science.gov (United States)

    2010-03-24

    ... (subpart NN): (A) All fractionators. (B) All local natural gas distribution companies. Industrial greenhouse gas suppliers (subpart OO): (A) All producers of industrial greenhouse gases. (B) Importers of industrial greenhouse gases with annual bulk imports of N2O, fluorinated GHG, and CO2 that in combination are...

  12. Per capita emissions of greenhouse gases and international trade

    International Nuclear Information System (INIS)

    Karman, D.; Baptiste, S.

    1994-01-01

    The role played by international trade in Canada's emissions of greenhouse gases is investigated. Data used in the study include Environment Canada greenhouse gas emission estimates for 1990, a Statistics Canada input-output model linking greenhouse gas emissions to economic activity in different sectors, and monetary statistics on imports and exports. Subject to some simplifying assumptions, it is estimated that nearly 20% of Canada's greenhouse gas emissions can be attributed to the production of commodities destined for export to other countries. If the same greenhouse gas emission intensities are assumed for Canada's imports, the greenhouse gas emissions due to Canada's net trade is nearly 7% of the 660 megatonnes of CO 2 equivalent emissions for 1990. Commodities from natural resource exploitation head the list of greenhouse gas emissions attributed to international trade, as expected from their large export volumes and large greenhouse gas emission intensities. 4 refs., 1 fig

  13. Greenhouse effect of chlorofluorocarbons and other trace gases

    Science.gov (United States)

    Hansen, James; Lacis, Andrew; Prather, Michael

    1989-01-01

    A comparison is made of the radiative (greenhouse) forcing of the climate system due to changes of atmospheric chlorofluorocarbons and other trace gases. It is found that CFCs, defined to include chlorofluorocarbons, chlorocarbons, and fluorocarbons, now provide about one-quater of current annual increases in anthropogenic greenhouse climate forcing. If the growth rates of CFC production in the early 1970s had continued to the present, current annual growth of climate forcing due to CFCs would exceed that due to CO2.

  14. Greenhouse gases emission from municipal waste management: The role of separate collection.

    Science.gov (United States)

    Calabrò, Paolo S

    2009-07-01

    The municipal solid waste management significantly contributes to the emission in the atmosphere of greenhouse gases (e.g. CO(2), CH(4), N(2)O) and therefore the management process from collection to treatment and disposal has to be optimized in order to reduce these emissions. In this paper, starting from the average composition of undifferentiated municipal solid waste in Italy, the effect of separate collection on greenhouse gases emissions from municipal waste management has been assessed. Different combinations of separate collection scenarios and disposal options (i.e. landfilling and incineration) have been considered. The effect of energy recovery from waste both in landfills and incinerators has also been addressed. The results outline how a separate collection approach can have a significant effect on the emission of greenhouse gases and how wise municipal solid waste management, implying the adoption of Best Available Technologies (i.e. biogas recovery and exploitation system in landfills and energy recovery system in Waste to Energy plants), can not only significantly reduce greenhouse gases emissions but, in certain cases, can also make the overall process a carbon sink. Moreover it has been shown that separate collection of plastic is a major issue when dealing with global warming relevant emissions from municipal solid waste management.

  15. Greenhouse gas emissions associated with direct energy inputs for a warmwater low-salinity recirculating aquaculture systems

    Science.gov (United States)

    Greenhouse gases (GHGs) are gases that trap heat in the atmosphere. These gases include carbon dioxide (CO2), methane (CH3), nitrous oxide (N2O), and fluorinated gases. Some of these gases occur naturally and some are created by human activities which can increase their concentrations. The most comm...

  16. How to (really) reduce the greenhouse gases releases

    International Nuclear Information System (INIS)

    Masurel, J.; Frot, J.

    2009-01-01

    Based on the last 2008 GIEC report, 'Sauvons le Climat' presupposes the character essentially anthropic of the climatic change and concludes to the requirement to divide by four, between now and 2050, the releases of greenhouse gases of the OECD countries. The world energetic balance is composed, for 80% of carbonaceous energies: petroleum, coal and natural gas. At the world-wide level, the preoccupations of the energetic resources and those of climate protection go therefore hand in hand. It is the same thing for the European Union but not for France whose carbonaceous energies part is only of 50%. That is to say, in France, an energy savings has only one chance of two to improve its energetic independence and to protect the climate. Especially for France, 'Sauvons le Climat' gives then here some advices to really reduce the greenhouse gases releases. (O.M.)

  17. The greenhouse effect gases; Les gaz a effet de serre

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-06-15

    This road-map proposes by the Group Total aims to inform the public on the greenhouse effect gases. It presents the greenhouses effect as a key component of the climate system, the impacts of the human activity, the foreseeable consequences of global warming, the Kyoto protocol and Total commitment in the domain. (A.L.B.)

  18. 76 FR 22825 - Mandatory Reporting of Greenhouse Gases: Petroleum and Natural Gas Systems

    Science.gov (United States)

    2011-04-25

    ... Reporting of Greenhouse Gases: Petroleum and Natural Gas Systems AGENCY: Environmental Protection Agency... Subpart W: Petroleum and Natural Gas Systems of the Greenhouse Gas Reporting Rule. As part of the... greenhouse gas emissions for the petroleum and natural gas systems source category of the greenhouse gas...

  19. Biological processes for mitigation of greenhouse gases

    Energy Technology Data Exchange (ETDEWEB)

    Benemann, John R. [California Univ., Dept. of Plant and Microbial Biology, Berkeley, CA (United States)

    1999-07-01

    Biological processes driven by photosynthesis cycle through the atmosphere well over an order of magnitude more CO{sub 2} than is currently emitted from the combustion of fossils fuels. Already human activities control and appropriate almost half the primary photosynthetic productivity of the planet. Better management of natural and man-made ecosystems affords many opportunities for mitigation of greenhouse gases, through sink enhancements, source reduction and substitution of fossil fuels with biofuels. Biofuels can be recovered from most organic wastes, from agricultural and forestry residues, and from biomass produced solely for energy use. However, the currently low costs of fossil fuels limits the market for biofuels. Accounting for the greenhouse mitigation value of biofuels would significantly increase their contribution to world fuel suppliers, estimated to be currently equivalent to about 15% of fossil fuel usage. Another limiting factor in expanding the use of biofuels is the relatively low solar energy conversion efficiencies of photosynthesis. Currently well below 1% of solar energy is converted into biomass energy even by intensive agricultural or forestry systems, with peak conversion efficiencies about 2 to 3% for sugar cane or microalgae cultures. One approach to increase photosynthetic efficiencies, being developed at the University of California Berkeley, is to reduce the amount of light-gathering chlorophyll in microalgae and higher plants. This would reduce mutual shading and also increase photosynthetic efficiencies under full sunlight intensities. Estimates of the potential of photosynthetic greenhouse mitigation processes vary widely. However, even conservative estimates for biofuels substituting for fossil fuels project the potential to reduce a large fraction of current increases in atmospheric CO{sub 2} levels. Biofuels production will require integration with existing agronomic, forestry and animal husbandry systems, and improved

  20. Increased greenhouse effect substantiated through measurements

    International Nuclear Information System (INIS)

    Skartveit, Arvid

    2001-01-01

    The article presents studies on the greenhouse effect which substantiates the results from satellite measurements during the period 1970 - 1997. These show an increased effect due to increase in the concentration of the climatic gases CO 2 , methane, CFC-11 and CFC-12 in the atmosphere

  1. Human footprints on greenhouse gas fluxes in cryogenic ecosystems

    Science.gov (United States)

    Karelin, D. V.; Goryachkin, S. V.; Zamolodchikov, D. G.; Dolgikh, A. V.; Zazovskaya, E. P.; Shishkov, V. A.; Kraev, G. N.

    2017-12-01

    Various human footprints on the flux of biogenic greenhouse gases from permafrost-affected soils in Arctic and boreal domains in Russia are considered. Tendencies of significant growth or suppression of soil CO2 fluxes change across types of human impact. Overall, the human impacts increase the mean value and variance of local soil CO2 flux. Human footprint on methane exchange between soil and atmosphere is mediated by drainage. However, all the types of human impact suppress the sources and increase sinks of methane to the land ecosystems. N2O flux grew under the considered types of human impact. Based on the results, we suggest that human footprint on soil greenhouse gases fluxes is comparable to the effect of climate change at an annual to decadal timescales.

  2. Coal and the greenhouse effect: strategies for the future

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, K M [Australian Coal Association, Sydney, NSW (Australia)

    1991-07-01

    A number of gases, including carbon dioxide, methane, water vapour, nitrous oxide, ozone and chlorofluorocarbons are transparent to incoming short-wave radiation, but are relatively opaque to outgoing longwave radiation. Variations in the concentration of these gases in the troposphere can alter the thermal balance of the earth's atmosphere. Outgoing terrestrial radiation which would otherwise escape to space, is trapped within the inner layer of the atmosphere, resulting in a potential warming and the greenhouse effect. It is estimated that at present greenhouse gases other than carbon dioxide, contribute about 50% to the greenhouse effect. However, in the future, the contribution made by gases other than CO{sub 2} will be become greater. Greenhouse gases arise from a wide range of sources and their escalating increase is largely related to an increase in the world's population, and the standard of living of many areas as well as changes in lifestyle. The effect of increasing man-made greenhouse gases in the troposphere is unknown, but it is proposed that it may increase temperature and may modify climate, agricultural response and land use. The facts and uncertainties relating to potential greenhouse warming are examined. Man-generated emissions are quantified and their source identified. Coal's contribution worldwide is examined in detail and is shown to be small, being about 10% of man-made greenhouse gases. Strategies for minimising emissions, having maximum potential for reduction, with minimum impact on man are suggested. 16 refs., 1 fig., 3 tabs.

  3. High accuracy Primary Reference gas Mixtures for high-impact greenhouse gases

    Science.gov (United States)

    Nieuwenkamp, Gerard; Zalewska, Ewelina; Pearce-Hill, Ruth; Brewer, Paul; Resner, Kate; Mace, Tatiana; Tarhan, Tanil; Zellweger, Christophe; Mohn, Joachim

    2017-04-01

    Climate change, due to increased man-made emissions of greenhouse gases, poses one of the greatest risks to society worldwide. High-impact greenhouse gases (CO2, CH4 and N2O) and indirect drivers for global warming (e.g. CO) are measured by the global monitoring stations for greenhouse gases, operated and organized by the World Meteorological Organization (WMO). Reference gases for the calibration of analyzers have to meet very challenging low level of measurement uncertainty to comply with the Data Quality Objectives (DQOs) set by the WMO. Within the framework of the European Metrology Research Programme (EMRP), a project to improve the metrology for high-impact greenhouse gases was granted (HIGHGAS, June 2014-May 2017). As a result of the HIGHGAS project, primary reference gas mixtures in cylinders for ambient levels of CO2, CH4, N2O and CO in air have been prepared with unprecedented low uncertainties, typically 3-10 times lower than usually previously achieved by the NMIs. To accomplish these low uncertainties in the reference standards, a number of preparation and analysis steps have been studied and improved. The purity analysis of the parent gases had to be performed with lower detection limits than previously achievable. E.g., to achieve an uncertainty of 2•10-9 mol/mol (absolute) on the amount fraction for N2O, the detection limit for the N2O analysis in the parent gases has to be in the sub nmol/mol domain. Results of an OPO-CRDS analyzer set-up in the 5µm wavelength domain, with a 200•10-12 mol/mol detection limit for N2O, will be presented. The adsorption effects of greenhouse gas components at cylinder surfaces are critical, and have been studied for different cylinder passivation techniques. Results of a two-year stability study will be presented. The fit-for-purpose of the reference materials was studied for possible variation on isotopic composition between the reference material and the sample. Measurement results for a suit of CO2 in air

  4. Emission estimates for some acidifying and greenhouse gases and options for their control in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Pipatti, R. [VTT Energy, Espoo (Finland). Energy Systems

    1998-11-01

    This thesis presents estimates and options for control of anthropogenic ammonia (NH{sub 3}), methane (CH{sub 4}), nitrous oxide (N{sub 2}O) and some halocarbon emissions in Finland. Ammonia is an air pollutant which contributes to both acidification and nitrogen eutrophication of ecosystems. Its emissions are mainly caused by livestock manure. In Finland the anthropogenic emissions of NH{sub 3} have been estimated to be approximately 44 Gg in 1985 and 43 Gg in 1990. In the 1990`s the emissions have declined due to the reduced number of cattle and voluntary implementation of emission reducing measures. The impact of NH{sub 3} emissions on acidification is serious but in Finland it is less than the impact of the other acidifying gases sulphur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}). All three gases and their transformation products are transported by the atmosphere up to distances of hundreds or even more than a thousand kilometres. NH{sub 3} emissions can be reduced with relatively cost-effective measures and the measures can partly replace the implementation of more costly abatement measures on SO{sub 2} and NO{sub x} emissions needed to lower the acidifying deposition in Finland. The other gases studied in this thesis are greenhouse gases. Some of the gases also deplete stratospheric ozone. Finnish anthropogenic CH{sub 4} emissions have been estimated to be around 250 Gg per year during the 1990`s. The emissions come mainly from landfills and agricultural sources (enteric fermentation and manure). The significance of other CH{sub 4} sources in Finland is minor. The potential to reduce the Finnish CH{sub 4} emissions is estimated to be good. Landfill gas recovery offers an option to reduce the emissions significantly at negligible cost if the energy produced can be utilised in electricity and/or heat production. Measures directed at reducing the emissions from livestock manure management are more costly, and the achievable reduction in the emissions

  5. Projection of greenhouse gases and air pollutants 2011-2015

    International Nuclear Information System (INIS)

    Verdonk, M.; Daniels, B.

    2011-05-01

    This report outlines the expected greenhouse gas emissions (mainly CO2 but also methane and nitrous oxide) and air pollutants in the period 2011 up to and including 2015. Attention is paid to whether or not the Netherlands will comply with the mandatory European and international regulations. [nl

  6. Trace Gases, CO2, Climate, and the Greenhouse Effect.

    Science.gov (United States)

    Aubrecht, Gordon J., II

    1988-01-01

    Reports carbon dioxide and other trace gases can be the cause of the Greenhouse Effect. Discusses some effects of the temperature change and suggests some solutions. Included are several diagrams, graphs, and a table. (YP)

  7. Robust IR Remote Sensing Technique of the Total Column of Trace Gases Including Carbon Dioxide and Methane

    Science.gov (United States)

    Georgieva, E. M.; Heaps, W. S.

    2011-01-01

    methane very suddenly further exacerbating climate change [2]. Last year our group began a joint effort with Johns Hopkins Applied Physics Laboratory to investigate the possibility of developing a small unmanned aerial vehicle (UAV) equipped to measure greenhouse gases-particularly methane. Although we are targeting our system for smaller UAV's the instrument will be directly applicable to missions involving larger NASA UAV's such as Global Hawk or even on missions utilizing manned aircraft. Because of its small size, inherent ruggedness and simplicity some version of our proposed instrument may find a role as a satellite instrument for NASA or NOAA.

  8. Mechanisms of impact of greenhouse gases on the Earth's ozone layer in the Polar Regions

    Science.gov (United States)

    Zadorozhny, Alexander; Dyominov, Igor

    A numerical 2-D zonally averaged interactive dynamical radiative-photochemical model of the atmosphere including aerosol physics is used to examine the impact of the greenhouse gases CO2, CH4, and N2O on the future long-term changes of the Earth's ozone layer, in particular on its expected recovery after reduction of anthropogenic discharges of chlorine and bromine compounds into the atmosphere. The model allows calculating self-consistently diabatic circu-lation, temperature, gaseous composition of the troposphere and stratosphere at latitudes from the North to South Poles, as well as distribution of sulphate aerosol particles and polar strato-spheric clouds (PSCs) of types I and II. The scenarios of expected changes of the anthropogenic pollutants for the period from 1980 through 2050 are taken from Climate Change 2001. The processes, which determine the influence of anthropogenic growth of atmospheric abun-dance of the greenhouse gases on the long-term changes of the Earth's ozone layer in the Polar Regions, have been studied in details. Expected cooling of the stratosphere caused by increases of greenhouse gases, most importantly CO2, essentially influences the ozone layer by two ways: through temperature dependencies of the gas phase reaction rates and through enhancement of polar ozone depletion via increased PSC formation. The model calculations show that a weak-ness in efficiencies of all gas phase catalytic cycles of the ozone destruction due to cooling of the stratosphere is a dominant mechanism of the impact of the greenhouse gases on the ozone layer in Antarctic as well as at the lower latitudes. This mechanism leads to a significant acceleration of the ozone layer recovery here because of the greenhouse gases growth. On the contrary, the mechanism of the impact of the greenhouse gases on the ozone through PSC modification be-gins to be more effective in Arctic in comparison with the gas phase mechanism in springs after about 2020, which leads to retard

  9. Agriculture and greenhouse gases emissions reduction; Agriculture et reduction des emissions de gaz a effet de serre

    Energy Technology Data Exchange (ETDEWEB)

    Leguet, B.

    2005-09-15

    In France, the agriculture is the third sector of greenhouse gases emitter. Meanwhile since 1990 this sector poorly reduces its greenhouse gases. It is necessary to find mechanisms which allow the valorization of emissions reduction. In this framework the author presents the specificities of the greenhouse gases emissions of the agricultural sector, the possible incentives of emissions reduction, the reduction projects in France and abroad. (A.L.B.)

  10. NF ISO 14064-1 Greenhouse gases. Part 1: specifications and guidance at the organization level for quantification and reporting of greenhouse gas emissions and removals

    International Nuclear Information System (INIS)

    2005-01-01

    This document describes methodology for quantification, monitoring of greenhouse gas as well as for drafting of inventory report for organisms. Thus it suggests a method for inventory declarations for organism greenhouse gas and provides support for the monitoring and the management of their emission. It provides the terms and definitions, the principles, the greenhouse gases inventory design, development and components, the greenhouse inventory quality management, the reporting of greenhouse gases and the organization role in verification activities. (A.L.B.)

  11. Greenhouse gas emissions inventory for photovoltaic and wind systems in Switzerland

    International Nuclear Information System (INIS)

    Dones, R.; Frischknecht, R.

    1997-01-01

    The paper provides a detailed comparative data on greenhouse gases emissions like methane and carbon dioxide from various energy sources including hydro power, wind power, solar power and fossil fuel power plants

  12. NF ISO 14064-2. Greenhouse gases. Part 2: specifications and guidance at the project level for quantification, monitoring and reporting of greenhouse gas emission reductions or removal enhancements

    International Nuclear Information System (INIS)

    2005-01-01

    This document describes methodology for quantification, monitoring and reporting of activities intended to cause greenhouse gas emissions and reductions at projects level (activity modifying the conditions identified in a baseline scenario, intended to reduce emissions or to increase the removal of greenhouse gases). Thus it suggests a method for the declarations of inventory of projects greenhouse gases and provides support for the monitoring and the management of emissions. It provides terms and definitions, principles, the introduction to greenhouse gases projects and the requirements for greenhouse gas projects. (A.L.B.)

  13. Climate change. The first national inventory of greenhouse gas emissions by sources and removals by sinks. Final report

    International Nuclear Information System (INIS)

    1994-01-01

    The structure of the present greenhouse gas inventory report follows the order established in the R evised 1996 IPCC Guidelines-Greenhouse Gas Inventory Workbook, volume 2 , which has identified six major economic sectors, as follows: Energy, industrial processes, solvent and other product use, agriculture, land use change and forestry and waste. These guidelines have considered the following greenhouse gases: carbon dioxide, carbon monoxide, nitrogen oxides, nitrous oxide, sulfur dioxide, methane, non methane volatile organic compounds, hydrofluorocarbons, perfluorocarbons and sulfur hexafluoride. It should be noted that the protocol developed for the United Nations framework convention on climate change in the conference of parties 3, held in Kyoto on December 10, 1997 has determined six greenhouse gases to be controlled: CH 4 , CO 2 , N 2 O, HF C, PFC, S F 6 . This report summaries pictures of all important results obtained by the National Inventory team:The emitted amount of each greenhouse in all sectors in Lebanon. Tables and charts have been developed to show the contributions of various sectors to total emissions of gases in Lebanon

  14. Change in the atmospheric concentration of greenhouse gases

    International Nuclear Information System (INIS)

    GARREC, Jean-Pierre

    2000-01-01

    With the constant increase in industrial and agricultural activities since the beginning of the 20. Century, human societies have altered the chemical composition of the atmosphere both in their immediate vicinity and further afar. The most preoccupying problem today is the increase in the so-called greenhouse gases (CO 2 , CH 4 , N 2 O, CFC, O 3 ). Indeed, these pollutant gases generally have long life cycles and consequently have for the first time produced a change in the composition of the atmosphere on a global scale inducing deferred effects such as a likely change in the earth's climate. (author)

  15. Measurement methods to assess methane production of individual dairy cows in a barn

    NARCIS (Netherlands)

    Wu, L.

    2016-01-01

    Abstract

    Mitigation of methane production from dairy cows is critical to reduce the dairy industry’s contribution to the production of greenhouse gases. None of current used methane measurement methods are flawless and application of the methods is limited to assess the

  16. The economics of controlling stock pollutants: An efficient strategy for greenhouse gases

    International Nuclear Information System (INIS)

    Falk, I.; Mendelsohn, R.

    1993-01-01

    Optimal control theory is applied to develop an efficient strategy to control stock pollutants such as greenhouse gases and hazardous waste. The optimal strategy suggests that, at any time, the marginal costs of abatement should be equated with the present value of the marginal damage of timely unabated emission. The optimal strategy calls for increasingly tight abatement over time as the pollutant stock accumulates. The optimal policy applied to greenhouse gases suggest moderate abatement efforts, at present, with the potential for much greater future efforts. 15 refs., 2 tabs

  17. 75 FR 18575 - Mandatory Reporting of Greenhouse Gases: Injection and Geologic Sequestration of Carbon Dioxide

    Science.gov (United States)

    2010-04-12

    ... suppliers, industrial gas suppliers, and direct emitters of GHGs. The rule does not require the control of... Part II Environmental Protection Agency 40 CFR Part 98 Mandatory Reporting of Greenhouse Gases... CFR Part 98 [EPA-HQ-OAR-2009-0926; FRL-9131-2] RIN 2060-AP88 Mandatory Reporting of Greenhouse Gases...

  18. Manure management for greenhouse gas mitigation

    DEFF Research Database (Denmark)

    Petersen, Søren O; Blanchard, M.; Chadwick, D.

    2013-01-01

    Ongoing intensification and specialisation of livestock production lead to increasing volumes of manure to be managed, which are a source of the greenhouse gases (GHGs) methane (CH4) and nitrous oxide (N2O). Net emissions of CH4 and N2O result from a multitude of microbial activities in the manure...

  19. Global Mitigation of Non-CO2 Greenhouse Gases - Data Annexes

    Data.gov (United States)

    U.S. Environmental Protection Agency — Marginal abatement curves (MAC) can be downloaded as data annexes to the Global Mitigation of Non-CO2 Greenhouse Gases report. This data allows for improved...

  20. Methane leakage in natural gas operations

    International Nuclear Information System (INIS)

    Jennervik, A.

    1992-01-01

    The world gas industry is efficient in conservation of natural gas within its systems. As the influence of methane as an infra-red absorbent gas has been more widely recognized, the considerations of methane's greenhouse effect has become vitally important to gas companies around the world. The industry is universally environmentally conscious. natural gas transmission and distribution companies want to maintain their image as suppliers of clean fuel. Further reductions in methane leakage --- particularly in older distribution systems --- can, should and will be pursued. Unfortunately, there has been little exchange of views on methane leakages between commentators on environmental matters and gas companies and organizations. There is absolutely no need for the industry to avoid the issue of greenhouse gases. Without industry involvement, the environmental debate concerning fossil fuels could lead to selective interpretation of scientific views and available evidence. Companies and authorities would be presented with confusing, contradictory evidence on which to base policy approaches and regulations

  1. Dissolved greenhouse gases (nitrous oxide and methane) associated with the natural iron-fertilized Kerguelen region (KEOPS 2 cruise) in the Southern Ocean

    Science.gov (United States)

    Farías, L.; Florez-Leiva, L.; Besoain, V.; Fernández, C.

    2014-08-01

    The concentrations of greenhouse gases (GHGs) like nitrous oxide (N2O) and methane (CH4) were measured in the Kerguelen Plateau Region (KPR), an area with annual microalgal bloom caused by natural Fe fertilization, which may stimulate microbes involved in GHG cycling. This study was carried out during the KEOPS 2 cruise during the austral spring of 2011. Two transects were sampled along and across the KRP, the north-south (N-S) transect (46-51° S, 72° E meridian) and the west-east (W-E) transect (66-75° E, 48.3° S latitude), both associated with the presence of a plateau, polar fronts and other mesoscale features. The W-E transect had N2O levels ranging from equilibrium (105%) to light supersaturation (120%) with respect to the atmosphere. CH4 levels fluctuated dramatically, with intense supersaturations (120-970%) in areas close to the coastal waters of Kerguelen Island and in the polar front (PF). There, Fe and nutrient fertilization seem to promote high total chlorophyll a (TChl a) levels. The distribution of both gases was more homogenous in the N-S transect, but CH4 peaked at southeastern stations of the KPR (A3 stations), where phytoplankton bloom was observed. Both gases responded significantly to the patchy distribution of particulate matter as Chl a, stimulated by Fe supply by complex mesoscale circulation. While CH4 appears to be produced mainly at the pycnoclines, N2O seems to be consumed superficially. Air-sea fluxes for N2O (from -10.5 to 8.65, mean 1.71 μmol m-2d-1), and for CH4 (from 0.32 to 38.1, mean 10.07 μmol m-2d-1) reflected sink and source behavior for N2O and source behavior for CH4, with considerable variability associated with a highly fluctuating wind regime and, in the case of CH4, due to its high superficial levels that had not been reported before in the Southern Ocean and may be caused by an intense microbial CH4 cycling.

  2. Emissions of nitrous oxide and methane from surface and ground waters in Germany

    International Nuclear Information System (INIS)

    Hiessl, H.

    1993-01-01

    The paper provides a first estimation of the contribution of inland freshwater systems (surface waters and ground waters) to the emission of the greenhouse gases nitrous oxide and methane in Germany. These amounts are compared to other main sources for the emission of nitrous oxide and methane. (orig.) [de

  3. Moisture effects on greenhouse gases generation in nitrifying gas-phase compost biofilters.

    Science.gov (United States)

    Maia, Guilherme D N; Day, George B; Gates, Richard S; Taraba, Joseph L; Coyne, Mark S

    2012-06-01

    Gas-phase compost biofilters are extensively used in concentrated animal feeding operations to remove odors and, in some cases, ammonia from air sources. The expected biochemical pathway for these predominantly aerobic systems is nitrification. However, non-uniform media with low oxygen levels can shift biofilter microbial pathways to denitrification, a source of greenhouse gases. Several factors contribute to the formation of anoxic/anaerobic zones: media aging, media and particle structure, air velocity distribution, compaction, biofilm thickness, and moisture content (MC) distribution. The present work studies the effects of media moisture conditions on ammonia (NH(3)) removal and greenhouse gas generation (nitrous oxide, N(2)O and methane, CH(4)) for gas-phase compost biofilters subject to a 100-day controlled drying process. Continuous recordings were made for the three gases and water vapor (2.21-h sampling cycle, each cycle consisted of three gas species, and water vapor, for a total of 10,050 data points). Media moisture conditions were classified into three corresponding media drying rate (DR) stages: Constant DR (wetter media), falling DR, and stable-dry system. The first-half of the constant DR period (0-750 h; MC=65-52%, w.b.) facilitated high NH(3) removal rates, but higher N(2)O generation and no CH(4) generation. At the drier stages of the constant DR (750-950 h; MC=52-48%, w.b.) NH(3) removal remained high but N(2)O net generation decreased to near zero. In the falling DR stage (1200-1480 h; MC=44-13%) N(2)O generation decreased, CH(4) increased, and NH(3) was no longer removed. No ammonia removal or greenhouse gas generation was observed in the stable-dry system (1500-2500 h; MC=13%). These results indicate that media should remain toward the drier region of the constant DR (in close proximity to the falling DR stage; MC=50%, approx.), to maintain high levels of NH(3) removal, reduced levels of N(2)O generation, and nullify levels of CH(4

  4. Hydrogen production by catalytic processing of renewable methane-rich gases

    Energy Technology Data Exchange (ETDEWEB)

    Muradov, Nazim; Smith, Franklyn; T-Raissi, Ali [Florida Solar Energy Center, University of Central Florida, Cocoa, FL 32922-5703 (United States)

    2008-04-15

    Biomass-derived methane-rich gases such as landfill gas (LFG), biogas and digester gas are promising renewable resources for near-future production of hydrogen. The technical and economical feasibility of hydrogen production via catalytic reforming of LFG and other methane-rich gases is evaluated in this paper. The thermodynamic equilibrium calculations and experimental measurements of reformation of methane-rich CH{sub 4}-CO{sub 2} mixtures over Ni-based catalyst were conducted. The problems associated with the catalyst deactivation due to carbon lay down and effects of steam and oxygen on the process sustainability were explored. Two technological approaches distinguished by the mode of heat input to the endothermic process (i.e., external vs autothermal) were modeled using AspenPlus trademark chemical process simulator and validated experimentally. A 5 kW{sub th} pilot unit for hydrogen production from LFG-mimicking CH{sub 4}-CO{sub 2} mixture was fabricated and operated. A preliminary techno-economic assessment indicates that the liquid hydrogen production costs are in the range of 3.00-7.00 per kilogram depending upon the plant capacity, the process heat input option and whether or not carbon sequestration is included in the process. (author)

  5. 40 CFR 86.1818-12 - Greenhouse gas emission standards for light-duty vehicles, light-duty trucks, and medium-duty...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Greenhouse gas emission standards for... Complete Otto-Cycle Heavy-Duty Vehicles § 86.1818-12 Greenhouse gas emission standards for light-duty... group of six greenhouse gases: Carbon dioxide, nitrous oxide, methane, hydrofluorocarbons...

  6. Greenhouse effect gases: reduction challenges and accounting methods

    International Nuclear Information System (INIS)

    Dumergues, Laurent

    2012-01-01

    In this article, the author first proposes an overview of strategic challenges related to the reduction of greenhouse gas emissions. He indicates and discusses the various economic consequences of climate change. These consequences can be environmental (issues ranging from a loss of biodiversity to agriculture), social (from climate refugees to tourism), and economic (from climate disasters to insurance). He focuses on the issue of energy (oil at the base of our economy, carbon contents) and discusses competition issues (an always more demanding regulation, and unavoidable practices). In the second part, he proposes an overview of methods of accounting of greenhouse effect gases, and discusses how to perform an emission inventory

  7. Factors Affecting Mitigation of Methane Emission from Ruminants: Management Strategies

    Directory of Open Access Journals (Sweden)

    Afshar Mirzaei-Aghsaghali

    2015-06-01

    Full Text Available Nowadays, greenhouse gas emission which results in elevating global temperature is an important subject of worldwide ecological and environmental concern. Among greenhouse gases, methane is considered a potent greenhouse gas with 21 times more global warming potential than carbon dioxide. Worldwide, ruminant livestock produce about 80 million metric tons of methane each year, accounting for about 28% of global emissions from human related activities. Therefore it is impelling animal scientists to finding solutions to mitigate methane emission from ruminants. It seems that solutions can be discussed in four topics including: nutrition (feeding, biotechnology, microbiology and management strategies. We have already published the first review article on feeding strategies. In the current review, management strategies such as emphasizing on animals - type and individual variability, reducing livestock numbers, improving animal productivity and longevity as well as pasture management; that can be leads to decreasing methane production from ruminant animal production are discussed.

  8. Performance Verification of GOSAT-2 FTS-2 Simulator and Sensitivity Analysis for Greenhouse Gases Retrieval

    Science.gov (United States)

    Kamei, A.; Yoshida, Y.; Dupuy, E.; Hiraki, K.; Matsunaga, T.

    2015-12-01

    The GOSAT-2, which is scheduled for launch in early 2018, is the successor mission to the Greenhouse gases Observing Satellite (GOSAT). The FTS-2 onboard the GOSAT-2 is a Fourier transform spectrometer, which has three bands in the near to short-wavelength infrared (SWIR) region and two bands in the thermal infrared (TIR) region to observe infrared light reflected and emitted from the Earth's surface and atmosphere with high-resolution spectra. Column amounts and vertical profiles of major greenhouse gases such as carbon dioxide (CO2) and methane (CH4) are retrieved from acquired radiance spectra. In addition, the FTS-2 has several improvements from the FTS onboard the GOSAT: 1) added spectral coverage in the SWIR region for carbon monoxide (CO) retrieval, 2) increased signal-to-noise ratio (SNR) for all bands, 3) extended range of along-track pointing angles for sunglint observations, 4) intelligent pointing to avoid cloud contamination. Since 2012, we have been developing a software tool, which is called the GOSAT-2 FTS-2 simulator, to simulate spectral radiance data that will be acquired by the GOSAT-2 FTS-2. The objective of it is to analyze/optimize data with respect to the sensor specification, the parameters for Level 1 processing, and the improvement of Level 2 retrieval algorithms. It consists of six components: 1) overall control, 2) sensor carrying platform, 3) spectral radiance calculation, 4) Fourier transform module, 5) Level 1B (L1B) processing, and 6) L1B data output. More realistic and faster simulations have been made possible by the improvement of details about sensor characteristics, the sophistication of data processing and algorithms, the addition of various observation modes, the use of surface and atmospheric ancillary data, and the speed-up and parallelization of radiative transfer code. This simulator is confirmed to be working properly from the reproduction of GOSAT FTS L1B data depends on the ancillary data. We will summarize the

  9. Energy efficiency and greenhouse gases

    International Nuclear Information System (INIS)

    Hamburg, A.; Martins, A.; Pesur, A.; Roos, I.

    1996-01-01

    Estonia's energy balance for 1990 - 1994 is characterized by the dramatic changes in the economy after regaining independence in 1991. In 1990 - 1993, primary energy supply decreased about 1.9 times. The reasons were a sharp decrease in exports of electric energy and industrial products, a steep increase in fuel prices and the transition from the planned to a market-oriented economy. Over the same period, the total amount of emitted greenhouse gases decreased about 45%. In 1993, the decrease in energy production and consumption stopped, and in 1994, a moderate increase occurred (about 6%), which is a proof stabilizing economy. Oil shale power engineering will remain the prevailing energy resource for the next 20 - 25 years. After stabilization, the use of oil shale will rise in Estonia's economy. Oil shale combustion in power plants will be the greatest source of greenhouse gases emissions in near future. The main problem is to decrease the share of CO 2 emissions from the decomposition of carbonate part of oil shale. This can be done by separating limestone particles from oil shale before its burning by use of circulating fluidized bed combustion technology. Higher efficiency of oil shale power plants facilitates the reduction of CO 2 emissions per generated MWh electricity considerably. The prognoses for the future development of power engineering depend essentially on the environmental requirements. Under the highly restricted development scenario, which includes strict limitations to emissions (CO 2 , SO 2 , thermal waste) and a severe penalty system, the competitiveness of nuclear power will increase. The conceptual steps taken by the Estonian energy management should be in compliance with those of neighboring countries, including the development programs of the other Baltic states

  10. Methane-bomb natural gas

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    About 50% of the so-called 'greenhouse-effect' is not caused by CO 2 , but by more dangerous gases, among them is methane. Natural gas consists to about 98% of methane. In Austria result about 15% of the methane emissions from offtake, storage, transport (pipelines) and distribution from natural gas. A research study of the Research Centre Seibersdorf points out that between 2.5% and 3.6% of the employed natural gas in Austria emits. The impact of this emitted methane is about 29 times worse than the impact of CO 2 (caused for examples by petroleum burning). Nevertheless the Austrian CO 2 -commission states that an increasing use of natural gas would decrease the CO 2 -emissions - but this statement is suspected to be based on wrong assumptions. (blahsl)

  11. Inventory of greenhouse gases emissions from gasoline and diesel ...

    African Journals Online (AJOL)

    Emissions from fossil fuel combustion are of global concern due to their negative effects on public health and environment. This paper is an inventory of the greenhouse gases (GHGs) released into the environment through consumption of fuels (gasoline and diesel) in Nigeria from 1980 to 2014. The fuel consumption data ...

  12. Global Anthropogenic Emissions of Non-CO2 Greenhouse Gases 1990-2020

    Data.gov (United States)

    U.S. Environmental Protection Agency — The data in these Appendices to the Global Anthropogenic Emissions of Non-CO2 Greenhouse Gases (1990-2020) report provide historical and projected estimates of...

  13. Impact of a global warming on biospheric sources of methane and its climatic consequences

    Science.gov (United States)

    Hameed, S.; Cess, R. D.

    1980-01-01

    Most of atmospheric methane originates by bacterial processes in anaerobic environments within the soil which are found to become more productive with increases in ambient temperature. A warming of climate, due to increasing levels of industrial gases resulting from fossil fuel burning, is thus likely to increase methane abundance within the atmosphere. This may lead to further heating of the atmosphere, since both methane and ozone (which is generated in the troposphere from reactions of methane) have greenhouse effects. This feedback mechanism has been explored with the use of a coupled climate-chemical model of the troposphere, by the calculation of the impact of the predicted global warming due to increased emissions of carbon dioxide and other industrial gases on the biospheric sources of methane.

  14. Emission of greenhouse gases 1990-2010. Trends and driving forces

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-03-01

    Emissions of greenhouse gases in Norway from 1990-2010 - trends and driving forces, a report that presents emission trends in Norway with the analysis of the main drivers and trends, and a review and analysis of the effectiveness of implemented measures.(Author)

  15. Assessing the DICE model: uncertainty associated with the emission and retention of greenhouse gases

    International Nuclear Information System (INIS)

    Kaufmann, R.K.

    1997-01-01

    Analysis of the DICE model indicates that it contains unsupported assumptions, simple extrapolations, and mis-specifications that cause it to understate the rate at which economic activity emits greenhouse gases and the rate at which the atmosphere retains greenhouse gases. The model assumes a world population that is 2 billion people lower than the 'base case' projected by demographers. The model extrapolates a decline in the quantity of greenhouse gases emitted per unit of economic activity that is possible only if there is a structural break in the economic and engineering factors have determined this ratio over the last century. The model uses a single equation to simulate the rate at which greenhouse gases accumulate in the atmosphere. The forecast for the airborne fraction generated by this equation contradicts forecasts generated by models that represent the physical and chemical processes which determine the movement of carbon from the atmosphere to the ocean. When these unsupported assumptions, simple extrapolations, and misspecifications are remedied with simple fixes, the economic impact of global climate change increases several fold. Similarly, these remedies increase the impact of uncertainty on estimates for the economic impact of global climate change. Together, these results indicate that considerable scientific and economic research is needed before the threat of climate change can be dismissed with any degree of certainty. 23 refs., 3 figs

  16. Energy utilization and greenhouse-gas emissions: Transportation sector, topical report

    International Nuclear Information System (INIS)

    Darrow, K.G.

    1992-06-01

    The objective of the report is to compare the emissions of greenhouse gases for alternative end-use technologies in the transportation sector. Scientists assert that global warming is occurring and will continue to occur as a result of increasing concentrations of certain gases in the atmosphere. Carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) are the focus of this analysis because they are believed to cause three-fourths of the global warming effect and because energy production and use are a significant source of these emissions. Greenhouse gas emissions in the energy sector occur during energy production, conversion, transportation and end-use. This analysis compares alternative transportation sector fuel/technology choices in terms of their total fuel-cycle emissions of greenhouse gases. The emphasis of this report is on the end use comparison. The fuel-cycle emissions comparison was developed in a companion report

  17. Assessment of the greenhouse gases in Mexico: Importance of the electric sector; Inventario de gases de invernadero en Mexico: Importancia del sector electrico

    Energy Technology Data Exchange (ETDEWEB)

    Sheinbaum Pardo, Claudia [Instituto de Ingenieria, UNAM, Mexico, D. F. (Mexico)

    1997-12-31

    In this paper are presented the principal results of the various studies on energy end uses developed by the Grupo de Energia y Ambiente del Instituto de Ingenieria de la Universidad Nacional Autonoma de Mexico (UNAM Group of Energy and Environment) for years 1987 and 1993, emphasizing on the emissions originated by the generation of electricity and for the following greenhouse effect gases: carbon dioxide (CO{sub 2}), carbon monoxide (CO), nitrogen oxides (NOx) and methane (CH{sub 4}). Also, a comparison is presented among Mexico and other Latin America countries based on statistics of OLADE (Latin American Organization of Energy) [Espanol] En este trabajo se presentan los principales resultados de estudios diversos sobre usos finales de energia desarrollados por el Grupo de Energia y Ambiente del Instituto de Ingenieria de la Universidad Nacional Autonoma de Mexico (UNAM) para los anos 1987 y 1993, poniendo enfasis en las emisiones debidas a la generacion de electricidad y para los siguientes gases de efecto invernadero: bioxido de carbono (CO{sub 2}), monoxido de carbono (CO), oxidos de nitrogeno (NOx) y metano (HC{sub 4}). Asi mismo se presenta una comparacion entre Mexico y otros paises de Latinoamerica basado en estadisticas de la Organizacion Latinoamericana de Energia

  18. Assessment of the greenhouse gases in Mexico: Importance of the electric sector; Inventario de gases de invernadero en Mexico: Importancia del sector electrico

    Energy Technology Data Exchange (ETDEWEB)

    Sheinbaum Pardo, Claudia [Instituto de Ingenieria, UNAM, Mexico, D. F. (Mexico)

    1996-12-31

    In this paper are presented the principal results of the various studies on energy end uses developed by the Grupo de Energia y Ambiente del Instituto de Ingenieria de la Universidad Nacional Autonoma de Mexico (UNAM Group of Energy and Environment) for years 1987 and 1993, emphasizing on the emissions originated by the generation of electricity and for the following greenhouse effect gases: carbon dioxide (CO{sub 2}), carbon monoxide (CO), nitrogen oxides (NOx) and methane (CH{sub 4}). Also, a comparison is presented among Mexico and other Latin America countries based on statistics of OLADE (Latin American Organization of Energy) [Espanol] En este trabajo se presentan los principales resultados de estudios diversos sobre usos finales de energia desarrollados por el Grupo de Energia y Ambiente del Instituto de Ingenieria de la Universidad Nacional Autonoma de Mexico (UNAM) para los anos 1987 y 1993, poniendo enfasis en las emisiones debidas a la generacion de electricidad y para los siguientes gases de efecto invernadero: bioxido de carbono (CO{sub 2}), monoxido de carbono (CO), oxidos de nitrogeno (NOx) y metano (HC{sub 4}). Asi mismo se presenta una comparacion entre Mexico y otros paises de Latinoamerica basado en estadisticas de la Organizacion Latinoamericana de Energia

  19. Genomic selection for methane emission

    DEFF Research Database (Denmark)

    de Haas, Yvette; Pryce, Jennie E; Wall, Eileen

    2016-01-01

    Climate change is a growing area of international concern, and it is well established that the release of greenhouse gases (GHG) is a contributing factor. Of the various GHG produced by ruminants, enteric methane (CH4 ) is the most important contributor. One mitigation strategy is to reduce methane...... emission through genetic selection. Our first attempt used beef cattle and a GWAS to identify genes associated with several CH4 traits in Angus beef cattle. The Angus population consisted of 1020 animals with phenotypes on methane production (MeP), dry matter intake (DMI), and weight (WT). Additionally......, two new methane traits: residual genetic methane (RGM) and residual phenotypic methane (RPM) were calculated by adjusting CH4 for DMI and WT. Animals were genotyped using the 800k Illumina Bovine HD Array. Estimated heritabilities were 0.30, 0.19 and 0.15 for MeP, RGM and RPM respectively...

  20. The contribution of direct energy use for livestock breeding to the greenhouse gases emissions of Cyprus

    International Nuclear Information System (INIS)

    Kythreotou, Nicoletta; Tassou, Savvas A.; Florides, Georgios

    2011-01-01

    This paper presents a methodology for the estimation of the contribution of direct energy use to the greenhouse gases emissions of cattle, pig and poultry breeding in Cyprus. The energy consumption was estimated using the factors of 2034 MJ/cow, 2182 MJ/sow and 0.002797 MJ/bird. The greenhouse gases emissions for each animal species and energy source were estimated using emission factor of each greenhouse gas according to fuel type as proposed by the IPCC 2006 guidelines and for electricity according to national verified data from the Electricity Authority of Cyprus. Livestock breeding in Cyprus consumes electricity, diesel oil and LPG. The results obtained, show that the emissions from energy use in livestock breeding contribute 16% to the total agricultural energy emissions. Agricultural energy emissions contribute 0.7% to the total energy greenhouse gases (GHG) emissions. The three species of animal considered contribute 3% to their total livestock breeding emissions when compared with enteric fermentation and manure management, of which 2.6% is CO 2 . These results agree with the findings in available literature. The contribution of direct energy use in the greenhouse gases emissions of livestock breeding could be further examined with the influence of anaerobic digestion to the emissions. -- Highlights: → Energy use contribution to greenhouse gases emissions of Cyprus livestock breeding. → Energy consumption estimated using 2.034 GJ/ cow, 2.182 GJ/ sow and 2.797 kJ/ bird. →Energy use in livestock breeding found to be 16% of agriculture energy emissions. → Energy use found to be 3% of total livestock breeding emissions. → 87% of the energy emissions is CO 2 .

  1. Greenhouse gases and emissions trading

    International Nuclear Information System (INIS)

    LeBlanc, A.; Dudek, D.J.

    1993-01-01

    Global cooperation is essential in cutting greenhouse-gas emissions, say Alice LeBlanc and Daniel J. Dudek of the Environmental Defense in New York City. The first step, they continue, is agreement among nations on an overall global limit for all greenhouse gases, followed by an allocation of the global limit among nations. The agreements must contain effective reporting and monitoring systems and enforcement provisions, they add. The Framework Convention on Climate Change, signed by most nations of the world in Brazil in 1992, provides the foundation for such an agreement, LeBlanc and Dudek note. open-quotes International emissions trading is a way to lower costs and expand reduction options for the benefit of all,close quotes they contend. Under such an arrangement, an international agency would assign allowances, stated in tons of carbon dioxide. Countries would be free to buy and sell allowances, but no country could exceed, in a given year, the total allowances it holds. By emitting less than its allowed amount, a country would accumulate more allowances, which it could sell. The authors claim such a system would offer benefits to the world economy by saving billions of dollars in pollution-reduction costs while still achieving emission limits established in an international agreement

  2. Manual on measurement of methane and nitrous oxide emissions from agriculture

    International Nuclear Information System (INIS)

    1992-11-01

    Nitrous oxide and methane are two of the gases primarily responsible for atmospheric warming, or the ''greenhouse effect''. Agricultural activities are an important source of methane and nitrous oxide emissions, but quantitation of these sources is generally lacking. This manual describes techniques to evaluate current emissions from diverse animal and crop production practices and suggests methods for decreasing these emissions. Refs, figs and tabs

  3. Preparing for the regulation of greenhouse gases

    International Nuclear Information System (INIS)

    Ezekiel, R.; Wilson, P.

    2001-01-01

    The Earth is warming, and this belief is shared by the leading scientists that sit on the Intergovernmental Panel on Climate Change, where it is expected that the average surface temperature of the Earth will rise 2.5 to 10.4 degrees Fahrenheit between 1990 and 2100. It is felt that the main culprit is greenhouse gas emissions such as carbon dioxide. The Kyoto Protocol was adopted in 1992 with the aim of reducing greenhouse gas emissions to specified targets below 1990 levels by 2012. For Canada, this commitment is a reduction to 6 per cent below 1990 levels. To avoid penalizing a country that adopts greenhouse gas regulations where the neighbouring country does not follow, negotiations are being held at the international level in an attempt to keep everyone on a level playing field. The United States recently decided not to pursue a cap on greenhouse gas emissions, which could seriously jeopardize the effectiveness of the Kyoto Protocol. The authors examined what the future looks like, in terms of policy options and market-based instruments. In the next section, they discussed the preparations for the regulation of greenhouse gases. The topics reviewed were carbon taxes, command and control regulation, emissions trading, contracts and baseline protection. Canada's baseline protection initiative (BPI) process was closely examined, and identified what reductions are eligible and touched upon ownership issues. The authors concluded that it might be prudent for emitters in Canada to prepare for a variety of regulatory scenarios, as there are a number of uncertainties remaining. Emissions trading must be carefully documented

  4. Offsets : An innovative approach to reducing greenhouse gases

    International Nuclear Information System (INIS)

    Steward, B.

    1998-01-01

    One of the most innovative ways to address climate change is the use of offsets, which refers to actions taken outside of a company's operations, domestically and internationally, to reduce greenhouse gas emissions. This paper is devoted to a discussion of Suncor Energy's action plan for greenhouse gases which include offsets, and to an explanation of the reasons why offsets are fundamental to successful greenhouse gas management. Suncor Energy Inc., has developed a plan with seven elements to meet their target of stabilizing their greenhouse gas emissions at 1990 levels by year 2000. The seven elements include: (1) energy efficiency and process improvements at their oil sands facility, (2) the development of alternative and renewable sources of energy, such as ethanol blended gasolines and the use of wind turbines to generate electricity, (3) promoting environmental and economic research to develop more advanced oil and gas technology to reduce greenhouse gas emissions, (4) implementing a constructive public policy input in support of sustainable development, (5) educating employees, customers and communities on global climate change, (6) measuring and reporting the company's environmental progress, and (7) pursuing domestic and international offset opportunities such as transfer of technology to developing countries, cogeneration of energy using natural gas, energy efficiency, renewable energy sources, emission reduction purchases and forest conservation. Of these proposed measures, offsets are the critical element which could spell the difference between success and failure in managing greenhouse gas emissions and the difference between economic hardship and economic opportunity

  5. Continuous greenhouse gas measurements from ice cores

    DEFF Research Database (Denmark)

    Stowasser, Christopher

    Ice cores offer the unique possibility to study the history of past atmospheric greenhouse gases over the last 800,000 years, since past atmospheric air is trapped in bubbles in the ice. Since the 1950s, paleo-scientists have developed a variety of techniques to extract the trapped air from...... individual ice core samples, and to measure the mixing ratio of greenhouse gases such as carbon dioxide, methane and nitrous oxide in the extracted air. The discrete measurements have become highly accurate and reproducible, but require relatively large amounts of ice per measured species and are both time......-consuming and labor-intensive. This PhD thesis presents the development of a new method for measurements of greenhouse gas mixing ratios from ice cores based on a melting device of a continuous flow analysis (CFA) system. The coupling to a CFA melting device enables time-efficient measurements of high resolution...

  6. Study of greenhouse gases reduction alternatives for the exploitation of non conventional oil sands in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Bouchonneau, Deborah [Institut Francais du Petrole (IFP), Paris (France)

    2008-07-01

    High energy prices and greenhouse gases reduction represent the main challenges the current worldwide energetic situation has to face. As a consequence, paradox strategies can be highlighted: oil prices are sufficiently high to exploit non conventional oil resources, like extra heavy oils and oil sands. But the production of these resources emits larger GHG than the conventional oil path and implies other major environmental issues (water management, risks of soil pollution, destruction of the boreal forest), incompatible with the rules validated by the protocol of Kyoto. At the light of the new greenhouse gases reduction regulation framework announced by the Canadian Federal government, this work focuses on the study of greenhouse gases reduction alternatives applied to the non conventional oil sands exploitation in Canada. (author)

  7. Inventory of greenhouse effect gases in France under the united nation framework convention on climatic change; Inventaire des emissions de gaz a effet de serre en France au titre de la convention cadre des nations unies sur le changement climatique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-12-01

    The present report supplies emission data, for France and for the period 1990 - 2000 concerning all the substances involved in the increase in the greenhouse effect and covered under the United Nations' Framework Convention on Climate Change (UNFCCC). The substances are the six direct greenhouse gases covered by the Kyoto protocol: carbon dioxide (CO{sub 2}), methane (CH{sub 4}), nitrous oxide (N{sub 2}O), the two species of halogenous substances - hydro-fluorocarbons (HFCs) and per-fluorocarbons (PFCs), and sulphur hexafluoride (SF{sub 6}). Emissions of sulphur dioxide (SO{sub 2}), nitrogen oxides (NO{sub x}), non methane volatile organic compounds (NMVOCs), and carbon monoxide (CO), gases which indirectly make a significant contribution to the greenhouse effect, are reported under the Convention. For the period 1990 - 1999 as a whole, estimates provided in the previous inventories have been reviewed and corrected to take into account updated statistics, improved knowledge, possible changes in methodology and specifications contained in the guidelines (FCCC/CP/1999/7) defined by the UNFCCC on reporting for inventories of emissions, in particular the use of the Common Reporting Format (CRF). (author)

  8. The Marginal Damage Costs of Different Greenhouse Gases: An Application of FUND

    NARCIS (Netherlands)

    Waldhoff, S.; Anthoff, D.; Rose, S.; Tol, R.S.J.

    2014-01-01

    The authors use FUND 3.9 to estimate the social cost of four greenhouse gases—carbon dioxide, methane, nitrous oxide, and sulphur hexafluoride—with sensitivity tests for carbon dioxide fertilization, terrestrial feedbacks, climate sensitivity, discounting, equity weighting, and socioeconomic and

  9. Permeation, diffusion and dissolution of hydrogen isotopes, methane and inert gases through/in a tetrafluoroethylene film

    International Nuclear Information System (INIS)

    Matsuyama, M.; Miyake, H.; Ashida, K.; Watanabe, K.

    1982-01-01

    Tetrafluoroethylene (TFE) is widely used for conventional tritium handling systems such as vacuum seals, tubing and so on. We measured the permeation of the three hydrogen isotopes, methane and the inert gases through a TFE film at room temperature by means of the time-lag method in order to establish the physicochemical properties which determine the solubility and diffusivity of those gases. It was found that the diffusion constant of the inert gases changed exponentially with the heat of vaporization and the solubility was an exponential function of the Lennard-Jones force constant of the gases. On the other hand, hydrogen isotopes and methane deviated from these relations. It is concluded that chemical interactions between the solute and the solvent play an important role for the dissolution and the diffusion of these gases in TFE. (orig.)

  10. Impact on the greenhouse effect of peat mining and combustion

    International Nuclear Information System (INIS)

    Rodhe, H.; Svensson, Bo

    1995-01-01

    Combustion of peat leads to emission of carbon dioxide (CO 2 ) in the atmosphere. In addition, mining of the peat alters the environment such that the natural fluxes of CO 2 and other greenhouse gases are modified. Of particular interest is a reduction in the emission of methane (CH 4 ) in the drained parts of the mires. We estimate the total impact on the greenhouse effect of these processes. The results indicate that the decreased emission of methane from the drained mires compensates for about 15% of the CO 2 emission during the combustion of the peat. It follows that, in a time perspective of less than several hundred years, peat is comparable to a fossil fuel, as far as the contribution to the greenhouse effect is concerned. 39 refs, 1 fig, 4 tabs

  11. Methane and nitrous oxide: Methods in national emissions inventories and options for control

    Energy Technology Data Exchange (ETDEWEB)

    Van Amstel, A.R. (ed.)

    1993-07-01

    The UN Framework Convention on Climate Change signed in Rio de Janeiro, Brazil, calls for the return of anthropogenic emissions of greenhouse gases to their 1990 levels by the year 2000 in industrialized countries. It also calls for a monitoring of the emissions of greenhouse gases. It is important that reliable and scientifically credible national inventories are available for the international negotiations. Therefore a consistent methodology and a transparent reporting format is needed. The title workshop had two main objectives: (1) to support the development a methodology and format for national emissions inventories of greenhouse gases by mid 1993, as coordinated by the Science Working Group of the IPCC and the OECD; and (2) the development of technical options for reduction of greenhouse gases and the assessment of the socio-economic feasibility of these options. The workshop consisted of key note overview presentations, and two rounds of working group sessions, each covering five parallel sessions on selected sources. In the first round of each working group session the literature, existing methods for methane and nitrous oxide inventories, and the OECD/IPCC guidelines have been addressed. Then, in the second round, options for emission reductions have been discussed, as well as their socio-economic implications. The methane sources discussed concern oil and gas, coal mining, ruminants, animal waste, landfills and sewage treatment, combustion and industry, rice production and wetlands, biomass burning. The nitrous oxide sources discussed are agricultural soils and combustion and industry. The proceedings on methane comprise 16 introductory papers and 7 papers on the results of the working groups, while in part two four introductory papers and two papers on the results of working groups on nitrous oxide are presented. In part three future emission reduction policy options are discussed. Finally, 16 poster contributions are included

  12. Taxation of multiple greenhouse gases and the effects on income distribution : A case study of the Netherlands

    NARCIS (Netherlands)

    Kerkhof, Annemarie C.; Moll, Henri C.; Drissen, Eric; Wilting, Harry C.

    2008-01-01

    Current economic instruments aimed at climate change mitigation focus on CO2 emissions only, but the Kyoto Protocol refers to other greenhouse gases (GHG) as well as CO2. These are CH4, N2O, HFCs, PFCs and SF6. Taxation of multiple greenhouse gases improves the cost-effectiveness of climate change

  13. A primer for trading greenhouse gas reductions from landfills

    International Nuclear Information System (INIS)

    2000-06-01

    This introductory level primer on domestic greenhouse gas emissions trading addresses the challenge of dealing with landfill gas emissions of carbon dioxide (CO 2 ) and methane (CH 4 ). It describes the first major emissions trading projects in Canada, the Pilot Emission Reduction Trading (PERT) and the Greenhouse Gas Emission Reduction Trading (GERT) pilot projects which calculate and document the GHG emission reductions that are available from landfill sites. PERT initially focused on nitrogen oxides, volatile organic compounds, carbon monoxide, sulphur dioxide and carbon dioxide. PERT uses the Clean Air Emission Reduction Registry for its emissions trading. Canada completed negotiations of the Kyoto Protocol in December 1997 along with 160 other countries. Upon ratification, Canada will commit to reducing 6 greenhouse gases by 6 per cent below 1990 levels in the period 2008 to 2012. Canada has recognized that it must reduce domestic greenhouse gas emissions to slow global warming which leads to climate change. It has been shown that the capture and destruction of landfill gas can profoundly contribute to meeting the target. One tool that can be used to help meet the objective of reducing GHG emissions is domestic GHG emission trading, or carbon trading, as a result of landfill gas capture and flaring. Landfill gas is generally composed of equal parts of carbon dioxide and methane with some other trace emissions. Accounting for quantities of greenhouse gas emissions is done in equivalent tonnes of carbon dioxide where one tonne of methane reduction is equivalent to 21 tonnes of carbon dioxide in terms of global warming potential. Organics in landfills which lead to the generation of methane are considered to be coming from renewable biomass, therefore, the collection and combustion of landfill gas is also considered to reduce GHG emissions from landfills by 100 per cent on a global basis. Destroying landfill gases can also reduce volatile organic compounds, which

  14. Using global warming potential to compare methane and CO2 emissions

    International Nuclear Information System (INIS)

    Dufresne, J.L.

    2009-01-01

    Greenhouse gases affect the planetary heat budget. Any change of their concentration affects this budget and therefore the global mean surface temperature of the Earth. These gases have different radiative properties and different lifetimes in the atmosphere, which prevents any direct comparison of the consequences of their emissions on global warming. Almost twenty years ago, the Intergovernmental Panel on Climate Change (IPCC) proposed the global warming potential (GWP) as an index to compare the emissions of the various greenhouse gases. In a recent paper, it has been stated that the use of GWP leads to strongly underestimating the global warming due to constant methane emissions compared to that of constant CO 2 emissions. Here we show that it is not really the case. The GWP enables comparisons of global warming due to constant emissions for any prescribed period, 100 years being often used. But this comparison is not universal. For instance, the impact of methane is underestimated at the beginning of the chosen period while the impact of CO 2 is underestimated after this period

  15. Methane Ebullition in Temperate Hydropower Reservoirs and Implications for US Policy on Greenhouse Gas Emissions.

    Science.gov (United States)

    Miller, Benjamin L; Arntzen, Evan V; Goldman, Amy E; Richmond, Marshall C

    2017-10-01

    The United States is home to 2198 dams actively used for hydropower production. With the December 2015 consensus adoption of the United Nations Framework Convention on Climate Change Paris Agreement, it is important to accurately quantify anthropogenic greenhouse gas emissions. Methane ebullition, or methane bubbles originating from river or lake sediments, has been shown to account for nearly all methane emissions from tropical hydropower reservoirs to the atmosphere. However, distinct ebullitive methane fluxes have been studied in comparatively few temperate hydropower reservoirs globally. This study measures ebullitive and diffusive methane fluxes from two eastern Washington reservoirs, and synthesizes existing studies of methane ebullition in temperate, boreal, and tropical hydropower reservoirs. Ebullition comprises nearly all methane emissions (>97%) from this study's two eastern Washington hydropower reservoirs to the atmosphere. Summer methane ebullition from these reservoirs was higher than ebullition in six southeastern U.S. hydropower reservoirs, however it was similar to temperate reservoirs in other parts of the world. Our literature synthesis suggests that methane ebullition from temperate hydropower reservoirs can be seasonally elevated compared to tropical climates, however annual emissions are likely to be higher within tropical climates, emphasizing the possible range of methane ebullition fluxes and the need for the further study of temperate reservoirs. Possible future changes to the Intergovernmental Panel on Climate Change and UNFCCC guidelines for national greenhouse gas inventories highlights the need for accurate assessment of reservoir emissions.

  16. Methane Ebullition in Temperate Hydropower Reservoirs and Implications for US Policy on Greenhouse Gas Emissions

    Science.gov (United States)

    Miller, Benjamin L.; Arntzen, Evan V.; Goldman, Amy E.; Richmond, Marshall C.

    2017-10-01

    The United States is home to 2198 dams actively used for hydropower production. With the December 2015 consensus adoption of the United Nations Framework Convention on Climate Change Paris Agreement, it is important to accurately quantify anthropogenic greenhouse gas emissions. Methane ebullition, or methane bubbles originating from river or lake sediments, has been shown to account for nearly all methane emissions from tropical hydropower reservoirs to the atmosphere. However, distinct ebullitive methane fluxes have been studied in comparatively few temperate hydropower reservoirs globally. This study measures ebullitive and diffusive methane fluxes from two eastern Washington reservoirs, and synthesizes existing studies of methane ebullition in temperate, boreal, and tropical hydropower reservoirs. Ebullition comprises nearly all methane emissions (>97%) from this study's two eastern Washington hydropower reservoirs to the atmosphere. Summer methane ebullition from these reservoirs was higher than ebullition in six southeastern U.S. hydropower reservoirs, however it was similar to temperate reservoirs in other parts of the world. Our literature synthesis suggests that methane ebullition from temperate hydropower reservoirs can be seasonally elevated compared to tropical climates, however annual emissions are likely to be higher within tropical climates, emphasizing the possible range of methane ebullition fluxes and the need for the further study of temperate reservoirs. Possible future changes to the Intergovernmental Panel on Climate Change and UNFCCC guidelines for national greenhouse gas inventories highlights the need for accurate assessment of reservoir emissions.

  17. Evidence for a hydrogen-sink mechanism of (+)catechin-mediated emission reduction of the ruminant greenhouse gas methane

    NARCIS (Netherlands)

    Becker, P.M.; Wikselaar, van P.G.; Franssen, M.C.R.; Vos, de C.H.; Hall, R.D.; Beekwilder, M.J.

    2014-01-01

    Methane formation in the rumen is a major cause of greenhouse gas emission. Plant secondary compounds in ruminant diets, such as essential oils, saponins and tannins, are known to affect methane production. However, their methane-lowering properties have generally been associated with undesired side

  18. The Common Agricultural Policy and the Greenhouse Gases Emissions

    OpenAIRE

    BRITO SOARES, F.; Ronco, R.

    2005-01-01

    The evolution of greenhouse gases emissions in the EU-15 countries is accessed. While the absolute level of emissions turns out to be declining in the last thirty years in EU-15 Member States, emissions per output tend to rise. A relationship between the adoption of the Common Agricultural policy and the emissions level can be detected for Spain, Austria, Finland and Sweden.

  19. The emissions of greenhouse gases are reduced by a new proposal for trade of quotas

    International Nuclear Information System (INIS)

    2004-01-01

    The emission quota system will stimulate enterprises that do not currently have to pay a CO 2 tax and which are not subjected to any other political instrument to cut their emissions of greenhouse gases. Consequently, the main part of the total Norwegian emission of greenhouse gases will be covered by climate policy instruments. The quota system enters into force on January 1, 2005, from which date the EU quota system will also be in force. The quota system will comprise CO 2 emissions from oil refineries, iron and steel manufacturers, producers of cement, lime, glass and ceramic products, and certain energy plants. Not all firms that are obliged to obtain quotas will receive as many quotas as they are expected to need. Norway introduced a CO 2 tax in 1991 and is among the countries with the strongest and most extensive political instruments against emission of greenhouse gases

  20. MethaneSat: Detecting Methane Emissions in the Barnett Shale Region

    Science.gov (United States)

    Propp, A. M.; Benmergui, J. S.; Turner, A. J.; Wofsy, S. C.

    2017-12-01

    In this study, we investigate the new information that will be provided by MethaneSat, a proposed satellite that will measure the total column dry-air mole fraction of methane at 1x1 km or 2x2 km spatial resolution with 0.1-0.2% random error. We run an atmospheric model to simulate MethaneSat's ability to characterize methane emissions from the Barnett Shale, a natural gas province in Texas. For comparison, we perform observation system simulation experiments (OSSEs) for MethaneSat, the National Oceanic and Atmospheric administration (NOAA) surface and aircraft network, and Greenhouse Gases Observing Satellite (GOSAT). The results demonstrate the added benefit that MethaneSat would provide in our efforts to monitor and report methane emissions. We find that MethaneSat successfully quantifies total methane emissions in the region, as well as their spatial distribution and steep gradients. Under the same test conditions, both the NOAA network and GOSAT fail to capture this information. Furthermore, we find that the results for MethaneSat depend far less on the prior emission estimate than do those for the other observing systems, demonstrating the benefit of high sampling density. The results suggest that MethaneSat would be an incredibly useful tool for obtaining detailed methane emission information from oil and gas provinces around the world.

  1. Air pollution, greenhouse gases and climate change : global and regional perspectives

    Science.gov (United States)

    2009-01-01

    Greenhouse gases (GHGs) warm the surface and the atmosphere with significant implications for rainfall, retreat of glaciers and sea ice, sea level, among other factors. What is less recognized than problems with GHGs, however, is a comparably major g...

  2. Monitoring variation in greenhouse gases concentration in urban environment of Delhi.

    Science.gov (United States)

    Sahay, Samraj; Ghosh, Chirashree

    2013-01-01

    Cities across the globe are considered as major anthropogenic sources of greenhouse gases (GHG), yet very few efforts has been made to monitor ambient concentration of GHG in cities, especially in a developing country like India. Here, variations in the ambient concentrations of carbon dioxide (CO(2)) and methane (CH(4)) in residential, commercial, and industrial areas of Delhi are determined from fortnightly daytime observations from July, 2008 to March, 2009. Results indicate that the average daytime ambient concentration of CO(2) varied from 495 to 554 ppm in authorized residential areas, 503 to 621 ppm in the slums or jhuggies in the unauthorized residential areas, 489 to 582 ppm in commercial areas, and 512 to 568 ppm in industrial areas with an average of 541 ± 27 ppm. CH(4) concentration varied from 652 to 5,356 ppbv in authorized residential areas, 500 to 15,220 ppbv in the unauthorized residential areas, 921 to 11,000 ppbv in the commercial areas, and 250 to 2,550 ppbv in the industrial areas with an average of 3,226 ± 1,090 ppbv. A low mid-afternoon CO(2) concentration was observed at most of the sites, primarily due to strong biospheric photosynthesis coupled with strong vertical mixing.

  3. MAGGnet: An international network to foster mitigation of agricultural greenhouse gases

    DEFF Research Database (Denmark)

    Liebig, M.A.; Franzluebbers, A.J.; Alvarez, C.

    2016-01-01

    Research networks provide a framework for review, synthesis and systematic testing of theories by multiple scientists across international borders critical for addressing global-scale issues. In 2012, a GHG research network referred to as MAGGnet (Managing Agricultural Greenhouse Gases Network...

  4. The trade-off between short- and long-lived greenhouse gases under uncertainty and learning

    International Nuclear Information System (INIS)

    Aaheim, H. Asbjoern; Brekke, Kjell Arne; Lystad, Terje; Torvanger, Asbjoern

    2001-01-01

    To find an optimal climate policy we must balance abatement of different greenhouse gases. There is substantial uncertainty about future damages from climate change, but we will learn more over the next few decades. Gases vary in terms of how long they remain in the atmosphere, which means that equivalent pulse emissions have very different climate impacts. Such differences between gases are important in consideration of uncertainty and learning about future damages, but they are disregarded by the conventional concept of Global Warming Potential We have developed a numerical model to analyze how uncertainty and learning affect optimal emissions of both CO 2 and CH 4 . In the model, emissions of these greenhouse gases lead to global temperature increases and production losses. New information about the severity of the climate problem arrives either in 2010 or in 2020. We find that uncertainty causes increased optimal abatement of both gases, compared to the certainty case. This effect amounts to 0.08 o C less expected temperature increase by year 2200. Learning leads to less abatement for both gases since expected future marginal damages from emissions are reduced. This effect is less pronounced for the short-lived CH 4 . (author)

  5. Peat and the greenhouse effect - Comparison of peat with coal, oil, natural gas and wood

    International Nuclear Information System (INIS)

    Hillebrand, K.

    1993-01-01

    The earth's climate is effected both by natural factors and human activities. So called greenhouse gas emissions increase the increment of the temperature of the air nearby the earth's surface, due to which the social changes can be large. The increment of greenhouse gas concentration in the atmosphere is due to increasing energy consumption. About 50 % of the climatic changes are caused by increase of the CO 2 concentration in the atmosphere. Other gases, formed in the energy production, intensifying the greenhouse effect are methane and nitrous oxide. The effect of greenhouse gases is based on their ability to absorb infrared radiation coming from the earth. This presentation discusses some of the greenhouse effect caused by some peat production and utilization chains in comparison with corresponding effects of coal, oil, natural gas and wood. The instantaneous greenhouse effects and the cumulative effects of the emissions of the gases (CO 2 , CH 4 and N 2 O) during a time period has been reviewed. The greenhouse effect has been calculated as CO 2 - equivalents. (5 figs.)

  6. Recycling of greenhouse gases via methanol

    Energy Technology Data Exchange (ETDEWEB)

    Bill, A [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Eliasson, B; Kogelschatz, U [ABB Corporate Research Center, Baden-Daettwil (Switzerland)

    1997-06-01

    Greenhouse gas emissions to the atmosphere can be mitigated by using direct control technologies (capture, disposal or chemical recycling). We report on carbon dioxide and methane recycling with other chemicals, especially with hydrogen and oxygen, to methanol. Methanol synthesis from CO{sub 2} is investigated on various catalysts at moderate pressures ({<=}30 bar) and temperatures ({<=}300{sup o}C). The catalysts show good methanol activities and selectivities. The conversion of CO{sub 2} and CH{sub 4} to methanol is also studied in a silent electrical discharge at pressures of 1 to 4 bar and temperatures close to room temperature. Methanol yields are given for mixtures of CO{sub 2}/H{sub 2}, CH{sub 4}/O{sub 2} and also for CH{sub 4} and air mixtures. (author) 2 figs., 5 refs.

  7. Elements for a policy of greenhouse effect gases reduction

    International Nuclear Information System (INIS)

    2007-01-01

    In the framework of the ''Grenelle de l'environnement'' on the fight against the greenhouse effect gases, the authors aim to offer propositions and recommendations for the future energy policy. They explain the possible confusions. They discuss the economic efficiency of propositions of CO 2 emissions reduction, the actions propositions in the different sectors and the axis of research and development. (A.L.B.)

  8. International negotiations about reducing the emission of greenhouse gases

    International Nuclear Information System (INIS)

    Lepage, C.

    1999-01-01

    It is high time Europe proposed concrete actions within the framework of Kyoto negotiations. Europe should participate to negotiations actively, otherwise a non-efficient agreement could be applied. At Kyoto it was decided that licences for releasing greenhouse gases could be exchanged between countries but not between firms. The global efficiency and success of such a system requires to involve firms and polluters more directly. (A.C.)

  9. Dynamical response of Mediterranean precipitation to greenhouse gases and aerosols

    Directory of Open Access Journals (Sweden)

    T. Tang

    2018-06-01

    Full Text Available Atmospheric aerosols and greenhouse gases affect cloud properties, radiative balance and, thus, the hydrological cycle. Observations show that precipitation has decreased in the Mediterranean since the beginning of the 20th century, and many studies have investigated possible mechanisms. So far, however, the effects of aerosol forcing on Mediterranean precipitation remain largely unknown. Here we compare the modeled dynamical response of Mediterranean precipitation to individual forcing agents in a set of global climate models (GCMs. Our analyses show that both greenhouse gases and aerosols can cause drying in the Mediterranean and that precipitation is more sensitive to black carbon (BC forcing than to well-mixed greenhouse gases (WMGHGs or sulfate aerosol. In addition to local heating, BC appears to reduce precipitation by causing an enhanced positive sea level pressure (SLP pattern similar to the North Atlantic Oscillation–Arctic Oscillation, characterized by higher SLP at midlatitudes and lower SLP at high latitudes. WMGHGs cause a similar SLP change, and both are associated with a northward diversion of the jet stream and storm tracks, reducing precipitation in the Mediterranean while increasing precipitation in northern Europe. Though the applied forcings were much larger, if forcings are scaled to those of the historical period of 1901–2010, roughly one-third (31±17 % of the precipitation decrease would be attributable to global BC forcing with the remainder largely attributable to WMGHGs, whereas global scattering sulfate aerosols would have negligible impacts. Aerosol–cloud interactions appear to have minimal impacts on Mediterranean precipitation in these models, at least in part because many simulations did not fully include such processes; these merit further study. The findings from this study suggest that future BC and WMGHG emissions may significantly affect regional water resources, agricultural practices, ecosystems and

  10. Mitigation of greenhouse gases emissions impact and their influence on terrestrial ecosystem.

    Science.gov (United States)

    Wójcik Oliveira, K.; Niedbała, G.

    2018-05-01

    Nowadays, one of the most important challenges faced by the humanity in the current century is the increasing temperature on Earth, caused by a growing emission of greenhouse gases into the atmosphere. Terrestrial ecosystems, as an important component of the carbon cycle, play an important role in the sequestration of carbon, which is a chance to improve the balance of greenhouse gases. Increasing CO2 absorption by terrestrial ecosystems is one way to reduce the atmospheric CO2 emissions. Sequestration of CO2 by terrestrial ecosystems is not yet fully utilized method of mitigating CO2 emission to the atmosphere. Terrestrial ecosystems, especially forests, are essential for the regulation of CO2 content in the atmosphere and more attention should be paid to seeking the natural processes of CO2 sequestration.

  11. Emission of Harmful Gases from Poultry Farms and Possibilities of Their Reduction

    OpenAIRE

    Brouček Jan; Čermák Bohuslav

    2015-01-01

    This review is devoted to methodology that can help to assess emission of gases from poultry housings and could be used to expand the knowledge base of researchers, policymakers and farmers to maintain sustainable environment conditions for farming systems. Concentration and emission of ammonia, methane, nitrous oxide and carbon dioxide in poultry barns are discussed in this paper. Surveys of ammonia and greenhouse gases mean concentrations and emission factors in different poultry systems ar...

  12. Methane flaring: an initiative in line with the greenhouse challenge

    International Nuclear Information System (INIS)

    Greenwood, D.

    1999-01-01

    Methane is a by-product of the coalification process. Once produced, it typically remains trapped within the coal seam and the surrounding strata. High quality black coals in Australia may contain up to 20 m 3 of methane per tonne of coal. In order to mine coal safely, this gas level must be reduced. Presence of gas at the coal face is a hazard as sparks created by coal extraction machine picks may ignite the gas/air mix. Concentrations of methane between approximately 5% and 15% in air create an explosive mixture. This represents a considerable potential safety risk for underground mining personnel. In Queensland, all underground mining personnel and equipment are protected by sensors that remove electrical power from machines should the ambient methane levels exceed 1.25%. While this assists in creating a safe working environment, it also halts coal production. Normal mine ventilation air removes a significant amount of methane, however in gassy mines the ventilation air flow required to maintain methane levels below the 1.25% limit can introduce other problems. These include excess airborne dust, which can lead to respiratory issues and poor visibility. A flare was installed at Central Colliery to achieve reduction of the greenhouse gas emissions. It would also be used to burn gas flow beyond that which can be effectively utilised by power generation

  13. Estimation of methane and nitrous oxide emission from livestock and poultry in China during 1949-2003

    International Nuclear Information System (INIS)

    Zhou, J.B.; Jiang, M.M.; Chen, G.Q.

    2007-01-01

    To investigate the greenhouse gases emission from enteric fermentation and manure management of livestock and poultry industry in China, the present study presents a systematic estimation of methane and nitrous oxide emission during 1949-2003, based on the local measurement and IPCC guidelines. As far as greenhouse gases emittion is concerned among livestock swine is found to hold major position followed by goat and sheep, while among poultry chicken has the major place and is followed by duck and geese. Methane emission from enteric fermentation is estimated to have increased from 3.04 Tg in 1949 to 10.13 Tg in 2003, an averaged annual growth rate of 2.2%, and methane emission from manure management has increased from 0.16 Tg in 1949 to 1.06 Tg in 2003, an annual growth rate of 3.5%, while nitrous oxide emission from manure management has increased from 47.76 to 241.2 Gg in 2003, with an annual growth rate of 3.0%. The total greenhouse gas emission has increased from 82.01 Tg CO 2 Eq. in 1949 to 309.76 Tg CO 2 Eq. in 2003, an annual growth rate of 2.4%. The estimation of livestock methane and nitrous oxide emissions in China from 1949 to 2003 is shown to be consistent with a linear growth model, and the reduction of greenhouse gas emission is thus considered an urgent and arduous task for the Chinese livestock industry

  14. Estimation of methane and nitrous oxide emission from livestock and poultry in China during 1949-2003

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, J.B.; Jiang, M.M.; Chen, G.Q. [National Laboratory for Complex Systems and Turbulence, Department of Mechanics, Peking University, Beijing 100871 (China)

    2007-07-15

    To investigate the greenhouse gases emission from enteric fermentation and manure management of livestock and poultry industry in China, the present study presents a systematic estimation of methane and nitrous oxide emission during 1949-2003, based on the local measurement and IPCC guidelines. As far as greenhouse gases emission is concerned among livestock swine is found to hold major position followed by goat and sheep, while among poultry chicken has the major place and is followed by duck and geese. Methane emission from enteric fermentation is estimated to have increased from 3.04 Tg in 1949 to 10.13 Tg in 2003, an averaged annual growth rate of 2.2%, and methane emission from manure management has increased from 0.16 Tg in 1949 to 1.06 Tg in 2003, an annual growth rate of 3.5%, while nitrous oxide emission from manure management has increased from 47.76 to 241.2 Gg in 2003, with an annual growth rate of 3.0%. The total greenhouse gas emission has increased from 82.01 Tg CO{sub 2} Eq. in 1949 to 309.76 Tg CO{sub 2} Eq. in 2003, an annual growth rate of 2.4%. The estimation of livestock methane and nitrous oxide emissions in China from 1949 to 2003 is shown to be consistent with a linear growth model, and the reduction of greenhouse gas emission is thus considered an urgent and arduous task for the Chinese livestock industry. (author)

  15. Ozone-depleting substances and the greenhouse gases HFCs, PFCs and SF{sub 6}. Danish consumption and emissions, 2005

    Energy Technology Data Exchange (ETDEWEB)

    Sander Poulsen, T. [PlanMiljoe (Denmark)

    2007-06-15

    An evaluation of Danish consumption and emissions of ozone-depleting substances and industrial greenhouse gases has been carried out in continuation of previous evaluations, partly to fulfil Denmark's international obligations to provide information within this area and partly to follow the trend in consumption of ozone-depleting substances as well as the consumption and emissions of HFCs, PFCs and SF{sub 6}. The evaluation includes a calculation of actual emissions of HFCs, PFCs, and SF{sub 6} for 2006. In this calculation the release from stock of greenhouse gases in products has been taken into account, and adjustments have been made for imports and exports of the greenhouse gases in products. (BA)

  16. The trade-off between short- and long-lived greenhouse gases under uncertainty and learning

    Energy Technology Data Exchange (ETDEWEB)

    Aaheim, H. Asbjoern; Brekke, Kjell Arne; Lystad, Terje; Torvanger, Asbjoern

    2001-07-01

    To find an optimal climate policy we must balance abatement of different greenhouse gases. There is substantial uncertainty about future damages from climate change, but we will learn more over the next few decades. Gases vary in terms of how long they remain in the atmosphere, which means that equivalent pulse emissions have very different climate impacts. Such differences between gases are important in consideration of uncertainty and learning about future damages, but they are disregarded by the conventional concept of Global Warming Potential We have developed a numerical model to analyze how uncertainty and learning affect optimal emissions of both CO{sub 2} and CH{sub 4}. In the model, emissions of these greenhouse gases lead to global temperature increases and production losses. New information about the severity of the climate problem arrives either in 2010 or in 2020. We find that uncertainty causes increased optimal abatement of both gases, compared to the certainty case. This effect amounts to 0.08 {sup o}C less expected temperature increase by year 2200. Learning leads to less abatement for both gases since expected future marginal damages from emissions are reduced. This effect is less pronounced for the short-lived CH{sub 4}. (author)

  17. Stratospheric measurements of ozone-depleting substances and greenhouse gases using AirCores

    Science.gov (United States)

    Laube, Johannes; Leedham Elvidge, Emma; Kaiser, Jan; Sturges, Bill; Heikkinen, Pauli; Laurila, Tuomas; Hatakka, Juha; Kivi, Rigel; Chen, Huilin; Fraser, Paul; van der Veen, Carina; Röckmann, Thomas

    2017-04-01

    Retrieving air samples from the stratosphere has previously required aircraft or large balloons, both of which are expensive to operate. The novel "AirCore" technique (Karion et al., 2010) enables stratospheric sampling using weather balloons, which is much more cost effective. AirCores are long (up to 200 m) stainless steel tubes which are placed as a payload on a small balloon, can ascend to over 30 km and fill upon descent, collecting a vertical profile of the atmosphere. Retrieved volumes are much smaller though, which presents a challenge for trace gas analysis. To date, only the more abundant trace gases such as carnon dioxide (CO2) and methane (CH4) have been quantified in AirCores. Halogenated trace gases are also important greenhouse gases and many also deplete stratospheric ozone. Their concentrations are however much lower i.e. typically in the part per trillion (ppt) molar range. We here present the first stratospheric measurements of halocarbons in AirCores obtained using UEA's highly sensitive (detection limits of 0.01-0.1 ppt in 10 ml of air) gas chromatography mass spectrometry system. The analysed air originates from a Stratospheric Air Sub-sampler (Mrozek et al., 2016) which collects AirCore segments after the non-destructive CO2 and CH4 analysis. Successfully measured species include CFC-11, CFC-12, CFC-113, CFC-115, H-1211, H-1301, HCFC-22, HCFC-141b, HCFC-142b, HCFC-133a, and sulphur hexafluoride (SF6). We compare the observed mixing ratios and precisions with data obtained from samples collected during various high-altitude aircraft campaigns between 2009 and 2016 as well as with southern hemisphere tropospheric long-term trends. As part of the ERC-funded EXC3ITE (EXploring stratospheric Composition, Chemistry and Circulation with Innovative Techniques) project more than 40 AirCore flights are planned in the next 3 years with an expanded range of up to 30 gases in order to explore seasonal and interannual variability in the stratosphere

  18. Inventory of gases of greenhouse effect and mitigation options for Colombia

    International Nuclear Information System (INIS)

    Academia colombiana de ciencias exactas fisicas y naturales

    1998-01-01

    In the last years, the possibility of a global heating due to the emissions of greenhouse gases has become a true concern for the international scientific community. As a result of it created the IPCC (Intergovernmental Panel on Climate Change) and the agreement mark was approved about the climatic change of the United Nations (UNFCCC) that was subscribed by the countries in 1992 in Rio de Janeiro city in Brazil. The objective of the agreement is the stabilization of the concentrations of the gases of GEI effect in the atmosphere at a level that allows avoiding interferences anthropogenic dangerous for the climatic system. It is sought to reach this level inside a sufficiently long term to allow the natural adaptation from the ecosystems to the climatic change, guaranteeing this way the production of foods and the sustainable development. The government from Colombia subscribed the agreement mark about the climatic change of the United Nations (UNFCCC) in 1992 and the congress of the republic ratified it in 1995. The signatory countries of the agreement commit to elaborate and to publish national inventories of anthropogenic emissions of gases of greenhouse effect as well as to develop plans to reduce or to control the emissions

  19. Technological substitution options for controlling greenhouse gas emissions

    International Nuclear Information System (INIS)

    Barbier, E.B.; Burgess, J.C.; Pearce, D.W.

    1991-01-01

    This chapter is concerned with technological options for greenhouse gas substitution. The authors interpret the term substitution to exclude energy conservation/efficiency measures, investments in afforestation (sinks), and greenhouse gas removal or abatement technologies. Their working definition of greenhouse gas substitution includes (1) replacement technologies, for example, substituting a greenhouse gas technology with a nongreenhouse gas technology; and (2) reduction technologies, for example, substituting a greenhouse gas technology with an alternative technology that reduces greenhouse gas emissions. Essentially, replacement technologies involve 100 percent reduction in CO 2 ; reduction technologies involve a partial reduction in CO 2 . Of the man-made sources of greenhouse gases, energy is the most important and is expected to contribute to at least half of the global warming effect in the near future. The majority of this impact is from fossil fuel combustion as a source of carbon dioxide (CO 2 ), although fossil fuels also contribute significantly to methane (CH 4 ), to nitrous oxide (N 2 O), and to low-level ozone (O 3 ) through production of various nitrogen gases (NO x ) and carbon monoxide (CO). This study analyzes the available greenhouse gas substitutions and their costs. The authors concentrate particularly on substitutions for fossil-fuel combustion and CFC production and consumption. They conclude by summarizing the potential for greenhouse gas substitution, the cost-effectiveness of the various options and the design of incentives for substitution

  20. Voluntary reporting of greenhouse gases under Section 1605(b) of the Energy Policy Act of 1992: General Guidelines

    International Nuclear Information System (INIS)

    1994-10-01

    Because of concerns with the growing threat of global climate change from increasing emissions of greenhouse gases, Congress authorized a voluntary program for the public to report achievements in reducing those gases. This document offers guidance on recording historic and current greenhouse gas emissions, emissions reductions, and carbon sequestration. Under the Energy Policy Act (EPAct) reporters will have the opportunity to highlight specific achievements. If you have taken actions to lessen the greenhouse gas effect, either by decreasing greenhouse gas emissions or by sequestering carbon, the Department of Energy (DOE) encourages you to report your achievements under this program. The program has two related, but distinct parts. First, the program offers you an opportunity to report your annual emissions of greenhouse gases. Second, the program records your specific projects to reduce greenhouse gas emissions and increase carbon sequestration. Although participants in the program are strongly encouraged to submit reports on both, reports on either annual emissions or emissions reductions and carbon sequestration projects will be accepted. These guidelines and the supporting technical documents outline the rationale for the program and approaches to analyzing emissions and emissions reduction projects. Your annual emissions and emissions reductions achievements will be reported

  1. Biogenic emissions of greenhouse gases caused by arable and animal agriculture. Task 3. Overall biogenic greenhouse gas emissions from agriculture. National Inventories

    International Nuclear Information System (INIS)

    Hensen, A.

    1999-12-01

    The aim of the concerted action 'Biogenic Emissions of Greenhouse Gases Caused by Arable and Animal Agriculture' is to obtain an overview of the current knowledge on the emissions of greenhouse gases related to agricultural activities. This task 3 report summarises the activities that take place in the Netherlands with respect to agriculture emission inventories. This 'national' report was compiled using information from a number of Dutch groups. Therefore, from a national point of view the compilation does not contain new information. The paper can however be useful for other European partners to get an overview of how emission estimates are obtained in the Netherlands. 14 p

  2. Greenhouse gases regional fluxes estimated from atmospheric measurements

    International Nuclear Information System (INIS)

    Messager, C.

    2007-07-01

    build up a new system to measure continuously CO 2 (or CO), CH 4 , N 2 O and SF 6 mixing ratios. It is based on a commercial gas chromatograph (Agilent 6890N) which have been modified to reach better precision. Reproducibility computed with a target gas on a 24 hours time step gives: 0.06 ppm for CO 2 , 1.4 ppb for CO, 0.7 ppb for CH 4 , 0.2 ppb for N 2 O and 0.05 ppt for SF 6 . The instrument's run is fully automated, an air sample analysis takes about 5 minutes. In July 2006, I install instrumentation on a telecommunication tall tower (200 m) situated near Orleans forest in Trainou, to monitor continuously greenhouse gases (CO 2 , CH 4 , N 2 O, SF 6 ), atmospheric tracers (CO, Radon-222) and meteorological parameters. Intake lines were installed at 3 levels (50, 100 and 180 m) and allow us to sample air masses along the vertical. Continuous measurement started in January 2007. I used Mace Head (Ireland) and Gif-sur-Yvette continuous measurements to estimate major greenhouse gases emission fluxes at regional scale. To make the link between atmospheric measurements and surface fluxes, we need to quantify dilution due to atmospheric transport. I used Radon-222 as tracer (radon tracer method) and planetary boundary layer heights estimates from ECMWF model (boundary layer budget method) to parameterize atmospheric transport. In both cases I compared results to available emission inventories. (author)

  3. Hydropower may produce more greenhouse gases

    International Nuclear Information System (INIS)

    Kolshus, Hans H.; Folkestad, Tonje

    2002-01-01

    According to this article, dam projects in hydropower development may lead to increased emission of greenhouse gases and may create great inconveniences for the local community. Hence it is not without problems to sponsor such projects through the Clean Development Mechanism (CDM) of the Kyoto Protocol. In many countries the great era of hydroelectric development is over and the potential is now in the developing countries. The aim of the CDM is two-fold: sustainable development in the developing countries, and cheap reduction of greenhouse gas emission from developed nations. It has been agreed upon in the climate negotiations that it is the developing country receiving the investments that shall document that the projects conform to the goal of sustainable development of that country. The concept of sustain ability is a vague one, and it is a great challenge to make it more precise so that requirements may be posed on CDM projects. This is important as projects that are suitable from a climate point of view may have undesirable environmental or social effects, which may be in conflict with the goal of sustainable development. This also pertains to hydropower. It also appears that water reservoirs are not always as clean as has been assumed

  4. Projections of global emissions of fluorinated greenhouse gases in 2050

    Energy Technology Data Exchange (ETDEWEB)

    Gschrey, Barbara; Schwarz, Winfried [Oeko-Recherche Buero fuer Umweltforschung und -beratung GmbH, Frankfurt/Main (Germany)

    2009-11-15

    Emissions of fluorinated greenhouse gases are currently covered under the Montreal Protocol, which focuses on ozone-depleting substances such as CFCs (chlorofluorocarbons) and HCFCs (hydrochlorofluorocarbons), and under the Kyoto Protocol, which controls emissions of HFCs (hydrofluorocarbons), PFCs (perfluorocarbons) and SF{sub 6} (sulfur hexafluoride). This study bridges the gap between political regimes and their reporting systems by giving an overview of banks and emissions of all fluorinated gases in 2005, and projections of banks and emissions of fluorinated gases in 2050. The Montreal Protocol and its amendments will eventually result in the full phase out of CFCs and HCFCs. Developed countries have already completed the phase out of CFCs and will reach full phase out of HCFCs by 2020. Developing countries, in contrast, will phase out CFCs by 2010 and HCFCs by 2030. Although climate-friendly technology is available for most applications, the risk occurs that substitutes for ozone-depleting substances rely on HFCs, which cause global warming. This study determines global emissions of HFCs, PFCs and SF{sub 6} (Kyoto F-gases) in 2050 in a ''business-as-usual'' scenario. The global population is expected to increase to ca. 8.7 billion people, and high economic growth of 3.5% per year is assumed. Emissions in 2050 are quantified for each sector of application as well as for developed and developing countries based on growth rates of each sector. In 2050, total global emissions of fluorinated greenhouse gases are projected to amount to 4 GT CO{sub 2} eq. which equals ca. 5.9% of the total greenhouse gas emissions at this time. Compared to a relatively small share of F-gas emissions ranging around 1.3% of total greenhouse gas emissions in 2004, this percentage reflects an enormous increase. Relative to projected direct CO{sub 2} emissions alone, the 2050 F-gas emissions will even account for ca. 7.9%. In case of CO{sub 2} mitigation, this share

  5. Emissions of greenhouse gases from the use of transportation fuels and electricity

    International Nuclear Information System (INIS)

    DeLuchi, M.A.

    1991-11-01

    This report presents estimates of full fuel-cycle emissions of greenhouse gases from using transportation fuels and electricity. The data cover emissions of carbon dioxide (CO 2 ), methane, carbon monoxide, nitrous oxide, nitrogen oxides, and nonmethane organic compounds resulting from the end use of fuels, compression or liquefaction of gaseous transportation fuels, fuel distribution, fuel production, feedstock transport, feedstock recovery, manufacture of motor vehicles, maintenance of transportation systems, manufacture of materials used in major energy facilities, and changes in land use that result from using biomass-derived fuels. The results for electricity use are in grams of CO 2 -equivalent emissions per kilowatt-hour of electricity delivered to end users and cover generating plants powered by coal, oil, natural gas, methanol, biomass, and nuclear energy. The transportation analysis compares CO 2 -equivalent emissions, in grams per mile, from base-case gasoline and diesel fuel cycles with emissions from these alternative- fuel cycles: methanol from coal, natural gas, or wood; compressed or liquefied natural gas; synthetic natural gas from wood; ethanol from corn or wood; liquefied petroleum gas from oil or natural gas; hydrogen from nuclear or solar power; electricity from coal, uranium, oil, natural gas, biomass, or solar energy, used in battery-powered electric vehicles; and hydrogen and methanol used in fuel-cell vehicles

  6. Influence of meteorology and interrelationship with greenhouse gases (CO2 and CH4) at a sub-urban site of India

    Science.gov (United States)

    Sreenivas, G.; Mahesh, P.; Subin, J.; Kanchana, A. L.; Rao, P. V. N.; Dadhwal, V. K.

    2015-12-01

    Atmospheric greenhouse gases (GHGs) such as carbon dioxide (CO2) and methane (CH4) are important climate forcing agents due to their significant impact on the climate system. The present study brings out first continuous measurements of atmospheric GHG's using high precision Los Gatos Research's-greenhouse gas analyser (LGR-GGA) over Shadnagar, a suburban site of Central India during the period 2014. The annual mean of CO2 and CH4 over the study region is found to be 394 ± 2.92 and 1.92 ± 0.07 ppm (mean, μ ± 1 SD, σ) respectively. CO2 and CH4 showed a significant seasonal variation during the study period with maximum (minimum) CO2 observed during Pre-monsoon (Monsoon), while CH4 recorded maximum during post-monsoon and minimum in monsoon. A consistent diurnal mixing ratio of these gases is observed with high (low) during night (afternoon) hours throughout the study period. Influences of prevailing meteorology (air temperature, wind speed, wind direction and relative humidity) on GHG's have also been investigated. CO2 and CH4 showed a strong positive correlation during winter, pre-monsoon, monsoon and post-monsoon with R equal to 0.80, 0.80, 0.61 and 0.72 respectively. It implies the seasonal variations in source-sink mechanisms of CO2 and CH4. Present study also confirms implicitly the presence OH radicals as a major sink of CH4 over the study region.

  7. Greenhouse Gases Emissions from Wastewater Treatment Plants: Minimization, Treatment, and Prevention

    Directory of Open Access Journals (Sweden)

    J. L. Campos

    2016-01-01

    Full Text Available The operation of wastewater treatment plants results in direct emissions, from the biological processes, of greenhouse gases (GHG such as carbon dioxide (CO2, methane (CH4, and nitrous oxide (N2O, as well as indirect emissions resulting from energy generation. In this study, three possible ways to reduce these emissions are discussed and analyzed: (1 minimization through the change of operational conditions, (2 treatment of the gaseous streams, and (3 prevention by applying new configurations and processes to remove both organic matter and pollutants. In current WWTPs, to modify the operational conditions of existing units reveals itself as possibly the most economical way to decrease N2O and CO2 emissions without deterioration of effluent quality. Nowadays the treatment of the gaseous streams containing the GHG seems to be a not suitable option due to the high capital costs of systems involved to capture and clean them. The change of WWTP configuration by using microalgae or partial nitritation-Anammox processes to remove ammonia from wastewater, instead of conventional nitrification-denitrification processes, can significantly reduce the GHG emissions and the energy consumed. However, the area required in the case of microalgae systems and the current lack of information about stability of partial nitritation-Anammox processes operating in the main stream of the WWTP are factors to be considered.

  8. Reducing Methane Emissions: The Other Climate Change Challenge

    International Nuclear Information System (INIS)

    Dessus, Benjamin; Laponche, Bernard

    2008-08-01

    investments can often be recouped by providing a new energy service or switching away from fossil fuels. Both underestimating the effects of methane emission reductions, and the wide range of sector-related greenhouse gas emission reduction programmes and measures, lead us to reconsider whether it is appropriate to set emission reduction targets expressed in t CO_2 eq and, consequently, whether it is relevant to implement a 'global carbon market', precisely based on the use of this unit. Both the importance of the time factor to assess the respective effects of CO_2 and CH_4 emission reductions, and the extraordinary range of policies and technologies - in terms of implementing conditions and economic costs -, lead us to recommend that separate emission reduction targets be set for these two greenhouse gases and that international climate negotiators begin to draw up country-by-country priority action programmes and define arrangements for their implementation on the basis of a preliminary analysis of the largest and most easily harnessed sectoral reduction potentials

  9. Fluxes of greenhouse gases CH{sub 4}, CO{sub 2} and N{sub 2}O on some peat mining areas in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Nykaenen, H; Martikainen, P J [National Public Health Inst., Kuopio (Finland). Dept. of Biology; Silvola, J; Alm, J [Joensuu Univ. (Finland). Dept. of Biology

    1997-12-31

    The increase in concentration of greenhouse gases (CO{sub 2}, CH{sub 4} and N{sub 2}O) in atmosphere is associated with burning of fossil fuels and also changes in biogeochemistry due to land use activities. Virgin peatlands are globally important stores of carbon and sources of CH4. Peatland drainage changes the processes in carbon and nitrogen cycles responsible for the fluxes of CO{sub 2}, CH{sub 4} and N{sub 2}O. Preparing of peatlands for peat mining greatly change their biogeochemical processes. Effective drainage decreases water table and allows air to penetrate deep into peat profile. Aerobic conditions inhibit activities of anaerobic microbes, including the methanogens, whereas aerobic processes like methane oxidation are stimulated. Destruction of vegetation cover stops the carbon input to peat. In Finland the actual peat mining area is 0.05 x 106 hectares and further 0.03 x 106 hectares have been prepared or are under preparation for peat mining. The current total peatland area in the world used for mining is 0.94 x 106 ha and the area already mined is 1.15 x 106 ha. In this presentation fluxes of greenhouse gases (CH{sub 4}, CO{sub 2} and N{sub 2}O) on some mires under peat mining are reported and compared with those on natural mires and with the emissions from peat combustion. (15 refs.)

  10. Fluxes of greenhouse gases CH{sub 4}, CO{sub 2} and N{sub 2}O on some peat mining areas in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Nykaenen, H.; Martikainen, P.J. [National Public Health Inst., Kuopio (Finland). Dept. of Biology; Silvola, J.; Alm, J. [Joensuu Univ. (Finland). Dept. of Biology

    1996-12-31

    The increase in concentration of greenhouse gases (CO{sub 2}, CH{sub 4} and N{sub 2}O) in atmosphere is associated with burning of fossil fuels and also changes in biogeochemistry due to land use activities. Virgin peatlands are globally important stores of carbon and sources of CH4. Peatland drainage changes the processes in carbon and nitrogen cycles responsible for the fluxes of CO{sub 2}, CH{sub 4} and N{sub 2}O. Preparing of peatlands for peat mining greatly change their biogeochemical processes. Effective drainage decreases water table and allows air to penetrate deep into peat profile. Aerobic conditions inhibit activities of anaerobic microbes, including the methanogens, whereas aerobic processes like methane oxidation are stimulated. Destruction of vegetation cover stops the carbon input to peat. In Finland the actual peat mining area is 0.05 x 106 hectares and further 0.03 x 106 hectares have been prepared or are under preparation for peat mining. The current total peatland area in the world used for mining is 0.94 x 106 ha and the area already mined is 1.15 x 106 ha. In this presentation fluxes of greenhouse gases (CH{sub 4}, CO{sub 2} and N{sub 2}O) on some mires under peat mining are reported and compared with those on natural mires and with the emissions from peat combustion. (15 refs.)

  11. Photoacoustic Experimental System to Confirm Infrared Absorption Due to Greenhouse Gases

    Science.gov (United States)

    Kaneko, Fumitoshi; Monjushiro, Hideaki; Nishiyama, Masayoshi; Kasai, Toshio; Harris, Harold H.

    2010-01-01

    An experimental system for detecting infrared absorption using the photoacoustic (PA) effect is described. It is aimed for use at high-school level to illustrate the difference in infrared (IR) absorption among the gases contained in the atmosphere in connection with the greenhouse effect. The experimental system can be built with readily…

  12. Remote Sensing of Spatial Distributions of Greenhouse Gases in the Los Angeles Basin

    Science.gov (United States)

    Fu, Dejian; Sander, Stanley P.; Pongetti, Thomas J.; Cheung, Ross; Stutz, Jochen

    2010-01-01

    The Los Angeles air basin is a significant anthropogenic source of greenhouse gasses and pollutants including CO2, CH4, N2O, and CO, contributing significantly to regional and global climate change. Recent legislation in California, the California Global Warning Solutions Act (AB32), established a statewide cap for greenhouse gas emissions for 2020 based on 1990 emissions. Verifying the effectiveness of regional greenhouse gas emissions controls requires high-precision, regional-scale measurement methods combined with models that capture the principal anthropogenic and biogenic sources and sinks. We present a novel approach for monitoring the spatial distribution of greenhouse gases in the Los Angeles basin using high resolution remote sensing spectroscopy. We participated in the CalNex 2010 campaign to provide greenhouse gas distributions for comparison between top-down and bottom-up emission estimates.

  13. The methane emissions of the Swiss gas industry

    International Nuclear Information System (INIS)

    Xinmin, J.

    2004-01-01

    This article presents a method for the estimation of the methane emissions caused by the Swiss gas industry. Based on new data on the Swiss gas infrastructure, current emission levels are estimated for methane - one of the major greenhouse gases. The methodology and modelling used, which is based on previous studies on this topic, are discussed. Results are presented that show that the estimates provided by the current study are consistent with earlier data. Scenarios are presented that show that a steady decrease in methane emissions emanating from the Swiss gas industry's installations can be expected by the year 2012. The data used in the study and its results are presented in tabular and graphical form and commented on

  14. Energy inputs and greenhouse gases emissions in wheat production in Gorgan, Iran

    International Nuclear Information System (INIS)

    Soltani, Afshin; Rajabi, M.H.; Zeinali, E.; Soltani, Elias

    2013-01-01

    The objectives of this study were to analyze energy use and greenhouse gases (GHG) emissions in various wheat production scenarios in north eastern Iran and to identify measures to reduce energy use and GHG emissions. Three high-input, a low-input, a better crop management and a usual production scenarios were included. All activities and production processes were monitored and recorded. Averages of total energy input and output were 15.58 and 94.4 GJ ha −1 , respectively. Average across scenarios, GHG emissions of 1137 kg CO 2 -eq ha −1 and 291 kg CO 2 -eq t −1 were estimated. The key factors relating to energy use and GHG emissions were seedbed preparation and sowing and applications of nitrogen fertilizer. The better crop management production scenario required 38% lower nitrogen fertilizer (and 33% lower total fertilizer), consumed 11% less input energy and resulted in 33% more grain yield and output energy compared to the usual production scenario. It also resulted in 20% less GHG emissions per unit field area and 40% less GHG emissions per ton of grain. It was concluded that this scenario was the cleaner production scenario in terms of energy use and GHG emissions. Measures of improvement in energy use and GHG emission were identified. - Highlights: ► Wheat production scenarios were evaluated for energy use and greenhouse gases emission. ► A better crop management production scenario was the cleaner production scenario. ► Measures to reduce energy use and greenhouse gases emission were identified

  15. Use of 222Rn for estimation of greenhouse gases emissions at Russian territory

    Science.gov (United States)

    Berezina, E. V.; Elansky, N. F.

    2009-04-01

    It is well known that 222Rn is widely used as a tracer for studying different atmospheric processes including estimations of greenhouse gases emissions. Calculation of 222Rn fluxes from the soil into the atmosphere allows quantitative estimation of greenhouse gases emissions having the soil origin or sources of which are located near the surface. For accurate estimation of 222Rn fluxes detailed investigations of spatial and temporal variations of its concentrations are necessary. 222Rn concentrations data in the atmospheric surface layer over continental Russia from Moscow to Vladivostok obtained during the six TROICA (Transcontinental Observations Into the Chemistry of the Atmosphere) expeditions of the mobile laboratory along the Trans-Siberian railroad are analyzed. Spatial distribution, diurnal and seasonal variations of surface 222Rn concentrations along the Trans-Siberian railroad are investigated. According to the obtained data surface 222Rn concentration values above continental Russia vary from 0.5 to 75 Bq/m3 depending on meteorological conditions and geological features of the territory with the average value being 8.42 ± 0.10 Bq/m3. The average 222Rn concentration is maximum in the autumn expedition and minimum in the spring one. The factors mostly influencing 222Rn concentration variations are studied: surface temperature inversions, geological features of the territory, precipitations. 222Rn accumulation features in the atmospheric surface layer during night temperature inversions are analyzed. It was noted that during night temperature inversions the surface 222Rn concentration is 7 - 8 times more than the one during the nights without temperature inversions. Since atmospheric stratification determines accumulation and diurnal variations of many atmospheric pollutants as well as greenhouse gases its features are analyzed in detail. Surface temperature inversions were mainly observed from 18:00-19:00 to 06:00-07:00 in the warm season and from 16

  16. Estimates and Predictions of Methane Emissions from Wastewater in China from 2000 to 2020

    Science.gov (United States)

    Du, Mingxi; Zhu, Qiuan; Wang, Xiaoge; Li, Peng; Yang, Bin; Chen, Huai; Wang, Meng; Zhou, Xiaolu; Peng, Changhui

    2018-02-01

    Methane accounts for 20% of the global warming caused by greenhouse gases, and wastewater is a major anthropogenic source of methane. Based on the Intergovernmental Panel on Climate Change greenhouse gas inventory guidelines and current research findings, we calculated the amount of methane emissions from 2000 to 2014 that originated from wastewater from different provinces in China. Methane emissions from wastewater increased from 1349.01 to 3430.03 Gg from 2000 to 2014, and the mean annual increase was 167.69 Gg. The methane emissions from industrial wastewater treated by wastewater treatment plants (EIt) accounted for the highest proportion of emissions. We also estimated the future trend of industrial wastewater methane emissions using the artificial neural network model. A comparison of the emissions for the years 2020, 2010, and 2000 showed an increasing trend in methane emissions in China and a spatial transition of industrial wastewater emissions from eastern and southern regions to central and southwestern regions and from coastal regions to inland regions. These changes were caused by changes in economics, demographics, and relevant policies.

  17. Energy and environment - greenhouse effect. The international, european and national actions to control the greenhouse gases emissions: which accounting and which perspectives?

    International Nuclear Information System (INIS)

    2001-12-01

    The scientific knowledge concerning the climatic change justifies today immediate fight actions against the greenhouse reinforcement. This fight is based on an ambitious international device which must take into account more global challenges. At the european and national scale, the exploitation of the potential of greenhouse gases reduction must be reinforced and more specially the evolution of the life style. (A.L.B.)

  18. The challenges of reducing greenhouse gas emissions and air pollution through energy sources: evidence from a panel of developed countries.

    Science.gov (United States)

    Akhmat, Ghulam; Zaman, Khalid; Shukui, Tan; Sajjad, Faiza; Khan, Muhammad Azhar; Khan, Muhammad Zahir

    2014-06-01

    The objective of the study is to investigate the long-run relationship between climatic factors (i.e., greenhouse gas emissions, agricultural methane emissions, and industrial nitrous oxide emission), air pollution (i.e., carbon dioxide emissions), and energy sources (i.e., nuclear energy; oil, gas, and coal energy; and fossil fuel energy) in the panel of 35 developed countries (including EU-15, new EU member states, G-7, and other countries) over a period of 1975-2012. In order to achieve this objective, the present study uses sophisticated panel econometric techniques including panel cointegration, panel fully modified OLS (FMOLS), and dynamic OLS (DOLS). The results show that there is a long-run relationship between the variables. Nuclear energy reduces greenhouse gases and carbon emissions; however, the other emissions, i.e., agricultural methane emissions and industrial nitrous oxide, are still to increase during the study period. Electricity production from oil, gas, and coal sources increases the greenhouse gases and carbon emissions; however, the intensity to increase emissions is far less than the intensity to increase emissions through fossil fuel. Policies that reduce emissions of greenhouse gases can simultaneously alter emissions of conventional pollutants that have deleterious effects on human health and the environment.

  19. Sectoral emission inventories of greenhouse gases for 1990 on a per country basis as well as on 1°×1°

    NARCIS (Netherlands)

    Olivier, J.G.J.; Bouwman, A.F.; Berdowski, J.J.M.; Veldt, C.; Bloos, J.P.J.; Visschedijk, A.J.H.; Maas, C.W.M. van der; Zandveld, P.Y.J.

    1999-01-01

    A set of global greenhouse gas emission inventories has been compiled per source category for the 1990 annual emissions of the direct greenhouse gases CO2, CH4 and N2O, as well as of the indirect greenhouse gases (ozone precursors) CO, NOx and NMVOC, and of SO2. The inventories are available by

  20. Genetic implications for forest trees of increasing levels of greenhouse gases and UV-B radiation

    Science.gov (United States)

    David F. Karnosky; Kevin E. Percy; Blanka Mankovska

    2000-01-01

    Globally, the environment is changing and deteriorating as greenhouse gases such as carbon dioxide (CO2) and tropospheric ozone (03) continue to increase at a rate of about 1% per year (Keeling et al. 1995, Chameides et al. 1995). The increase in these gases is directly related to anthropogenic activities (Chameides et al...

  1. A review of greenhouse gas research in Canada

    International Nuclear Information System (INIS)

    Yundt, P.

    1995-11-01

    Greenhouse gas research programs and projects that relate to the Canadian natural gas industry were presented. Fossil fuel related emissions, primarily methane and carbon dioxide, impact on the atmospheric concentrations of the greenhouse gases. Therefore, strategies to reduce these emissions should impact on the Canadian natural gas industry. A list of 39 projects and 18 research programs of potential interest to the natural gas industry were presented in summary form. The involvement of CANMET (Canada Centre for Mineral and Energy Technology), Environment Canada, and NSERC (Natural Sciences and Engineering Research Council) in doing or sponsoring research projects directed towards greenhouse gas emission reduction was highlighted. Some potential options for member companies of the Canadian natural gas industry, to support climate change and greenhouse gas research, were outlined. 6 refs., 12 tabs

  2. Measures applicable to transportation sector in order to improve their greenhouse gas emission balance

    International Nuclear Information System (INIS)

    Lamure, C.A.

    1991-01-01

    The greenhouse effect gases emitted by transport vehicles are mainly carbon dioxide, methane and nitrogen dioxide; CO 2 emissions from transport vehicles (automobiles, aircraft) are growing and their relative importance is growing even more due to lowering of other CO 2 sources. Greenhouse gases from thermal engines are assessed as a function of engine and fuel types. Several solutions are proposed in order to reduce pollutant emissions: road traffic control (road pricing), automobile restricted utilization (speed, access areas, traffic and parking regulation), consumption regulation, collective transports (buses, mini buses), urban organization for pedestrian and bicycle transport, fuel substitution, life style modification tele-commuting, etc

  3. Impact of a global warming on biospheric sources of methane and its climatic consequences

    Energy Technology Data Exchange (ETDEWEB)

    Hameed, S; Cess, R D

    1983-01-01

    Most atmospheric methane originates by bacterial processes in anaerobic environments within the soil, which become more productive with increases in ambient temperature. A warming of the climate, due to increasing levels of industrial gases resulting from fossil fuel burning, is likely to increase methane concentrations within the atmosphere, possibly leading to further heating, since both methane and ozone (which is generated in the troposphere from reactions of methane) have greenhouse effects. Investigators explored this feedback mechanism using a coupled climate-chemical model of the troposphere, by calculating the impact of the predicted global warming due to increased emissions of carbon dioxide and other industrial gases on the biospheric sources of methane. Although they found this climate feedback to be, by itself, relatively minor, it can produce measurable increases in atmospheric CH/sub 4/ concentration, a quantity that should additionally increase as a consequence of increasing anthropogenic emissions of CO and CH/sub 4/.

  4. Further decrease of the emission of greenhouse gases in the Netherlands

    International Nuclear Information System (INIS)

    Olsthoorn, K.

    2007-01-01

    Calculations of the CBS (Statistics Netherlands) and the Netherlands Environmental Assessment Agency (MNP) show that in 2006, for the second year in a row, the emission of greenhouse gases in the Netherlands have decreased. At 208 billion kg CO2-equivalents it was 3% below the level of 1990, the base year of the Kyoto protocol.(mk) [nl

  5. Research on Ammonia and Methane Gas Emission from Composting Sewage Sludge

    Directory of Open Access Journals (Sweden)

    Eglė Zuokaitė

    2011-04-01

    Full Text Available Sewage sludge treatment and disposal are related to climate change. Composting is the oldest and most natural form of recycling organic material. Carbon dioxide (CO2, methane (CH4 and nitrous oxide (NOx are all by-products of the composting process. These three greenhouse gases contribute to global warming by absorbing radiation emitted by the earth. When the natural breakdown of organic materials is happening under optimum conditions, it produces primarily carbon dioxide, water vapour and heat. When the process is unbalanced in some way, other gases begin to be produced, some of which have objectionable odours (NH3. Odour and greenhouse gases management, then, is one of the primary motivators for optimizing our composting process. The article deals with composting sewage sludge from the experimental results of the investigation of CH4 and NH3.Article in Lithuanian

  6. Advances in data processing for open-path Fourier transform infrared spectrometry of greenhouse gases.

    Science.gov (United States)

    Shao, Limin; Griffiths, Peter R; Leytem, April B

    2010-10-01

    The automated quantification of three greenhouse gases, ammonia, methane, and nitrous oxide, in the vicinity of a large dairy farm by open-path Fourier transform infrared (OP/FT-IR) spectrometry at intervals of 5 min is demonstrated. Spectral pretreatment, including the automated detection and correction of the effect of interrupting the infrared beam, is by a moving object, and the automated correction for the nonlinear detector response is applied to the measured interferograms. Two ways of obtaining quantitative data from OP/FT-IR data are described. The first, which is installed in a recently acquired commercial OP/FT-IR spectrometer, is based on classical least-squares (CLS) regression, and the second is based on partial least-squares (PLS) regression. It is shown that CLS regression only gives accurate results if the absorption features of the analytes are located in very short spectral intervals where lines due to atmospheric water vapor are absent or very weak; of the three analytes examined, only ammonia fell into this category. On the other hand, PLS regression works allowed what appeared to be accurate results to be obtained for all three analytes.

  7. Projection of the gases emissions of greenhouse effect (GEI), Colombia 1998-2010

    International Nuclear Information System (INIS)

    Gonzalez B, Fabio; Rodriguez M, Humberto

    1999-01-01

    The Greenhouse Gas Emissions baseline scenario 1998-2010 was developed from the energy and no-energy sector projections. This study considered the same greenhouse gases as the 1990 inventory. One of the major findings is the increase in the participation share of the energy sector from 31% in 1990 up to 72% in 2010, while the non-energy sector decrease its share from 69% to 28% in the same period the total emissions increase from 167 mt/year in 1990 to 174 mt/year in 2010, an increase of only 4%

  8. Potential effects of anthropogenic greenhouse gases on avian habitats and populations in the northern Great Plains

    Science.gov (United States)

    Larson, Diane L.

    1994-01-01

    Biotic response to the buildup of greenhouse gases in Earth's atmosphere is considerably more complex than an adjustment to changing temperature and precipitation. The fertilization effect carbon dioxide has on some plants, the impact UVB radiation has on health and productivity of organisms, and the resulting changes in competitive balance and trophic structure must also be considered. The intent of this paper is to review direct and indirect effects of anthropogenic greenhouse gases on wildlife, and to explore possible effects on populations of birds and their habitats in the northern Great Plains.Many of the potential effects of increasing greenhouse gases, such as declining plant nutritional value, changes in timing of insect emergence, and fewer and saltier wetlands, foreshadow a decline in avian populations on the Great Plains. However, other possible effects such as increased drought resistance and water use efficiency of vegetation, longer growing seasons, and greater overall plant biomass promise at least some mitigation. Effects of multiple simultaneous perturbations such as can be expected under doubled carbon dioxide scenarios will require substantial basic research to clarify.

  9. Evaluation of the greenhouse effect gases (CO2, CH4, N2O) in grass land and in the grass breeding. Greenhouse effect gases prairies. report of the first part of the project December 2002

    International Nuclear Information System (INIS)

    Soussana, J.F.

    2002-12-01

    In the framework of the Kyoto protocol on the greenhouse effect gases reduction, many ecosystems as the prairies can play a main role for the carbon sequestration in soils. The conservation of french prairies and their management adaptation could allow the possibility of carbon sequestration in the soils but also could generate emissions of CO 2 and CH 4 (by the breeding animals on grass) and N 2 O (by the soils). This project aims to establish a detailed evaluation of the contribution of the french prairies to the the greenhouse effect gases flux and evaluate the possibilities of reduction of the emissions by adaptation of breeding systems. (A.L.B.)

  10. The greenhouse gases HFCs, PFCs and SF{sub 6}, Danish consumption and emissions, 2007

    Energy Technology Data Exchange (ETDEWEB)

    Sander Poulsen, T.; Bode, I.

    2009-07-01

    The objective of this project was to determine the Danish consumption and actual emissions of HFCs, PFCs, and SF{sub 6} for 2007. Further, if methodology changes are made in connection to the work on 2007 data, the data for previous years are considered and updated accordingly. The emission calculation is made in accordance with the IPCC guidelines and following the method employed in previous year calculation. The methodology includes calculation of the actual emissions of HFCs, PFCs, and SF{sub 6}. In this calculation of actual emissions, the release from stock of greenhouse gases in products has been taken into account, and adjustments have been made for imports and exports of the greenhouse gases in products. Specific emission factors are presented. (ln)

  11. Mitigation of greenhouse gases in the energy sector: an overview

    International Nuclear Information System (INIS)

    Romani, M.N.

    1998-01-01

    It is fairly well recognised that greenhouse gases (GHG) have an impact on the global climate as they trap heat in the atmosphere. With the result earth is warmed in manner similar to the glass panels of a greenhouse increase. Hence the name 'green house effect' during the last two centuries in CO/sub 2/ in the atmosphere has been reckoned at 25%, with corresponding values for CH/sub 4/ and N/sub 2/O as 100% and 10% during 1950-80. CFC concentration increased by 10%. It is estimated that the earth has warmed by 0.5 deg. C and sea level has increased by 15 cm over the last 100 years or so. The major cause has been attributed to the process of industrialization. (author)

  12. Greenhouse effect and its climatic consequences: scientific evaluation

    International Nuclear Information System (INIS)

    1994-11-01

    The greenhouse effect plays a major role in climate evolution and the increase observed at present in the concentration of the main gases causing the greenhouse effect (carbon dioxide, chlorofluorocarbons, methane) stems very definitely from human activities. The global warming potential by the various greenhouse effect gases is calculated through restrictive hypotheses. An essential element in the importance given to the growth of the greenhouse effect phenomena was the regular rise in the concentration of carbon dioxide in the atmosphere. The overall carbon cycle balance still needs to be worked out. The aerosols caused by sulfurous releases have grown. The decrease in the amount of ozone in the stratosphere brings on a slight cooling of the surface of the Earth. The local increase of tropospheric ozone brings on a slight local warming with a comparable order of magnitude. Despite all the progress that has been achieved in modelling the phenomena, we cannot affirm today that these predictions are accurate. Recent work involving analyses of the polar ice-caps along with other indications of past climates have given a better understanding of the North Atlantic climate over the past 200,000 years. 119 refs., 10 figs., 6 tabs

  13. Minimum requirements on implementation of the greenhouse gases ordinance. EU ordinance on fluorinated greenhouse gases; Mindestanforderungen zur Implementierung der F-Gase-Verordnung. Die EG-Verordnung zu fluorierten Treibhausgasen

    Energy Technology Data Exchange (ETDEWEB)

    Preisegger, E. [Solvay Fluor GmbH, Hannover (Germany). Environmental and Public Affairs Fluorochemicals

    2008-04-15

    On 4 July 2006, the EU ordinance 842/2006 on fluorinated greenhouse gases came into force. Since 4 July 2007, it has been in effect with the exception of article 9 and appendix II both of which had been effective since 4 July 2006. However, some articles of the ordinance necessitate the definition of minimum requirements resp. of form and contents by the EU commission. The minimum requirements for training and certification will provide a basis for national implementation of these measures in the EU member states. (orig.)

  14. Quantification and Controls of Wetland Greenhouse Gas Emissions

    Energy Technology Data Exchange (ETDEWEB)

    McNicol, Gavin [Univ. of California, Berkeley, CA (United States)

    2016-05-10

    Wetlands cover only a small fraction of the Earth’s land surface, but have a disproportionately large influence on global climate. Low oxygen conditions in wetland soils slows down decomposition, leading to net carbon dioxide sequestration over long timescales, while also favoring the production of redox sensitive gases such as nitrous oxide and methane. Freshwater marshes in particular sustain large exchanges of greenhouse gases under temperate or tropical climates and favorable nutrient regimes, yet have rarely been studied, leading to poor constraints on the magnitude of marsh gas sources, and the biogeochemical drivers of flux variability. The Sacramento-San Joaquin Delta in California was once a great expanse of tidal and freshwater marshes but underwent drainage for agriculture during the last two centuries. The resulting landscape is unsustainable with extreme rates of land subsidence and oxidation of peat soils lowering the surface elevation of much of the Delta below sea level. Wetland restoration has been proposed as a means to slow further subsidence and rebuild peat however the balance of greenhouse gas exchange in these novel ecosystems is still poorly described. In this dissertation I first explore oxygen availability as a control on the composition and magnitude of greenhouse gas emissions from drained wetland soils. In two separate experiments I quantify both the temporal dynamics of greenhouse gas emission and the kinetic sensitivity of gas production to a wide range of oxygen concentrations. This work demonstrated the very high sensitivity of carbon dioxide, methane, and nitrous oxide production to oxygen availability, in carbon rich wetland soils. I also found the temporal dynamics of gas production to follow a sequence predicted by thermodynamics and observed spatially in other soil or sediment systems. In the latter part of my dissertation I conduct two field studies to quantify greenhouse gas exchange and understand the carbon sources for

  15. Greenhouse gases emission from soils under major crops in Northwest India

    Energy Technology Data Exchange (ETDEWEB)

    Jain, N., E-mail: nivetajain@gmail.com [Centre for Environment Science and Climate Resilient Agriculture, ICAR-Indian Agricultural Research Institute, New Delhi 110 012 (India); Arora, P.; Tomer, R.; Mishra, Shashi Vind; Bhatia, A.; Pathak, H. [Centre for Environment Science and Climate Resilient Agriculture, ICAR-Indian Agricultural Research Institute, New Delhi 110 012 (India); Chakraborty, D. [Division of Agricultural Physics, ICAR-Indian Agricultural Research Institute, New Delhi 110 012 (India); Kumar, Vinod; Dubey, D.S.; Harit, R.C.; Singh, J.P. [Centre for Environment Science and Climate Resilient Agriculture, ICAR-Indian Agricultural Research Institute, New Delhi 110 012 (India)

    2016-01-15

    Quantification of greenhouse gases (GHGs) emissions from agriculture is necessary to prepare the national inventories and to develop the mitigation strategies. Field experiments were conducted during 2008–2010 at the experimental farm of the Indian Agricultural Research Institute, New Delhi, India to quantify nitrous oxide (N{sub 2}O), methane (CH{sub 4}), and carbon dioxide (CO{sub 2}) emissions from soils under cereals, pulses, millets, and oilseed crops. Total cumulative N{sub 2}O emissions were significantly different (P > 0.05) among the crop types. Emission of N{sub 2}O as percentage of applied N was the highest in pulses (0.67%) followed by oilseeds (0.55%), millets (0.43%) and cereals (0.40%). The emission increased with increasing rate of N application (r{sup 2} = 0.74, P < 0.05). The cumulative flux of CH{sub 4} from the rice crop was 28.64 ± 4.40 kg ha{sup −1}, while the mean seasonal integrated flux of CO{sub 2} from soils ranged from 3058 ± 236 to 3616 ± 157 kg CO{sub 2} ha{sup −1} under different crops. The global warming potential (GWP) of crops varied between 3053 kg CO{sub 2} eq. ha{sup −1} (pigeon pea) and 3968 kg CO{sub 2} eq. ha{sup −1} (wheat). The carbon equivalent emission (CEE) was least in pigeon pea (833 kg C ha{sup −1}) and largest in wheat (1042 kg C ha{sup −1}). The GWP per unit of economic yield was the highest in pulses and the lowest in cereal crops. The uncertainties in emission values varied from 4.6 to 22.0%. These emission values will be useful in updating the GHGs emission inventory of Indian agriculture. - Highlights: • Nitrous oxide, methane and carbon dioxide emission were quantified from soils under cereals, millets, oilseeds, and pulses in northwest India. • The emission of nitrous oxide ranged from 0.57–1.3 kg ha{sup −1}, methane from 27.78–29.50 kg ha{sup −1} and carbon dioxide from 2377–3910 kg ha{sup −1}. • Emission of nitrous oxide as percent of applied N was highest in pulses (0

  16. Greenhouse gases emission from soils under major crops in Northwest India

    International Nuclear Information System (INIS)

    Jain, N.; Arora, P.; Tomer, R.; Mishra, Shashi Vind; Bhatia, A.; Pathak, H.; Chakraborty, D.; Kumar, Vinod; Dubey, D.S.; Harit, R.C.; Singh, J.P.

    2016-01-01

    Quantification of greenhouse gases (GHGs) emissions from agriculture is necessary to prepare the national inventories and to develop the mitigation strategies. Field experiments were conducted during 2008–2010 at the experimental farm of the Indian Agricultural Research Institute, New Delhi, India to quantify nitrous oxide (N 2 O), methane (CH 4 ), and carbon dioxide (CO 2 ) emissions from soils under cereals, pulses, millets, and oilseed crops. Total cumulative N 2 O emissions were significantly different (P > 0.05) among the crop types. Emission of N 2 O as percentage of applied N was the highest in pulses (0.67%) followed by oilseeds (0.55%), millets (0.43%) and cereals (0.40%). The emission increased with increasing rate of N application (r 2 = 0.74, P < 0.05). The cumulative flux of CH 4 from the rice crop was 28.64 ± 4.40 kg ha −1 , while the mean seasonal integrated flux of CO 2 from soils ranged from 3058 ± 236 to 3616 ± 157 kg CO 2 ha −1 under different crops. The global warming potential (GWP) of crops varied between 3053 kg CO 2 eq. ha −1 (pigeon pea) and 3968 kg CO 2 eq. ha −1 (wheat). The carbon equivalent emission (CEE) was least in pigeon pea (833 kg C ha −1 ) and largest in wheat (1042 kg C ha −1 ). The GWP per unit of economic yield was the highest in pulses and the lowest in cereal crops. The uncertainties in emission values varied from 4.6 to 22.0%. These emission values will be useful in updating the GHGs emission inventory of Indian agriculture. - Highlights: • Nitrous oxide, methane and carbon dioxide emission were quantified from soils under cereals, millets, oilseeds, and pulses in northwest India. • The emission of nitrous oxide ranged from 0.57–1.3 kg ha −1 , methane from 27.78–29.50 kg ha −1 and carbon dioxide from 2377–3910 kg ha −1 . • Emission of nitrous oxide as percent of applied N was highest in pulses (0.67%) followed by oilseeds (0.55%). • Global warming potential (GWP) of soils under different

  17. Development and Deployment of Mobile Emissions Laboratory for Continuous Long-Term Unattended Measurements of Greenhouse Gases, Fluxes, Isotopes and Pollutants

    Science.gov (United States)

    Gardner, A.; Baer, D. S.; Owano, T. G.; Provencal, R. A.; Gupta, M.; Parsotam, V.; Graves, P.; Goldstein, A.; Guha, A.

    2010-12-01

    Development and Deployment of Mobile Emissions Laboratory for Continuous Long-Term Unattended Measurements of Greenhouse Gases, Fluxes, Isotopes and Pollutants A. Gardner(1), D. Baer (1), T. Owano (1), R. Provencal (1), V. Parsotam (1), P. Graves (1), M. Gupta (1), Allen Goldstein (2), Abhinav Guha (2) (1) Los Gatos Research, 67 East Evelyn Avenue, Suite 3, Mountain View, CA 94041-1529 (2) Department of Environmental Science, Policy, and Management, University of California at Berkeley Quantifying the Urban Fossil Fuel Plume: Convergence of top-down and bottom-up approaches (Session A54). We report on the design, development and deployment of a novel Mobile Emissions Laboratory, consisting of innovative laser-based gas analyzers, for rapid measurements of multiple greenhouse gases and pollutants. Designed for real-time mobile and stationery emissions monitoring, the Mobile Emissions Laboratory was deployed at several locations during 2010, including CalNEX 2010, Caldecott Tunnel (Oakland, CA), and Altamont Landfill (Livermore, CA), to record real-time continuous measurements of isotopic CO2 (δ13C, CO2), methane (CH4), acetylene (C2H2), nitrous oxide (N2O), carbon monoxide (CO), and isotopic water vapor (H2O; δ18O, δ2H). The commercial gas analyzers are based on novel cavity-enhanced laser absorption spectroscopy. The portable analyzers provide measurements in real time, require about 150 watts (each) of power and do not need liquid nitrogen to operate. These instruments have been applied in the field for applications that require high data rates (for eddy correlation flux), wide dynamic range (e.g., for chamber flux and other applications with concentrations that can be 10-1000 times higher than typical ambient levels) and highest accuracy (atmospheric monitoring stations). The Mobile Emissions Laboratory, which contains onboard batteries for long-term unattended measurements without access to mains power, can provide regulatory agencies, monitoring stations

  18. The global warming potential of methane reassessed with combined stratosphere and troposphere chemistry

    Science.gov (United States)

    Holmes, C. D.; Archibald, A. T.; Eastham, S. D.; Søvde, O. A.

    2017-12-01

    Methane is a direct and indirect greenhouse gas. The direct greenhouse effect comes from the radiation absorbed and emitted by methane itself. The indirect greenhouse effect comes from radiatively active gases that are produced during methane oxidation: principally O3, H2O, and CO2. Methane also suppresses tropospheric OH, which indirectly affects numerous greenhouses gases and aerosols. Traditionally, the methane global warming potential (GWP) has included the indirect effects on tropospheric O3 and OH and stratospheric H2O, with these effects estimated independently from unrelated tropospheric and stratospheric chemistry models and observations. Using this approach the CH4 is about 28 over 100 yr (without carbon cycle feedbacks, IPCC, 2013). Here we present a comprehensive analysis of the CH4 GWP in several 3-D global atmospheric models capable of simulating both tropospheric and stratospheric chemistry (GEOS-Chem, Oslo CTM3, UKCA). This enables us to include, for the first time, the indirect effects of CH4 on stratospheric O3 and stratosphere-troposphere coupling. We diagnose the GWP from paired simulations with and without a 5% perturbation to tropospheric CH4 concentrations. Including stratospheric chemistry nearly doubles the O3 contribution to CH4 GWP because of O3 production in the lower stratosphere and because CH4 inhibits Cl-catalyzed O3 loss in the upper stratosphere. In addition, stratosphere-troposphere coupling strengthens the chemical feedback on its own lifetime. In the stratosphere, this feedback operates by a CH4 perturbation thickening the stratospheric O3 layer, which impedes UV-driven OH production in the troposphere and prolongs the CH4 lifetime. We also quantify the impact of CH4-derived H2O on the stratospheric HOx cycles but these effects are small. Combining all of the above, these models suggest that the 100-yr GWP of CH4 is over 33.5, a 20% increase over the latest IPCC assessment.

  19. The greenhouse gases emissions allowances trading in the Czech Republic

    International Nuclear Information System (INIS)

    Chemisinec, Igor; Marvan, Miroslav; Tuma, Jiri

    2006-01-01

    The energy policy of the State is very important for a state development. The aim of this policy is power energy development, which is essential for improving the quality of life and standards of people's living in every country. Unfortunately, power energy development also has a negative impact; primarily on the environment. Some possible solutions exist for reduction of the power energy negative impacts. This paper deals with reduction of greenhouse gases (GHG) emissions in the Czech Republic according to the Kyoto protocol to the United Nations Framework Convention climate change. The ultimate objective of the United Nations Framework Convention on Climate Change is to achieve stabilization of greenhouse gas concentrations in the atmosphere. The GHG emissions allowances trading as one of the instruments for stabilisation of GHG emissions is described in the paper. (authors)

  20. Comparison of potential greenhouse gas emissions from disposal of MSW in sanitary landfills vs. waste-to-energy facilities

    International Nuclear Information System (INIS)

    Taylor, H.F.

    1991-01-01

    The Environmental Protection Agency (EPA) estimates the US currently generates about 160 million tons of municipal solid waste (MSW) per year, and this figure will exceed 200 million tons annually by the year 2000. About 80 percent of the MSW will be disposed of in landfills and waste-to-energy (WTE) facilities, both of which generate greenhouse gases, namely methane and carbon dioxide. This paper provides an introductory level analysis of the potential long term greenhouse gas emissions from these two MSW disposal alternatives. Carbon dioxide credits are derived for fossil fuel offset by WTE and methane emissions are converted to equivalent CO 2 emissions in order to derive a single emission figure for comparison of the greenhouse contribution of the two disposal strategies. A secondary analysis is presented to compare the net equivalent CO 2 emissions from WTE facilities to those from landfills with methane gas recovery, combustion and energy generation. The conclusion is, that for a given amount of MSW, landfilling contributes to the greenhouse effect about 10 times more than a modern Waste-To-Energy facility. Even with 50% of all landfill methane emissions recovered and converted to electricity, the contribution to the greenhouse effect by the landfill alternative is about 6 times greater than the waste-to-energy alternative

  1. Relation of Hydrogen and Methane to Carbon Monoxide in Exhaust Gases from Internal-Combustion Engines

    Science.gov (United States)

    Gerrish, Harold C; Tessmann, Arthur M

    1935-01-01

    The relation of hydrogen and methane to carbon monoxide in the exhaust gases from internal-combustion engines operating on standard-grade aviation gasoline, fighting-grade aviation gasoline, hydrogenated safety fuel, laboratory diesel fuel, and auto diesel fuel was determined by analysis of the exhaust gases. Two liquid-cooled single-cylinder spark-ignition, one 9-cylinder radial air-cooled spark-ignition, and two liquid-cooled single-cylinder compression-ignition engines were used.

  2. Emissions of greenhouse gases in Norway 1990 to 2000

    International Nuclear Information System (INIS)

    2002-01-01

    According to this article, the emissions of NOX from Norway in 1990 to 2000 were at a higher level than expected. Calculations show, however, that from 1999 to 2000 the emissions were reduced by seven percent. This is mainly due to reduced emission from shipping and road traffic. The SO 2 (sulphur dioxide) emissions have been halved since 1990 because of cleaner industrial emissions, replacement of fossil fuel with electricity, use of light oil and less sulphur in oil products and reducing agents. The emissions of NMVOCs (Non-methane volatile organic components) must be almost halved from 2000 to 2010 if Norway is to meet the requirements of the Gothenburg Protocol. The emissions of climate gases were reduced by one percent in 2000, despite the fact that the CO 2 emissions from the offshore petroleum activities increased by twelve percent. The emissions of methane and dioxins are going down. There is considerable uncertainty in the figures for dioxins. Calculations show that on the local community level the greatest emissions come from industry, road traffic, agriculture and land fills

  3. Greenhouse gases emission assessment in residential sector through buildings simulations and operation optimization

    International Nuclear Information System (INIS)

    Stojiljković, Mirko M.; Ignjatović, Marko G.; Vučković, Goran D.

    2015-01-01

    Buildings use a significant amount of primary energy and largely contribute to greenhouse gases emission. Cost optimality and cost effectiveness, including cost-optimal operation, are important for the adoption of energy efficient and environmentally friendly technologies. The long-term assessment of buildings-related greenhouse gases emission might take into account cost-optimal operation of their energy systems. This is often not the case in the literature. Long-term operation optimization problems are often of large scale and computationally intensive and time consuming. This paper formulates a bottom-up methodology relying on an efficient, but precise operation optimization approach, applicable to long-term problems and use with buildings simulations. We suggest moving-horizon short-term optimization to determine near-optimal operation modes and show that this approach, applied to flexible energy systems without seasonal storage, have satisfactory efficiency and accuracy compared with solving problem for an entire year. We also confirm it as a valuable pre-solve technique. Approach applicability and the importance of energy systems optimization are illustrated with a case study considering buildings envelope improvements and cogeneration and heat storage implementation in an urban residential settlement. EnergyPlus is used for buildings simulations while mixed integer linear programming optimization problems are constructed and solved using the custom-built software and the branch-and-cut solver Gurobi Optimizer. - Highlights: • Bottom-up approach for greenhouse gases emission assessment is presented. • Short-term moving-horizon optimization is used to define operation regimes. • Operation optimization and buildings simulations are connected with modeling tool. • Illustrated optimization method performed efficiently and gave accurate results.

  4. Greenhouse gas emissions from food and garden waste composting

    OpenAIRE

    Ermolaev, Evgheni

    2015-01-01

    Composting is a robust waste treatment technology. Use of finished compost enables plant nutrient recycling, carbon sequestration, soil structure improvement and mineral fertiliser replacement. However, composting also emits greenhouse gases (GHG) such as methane (CH₄) and nitrous oxide (N₂O) with high global warming potential (GWP). This thesis analysed emissions of CH₄ and N₂O during composting as influenced by management and process conditions and examined how these emissions could be ...

  5. Influence of Meteorology and interrelationship with greenhouse gases (CO2 and CH4) at a suburban site of India

    Science.gov (United States)

    Sreenivas, Gaddamidi; Mahesh, Pathakoti; Subin, Jose; Lakshmi Kanchana, Asuri; Venkata Narasimha Rao, Pamaraju; Dadhwal, Vinay Kumar

    2016-03-01

    Atmospheric greenhouse gases (GHGs), such as carbon dioxide (CO2) and methane (CH4), are important climate forcing agents due to their significant impacts on the climate system. The present study brings out first continuous measurements of atmospheric GHGs using high-precision LGR-GGA over Shadnagar, a suburban site of Central India during the year 2014. The annual mean CO2 and CH4 over the study region are found to be 394 ± 2.92 and 1.92 ± 0.07 ppm (μ ± 1σ) respectively. CO2 and CH4 show a significant seasonal variation during the study period with maximum (minimum) CO2 observed during pre-monsoon (monsoon), while CH4 recorded the maximum during post-monsoon and minimum during monsoon. Irrespective of the seasons, consistent diurnal variations of these gases are observed. Influences of prevailing meteorology (air temperature, wind speed, wind direction, and relative humidity) on GHGs have also been investigated. CO2 and CH4 show a strong positive correlation during winter, pre-monsoon, monsoon, and post-monsoon with correlation coefficients (Rs) equal to 0.80, 0.80, 0.61, and 0.72 respectively, indicating a common anthropogenic source for these gases. Analysis of this study reveals the major sources for CO2 are soil respiration and anthropogenic emissions while vegetation acts as a main sink, whereas the major source and sink for CH4 are vegetation and presence of hydroxyl (OH) radicals.

  6. Cost-effectiveness of greenhouse gases mitigation measures in the European agro-forestry sector: a literature survey

    International Nuclear Information System (INIS)

    Povellato, Andrea; Bosello, Francesco; Giupponi, Carlo

    2007-01-01

    Over the last 20 years, climate change has become an increasing concern for scientists, public opinions and policy makers. Due to the pervasive nature of its impacts for many important aspects of human life, climate change is likely to influence and be influenced by the most diverse policy or management choices. This is particularly true for those interventions affecting agriculture and forestry: they are strongly dependent on climate phenomena, but also contribute to climate evolution being sources of and sinks for greenhouse gases (GHG). This paper offers a survey of the existing literature assessing cost-effectiveness and efficiency of greenhouse gas mitigation strategies or the effects of broader economic reforms in the agricultural and forestry sectors. The focus is mainly on European countries. Different methodological approaches, research questions addressed and results are examined. The main findings are that agriculture can potentially provide emissions reduction at a competitive cost, mainly with methane abatement, while carbon sequestration seems more cost-effective with appropriate forest management measures. Afforestation, cropland management and bioenergy are less economically viable measures due to competition with other land use. Mitigation policies should be carefully designed either to balance costs with expected benefits in terms of social welfare. Regional variability is one of the main drawbacks to fully assess the cost-effectiveness of different measures. Integration of models to take into account both social welfare and spatial heterogeneity seems to be the frontier of the next model generation

  7. Agricultural sources of greenhouse gas emissions

    International Nuclear Information System (INIS)

    Rochette, P.

    2003-01-01

    The author described different sources of greenhouse gas emissions resulting from agricultural activities and the process by which carbon dioxide, nitrous oxide, and methane are generated on Canadian farms. The author also proposed some practices that would contribute to the reduction of greenhouse gas emissions. A brief description of the greenhouse effect was also provided with special emphasis on the agricultural sector. In 1996, the Canadian agricultural sector was responsible for approximately 10 per cent of greenhouse gas emissions in the country. Given the increase in farm animals and more intensive agricultural activities, it is estimated that greenhouse gas emissions generated by the agricultural sector will increase by 20 per cent by 2010 if current practices remain in effect. The most optimistic scenarios indicate that the agricultural sector could achieve or even exceed Canada's Kyoto Protocol commitments mainly through organic material sequestration in soils. The possibility for farmers to sell greenhouse gas credits could motivate farmers into adopting various practices that reduce emissions of greenhouse gases. However, the author indicated that the best motivation for farmers is the fact that adopting such practices would also lead to more efficient agricultural production. 5 refs., 4 figs

  8. Automatic Carbon Dioxide-Methane Gas Sensor Based on the Solubility of Gases in Water

    Directory of Open Access Journals (Sweden)

    Raúl O. Cadena-Pereda

    2012-08-01

    Full Text Available Biogas methane content is a relevant variable in anaerobic digestion processing where knowledge of process kinetics or an early indicator of digester failure is needed. The contribution of this work is the development of a novel, simple and low cost automatic carbon dioxide-methane gas sensor based on the solubility of gases in water as the precursor of a sensor for biogas quality monitoring. The device described in this work was used for determining the composition of binary mixtures, such as carbon dioxide-methane, in the range of 0–100%. The design and implementation of a digital signal processor and control system into a low-cost Field Programmable Gate Array (FPGA platform has permitted the successful application of data acquisition, data distribution and digital data processing, making the construction of a standalone carbon dioxide-methane gas sensor possible.

  9. Automatic carbon dioxide-methane gas sensor based on the solubility of gases in water.

    Science.gov (United States)

    Cadena-Pereda, Raúl O; Rivera-Muñoz, Eric M; Herrera-Ruiz, Gilberto; Gomez-Melendez, Domingo J; Anaya-Rivera, Ely K

    2012-01-01

    Biogas methane content is a relevant variable in anaerobic digestion processing where knowledge of process kinetics or an early indicator of digester failure is needed. The contribution of this work is the development of a novel, simple and low cost automatic carbon dioxide-methane gas sensor based on the solubility of gases in water as the precursor of a sensor for biogas quality monitoring. The device described in this work was used for determining the composition of binary mixtures, such as carbon dioxide-methane, in the range of 0-100%. The design and implementation of a digital signal processor and control system into a low-cost Field Programmable Gate Array (FPGA) platform has permitted the successful application of data acquisition, data distribution and digital data processing, making the construction of a standalone carbon dioxide-methane gas sensor possible.

  10. 76 FR 36472 - Mandatory Reporting of Greenhouse Gases; Changes to Provisions for Electronics Manufacturing...

    Science.gov (United States)

    2011-06-22

    ... Mandatory Reporting of Greenhouse Gases; Changes to Provisions for Electronics Manufacturing (Subpart I) To... proposing changes to the calculation and monitoring provisions in the Electronics Manufacturing portion... Category Examples of affected Category NAICS facilities Electronics Manufacturing......... 334111...

  11. Automotive industry program and strategy for control of ozone depleting substances and greenhouse gases

    International Nuclear Information System (INIS)

    Pound, F.R.; Stirling, P.J.

    1990-01-01

    This paper outlines the program status and strategy for the short and long term periods for ozone depleting substances and greenhouse gases from both stationary sources in manufacturing plants and mobile sources in motor vehicles. 5 refs

  12. A comparative analysis of methodology for inventory of greenhouse gases emissions - IPCC and CORINAIR

    International Nuclear Information System (INIS)

    Vasilev, Kh.

    1998-01-01

    The inventory of greenhouse gases (GHG) is performed by two accepted methods - CORINAIR (of EU) and IPCC (of UN Intergovernmental Panel on Climate Changes). The first one is applied only in European countries, the second is conformable to GHG emissions from all over the world. The versions IPCC-95 and CORINAIR94 are compared from theoretical and methodological point of view. In Bulgaria the version CORINAIR95 is not applied yet and the inventory analysis for 1994 uses CORINAIR90. The emissions of main GHG and gases-precursors are compared. The main elements of inventory are analyzed. The values recommended by CORINAIR94 are taken into account. A table for accordance between the two methods is used. The differences concerning transport vehicles are taken into account also. Differences between the two methods are noticed in the following directions: nomenclature of the activities emitting GHG; organization of the inventory guides; kind of the activities and technologies included. The qualitative comparison are done for energy sector and for industry separately. The results show too big differences in the volume of the emitted GHG and the reasons could be classified as methodological ones and differences in the kind and values of the emission coefficients. For their determining standard values for Eastern Europe from IPCC guide have been applied as well as data from experimental investigations. Respectively, in the method CORINAIR emission coefficients CORINAIR90 are used. The differences between the emission coefficients determined in the two methods are as big as twice or even more for CO at solid fuels, i.g. at energy production; as big as three times at NO x and up to twenty times at methane also at solid fuels. The two methods do not read the emissions of gases-precursors at some industrial processes. This disadvantage is overcome at IPCC96 and it is necessary to complement the emission coefficients in the data base, especially for gases-precursors regarding the

  13. Miniaturized Laser Heterodyne Radiometer (LHR) for Measurements of Greenhouse Gases in the Atmospheric Column

    Science.gov (United States)

    Steel, Emily; McLinden, Matthew

    2012-01-01

    This passive laser heterodyne radiometer (LHR) instrument simultaneously measures multiple trace gases in the atmospheric column including carbon dioxide (CO2) and methane (CH4), and resolves their concentrations at different altitudes. This instrument has been designed to operate in tandem with the passive aerosol sensor currently used in AERONET (an established network of more than 450 ground aerosol monitoring instruments worldwide). Because aerosols induce a radiative effect that influences terrestrial carbon exchange, simultaneous detection of aerosols with these key carbon cycle gases offers a uniquely comprehensive measurement approach. Laser heterodyne radiometry is a technique for detecting weak signals that was adapted from radio receiver technology. In a radio receiver, a weak input signal from a radio antenna is mixed with a stronger local oscillator signal. The mixed signal (beat note, or intermediate frequency) has a frequency equal to the difference between the input signal and the local oscillator. The intermediate frequency is amplified and sent to a detector that extracts the audio from the signal. In the LHR instrument described here, sunlight that has undergone absorption by the trace gas is mixed with laser light at a frequency matched to a trace gas absorption feature in the infrared (IR). Mixing results in a beat signal in the RF (radio frequency) region that can be related to the atmospheric concentration. For a one-second integration, the estimated column sensitivities are 0.1 ppmv for CO2, and Greenhouse gases Observational SATellite). The only network that currently measures CO2 and CH4 in the atmospheric column is TCCON (Total Carbon Column Observing Network), and only two of its 16 operational sites are in the United States. TCCON data is used for validation of GOSAT data, and will be used for OCO-2 validation. While these Fourier-transform spectrometers (FTS) can measure the largest range of trace gases, the network is severely limited

  14. Potential for greenhouse gas emission reductions using surplus electricity in hydrogen, methane and methanol production via electrolysis

    International Nuclear Information System (INIS)

    Uusitalo, Ville; Väisänen, Sanni; Inkeri, Eero; Soukka, Risto

    2017-01-01

    Highlights: • Greenhouse gas emission reductions using power-to-x processes are studied using life cycle assessment. • Surplus electricity use led to greenhouse gas emission reductions in all studied cases. • Highest reductions can be achieved by using hydrogen to replace fossil based hydrogen. • High reductions are also achieved when fossil transportation fuels are replaced. - Abstract: Using a life cycle perspective, potentials for greenhouse gas emission reductions using various power-to-x processes via electrolysis have been compared. Because of increasing renewable electricity production, occasionally surplus renewable electricity is produced, which leads to situations where the price of electricity approach zero. This surplus electricity can be used in hydrogen, methane and methanol production via electrolysis and other additional processes. Life cycle assessments have been utilized to compare these options in terms of greenhouse gas emission reductions. All of the power-to-x options studied lead to greenhouse gas emission reductions as compared to conventional production processes based on fossil fuels. The highest greenhouse gas emission reductions can be gained when hydrogen from steam reforming is replaced by hydrogen from the power-to-x process. High greenhouse gas emission reductions can also be achieved when power-to-x products are utilized as an energy source for transportation, replacing fossil transportation fuels. A third option with high greenhouse gas emission reduction potential is methane production, storing and electricity conversion in gas engines during peak consumption hours. It is concluded that the power-to-x processes provide a good potential solution for reducing greenhouse gas emissions in various sectors.

  15. Increased spring flooding of agricultural fields will exhibit altered production of greenhouse gases

    Science.gov (United States)

    Paul, R. F.; Smith, C. M.; Smyth, E. M.; Kantola, I. B.; DeLucia, E. H.

    2013-12-01

    The U.S. Corn Belt currently is a net source of carbon dioxide and nitrous oxide to the atmosphere, but is also a sink of methane. Among the proposed effects of climate change in the North American Midwest region is an increase in the frequency and duration of spring flooding events. This would cause ponding in fields which may change the greenhouse gas balance of the region, especially by providing a suitable anoxic environment for the proliferation of methanogens, increasing methane emissions. To determine whether methanogenesis occurs in flooded agricultural soils of the Midwest and how other gas fluxes are affected, we installed collars into the ground of a research field located in central Illinois. The control group was maintained at the same conditions as the surrounding field. Two groups of collars were sustained with water flooding the headspaces via a drip irrigation system; one treatment was analyzed for gas fluxes of CH4, N2O, and CO2 evolving from the collars, and a separate treatment of flooded collars was used for soil sampling. Comparing flooded soils versus control we measured reduced N2O fluxes (-3.12 x 10-6 × 6.8 x 10-7 g N m-2 min-1), reduced CO2 fluxes (-6.13 x 10-3 × 9.3 x 10-4 g CO2 m-2 min-1), and increased methane fluxes (+2.72 x 10-6 × 5.8 x 10-7 g CH4 m-2 min-1). After only one week of treatment the flooded soils switched from being sinks to sources of methane, which continued across the duration of the experiment. These preliminary results indicate that methanogenesis occurs in flooded agricultural fields, and suggest including regional modeling into further study. Although the global warming potential of methane is 25 times greater than CO2, our measured rates of methane production were compensated by reductions in nitrous oxide and CO2 fluxes, reducing the total 100-year horizon global warming potential of the flooded soils we studied by 64.8%. This indicates that accounting for more frequent seasonal ponding would significantly

  16. Sludge thermal oxidation processes: mineral recycling, energy impact, and greenhouse effect gases release

    Energy Technology Data Exchange (ETDEWEB)

    Guibelin, Eric

    2003-07-01

    Different treatment routes have been studied for a mixed sludge: the conventional agricultural use is compared with the thermal oxidation processes, including incineration (in gaseous phase) and wet air oxidation (in liquid phase). The interest of a sludge digestion prior to the final treatment has been also considered according to the two major criteria, which are the fossil energy utilisation and the greenhouse effect gases (CO{sub 2}, CH{sub 4}, N{sub 2}O) release. Thermal energy has to be recovered on thermal processes to make these processes environmentally friendly, otherwise their main interest is to extract or destroy micropollutants and pathogens from the carbon cycle. In case of continuous energy recovery, incineration can produce more energy than it consumes. Digestion is especially interesting for agriculture: according to these two schemes, the energy final balance can also be in excess. As to wet air oxidation, it is probably one of the best way to minimize greenhouse effect gases emission. (author)

  17. Impact of equatorial and continental airflow on primary greenhouse gases in the northern South China Sea

    International Nuclear Information System (INIS)

    Ou-Yang, Chang-Feng; Yen, Ming-Cheng; Lin, Neng-Huei; Lin, Tang-Huang; Wang, Jia-Lin; Schnell, Russell C; Lang, Patricia M; Chantara, Somporn

    2015-01-01

    Four-year ground-level measurements of the two primary greenhouse gases (carbon dioxide (CO 2 ) and methane (CH 4 )) were conducted at Dongsha Island (DSI), situated in the northern South China Sea (SCS), from March 2010 to February 2014. Their mean mixing ratios are calculated to be 396.3 ± 5.4 ppm and 1863.6 ± 50.5 ppb, with an annual growth rate of +2.19 ± 0.5 ppm yr –1 and +4.70 ± 4.4 ppb yr –1 for CO 2 and CH 4 , respectively, over the study period. Our results suggest that the Asian continental outflow driven by the winter northeast monsoon could have brought air pollutants into the northern SCS, as denoted by significantly elevated levels of 6.5 ppm for CO 2 and 59.6 ppb for CH 4 , which are greater than the marine boundary layer references at Cape Kumukahi (KUM) in the tropical northern Pacific in January. By contrast, the summertime CH 4 at DSI is shown to be lower than that at KUM by 19.7 ppb, whereas CO 2 is shown to have no differences (<0.42 ppm in July) during the same period. Positive biases of the Greenhouse Gases Observing Satellite (GOSAT) L4B data against the surface measurements are estimated to be 2.4 ± 3.4 ppm for CO 2 and 43.2 ± 36.8 ppb for CH 4 . The satellite products retrieved from the GOSAT showed the effects of anthropogenic emissions and vegetative sinks on land on a vertical profiling basis. The prevailing southeasterly winds originating from as far south as the equator or Southern Hemisphere pass through the lower troposphere in the northern SCS, forming a tunnel of relatively clean air masses as indicated by the low CH 4 mixing ratios observed on the DSI in summer. (letter)

  18. Global warming: Experimental study about the effect of accumulation of greenhouse gases in the atmosphere

    Science.gov (United States)

    Molto, Carlos; Mas, Miquel

    2010-05-01

    The project presented here was developed by fifteen year old students of the Institut Sabadell (Sabadell Secondary School. Spain). The objective of this project was to raise the students awareness' about the problem of climate change, mainly caused by the accumulation of greenhouse gases in the atmosphere. It is also intended that students use the scientific method as an effective system of troubleshooting and that they use the ICTs (Information and Communication Technologies) to elicit data and process information. To develop this project, four lessons of sixty minutes each were needed. The first lesson sets out the role of the atmosphere as an Earth's temperature regulator, highlighting the importance of keeping the levels of carbon dioxide, methane and water steam in balance. The second lesson is focused on the experimental activity that students will develop in the following lesson. In lesson two, students will present and justify their hypothesis about the experiment. Some theoretical concepts, necessary to carry out the experiment, will also be explained. The third lesson involves the core of the project, that is the experiment in the laboratory. The experiment consists on performing the atmosphere heating on a little scale. Four different atmospheres are created inside four plastic boxes heated by an infrared lamp. Students work in groups (one group for each atmosphere) and have to monitor the evolution of temperature by means of a temperature sensor (Multilog software). The first group has to observe the relationship between temperature and carbon dioxide levels increase, mainly caused by the widespread practice of burning fossil fuels by growing human populations. The task of this group is to measure simultaneously the temperature of an empty box (without CO2) and the temperature of a box with high carbon dioxide concentration. The carbon dioxide concentration is the result of the chemical reaction when sodium carbonate mixes with hydrochloric acid. The

  19. Impact of a global warming on biospheric sources of methane and its climatic consequences

    Energy Technology Data Exchange (ETDEWEB)

    Hameed, S; Cess, R D [State Univ. of New York at Stony Brook, Stony Brook, NY (USA). Lab. for Planetary Atmospheres Research

    1983-01-01

    Most of atmospheric methane originates by bacterial processes in anaerobic environments within the soil which are found to become more productive with increases in ambient temperature. A warming of climate, due to increasing levels of industrial gases resulting from fossil fuel burning, is thus likely to increase methane abundance within the atmosphere. This may lead to further heating of the atmosphere, since both methane and ozone (which is generated in the troposphere from reactions of methane) have greenhouse effects. We have explored this feedback mechanism using a coupled climate-chemical model of the troposphere, by calculating the impact of the predicted global warming due to increased emissions of carbon dioxide and other industrial gases on the biospheric sources of methane. Although we find this climate feedback to be, by itself, relatively minor, it can produce measurable increases in atmospheric CH/sub 4/ concentration, a quantity which should additionally increase as a consequence of increasing anthropogenic emissions of CO and CH/sub 4/ itself. It would thus seem useful to carefully monitor future atmospheric CH/sub 4/ concentrations.

  20. Impact of a global warming on biospheric sources of methane and its climatic consequences

    Energy Technology Data Exchange (ETDEWEB)

    Hameed, S; Cess, R D

    1983-02-01

    Most of atmospheric methane originates by bacterial processes in anaerobic environments within the soil which are found to become more productive with increases in ambient temperature. A warming of climate, due to increasing levels of industrial gases resulting from fossil fuel burning, is thus likely to increase methane abundance within the atmosphere. This may lead to further heating of the atmosphere, since both methane and ozone (which is generated in the troposphere from reactions of methane) have greenhouse effects. We have explored this feedback mechanism using a coupled climate-chemical model of the troposphere, by calculating the impact of the predicted global warming due to increased emissions of carbon dioxide and other industrial gases on the biospheric sources of methane. Although we find this climate feedback to be, by itself, relatively minor, it can produce measurable increases in atmospheric CH/sub 4/ concentration, a quantity which should additionally increase as a consequence of increasing anthropogenic emissions of CO and CH/sub 4/ itself. It would thus seem useful to carefully monitor future atmospheric CH/sub 4/ concentrations.

  1. Methane emission from naturally ventilated livestock buildings can be determined from gas concentration measurements

    DEFF Research Database (Denmark)

    Bjerg, B; Zhang, Guoqiang; Madsen, J

    2012-01-01

    Determination of emission of contaminant gases as ammonia, methane, or laughing gas from natural ventilated livestock buildings with large opening is a challenge due to the large variations in gas concentration and air velocity in the openings. The close relation between calculated animal heat pr...... to investigate the influence of feed composition on methane emission in a relative large number of operating cattle buildings and consequently it can support a development towards reduced greenhouse gas emission from cattle production.......Determination of emission of contaminant gases as ammonia, methane, or laughing gas from natural ventilated livestock buildings with large opening is a challenge due to the large variations in gas concentration and air velocity in the openings. The close relation between calculated animal heat...... ventilated, 150 milking cow building. The results showed that the methane emission can be determined with much higher precision than ammonia or laughing gas emissions, and, for methane, relatively precise estimations can be based on measure periods as short as 3 h. This result makes it feasible...

  2. Turnover and transport of greenhouse gases in a Danish wetland

    DEFF Research Database (Denmark)

    Jørgensen, Christian Juncher

    2011-01-01

    involving plants, soil and microorganisms. These processes are regulated by different physio-chemical drivers such as soil moisture content, soil temperature, nutrient and oxygen (O2) availability. In wetlands, the position of the free standing water level (WL) influences the spatiotemporal variation...... in these drivers, thereby influencing the net emission or uptake of greenhouse gas. In this PhD thesis the complex aspects in the exchange of N2O across the soil-atmosphere is investigated with special focus on the spatiotemporal variations in drivers for N2O production and consumption in the soil...... net N2O dynamics. Similarly, plant-mediated gas transport by the subsurface aerating macrophyte Phalaris arundinacea played a major part in regulating and facilitating emissions of greenhouse gases across the soil-atmosphere interface. It is concluded that the spatiotemporal distribution of dominating...

  3. 75 FR 39735 - Mandatory Reporting of Greenhouse Gases From Magnesium Production, Underground Coal Mines...

    Science.gov (United States)

    2010-07-12

    ... sectors of the economy, including fossil fuel suppliers, industrial gas suppliers, and direct emitters of... Part II Environmental Protection Agency 40 CFR Part 98 Mandatory Reporting of Greenhouse Gases From Magnesium Production, Underground Coal Mines, Industrial Wastewater Treatment, and Industrial...

  4. Atmospheric Pollution and Greenhouse Emissions over 14 Largest Megacities of the World

    Science.gov (United States)

    Chen, X.; Singh, R. P.

    2017-12-01

    Megacities have more than 10 million people, some of them are located in developing/developed countries. We have considered the top 14 megacities of the world. Due to growing industries, urbanization, vehicular density, and energy demand, greenhouse gas emissions have increased, which has degraded air quality. In some countries, clean air act has improved the air quality. We have considered multiple satellites and have retrieved atmospheric pollution parameters (aerosol optical depth-AOD and angstrom exponent) and greenhouse gases to study their variability from the period 2002-2016. High AOD represents high pollution level, which are prominent during winter and spring for Manila, Tokyo, Beijing, Moscow, Mexico City, Mumbai, Seoul, Dhaka, Cairo, and Bangkok. During summer and fall, Delhi, Karachi, and Sao Paulo have high values. During spring season, some of the megacities show significant higher pollution levels (high AOD) associated with the dust storms; however, Moscow and Karachi show contrasting behaviors. The angstrom exponent parameter has high values in the spring and summer for Manila, Shanghai, Beijing, Moscow, Sao Paulo, Mexico City, Seoul, and Cairo. Moscow shows a significant low value in April 2012. Delhi, Karachi, Mumbai, Dhaka, and Bangkok have high values in fall and winter. Dhaka shows significant low values in August 2003, June 2005, June 2008, July 2011, and June 2016. The total ozone column concentrations have high values during summer and spring, and low values during fall and winter. The methane concentrations are higher during fall and winter, and lower during spring and summer. An increasing trend of methane level is observed over all the megacities from 2002 until now. The increasing greenhouse gases in megacities have direct impact on human health and weather conditions. Some of the megacities suffer from dense haze, fog and smog, which impact the day-to-day lives of residents due to increasing concentrations of greenhouse gases.

  5. Emission of carbon. A most important component for greenhouse effect in the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Milaev, V.B.; Kopp, I.Z.; Yasenski, A.N. [Scientific Research Inst. of Atmospheric Air Protection, St. Petersburg (Russian Federation)

    1995-12-31

    Greenhouse effect is most often defined as the probabilities of atmospheric air quasiequilibrium temperature increase as a result of air pollution due to emission of anthropogenic gaseous substances which are usually called `greenhouse gases`. Among greenhouse gases are primarily considered several gaseous substances which contain carbon atoms: carbon oxide, carbon dioxide and methane (CO, CO{sub 2} and CH{sub 4}), and chlorinated and fluorinated hydrocarbons (freons) spectra of which are transparent to solar radiation, but absorb and reradiate longwave radiation causing disturbance of quasistationary thermal regieme of the atmosphere. Qualitative estimates of the income and relative roles of different substances in occurrence of greenhouse effect differ considerable. At the modern state of knowledge the problem of greenhouse effect and greenhouse gases is considered in several aspects. The most widespread and investigated is climatic or meteorological aspect, it is discussed in a number of international works. Rather pressing is thermal physics aspect of the problem of estimating greenhouse effect, which consists in correct construction of a calculation model and usage of the most representative experimental data, since analytical methods require many assumptions, introduction of which may lead to results which differ very much. Bearing these uncertainties in mind the UNEP/WMO/ICSU conference has included into the number of the most urgent tasks in the study of greenhouse effect, the problem of determining the priority of factors which cause greenhouse effect, which in its turn predetermines the necessity to substantiate the methods of selection and criterion of comparative evaluation of such factors. (author)

  6. Emission of carbon. A most important component for greenhouse effect in the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Milaev, V B; Kopp, I Z; Yasenski, A N [Scientific Research Inst. of Atmospheric Air Protection, St. Petersburg (Russian Federation)

    1996-12-31

    Greenhouse effect is most often defined as the probabilities of atmospheric air quasiequilibrium temperature increase as a result of air pollution due to emission of anthropogenic gaseous substances which are usually called `greenhouse gases`. Among greenhouse gases are primarily considered several gaseous substances which contain carbon atoms: carbon oxide, carbon dioxide and methane (CO, CO{sub 2} and CH{sub 4}), and chlorinated and fluorinated hydrocarbons (freons) spectra of which are transparent to solar radiation, but absorb and reradiate longwave radiation causing disturbance of quasistationary thermal regieme of the atmosphere. Qualitative estimates of the income and relative roles of different substances in occurrence of greenhouse effect differ considerable. At the modern state of knowledge the problem of greenhouse effect and greenhouse gases is considered in several aspects. The most widespread and investigated is climatic or meteorological aspect, it is discussed in a number of international works. Rather pressing is thermal physics aspect of the problem of estimating greenhouse effect, which consists in correct construction of a calculation model and usage of the most representative experimental data, since analytical methods require many assumptions, introduction of which may lead to results which differ very much. Bearing these uncertainties in mind the UNEP/WMO/ICSU conference has included into the number of the most urgent tasks in the study of greenhouse effect, the problem of determining the priority of factors which cause greenhouse effect, which in its turn predetermines the necessity to substantiate the methods of selection and criterion of comparative evaluation of such factors. (author)

  7. Exploiting coalbed methane and protecting the global environment

    Energy Technology Data Exchange (ETDEWEB)

    Yuheng, Gao

    1996-12-31

    The global climate change caused by greenhouse gases (GHGs) emission has received wide attention from all countries in the world. Global environmental protection as a common problem has confronted the human being. As a main component of coalbed methane, methane is an important factor influencing the production safety of coal mine and threatens the lives of miners. The recent research on environment science shows that methane is a very harmful GHG. Although methane gas has very little proportion in the GHGs emission and its stayed period is also very short, it has very obvious impact on the climate change. From the estimation, methane emission in the coal-mining process is only 10% of the total emission from human`s activities. As a clean energy, Methane has mature recovery technique before, during and after the process of mining. Thus, coalbed methane is the sole GHG generated in the human`s activities and being possible to be reclaimed and utilized. Compared with the global greenhouse effect of other GHGs emission abatement, coalbed methane emission abatement can be done in very low cost with many other benefits: (1) to protect global environment; (2) to improve obviously the safety of coal mine; and (3) to obtain a new kind of clean energy. Coal is the main energy in China, and coalbed contains very rich methane. According to the exploration result in recent years, about 30000{approximately}35000 billion m{sup 2} methane is contained in the coalbed below 2000 m in depth. China has formed a good development base in the field of reclamation and utilization of coalbed methane. The author hopes that wider international technical exchange and cooperation in the field will be carried out.

  8. Environment taxation and greenhouse gases (general tax on energy polluting activities and emissions trading)

    International Nuclear Information System (INIS)

    Parayre, P.; Bruhnes, P.; Huglo, Ch.

    2000-12-01

    This document brings together 11 expert testimonies about the French general tax on polluting activities (GTPA). Content: 1 - the GTPA today and in 2001: the first year GTPA, the GTPA 2001 in the water sector, the everyday formal procedures linked with GTPA, the contentious aspects of GTPA; 2 - the eco-tax or energy-GTPA: European framework of energy products taxing, enforcement and implementation of the energy-GTPA in France; 3 - the negotiable emission permits: negotiable permits for companies with a strong energy intensity, functioning of emission permits in a global strategy, the position of the European Commission about negotiable permits and the perspectives in this domain at the community level; 4 - towards a reduction of greenhouse gases: the Goeteborg protocol, the consequences of La Haye's COP6, the position of a type-sector, an efficient system for the abatement of greenhouse gases by the producing sector. (J.S.)

  9. Thermal Plasma decomposition of fluoriated greenhouse gases

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Soo Seok; Watanabe, Takayuki [Tokyo Institute of Technology, Yokohama (Japan); Park, Dong Wha [Inha University, Incheon (Korea, Republic of)

    2012-02-15

    Fluorinated compounds mainly used in the semiconductor industry are potent greenhouse gases. Recently, thermal plasma gas scrubbers have been gradually replacing conventional burn-wet type gas scrubbers which are based on the combustion of fossil fuels because high conversion efficiency and control of byproduct generation are achievable in chemically reactive high temperature thermal plasma. Chemical equilibrium composition at high temperature and numerical analysis on a complex thermal flow in the thermal plasma decomposition system are used to predict the process of thermal decomposition of fluorinated gas. In order to increase economic feasibility of the thermal plasma decomposition process, increase of thermal efficiency of the plasma torch and enhancement of gas mixing between the thermal plasma jet and waste gas are discussed. In addition, noble thermal plasma systems to be applied in the thermal plasma gas treatment are introduced in the present paper.

  10. "Atmospheric Measurements by Ultra-Light SpEctrometer" (AMULSE) dedicated to vertical profile measurements of greenhouse gases (CO2, CH4) under stratospheric balloons: instrumental development and field application.

    Science.gov (United States)

    Maamary, Rabih; Joly, Lilian; Decarpenterie, Thomas; Cousin, Julien; Dumelié, Nicolas; Grouiez, Bruno; Albora, Grégory; Chauvin, Nicolas; Miftah-El-Khair, Zineb; Legain, Dominique; Tzanos, Diane; Barrié, Joel; Moulin, Eric; Ramonet, Michel; Bréon, François-Marie; Durry, Georges

    2016-04-01

    Human activities disrupt natural biogeochemical cycles such as the carbon and contribute to an increase in the concentrations of the greenhouse gases (carbone dioxide and methane) in the atmosphere. The current atmospheric transport modeling (the vertical trade) still represents an important source of uncertainty in the determination of regional flows of greenhouse gases, which means that a good knowledge of the vertical distribution of CO2 is necessary to (1) make the link between the ground measurements and spatial measurements that consider an integrated concentration over the entire column of the atmosphere, (2) validate and if possible improve CO2 transport model to make the link between surface emissions and observed concentration. The aim of this work is to develop a lightweight instrument (based on mid-infrared laser spectrometry principles) for in-situ measuring at high temporal/spatial resolution (5 Hz) the vertical profiles of the CO2 and the CH4 using balloons (meteorological and BSO at high precision levels (costs and logistics flights. These laser spectrometers are built on recent instrumental developments. Several flights were successfully done in the region Champagne-Ardenne and in Canada recently. Aknowledgments: The authors acknowledge financial supports from CNES, CNRS défi instrumental and the region Champagne-Ardenne.

  11. Greenhouse Gases Emission and Global Warming Potential as Affected by Chemical Inputs for Main Cultivated Crops in Kerman Province: - Horticultural Crops

    OpenAIRE

    Nasibe Pourghasemian; Rooholla Moradi

    2017-01-01

    Introduction The latest report of the IPCC states that future emissions of greenhouse gases (GHGs) will continue to increase and will be the main cause of global climatic changes, as well as Iran. The three greenhouse gases associated with agriculture are CO2, CH4, and N2O. Chemical inputs consumption in agriculture has increased annually, while more intensive use of energy led to some important human health and environmental problems such as greenhouse gas emissions and global warming. Th...

  12. Evaluation of the potentialities to reduce greenhouse gases (GHG) emissions resulting from various treatments of municipal solid wastes (MSW) in moist tropical climates: application to Yaounde.

    Science.gov (United States)

    Ngnikam, Emmanuel; Tanawa, Emile; Rousseaux, Patrick; Riedacker, Arthur; Gourdon, Rémy

    2002-12-01

    The authors here analyse the emission of greenhouse gases (GHG) resulting from the various treatment of municipal solid waste found in the town of Yaounde. Four management systems have been taken as the basis for analyses. System 1 is the traditional collection and landfill disposal, while in system 2 the hiogas produced in the landfill is recuperated to produce electricity. In systems 3 and 4, in addition to the collection, we have introduced a centralised composting or biogas plant before the landfilling disposal of refuse. A Life Cycle Inventory (LCI) of the four systems was made; this enable us to quantify the flux of matter and of energy, consumed or produced by the systems. Following this, only the greenhouse effect was taken into account to evaluate the ecological consequences of the MSW management systems. The method used to evaluate this impact takes into consideration on the one hand, GHG emissions or avoided emission following the substitution of fuel with methane recovered from landfills or produced in the digesters, and on the other hand, sequestrated carbon in the soil following the regular deposit of compost. Landfilling without recuperation of methane is the most emitting solution for greenhouse gas: it leads to the emission of 1.7 ton of carbon dioxide equivalent (tCO2E) per ton of household waste. Composting and methanisation allow one to have a comparable level of emission reduction, either respectively 1.8 and 2 tCO2E/t of MSW. In order to reduce the emission of GHG in the waste management systems, it is advisable to avoid first of all the emissions of methane coming from the landfills. System 2 seems to be a solution that would reduce the emissions of GHG at low cost (2.2 to 4 $/tCO2E). System 2 is calculated as the most effective at the environmental and economic level in the context of Yaounde. Therefore traditional collection, landfill disposal and biogas recuperation to produce electricity is preferable in moist tropical climates.

  13. Effects of sonication on co-precipitation synthesis and activity of copper manganese oxide catalyst to remove methane and sulphur dioxide gases.

    Science.gov (United States)

    Yap, Yeow Hong; Lim, Mitchell S W; Lee, Zheng Yee; Lai, Kar Chiew; Jamaal, Muhamad Ashraf; Wong, Farng Hui; Ng, Hoon Kiat; Lim, Siew Shee; Tiong, T Joyce

    2018-01-01

    The utilisation of ultrasound in chemical preparation has been the focus of intense study in various fields, including materials science and engineering. This paper presents a novel method of synthesising the copper-manganese oxide (Hopcalite) catalyst that is used for the removal of volatile organic compounds and greenhouse gases like carbon monoxide. Several samples prepared under different conditions, with and without ultrasound, were subjected to a series of characterisation tests such as XRD, BET, FE-SEM, EDX, TPR-H 2 , TGA and FT-IR in order to establish their chemical and physical properties. A series of catalytic tests using a micro-reactor were subsequently performed on the samples in order to substantiate the aforementioned properties by analysing their ability to oxidise compressed natural gas (CNG), containing methane and sulphur dioxide. Results showed that ultrasonic irradiation of the catalyst led to observable alterations in its morphology: surfaces of the particles were noticeably smoothed and an increased in amorphicity was detected. Furthermore, ultrasonic irradiation has shown to enhance the catalytic activity of Hopcalite, achieving a higher conversion of methane relative to non-sonicated samples. Varying the ultrasonic intensity also produced appreciable effects, whereby an increase in intensity results in a higher conversion rate. The catalyst sonicated at the highest intensity of 29.7W/cm 2 has a methane conversion rate of 13.5% at 400°C, which was the highest among all the samples tested. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. 76 FR 59542 - Mandatory Reporting of Greenhouse Gases: Changes to Provisions for Electronics Manufacturing To...

    Science.gov (United States)

    2011-09-27

    ... Mandatory Reporting of Greenhouse Gases: Changes to Provisions for Electronics Manufacturing To Provide... regulation to amend the calculation and monitoring provisions in the Electronics Manufacturing portion of the... Electronics Manufacturing 334111 Microcomputer manufacturing facilities. 334413 Semiconductor, photovoltaic...

  15. LIDAR technology for measuring trace gases on Mars and Earth

    Science.gov (United States)

    Riris, H.; Abshire, J. B.; Graham, Allan; Hasselbrack, William; Rodriguez, Mike; Sun, Xiaoli; Weaver, Clark; Mao, Jianping; Kawa, Randy; Li, Steve; Numata, Kenji; Wu, Stewart

    2017-11-01

    Trace gases and their isotopic ratios in planetary atmospheres offer important but subtle clues as to the origins of a planet's atmosphere, hydrology, geology, and potential for biology. An orbiting laser remote sensing instrument is capable of measuring trace gases on a global scale with unprecedented accuracy, and higher spatial resolution that can be obtained by passive instruments. For Earth we have developed laser technique for the remote measurement of the tropospheric CO2, O2, and CH4 concentrations from space. Our goal is to develop a space instrument and mission approach for active CO2 measurements. Our technique uses several on and off-line wavelengths tuned to the CO2 and O2 absorption lines. This exploits the atmospheric pressure broadening of the gas lines to weigh the measurement sensitivity to the atmospheric column below 5 km and maximizes sensitivity to CO2 changes in the boundary layer where variations caused by surface sources and sinks are largest. Simultaneous measurements of O2 column use a selected region in the Oxygen A-band. Laser altimetry and atmospheric backscatter can also be measured simultaneously, which permits determining the surface height and measurements made to thick cloud tops and through aerosol layers. We use the same technique but with a different transmitter at 1.65 um to measure methane concentrations. Methane is also a very important trace gas on earth, and a stronger greenhouse gas than CO2 on a per molecule basis. Accurate, global observations are needed in order to better understand climate change and reduce the uncertainty in the carbon budget. Although carbon dioxide is currently the primary greenhouse gas of interest, methane can have a much larger impact on climate change. Methane levels have remained relatively constant over the last decade but recent observations in the Arctic have indicated that levels may be on the rise due to permafrost thawing. NASA's Decadal Survey underscored the importance of Methane as a

  16. Reduced emissions of greenhouse gases 2050: Technological wedges - Input to the Commission on Low Emissions

    International Nuclear Information System (INIS)

    Rosenberg, Eva; Espegren, Kari Aamodt; Finden, Per; Hageman, Rolf; Stenersen, Dag

    2006-09-01

    The Commission on Low Emissions was established in March 2005 and has been charged with the task of describing how Norway can achieve a 50-80 percent reduction in emissions of greenhouse gases by 2050. The commission describes the desired total reduction in emissions to be a set of actions or 'wedges', meaning that the reduction in emissions are linked to an array of technological and behavioural changes. The technological wedges are described here, while the behavioural wedges are treated in a different report. The potentials described are based on the Low Emission's reference line. Possible changes in the reference line will result in changed potentials. The technological wedges studied comprise to a great extent a potential of 50-80 percent reduction in greenhouse gases by 2050. This depends on considerable effort from research and development, and a determination to change external conditions

  17. Microbial production and consumption of greenhouse gases: methane, nitrogen oxides, and halomethanes

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, J.E.; Whitman, W.B.

    1991-01-01

    The aim is to provide an overview of the biological processes that contribute to the increase in trace gases (CH[sub 4], N[sub 2]O, NO[sub x] and halocarbons) in the atmosphere. Physical and chemical processes are discussed as they relate to biological processes. It is an introduction to biological processes that contribute to changes in global climate and processes that can be influenced by biofeedback mechanisms as climate changes occur.

  18. Making Small-Scale Classroom Greenhouse Gas Flux Calculations Using a Handmade Gas Capture Hood

    Science.gov (United States)

    Schouten, Peter W.; Sharma, Ashok; Burn, Stewart; Goodman, Nigel; Parisi, Alfio; Downs, Nathan; Lemckert, Charles

    2013-01-01

    The emissions of various types of greenhouse gases (GHGs) from natural and industrial sources are undergoing a great deal of scrutiny around the world. The three main GHGs that are of most concern are carbon dioxide (CO[subscript 2]), nitrous oxide (N[subscript 2]O) and methane (CH[subscript 4]). CO[subscript 2], N[subscript 2]O and CH[subscript…

  19. Greenhouse gases fluxes and soil thermal properties in a pasture in central Missouri.

    Science.gov (United States)

    Nkonglolo, Nsalambi Vakanda; Johnson, Shane; Schmidt, Kent; Eivazi, Frieda

    2010-01-01

    Fluctuations of greenhouse gases emissions and soil properties occur at short spatial and temporal scales, however, results are often reported for larger scales studies. We monitored CO2, CH4, and N2O fluxes and soil temperature (T), thermal conductivity (K), resistivity (R) and thermal diffusivity (D) from 2004 to 2006 in a pasture. Soil air samples for determination of CO2, CH4 and N20 concentrations were collected from static and vented chambers and analyzed within two hours of collection with a gas chromatograph. T, K, R and D were measured in-situ using a KD2 probe. Soil samples were also taken for measurements of soil chemical and physical properties. The pasture acted as a sink in 2004, a source in 2005 and again a sink of CH4 in 2006. CO2 and CH4 were highest, but N2O as well as T, K and D were lowest in 2004. Only K was correlated with CO2 in 2004 while T correlated with both N2O (r = 0.76, p = 0.0001) and CO2 (r = 0.88, p = 0.0001) in 2005. In 2006, all gases fluxes were significantly correlated with T, K and R when the data for the entire year were considered. However, an in-depth examination of the data revealed the existence of month-to-month shifts, lack of correlation and differing spatial structures. These results stress the need for further studies on the relationship between soil properties and gases fluxes. K and R offer a promise as potential controlling factors for greenhouse gases fluxes in this pasture.

  20. A Group Increment Scheme for Infrared Absorption Intensities of Greenhouse Gases

    Science.gov (United States)

    Kokkila, Sara I.; Bera, Partha P.; Francisco, Joseph S.; Lee, Timothy J.

    2012-01-01

    A molecule's absorption in the atmospheric infrared (IR) window (IRW) is an indicator of its efficiency as a greenhouse gas. A model for estimating the absorption of a fluorinated molecule within the IRW was developed to assess its radiative impact. This model will be useful in comparing different hydrofluorocarbons and hydrofluoroethers contribution to global warming. The absorption of radiation by greenhouse gases, in particular hydrofluoroethers and hydrofluorocarbons, was investigated using ab initio quantum mechanical methods. Least squares regression techniques were used to create a model based on this data. The placement and number of fluorines in the molecule were found to affect the absorption in the IR window and were incorporated into the model. Several group increment models are discussed. An additive model based on one-carbon groups is found to work satisfactorily in predicting the ab initio calculated vibrational intensities.

  1. Agriculture and the greenhouse gas emissions: A literature review

    International Nuclear Information System (INIS)

    Kulmala, A.; Esala, M.

    2000-01-01

    Agriculture contributes to the greenhouse effect by increasing carbon dioxide, nitrous oxide and methane emissions. This literature review examines agricultural sources and sinks of greenhouse gases as well as factors affecting emissions. Options for mitigating emissions are presented as well the results of greenhouse gas emission measurements on Finnish agricultural soils. In addition, some basic information is given about Finnish agriculture, and the estimation of emissions using the IPCC Guidelines is described. Carbon dioxide sources include decomposition of soil organic matter, combustion and liming. The agricultural sector can mitigate CO 2 emissions by increasing carbon stocks in soils and vegetation, reducing fossil fuel consumption, and increasing the production of bioenergy. There is little opportunity to decrease the amount of liming in Finland. The main nitrous oxide sources are nitrification and denitrification. N 2 O emissions can be reduced by enhancing plants' ability to compete for soil nitrogen and by keeping the rate of emission processes as low and the duration of emissions as short as possible. Special attention should be paid to manure management because manure contains abundant nitrogen that can be lost as N 2 O. Improvements in the protein feeding of livestock could also reduce potential N 2 O emissions from manure. Methane is emitted, for example, in the course of enteric fermentation and the anaerobic decomposition of organic matter in manure. The emission of CH 4 from soils depends on the relative amounts of methane production and consumption. Cattle with high productivity emit less methane per unit of milk or meat than do animals with low productivity. The number of breeding animals could be reduced by improving animal reproduction efficiency. Methane emitted from manure should be utilized as an energy source, or the formation of it should be prevented by keeping manure under aerobic conditions

  2. Energy scenarios and greenhouse effect gases emissions model for Mexico; Modelo de escenarios energeticos y de emisiones de gases de efecto invernadero para Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Sheinbaum Pardo, Claudia; Rodriguez Viqueira, Luis [Instituto de Ingenieria de la UNAM, Mexico, D. F. (Mexico)

    1998-12-31

    This paper presents the bases for the Model of Energy and Greenhouse Emission Scenarios (MEEEM) developed by the Instituto de Ingenieria de la UNAM (Universidad Nacional Autonoma de Mexico`s Engineering Institute). This model was built with the objective of analyzing the different technological options for the mitigation of the greenhouse gases effect on Mexico. The MEEEM is a model for the end uses that simulate in a simple way the energy demand, transformation and supply and calculates the differential leveled costs among a basic scenario and several mitigation scenarios of the greenhouse emissions. The article also presents some of the results in evaluating three technologies of renewable energy sources. Although the model is perfectible, its development shows its usefulness in this type of models in the decision taking for the energy and environmental planning of the country. [Espanol] Este articulo presenta las bases del Modelo de Escenarios Energeticos y de Emisiones de Gases de Efecto Invernadero para Mexico (MEEEM), desarrollado por el Instituto de Ingenieria de la Universidad Nacional Autonoma de Mexico (UNAM). Este modelo fue construido con el objetivo de analizar las diversas opciones tecnologicas de mitigacion de gases de efecto invernadero para Mexico. El MEEEM es un modelo de usos finales que simula de una manera sencilla, la demanda, transformacion y oferta de la energia y calcula la diferencia de costos nivelados entre un escenario base y diversos escenarios de mitigacion de emisiones de gases de efecto invernadero. El articulo presenta tambien algunos resultados obtenidos al evaluar tres tecnologias de fuentes renovables de energia. Aun cuando el modelo es perfectible, su desarrollo demuestra la utilidad de este tipo de modelos en la toma de decisiones para planeacion energetica y ambiental del pais.

  3. Energy scenarios and greenhouse effect gases emissions model for Mexico; Modelo de escenarios energeticos y de emisiones de gases de efecto invernadero para Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Sheinbaum Pardo, Claudia; Rodriguez Viqueira, Luis [Instituto de Ingenieria de la UNAM, Mexico, D. F. (Mexico)

    1999-12-31

    This paper presents the bases for the Model of Energy and Greenhouse Emission Scenarios (MEEEM) developed by the Instituto de Ingenieria de la UNAM (Universidad Nacional Autonoma de Mexico`s Engineering Institute). This model was built with the objective of analyzing the different technological options for the mitigation of the greenhouse gases effect on Mexico. The MEEEM is a model for the end uses that simulate in a simple way the energy demand, transformation and supply and calculates the differential leveled costs among a basic scenario and several mitigation scenarios of the greenhouse emissions. The article also presents some of the results in evaluating three technologies of renewable energy sources. Although the model is perfectible, its development shows its usefulness in this type of models in the decision taking for the energy and environmental planning of the country. [Espanol] Este articulo presenta las bases del Modelo de Escenarios Energeticos y de Emisiones de Gases de Efecto Invernadero para Mexico (MEEEM), desarrollado por el Instituto de Ingenieria de la Universidad Nacional Autonoma de Mexico (UNAM). Este modelo fue construido con el objetivo de analizar las diversas opciones tecnologicas de mitigacion de gases de efecto invernadero para Mexico. El MEEEM es un modelo de usos finales que simula de una manera sencilla, la demanda, transformacion y oferta de la energia y calcula la diferencia de costos nivelados entre un escenario base y diversos escenarios de mitigacion de emisiones de gases de efecto invernadero. El articulo presenta tambien algunos resultados obtenidos al evaluar tres tecnologias de fuentes renovables de energia. Aun cuando el modelo es perfectible, su desarrollo demuestra la utilidad de este tipo de modelos en la toma de decisiones para planeacion energetica y ambiental del pais.

  4. Energy and climatic change: within 30 years, divide France's emissions of greenhouse gases in three

    International Nuclear Information System (INIS)

    Prevot, H.

    2003-01-01

    Fighting against global warming means cutting down on greenhouse gases. France can significantly reduce its emissions by seriously modifying life-styles without disrupting them. The population will accept this all the better as far as it is deeply concerned with the issues. (author)

  5. Methane production as key to the greenhouse gas budget of thawing permafrost

    Science.gov (United States)

    Knoblauch, Christian; Beer, Christian; Liebner, Susanne; Grigoriev, Mikhail N.; Pfeiffer, Eva-Maria

    2018-04-01

    Permafrost thaw liberates frozen organic carbon, which is decomposed into carbon dioxide (CO2) and methane (CH4). The release of these greenhouse gases (GHGs) forms a positive feedback to atmospheric CO2 and CH4 concentrations and accelerates climate change1,2. Current studies report a minor importance of CH4 production in water-saturated (anoxic) permafrost soils3-6 and a stronger permafrost carbon-climate feedback from drained (oxic) soils1,7. Here we show through seven-year laboratory incubations that equal amounts of CO2 and CH4 are formed in thawing permafrost under anoxic conditions after stable CH4-producing microbial communities have established. Less permafrost carbon was mineralized under anoxic conditions but more CO2-carbon equivalents (CO2-Ce) were formed than under oxic conditions when the higher global warming potential (GWP) of CH4 is taken into account8. A model of organic carbon decomposition, calibrated with the observed decomposition data, predicts a higher loss of permafrost carbon under oxic conditions (113 ± 58 g CO2-C kgC-1 (kgC, kilograms of carbon)) by 2100, but a twice as high production of CO2-Ce (241 ± 138 g CO2-Ce kgC-1) under anoxic conditions. These findings challenge the view of a stronger permafrost carbon-climate feedback from drained soils1,7 and emphasize the importance of CH4 production in thawing permafrost on climate-relevant timescales.

  6. Inventory of greenhouse gases at the municipality level. Description of calculation methods; Denmark; Drivhusgasopgoerelse paa kommuneniveau. Beskrivelse af beregningsmetoder

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Ole-Kenneth; Winther, M.; Gyldenkaerne, S.; Lyck, E.; Thomsen, Marianne; Hoffmann, L.; Fauser, P.

    2009-02-15

    This report includes a description of methodologies, data and algorithms behind the inventories of greenhouse gases at the municipality level divided into sectors. The starting point for the sectors in this report is the sectors used for the official Danish emission inventories. A simplified generalization of the equations used in emission calculations is based on the assumption that emissions of a given activity is estimated using data descriptive for the size of the activity multiplied by an emission factor pr unit of activity. Emissions of CH{sub 4} and N{sub 2}O are converted to CO{sub 2} equivalents. In this project this generalization and these conversions are also the basis for all methodologies. The sectors included in this report are: the collective power and heating, individual heating, mobile sources, transportation and machinery, industrial processes, solvents, agriculture, land use and waste depositing and wastewater. The methods include calculations of the greenhouse gases that are most important for the sectors. The importance is estimated from the national emission inventory. This report covers methodologies for the greenhouse gases CO{sub 2}, CH{sub 4} and N{sub 2}O. Due to the mentioned importance criteria for some sectors not all greenhouse gases are included. As for the national inventories the calculation is built into several levels (Tiers) with increased requirements for municipalities regarding data. Tier 1 is mainly based on the Danish national greenhouse gas inventory data using appropriate distribution keys for a given activity into municipality level. Tier 2 is more detailed and includes emission factors used in the Danish national greenhouse gas inventories, for some sectors the emission factors are aggregated, while municipalities can enter their own activity data. At Tier 3, which is the most detailed level, there is - for some sectors - the opportunity to enter municipality specific emission factors and activity data. For other

  7. Ozone sensitivity to varying greenhouse gases and ozone-depleting substances in CCMI-1 simulations

    Directory of Open Access Journals (Sweden)

    O. Morgenstern

    2018-01-01

    Full Text Available Ozone fields simulated for the first phase of the Chemistry-Climate Model Initiative (CCMI-1 will be used as forcing data in the 6th Coupled Model Intercomparison Project. Here we assess, using reference and sensitivity simulations produced for CCMI-1, the suitability of CCMI-1 model results for this process, investigating the degree of consistency amongst models regarding their responses to variations in individual forcings. We consider the influences of methane, nitrous oxide, a combination of chlorinated or brominated ozone-depleting substances, and a combination of carbon dioxide and other greenhouse gases. We find varying degrees of consistency in the models' responses in ozone to these individual forcings, including some considerable disagreement. In particular, the response of total-column ozone to these forcings is less consistent across the multi-model ensemble than profile comparisons. We analyse how stratospheric age of air, a commonly used diagnostic of stratospheric transport, responds to the forcings. For this diagnostic we find some salient differences in model behaviour, which may explain some of the findings for ozone. The findings imply that the ozone fields derived from CCMI-1 are subject to considerable uncertainties regarding the impacts of these anthropogenic forcings. We offer some thoughts on how to best approach the problem of generating a consensus ozone database from a multi-model ensemble such as CCMI-1.

  8. Ozone Sensitivity to Varying Greenhouse Gases and Ozone-Depleting Substances in CCMI-1 Simulations

    Science.gov (United States)

    Morgenstern, Olaf; Stone, Kane A.; Schofield, Robyn; Akiyoshi, Hideharu; Yamashita, Yousuke; Kinnison, Douglas E.; Garcia, Rolando R.; Sudo, Kengo; Plummer, David A.; Scinocca, John; hide

    2018-01-01

    Ozone fields simulated for the first phase of the Chemistry-Climate Model Initiative (CCMI-1) will be used as forcing data in the 6th Coupled Model Intercomparison Project. Here we assess, using reference and sensitivity simulations produced for CCMI-1, the suitability of CCMI-1 model results for this process, investigating the degree of consistency amongst models regarding their responses to variations in individual forcings. We consider the influences of methane, nitrous oxide, a combination of chlorinated or brominated ozone-depleting substances, and a combination of carbon dioxide and other greenhouse gases. We find varying degrees of consistency in the models' responses in ozone to these individual forcings, including some considerable disagreement. In particular, the response of total-column ozone to these forcings is less consistent across the multi-model ensemble than profile comparisons. We analyse how stratospheric age of air, a commonly used diagnostic of stratospheric transport, responds to the forcings. For this diagnostic we find some salient differences in model behaviour, which may explain some of the findings for ozone. The findings imply that the ozone fields derived from CCMI-1 are subject to considerable uncertainties regarding the impacts of these anthropogenic forcings. We offer some thoughts on how to best approach the problem of generating a consensus ozone database from a multi-model ensemble such as CCMI-1.

  9. The national-economic cost of reduction of greenhouse gases emission. Comparison of investments aimed towards a reduced greenhouse gas emission in power industry, agriculture, transportation sector and other essential greenhouse gas sources

    International Nuclear Information System (INIS)

    1995-01-01

    For a number of years the cost of reducing CO 2 emissions in the energy sector in Denmark has been investigated in detail. The same has not been the case what concerns the cost of reducing other greenhouse gases (CH 4 and N 2 O) and especially not what concerns the possibilities of reducing greenhouse gases in other sectors in the Danish economy, i.e. agriculture, transport, industry, domestic waste and forestry. Thus, the objective of this project was twofold: 1) To calculate the national economic costs related to a number of options for reducing Danish greenhouse gas emissions (CO 2 , CH 4 and N 2 O) by using the same methodology for all important sectors in the economy and 2) To compare the cost efficiency of these options not only wihtin the individual sectors but also across the sectoral boundaries to achieve an overall view of the reduction possibilities in society and the associated costs. (au) 80 refs.; Prepared by Forskningscenter Risoe and Danmarks Miljoeundersoegelser. Afdeling for Systemanalyse

  10. On the role of atmosphere-ocean interactions in the expected long-term changes of the Earth's ozone layer caused by greenhouse gases

    Science.gov (United States)

    Zadorozhny, Alexander; Dyominov, Igor

    It is well known that anthropogenic emissions of greenhouse gases into the atmosphere produce a global warming of the troposphere and a global cooling of the stratosphere. The expected stratospheric cooling essentially influences the ozone layer via increased polar stratospheric cloud formation and via temperature dependences of the gas phase reaction rates. One more mechanism of how greenhouse gases influences the ozone layer is enhanced water evaporation from the oceans into the atmosphere because of increasing temperatures of the ocean surface due to greenhouse effect. The subject of this paper is a study of the influence of anthropogenic pollution of the atmosphere by the greenhouse gases CO2, CH4, N2O and ozone-depleting chlorine and bromine compounds on the expected long-term changes of the ozone layer with taking into account an increase of water vapour content in the atmosphere due to greenhouse effect. The study based on 2-D zonally averaged interactive dynamical radiative-photochemical model of the troposphere and stratosphere. The model allows to self-consistently calculating diabatic circulation, temperature, gaseous composition of the troposphere and stratosphere at latitudes from the South to North Poles, as well as distribution of sulphate aerosol particles and polar stratospheric clouds of two types. It was supposed in the model that an increase of the ocean surface temperature caused by greenhouse effect is similar to calculated increase of atmospheric surface temperature. Evaporation rate from the ocean surface was computed in dependence of latitude. The model time-dependent runs were made for the period from 1975 to 2100 using two IPCC scenarios depicting maximum and average expected increases of greenhouse gases in the atmosphere. The model calculations show that anthropogenic increasing of water vapour abundance in the atmosphere due to heating of the ocean surface caused by greenhouse effect gives a sensible contribution to the expected ozone

  11. The Influence of Anthropogenic Greenhouse Gases and Aerosols on the Surface Heat and Moisture Budgets.

    Science.gov (United States)

    Ramaswamy, V.; Freidenreich, S.; Ginoux, P. A.; Ming, Y.; Paynter, D.; Persad, G.; Schwarzkopf, M. D.

    2017-12-01

    Emissions of greenhouse gases and aerosols alter atmospheric composition and `force' major perturbations in the radiative fluxes at the top-of-the-atmosphere and surface. In this paper, we discuss the radiative changes caused by anthropogenic greenhouse gases and aerosols at the surface, and its importance in the context of effects on the global hydrologic cycle. An important characteristic of imbalances forced by radiative species is the tendency for responses to occur in the non-radiative components, in order for the surface energy and moisture budgets to re-establish equilibrium. Using the NOAA/ GFDL global climate models used in CMIP3 and CMIP5, and to be used in CMIP6, we investigate how the surface energy balance has evolved with time under the action of the emissions, and the manner of changes in the surface radiative, sensible and latent heat components. We diagnose the relative importance of the forcings on the global and continental scales, the differing mechanisms due to greenhouse gases and aerosols on surface heat and moisture budgets, and the relative roles of the atmospheric constituents on precipitation and evaporation. Scattering and absorbing properties of aerosols can have contrasting effects on precipitation, with the aerosol indirect effect presenting another complication owing to the uncertainty in its magnitude. We compare the modeled surface flux changes against observations made from multiple platforms over the 20th and the early period of the 21st centuries, and asses the models' strengths and weaknesses. We also explore the consequences for the surface balance and precipitation in the 21st century under various emission scenarios.

  12. Reduction of Climate Gases by Energy Efficiency

    International Nuclear Information System (INIS)

    Moe, N.

    1998-01-01

    Carbon dioxide cannot be depolluted in practice. However, there are two areas where measures can be taken to avoid CO 2 emissions: 1. Energy-efficiency. 2. Use of sustainable energy sources in energy production. It is characteristic that many measures which are good for the environment are also good from the point of view of cost efficiency, preparedness and employment. This is tru, for instance, of the greater use of biofuels instead of fossil fuels, collective heating systems as opposed to individual ones and economy measures - especially more efficient use of electricity. It is a question of thinking of the system as a whole. Methane is another factor which contributes to the greenhouse effect. Methane emissions can also be avoided, or reduced, by system-thinking. System-thinking is, for instance, not ro deposit combustible waste but to use it as an energy source. And why not produce electricity by using methane from existing landfill sites. Electrical energy is the most useful form of energy. Therefore, electricity should not, as a principal rule, be used for heating, or as process energy. The fact that energy-efficiency and emission of greenhouse gases are interrelated is shown in the following two examples. 1. Only about 25% of the energy content in extracted coal will reach the consumers as electricity when the production takes place in an ordinary, coal-fires condensing power station. 2. When district heating (room-heating and hot water) is produced in a modern heat-production plant by flue-gas condensation, about 90% of the energy is utilised for heating purposes. To obtain an overall picture of the amount of energy used for a purpose, e.g. heating or electricity, you must view the entire process from extraction to final use. Such a picture can show the energy efficiency and what losses arise. Efficiency measures can reduce the energy bill. They can also reduce pollution, greenhouse gases among other things. Examples will be given in this paper of energy

  13. Man -made greenhouse gases trigger unified force to start global warming impacts referred to as climate change

    International Nuclear Information System (INIS)

    Karishnan, K.J.; Kalam, A.

    2011-01-01

    Global warming problems due to man-made greenhouse gases (GHGs), appear to be a serious concern and threat to the globe. CO/sub 2/, O/sub 3, NOx and HFC's are the main greenhouse gases and CO/sub 2/ is one of the main cause of global warming. CO/sub 2/ is emitted from burning fossil fuels to produce electricity from power plants and burning of gasoline in vehicles and airplanes. Global greenhouse gases and its sources in regions are discussed in this paper. This paper initially discusses the CO/sub 2/ emissions and the recycle of CO/sub 2/ in biodiesel. This paper mainly focuses on 'Unified Force'. The increase of H/sub 2/O in the sea due to warming of the globe triggers the 'Unified Force' or 'Self-Compressive Surrounding Pressure Force' which is proportional to the H/sub 2/O level in the sea to start global warming impacts referred to as climate change. This paper also points out the climate change and the ten surprising results of global warming. Finally, this paper suggests switching from fossil fuel technology to green energy technologies like biodiesel which recycles CO/sub 2/ emissions and also Hydrogen Energy and Fuel Cell Technologies which eradicates global warming impacts. The benefits of switching from fossil fuel to biodiesel and Hydrogen Energy utilization includes reduction of greenhouse gas emissions and pollution, economic independence by having distributed production and burning of biodiesel does not add extra CO/sub 2/ to the air that contributes global warming impacts. (author)

  14. Grappling with greenhouse

    International Nuclear Information System (INIS)

    Mitchell, C.D.

    1992-01-01

    A natural greenhouse effect keeps the Earth at a temperature suitable for life. Some of the gases responsible for the greenhouse effect are increasing at an unprecedented rate because of human activity. These increased levels of greenhouse gases in the atmosphere will strengthen the natural greenhouse effect, leading to an overall warming of the Earth's surface. Global warming resulting from the enhanced greenhouse effect is likely to be obscured by normal climatic fluctuations for another ten years or more. The extent of human-caused climate change will depend largely on future concentrations of greenhouse gases in the atmosphere. In turn, the composition of the atmosphere depends on the release of greenhouse gases. Releases are hard to predict, because they require an understanding of future human activity. The composition of the atmosphere also depends on the processes which remove greenhouse gases from it. This booklet is summarizing the latest research results in the form of climate change scenarios. The present scenarios of change are based on climate models, together with an understanding of how present-day climate, with its inherent natural variability, affects human activities. These scenarios present a coherent range of future possibilities for climate; they are not predictions but they serve as a useful starting point. It is estimated that human-caused climate change will affect all aspects of life in Australia, including our cities, agriculture, pests and diseases, fisheries and natural ecosystems. 15 figs., ills

  15. Working group report: methane emissions from biomass burning

    International Nuclear Information System (INIS)

    Delmas, R.A.; Ahuja, D.

    1993-01-01

    Biomass burning is a significant source of atmospheric methane. Like most other sources of methane, it has both natural and anthropogenic causes, although anthropogenic causes now predominate. Most of the estimates of methane emissions from biomass burning in the past have relied on a uniform emission factor for all types of burning. This results in the share of trace gas emissions for different types of burning being the same as the amounts of biomass burned in those types. The Working Group endorsed the extension of an approach followed for Africa by Delmas et al. (1991) to use different emission factors for different types of biomass burning to estimate national emissions of methane. This is really critical as emission factors present important variations. While the focus of discussions of the Working Group was on methane emissions from biomass burning, the Group endorsed the IPCC-OECD methodology of estimating all greenhouse related trace gases from biomass burning. Neither the IPCC-OECD nor the methodology suggested here applies to estimation of trace gas emissions from the processing of biomass to upgraded fuels. They must be estimated separately. The Group also discussed technical options for controlling methane emissions from biomass. 12 refs

  16. Working group results on the division by four of the greenhouse gases emissions in France, at 2050, called factor four

    International Nuclear Information System (INIS)

    2005-01-01

    This working group aims to evaluate and propose different ways to divide by four the greenhouse gases emissions at 2050 in France. This objective was decided by the Government and fixed in the Climate Plan and in the Program law of 13 July 2005. In this framework, this meeting presents studies of the working group, concerning the following topics: buildings and greenhouse gases, a scenario for the UE25 realized by Greenpeace, the agriculture and the forests facing the climate, the biomass the nature the agriculture and the silviculture facing the climate. (A.L.B.)

  17. Low-Altitude Aerial Methane Concentration Mapping

    Directory of Open Access Journals (Sweden)

    Bara J. Emran

    2017-08-01

    Full Text Available Detection of leaks of fugitive greenhouse gases (GHGs from landfills and natural gas infrastructure is critical for not only their safe operation but also for protecting the environment. Current inspection practices involve moving a methane detector within the target area by a person or vehicle. This procedure is dangerous, time consuming, labor intensive and above all unavailable when access to the desired area is limited. Remote sensing by an unmanned aerial vehicle (UAV equipped with a methane detector is a cost-effective and fast method for methane detection and monitoring, especially for vast and remote areas. This paper describes the integration of an off-the-shelf laser-based methane detector into a multi-rotor UAV and demonstrates its efficacy in generating an aerial methane concentration map of a landfill. The UAV flies a preset flight path measuring methane concentrations in a vertical air column between the UAV and the ground surface. Measurements were taken at 10 Hz giving a typical distance between measurements of 0.2 m when flying at 2 m/s. The UAV was set to fly at 25 to 30 m above the ground. We conclude that besides its utility in landfill monitoring, the proposed method is ready for other environmental applications as well as the inspection of natural gas infrastructure that can release methane with much higher concentrations.

  18. Methane synthesis under mild conditions for decentralized applications

    International Nuclear Information System (INIS)

    Schlueter, Michael; Roensch, Stefan

    2016-01-01

    It is a central aim of the German government to significantly reduce the emission of greenhouse gases in the next years. One possibility to reach this aim is the substitution of fossil fuels, especially natural gas, by fuels from biogenic sources (Bio-SNG). However, it is a drawback of Bio-SNG that the production costs are considerably higher than those of fossil natural gas. This work provides an approach to reduce the production costs of Bio-SNG. It is the aim to reduce the process parameters of the methane synthesis. At the same time, it has to be ensured that high methane yields are achieved even at those mild conditions. A procedure for the optimization of the methanation catalyst activity will be presented. If the catalyst is as active as possible even at mild conditions, it will be possible to produce Bio-SNG cost efficient even in small, decentralized scale.

  19. The integrated nitrous oxide and methane grassland project

    Energy Technology Data Exchange (ETDEWEB)

    Leffelaar, P.A.; Langeveld, C.A.; Hofman, J.E.; Segers, R.; Van den Pol-van Dasselaar, A.; Goudriaan, J.; Rabbinge, R.; Oenema, O. [Department of Theoretical Production Ecology, Wageningen Agricultural University, Wageningen (Netherlands)

    2000-07-01

    The integrated nitrous oxide (N{sub 2}O) and methane (CH{sub 4}) grassland project aims to estimate and explain emissions of these greenhouse gases from two ecosystems, namely drained agricultural peat soil under grass at the experimental farm Zegveld and undrained peat in the nature preserve Nieuwkoopse Plassen, both Netherlands. Peat soils were chosen because of their expected considerable contribution to the greenhouse gas budget considering the prevailing wet and partial anaerobic conditions. The emission dynamics of these ecosystems are considered representatives of large peat areas because the underlying processes are rather general and driven by variables like organic matter characteristics, water and nutrient conditions and type of vegetation. The research approach comprises measurements and modelling at different integration levels relating to the microbiology of the production and consumption of N{sub 2}O and CH{sub 4} (laboratory studies), their movement through peat soil (rhizolab and field studies), and the resulting fluxes (field studies). Typical emissions from drained soil were 15-40 kg ha{sup -1} y{sup -1} N{sub 2}O and virtually zero for CH{sub 4}. The undrained soil in the nature preserve emitted 100-280 kg ha{sup -1} y{sup -1} CH{sub 4}, and probably little N{sub 2}O. The process knowledge, collected and partly integrated in the models, helps to explain these data. For example, the low methane emission from drained peat can more coherently be understood and extrapolated because: (1) upper soil layers are aerobic, thus limiting methane production and stimulating methane oxidation, (2) absence of aerenchymatous roots of wetland plants that connect deeper anaerobic soil layers where methane is produced to the atmosphere and supply labile carbon, (3) a low methane production potential in deep layers due to the low decomposability of organic matter, and (4) long anaerobic periods needed in the topsoil to develop a methane production potential. This

  20. Greenhouse gases emission from the sewage draining rivers.

    Science.gov (United States)

    Hu, Beibei; Wang, Dongqi; Zhou, Jun; Meng, Weiqing; Li, Chongwei; Sun, Zongbin; Guo, Xin; Wang, Zhongliang

    2018-01-15

    Carbon dioxide (CO 2 ), methane (CH 4 ) and nitrous oxide (N 2 O) concentration, saturation and fluxes in rivers (Beitang drainage river, Dagu drainage rive, Duliujianhe river, Yongdingxinhe river and Nanyunhe river) of Tianjin city (Haihe watershed) were investigated during July and October in 2014, and January and April in 2015 by static headspace gas chromatography method and the two-layer model of diffusive gas exchange. The influence of environmental variables on greenhouse gases (GHGs) concentration under the disturbance of anthropogenic activities was discussed by Spearman correlative analysis and multiple stepwise regression analysis. The results showed that the concentration and fluxes of CO 2 , CH 4 and N 2 O were seasonally variable with >winter>fall>summer, spring>summer>winter>fall and summer>spring>winter>fall for concentrations and spring>summer>fall>winter, spring>summer>winter>fall and summer>spring>fall>winter for fluxes respectively. The GHGs concentration and saturation were higher in comprehensively polluted river sites and lower in lightly polluted river sites. The three GHGs emission fluxes in two sewage draining rivers of Tianjin were clearly higher than those of other rivers (natural rivers) and the spatial variation of CH 4 was more obvious than the others. CO 2 and N 2 O air-water interface emission fluxes of the sewage draining rivers in four seasons were about 1.20-2.41 times and 1.13-3.12 times of those in the natural rivers. The CH 4 emission fluxes of the sewage draining rivers were 3.09 times in fall to 10.87 times in spring of those in the natural rivers in different season. The wind speed, water temperature and air temperature were related to GHGs concentrations. Nitrate and nitrite (NO 3 - +NO 2 - -N) and ammonia (NH 4 + -N) were positively correlated with CO 2 concentration and CH 4 concentration; and dissolved oxygen (DO) concentration was negatively correlated with CH 4 concentration and N 2 O concentration. The effect of

  1. Initial results of detected methane emissions from landfills in the Los Angeles Basin during the COMEX campaign by the Methane Airborne MAPper (MAMAP) instrument and a greenhouse gas in-situ analyser

    Science.gov (United States)

    Krautwurst, Sven; Gerilowski, Konstantin; Kolyer, Richard; Jonsson, Haflidi; Krings, Thomas; Horstjann, Markus; Leifer, Ira; Vigil, Sam; Buchwitz, Michael; Schüttemeyer, Dirk; Fladeland, Matthew M.; Burrows, John P.; Bovensmann, Heinrich

    2015-04-01

    Methane (CH4) is the second most important anthropogenic greenhouse gas beside carbon dioxide (CO2). Significant contributors to the global methane budget are fugitive emissions from landfills. Due to the growing world population, it is expected that the amount of waste and, therefore, waste disposal sites will increase in number and size in parts of the world, often adjacent growing megacities. Besides bottom-up modelling, a variety of ground based methods (e.g., flux chambers, trace gases, radial plume mapping, etc.) have been used to estimate (top-down) these fugitive emissions. Because landfills usually are large, sometimes with significant topographic relief, vary temporally, and leak/emit heterogeneously across their surface area, assessing total emission strength by ground-based techniques is often difficult. In this work, we show how airborne based remote sensing measurements of the column-averaged dry air mole fraction of CH4 can be utilized to estimate fugitive emissions from landfills in an urban environment by a mass balance approach. Subsequently, these emission rates are compared to airborne in-situ horizontal cross section measurements of CH4 taken within the planetary boundary layer (PBL) upwind and downwind of the landfill at different altitudes immediately after the remote sensing measurements were finished. Additional necessary parameters (e.g., wind direction, wind speed, aerosols, dew point temperature, etc.) for the data inversion are provided by a standard instrumentation suite for atmospheric measurements aboard the aircraft, and nearby ground-based weather stations. These measurements were part of the CO2 and Methane EXperiment (COMEX), which was executed during the summer 2014 in California and was co-funded by the European Space Agency (ESA) and the National Aeronautics and Space Administration (NASA). The remote sensing measurements were taken by the Methane Airborne MAPper (MAMAP) developed and operated by the University of Bremen and

  2. Critical analysis in the inventories of methane in oil and gas industry; Analise critica de inventarios de metano na industria do oleo e gas

    Energy Technology Data Exchange (ETDEWEB)

    Schmall, Vicente; Montez, Edson [PETROBRAS, Sao Luiz, MA (Brazil). Seguranca, Meio Ambiente e Saude; Rosa, Ana Regina [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)

    2004-07-01

    The methane contribution arising from anthropogenic activities plays a role of great significance when elevating the concentration of gases of greenhouse effect found in the atmosphere. The methane presents a global warming potential twenty one times higher than the carbon dioxide and its atmospheric lifespan is lower than the other gases of greenhouse effect. Its control is regarded as being one of the most efficient ways to mitigate the global climate changes in the short term, which requires previous quantification of its emissions. PETROBRAS, aiming at achieving its environmental excellence, is implementing a system of management and inventory of gases emission into the atmosphere. The emissions inventory of 2003, published in its Social Sustainability Report appears as a result of this effort. This paper presents a comparison between the results generated by the PETROBRAS' Management and Inventory of Emissions System and those deriving from the application of the methodology suggested by the Intergovernmental Panel on Climate Change (IPCC). The impact of the chosen methodology, the aggregation level and the data availability of the emission sources on the results obtained are highlighted. (author)

  3. National inventory report. Greenhouse gas emissions 1990-2009

    Energy Technology Data Exchange (ETDEWEB)

    2011-05-15

    Emissions of the following greenhouse gases are covered in this report: carbon dioxide (CO{sub 2}), methane (CH{sub 4}), nitrous oxide (N{sub 2}O), perfluoro carbons (PFCs), hydro fluorocarbons (HFCs) and sulphur hexafluoride (SF{sub 6}). In addition, the inventory includes calculations of emissions of the precursors NO{sub x}, NMVOC, and CO, as well as for SO{sub 2}. Indirect CO{sub 2} emissions originating from the fossil part of CH{sub 4} and NMVOC are calculated according to the reporting guidelines to the UNFCCC, and accounted for in the inventory. (AG)

  4. National inventory report. Greenhouse gas emissions 1990-2010

    Energy Technology Data Exchange (ETDEWEB)

    Kolshus, Hans H.; Gjerald, Eilev; Hoem, Britta; Ramberg, Simen Helgesen; Haugland, Hege; Valved, Hilde; Nelson, George Nicholas; Asphjell, Torgrim; Christophersen, Oeyvind; Gaustad, Alice; Rubaek, Birgitte; Hvalryg, Marte Monsen

    2012-07-01

    Emissions of the following greenhouse gases are covered in this report: carbon dioxide (CO{sub 2}), methane (CH{sub 4}), nitrous oxide (N{sub 2}O), perfluoro carbons (PFCs), hydro fluorocarbons (HFCs) and sulphur hexafluoride (SF{sub 6}). In addition, the inventory includes calculations of emissions of the precursors NO{sub x}, NMVOC, and CO, as well as for SO{sub 2}. Indirect CO{sub 2} emissions originating from the fossil part of CH{sub 4} and NMVOC are calculated according to the reporting guidelines to the UNFCCC, and accounted for in the inventory.(eb)

  5. Greenhouse effect of NO{sub x}

    Energy Technology Data Exchange (ETDEWEB)

    Lammel, G; Grassl, H [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany)

    1995-07-01

    Through various processes the nitrogen oxides (NO{sub x}) interact with trace gases in the troposphere and stratosphere which do absorb in the spectral range relevant to the greenhouse effect (infrared wavelengths). The net effect is an enhancement of the greenhouse effect. The catalytic role of NO{sub x} in the production of tropospheric ozone provides the most prominent contribution. The global waming potential is estimated as GWP (NO{sub x}) = 30-33 and 7-10 for the respective time horizons of 20 and 100 years, and is thereby comparable to that of methane. NO{sub x} emissions in rural areas of anthropogenically influenced regions, or those in the vicinity of the tropopause caused by air traffic, cause the greenhouse effectivity to be substantially more intense. We estimate an additional 5-23% for Germany`s contribution to the anthropogenic greenhouse effect as a result of the indirect greenhouse effects stemming from NO{sub x}. Furthermore, a small and still inaccurately defined amount of the deposited NO{sub x} which has primarily been converted into nitrates is again released from the soil into the atmosphere in the form of the long-lived greenhouse gas nitrous oxide (N{sub i}O). Thus, anthropogenically induced NO{sub x} emissions contribute to enhanced greenhouse effect and to stratospheric ozone depletion in the time scale of more than a century. (orig.)

  6. Development of TGS2611 methane sensor and SHT11 humidity and temperature sensor for measuring greenhouse gas on peatlands in south kalimantan, indonesia

    Science.gov (United States)

    Sugriwan, I.; Soesanto, O.

    2017-05-01

    The research was focused on development of data acquisition system to monitor the content of methane, relative humidity and temperature on peatlands in South Kalimantan, Indonesia. Methane is one of greenhouse gases that emitted from peatlands; while humidity and temperature are important parameters of microclimate on peatlands. The content of methane, humidity and temperature are three parameters were monitored digitally, real time, continuously and automatically record by data acquisition systems that interfaced to the personal computer. The hardware of data acquisition system consists of power supply unit, TGS2611 methane gas sensor, SHT11 humidity and temperature sensors, voltage follower, ATMega8535 microcontroller, 16 × 2 LCD character and personal computer. ATMega8535 module is a device to manage all part in measuring instrument. The software which is responsible to take sensor data, calculate characteristic equation and send data to 16 × 2 LCD character are Basic Compiler. To interface between measuring instrument and personal computer is maintained by Delphi 7. The result of data acquisition showed on 16 × 2 LCD characters, PC monitor and database with developed by XAMPP. Methane, humidity, and temperature which release from peatlands are trapped by Closed-Chamber Measurement with dimension 60 × 50 × 40 cm3. TGS2611 methane gas sensor and SHT11 humidity and temperature sensor are calibrated to determine transfer function used to data communication between sensors and microcontroller and integrated into ATMega8535 Microcontroller. Calculation of RS and RL of TGS2611 methane gas sensor refer to data sheet and obtained respectively 1360 ohm and 905 ohm. The characteristic equation of TGS2611 satisfies equation VRL = 0.561 ln n - 2.2641 volt, with n is a various concentrations and VRL in volt. The microcontroller maintained the voltage signal than interfaced it to liquid crystal displays and personal computer (laptop) to display result of the measurement

  7. Development of TGS2611 methane sensor and SHT11 humidity and temperature sensor for measuring greenhouse gas on peatlands in South Kalimantan, indonesia

    International Nuclear Information System (INIS)

    Sugriwan, I; Soesanto, O

    2017-01-01

    The research was focused on development of data acquisition system to monitor the content of methane, relative humidity and temperature on peatlands in South Kalimantan, Indonesia. Methane is one of greenhouse gases that emitted from peatlands; while humidity and temperature are important parameters of microclimate on peatlands. The content of methane, humidity and temperature are three parameters were monitored digitally, real time, continuously and automatically record by data acquisition systems that interfaced to the personal computer. The hardware of data acquisition system consists of power supply unit, TGS2611 methane gas sensor, SHT11 humidity and temperature sensors, voltage follower, ATMega8535 microcontroller, 16 × 2 LCD character and personal computer. ATMega8535 module is a device to manage all part in measuring instrument. The software which is responsible to take sensor data, calculate characteristic equation and send data to 16 × 2 LCD character are Basic Compiler. To interface between measuring instrument and personal computer is maintained by Delphi 7. The result of data acquisition showed on 16 × 2 LCD characters, PC monitor and database with developed by XAMPP. Methane, humidity, and temperature which release from peatlands are trapped by Closed-Chamber Measurement with dimension 60 × 50 × 40 cm 3 . TGS2611 methane gas sensor and SHT11 humidity and temperature sensor are calibrated to determine transfer function used to data communication between sensors and microcontroller and integrated into ATMega8535 Microcontroller. Calculation of RS and RL of TGS2611 methane gas sensor refer to data sheet and obtained respectively 1360 ohm and 905 ohm. The characteristic equation of TGS2611 satisfies equation V RL = 0.561 ln n – 2.2641 volt, with n is a various concentrations and V RL in volt. The microcontroller maintained the voltage signal than interfaced it to liquid crystal displays and personal computer (laptop) to display result of the

  8. Constraining estimates of methane emissions from Arctic permafrost regions with CARVE

    Science.gov (United States)

    Chang, R. Y.; Karion, A.; Sweeney, C.; Henderson, J.; Mountain, M.; Eluszkiewicz, J.; Luus, K. A.; Lin, J. C.; Dinardo, S.; Miller, C. E.; Wofsy, S. C.

    2013-12-01

    Permafrost in the Arctic contains large carbon pools that are currently non-labile, but can be released to the atmosphere as polar regions warm. In order to predict future climate scenarios, we need to understand the emissions of these greenhouse gases under varying environmental conditions. This study presents in-situ measurements of methane made on board an aircraft during the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE), which sampled over the permafrost regions of Alaska. Using measurements from May to September 2012, seasonal emission rate estimates of methane from tundra are constrained using the Stochastic Time-Inverted Lagrangian Transport model, a Lagrangian particle dispersion model driven by custom polar-WRF fields. Preliminary results suggest that methane emission rates have not greatly increased since the Arctic Boundary Layer Experiment conducted in southwest Alaska in 1988.

  9. A study of the presence of methane and other gases at the Pulau Burung sanitary landfill site, Penang, Malaysia

    International Nuclear Information System (INIS)

    Roslanzairi Mostapa; Mohd Tadza Abdul Rahman; Kamarudin Samuding; Lakam Mejus; Mohd Rifaie Mohd Murtadza

    2006-01-01

    This paperwork explains the investigation and measurement of the presence of the landfill gases that is methane (CH 4 ) and other gases that include oxygen (O 2 ), carbon dioxide (CO 2 ), sulphur dioxide (SO 2 ), oxides of nitrogen (NO x ), chlorine (Cl 2 ), hydrogen cyanide (HCN) and hydrogen sulphide (H 2 S) that were carried out at the Pulau Burung Sanitary Landfill disposal site, Penang on the month of March and June 2005. The objectives of this study are to investigate the presence of methane which could contribute to the safety aspect on explosion hazard and discuss briefly the viability of methane for power generation. For this purpose, direct gas measurements were taken from 31 gas wells from the first phase of the landfill. Pulau Burung Sanitary Landfill which is located in the state of Penang, Malaysia with the amount of design volume capacity of 0.85 million m3 and received approximately 350 ton of solid waste per day. From the study, it was found that the concentration of CH 4 averagely ranges from 3.66 % vol to 65.96 % vol. Other gases concentrations are; CO 2 (1.46 %vol - 39.66 % vol), O 2 (0.4 %vol - 14.2 %vol), SO 2 (1.8 ppm - 8.6 ppm), NO x (0.14 ppm - 0.46 ppm), Cl 2 (0.1 ppm - 0.58 ppm), HCN (1 ppm - 138.4 ppm) and H 2 S (0.4 ppm - 140 ppm). Methane dilution down to Explosion Limit (EL) levels that is between 5% (Lower Explosion Limit, LEL) and 15% (Upper Explosion Limit, UEL) is always possible and could poses explosion risk at the site. The viability of power generation from methane gas depends on many factors which will be discussed further in this paper. Most of these factors will rely on the nature of the operation by the landfill operator. (Author)

  10. Anesthetic gases and global warming: Potentials, prevention and future of anesthesia.

    Science.gov (United States)

    Gadani, Hina; Vyas, Arun

    2011-01-01

    Global warming refers to an average increase in the earth's temperature, which in turn causes changes in climate. A warmer earth may lead to changes in rainfall patterns, a rise in sea level, and a wide range of impacts on plants, wildlife, and humans. Greenhouse gases make the earth warmer by trapping energy inside the atmosphere. Greenhouse gases are any gas that absorbs infrared radiation in the atmosphere and include: water vapor, carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), halogenated fluorocarbons (HCFCs), ozone (O3), perfluorinated carbons (PFCs), and hydrofluorocarbons (HFCs). Hazardous chemicals enter the air we breathe as a result of dozens of activities carried out during a typical day at a healthcare facility like processing lab samples, burning fossil fuels etc. We sometimes forget that anesthetic agents are also greenhouse gases (GHGs). Anesthetic agents used today are volatile halogenated ethers and the common carrier gas nitrous oxide known to be aggressive GHGs. With less than 5% of the total delivered halogenated anesthetic being metabolized by the patient, the vast majority of the anesthetic is routinely vented to the atmosphere through the operating room scavenging system. The global warming potential (GWP) of a halogenated anesthetic is up to 2,000 times greater than CO2. Global warming potentials are used to compare the strength of different GHGs to trap heat in the atmosphere relative to that of CO2. Here we discuss about the GWP of anesthetic gases, preventive measures to decrease the global warming effects of anesthetic gases and Xenon, a newer anesthetic gas for the future of anesthesia.

  11. Effects of the 2014 major Baltic inflow on methane and nitrous oxide dynamics in the water column of the central Baltic Sea

    DEFF Research Database (Denmark)

    Myllykangas, Jukka-Pekka; Jilbert, Tom; Jakobs, Gunnar

    2017-01-01

    In late 2014, a large, oxygen-rich salt water inflow entered the Baltic Sea and caused considerable changes in deep water oxygen concentrations. We studied the effects of the inflow on the concentration patterns of two greenhouse gases, methane and nitrous oxide, during the following year (2015...

  12. Note: Measurement system for the radiative forcing of greenhouse gases in a laboratory scale

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, Yoshiyuki [Department of Intelligent Mechanical Engineering, Fukuoka Institute of Technology, 3-30-1 Wajirohigashi, Higashiku, Fukuoka 811-0295 (Japan)

    2016-01-15

    The radiative forcing of the greenhouse gases has been studied being based on computational simulations or the observation of the real atmosphere meteorologically. In order to know the greenhouse effect more deeply and to study it from various viewpoints, the study on it in a laboratory scale is important. We have developed a direct measurement system for the infrared back radiation from the carbon dioxide (CO{sub 2}) gas. The system configuration is similar with that of the practical earth-atmosphere-space system. Using this system, the back radiation from the CO{sub 2} gas was directly measured in a laboratory scale, which roughly coincides with meteorologically predicted value.

  13. Note: Measurement system for the radiative forcing of greenhouse gases in a laboratory scale.

    Science.gov (United States)

    Kawamura, Yoshiyuki

    2016-01-01

    The radiative forcing of the greenhouse gases has been studied being based on computational simulations or the observation of the real atmosphere meteorologically. In order to know the greenhouse effect more deeply and to study it from various viewpoints, the study on it in a laboratory scale is important. We have developed a direct measurement system for the infrared back radiation from the carbon dioxide (CO2) gas. The system configuration is similar with that of the practical earth-atmosphere-space system. Using this system, the back radiation from the CO2 gas was directly measured in a laboratory scale, which roughly coincides with meteorologically predicted value.

  14. Greenhouse gas microbiology in wet and dry straw crust covering pig slurry

    DEFF Research Database (Denmark)

    Hansen, Rikke Ruth; Nielsen, Daniel Aagren; Schramm, Andreas

    2009-01-01

    was observed in all crusted treatments exposed to anoxia, and this was probably a result of denitrification based on NO2- and NO3- that had accumulated in the crust during oxic conditions. To reduce overall greenhouse gas emissions, floating crust should be managed to optimize conditions for methanotrophs....... microbiology had an effect on the emission of the potent greenhouse gases CH4 and nitrous oxide (N2O) when crust moisture was manipulated ("Dry", "Moderate", and "Wet"). The dry crust had the deepest oxygen penetration (45 mm as compared to 20 mm in the Wet treatment) as measured with microsensors, the highest...... oxidizing bacteria were undetectable and methane oxidizing bacteria were only sparsely present in the "Wet" treatment. A change to anoxia did not affect the CH4 emission indicating the virtual absence of aerobic methane oxidation in the investigated 2-months old crusts. However, an increase in N2O emission...

  15. The greenhouse theory and climate change

    International Nuclear Information System (INIS)

    Murray, W.

    1994-01-01

    Background information is presented on the theory of the greenhouse effect and its implications for the environment and for government policies. The relationship between climate and atmospheric CO 2 , the major greenhouse gas, is explained. Sources of CO 2 , notably fossil fuel combustion, and sinks (vegetation and oceans) are described. Evidence is presented for an increase in greenhouse gases in the atmosphere. Irrefutable data indicate an increase in atmospheric CO 2 over 1850-1980 from ca 290 ppM to 345 ppM; other evidence indicates a doubling of atmospheric methane since the eighteenth century. More recent increases have been noted for atmospheric N 2 O and chlorofluorocarbons. The implications of increased atmospheric levels of CO 2 are discussed, and new scientific evidence from Greenland ice-core data is presented which seems to indicate that higher CO 2 concentrations are a result of global warming rather than the cause. Canadian parliamentary action in response to the global warming phenomenon is outlined. A chronology of international efforts in response to global warming is appended. 11 refs

  16. Greenhouse impact of CH{sub 4}, N{sub 2}O and CFC emissions in Finland and its control potential

    Energy Technology Data Exchange (ETDEWEB)

    Pipatti, R.; Savolainen, I.; Sinisalo, J. [VTT Energy, Espoo (Finland)

    1995-12-31

    Methane (CH{sub 4}), nitrous oxide (N{sub 2}O) and chlorofluorocarbon (CFC) emissions contribute considerably to the anthropogenic enhancement of Earth`s greenhouse effect. The limitation of atmospheric concentrations of CH{sub 4} and N{sub 2}O is considered important also in the Climate Convention. Chlorine released from the CFCs in the stratosphere destroys ozone (O{sub 3}) and the emissions are therefore regulated with the Montreal Protocol. The greenhouse impact of CFCs might be, at least to some extent, compensated by the depletion of O{sub 3} which is also a greenhouse gas. The objective of the presentation is to assess the role of anthropogenic CH{sub 4}, N{sub 2}O, and CFC emissions in the total direct greenhouse impact due to human activities in Finland. The emission estimates for the gases are presented, as well as scenarios for emission history, future development and control potential. The greenhouse impact of the gases is compared with that of carbon dioxide (CO{sub 2}) emissions in Finland. (author)

  17. Greenhouse impact of CH{sub 4}, N{sub 2}O and CFC emissions in Finland and its control potential

    Energy Technology Data Exchange (ETDEWEB)

    Pipatti, R; Savolainen, I; Sinisalo, J [VTT Energy, Espoo (Finland)

    1996-12-31

    Methane (CH{sub 4}), nitrous oxide (N{sub 2}O) and chlorofluorocarbon (CFC) emissions contribute considerably to the anthropogenic enhancement of Earth`s greenhouse effect. The limitation of atmospheric concentrations of CH{sub 4} and N{sub 2}O is considered important also in the Climate Convention. Chlorine released from the CFCs in the stratosphere destroys ozone (O{sub 3}) and the emissions are therefore regulated with the Montreal Protocol. The greenhouse impact of CFCs might be, at least to some extent, compensated by the depletion of O{sub 3} which is also a greenhouse gas. The objective of the presentation is to assess the role of anthropogenic CH{sub 4}, N{sub 2}O, and CFC emissions in the total direct greenhouse impact due to human activities in Finland. The emission estimates for the gases are presented, as well as scenarios for emission history, future development and control potential. The greenhouse impact of the gases is compared with that of carbon dioxide (CO{sub 2}) emissions in Finland. (author)

  18. Greenhouse gases from wastewater treatment — A review of modelling tools

    International Nuclear Information System (INIS)

    Mannina, Giorgio; Ekama, George; Caniani, Donatella; Cosenza, Alida; Esposito, Giovanni; Gori, Riccardo; Garrido-Baserba, Manel; Rosso, Diego; Olsson, Gustaf

    2016-01-01

    Nitrous oxide, carbon dioxide and methane are greenhouse gases (GHG) emitted from wastewater treatment that contribute to its carbon footprint. As a result of the increasing awareness of GHG emissions from wastewater treatment plants (WWTPs), new modelling, design, and operational tools have been developed to address and reduce GHG emissions at the plant-wide scale and beyond. This paper reviews the state-of-the-art and the recently developed tools used to understand and manage GHG emissions from WWTPs, and discusses open problems and research gaps. The literature review reveals that knowledge on the processes related to N_2O formation, especially due to autotrophic biomass, is still incomplete. The literature review shows also that a plant-wide modelling approach that includes GHG is the best option for the understanding how to reduce the carbon footprint of WWTPs. Indeed, several studies have confirmed that a wide vision of the WWPTs has to be considered in order to make them more sustainable as possible. Mechanistic dynamic models were demonstrated as the most comprehensive and reliable tools for GHG assessment. Very few plant-wide GHG modelling studies have been applied to real WWTPs due to the huge difficulties related to data availability and the model complexity. For further improvement in GHG plant-wide modelling and to favour its use at large real scale, knowledge of the mechanisms involved in GHG formation and release, and data acquisition must be enhanced. - Highlights: • The state of the art in GHG production/emission/modelling from WWTPs was outlined. • Detailed mechanisms of N_2O production by AOB are still not completely known. • N_2O modelling could be improved considering both AOB pathways contribution. • To improve protocols the regulatory framework among countries has to be equalized. • Plant-wide modelling can help modeller/engineer/operator to reduce GHG emissions.

  19. Greenhouse gases from wastewater treatment — A review of modelling tools

    Energy Technology Data Exchange (ETDEWEB)

    Mannina, Giorgio, E-mail: giorgio.mannina@unipa.it [Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali, Università di Palermo, Viale delle Scienze, 90100 Palermo (Italy); Ekama, George [Water Research Group, Department of Civil Engineering, University of Cape Town, Rondebosch, 7700 Cape (South Africa); Caniani, Donatella [Department of Engineering and Physics of the Environment, University of Basilicata, viale dell' Ateneo Lucano 10, 85100 Potenza (Italy); Cosenza, Alida [Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali, Università di Palermo, Viale delle Scienze, 90100 Palermo (Italy); Esposito, Giovanni [Department of Civil and Mechanical Engineering, University of Cassino and the Southern Lazio, Via Di Biasio, 43, 03043 Cassino, FR (Italy); Gori, Riccardo [Department of Civil and Environmental Engineering, University of Florence, Via Santa Marta 3, 50139 Florence (Italy); Garrido-Baserba, Manel [Department of Civil & Environmental Engineering, University of California, Irvine, CA 92697-2175 (United States); Rosso, Diego [Department of Civil & Environmental Engineering, University of California, Irvine, CA 92697-2175 (United States); Water-Energy Nexus Center, University of California, Irvine, CA 92697-2175 (United States); Olsson, Gustaf [Department of Industrial Electrical Engineering and Automation (IEA), Lund University, Box 118, SE-22100 Lund (Sweden)

    2016-05-01

    Nitrous oxide, carbon dioxide and methane are greenhouse gases (GHG) emitted from wastewater treatment that contribute to its carbon footprint. As a result of the increasing awareness of GHG emissions from wastewater treatment plants (WWTPs), new modelling, design, and operational tools have been developed to address and reduce GHG emissions at the plant-wide scale and beyond. This paper reviews the state-of-the-art and the recently developed tools used to understand and manage GHG emissions from WWTPs, and discusses open problems and research gaps. The literature review reveals that knowledge on the processes related to N{sub 2}O formation, especially due to autotrophic biomass, is still incomplete. The literature review shows also that a plant-wide modelling approach that includes GHG is the best option for the understanding how to reduce the carbon footprint of WWTPs. Indeed, several studies have confirmed that a wide vision of the WWPTs has to be considered in order to make them more sustainable as possible. Mechanistic dynamic models were demonstrated as the most comprehensive and reliable tools for GHG assessment. Very few plant-wide GHG modelling studies have been applied to real WWTPs due to the huge difficulties related to data availability and the model complexity. For further improvement in GHG plant-wide modelling and to favour its use at large real scale, knowledge of the mechanisms involved in GHG formation and release, and data acquisition must be enhanced. - Highlights: • The state of the art in GHG production/emission/modelling from WWTPs was outlined. • Detailed mechanisms of N{sub 2}O production by AOB are still not completely known. • N{sub 2}O modelling could be improved considering both AOB pathways contribution. • To improve protocols the regulatory framework among countries has to be equalized. • Plant-wide modelling can help modeller/engineer/operator to reduce GHG emissions.

  20. Atmospheric observations for quantifying emissions of point-source synthetic greenhouse gases (CF4, NF3 and HFC-23)

    Science.gov (United States)

    Arnold, Tim; Manning, Alistair J.; Li, Shanlan; Kim, Jooil; Park, Sunyoung; Fraser, Paul J.; Mitrevski, Blagoj; Steele, L. Paul; Krummel, Paul B.; Mühle, Jens; Weiss, Ray F.

    2016-04-01

    The fluorinated species carbon tetrafluoride (CF4; PFC-14), nitrogen trifluoride (NF3) and trifluoromethane (CHF3; HFC-23) are potent greenhouse gases with 100-year global warming potentials of 6,630, 16,100 and 12,400, respectively. Unlike the majority of CFC-replacement compounds that are emitted from fugitive and mobile emission sources, these gases are largely emitted from large single point sources - semiconductor manufacturing facilities (all three), aluminium smelting plants (CF4) and chlorodifluoromethane factories (HFC-23). In this work we show the potential for atmospheric measurements to understand regional sources of these gases and to highlight emission 'hotspots'. We target our analysis on measurements from two Advanced Global Atmospheric Gases Experiment (AGAGE) long term monitoring sites that are particularly sensitive to regional emissions of these gases: Gosan on Jeju Island in the Republic of Korea and Cape Grim on Tasmania in Australia. These sites measure CF4, NF3 and HFC-23 alongside a suite of greenhouse and stratospheric ozone depleting gases every two hours using automated in situ gas-chromatography mass-spectrometry instrumentation. We couple each measurement to an analysis of air history using the regional atmospheric transport model NAME (Numerical Atmospheric dispersion Modelling Environment) driven by 3D meteorology from the Met Office's Unified Model, and use a Bayesian inverse method (InTEM - Inversion Technique for Emission Modelling) to calculate yearly emission changes over a decade (2005-2015) at high spatial resolution. At present these gases make a small contribution to global radiative forcing, however, given that their impact could rise significantly and that point sources of such gases can be mitigated, atmospheric monitoring could be an important tool for aiding emissions reduction policy.

  1. Concentrations and carbon isotope compositions of methane in the cored sediments from offshore SW Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    Chuang, P.C.; Yang, T.F.; Hong, W.L. [National Taiwan Univ., Taipei, Taiwan (China). Dept. of Geosciences; Lin, S.; Chen, J.C. [National Taiwan Univ., Taipei, Taiwan (China). Inst. of Oceanography; Sun, C.H. [CPC Corp., Wen Shan, Miaoli, Taiwan (China). Exploration and Development Research Inst.; Wang, Y. [Central Geological Survey, MOEA, Taipei, Taiwan (China)

    2008-07-01

    Gas hydrates are natural occurring solids that contain natural gases, mainly methane, within a rigid lattice of water molecules. They are a type of non-stoichiometric clathrates and metastable crystal products in low temperature and high pressure conditions and are widely distributed in oceans and in permafrost regions around the world. Gas hydrates have been considered as potential energy resources for the future since methane is the major gas inside gas hydrates. Methane is also a greenhouse gas that might affect the global climates from the dissociations of gas hydrates. Bottom simulating reflections (BSRs) have been found to be widely distributed in offshore southwestern Taiwan therefore, inferring the existence of potential gas hydrates underneath the seafloor sediments. This paper presented a study that involved the systematic collection of sea waters and cored sediments as well as the analysis of the gas composition of pore-space of sediments through ten cruises from 2003 to 2006. The paper discussed the results in terms of the distribution of methane concentrations in bottom waters and cored sediments; methane fluxes in offshore southwestern Taiwan; and isotopic compositions of methane in pore spaces of cored sediments. It was concluded that the carbon isotopic compositions of methane demonstrated that biogenic gas source was dominated at shallower depth. However, some thermogenic gases might be introduced from deeper source in this region. 15 refs., 5 figs.

  2. Evaluation of methane emissions from Taiwanese paddies

    International Nuclear Information System (INIS)

    Liu, C.-W.; Wu, C.-Y.

    2004-01-01

    The main greenhouse gases are carbon dioxide, methane and nitrous oxide. Methane is the most important because the warming effect of methane is 21 times greater than that of carbon dioxide. Methane emitted from rice paddy fields is a major source of atmospheric methane. In this work, a methane emission model (MEM), which integrates climate change, plant growth and degradation of soil organic matter, was applied to estimate the emission of methane from rice paddy fields in Taiwan. The estimated results indicate that much methane is emitted during the effective tillering and booting stages in the first crop season and during the transplanting stage in the second crop season in a year. Sensitivity analysis reveals that the temperature is the most important parameter that governs the methane emission rate. The order of the strengths of the effects of the other parameters is soil pH, soil water depth (SWD) and soil organic matter content. The masses of methane emitted from rice paddy fields of Taiwan in the first and second crop seasons are 28,507 and 350,231 tons, respectively. The amount of methane emitted during the second crop season is 12.5 times higher than that emitted in the first crop season. With a 12% reduction in planted area during the second crop season, methane emission could be reduced by 21%. In addition, removal of rice straw left from the first crop season and increasing the depth of flooding to 25 cm are also strategies that could help reduce annual emission by up to 18%

  3. Options for cost-effectively reducing atmospheric methane concentrations from anthropogenic biomass sources

    International Nuclear Information System (INIS)

    Roos, K.F.; Jacobs, C.; Orlic, M.

    1993-01-01

    Methane is a major greenhouse gas, second only to carbon dioxide in its contribution to future global warming. Methane concentrations have more than doubled over the last two centuries and continue to rise annually. These increases are largely correlated with increasing human populations. Methane emissions from human related activities currently account for about 70 percent of annual emissions. Of these human related emissions, biomass sources account for about 75 percent and non-biomass sources about 25 percent. Because methane has a shorter lifetime than other major greenhouse gases, efforts to reduce methane emissions may fairly quickly be translated into lower atmospheric concentrations of methane and lower levels of radiative forcing. This fairly quick response would have the benefit of slowing the rate of climate change and hence allow natural ecosystems more time to adapt. Importantly, methane may be cost-effectively reduced from a number of biomass and non-biomass sources in the United States and worldwide. Methane is a valuable fuel, not just a waste by-product, and often systems may be reconfigured to reap the fuel value of the methane and more than justify the necessary expenditures. Such options for reducing methane emission from biomass sources exist for landfills, livestock manures, and ruminant livestock, and have been implemented to varying degrees in countries around the world. However, there are a number of barriers that hinder the more widespread use of technologies, including institutional, financial, regulatory, informational, and other barriers. This paper describes an array of available options that may be cost-effectively implemented to reduce methane emissions from biomass sources. This paper also discusses a number of programs that have been developed in the United States and internationally to promote the implementation of these methane reduction options and overcome existing barriers

  4. Limiting the emission of green-house gases: objectives and results in EU and non-EU countries

    Directory of Open Access Journals (Sweden)

    Hellrigl B

    2008-06-01

    Full Text Available Based on UNFCCC and EEA (European Environmental Agency data, changes in the emissions (no LULUCF considered of green-house gases in the period 1990-2004 either in the Annex 1 as well in the UE-27 countries are summarized and commented.

  5. High methane emissions dominate annual greenhouse gas balances 30 years after bog rewetting

    Science.gov (United States)

    Vanselow-Algan, M.; Schmidt, S. R.; Greven, M.; Fiencke, C.; Kutzbach, L.; Pfeiffer, E.-M.

    2015-02-01

    Natural peatlands are important carbon sinks and sources of methane (CH4). In contrast, drained peatlands turn from a carbon sink to a carbon source and potentially emit nitrous oxide (N2O). Rewetting of peatlands thus implies climate change mitigation. However, data about the time span that is needed for the re-establishment of the carbon sink function by restoration is scarce. We therefore investigated the annual greenhouse gas (GHG) balances of three differently vegetated bog sites 30 years after rewetting. All three vegetation communities turned out to be sources of carbon dioxide (CO2) ranging between 0.6 ± 1.43 t CO2 ha-2 yr-1 (Sphagnum-dominated vegetation) and 3.09 ± 3.86 t CO2 ha-2 yr-1 (vegetation dominated by heath). While accounting for the different global warming potential (GWP) of the three greenhouse gases, the annual GHG balance was calculated. Emissions ranged between 25 and 53 t CO2-eq ha-1 yr-1 and were dominated by large emissions of CH4 (22 up to 51 t CO2-eq ha-1 yr-1), while highest rates were found at purple moor grass (Molinia caerulea) stands. These are to our knowledge the highest CH4 emissions so far reported for bog ecosystems in temperate Europe. As the restored area was subject to large fluctuations in water table, we conclude that the high CH4 emission rates were caused by a combination of both the temporal inundation of the easily decomposable plant litter of this grass species and the plant-mediated transport through its tissues. In addition, as a result of the land use history, the mixed soil material can serve as an explanation. With regards to the long time span passed since rewetting, we note that the initial increase in CH4 emissions due to rewetting as described in the literature is not limited to a short-term period.

  6. The storage of greenhouse gases

    International Nuclear Information System (INIS)

    Herzog, H.; Kaarstad, O.; Eliasson, B

    2000-01-01

    Since 1850, that is to say the beginning of the industrial era,the concentration of carbon dioxide in the atmosphere has risen from 280 ppm to 370 ppm, this increase is mainly due to the combustion of fossil fuels. Today fossil fuels represent 85% of all the energy used in the world. Fearing progressive climatic changes, more and more governments become aware of the necessity of reducing the emission of greenhouse gases. A more efficient use of energy and the promoting of renewable energies and of the nuclear energy are the most evident solutions but they appear to be insufficient. A third solution is the storage of carbon dioxide in geological layers. This technique has been put into use since 1996 in Norway. An off-shore natural gas platform injects carbon dioxide in a geological reservoir situated 1000 meters below the ocean bed. The injection of CO 2 could be used in oil fields in order to facilitate the extraction of petroleum. Far more large and efficient reservoirs would be the oceans, they already hold up 40000 10 9 tons of dissolved CO 2 . Even if the double of the carbon dioxide accumulated in the atmosphere since 1850 were injected, the concentration of carbon in sea waters would rise by less than 2%. The safety of CO 2 storage and the impact on the environment of ocean injection sites are being studied. (A.C.)

  7. Current and emerging laser sensors for greenhouse gas sensing and leak detection

    Science.gov (United States)

    Frish, Michael B.

    2014-05-01

    To reduce atmospheric accumulation of the greenhouse gases methane and carbon dioxide, networks of continuously operating sensors that monitor and map their sources are desirable. In this paper, we discuss advances in laser-based open-path leak detectors, as well as technical and economic challenges inhibiting widespread sensor deployment for "ubiquitous monitoring". We describe permanently-installed, wireless, solar-powered sensors that overcome previous installation and maintenance difficulties while providing autonomous real-time leak reporting without false alarms.

  8. Interannual Variability of Carbon Dioxide, Methane and Nitrous Oxide Fluxes in Subarctic European Russian Tundra

    Science.gov (United States)

    Marushchak, M. E.; Voigt, C.; Gil, J.; Lamprecht, R. E.; Trubnikova, T.; Virtanen, T.; Kaverin, D.; Martikainen, P. J.; Biasi, C.

    2017-12-01

    Southern tundra landscapes are particularly vulnerable to climate warming, permafrost thaw and associated landscape rearrangement due to near-zero permafrost temperatures. The large soil C and N stocks of subarctic tundra may create a positive feedback for warming if released to the atmosphere at increased rates. Subarctic tundra in European Russia is a mosaic of land cover types, which all play different roles in the regional greenhouse gas budget. Peat plateaus - massive upheaved permafrost peatlands - are large storehouses of soil carbon and nitrogen, but include also bare peat surfaces that act as hot-spots for both carbon dioxide and nitrous oxide emissions. Tundra wetlands are important for the regional greenhouse gas balance since they show high rates of methane emissions and carbon uptake. The most dominant land-form is upland tundra vegetated by shrubs, lichens and mosses, which displays a close-to-neutral balance with respect to all three greenhouse gases. The study site Seida (67°03'N, 62°56'E), located in the discontinuous permafrost zone of Northeast European Russia, incorporates all these land forms and has been an object for greenhouse gas investigations since 2007. Here, we summarize the growing season fluxes of carbon dioxide, methane and nitrous oxide measured by chamber techniques over the study years. We analyzed the flux time-series together with the local environmental data in order to understand the drivers of interannual variability. Detailed soil profile measurements of greenhouse gas concentrations, soil moisture and temperature provide insights into soil processes underlying the net emissions to the atmosphere. The multiannual time-series allows us to assess the importance of the different greenhouse gases and landforms to the overall climate forcing of the study region.

  9. Emissions, activity data, and emission factors of fluorinated greenhouse gases (F-Gases) in Germany 1995-2002

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Winfried [Oeko-Recherche, Buero fuer Umweltforschung und -beratung GmbH, Frankfurt am Main (Germany)

    2005-06-15

    Before the 1997 Kyoto Protocol on Climate Protection, the fluorinated greenhouse gases HFCs, PFCs, and SF6 (F-gases) aroused little public attention. Since then, the standards on surveying and reporting on national emissions have been rising constantly. Amongst others, the annual reporting to the UNFCCC secretariat makes detailed declarations on use and emissions of F-gases necessary, which have to be filled in specified formats for submission (Common Reporting Format = CRF). The scientific basis has been set out by the UNFCCC guidelines on reporting, in accordance with the instructions laid down in IPCC good practice guidance. Additionally, in Germany the Centralised System of Emissions (ZSE) shall provide a suitable tool to satisfy any quality needs of both activity data and emission factors. From 1995 onwards, activity data and emissions of each individual application sector shall be presented in a comprehensible and transparent way. Therefore, the way of data collection as well as the estimation methods applied must be well documented. Moreover, data has to be prepared for appropriate importation into ZSE. It is the objective of this study to provide the transparency demanded within 40 national application sectors of F-gases, for the period between 1995 and 2002. - Firstly, all the activity data as well as the emissions related to them are presented and commented. This applies to manufacturing of products, F-gases banked in operating systems, and decommissioning. - Secondly, the methodologies applied to calculate the emissions are described and all sources of information are revealed, e.g. literature, names of experts from the manufacturing industry, users, trade, and academia. - Thirdly, reliability and safety of data are discussed. - Fourthly, possible deviations from the IPCC default values are stated and given reasons for. Wherever this intensive reviewing of 40 sectors through eight years of reporting uncovers gaps or inconsistencies in previous reports

  10. 76 FR 80553 - Mandatory Reporting of Greenhouse Gases: Technical Revisions to the Petroleum and Natural Gas...

    Science.gov (United States)

    2011-12-23

    ... permeability gas, shale gas, coal seam, or other tight reservoir rock. For example, wells producing coal bed... separation means one or more of the following processes: forced extraction of natural gas liquids, sulfur and... Mandatory Reporting of Greenhouse Gases: Technical Revisions to the Petroleum and Natural Gas Systems...

  11. The development and trial of an unmanned aerial system for the measurement of methane flux from landfill and greenhouse gas emission hotspots.

    Science.gov (United States)

    Allen, Grant; Hollingsworth, Peter; Kabbabe, Khristopher; Pitt, Joseph R; Mead, Mohammed I; Illingworth, Samuel; Roberts, Gareth; Bourn, Mark; Shallcross, Dudley E; Percival, Carl J

    2018-01-09

    This paper describes the development of a new sampling and measurement method to infer methane flux using proxy measurements of CO 2 concentration and wind data recorded by Unmanned Aerial Systems (UAS). The flux method described and trialed here is appropriate to the spatial scale of landfill sites and analogous greenhouse gas emission hotspots, making it an important new method for low-cost and rapid case study quantification of fluxes from currently uncertain (but highly important) greenhouse gas sources. We present a case study using these UAS-based measurements to derive instantaneous methane fluxes from a test landfill site in the north of England using a mass balance model tailored for UAS sampling and co-emitted CO 2 concentration as a methane-emission proxy. Methane flux (and flux uncertainty) during two trials on 27 November 2014 and 5 March 2015, were found to be 0.140 kg s -1 (±61% at 1σ), and 0.050 kg s -1 (±54% at 1σ), respectively. Uncertainty contributing to the flux was dominated by ambient variability in the background (inflow) concentration (>40%) and wind speed (>10%); with instrumental error contributing only ∼1-2%. The approach described represents an important advance concerning the challenging problem of greenhouse gas hotspot flux calculation, and offers transferability to a wide range of analogous environments. This new measurement solution could add to a toolkit of approaches to better validate source-specific greenhouse emissions inventories - an important new requirement of the UNFCCC COP21 (Paris) climate change agreement. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Carbon fibre composite for ventilation air methane (VAM) capture

    International Nuclear Information System (INIS)

    Thiruvenkatachari, Ramesh; Su Shi; Yu Xinxiang

    2009-01-01

    Coal mine methane (CMM) is not only a hazardous greenhouse gas but is also a wasted energy resource, if not utilised. This paper evaluates a novel adsorbent material developed for capturing methane from ventilation air methane (VAM) gas in underground coal mines. The adsorbent material is a honeycomb monolithic carbon fibre composite (HMCFC) consisting of multiple parallel flow-through channels and the material exhibits unique features including low pressure drop, good mechanical properties, ability to handle dust-containing gas streams, good thermal and electrical conductivity and selective adsorption of gases. During this study, a series of HMCFC adsorbents (using different types of carbon fibres) were successfully fabricated. Experimental data demonstrated the proof-of-concept of using the HMCFC adsorbent to capture methane from VAM gas. The adsorption capacity of the HMCFC adsorbent was twice that of commercial activated carbon. Methane concentration of 0.56% in the inlet VAM gas stream is reduced to about 0.011% after it passes through the novel carbon fibre composite adsorbent material at ambient temperature and atmospheric pressure. This amounts to a maximum capture efficiency of 98%. These encouraging laboratory scale studies have prompted further large scale trials and economic assessment.

  13. Greenhouse effect gases and climatic change: quantification and tools to fight against the emissions; Gaz a effet de serre et changement climatique: quantification et instruments de lutte contre des emissions

    Energy Technology Data Exchange (ETDEWEB)

    Bizec, R.F

    2006-07-01

    The greenhouse effect gases are considered responsible of the climatic change. Their consequences are numerous: increase of the sea level, displacement of the climatic areas, modification of the forests ecosystems, rarefaction of water, progressively decrease of glaciers... This fast modification of the climate would lead to the increase of natural hazards as hurricanes, storms, hails and so on. It is then a necessity to reduce as fast as possible the greenhouse effect gases. The author describes in a first part the methods of the greenhouse effect gases quantification and in the second part the tools to fight these gases, regulations, standards, economic tools, national tools and the projects. (A.L.B.)

  14. Quantification Of Greenhouse Gases From Three Danish Composting Facilities

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Andersen, Jacob Kragh; Samuelsson, J.

    2011-01-01

    A measurement method combining a controlled trace gas release with downwind concentrations measurements was successfully used to quantify greenhouse gas (GHG) emissions from three Danish open windrow composting facilities. Overall, the results showed that composting of organic waste generate GHG...... emissions in terms of methane (CH4) and nitrous oxide (N2O) and thus contribute to climate change. At all three facilities significant CH4 emissions were occurring. The CH4 emission varied between 0.50 and 5.73 kg CH4 h-1. The highest CH4 emission (5.73 kg CH4 h-1) were measured at the Aarhus composting...... facility and was believed to be a result of the windrow lay-out with very broad and high windrows and a low turning frequency. The lowest CH4 emission (0.50 kg CH4 h-1) was measured at Fakse composting area and was most likely a result of the relatively small windrows and frequent weekly turnings. For all...

  15. Cost effective method for valuation of impacts caused by greenhouse gases emissions for oil and gas companies; Metodo de custo-efetividade para avaliacao de impactos causados pelas emissoes de gases de efeito estufa em empresas de oleo e gas

    Energy Technology Data Exchange (ETDEWEB)

    Carneiro, Elisa Vieira [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil); Barros, Sergio Ricardo da Silveira [Universidade Federal Fluminense (LATEC/UFF), Niteroi, RJ (Brazil). Mestrado em Sistemas de Gestao

    2012-07-01

    The objective of this work is to apply the method of cost-effectiveness in economic evaluation of new investment projects, based on information about reducing greenhouse gases emissions. In the context of the commitment of companies with the Climate Change and Sustainability, this work is important and contributes to the oil and gas industry, because it integrates information on reducing emissions of greenhouse gases in negative Net Present Value (NPV) projects, helping the portfolio manager on decision making between alternative projects. In this article, examples are given of two investment projects, in which the cost effectiveness methodology is applied, considering the reduction of emission of greenhouse gases such as additional environmental benefit, or cost avoidance, in an adjusted model of the economic viability analysis of meritorious projects. (author)

  16. Thermodynamic investigation of lime-enhanced molybdenite reduction using methane-containing gases

    International Nuclear Information System (INIS)

    Najafabadi, Samad Ghasemi; Abbasi, Mohammad Hasan; Saidi, Ali

    2010-01-01

    Lime-enhanced molybdenite reduction (LEMR) with methane-containing gases has been thermodynamically studied. The reaction proceeds through the direct oxidation of MoS 2 by CaO to form intermediate molybdenum oxidized species, MoO 2 and CaMoO 4 . The thermodynamics of Mo-O-C-H and Mo-Ca-O-C-H systems has been investigated instead of Mo-Ca-S-O-C-H system, as the sulfur is captured by calcium and forms a neutral compound (i.e. calcium sulfide). The role of reducing agent is the reduction of these oxidized species. Reduction of oxidized species by methane will yield Mo, Mo 2 C or MoC. The thermodynamic investigation resulted in construction of stability diagrams of molybdenum compounds. These diagrams were constructed for CH 4 -H 2 , CH 4 -H 2 -Ar and CH 4 -CO 2 -H 2 O gas mixtures. In addition to stability regions of Mo, Mo 2 C and MoC, the carbon deposition area was also identified. The results showed that by using appropriate gas composition and temperature, different molybdenum-containing phases would be stable thermodynamically while soot formation can be avoided.

  17. Atmospheric Radiation Measurement Program facilities newsletter, July 2001.; TOPICAL

    International Nuclear Information System (INIS)

    Holdridge, D. J.

    2001-01-01

    Global Warming and Methane-Global warming, an increase in Earth's near-surface temperature, is believed to result from the buildup of what scientists refer to as ''greenhouse gases.'' These gases include water vapor, carbon dioxide, methane, nitrous oxide, ozone, perfluorocarbons, hydrofluoro-carbons, and sulfur hexafluoride. Greenhouse gases can absorb outgoing infrared (heat) radiation and re-emit it back to Earth, warming the surface. Thus, these gases act like the glass of a greenhouse enclosure, trapping infrared radiation inside and warming the space. One of the more important greenhouse gases is the naturally occurring hydrocarbon methane. Methane, a primary component of natural gas, is the second most important contributor to the greenhouse effect (after carbon dioxide). Natural sources of methane include wetlands, fossil sources, termites, oceans, fresh-waters, and non-wetland soils. Methane is also produced by human-related (or anthropogenic) activities such as fossil fuel production, coal mining, rice cultivation, biomass burning, water treatment facilities, waste management operations and landfills, and domesticated livestock operations (Figure 1). These anthropogenic activities account for approximately 70% of the methane emissions to the atmosphere. Methane is removed naturally from the atmosphere in three ways. These methods, commonly referred to as sinks, are oxidation by chemical reaction with tropospheric hydroxyl ion, oxidation within the stratosphere, and microbial uptake by soils. In spite of their important role in removing excess methane from the atmosphere, the sinks cannot keep up with global methane production. Methane concentrations in the atmosphere have increased by 145% since 1800. Increases in atmospheric methane roughly parallel world population growth, pointing to anthropogenic sources as the cause (Figure 2). Increases in the methane concentration reduce Earth's natural cooling efficiency by trapping more of the outgoing

  18. Toward highly efficient in situ dry reforming of H2S contaminated methane in solid oxide fuel cells via incorporating a coke/sulfur resistant bimetallic catalyst layer

    NARCIS (Netherlands)

    Hua, B.; Yan, N.; Li, M.; Sun, Y.-F.; Chen, J.; Zhang, Y.-Q.; Li, J.; Etsell, T.; Sarkar, P.; Luo, J.L.

    2016-01-01

    The escalating global warming effects are a reason for immediate measures to reduce the level of greenhouse gases. In this context, dry reforming of methane (DRM), an old yet both scientifically and industrially important process, is making a comeback in contributing to the utilization of CO2.

  19. Emission of Harmful Gases from Poultry Farms and Possibilities of Their Reduction

    Directory of Open Access Journals (Sweden)

    Brouček Jan

    2015-03-01

    Full Text Available This review is devoted to methodology that can help to assess emission of gases from poultry housings and could be used to expand the knowledge base of researchers, policymakers and farmers to maintain sustainable environment conditions for farming systems. Concentration and emission of ammonia, methane, nitrous oxide and carbon dioxide in poultry barns are discussed in this paper. Surveys of ammonia and greenhouse gases mean concentrations and emission factors in different poultry systems are showed. This paper is also gives the findings in emission mitigation, especially to different manure handling practices, management schemes, housing and facility designs for broilers and laying hens. Finally this paper focused on investigating practical means to reduce air emissions from animal production facilities.

  20. The southern Brazilian grassland biome: soil carbon stocks, fluxes of greenhouse gases and some options for mitigation.

    Science.gov (United States)

    Pillar, V D; Tornquist, C G; Bayer, C

    2012-08-01

    The southern Brazilian grassland biome contains highly diverse natural ecosystems that have been used for centuries for grazing livestock and that also provide other important environmental services. Here we outline the main factors controlling ecosystem processes, review and discuss the available data on soil carbon stocks and greenhouse gases emissions from soils, and suggest opportunities for mitigation of climatic change. The research on carbon and greenhouse gases emissions in these ecosystems is recent and the results are still fragmented. The available data indicate that the southern Brazilian natural grassland ecosystems under adequate management contain important stocks of organic carbon in the soil, and therefore their conservation is relevant for the mitigation of climate change. Furthermore, these ecosystems show a great and rapid loss of soil organic carbon when converted to crops based on conventional tillage practices. However, in the already converted areas there is potential to mitigate greenhouse gas emissions by using cropping systems based on no soil tillage and cover-crops, and the effect is mainly related to the potential of these crop systems to accumulate soil organic carbon in the soil at rates that surpass the increased soil nitrous oxide emissions. Further modelling with these results associated with geographic information systems could generate regional estimates of carbon balance.

  1. Greenhouse gas emissions from alternative futures of deforestation and agricultural management in the southern Amazon.

    Science.gov (United States)

    Galford, Gillian L; Melillo, Jerry M; Kicklighter, David W; Cronin, Timothy W; Cerri, Carlos E P; Mustard, John F; Cerri, Carlos C

    2010-11-16

    The Brazilian Amazon is one of the most rapidly developing agricultural areas in the world and represents a potentially large future source of greenhouse gases from land clearing and subsequent agricultural management. In an integrated approach, we estimate the greenhouse gas dynamics of natural ecosystems and agricultural ecosystems after clearing in the context of a future climate. We examine scenarios of deforestation and postclearing land use to estimate the future (2006-2050) impacts on carbon dioxide (CO(2)), methane (CH(4)), and nitrous oxide (N(2)O) emissions from the agricultural frontier state of Mato Grosso, using a process-based biogeochemistry model, the Terrestrial Ecosystems Model (TEM). We estimate a net emission of greenhouse gases from Mato Grosso, ranging from 2.8 to 15.9 Pg CO(2)-equivalents (CO(2)-e) from 2006 to 2050. Deforestation is the largest source of greenhouse gas emissions over this period, but land uses following clearing account for a substantial portion (24-49%) of the net greenhouse gas budget. Due to land-cover and land-use change, there is a small foregone carbon sequestration of 0.2-0.4 Pg CO(2)-e by natural forests and cerrado between 2006 and 2050. Both deforestation and future land-use management play important roles in the net greenhouse gas emissions of this frontier, suggesting that both should be considered in emissions policies. We find that avoided deforestation remains the best strategy for minimizing future greenhouse gas emissions from Mato Grosso.

  2. Reflections on greenhouse gas life cycle assessment

    International Nuclear Information System (INIS)

    Jarrell, J.; Phillips, B.; Pendergast, D.

    1999-01-01

    The amount of carbon dioxide equivalent greenhouse gas emitted per unit of electricity produced is an important consideration in the planning of future greenhouse gas reduced electricity supply systems. Useful estimates of emissions must also take into account the entire cradle to grave life cycle emissions of alternative systems. Thus emissions of greenhouse gases take into account all of the components of building operating, and decommissioning facilities. This requires an accounting of emissions from production of all materials used to build the plants, transportation of materials to the site as well as fuels used for their construction, operation, and decommissioning. The construction of facilities may also have effects which tend to affect greenhouse gas emissions through modification of the local environment. A notable example, often cited, is the evolution of methane from the decay of organic matter submerged by dams built to serve hydro power facilities. In the long term, we anticipate that some kind of cost will be associated with the release of greenhouse gases. In that event it may be argued that the modified economic system established by inclusion of this cost will naturally control the emission of greenhouse gases from competing means of electricity production. Greenhouse gas emissions from all stages involved in the birth and retirement of electricity producing plant could be suitably constrained as the least cost method of production is sought. Such an ideal system is far from in place. At this point in time the results of life cycle accounting of greenhouse gas emissions are a needed means of comparing emissions from alternative sources of electricity. Many life cycle studies have been undertaken in the past. Many of the estimates are based on past practice which does not take into account any possible need to limit the production of greenhouse gas during the design of the plant and operational processes. Sources of energy used to produce materials

  3. Methane, Carbon Dioxide and Nitrous Oxide Fluxes in Soil Profile under a Winter Wheat-Summer Maize Rotation in the North China Plain

    NARCIS (Netherlands)

    Wang, Y.Y.; Hu, C.S.; Ming, H.; Oenema, O.; Schaefer, D.A.; Dong, W.X.; Zhang, Y.M.; Li, X.X.

    2014-01-01

    The production and consumption of the greenhouse gases (GHGs) methane (CH4), carbon dioxide (CO2) and nitrous oxide (N2O) in soil profile are poorly understood. This work sought to quantify the GHG production and consumption at seven depths (0-30, 30-60, 60-90, 90-150, 150-200, 200-250 and 250-300

  4. Atmospheric greenhouse gases retrieved from SCIAMACHY: comparison to ground-based FTS measurements and model results

    Directory of Open Access Journals (Sweden)

    O. Schneising

    2012-02-01

    Full Text Available SCIAMACHY onboard ENVISAT (launched in 2002 enables the retrieval of global long-term column-averaged dry air mole fractions of the two most important anthropogenic greenhouse gases carbon dioxide and methane (denoted XCO2 and XCH4. In order to assess the quality of the greenhouse gas data obtained with the recently introduced v2 of the scientific retrieval algorithm WFM-DOAS, we present validations with ground-based Fourier Transform Spectrometer (FTS measurements and comparisons with model results at eight Total Carbon Column Observing Network (TCCON sites providing realistic error estimates of the satellite data. Such validation is a prerequisite to assess the suitability of data sets for their use in inverse modelling.

    It is shown that there are generally no significant differences between the carbon dioxide annual increases of SCIAMACHY and the assimilation system CarbonTracker (2.00 ± 0.16 ppm yr−1 compared to 1.94 ± 0.03 ppm yr−1 on global average. The XCO2 seasonal cycle amplitudes derived from SCIAMACHY are typically larger than those from TCCON which are in turn larger than those from CarbonTracker. The absolute values of the northern hemispheric TCCON seasonal cycle amplitudes are closer to SCIAMACHY than to CarbonTracker and the corresponding differences are not significant when compared with SCIAMACHY, whereas they can be significant for a subset of the analysed TCCON sites when compared with CarbonTracker. At Darwin we find discrepancies of the seasonal cycle derived from SCIAMACHY compared to the other data sets which can probably be ascribed to occurrences of undetected thin clouds. Based on the comparison with the reference data, we conclude that the carbon dioxide data set can be characterised by a regional relative precision (mean standard deviation of the differences of about 2.2 ppm and a relative accuracy (standard deviation of the mean differences

  5. Atmospheric observations and inverse modelling for quantifying emissions of point-source synthetic greenhouse gases in East Asia

    Science.gov (United States)

    Arnold, Tim; Manning, Alistair; Li, Shanlan; Kim, Jooil; Park, Sunyoung; Muhle, Jens; Weiss, Ray

    2017-04-01

    The fluorinated species carbon tetrafluoride (CF4; PFC-14), nitrogen trifluoride (NF3) and trifluoromethane (CHF3; HFC-23) are potent greenhouse gases with 100-year global warming potentials of 6,630, 16,100 and 12,400, respectively. Unlike the majority of CFC-replacements that are emitted from fugitive and mobile emission sources, these gases are mostly emitted from large single point sources - semiconductor manufacturing facilities (all three), aluminium smelting plants (CF4) and chlorodifluoromethane (HCFC-22) factories (HFC-23). In this work we show that atmospheric measurements can serve as a basis to calculate emissions of these gases and to highlight emission 'hotspots'. We use measurements from one Advanced Global Atmospheric Gases Experiment (AGAGE) long term monitoring sites at Gosan on Jeju Island in the Republic of Korea. This site measures CF4, NF3 and HFC-23 alongside a suite of greenhouse and stratospheric ozone depleting gases every two hours using automated in situ gas-chromatography mass-spectrometry instrumentation. We couple each measurement to an analysis of air history using the regional atmospheric transport model NAME (Numerical Atmospheric dispersion Modelling Environment) driven by 3D meteorology from the Met Office's Unified Model, and use a Bayesian inverse method (InTEM - Inversion Technique for Emission Modelling) to calculate yearly emission changes over seven years between 2008 and 2015. We show that our 'top-down' emission estimates for NF3 and CF4 are significantly larger than 'bottom-up' estimates in the EDGAR emissions inventory (edgar.jrc.ec.europa.eu). For example we calculate South Korean emissions of CF4 in 2010 to be 0.29±0.04 Gg/yr, which is significantly larger than the Edgar prior emissions of 0.07 Gg/yr. Further, inversions for several separate years indicate that emission hotspots can be found without prior spatial information. At present these gases make a small contribution to global radiative forcing, however, given

  6. Comparison methods between methane and hydrogen combustion for useful transfer in furnaces

    International Nuclear Information System (INIS)

    Ghiea, V.V.

    2009-01-01

    The advantages and disadvantages of hydrogen use by industrial combustion are critically presented. Greenhouse effect due natural water vapors from atmosphere and these produced by hydrogen industrial combustion is critically analyzed, together with problems of gas fuels containing hydrogen as the relative largest component. A comparison method between methane and hydrogen combustion for pressure loss in burner feeding pipe, is conceived. It is deduced the ratio of radiation useful heat transfer characteristics and convection heat transfer coefficients from combustion gases at industrial furnaces and heat recuperators for hydrogen and methane combustion, establishing specific comparison methods. Using criterial equations special processed for convection heat transfer determination, a calculation generalizing formula is established. The proposed comparison methods are general valid for different gaseous fuels. (author)

  7. Greenhouse gases emission from sanitary landfills in Lombardy: estimation and uncertainty analysis

    International Nuclear Information System (INIS)

    Antognazza, F.; Moretti, M.; Caserini, S.

    2009-01-01

    Quantification of methane emissions from landfills is important to evaluate measures for reduction of greenhouse gas emissions. A census has been conducted across all landfills in Lombardy in order to get a double assessment of greenhouse gas emissions in the period 1973-2007. The first approach is of a deterministic kind: it produced a GHG emission assessment of about 2,240 ktCO 2 (like 2.4% of GHG emission in Lombardy in 2005). The second approach is a probabilistic approach according to Monte Carlo simulation, and allows an assessment of probabilistic distribution of emissions and uncertainty. Uncertainty in GHG emission from landfill in Lombardy is about 20% and efficiency of LFG collection and biodegradable carbon content are the most relevant parameters in this assessment. Also, a projection of GHG emission was made. Two scenarios were analyzed for the 2008-2020 period: a business as usual (BAU) one and an alternative one. It results that we are expecting a 50% reduction of GHG emission, with alternative scenario, from 2007 level: at regional scale it is like a 1% of overall GHG emissions in Lombardy. [it

  8. Greenhouse gases, radiative forcing, global warming potential and waste management – an introduction

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Kjeldsen, Peter; Gentil, Emmanuel

    2009-01-01

    forcing (RF) and global warming potential (GWP). This paper provides a general introduction of the factors that define a GHG and explains the scientific background for estimating RF and GWP, thereby exposing the lay reader to a brief overview of the methods for calculating the effects of GHGs on climate......Management of post-consumer solid waste contributes to emission of greenhouse gases (GHGs) representing about 3% of global anthropogenic GHG emissions. Most GHG reporting initiatives around the world utilize two metrics proposed by the Intergovernmental Panel on Climate Change (IPCC): radiative...

  9. Soil-atmosphere exchange of nitrous oxide, methane and carbon dioxide in a gradient of elevation in the coastal Brazilian Atlantic forest

    Science.gov (United States)

    E. Sousa Neto; J.B. Carmo; Michael Keller; S.C. Martins; L.F. Alves; S.A. Vieira; M.C. Piccolo; P. Camargo; H.T.Z. Couto; C.A. Joly; L.A. Martinelli

    2011-01-01

    Soils of tropical forests are important to the global budgets of greenhouse gases. The Brazilian Atlantic Forest is the second largest tropical moist forest area of South America, after the vast Amazonian domain. This study aimed to investigate the emissions of nitrous oxide (N2O), carbon dioxide (CO2) and methane (CH4) fluxes along an altitudinal transect and the...

  10. A carbon dioxide/methane greenhouse atmosphere on early Mars

    Science.gov (United States)

    Brown, L. L.; Kasting, J. F.

    1993-01-01

    One explanation for the formation of fluvial surface features on early Mars is that the global average surface temperature was maintained at or above the freezing point of water by the greenhouse warming of a dense CO2 atmosphere; however, Kasting has shown that CO2 alone is insufficient because the formation of CO2 clouds reduces the magnitude of the greenhouse effect. It is possible that other gases, such as NH3 and CH4, were present in the early atmosphere of Mars and contributed to the greenhouse effect. Kasting et al. investigated the effect of NH3 in a CO2 atmosphere and calculated that an NH3 mixing ratio of approximately 5 x 10 (exp -4) by volume, combined with a CO2 partial pressure of 4-5 bar, could generate a global average surface temperature of 273 K near 3.8 b.y. ago when the fluvial features are believed to have formed. Atmospheric NH3 is photochemically converted to N2 by ultraviolet radiation at wavelengths shortward of 230 nm; maintenance of sufficient NH3 concentrations would therefore require a source of NH3 to balance the photolytic destruction. We have used a one-dimensional photochemical model to estimate the magnitude of the NH3 source required to maintain a given NH3 concentration in a dense CO2 atmosphere. We calculate that an NH3 mixing ratio of 10(exp -4) requires a flux of NH3 on the order of 10(exp 12) molecules /cm-s. This figure is several orders of magnitude greater than estimates of the NH3 flux on early Mars; thus it appears that NH3 with CO2 is not enough to keep early Mars warm.

  11. A suggestion to assess spilled hydrocarbons as a greenhouse gas source

    Energy Technology Data Exchange (ETDEWEB)

    McAlexander, Benjamin L., E-mail: bmcalexander@trihydro.com

    2014-11-15

    Petroleum-contaminated site management typically counts destruction of hydrocarbons by either natural or engineered processes as a beneficial component of remediation. While such oxidation of spilled hydrocarbons is often necessary for achieving risk reduction for nearby human and ecological receptors, site assessments tend to neglect that this also means that the pollutants are converted to greenhouse gases and emitted to the atmosphere. This article presents a suggestion that the current and long term greenhouse gas emissions from spilled hydrocarbons be incorporated to petroleum site assessments. This would provide a more complete picture of pollutant effects that could then be incorporated to remedial objectives. At some sites, this additional information may affect remedy selection. Possible examples include a shift in emphasis to remedial technologies that reduce pollutant greenhouse gas effects (e.g., by conversion of methane to carbon dioxide in the subsurface), and a more holistic context for considering remedial technologies with low emission footprints.

  12. Greenhouse gas trading

    Energy Technology Data Exchange (ETDEWEB)

    Drazilov, P. [Natsource-Tullett Emissions Brokerage, Toronto, ON (Canada)

    2001-07-01

    Natsource-Tullett Emissions Brokerage is a market leader in natural gas, electricity, coal, and weather, emissions with a total of more than $2 billion by volume in emissions transactions in the United States, Canada, Australia, Japan, and Europe. This power point presentation addressed issues dealing with global warming, the Kyoto Protocol, and explained where we are in terms of reaching commitments for the first compliance period between 2008-2012. The paper focused on international emissions trading (IET), joint implementation (JI) and the clean development mechanism (CDM) and explained how greenhouse gases are traded. Emissions trading refers to the trade of carbon dioxide, methane, nitrous oxides, perfluoro-carbons, hydrofluorocarbons, and sulphur hexafluorides. The motivational drivers for trading were outlined in terms of liability for buyers and assets for sellers. To date, trading activity is nearly 120 transactions with nearly 70 million tons of carbon dioxide equivalent. tabs., figs.

  13. Thermodynamic investigation of lime-enhanced molybdenite reduction using methane-containing gases

    Energy Technology Data Exchange (ETDEWEB)

    Najafabadi, Samad Ghasemi, E-mail: samad_ghasemi@yahoo.com [Materials Engineering Department, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Abbasi, Mohammad Hasan; Saidi, Ali [Materials Engineering Department, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)

    2010-05-20

    Lime-enhanced molybdenite reduction (LEMR) with methane-containing gases has been thermodynamically studied. The reaction proceeds through the direct oxidation of MoS{sub 2} by CaO to form intermediate molybdenum oxidized species, MoO{sub 2} and CaMoO{sub 4}. The thermodynamics of Mo-O-C-H and Mo-Ca-O-C-H systems has been investigated instead of Mo-Ca-S-O-C-H system, as the sulfur is captured by calcium and forms a neutral compound (i.e. calcium sulfide). The role of reducing agent is the reduction of these oxidized species. Reduction of oxidized species by methane will yield Mo, Mo{sub 2}C or MoC. The thermodynamic investigation resulted in construction of stability diagrams of molybdenum compounds. These diagrams were constructed for CH{sub 4}-H{sub 2}, CH{sub 4}-H{sub 2}-Ar and CH{sub 4}-CO{sub 2}-H{sub 2}O gas mixtures. In addition to stability regions of Mo, Mo{sub 2}C and MoC, the carbon deposition area was also identified. The results showed that by using appropriate gas composition and temperature, different molybdenum-containing phases would be stable thermodynamically while soot formation can be avoided.

  14. Nuclear power and the greenhouse effect

    International Nuclear Information System (INIS)

    Donaldson, D; Tolland, H.; Grimston, M.

    1990-01-01

    The greenhouse effect is first explained. The evidence is shown in global warming and changing weather patterns which are generally believed to be due to the emission of greenhouse gases, including carbon dioxide. Serious consequences are predicted if emission of the greenhouse gases is not reduced. Sources of these gases are identified - agriculture, carbon fluorocarbons, coal-fired power stations, vehicle exhausts. The need is to use energy more efficiently but such measures as combined heat and power stations, more fuel efficient cars and better thermal insulation in homes is advocated. The expansion of renewable energy sources such as wind and water power is also suggested. Nuclear power is promoted as it reduces the carbon dioxide emissions and in both the short and long-term will reduce the emission of greenhouse gases. (author)

  15. Environmental Accounts of the Netherlands. Greenhouse gas emissions by Dutch economic activities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-08-15

    Climate change is one of the major global challenges of our time. There is abundant scientific evidence that the emission of greenhouse gases caused by economic activities contributes to climate change. Accelerating emissions of carbon dioxide, methane, and other greenhouse gases since the beginning of the 20th century have increased the average global temperature by about 0.8C and altered global precipitation patterns. Combustion of fossil fuels, deforestation, but also specific agricultural activities and industrial processes are the main drivers of the increased emission of greenhouse gasses. Enhanced concentrations of greenhouse gasses in the atmosphere will increase global temperatures by radiative forcing. Likewise, climate change has a direct impact on all kinds of economic processes. These impacts may be positive or negative, but it is expected that the overall impact will be primarily negative. In order to design effective mitigation policies, one must have a good conception of the economic driving forces of climate change. The air emission accounts can be used to analyse the environmental implications in terms of greenhouse gas emissions, of production and consumption patterns. Because of their compatibility with the national accounts, greenhouse gas data can be directly linked to the economic drivers of global warming. There are several frameworks for estimating the greenhouse gas emissions for a country, yielding different results. Well-known are the emissions reported to the UNFCCC (United National Framework Convention on Climate Change) in particular under the Kyoto Protocol, but also environment statistics as well as the air emission accounts provide independent greenhouse gas estimates. The differences are not the result of disputes about the accuracy of the estimates themselves, but arise from different interpretations of what has to be counted. The inclusion or exclusion of certain elements depends on the concepts and definitions that underlie

  16. Chemical Modeling of the Reactivity of Short-Lived Greenhouse Gases: A Model Inter-Comparison Prescribing a Well-Measured, Remote Troposphere

    Science.gov (United States)

    Prather, Michael J.; Flynn, Clare M.; Zhu, Xin; Steenrod, Stephen D.; Strode, Sarah A.; Fiore, Arlene M.; Correa, Gustavo; Murray, Lee T.; Lamarque, Jean-Francois

    2018-01-01

    We develop a new protocol for merging in situ measurements with 3-D model simulations of atmospheric chemistry with the goal of integrating over the data to identify the most reactive air parcels in terms of tropospheric production and loss of the greenhouse gases ozone and methane. Presupposing that we can accurately measure atmospheric composition, we examine whether models constrained by such measurements agree on the chemical budgets for ozone and methane. In applying our technique to a synthetic data stream of 14,880 parcels along 180W, we are able to isolate the performance of the photochemical modules operating within their global chemistry-climate and chemistry-transport models, removing the effects of modules controlling tracer transport, emissions, and scavenging. Differences in reactivity across models are driven only by the chemical mechanism and the diurnal cycle of photolysis rates, which are driven in turn by temperature, water vapor, solar zenith angle, clouds, and possibly aerosols and overhead ozone, which are calculated in each model. We evaluate six global models and identify their differences and similarities in simulating the chemistry through a range of innovative diagnostics. All models agree that the more highly reactive parcels dominate the chemistry (e.g., the hottest 10% of parcels control 25-30% of the total reactivities), but do not fully agree on which parcels comprise the top 10%. Distinct differences in specific features occur, including the regions of maximum ozone production and methane loss, as well as in the relationship between photolysis and these reactivities. Unique, possibly aberrant, features are identified for each model, providing a benchmark for photochemical module development. Among the 6 models tested here, 3 are almost indistinguishable based on the inherent variability caused by clouds, and thus we identify 4, effectively distinct, chemical models. Based on this work, we suggest that water vapor differences in

  17. Assessment of Eco-friendly Gases for Electrical Insulation to Replace the Most Potent Industrial Greenhouse Gas SF6.

    Science.gov (United States)

    Rabie, Mohamed; Franck, Christian M

    2018-01-16

    Gases for electrical insulation are essential for the operation of electric power equipment. This Review gives a brief history of gaseous insulation that involved the emergence of the most potent industrial greenhouse gas known today, namely sulfur hexafluoride. SF 6 paved the way to space-saving equipment for the transmission and distribution of electrical energy. Its ever-rising usage in the electrical grid also played a decisive role in the continuous increase of atmospheric SF 6 abundance over the last decades. This Review broadly covers the environmental concerns related to SF 6 emissions and assesses the latest generation of eco-friendly replacement gases. They offer great potential for reducing greenhouse gas emissions from electrical equipment but at the same time involve technical trade-offs. The rumors of one or the other being superior seem premature, in particular because of the lack of dielectric, environmental, and chemical information for these relatively novel compounds and their dissociation products during operation.

  18. Quantification of the greenhouse effect gases at the territorial scale. Final report; Quantification des emissions de gaz a effet de serre a l'echelle territoriale. Rapport final

    Energy Technology Data Exchange (ETDEWEB)

    Magnin, G.; Lacassagne, S

    2003-07-01

    An efficient action against the greenhouse effect needs the implication of the local collectivities. To implement appropriate energy policies, deciders need information and tools to quantify the greenhouse gases and evaluate the obtained results of their greenhouse gases reduction policies. This study is a feasibility study of the tools realization, adapted to the french context. It was done in three steps: analysis of the existing tools, application to the french context and elaboration of the requirements of appropriate tools. This report presents the study methodology, the information analysis and the conclusions. (A.L.B.)

  19. Urban sources and emissions of nitrous oxide and methane in southern California, USA

    Science.gov (United States)

    Townsend-Small, A.; Pataki, D.; Tyler, S. C.; Czimczik, C. I.; Xu, X.; Christensen, L. E.

    2012-12-01

    Anthropogenic activities have resulted in increasing levels of greenhouse gases, including carbon dioxide, methane, and nitrous oxide. While global and regional emissions sources of carbon dioxide are relatively well understood, methane and nitrous oxide are less constrained, particularly at regional scales. Here we present the results of an investigation of sources and emissions of methane and nitrous oxide in Los Angeles, California, USA, one of Earth's largest urban areas. The original goal of the project was to determine whether isotopes are useful tracers of agricultural versus urban nitrous oxide and methane sources. For methane, we found that stable isotopes (carbon-13 and deuterium) and radiocarbon are good tracers of biogenic versus fossil fuel sources. High altitude observations of methane concentration, measured continuously using tunable laser spectroscopy, and isotope ratios, measured on discrete flask samples using mass spectrometry, indicate that the predominant methane source in Los Angeles is from fossil fuels, likely from "fugitive" emissions from geologic formations, natural gas pipelines, oil refining, or power plants. We also measured nitrous oxide emissions and isotope ratios from urban (landscaping and wastewater treatment) and agricultural sources (corn and vegetable fields). There was no difference in nitrous oxide isotope ratios between the different types of sources, although stable isotopes did differ between nitrous oxide produced in oxic and anoxic wastewater treatment tanks. Our nitrous oxide flux data indicate that landscaped turfgrass emits nitrous oxide at rates equivalent to agricultural systems, indicating that ornamental soils should not be disregarded in regional nitrous oxide budgets. However, we also showed that wastewater treatment is a much greater source of nitrous oxide than soils regionally. This work shows that global nitrous oxide and methane budgets are not easily downscaled to regional, urban settings, which has

  20. Nuclear power and the greenhouse effect

    International Nuclear Information System (INIS)

    Donaldson, D.M.; Tolland, H.G.

    1989-05-01

    Global levels of the ''Greenhouse'' gases - carbon dioxide, the chlorofluorocarbons (CFCs), methane, nitrous oxide and tropospheric ozone are increasing as a result of man's activities. This increase is widely expected to bring about a rise in global temperature with concomitant environmental impacts. Global warming has been observed over the last century, and the last decade has seen seven of the warmest years on record. There has also been increased variability in the weather (an expected consequence of global warming). However, these possible manifestations of the Greenhouse Effect are within natural variations and proof must await more definitive indications. A brief outline of current views on the Greenhouse Effect is given. This report addresses the energy sector using CO 2 emissions as a measure of its ''Greenhouse'' contribution. This approach understates the energy sector contribution. However, the difference is within the error band. It seems likely that the warming effect of non-energy related emissions will remain the same and there will be more pressure to reduce the emissions from the energy sector. To assess policy options the pattern of future energy demand is estimated. Two scenarios have been adopted to provide alternative frameworks. Both assume low energy growth projections based on increased energy efficiency. The role of nuclear power in reducing carbon dioxide emissions is considered. (author)

  1. Decomposition of Potent Greenhouse Gases SF6, CF4 and SF5CF3 by Dielectric Barrier Discharge

    International Nuclear Information System (INIS)

    Zhang Renxi; Wang Jingting; Cao Xu; Hou Huiqi

    2016-01-01

    For their distinguished global warming potential (GWP100) and long atmosphere lifespan, CF 4 , SF 6 and SF 5 CF 3 were significant in the field of greenhouse gas research. The details of discharging character and the optimal parameter were discussed by using a Dielectric Barrier Discharge (DBD) reactor to decompose these potent greenhouse gases in this work. The results showed that SF 6 could be decomposed by 92% under the conditions of 5 min resident time and 3000 V applied voltage with the partial pressure of 2.0 kPa, 28.2 kPa, and 1.8 kPa for SF 6 , air and water vapor, respectively. 0.4 kPa CF 4 could be decomposed by 98.2% for 4 min resident time with 30 kPa Ar added. The decomposition of SF 5 CF 3 was much more effective than that of SF 6 and CF 4 and moreover, 1.3 kPa SF 5 CF 3 , discharged with 30 kPa O 2 , Ar and air, could not be detected when the resident time was 80 s, 40 s, and 120 s, respectively. All the results indicated that DBD was a feasible technique for the abatement of potent greenhouse gases. (paper)

  2. Technology Opportunities to Reduce U.S. Greenhouse Gas Emissions

    Energy Technology Data Exchange (ETDEWEB)

    National Lab Directors, . .

    2001-04-05

    The rise in greenhouse gas emissions from fossil fuel combustion and industrial and agricultural activities has aroused international concern about the possible impacts of these emissions on climate. Greenhouse gases--mostly carbon dioxide, some methane, nitrous oxide and other trace gases--are emitted to the atmosphere, enhancing an effect in which heat reflected from the earth's surface is kept from escaping into space, as in a greenhouse. Thus, there is concern that the earth's surface temperature may rise enough to cause global climate change. Approximately 90% of U.S. greenhouse gas emissions from anthropogenic sources come from energy production and use, most of which are a byproduct of the combustion of fossil fuels. On a per capita basis, the United States is one of the world's largest sources of greenhouse gas emissions, comprising 4% of the world's population, yet emitting 23% of the world's greenhouse gases. Emissions in the United States are increasing at around 1.2% annually, and the Energy Information Administration forecasts that emissions levels will continue to increase at this rate in the years ahead if we proceed down the business-as-usual path. President Clinton has presented a two-part challenge for the United States: reduce greenhouse gas emissions and grow the economy. Meeting the challenge will mean that in doing tomorrow's work, we must use energy more efficiently and emit less carbon for the energy expended than we do today. To accomplish these goals, President Clinton proposed on June 26, 1997, that the United States ''invest more in the technologies of the future''. In this report to Secretary of Energy Pena, 47 technology pathways are described that have significant potential to reduce carbon dioxide emissions. The present study was completed before the December 1997 United Nations Framework Convention on Climate Change and is intended to provide a basis to evaluate technology

  3. Electric energy auctions in Brazil and its effect on emissions of greenhouse gases by the electric sector; Leiloes de energia eletrica no Brasil e sua influencia nas emissoes de gases de efeito estufa pelo setor eletrico

    Energy Technology Data Exchange (ETDEWEB)

    Alpire, Ricardo; Pereira, Osvaldo Livio Soliano [Universidade Salvador (UNIFACS), BA (Brazil)

    2010-07-01

    The result of the auctions of electricity, after the new regulatory framework in 2004, has shown the increased participation of fossil sources of thermal generation, contributing to increased emission of greenhouse gases by the Brazilian Electricity Sector. This article aims to analyze the correlation between growth in electric generation sector and rising greenhouse gases, especially through the study of the winning projects of electric power auctions conducted with the advent of the New Institutional Model of the Power Sector from 2004, comparing with the existing policies and prospects of the next auction of the electric sector. (author)

  4. Emissions of ammonia and greenhouse gases during combined pre-composting and vermicomposting of duck manure.

    Science.gov (United States)

    Wang, Jinzhi; Hu, Zhengyi; Xu, Xingkai; Jiang, Xia; Zheng, Binghui; Liu, Xiaoning; Pan, Xubin; Kardol, Paul

    2014-08-01

    Combined pre-composting and vermicomposting has shown potential for reclamation of solid wastes, which is a significant source of ammonia (NH3), and greenhouse gases (GHG), including nitrous oxide (N2O), methane (CH4), and carbon dioxide (CO2). Earthworms and amendments may both affect physico-chemical characteristics that control gas-producing processes, and thus affect NH3 and GHG emissions. Here, we used two-way ANOVA to test the effects of addition of reed straw and combined addition of reed straw and zeolite on NH3 and GHG emissions during pre-composting of duck manure, either with or without a follow-up phase of vermicomposting. Results showed that cumulative N2O, CH4, and CO2 emissions during pre-composting and vermicomposting ranged from 92.8, 5.8, and 260.6 mg kg(-)(1) DM to 274.2, 30.4, and 314.0 mg kg(-1) DM, respectively. Earthworms and amendments significantly decreased N2O and CH4 emissions. Emission of CO2 was not affected by earthworms, but increased in responses to addition of reed straw. Cumulative NH3 emission ranged from 3.0 to 8.1 g kg(-1) DM, and was significantly decreased by reed straw and zeolite addition. In conclusion, combined pre-composting and vermicomposting with reed straw and zeolite addition would be strongly recommended in mitigating emissions of N2O, CH4, and NH3 from duck manure. Moreover, this method also provides nutrient-rich products that can be used as a fertilizer. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Renewable energies in electricity generation for reduction of greenhouse gases in Mexico 2025.

    Science.gov (United States)

    Islas, Jorge; Manzini, Fabio; Martínez, Manuel

    2002-02-01

    This study presents 4 scenarios relating to the environmental futures of electricity generation in Mexico up to the year 2025. The first scenario emphasizes the use of oil products, particularly fuel oil, and represents the historic path of Mexico's energy policy. The second scenario prioritizes the use of natural gas, reflecting the energy consumption pattern that arose in the mid-1990s as a result of reforms in the energy sector. In the third scenario, the high participation of renewable sources of energy is considered feasible from a technical and economic point of view. The fourth scenario takes into account the present- and medium-term use of natural-gas technologies that the energy reform has produced, but after 2007 a high and feasible participation of renewable sources of energy is considered. The 4 scenarios are evaluated up to the year 2025 in terms of greenhouse gases (GHG) and acid rain precursor gases (ARPG).

  6. Sources, sinks, trends, and opportunities

    International Nuclear Information System (INIS)

    Ciborowski, P.

    1989-01-01

    Each year the emission of greenhouse gases commits the earth to a warming of 0.02 to 0.06 degrees C. Many of these gases are released as by-products of fossil fuel combustion. The remainder are produced as a result of forest clearing in the tropics or agriculture or industrial activities. Carbon dioxide (CO 2 ) is the most important greenhouse gas, contributing about half of global heating. In addition, there are what are known as the non-CO 2 greenhouse gases: methane (CH 4 ), nitrous oxide (N 2 O), freon CFC-12 (CF 2 Cl 2 ), freon CFC-11 (CF 3 Cl), and tropospheric ozone (O 3 ). Carbon monoxide and the nitrogen gases, increase the amount of methane and ozone in the troposphere. There are also about 15 or 20 other greenhouse gases of lesser importance. This paper reviews the sources of some of these greenhouse gases, analyzes trends in their emissions, and suggests means through which greenhouse gas emissions can be limited

  7. Isotope aided studies of atmospheric carbon dioxide and other greenhouse gases. Phase II

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-01-01

    The substantial increase in atmospheric greenhouse gas concentrations and their role in global warming have become major concerns of world governments. Application of isotope techniques to label sources and sinks of CO{sub 2} and other greenhouse gases has emerged as a potentially powerful method for reducing uncertainties in the global CO{sub 2} budgets and for tracing pathways and interaction of terrestrial, oceanic, and atmospheric pools of carbon. As with CO{sub 2} concentration measurements, meaningful integration of isotopes in global models requires careful attention to quality assurance, quality control and inter-comparability of measurements made by a number of networks and laboratories. To support improvements in isotope measurement capabilities, the IAEA began implementing Co-ordinated Research Projects (CRPs) in 1992. The first project, entitled Isotope Variations of Carbon Dioxide and other Trace Gases in the Atmosphere, was implemented from 1992 to 1994. A significant contribution was made towards a better understanding of the global carbon cycle and especially of the sources and sinks of carbon with data on the {sup 14}C and {sup 13}C content of atmospheric CO{sub 2}, pointing to a better understanding of the problem of the 'missing sink' in the global carbon cycle. Important methodological developments in the field of high precision stable isotope mass spectrometry and improved data acquisition procedures emerged from work carried out within the framework of this programme. The development of pressurized gas standards and planning for an associated interlaboratory calibration were initiated. Due to the good progress and long standing nature of the required work a second CRP was initiated and implemented from 1996 to 1999. It was entitled Isotope aided Studies of Atmospheric Carbon Dioxide and Other Trace Gases - Phase II, to document the close relationship of both programmes. This publication provides an overview of the scientific outcomes of the

  8. Isotope aided studies of atmospheric carbon dioxide and other greenhouse gases. Phase II

    International Nuclear Information System (INIS)

    2002-01-01

    The substantial increase in atmospheric greenhouse gas concentrations and their role in global warming have become major concerns of world governments. Application of isotope techniques to label sources and sinks of CO 2 and other greenhouse gases has emerged as a potentially powerful method for reducing uncertainties in the global CO 2 budgets and for tracing pathways and interaction of terrestrial, oceanic, and atmospheric pools of carbon. As with CO 2 concentration measurements, meaningful integration of isotopes in global models requires careful attention to quality assurance, quality control and inter-comparability of measurements made by a number of networks and laboratories. To support improvements in isotope measurement capabilities, the IAEA began implementing Co-ordinated Research Projects (CRPs) in 1992. The first project, entitled Isotope Variations of Carbon Dioxide and other Trace Gases in the Atmosphere, was implemented from 1992 to 1994. A significant contribution was made towards a better understanding of the global carbon cycle and especially of the sources and sinks of carbon with data on the 14 C and 13 C content of atmospheric CO 2 , pointing to a better understanding of the problem of the 'missing sink' in the global carbon cycle. Important methodological developments in the field of high precision stable isotope mass spectrometry and improved data acquisition procedures emerged from work carried out within the framework of this programme. The development of pressurized gas standards and planning for an associated interlaboratory calibration were initiated. Due to the good progress and long standing nature of the required work a second CRP was initiated and implemented from 1996 to 1999. It was entitled Isotope aided Studies of Atmospheric Carbon Dioxide and Other Trace Gases - Phase II, to document the close relationship of both programmes. This publication provides an overview of the scientific outcomes of the studies conducted within Phase

  9. Trace Metal Requirements for Microbial Enzymes Involved in the Production and Consumption of Methane and Nitrous Oxide

    Science.gov (United States)

    Glass, Jennifer B.; Orphan, Victoria J.

    2011-01-01

    Fluxes of greenhouse gases to the atmosphere are heavily influenced by microbiological activity. Microbial enzymes involved in the production and consumption of greenhouse gases often contain metal cofactors. While extensive research has examined the influence of Fe bioavailability on microbial CO2 cycling, fewer studies have explored metal requirements for microbial production and consumption of the second- and third-most abundant greenhouse gases, methane (CH4), and nitrous oxide (N2O). Here we review the current state of biochemical, physiological, and environmental research on transition metal requirements for microbial CH4 and N2O cycling. Methanogenic archaea require large amounts of Fe, Ni, and Co (and some Mo/W and Zn). Low bioavailability of Fe, Ni, and Co limits methanogenesis in pure and mixed cultures and environmental studies. Anaerobic methane oxidation by anaerobic methanotrophic archaea (ANME) likely occurs via reverse methanogenesis since ANME possess most of the enzymes in the methanogenic pathway. Aerobic CH4 oxidation uses Cu or Fe for the first step depending on Cu availability, and additional Fe, Cu, and Mo for later steps. N2O production via classical anaerobic denitrification is primarily Fe-based, whereas aerobic pathways (nitrifier denitrification and archaeal ammonia oxidation) require Cu in addition to, or possibly in place of, Fe. Genes encoding the Cu-containing N2O reductase, the only known enzyme capable of microbial N2O conversion to N2, have only been found in classical denitrifiers. Accumulation of N2O due to low Cu has been observed in pure cultures and a lake ecosystem, but not in marine systems. Future research is needed on metalloenzymes involved in the production of N2O by enrichment cultures of ammonia oxidizing archaea, biological mechanisms for scavenging scarce metals, and possible links between metal bioavailability and greenhouse gas fluxes in anaerobic environments where metals may be limiting due to sulfide

  10. Mitigating greenhouse gas emissions: Voluntary reporting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    The Voluntary Reporting Program, developed pursuant to Section 1605(b) of the Energy Policy Act of 1992, permits corporations, government agencies, households, and voluntary organizations to report on their emissions of greenhouse gases, and on actions taken that have reduced or avoided emissions or sequestered carbon, to the Energy Information Administration (EIA). This, the second annual report of the Voluntary Reporting Program, describes information provided by the participating organizations on their aggregate emissions and emissions reductions, as well as their emissions reduction or avoidance projects, through 1995. This information has been compiled into a database that includes reports from 142 organizations and descriptions of 967 projects that either reduced greenhouse gas emissions or sequestered carbon. Fifty-one reporters also provided estimates of emissions, and emissions reductions achieved, for their entire organizations. The projects described actions taken to reduce emissions of carbon dioxide from energy production and use; to reduce methane and nitrous oxide emissions from energy use, waste management, and agricultural processes; to reduce emissions of halocarbons, such as CFCs and their replacements; and to increase carbon sequestration.

  11. Possible future scenarios for atmospheric concentration of greenhouse gases. A simplified thermodynamic approach

    International Nuclear Information System (INIS)

    Angulo-Brown, F.; Sanchez-Salas, N.; Barranco-Jimenez, M.A.; Rosales, M.A.

    2009-01-01

    Most of the increase in concentrations of greenhouse gases in the Earth's atmosphere is mainly due to anthropogenic activities. This is particularly significant in the case of CO 2 . The atmospheric concentration of CO 2 has systematically increased since the Industrial Revolution (260 ppm), with a remarkable raise after the 1970s until the present day (380 ppm). If this increasing tendency is maintained, the last report of the Intergovernmental Panel on Climate Change (IPCC) estimates that, for the year 2100, the CO 2 concentration can augment up to approximately 675 ppm. In this work it is assumed that the quantity of anthropogenic greenhouse gases emitted to the Earth's atmosphere is proportional to the quantity of heat rejected to the environment by internal combustion heat engines. It is also assumed that this increasing tendency of CO 2 due to men's activity stems from a mode of energy production mainly based on a maximum-power output paradigm. With these hypotheses, a thermoeconomic optimization of a thermal engine model under two regimes of performance: the maximum-power regime and the so-called ecological function criterion is presented. This last regime consists in maximizing a function that represents a good compromise between high power output and low entropy production. It is showed that, under maximum ecological conditions, the emissions of thermal energy to the environment are reduced approximately up to 50%. Thus working under this mode of performance the slope of the curves of CO 2 concentration, for instance, drastically diminishes. A simple qualitative criterion to design ecological taxes is also suggested. (author)

  12. Alternatives to the Global Warming Potential for Comparing Climate Impacts of Emissions of Greenhouse Gases

    International Nuclear Information System (INIS)

    Shine, Keith P.; Fuglestvedt, J.S.; Hailemariam, K.; Stuber, N.

    2005-01-01

    The Global Warming Potential (GWP) is used within the Kyoto Protocol to the United Nations Framework Convention on Climate Change as a metric for weighting the climatic impact of emissions of different greenhouse gases. The GWP has been subjected to many criticisms because of its formulation, but nevertheless it has retained some favour because of the simplicity of its design and application, and its transparency compared to proposed alternatives. Here, two new metrics are proposed, which are based on a simple analytical climate model. The first metric is called the Global Temperature Change Potential and represents the temperature change at a given time due to a pulse emission of a gas (GTPP); the second is similar but represents the effect of a sustained emission change (hence GTPS). Both GTPP and GTPS are presented as relative to the temperature change due to a similar emission change of a reference gas, here taken to be carbon dioxide. Both metrics are compared against an upwelling-diffusion energy balance model that resolves land and ocean and the hemispheres. The GTPP does not perform well, compared to the energy balance model, except for long-lived gases. By contrast, the GTPS is shown to perform well relative to the energy balance model, for gases with a wide variety of lifetimes. It is also shown that for time horizons in excess of about 100 years, the GTPS and GWP produce very similar results, indicating an alternative interpretation for the GWP. The GTPS retains the advantage of the GWP in terms of transparency, and the relatively small number of input parameters required for calculation. However, it has an enhanced relevance, as it is further down the cause-effect chain of the impacts of greenhouse gases emissions and has an unambiguous interpretation. It appears to be robust to key uncertainties and simplifications in its derivation and may be an attractive alternative to the GWP

  13. Greenhouse gases emissions accounting for typical sewage sludge digestion with energy utilization and residue land application in China

    International Nuclear Information System (INIS)

    Niu Dongjie; Huang Hui; Dai Xiaohu; Zhao Youcai

    2013-01-01

    Highlights: ► GHGs emissions from sludge digestion + residue land use in China were calculated. ► The AD unit contributes more than 97% of total biogenic GHGs emissions. ► AD with methane recovery is attractive for sludge GHGs emissions reduction. - Abstract: About 20 million tonnes of sludge (with 80% moisture content) is discharged by the sewage treatment plants per year in China, which, if not treated properly, can be a significant source of greenhouse gases (GHGs) emissions. Anaerobic digestion is a conventional sewage sludge treatment method and will continue to be one of the main technologies in the following years. This research has taken into consideration GHGs emissions from typical processes of sludge thickening + anaerobic digestion + dewatering + residue land application in China. Fossil CO 2 , biogenic CO 2 , CH 4, and avoided CO 2 as the main objects is discussed respectively. The results show that the total CO 2 -eq is about 1133 kg/t DM (including the biogenic CO 2 ), while the net CO 2 -eq is about 372 kg/t DM (excluding the biogenic CO 2 ). An anaerobic digestion unit as the main GHGs emission source occupies more than 91% CO 2 -eq of the whole process. The use of biogas is important for achieving carbon dioxide emission reductions, which could reach about 24% of the total CO 2 -eq reduction.

  14. Switching to a U.S. hydrogen fuel cell vehicle fleet: The resultant change in emissions, energy use, and greenhouse gases

    Science.gov (United States)

    Colella, W. G.; Jacobson, M. Z.; Golden, D. M.

    This study examines the potential change in primary emissions and energy use from replacing the current U.S. fleet of fossil-fuel on-road vehicles (FFOV) with hybrid electric fossil fuel vehicles or hydrogen fuel cell vehicles (HFCV). Emissions and energy usage are analyzed for three different HFCV scenarios, with hydrogen produced from: (1) steam reforming of natural gas, (2) electrolysis powered by wind energy, and (3) coal gasification. With the U.S. EPA's National Emission Inventory as the baseline, other emission inventories are created using a life cycle assessment (LCA) of alternative fuel supply chains. For a range of reasonable HFCV efficiencies and methods of producing hydrogen, we find that the replacement of FFOV with HFCV significantly reduces emission associated with air pollution, compared even with a switch to hybrids. All HFCV scenarios decrease net air pollution emission, including nitrogen oxides, volatile organic compounds, particulate matter, ammonia, and carbon monoxide. These reductions are achieved with hydrogen production from either a fossil fuel source such as natural gas or a renewable source such as wind. Furthermore, replacing FFOV with hybrids or HFCV with hydrogen derived from natural gas, wind or coal may reduce the global warming impact of greenhouse gases and particles (measured in carbon dioxide equivalent emission) by 6, 14, 23, and 1%, respectively. Finally, even if HFCV are fueled by a fossil fuel such as natural gas, if no carbon is sequestered during hydrogen production, and 1% of methane in the feedstock gas is leaked to the environment, natural gas HFCV still may achieve a significant reduction in greenhouse gas and air pollution emission over FFOV.

  15. Estimation of the Atmosphere-Ocean Fluxes of Greenhouse Gases and Aerosols at the Finer Resolution of the Coastal Ocean

    Czech Academy of Sciences Publication Activity Database

    Vieira, V.; Sahlée, E.; Juruš, Pavel; Clementi, E.; Pettersson, H.; Mateus, M.

    2016-01-01

    Roč. 18 (2016), EGU2016-1990-1 ISSN 1607-7962. [EGU General Assembly 2016. 17.04.2016-22.04.2016, Vienna] Institutional support: RVO:67985807 Keywords : greenhouse gases * carbon cycle * atmosphere- ocean interaction * atmosphere modelling * ocean modelling Subject RIV: DG - Athmosphere Sciences, Meteorology

  16. Joint implementation, clean development mechanism and tradable permits. International regulation of greenhouse gases

    DEFF Research Database (Denmark)

    Nielsen, L.; Olsen, K.R.

    2000-01-01

    ). The report describes the background for the international co-operation on reducing the greenhouse gases and the background for the instruments. How the instruments work in theory and what the practical problemsmay be. What agents' incentives are when they engage in JI or CDM, and how the initiation...... the developing countries incentives to participate in the coalition of committed countries. In the concludingchapter some recommendations on the use of JI, TP and CDM are given. The recommendations are a kind of dialog with especially the Norwegian and Swedish reports on tradable permits. Some of the issues...

  17. Current knowledge on the air quality impacts and greenhouse gas emissions of methane valorization or production facilities - Study report. Study synthesis

    International Nuclear Information System (INIS)

    Galsomies, Laurence; Bastide, Guillaume; Eglin, Thomas; Bardinal, Marc; Leveque, Benjamin; Moniot, Lenaic; Genin, Leo; Ruscassie, Claire

    2015-06-01

    The high potential of biogas activities development raises the question of the real impacts of the biogas sector. This study establishes the state of knowledge of impacts of biogas production and recovery plants on air pollutants and greenhouse gases emissions. This state of art is a statement of direct impacts (for any biogas plant, throughout his life cycle) and indirect impacts (for the particular case of agricultural biogas plants), aiming to propose technical recommendations to control air emissions and research subjects to further knowledge. To date, four priority thematic areas to deepen have been identified: ammonia and nitrous oxide emissions for the digestate recovery step, the uncontrolled emissions of methane in the biogas plant, odorous compounds emissions during feedstock storage and ammonia and methane emissions during digestate storage and treatment. Knowledge about indirect impacts is limited and does not allow to identify and quantify them into details. A mapping of the changes caused by the establishment of anaerobic digestion plant on a farm is proposed in the study. This is a methodological basis for reflection for further developments. The quantitative study of two cases of agricultural biogas plants is a first attempt to quantify the impacts, based on the lessons learned from the state of knowledge. Recommendations by step of anaerobic digestion process are proposed and analyzed according to their technical feasibility, maturity, efficiency and the level of investment needed. Finally, research subjects are presented: they aim at achieving measurement campaigns in installations which are functioning, at producing reference values and at developing methodologies of assessment of the impacts. (authors)

  18. Towards European organisation for integrated greenhouse gas observation system

    Science.gov (United States)

    Kaukolehto, Marjut; Vesala, Timo; Sorvari, Sanna; Juurola, Eija; Paris, Jean-Daniel

    2013-04-01

    Climate change is one the most challenging problems that humanity will have to cope with in the coming decades. The perturbed global biogeochemical cycles of the greenhouse gases (carbon dioxide, methane and nitrous oxide) are a major driving force of current and future climate change. Deeper understanding of the driving forces of climate change requires full quantification of the greenhouse gas emissions and sinks and their evolution. Regional greenhouse gas budgets, tipping-points, vulnerabilities and the controlling mechanisms can be assessed by long term, high precision observations in the atmosphere and at the ocean and land surface. ICOS RI is a distributed infrastructure for on-line, in-situ monitoring of greenhouse gases (GHG) necessary to understand their present-state and future sinks and sources. ICOS RI provides the long-term observations required to understand the present state and predict future behaviour of the global carbon cycle and greenhouse gas emissions. Linking research, education and innovation promotes technological development and demonstrations related to greenhouse gases. The first objective of ICOS RI is to provide effective access to coherent and precise data and to provide assessments of GHG inventories with high temporal and spatial resolution. The second objective is to provide profound information for research and understanding of regional budgets of greenhouse gas sources and sinks, their human and natural drivers, and the controlling mechanisms. ICOS is one of several ESFRI initiatives in the environmental science domain. There is significant potential for structural and synergetic interaction with several other ESFRI initiatives. ICOS RI is relevant for Joint Programming by providing the data access for the researchers and acting as a contact point for developing joint strategic research agendas among European member states. The preparatory phase ends in March 2013 and there will be an interim period before the legal entity will

  19. National Greenhouse Gas Emission Inventory

    Data.gov (United States)

    U.S. Environmental Protection Agency — The National Greenhouse Gas Emission Inventory contains information on direct emissions of greenhouse gases as well as indirect or potential emissions of greenhouse...

  20. Estimation of Methane Emissions in the Los Angeles Basin using CLARS-FTS Observations

    Science.gov (United States)

    Sander, S.; Zeng, Z. C.; Pongetti, T.; Duren, R. M.; Shia, R. L.; Yung, Y. L.; He, L.; Gurney, K. R.

    2017-12-01

    The Los Angeles Basin (LA Basin), covering almost 10,743 square miles, is home to over 16.8 million people - about half the population of the state of California. It is also the second most populated urban area in the United States and one of the major source of anthropogenic greenhouse gases. Using FTIR observations from the California Laboratory for Atmospheric Remote Sensing (CLARS) located on Mount Wilson at an altitude of 1673m, we measure the reflected near infrared sunlight from 33 surface targets in the Los Angeles megacity including the direct solar beam which gives the free tropospheric background. We then retrieve the excess slant column abundances of important trace gases such as carbon dioxide (CO2) and methane (CH4) in the LA basin. Using atmospheric tracer - tracer correlations for CH4 and CO2 to eliminate the effect of aerosol scattering in the retrieval, we infer methane emissions based on the ratio of XCH4 excess to XCO2 excess. Significant variability is observed in the spatial distributions of excess CH4. Methane emissions in the LA basin show consistent peaks in late summer and winter during the period from Sep 2011 to the present. The strong correlation between natural gas usage data and derived CLARS methane emissions (r2 = 0.5) implies that natural gas leakage during transmission and/or consumption accounts for a significant fraction of the inferred seasonal variability of methane emissions in the LA basin. We will report updated annual trends in CH4 emissions from 2011 to the present. Copyright 2017. All rights reserved.

  1. The enlargement of the European Union. Effects on trade and emissions of greenhouse gases

    International Nuclear Information System (INIS)

    Zhu, Xueqin; Van Ierland, Ekko

    2006-01-01

    With the gradual accession of various Central and Eastern European Countries (CEECs) to the European Union (EU), international trade between the EU and the CEECs will change as a result of trade liberalisation and the mobility of production factors within the EU. The EU and most of the CEECs have already committed themselves to reduce by 2008-2012 their emissions of greenhouse gases (GHGs) by 8% compared to the 1990 level. This paper reports on an investigation of the potential consequences of the enlargement of the EU and of the emission reduction target set by the Kyoto Protocol on the sectoral production patterns and international trade. A comparative-static general equilibrium model was developed to examine the impacts under different scenarios. For illustrative purposes, two regions (the EU and the CEECs) and three categories of goods and services (agricultural goods, industrial goods, and services) were included. The model was calibrated by the 1998 data. The model was subsequently applied to study the effects of free trade, the mobility of factors and the environmental constraints on production and international trade in light of the enlargement of the EU. We show that in this specific context, free trade is beneficial to economic welfare and does not necessarily increase emissions of greenhouse gases. The mobility of factors also increases economic welfare, but in the case of fixed production technology it may harm the environment through more emissions of GHGs. (author)

  2. Mangroves act as a small methane source: an investigation on 5 pathways of methane emissions from mangroves

    Science.gov (United States)

    Chen, H.; Peng, C.; Guan, W.; Liao, B.; Hu, J.

    2017-12-01

    The methane (CH4) source strength of mangroves is not well understood, especially for integrating all CH4 pathways. This study measured CH4 fluxes by five pathways (sediments, pneumatophores, water surface, leaves, and stems) from four typical mangrove forests in Changning River of Hainan Island, China, including Kandelia candel , Sonneratia apetala, Laguncularia racemosa and Bruguiera gymnoihiza-Bruguiera sexangula. The CH4 fluxes (mean ± SE) from sediments were 4.82 ± 1.46 mg CH4 m-2 h-1 for those without pneumatophores and 1.36 ± 0.17 mg CH4 m-2 h-1 for those with pneumatophores. Among the three communities with pneumatophores, S. apetala community had significantly greater emission rate than the other two. Pneumatophores in S. apetala were found to significantly decrease CH4 emission from sediments (P duck farming. Leaves of mangroves except for K. candel were a weak CH4 sink while stems a weak source. As a whole the 72 ha of mangroves in the Changning river basin emitted about 8.10 Gg CH4 yr-1 with a weighted emission rate of about 1.29 mg CH4 m-2 h-1, therefore only a small methane source to the atmosphere compared to other reported ones. Keywords: Greenhouse Gases; Biogeochemistry; Tropical ecosystems; Methane budget

  3. Effects of water-saving irrigation on emissions of greenhouse gases and prokaryotic communities in rice paddy soil.

    Science.gov (United States)

    Ahn, Jae-Hyung; Choi, Min-Young; Kim, Byung-Yong; Lee, Jong-Sik; Song, Jaekyeong; Kim, Gun-Yeob; Weon, Hang-Yeon

    2014-08-01

    The effects of water-saving irrigation on emissions of greenhouse gases and soil prokaryotic communities were investigated in an experimental rice field. The water layer was kept at 1-2 cm in the water-saving (WS) irrigation treatment and at 6 cm in the continuous flooding (CF) irrigation treatment. WS irrigation decreased CH(4) emissions by 78 % and increased N(2)O emissions by 533 %, resulting in 78 % reduction of global warming potential compared to the CF irrigation. WS irrigation did not affect the abundance or phylogenetic distribution of bacterial/archaeal 16S rRNA genes and the abundance of bacterial/archaeal 16S rRNAs. The transcript abundance of CH(4) emission-related genes generally followed CH(4) emission patterns, but the difference in abundance between mcrA transcripts and amoA/pmoA transcripts best described the differences in CH(4) emissions between the two irrigation practices. WS irrigation increased the relative abundance of 16S rRNAs and functional gene transcripts associated with Anaeromyxobacter and Methylocystis spp., suggesting that their activities might be important in emissions of the greenhouse gases. The N(2)O emission patterns were not reflected in the abundance of N(2)O emission-related genes and transcripts. We showed that the alternative irrigation practice was effective for mitigating greenhouse gas emissions from rice fields and that it did not affect the overall size and structure of the soil prokaryotic community but did affect the activity of some groups.

  4. Good practices reducing the greenhouse gases in the transport sector

    International Nuclear Information System (INIS)

    Crespo Garcia, L.; Garcia Cortes, A.; Jimenez Arroyo, F.; Montane Lopez, M. M.

    2010-01-01

    Public policies addressing the reduction of the greenhouse gases emission have to give response to the improvement of mobility in three aspects: passengers, freights, and urban and metropolitan areas. Passenger transport, because it involves long transportation distances consuming an important part of transport energy and raises difficult organizational problems. Freight transport, due to the complexity of interconnecting a lot of modes of transportation and the big range for improvement. Urban and metropolitan mobility, by the impact of actions in this field in the quality of life of a big part of the population. According to the peculiarities of their respective territories, different strategies of sustainable mobility that address the three considered aspects have been set up in Spain and its neighbouring countries. This article reviews some action lines implemented in spain, France and Germany, as a previous step to assess their possible adaptation to other territories. (Author) 6 refs.

  5. A STRATEGIC PROGRAM TO REDUCE GREENHOUSE GASES EMISSIONS PRODUCED FROM FOOD INDUSTRY

    Energy Technology Data Exchange (ETDEWEB)

    A. Kilic [Faculty of Science, Department of Biology, University of Nigde, Nigde (Turkey); A. Midilli [Faculty of Engineering, Department of Mechanical Engineering, Nigde (Turkey); I. Dincer [Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, Oshawa, ON (Canada)

    2008-09-30

    Greenhouse gases (GHGs) emissions are at every stage of conventional food production (planting, harvesting, irrigation, food production, transportation, and application of pesticides and fertilizers, etc.). In this study, a strategic program is proposed to reduce GHGs emissions resulting during conventional food production. The factors which form the basis of this strategic program are energy, environment and sustainability. The results show that the application of sustainable food processing technologies can significantly reduce GHGs emissions resulting from food industry. Moreover, minimizing the utilization of fossil-fuel energy sources and maximizing the utilization of renewable energy sources results in the reduction of GHGs emissions during food production, which in turn reduces the effect of global warming.

  6. Comparison of energy sources in terms of their full-energy-chain emission factors of greenhouse gases. Proceedings of an IAEA advisory group meeting/workshop

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    Sustainable and therefore climate benign energy planning is becoming a cornerstone of national energy policies in many countries that ratified the United Nations Framework Convention on Climate Change. The ratification implies a commitment to lowering greenhouse gas emissions by the so-called Annex I countries, i.e. the developed countries. Sustainable energy planning requires comparing the advantages and disadvantages of different energy sources. Such comparison cannot be done objectively without accounting for the emissions of all greenhouse gases (GHGs) - not only CO{sub 2} - from the whole energy chain, from ``cradle to grave``. The greenhouse gas emissions upstream and downstream of the energy conversion step are inherently associated with the production of any energy carrier, such as electricity. Therefore, analysis of the emissions of all greenhouse gases from the full energy chain FENCH is considered to be the only fair approach in comparing energy sources for climate benign energy planning. This publication reports on the IAEA Advisory Group Meeting on Analysis of Net Energy Balance and Full-Energy-Chain Greenhouse Gas Emissions for Nuclear and Other Energy Systems, held in Beijing, China, 4-7 October 1994. Refs., figs., tabs.

  7. Comparison of energy sources in terms of their full-energy-chain emission factors of greenhouse gases. Proceedings of an IAEA advisory group meeting/workshop

    International Nuclear Information System (INIS)

    1996-07-01

    Sustainable and therefore climate benign energy planning is becoming a cornerstone of national energy policies in many countries that ratified the United Nations Framework Convention on Climate Change. The ratification implies a commitment to lowering greenhouse gas emissions by the so-called Annex I countries, i.e. the developed countries. Sustainable energy planning requires comparing the advantages and disadvantages of different energy sources. Such comparison cannot be done objectively without accounting for the emissions of all greenhouse gases (GHGs) - not only CO 2 - from the whole energy chain, from ''cradle to grave''. The greenhouse gas emissions upstream and downstream of the energy conversion step are inherently associated with the production of any energy carrier, such as electricity. Therefore, analysis of the emissions of all greenhouse gases from the full energy chain FENCH is considered to be the only fair approach in comparing energy sources for climate benign energy planning. This publication reports on the IAEA Advisory Group Meeting on Analysis of Net Energy Balance and Full-Energy-Chain Greenhouse Gas Emissions for Nuclear and Other Energy Systems, held in Beijing, China, 4-7 October 1994. Refs., figs., tabs

  8. Norwegian environmental policy: From continued increase of the emission of greenhouse gases to decrease

    International Nuclear Information System (INIS)

    2002-01-01

    According to Norway's Minister of the Environment, Norway will be one of the first among the industrialized countries to ratify the Kyoto Protocol on the emission of greenhouse gases. The tax on carbon dioxide will be continued and from 2005 there will be a national quota system for emission from sources not previously included. Several other measures have also been proposed. The current regulations admit 16 percent increase in the emissions up to 2008, while the measures proposed by the government and listed in this article may give a reduction of 12 percent

  9. Stable isotopic indicators of nitrous oxide and methane sources in Los Angeles, California

    Science.gov (United States)

    Townsend-Small, A.; Pataki, D.; Tyler, S.; Trumbore, S.

    2008-12-01

    As urbanization increasingly encroaches upon agricultural landscapes, there are greater potential sources of greenhouse gases and other atmospheric contaminants. Measurements of the isotopic composition of trace gases have the potential to distinguish between pollutant sources and quantify the proportional contribution of agricultural activities to the total atmospheric pool. In this study, we are measuring the isotopic composition of greenhouse gases N2O and CH4 emitted from cropland, animal feeding operations, and urban activities in the South Coast Air Basin in southern California. The ultimate goal of our project is to utilize atmospheric measurements of the isotopic composition of N2O and CH4 combined with studies of source signatures to determine the proportional contributions of cropland, animal operations, and urban sources of greenhouse gases to the atmosphere. Measurements of the δ13C of methane show excellent separation between urban sources, such as vehicle emissions, power plants, oil refineries, landfills, and sewage treatment plants and agricultural sources like cows, biogas, and cattle feedlots. For nitrous oxide, soil N2O sources showed good separation from wastewater treatment facilities using δ15N and δ18O. Within soil N2O sources, the isotopic composition of N2O from cropland soils was similar to N2O emissions from urban turfgrass. These data indicate that nitrification may be as important a source of N2O as denitrification in urban soils. We are also measuring N2O fluxes from soils and from sewage treatment processes, and preliminary data indicate that urban N2O fluxes are higher than initially assumed by managers and regulatory agencies.

  10. Air pollution, greenhouse gases and climate change: Global and regional perspectives

    Science.gov (United States)

    Ramanathan, V.; Feng, Y.

    Greenhouse gases (GHGs) warm the surface and the atmosphere with significant implications for rainfall, retreat of glaciers and sea ice, sea level, among other factors. About 30 years ago, it was recognized that the increase in tropospheric ozone from air pollution (NO x, CO and others) is an important greenhouse forcing term. In addition, the recognition of chlorofluorocarbons (CFCs) on stratospheric ozone and its climate effects linked chemistry and climate strongly. What is less recognized, however, is a comparably major global problem dealing with air pollution. Until about ten years ago, air pollution was thought to be just an urban or a local problem. But new data have revealed that air pollution is transported across continents and ocean basins due to fast long-range transport, resulting in trans-oceanic and trans-continental plumes of atmospheric brown clouds (ABCs) containing sub micron size particles, i.e., aerosols. ABCs intercept sunlight by absorbing as well as reflecting it, both of which lead to a large surface dimming. The dimming effect is enhanced further because aerosols may nucleate more cloud droplets, which makes the clouds reflect more solar radiation. The dimming has a surface cooling effect and decreases evaporation of moisture from the surface, thus slows down the hydrological cycle. On the other hand, absorption of solar radiation by black carbon and some organics increase atmospheric heating and tend to amplify greenhouse warming of the atmosphere. ABCs are concentrated in regional and mega-city hot spots. Long-range transport from these hot spots causes widespread plumes over the adjacent oceans. Such a pattern of regionally concentrated surface dimming and atmospheric solar heating, accompanied by widespread dimming over the oceans, gives rise to large regional effects. Only during the last decade, we have begun to comprehend the surprisingly large regional impacts. In S. Asia and N. Africa, the large north-south gradient in the ABC

  11. Emission factor of gases from the greenhouse effect for the brazilian interconnected system; Fator de emissao de gases de efeito estufa para o sistema interligado brasileiro

    Energy Technology Data Exchange (ETDEWEB)

    Esparta, A. Ricardo J. [Ecoinvest Carbon S.A., Sao Paulo, SP (Brazil)]. E-mail: esparta@iee.usp.br; esparta@ecoinvestcarbon.com; Fernandez, Pablo [EcoSecurities, Rio de Janeiro, RJ (Brazil)]. E-mail: pablo.fernandez@ecosecurities.com.br; Costa, David Freire da [Econergy Brasil, Sao Paulo, SP (Brazil)]. E-mail: freire@econergy.com.br

    2006-07-01

    The participation of new power generation projects of the Brazilian interconnected system in the Clean Development Mechanism of the Kyoto Protocol demand the definition of greenhouse gases baseline emission scenarios and monitoring methodologies. The present paper describes the reasoning behind approved methodologies for capacity addition from renewable sources as well as carries out the calculation of the emission factor for the Brazilian interconnected grid. (author)

  12. Chemical and isotopic fractionations of natural gases during their migration. Importance of methane solubilization and diffusion during geological times; Fractionnements chimiques et isotopiques des gaz naturels lors de leur migration. Importance de la solubilisation et de la diffusion du methane au cours des temps geologiques

    Energy Technology Data Exchange (ETDEWEB)

    Pernaton, E

    1998-09-09

    Two experimental devices have been elaborated in the purpose of simulating in laboratory the solubilization of methane in water and the migration by solubilization/diffusion of some gas species (methane, ethane, propane and nitrogen) through porous media saturated with water. Significant shifts in isotopic ratios of diffused methane (carbon and hydrogen) have been observed. Those fractionations for carbon isotopes, which in most cases are characterised by a {sup 12}C-enriched diffused methane, have fundamental consequences about the interpretation of the origin of methane in sedimentary basins and, in a more general way, about the genetic characterisation of hydrocarbon gases in reservoirs. Indeed, this gives an ambiguous origin for any gas having {sup 12}C-enriched methane, two different interpretations are possible: mixing between thermogenic and bacterial hydrocarbon gases and a diffusive trend during migration. Using a diagram C2/C1 versus {delta}{sup 13}C1, we have shown that in some geological cases, these two processes, mixing and diffusion, exist and that it is possible to discern them.The chemical and isotopic compositions of natural gases do not only reflect genetic processes but are also an indication of their migration. Moreover, the experiments have shown that the gas transport by solubilization/diffusion is a potential operator of gas leakage from natural accumulations. In consequence, a numerical model of gas migration through cap rocks of reservoirs has been elaborated and will be integrated into sedimentary basin models. (author)

  13. Interactive Photochemistry in Earth System Models to Assess Uncertainty in Ozone and Greenhouse Gases. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Prather, Michael J. [Univ. of California, Irvine, CA (United States); Hsu, Juno [Univ. of California, Irvine, CA (United States); Nicolau, Alex [Univ. of California, Irvine, CA (United States); Veidenbaum, Alex [Univ. of California, Irvine, CA (United States); Smith, Philip Cameron [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bergmann, Dan [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-11-07

    Atmospheric chemistry controls the abundances and hence climate forcing of important greenhouse gases including N2O, CH4, HFCs, CFCs, and O3. Attributing climate change to human activities requires, at a minimum, accurate models of the chemistry and circulation of the atmosphere that relate emissions to abundances. This DOE-funded research provided realistic, yet computationally optimized and affordable, photochemical modules to the Community Earth System Model (CESM) that augment the CESM capability to explore the uncertainty in future stratospheric-tropospheric ozone, stratospheric circulation, and thus the lifetimes of chemically controlled greenhouse gases from climate simulations. To this end, we have successfully implemented Fast-J (radiation algorithm determining key chemical photolysis rates) and Linoz v3.0 (linearized photochemistry for interactive O3, N2O, NOy and CH4) packages in LLNL-CESM and for the first time demonstrated how change in O2 photolysis rate within its uncertainty range can significantly impact on the stratospheric climate and ozone abundances. From the UCI side, this proposal also helped LLNL develop a CAM-Superfast Chemistry model that was implemented for the IPCC AR5 and contributed chemical-climate simulations to CMIP5.

  14. Carbon dioxide separation from flue gases: a technological review emphasizing reduction in greenhouse gas emissions.

    Science.gov (United States)

    Songolzadeh, Mohammad; Soleimani, Mansooreh; Takht Ravanchi, Maryam; Songolzadeh, Reza

    2014-01-01

    Increasing concentrations of greenhouse gases (GHGs) such as CO2 in the atmosphere is a global warming. Human activities are a major cause of increased CO2 concentration in atmosphere, as in recent decade, two-third of greenhouse effect was caused by human activities. Carbon capture and storage (CCS) is a major strategy that can be used to reduce GHGs emission. There are three methods for CCS: pre-combustion capture, oxy-fuel process, and post-combustion capture. Among them, post-combustion capture is the most important one because it offers flexibility and it can be easily added to the operational units. Various technologies are used for CO2 capture, some of them include: absorption, adsorption, cryogenic distillation, and membrane separation. In this paper, various technologies for post-combustion are compared and the best condition for using each technology is identified.

  15. Carbon Dioxide Separation from Flue Gases: A Technological Review Emphasizing Reduction in Greenhouse Gas Emissions

    Directory of Open Access Journals (Sweden)

    Mohammad Songolzadeh

    2014-01-01

    Full Text Available Increasing concentrations of greenhouse gases (GHGs such as CO2 in the atmosphere is a global warming. Human activities are a major cause of increased CO2 concentration in atmosphere, as in recent decade, two-third of greenhouse effect was caused by human activities. Carbon capture and storage (CCS is a major strategy that can be used to reduce GHGs emission. There are three methods for CCS: pre-combustion capture, oxy-fuel process, and post-combustion capture. Among them, post-combustion capture is the most important one because it offers flexibility and it can be easily added to the operational units. Various technologies are used for CO2 capture, some of them include: absorption, adsorption, cryogenic distillation, and membrane separation. In this paper, various technologies for post-combustion are compared and the best condition for using each technology is identified.

  16. Technical papers 2: regional evaluation of the greenhouse gases emissions bound to the energy; Cahiers techniques 2: bilan regional des emissions de gaz a effet de serre liees a l'energie

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    The regional evaluation of the greenhouse gases emissions is realized in the framework of the climatic change fight. This technical paper aims to give regions information on the greenhouse gases emissions bound the the energy consumption. It provides a sectoral analysis in function of the energy sources and pollution sources. (A.L.B.)

  17. Impact of Trade Openness and Sector Trade on Embodied Greenhouse Gases Emissions and Air Pollutants

    OpenAIRE

    Islam, Moinul; Kanemoto, Keiichiro; Managi, Shunsuke

    2016-01-01

    The production of goods and services generates greenhouse gases (GHGs) and air pollution both directly and through the activities of the supply chains on which they depend. The analysis of the latter—called embodied emissions—in the cause of internationally traded goods and services is the subject of this paper. We find that trade openness increases embodied emissions in international trade (EET). We also examine the impact of sector trade on EET. By applying a fixed-effect model using large...

  18. Collaborative Emission Reduction Model Based on Multi-Objective Optimization for Greenhouse Gases and Air Pollutants.

    Science.gov (United States)

    Meng, Qing-chun; Rong, Xiao-xia; Zhang, Yi-min; Wan, Xiao-le; Liu, Yuan-yuan; Wang, Yu-zhi

    2016-01-01

    CO2 emission influences not only global climate change but also international economic and political situations. Thus, reducing the emission of CO2, a major greenhouse gas, has become a major issue in China and around the world as regards preserving the environmental ecology. Energy consumption from coal, oil, and natural gas is primarily responsible for the production of greenhouse gases and air pollutants such as SO2 and NOX, which are the main air pollutants in China. In this study, a mathematical multi-objective optimization method was adopted to analyze the collaborative emission reduction of three kinds of gases on the basis of their common restraints in different ways of energy consumption to develop an economic, clean, and efficient scheme for energy distribution. The first part introduces the background research, the collaborative emission reduction for three kinds of gases, the multi-objective optimization, the main mathematical modeling, and the optimization method. The second part discusses the four mathematical tools utilized in this study, which include the Granger causality test to analyze the causality between air quality and pollutant emission, a function analysis to determine the quantitative relation between energy consumption and pollutant emission, a multi-objective optimization to set up the collaborative optimization model that considers energy consumption, and an optimality condition analysis for the multi-objective optimization model to design the optimal-pole algorithm and obtain an efficient collaborative reduction scheme. In the empirical analysis, the data of pollutant emission and final consumption of energies of Tianjin in 1996-2012 was employed to verify the effectiveness of the model and analyze the efficient solution and the corresponding dominant set. In the last part, several suggestions for collaborative reduction are recommended and the drawn conclusions are stated.

  19. Greenhouse effect reduction and energy recovery from waste landfill

    Energy Technology Data Exchange (ETDEWEB)

    Lombardi, Lidia [Dipartimento di Energetica ' Sergio Stecco' , Universita degli Studi di Firenze, Via Santa Marta 3, 50139 Florence (Italy)]. E-mail: lidia.lombardi@pin.unifi.it; Carnevale, Ennio [Dipartimento di Energetica ' Sergio Stecco' , Universita degli Studi di Firenze, Via Santa Marta 3, 50139 Florence (Italy); Corti, Andrea [Dipartimento di Ingegneria dell' Informazione, Universita degli Studi di Siena, Via Roma 56, 53100 Siena (Italy)

    2006-12-15

    Waste management systems are a non-negligible source of greenhouse gases. In particular, methane and carbon dioxide emissions occur in landfills due to the breakdown of biodegradable carbon compounds operated on by anaerobic bacteria. The conventional possibilities of reducing the greenhouse effect (GHE) from waste landfilling consists in landfill gas (LFG) flaring or combustion with energy recovery in reciprocating engines. These conventional treatments are compared with three innovative possibilities: the direct LFG feeding to a fuel cell (FC); the production of a hydrogen-rich gas, by means of steam reforming and CO{sub 2} capture, to feed a stationary FC; the production of a hydrogen-rich gas, by means of steam reforming and CO{sub 2} capture, to feed a vehicle FC. The comparison is carried out from an environmental point of view, calculating the specific production of GHE per unit mass of waste disposed in landfill equipped with the different considered technologies.

  20. International IPCC workshop on methane and nitrous oxide: methods in national emissions inventories and options for control

    Energy Technology Data Exchange (ETDEWEB)

    Amstel, A.R. van (ed.)

    1993-07-01

    This workshop had two main objectives: to support the development of an internationally agreed methodology and reporting format for national emission inventories of greenhouse gases by mid 1993, as coordinated by the Science Working Group of the Intergovernmental Panel on Climate Change (IPCC) and the Organization for Economic Cooperation and Development (OECD); and the development of technical options for reduction of these greenhouse gases and the assessment of the socio-economic feasibility of these options. These proceedings contain the overview papers presented at the workshop, the background papers prepared for the working group sessions and the conclusions and recommendations of the working groups put forward during these sessions. 16 poster summaries are also included. During the workshop, 8 different sources of methane were discussed - oil and gas, coal mining, ruminants, animal waste, landfills and sewage treatments, combustion and industry, rice production and wetlands, and biomass burning - and 2 sources of nitrous oxide - agricultural soils and combustion and industry. All papers have been abstracted separately.

  1. Mitigating global warming potentials of methane and nitrous oxide gases from rice paddies under different irrigation regimes.

    Science.gov (United States)

    Ali, Muhammad Aslam; Hoque, M Anamul; Kim, Pil Joo

    2013-04-01

    A field experiment was conducted in Bangladesh Agricultural University Farm to investigate the mitigating effects of soil amendments such as calcium carbide, calcium silicate, phosphogypsum, and biochar with urea fertilizer on global warming potentials (GWPs) of methane (CH4) and nitrous oxide (N2O) gases during rice cultivation under continuous and intermittent irrigations. Among the amendments phosphogypsum and silicate fertilizer, being potential source of electron acceptors, decreased maximum level of seasonal CH4 flux by 25-27 % and 32-38 % in continuous and intermittent irrigations, respectively. Biochar and calcium carbide amendments, acting as nitrification inhibitors, decreased N2O emissions by 36-40 % and 26-30 % under continuous and intermittent irrigations, respectively. The total GWP of CH4 and N2O gases were decreased by 7-27 % and 6-34 % with calcium carbide, phosphogypsum, and silicate fertilizer amendments under continuous and intermittent irrigations, respectively. However, biochar amendments increased overall GWP of CH4 and N2O gases.

  2. Throat gases against the CO2

    International Nuclear Information System (INIS)

    Michaut, C.

    2006-01-01

    The steel production needs carbon consumption and generates carbon dioxide, the main greenhouse gases. It represents about 6 % of the greenhouse gases emissions in the world. That is why the steel industry began last year a research program, Ideogaz, to reduce its CO 2 releases. The first results on the throat gases recovery seems very promising: it uses 25 % less of carbon. The author presents the program and the main technical aspects of the method. (A.L.B.)

  3. Multi-layer Retrievals of Greenhouse Gases from a Combined Use of GOSAT TANSO-FTS SWIR and TIR

    Science.gov (United States)

    Kikuchi, N.; Kuze, A.; Kataoka, F.; Shiomi, K.; Hashimoto, M.; Suto, H.; Knuteson, R. O.; Iraci, L. T.; Yates, E. L.; Gore, W.; Tanaka, T.; Yokota, T.

    2016-12-01

    The TANSO-FTS sensor onboard GOSAT has three frequency bands in the shortwave infrared (SWIR) and the fourth band in the thermal infrared (TIR). Observations of high-resolution spectra of reflected sunlight in the SWIR are extensively utilized to retrieve column-averaged concentrations of the major greenhouse gases such as carbon dioxide (XCO2) and methane (XCH4). Although global XCO2 and XCH4 distribution retrieved from SWIR data can reduce the uncertainty in the current knowledge about sources and sinks of these gases, information on the vertical profiles would be more useful to constrain the surface flux and also to identify the local emission sources. Based on the degrees of freedom for signal, Kulawik et al. (2016, IWGGMS-12 presentation) shows that 2-layer information on the concentration of CO2 can be extracted from TANSO-FTS SWIR measurements, and the retrieval error is predicted to be about 5 ppm in the lower troposphere. In this study, we present multi-layer retrievals of CO2 and CH4 from a combined use of measurements of TANSO-FTS SWIR and TIR. We selected GOSAT observations at Railroad Valley Playa in Nevada, USA, which is a vicarious calibration site for TANSO-FTS, as we have various ancillary data including atmospheric temperature and humidity taken by a radiosonde, surface temperature, and surface emissivity with a ground based FTS. All of these data are useful especially for retrievals using TIR spectra. Currently, we use the 700-800 cm-1 and 1200-1300 cm-1 TIR windows for CO2 and CH4 retrievals, respectively, in addition to the SWIR bands. We found that by adding TIR windows, 3-layer information can be extracted, and the predicted retrieval error in the CO2 concentration was reduced about 1 ppm in the lower troposphere. We expect that the retrieval error could be further reduced by optimizing TIR windows and by reducing systematic forward model errors.

  4. Validation of landfill methane measurements from an unmanned aerial system

    DEFF Research Database (Denmark)

    Allen, Grant; Williams, Paul; Ricketts, hugo

    Landfill gas is made up of roughly equal amounts of methane and carbon dioxide. Modern UK landfills capture and use much of the methane gas as a fuel. But some methane escapes and is emitted to the atmosphere. Methane is an important greenhouse gas and controls on methane emissions are a part...... of international and national strategies to limit climate change. Better estimates of methane emissions from landfills and other similar sources would allow the UK to improve the quantification and control of greenhouse gas emissions. This project tested the accuracy of methane measurement using an unmanned aerial...

  5. Methane synthesis under mild conditions for decentralized applications; Methansynthese unter milden Bedingungen fuer dezentrale Anwendungen

    Energy Technology Data Exchange (ETDEWEB)

    Schlueter, Michael [DBFZ Deutsches Biomasseforschungszentrum gGmbH, Leipzig (Germany); Roensch, Stefan

    2016-08-01

    It is a central aim of the German government to significantly reduce the emission of greenhouse gases in the next years. One possibility to reach this aim is the substitution of fossil fuels, especially natural gas, by fuels from biogenic sources (Bio-SNG). However, it is a drawback of Bio-SNG that the production costs are considerably higher than those of fossil natural gas. This work provides an approach to reduce the production costs of Bio-SNG. It is the aim to reduce the process parameters of the methane synthesis. At the same time, it has to be ensured that high methane yields are achieved even at those mild conditions. A procedure for the optimization of the methanation catalyst activity will be presented. If the catalyst is as active as possible even at mild conditions, it will be possible to produce Bio-SNG cost efficient even in small, decentralized scale.

  6. Greenhouse gas emissions from high demand, natural gas-intensive energy scenarios

    International Nuclear Information System (INIS)

    Victor, D.G.

    1990-01-01

    Since coal and oil emit 70% and 30% more CO 2 per unit of energy than natural gas (methane), fuel switching to natural gas is an obvious pathway to lower CO 2 emissions and reduced theorized greenhouse warming. However, methane is, itself, a strong greenhouse gas so the CO 2 advantages of natural gas may be offset by leaks in the natural gas recovery and supply system. Simple models of atmospheric CO 2 and methane are used to test this hypothesis for several natural gas-intensive energy scenarios, including the work of Ausubel et al (1988). It is found that the methane leaks are significant and may increase the total 'greenhouse effect' from natural gas-intensive energy scenarios by 10%. Furthermore, because methane is short-lived in the atmosphere, leaking methane from natural gas-intensive, high energy growth scenarios effectively recharges the concentration of atmospheric methane continuously. For such scenarios, the problem of methane leaks is even more serious. A second objective is to explore some high demand scenarios that describe the role of methane leaks in the greenhouse tradeoff between gas and coal as energy sources. It is found that the uncertainty in the methane leaks from the natural gas system are large enough to consume the CO 2 advantages from using natural gas instead of coal for 20% of the market share. (author)

  7. Fluxes of methane and nitrous oxide from an Indian mangrove

    Energy Technology Data Exchange (ETDEWEB)

    Krithika, K.; Purvaja, R.; Ramesh, R. [Anna Univ., Chennai (India). Institute for Ocean Management

    2008-01-25

    Methane and nitrous oxide are atmospheric trace gases and contribute about 15 and 6% respectively to the greenhouse effect. Both have a long atmospheric residence time of about 114 and 12 years respectively and since they are key compounds in the chemical reaction cycles of the troposphere and the stratosphere, their potential to directly or indirectly influence global climate is high. Fluxes of greenhouse gases, methane (CH{sub 4}) and nitrous oxide (N{sub 2}O), were measured from a mangrove ecosystem of the Cauvery delta (Muthupet) in South India. CH{sub 4} emissions were in the range between 18.99 and 37.53 mg/sq. m/d, with an average of 25.21 mg/sq. m/d, whereas N{sub 2}O emission ranged between 0.41 and 0.80 mg/sq. m/d (average of 0.62 mg/sq. m/d). The emission of CH{sub 4} and N{sub 2}O correlated positively with the number of pneumatophores. In addition to the flux measurements, different parts of the roots of Avicennia marina were quantified for CH{sub 4} concentration. Invariably in all the seasons, measured CH{sub 4} concentrations were high in the cable roots, with gradual decrease through the pneumatophores below water level and the above water level. This clearly indicates the transport of CH{sub 4} through the roots. We were able to establish that CH{sub 4} was released passively through the mangrove pneumatophores and is also a source to the atmosphere. We present some additional information on transport mechanisms of CH{sub 4} through the pneumatophores and bubble release from the mangrove ecosystems.

  8. Evaluation of greenhouse gas emission risks from storage of wood residue

    International Nuclear Information System (INIS)

    Wihersaari, Margareta

    2005-01-01

    The use of renewable energy sources instead of fossil fuels is one of the most important means of limiting greenhouse gas emissions in the near future. In Finland, wood energy is considered to be a very important potential energy source in this sense. There might, however, still be some elements of uncertainty when evaluating biofuel production chains. By combining data from a stack of composting biodegradable materials and forest residue storage research there was an indication that rather great amounts of greenhouse gases maybe released during storage of wood chip, especially if there is rapid decomposition. Unfortunately, there have not been many evaluations of greenhouse gas emissions of biomass handling and storage heaps. The greenhouse gas emissions are probably methane, when the temperature in the fuel stack is above the ambient temperature, and nitrous oxide, when the temperature is falling and the decaying process is slowing down. Nowadays it is still rather unusual to store logging residue as chips, because the production is small, but in Finland storage of bark and other by-products from the forest industry is a normal process. The evaluations made indicate that greenhouse gas emissions from storage can, in some cases, be much greater than emissions from the rest of the biofuel production and transportation chain

  9. Sources of greenhouse gases and carbon monoxide in central London (UK)

    Science.gov (United States)

    Helfter, Carole; Tremper, Anja; Zazzeri, Giulia; Barlow, Janet F.; Nemitz, Eiko

    2015-04-01

    Biosphere-atmosphere exchange of carbon dioxide (CO2) has been on the scientific agenda for several decades and new technology now also allows for high-precision, continuous monitoring of fluxes of methane (CH4) and nitrous oxide (N2O). Compared to the natural environment, flux measurements in the urban environment, which is home to over 50% of the population globally, are still rare despite high densities of anthropogenic sources of pollutants. We report on over three years of measurements atop a 192 m tower in central London (UK), Europe's largest city, which started in October 2011. Fluxes of methane, carbon monoxide (CO) and carbon dioxide are measured by eddy-covariance (EC) at the British Telecom tower (51° 31' 17.4' N 0° 8' 20.04' W). In addition to the long-term measurements, EC fluxes of nitrous oxide (N2O) were measured in February 2014. All four trace gases exhibit diurnal trends consistent with anthropogenic activities with minimum emissions at night and early afternoon maxima. Segregating emissions by wind direction reveals heterogeneous source distributions with temporal patterns and source strengths that differ between compounds. The lowest emissions for CO, CO2 and CH4 were recorded for NW winds. The highest emissions of methane were in the SE sector, in the NE for CO2 and in the W for CO. Fluxes of all 3 gases exhibited marked seasonal trends characterised by a decrease in emissions in summer (63% reduction for CO, 36% for CO2 and 22% for CH4). Monthly fluxes of CO and CO2 were linearly correlated to air temperature (R2 = 0.7 and 0.59 respectively); a weaker dependence upon temperature was also observed for CH4 (R2 = 0.31). Diurnal and seasonal emissions of CO and CO2 are mainly controlled by local fossil fuel combustion and vehicle cold starts are thought to account for 20-30% of additional emissions of CO during the winter. Fugitive emissions of CH4 from the natural gas distribution network are thought to be substantial, which is consistent

  10. Turning a Liability into an Asset: Landfill Methane Recovery in India

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    Solid waste disposal sites are not often seen as opportunities for energy solutions. The waste that is disposed in open dumps and landfills generates methane and other gases as it decomposes, causing concerns about explosions, odours, and, increasingly, about the contribution of methane to global climate change. However, the liability of landfill gas (LFG) can be turned into an asset. Many countries regularly capture LFG as a strategy to improve landfill safety, generate electricity, reduce greenhouse gas emissions, and to earn carbon emission reduction credits (e.g. 40% for the United States, 25% for Australia). Many projects in developing countries are taking advantage of the United Nations Framework Convention on Climate Change (UNFCCC) Clean Development Mechanism (CDM) to earn carbon credits by capturing and combusting methane (e.g., the Sudokwon Landfill in Republic of South Korea, the Bandeirantes Landfill in Brazil and the Nanjing Tianjingwa Landfill in China). These Landfill Gas to Energy (LFGE) projects provide a valuable service to the environment and a potentially profitable business venture, providing benefits to local and regional communities.

  11. Atmospheric greenhouse effect - simple model; Atmosfaerens drivhuseffekt - enkel modell

    Energy Technology Data Exchange (ETDEWEB)

    Kanestroem, Ingolf; Henriksen, Thormod

    2011-07-01

    The article shows a simple model for the atmospheric greenhouse effect based on consideration of both the sun and earth as 'black bodies', so that the physical laws that apply to them, may be used. Furthermore, explained why some gases are greenhouse gases, but other gases in the atmosphere has no greenhouse effect. But first, some important concepts and physical laws encountered in the article, are repeated. (AG)

  12. How well can global chemistry models calculate the reactivity of short-lived greenhouse gases in the remote troposphere, knowing the chemical composition

    Science.gov (United States)

    Prather, Michael J.; Flynn, Clare M.; Zhu, Xin; Steenrod, Stephen D.; Strode, Sarah A.; Fiore, Arlene M.; Correa, Gustavo; Murray, Lee T.; Lamarque, Jean-Francois

    2018-05-01

    We develop a new protocol for merging in situ measurements with 3-D model simulations of atmospheric chemistry with the goal of integrating these data to identify the most reactive air parcels in terms of tropospheric production and loss of the greenhouse gases ozone and methane. Presupposing that we can accurately measure atmospheric composition, we examine whether models constrained by such measurements agree on the chemical budgets for ozone and methane. In applying our technique to a synthetic data stream of 14 880 parcels along 180° W, we are able to isolate the performance of the photochemical modules operating within their global chemistry-climate and chemistry-transport models, removing the effects of modules controlling tracer transport, emissions, and scavenging. Differences in reactivity across models are driven only by the chemical mechanism and the diurnal cycle of photolysis rates, which are driven in turn by temperature, water vapor, solar zenith angle, clouds, and possibly aerosols and overhead ozone, which are calculated in each model. We evaluate six global models and identify their differences and similarities in simulating the chemistry through a range of innovative diagnostics. All models agree that the more highly reactive parcels dominate the chemistry (e.g., the hottest 10 % of parcels control 25-30 % of the total reactivities), but do not fully agree on which parcels comprise the top 10 %. Distinct differences in specific features occur, including the spatial regions of maximum ozone production and methane loss, as well as in the relationship between photolysis and these reactivities. Unique, possibly aberrant, features are identified for each model, providing a benchmark for photochemical module development. Among the six models tested here, three are almost indistinguishable based on the inherent variability caused by clouds, and thus we identify four, effectively distinct, chemical models. Based on this work, we suggest that water vapor

  13. Measurement of greenhouse gases in UAE by using Unmanned Aerial Vehicle (UAV)

    Science.gov (United States)

    Abou-Elnour, Ali; Odeh, Mohamed; Abdelrhman, Mohammed; Balkis, Ahmed; Amira, Abdelraouf

    2017-04-01

    In the present work, a reliable and low cost system has been designed and implemented to measure greenhouse gases (GHG) in United Arab Emirates (UAE) by using unmanned aerial vehicle (UAV). A set of accurate gas, temperature, pressure, humidity sensors are integrated together with a wireless communication system on a microcontroller based platform to continuously measure the required data. The system instantaneously sends the measured data to a center monitoring unit via the wireless communication system. In addition, the proposed system has the features that all measurements are recorded directly in a storage device to allow effective monitoring in regions with weak or no wireless coverage. The obtained data will be used in all further sophisticated calculations for environmental research and monitoring purposes.

  14. European trends in greenhouse gases emissions from integrated solid waste management.

    Science.gov (United States)

    Calabrò, Paolo S; Gori, Manuela; Lubello, Claudio

    2015-01-01

    The European Union (EU) has 28 member states, each with very different characteristics (e.g. surface, population density, per capita gross domestic product, per capita municipal solid waste (MSW) production, MSW composition, MSW management options). In this paper several integrated waste management scenarios representative of the European situation have been generated and analysed in order to evaluate possible trends in the net emission of greenhouse gases and in the required landfill volume. The results demonstrate that an integrated system with a high level of separate collection, efficient energy recovery in waste-to-energy plants and very limited landfill disposal is the most effective according to the indices adopted. Moreover, it is evident that a fully integrated system can make MSW management a carbon sink with a potentiality of up to approximately 40 Mt CO2eq year(-1).

  15. Ni{sub x}Al{sub y} hydrotalcites derived catalysts for methane dry reforming reaction

    Energy Technology Data Exchange (ETDEWEB)

    Touahra, F.; Abdessadek, Z.; Saadi, A.; Cherifi, O.; Halliche, D. [Univ. des Sciences et de la Technologie Houari Boumedienne (USTHB), El-Alia, Alger (Algeria); Bachari, K. [Centre de Recherche Scientifique et Technique en Analyse Physico-Chimique (CRAPC), Alger (Algeria)

    2010-07-01

    CO{sub 2} reforming of methane shows a growing interest from both industrial and environmental viewpoint. Form an environmental perspective, CO{sub 2} and CH{sub 4} are undesirable greenhouse gases and both are consumed by the proposed reaction. The purpose of this paper is to study the effect of varying molar ratio R=Ni{sup 2+}/Al{sup 3+}(R=2, 3, 5, 7 and 9) for CO{sub 2} reforming of methane reaction. The corresponding Ni{sub x}Al{sub y} samples were prepared by coprecipitation at constant basic pH and calcined at 800 C. They were characterized by ICP method, X-Ray powder diffraction patterns, BET method and FTIR. We have studied the reaction of dry reforming of methane by carbon dioxide in presence of the various catalysts at temperatures ranging from 400 to 700 C. A high conversions to natural conversions were obtained when R>5. (orig.)

  16. Toward Global Mapping of Methane With TROPOMI: First Results and Intersatellite Comparison to GOSAT

    Science.gov (United States)

    Hu, Haili; Landgraf, Jochen; Detmers, Rob; Borsdorff, Tobias; Aan de Brugh, Joost; Aben, Ilse; Butz, André; Hasekamp, Otto

    2018-04-01

    The TROPOspheric Monitoring Instrument (TROPOMI), launched on 13 October 2017, aboard the Sentinel-5 Precursor satellite, measures reflected sunlight in the ultraviolet, visible, near-infrared, and shortwave infrared spectral range. It enables daily global mapping of key atmospheric species for monitoring air quality and climate. We present the first methane observations from November and December 2017, using TROPOMI radiance measurements in the shortwave infrared band around 2.3 μm. We compare our results with the methane product obtained from the Greenhouse gases Observing SATellite (GOSAT). Although different spectral ranges and retrieval methods are used, we find excellent agreement between the methane products acquired from the two satellites with a mean difference of 13.6 ppb, standard deviation of 19.6 ppb, and Pearson's correlation coefficient of 0.95. Our preliminary results capture the latitudinal gradient and show expected regional enhancements, for example, in the African Sudd wetlands, with much more detail than has been observed before.

  17. Recent patterns of methane and nitrous oxide fluxes in the terrestrial biosphere: The bottom-up approach (Invited)

    Science.gov (United States)

    Tian, H.

    2013-12-01

    Accurately estimating methane and nitrous oxide emissions from terrestrial ecosystems is critical for resolving global budgets of these greenhouse gases (GHGs) and continuing to mitigate climate warming. In this study, we use a bottom-up approach to estimate annual budgets of both methane and nitrous oxide in global terrestrial ecosystem during 1981-2010 and analyze the underlying mechanisms responsible for spatial and temporal variations in these GHGs. Both methane and nitrous oxide emissions significantly increased from 1981 to 2010, primarily owing to increased air temperature, nitrogen fertilizer use, and land use change. Methane and nitrous oxide emissions increased the fastest in Asia due to the more prominent environmental changes compared to other continents. The cooling effects by carbon dioxide sink in the terrestrial biosphere might be completely offset by increasing methane and nitrous oxide emissions, resulting in a positive global warming potential. Asia and South America were the largest contributors to increasing global warming potential. This study suggested that current management practices might not be effective enough to reduce future global warming.

  18. Determination of soil-entrapped methane

    Energy Technology Data Exchange (ETDEWEB)

    Alberto, M.C.R.; Neue, H.U.; Lantin, R.S.; Aduna, J.B. [Soil and Water Sciences Division, Manila (Philippines)

    1996-12-31

    A sampling method was developed and modified to sample soil from paddy fields for entrapped methane determination. A 25-cm long plexiglass tube (4.4-cm i.d.) fitted with gas bag was used to sample soil and entrapped gases to a depth of 15-cm. The sampling tube was shaken vigorously to release entrapped gases. Headspace gas in sampling tube and gas bag was analyzed for methane. The procedure was verified by doing field sampling weekly at an irrigated ricefield in the IRRI Research Farm on a Maahas clay soil. The modified sampling method gave higher methane concentration because it eliminated gas losses during sampling. The method gave 98% {+-} 5 recovery of soil-entrapped methane. Results of field sampling showed that the early growth stage of the rice plant, entrapped methane increased irrespective of treatment. This suggests that entrapped methane increased irrespective of treatment. This suggests that entrapped methane was primarily derived from fermentation of soil organic matter at the early growth stage. At the latter stage, the rice plant seems to be the major carbon source for methane production. 7 refs., 4 figs., 4 tabs.

  19. Greenhouse gases emissions accounting for typical sewage sludge digestion with energy utilization and residue land application in China

    Energy Technology Data Exchange (ETDEWEB)

    Niu Dongjie, E-mail: niudongjie@tongji.edu.cn [Key Laboratory of Yangtze Aquatic Environment, Ministry of Education, College of Environmental Science and Engineering of Tongji University, 1239 Siping Road, Shanghai 200092 (China); UNEP-Tongji Institute of Environment for Sustainable Development, 1239 Siping Road, Shanghai 200092 (China); Huang Hui [Key Laboratory of Yangtze Aquatic Environment, Ministry of Education, College of Environmental Science and Engineering of Tongji University, 1239 Siping Road, Shanghai 200092 (China); Dai Xiaohu [Key Laboratory of Yangtze Aquatic Environment, Ministry of Education, College of Environmental Science and Engineering of Tongji University, 1239 Siping Road, Shanghai 200092 (China); National Engineering Research Center for Urban Pollution Control, Shanghai 200092 (China); Zhao Youcai [Key Laboratory of Yangtze Aquatic Environment, Ministry of Education, College of Environmental Science and Engineering of Tongji University, 1239 Siping Road, Shanghai 200092 (China)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer GHGs emissions from sludge digestion + residue land use in China were calculated. Black-Right-Pointing-Pointer The AD unit contributes more than 97% of total biogenic GHGs emissions. Black-Right-Pointing-Pointer AD with methane recovery is attractive for sludge GHGs emissions reduction. - Abstract: About 20 million tonnes of sludge (with 80% moisture content) is discharged by the sewage treatment plants per year in China, which, if not treated properly, can be a significant source of greenhouse gases (GHGs) emissions. Anaerobic digestion is a conventional sewage sludge treatment method and will continue to be one of the main technologies in the following years. This research has taken into consideration GHGs emissions from typical processes of sludge thickening + anaerobic digestion + dewatering + residue land application in China. Fossil CO{sub 2}, biogenic CO{sub 2}, CH{sub 4,} and avoided CO{sub 2} as the main objects is discussed respectively. The results show that the total CO{sub 2}-eq is about 1133 kg/t DM (including the biogenic CO{sub 2}), while the net CO{sub 2}-eq is about 372 kg/t DM (excluding the biogenic CO{sub 2}). An anaerobic digestion unit as the main GHGs emission source occupies more than 91% CO{sub 2}-eq of the whole process. The use of biogas is important for achieving carbon dioxide emission reductions, which could reach about 24% of the total CO{sub 2}-eq reduction.

  20. Spatial variability in nitrous oxide and methane emissions from beef cattle feedyard pen surfaces

    Science.gov (United States)

    Greenhouse gas emissions from beef cattle feedlots include enteric carbon dioxide and methane, and manure-derived methane, nitrous oxide and carbon dioxide. Enteric methane comprises the largest portion of the greenhouse gas footprint of beef cattle feedyards. For the manure component, methane is th...

  1. Methane on Mars: Thermodynamic Equilibrium and Photochemical Calculations

    Science.gov (United States)

    Levine, J. S.; Summers, M. E.; Ewell, M.

    2010-01-01

    The detection of methane (CH4) in the atmosphere of Mars by Mars Express and Earth-based spectroscopy is very surprising, very puzzling, and very intriguing. On Earth, about 90% of atmospheric ozone is produced by living systems. A major question concerning methane on Mars is its origin - biological or geological. Thermodynamic equilibrium calculations indicated that methane cannot be produced by atmospheric chemical/photochemical reactions. Thermodynamic equilibrium calculations for three gases, methane, ammonia (NH3) and nitrous oxide (N2O) in the Earth s atmosphere are summarized in Table 1. The calculations indicate that these three gases should not exist in the Earth s atmosphere. Yet they do, with methane, ammonia and nitrous oxide enhanced 139, 50 and 12 orders of magnitude above their calculated thermodynamic equilibrium concentration due to the impact of life! Thermodynamic equilibrium calculations have been performed for the same three gases in the atmosphere of Mars based on the assumed composition of the Mars atmosphere shown in Table 2. The calculated thermodynamic equilibrium concentrations of the same three gases in the atmosphere of Mars is shown in Table 3. Clearly, based on thermodynamic equilibrium calculations, methane should not be present in the atmosphere of Mars, but it is in concentrations approaching 30 ppbv from three distinct regions on Mars.

  2. Upward revision of global fossil fuel methane emissions based on isotope database.

    Science.gov (United States)

    Schwietzke, Stefan; Sherwood, Owen A; Bruhwiler, Lori M P; Miller, John B; Etiope, Giuseppe; Dlugokencky, Edward J; Michel, Sylvia Englund; Arling, Victoria A; Vaughn, Bruce H; White, James W C; Tans, Pieter P

    2016-10-06

    Methane has the second-largest global radiative forcing impact of anthropogenic greenhouse gases after carbon dioxide, but our understanding of the global atmospheric methane budget is incomplete. The global fossil fuel industry (production and usage of natural gas, oil and coal) is thought to contribute 15 to 22 per cent of methane emissions to the total atmospheric methane budget. However, questions remain regarding methane emission trends as a result of fossil fuel industrial activity and the contribution to total methane emissions of sources from the fossil fuel industry and from natural geological seepage, which are often co-located. Here we re-evaluate the global methane budget and the contribution of the fossil fuel industry to methane emissions based on long-term global methane and methane carbon isotope records. We compile the largest isotopic methane source signature database so far, including fossil fuel, microbial and biomass-burning methane emission sources. We find that total fossil fuel methane emissions (fossil fuel industry plus natural geological seepage) are not increasing over time, but are 60 to 110 per cent greater than current estimates owing to large revisions in isotope source signatures. We show that this is consistent with the observed global latitudinal methane gradient. After accounting for natural geological methane seepage, we find that methane emissions from natural gas, oil and coal production and their usage are 20 to 60 per cent greater than inventories. Our findings imply a greater potential for the fossil fuel industry to mitigate anthropogenic climate forcing, but we also find that methane emissions from natural gas as a fraction of production have declined from approximately 8 per cent to approximately 2 per cent over the past three decades.

  3. Methane as a climate gas

    Energy Technology Data Exchange (ETDEWEB)

    Karlsdottir, S.

    1996-03-01

    This paper was read at the workshop ``The Norwegian Climate and Ozone Research Programme`` held on 11-12 March 1996. Methane is a key component in the atmosphere where its concentration has increased rapidly since pre-industrial time. About 2/3 of it is caused by human activities. Changes in methane will affect the concentrations of other gases, and a model is a very important tool to study sensitivity due to changes in concentration of gases. The author used a three-dimensional global chemistry transport model to study the effect of changes in methane concentration on other trace gases. The model includes natural and anthropogenic emissions of NOx, CO, CH{sub 4} and non-methane hydrocarbons. Wet and dry deposition are also included. The chemical scheme in the model includes 49 compounds, 101 reactions, and 16 photolytic reactions. The trace gas concentrations are calculated every 30 min, using a quasi steady state approximation. Model calculations of three cases are reported and compared. Enhanced methane concentration will have strongest effect in remote regions. In polluted areas local chemistry will have remarked effect. The feedback was always positive. Average atmospheric lifetime calculated in the model was 7.6 years, which agrees with recent estimates based on observations. 8 refs.

  4. Measurements of greenhouse gases at Beromünster tall-tower station in Switzerland

    Science.gov (United States)

    Ayalneh Berhanu, Tesfaye; Satar, Ece; Schanda, Rudiger; Nyfeler, Peter; Moret, Hanspeter; Brunner, Dominik; Oney, Brian; Leuenberger, Markus

    2016-06-01

    In order to constrain the regional flux of greenhouse gases, an automated measurement system was built on an old radio tower at Beromünster, Switzerland. The measurement system has been running since November 2012 as part of the Swiss greenhouse gases monitoring network (CarboCount-CH), which is composed of four measurement sites across the country. The Beromünster tall tower has five sampling lines with inlets at 12.5, 44.6, 71.5, 131.6, and 212.5 m above ground level, and it is equipped with a Picarro cavity ring-down spectrometer (CRDS) analyzer (G-2401), which continuously measures CO, CO2, CH4, and H2O. Sensors for detection of wind speed and direction, air temperature, barometric pressure, and humidity have also been installed at each height level. We have observed a non-negligible temperature effect in the calibration measurements, which was found to be dependent on the type of cylinder (steel or aluminum) as well as trace gas species (strongest for CO). From a target gas of known mixing ratio that has been measured once a day, we have calculated a long-term reproducibility of 2.79 ppb, 0.05 ppm, and 0.29 ppb for CO, CO2, and CH4, respectively, over 19 months of measurements. The values obtained for CO2 and CH4 are compliant with the WMO recommendations, while the value calculated for CO is higher than the recommendation. Since the installation of an air-conditioning system recently at the measurement cabin, we have acquired better temperature stability of the measurement system, but no significant improvement was observed in the measurement precision inferred from the target gas measurements. Therefore, it seems that the observed higher variation in CO measurements is associated with the instrumental noise, compatible with the precision provided by the manufacturer.

  5. Methane emissions and climate compatibility of fossil fuels

    International Nuclear Information System (INIS)

    Meier, B.

    1992-01-01

    Methane contributes directly and indirectly to the additional greenhouse effect caused by human activities. The vast majority of the anthropogenic methane release occurs worldwide in non-fossil sources such as rice cultivation, livestock operations, sanitary landfills and combustion of bio-mass. Methane emissions also occur during production, distribution and utilisation of fossil fuels. Also when considering the methane release and CO 2 -emissions of processes upstream of combustion, the ranking of environmental compatibility of natural gas, fuel oil and cool remains unchanged. Of all fossil fuels, natural gas contributes the least to the greenhouse effect. (orig.) [de

  6. Comparison of Gross Greenhouse Gas Fluxes from Hydroelectric Reservoirs in Brazil with Thermopower Generation

    Science.gov (United States)

    Rogerio, J. P.; Dos Santos, M. A.; Matvienko, B.; dos Santos, E.; Rocha, C. H.; Sikar, E.; Junior, A. M.

    2013-05-01

    Widespread interest in human impacts on the Earth has prompted much questioning in fields of concern to the general public. One of these issues is the extent of the impacts on the environment caused by hydro-based power generation, once viewed as a clean energy source. From the early 1990s onwards, papers and studies have been challenging this assumption through claims that hydroelectric dams also emit greenhouse gases, generated by the decomposition of biomass flooded by filling these reservoirs. Like as other freshwater bodies, hydroelectric reservoirs produce gases underwater by biology decomposition of organic matter. Some of these biogenic gases are effective in terms of Global Warming. The decomposition is mainly due by anaerobically regime, emitting methane (CH4), nitrogen (N2) and carbon dioxide (CO2). This paper compare results obtained from gross greenhouse fluxes in Brazilian hydropower reservoirs with thermo power plants using different types of fuels and technology. Measurements were carried in the Manso, Serra da Mesa, Corumbá, Itumbiara, Estreito, Furnas and Peixoto reservoirs, located in Cerrado biome and in Funil reservoir located at Atlantic forest biome with well defined climatologically regimes. Fluxes of carbon dioxide and methane in each of the reservoirs selected, whether through bubbles and/or diffusive exchange between water and atmosphere, were assessed by sampling. The intensity of emissions has a great variability and some environmental factors could be responsible for these variations. Factors that influence the emissions could be the water and air temperature, depth, wind velocity, sunlight, physical and chemical parameters of water, the composition of underwater biomass and the operational regime of the reservoir. Based in this calculations is possible to conclude that the large amount of hydro-power studied is better than thermopower source in terms of atmospheric greenhouse emissions. The comparisons between the reservoirs studied

  7. Greenhouse impact of Finnish peatlands 1900-2100

    Energy Technology Data Exchange (ETDEWEB)

    Laine, J; Minkkinen, K [Helsinki Univ. (Finland). Dept. of Ecology; Tolonen, K; Turunen, J [Joensuu Univ. (Finland). Dept. of Biology; Martikainen, P; Nykaenen, H [National Public Health Inst. Kuopio (Finland). Dept. of Environmental Microbiology; Sinisalo, J; Savolainen, I [VTT Energy, Espoo (Finland)

    1997-12-31

    Northern peatlands are significant in regulating the global climate. While sequestering carbon dioxide (CO{sub 2}, ca. 100 Tg C a{sup -} {sup 1}), these peatlands release cat 24-39 Tg methane (CH{sub 4}) annually to the atmosphere. This is 5-15 % of the annual anthropogenic and 10-35 % of the annual natural CH4 emissions to the atmosphere. The greenhouse gas balance of peatlands may change as a consequence of water level drawdown after land use change, or if summers become warmer and drier, as has been predicted for high latitudes after climatic warming. Currently, some 15 million hectares of northern peatlands and other wetlands have been drained for forestry. More than 90 % of this area is found in Scandinavia and the former Soviet Union. The area drained annually has, however, been declining during the last two decades and, in Finland for instance the annual drained area of nearly 300 000 hectares in the late 1960`s has decreased to cat 35 000 hectares in the early 1990`s. Radiative forcing is the change in the radiative energy balance at the tropopause and it is the driving force behind the greenhouse effect. It is a common quantity for most greenhouse gases and takes into account the dynamics of the greenhouse impact. Radiative forcing model was used to compute the greenhouse impact of the drainage of the peatlands, combining the effects of CO{sub 2} and CH4 balances; N{sub 2}O was not included in the calculations because its contribution is minor. (14 refs.)

  8. Greenhouse impact of Finnish peatlands 1900-2100

    Energy Technology Data Exchange (ETDEWEB)

    Laine, J.; Minkkinen, K. [Helsinki Univ. (Finland). Dept. of Ecology; Tolonen, K.; Turunen, J. [Joensuu Univ. (Finland). Dept. of Biology; Martikainen, P.; Nykaenen, H. [National Public Health Inst. Kuopio (Finland). Dept. of Environmental Microbiology; Sinisalo, J.; Savolainen, I. [VTT Energy, Espoo (Finland)

    1996-12-31

    Northern peatlands are significant in regulating the global climate. While sequestering carbon dioxide (CO{sub 2}, ca. 100 Tg C a{sup -} {sup 1}), these peatlands release cat 24-39 Tg methane (CH{sub 4}) annually to the atmosphere. This is 5-15 % of the annual anthropogenic and 10-35 % of the annual natural CH4 emissions to the atmosphere. The greenhouse gas balance of peatlands may change as a consequence of water level drawdown after land use change, or if summers become warmer and drier, as has been predicted for high latitudes after climatic warming. Currently, some 15 million hectares of northern peatlands and other wetlands have been drained for forestry. More than 90 % of this area is found in Scandinavia and the former Soviet Union. The area drained annually has, however, been declining during the last two decades and, in Finland for instance the annual drained area of nearly 300 000 hectares in the late 1960`s has decreased to cat 35 000 hectares in the early 1990`s. Radiative forcing is the change in the radiative energy balance at the tropopause and it is the driving force behind the greenhouse effect. It is a common quantity for most greenhouse gases and takes into account the dynamics of the greenhouse impact. Radiative forcing model was used to compute the greenhouse impact of the drainage of the peatlands, combining the effects of CO{sub 2} and CH4 balances; N{sub 2}O was not included in the calculations because its contribution is minor. (14 refs.)

  9. Quantification of methane and nitrous oxide emissions from various waste treatment facilities by tracer dilution method

    Science.gov (United States)

    Mønster, Jacob; Rella, Chris; Jacobson, Gloria; Kjeldsen, Peter; Scheutz, Charlotte

    2013-04-01

    Urban activities generate solid and liquid waste, and the handling and aftercare of the waste results in the emission of various compounds into the surrounding environment. Some of these compounds are emitted as gasses into the atmosphere, including methane and nitrous oxide. Methane and nitrous oxide are strong greenhouse gases and are considered to have 25 and 298 times the greenhouse gas potential of carbon dioxide on a hundred years term (Solomon et al. 2007). Global observations of both gasses have shown increasing concentrations that significantly contribute to the greenhouse gas effect. Methane and nitrous oxide are emitted from both natural and anthropogenic sources and inventories of source specific fugitive emissions from the anthropogenic sources of methane and nitrous oxide of are often estimated on the basis of modeling and mass balance. Though these methods are well-developed, actual measurements for quantification of the emissions is a very useful tool for verifying the modeling and mass balance as well as for validation initiatives done for lowering the emissions of methane and nitrous oxide. One approach to performing such measurements is the tracer dilution method (Galle et al. 2001, Scheutz et al. 2011), where the exact location of the source is located and a tracer gas is released at this source location at a known flow. The ratio of downwind concentrations of the tracer gas and the methane and nitrous oxide gives the emissions rates of the greenhouse gases. This tracer dilution method can be performed using both stationary and mobile measurements and in both cases, real-time measurements of both tracer and quantified gas are required, placing high demands on the analytical detection method. To perform the methane and nitrous oxide measurements, two robust instruments capable of real-time measurements were used, based on cavity ring-down spectroscopy and operating in the near-infrared spectral region. One instrument measured the methane and

  10. Renewable energies for reduction of greenhouse gases in the Mexican electricity generation in 2025

    Energy Technology Data Exchange (ETDEWEB)

    Islas, J; Manzini, F; Martinez, M [Centre for Energy Research, UNAM, Temixco, Morelos (Mexico)

    2000-07-01

    This study presents three scenarios relating to the environmental futures of electricity generation in Mexico up to the year 2025. The first scenario emphasizes the use of oil products, particularly fuel oil, and represents the energy policy path that was in effect until 1990. The second scenario prioritizes the use of natural gas, reflecting the energy consumption pattern that arose in the mid-90's as a result of reforms in the energy sector. In the third scenario, the high participation of renewable sources of energy is considered feasible from a technical and economic point of view. The three scenarios are evaluated up to the year 2025 in terms of greenhouse gases (GHG) and acid rain precursor gases (ARPG). [Spanish] Este estudio presenta tres escenarios relacionados de los futuros ambientales de generacion de electricidad en Mexico hasta el ano 2025. El primer escenario enfatiza la utilizacion de productos del petroleo, particularmente el combustoleo, y representa el curso de la politica de energia vigente hasta 1990. El segundo escenario da prioridad al uso de gas natural, reflejando el patron de consumo de energia que surgio a mediados de los 90's como resultado de reformas en el sector energetico. En el tercer escenario, la alta participacion de las fuentes renovables de energia es considerada factible desde los puntos de vista tecnico y economico. Los tres escenarios son evaluados hasta el ano 2025 en terminos de los gases de efecto invernadero (GHG) y de gases precursores de lluvia acida (ARPG).

  11. Effect van inkuilmanagement op emissie van broeikasgassen op bedrijfsniveau = Effect of ensiling management on emission of greenhouse gases at farm level

    NARCIS (Netherlands)

    Schooten, van H.A.; Philipsen, A.P.

    2011-01-01

    This report described the losses during harvesting, storage and feed out period of grass silage. It was estimated that there was a considerable risk of extra losses due to aerobic deterioration and moderate conservation. Farmrelated computations showed that economics and emission of greenhouse gases

  12. Impact of greenhouse gases on agricultural productivity in Pakistan

    International Nuclear Information System (INIS)

    Valasai, G.D; Harijan, K.; Uqaili, M.S.; Memon, H.R

    2005-01-01

    Pakistan is an agricultural developing country. About 68% of the country's population resides in rural areas and is mostly linked with agriculture. Agricultural sector contributes more than 25% to GDP, employees about 45% of the labour force and contributes significantly to export earnings of the country. Energy sector is the major source (80%) of emissions of Greenhouse Gases (GHGs). Agriculture and livestock sectors are also responsible for GHGs emissions. The emissions of GHGs results in acid rain and earth's temperature rise (global warming). The destabilization of the global climate destroys natural ecosystem and increases natural disasters, such as violent storms, floods, droughts etc. The acid rain and these natural disasters affect the agricultural productivity. The study indicates that the agricultural productivity per capita in Pakistan decreased continuously during the last two decades. The paper concludes that due to emissions of GHGs, the agricultural productivity is significantly affected in the country. The government should take concrete measures to minimize the emissions of GHGs for increasing the agricultural productivity and reducing other harmful impacts in the country. This paper presents the review and analysis of the effects of GHGs emissions on the agricultural productivity in Pakistan. (author)

  13. LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL

    Energy Technology Data Exchange (ETDEWEB)

    Don Augenstein

    1999-01-11

    ''Conventional'' waste landfills emit methane, a potent greenhouse gas, in quantities such that landfill methane is a major factor in global climate change. Controlled landfilling is a novel approach to manage landfills for rapid completion of total gas generation, maximizing gas capture and minimizing emissions of methane to the atmosphere. With controlled landfilling, methane generation is accelerated and brought to much earlier completion by improving conditions for biological processes (principally moisture levels) in the landfill. Gas recovery efficiency approaches 100% through use of surface membrane cover over porous gas recovery layers operated at slight vacuum. A field demonstration project's results at the Yolo County Central Landfill near Davis, California are, to date, highly encouraging. Two major controlled landfilling benefits would be the reduction of landfill methane emissions to minuscule levels, and the recovery of greater amounts of landfill methane energy in much shorter times than with conventional landfill practice. With the large amount of US landfill methane generated, and greenhouse potency of methane, better landfill methane control can play a substantial role in reduction of US greenhouse gas emissions.

  14. The greenhouse effect - little strokes fell great oaks

    International Nuclear Information System (INIS)

    Kanestroem, Ingolf

    2003-01-01

    It is a common assumption that carbon dioxide and other greenhouse gases constitute only a very small fraction of the atmosphere and thus cannot be as important as the climate researchers maintain. However, the adage of the title is appropriate for the impact of the greenhouse gases on the atmosphere. During the last 25 years, the global temperature has risen 0,5 o C, and during the last century by 0,75 o C. Thus according to the UN Climate Panel, there is evidence of a noticeable anthropogenic impact on the global climate. The article discusses the concept of greenhouse effect, the composition of the atmosphere, greenhouse gases and their importance, emission of carbon dioxide and natural climate changes

  15. Global health benefits of mitigating ozone pollution with methane emission controls.

    Science.gov (United States)

    West, J Jason; Fiore, Arlene M; Horowitz, Larry W; Mauzerall, Denise L

    2006-03-14

    Methane (CH(4)) contributes to the growing global background concentration of tropospheric ozone (O(3)), an air pollutant associated with premature mortality. Methane and ozone are also important greenhouse gases. Reducing methane emissions therefore decreases surface ozone everywhere while slowing climate warming, but although methane mitigation has been considered to address climate change, it has not for air quality. Here we show that global decreases in surface ozone concentrations, due to methane mitigation, result in substantial and widespread decreases in premature human mortality. Reducing global anthropogenic methane emissions by 20% beginning in 2010 would decrease the average daily maximum 8-h surface ozone by approximately 1 part per billion by volume globally. By using epidemiologic ozone-mortality relationships, this ozone reduction is estimated to prevent approximately 30,000 premature all-cause mortalities globally in 2030, and approximately 370,000 between 2010 and 2030. If only cardiovascular and respiratory mortalities are considered, approximately 17,000 global mortalities can be avoided in 2030. The marginal cost-effectiveness of this 20% methane reduction is estimated to be approximately 420,000 US dollars per avoided mortality. If avoided mortalities are valued at 1 US dollars million each, the benefit is approximately 240 US dollars per tone of CH(4) ( approximately 12 US dollars per tone of CO(2) equivalent), which exceeds the marginal cost of the methane reduction. These estimated air pollution ancillary benefits of climate-motivated methane emission reductions are comparable with those estimated previously for CO(2). Methane mitigation offers a unique opportunity to improve air quality globally and can be a cost-effective component of international ozone management, bringing multiple benefits for air quality, public health, agriculture, climate, and energy.

  16. Regional greenhouse climate effects

    International Nuclear Information System (INIS)

    Hansen, J.; Rind, D.; Delgenio, A.; Lacis, A.; Lebedeff, S.; Prather, M.; Ruedy, R.; Karl, T.

    1990-01-01

    The authors discuss the impact of an increasing greenhouse effect on three aspects of regional climate: droughts, storms and temperature. A continuous of current growth rates of greenhouse gases causes an increase in the frequency and severity of droughts in their climate model simulations, with the greatest impacts in broad regions of the subtropics and middle latitudes. But the greenhouse effect enhances both ends of the hydrologic cycle in the model, that is, there is an increased frequency of extreme wet situations, as well as increased drought. Model results are shown to imply that increased greenhouse warming will lead to more intense thunderstorms, that is, deeper thunderstorms with greater rainfall. Emanual has shown that the model results also imply that the greenhouse warming leads to more destructive tropical cyclones. The authors present updated records of observed temperatures and show that the observations and model results, averaged over the globe and over the US, are generally consistent. The impacts of simulated climate changes on droughts, storms and temperature provide no evidence that there will be regional winners if greenhouse gases continue to increase rapidly

  17. Greenhouse science; Global warming: the origin and nature of alleged scientific consensus

    Energy Technology Data Exchange (ETDEWEB)

    Lindzen, R. (Massachusetts Institute of Technology, Cambridge, MA (USA))

    1992-01-01

    The paper contends that there is not a scientific consensus on the existence of global warming. The scientific issues associated with the prediction of global warming are reviewed and it is concluded that there is no substantive basis for predictions of sizeable global warming due to observed increases in greenhouse gases such as CO[sub 2], methane and chlorofluorocarbons. The history of the current concern over global warming is described. Political aspects, scientists' concerns over funding and the desire of industrial companies to improve their public image by supporting environmental activists are some of the factors seen as responsible for the current global warming 'hysteria'. 6 figs.

  18. Controlled Landfill Project in Yolo County, California for Environmental Benefits of Waste Stabilization and Minimization of Greenhouse Gas Emissions

    Science.gov (United States)

    Yazdani, R.; Augenstein, D.; Kieffer, J.; Cohen, K.

    2003-12-01

    The Department of Public Works of Yolo County, California, USA has been testing an advanced approach to landfill bioreactors, controlled (or "enhanced") landfilling, at its Yolo County Central Landfill site near Davis, CA, since 1994. Overall objectives have been the management of waste landfilling for: (1) rapid completion of total gas generation; (2) maximum, high-efficiency gas capture; (3) waste volume reduction; and (4) maximum greenhouse gas and carbon sequestration benefits. Methane generation is controlled and enhanced through carefully managed moisture additions, and by taking advantage of landfill temperature elevation. The generated landfill methane, an important greenhouse gas, is recovered with high efficiency through extraction from a porous recovery layer beneath a surface geomembrane cover. Instrumentation included a total of 56 moisture and 15 temperature sensors in the two cells, gas flow monitoring by positive displacement gas meters, and accurate quantification of liquid inputs and outputs. Gas composition, waste volume reduction, base hydrostatic head, and a range of environmental compliance parameters has been monitored since 1995. Partitioning gas tracer tests using the injection of two gases at dilute concentrations in the landfill have also been initiated to compute the fraction of pore space occupied by water between the points of tracer injection and tracer measurement. There has been rapid waste volume reduction in the enhanced cell that corresponds to the solids' reduction to gas. Monitoring is planned for the next several years, until stabilization parameters are determined complete. Encouraging performance is indicated by: (1) sensor data; (2) gas generation results; (3) data from landfill cores; and (4) decomposition-related indicators including rapid volume reduction. When data are synthesized, project results have attractive implications for new approaches to landfill management. Over seven-years, methane recoveries have averaged

  19. Ammonia, Total Reduced Sulfides, and Greenhouse Gases of Pine Chip and Corn Stover Bedding Packs.

    Science.gov (United States)

    Spiehs, Mindy J; Brown-Brandl, Tami M; Parker, David B; Miller, Daniel N; Berry, Elaine D; Wells, James E

    2016-03-01

    Bedding materials may affect air quality in livestock facilities. Our objective in this study was to compare headspace concentrations of ammonia (NH), total reduced sulfides (TRS), carbon dioxide (CO), methane (CH), and nitrous oxide (NO) when pine wood chips ( spp.) and corn stover ( L.) were mixed in various ratios (0, 10, 20, 30, 40, 60, 80, and 100% pine chips) and used as bedding with manure. Air samples were collected from the headspace of laboratory-scaled bedded manure packs weekly for 42 d. Ammonia concentrations were highest for bedded packs containing 0, 10, and 20% pine chips (equivalent to 501.7, 502.3, and 502.3 mg m, respectively) in the bedding mixture and were lowest when at least 80% pine chips were used as bedding (447.3 and 431.0 mg m, respectively for 80 and 100% pine chip bedding). The highest NH concentrations were observed at Day 28. The highest concentration of TRS was observed when 100% pine chips were used as bedding (11.4 µg m), with high concentrations occurring between Days 7 and 14, and again at Day 35. Greenhouse gases were largely unaffected by bedding material but CH and CO concentrations increased as the bedded packs aged and NO concentrations were highly variable throughout the incubation. We conclude that a mixture of bedding material that contains 30 to 40% pine chips may be the ideal combination to reduce both NH and TRS emissions. All gas concentrations increased as the bedded packs aged, suggesting that frequent cleaning of facilities would improve air quality in the barn, regardless of bedding materials used. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  20. CYANOBACTERIA FOR MITIGATING METHANE EMISSION FROM SUBMERGED PADDY FIELDS

    Energy Technology Data Exchange (ETDEWEB)

    Upasana Mishra; Shalini Anand [Department of Environmental Studies, Inderprastha Engineering College, Sahibabad, Ghaziabad (India)

    2008-09-30

    Atmospheric methane, a potent greenhouse gas with high absorption potential for infrared radiation, is responsible for one forth of the total anticipated warming. It is forming a major part of green house gases, next after carbon dioxide. Its concentration has been increasing alarmingly on an average at the rate of one percent per year. Atmospheric methane, originating mainly from biogenic sources such as paddy fields, natural wetlands and landfills, accounts for 15-20% of the world's total anthropogenic methane emission. With intensification of rice cultivation in coming future, methane emissions from paddy fields are anticipated to increase. India's share in world's rice production is next after to China and likewise total methane emission from paddy fields also. Methane oxidation through planktophytes, particularly microalgae which are autotrophic and abundant in rice rhizospheres, hold promise in controlling methane emission from submerged paddy fields. The present study is focused on the role of nitrogen fixing, heterocystous cyanobacteria and Azolla (a water fern harboring a cyanobacterium Anabaena azollae) as biological sink for headspace concentration of methane in flooded soils. In this laboratory study, soil samples containing five potent nitrogen fixer cyanobacterial strains from paddy fields, were examined for their methane reducing potential. Soil sample without cyanobacterial strain was tested and taken as control. Anabaena sp. was found most effective in inhibiting methane concentration by 5-6 folds over the control. Moist soil cores treated with chemical nitrogen, urea, in combination with cyanobacteria mixture, Azolla microphylla or cyanobacteria mixture plus Azolla microphylla exhibited significance reduction in the headspace concentration of methane than the soil cores treated with urea alone. Contrary to other reports, this study also demonstrates that methane oxidation in soil core samples from paddy fields was stimulated by

  1. Methane and Climate Change

    NARCIS (Netherlands)

    Reay, D.; Smith, P.; Amstel, van A.R.

    2010-01-01

    Methane is a powerful greenhouse gas and is estimated to be responsible for approximately one-fifth of man-made global warming. Per kilogram, it is 25 times more powerful than carbon dioxide over a 100-year time horizon -- and global warming is likely to enhance methane release from a number of

  2. Future concentrations of atmospheric greenhouse gases CO2, CFC and CH4 - an assessment on the educational level

    International Nuclear Information System (INIS)

    Hoppenau, S.

    1992-01-01

    A model on the educational level is described to estimate effective future atmospheric CO 2 concentrations. The effects of chlorofluorocarbon and methane emission and deforestation are taken into account. The influence of different emission scenarios on the time evolution of greenhouse-gas concentration are illustrated. Future global energy policies are discussed both under the aspects of rising world population and the reduction in global CO 2 emissions. The model can be handled on a PC or even on a pocket calculator

  3. Accounting for Greenhouse Gas Emissions from Reservoirs ...

    Science.gov (United States)

    Nearly three decades of research has demonstrated that the impoundment of rivers and the flooding of terrestrial ecosystems behind dams can increase rates of greenhouse gas emission, particularly methane. The 2006 IPCC Guidelines for National Greenhouse Gas Inventories includes a methodology for estimating methane emissions from flooded lands, but the methodology was published as an appendix to be used as a ‘basis for future methodological development’ due to a lack of data. Since the 2006 Guidelines were published there has been a 6-fold increase in the number of peer reviewed papers published on the topic including reports from reservoirs in India, China, Africa, and Russia. Furthermore, several countries, including Iceland, Switzerland, and Finland, have developed country specific methodologies for including flooded lands methane emissions in their National Greenhouse Gas Inventories. This presentation will include a review of the literature on flooded land methane emissions and approaches that have been used to upscale emissions for national inventories. We will also present ongoing research in the United States to develop a country specific methodology. In the U.S., research approaches include: 1) an effort to develop predictive relationships between methane emissions and reservoir characteristics that are available in national databases, such as reservoir size and drainage area, and 2) a national-scale probabilistic survey of reservoir methane em

  4. Accounting For Greenhouse Gas Emissions From Flooded ...

    Science.gov (United States)

    Nearly three decades of research has demonstrated that the inundation of rivers and terrestrial ecosystems behind dams can lead to enhanced rates of greenhouse gas emissions, particularly methane. The 2006 IPCC Guidelines for National Greenhouse Gas Inventories includes a methodology for estimating methane emissions from flooded lands, but the methodology was published as an appendix to be used a ‘basis for future methodological development’ due to a lack of data. Since the 2006 Guidelines were published there has been a 6-fold increase in the number of peer reviewed papers published on the topic including reports from reservoirs in India, China, Africa, and Russia. Furthermore, several countries, including Iceland, Switzerland, and Finland, have developed country specific methodologies for including flooded lands methane emissions in their National Greenhouse Gas Inventories. This presentation will include a review of the literature on flooded land methane emissions and approaches that have been used to upscale emissions for national inventories. We will also present ongoing research in the United States to develop a country specific methodology. The research approaches include 1) an effort to develop predictive relationships between methane emissions and reservoir characteristics that are available in national databases, such as reservoir size and drainage area, and 2) a national-scale probabilistic survey of reservoir methane emissions. To inform th

  5. Accouting for Greenhouse Gas Emissions from Reservoirs

    Science.gov (United States)

    Beaulieu, J. J.; Deemer, B. R.; Harrison, J. A.; Nietch, C. T.; Waldo, S.

    2016-12-01

    Nearly three decades of research has demonstrated that the impoundment of rivers and the flooding of terrestrial ecosystems behind dams can increase rates of greenhouse gas emission, particularly methane. The 2006 IPCC Guidelines for National Greenhouse Gas Inventories includes a methodology for estimating methane emissions from flooded lands, but the methodology was published as an appendix to be used as a `basis for future methodological development' due to a lack of data. Since the 2006 Guidelines were published there has been a 6-fold increase in the number of peer reviewed papers published on the topic including reports from reservoirs in India, China, Africa, and Russia. Furthermore, several countries, including Iceland, Switzerland, and Finland, have developed country specific methodologies for including flooded lands methane emissions in their National Greenhouse Gas Inventories. This presentation will include a review of the literature on flooded land methane emissions and approaches that have been used to upscale emissions for national inventories. We will also present ongoing research in the United States to develop a country specific methodology. In the U.S., research approaches include: 1) an effort to develop predictive relationships between methane emissions and reservoir characteristics that are available in national databases, such as reservoir size and drainage area, and 2) a national-scale probabilistic survey of reservoir methane emissions linked to the National Lakes Assessment.

  6. On the relationship between metrics to compare greenhouse gases – the case of IGTP, GWP and SGTP

    Directory of Open Access Journals (Sweden)

    D. J. A. Johansson

    2012-11-01

    Full Text Available Metrics for comparing greenhouse gases are analyzed, with a particular focus on the integrated temperature change potential (IGTP following a call from IPCC to investigate this metric. It is shown that the global warming potential (GWP and IGTP are asymptotically equal when the time horizon approaches infinity when standard assumptions about a constant background atmosphere are used. The difference between IGTP and GWP is estimated for different greenhouse gases using an upwelling diffusion energy balance model with different assumptions on the climate sensitivity and the parameterization governing the rate of ocean heat uptake. It is found that GWP and IGTP differ by some 10% for CH4 (for a time horizon of less than 500 yr, and that the relative difference between GWP and IGTP is less for gases with a longer atmospheric life time. Further, it is found that the relative difference between IGTP and GWP increases with increasing rates of ocean heat uptake and increasing climate sensitivity since these changes increase the inertia of the climate system. Furthermore, it is shown that IGTP is equivalent to the sustained global temperature change potential (SGTP under standard assumptions when estimating GWPs. We conclude that while it matters little for abatement policy whether IGTP, SGTP or GWP is used when making trade-offs, it is more important to decide whether society should use a metric based on time integrated effects such as GWP, a "snapshot metric" as GTP, or metrics where both economics and physical considerations are taken into account. Of equal importance is the question of how to choose the time horizon, regardless of the chosen metric. For both these overall questions, value judgments are needed.

  7. High-accuracy continuous airborne measurements of greenhouse gases (CO2 and CH4) using the cavity ring-down spectroscopy (CRDS) technique

    NARCIS (Netherlands)

    Chen, H.; Winderlich, J.; Gerbig, C.; Hoefer, A.; Rella, C. W.; Crosson, E. R.; Van Pelt, A. D.; Steinbach, J.; Kolle, O.; Beck, V.; Daube, B. C.; Gottlieb, E. W.; Chow, V. Y.; Santoni, G. W.; Wofsy, S. C.

    2010-01-01

    High-accuracy continuous measurements of greenhouse gases (CO2 and CH4) during the BARCA (Balancao Atmosferico Regional de Carbono na Amazonia) phase B campaign in Brazil in May 2009 were accomplished using a newly available analyzer based on the cavity ring-down spectroscopy (CRDS) technique. This

  8. Inventory of methane losses from the natural gas industry

    International Nuclear Information System (INIS)

    Burklin, C.E.; Campbell, L.M.; Campbell, M.V.

    1992-01-01

    Natural gas is being considered as an important transition fuel in an integrated national strategy to reduce emissions of greenhouse gases in the United States due to its lower carbon dioxide (CO 2 ) emission per unit of energy produced. However, the contribution of atmospheric methane (CH 4 ) from the production and handling of natural gas must also be considered. Radian Corporation has been working with the Gas Research Institute and the US Environmental Protection Agency to detail the sources of methane from the natural gas industry in the United States. All aspects of natural gas production, processing, transmission, storage and distribution are being examined. Preliminary results of preliminary testing for the below-ground gas distribution industry segment are presented. The emission rate (scf/hr) is the product of the leak rate per unit length of underground pipe and the total length of US distribution system pipelines. Preliminary estimates for the below-ground distribution segment are nearly 9 billion scf/yr. This total likely underestimates below-ground methane emissions for several reasons. These preliminary analyses suggest that significant uncertainty surround current methane emission estimates from below-ground distribution systems. Emission estimates from all segments of the US Natural Gas Industry, broken down by fugitive sources and non-fugitive sources, are also presented. The specific test methods being implemented to quantify emissions from each segment are described

  9. Methane emission reduction: an application of FUND

    NARCIS (Netherlands)

    Tol, R.S.J.; Heintz, R.J.; Lammers, P.E.M.

    2003-01-01

    Methane is, after carbon dioxide, the most important anthropogenic greenhouse gas. Governments plan to abate methane emissions. A crude set of estimates of reduction costs is included in FUND, an integrated assessment model of climate change. In a cost-benefit analysis, methane emission reduction is

  10. An energy balance and greenhouse gas profile for county Wexford, Ireland in 2006

    International Nuclear Information System (INIS)

    Curtin, Richard

    2011-01-01

    Highlights: → Residential sector emits 38% of total CO 2 emissions. → Transport and industry/commerce sectors emit 28% each. → Oil composes 91% of total primary energy requirement (TPER). → Methane accounts for 25% of total greenhouse gas emissions. → Agriculture accounts for 36% of total greenhouse gas emissions. -- Abstract: In this paper an energy balance and a greenhouse gas profile has been formulated for the county of Wexford, situated in the south east of Ireland. The energy balance aims to aggregate all energy consumption in the county for the year 2006 across the following sectors; residential, agriculture, commerce and industry, and transport. The results of the energy balance are compared with the previous energy balance of 2001 where it is found that the residential sector is the biggest emitter of CO 2 with 38% of total emissions with the transport and industry/commerce sectors sharing second place on 28%. Consumption of oil is seen to have increased significantly in nearly all sectors, accounting for over 70% of the total final energy consumed (TFC) while the total primary energy requirement (TPER) sees oil consumption accounting for 91% of all fuels consumed. To take into account the contribution of agriculture in total GHG emissions the gases CH 4 and N 2 O will be estimated from the agricultural and waste sectors. The results show that methane contributes 25% of total GHG emissions with agriculture being the primary contributor accounting for 36% of total emissions.

  11. Fugitive Methane Emission Identification and Source Attribution: Ethane-to-Methane Analysis Using a Portable Cavity Ring-Down Spectroscopy Analyzer

    Science.gov (United States)

    Kim-Hak, D.; Fleck, D.

    2017-12-01

    Natural gas analysis and methane specifically have become increasingly important by virtue of methane's 28-36x greenhouse warming potential compared to CO2 and accounting for 10% of total greenhouse gas emissions in the US alone. Additionally, large uncontrolled leaks, such as the recent one from Aliso Canyon in Southern California, originating from uncapped wells, storage facilities and coal mines have increased the total global contribution of methane missions even further. Determining the specific fingerprint of methane sources by quantifying the ethane to methane (C2:C1) ratios provides us with means to understand processes yielding methane and allows for sources of methane to be mapped and classified through these processes; i.e. biogenic or thermogenic, oil vs. gas vs. coal gas-related. Here we present data obtained using a portable cavity ring-down spectrometry analyzer weighing less than 25 lbs and consuming less than 35W that simultaneously measures methane and ethane in real-time with a raw 1-σ precision of plane gas propagation.

  12. Estimate of the emissions of methane in a dairy farm and a proposal of mitigation

    International Nuclear Information System (INIS)

    Schmidt, R; Alvarez, E; Gely, M; Pagano, A; Crozza, D

    2005-01-01

    The methane represents one of the most potent greenhouse gas and recent inventories express that the systems of handling of the manure of the livestock have influence in the global emissions of methane (Martinez et. al, 2003).This residue, during the periods of storage to open sky, suffers a natural anaerobic decomposition and gases like ammonium, hydrogen, sulfhydric, methane and dioxide of carbon; are generated and emitted to the atmosphere (EPA, 1999, Misselbrook et. al, 2001; Martinez et. al, 2003).In a report presented by the EPA (EPA, 1999) it was estimated that the methane emission originated in United States (1997) for the handling of the manure of the livestock ascended to 3.0 T g., what represents 10% of the total content of the methane emissions in that country.It is also expected that these emissions caused by the cattle residual grow above 25% from the 2000 to the 2020.In Argentina, and in particular in the region that includes the territorial space of the present study, in the Party of Olavarria located in the center of the Buenos Aires Province, it is considered that there are 8265 heads of bovine livestock, distributed under different forms of exploitation, dairy farms, cattle-breeding ranch and feedlots.These figures show the clearly incipient advance of the bovine livestock in this area, showing that the values of generated methane can influence thoroughly in the contribution of the greenhouse gas.The objective of the present study resides in carrying out an estimate of the equivalent quantity of CO 2 that is emitted to the atmosphere and how much it could decrease if the methodology of anaerobic digestion is applied, for the conversion of the bovine manure in biogas

  13. Contribution of the renewable energies to the decrease of the greenhouse gases emission for 2010; Contribution des EnR a la reduction des emissions de gaz a effet de serre a l'horizon 2010

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2003-03-01

    To illustrate the renewable energies contribution to the decrease of the greenhouse gases emission in 2010 (19 Mt of CO{sub 2} per year, of greenhouse gases emission avoided), this document presents the different renewable energies sources and the international context of their implementation. Today data and estimations for 2010 are provided. (A.L.B.)

  14. Root biomass as a major means of affecting methane emissions

    Science.gov (United States)

    Human activities are contributing to greenhouse gas emissions. Methane, the second most abundant greenhouse gas, is ~25 times more potent in global warming potential than carbon dioxide, and 7-17% of atmospheric methane comes from paddy rice fields. The purpose of the study was to investigate gene...

  15. Adaptation to Impacts of Greenhouse Gases on the Ocean (Invited)

    Science.gov (United States)

    Caldeira, K.

    2010-12-01

    Greenhouse gases are producing changes in ocean temperature and circulation, and these changes are already adversely affecting marine biota. Furthermore, carbon dioxide is absorbed by the oceans from the atmosphere, and this too is already adversely affecting some marine ecosystems. And, of course, sea-level rise affects both what is above and below the waterline. Clearly, the most effective approach to limit the negative impacts of climate change and acidification on the marine environment is to greatly diminish the rate of greenhouse gas emissions. However, there are other measures that can be taken to limit some of the negative effects of these stresses in the marine environment. Marine ecosystems are subject to multiple stresses, including overfishing, pollution, and loss of coastal wetlands that often serve as nurseries for the open ocean. The adaptive capacity of marine environments can be improved by limiting these other stresses. If current carbon dioxide emission trends continue, for some cases (e.g., coral reefs), it is possible that no amount of reduction in other stresses can offset the increase in stresses posed by warming and acidification. For other cases (e.g., blue-water top-predator fisheries), better fisheries management might yield improved population health despite continued warming and acidification. In addition to reducing stresses so as to improve the adaptive capacity of marine ecosystems, there is also the issue of adaptation in human communities that depend on this changing marine environment. For example, communities that depend on services provided by coral reefs may need to locate alternative foundations for their economies. The fishery industry will need to adapt to changes in fish abundance, timing and location. Most of the things we would like to do to increase the adaptive capacity of marine ecosystems (e.g., reduce fishing pressure, reduce coastal pollution, preserve coastal wetlands) are things that would make sense to do even in

  16. An alternative to the global warming potential for comparing climate impacts of emissions of greenhouse gases

    International Nuclear Information System (INIS)

    Shine, Keith P.; Fuglestvedt, Jan S.; Stuber, Nicola

    2003-01-01

    The global warming potential (GWP) is used within the Kyoto Protocol to the United Nations Framework Convention on Climate Change as a metric for weighting the climate impact of emissions of different greenhouse gases. The GQP has been subject at many criticism because of its formulation but nevertheless it has retained some favour because of the simplicity of this design and application and its transparency compared to proposed alternatives. Here a new metric which we call the Global Temperature Change Potential (GTP) is proposed which is based on a simple analytical climate model that represents the temperature change as a given time due to either a pulse emission of a gas or a sustained emission change relative to a similar emission change of carbon dioxide. The GTP for a pulse emission illustrates that the GWP does not represent well the relative temperature response; however, the GWP is shown to be very close to the GTP for a sustained emission change for time horizons of 100 years or more. The new metric retains the advantage of the GWP in terms of transparency and the relatively small number of input parameters required for calculation. However, it has an enhanced relevance as it is further down the cause-effect chain of the impacts of greenhouse gases emissions. The GTP for a sustained emission appears to be robust to a number of uncertainties and simplifications in its derivation and may be an attractive alternative to the GWP. (Author)

  17. Greenhouse gas inventories for England, Scotland, Wales and Northern Ireland: 1990 and 1995. A scoping study

    Energy Technology Data Exchange (ETDEWEB)

    Salway, A.G.; Dore, C.; Watterson, J.; Murrells, T.

    1999-11-01

    This report presents the results of a scoping study to develop a methodology to produce desegregated greenhouse gas emission inventories for the devoved administrations of the UK. Separate greenhouse gas emission inventories were estimated for England, Scotland, Wales and Northern Ireland for the years 1990 and 1995. The gases reported are carbon dioxide, methane, nitrous oxide, hydrofluorocarbons, perfluorocarbons, and SF{sub 6}. The estimates are consistent with the 1997 UK Greenhouse Gas Inventory and hence the UNFCCC reporting guidelines. Some emissions mainly mobile and offshore sources could not be allocated to any region, so an extra unallocated category was used to report these. Where possible the same methodology was used to calculate the regional emissions as for the UK Inventory. The study showed that the distribution of regional greenhouse gas emissions expressed as global warming potentials in 1995 were: England 75.5%, Scotland, 11.4%; Wales 6.4%; Northern Ireland 3.1%: unallocated, 4%. Following this scoping study, it is intended to publish annually disaggregated inventories for each year from 1990 for England, Scotland, Wales and Northern Ireland, in addition to the UK Greenhouse Gas Inventory. 50 refs., 6 figs., 16 tabs., 2 apps.

  18. Project identification for methane reduction options

    Energy Technology Data Exchange (ETDEWEB)

    Kerr, T.

    1996-12-31

    This paper discusses efforts directed at reduction in emission of methane to the atmosphere. Methane is a potent greenhouse gas, which on a 20 year timeframe may present a similar problem to carbon dioxide. In addition, methane causes additional problems in the form of smog and its longer atmospheric lifetime. The author discusses strategies for reducing methane emission from several major sources. This includes landfill methane recovery, coalbed methane recovery, livestock methane reduction - in the form of ruminant methane reduction and manure methane recovery. The author presents examples of projects which have implemented these ideas, the economics of the projects, and additional gains which come from the projects.

  19. Greenhouse gas flux dynamics in wetlands

    Energy Technology Data Exchange (ETDEWEB)

    Silvola, J; Alm, J; Saarnio, S [Joensuu Univ. (Finland). Dept. of Biology; Martikainen, P J [National Public Health Inst., Kuopio (Finland). Dept. of Environmental Microbiology

    1997-12-31

    Two important greenhouse gases, CO{sub 2} and CH{sub 4}, are closely connected to the carbon cycling of wetlands. Although virgin wetlands are mostly carbon accumulating ecosystems, major proportion of the CO{sub 2} bound annually in photosynthesis is released back to the atmosphere. Main portion of the carbon cycling in wetlands is quite fast while a small proportion of carbon diffusing from soil is released from organic matter, which may be ten thousand years old. Methane is formed in the anaerobic layers of wetlands, from where it is released gradually to the atmosphere. The decomposition in anaerobic conditions is very slow, which means that usually only a few percent of the annual carbon cycling takes place as methane. Research on CO{sub 2} fluxes of different virgin and managed peatlands was the main topic of this project during the first phase of SILMU. The measurements were made during two seasons in varying conditions in c. 30 study sites. In the second phase of SILMU the research topics were the spatial and temporal variation of CO{sub 2} and CH{sub 4} fluxes, the relationships between vegetation and gas fluxes as well as carbon balance studies in wetlands at some intensive sites

  20. Greenhouse gas flux dynamics in wetlands

    Energy Technology Data Exchange (ETDEWEB)

    Silvola, J.; Alm, J.; Saarnio, S. [Joensuu Univ. (Finland). Dept. of Biology; Martikainen, P.J. [National Public Health Inst., Kuopio (Finland). Dept. of Environmental Microbiology

    1996-12-31

    Two important greenhouse gases, CO{sub 2} and CH{sub 4}, are closely connected to the carbon cycling of wetlands. Although virgin wetlands are mostly carbon accumulating ecosystems, major proportion of the CO{sub 2} bound annually in photosynthesis is released back to the atmosphere. Main portion of the carbon cycling in wetlands is quite fast while a small proportion of carbon diffusing from soil is released from organic matter, which may be ten thousand years old. Methane is formed in the anaerobic layers of wetlands, from where it is released gradually to the atmosphere. The decomposition in anaerobic conditions is very slow, which means that usually only a few percent of the annual carbon cycling takes place as methane. Research on CO{sub 2} fluxes of different virgin and managed peatlands was the main topic of this project during the first phase of SILMU. The measurements were made during two seasons in varying conditions in c. 30 study sites. In the second phase of SILMU the research topics were the spatial and temporal variation of CO{sub 2} and CH{sub 4} fluxes, the relationships between vegetation and gas fluxes as well as carbon balance studies in wetlands at some intensive sites

  1. Energy-saving options for the mitigation of greenhouse gas emissions from the Mongolian energy sector

    Energy Technology Data Exchange (ETDEWEB)

    Dorjpurev, J.; Purevjal, O.; Erdenechimeg, Ch. [and others

    1996-12-31

    The Energy sector is the largest contributor to GHG emission in Mongolia. The Energy sector emits 54 percent of CO2 and 4 percent of methane. All emissions of other greenhouse gases are accounted from energy related activities. The activities in this sector include coal production, fuel combustion, and biomass combustion at the thermal power stations and in private houses (stoves) for heating purposes. This paper presents some important Demand-side options considered for mitigation of CO2 emissions from energy sector such as Energy Conservation in Industrial Sector and in Buildings. Changes in energy policies and programmes in the Mongolian situation that promote more efficient and sustainable practices are presented in the paper. These energy saving measures will not only help reduce greenhouse gas emissions, but will also promote economic development and alleviate other environmental problems.

  2. Potential emissions of radiatively active gases from soil to atmosphere with special reference to methane: Development of a global database (WISE)

    NARCIS (Netherlands)

    Batjes, N.H.

    1994-01-01

    The role of soil in controlling production and fluxes of biotic greenhouse gases is the focus of research in progress at the International Soil Reference and Information Centre (ISRIC). There are two main goals in this project on World Inventory of Soil Emission Potentials (WISE). The first is to

  3. Design and Use of a Full Flow Sampling System (FFS) for the Quantification of Methane Emissions.

    Science.gov (United States)

    Johnson, Derek R; Covington, April N; Clark, Nigel N

    2016-06-12

    The use of natural gas continues to grow with increased discovery and production of unconventional shale resources. At the same time, the natural gas industry faces continued scrutiny for methane emissions from across the supply chain, due to methane's relatively high global warming potential (25-84x that of carbon dioxide, according to the Energy Information Administration). Currently, a variety of techniques of varied uncertainties exists to measure or estimate methane emissions from components or facilities. Currently, only one commercial system is available for quantification of component level emissions and recent reports have highlighted its weaknesses. In order to improve accuracy and increase measurement flexibility, we have designed, developed, and implemented a novel full flow sampling system (FFS) for quantification of methane emissions and greenhouse gases based on transportation emissions measurement principles. The FFS is a modular system that consists of an explosive-proof blower(s), mass airflow sensor(s) (MAF), thermocouple, sample probe, constant volume sampling pump, laser based greenhouse gas sensor, data acquisition device, and analysis software. Dependent upon the blower and hose configuration employed, the current FFS is able to achieve a flow rate ranging from 40 to 1,500 standard cubic feet per minute (SCFM). Utilization of laser-based sensors mitigates interference from higher hydrocarbons (C2+). Co-measurement of water vapor allows for humidity correction. The system is portable, with multiple configurations for a variety of applications ranging from being carried by a person to being mounted in a hand drawn cart, on-road vehicle bed, or from the bed of utility terrain vehicles (UTVs). The FFS is able to quantify methane emission rates with a relative uncertainty of ± 4.4%. The FFS has proven, real world operation for the quantification of methane emissions occurring in conventional and remote facilities.

  4. Design and Use of a Full Flow Sampling System (FFS) for the Quantification of Methane Emissions

    Science.gov (United States)

    Johnson, Derek R.; Covington, April N.; Clark, Nigel N.

    2016-01-01

    The use of natural gas continues to grow with increased discovery and production of unconventional shale resources. At the same time, the natural gas industry faces continued scrutiny for methane emissions from across the supply chain, due to methane's relatively high global warming potential (25-84x that of carbon dioxide, according to the Energy Information Administration). Currently, a variety of techniques of varied uncertainties exists to measure or estimate methane emissions from components or facilities. Currently, only one commercial system is available for quantification of component level emissions and recent reports have highlighted its weaknesses. In order to improve accuracy and increase measurement flexibility, we have designed, developed, and implemented a novel full flow sampling system (FFS) for quantification of methane emissions and greenhouse gases based on transportation emissions measurement principles. The FFS is a modular system that consists of an explosive-proof blower(s), mass airflow sensor(s) (MAF), thermocouple, sample probe, constant volume sampling pump, laser based greenhouse gas sensor, data acquisition device, and analysis software. Dependent upon the blower and hose configuration employed, the current FFS is able to achieve a flow rate ranging from 40 to 1,500 standard cubic feet per minute (SCFM). Utilization of laser-based sensors mitigates interference from higher hydrocarbons (C2+). Co-measurement of water vapor allows for humidity correction. The system is portable, with multiple configurations for a variety of applications ranging from being carried by a person to being mounted in a hand drawn cart, on-road vehicle bed, or from the bed of utility terrain vehicles (UTVs). The FFS is able to quantify methane emission rates with a relative uncertainty of ± 4.4%. The FFS has proven, real world operation for the quantification of methane emissions occurring in conventional and remote facilities. PMID:27341646

  5. Emissions of Non-CO2 Greenhouse Gases From the Production and Use of Transportation Fuels and Electricity

    OpenAIRE

    Delucchi, Mark

    1997-01-01

    The use of energy accounts for a major fraction of all anthropogenic emissions of greenhouse gases (IPCC, 1995) , and in most industrialized countries the use of transportation fuels and electricity accounts for a major fraction of all energy-related emissions. In the transportation sector alone, emissions of carbon dioxide (CO2) from the production and use of motor-vehicle fuels account for as much as 30% of CO2 emissions from the use of all fossil fuels (DeLuchi, 1991). The production and...

  6. Methane emissions in Danish riparian wetlands

    DEFF Research Database (Denmark)

    Audet, Joachim; Johansen, Jan Ravn; Andersen, Peter Mejlhede

    2013-01-01

    The present study was conducted to (i) investigate parameters influencing the fluxes of the greenhouse gas methane (CH4) in Danish riparian wetlands with contrasting vegetation characteristics and (ii) develop models relating CH4 emissions to soil and/or vegetation parameters integrating the spat......The present study was conducted to (i) investigate parameters influencing the fluxes of the greenhouse gas methane (CH4) in Danish riparian wetlands with contrasting vegetation characteristics and (ii) develop models relating CH4 emissions to soil and/or vegetation parameters integrating...

  7. Projection of greenhouse gases and air pollutants 2011-2015; Raming van broeikasgassen en luchtverontreinigende stoffen 2011-2015

    Energy Technology Data Exchange (ETDEWEB)

    Verdonk, M. [Planbureau voor de Leefomgeving PBL, Den Haag (Netherlands); Daniels, B. [ECN Beleidsstudies, Petten (NL)

    2011-05-15

    This report outlines the expected greenhouse gas emissions (mainly CO2 but also methane and nitrous oxide) and air pollutants in the period 2011 up to and including 2015. Attention is paid to whether or not the Netherlands will comply with the mandatory European and international regulations. [Dutch] Er wordt in beeld gebracht wat de te verwachten uitstoot van broeikasgassen (vooral CO2, maar bijvoorbeeld ook methaan en lachgas) en luchtverontreinigende stoffen zal zijn in de periode 2011 tot en met 2015. Gekeken is of Nederland in die periode zal voldoen aan de verplichte Europese en internationale regels.

  8. The GHG-CCI Project to Deliver the Essential Climate Variable Greenhouse Gases: Current status

    Science.gov (United States)

    Buchwitz, M.; Boesch, H.; Reuter, M.

    2012-04-01

    The GHG-CCI project (http://www.esa-ghg-cci.org) is one of several projects of ESA's Climate Change Initiative (CCI), which will deliver various Essential Climate Variables (ECVs). The goal of GHG-CCI is to deliver global satellite-derived data sets of the two most important anthropogenic greenhouse gases (GHGs) carbon dioxide (CO2) and methane (CH4) suitable to obtain information on regional CO2 and CH4 surface sources and sinks as needed for better climate prediction. The GHG-CCI core ECV data products are column-averaged mole fractions of CO2 and CH4, XCO2 and XCH4, retrieved from SCIAMACHY on ENVISAT and TANSO on GOSAT. Other satellite instruments will be used to provide constraints in upper layers such as IASI, MIPAS, and ACE-FTS. Which of the advanced algorithms, which are under development, will be the best for a given data product still needs to be determined. For each of the 4 GHG-CCI core data products - XCO2 and XCH4 from SCIAMACHY and GOSAT - several algorithms are bing further developed and the corresponding data products are inter-compared to identify which data product is the most appropriate. This includes comparisons with corresponding data products generated elsewhere, most notably with the operational data products of GOSAT generated at NIES and the NASA/ACOS GOSAT XCO2 product. This activity, the so-called "Round Robin exercise", will be performed in the first two years of this project. At the end of the 2 year Round Robin phase (end of August 2012) a decision will be made which of the algorithms performs best. The selected algorithms will be used to generate the first version of the ECV GHG. In the last six months of this 3 year project the resulting data products will be validated and made available to all interested users. In the presentation and overview about this project will be given focussing on the latest results.

  9. How well can global chemistry models calculate the reactivity of short-lived greenhouse gases in the remote troposphere, knowing the chemical composition

    Directory of Open Access Journals (Sweden)

    M. J. Prather

    2018-05-01

    Full Text Available We develop a new protocol for merging in situ measurements with 3-D model simulations of atmospheric chemistry with the goal of integrating these data to identify the most reactive air parcels in terms of tropospheric production and loss of the greenhouse gases ozone and methane. Presupposing that we can accurately measure atmospheric composition, we examine whether models constrained by such measurements agree on the chemical budgets for ozone and methane. In applying our technique to a synthetic data stream of 14 880 parcels along 180° W, we are able to isolate the performance of the photochemical modules operating within their global chemistry-climate and chemistry-transport models, removing the effects of modules controlling tracer transport, emissions, and scavenging. Differences in reactivity across models are driven only by the chemical mechanism and the diurnal cycle of photolysis rates, which are driven in turn by temperature, water vapor, solar zenith angle, clouds, and possibly aerosols and overhead ozone, which are calculated in each model. We evaluate six global models and identify their differences and similarities in simulating the chemistry through a range of innovative diagnostics. All models agree that the more highly reactive parcels dominate the chemistry (e.g., the hottest 10 % of parcels control 25–30 % of the total reactivities, but do not fully agree on which parcels comprise the top 10 %. Distinct differences in specific features occur, including the spatial regions of maximum ozone production and methane loss, as well as in the relationship between photolysis and these reactivities. Unique, possibly aberrant, features are identified for each model, providing a benchmark for photochemical module development. Among the six models tested here, three are almost indistinguishable based on the inherent variability caused by clouds, and thus we identify four, effectively distinct, chemical models. Based on this

  10. Air Pollution Policy in Europe. Quantifying the Interaction with Greenhouse Gases and Climate Change Policies

    Energy Technology Data Exchange (ETDEWEB)

    Bollen, J. [CPB Netherlands Bureau for Economic Policy Analysis, Den Haag (Netherlands); Brink, C. [Netherlands Environmental Assessment Agency PBL, Den Haag (Netherlands)

    2012-10-15

    In this study the Computable General Equilibrium Model called WorldScan is used to analyse interactions between European air pollution policies and policies aimed at addressing climate change. WorldScan incorporates the emissions of both greenhouse gases (CO2, N2O and CH4) and air pollutants (SO2, NOx, NH3 and PM2.5). WorldScan has been extended with equations that enable the simulation of end-of-pipe measures that remove pollutants without affecting the emission-producing activity itself. Air pollution policy will depend on end-of-pipe controls for not more than 50%, thus also at least 50% of the required emission reduction will come from changes in the use of energy through efficiency improvements, fuel switching and other structural changes in the economy. Greenhouse gas emissions thereby decrease which renders climate change policies less costly. Our results show that carbon prices will fall, but not more than 33%, although they could drop to zero when the EU agrees on a more stringent air pollution policy.

  11. Methane emission from wetland rice fields

    NARCIS (Netherlands)

    Denier van der Gon, H.A.C.

    1996-01-01


    Methane (CH 4 ) is an important greenhouse gas and plays a key role in tropospheric and stratospheric chemistry. Wetland rice fields are an important source of methane, accounting for approximately 20% of the global anthropogenic

  12. Reduced emissions of greenhouse gases 2050: Technological wedges - Input to the Commission on Low Emissions; Reduserte klimagassutslipp 2050: Teknologiske kiler - Innspill til Lavutslippsutvalget

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, Eva; Espegren, Kari Aamodt; Finden, Per; Hageman, Rolf; Stenersen, Dag

    2006-09-15

    The Commission on Low Emissions was established in March 2005 and has been charged with the task of describing how Norway can achieve a 50-80 percent reduction in emissions of greenhouse gases by 2050. The commission describes the desired total reduction in emissions to be a set of actions or 'wedges', meaning that the reduction in emissions are linked to an array of technological and behavioural changes. The technological wedges are described here, while the behavioural wedges are treated in a different report. The potentials described are based on the Low Emission's reference line. Possible changes in the reference line will result in changed potentials. The technological wedges studied comprise to a great extent a potential of 50-80 percent reduction in greenhouse gases by 2050. This depends on considerable effort from research and development, and a determination to change external conditions.

  13. Emission of greenhouse gases and soil carbon sequestration in a riparian marsh wetland in central Ohio.

    Science.gov (United States)

    Nag, Subir K; Liu, Ruiqiang; Lal, Rattan

    2017-10-23

    Wetlands are a C sink, but they also account for a large natural source of greenhouse gases (GHG), particularly methane (CH 4 ). Soils of wetlands play an important role in alleviating the global climate change regardless of the emission of CH 4 . However, there are uncertainties about the amount of C stored and emitted from wetlands because of the site specific factors. Therefore, the present study was conducted in a temperate riverine flow-through wetland, part of which was covered with emerging macrophyte Typhus latifolia in central Ohio, USA, with the objective to assess emissions of GHGs (CH 4, CO 2 , N 2 O) and measure C and nitrogen (N) stocks in wetland soil in comparison to a reference upland site. The data revealed that CH 4 emission from the open and vegetated wetland ranged from 1.03-0.51 Mg C/ha/y and that of CO 2 varied from 1.26-1.51 Mg C/ha/y. In comparison, CH 4 emission from reference upland site was negligible (0.01 Mg C/ha/y), but CO 2 emission was much higher (3.24 Mg C/ha/y). The stock of C in wetland soil was 85 to 125 Mg C/ha up to 0.3 m depth. The average rate of emission was 2.15 Mg C/ha/y, but the rate of sequestration was calculated as 5.55 Mg C/ha/y. Thus, the wetland was actually a C sink. Emission of N 2 O was slightly higher in vegetated wetland (0.153 mg N 2 O-N/m 2 /h) than the open wetland and the reference site (0.129 mg N 2 O-N/m 2 /h). Effect of temperature on emission of GHGs from the systems was also studied.

  14. History of chemically and radiatively important atmospheric gases from the Advanced Global Atmospheric Gases Experiment (AGAGE

    Directory of Open Access Journals (Sweden)

    R. G. Prinn

    2018-06-01

    Full Text Available We present the organization, instrumentation, datasets, data interpretation, modeling, and accomplishments of the multinational global atmospheric measurement program AGAGE (Advanced Global Atmospheric Gases Experiment. AGAGE is distinguished by its capability to measure globally, at high frequency, and at multiple sites all the important species in the Montreal Protocol and all the important non-carbon-dioxide (non-CO2 gases assessed by the Intergovernmental Panel on Climate Change (CO2 is also measured at several sites. The scientific objectives of AGAGE are important in furthering our understanding of global chemical and climatic phenomena. They are the following: (1 to accurately measure the temporal and spatial distributions of anthropogenic gases that contribute the majority of reactive halogen to the stratosphere and/or are strong infrared absorbers (chlorocarbons, chlorofluorocarbons – CFCs, bromocarbons, hydrochlorofluorocarbons – HCFCs, hydrofluorocarbons – HFCs and polyfluorinated compounds (perfluorocarbons – PFCs, nitrogen trifluoride – NF3, sulfuryl fluoride – SO2F2, and sulfur hexafluoride – SF6 and use these measurements to determine the global rates of their emission and/or destruction (i.e., lifetimes; (2 to accurately measure the global distributions and temporal behaviors and determine the sources and sinks of non-CO2 biogenic–anthropogenic gases important to climate change and/or ozone depletion (methane – CH4, nitrous oxide – N2O, carbon monoxide – CO, molecular hydrogen – H2, methyl chloride – CH3Cl, and methyl bromide – CH3Br; (3 to identify new long-lived greenhouse and ozone-depleting gases (e.g., SO2F2, NF3, heavy PFCs (C4F10, C5F12, C6F14, C7F16, and C8F18 and hydrofluoroolefins (HFOs; e.g., CH2  =  CFCF3 have been identified in AGAGE, initiate the real-time monitoring of these new gases, and reconstruct their past histories from AGAGE, air archive, and firn air measurements; (4

  15. Emissions of ammonia, nitrous oxide and methane during composting of organic household waste

    International Nuclear Information System (INIS)

    Gunnarsdotter Beck-Friis, Barbro

    2001-01-01

    In Sweden, composting of source-separated organic household waste is increasing, both domestically at the small-scale, and in larger municipal plants. Composting means a microbial decomposition of organic material, which results in the production of environmentally undesirable gases, such as ammonia (NH 3 ), nitrous oxide (N 2 O) and methane (CH 4 ). The aim of this thesis was to study the emissions of NH 3 , N 2 O and CH 4 to the atmosphere during composting of source-separated organic household waste. The studies were conducted in an experimental reactor under constant and controlled conditions and in municipal compost heaps. Emissions of NH 3 , N 2 O and CH 4 occurred at different phases during composting. Ammonia started to volatilise during the shift from mesophilic to thermophilic conditions when short-chained fatty acids were decomposed. Nitrous oxide was only emitted during the first days of composting and later during the cooling phase when nitrate was formed. Methane was only produced during the thermophilic phase. Large municipal compost heaps are a significant source for the production and emission of the greenhouse gases N 2 O and CH 4 . To avoid unwanted gaseous emissions to the atmosphere during composting, gaseous exchange with the atmosphere should be controlled in future composting plants

  16. Biomass fuel burning and its implications: deforestation and greenhouse gases emissions in Pakistan.

    Science.gov (United States)

    Tahir, S N A; Rafique, M; Alaamer, A S

    2010-07-01

    Pakistan is facing problem of deforestation. Pakistan lost 14.7% of its forest habitat between 1990 and 2005 interval. This paper assesses the present forest wood consumption rate by 6000 brick kilns established in the country and its implications in terms of deforestation and emission of greenhouse gases. Information regarding consumption of forest wood by the brick kilns was collected during a manual survey of 180 brick kiln units conducted in eighteen provincial divisions of country. Considering annual emission contributions of three primary GHGs i.e., CO(2), CH(4) and N(2)O, due to burning of forest wood in brick kiln units in Pakistan and using IPCC recommended GWP indices, the combined CO(2)-equivalent has been estimated to be 533019 t y(-1). Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  17. Accounting for Greenhouse Gas Emissions from Reservoirs

    Science.gov (United States)

    Nearly three decades of research has demonstrated that the impoundment of rivers and the flooding of terrestrial ecosystems behind dams can increase rates of greenhouse gas emission, particularly methane. The 2006 IPCC Guidelines for National Greenhouse Gas Inventories includes ...

  18. CANDU reactors and greenhouse gas emissions

    International Nuclear Information System (INIS)

    Andseta, S.; Thompson, M.J.; Jarrell, J.P.; Pendergast, D.R.

    1999-01-01

    This paper was originally presented at the 11th Pacific Basin Nuclear Conference, Banff, Alberta, Canada, May 3-7, 1998. It has been updated to include additional lifecycle data on chemical releases from ore treatment and CANDU fuel fabrication. It is sometimes stated that nuclear power plants can supply electricity with zero emissions of greenhouse gases. In fact, consideration of the entire fuel cycle indicates that some greenhouse gases are generated during their construction and decommissioning and by the preparation of fuel and other materials required for their operation. This follows from the use of fossil fuels in the preparation of materials and during the construction and decommissioning of the plants. This paper reviews life cycle studies of several different kinds of power plants. Greenhouse gases generated by fossil fuels during the preparation of fuel and heavy water used by operating CANDU power plants are estimated. The total greenhouse gas emissions from CANDU nuclear plants, per unit of electricity ultimately produced, are very small in comparison with emissions from most other types of power plants. (author)

  19. CANDU reactors and greenhouse gas emissions

    International Nuclear Information System (INIS)

    Andseta, S.; Thompson, M.J.; Jarrell, J.P.; Pendergast, D.R.

    1998-01-01

    This paper was originally presented at the 11th Pacific Basin Nuclear Conference, Banff, Alberta, Canada, May 3-7, 1998. It has been updated to include additional lifecycle data on chemical releases from ore treatment and CANDU fuel fabrication. It is sometimes stated that nuclear power plants can supply electricity with zero emissions of greenhouse gases. In fact, consideration of the entire fuel cycle indicates that some greenhouse gases are generated during their construction and decommissioning and by the preparation of fuel and other materials required for their operation. This follows from the use of fossil fuels in the preparation of materials and during the construction and decommissioning of the plants. This paper reviews life cycle studies of several different kinds of power plants. Greenhouse gases generated by fossil fuels during the preparation of fuel and heavy water used by operating CANDU power plants are estimated. The total greenhouse gas emissions from CANDU nuclear plants, per unit of electricity ultimately produced, are very small in comparison with emissions from most other types of power plants. (author)

  20. An Aerial ``Sniffer Dog'' for Methane

    Science.gov (United States)

    Nathan, Brian; Schaefer, Dave; Zondlo, Mark; Khan, Amir; Lary, David

    2012-10-01

    The Earth's surface and its atmosphere maintain a ``Radiation Balance.'' Any factor which influences this balance is labeled as a mechanism of ``Radiative Forcing'' (RF). Greenhouse Gas (GHG) concentrations are among the most important forcing mechanisms. Methane, the second-most-abundant noncondensing greenhouse gas, is over 25 times more effective per molecule at radiating heat than the most abundant, Carbon Dioxide. Methane is also the principal component of Natural Gas, and gas leaks can cause explosions. Additionally, massive quantities of methane reside (in the form of natural gas) in underground shale basins. Recent technological advancements--specifically the combination of horizontal drilling and hydraulic fracturing--have allowed drillers access to portions of these ``plays'' which were previously unreachable, leading to an exponential growth in the shale gas industry. Presently, very little is known about the amount of methane which escapes into the global atmosphere from the extraction process. By using remote-controlled robotic helicopters equipped with specially developed trace gas laser sensors, we can get a 3-D profile of where and how methane is being released into the global atmosphere.

  1. Performance Simulations for a Spaceborne Methane Lidar Mission

    Science.gov (United States)

    Kiemle, C.; Kawa, Stephan Randolph; Quatrevalet, Mathieu; Browell, Edward V.

    2014-01-01

    Future spaceborne lidar measurements of key anthropogenic greenhouse gases are expected to close current observational gaps particularly over remote, polar, and aerosol-contaminated regions, where actual in situ and passive remote sensing observation techniques have difficulties. For methane, a "Methane Remote Lidar Mission" was proposed by Deutsches Zentrum fuer Luft- und Raumfahrt and Centre National d'Etudes Spatiales in the frame of a German-French climate monitoring initiative. Simulations assess the performance of this mission with the help of Moderate Resolution Imaging Spectroradiometer and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations of the earth's surface albedo and atmospheric optical depth. These are key environmental parameters for integrated path differential absorption lidar which uses the surface backscatter to measure the total atmospheric methane column. Results showthat a lidar with an average optical power of 0.45W at 1.6 µm wavelength and a telescope diameter of 0.55 m, installed on a low Earth orbit platform(506 km), will measure methane columns at precisions of 1.2%, 1.7%, and 2.1% over land, water, and snow or ice surfaces, respectively, for monthly aggregated measurement samples within areas of 50 × 50 km2. Globally, the mean precision for the simulated year 2007 is 1.6%, with a standard deviation of 0.7%. At high latitudes, a lower reflectance due to snow and ice is compensated by denser measurements, owing to the orbital pattern. Over key methane source regions such as densely populated areas, boreal and tropical wetlands, or permafrost, our simulations show that the measurement precision will be between 1 and 2%.

  2. Influence of Large Lakes on Methane Greenhouse Forcing in the Early Eocene

    Science.gov (United States)

    Whiteside, J. H.; Granberg, D. L.; Kasprak, A. H.; Taylor, K. W.; Pancost, R. D.

    2011-12-01

    shifts in the pristane/phytane ratio and isorenieratane abundances, suggesting that increased runoff intensified the stratification of the lake with a transition to more anoxic conditions. Following this transition, it is likely that methane production in the GRF lake increased, which released more into the atmosphere. Our new results suggest that the global carbon cycle of the early Eocene greenhouse world was strongly mediated by both astronomical forcing (including obliquity) and increased methane production in large stratified lakes.

  3. Climate Golden Age or Greenhouse Gas Dark Age Legacy?

    Science.gov (United States)

    Carter, P.

    2016-12-01

    Relying on the IPCC Assessments, this paper assesses legacy from total committed global warming over centuries, correlated with comprehensive projected impacts. Socio-economic inertia, climate system inertia, atmospheric greenhouse gas (GHG) concentrations, amplifying feedback emissions, and unmasking of cooling aerosols are determinants. Stabilization of global temperature (and ocean acidification for CO2) requires emissions of "long lived greenhouse gases" to be "about zero," including feedbacks. "The feedback … is positive" this century; many large feedback sources tend to be self- and inter-reinforcing. Only timely total conversion of all fossil fuel power to clean, virtually zero-carbon renewable power can achieve virtual zero carbon emissions. This results in multiple, increasing benefits for the entire world population of today's and all future generations, as laid out here. Conversions of methane- and nitrous oxide-emitting sources have large benefits. Without timely conversion to virtual zero emissions, the global climate and ocean disruptions are predicted to become progressively more severe and practically irreversible. "Continued emission of greenhouse gases will increase the likelihood of severe, pervasive and irreversible impacts for people and ecosystems." Crop yields in all main food-producing regions are projected to decline progressively with rising temperature (as proxy to multiple adverse effects) (AR5). Ocean heating, acidification, and de-oxygenation are projected to increase under all scenarios, as is species extinction. The legacy for humanity depends on reducing long-lived global emissions fast enough to virtual zero. Today's surface warming with unprecedented and accelerating atmospheric GHG concentrations requires an immediate response. The only IPCC scenario to possibly meet this and not exceed 2ºC by and after 2100 is the best-case RCP2.6, which requires CO2 eq. emissions to peak right away and decline at the latest by 2020.

  4. Composting as a strategy to reduce greenhouse gas emissions

    International Nuclear Information System (INIS)

    Paul, J.W.; Wagner-Riddle, C.; Thompson, A.; Fleming, R.; MacAlpine, A.

    2001-01-01

    Composting animal manure has the potential to reduce emissions of nitrous oxide (N 2 O) and methane (CH 4 ) from agriculture. Agriculture has been recognized as a major contributor of greenhouse gases, releasing an estimated 81% and 70% of the anthropogenic emissions of nitrous oxide (N 2 O) and methane (CH 4 ), respectively. A significant amount of methane is emitted during the storage of liquid manure, whereas nitrous oxide is emitted from the storage of manure and from soil following manure or fertilizer application. Composting animal manure can reduce GHG emissions in two ways; by reducing nitrous oxide and methane emissions during manure storage and application, and by reducing the amount of manufactured fertilizers and the GHG associated with their production and use. We will present information of GHG emissions and potentials for reduction based on available data, and on specific composting experiments. Nitrous oxide and methane emissions were monitored on an enclosed composting system processing liquid hog manure. Measurements indicated that total GHG emissions during composting were 24% of the Tier 2 IPCC estimates for traditional liquid hog manure management on that farm. Previous research has also indicated little nitrous oxide emission following application of composted manure to soil. The method of composting has a large impact on GHG emissions, where GHG emissions are higher from outdoor windrow composting systems than from controlled aerated systems. Further research is required to assess the whole manure management system, but composting appears to have great potential to reduce GHG emissions from agriculture. The bonus is that composting also addresses a number of other environmental concerns such as pathogens, surface and groundwater quality and ammonia emissions. (author)

  5. Information content analysis: the potential for methane isotopologue retrieval from GOSAT-2

    Science.gov (United States)

    Malina, Edward; Yoshida, Yukio; Matsunaga, Tsuneo; Muller, Jan-Peter

    2018-02-01

    Atmospheric methane is comprised of multiple isotopic molecules, with the most abundant being 12CH4 and 13CH4, making up 98 and 1.1 % of atmospheric methane respectively. It has been shown that is it possible to distinguish between sources of methane (biogenic methane, e.g. marshland, or abiogenic methane, e.g. fracking) via a ratio of these main methane isotopologues, otherwise known as the δ13C value. δ13C values typically range between -10 and -80 ‰, with abiogenic sources closer to zero and biogenic sources showing more negative values. Initially, we suggest that a δ13C difference of 10 ‰ is sufficient, in order to differentiate between methane source types, based on this we derive that a precision of 0.2 ppbv on 13CH4 retrievals may achieve the target δ13C variance. Using an application of the well-established information content analysis (ICA) technique for assumed clear-sky conditions, this paper shows that using a combination of the shortwave infrared (SWIR) bands on the planned Greenhouse gases Observing SATellite (GOSAT-2) mission, 13CH4 can be measured with sufficient information content to a precision of between 0.7 and 1.2 ppbv from a single sounding (assuming a total column average value of 19.14 ppbv), which can then be reduced to the target precision through spatial and temporal averaging techniques. We therefore suggest that GOSAT-2 can be used to differentiate between methane source types. We find that large unconstrained covariance matrices are required in order to achieve sufficient information content, while the solar zenith angle has limited impact on the information content.

  6. For a better control of the greenhouse gases emissions of the international maritime and aerial baggage holds: evaluation and possible actions; Pour une maitrise des emissions de gaz a effet de serre des soutes internationales aeriennes et maritimes: constat et actions possibles

    Energy Technology Data Exchange (ETDEWEB)

    Sassi, O. [Ecole Nationale des Ponts et Chaussees, 77 - Marne la Vallee (France)

    2003-07-01

    The greenhouse gases emissions resulting from the aerial and marine baggage holds, are not taken into account in the national objectives of greenhouse gases reduction, defined by the Kyoto protocol. Thus they have to be controlled separately by each country concerned by the Kyoto protocol and urgent actions to reduce the greenhouse gases emissions are necessary. This study brings in first parts information on the context (legislation, traffic), the emission inventories and the options of allocation. It proposes then control methods and analyzes the possible measures. (A.L.B.)

  7. Partial oxidation of methane to methanol over catalyst ZSM-5 from coal fly ash and rice husk ash

    Directory of Open Access Journals (Sweden)

    Mirda Yanti Fusia

    2017-01-01

    Full Text Available Methane is one of the greenhouse gases that can be converted into liquid fuels such as methanol to retain most of the energy of methane and produce a cleaner environment. The conversion of methane to methanol using ZMS-5 represents a breakthrough in the utilization of methane. However, material sources for zeolite synthesis as catalyst usually are pro-analysis grade materials, which are expensive. Therefore, in this research, coal fly ash and rice husk ash were used as raw materials for mesoporous ZSM-5 zeolite synthesis. First, coal fly ash and rice husk were subjected to pre-treatment to extract silicate (SiO44− and aluminate (AlO45− and impurities separation. The ZSM-5 zeolite was synthesized through hydrothermal treatment using two types of templates. After ZSM-5 was synthesized, it was modified with Cobalt through impregnation method. The catalytic activity of both ZSM-5 and Co/ZSM-5 zeolites as heterogeneous catalysts in partial oxidation of methane were preliminary tested and compared with that commercial one. The result showed that the zeolite catalyst ZSM-5 from fly ash coal and rice husk ash has the potential to be used as catalysts in the partial oxidation of methane to methanol.

  8. Biological methanogenesis and the CO2 greenhouse effect

    Science.gov (United States)

    Guthrie, P. D.

    1986-01-01

    It is well established that plants tend to increase net photosynthesis under increased carbon dioxide. It is also well established that a large fraction of atmospheric methane is produced by microbial metabolism of organic sediments in paddies and freshwater wetlands, where a major source of organic debris is local plant growth. As CO2 increases, it may lead to increased methane production and a resulting enhancement of the expected greenhouse warming. A rough estimate of the present rate of this biologically mediated feedback on the climate system indicates that it might account for as much as 30 percent of the observed methane increase and speed up the greenhouse forcing by as much as 15 percent.

  9. Inventory and projection of greenhouse gases emissions for Sumatera Utara Province

    Science.gov (United States)

    Ambarita, H.; Soeharwinto; Ginting, N.; Basyuni, M.; Zen, Z.

    2018-03-01

    Greenhouse Gases (GHGs) emissions which result in global warming is a serious problem for the human being. Total globally anthropogenic GHG emissions were the highest in the history of the year 2000 to 2010 and reached 49 (4.5) Giga ton CO2eq per year in 2010. Many governments addressed their commitment to reducing GHG emission. The Government of Indonesia (GoI) has released a target in reducing its GHG emissions by 26% from level business as usual by 2020, and this target can be increased up to 41% by international aid. In this study, the GHG emissions for Sumatera Utara province are assessed and divided into six sectors. They are Agricultural, Land Use and Forestry, Energy, Transportation, Industrial, and Waste sectors. The results show that total GHG emissions for Sumatera Utara province in the baseline year 2010 is 191.4 million tons CO2eq. The business-as-usual projection of the GHG emission in 2020 is 354.5 million tons CO2eq. Mitigation actions will reduce GHG emissions up to 30.5% from business as usual emission in 2020.

  10. Trends and temporal variations of major greenhouse gases at a rural site in Central Europe

    Science.gov (United States)

    Haszpra, L.; Barcza, Z.; Hidy, D.; Szilágyi, I.; Dlugokencky, E.; Tans, P.

    In this study the trends and temporal variations of four major greenhouse gases (CO 2, CH 4, N 2O, SF 6) measured at Hegyhátsál, Hungary, are analyzed. The long term trends observed closely follow the global tendencies. The relatively small positive offset can be attributed to the European anthropogenic sources. The seasonal cycles are basically governed by that in the atmospheric mixing, however, in the case of CO 2 and N 2O it is also modulated by the temporal variation in the biological activity. A secondary maximum in SF 6 mixing ratio in summer may indicate the additional contribution of the seasonally changing circulation pattern. The daily cycles are dominated by the diurnal variation in the vertical mixing of the atmosphere. However, in the case of CO 2 the diurnal cycle in the biospheric uptake/release is the governing process, especially in the growing season. The lack of diurnal cycle in the mixing ratio of the exclusively anthropogenic SF 6 indicates that there is no notable anthropogenic activity in the influence area of the station, which also means that Hegyhátsál can be considered to be a rural monitoring site as free from direct anthropogenic pollution as it is possible in Central Europe. It is demonstrated that the diurnal covariance between the mixing ratios and the vertical mixing at a mid-continental, low elevation site has to be taken into account, and properly handled, in the dispersion models, otherwise the results may be distorted. The collocated measurement of greenhouse gases of different origin could potentially help modelers to improve the boundary layer representation and horizontal diffusion simulation in the three dimensional atmospheric transport models.

  11. Microtrap assembly for greenhouse gas and air pollution monitoring

    Science.gov (United States)

    Mitra, Somenath; Saridara, Chutarat

    2015-08-25

    A microtrap assembly includes a carbon nanotube sorbent. The microtrap assembly may be employed as a preconcentrator operable to deliver a sample to an analytical device to measure the concentrations of greenhouse gases. A system includes a microtrap having a carbon nanotube sorbent for measuring the concentrations of greenhouse gases in a sample.

  12. Greenhouse Gases Emission and Global Warming Potential as Affected by Chemicals Inputs for Main Cultivated Crops in Kerman Province: - Cereal

    Directory of Open Access Journals (Sweden)

    Rooholla Moradi

    2017-10-01

    Full Text Available Introduction Agriculture is a major consumer of chemical resources. Increasing use of the inputs in agriculture has led to numerous environmental problems such as high consumption of nonrenewable energy resources, loss of biodiversity and pollution of the aquatic environment (Moradi et al., 2014. This environmental change will have the serious impacts on different growth and development processes of crops. The latest report of the Intergovernmental Panel on Climate Change (IPCC states that future emissions of greenhouse gases (GHGs will continue to increase and cause to climatic change (IPCC, 2007. This condition is also true for Iran. The three greenhouse gases associated with agriculture are carbon dioxide (CO2, methane (CH4, and nitrous oxide (N2O. Consistent with the development of agricultural production systems and move towards modernization in this sector increased dependence of the chemical resource (Salinger, 2005. There is even less data on CO2, N2O, and CH4 gas emission analysis as affected by cultivating various crops in Kerman province. Therefore, this study was conducted to assess the greenhouse gases (GHGs emission and global warming potential (GWP caused by chemical inputs (various chemical fertilizers and pesticides for cultivating wheat, barley and maize in some regions of Kerman province at 2011-2012 growth season. Materials and methods The study was conducted in Kerman province of Iran. Information about planting area of potato, onion and watermelon in various regions of Kerman was collected. Data were collected from potato, onion and watermelon growers by using a face to face questionnaire in 2014 for different regions of Kerman. In addition to the data obtained by surveys, previous studies of related organization (Agricultural Ministry of Kerman were also utilized during the study. The application rates of the chemical inputs were collected by using a face-to-face questionnaire in various regions (Bardsir, Bam, Jiroft

  13. Electron-induced dry reforming of methane in a temperature-controlled dielectric barrier discharge reactor

    KAUST Repository

    Zhang, Xuming

    2013-09-23

    Dry reforming of methane has the potential to reduce the greenhouse gases methane and carbon dioxide and to generate hydrogen-rich syngas. In reforming methane, plasma-assisted reforming processes may have advantages over catalytic processes because they are free from coking and their response time for mobile applications is quick. Although plasma-assisted reforming techniques have seen recent developments, systematic studies that clarify the roles that electron-induced chemistry and thermo-chemistry play are needed for a full understanding of the mechanisms of plasma-assisted reformation. Here, we developed a temperature-controlled coaxial dielectric barrier discharge (DBD) apparatus to investigate the relative importance of electron-induced chemistry and thermo-chemistry in dry reforming of methane. In the tested background temperature range 297-773 K, electron-induced chemistry, as characterized by the physical properties of micro-discharges, was found to govern the conversions of CH4 and CO2, while thermo-chemistry influenced the product selectivities because they were found to depend on the background temperature. Comparisons with results from arc-jet reformation indicated that thermo-chemistry is an efficient conversion method. Our findings may improve designs of plasma-assisted reformers by using relatively hotter plasma sources. However, detailed chemical kinetic studies are needed. © 2013 IOP Publishing Ltd.

  14. Electron-induced dry reforming of methane in a temperature-controlled dielectric barrier discharge reactor

    International Nuclear Information System (INIS)

    Zhang, Xuming; Cha, Min Suk

    2013-01-01

    Dry reforming of methane has the potential to reduce the greenhouse gases methane and carbon dioxide and to generate hydrogen-rich syngas. In reforming methane, plasma-assisted reforming processes may have advantages over catalytic processes because they are free from coking and their response time for mobile applications is quick. Although plasma-assisted reforming techniques have seen recent developments, systematic studies that clarify the roles that electron-induced chemistry and thermo-chemistry play are needed for a full understanding of the mechanisms of plasma-assisted reformation. Here, we developed a temperature-controlled coaxial dielectric barrier discharge (DBD) apparatus to investigate the relative importance of electron-induced chemistry and thermo-chemistry in dry reforming of methane. In the tested background temperature range 297–773 K, electron-induced chemistry, as characterized by the physical properties of micro-discharges, was found to govern the conversions of CH 4 and CO 2 , while thermo-chemistry influenced the product selectivities because they were found to depend on the background temperature. Comparisons with results from arc-jet reformation indicated that thermo-chemistry is an efficient conversion method. Our findings may improve designs of plasma-assisted reformers by using relatively hotter plasma sources. However, detailed chemical kinetic studies are needed. (paper)

  15. Biochars mitigate greenhouse gas emissions and bioaccumulation of potentially toxic elements and arsenic speciation in Phaseolus vulgaris L.

    Science.gov (United States)

    Ibrahim, Muhammad; Li, Gang; Khan, Sardar; Chi, Qiaoqiao; Xu, Yaoyang; Zhu, Yongguan

    2017-08-01

    Anthropogenic and natural activities can lead to increased greenhouse gas emissions and discharge of potentially toxic elements (PTEs) into soil environment. Biochar amendment to soils is a cost-effective technology and sustainable approach used to mitigate greenhouse gas emissions, improve phytoremediation, and minimize the health risks associated with consumption of PTE-contaminated vegetables. Greenhouse pot experiments were conducted to investigate the effects of peanut shell biochar (PNB) and sewage sludge biochar (SSB) on greenhouse gas (GHG) emissions, plant growth, PTE bioaccumulation, and arsenic (As) speciation in bean plants. Results indicated that amendments of PNB and SSB increased plant biomass production by increasing soil fertility and reducing bioavailability of PTEs. Addition of biochars also increased soil pH, total nitrogen (TN), total carbon (TC), dissolved organic carbon (DOC), and ammonium-nitrogen (NH 4 -N) but decreased available concentrations of PTEs such as cadmium (Cd), lead (Pb), and As. The concentration of nitrate-nitrogen (NO 3 - -N) was also decreased in biochar-amended soils. In addition, PNB and SSB amendments significantly (P Greenhouse gases such as carbon dioxide (CO 2 ) and methane (CH 4 ) emissions were significantly (P greenhouse gas emissions and PTE bioaccumulation as well as arsenic speciation in P. vulgaris L.

  16. Emissions of ammonia and greenhouse gases during combined pre-composting and vermicomposting of duck manure

    International Nuclear Information System (INIS)

    Wang, Jinzhi; Hu, Zhengyi; Xu, Xingkai; Jiang, Xia; Zheng, Binghui; Liu, Xiaoning; Pan, Xubin; Kardol, Paul

    2014-01-01

    Highlights: • Earthworms significantly decreased emissions of N 2 O and CH 4 , but had a marginal effect on CO 2 emission. • NH 3 , N 2 O, and CH 4 emissions were significantly reduced by reed straw and zeolite, CO 2 emission was increased by reed straw. • Combined pre-composting and vermicomposting with reed straw and zeolite would be recommended for disposal of duck manure. - Abstract: Combined pre-composting and vermicomposting has shown potential for reclamation of solid wastes, which is a significant source of ammonia (NH 3 ), and greenhouse gases (GHG), including nitrous oxide (N 2 O), methane (CH 4 ), and carbon dioxide (CO 2 ). Earthworms and amendments may both affect physico-chemical characteristics that control gas-producing processes, and thus affect NH 3 and GHG emissions. Here, we used two-way ANOVA to test the effects of addition of reed straw and combined addition of reed straw and zeolite on NH 3 and GHG emissions during pre-composting of duck manure, either with or without a follow-up phase of vermicomposting. Results showed that cumulative N 2 O, CH 4 , and CO 2 emissions during pre-composting and vermicomposting ranged from 92.8, 5.8, and 260.6 mg kg −1 DM to 274.2, 30.4, and 314.0 mg kg −1 DM, respectively. Earthworms and amendments significantly decreased N 2 O and CH 4 emissions. Emission of CO 2 was not affected by earthworms, but increased in responses to addition of reed straw. Cumulative NH 3 emission ranged from 3.0 to 8.1 g kg −1 DM, and was significantly decreased by reed straw and zeolite addition. In conclusion, combined pre-composting and vermicomposting with reed straw and zeolite addition would be strongly recommended in mitigating emissions of N 2 O, CH 4 , and NH 3 from duck manure. Moreover, this method also provides nutrient-rich products that can be used as a fertilizer

  17. Methane, where does it come from and what is its impact on climate?

    International Nuclear Information System (INIS)

    Andre, Jean-Claude; Boucher, Olivier; Bousquet, Philippe; Chanin, Marie-Lise; Chappellaz, Jerome; Tardieu, Bernard; Denegre, Jean; Beauvais, Muriel; Lefaudeux, Francois; Appert, Olivier; Desmarest, Patrice; Feillet, Pierre; Jarry, Bruno; Minster, Jean-Francois; Masson-Delmotte, Valerie; Dessus, Benjamin; Le Treut, Herve

    2013-01-01

    This report proposes a detailed presentation of knowledge on methane and on its role in the atmosphere. The first part addresses methane and the greenhouse effect: general considerations on methane in the atmosphere, radiative properties and importance with respect to the greenhouse effect, methane and future climate change. The second part proposes a presentation of methane sources and sinks. The third part addresses the study of methane fluxes: possible approaches to assess methane fluxes, measurement of atmospheric methane, the issue of atmospheric inversion (an approach to convert atmospheric observations into methane fluxes, lessons learned from atmospheric inversions, perspectives to improve knowledge on methane fluxes). The next chapters discuss the past, present and future evolution of methane in the atmosphere, discuss the carbon equivalence of methane (Kyoto protocol, policies of climate change, global warming power, role of methane, metrics, emission reduction), and comment the current perceivable evolutions, propose some methodological recommendations and actions to be implemented on the short term with no regret

  18. Biochemistry of methyl-coenzyme M reductase: the nickel metalloenzyme that catalyzes the final step in synthesis and the first step in anaerobic oxidation of the greenhouse gas methane.

    Science.gov (United States)

    Ragsdale, Stephen W

    2014-01-01

    Methane, the major component of natural gas, has been in use in human civilization since ancient times as a source of fuel and light. Methanogens are responsible for synthesis of most of the methane found on Earth. The enzyme responsible for catalyzing the chemical step of methanogenesis is methyl-coenzyme M reductase (MCR), a nickel enzyme that contains a tetrapyrrole cofactor called coenzyme F430, which can traverse the Ni(I), (II), and (III) oxidation states. MCR and methanogens are also involved in anaerobic methane oxidation. This review describes structural, kinetic, and computational studies aimed at elucidating the mechanism of MCR. Such studies are expected to impact the many ramifications of methane in our society and environment, including energy production and greenhouse gas warming.

  19. If Canada is serious about reducing greenhouse gases, we need nuclear energy

    International Nuclear Information System (INIS)

    Lemieux, C.

    2003-01-01

    Canada's energy options are reviewed in light of the need to find practical solutions to supply the nation's growing demand for power, coupled with equally pressing need to reduce greenhouse gas emissions to meet Kyoto commitments, and to do so without costing Canadians jobs and economic disaster. Among the options available - renewable, hydro, fossil fuels, nuclear -- nuclear power is identified as the only one that promises to meet the growing demand for power without the practical, economic and environmental disadvantages associated with the alternatives. Based on Canadian experience with nuclear power in the past, it is pointed out that between 1971 and 2000 Canada , by using nuclear fuel , has averted the production of 32 million tonnes of acid gases, millions of tonnes of other pollutants and well over a billion tonnes of carbon dioxide, while producing only 14 per cent of its energy requirements from nuclear fuel The principal argument made is that given our position as the world's leading supplier of uranium to electric utilities, the safety record of our CANDU reactors , and the fact that nuclear power is one of the cleanest large-scale energy source, nuclear power has the potential to make significant contribution to Canada's ability to meet its future energy requirements, and achieve the GHG emission reduction targets imposed by the Kyoto Agreement, without causing serious harm to the economy. The author goes as far as to say that without serious consideration being given to nuclear power, Canada has no chance even to come close to its Kyoto greenhouse emission targets without disastrous consequences to the economy. (author)

  20. Accounting For Greenhouse Gas Emissions From Flooded Lands

    Science.gov (United States)

    Nearly three decades of research has demonstrated that the inundation of rivers and terrestrial ecosystems behind dams can lead to enhanced rates of greenhouse gas emissions, particularly methane. The 2006 IPCC Guidelines for National Greenhouse Gas Inventories includes a method...