WorldWideScience

Sample records for greenhouse gases global

  1. Greenhouse gases and global warming

    International Nuclear Information System (INIS)

    1995-01-01

    From previous articles we have learned about the complexities of our environment, its atmosphere and its climate system. we have also learned that climate change and, therefore global warm and cool periods are naturally occurring phenomena. Moreover, all scientific evidence suggests that global warming, are likely to occur again naturally in the future. However, we have not yet considered the role of the rates of climate change in affecting the biosphere. It appears that how quickly the climate changes may be more important than the change itself. In light of this concern, let us now consider the possibility that, is due to human activity. We may over the next century experience global warming at rates and magnitudes unparalleled in recent geologic history. The following questions are answered; What can we learn from past climates? What do we know about global climates over the past 100 years? What causes temperature change? What are the greenhouse gases? How much have concentration of greenhouse gases increased in recent years? Why are increases in concentrations of greenhouse of concern? What is the e nhanced greenhouse effect ? How can human activity impact the global climate? What are some reasons for increased concentrations of greenhouse gases? What are fossil fuel and how do they transform into greenhouse gases? Who are the biggest emitters of greenhouse gases? Why are canada per capita emissions of greenhouse gases relatively high? (Author)

  2. Global warming description using Daisyworld model with greenhouse gases.

    Science.gov (United States)

    Paiva, Susana L D; Savi, Marcelo A; Viola, Flavio M; Leiroz, Albino J K

    2014-11-01

    Daisyworld is an archetypal model of the earth that is able to describe the global regulation that can emerge from the interaction between life and environment. This article proposes a model based on the original Daisyworld considering greenhouse gases emission and absorption, allowing the description of the global warming phenomenon. Global and local analyses are discussed evaluating the influence of greenhouse gases in the planet dynamics. Numerical simulations are carried out showing the general qualitative behavior of the Daisyworld for different scenarios that includes solar luminosity variations and greenhouse gases effect. Nonlinear dynamics perspective is of concern discussing a way that helps the comprehension of the global warming phenomenon. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. Global Mitigation of Non-CO2 Greenhouse Gases - Data Annexes

    Data.gov (United States)

    U.S. Environmental Protection Agency — Marginal abatement curves (MAC) can be downloaded as data annexes to the Global Mitigation of Non-CO2 Greenhouse Gases report. This data allows for improved...

  4. Global Anthropogenic Emissions of Non-CO2 Greenhouse Gases 1990-2020

    Data.gov (United States)

    U.S. Environmental Protection Agency — The data in these Appendices to the Global Anthropogenic Emissions of Non-CO2 Greenhouse Gases (1990-2020) report provide historical and projected estimates of...

  5. Greenhouse Gases

    Science.gov (United States)

    ... Production of Hydrogen Use of Hydrogen Greenhouse Gases Basics | | Did you know? Without naturally occurring greenhouse gases, the earth would be too cold to support life as we know it. Without the greenhouse effect, ...

  6. The greenhouse effect gases

    International Nuclear Information System (INIS)

    2006-06-01

    This road-map proposes by the Group Total aims to inform the public on the greenhouse effect gases. It presents the greenhouses effect as a key component of the climate system, the impacts of the human activity, the foreseeable consequences of global warming, the Kyoto protocol and Total commitment in the domain. (A.L.B.)

  7. Projections of global emissions of fluorinated greenhouse gases in 2050

    Energy Technology Data Exchange (ETDEWEB)

    Gschrey, Barbara; Schwarz, Winfried [Oeko-Recherche Buero fuer Umweltforschung und -beratung GmbH, Frankfurt/Main (Germany)

    2009-11-15

    Emissions of fluorinated greenhouse gases are currently covered under the Montreal Protocol, which focuses on ozone-depleting substances such as CFCs (chlorofluorocarbons) and HCFCs (hydrochlorofluorocarbons), and under the Kyoto Protocol, which controls emissions of HFCs (hydrofluorocarbons), PFCs (perfluorocarbons) and SF{sub 6} (sulfur hexafluoride). This study bridges the gap between political regimes and their reporting systems by giving an overview of banks and emissions of all fluorinated gases in 2005, and projections of banks and emissions of fluorinated gases in 2050. The Montreal Protocol and its amendments will eventually result in the full phase out of CFCs and HCFCs. Developed countries have already completed the phase out of CFCs and will reach full phase out of HCFCs by 2020. Developing countries, in contrast, will phase out CFCs by 2010 and HCFCs by 2030. Although climate-friendly technology is available for most applications, the risk occurs that substitutes for ozone-depleting substances rely on HFCs, which cause global warming. This study determines global emissions of HFCs, PFCs and SF{sub 6} (Kyoto F-gases) in 2050 in a ''business-as-usual'' scenario. The global population is expected to increase to ca. 8.7 billion people, and high economic growth of 3.5% per year is assumed. Emissions in 2050 are quantified for each sector of application as well as for developed and developing countries based on growth rates of each sector. In 2050, total global emissions of fluorinated greenhouse gases are projected to amount to 4 GT CO{sub 2} eq. which equals ca. 5.9% of the total greenhouse gas emissions at this time. Compared to a relatively small share of F-gas emissions ranging around 1.3% of total greenhouse gas emissions in 2004, this percentage reflects an enormous increase. Relative to projected direct CO{sub 2} emissions alone, the 2050 F-gas emissions will even account for ca. 7.9%. In case of CO{sub 2} mitigation, this share

  8. The state of greenhouse gases in the atmosphere using global observations through 2013

    Science.gov (United States)

    Tarasova, Oksana; Koide, Hiroshi; Dlugokencky, Ed; Montzka, Stephen A.; Keeling, Ralph; Tanhua, Toste; Lorenzoni, Laura

    2015-04-01

    We present results from the tenth annual Greenhouse Gas Bulletin (http://www.wmo.int/pages/prog/arep/gaw/ ghg/GHGbulletin.html) of the World Meteorological Organization (WMO). The results are based on research and observations performed by laboratories contributing to the WMO Global Atmosphere Watch (GAW) Programme (www.wmo.int/gaw). The Bulletin presents results of global analyses of observational data collected according to GAW recommended practices and submitted to the World Data Center for Greenhouse Gases (WDCGG), and for the first time, it includes a summary of ocean acidification. Bulletins are prepared by the WMO/GAW Scientific Advisory Group for Greenhouse Gases (http://www.wmo.int/pages/prog/arep/gaw/ScientificAdvisoryGroups.html) in collaboration with WDCGG. The summary of ocean acidification and trends in ocean pCO2 was jointly produced by the International Ocean Carbon Coordination Project (IOCCP) of the Intergovernmental Oceanographic Commission of UNESCO (IOC-UNESCO), the Scientific Committee on Oceanic Research (SCOR), and the Ocean Acidification International Coordination Centre (OA-ICC) of the International Atomic Energy Agency (IAEA). The tenth Bulletin included a special edition published prior to the United Nations Climate Summit in September 2014. The scope of this edition was to demonstrate the level of emission reduction necessary to stabilize radiative forcing by long-lived greenhouse gases. It shows in particular that a reduction in radiative forcing from its current level (2.92 W m-2 in 2013) requires significant reductions in anthropogenic emissions of all major greenhouse gases. Observations used for global analysis are collected at more than 100 marine and terrestrial sites worldwide for CO2 and CH4 and at a smaller number of sites for other greenhouse gases. Globally averaged dry-air mole fractions of carbon dioxide, methane and nitrous oxide derived from this network reached new highs in 2013, with CO2 at 396.0 ± 0.1 ppm, CH4 at

  9. Beyond Vienna and Montreal: A global framework convention on greenhouse gases

    International Nuclear Information System (INIS)

    Wirth, D.A.; Lashof, D.A.

    1993-01-01

    This chapter discusses the need for a framework treaty analogous to the Vienna Convention and to the Montreal Protocol for greenhouse gases. Discussed are the following topics: (1) the immediate need for multilateral greenhouse gas controls, including policy implications of scientific uncertainties; (2) recent steps toward a greenhouse gas convention; (3) an environmentally meaningful plan for a greenhouse gase conventions, including the ozone precident, CO 2 targets, resource transfers, trading emissions allocations, institutional issues

  10. Man -made greenhouse gases trigger unified force to start global warming impacts referred to as climate change

    International Nuclear Information System (INIS)

    Karishnan, K.J.; Kalam, A.

    2011-01-01

    Global warming problems due to man-made greenhouse gases (GHGs), appear to be a serious concern and threat to the globe. CO/sub 2/, O/sub 3, NOx and HFC's are the main greenhouse gases and CO/sub 2/ is one of the main cause of global warming. CO/sub 2/ is emitted from burning fossil fuels to produce electricity from power plants and burning of gasoline in vehicles and airplanes. Global greenhouse gases and its sources in regions are discussed in this paper. This paper initially discusses the CO/sub 2/ emissions and the recycle of CO/sub 2/ in biodiesel. This paper mainly focuses on 'Unified Force'. The increase of H/sub 2/O in the sea due to warming of the globe triggers the 'Unified Force' or 'Self-Compressive Surrounding Pressure Force' which is proportional to the H/sub 2/O level in the sea to start global warming impacts referred to as climate change. This paper also points out the climate change and the ten surprising results of global warming. Finally, this paper suggests switching from fossil fuel technology to green energy technologies like biodiesel which recycles CO/sub 2/ emissions and also Hydrogen Energy and Fuel Cell Technologies which eradicates global warming impacts. The benefits of switching from fossil fuel to biodiesel and Hydrogen Energy utilization includes reduction of greenhouse gas emissions and pollution, economic independence by having distributed production and burning of biodiesel does not add extra CO/sub 2/ to the air that contributes global warming impacts. (author)

  11. Absorption of Greenhouse Gases in Liquids : A Molecular Approach

    NARCIS (Netherlands)

    Balaji, S.P.

    2015-01-01

    The increase in concentrations of greenhouse gases is responsible for global warming over the past few years. A major portion of the emitted greenhouse gases contains carbon dioxide (CO2). The capture of carbon dioxide from the effluent sources, its transport, and storage has been identified as the

  12. Emissions of greenhouse gases in the United States 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-01

    This is the sixth annual report on aggregate US national emissions of greenhouse gases. It covers emissions over the period 1990--1996, with preliminary estimates of emissions for 1997. Chapter one summarizes some background information about global climate change and the greenhouse effect. Important recent developments in global climate change activities are discussed, especially the third Conference of the Parties to the Framework Convention on Climate Change, which was held in December of 1997 in Kyoto, Japan. Chapters two through five cover emissions of carbon dioxide, methane, nitrous oxide, halocarbons and related gases, respectively. Chapter six describes potential sequestration and emissions of greenhouse gases as a result of land use changes. Six appendices are included in the report. 96 refs., 38 tabs.

  13. Accounting for carbon cycle feedbacks in a comparison of the global warming effects of greenhouse gases

    Energy Technology Data Exchange (ETDEWEB)

    Gillett, Nathan P [Canadian Centre for Climate Modelling and Analysis, Environment Canada, University of Victoria, PO Box 1700, STN CSC, Victoria, BC, V8W 3V6 (Canada); Matthews, H Damon, E-mail: nathan.gillett@ec.gc.ca [Department of Geography, Planning and Environment, Concordia University, 1455 de Maisonneuve West, H 1255-26, Montreal, QC, H3G 1M8 (Canada)

    2010-07-15

    Greenhouse gases other than CO{sub 2} make a significant contribution to human-induced climate change, and multi-gas mitigation strategies are cheaper to implement than those which limit CO{sub 2} emissions alone. Most practical multi-gas mitigation strategies require metrics to relate the climate warming effects of CO{sub 2} and other greenhouse gases. Global warming potential (GWP), defined as the ratio of time-integrated radiative forcing of a particular gas to that of CO{sub 2} following a unit mass emission, is the metric used in the Kyoto Protocol, and we define mean global temperature change potential (MGTP) as an equivalent metric of the temperature response. Here we show that carbon-climate feedbacks inflate the GWPs and MGTPs of methane and nitrous oxide by {approx} 20% in coupled carbon-climate model simulations of the response to a pulse of 50 x 1990 emissions, due to a warming-induced release of CO{sub 2} from the land biosphere and ocean. The magnitude of this effect is expected to be dependent on the model, but it is not captured at all by the analytical models usually used to calculate metrics such as GWP. We argue that the omission of carbon cycle dynamics has led to a low bias of uncertain but potentially substantial magnitude in metrics of the global warming effect of other greenhouse gases, and we suggest that the carbon-climate feedback should be considered when greenhouse gas metrics are calculated and applied.

  14. Accounting for carbon cycle feedbacks in a comparison of the global warming effects of greenhouse gases

    International Nuclear Information System (INIS)

    Gillett, Nathan P; Matthews, H Damon

    2010-01-01

    Greenhouse gases other than CO 2 make a significant contribution to human-induced climate change, and multi-gas mitigation strategies are cheaper to implement than those which limit CO 2 emissions alone. Most practical multi-gas mitigation strategies require metrics to relate the climate warming effects of CO 2 and other greenhouse gases. Global warming potential (GWP), defined as the ratio of time-integrated radiative forcing of a particular gas to that of CO 2 following a unit mass emission, is the metric used in the Kyoto Protocol, and we define mean global temperature change potential (MGTP) as an equivalent metric of the temperature response. Here we show that carbon-climate feedbacks inflate the GWPs and MGTPs of methane and nitrous oxide by ∼ 20% in coupled carbon-climate model simulations of the response to a pulse of 50 x 1990 emissions, due to a warming-induced release of CO 2 from the land biosphere and ocean. The magnitude of this effect is expected to be dependent on the model, but it is not captured at all by the analytical models usually used to calculate metrics such as GWP. We argue that the omission of carbon cycle dynamics has led to a low bias of uncertain but potentially substantial magnitude in metrics of the global warming effect of other greenhouse gases, and we suggest that the carbon-climate feedback should be considered when greenhouse gas metrics are calculated and applied.

  15. Greenhouse gases - an up-date on the contribution of automotive fuels

    International Nuclear Information System (INIS)

    Williams, M.L.

    1992-01-01

    This paper examines the contribution to global emissions of greenhouse gases from automotive fuels. The Greenhouse Effect and Climate Change are explained briefly. Data is presented on the global warming potential of automobile emissions, actual measured emission rates and greenhouse gas emissions as CO 2 equivalents. It is concluded that insufficient data exists to assess accurately the contribution of automotive fuel use to all the important greenhouse gases. Over short timescales (say 20 years) low emission technologies do show significant reductions in CO 2 equivalent emissions compared with current technology vehicles. However, in the longer term, fuel economy rather than emissions of non-CO 2 gases, is likely to become the determining factor. (UK)

  16. Greenhouse Gases Emission and Global Warming Potential as Affected by Chemical Inputs for Main Cultivated Crops in Kerman Province: - Horticultural Crops

    OpenAIRE

    Nasibe Pourghasemian; Rooholla Moradi

    2017-01-01

    Introduction The latest report of the IPCC states that future emissions of greenhouse gases (GHGs) will continue to increase and will be the main cause of global climatic changes, as well as Iran. The three greenhouse gases associated with agriculture are CO2, CH4, and N2O. Chemical inputs consumption in agriculture has increased annually, while more intensive use of energy led to some important human health and environmental problems such as greenhouse gas emissions and global warming. Th...

  17. Greenhouse gas emissions increase global warming

    OpenAIRE

    Mohajan, Haradhan

    2011-01-01

    This paper discusses the greenhouse gas emissions which cause the global warming in the atmosphere. In the 20th century global climate change becomes more sever which is due to greenhouse gas emissions. According to International Energy Agency data, the USA and China are approximately tied and leading global emitters of greenhouse gas emissions. Together they emit approximately 40% of global CO2 emissions, and about 35% of total greenhouse gases. The developed and developing industrialized co...

  18. A Simple Experiment to Demonstrate the Effects of Greenhouse Gases

    Science.gov (United States)

    Keating, C. F.

    2007-01-01

    The role of greenhouse gases in our atmosphere is the subject of considerable discussion and debate. Global warming is well-documented, as is the continually increasing amount of greenhouse gases that human activity puts in the air. Is there a relationship between the two? The simple experiment described in this paper provides a good demonstration…

  19. An overview on non-CO2 greenhouse gases

    NARCIS (Netherlands)

    Pulles, T.; Amstel, van A.R.

    2010-01-01

    Non-CO2 greenhouse gases, included in the Kyoto Protocol, are methane (CH4), nitrous oxide (N2O), hexafluorocarbons (HFC), perfluorinated compounds (PFC) and sulphur hexafluoride (SF6). Together they account for about 25% of the present global greenhouse gas emissions. Reductions in emissions of

  20. Emissions of greenhouse gases in the United States, 1987--1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-25

    The Energy Information Administration (EIA) is required by the Energy Policy Act of 1992 to prepare a report on aggregate US national emissions of greenhouse gases for the period 1987--1992, with annual updates thereafter. This is the third annual update report,covering national emissions over the period 1987--1993, with preliminary estimates of US carbon dioxide and halocarbon emissions for 1994. Calculating national aggregate emissions(or ``national inventories``) of greenhouse gases is a recently developed form of intellectual endeavor. Greenhouse gas emissions are rarely measured directly or reported to statistical agencies. Thus, to prepare emissions inventories usually requires inferring emissions indirectly from information collected for other purposes. Both the available information and the inferences drawn may be of varying reliability. Chapter 1 of this report briefly recapitulates some background information about global climate change and the greenhouse effect and discusses important recent developments in global climate change activities. Chapters 2 through 6 cover emissions of carbon dioxide, methane, nitrous oxide, halocarbons, and criteria pollutants, respectively. Chapter 7 describes potential sequestration and emissions of greenhouse gases as a result of land use changes.

  1. Greenhouse gases, radiative forcing, global warming potential and waste management – an introduction

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Kjeldsen, Peter; Gentil, Emmanuel

    2009-01-01

    forcing (RF) and global warming potential (GWP). This paper provides a general introduction of the factors that define a GHG and explains the scientific background for estimating RF and GWP, thereby exposing the lay reader to a brief overview of the methods for calculating the effects of GHGs on climate......Management of post-consumer solid waste contributes to emission of greenhouse gases (GHGs) representing about 3% of global anthropogenic GHG emissions. Most GHG reporting initiatives around the world utilize two metrics proposed by the Intergovernmental Panel on Climate Change (IPCC): radiative...

  2. Greenhouse effect of trace gases, 1970-1980

    Science.gov (United States)

    Lacis, A.; Hansen, J.; Lee, P.; Lebedeff, S.; Mitchell, T.

    1981-01-01

    Increased abundances were measured for several trace atmospheric gases in the decade 1970-1980. The equilibrium greenhouse warming for the measured increments of CH4, chlorofluorocarbons and N2O is between 50% and 100% of the equilibrium warming for the measured increase of atmospheric CO2 during the same 10 years. The combined warming of CO2 and trace gases should exceed natural global temperature variability in the 1980's and cause the global mean temperature to rise above the maximum of the late 1930's.

  3. Roadside management strategies to reduce greenhouse gases.

    Science.gov (United States)

    2010-06-01

    Californias Global Warming Solutions Act of 2006 (AB 32), Sustainable Communities and Climate Protection Act : (SB 375), and Executive Order S-14-08 direct Caltrans to develop actions to reduce greenhouse gases (GHGs). Air : pollution reduction is...

  4. Emissions of greenhouse gases in the United States 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    The Energy Information Administration (EIA) is required by the Energy Policy Act of 1992 to prepare a report on aggregate US national emissions of greenhouse gases for the period 1987--1990, with annual updates thereafter. This report is the fifth annual update, covering national emissions over the period 1989--1995, with preliminary estimates of emissions for 1996. The estimates contained in this report have been revised from those in last year`s report. Emissions estimates for carbon dioxide are reported in metric tons of carbon; estimates for other gases are reported in metric tons of gas. Chapter 1 of this report briefly recapitulates some background information about global climate change and the greenhouse effect and discusses important recent developments in global climate change activities. Chapter 2 through 6 cover emissions of carbon dioxide, methane, nitrous oxide, halocarbons, and criteria pollutants, respectively. Chapter 7 describes potential sequestration and emissions of greenhouse gases as a result of land use changes. Five appendixes are included with this report. 216 refs., 11 figs., 38 tabs.

  5. Emissions of greenhouse gases in the United States, 1985--1990

    International Nuclear Information System (INIS)

    1993-01-01

    The Earth's capacity to support life depends on the moderating influences of gases that envelop the planet and warm its surface and protect it from harmful radiation. These gases are referred to as ''greenhouse gases.'' Their warming capacity, called ''the greenhouse effect,'' is essential to maintaining a climate hospitable to all plant, animal, and human life. In recent years, however, there has been increasing concern that human activity may be affecting the intricate balance between the Earth's absorption of heat from the sun and its capacity to reradiate excess heat back into space. Emissions of greenhouse gases from human activities may be an important mechanism that affects global climate. Thus, research is intensifying to improve our understanding of the role human activities might play in influencing atmospheric concentrations of greenhouse gases. On the basis of scientific findings of the past few decades, the US Government and the international community at large are now taking steps toward stabilizing greenhouse gas emissions. This report contributes to that process. Mandated by Congress this report provides estimates of US emissions of the principal greenhouse gases--carbon dioxide, methane, nitrous oxide, chlorofluorcarbons, carbon monoxide, nitrogen oxides, and nonmethane volatile organic compounds. Estimates are for the period 1985 to 1990. Preliminary estimates for 1991 have also been included, whenever data were available

  6. Emissions of greenhouse gases in the United States, 1985--1990

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-10

    The Earth`s capacity to support life depends on the moderating influences of gases that envelop the planet and warm its surface and protect it from harmful radiation. These gases are referred to as ``greenhouse gases.`` Their warming capacity, called ``the greenhouse effect,`` is essential to maintaining a climate hospitable to all plant, animal, and human life. In recent years, however, there has been increasing concern that human activity may be affecting the intricate balance between the Earth`s absorption of heat from the sun and its capacity to reradiate excess heat back into space. Emissions of greenhouse gases from human activities may be an important mechanism that affects global climate. Thus, research is intensifying to improve our understanding of the role human activities might play in influencing atmospheric concentrations of greenhouse gases. On the basis of scientific findings of the past few decades, the US Government and the international community at large are now taking steps toward stabilizing greenhouse gas emissions. This report contributes to that process. Mandated by Congress this report provides estimates of US emissions of the principal greenhouse gases--carbon dioxide, methane, nitrous oxide, chlorofluorcarbons, carbon monoxide, nitrogen oxides, and nonmethane volatile organic compounds. Estimates are for the period 1985 to 1990. Preliminary estimates for 1991 have also been included, whenever data were available.

  7. Stable isotope measurement techniques for atmospheric greenhouse gases

    International Nuclear Information System (INIS)

    2002-01-01

    The technical requirements to perform useful measurements of atmospheric greenhouse gas concentrations and of their isotope ratios are of direct relevance for all laboratories engaged in this field. A meaningful interpretation of isotopes in global models on sources and sinks of CO 2 and other greenhouse gases depends on strict laboratory protocols and data quality control measures ensuring comparable data in time and space. Only with this precondition met, the isotope techniques can serve as a potentially powerful method for reducing uncertainties in the global CO 2 budgets and for tracing pathways and interaction of terrestrial, oceanic, and atmospheric pools of carbon. This publication provides four contributions describing methods for the determination of the isotopic composition of trace gases in atmospheric air and in ice cores. These contributions have been indexed separately

  8. Voluntary reporting of greenhouse gases, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    The Voluntary Reporting Program for greenhouse gases is part of an attempt by the U.S. Government to develop innovative, low-cost, and nonregulatory approaches to limit emissions of greenhouse gases. It is one element in an array of such programs introduced in recent years as part of the effort being made by the United States to comply with its national commitment to stabilize emissions of greenhouse gases under the Framework Convention on Climate Change. The Voluntary Reporting Program, developed pursuant to Section 1605(b) of the Energy Policy Act of 1992, permits corporations, government agencies, households, and voluntary organizations to report to the Energy Information Administration (EIA) on actions taken that have reduced or avoided emissions of greenhouse gases.

  9. GreenNet: A Global Ground-Based Network of Instruments Measuring Greenhouse Gases in the Atmosphere

    Science.gov (United States)

    Floyd, M.; Grunberg, M.; Wilson, E. L.

    2017-12-01

    Climate change is the most important crisis of our lifetime. For policy makers to take action to combat the effects of climate change, they will need definitive proof that it is occurring globally. We have developed a low-cost ground instrument - a portable miniaturized laser heterodyne radiometer (mini-LHR) - capable of measuring concentrations of two of the most potent anthropogenic greenhouse gases, CO2 and methane, in columns in the atmosphere. They work by combining sunlight that has undergone absorption by gases with light from a laser. This combined light is detected by a photoreciever and a radio frequency beat signal is produced. From this beat signal, concentrations of these gases throughout the atmospheric column can be determined. A network of mini-LHR instruments in locations around the world will give us the data necessary to significantly reduce uncertainty in greenhouse gas sinks and sources contributing to climate change. Each instrument takes one reading per minute while the sun is up. With a goal to establish up to 500 instrument sites, the estimated total data per day will likely exceed 1GB. Every piece of data must be sorted as it comes in to determine whether it is a good or bad reading. The goal of the citizen science project is to collaborate with citizen scientists enrolled with Zooniverse.org to cycle through our data and help sort it, while also learning about the mini-LHR, greenhouse gases and climate change. This data will be used to construct an algorithm to automatically sort data that relies on statistical analyses of the previously sorted data.

  10. The greenhouse effect gases; Les gaz a effet de serre

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-06-15

    This road-map proposes by the Group Total aims to inform the public on the greenhouse effect gases. It presents the greenhouses effect as a key component of the climate system, the impacts of the human activity, the foreseeable consequences of global warming, the Kyoto protocol and Total commitment in the domain. (A.L.B.)

  11. Greenhouse effect gases inventory in France during the years 1990-1999

    International Nuclear Information System (INIS)

    2000-12-01

    The present report supplies emission data, for France and for the period 1990-1999, concerning all the substances involved in the increase in the greenhouse effect and covered under the United Nations' Framework Convention on Climate Change (UNFCCC). The substances are the six direct greenhouse gases covered by the Kyoto protocol: carbon dioxide (CO 2 ), methane (CH 4 ), nitrous oxide (N 2 O), the two species of halogenous substances - hydro-fluorocarbons (HFCs) and per-fluorocarbons (PFCs), and sulphur hexafluoride (SF 6 ). Emissions of sulphur dioxide (SO 2 ), nitrogen oxides (NO x ), non methane volatile organic compounds (NMVOCs), and carbon monoxide (CO), gases which indirectly make a significant contribution to the greenhouse effect, are reported under the Convention. The emissions of the six gases that directly contribute to the greenhouse effect are expressed in terms of Global Warming Potential (GWP) which decreased by 2.1 % in 1999 compared to 1990. The emissions of the four gases that indirectly contribute to the greenhouse effect are moving towards decrease: this is by 17% for NO x , 23% as regards NMVOCs, 33% for CO and by 44% regarding SO 2 . Out of the six greenhouse gases covered by the Kyoto Protocol, CO 2 accounts for the largest share in total GWP emissions (70 %), followed by N 2 O (16 %), CH 4 (12 %), HFCs (0.99 %), SF 6 (0.5 %), and PFCs (0.39 %). (author)

  12. Air pollution, greenhouse gases and climate change: Global and regional perspectives

    Science.gov (United States)

    Ramanathan, V.; Feng, Y.

    Greenhouse gases (GHGs) warm the surface and the atmosphere with significant implications for rainfall, retreat of glaciers and sea ice, sea level, among other factors. About 30 years ago, it was recognized that the increase in tropospheric ozone from air pollution (NO x, CO and others) is an important greenhouse forcing term. In addition, the recognition of chlorofluorocarbons (CFCs) on stratospheric ozone and its climate effects linked chemistry and climate strongly. What is less recognized, however, is a comparably major global problem dealing with air pollution. Until about ten years ago, air pollution was thought to be just an urban or a local problem. But new data have revealed that air pollution is transported across continents and ocean basins due to fast long-range transport, resulting in trans-oceanic and trans-continental plumes of atmospheric brown clouds (ABCs) containing sub micron size particles, i.e., aerosols. ABCs intercept sunlight by absorbing as well as reflecting it, both of which lead to a large surface dimming. The dimming effect is enhanced further because aerosols may nucleate more cloud droplets, which makes the clouds reflect more solar radiation. The dimming has a surface cooling effect and decreases evaporation of moisture from the surface, thus slows down the hydrological cycle. On the other hand, absorption of solar radiation by black carbon and some organics increase atmospheric heating and tend to amplify greenhouse warming of the atmosphere. ABCs are concentrated in regional and mega-city hot spots. Long-range transport from these hot spots causes widespread plumes over the adjacent oceans. Such a pattern of regionally concentrated surface dimming and atmospheric solar heating, accompanied by widespread dimming over the oceans, gives rise to large regional effects. Only during the last decade, we have begun to comprehend the surprisingly large regional impacts. In S. Asia and N. Africa, the large north-south gradient in the ABC

  13. 76 FR 73885 - Mandatory Reporting of Greenhouse Gases

    Science.gov (United States)

    2011-11-29

    ... Mandatory Reporting of Greenhouse Gases; Final Rule #0;#0;Federal Register / Vol. 76, No. 229 / Tuesday... 98 [EPA-HQ-OAR-2011-0147; FRL-9493-9] RIN 2060-AQ85 Mandatory Reporting of Greenhouse Gases AGENCY... the Mandatory Reporting of Greenhouse Gases Rule to correct certain technical and editorial errors...

  14. 76 FR 47391 - Mandatory Reporting of Greenhouse Gases

    Science.gov (United States)

    2011-08-04

    ... Mandatory Reporting of Greenhouse Gases; Proposed Rule #0;#0;Federal Register / Vol. 76, No. 150 / Thursday...-HQ-OAR-2011-0147; FRL-9443-1] RIN 2060-AQ85 Mandatory Reporting of Greenhouse Gases AGENCY... provisions in the Mandatory Reporting of Greenhouse Gases Rule to correct certain technical and editorial...

  15. Warming Early Mars by Impact Degassing of Reduced Greenhouse Gases

    Science.gov (United States)

    Haberle, R. M.; Zahnle, K.; Barlow, N. G.

    2018-01-01

    Reducing greenhouse gases are once again the latest trend in finding solutions to the early Mars climate dilemma. In its current form collision induced absorptions (CIA) involving H2 and/or CH4 provide enough extra greenhouse power in a predominately CO2 atmosphere to raise global mean surface temperatures to the melting point of water provided the atmosphere is thick enough and the reduced gases are abundant enough. Surface pressures must be at least 500 mb and H2 and/or CH4 concentrations must be at or above the several percent level for CIA to be effective. Atmospheres with 1-2 bars of CO2 and 2- 10% H2 can sustain surface environments favorable for liquid water. Smaller concentrations of H2 are sufficient if CH4 is also present. If thick CO2 atmospheres with percent level concentrations of reduced gases are the solution to the faint young Sun paradox for Mars, then plausible mechanisms must be found to generate and sustain the gases. Possible sources of reducing gases include volcanic outgassing, serpentinization, and impact delivery; sinks include photolyis, oxidation, and escape to space. The viability of the reduced greenhouse hypothesis depends, therefore, on the strength of these sources and sinks. In this paper we focus on impact delivered reduced gases.

  16. 75 FR 57669 - Mandatory Reporting of Greenhouse Gases

    Science.gov (United States)

    2010-09-22

    ... Mandatory Reporting of Greenhouse Gases AGENCY: Environmental Protection Agency (EPA). ACTION: Final rule. SUMMARY: This action amends the Final Mandatory Reporting of Greenhouse Gases Rule to require reporters... Numbers GHG greenhouse gas GHGRP Greenhouse Gas Reporting Program HCFC hydrochlorofluorocarbon HFC...

  17. Global Warming: Understanding and Teaching the Forecast. Part A The Greenhouse Effect.

    Science.gov (United States)

    Andrews, Bill

    1993-01-01

    Provides information necessary for an interdisciplinary analysis of the greenhouse effect, enhanced greenhouse effect, global warming, global climate change, greenhouse gases, carbon dioxide, and scientific study of global warming for students grades 4-12. Several activity ideas accompany the information. (LZ)

  18. GREENHOUSE GASES AND MEANS OF PREVENTION

    Directory of Open Access Journals (Sweden)

    Dušica Stojanović

    2013-09-01

    Full Text Available The greenhouse effect can be defined as the consequence of increased heating of the Earth's surface, as well as the lower atmosphere by carbon dioxide, water vapor, and other trace amounts gases. It is well-known that human industrial activities have released large amounts of greenhouse gases in the atmosphere, about 900 billion tons of carbon dioxide, and it is estimated that up to 450 billion are still in the atmosphere. In comparison to greenhouse gases water vapor is one of the greatest contributors to the greenhouse effect on Earth. Many projects, as does the PURGE project, have tendences to build on the already conducted research and to quantify the positive and negative impacts on health and wellbeing of the population with greenhouse gas reduction strategies that are curently being implemented and should be increasingly applied in various sectors and urban areas, having offices in Europe, China and India.

  19. Air pollution, greenhouse gases and climate change : global and regional perspectives

    Science.gov (United States)

    2009-01-01

    Greenhouse gases (GHGs) warm the surface and the atmosphere with significant implications for rainfall, retreat of glaciers and sea ice, sea level, among other factors. What is less recognized than problems with GHGs, however, is a comparably major g...

  20. Greenhouse gases and emissions trading

    International Nuclear Information System (INIS)

    LeBlanc, A.; Dudek, D.J.

    1993-01-01

    Global cooperation is essential in cutting greenhouse-gas emissions, say Alice LeBlanc and Daniel J. Dudek of the Environmental Defense in New York City. The first step, they continue, is agreement among nations on an overall global limit for all greenhouse gases, followed by an allocation of the global limit among nations. The agreements must contain effective reporting and monitoring systems and enforcement provisions, they add. The Framework Convention on Climate Change, signed by most nations of the world in Brazil in 1992, provides the foundation for such an agreement, LeBlanc and Dudek note. open-quotes International emissions trading is a way to lower costs and expand reduction options for the benefit of all,close quotes they contend. Under such an arrangement, an international agency would assign allowances, stated in tons of carbon dioxide. Countries would be free to buy and sell allowances, but no country could exceed, in a given year, the total allowances it holds. By emitting less than its allowed amount, a country would accumulate more allowances, which it could sell. The authors claim such a system would offer benefits to the world economy by saving billions of dollars in pollution-reduction costs while still achieving emission limits established in an international agreement

  1. Alternatives to the Global Warming Potential for Comparing Climate Impacts of Emissions of Greenhouse Gases

    International Nuclear Information System (INIS)

    Shine, Keith P.; Fuglestvedt, J.S.; Hailemariam, K.; Stuber, N.

    2005-01-01

    The Global Warming Potential (GWP) is used within the Kyoto Protocol to the United Nations Framework Convention on Climate Change as a metric for weighting the climatic impact of emissions of different greenhouse gases. The GWP has been subjected to many criticisms because of its formulation, but nevertheless it has retained some favour because of the simplicity of its design and application, and its transparency compared to proposed alternatives. Here, two new metrics are proposed, which are based on a simple analytical climate model. The first metric is called the Global Temperature Change Potential and represents the temperature change at a given time due to a pulse emission of a gas (GTPP); the second is similar but represents the effect of a sustained emission change (hence GTPS). Both GTPP and GTPS are presented as relative to the temperature change due to a similar emission change of a reference gas, here taken to be carbon dioxide. Both metrics are compared against an upwelling-diffusion energy balance model that resolves land and ocean and the hemispheres. The GTPP does not perform well, compared to the energy balance model, except for long-lived gases. By contrast, the GTPS is shown to perform well relative to the energy balance model, for gases with a wide variety of lifetimes. It is also shown that for time horizons in excess of about 100 years, the GTPS and GWP produce very similar results, indicating an alternative interpretation for the GWP. The GTPS retains the advantage of the GWP in terms of transparency, and the relatively small number of input parameters required for calculation. However, it has an enhanced relevance, as it is further down the cause-effect chain of the impacts of greenhouse gases emissions and has an unambiguous interpretation. It appears to be robust to key uncertainties and simplifications in its derivation and may be an attractive alternative to the GWP

  2. Emission and Sink of Greenhouse Gases in Soils of Moscow

    Science.gov (United States)

    Mozharova, N. V.; Kulachkova, S. A.; Lebed'-Sharlevich, Ya. I.

    2018-03-01

    The first inventory and zoning of the emission and sink of methane and carbon dioxide in the urban structure of greenhouse gases from soils and surface technogenic formations (STFs) (Technosols) on technogenic, recrementogenic, and natural sediments have been performed with consideration for the global warming potential under conditions of different formation rate of these gases, underflooding, and sealing. From gas geochemical criteria and anthropogenic pedogenesis features, the main sources of greenhouse gases, their intensity, and mass emission were revealed. The mass fractions of emissions from the sectors of waste and land use in the inventories of greenhouse gas emissions have been determined. New sources of gas emission have been revealed in the first sector, the emissions from which add tens of percent to the literature and state reports. In the second sector, emissions exceed the available data in 70 times. Estimation criteria based on the degree of manifestation and chemical composition of soil-geochemical anomalies and barrier capacities have been proposed. The sink of greenhouse gases from the atmosphere and the internal (latent) sink of methane in soils and STFs have been determined. Ecological functions of soils and STFs have been shown, and the share of latent methane sink has been calculated. The bacterial oxidation of methane in soils and STFs exceeds its emission to the atmosphere in almost hundred times.

  3. 75 FR 48743 - Mandatory Reporting of Greenhouse Gases

    Science.gov (United States)

    2010-08-11

    ... Part II Environmental Protection Agency 40 CFR Part 98 Mandatory Reporting of Greenhouse Gases...-AQ33 Mandatory Reporting of Greenhouse Gases AGENCY: Environmental Protection Agency (EPA). ACTION... Greenhouse Gas Reporting Rule Hotline at telephone number: (877) 444-1188; or e-mail: [email protected] . To...

  4. Inventory of greenhouse gases emissions from gasoline and diesel ...

    African Journals Online (AJOL)

    Emissions from fossil fuel combustion are of global concern due to their negative effects on public health and environment. This paper is an inventory of the greenhouse gases (GHGs) released into the environment through consumption of fuels (gasoline and diesel) in Nigeria from 1980 to 2014. The fuel consumption data ...

  5. Greenhouse Gases Concentrations in the Atmosphere Along ...

    African Journals Online (AJOL)

    This study investigated effect of vehicular emission on greenhouse gases concentrations along selected roads of different traffic densities in Abeokuta, Ogun State, Nigeria. Nine roads comprised highway, commercial and residential were selected. Greenhouse Gases (GHGs) were determined from both sides of the roads by ...

  6. Change in the atmospheric concentration of greenhouse gases

    International Nuclear Information System (INIS)

    GARREC, Jean-Pierre

    2000-01-01

    With the constant increase in industrial and agricultural activities since the beginning of the 20. Century, human societies have altered the chemical composition of the atmosphere both in their immediate vicinity and further afar. The most preoccupying problem today is the increase in the so-called greenhouse gases (CO 2 , CH 4 , N 2 O, CFC, O 3 ). Indeed, these pollutant gases generally have long life cycles and consequently have for the first time produced a change in the composition of the atmosphere on a global scale inducing deferred effects such as a likely change in the earth's climate. (author)

  7. The terrestrial biosphere as a net source of greenhouse gases to the atmosphere.

    Science.gov (United States)

    Tian, Hanqin; Lu, Chaoqun; Ciais, Philippe; Michalak, Anna M; Canadell, Josep G; Saikawa, Eri; Huntzinger, Deborah N; Gurney, Kevin R; Sitch, Stephen; Zhang, Bowen; Yang, Jia; Bousquet, Philippe; Bruhwiler, Lori; Chen, Guangsheng; Dlugokencky, Edward; Friedlingstein, Pierre; Melillo, Jerry; Pan, Shufen; Poulter, Benjamin; Prinn, Ronald; Saunois, Marielle; Schwalm, Christopher R; Wofsy, Steven C

    2016-03-10

    The terrestrial biosphere can release or absorb the greenhouse gases, carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O), and therefore has an important role in regulating atmospheric composition and climate. Anthropogenic activities such as land-use change, agriculture and waste management have altered terrestrial biogenic greenhouse gas fluxes, and the resulting increases in methane and nitrous oxide emissions in particular can contribute to climate change. The terrestrial biogenic fluxes of individual greenhouse gases have been studied extensively, but the net biogenic greenhouse gas balance resulting from anthropogenic activities and its effect on the climate system remains uncertain. Here we use bottom-up (inventory, statistical extrapolation of local flux measurements, and process-based modelling) and top-down (atmospheric inversions) approaches to quantify the global net biogenic greenhouse gas balance between 1981 and 2010 resulting from anthropogenic activities and its effect on the climate system. We find that the cumulative warming capacity of concurrent biogenic methane and nitrous oxide emissions is a factor of about two larger than the cooling effect resulting from the global land carbon dioxide uptake from 2001 to 2010. This results in a net positive cumulative impact of the three greenhouse gases on the planetary energy budget, with a best estimate (in petagrams of CO2 equivalent per year) of 3.9 ± 3.8 (top down) and 5.4 ± 4.8 (bottom up) based on the GWP100 metric (global warming potential on a 100-year time horizon). Our findings suggest that a reduction in agricultural methane and nitrous oxide emissions, particularly in Southern Asia, may help mitigate climate change.

  8. MAGGnet: An international network to foster mitigation of agricultural greenhouse gases

    DEFF Research Database (Denmark)

    Liebig, M.A.; Franzluebbers, A.J.; Alvarez, C.

    2016-01-01

    Research networks provide a framework for review, synthesis and systematic testing of theories by multiple scientists across international borders critical for addressing global-scale issues. In 2012, a GHG research network referred to as MAGGnet (Managing Agricultural Greenhouse Gases Network...

  9. An alternative to the global warming potential for comparing climate impacts of emissions of greenhouse gases

    International Nuclear Information System (INIS)

    Shine, Keith P.; Fuglestvedt, Jan S.; Stuber, Nicola

    2003-01-01

    The global warming potential (GWP) is used within the Kyoto Protocol to the United Nations Framework Convention on Climate Change as a metric for weighting the climate impact of emissions of different greenhouse gases. The GQP has been subject at many criticism because of its formulation but nevertheless it has retained some favour because of the simplicity of this design and application and its transparency compared to proposed alternatives. Here a new metric which we call the Global Temperature Change Potential (GTP) is proposed which is based on a simple analytical climate model that represents the temperature change as a given time due to either a pulse emission of a gas or a sustained emission change relative to a similar emission change of carbon dioxide. The GTP for a pulse emission illustrates that the GWP does not represent well the relative temperature response; however, the GWP is shown to be very close to the GTP for a sustained emission change for time horizons of 100 years or more. The new metric retains the advantage of the GWP in terms of transparency and the relatively small number of input parameters required for calculation. However, it has an enhanced relevance as it is further down the cause-effect chain of the impacts of greenhouse gases emissions. The GTP for a sustained emission appears to be robust to a number of uncertainties and simplifications in its derivation and may be an attractive alternative to the GWP. (Author)

  10. High accuracy Primary Reference gas Mixtures for high-impact greenhouse gases

    Science.gov (United States)

    Nieuwenkamp, Gerard; Zalewska, Ewelina; Pearce-Hill, Ruth; Brewer, Paul; Resner, Kate; Mace, Tatiana; Tarhan, Tanil; Zellweger, Christophe; Mohn, Joachim

    2017-04-01

    Climate change, due to increased man-made emissions of greenhouse gases, poses one of the greatest risks to society worldwide. High-impact greenhouse gases (CO2, CH4 and N2O) and indirect drivers for global warming (e.g. CO) are measured by the global monitoring stations for greenhouse gases, operated and organized by the World Meteorological Organization (WMO). Reference gases for the calibration of analyzers have to meet very challenging low level of measurement uncertainty to comply with the Data Quality Objectives (DQOs) set by the WMO. Within the framework of the European Metrology Research Programme (EMRP), a project to improve the metrology for high-impact greenhouse gases was granted (HIGHGAS, June 2014-May 2017). As a result of the HIGHGAS project, primary reference gas mixtures in cylinders for ambient levels of CO2, CH4, N2O and CO in air have been prepared with unprecedented low uncertainties, typically 3-10 times lower than usually previously achieved by the NMIs. To accomplish these low uncertainties in the reference standards, a number of preparation and analysis steps have been studied and improved. The purity analysis of the parent gases had to be performed with lower detection limits than previously achievable. E.g., to achieve an uncertainty of 2•10-9 mol/mol (absolute) on the amount fraction for N2O, the detection limit for the N2O analysis in the parent gases has to be in the sub nmol/mol domain. Results of an OPO-CRDS analyzer set-up in the 5µm wavelength domain, with a 200•10-12 mol/mol detection limit for N2O, will be presented. The adsorption effects of greenhouse gas components at cylinder surfaces are critical, and have been studied for different cylinder passivation techniques. Results of a two-year stability study will be presented. The fit-for-purpose of the reference materials was studied for possible variation on isotopic composition between the reference material and the sample. Measurement results for a suit of CO2 in air

  11. Assessing the DICE model: uncertainty associated with the emission and retention of greenhouse gases

    International Nuclear Information System (INIS)

    Kaufmann, R.K.

    1997-01-01

    Analysis of the DICE model indicates that it contains unsupported assumptions, simple extrapolations, and mis-specifications that cause it to understate the rate at which economic activity emits greenhouse gases and the rate at which the atmosphere retains greenhouse gases. The model assumes a world population that is 2 billion people lower than the 'base case' projected by demographers. The model extrapolates a decline in the quantity of greenhouse gases emitted per unit of economic activity that is possible only if there is a structural break in the economic and engineering factors have determined this ratio over the last century. The model uses a single equation to simulate the rate at which greenhouse gases accumulate in the atmosphere. The forecast for the airborne fraction generated by this equation contradicts forecasts generated by models that represent the physical and chemical processes which determine the movement of carbon from the atmosphere to the ocean. When these unsupported assumptions, simple extrapolations, and misspecifications are remedied with simple fixes, the economic impact of global climate change increases several fold. Similarly, these remedies increase the impact of uncertainty on estimates for the economic impact of global climate change. Together, these results indicate that considerable scientific and economic research is needed before the threat of climate change can be dismissed with any degree of certainty. 23 refs., 3 figs

  12. Greenhouse gases emission from municipal waste management: The role of separate collection.

    Science.gov (United States)

    Calabrò, Paolo S

    2009-07-01

    The municipal solid waste management significantly contributes to the emission in the atmosphere of greenhouse gases (e.g. CO(2), CH(4), N(2)O) and therefore the management process from collection to treatment and disposal has to be optimized in order to reduce these emissions. In this paper, starting from the average composition of undifferentiated municipal solid waste in Italy, the effect of separate collection on greenhouse gases emissions from municipal waste management has been assessed. Different combinations of separate collection scenarios and disposal options (i.e. landfilling and incineration) have been considered. The effect of energy recovery from waste both in landfills and incinerators has also been addressed. The results outline how a separate collection approach can have a significant effect on the emission of greenhouse gases and how wise municipal solid waste management, implying the adoption of Best Available Technologies (i.e. biogas recovery and exploitation system in landfills and energy recovery system in Waste to Energy plants), can not only significantly reduce greenhouse gases emissions but, in certain cases, can also make the overall process a carbon sink. Moreover it has been shown that separate collection of plastic is a major issue when dealing with global warming relevant emissions from municipal solid waste management.

  13. Veracruz State Preliminary Greenhouse Gases Emissions Inventory

    Science.gov (United States)

    Welsh Rodriguez, C.; Rodriquez Viqueira, L.; Guzman Rojas, S.

    2007-05-01

    At recent years, the international organisms such as United Nations, has discussed that the temperature has increased slightly and the pattern of precipitations has changed in different parts of the world, which cause either extreme droughts or floods and that the extreme events have increased. These are some of the risks of global climate change because of the increase of gas concentration in the atmosphere such as carbon dioxides, nitrogen oxides and methane - which increase the greenhouse effect. Facing the consequences that could emerge because of the global temperature grown, there is a genuine necessity in different sectors of reduction the greenhouse gases and reduced the adverse impacts of climate change. To solve that, many worldwide conventions have been realized (Rio de Janeiro, Kyoto, Montreal) where different countries have established political compromises to stabilize their emissions of greenhouse gases. The mitigation and adaptation policies merge as a response to the effects that the global climate change could have, on the humans as well as the environment. That is the reason to provide the analysis of the areas and geographic zones of the country that present major vulnerability to the climate change. The development of an inventory of emissions that identifies and quantifies the principal sources of greenhouse gases of a country, and also of a region is basic to any study about climate change, also to develop specific political programs that allow to preserve and even improve a quality of the atmospheric environment, and maybe to incorporate to international mechanisms such as the emissions market. To estimate emissions in a systematic and consistent way on a regional, national and international level is a requirement to evaluate the feasibility and the cost-benefit of instrumented possible mitigation strategies and to adopt politics and technologies to reduce emissions. Mexico has two national inventories of emissions, 1990 and 1995, now it is

  14. Literature review on the greenhouse effect and global warming

    International Nuclear Information System (INIS)

    English, M.; Petri, H.; Wong, R.K.W.; Kochtubajda, B.

    1990-08-01

    A literature review of recent (1988-1990) publications on global warming and climate change was carried out by the Alberta Research Council. The objectives of the project were to develop a listing of relevant citations, review the publications, prepare a short summary of the contents of each, and develop statistics with respect to the degree to which scientific consensus exists on the various topics of interest. The bibliography contains 1,557 citations, and a total of 501 publications were reviewed. Topics of interest include computer modelling of world climate, potential impacts of climate change, potential strategies for responding to climate change, and technological solutions. Statistical results are presented of numbers of papers reviewed addressing types of emission, time of effective doubling of greenhouse gases, global temperature increase predicted for effective doubling of greenhouse gases, temperature increase in northern lattitudes for an effective doubling of greenhouse gases, components of atmosphere that are changing, potential impacts on agriculture, forestry, and health, suggested emission limitations, and suggested technological solutions. 4 refs., 11 figs., 3 tabs

  15. The trade-off between short- and long-lived greenhouse gases under uncertainty and learning

    International Nuclear Information System (INIS)

    Aaheim, H. Asbjoern; Brekke, Kjell Arne; Lystad, Terje; Torvanger, Asbjoern

    2001-01-01

    To find an optimal climate policy we must balance abatement of different greenhouse gases. There is substantial uncertainty about future damages from climate change, but we will learn more over the next few decades. Gases vary in terms of how long they remain in the atmosphere, which means that equivalent pulse emissions have very different climate impacts. Such differences between gases are important in consideration of uncertainty and learning about future damages, but they are disregarded by the conventional concept of Global Warming Potential We have developed a numerical model to analyze how uncertainty and learning affect optimal emissions of both CO 2 and CH 4 . In the model, emissions of these greenhouse gases lead to global temperature increases and production losses. New information about the severity of the climate problem arrives either in 2010 or in 2020. We find that uncertainty causes increased optimal abatement of both gases, compared to the certainty case. This effect amounts to 0.08 o C less expected temperature increase by year 2200. Learning leads to less abatement for both gases since expected future marginal damages from emissions are reduced. This effect is less pronounced for the short-lived CH 4 . (author)

  16. Dynamical response of Mediterranean precipitation to greenhouse gases and aerosols

    Directory of Open Access Journals (Sweden)

    T. Tang

    2018-06-01

    Full Text Available Atmospheric aerosols and greenhouse gases affect cloud properties, radiative balance and, thus, the hydrological cycle. Observations show that precipitation has decreased in the Mediterranean since the beginning of the 20th century, and many studies have investigated possible mechanisms. So far, however, the effects of aerosol forcing on Mediterranean precipitation remain largely unknown. Here we compare the modeled dynamical response of Mediterranean precipitation to individual forcing agents in a set of global climate models (GCMs. Our analyses show that both greenhouse gases and aerosols can cause drying in the Mediterranean and that precipitation is more sensitive to black carbon (BC forcing than to well-mixed greenhouse gases (WMGHGs or sulfate aerosol. In addition to local heating, BC appears to reduce precipitation by causing an enhanced positive sea level pressure (SLP pattern similar to the North Atlantic Oscillation–Arctic Oscillation, characterized by higher SLP at midlatitudes and lower SLP at high latitudes. WMGHGs cause a similar SLP change, and both are associated with a northward diversion of the jet stream and storm tracks, reducing precipitation in the Mediterranean while increasing precipitation in northern Europe. Though the applied forcings were much larger, if forcings are scaled to those of the historical period of 1901–2010, roughly one-third (31±17 % of the precipitation decrease would be attributable to global BC forcing with the remainder largely attributable to WMGHGs, whereas global scattering sulfate aerosols would have negligible impacts. Aerosol–cloud interactions appear to have minimal impacts on Mediterranean precipitation in these models, at least in part because many simulations did not fully include such processes; these merit further study. The findings from this study suggest that future BC and WMGHG emissions may significantly affect regional water resources, agricultural practices, ecosystems and

  17. International negotiations about reducing the emission of greenhouse gases

    International Nuclear Information System (INIS)

    Lepage, C.

    1999-01-01

    It is high time Europe proposed concrete actions within the framework of Kyoto negotiations. Europe should participate to negotiations actively, otherwise a non-efficient agreement could be applied. At Kyoto it was decided that licences for releasing greenhouse gases could be exchanged between countries but not between firms. The global efficiency and success of such a system requires to involve firms and polluters more directly. (A.C.)

  18. Evaluation of emission of greenhouse gases from soils amended with sewage sludge.

    Science.gov (United States)

    Paramasivam, S; Fortenberry, Gamola Z; Julius, Afolabi; Sajwan, Kenneth S; Alva, A K

    2008-02-01

    Increase in concentrations of various greenhouse gases and their possible contributions to the global warming are becoming a serious concern. Anthropogenic activities such as cultivation of flooded rice and application of waste materials, such as sewage sludge which are rich in C and N, as soil amendments could contribute to the increase in emission of greenhouse gases such as methane (CH(4)) and nitrous oxide (N(2)O) into the atmosphere. Therefore, evaluation of flux of various greenhouse gases from soils amended with sewage sludge is essential to quantify their release into the atmosphere. Two soils with contrasting properties (Candler fine sand [CFS] from Florida, and Ogeechee loamy sand [OLS] from Savannah, GA) were amended with varying rates (0, 24.7, 49.4, 98.8, and 148.3 Mg ha(-1)) of 2 types of sewage sludge (industrial [ISS] and domestic [DSS] origin. The amended soil samples were incubated in anaerobic condition at field capacity soil water content in static chamber (Qopak bottles). Gas samples were extracted immediately after amending soils and subsequently on a daily basis to evaluate the emission of CH(4), CO(2) and N(2)O. The results showed that emission rates and cumulative emission of all three gases increased with increasing rates of amendments. Cumulative emission of gases during 25-d incubation of soils amended with different types of sewage sludge decreased in the order: CO(2) > N(2)O > CH(4). The emission of gases was greater from the soils amended with DSS as compared to that with ISS. This may indicate the presence of either low C and N content or possible harmful chemicals in the ISS. The emission of gases was greater from the CFS as compared to that from the OLS. Furthermore, the results clearly depicted the inhibitory effect of acetylene in both soils by producing more N(2)O and CH(4) emission compared to the soils that did not receive acetylene at the rate of 1 mL g(-1) soil. Enumeration of microbial population by fluorescein diacetate

  19. Remote Sensing of Spatial Distributions of Greenhouse Gases in the Los Angeles Basin

    Science.gov (United States)

    Fu, Dejian; Sander, Stanley P.; Pongetti, Thomas J.; Cheung, Ross; Stutz, Jochen

    2010-01-01

    The Los Angeles air basin is a significant anthropogenic source of greenhouse gasses and pollutants including CO2, CH4, N2O, and CO, contributing significantly to regional and global climate change. Recent legislation in California, the California Global Warning Solutions Act (AB32), established a statewide cap for greenhouse gas emissions for 2020 based on 1990 emissions. Verifying the effectiveness of regional greenhouse gas emissions controls requires high-precision, regional-scale measurement methods combined with models that capture the principal anthropogenic and biogenic sources and sinks. We present a novel approach for monitoring the spatial distribution of greenhouse gases in the Los Angeles basin using high resolution remote sensing spectroscopy. We participated in the CalNex 2010 campaign to provide greenhouse gas distributions for comparison between top-down and bottom-up emission estimates.

  20. The trade-off between short- and long-lived greenhouse gases under uncertainty and learning

    Energy Technology Data Exchange (ETDEWEB)

    Aaheim, H. Asbjoern; Brekke, Kjell Arne; Lystad, Terje; Torvanger, Asbjoern

    2001-07-01

    To find an optimal climate policy we must balance abatement of different greenhouse gases. There is substantial uncertainty about future damages from climate change, but we will learn more over the next few decades. Gases vary in terms of how long they remain in the atmosphere, which means that equivalent pulse emissions have very different climate impacts. Such differences between gases are important in consideration of uncertainty and learning about future damages, but they are disregarded by the conventional concept of Global Warming Potential We have developed a numerical model to analyze how uncertainty and learning affect optimal emissions of both CO{sub 2} and CH{sub 4}. In the model, emissions of these greenhouse gases lead to global temperature increases and production losses. New information about the severity of the climate problem arrives either in 2010 or in 2020. We find that uncertainty causes increased optimal abatement of both gases, compared to the certainty case. This effect amounts to 0.08 {sup o}C less expected temperature increase by year 2200. Learning leads to less abatement for both gases since expected future marginal damages from emissions are reduced. This effect is less pronounced for the short-lived CH{sub 4}. (author)

  1. Quotation systems for greenhouse gases

    International Nuclear Information System (INIS)

    Trong, Maj Dang

    2000-01-01

    The article surveys recommendations from a Norwegian committee for implementing at a national level, the Kyoto protocol aims for reducing the total emissions of greenhouse gases from the industrial countries through quotation systems

  2. Comparing greenhouse gases for policy purposes

    International Nuclear Information System (INIS)

    Schmalensee, R.

    1993-01-01

    In order to derive optimal policies for greenhouse gas emissions control, the discounted marginal damages of emissions from different gases must be compared. The greenhouse warming potential (GWP) index, which is most often used to compare greenhouse gases, is not based on such a damage comparison. This essay presents assumptions under which ratios of gas-specific discounted marginal damages reduce to ratios of discounted marginal contributions to radiative forcing, where the discount rate is the difference between the discount rate relevant to climate-related damages and the rate of growth of marginal climate-related damages over time. If there are important gas-specific costs or benefits not tied to radiative forcing, however, such as direct effects of carbon dioxide on plant growth, there is in general no shortcut around explicit comparison of discounted net marginal damages. 16 refs

  3. Genetic implications for forest trees of increasing levels of greenhouse gases and UV-B radiation

    Science.gov (United States)

    David F. Karnosky; Kevin E. Percy; Blanka Mankovska

    2000-01-01

    Globally, the environment is changing and deteriorating as greenhouse gases such as carbon dioxide (CO2) and tropospheric ozone (03) continue to increase at a rate of about 1% per year (Keeling et al. 1995, Chameides et al. 1995). The increase in these gases is directly related to anthropogenic activities (Chameides et al...

  4. Persistence of climate changes due to a range of greenhouse gases.

    Science.gov (United States)

    Solomon, Susan; Daniel, John S; Sanford, Todd J; Murphy, Daniel M; Plattner, Gian-Kasper; Knutti, Reto; Friedlingstein, Pierre

    2010-10-26

    Emissions of a broad range of greenhouse gases of varying lifetimes contribute to global climate change. Carbon dioxide displays exceptional persistence that renders its warming nearly irreversible for more than 1,000 y. Here we show that the warming due to non-CO(2) greenhouse gases, although not irreversible, persists notably longer than the anthropogenic changes in the greenhouse gas concentrations themselves. We explore why the persistence of warming depends not just on the decay of a given greenhouse gas concentration but also on climate system behavior, particularly the timescales of heat transfer linked to the ocean. For carbon dioxide and methane, nonlinear optical absorption effects also play a smaller but significant role in prolonging the warming. In effect, dampening factors that slow temperature increase during periods of increasing concentration also slow the loss of energy from the Earth's climate system if radiative forcing is reduced. Approaches to climate change mitigation options through reduction of greenhouse gas or aerosol emissions therefore should not be expected to decrease climate change impacts as rapidly as the gas or aerosol lifetime, even for short-lived species; such actions can have their greatest effect if undertaken soon enough to avoid transfer of heat to the deep ocean.

  5. Sectoral emission inventories of greenhouse gases for 1990 on a per country basis as well as on 1°×1°

    NARCIS (Netherlands)

    Olivier, J.G.J.; Bouwman, A.F.; Berdowski, J.J.M.; Veldt, C.; Bloos, J.P.J.; Visschedijk, A.J.H.; Maas, C.W.M. van der; Zandveld, P.Y.J.

    1999-01-01

    A set of global greenhouse gas emission inventories has been compiled per source category for the 1990 annual emissions of the direct greenhouse gases CO2, CH4 and N2O, as well as of the indirect greenhouse gases (ozone precursors) CO, NOx and NMVOC, and of SO2. The inventories are available by

  6. 75 FR 70254 - PSD and Title V Permitting Guidance for Greenhouse Gases

    Science.gov (United States)

    2010-11-17

    ... Guidance for Greenhouse Gases AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of availability..., ``PSD and Title V Permitting Guidance for Greenhouse Gases'' on its significant guidance Internet Web... guidance titled, ``PSD and Title V Permitting Guidance for Greenhouse Gases.'' This document has been...

  7. Energy and environment - greenhouse effect. The international, european and national actions to control the greenhouse gases emissions: which accounting and which perspectives?

    International Nuclear Information System (INIS)

    2001-12-01

    The scientific knowledge concerning the climatic change justifies today immediate fight actions against the greenhouse reinforcement. This fight is based on an ambitious international device which must take into account more global challenges. At the european and national scale, the exploitation of the potential of greenhouse gases reduction must be reinforced and more specially the evolution of the life style. (A.L.B.)

  8. Interaction and coupling in the emission of greenhouse gases from animal husbandry

    NARCIS (Netherlands)

    Monteny, G.J.; Groenestein, C.M.; Hilhorst, M.A.

    2001-01-01

    The gases methane (CH4) and nitrous oxide (N2O) contribute to global warming, while N2O also affects the ozone layer. Sources of greenhouse gas emissions in animal husbandry include animals, animal houses (indoor storage of animal excreta), outdoor storage, manure and slurry treatment (e.g.,

  9. Anesthetic gases and global warming: Potentials, prevention and future of anesthesia.

    Science.gov (United States)

    Gadani, Hina; Vyas, Arun

    2011-01-01

    Global warming refers to an average increase in the earth's temperature, which in turn causes changes in climate. A warmer earth may lead to changes in rainfall patterns, a rise in sea level, and a wide range of impacts on plants, wildlife, and humans. Greenhouse gases make the earth warmer by trapping energy inside the atmosphere. Greenhouse gases are any gas that absorbs infrared radiation in the atmosphere and include: water vapor, carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), halogenated fluorocarbons (HCFCs), ozone (O3), perfluorinated carbons (PFCs), and hydrofluorocarbons (HFCs). Hazardous chemicals enter the air we breathe as a result of dozens of activities carried out during a typical day at a healthcare facility like processing lab samples, burning fossil fuels etc. We sometimes forget that anesthetic agents are also greenhouse gases (GHGs). Anesthetic agents used today are volatile halogenated ethers and the common carrier gas nitrous oxide known to be aggressive GHGs. With less than 5% of the total delivered halogenated anesthetic being metabolized by the patient, the vast majority of the anesthetic is routinely vented to the atmosphere through the operating room scavenging system. The global warming potential (GWP) of a halogenated anesthetic is up to 2,000 times greater than CO2. Global warming potentials are used to compare the strength of different GHGs to trap heat in the atmosphere relative to that of CO2. Here we discuss about the GWP of anesthetic gases, preventive measures to decrease the global warming effects of anesthetic gases and Xenon, a newer anesthetic gas for the future of anesthesia.

  10. Does the correlation between solar cycle lengths and Northern Hemisphere land temperatures rule out any significant global warming from greenhouse gases?

    DEFF Research Database (Denmark)

    Laut, Peter; Gundermann, Jesper

    1998-01-01

    Since the discovery of a striking correlation between solar cycle lengths and Northern Hemisphere land temperatures there have been widespread speculations as to whether these findings would rule out any significant contributions to global warming from the enhanced concentrations of greenhouse...... gases. The present analysis shows that a similar degree of correlation is obtained when testing the solar data against a couple of fictitious temperature series representing different global warming trends. Therefore, the correlation cannot be used to estimate the magnitude of a possible contribution...... to global warming from human activities, nor to rule out a sizable contribution from that source....

  11. 75 FR 18455 - Mandatory Reporting of Greenhouse Gases

    Science.gov (United States)

    2010-04-12

    ... Mandatory Reporting of Greenhouse Gases AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule amendment. SUMMARY: EPA is proposing to amend the Mandatory Greenhouse Gas (GHG) Reporting Rule, to require.... The Mandatory GHG Reporting Rule requires greenhouse gas emitting facilities and suppliers of fuels...

  12. 75 FR 66433 - Mandatory Reporting of Greenhouse Gases

    Science.gov (United States)

    2010-10-28

    ... Part II Environmental Protection Agency 40 CFR Parts 86 and 98 Mandatory Reporting of Greenhouse...; FRL-9213-5] RIN 2060-A079 Mandatory Reporting of Greenhouse Gases AGENCY: Environmental Protection... Mandatory Greenhouse Gas Reporting rule to correct certain technical and editorial errors that have been...

  13. 75 FR 33949 - Mandatory Reporting of Greenhouse Gases

    Science.gov (United States)

    2010-06-15

    ... Part III Environmental Protection Agency 40 CFR Parts 86 and 98 Mandatory Reporting of Greenhouse...; FRL-9158-6] RIN 2060-A079 Mandatory Reporting of Greenhouse Gases AGENCY: Environmental Protection... Final Mandatory Greenhouse Gas Reporting rule (2009 Final MRR) to correct certain technical and...

  14. The challenges of the greenhouse gases emissions reduction in buildings

    International Nuclear Information System (INIS)

    Arnaud, E.

    2005-09-01

    The building sector is responsible of 18% of the greenhouse gases emissions in France. This document aims to evaluate the greenhouse gases emissions of the sector and then defines technical and financial avenues worth exploring to reduce them. (A.L.B.)

  15. Towards a Global Greenhouse Gas Information System (GHGIS)

    Science.gov (United States)

    Duren, Riley; Butler, James; Rotman, Doug; Miller, Charles; Decola, Phil; Sheffner, Edwin; Tucker, Compton; Mitchiner, John; Jonietz, Karl; Dimotakis, Paul

    2010-05-01

    Over the next few years, an increasing number of entities ranging from international, national, and regional governments, to businesses and private land-owners, are likely to become more involved in efforts to limit atmospheric concentrations of greenhouse gases. In such a world, geospatially resolved information about the location, amount, and rate of greenhouse gas (GHG) emissions will be needed, as well as the stocks and flows of all forms of carbon through terrestrial ecosystems and in the oceans. The ability to implement policies that limit GHG concentrations would be enhanced by a global, open, and transparent greenhouse gas information system (GHGIS). An operational and scientifically robust GHGIS would combine ground-based and space-based observations, carbon-cycle modeling, GHG inventories, meta-analysis, and an extensive data integration and distribution system, to provide information about sources, sinks, and fluxes of greenhouse gases at policy-relevant temporal and spatial scales. The GHGIS effort was initiated in 2008 as a grassroots inter-agency collaboration intended to rigorously identify the needs for such a system, assess the capabilities of current assets, and suggest priorities for future research and development. We will present a status of the GHGIS effort including our latest analysis and ideas for potential near-term pilot projects with potential relevance to European initiatives including the Global Monitoring for Environment and Security (GMES) and the Integrated Carbon Observing System (ICOS).

  16. Study of greenhouse gases emission factor for nuclear power chain of China

    International Nuclear Information System (INIS)

    Ma Zhonghai; Pan Ziqiang; Xie Jianlun; Xiu Binglin

    2001-01-01

    The Greenhouse Gases Emission Factor (GGEF) for nuclear power chain of China is calculated based on Life Cycle Analysis method and the definition of full energy chain. There is no greenhouse gases released directly from nuclear power plant. The greenhouse gases emission from nuclear power plant is mainly from coal-fired electricity supply to nuclear power plant for its normal operation and the production of construction materials those are used in the nuclear power plant. The total GGEF of nuclear power chain in China is 13.71 g-co 2 /kWh. It is necessary to regulate un-rational power source mix and to use the energy sources in rational way for reducing the greenhouse gas effect. Nuclear power for electricity generation is one of effective ways to reduce greenhouse gases emission and retard the greenhouse effect

  17. Greenhouse gases - observed tendencies contra scenarios

    International Nuclear Information System (INIS)

    Groenaas, Sigbjoern

    2006-01-01

    The article presents a study of the increase in greenhouse gases and concludes that it will be necessary to substantially reduce the CO2 concentrations in the atmosphere in order to avoid serious climatic changes

  18. Offsets : An innovative approach to reducing greenhouse gases

    International Nuclear Information System (INIS)

    Steward, B.

    1998-01-01

    One of the most innovative ways to address climate change is the use of offsets, which refers to actions taken outside of a company's operations, domestically and internationally, to reduce greenhouse gas emissions. This paper is devoted to a discussion of Suncor Energy's action plan for greenhouse gases which include offsets, and to an explanation of the reasons why offsets are fundamental to successful greenhouse gas management. Suncor Energy Inc., has developed a plan with seven elements to meet their target of stabilizing their greenhouse gas emissions at 1990 levels by year 2000. The seven elements include: (1) energy efficiency and process improvements at their oil sands facility, (2) the development of alternative and renewable sources of energy, such as ethanol blended gasolines and the use of wind turbines to generate electricity, (3) promoting environmental and economic research to develop more advanced oil and gas technology to reduce greenhouse gas emissions, (4) implementing a constructive public policy input in support of sustainable development, (5) educating employees, customers and communities on global climate change, (6) measuring and reporting the company's environmental progress, and (7) pursuing domestic and international offset opportunities such as transfer of technology to developing countries, cogeneration of energy using natural gas, energy efficiency, renewable energy sources, emission reduction purchases and forest conservation. Of these proposed measures, offsets are the critical element which could spell the difference between success and failure in managing greenhouse gas emissions and the difference between economic hardship and economic opportunity

  19. 'Home made' model to study the greenhouse effect and global warming

    Science.gov (United States)

    Onorato, P.; Mascheretti, P.; DeAmbrosis, A.

    2011-03-01

    In this paper a simplified two-parameter model of the greenhouse effect on the Earth is developed, starting from the well known two-layer model. It allows both the analysis of the temperatures of the inner planets, by focusing on the role of the greenhouse effect, and a comparison between the temperatures the planets should have in the absence of greenhouse effect and their actual ones. It may also be used to predict the average temperature of the Earth surface in the future, depending on the variations of the concentration of greenhouse gases in the atmosphere due to human activities. This model can promote an elementary understanding of global warming since it allows a simple formalization of the energy balance for the Earth in the stationary condition, in the presence of greenhouse gases. For these reasons it can be introduced in courses for undergraduate physics students and for teacher preparation.

  20. 'Home made' model to study the greenhouse effect and global warming

    International Nuclear Information System (INIS)

    Onorato, P; Mascheretti, P; DeAmbrosis, A

    2011-01-01

    In this paper a simplified two-parameter model of the greenhouse effect on the Earth is developed, starting from the well known two-layer model. It allows both the analysis of the temperatures of the inner planets, by focusing on the role of the greenhouse effect, and a comparison between the temperatures the planets should have in the absence of greenhouse effect and their actual ones. It may also be used to predict the average temperature of the Earth surface in the future, depending on the variations of the concentration of greenhouse gases in the atmosphere due to human activities. This model can promote an elementary understanding of global warming since it allows a simple formalization of the energy balance for the Earth in the stationary condition, in the presence of greenhouse gases. For these reasons it can be introduced in courses for undergraduate physics students and for teacher preparation.

  1. Agreements on emission of greenhouse gases

    International Nuclear Information System (INIS)

    Aulstad, Johan Greger

    2001-01-01

    Agreements on emission of greenhouse gases is one of the instruments used by Norwegian authorities to meet their obligations with respect to the Climate Convention and the Kyoto Protocol. This book discusses the legal issues raised by these agreements. A main topic is how the industrial emissions conform to the Pollution Act. Does the Pollution Act apply to these emissions? What is the impact of the sanction rules in this act on the emissions? The book also deals with the following general questions that arise in connection with the application of public authority: (1) Can the administration grant concessions and permits in the form of agreements? (2) What commitments can be imposed on a private party by the administration by agreement? (3) Should the procedures set down in the Pollution Act and in the Public Administration Act be followed fully when the pollution authorities make agreements? Is the opportunity of the administration to reverse more restricted when they make agreements than when they make one-sided decisions? Although this discussion primarily deals with the emission of greenhouse gases, the reasoning and conclusions are relevant in many other types of agreements in which the public administration is one of the parties. The agreement that regulates the emissions of greenhouse gases from the Norwegian aluminium industry is described in a special section. The book also gives a brief account of how agreements are used in the Danish climate policy

  2. Mitigation of greenhouse gases in the energy sector: an overview

    International Nuclear Information System (INIS)

    Romani, M.N.

    1998-01-01

    It is fairly well recognised that greenhouse gases (GHG) have an impact on the global climate as they trap heat in the atmosphere. With the result earth is warmed in manner similar to the glass panels of a greenhouse increase. Hence the name 'green house effect' during the last two centuries in CO/sub 2/ in the atmosphere has been reckoned at 25%, with corresponding values for CH/sub 4/ and N/sub 2/O as 100% and 10% during 1950-80. CFC concentration increased by 10%. It is estimated that the earth has warmed by 0.5 deg. C and sea level has increased by 15 cm over the last 100 years or so. The major cause has been attributed to the process of industrialization. (author)

  3. Energy and climatic change: within 30 years, divide France's emissions of greenhouse gases in three

    International Nuclear Information System (INIS)

    Prevot, H.

    2003-01-01

    Fighting against global warming means cutting down on greenhouse gases. France can significantly reduce its emissions by seriously modifying life-styles without disrupting them. The population will accept this all the better as far as it is deeply concerned with the issues. (author)

  4. Climate Change, Greenhouse Gases and Aerosols

    Indian Academy of Sciences (India)

    user

    their radiative properties are similar to the glass used in a green- house. Greenhouse gases in the Earth's atmosphere absorb 90% of the radiation emitted .... and wind speed and direction in each box is calculated using the physical laws gov-.

  5. 75 FR 74773 - Mandatory Reporting of Greenhouse Gases: Additional Sources of Fluorinated GHGs

    Science.gov (United States)

    2010-12-01

    ...-mechanical systems (MEMS) manufacturing facilities. Fluorinated Gas Production....... 325120 Industrial gases... of Industrial Greenhouse Gases. Electrical Equipment Use General Stationary Fuel Combustion. Imports and Exports of Fluorinated Suppliers of Industrial Greenhouse GHGs Inside Pre-charged Equipment Gases...

  6. A Simple, Student-Built Spectrometer to Explore Infrared Radiation and Greenhouse Gases

    Science.gov (United States)

    Bruce, Mitchell R. M.; Wilson, Tiffany A.; Bruce, Alice E.; Bessey, S. Max; Flood, Virginia J.

    2016-01-01

    In this experiment, students build a spectrometer to explore infrared radiation and greenhouse gases in an inquiry-based investigation to introduce climate science in a general chemistry lab course. The lab is based on the exploration of the thermal effects of molecular absorption of infrared radiation by greenhouse and non-greenhouse gases. A…

  7. The Influence of Anthropogenic Greenhouse Gases and Aerosols on the Surface Heat and Moisture Budgets.

    Science.gov (United States)

    Ramaswamy, V.; Freidenreich, S.; Ginoux, P. A.; Ming, Y.; Paynter, D.; Persad, G.; Schwarzkopf, M. D.

    2017-12-01

    Emissions of greenhouse gases and aerosols alter atmospheric composition and `force' major perturbations in the radiative fluxes at the top-of-the-atmosphere and surface. In this paper, we discuss the radiative changes caused by anthropogenic greenhouse gases and aerosols at the surface, and its importance in the context of effects on the global hydrologic cycle. An important characteristic of imbalances forced by radiative species is the tendency for responses to occur in the non-radiative components, in order for the surface energy and moisture budgets to re-establish equilibrium. Using the NOAA/ GFDL global climate models used in CMIP3 and CMIP5, and to be used in CMIP6, we investigate how the surface energy balance has evolved with time under the action of the emissions, and the manner of changes in the surface radiative, sensible and latent heat components. We diagnose the relative importance of the forcings on the global and continental scales, the differing mechanisms due to greenhouse gases and aerosols on surface heat and moisture budgets, and the relative roles of the atmospheric constituents on precipitation and evaporation. Scattering and absorbing properties of aerosols can have contrasting effects on precipitation, with the aerosol indirect effect presenting another complication owing to the uncertainty in its magnitude. We compare the modeled surface flux changes against observations made from multiple platforms over the 20th and the early period of the 21st centuries, and asses the models' strengths and weaknesses. We also explore the consequences for the surface balance and precipitation in the 21st century under various emission scenarios.

  8. Voluntary reporting of greenhouse gases under Section 1605(b) of the Energy Policy Act of 1992: General Guidelines

    International Nuclear Information System (INIS)

    1994-10-01

    Because of concerns with the growing threat of global climate change from increasing emissions of greenhouse gases, Congress authorized a voluntary program for the public to report achievements in reducing those gases. This document offers guidance on recording historic and current greenhouse gas emissions, emissions reductions, and carbon sequestration. Under the Energy Policy Act (EPAct) reporters will have the opportunity to highlight specific achievements. If you have taken actions to lessen the greenhouse gas effect, either by decreasing greenhouse gas emissions or by sequestering carbon, the Department of Energy (DOE) encourages you to report your achievements under this program. The program has two related, but distinct parts. First, the program offers you an opportunity to report your annual emissions of greenhouse gases. Second, the program records your specific projects to reduce greenhouse gas emissions and increase carbon sequestration. Although participants in the program are strongly encouraged to submit reports on both, reports on either annual emissions or emissions reductions and carbon sequestration projects will be accepted. These guidelines and the supporting technical documents outline the rationale for the program and approaches to analyzing emissions and emissions reduction projects. Your annual emissions and emissions reductions achievements will be reported

  9. Mitigation of greenhouse gases from agriculture

    DEFF Research Database (Denmark)

    Schils, R.L.M.; Ellis, J. L.; de Klein, C. A. M.

    2013-01-01

    Models are widely used to simulate the emission of greenhouse gases (GHG). They help to identify knowledge gaps, estimate total emissions for inventories, develop mitigation options and policies, raise awareness and encourage adoption. These models vary in scale, scope and methodological approach...

  10. Inventory of gases of greenhouse effect and mitigation options for Colombia

    International Nuclear Information System (INIS)

    Academia colombiana de ciencias exactas fisicas y naturales

    1998-01-01

    In the last years, the possibility of a global heating due to the emissions of greenhouse gases has become a true concern for the international scientific community. As a result of it created the IPCC (Intergovernmental Panel on Climate Change) and the agreement mark was approved about the climatic change of the United Nations (UNFCCC) that was subscribed by the countries in 1992 in Rio de Janeiro city in Brazil. The objective of the agreement is the stabilization of the concentrations of the gases of GEI effect in the atmosphere at a level that allows avoiding interferences anthropogenic dangerous for the climatic system. It is sought to reach this level inside a sufficiently long term to allow the natural adaptation from the ecosystems to the climatic change, guaranteeing this way the production of foods and the sustainable development. The government from Colombia subscribed the agreement mark about the climatic change of the United Nations (UNFCCC) in 1992 and the congress of the republic ratified it in 1995. The signatory countries of the agreement commit to elaborate and to publish national inventories of anthropogenic emissions of gases of greenhouse effect as well as to develop plans to reduce or to control the emissions

  11. Voluntary reporting of greenhouse gases 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    The Voluntary Reporting of Greenhouse Gases Program, required by Section 1605(b) of the Energy Policy Act of 1992, records the results of voluntary measures to reduce, avoid, or sequester greenhouse gas emissions. In 1998, 156 US companies and other organizations reported to the Energy information Administration that, during 1997, they had achieved greenhouse gas emission reductions and carbon sequestration equivalent to 166 million tons of carbon dioxide, or about 2.5% of total US emissions for the year. For the 1,229 emission reduction projects reported, reductions usually were measured by comparing an estimate of actual emissions with an estimate of what emissions would have been had the project not been implemented.

  12. 75 FR 17331 - Public Hearings for the Mandatory Reporting Rule for Greenhouse Gases

    Science.gov (United States)

    2010-04-06

    ... for Greenhouse Gases AGENCY: Environmental Protection Agency (EPA). ACTION: Announcement of public... mandatory reporting of greenhouse gases, which will be published separately in the Federal Register. These proposed rules would [[Page 17332

  13. Greenhouse gases mitigation options and strategies for Tanzania

    Energy Technology Data Exchange (ETDEWEB)

    Mwandosya, M.J.; Meena, H.E.

    1996-12-31

    Tanzania became a party to the United Nations Framework on Climate Change (UN FCCC) when she ratified the Convention in March, 1996. Now that Tanzania and other developing countries are Parties to the UN FCCC, compliance with its provisions is mandatory. The legal requirements therefore provide a basis for their participation in climate change studies and policy formulation. All parties to the Convention are required by Article 4.1 of the United Nations Convention on Climate Change (UN FCCC) to develop, periodically update, publish, and make available national inventories of anthropogenic emissions and removal of greenhouse gases that are not controlled by the Montreal Protocol. This study on possible options for the mitigation of greenhouse gases in Tanzania is a preliminary effort towards the fulfilment of the obligation. In order to fulfil their obligations under the UN FCCC and have a meaningful mitigation assessment, identification and quantification of anthropogenic sources of atmospheric emissions of greenhouse gases in the country was undertaken. In this respect, the study of anthropogenic emissions by source and removals by sink of GHGs in Tanzania was done with the main objective of increasing the quantity and quality of base-line data available in order to further scientific understanding of the relationship of greenhouse gas emissions to climate change. Furthermore, the study facilitated identification of national policy and technological options that could reduce the level of emissions in the country.

  14. Atmospheric observations for quantifying emissions of point-source synthetic greenhouse gases (CF4, NF3 and HFC-23)

    Science.gov (United States)

    Arnold, Tim; Manning, Alistair J.; Li, Shanlan; Kim, Jooil; Park, Sunyoung; Fraser, Paul J.; Mitrevski, Blagoj; Steele, L. Paul; Krummel, Paul B.; Mühle, Jens; Weiss, Ray F.

    2016-04-01

    The fluorinated species carbon tetrafluoride (CF4; PFC-14), nitrogen trifluoride (NF3) and trifluoromethane (CHF3; HFC-23) are potent greenhouse gases with 100-year global warming potentials of 6,630, 16,100 and 12,400, respectively. Unlike the majority of CFC-replacement compounds that are emitted from fugitive and mobile emission sources, these gases are largely emitted from large single point sources - semiconductor manufacturing facilities (all three), aluminium smelting plants (CF4) and chlorodifluoromethane factories (HFC-23). In this work we show the potential for atmospheric measurements to understand regional sources of these gases and to highlight emission 'hotspots'. We target our analysis on measurements from two Advanced Global Atmospheric Gases Experiment (AGAGE) long term monitoring sites that are particularly sensitive to regional emissions of these gases: Gosan on Jeju Island in the Republic of Korea and Cape Grim on Tasmania in Australia. These sites measure CF4, NF3 and HFC-23 alongside a suite of greenhouse and stratospheric ozone depleting gases every two hours using automated in situ gas-chromatography mass-spectrometry instrumentation. We couple each measurement to an analysis of air history using the regional atmospheric transport model NAME (Numerical Atmospheric dispersion Modelling Environment) driven by 3D meteorology from the Met Office's Unified Model, and use a Bayesian inverse method (InTEM - Inversion Technique for Emission Modelling) to calculate yearly emission changes over a decade (2005-2015) at high spatial resolution. At present these gases make a small contribution to global radiative forcing, however, given that their impact could rise significantly and that point sources of such gases can be mitigated, atmospheric monitoring could be an important tool for aiding emissions reduction policy.

  15. Vision for an Open, Global Greenhouse Gas Information System (GHGIS)

    Science.gov (United States)

    Duren, R. M.; Butler, J. H.; Rotman, D.; Ciais, P.; Greenhouse Gas Information System Team

    2010-12-01

    Over the next few years, an increasing number of entities ranging from international, national, and regional governments, to businesses and private land-owners, are likely to become more involved in efforts to limit atmospheric concentrations of greenhouse gases. In such a world, geospatially resolved information about the location, amount, and rate of greenhouse gas (GHG) emissions will be needed, as well as the stocks and flows of all forms of carbon through the earth system. The ability to implement policies that limit GHG concentrations would be enhanced by a global, open, and transparent greenhouse gas information system (GHGIS). An operational and scientifically robust GHGIS would combine ground-based and space-based observations, carbon-cycle modeling, GHG inventories, synthesis analysis, and an extensive data integration and distribution system, to provide information about anthropogenic and natural sources, sinks, and fluxes of greenhouse gases at temporal and spatial scales relevant to decision making. The GHGIS effort was initiated in 2008 as a grassroots inter-agency collaboration intended to identify the needs for such a system, assess the capabilities of current assets, and suggest priorities for future research and development. We will present a vision for an open, global GHGIS including latest analysis of system requirements, critical gaps, and relationship to related efforts at various agencies, the Group on Earth Observations, and the Intergovernmental Panel on Climate Change.

  16. Emissions of greenhouse gases in the United States 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    This is the fourth Energy Information Administration (EIA) annual report on US emissions of greenhouse gases. This report presents estimates of US anthropogenic (human-caused) emissions of carbon dioxide, methane, nitrous oxide, and several other greenhouse gases for 1988 through 1994. Estimates of 1995 carbon dioxide, nitrous oxide, and halocarbon emissions are also provided, although complete 1995 estimates for methane are not yet available. Emissions of carbon dioxide increased by 1.9% from 1993 to 1994 and by an additional 0.8% from 1994 to 1995. Most carbon dioxide emissions are caused by the burning of fossil fuels for energy consumption, which is strongly related to economic growth, energy prices, and weather. The US economy grew rapidly in 1994 and slowed in 1995. Estimated emissions of methane increased slightly in 1994, as a result of a rise in emissions from energy and agricultural sources. Estimated nitrous oxide emissions increased by 1.8% in 1995, primarily due to increased use of nitrogen fertilizers and higher output of chemicals linked to nitrous oxide emissions. Estimated emissions of hydrofluorocarbons (HFCs) and perfluorocarbons (PFCs), which are known to contribute to global warming, increased by nearly 11% in 1995, primarily as a result of increasing substitution for chlorofluorocarbons (CFCs). With the exception of methane, the historical emissions estimates presented in this report are only slightly revised from those in last year`s report.

  17. Greenhouse gases accounting and reporting for waste management - A South African perspective

    International Nuclear Information System (INIS)

    Friedrich, Elena; Trois, Cristina

    2010-01-01

    This paper investigates how greenhouse gases are accounted and reported in the waste sector in South Africa. Developing countries (including South Africa) do not have binding emission reduction targets, but many of them publish different greenhouse gas emissions data which have been accounted and reported in different ways. Results show that for South Africa, inventories at national and municipal level are the most important tools in the process of accounting and reporting greenhouse gases from waste. For the development of these inventories international initiatives were important catalysts at national and municipal levels, and assisted in developing local expertise, resulting in increased output quality. However, discrepancies in the methodology used to account greenhouse gases from waste between inventories still remain a concern. This is a challenging issue for developing countries, especially African ones, since higher accuracy methods are more data intensive. Analysis of the South African inventories shows that results from the recent inventories can not be compared with older ones due to the use of different accounting methodologies. More recently the use of Clean Development Mechanism (CDM) procedures in Africa, geared towards direct measurements of greenhouse gases from landfill sites, has increased and resulted in an improvement of the quality of greenhouse gas inventories at municipal level.

  18. 'Home made' model to study the greenhouse effect and global warming

    Energy Technology Data Exchange (ETDEWEB)

    Onorato, P; Mascheretti, P; DeAmbrosis, A, E-mail: pasquale.onorato@unipv.it, E-mail: anna.deambrosisvigna@unipv.it [Department of Physics ' A. Volta' , University of Pavia, Via Bassi 6, I-27100 Pavia (Italy)

    2011-03-15

    In this paper a simplified two-parameter model of the greenhouse effect on the Earth is developed, starting from the well known two-layer model. It allows both the analysis of the temperatures of the inner planets, by focusing on the role of the greenhouse effect, and a comparison between the temperatures the planets should have in the absence of greenhouse effect and their actual ones. It may also be used to predict the average temperature of the Earth surface in the future, depending on the variations of the concentration of greenhouse gases in the atmosphere due to human activities. This model can promote an elementary understanding of global warming since it allows a simple formalization of the energy balance for the Earth in the stationary condition, in the presence of greenhouse gases. For these reasons it can be introduced in courses for undergraduate physics students and for teacher preparation.

  19. On the role of atmosphere-ocean interactions in the expected long-term changes of the Earth's ozone layer caused by greenhouse gases

    Science.gov (United States)

    Zadorozhny, Alexander; Dyominov, Igor

    It is well known that anthropogenic emissions of greenhouse gases into the atmosphere produce a global warming of the troposphere and a global cooling of the stratosphere. The expected stratospheric cooling essentially influences the ozone layer via increased polar stratospheric cloud formation and via temperature dependences of the gas phase reaction rates. One more mechanism of how greenhouse gases influences the ozone layer is enhanced water evaporation from the oceans into the atmosphere because of increasing temperatures of the ocean surface due to greenhouse effect. The subject of this paper is a study of the influence of anthropogenic pollution of the atmosphere by the greenhouse gases CO2, CH4, N2O and ozone-depleting chlorine and bromine compounds on the expected long-term changes of the ozone layer with taking into account an increase of water vapour content in the atmosphere due to greenhouse effect. The study based on 2-D zonally averaged interactive dynamical radiative-photochemical model of the troposphere and stratosphere. The model allows to self-consistently calculating diabatic circulation, temperature, gaseous composition of the troposphere and stratosphere at latitudes from the South to North Poles, as well as distribution of sulphate aerosol particles and polar stratospheric clouds of two types. It was supposed in the model that an increase of the ocean surface temperature caused by greenhouse effect is similar to calculated increase of atmospheric surface temperature. Evaporation rate from the ocean surface was computed in dependence of latitude. The model time-dependent runs were made for the period from 1975 to 2100 using two IPCC scenarios depicting maximum and average expected increases of greenhouse gases in the atmosphere. The model calculations show that anthropogenic increasing of water vapour abundance in the atmosphere due to heating of the ocean surface caused by greenhouse effect gives a sensible contribution to the expected ozone

  20. Environment taxation and greenhouse gases (general tax on energy polluting activities and emissions trading)

    International Nuclear Information System (INIS)

    Parayre, P.; Bruhnes, P.; Huglo, Ch.

    2000-12-01

    This document brings together 11 expert testimonies about the French general tax on polluting activities (GTPA). Content: 1 - the GTPA today and in 2001: the first year GTPA, the GTPA 2001 in the water sector, the everyday formal procedures linked with GTPA, the contentious aspects of GTPA; 2 - the eco-tax or energy-GTPA: European framework of energy products taxing, enforcement and implementation of the energy-GTPA in France; 3 - the negotiable emission permits: negotiable permits for companies with a strong energy intensity, functioning of emission permits in a global strategy, the position of the European Commission about negotiable permits and the perspectives in this domain at the community level; 4 - towards a reduction of greenhouse gases: the Goeteborg protocol, the consequences of La Haye's COP6, the position of a type-sector, an efficient system for the abatement of greenhouse gases by the producing sector. (J.S.)

  1. Reference projections for greenhouse gases in the Netherlands: emission projections for 2001 - 2010

    NARCIS (Netherlands)

    Wijngaarden R van den; Ybema JR; Gijsen A; Oude Lohuis JA; Thomas R; Daniels B; Dril AWN van; Volkers CH; Energieonderzoek Centrum; LAE

    2002-01-01

    The results are presented of the project 'reference projection for energy and greenhouse gases' carried out by RIVM and ECN for the Ministries of Housing, Spatial Planning and the Environment, and of Economic Affairs. The reference projection considers emission of greenhouse gases in

  2. Isotope aided studies of atmospheric carbon dioxide and other greenhouse gases. Phase II

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-01-01

    The substantial increase in atmospheric greenhouse gas concentrations and their role in global warming have become major concerns of world governments. Application of isotope techniques to label sources and sinks of CO{sub 2} and other greenhouse gases has emerged as a potentially powerful method for reducing uncertainties in the global CO{sub 2} budgets and for tracing pathways and interaction of terrestrial, oceanic, and atmospheric pools of carbon. As with CO{sub 2} concentration measurements, meaningful integration of isotopes in global models requires careful attention to quality assurance, quality control and inter-comparability of measurements made by a number of networks and laboratories. To support improvements in isotope measurement capabilities, the IAEA began implementing Co-ordinated Research Projects (CRPs) in 1992. The first project, entitled Isotope Variations of Carbon Dioxide and other Trace Gases in the Atmosphere, was implemented from 1992 to 1994. A significant contribution was made towards a better understanding of the global carbon cycle and especially of the sources and sinks of carbon with data on the {sup 14}C and {sup 13}C content of atmospheric CO{sub 2}, pointing to a better understanding of the problem of the 'missing sink' in the global carbon cycle. Important methodological developments in the field of high precision stable isotope mass spectrometry and improved data acquisition procedures emerged from work carried out within the framework of this programme. The development of pressurized gas standards and planning for an associated interlaboratory calibration were initiated. Due to the good progress and long standing nature of the required work a second CRP was initiated and implemented from 1996 to 1999. It was entitled Isotope aided Studies of Atmospheric Carbon Dioxide and Other Trace Gases - Phase II, to document the close relationship of both programmes. This publication provides an overview of the scientific outcomes of the

  3. Isotope aided studies of atmospheric carbon dioxide and other greenhouse gases. Phase II

    International Nuclear Information System (INIS)

    2002-01-01

    The substantial increase in atmospheric greenhouse gas concentrations and their role in global warming have become major concerns of world governments. Application of isotope techniques to label sources and sinks of CO 2 and other greenhouse gases has emerged as a potentially powerful method for reducing uncertainties in the global CO 2 budgets and for tracing pathways and interaction of terrestrial, oceanic, and atmospheric pools of carbon. As with CO 2 concentration measurements, meaningful integration of isotopes in global models requires careful attention to quality assurance, quality control and inter-comparability of measurements made by a number of networks and laboratories. To support improvements in isotope measurement capabilities, the IAEA began implementing Co-ordinated Research Projects (CRPs) in 1992. The first project, entitled Isotope Variations of Carbon Dioxide and other Trace Gases in the Atmosphere, was implemented from 1992 to 1994. A significant contribution was made towards a better understanding of the global carbon cycle and especially of the sources and sinks of carbon with data on the 14 C and 13 C content of atmospheric CO 2 , pointing to a better understanding of the problem of the 'missing sink' in the global carbon cycle. Important methodological developments in the field of high precision stable isotope mass spectrometry and improved data acquisition procedures emerged from work carried out within the framework of this programme. The development of pressurized gas standards and planning for an associated interlaboratory calibration were initiated. Due to the good progress and long standing nature of the required work a second CRP was initiated and implemented from 1996 to 1999. It was entitled Isotope aided Studies of Atmospheric Carbon Dioxide and Other Trace Gases - Phase II, to document the close relationship of both programmes. This publication provides an overview of the scientific outcomes of the studies conducted within Phase

  4. 75 FR 75059 - Mandatory Reporting of Greenhouse Gases: Injection and Geologic Sequestration of Carbon Dioxide

    Science.gov (United States)

    2010-12-01

    ... Greenhouse Gases: Injection and Geologic Sequestration of Carbon Dioxide; Final Rule #0;#0;Federal Register... Mandatory Reporting of Greenhouse Gases: Injection and Geologic Sequestration of Carbon Dioxide AGENCY... greenhouse gas monitoring and reporting from facilities that conduct geologic sequestration of carbon dioxide...

  5. Impact Delivery of Reduced Greenhouse Gases on Early Mars

    Science.gov (United States)

    Haberle, R. M.; Zahnle, K. J.; Barlow, N. G.

    2017-12-01

    Reducing greenhouse gases are the latest trend in finding solutions to the early Mars climate dilemma. In thick CO2 atmospheres with modest concentrations of H2 and/or CH4, collision induced absorptions can reduce the outgoing long wave radiation enough to provide a significant greenhouse effect. To raise surface temperatures significantly by this process, surface pressures must be at least 500 mb and H2 and/or CH4 concentrations must be at or above the several percent level. Volcanism, serpentinization, and impacts are possible sources for reduced gases. Here we investigate the delivery of such gases by impact degassing from comets and asteroids. We use a time-marching stochastic impactor model that reproduces the observed crater size frequency distribution of Noachian surfaces. Following each impact, reduced gases are added to the atmosphere from a production function based on gas equilibrium calculations for several classes of meteorites and comets at typical post-impact temperatures. Escape and photochemistry then remove the reduced greenhouse gases continuously in time throughout each simulation. We then conduct an ensemble of simulations with this simple model varying the surface pressure, impact history, reduced gas production and escape functions, and mix of impactor types, to determine if this could be a potentially important part of the early Mars story. Our goal is to determine the duration of impact events that elevate reduced gas concentrations to significant levels and the total time of such events throughout the Noachian. Our initial simulations indicate that large impactors can raise H2 concentrations above the 10% level - a level high enough for a very strong greenhouse effect in a 1 bar CO2 atmosphere - for millions of years, and that the total time spent at or above that level can be in the 10's of millions of years range. These are interesting results that we plan to explore more thoroughly for the meeting.

  6. Greenhouse effect gases and climatic change: quantification and tools to fight against the emissions

    International Nuclear Information System (INIS)

    Bizec, R.F.

    2006-01-01

    The greenhouse effect gases are considered responsible of the climatic change. Their consequences are numerous: increase of the sea level, displacement of the climatic areas, modification of the forests ecosystems, rarefaction of water, progressively decrease of glaciers... This fast modification of the climate would lead to the increase of natural hazards as hurricanes, storms, hails and so on. It is then a necessity to reduce as fast as possible the greenhouse effect gases. The author describes in a first part the methods of the greenhouse effect gases quantification and in the second part the tools to fight these gases, regulations, standards, economic tools, national tools and the projects. (A.L.B.)

  7. A Group Increment Scheme for Infrared Absorption Intensities of Greenhouse Gases

    Science.gov (United States)

    Kokkila, Sara I.; Bera, Partha P.; Francisco, Joseph S.; Lee, Timothy J.

    2012-01-01

    A molecule's absorption in the atmospheric infrared (IR) window (IRW) is an indicator of its efficiency as a greenhouse gas. A model for estimating the absorption of a fluorinated molecule within the IRW was developed to assess its radiative impact. This model will be useful in comparing different hydrofluorocarbons and hydrofluoroethers contribution to global warming. The absorption of radiation by greenhouse gases, in particular hydrofluoroethers and hydrofluorocarbons, was investigated using ab initio quantum mechanical methods. Least squares regression techniques were used to create a model based on this data. The placement and number of fluorines in the molecule were found to affect the absorption in the IR window and were incorporated into the model. Several group increment models are discussed. An additive model based on one-carbon groups is found to work satisfactorily in predicting the ab initio calculated vibrational intensities.

  8. Net global warming potential and greenhouse gas intensity influenced by irrigation, tillage, crop rotation, and nitrogen fertilization

    Science.gov (United States)

    Little information exists about sources and sinks of greenhouse gases (GHGs) affected by management practices to account for net emissions from agroecosystems. We evaluated the effects of irrigation, tillage, crop rotation, and N fertilization on net global warming potential (GWP) and greenhouse gas...

  9. Quantification of the greenhouse effect gases at the territorial scale. Final report

    International Nuclear Information System (INIS)

    Magnin, G.; Lacassagne, S.

    2003-07-01

    An efficient action against the greenhouse effect needs the implication of the local collectivities. To implement appropriate energy policies, deciders need information and tools to quantify the greenhouse gases and evaluate the obtained results of their greenhouse gases reduction policies. This study is a feasibility study of the tools realization, adapted to the french context. It was done in three steps: analysis of the existing tools, application to the french context and elaboration of the requirements of appropriate tools. This report presents the study methodology, the information analysis and the conclusions. (A.L.B.)

  10. Avoidance of fluorinated greenhouse gases. Possibilities of an early exit; Fluorierte Treibhausgase vermeiden. Wege zum Ausstieg

    Energy Technology Data Exchange (ETDEWEB)

    Becken, Katja; Graaf, Daniel de; Elsner, Cornelia; Hoffmann, Gabriele; Krueger, Franziska; Martens, Kerstin; Plehn, Wolfgang; Sartorius, Rolf

    2010-11-15

    In comparison to carbon dioxide, fluorinated greenhouse gases are more harmful up to a factor of 24,000. Today the amount of fluorinated greenhouse gases of the world-wide emissions of climatic harmful gases amounts 2 % and increases to 6 % in the year 2050. The authors of the contribution under consideration report on possibilities for the avoidance of the emissions of fluorinated greenhouse gases. The characteristics and ecological effects of fluorinated gases as well as the development of the emission in Germany are presented. Subsequently, the applications of fluorinated hydrocarbons are described.

  11. 75 FR 14081 - Mandatory Reporting of Greenhouse Gases: Minor Harmonizing Changes to the General Provisions

    Science.gov (United States)

    2010-03-24

    ... (subpart NN): (A) All fractionators. (B) All local natural gas distribution companies. Industrial greenhouse gas suppliers (subpart OO): (A) All producers of industrial greenhouse gases. (B) Importers of industrial greenhouse gases with annual bulk imports of N2O, fluorinated GHG, and CO2 that in combination are...

  12. Potential contribution of the Clean Coal Program to reducing global emissions of greenhouse gases

    International Nuclear Information System (INIS)

    Blasing, T.J.

    1992-01-01

    Environmental considerations of Clean Coal Program (CCP) initially focused on reducing emissions of sulfur dioxide (SO 2 ) and nitrogen oxides (NO x ) to the atmosphere. However, it has also become apparent that some Clean Coal Technologies (CCTs) may contribute appreciably to reducing emissions of carbon dioxide (CO 2 ), thereby diminishing the rate of any global warming that may result from greenhouse effects. This is particularly true for CCTs involving replacement of a major portion of an existing facility and/or providing the option of using a different fuel form (the repowering CCTs). Because the subject of global-scale climate warming is receiving increased attention, the effect of CCTs on Co 2 emissions has become a topic of increasing interest. The Final Programmatic Environmental Impact Statement for the Clean Coal Technology Demonstration Program projected that with full implementation of those repowering CCTs that would be most effective at reducing CO 2 emissions (Pressurized Fluidized Bed and Coal Gasification Fuel Cell technologies), the national fossil-fuel Co 2 emissions by the year 2010 would be roughly 90% of the emissions that would occur with no implementation of any CCTs by the same date. It is the purpose of this paper to examine the global effect of such a reduction in greenhouse gas emissions, and to compare that effect with effects of other strategies for reducing global greenhouse gas emissions

  13. Per capita emissions of greenhouse gases and international trade

    International Nuclear Information System (INIS)

    Karman, D.; Baptiste, S.

    1994-01-01

    The role played by international trade in Canada's emissions of greenhouse gases is investigated. Data used in the study include Environment Canada greenhouse gas emission estimates for 1990, a Statistics Canada input-output model linking greenhouse gas emissions to economic activity in different sectors, and monetary statistics on imports and exports. Subject to some simplifying assumptions, it is estimated that nearly 20% of Canada's greenhouse gas emissions can be attributed to the production of commodities destined for export to other countries. If the same greenhouse gas emission intensities are assumed for Canada's imports, the greenhouse gas emissions due to Canada's net trade is nearly 7% of the 660 megatonnes of CO 2 equivalent emissions for 1990. Commodities from natural resource exploitation head the list of greenhouse gas emissions attributed to international trade, as expected from their large export volumes and large greenhouse gas emission intensities. 4 refs., 1 fig

  14. Greenhouse effect of chlorofluorocarbons and other trace gases

    Science.gov (United States)

    Hansen, James; Lacis, Andrew; Prather, Michael

    1989-01-01

    A comparison is made of the radiative (greenhouse) forcing of the climate system due to changes of atmospheric chlorofluorocarbons and other trace gases. It is found that CFCs, defined to include chlorofluorocarbons, chlorocarbons, and fluorocarbons, now provide about one-quater of current annual increases in anthropogenic greenhouse climate forcing. If the growth rates of CFC production in the early 1970s had continued to the present, current annual growth of climate forcing due to CFCs would exceed that due to CO2.

  15. Requirements for a Global Greenhouse Gas Information System

    Science.gov (United States)

    Duren, R.; Boland, S.; Lempert, R.; Miller, C.

    2008-12-01

    A global greenhouse gas information system will prove a critical component of any successful effort to mitigate climate change which relies on limiting the atmospheric concentration of greenhouse gases. The system will provide the situational awareness necessary to actively reduce emissions, influence land use change, and sequester carbon. The information from such a system will be subject to intense scrutiny. Therefore, an effective system must openly and transparently produce data of unassailable quality. A global greenhouse gas information system will likely require a combination of space-and air-based remote- sensing assets, ground-based measurements, carbon cycle modeling and self-reporting. The specific requirements on such a system will be shaped by the degree of international cooperation it enjoys and the needs of the policy regime it aims to support, which might range from verifying treaty obligations, to certifying the tradable permits and offsets underlying a market in greenhouse gas emission reductions, to providing a comprehensive inventory of high and low emitters that could be used by non-governmental organizations and other international actors. While some technical studies have examined particular system components in single scenarios, there remains a need for a comprehensive survey of the range of potential requirements, options, and strategies for the overall system. We have initiated such a survey and recently hosted a workshop which engaged a diverse community of stakeholders to begin synthesizing requirements for such a system, with an initial focus on carbon dioxide. In this paper we describe our plan for completing the definition of the requirements, options, and strategies for a global greenhouse gas monitoring system. We discuss our overall approach and provide a status on the initial requirements synthesis activity.

  16. How to (really) reduce the greenhouse gases releases

    International Nuclear Information System (INIS)

    Masurel, J.; Frot, J.

    2009-01-01

    Based on the last 2008 GIEC report, 'Sauvons le Climat' presupposes the character essentially anthropic of the climatic change and concludes to the requirement to divide by four, between now and 2050, the releases of greenhouse gases of the OECD countries. The world energetic balance is composed, for 80% of carbonaceous energies: petroleum, coal and natural gas. At the world-wide level, the preoccupations of the energetic resources and those of climate protection go therefore hand in hand. It is the same thing for the European Union but not for France whose carbonaceous energies part is only of 50%. That is to say, in France, an energy savings has only one chance of two to improve its energetic independence and to protect the climate. Especially for France, 'Sauvons le Climat' gives then here some advices to really reduce the greenhouse gases releases. (O.M.)

  17. 76 FR 22825 - Mandatory Reporting of Greenhouse Gases: Petroleum and Natural Gas Systems

    Science.gov (United States)

    2011-04-25

    ... Reporting of Greenhouse Gases: Petroleum and Natural Gas Systems AGENCY: Environmental Protection Agency... Subpart W: Petroleum and Natural Gas Systems of the Greenhouse Gas Reporting Rule. As part of the... greenhouse gas emissions for the petroleum and natural gas systems source category of the greenhouse gas...

  18. Calibration standards for major greenhouse gases and carbon monoxide: status and challenges.

    Science.gov (United States)

    Zellweger, Christoph; Mohn, Joachim; Wyss, Simon A.; Brewer, Paul; Mace, Tatiana; Nieuwenkamp, Gerard; Pearce-Hill, Ruth; Tarhan, Tanil; Walden, Jari; Emmenegger, Lukas

    2017-04-01

    Human influence on increasing greenhouse gas mole fractions in the atmosphere and effects on positive radiative forcing as well as observed global warming and sea level rise are well accepted [1]. For interpretation of global or continental scale greenhouse gas data, obtained from different laboratories, measurement results have to coincide within compatibility goals set by the World Meteorological Organization (WMO) [2]. Despite significant advances in measurement techniques [3], WMO compatibility goals are regularly missed, shown by round-robin experiments of standard gases and comparisons of field samples or parallel measurements. Therefore, precise and accurate calibration using standards with good long-term stability is needed to reduce uncertainties of atmospheric measurements. This is addressed by the WMO Global Atmosphere Watch Programme (GAW), where Central Calibration Laboratories (CCLs) maintain calibration scales to ensure consistency of measurements within the network to primary reference materials. Furthermore, participating GAW laboratories are supported by World Calibration Centres (WCCs) performing audits and organizing round-robin comparisons. The CCL participates regularly in comparisons with independent primary scales to assure traceability of established primary reference materials to fundamental quantities (SI) [e.g. 4]. Within the European Metrology Research Programme (EMRP) ENV52 project "Metrology for high-impact greenhouse gases" (HIGHGAS), static and dynamic primary reference gas mixtures for ambient levels of CO2, CH4, N2O and CO in air were prepared by different National Metrology Institutes (NMIs). In order to progress beyond the state of the art, research focused on improving passivation chemistry, quantification of target impurities in the air matrix, and determining the isotopic composition. These primary reference gas mixtures were compared in a round robin experiment against standards calibrated against reference gases currently

  19. Atmospheric observations and inverse modelling for quantifying emissions of point-source synthetic greenhouse gases in East Asia

    Science.gov (United States)

    Arnold, Tim; Manning, Alistair; Li, Shanlan; Kim, Jooil; Park, Sunyoung; Muhle, Jens; Weiss, Ray

    2017-04-01

    The fluorinated species carbon tetrafluoride (CF4; PFC-14), nitrogen trifluoride (NF3) and trifluoromethane (CHF3; HFC-23) are potent greenhouse gases with 100-year global warming potentials of 6,630, 16,100 and 12,400, respectively. Unlike the majority of CFC-replacements that are emitted from fugitive and mobile emission sources, these gases are mostly emitted from large single point sources - semiconductor manufacturing facilities (all three), aluminium smelting plants (CF4) and chlorodifluoromethane (HCFC-22) factories (HFC-23). In this work we show that atmospheric measurements can serve as a basis to calculate emissions of these gases and to highlight emission 'hotspots'. We use measurements from one Advanced Global Atmospheric Gases Experiment (AGAGE) long term monitoring sites at Gosan on Jeju Island in the Republic of Korea. This site measures CF4, NF3 and HFC-23 alongside a suite of greenhouse and stratospheric ozone depleting gases every two hours using automated in situ gas-chromatography mass-spectrometry instrumentation. We couple each measurement to an analysis of air history using the regional atmospheric transport model NAME (Numerical Atmospheric dispersion Modelling Environment) driven by 3D meteorology from the Met Office's Unified Model, and use a Bayesian inverse method (InTEM - Inversion Technique for Emission Modelling) to calculate yearly emission changes over seven years between 2008 and 2015. We show that our 'top-down' emission estimates for NF3 and CF4 are significantly larger than 'bottom-up' estimates in the EDGAR emissions inventory (edgar.jrc.ec.europa.eu). For example we calculate South Korean emissions of CF4 in 2010 to be 0.29±0.04 Gg/yr, which is significantly larger than the Edgar prior emissions of 0.07 Gg/yr. Further, inversions for several separate years indicate that emission hotspots can be found without prior spatial information. At present these gases make a small contribution to global radiative forcing, however, given

  20. Trace Gases, CO2, Climate, and the Greenhouse Effect.

    Science.gov (United States)

    Aubrecht, Gordon J., II

    1988-01-01

    Reports carbon dioxide and other trace gases can be the cause of the Greenhouse Effect. Discusses some effects of the temperature change and suggests some solutions. Included are several diagrams, graphs, and a table. (YP)

  1. Recycling of plastic: accounting of greenhouse gases and global warming contributions

    DEFF Research Database (Denmark)

    Astrup, Thomas; Fruergaard, Thilde; Christensen, Thomas Højlund

    2009-01-01

    Major greenhouse gas (GHG) emissions related to plastic waste recycling were evaluated with respect to three management alternatives: recycling of clean, single-type plastic, recycling of mixed/contaminated plastic, and use of plastic waste as fuel in industrial processes. Source-separated plasti...... to a mixture of different plastic types and/or contamination, the plastic should be used for energy utilization. Recycling of plastic waste for substitution of other materials such as wood provided no savings with respect to global warming....

  2. Mechanisms of impact of greenhouse gases on the Earth's ozone layer in the Polar Regions

    Science.gov (United States)

    Zadorozhny, Alexander; Dyominov, Igor

    A numerical 2-D zonally averaged interactive dynamical radiative-photochemical model of the atmosphere including aerosol physics is used to examine the impact of the greenhouse gases CO2, CH4, and N2O on the future long-term changes of the Earth's ozone layer, in particular on its expected recovery after reduction of anthropogenic discharges of chlorine and bromine compounds into the atmosphere. The model allows calculating self-consistently diabatic circu-lation, temperature, gaseous composition of the troposphere and stratosphere at latitudes from the North to South Poles, as well as distribution of sulphate aerosol particles and polar strato-spheric clouds (PSCs) of types I and II. The scenarios of expected changes of the anthropogenic pollutants for the period from 1980 through 2050 are taken from Climate Change 2001. The processes, which determine the influence of anthropogenic growth of atmospheric abun-dance of the greenhouse gases on the long-term changes of the Earth's ozone layer in the Polar Regions, have been studied in details. Expected cooling of the stratosphere caused by increases of greenhouse gases, most importantly CO2, essentially influences the ozone layer by two ways: through temperature dependencies of the gas phase reaction rates and through enhancement of polar ozone depletion via increased PSC formation. The model calculations show that a weak-ness in efficiencies of all gas phase catalytic cycles of the ozone destruction due to cooling of the stratosphere is a dominant mechanism of the impact of the greenhouse gases on the ozone layer in Antarctic as well as at the lower latitudes. This mechanism leads to a significant acceleration of the ozone layer recovery here because of the greenhouse gases growth. On the contrary, the mechanism of the impact of the greenhouse gases on the ozone through PSC modification be-gins to be more effective in Arctic in comparison with the gas phase mechanism in springs after about 2020, which leads to retard

  3. Agriculture and greenhouse gases emissions reduction; Agriculture et reduction des emissions de gaz a effet de serre

    Energy Technology Data Exchange (ETDEWEB)

    Leguet, B.

    2005-09-15

    In France, the agriculture is the third sector of greenhouse gases emitter. Meanwhile since 1990 this sector poorly reduces its greenhouse gases. It is necessary to find mechanisms which allow the valorization of emissions reduction. In this framework the author presents the specificities of the greenhouse gases emissions of the agricultural sector, the possible incentives of emissions reduction, the reduction projects in France and abroad. (A.L.B.)

  4. The greenhouse effect - little strokes fell great oaks

    International Nuclear Information System (INIS)

    Kanestroem, Ingolf

    2003-01-01

    It is a common assumption that carbon dioxide and other greenhouse gases constitute only a very small fraction of the atmosphere and thus cannot be as important as the climate researchers maintain. However, the adage of the title is appropriate for the impact of the greenhouse gases on the atmosphere. During the last 25 years, the global temperature has risen 0,5 o C, and during the last century by 0,75 o C. Thus according to the UN Climate Panel, there is evidence of a noticeable anthropogenic impact on the global climate. The article discusses the concept of greenhouse effect, the composition of the atmosphere, greenhouse gases and their importance, emission of carbon dioxide and natural climate changes

  5. NF ISO 14064-1 Greenhouse gases. Part 1: specifications and guidance at the organization level for quantification and reporting of greenhouse gas emissions and removals

    International Nuclear Information System (INIS)

    2005-01-01

    This document describes methodology for quantification, monitoring of greenhouse gas as well as for drafting of inventory report for organisms. Thus it suggests a method for inventory declarations for organism greenhouse gas and provides support for the monitoring and the management of their emission. It provides the terms and definitions, the principles, the greenhouse gases inventory design, development and components, the greenhouse inventory quality management, the reporting of greenhouse gases and the organization role in verification activities. (A.L.B.)

  6. Maximum weight of greenhouse effect to global temperature variation

    International Nuclear Information System (INIS)

    Sun, Xian; Jiang, Chuangye

    2007-01-01

    Full text: The global average temperature has risen by 0.74 0 C since the late 19th century. Many studies have concluded that the observed warming in the last 50 years may be attributed to increasing concentrations of anthropogenic greenhouse gases. But some scientists have a different point of view. Global climate change is affected not only by anthropogenic activities, but also constraints in climate system natural factors. How much is the influencing weight of C02's greenhouse effects to the global temperature variation? Does global climate continue warming or decreasing in the next 20 years? They are two hot spots in global climate change. The multi-timescales analysis method - Empirical mode decomposition (EMD) is used to diagnose global annual mean air temperature dataset for land surface provided by IPCC and atmospheric content of C02 provided by the Carbon Dioxide Information Analysis Center (CDIAC) during 1881-2002. The results show that: Global temperature variation contains quasi-periodic oscillations on four timescales (3 yr, 6 yr, 20 yr and 60 yr, respectively) and a century-scale warming trend. The variance contribution of IMF1-IMF4 and trend is 17.55%, 11.34%, 6.77%, 24.15% and 40.19%, respectively. The trend and quasi-60 yr oscillation of temperature variation are the most prominent; C02's greenhouse effect on global temperature variation is mainly century-scale trend. The contribution of C02 concentration to global temperature variability is not more than 40.19%, whereas 59.81% contribution to global temperature variation is non-greenhouse effect. Therefore, it is necessary to re-study the dominant factors that induce the global climate change; It has been noticed that on the periods of 20 yr and 60 yr oscillation, the global temperature is beginning to decreased in the next 20 years. If the present C02 concentration is maintained, the greenhouse effect will be too small to countercheck the natural variation in global climate cooling in the next 20

  7. NF ISO 14064-2. Greenhouse gases. Part 2: specifications and guidance at the project level for quantification, monitoring and reporting of greenhouse gas emission reductions or removal enhancements

    International Nuclear Information System (INIS)

    2005-01-01

    This document describes methodology for quantification, monitoring and reporting of activities intended to cause greenhouse gas emissions and reductions at projects level (activity modifying the conditions identified in a baseline scenario, intended to reduce emissions or to increase the removal of greenhouse gases). Thus it suggests a method for the declarations of inventory of projects greenhouse gases and provides support for the monitoring and the management of emissions. It provides terms and definitions, principles, the introduction to greenhouse gases projects and the requirements for greenhouse gas projects. (A.L.B.)

  8. The Role of Long-Lived Greenhouse Gases as Principal LW Control Knob that Governs the Global Surface Temperature for Past and Future Climate Change

    Science.gov (United States)

    Lacis, Andrew A.; Hansen, James E.; Russell, Gary L.; Oinas, Valdar; Jonas, Jeffrey

    2013-01-01

    The climate system of the Earth is endowed with a moderately strong greenhouse effect that is characterized by non-condensing greenhouse gases (GHGs) that provide the core radiative forcing. Of these, the most important is atmospheric CO2. There is a strong feedback contribution to the greenhouse effect by water vapor and clouds that is unique in the solar system, exceeding the core radiative forcing due to the non-condensing GHGs by a factor of three. The significance of the non-condensing GHGs is that once they have been injected into the atmosphere, they remain there virtually indefinitely because they do not condense and precipitate from the atmosphere, their chemical removal time ranging from decades to millennia. Water vapor and clouds have only a short lifespan, with their distribution determined by the locally prevailing meteorological conditions, subject to Clausius-Clapeyron constraint. Although solar irradiance is the ultimate energy source that powers the terrestrial greenhouse effect, there has been no discernible long-term trend in solar irradiance since precise monitoring began in the late 1970s. This leaves atmospheric CO2 as the effective control knob driving the current global warming trend. Over geological time scales, volcanoes are the principal source of atmospheric CO2, and the weathering of rocks is the principal sink, with the biosphere participating as both a source and a sink. The problem at hand is that human industrial activity is causing atmospheric CO2, to increase by 2 ppm per year, whereas the interglacial rate has been 0.005 ppm per year. This is a geologically unprecedented rate to turn the CO2 climate control knob. This is causing the global warming that threatens the global environment.

  9. The role of long-lived greenhouse gases as principal LW control knob that governs the global surface temperature for past and future climate change

    Directory of Open Access Journals (Sweden)

    Andrew A. Lacis

    2013-11-01

    Full Text Available The climate system of the Earth is endowed with a moderately strong greenhouse effect that is characterised by non-condensing greenhouse gases (GHGs that provide the core radiative forcing. Of these, the most important is atmospheric CO2. There is a strong feedback contribution to the greenhouse effect by water vapour and clouds that is unique in the solar system, exceeding the core radiative forcing due to the non-condensing GHGs by a factor of three. The significance of the non-condensing GHGs is that once they have been injected into the atmosphere, they remain there virtually indefinitely because they do not condense and precipitate from the atmosphere, their chemical removal time ranging from decades to millennia. Water vapour and clouds have only a short lifespan, with their distribution determined by the locally prevailing meteorological conditions, subject to Clausius–Clapeyron constraint. Although solar irradiance is the ultimate energy source that powers the terrestrial greenhouse effect, there has been no discernable long-term trend in solar irradiance since precise monitoring began in the late 1970s. This leaves atmospheric CO2 as the effective control knob driving the current global warming trend. Over geological time scales, volcanoes are the principal source of atmospheric CO2, and the weathering of rocks is the principal sink, with the biosphere participating as both a source and a sink. The problem at hand is that human industrial activity is causing atmospheric CO2, to increase by 2 ppm yr−1, whereas the interglacial rate has been 0.005 ppm yr−1. This is a geologically unprecedented rate to turn the CO2 climate control knob. This is causing the global warming that threatens the global environment.

  10. The role of long-lived greenhouse gases as principal LW control knob that governs the global surface temperature for past and future climate change

    Energy Technology Data Exchange (ETDEWEB)

    Lacis, Andrew A.; Hansen, James E.; Russell, Gary L.; Oinas, Valdar; Jonas, Jeffrey [NASA Goddard Inst. for Space Studies, New York (United States)], e-mail: Andrew.A.Lacis@nasa.gov

    2013-11-15

    The climate system of the Earth is endowed with a moderately strong greenhouse effect that is characterised by non-condensing greenhouse gases (GHGs) that provide the core radiative forcing. Of these, the most important is atmospheric CO{sub 2}. There is a strong feedback contribution to the greenhouse effect by water vapour and clouds that is unique in the solar system, exceeding the core radiative forcing due to the non-condensing GHGs by a factor of three. The significance of the non-condensing GHGs is that once they have been injected into the atmosphere, they remain there virtually indefinitely because they do not condense and precipitate from the atmosphere, their chemical removal time ranging from decades to millennia. Water vapour and clouds have only a short lifespan, with their distribution determined by the locally prevailing meteorological conditions, subject to Clausius-Clapeyron constraint. Although solar irradiance is the ultimate energy source that powers the terrestrial greenhouse effect, there has been no discern able long-term trend in solar irradiance since precise monitoring began in the late seventies. This leaves atmospheric CO{sub 2} as the effective control knob driving the current global warming trend. Over geological time scales, volcanoes are the principal source of atmospheric CO{sub 2}, and the weathering of rocks is the principal sink, with the biosphere participating as both a source and a sink. The problem at hand is that human industrial activity is causing atmospheric CO{sub 2}, to increase by 2 ppm yr{sup -1}, whereas the interglacial rate has been 0.005 ppm yr{sup -1}. This is a geologically unprecedented rate to turn the CO{sub 2} climate control knob. This is causing the global warming that threatens the global environment.

  11. Grappling with greenhouse

    International Nuclear Information System (INIS)

    Mitchell, C.D.

    1992-01-01

    A natural greenhouse effect keeps the Earth at a temperature suitable for life. Some of the gases responsible for the greenhouse effect are increasing at an unprecedented rate because of human activity. These increased levels of greenhouse gases in the atmosphere will strengthen the natural greenhouse effect, leading to an overall warming of the Earth's surface. Global warming resulting from the enhanced greenhouse effect is likely to be obscured by normal climatic fluctuations for another ten years or more. The extent of human-caused climate change will depend largely on future concentrations of greenhouse gases in the atmosphere. In turn, the composition of the atmosphere depends on the release of greenhouse gases. Releases are hard to predict, because they require an understanding of future human activity. The composition of the atmosphere also depends on the processes which remove greenhouse gases from it. This booklet is summarizing the latest research results in the form of climate change scenarios. The present scenarios of change are based on climate models, together with an understanding of how present-day climate, with its inherent natural variability, affects human activities. These scenarios present a coherent range of future possibilities for climate; they are not predictions but they serve as a useful starting point. It is estimated that human-caused climate change will affect all aspects of life in Australia, including our cities, agriculture, pests and diseases, fisheries and natural ecosystems. 15 figs., ills

  12. The economics of controlling stock pollutants: An efficient strategy for greenhouse gases

    International Nuclear Information System (INIS)

    Falk, I.; Mendelsohn, R.

    1993-01-01

    Optimal control theory is applied to develop an efficient strategy to control stock pollutants such as greenhouse gases and hazardous waste. The optimal strategy suggests that, at any time, the marginal costs of abatement should be equated with the present value of the marginal damage of timely unabated emission. The optimal strategy calls for increasingly tight abatement over time as the pollutant stock accumulates. The optimal policy applied to greenhouse gases suggest moderate abatement efforts, at present, with the potential for much greater future efforts. 15 refs., 2 tabs

  13. 75 FR 18575 - Mandatory Reporting of Greenhouse Gases: Injection and Geologic Sequestration of Carbon Dioxide

    Science.gov (United States)

    2010-04-12

    ... suppliers, industrial gas suppliers, and direct emitters of GHGs. The rule does not require the control of... Part II Environmental Protection Agency 40 CFR Part 98 Mandatory Reporting of Greenhouse Gases... CFR Part 98 [EPA-HQ-OAR-2009-0926; FRL-9131-2] RIN 2060-AP88 Mandatory Reporting of Greenhouse Gases...

  14. Stabilising the global greenhouse. A simulation model

    International Nuclear Information System (INIS)

    Michaelis, P.

    1993-01-01

    This paper investigates the economic implications of a comprehensive approach to greenhouse policies that strives to stabilise the atmospheric concentration of greenhouse gases at an ecolocially determined threshold level. In a theoretical optimisation model conditions for an efficient allocation of abatement effort among pollutants and over time are derived. The model is empirically specified and adapted to a dynamic Gams-algorithm. By various simulation runs for the period of 1990 to 2110, the economics of greenhouse gas accumulation are explored. In particular, the long-run cost associated with the above stabilisation target are evaluated for three different policy scenarios: i) A comprehensive approach that covers all major greenhouse gases simultaneously, ii) a piecemeal approach that is limited to reducing CO 2 emissions, and iii) a ten-year moratorium that postpones abatement effort until new scientific evidence on the greenhouse effect will become available. Comparing the simulation results suggests that a piecemeal approach would considerably increase total cost, whereas a ten-year moratorium might be reasonable even if the probability of 'good news' is comparatively small. (orig.)

  15. Greenhouse gases: How does heavy oil stack up?

    International Nuclear Information System (INIS)

    Ottenbreit, R.J.

    1991-01-01

    Life-cycle emissions of direct greenhouse gases (GHG) have been calculated to elucidate the global warming impacts of various fossil fuel feedstocks. Calculations were made for the transportation sector using five fossil fuel sources: natural gas, light crude oil, conventional heavy oil, crude bitumen recovered through in-situ steam stimulation, and crude bitumen recovered through mining. Results suggest that fuels sourced from light crude oil have the lowest GHG emissions, while conventional heavy oil has the highest GHG emission levels for this application. Emissions of methane can constitute a significant portion of the life-cycle GHG emissions of a fossil fuel. For all the fossil fuels examined, except conventional heavy oil, GHG emissions associated with their production, transport, processing, and distribution are less than one third of their total life-cycle emissions. The remainder is associated with end use. This confirms that consumers of fossil fuel products, rather than fossil fuel producers, have the most leverage to reduce GHG emissions. 2 figs

  16. Greenhouse Gases and Animal Agriculture

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, J. (ed.) [Department of Animal Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido (Japan); Young, B.A. (ed.) [The University of Queensland, Gatton, Queensland 4343 (Australia)

    2002-07-01

    Reports from interdisciplinary areas including microbiology, biochemistry, animal nutrition, agricultural engineering and economics are integrated in this proceedings. The major theme of this book is environmental preservation by controlling release of undesirable greenhouse gases to realize the sustainable development of animal agriculture. Technology exists for the effective collection of methane generated from anaerobic fermentation of animal effluent and its use as a biomass energy source. Fossil fuel consumption can be reduced and there can be increased use of locally available energy sources. In addition, promoting environmentally-conscious agriculture which does not rely on the chemical fertilizer can be realized by effective use of animal manure and compost products.

  17. Greenhouse science; Global warming: the origin and nature of alleged scientific consensus

    Energy Technology Data Exchange (ETDEWEB)

    Lindzen, R. (Massachusetts Institute of Technology, Cambridge, MA (USA))

    1992-01-01

    The paper contends that there is not a scientific consensus on the existence of global warming. The scientific issues associated with the prediction of global warming are reviewed and it is concluded that there is no substantive basis for predictions of sizeable global warming due to observed increases in greenhouse gases such as CO[sub 2], methane and chlorofluorocarbons. The history of the current concern over global warming is described. Political aspects, scientists' concerns over funding and the desire of industrial companies to improve their public image by supporting environmental activists are some of the factors seen as responsible for the current global warming 'hysteria'. 6 figs.

  18. Greenhouse effect gases: reduction challenges and accounting methods

    International Nuclear Information System (INIS)

    Dumergues, Laurent

    2012-01-01

    In this article, the author first proposes an overview of strategic challenges related to the reduction of greenhouse gas emissions. He indicates and discusses the various economic consequences of climate change. These consequences can be environmental (issues ranging from a loss of biodiversity to agriculture), social (from climate refugees to tourism), and economic (from climate disasters to insurance). He focuses on the issue of energy (oil at the base of our economy, carbon contents) and discusses competition issues (an always more demanding regulation, and unavoidable practices). In the second part, he proposes an overview of methods of accounting of greenhouse effect gases, and discusses how to perform an emission inventory

  19. Energy efficiency and greenhouse gases

    International Nuclear Information System (INIS)

    Hamburg, A.; Martins, A.; Pesur, A.; Roos, I.

    1996-01-01

    Estonia's energy balance for 1990 - 1994 is characterized by the dramatic changes in the economy after regaining independence in 1991. In 1990 - 1993, primary energy supply decreased about 1.9 times. The reasons were a sharp decrease in exports of electric energy and industrial products, a steep increase in fuel prices and the transition from the planned to a market-oriented economy. Over the same period, the total amount of emitted greenhouse gases decreased about 45%. In 1993, the decrease in energy production and consumption stopped, and in 1994, a moderate increase occurred (about 6%), which is a proof stabilizing economy. Oil shale power engineering will remain the prevailing energy resource for the next 20 - 25 years. After stabilization, the use of oil shale will rise in Estonia's economy. Oil shale combustion in power plants will be the greatest source of greenhouse gases emissions in near future. The main problem is to decrease the share of CO 2 emissions from the decomposition of carbonate part of oil shale. This can be done by separating limestone particles from oil shale before its burning by use of circulating fluidized bed combustion technology. Higher efficiency of oil shale power plants facilitates the reduction of CO 2 emissions per generated MWh electricity considerably. The prognoses for the future development of power engineering depend essentially on the environmental requirements. Under the highly restricted development scenario, which includes strict limitations to emissions (CO 2 , SO 2 , thermal waste) and a severe penalty system, the competitiveness of nuclear power will increase. The conceptual steps taken by the Estonian energy management should be in compliance with those of neighboring countries, including the development programs of the other Baltic states

  20. History of chemically and radiatively important atmospheric gases from the Advanced Global Atmospheric Gases Experiment (AGAGE

    Directory of Open Access Journals (Sweden)

    R. G. Prinn

    2018-06-01

    Full Text Available We present the organization, instrumentation, datasets, data interpretation, modeling, and accomplishments of the multinational global atmospheric measurement program AGAGE (Advanced Global Atmospheric Gases Experiment. AGAGE is distinguished by its capability to measure globally, at high frequency, and at multiple sites all the important species in the Montreal Protocol and all the important non-carbon-dioxide (non-CO2 gases assessed by the Intergovernmental Panel on Climate Change (CO2 is also measured at several sites. The scientific objectives of AGAGE are important in furthering our understanding of global chemical and climatic phenomena. They are the following: (1 to accurately measure the temporal and spatial distributions of anthropogenic gases that contribute the majority of reactive halogen to the stratosphere and/or are strong infrared absorbers (chlorocarbons, chlorofluorocarbons – CFCs, bromocarbons, hydrochlorofluorocarbons – HCFCs, hydrofluorocarbons – HFCs and polyfluorinated compounds (perfluorocarbons – PFCs, nitrogen trifluoride – NF3, sulfuryl fluoride – SO2F2, and sulfur hexafluoride – SF6 and use these measurements to determine the global rates of their emission and/or destruction (i.e., lifetimes; (2 to accurately measure the global distributions and temporal behaviors and determine the sources and sinks of non-CO2 biogenic–anthropogenic gases important to climate change and/or ozone depletion (methane – CH4, nitrous oxide – N2O, carbon monoxide – CO, molecular hydrogen – H2, methyl chloride – CH3Cl, and methyl bromide – CH3Br; (3 to identify new long-lived greenhouse and ozone-depleting gases (e.g., SO2F2, NF3, heavy PFCs (C4F10, C5F12, C6F14, C7F16, and C8F18 and hydrofluoroolefins (HFOs; e.g., CH2  =  CFCF3 have been identified in AGAGE, initiate the real-time monitoring of these new gases, and reconstruct their past histories from AGAGE, air archive, and firn air measurements; (4

  1. Nuclear power and the greenhouse effect

    International Nuclear Information System (INIS)

    Donaldson, D; Tolland, H.; Grimston, M.

    1990-01-01

    The greenhouse effect is first explained. The evidence is shown in global warming and changing weather patterns which are generally believed to be due to the emission of greenhouse gases, including carbon dioxide. Serious consequences are predicted if emission of the greenhouse gases is not reduced. Sources of these gases are identified - agriculture, carbon fluorocarbons, coal-fired power stations, vehicle exhausts. The need is to use energy more efficiently but such measures as combined heat and power stations, more fuel efficient cars and better thermal insulation in homes is advocated. The expansion of renewable energy sources such as wind and water power is also suggested. Nuclear power is promoted as it reduces the carbon dioxide emissions and in both the short and long-term will reduce the emission of greenhouse gases. (author)

  2. Impact of greenhouse gases on agricultural productivity in Pakistan

    International Nuclear Information System (INIS)

    Valasai, G.D; Harijan, K.; Uqaili, M.S.; Memon, H.R

    2005-01-01

    Pakistan is an agricultural developing country. About 68% of the country's population resides in rural areas and is mostly linked with agriculture. Agricultural sector contributes more than 25% to GDP, employees about 45% of the labour force and contributes significantly to export earnings of the country. Energy sector is the major source (80%) of emissions of Greenhouse Gases (GHGs). Agriculture and livestock sectors are also responsible for GHGs emissions. The emissions of GHGs results in acid rain and earth's temperature rise (global warming). The destabilization of the global climate destroys natural ecosystem and increases natural disasters, such as violent storms, floods, droughts etc. The acid rain and these natural disasters affect the agricultural productivity. The study indicates that the agricultural productivity per capita in Pakistan decreased continuously during the last two decades. The paper concludes that due to emissions of GHGs, the agricultural productivity is significantly affected in the country. The government should take concrete measures to minimize the emissions of GHGs for increasing the agricultural productivity and reducing other harmful impacts in the country. This paper presents the review and analysis of the effects of GHGs emissions on the agricultural productivity in Pakistan. (author)

  3. International collaboration on capture, storage and utilization of greenhouse gases

    International Nuclear Information System (INIS)

    Freund, P.

    1998-01-01

    Climate change will have world-wide implications. So it is highly appropriate that there should be international collaboration to investigate technologies for reducing emissions of greenhouse gases, the root cause of the problem. Sixteen countries, as well as three industrial sponsors, support the IEA Greenhouse Gas R and D Program and, in many cases, industry is also involved indirectly, through the national memberships. This provides a broad range of interest and expertise to guide the management of the Program, as well as ensuring that the results reach a wide audience. The IEA Greenhouse Gas R and D Program has three main activities: (1) evaluation of technologies for mitigation of greenhouse gas emissions from use of fossil fuels; (2) dissemination of the results of these studies; (3) identification of targets for research, development and demonstration and promotion of these findings. In its first five years of operation, the Program has studied the major greenhouse gases, carbon dioxide and methane, and various means of reducing their emissions. The main emphasis has been placed on capture, storage and utilization of CO 2 from power generation. This option is now much better understood and can be compared with more established measures, such as fuel switching, energy efficiency improvements and use of renewable energy. As well as studying abatement of CO 2 emissions, the Program has conducted a series of studies of technologies for reducing CH 4 emissions from man-made sources. The Program's activities are carried out by the Operating Agent, who develops and manages a series of technical studies to meet members' requirements

  4. Effect of Greenhouse Gases Dissolved in Seawater.

    Science.gov (United States)

    Matsunaga, Shigeki

    2015-12-30

    A molecular dynamics simulation has been performed on the greenhouse gases carbon dioxide and methane dissolved in a sodium chloride aqueous solution, as a simple model of seawater. A carbon dioxide molecule is also treated as a hydrogen carbonate ion. The structure, coordination number, diffusion coefficient, shear viscosity, specific heat, and thermal conductivity of the solutions have been discussed. The anomalous behaviors of these properties, especially the negative pressure dependence of thermal conductivity, have been observed in the higher-pressure region.

  5. A STRATEGIC PROGRAM TO REDUCE GREENHOUSE GASES EMISSIONS PRODUCED FROM FOOD INDUSTRY

    Energy Technology Data Exchange (ETDEWEB)

    A. Kilic [Faculty of Science, Department of Biology, University of Nigde, Nigde (Turkey); A. Midilli [Faculty of Engineering, Department of Mechanical Engineering, Nigde (Turkey); I. Dincer [Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, Oshawa, ON (Canada)

    2008-09-30

    Greenhouse gases (GHGs) emissions are at every stage of conventional food production (planting, harvesting, irrigation, food production, transportation, and application of pesticides and fertilizers, etc.). In this study, a strategic program is proposed to reduce GHGs emissions resulting during conventional food production. The factors which form the basis of this strategic program are energy, environment and sustainability. The results show that the application of sustainable food processing technologies can significantly reduce GHGs emissions resulting from food industry. Moreover, minimizing the utilization of fossil-fuel energy sources and maximizing the utilization of renewable energy sources results in the reduction of GHGs emissions during food production, which in turn reduces the effect of global warming.

  6. Reducing greenhouse gas emissions and improving air quality: Two global challenges.

    Science.gov (United States)

    Erickson, Larry E

    2017-07-01

    There are many good reasons to promote sustainable development and reduce greenhouse gas emissions and other combustion emissions. The air quality in many urban environments is causing many premature deaths because of asthma, cardiovascular disease, chronic obstructive pulmonary disease, lung cancer, and dementia associated with combustion emissions. The global social cost of air pollution is at least $3 trillion/year; particulates, nitrogen oxides and ozone associated with combustion emissions are very costly pollutants. Better air quality in urban environments is one of the reasons for countries to work together to reduce greenhouse gas emissions through the Paris Agreement on Climate Change. There are many potential benefits associated with limiting climate change. In the recent past, the concentrations of greenhouse gases in the atmosphere have been increasing and the number of weather and climate disasters with costs over $1 billion has been increasing. The average global temperature set new record highs in 2014, 2015, and 2016. To reduce greenhouse gas emissions, the transition to electric vehicles and electricity generation using renewable energy must take place in accord with the goals of the Paris Agreement on Climate Change. This work reviews progress and identifies some of the health benefits associated with reducing combustion emissions. © 2017 American Institute of Chemical Engineers Environ Prog, 36: 982-988, 2017.

  7. Emission of greenhouse gases 1990-2010. Trends and driving forces

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-03-01

    Emissions of greenhouse gases in Norway from 1990-2010 - trends and driving forces, a report that presents emission trends in Norway with the analysis of the main drivers and trends, and a review and analysis of the effectiveness of implemented measures.(Author)

  8. Greatly reduced emission of greenhouse gases from the wood-processing industry

    International Nuclear Information System (INIS)

    2004-01-01

    The strong support for biomass energy in the Norwegian wood-processing industry during the last 10-15 years has contributed greatly to a considerable reduction of the emission of greenhouse gases. The potential for further reductions is primarily linked with the use of oil and involves only a few works. Oil can be replaced by other fuels, and process-technical improvements can reduce the emissions. According to prognoses, emissions will go on decreasing until 2007, when the total emission of greenhouse gases from the wood-processing industry will be about 13 per cent less than in 1998. Carbon dioxide (CO 2 ) amounts to 90 per cent of the total emission, the remaining parts being methane (CH 4 ) from landfills and dumps, and small amounts of N 2 O

  9. Effect of Greenhouse Gases Dissolved in Seawater

    Directory of Open Access Journals (Sweden)

    Shigeki Matsunaga

    2015-12-01

    Full Text Available A molecular dynamics simulation has been performed on the greenhouse gases carbon dioxide and methane dissolved in a sodium chloride aqueous solution, as a simple model of seawater. A carbon dioxide molecule is also treated as a hydrogen carbonate ion. The structure, coordination number, diffusion coefficient, shear viscosity, specific heat, and thermal conductivity of the solutions have been discussed. The anomalous behaviors of these properties, especially the negative pressure dependence of thermal conductivity, have been observed in the higher-pressure region.

  10. The contribution of direct energy use for livestock breeding to the greenhouse gases emissions of Cyprus

    International Nuclear Information System (INIS)

    Kythreotou, Nicoletta; Tassou, Savvas A.; Florides, Georgios

    2011-01-01

    This paper presents a methodology for the estimation of the contribution of direct energy use to the greenhouse gases emissions of cattle, pig and poultry breeding in Cyprus. The energy consumption was estimated using the factors of 2034 MJ/cow, 2182 MJ/sow and 0.002797 MJ/bird. The greenhouse gases emissions for each animal species and energy source were estimated using emission factor of each greenhouse gas according to fuel type as proposed by the IPCC 2006 guidelines and for electricity according to national verified data from the Electricity Authority of Cyprus. Livestock breeding in Cyprus consumes electricity, diesel oil and LPG. The results obtained, show that the emissions from energy use in livestock breeding contribute 16% to the total agricultural energy emissions. Agricultural energy emissions contribute 0.7% to the total energy greenhouse gases (GHG) emissions. The three species of animal considered contribute 3% to their total livestock breeding emissions when compared with enteric fermentation and manure management, of which 2.6% is CO 2 . These results agree with the findings in available literature. The contribution of direct energy use in the greenhouse gases emissions of livestock breeding could be further examined with the influence of anaerobic digestion to the emissions. -- Highlights: → Energy use contribution to greenhouse gases emissions of Cyprus livestock breeding. → Energy consumption estimated using 2.034 GJ/ cow, 2.182 GJ/ sow and 2.797 kJ/ bird. →Energy use in livestock breeding found to be 16% of agriculture energy emissions. → Energy use found to be 3% of total livestock breeding emissions. → 87% of the energy emissions is CO 2 .

  11. Preparing for the regulation of greenhouse gases

    International Nuclear Information System (INIS)

    Ezekiel, R.; Wilson, P.

    2001-01-01

    The Earth is warming, and this belief is shared by the leading scientists that sit on the Intergovernmental Panel on Climate Change, where it is expected that the average surface temperature of the Earth will rise 2.5 to 10.4 degrees Fahrenheit between 1990 and 2100. It is felt that the main culprit is greenhouse gas emissions such as carbon dioxide. The Kyoto Protocol was adopted in 1992 with the aim of reducing greenhouse gas emissions to specified targets below 1990 levels by 2012. For Canada, this commitment is a reduction to 6 per cent below 1990 levels. To avoid penalizing a country that adopts greenhouse gas regulations where the neighbouring country does not follow, negotiations are being held at the international level in an attempt to keep everyone on a level playing field. The United States recently decided not to pursue a cap on greenhouse gas emissions, which could seriously jeopardize the effectiveness of the Kyoto Protocol. The authors examined what the future looks like, in terms of policy options and market-based instruments. In the next section, they discussed the preparations for the regulation of greenhouse gases. The topics reviewed were carbon taxes, command and control regulation, emissions trading, contracts and baseline protection. Canada's baseline protection initiative (BPI) process was closely examined, and identified what reductions are eligible and touched upon ownership issues. The authors concluded that it might be prudent for emitters in Canada to prepare for a variety of regulatory scenarios, as there are a number of uncertainties remaining. Emissions trading must be carefully documented

  12. Study of greenhouse gases reduction alternatives for the exploitation of non conventional oil sands in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Bouchonneau, Deborah [Institut Francais du Petrole (IFP), Paris (France)

    2008-07-01

    High energy prices and greenhouse gases reduction represent the main challenges the current worldwide energetic situation has to face. As a consequence, paradox strategies can be highlighted: oil prices are sufficiently high to exploit non conventional oil resources, like extra heavy oils and oil sands. But the production of these resources emits larger GHG than the conventional oil path and implies other major environmental issues (water management, risks of soil pollution, destruction of the boreal forest), incompatible with the rules validated by the protocol of Kyoto. At the light of the new greenhouse gases reduction regulation framework announced by the Canadian Federal government, this work focuses on the study of greenhouse gases reduction alternatives applied to the non conventional oil sands exploitation in Canada. (author)

  13. Taxation of multiple greenhouse gases and the effects on income distribution : A case study of the Netherlands

    NARCIS (Netherlands)

    Kerkhof, Annemarie C.; Moll, Henri C.; Drissen, Eric; Wilting, Harry C.

    2008-01-01

    Current economic instruments aimed at climate change mitigation focus on CO2 emissions only, but the Kyoto Protocol refers to other greenhouse gases (GHG) as well as CO2. These are CH4, N2O, HFCs, PFCs and SF6. Taxation of multiple greenhouse gases improves the cost-effectiveness of climate change

  14. Greenhouse effect gases inventory in France during the years 1990-1999; Inventaire des emissions de gaz a effet de serre en France au cours de la periode 1990-1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-12-01

    The present report supplies emission data, for France and for the period 1990-1999, concerning all the substances involved in the increase in the greenhouse effect and covered under the United Nations' Framework Convention on Climate Change (UNFCCC). The substances are the six direct greenhouse gases covered by the Kyoto protocol: carbon dioxide (CO{sub 2}), methane (CH{sub 4}), nitrous oxide (N{sub 2}O), the two species of halogenous substances - hydro-fluorocarbons (HFCs) and per-fluorocarbons (PFCs), and sulphur hexafluoride (SF{sub 6}). Emissions of sulphur dioxide (SO{sub 2}), nitrogen oxides (NO{sub x}), non methane volatile organic compounds (NMVOCs), and carbon monoxide (CO), gases which indirectly make a significant contribution to the greenhouse effect, are reported under the Convention. The emissions of the six gases that directly contribute to the greenhouse effect are expressed in terms of Global Warming Potential (GWP) which decreased by 2.1 % in 1999 compared to 1990. The emissions of the four gases that indirectly contribute to the greenhouse effect are moving towards decrease: this is by 17% for NO{sub x}, 23% as regards NMVOCs, 33% for CO and by 44% regarding SO{sub 2}. Out of the six greenhouse gases covered by the Kyoto Protocol, CO{sub 2} accounts for the largest share in total GWP emissions (70 %), followed by N{sub 2}O (16 %), CH{sub 4} (12 %), HFCs (0.99 %), SF{sub 6} (0.5 %), and PFCs (0.39 %). (author)

  15. Carbon dioxide separation from flue gases: a technological review emphasizing reduction in greenhouse gas emissions.

    Science.gov (United States)

    Songolzadeh, Mohammad; Soleimani, Mansooreh; Takht Ravanchi, Maryam; Songolzadeh, Reza

    2014-01-01

    Increasing concentrations of greenhouse gases (GHGs) such as CO2 in the atmosphere is a global warming. Human activities are a major cause of increased CO2 concentration in atmosphere, as in recent decade, two-third of greenhouse effect was caused by human activities. Carbon capture and storage (CCS) is a major strategy that can be used to reduce GHGs emission. There are three methods for CCS: pre-combustion capture, oxy-fuel process, and post-combustion capture. Among them, post-combustion capture is the most important one because it offers flexibility and it can be easily added to the operational units. Various technologies are used for CO2 capture, some of them include: absorption, adsorption, cryogenic distillation, and membrane separation. In this paper, various technologies for post-combustion are compared and the best condition for using each technology is identified.

  16. Carbon Dioxide Separation from Flue Gases: A Technological Review Emphasizing Reduction in Greenhouse Gas Emissions

    Directory of Open Access Journals (Sweden)

    Mohammad Songolzadeh

    2014-01-01

    Full Text Available Increasing concentrations of greenhouse gases (GHGs such as CO2 in the atmosphere is a global warming. Human activities are a major cause of increased CO2 concentration in atmosphere, as in recent decade, two-third of greenhouse effect was caused by human activities. Carbon capture and storage (CCS is a major strategy that can be used to reduce GHGs emission. There are three methods for CCS: pre-combustion capture, oxy-fuel process, and post-combustion capture. Among them, post-combustion capture is the most important one because it offers flexibility and it can be easily added to the operational units. Various technologies are used for CO2 capture, some of them include: absorption, adsorption, cryogenic distillation, and membrane separation. In this paper, various technologies for post-combustion are compared and the best condition for using each technology is identified.

  17. The Common Agricultural Policy and the Greenhouse Gases Emissions

    OpenAIRE

    BRITO SOARES, F.; Ronco, R.

    2005-01-01

    The evolution of greenhouse gases emissions in the EU-15 countries is accessed. While the absolute level of emissions turns out to be declining in the last thirty years in EU-15 Member States, emissions per output tend to rise. A relationship between the adoption of the Common Agricultural policy and the emissions level can be detected for Spain, Austria, Finland and Sweden.

  18. Our changing atmosphere: Trace gases and the greenhouse effect

    International Nuclear Information System (INIS)

    Rowland, F.S.

    1991-01-01

    A very important factor in the scientific evaluation of greenhouse warming during the last decade has been the realization that this is not just a problem of increasing CO 2 but is rather a more general problem of increasing concentrations of many trace gases. CFCs are increasing at 5% per year with CFC-113 going up at a more rapid rate; methane approximately 1% per year; CO 2 by 0.5% per year; N 2 O about 0.2% per year. These rates of increase have been fed into detailed models of the infrared absorbing characteristics of the atmosphere, and have provided the estimated relative contributions from the various trace gases. Carbon dioxide is still the major contributor to the greenhouse effect, and its yearly contribution appears to be increasing. An important question for dealing with the greenhouse effect will be the full understanding of these CO 2 concentration changes. The total amount of carbon from the burning of fossil fuel that is going into the atmosphere is considerably larger than the carbon dioxide increase registered in the atmosphere. Appreciable CO 2 contributions are also being received from the burning of the tropical forests. The procedures necessary to solve the chlorofluorocarbon problem have been put into place on an international scale and have begun to be implemented. We still have left for the future, however, efforts to reduce emissions of carbon dioxide, methane, and nitrous oxide

  19. The emissions of greenhouse gases are reduced by a new proposal for trade of quotas

    International Nuclear Information System (INIS)

    2004-01-01

    The emission quota system will stimulate enterprises that do not currently have to pay a CO 2 tax and which are not subjected to any other political instrument to cut their emissions of greenhouse gases. Consequently, the main part of the total Norwegian emission of greenhouse gases will be covered by climate policy instruments. The quota system enters into force on January 1, 2005, from which date the EU quota system will also be in force. The quota system will comprise CO 2 emissions from oil refineries, iron and steel manufacturers, producers of cement, lime, glass and ceramic products, and certain energy plants. Not all firms that are obliged to obtain quotas will receive as many quotas as they are expected to need. Norway introduced a CO 2 tax in 1991 and is among the countries with the strongest and most extensive political instruments against emission of greenhouse gases

  20. Inventory and projection of greenhouse gases emissions for Sumatera Utara Province

    Science.gov (United States)

    Ambarita, H.; Soeharwinto; Ginting, N.; Basyuni, M.; Zen, Z.

    2018-03-01

    Greenhouse Gases (GHGs) emissions which result in global warming is a serious problem for the human being. Total globally anthropogenic GHG emissions were the highest in the history of the year 2000 to 2010 and reached 49 (4.5) Giga ton CO2eq per year in 2010. Many governments addressed their commitment to reducing GHG emission. The Government of Indonesia (GoI) has released a target in reducing its GHG emissions by 26% from level business as usual by 2020, and this target can be increased up to 41% by international aid. In this study, the GHG emissions for Sumatera Utara province are assessed and divided into six sectors. They are Agricultural, Land Use and Forestry, Energy, Transportation, Industrial, and Waste sectors. The results show that total GHG emissions for Sumatera Utara province in the baseline year 2010 is 191.4 million tons CO2eq. The business-as-usual projection of the GHG emission in 2020 is 354.5 million tons CO2eq. Mitigation actions will reduce GHG emissions up to 30.5% from business as usual emission in 2020.

  1. Greenhouse Gases

    Science.gov (United States)

    ... also produced by human activities. Some, such as industrial gases, are exclusively human made. What are the types ... Carbon dioxide (CO2) Methane (CH4) Nitrous oxide (N2O) Industrial gases: Hydrofluorocarbons (HFCs) Perfluorocarbons (PFCs) Sulfur hexafluoride (SF6 Nitrogen ...

  2. Decomposition of Potent Greenhouse Gases SF6, CF4 and SF5CF3 by Dielectric Barrier Discharge

    International Nuclear Information System (INIS)

    Zhang Renxi; Wang Jingting; Cao Xu; Hou Huiqi

    2016-01-01

    For their distinguished global warming potential (GWP100) and long atmosphere lifespan, CF 4 , SF 6 and SF 5 CF 3 were significant in the field of greenhouse gas research. The details of discharging character and the optimal parameter were discussed by using a Dielectric Barrier Discharge (DBD) reactor to decompose these potent greenhouse gases in this work. The results showed that SF 6 could be decomposed by 92% under the conditions of 5 min resident time and 3000 V applied voltage with the partial pressure of 2.0 kPa, 28.2 kPa, and 1.8 kPa for SF 6 , air and water vapor, respectively. 0.4 kPa CF 4 could be decomposed by 98.2% for 4 min resident time with 30 kPa Ar added. The decomposition of SF 5 CF 3 was much more effective than that of SF 6 and CF 4 and moreover, 1.3 kPa SF 5 CF 3 , discharged with 30 kPa O 2 , Ar and air, could not be detected when the resident time was 80 s, 40 s, and 120 s, respectively. All the results indicated that DBD was a feasible technique for the abatement of potent greenhouse gases. (paper)

  3. On the relationship between metrics to compare greenhouse gases – the case of IGTP, GWP and SGTP

    Directory of Open Access Journals (Sweden)

    D. J. A. Johansson

    2012-11-01

    Full Text Available Metrics for comparing greenhouse gases are analyzed, with a particular focus on the integrated temperature change potential (IGTP following a call from IPCC to investigate this metric. It is shown that the global warming potential (GWP and IGTP are asymptotically equal when the time horizon approaches infinity when standard assumptions about a constant background atmosphere are used. The difference between IGTP and GWP is estimated for different greenhouse gases using an upwelling diffusion energy balance model with different assumptions on the climate sensitivity and the parameterization governing the rate of ocean heat uptake. It is found that GWP and IGTP differ by some 10% for CH4 (for a time horizon of less than 500 yr, and that the relative difference between GWP and IGTP is less for gases with a longer atmospheric life time. Further, it is found that the relative difference between IGTP and GWP increases with increasing rates of ocean heat uptake and increasing climate sensitivity since these changes increase the inertia of the climate system. Furthermore, it is shown that IGTP is equivalent to the sustained global temperature change potential (SGTP under standard assumptions when estimating GWPs. We conclude that while it matters little for abatement policy whether IGTP, SGTP or GWP is used when making trade-offs, it is more important to decide whether society should use a metric based on time integrated effects such as GWP, a "snapshot metric" as GTP, or metrics where both economics and physical considerations are taken into account. Of equal importance is the question of how to choose the time horizon, regardless of the chosen metric. For both these overall questions, value judgments are needed.

  4. Biological processes for mitigation of greenhouse gases

    Energy Technology Data Exchange (ETDEWEB)

    Benemann, John R. [California Univ., Dept. of Plant and Microbial Biology, Berkeley, CA (United States)

    1999-07-01

    Biological processes driven by photosynthesis cycle through the atmosphere well over an order of magnitude more CO{sub 2} than is currently emitted from the combustion of fossils fuels. Already human activities control and appropriate almost half the primary photosynthetic productivity of the planet. Better management of natural and man-made ecosystems affords many opportunities for mitigation of greenhouse gases, through sink enhancements, source reduction and substitution of fossil fuels with biofuels. Biofuels can be recovered from most organic wastes, from agricultural and forestry residues, and from biomass produced solely for energy use. However, the currently low costs of fossil fuels limits the market for biofuels. Accounting for the greenhouse mitigation value of biofuels would significantly increase their contribution to world fuel suppliers, estimated to be currently equivalent to about 15% of fossil fuel usage. Another limiting factor in expanding the use of biofuels is the relatively low solar energy conversion efficiencies of photosynthesis. Currently well below 1% of solar energy is converted into biomass energy even by intensive agricultural or forestry systems, with peak conversion efficiencies about 2 to 3% for sugar cane or microalgae cultures. One approach to increase photosynthetic efficiencies, being developed at the University of California Berkeley, is to reduce the amount of light-gathering chlorophyll in microalgae and higher plants. This would reduce mutual shading and also increase photosynthetic efficiencies under full sunlight intensities. Estimates of the potential of photosynthetic greenhouse mitigation processes vary widely. However, even conservative estimates for biofuels substituting for fossil fuels project the potential to reduce a large fraction of current increases in atmospheric CO{sub 2} levels. Biofuels production will require integration with existing agronomic, forestry and animal husbandry systems, and improved

  5. Elements for a policy of greenhouse effect gases reduction

    International Nuclear Information System (INIS)

    2007-01-01

    In the framework of the ''Grenelle de l'environnement'' on the fight against the greenhouse effect gases, the authors aim to offer propositions and recommendations for the future energy policy. They explain the possible confusions. They discuss the economic efficiency of propositions of CO 2 emissions reduction, the actions propositions in the different sectors and the axis of research and development. (A.L.B.)

  6. Greenhouse effects due to man-made perturbations of trace gases

    Science.gov (United States)

    Wang, W. C.; Yung, Y. L.; Lacis, A. A.; Mo, T.; Hansen, J. E.

    1976-01-01

    Nitrous oxide, methane, ammonia, and a number of other trace constituents of the earth's atmosphere have infrared absorption bands in the spectral range from 7 to 14 microns. Despite their small amounts, these gases can have a significant effect on the thermal structure of the atmosphere by transmitting most of the thermal radiation from the earth's surface to the lower atmosphere. In the present paper, this greenhouse effect is computed for a number of trace gases. The nature and climatic implications of possible changes in the concentrations of N2O, CH4, NH3, and HNO3 are discussed.

  7. Mitigation of greenhouse gases emissions impact and their influence on terrestrial ecosystem.

    Science.gov (United States)

    Wójcik Oliveira, K.; Niedbała, G.

    2018-05-01

    Nowadays, one of the most important challenges faced by the humanity in the current century is the increasing temperature on Earth, caused by a growing emission of greenhouse gases into the atmosphere. Terrestrial ecosystems, as an important component of the carbon cycle, play an important role in the sequestration of carbon, which is a chance to improve the balance of greenhouse gases. Increasing CO2 absorption by terrestrial ecosystems is one way to reduce the atmospheric CO2 emissions. Sequestration of CO2 by terrestrial ecosystems is not yet fully utilized method of mitigating CO2 emission to the atmosphere. Terrestrial ecosystems, especially forests, are essential for the regulation of CO2 content in the atmosphere and more attention should be paid to seeking the natural processes of CO2 sequestration.

  8. Emissions of greenhouse gases from the use of transportation fuels and electricity. Volume 2: Appendixes A--S

    Energy Technology Data Exchange (ETDEWEB)

    DeLuchi, M.A. [Argonne National Lab., IL (United States)]|[Univ. of California, Davis, CA (United States). Inst. of Transportation Studies

    1993-11-01

    This volume contains the appendices to the report on Emission of Greenhouse Gases from the Use of Transportation Fuels and Electricity. Emissions of methane, nitrous oxide, carbon monoxide, and other greenhouse gases are discussed. Sources of emission including vehicles, natural gas operations, oil production, coal mines, and power plants are covered. The various energy industries are examined in terms of greenhouse gas production and emissions. Those industries include electricity generation, transport of goods via trains, trucks, ships and pipelines, coal, natural gas and natural gas liquids, petroleum, nuclear energy, and biofuels.

  9. Ozone-depleting substances and the greenhouse gases HFCs, PFCs and SF{sub 6}. Danish consumption and emissions, 2005

    Energy Technology Data Exchange (ETDEWEB)

    Sander Poulsen, T. [PlanMiljoe (Denmark)

    2007-06-15

    An evaluation of Danish consumption and emissions of ozone-depleting substances and industrial greenhouse gases has been carried out in continuation of previous evaluations, partly to fulfil Denmark's international obligations to provide information within this area and partly to follow the trend in consumption of ozone-depleting substances as well as the consumption and emissions of HFCs, PFCs and SF{sub 6}. The evaluation includes a calculation of actual emissions of HFCs, PFCs, and SF{sub 6} for 2006. In this calculation the release from stock of greenhouse gases in products has been taken into account, and adjustments have been made for imports and exports of the greenhouse gases in products. (BA)

  10. Assessing the impact on global climate from general anesthetic gases

    DEFF Research Database (Denmark)

    Andersen, Mads P. Sulbæk; Nielsen, Ole John; Wallington, Timothy J.

    2012-01-01

    anthropogenic radiative forcing of climate, as measured relative to the start of the industrial era (approximately 1750). The family of anesthetic gases includes several halogenated organic compounds that are strong greenhouse gases. In this short report, we provide an overview of the state of knowledge...

  11. Biogenic emissions of greenhouse gases caused by arable and animal agriculture. Task 3. Overall biogenic greenhouse gas emissions from agriculture. National Inventories

    International Nuclear Information System (INIS)

    Hensen, A.

    1999-12-01

    The aim of the concerted action 'Biogenic Emissions of Greenhouse Gases Caused by Arable and Animal Agriculture' is to obtain an overview of the current knowledge on the emissions of greenhouse gases related to agricultural activities. This task 3 report summarises the activities that take place in the Netherlands with respect to agriculture emission inventories. This 'national' report was compiled using information from a number of Dutch groups. Therefore, from a national point of view the compilation does not contain new information. The paper can however be useful for other European partners to get an overview of how emission estimates are obtained in the Netherlands. 14 p

  12. Greenhouse gases regional fluxes estimated from atmospheric measurements

    International Nuclear Information System (INIS)

    Messager, C.

    2007-07-01

    build up a new system to measure continuously CO 2 (or CO), CH 4 , N 2 O and SF 6 mixing ratios. It is based on a commercial gas chromatograph (Agilent 6890N) which have been modified to reach better precision. Reproducibility computed with a target gas on a 24 hours time step gives: 0.06 ppm for CO 2 , 1.4 ppb for CO, 0.7 ppb for CH 4 , 0.2 ppb for N 2 O and 0.05 ppt for SF 6 . The instrument's run is fully automated, an air sample analysis takes about 5 minutes. In July 2006, I install instrumentation on a telecommunication tall tower (200 m) situated near Orleans forest in Trainou, to monitor continuously greenhouse gases (CO 2 , CH 4 , N 2 O, SF 6 ), atmospheric tracers (CO, Radon-222) and meteorological parameters. Intake lines were installed at 3 levels (50, 100 and 180 m) and allow us to sample air masses along the vertical. Continuous measurement started in January 2007. I used Mace Head (Ireland) and Gif-sur-Yvette continuous measurements to estimate major greenhouse gases emission fluxes at regional scale. To make the link between atmospheric measurements and surface fluxes, we need to quantify dilution due to atmospheric transport. I used Radon-222 as tracer (radon tracer method) and planetary boundary layer heights estimates from ECMWF model (boundary layer budget method) to parameterize atmospheric transport. In both cases I compared results to available emission inventories. (author)

  13. Hydropower may produce more greenhouse gases

    International Nuclear Information System (INIS)

    Kolshus, Hans H.; Folkestad, Tonje

    2002-01-01

    According to this article, dam projects in hydropower development may lead to increased emission of greenhouse gases and may create great inconveniences for the local community. Hence it is not without problems to sponsor such projects through the Clean Development Mechanism (CDM) of the Kyoto Protocol. In many countries the great era of hydroelectric development is over and the potential is now in the developing countries. The aim of the CDM is two-fold: sustainable development in the developing countries, and cheap reduction of greenhouse gas emission from developed nations. It has been agreed upon in the climate negotiations that it is the developing country receiving the investments that shall document that the projects conform to the goal of sustainable development of that country. The concept of sustain ability is a vague one, and it is a great challenge to make it more precise so that requirements may be posed on CDM projects. This is important as projects that are suitable from a climate point of view may have undesirable environmental or social effects, which may be in conflict with the goal of sustainable development. This also pertains to hydropower. It also appears that water reservoirs are not always as clean as has been assumed

  14. Olympic Games promote the reduction in emissions of greenhouse gases in Beijing

    International Nuclear Information System (INIS)

    Wu Jisong; Zhang Yongjie

    2008-01-01

    Global climate change is one of the most serious global environmental problems faced by humankind at present. Serious attention should be paid and precautions should be taken before disasters occur. The amount of CO 2 emissions in China has increased during the past few years and the Chinese government and people have attached great importance to this phenomenon and treated it seriously. With the instruction of scientific development viewpoint, Beijing has made significant progress in emissions reduction through technological innovation, industrial structure adjustment, promoting energy efficiency and utilization of renewable energy, and absorption of CO 2 using forest and wetland, since bidding for Olympic Games. At the same time, energy conservation and emissions reduction measures taken in the construction of Beijing Olympic stadiums just incarnate the Beijing Green Olympics. Using the Beijing Olympic Games as a turning-point, adopting energy conservation and emissions reduction measures, Beijing will make contributions to reduction of greenhouse gases and slowing down climate changes and Beijing Olympic Games will leave behind an inheritance for future generations to enjoy

  15. Olympic Games promote the reduction in emissions of greenhouse gases in Beijing

    Energy Technology Data Exchange (ETDEWEB)

    Wu Jisong [China Centre of Recycle Economy Research, School of Economics and Management, Beijing University of Aeronautics and Astronautics, Beijing 100083 (China)], E-mail: js_wub@buaa.edu.cn; Zhang Yongjie [China Centre of Recycle Economy Research, School of Economics and Management, Beijing University of Aeronautics and Astronautics, Beijing 100083 (China)

    2008-09-15

    Global climate change is one of the most serious global environmental problems faced by humankind at present. Serious attention should be paid and precautions should be taken before disasters occur. The amount of CO{sub 2} emissions in China has increased during the past few years and the Chinese government and people have attached great importance to this phenomenon and treated it seriously. With the instruction of scientific development viewpoint, Beijing has made significant progress in emissions reduction through technological innovation, industrial structure adjustment, promoting energy efficiency and utilization of renewable energy, and absorption of CO{sub 2} using forest and wetland, since bidding for Olympic Games. At the same time, energy conservation and emissions reduction measures taken in the construction of Beijing Olympic stadiums just incarnate the Beijing Green Olympics. Using the Beijing Olympic Games as a turning-point, adopting energy conservation and emissions reduction measures, Beijing will make contributions to reduction of greenhouse gases and slowing down climate changes and Beijing Olympic Games will leave behind an inheritance for future generations to enjoy.

  16. Olympic Games promote the reduction in emissions of greenhouse gases in Beijing

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jisong; Zhang, Yongjie [China Centre of Recycle Economy Research, School of Economics and Management, Beijing University of Aeronautics and Astronautics, Beijing 100083 (China)

    2008-09-15

    Global climate change is one of the most serious global environmental problems faced by humankind at present. Serious attention should be paid and precautions should be taken before disasters occur. The amount of CO{sub 2} emissions in China has increased during the past few years and the Chinese government and people have attached great importance to this phenomenon and treated it seriously. With the instruction of scientific development viewpoint, Beijing has made significant progress in emissions reduction through technological innovation, industrial structure adjustment, promoting energy efficiency and utilization of renewable energy, and absorption of CO{sub 2} using forest and wetland, since bidding for Olympic Games. At the same time, energy conservation and emissions reduction measures taken in the construction of Beijing Olympic stadiums just incarnate the Beijing Green Olympics. Using the Beijing Olympic Games as a turning-point, adopting energy conservation and emissions reduction measures, Beijing will make contributions to reduction of greenhouse gases and slowing down climate changes and Beijing Olympic Games will leave behind an inheritance for future generations to enjoy. (author)

  17. The macroeconomic consequences of controlling greenhouse gases: a survey

    International Nuclear Information System (INIS)

    Boero, Gianna; Clarke, Rosemary; Winters, L.A.

    1991-01-01

    This is the summary of a major report which provides a survey of existing estimates of the macroeconomic consequences of controlling greenhouse gas emissions, particularly carbon dioxide (CO 2 ). There are broadly speaking two main questions. What are the consequences of global warming for economic activity and welfare? What, if any, are the economic consequences of reducing the levels of greenhouse gas (GHG) emissions? This survey covers only those studies which quantify the overall (macroeconomic) costs of abating greenhouse gas emissions. It is not concerned with whether any particular degree of abatement is sufficient to reduce global warming, nor whether it is worth undertaking in the light of its benefits. These are topics for other researchers and other papers. Here we are concerned only to map the relationship between economic welfare and GHG abatement. (author)

  18. Effects of water-saving irrigation on emissions of greenhouse gases and prokaryotic communities in rice paddy soil.

    Science.gov (United States)

    Ahn, Jae-Hyung; Choi, Min-Young; Kim, Byung-Yong; Lee, Jong-Sik; Song, Jaekyeong; Kim, Gun-Yeob; Weon, Hang-Yeon

    2014-08-01

    The effects of water-saving irrigation on emissions of greenhouse gases and soil prokaryotic communities were investigated in an experimental rice field. The water layer was kept at 1-2 cm in the water-saving (WS) irrigation treatment and at 6 cm in the continuous flooding (CF) irrigation treatment. WS irrigation decreased CH(4) emissions by 78 % and increased N(2)O emissions by 533 %, resulting in 78 % reduction of global warming potential compared to the CF irrigation. WS irrigation did not affect the abundance or phylogenetic distribution of bacterial/archaeal 16S rRNA genes and the abundance of bacterial/archaeal 16S rRNAs. The transcript abundance of CH(4) emission-related genes generally followed CH(4) emission patterns, but the difference in abundance between mcrA transcripts and amoA/pmoA transcripts best described the differences in CH(4) emissions between the two irrigation practices. WS irrigation increased the relative abundance of 16S rRNAs and functional gene transcripts associated with Anaeromyxobacter and Methylocystis spp., suggesting that their activities might be important in emissions of the greenhouse gases. The N(2)O emission patterns were not reflected in the abundance of N(2)O emission-related genes and transcripts. We showed that the alternative irrigation practice was effective for mitigating greenhouse gas emissions from rice fields and that it did not affect the overall size and structure of the soil prokaryotic community but did affect the activity of some groups.

  19. Greenhouse Gases Emission and Global Warming Potential as Affected by Chemicals Inputs for Main Cultivated Crops in Kerman Province: - Cereal

    Directory of Open Access Journals (Sweden)

    Rooholla Moradi

    2017-10-01

    Full Text Available Introduction Agriculture is a major consumer of chemical resources. Increasing use of the inputs in agriculture has led to numerous environmental problems such as high consumption of nonrenewable energy resources, loss of biodiversity and pollution of the aquatic environment (Moradi et al., 2014. This environmental change will have the serious impacts on different growth and development processes of crops. The latest report of the Intergovernmental Panel on Climate Change (IPCC states that future emissions of greenhouse gases (GHGs will continue to increase and cause to climatic change (IPCC, 2007. This condition is also true for Iran. The three greenhouse gases associated with agriculture are carbon dioxide (CO2, methane (CH4, and nitrous oxide (N2O. Consistent with the development of agricultural production systems and move towards modernization in this sector increased dependence of the chemical resource (Salinger, 2005. There is even less data on CO2, N2O, and CH4 gas emission analysis as affected by cultivating various crops in Kerman province. Therefore, this study was conducted to assess the greenhouse gases (GHGs emission and global warming potential (GWP caused by chemical inputs (various chemical fertilizers and pesticides for cultivating wheat, barley and maize in some regions of Kerman province at 2011-2012 growth season. Materials and methods The study was conducted in Kerman province of Iran. Information about planting area of potato, onion and watermelon in various regions of Kerman was collected. Data were collected from potato, onion and watermelon growers by using a face to face questionnaire in 2014 for different regions of Kerman. In addition to the data obtained by surveys, previous studies of related organization (Agricultural Ministry of Kerman were also utilized during the study. The application rates of the chemical inputs were collected by using a face-to-face questionnaire in various regions (Bardsir, Bam, Jiroft

  20. Photoacoustic Experimental System to Confirm Infrared Absorption Due to Greenhouse Gases

    Science.gov (United States)

    Kaneko, Fumitoshi; Monjushiro, Hideaki; Nishiyama, Masayoshi; Kasai, Toshio; Harris, Harold H.

    2010-01-01

    An experimental system for detecting infrared absorption using the photoacoustic (PA) effect is described. It is aimed for use at high-school level to illustrate the difference in infrared (IR) absorption among the gases contained in the atmosphere in connection with the greenhouse effect. The experimental system can be built with readily…

  1. Through the greenhouse window

    International Nuclear Information System (INIS)

    Townsley, M.

    1989-01-01

    Nuclear power is being promoted as the only answer to the greenhouse effect. However, power station emissions (from fossil-fuel powered stations) account for only a fraction of the total carbon dioxide emissions. And carbon dioxide accounts for only about a half of the global warming effect -the other gases which create the greenhouse effect must also be limited. Nuclear energy is neither a practical nor economic alternative. Energy efficiency and conservation is a far better answer to the greenhouse effect. (U.K.)

  2. Energy inputs and greenhouse gases emissions in wheat production in Gorgan, Iran

    International Nuclear Information System (INIS)

    Soltani, Afshin; Rajabi, M.H.; Zeinali, E.; Soltani, Elias

    2013-01-01

    The objectives of this study were to analyze energy use and greenhouse gases (GHG) emissions in various wheat production scenarios in north eastern Iran and to identify measures to reduce energy use and GHG emissions. Three high-input, a low-input, a better crop management and a usual production scenarios were included. All activities and production processes were monitored and recorded. Averages of total energy input and output were 15.58 and 94.4 GJ ha −1 , respectively. Average across scenarios, GHG emissions of 1137 kg CO 2 -eq ha −1 and 291 kg CO 2 -eq t −1 were estimated. The key factors relating to energy use and GHG emissions were seedbed preparation and sowing and applications of nitrogen fertilizer. The better crop management production scenario required 38% lower nitrogen fertilizer (and 33% lower total fertilizer), consumed 11% less input energy and resulted in 33% more grain yield and output energy compared to the usual production scenario. It also resulted in 20% less GHG emissions per unit field area and 40% less GHG emissions per ton of grain. It was concluded that this scenario was the cleaner production scenario in terms of energy use and GHG emissions. Measures of improvement in energy use and GHG emission were identified. - Highlights: ► Wheat production scenarios were evaluated for energy use and greenhouse gases emission. ► A better crop management production scenario was the cleaner production scenario. ► Measures to reduce energy use and greenhouse gases emission were identified

  3. Use of 222Rn for estimation of greenhouse gases emissions at Russian territory

    Science.gov (United States)

    Berezina, E. V.; Elansky, N. F.

    2009-04-01

    It is well known that 222Rn is widely used as a tracer for studying different atmospheric processes including estimations of greenhouse gases emissions. Calculation of 222Rn fluxes from the soil into the atmosphere allows quantitative estimation of greenhouse gases emissions having the soil origin or sources of which are located near the surface. For accurate estimation of 222Rn fluxes detailed investigations of spatial and temporal variations of its concentrations are necessary. 222Rn concentrations data in the atmospheric surface layer over continental Russia from Moscow to Vladivostok obtained during the six TROICA (Transcontinental Observations Into the Chemistry of the Atmosphere) expeditions of the mobile laboratory along the Trans-Siberian railroad are analyzed. Spatial distribution, diurnal and seasonal variations of surface 222Rn concentrations along the Trans-Siberian railroad are investigated. According to the obtained data surface 222Rn concentration values above continental Russia vary from 0.5 to 75 Bq/m3 depending on meteorological conditions and geological features of the territory with the average value being 8.42 ± 0.10 Bq/m3. The average 222Rn concentration is maximum in the autumn expedition and minimum in the spring one. The factors mostly influencing 222Rn concentration variations are studied: surface temperature inversions, geological features of the territory, precipitations. 222Rn accumulation features in the atmospheric surface layer during night temperature inversions are analyzed. It was noted that during night temperature inversions the surface 222Rn concentration is 7 - 8 times more than the one during the nights without temperature inversions. Since atmospheric stratification determines accumulation and diurnal variations of many atmospheric pollutants as well as greenhouse gases its features are analyzed in detail. Surface temperature inversions were mainly observed from 18:00-19:00 to 06:00-07:00 in the warm season and from 16

  4. The ice-core record - Climate sensitivity and future greenhouse warming

    Science.gov (United States)

    Lorius, C.; Raynaud, D.; Jouzel, J.; Hansen, J.; Le Treut, H.

    1990-01-01

    The prediction of future greenhouse-gas-warming depends critically on the sensitivity of earth's climate to increasing atmospheric concentrations of these gases. Data from cores drilled in polar ice sheets show a remarkable correlation between past glacial-interglacial temperature changes and the inferred atmospheric concentration of gases such as carbon dioxide and methane. These and other palaeoclimate data are used to assess the role of greenhouse gases in explaining past global climate change, and the validity of models predicting the effect of increasing concentrations of such gases in the atmosphere.

  5. Global climate change

    International Nuclear Information System (INIS)

    Levine, J.S.

    1991-01-01

    Present processes of global climate change are reviewed. The processes determining global temperature are briefly described and the concept of effective temperature is elucidated. The greenhouse effect is examined, including the sources and sinks of greenhouse gases. 18 refs

  6. Climate change and global warming potentials

    International Nuclear Information System (INIS)

    Vate, J.F. van de

    1996-01-01

    Climate change and the global budgets of the two main energy consumption related greenhouse gases, CO 2 and CH 4 , are discussed. The global warming potential (GWP) of the non-CO 2 greenhouse gases is defined and the large range of GWPs of CH 4 in the literature is discussed. GWPs are expected to play an important role in energy policies and negotiations concerning lowering greenhouse gas emissions. (author). 20 refs, 4 figs, 4 tabs

  7. Further decrease of the emission of greenhouse gases in the Netherlands

    International Nuclear Information System (INIS)

    Olsthoorn, K.

    2007-01-01

    Calculations of the CBS (Statistics Netherlands) and the Netherlands Environmental Assessment Agency (MNP) show that in 2006, for the second year in a row, the emission of greenhouse gases in the Netherlands have decreased. At 208 billion kg CO2-equivalents it was 3% below the level of 1990, the base year of the Kyoto protocol.(mk) [nl

  8. Projection of the gases emissions of greenhouse effect (GEI), Colombia 1998-2010

    International Nuclear Information System (INIS)

    Gonzalez B, Fabio; Rodriguez M, Humberto

    1999-01-01

    The Greenhouse Gas Emissions baseline scenario 1998-2010 was developed from the energy and no-energy sector projections. This study considered the same greenhouse gases as the 1990 inventory. One of the major findings is the increase in the participation share of the energy sector from 31% in 1990 up to 72% in 2010, while the non-energy sector decrease its share from 69% to 28% in the same period the total emissions increase from 167 mt/year in 1990 to 174 mt/year in 2010, an increase of only 4%

  9. Potential effects of anthropogenic greenhouse gases on avian habitats and populations in the northern Great Plains

    Science.gov (United States)

    Larson, Diane L.

    1994-01-01

    Biotic response to the buildup of greenhouse gases in Earth's atmosphere is considerably more complex than an adjustment to changing temperature and precipitation. The fertilization effect carbon dioxide has on some plants, the impact UVB radiation has on health and productivity of organisms, and the resulting changes in competitive balance and trophic structure must also be considered. The intent of this paper is to review direct and indirect effects of anthropogenic greenhouse gases on wildlife, and to explore possible effects on populations of birds and their habitats in the northern Great Plains.Many of the potential effects of increasing greenhouse gases, such as declining plant nutritional value, changes in timing of insect emergence, and fewer and saltier wetlands, foreshadow a decline in avian populations on the Great Plains. However, other possible effects such as increased drought resistance and water use efficiency of vegetation, longer growing seasons, and greater overall plant biomass promise at least some mitigation. Effects of multiple simultaneous perturbations such as can be expected under doubled carbon dioxide scenarios will require substantial basic research to clarify.

  10. The greenhouse effect - little strokes fell great oaks; Drivhuseffekten - liten tue kan velte stort lass

    Energy Technology Data Exchange (ETDEWEB)

    Kanestroem, Ingolf

    2003-07-01

    It is a common assumption that carbon dioxide and other greenhouse gases constitute only a very small fraction of the atmosphere and thus cannot be as important as the climate researchers maintain. However, the adage of the title is appropriate for the impact of the greenhouse gases on the atmosphere. During the last 25 years, the global temperature has risen 0,5 {sup o}C, and during the last century by 0,75 {sup o}C. Thus according to the UN Climate Panel, there is evidence of a noticeable anthropogenic impact on the global climate. The article discusses the concept of greenhouse effect, the composition of the atmosphere, greenhouse gases and their importance, emission of carbon dioxide and natural climate changes.

  11. Evaluation of the greenhouse effect gases (CO2, CH4, N2O) in grass land and in the grass breeding. Greenhouse effect gases prairies. report of the first part of the project December 2002

    International Nuclear Information System (INIS)

    Soussana, J.F.

    2002-12-01

    In the framework of the Kyoto protocol on the greenhouse effect gases reduction, many ecosystems as the prairies can play a main role for the carbon sequestration in soils. The conservation of french prairies and their management adaptation could allow the possibility of carbon sequestration in the soils but also could generate emissions of CO 2 and CH 4 (by the breeding animals on grass) and N 2 O (by the soils). This project aims to establish a detailed evaluation of the contribution of the french prairies to the the greenhouse effect gases flux and evaluate the possibilities of reduction of the emissions by adaptation of breeding systems. (A.L.B.)

  12. FETC Programs for Reducing Greenhouse Gas Emissions

    International Nuclear Information System (INIS)

    Ruether, J.A.

    1998-02-01

    Mark Twain once quipped that everyone talks about the weather but no one does anything about it. With interest in global climate change on the rise, researchers in the fossil-energy sector are feeling the heat to provide new technology to permit continued use of fossil fuels but with reduced emissions of so-called 'greenhouse gases.' Three important greenhouse gases, carbon dioxide, methane, and nitrous oxide, are released to the atmosphere in the course of recovering and combusting fossil fuels. Their importance for trapping radiation, called forcing, is in the order given. In this report, we briefly review how greenhouse gases cause forcing and why this has a warming effect on the Earth's atmosphere. Then we discuss programs underway at FETC that are aimed at reducing emissions of methane and carbon dioxide

  13. Estimating the benefits of greenhouse gas emission reduction from agricultural policy reform

    International Nuclear Information System (INIS)

    Adger, W.N.; Moran, D.C.

    1993-01-01

    Land use and agricultural activities contribute directly to the increased concentrations of atmospheric greenhouse gases. Economic support in industrialized countries generally increases agriculture's contribution to global greenhouse gas concentrations through fluxes associated with land use change and other sources. Changes in economic support offers opportunities to reduce net emissions, through this so far has gone unaccounted. Estimates are presented here of emissions of methane from livestock in the UK and show that, in monetary terms, when compared to the costs of reducing support, greenhouse gases are a significant factor. As signatory parties to the Climate Change Convection are required to stabilize emissions of all greenhouse gases, options for reduction of emissions of methane and other trace gases from the agricultural sector should form part of these strategies

  14. The greenhouse gases HFCs, PFCs and SF{sub 6}, Danish consumption and emissions, 2007

    Energy Technology Data Exchange (ETDEWEB)

    Sander Poulsen, T.; Bode, I.

    2009-07-01

    The objective of this project was to determine the Danish consumption and actual emissions of HFCs, PFCs, and SF{sub 6} for 2007. Further, if methodology changes are made in connection to the work on 2007 data, the data for previous years are considered and updated accordingly. The emission calculation is made in accordance with the IPCC guidelines and following the method employed in previous year calculation. The methodology includes calculation of the actual emissions of HFCs, PFCs, and SF{sub 6}. In this calculation of actual emissions, the release from stock of greenhouse gases in products has been taken into account, and adjustments have been made for imports and exports of the greenhouse gases in products. Specific emission factors are presented. (ln)

  15. Minimum requirements on implementation of the greenhouse gases ordinance. EU ordinance on fluorinated greenhouse gases; Mindestanforderungen zur Implementierung der F-Gase-Verordnung. Die EG-Verordnung zu fluorierten Treibhausgasen

    Energy Technology Data Exchange (ETDEWEB)

    Preisegger, E. [Solvay Fluor GmbH, Hannover (Germany). Environmental and Public Affairs Fluorochemicals

    2008-04-15

    On 4 July 2006, the EU ordinance 842/2006 on fluorinated greenhouse gases came into force. Since 4 July 2007, it has been in effect with the exception of article 9 and appendix II both of which had been effective since 4 July 2006. However, some articles of the ordinance necessitate the definition of minimum requirements resp. of form and contents by the EU commission. The minimum requirements for training and certification will provide a basis for national implementation of these measures in the EU member states. (orig.)

  16. Collaborative Emission Reduction Model Based on Multi-Objective Optimization for Greenhouse Gases and Air Pollutants.

    Science.gov (United States)

    Meng, Qing-chun; Rong, Xiao-xia; Zhang, Yi-min; Wan, Xiao-le; Liu, Yuan-yuan; Wang, Yu-zhi

    2016-01-01

    CO2 emission influences not only global climate change but also international economic and political situations. Thus, reducing the emission of CO2, a major greenhouse gas, has become a major issue in China and around the world as regards preserving the environmental ecology. Energy consumption from coal, oil, and natural gas is primarily responsible for the production of greenhouse gases and air pollutants such as SO2 and NOX, which are the main air pollutants in China. In this study, a mathematical multi-objective optimization method was adopted to analyze the collaborative emission reduction of three kinds of gases on the basis of their common restraints in different ways of energy consumption to develop an economic, clean, and efficient scheme for energy distribution. The first part introduces the background research, the collaborative emission reduction for three kinds of gases, the multi-objective optimization, the main mathematical modeling, and the optimization method. The second part discusses the four mathematical tools utilized in this study, which include the Granger causality test to analyze the causality between air quality and pollutant emission, a function analysis to determine the quantitative relation between energy consumption and pollutant emission, a multi-objective optimization to set up the collaborative optimization model that considers energy consumption, and an optimality condition analysis for the multi-objective optimization model to design the optimal-pole algorithm and obtain an efficient collaborative reduction scheme. In the empirical analysis, the data of pollutant emission and final consumption of energies of Tianjin in 1996-2012 was employed to verify the effectiveness of the model and analyze the efficient solution and the corresponding dominant set. In the last part, several suggestions for collaborative reduction are recommended and the drawn conclusions are stated.

  17. Energy and environment - greenhouse effect. The international, european and national actions to control the greenhouse gases emissions: which accounting and which perspectives?; Energie et environnement - effet de serre. Les actions internationales, europeennes et nationales pour maitriser les emissions de gaz a effet de serre: quel bilan et quelles perspectives?

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-12-15

    The scientific knowledge concerning the climatic change justifies today immediate fight actions against the greenhouse reinforcement. This fight is based on an ambitious international device which must take into account more global challenges. At the european and national scale, the exploitation of the potential of greenhouse gases reduction must be reinforced and more specially the evolution of the life style. (A.L.B.)

  18. Energy utilization and greenhouse-gas emissions: Transportation sector, topical report

    International Nuclear Information System (INIS)

    Darrow, K.G.

    1992-06-01

    The objective of the report is to compare the emissions of greenhouse gases for alternative end-use technologies in the transportation sector. Scientists assert that global warming is occurring and will continue to occur as a result of increasing concentrations of certain gases in the atmosphere. Carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) are the focus of this analysis because they are believed to cause three-fourths of the global warming effect and because energy production and use are a significant source of these emissions. Greenhouse gas emissions in the energy sector occur during energy production, conversion, transportation and end-use. This analysis compares alternative transportation sector fuel/technology choices in terms of their total fuel-cycle emissions of greenhouse gases. The emphasis of this report is on the end use comparison. The fuel-cycle emissions comparison was developed in a companion report

  19. The greenhouse gases emissions allowances trading in the Czech Republic

    International Nuclear Information System (INIS)

    Chemisinec, Igor; Marvan, Miroslav; Tuma, Jiri

    2006-01-01

    The energy policy of the State is very important for a state development. The aim of this policy is power energy development, which is essential for improving the quality of life and standards of people's living in every country. Unfortunately, power energy development also has a negative impact; primarily on the environment. Some possible solutions exist for reduction of the power energy negative impacts. This paper deals with reduction of greenhouse gases (GHG) emissions in the Czech Republic according to the Kyoto protocol to the United Nations Framework Convention climate change. The ultimate objective of the United Nations Framework Convention on Climate Change is to achieve stabilization of greenhouse gas concentrations in the atmosphere. The GHG emissions allowances trading as one of the instruments for stabilisation of GHG emissions is described in the paper. (authors)

  20. Greenhouse gases emission assessment in residential sector through buildings simulations and operation optimization

    International Nuclear Information System (INIS)

    Stojiljković, Mirko M.; Ignjatović, Marko G.; Vučković, Goran D.

    2015-01-01

    Buildings use a significant amount of primary energy and largely contribute to greenhouse gases emission. Cost optimality and cost effectiveness, including cost-optimal operation, are important for the adoption of energy efficient and environmentally friendly technologies. The long-term assessment of buildings-related greenhouse gases emission might take into account cost-optimal operation of their energy systems. This is often not the case in the literature. Long-term operation optimization problems are often of large scale and computationally intensive and time consuming. This paper formulates a bottom-up methodology relying on an efficient, but precise operation optimization approach, applicable to long-term problems and use with buildings simulations. We suggest moving-horizon short-term optimization to determine near-optimal operation modes and show that this approach, applied to flexible energy systems without seasonal storage, have satisfactory efficiency and accuracy compared with solving problem for an entire year. We also confirm it as a valuable pre-solve technique. Approach applicability and the importance of energy systems optimization are illustrated with a case study considering buildings envelope improvements and cogeneration and heat storage implementation in an urban residential settlement. EnergyPlus is used for buildings simulations while mixed integer linear programming optimization problems are constructed and solved using the custom-built software and the branch-and-cut solver Gurobi Optimizer. - Highlights: • Bottom-up approach for greenhouse gases emission assessment is presented. • Short-term moving-horizon optimization is used to define operation regimes. • Operation optimization and buildings simulations are connected with modeling tool. • Illustrated optimization method performed efficiently and gave accurate results.

  1. Improving material management to reduce greenhouse gas emissions

    NARCIS (Netherlands)

    Hekkert, Marko Peter

    2000-01-01

    Climate change due to greenhouse gas emissions caused by human actions is probably one of the major global environmental problems that we face today. In order to reduce the risk of climate change and the potential effects thereof, the emission of greenhouse gases like carbon dioxide (CO2) and

  2. 76 FR 36472 - Mandatory Reporting of Greenhouse Gases; Changes to Provisions for Electronics Manufacturing...

    Science.gov (United States)

    2011-06-22

    ... Mandatory Reporting of Greenhouse Gases; Changes to Provisions for Electronics Manufacturing (Subpart I) To... proposing changes to the calculation and monitoring provisions in the Electronics Manufacturing portion... Category Examples of affected Category NAICS facilities Electronics Manufacturing......... 334111...

  3. Automotive industry program and strategy for control of ozone depleting substances and greenhouse gases

    International Nuclear Information System (INIS)

    Pound, F.R.; Stirling, P.J.

    1990-01-01

    This paper outlines the program status and strategy for the short and long term periods for ozone depleting substances and greenhouse gases from both stationary sources in manufacturing plants and mobile sources in motor vehicles. 5 refs

  4. Sludge thermal oxidation processes: mineral recycling, energy impact, and greenhouse effect gases release

    Energy Technology Data Exchange (ETDEWEB)

    Guibelin, Eric

    2003-07-01

    Different treatment routes have been studied for a mixed sludge: the conventional agricultural use is compared with the thermal oxidation processes, including incineration (in gaseous phase) and wet air oxidation (in liquid phase). The interest of a sludge digestion prior to the final treatment has been also considered according to the two major criteria, which are the fossil energy utilisation and the greenhouse effect gases (CO{sub 2}, CH{sub 4}, N{sub 2}O) release. Thermal energy has to be recovered on thermal processes to make these processes environmentally friendly, otherwise their main interest is to extract or destroy micropollutants and pathogens from the carbon cycle. In case of continuous energy recovery, incineration can produce more energy than it consumes. Digestion is especially interesting for agriculture: according to these two schemes, the energy final balance can also be in excess. As to wet air oxidation, it is probably one of the best way to minimize greenhouse effect gases emission. (author)

  5. The CO2 diet for a greenhouse planet: Assessing individual actions for slowing global warming

    International Nuclear Information System (INIS)

    DeCicco, J.; Cook, J.; Bolze, D.; Beyea, J.

    1990-01-01

    Because of uncontrolled population growth and a short-sighted choice of technologies, humankind is emitting enormous quantities of greenhouse gases. Reducing emissions of these gases which can disrupt the Earth's climate will require action by individuals as well as by governments and industries. Most energy use currently entails carbon dioxide (CO 2 ) emissions; increasing energy efficiency can therefore address a major portion of the emissions. Reducing emissions of other greenhouse gases, such as halocarbons, is also necessary. Following such a low-CO 2 diet will require lifestyle changes and prudent consumption choices by individuals. This paper focuses on the activities related to greenhouse gas emissions in the US over which individuals have some control

  6. Fluorinated Greenhouse Gases in Photovoltaic Module Manufacturing: Potential Emissions and Abatement Strategies

    NARCIS (Netherlands)

    Alsema, E.A.|info:eu-repo/dai/nl/073416258; de Wild-Schoten, M.J.; Fthenakis, V.M.; Agostinelli, G.; Dekkers, H.; Roth, K.; Kinzig, V.

    2007-01-01

    Some fluorinated gases (F-gases) which are used, or considered to be used, in crystalline silicon photovoltaic solar cell and film silicon module manufacturing have a very high global warming effect. CF4, C2F6, SF6 and NF3 have global warming potentials 7390, 12200, 22800 and 17200 times higher than

  7. Turnover and transport of greenhouse gases in a Danish wetland

    DEFF Research Database (Denmark)

    Jørgensen, Christian Juncher

    2011-01-01

    involving plants, soil and microorganisms. These processes are regulated by different physio-chemical drivers such as soil moisture content, soil temperature, nutrient and oxygen (O2) availability. In wetlands, the position of the free standing water level (WL) influences the spatiotemporal variation...... in these drivers, thereby influencing the net emission or uptake of greenhouse gas. In this PhD thesis the complex aspects in the exchange of N2O across the soil-atmosphere is investigated with special focus on the spatiotemporal variations in drivers for N2O production and consumption in the soil...... net N2O dynamics. Similarly, plant-mediated gas transport by the subsurface aerating macrophyte Phalaris arundinacea played a major part in regulating and facilitating emissions of greenhouse gases across the soil-atmosphere interface. It is concluded that the spatiotemporal distribution of dominating...

  8. 75 FR 39735 - Mandatory Reporting of Greenhouse Gases From Magnesium Production, Underground Coal Mines...

    Science.gov (United States)

    2010-07-12

    ... sectors of the economy, including fossil fuel suppliers, industrial gas suppliers, and direct emitters of... Part II Environmental Protection Agency 40 CFR Part 98 Mandatory Reporting of Greenhouse Gases From Magnesium Production, Underground Coal Mines, Industrial Wastewater Treatment, and Industrial...

  9. Buying greenhouse insurance

    International Nuclear Information System (INIS)

    Manne, A.S.; Richels, R.G.

    1992-01-01

    A growing concern that the increasing accumulation of greenhouse gases will lead to undesirable changes in global climate has resulted in proposals, both in the United States and internationally, to set physical targets for reducing greenhouse gas emissions. But what will these proposals cost? This book outlines a way to think about greenhouse-effect decisions under uncertainty. It describes an insightful model for determining the economic costs of limiting CO 2 emissions produced by burning fossil fuels and provides a solid analytical base for rethinking public policy on the far-reaching issue of global warming. It presents region-by-region estimates of the costs that would underlie an international agreement. Using a computer model known as Global 2100, they analyze the economic impacts of limiting CO 2 emissions under alternative supply and conservation scenarios. The results clearly indicate that a reduction in emissions is not the sole policy response to potential climate change. Following a summary of the greenhouse effect, its likely causes, and possible consequences, this book takes up issues that concern the public at large. They provide an overview of Global 2100, look at how the U.S. energy sector is likely to evolve under business-as-usual conditions and under carbon constraints, and describe the concept of greenhouse insurance. They consider possible global agreements, including an estimate of benefits that might result from trading in an international market in emission rights. They conclude with a technical description directed toward modeling specialists

  10. On Road Study of Colorado Front Range Greenhouse Gases Distribution and Sources

    Science.gov (United States)

    Petron, G.; Hirsch, A.; Trainer, M. K.; Karion, A.; Kofler, J.; Sweeney, C.; Andrews, A.; Kolodzey, W.; Miller, B. R.; Miller, L.; Montzka, S. A.; Kitzis, D. R.; Patrick, L.; Frost, G. J.; Ryerson, T. B.; Robers, J. M.; Tans, P.

    2008-12-01

    The Global Monitoring Division and Chemical Sciences Division of the NOAA Earth System Research Laboratory have teamed up over the summer 2008 to experiment with a new measurement strategy to characterize greenhouse gases distribution and sources in the Colorado Front Range. Combining expertise in greenhouse gases measurements and in local to regional scales air quality study intensive campaigns, we have built the 'Hybrid Lab'. A continuous CO2 and CH4 cavity ring down spectroscopic analyzer (Picarro, Inc.), a CO gas-filter correlation instrument (Thermo Environmental, Inc.) and a continuous UV absorption ozone monitor (2B Technologies, Inc., model 202SC) have been installed securely onboard a 2006 Toyota Prius Hybrid vehicle with an inlet bringing in outside air from a few meters above the ground. To better characterize point and distributed sources, air samples were taken with a Portable Flask Package (PFP) for later multiple species analysis in the lab. A GPS unit hooked up to the ozone analyzer and another one installed on the PFP kept track of our location allowing us to map measured concentrations on the driving route using Google Earth. The Hybrid Lab went out for several drives in the vicinity of the NOAA Boulder Atmospheric Observatory (BAO) tall tower located in Erie, CO and covering areas from Boulder, Denver, Longmont, Fort Collins and Greeley. Enhancements in CO2, CO and destruction of ozone mainly reflect emissions from traffic. Methane enhancements however are clearly correlated with nearby point sources (landfill, feedlot, natural gas compressor ...) or with larger scale air masses advected from the NE Colorado, where oil and gas drilling operations are widespread. The multiple species analysis (hydrocarbons, CFCs, HFCs) of the air samples collected along the way bring insightful information about the methane sources at play. We will present results of the analysis and interpretation of the Hybrid Lab Front Range Study and conclude with perspectives

  11. Greenhouse effect increase and its consequences

    International Nuclear Information System (INIS)

    Royer, J.F.; Mahfouf, J.F.

    1992-01-01

    Observations on the evolution of the atmospheric composition concerning trace gases (CO 2 , CH 4 , NO 2 , CFC) are first described. Then the fundamental role played by these gases in the radiative equilibrium of the earth through the greenhouse effect is examined. Numerical models have been developed to forecast the consequences of an increase of the greenhouse effect. The importance of the feedback mechanism, where the oceans and the clouds have the central part, but not well estimated by the models, is explained. Climatic changes generally accepted are reviewed. In conclusion the need to improve our knowledge of the global climatic system to forecast future modifications is underlined

  12. Thermal Plasma decomposition of fluoriated greenhouse gases

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Soo Seok; Watanabe, Takayuki [Tokyo Institute of Technology, Yokohama (Japan); Park, Dong Wha [Inha University, Incheon (Korea, Republic of)

    2012-02-15

    Fluorinated compounds mainly used in the semiconductor industry are potent greenhouse gases. Recently, thermal plasma gas scrubbers have been gradually replacing conventional burn-wet type gas scrubbers which are based on the combustion of fossil fuels because high conversion efficiency and control of byproduct generation are achievable in chemically reactive high temperature thermal plasma. Chemical equilibrium composition at high temperature and numerical analysis on a complex thermal flow in the thermal plasma decomposition system are used to predict the process of thermal decomposition of fluorinated gas. In order to increase economic feasibility of the thermal plasma decomposition process, increase of thermal efficiency of the plasma torch and enhancement of gas mixing between the thermal plasma jet and waste gas are discussed. In addition, noble thermal plasma systems to be applied in the thermal plasma gas treatment are introduced in the present paper.

  13. Global warming: Experimental study about the effect of accumulation of greenhouse gases in the atmosphere

    Science.gov (United States)

    Molto, Carlos; Mas, Miquel

    2010-05-01

    The project presented here was developed by fifteen year old students of the Institut Sabadell (Sabadell Secondary School. Spain). The objective of this project was to raise the students awareness' about the problem of climate change, mainly caused by the accumulation of greenhouse gases in the atmosphere. It is also intended that students use the scientific method as an effective system of troubleshooting and that they use the ICTs (Information and Communication Technologies) to elicit data and process information. To develop this project, four lessons of sixty minutes each were needed. The first lesson sets out the role of the atmosphere as an Earth's temperature regulator, highlighting the importance of keeping the levels of carbon dioxide, methane and water steam in balance. The second lesson is focused on the experimental activity that students will develop in the following lesson. In lesson two, students will present and justify their hypothesis about the experiment. Some theoretical concepts, necessary to carry out the experiment, will also be explained. The third lesson involves the core of the project, that is the experiment in the laboratory. The experiment consists on performing the atmosphere heating on a little scale. Four different atmospheres are created inside four plastic boxes heated by an infrared lamp. Students work in groups (one group for each atmosphere) and have to monitor the evolution of temperature by means of a temperature sensor (Multilog software). The first group has to observe the relationship between temperature and carbon dioxide levels increase, mainly caused by the widespread practice of burning fossil fuels by growing human populations. The task of this group is to measure simultaneously the temperature of an empty box (without CO2) and the temperature of a box with high carbon dioxide concentration. The carbon dioxide concentration is the result of the chemical reaction when sodium carbonate mixes with hydrochloric acid. The

  14. Global warming: Towards a strategy for Ontario

    International Nuclear Information System (INIS)

    1990-01-01

    A discussion paper is provided as background to a proposed public review of a strategy for Ontario's response to global warming. Global warming arises from the generation of greenhouse gases, which come from the use of fossil fuels, the use of chlorofluorocarbons, and deforestation. Energy policy is the backbone of achieving climate stability since the burning of fossil fuels releases most of the greenhouse gases, mainly carbon dioxide. Canada is, by international standards, a very energy-intensive country and is among the world's largest emitters of carbon dioxide on a per capita basis. Ontario is the largest energy-using province in Canada, and fossil fuels represent over 80% of provincial energy use. A proposed goal for Ontario is to provide leadership in stabilizing atmospheric concentrations of the greenhouse gases, while minimizing the social, economic, and environmental costs in Ontario of adapting to global warming. A proposed first step to address global warming is to achieve reductions in expected emissions of the greenhouse gases, especially carbon dioxide, so that levels by the year 2000 are lower than in 1989. Current policies and regulations helping to reduce the greenhouse effect include some of the current controls on automotive emissions and the adoption by the provincial electric utility of targets to reduce electricity demand. New initiatives include establishment of minimum energy efficiency standards and reduction of peak-day electricity use. Action steps for future consideration are detailed in the categories of greenhouse gas emissions reductions, carbon dioxide absorption, and research and analysis into global warming

  15. Emission of greenhouse gases from Danish agriculture

    International Nuclear Information System (INIS)

    Olesen, J.E.; Petersen, S.O.; Fenhann, J.V.; Andersen, J.M.; Jacobsen, B.H.

    2001-01-01

    emission factors for nitrous oxide does not imply a correspondingly large uncertainty in the relative contribution of individual sources to the total emission. The different sources of nitrous oxide in the field are affected by the same mechanisms independent of location, and thus the uncertainty is mainly associated with the level of this emission in Denmark compared with other regions. In Denmark there has not previously been any concerted research effort to quantify emissions of greenhouse gases from agriculture. The existing, somewhat scattered research has mainly been a spin-off from research programmes with other main objectives. Accordingly there is no solid foundation for evaluation of neither emission levels nor mitigation options. A proposal for a research programme on emission of greenhouse gases from agriculture is therefore presented, which should provide a better basis for quantifying individual emission sources, their development over time, and the effect of reduction measures. Emphasis is given to improve our knowledge on emissions of methane and nitrous oxide, and to the possibilities of agriculture in storing carbon and in the reduction and substitution of fossil fuel use. (au)

  16. 76 FR 59542 - Mandatory Reporting of Greenhouse Gases: Changes to Provisions for Electronics Manufacturing To...

    Science.gov (United States)

    2011-09-27

    ... Mandatory Reporting of Greenhouse Gases: Changes to Provisions for Electronics Manufacturing To Provide... regulation to amend the calculation and monitoring provisions in the Electronics Manufacturing portion of the... Electronics Manufacturing 334111 Microcomputer manufacturing facilities. 334413 Semiconductor, photovoltaic...

  17. Model of Emissions of Greenhouse Gases (Ghg's in the Oil and Gas Industry

    Directory of Open Access Journals (Sweden)

    Amarildo da Cruz Fernandes

    2012-06-01

    Full Text Available The warming of Earth's atmosphere is a natural phenomenon and necessary to sustain life on the planet, being caused by the balance between the electromagnetic radiation received by the Earth from the Sun and the infrared radiation emitted by the Earth back into space. Since the mid-eighteenth century, with the advent of the Industrial Revolution and the consequent increase in burning fossil fuels, changes in land use and agriculture, the concentrations of carbon dioxide (CO2, methane (CH4 and nitrous oxide (N2O has increased significantly. By the year 2010, the concentrations of these three gases showed increments respectively in the order of 39%, 158% and 20% (WMO 2009, 2010 and 2011. Such increases in the concentrations of these gases are changing the Earth's radioactive balance, intensifying the natural greenhouse effect, which over millions of years has been essential to support life on the planet. The main objective of this paper is to present the development of a model based on the language of System Dynamics (SD, of how the emission of Greenhouse Gases (GHGs is in complex installations Exploration and Production (E & P of oil and gas. To illustrate one of the results of this modeling process a computer simulation was performed involving emissions from production estimate for the Pilot Production System and Drainage Area Tupi - Tupi Pilot (ICF, 2008.

  18. Pragmatics in the greenhouse

    Energy Technology Data Exchange (ETDEWEB)

    Grubb, M.J.; Victor, D.G.; Hope, C.W. (Royal Institute of International Affairs, London (UK))

    1991-12-05

    Negotiations towards a global framework convention on climate change are hampered by the range of greenhouse gases, sources and sinks. The US government promotes a comprehensive approach to climate change which provides flexibility but faces obstacles arising from the different characteristics of the sources and sinks involved, and uncertainties in attempting to estimate and compare the radiative impacts of different gases. Relying on approximations to enable a comprehensive approach is unrealistic for two reasons: monitoring and revision. The comprehensive approach is a worthwhile goal but is not yet fully practicable. Two lists are suggested - a quantified list for CFCs and CO{sub 2} and a transition list. Frequent renegotiation would be necessary. With this approach an overall goal for controlling the magnitude and rate of change in greenhouse forcing is possible. 12 refs., 1 fig.

  19. Reduced emissions of greenhouse gases 2050: Technological wedges - Input to the Commission on Low Emissions

    International Nuclear Information System (INIS)

    Rosenberg, Eva; Espegren, Kari Aamodt; Finden, Per; Hageman, Rolf; Stenersen, Dag

    2006-09-01

    The Commission on Low Emissions was established in March 2005 and has been charged with the task of describing how Norway can achieve a 50-80 percent reduction in emissions of greenhouse gases by 2050. The commission describes the desired total reduction in emissions to be a set of actions or 'wedges', meaning that the reduction in emissions are linked to an array of technological and behavioural changes. The technological wedges are described here, while the behavioural wedges are treated in a different report. The potentials described are based on the Low Emission's reference line. Possible changes in the reference line will result in changed potentials. The technological wedges studied comprise to a great extent a potential of 50-80 percent reduction in greenhouse gases by 2050. This depends on considerable effort from research and development, and a determination to change external conditions

  20. Assessment of the impact of the greenhouse gas emission and sink scenarios in Finland on radiative forcing and greenhouse effect

    Energy Technology Data Exchange (ETDEWEB)

    Savolainen, I; Sinisalo, J; Pipatti, R [Technical Research Centre of Finland, Espoo (Finland)

    1997-12-31

    The objective of this work is to study greenhouse gas emissions and sinks and their greenhouse impact as a function of time. The greenhouse impact is expressed in terms of global average radiative forcing, which measures the perturbation in the Earth`s radiation budget. Radiative forcing is calculated on the basis of the concentration changes of the greenhouse gases and the radiation absorption properties of the gases. It takes into account the relatively slow changes in the concentrations due to natural removal and transformation processes and also allows a comparison of the impact of various greenhouse gases and their possible control options as a function of time. In addition to the applications mentioned above, the anthropogenic greenhouse gas emission histories of Nordic countries have been estimated, and the radiative forcing caused by them has been calculated with REFUGE. The dynamic impact of aerosol emissions both from the global point of view and in the context of different energy sources (coal, oil and natural gas) have also been studied. In some instances the caused radiative forcing has been examined on a per capita basis. The radiative forcing calculations contain considerable uncertainty due to inaccurately known factors at several stages of the calculation (emission estimation, concentration calculation and radiative forcing calculation). The total uncertainty of the results is typically on the order of +- 40 %, when absolute values are used. If the results are used in a relative way, e.g. to compare the impacts of different scenarios, the final uncertainty is considerably less (typically + 10 %), due to correlations in almost all stages of the calculation process

  1. Assessment of the impact of the greenhouse gas emission and sink scenarios in Finland on radiative forcing and greenhouse effect

    Energy Technology Data Exchange (ETDEWEB)

    Savolainen, I.; Sinisalo, J.; Pipatti, R. [Technical Research Centre of Finland, Espoo (Finland)

    1996-12-31

    The objective of this work is to study greenhouse gas emissions and sinks and their greenhouse impact as a function of time. The greenhouse impact is expressed in terms of global average radiative forcing, which measures the perturbation in the Earth`s radiation budget. Radiative forcing is calculated on the basis of the concentration changes of the greenhouse gases and the radiation absorption properties of the gases. It takes into account the relatively slow changes in the concentrations due to natural removal and transformation processes and also allows a comparison of the impact of various greenhouse gases and their possible control options as a function of time. In addition to the applications mentioned above, the anthropogenic greenhouse gas emission histories of Nordic countries have been estimated, and the radiative forcing caused by them has been calculated with REFUGE. The dynamic impact of aerosol emissions both from the global point of view and in the context of different energy sources (coal, oil and natural gas) have also been studied. In some instances the caused radiative forcing has been examined on a per capita basis. The radiative forcing calculations contain considerable uncertainty due to inaccurately known factors at several stages of the calculation (emission estimation, concentration calculation and radiative forcing calculation). The total uncertainty of the results is typically on the order of +- 40 %, when absolute values are used. If the results are used in a relative way, e.g. to compare the impacts of different scenarios, the final uncertainty is considerably less (typically + 10 %), due to correlations in almost all stages of the calculation process

  2. Greenhouse gases fluxes and soil thermal properties in a pasture in central Missouri.

    Science.gov (United States)

    Nkonglolo, Nsalambi Vakanda; Johnson, Shane; Schmidt, Kent; Eivazi, Frieda

    2010-01-01

    Fluctuations of greenhouse gases emissions and soil properties occur at short spatial and temporal scales, however, results are often reported for larger scales studies. We monitored CO2, CH4, and N2O fluxes and soil temperature (T), thermal conductivity (K), resistivity (R) and thermal diffusivity (D) from 2004 to 2006 in a pasture. Soil air samples for determination of CO2, CH4 and N20 concentrations were collected from static and vented chambers and analyzed within two hours of collection with a gas chromatograph. T, K, R and D were measured in-situ using a KD2 probe. Soil samples were also taken for measurements of soil chemical and physical properties. The pasture acted as a sink in 2004, a source in 2005 and again a sink of CH4 in 2006. CO2 and CH4 were highest, but N2O as well as T, K and D were lowest in 2004. Only K was correlated with CO2 in 2004 while T correlated with both N2O (r = 0.76, p = 0.0001) and CO2 (r = 0.88, p = 0.0001) in 2005. In 2006, all gases fluxes were significantly correlated with T, K and R when the data for the entire year were considered. However, an in-depth examination of the data revealed the existence of month-to-month shifts, lack of correlation and differing spatial structures. These results stress the need for further studies on the relationship between soil properties and gases fluxes. K and R offer a promise as potential controlling factors for greenhouse gases fluxes in this pasture.

  3. Energy scenarios and greenhouse effect gases emissions model for Mexico; Modelo de escenarios energeticos y de emisiones de gases de efecto invernadero para Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Sheinbaum Pardo, Claudia; Rodriguez Viqueira, Luis [Instituto de Ingenieria de la UNAM, Mexico, D. F. (Mexico)

    1998-12-31

    This paper presents the bases for the Model of Energy and Greenhouse Emission Scenarios (MEEEM) developed by the Instituto de Ingenieria de la UNAM (Universidad Nacional Autonoma de Mexico`s Engineering Institute). This model was built with the objective of analyzing the different technological options for the mitigation of the greenhouse gases effect on Mexico. The MEEEM is a model for the end uses that simulate in a simple way the energy demand, transformation and supply and calculates the differential leveled costs among a basic scenario and several mitigation scenarios of the greenhouse emissions. The article also presents some of the results in evaluating three technologies of renewable energy sources. Although the model is perfectible, its development shows its usefulness in this type of models in the decision taking for the energy and environmental planning of the country. [Espanol] Este articulo presenta las bases del Modelo de Escenarios Energeticos y de Emisiones de Gases de Efecto Invernadero para Mexico (MEEEM), desarrollado por el Instituto de Ingenieria de la Universidad Nacional Autonoma de Mexico (UNAM). Este modelo fue construido con el objetivo de analizar las diversas opciones tecnologicas de mitigacion de gases de efecto invernadero para Mexico. El MEEEM es un modelo de usos finales que simula de una manera sencilla, la demanda, transformacion y oferta de la energia y calcula la diferencia de costos nivelados entre un escenario base y diversos escenarios de mitigacion de emisiones de gases de efecto invernadero. El articulo presenta tambien algunos resultados obtenidos al evaluar tres tecnologias de fuentes renovables de energia. Aun cuando el modelo es perfectible, su desarrollo demuestra la utilidad de este tipo de modelos en la toma de decisiones para planeacion energetica y ambiental del pais.

  4. Energy scenarios and greenhouse effect gases emissions model for Mexico; Modelo de escenarios energeticos y de emisiones de gases de efecto invernadero para Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Sheinbaum Pardo, Claudia; Rodriguez Viqueira, Luis [Instituto de Ingenieria de la UNAM, Mexico, D. F. (Mexico)

    1999-12-31

    This paper presents the bases for the Model of Energy and Greenhouse Emission Scenarios (MEEEM) developed by the Instituto de Ingenieria de la UNAM (Universidad Nacional Autonoma de Mexico`s Engineering Institute). This model was built with the objective of analyzing the different technological options for the mitigation of the greenhouse gases effect on Mexico. The MEEEM is a model for the end uses that simulate in a simple way the energy demand, transformation and supply and calculates the differential leveled costs among a basic scenario and several mitigation scenarios of the greenhouse emissions. The article also presents some of the results in evaluating three technologies of renewable energy sources. Although the model is perfectible, its development shows its usefulness in this type of models in the decision taking for the energy and environmental planning of the country. [Espanol] Este articulo presenta las bases del Modelo de Escenarios Energeticos y de Emisiones de Gases de Efecto Invernadero para Mexico (MEEEM), desarrollado por el Instituto de Ingenieria de la Universidad Nacional Autonoma de Mexico (UNAM). Este modelo fue construido con el objetivo de analizar las diversas opciones tecnologicas de mitigacion de gases de efecto invernadero para Mexico. El MEEEM es un modelo de usos finales que simula de una manera sencilla, la demanda, transformacion y oferta de la energia y calcula la diferencia de costos nivelados entre un escenario base y diversos escenarios de mitigacion de emisiones de gases de efecto invernadero. El articulo presenta tambien algunos resultados obtenidos al evaluar tres tecnologias de fuentes renovables de energia. Aun cuando el modelo es perfectible, su desarrollo demuestra la utilidad de este tipo de modelos en la toma de decisiones para planeacion energetica y ambiental del pais.

  5. Self-Calibrating Greenhouse Gas Balloon-Borne Sensor, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Understanding the sources and sinks of carbon dioxide and other greenhouse gases has been recognized as critical to predicting climate change and global warming. A...

  6. Inventory of greenhouse gases at the municipality level. Description of calculation methods; Denmark; Drivhusgasopgoerelse paa kommuneniveau. Beskrivelse af beregningsmetoder

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Ole-Kenneth; Winther, M.; Gyldenkaerne, S.; Lyck, E.; Thomsen, Marianne; Hoffmann, L.; Fauser, P.

    2009-02-15

    This report includes a description of methodologies, data and algorithms behind the inventories of greenhouse gases at the municipality level divided into sectors. The starting point for the sectors in this report is the sectors used for the official Danish emission inventories. A simplified generalization of the equations used in emission calculations is based on the assumption that emissions of a given activity is estimated using data descriptive for the size of the activity multiplied by an emission factor pr unit of activity. Emissions of CH{sub 4} and N{sub 2}O are converted to CO{sub 2} equivalents. In this project this generalization and these conversions are also the basis for all methodologies. The sectors included in this report are: the collective power and heating, individual heating, mobile sources, transportation and machinery, industrial processes, solvents, agriculture, land use and waste depositing and wastewater. The methods include calculations of the greenhouse gases that are most important for the sectors. The importance is estimated from the national emission inventory. This report covers methodologies for the greenhouse gases CO{sub 2}, CH{sub 4} and N{sub 2}O. Due to the mentioned importance criteria for some sectors not all greenhouse gases are included. As for the national inventories the calculation is built into several levels (Tiers) with increased requirements for municipalities regarding data. Tier 1 is mainly based on the Danish national greenhouse gas inventory data using appropriate distribution keys for a given activity into municipality level. Tier 2 is more detailed and includes emission factors used in the Danish national greenhouse gas inventories, for some sectors the emission factors are aggregated, while municipalities can enter their own activity data. At Tier 3, which is the most detailed level, there is - for some sectors - the opportunity to enter municipality specific emission factors and activity data. For other

  7. The national-economic cost of reduction of greenhouse gases emission. Comparison of investments aimed towards a reduced greenhouse gas emission in power industry, agriculture, transportation sector and other essential greenhouse gas sources

    International Nuclear Information System (INIS)

    1995-01-01

    For a number of years the cost of reducing CO 2 emissions in the energy sector in Denmark has been investigated in detail. The same has not been the case what concerns the cost of reducing other greenhouse gases (CH 4 and N 2 O) and especially not what concerns the possibilities of reducing greenhouse gases in other sectors in the Danish economy, i.e. agriculture, transport, industry, domestic waste and forestry. Thus, the objective of this project was twofold: 1) To calculate the national economic costs related to a number of options for reducing Danish greenhouse gas emissions (CO 2 , CH 4 and N 2 O) by using the same methodology for all important sectors in the economy and 2) To compare the cost efficiency of these options not only wihtin the individual sectors but also across the sectoral boundaries to achieve an overall view of the reduction possibilities in society and the associated costs. (au) 80 refs.; Prepared by Forskningscenter Risoe and Danmarks Miljoeundersoegelser. Afdeling for Systemanalyse

  8. Greenhouse effect gases (GEI) by energy consumption; Gases efecto invernadero (GEI) por consumo de energia

    Energy Technology Data Exchange (ETDEWEB)

    Munoz Ledo C, Ramon; Bazan N, Gerardo [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2003-07-01

    The purpose of this article is to present the calculation methodology of greenhouse effect gases (GEI) emissions that are produced by the power sector in Mexico, as well as to discuss its possible impact in the subject of climatic change and the possible mitigating actions to lower the amount of emissions that can be taken and, therefore, the possible climate changes. In Mexico GEI inventories have been made since 1991, year in which the National Inventory of Gases with Greenhouse Effect was obtained for year 1988. The GEI include carbon dioxide (CO2), carbon monoxide (CO), nitrogen oxides (NOx), methane (CH4), nitrous oxide (NO) and volatile organic carbides that are not methane (NMVOC) and are secondary products and harmful that are obtained from the processes that turn fuels into energy (combustion). The main sources of GEI are: fixed sources (industries, residences, commerce, public services and energy transformation, such as power generation); movable sources (that include all type of transport that uses fuel). The fuels that, by their volume and efficiency, generate more emissions of GEI are crude oil, natural gas and solid biomass (firewood-cane bagasse). Any effort to reduce these emissions is very important and remarkable if it affects the consumption of these fuels. [Spanish] El proposito de este articulo es presentar la metodologia de calculo de las emisiones de los gases con efecto invernadero (GEI) que son producidos por el sector energetico en Mexico, asi como discutir su posible impacto en las cuestiones de cambio climatico y las posibles acciones de mitigacion que se pueden realizar para abatir la cantidad de emisiones y, por ende, los posibles cambios de clima. En Mexico se han realizado inventarios de GEI desde 1991, ano en que se obtuvo el Inventario Nacional de Gases con Efecto Invernadero para el ano de 1988. Los GEI comprenden al dioxido de carbono (CO2), monoxido de carbono (CO), oxidos de nitrogeno (NOx), metano (CH4), oxido nitroso (N2O) y

  9. Working group results on the division by four of the greenhouse gases emissions in France, at 2050, called factor four

    International Nuclear Information System (INIS)

    2005-01-01

    This working group aims to evaluate and propose different ways to divide by four the greenhouse gases emissions at 2050 in France. This objective was decided by the Government and fixed in the Climate Plan and in the Program law of 13 July 2005. In this framework, this meeting presents studies of the working group, concerning the following topics: buildings and greenhouse gases, a scenario for the UE25 realized by Greenpeace, the agriculture and the forests facing the climate, the biomass the nature the agriculture and the silviculture facing the climate. (A.L.B.)

  10. The atmosphere: Global commons to protect

    International Nuclear Information System (INIS)

    Obasi, G.O.P.

    1996-01-01

    One of the most important greenhouse gases is CO 2 , whose concentration in the atmosphere has increased from 280 parts per million by volume (ppmv) to 358ppmv in 1994, giving a general increase of over 27 per cent since pre-industrial times. This increase has been attributed largely to fossil fuel combustion. Significant increases have also been observed in atmospheric concentrations of the other greenhouse gases, including methane, nitrous oxide and global tropospheric ozone. Concentrations of methane and nitrous oxide have, for example, grown by 145 per cent and 15 per cent respectively since pre-industrial times. Such increases have been linked to the rapid world population growth, which has resulted in increasing demands for energy, food, water, shelter and other basic needs. Computer models indicate that the continued accumulation of greenhouse gases in the atmosphere could result in global climate change and global warming. As some uncertainties still exists in the model predictions, it may take a few more years to uniquely separate human-induced climate change signals from natural climate variability in global climate trends

  11. Trends and temporal variations of major greenhouse gases at a rural site in Central Europe

    Science.gov (United States)

    Haszpra, L.; Barcza, Z.; Hidy, D.; Szilágyi, I.; Dlugokencky, E.; Tans, P.

    In this study the trends and temporal variations of four major greenhouse gases (CO 2, CH 4, N 2O, SF 6) measured at Hegyhátsál, Hungary, are analyzed. The long term trends observed closely follow the global tendencies. The relatively small positive offset can be attributed to the European anthropogenic sources. The seasonal cycles are basically governed by that in the atmospheric mixing, however, in the case of CO 2 and N 2O it is also modulated by the temporal variation in the biological activity. A secondary maximum in SF 6 mixing ratio in summer may indicate the additional contribution of the seasonally changing circulation pattern. The daily cycles are dominated by the diurnal variation in the vertical mixing of the atmosphere. However, in the case of CO 2 the diurnal cycle in the biospheric uptake/release is the governing process, especially in the growing season. The lack of diurnal cycle in the mixing ratio of the exclusively anthropogenic SF 6 indicates that there is no notable anthropogenic activity in the influence area of the station, which also means that Hegyhátsál can be considered to be a rural monitoring site as free from direct anthropogenic pollution as it is possible in Central Europe. It is demonstrated that the diurnal covariance between the mixing ratios and the vertical mixing at a mid-continental, low elevation site has to be taken into account, and properly handled, in the dispersion models, otherwise the results may be distorted. The collocated measurement of greenhouse gases of different origin could potentially help modelers to improve the boundary layer representation and horizontal diffusion simulation in the three dimensional atmospheric transport models.

  12. Global change of the climate

    International Nuclear Information System (INIS)

    Moharam-nejad, Naser.

    1995-01-01

    Greenhouse effect is defined. greenhouse gases which are capable to produce greenhouse effect is mentioned. The production of greenhouse effects depends on the following factors; The amount of discharge to the atmosphere, Concentration, Life span, stability, Absorption and Emission. The effect of global change of climate on agriculture and living organisms is discussed. Global actions related to climate change and national procedures are described. The aim of climate change convention is given and the important points of convention is also mentioned

  13. The fight against the greenhouse effect. Equity and efficiency

    International Nuclear Information System (INIS)

    Vallee, A.

    2003-01-01

    The author discusses the definition of an equitable division rule of the global effort of greenhouse gases emissions decrease, the research of the economic efficiency, the flexibility mechanisms and the emissions trading. (A.L.B.)

  14. Global emissions inventories

    International Nuclear Information System (INIS)

    Dignon, J.

    1995-07-01

    Atmospheric chemistry determines the concentrations of most of the important greenhouse gases except for carbon dioxide. The rate of removal of the greenhouse gases from the atmosphere is also controlled by atmospheric chemistry. The indirect effects of chemical forcing resulting from the chemical interactions of other species can also affect the concentrations of radiatively important gases such as ozone. In order to establish the contribution of any possible climatic change attributable to individual greenhouse gases, spatially and temporally resolved estimates of their emissions need to be established. Unfortunately, for most of the radiatively important species the global magnitudes of their individual fluxes are not known to better than a factor of two and their spatial distributions are even more poorly characterized. Efforts to estimate future projections of potential impacts and to monitor international agreements will require continued research to narrow the uncertainties of magnitude and geographical distribution of emissions

  15. Selection of groundwater sites in Egypt, using geographic information systems, for desalination by solar energy in order to reduce greenhouse gases

    Directory of Open Access Journals (Sweden)

    Mariam G. Salim

    2012-01-01

    Full Text Available Although Egypt has already reached the water poverty limit, it possesses a high potential of brackish groundwater available from different aquifers. All Arab countries lie in the best sun-belt region in the world and Egypt has the highest number of sun hours all year round. Solar energy for groundwater desalination is an independent infinite energy resource; it has low running costs and reduces the contribution of greenhouse gases (GHG to global warming. Perfect meteorological conditions and land space are available in remote areas, where solar desalination could supply freshwater for drinking, industry, and for greenhouse agriculture. The present study uses Geographic Information System(s (GIS as a spatial decision support tool to select appropriate sites in Egypt for groundwater solar desalination. Solar radiation, aquifer depth, aquifer salinity, distance from the Delta and the Nile Valley, incidence of flash floods, sand dunes, rock faults, and seawater intrusion in the North Delta, are the criteria that have been taken into consideration in the process of analysis. A specific weight is given to each criterion according to its relative influence on the process of decision making. The results from the application of the presented methodology determine the relative suitability of sites for groundwater solar desalination. These sites are ranked in descending order to help decision-makers in Egypt. The results show that groundwater solar desalination is suitable in remote regions on the North Western Coast, on the North Sinai Coast, and at the Southern Oasis, for reducing greenhouse gases and that it is particularly useful for poor communities suffering from polluted water.

  16. Global climate: Methane contribution to greenhouse effect

    International Nuclear Information System (INIS)

    Metalli, P.

    1992-01-01

    The global atmospheric concentration of methane greatly contributes to the severity of the greenhouse effect. It has been estimated that this concentration, due mainly to human activities, is growing at the rate of roughly 1.1% per year. Environmental scientists suggest that a reduction, even as small as 10%, in global methane emissions would be enough to curtail the hypothetical global warning scenarios forecasted for the up-coming century. Through the recovery of methane from municipal and farm wastes, as well as, through the control of methane leaks and dispersions in coal mining and petrochemical processes, substantial progress towards the abatement of greenhouse gas effects could be achieved without having to resort to economically detrimental limitations on the use of fossil fuels

  17. Landfilling of waste: accounting of greenhouse gases and global warming contributions

    DEFF Research Database (Denmark)

    Manfredi, Simone; Tonini, Davide; Christensen, Thomas Højlund

    2009-01-01

    Accounting of greenhouse gas (GHG) emissions from waste landfilling is summarized with the focus on processes and technical data for a number of different landfilling technologies: open dump (which was included as the worst-case-scenario), conventional landfills with flares and with energy recove...

  18. Greenhouse Gases Emission and Global Warming Potential as Affected by Chemical Inputs for Main Cultivated Crops in Kerman Province: - Horticultural Crops

    Directory of Open Access Journals (Sweden)

    Nasibe Pourghasemian

    2017-12-01

    Full Text Available Introduction The latest report of the IPCC states that future emissions of greenhouse gases (GHGs will continue to increase and will be the main cause of global climatic changes, as well as Iran. The three greenhouse gases associated with agriculture are CO2, CH4, and N2O. Chemical inputs consumption in agriculture has increased annually, while more intensive use of energy led to some important human health and environmental problems such as greenhouse gas emissions and global warming. Therefore, it is necessary to reduce the application of chemical inputs in agricultural systems. Agriculture contributes significantly to atmospheric GHG emissions, with 14% of the global net CO2 emissions coming from this sector. Chemical inputs have a major role in this hazards. There is even less data on CO2, N2O, and CH4 gas emission analysis as affected by cultivating various crops in Kerman province. Therefore, this study was conducted to assess the GHGs emission and Global warming Potential GWP caused by chemical inputs (various chemical fertilizers and pesticides for cultivating potato, onion and watermelon in some regions of Kerman province at 2011-2012 growth season. Material and Methods The study was conducted in Kerman province of Iran. Data of planting area, application rates of the chemical inputs and other different parameter were collected from potato, onion and watermelon growers by using a face to face questionnaire in 2014 for different regions of Kerman(Bardsir, Bam, Jiroft, Kerman, Ravar, Rafsanjan and Sirjan. In addition to the data obtained by surveys, previous studies of related organization (Agricultural Ministry of Kerman were also utilized during the study. Farm random sampling was done within whole population and the sample size was determined by proper equations. The amounts of GHG emissions from chemical inputs in the studied crops were calculated by using CO2, N2O and CH4 emissions coefficient of chemical inputs. Then the amount of

  19. Note: Measurement system for the radiative forcing of greenhouse gases in a laboratory scale

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, Yoshiyuki [Department of Intelligent Mechanical Engineering, Fukuoka Institute of Technology, 3-30-1 Wajirohigashi, Higashiku, Fukuoka 811-0295 (Japan)

    2016-01-15

    The radiative forcing of the greenhouse gases has been studied being based on computational simulations or the observation of the real atmosphere meteorologically. In order to know the greenhouse effect more deeply and to study it from various viewpoints, the study on it in a laboratory scale is important. We have developed a direct measurement system for the infrared back radiation from the carbon dioxide (CO{sub 2}) gas. The system configuration is similar with that of the practical earth-atmosphere-space system. Using this system, the back radiation from the CO{sub 2} gas was directly measured in a laboratory scale, which roughly coincides with meteorologically predicted value.

  20. Note: Measurement system for the radiative forcing of greenhouse gases in a laboratory scale.

    Science.gov (United States)

    Kawamura, Yoshiyuki

    2016-01-01

    The radiative forcing of the greenhouse gases has been studied being based on computational simulations or the observation of the real atmosphere meteorologically. In order to know the greenhouse effect more deeply and to study it from various viewpoints, the study on it in a laboratory scale is important. We have developed a direct measurement system for the infrared back radiation from the carbon dioxide (CO2) gas. The system configuration is similar with that of the practical earth-atmosphere-space system. Using this system, the back radiation from the CO2 gas was directly measured in a laboratory scale, which roughly coincides with meteorologically predicted value.

  1. Global greenhouse and energy situation and outlook

    International Nuclear Information System (INIS)

    Allen, R.W.; Clively, S.R.; Tilley, J.W.

    1990-01-01

    Fossil fuels provide the basis for world energy usage and, in the absence of fundamental policy changes, are expected to continue to do so for the next few decades. However, the prospect of global warming due to the greenhouse effect will have profound implications for the use of energy. This paper outlines the current situation and trends in world energy use, with a focus on energy requirements by region and fuel. Implications for greenhouse gas emissions and greenhouse policy challenges are also discussed. 8 refs., 1 tab., 2 figs

  2. Health effects of global climate change

    International Nuclear Information System (INIS)

    Ghauri, B.; Salam, M.; Mirza I.

    1992-01-01

    This paper identifies potential health problems that may arise from global climates changes caused by increasing green house gases and depletion in the ozone layer. The mankind is responsible for saving or destroying the environment. There are many forms which can pollute the environment like greenhouse activities. The greenhouse gases like carbon dioxide, methane and ozone etc. cause pollutants in the environment. (A.B.)

  3. The climate manufacturers. Ways out of a global greenhouse. 3. ed. Wir Klimamacher. Auswege aus dem globalen Treibhaus

    Energy Technology Data Exchange (ETDEWEB)

    Grassl, H [Hamburg Univ. (Germany, F.R.). Meteorologisches Inst. Max-Planck-Institut fuer Meteorologie, Hamburg (Germany, F.R.); Klingholz, R

    1990-01-01

    This book - which is written in a way the lay person can understand - describes the problem of the greenhouse effect e.g. the warming-up of the global climate as a result of emissions, especially CO{sub 2}. The composition of the earth's atmosphere and the present state of climate research is described. Suggestions are made to the politicians and the consumers with the aim to reduce the emissions of gases through energy saving and changes in the energy structure. (orig.).

  4. Global trends of greenhouse gases and stratospheric ozone

    International Nuclear Information System (INIS)

    Akimoto, H.

    1992-01-01

    This paper reports that the earth is a closed system in which atmosphere, hydrosphere and biosphere are inter-related by exchanging energy and chemical species. Mankind in itself is a member of biosphere, and is to be harmonized with the earth system. Accompanying the increase of population and energy consumption after the industrial revolution, however, the impact of human activities to the system exceeded the extent of the expected harmonization, which has resulted the global environmental pollution. The structure of the global atmospheric environment system perturbed by the impact of human activities would be summarized

  5. Environmental Accounts of the Netherlands. Greenhouse gas emissions by Dutch economic activities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-08-15

    Climate change is one of the major global challenges of our time. There is abundant scientific evidence that the emission of greenhouse gases caused by economic activities contributes to climate change. Accelerating emissions of carbon dioxide, methane, and other greenhouse gases since the beginning of the 20th century have increased the average global temperature by about 0.8C and altered global precipitation patterns. Combustion of fossil fuels, deforestation, but also specific agricultural activities and industrial processes are the main drivers of the increased emission of greenhouse gasses. Enhanced concentrations of greenhouse gasses in the atmosphere will increase global temperatures by radiative forcing. Likewise, climate change has a direct impact on all kinds of economic processes. These impacts may be positive or negative, but it is expected that the overall impact will be primarily negative. In order to design effective mitigation policies, one must have a good conception of the economic driving forces of climate change. The air emission accounts can be used to analyse the environmental implications in terms of greenhouse gas emissions, of production and consumption patterns. Because of their compatibility with the national accounts, greenhouse gas data can be directly linked to the economic drivers of global warming. There are several frameworks for estimating the greenhouse gas emissions for a country, yielding different results. Well-known are the emissions reported to the UNFCCC (United National Framework Convention on Climate Change) in particular under the Kyoto Protocol, but also environment statistics as well as the air emission accounts provide independent greenhouse gas estimates. The differences are not the result of disputes about the accuracy of the estimates themselves, but arise from different interpretations of what has to be counted. The inclusion or exclusion of certain elements depends on the concepts and definitions that underlie

  6. Greenhouse effect and climate; Effet de serre et climat

    Energy Technology Data Exchange (ETDEWEB)

    Poitou, J

    2008-04-15

    In the framework of the climatic change, the author aims to explain the phenomena of greenhouse effect. He details the historical aspects of the scientific knowledge in the domain, the gases produced, some characteristic of the greenhouse effect, the other actors which contribute to the climate, the climate simulation, the different factors of climate change since 1750 and the signs of the global heating. (A.L.B.)

  7. Centuries of thermal sea-level rise due to anthropogenic emissions of short-lived greenhouse gases.

    Science.gov (United States)

    Zickfeld, Kirsten; Solomon, Susan; Gilford, Daniel M

    2017-01-24

    Mitigation of anthropogenic greenhouse gases with short lifetimes (order of a year to decades) can contribute to limiting warming, but less attention has been paid to their impacts on longer-term sea-level rise. We show that short-lived greenhouse gases contribute to sea-level rise through thermal expansion (TSLR) over much longer time scales than their atmospheric lifetimes. For example, at least half of the TSLR due to increases in methane is expected to remain present for more than 200 y, even if anthropogenic emissions cease altogether, despite the 10-y atmospheric lifetime of this gas. Chlorofluorocarbons and hydrochlorofluorocarbons have already been phased out under the Montreal Protocol due to concerns about ozone depletion and provide an illustration of how emission reductions avoid multiple centuries of future TSLR. We examine the "world avoided" by the Montreal Protocol by showing that if these gases had instead been eliminated in 2050, additional TSLR of up to about 14 cm would be expected in the 21st century, with continuing contributions lasting more than 500 y. Emissions of the hydrofluorocarbon substitutes in the next half-century would also contribute to centuries of future TSLR. Consideration of the time scales of reversibility of TSLR due to short-lived substances provides insights into physical processes: sea-level rise is often assumed to follow air temperature, but this assumption holds only for TSLR when temperatures are increasing. We present a more complete formulation that is accurate even when atmospheric temperatures are stable or decreasing due to reductions in short-lived gases or net radiative forcing.

  8. Limiting the emission of green-house gases: objectives and results in EU and non-EU countries

    Directory of Open Access Journals (Sweden)

    Hellrigl B

    2008-06-01

    Full Text Available Based on UNFCCC and EEA (European Environmental Agency data, changes in the emissions (no LULUCF considered of green-house gases in the period 1990-2004 either in the Annex 1 as well in the UE-27 countries are summarized and commented.

  9. Net global warming potential and greenhouse gas intensity

    Science.gov (United States)

    Various methods exist to calculate global warming potential (GWP) and greenhouse gas intensity (GHG) as measures of net greenhouse gas (GHG) emissions from agroecosystems. Little is, however, known about net GWP and GHGI that account for all sources and sinks of GHG emissions. Sources of GHG include...

  10. The storage of greenhouse gases

    International Nuclear Information System (INIS)

    Herzog, H.; Kaarstad, O.; Eliasson, B

    2000-01-01

    Since 1850, that is to say the beginning of the industrial era,the concentration of carbon dioxide in the atmosphere has risen from 280 ppm to 370 ppm, this increase is mainly due to the combustion of fossil fuels. Today fossil fuels represent 85% of all the energy used in the world. Fearing progressive climatic changes, more and more governments become aware of the necessity of reducing the emission of greenhouse gases. A more efficient use of energy and the promoting of renewable energies and of the nuclear energy are the most evident solutions but they appear to be insufficient. A third solution is the storage of carbon dioxide in geological layers. This technique has been put into use since 1996 in Norway. An off-shore natural gas platform injects carbon dioxide in a geological reservoir situated 1000 meters below the ocean bed. The injection of CO 2 could be used in oil fields in order to facilitate the extraction of petroleum. Far more large and efficient reservoirs would be the oceans, they already hold up 40000 10 9 tons of dissolved CO 2 . Even if the double of the carbon dioxide accumulated in the atmosphere since 1850 were injected, the concentration of carbon in sea waters would rise by less than 2%. The safety of CO 2 storage and the impact on the environment of ocean injection sites are being studied. (A.C.)

  11. Recycling of metals: accounting of greenhouse gases and global warming contributions.

    Science.gov (United States)

    Damgaard, Anders; Larsen, Anna W; Christensen, Thomas H

    2009-11-01

    Greenhouse gas (GHG) emissions related to recycling of metals in post-consumer waste are assessed from a waste management perspective; here the material recovery facility (MRF), for the sorting of the recovered metal. The GHG accounting includes indirect upstream emissions, direct activities at the MRF as well as indirect downstream activities in terms of reprocessing of the metal scrap and savings in terms of avoided production of virgin metal. The global warming factor (GWF) shows that upstream activities and the MRF causes negligible GHG emissions (12.8 to 52.6 kg CO(2)-equivalents tonne(-1) recovered metal) compared to the reprocessing of the metal itself (360-1260 kg CO(2)-equivalents tonne(-1) of recovered aluminium and 400- 1020 kg CO(2)-equivalents tonne(- 1) of recovered steel).The reprocessing is however counterbalanced by large savings of avoided virgin production of steel and aluminium. The net downstream savings were found to be 5040-19 340 kg CO(2)-equivalents tonne(-1) of treated aluminium and 560-2360 kg CO(2)-equivalents tonne(-1) of treated steel. Due to the huge differences in reported data it is hard to compare general data on the recovery of metal scrap as they are very dependent on the technology and data choices. Furthermore, the energy used in both the recovery process as well as the avoided primary production is crucial. The range of avoided impact shows that recovery of metals will always be beneficial over primary production, due to the high energy savings, and that the GHG emissions associated with the sorting of metals are negligible.

  12. Globally significant greenhouse-gas emissions from African inland waters

    Science.gov (United States)

    Borges, Alberto V.; Bouillon, Steven

    2017-04-01

    The relevance of inland waters to global biogeochemical cycles is increasingly recognized, and of particular importance is their contribution of greenhouse gases to the atmosphere. The latter remain largely unreported in African inland waters. Here we report dissolved CO2, CH4 and N2O from 12 rivers in Sub-Saharan Africa acquired during >30 field expeditions and additional seasonally resolved sampling at >30 sites between 2006 and 2014. Fluxes were calculated from reported gas transfer velocity values, and upscaled using available spatial datasets, with an estimated uncertainty of about ±19%. CO2 equivalent emissions ( 0.4±0.1 PgC yr-1) match 2/3 of the overall net carbon sink previously reported for Africa. Including emissions from wetlands of the Congo, the putative total emission ( 0.9±0.1 PgC yr-1) is about half of the global oceanic or land carbon sinks. In-situ respiration supported <14% of riverine CO2 emissions, which must therefore largely be driven by mineralization in wetlands or uplands. Riverine CO2 and CH4 emissions were directly correlated to wetland coverage and aboveground vegetation biomass, implying that future changes in wetland and upland vegetation cover will strongly impact GHG emissions from African inland waters.

  13. Emissions, activity data, and emission factors of fluorinated greenhouse gases (F-Gases) in Germany 1995-2002

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Winfried [Oeko-Recherche, Buero fuer Umweltforschung und -beratung GmbH, Frankfurt am Main (Germany)

    2005-06-15

    Before the 1997 Kyoto Protocol on Climate Protection, the fluorinated greenhouse gases HFCs, PFCs, and SF6 (F-gases) aroused little public attention. Since then, the standards on surveying and reporting on national emissions have been rising constantly. Amongst others, the annual reporting to the UNFCCC secretariat makes detailed declarations on use and emissions of F-gases necessary, which have to be filled in specified formats for submission (Common Reporting Format = CRF). The scientific basis has been set out by the UNFCCC guidelines on reporting, in accordance with the instructions laid down in IPCC good practice guidance. Additionally, in Germany the Centralised System of Emissions (ZSE) shall provide a suitable tool to satisfy any quality needs of both activity data and emission factors. From 1995 onwards, activity data and emissions of each individual application sector shall be presented in a comprehensible and transparent way. Therefore, the way of data collection as well as the estimation methods applied must be well documented. Moreover, data has to be prepared for appropriate importation into ZSE. It is the objective of this study to provide the transparency demanded within 40 national application sectors of F-gases, for the period between 1995 and 2002. - Firstly, all the activity data as well as the emissions related to them are presented and commented. This applies to manufacturing of products, F-gases banked in operating systems, and decommissioning. - Secondly, the methodologies applied to calculate the emissions are described and all sources of information are revealed, e.g. literature, names of experts from the manufacturing industry, users, trade, and academia. - Thirdly, reliability and safety of data are discussed. - Fourthly, possible deviations from the IPCC default values are stated and given reasons for. Wherever this intensive reviewing of 40 sectors through eight years of reporting uncovers gaps or inconsistencies in previous reports

  14. Near and long term prospects for the reduction in the road transport contribution to greenhouse gases

    International Nuclear Information System (INIS)

    Watson, H.C.; Watson, C.R.

    1990-01-01

    Preliminary estimates are made of the likely contributions from various sectors of land transport activity to the greenhouse gases using assumptions about the aggregate performance of the vehicle population and its dynamics. Whilst the estimates of the CO 2 contribution from motor vehicles are likely to be moderately reliable there are much greater uncertainties in the contribution of nitrous oxide because of the lack of recent measurements and of methane, for which there are no measurements. In the analysis, the growth in the demand for passenger and goods transport, which would naturally lead to an increase in fuel consumption and hence the emission of greenhouse gases is counteracted by more energy efficient vehicle designs and the implementation of management and planning strategies. The results are regarded as setting a background for more detailed studies related to costs and better estimates, and particularly of the methane and nitrous oxide contributions. 9 refs., 2 tabs., 6 figs

  15. Idaho National Laboratory FY12 Greenhouse Gas Report

    Energy Technology Data Exchange (ETDEWEB)

    Kimberly Frerichs

    2013-03-01

    A greenhouse gas (GHG) inventory is a systematic approach to account for the production and release of certain gases generated by an institution from various emission sources. The gases of interest are those that climate science has identified as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during Fiscal Year (FY) 2012 by Idaho National Laboratory (INL), a Department of Energy (DOE) sponsored entity, located in southeastern Idaho.

  16. The economics of greenhouse gas mitigation: Insights from illustrative global abatement scenarios modelling

    International Nuclear Information System (INIS)

    Gurney, Andrew; Ahammad, Helal; Ford, Melanie

    2009-01-01

    In this paper the Global Trade and Environment Model (GTEM) and MAGICC are used to simulate a number of global emission mitigation scenarios devised by the EMF 22 Transition Scenarios group in which radiative forcing goals and the architecture of developing economies' participation in hypothetical mitigation actions are varied. This paper presents a reference case of the world economy to 2100 and analyses some key regional and global results for the various global mitigation scenarios, including emission prices, emission levels, primary energy consumption and economic growth. Modelling results suggest that a transition to a low-carbon world would require a significant decarbonisation of electricity generation without necessarily cutting the electricity output in the long run. With the uptake of hybrids and non-fossil-fuel technologies, the transport sector could make an important contribution to global abatement of greenhouse gases. Furthermore, with substantial international mitigation efforts and uptake of low- and/or zero-emission technologies, the achievement of 3.7 W/m 2 and 4.5 W/m 2 radiative forcing targets by the end of the century could occur at emission prices of up to $550/t CO 2 -e. However, achieving the 2.6 W/m 2 (overshoot) radiative forcing target would require considerably higher emission prices and an immediate global mitigation action.

  17. 76 FR 80553 - Mandatory Reporting of Greenhouse Gases: Technical Revisions to the Petroleum and Natural Gas...

    Science.gov (United States)

    2011-12-23

    ... permeability gas, shale gas, coal seam, or other tight reservoir rock. For example, wells producing coal bed... separation means one or more of the following processes: forced extraction of natural gas liquids, sulfur and... Mandatory Reporting of Greenhouse Gases: Technical Revisions to the Petroleum and Natural Gas Systems...

  18. Technological substitution options for controlling greenhouse gas emissions

    International Nuclear Information System (INIS)

    Barbier, E.B.; Burgess, J.C.; Pearce, D.W.

    1991-01-01

    This chapter is concerned with technological options for greenhouse gas substitution. The authors interpret the term substitution to exclude energy conservation/efficiency measures, investments in afforestation (sinks), and greenhouse gas removal or abatement technologies. Their working definition of greenhouse gas substitution includes (1) replacement technologies, for example, substituting a greenhouse gas technology with a nongreenhouse gas technology; and (2) reduction technologies, for example, substituting a greenhouse gas technology with an alternative technology that reduces greenhouse gas emissions. Essentially, replacement technologies involve 100 percent reduction in CO 2 ; reduction technologies involve a partial reduction in CO 2 . Of the man-made sources of greenhouse gases, energy is the most important and is expected to contribute to at least half of the global warming effect in the near future. The majority of this impact is from fossil fuel combustion as a source of carbon dioxide (CO 2 ), although fossil fuels also contribute significantly to methane (CH 4 ), to nitrous oxide (N 2 O), and to low-level ozone (O 3 ) through production of various nitrogen gases (NO x ) and carbon monoxide (CO). This study analyzes the available greenhouse gas substitutions and their costs. The authors concentrate particularly on substitutions for fossil-fuel combustion and CFC production and consumption. They conclude by summarizing the potential for greenhouse gas substitution, the cost-effectiveness of the various options and the design of incentives for substitution

  19. Greenhouse gases study in Amazonia

    International Nuclear Information System (INIS)

    D'Amelio, Monica Tais Siqueira

    2006-01-01

    The Amazon plays an important role on the global carbon cycle, as changing as carbon storage, since Amazon Basin is the biggest area of tropical forest, around 50% of global. Natural's process, deforestation, and use land are CO 2 sources. The Amazon forest is a significant source of N 2 O by soil process, and CH 4 by anaerobic process like flooded areas, rice cultures, and others sources. This project is part of the LBA project (Large-Scale Biosphere Atmosphere Experiment in Amazonia), and this project is 'Vertical profiles of carbon dioxide and other trace gas species over the Amazon basin using small aircraft'. Since December 2000 vertical profiles of CO 2 , CH 4 , CO, H 2 , N 2 O and SF 6 have been measured above central Amazonia. The local sampling was over Tapajos National Forest, a primary forest in Para State, where had a CO 2 flux tower and an east impact area with sources like animals, rice cultivation, biomass burning, etc, to compare the influence of an impact area and a preserved area in the profiles. The Reserva Biologica de Cuieiras, at Amazon State, is the other studied place, where there already exists a CO 2 flux tower, and an east preserved area at this State, to compare with the Cuieiras. The sampling has been carried out on vertical profile from 1000 ft up to 12000 ft using a semi-automated sampling package developed at GMD/NOAA and a small aircraft. The analysis uses the MAGICC system (Multiple Analysis of Gases Influence Climate Change) which is installed at the Atmospheric Chemistry Laboratory (LQA) in IPEN (Instituto de Pesquisas Energeticas e Nucleares). The results showed that all gases studied, except H 2 gas, has been following the global trend. At the Para State, for the studied years, the Amazonian Forest performed as small CO 2 sink. To compare Wet and Dry Seasons, subtracted the Ascension concentration values in the period to remove the global influence. So that, in the 2004 and 2005 wet seasons and 2004 dry season comparison it was

  20. Greenhouse effect gases and climatic change: quantification and tools to fight against the emissions; Gaz a effet de serre et changement climatique: quantification et instruments de lutte contre des emissions

    Energy Technology Data Exchange (ETDEWEB)

    Bizec, R.F

    2006-07-01

    The greenhouse effect gases are considered responsible of the climatic change. Their consequences are numerous: increase of the sea level, displacement of the climatic areas, modification of the forests ecosystems, rarefaction of water, progressively decrease of glaciers... This fast modification of the climate would lead to the increase of natural hazards as hurricanes, storms, hails and so on. It is then a necessity to reduce as fast as possible the greenhouse effect gases. The author describes in a first part the methods of the greenhouse effect gases quantification and in the second part the tools to fight these gases, regulations, standards, economic tools, national tools and the projects. (A.L.B.)

  1. Policy options for stabilizing global climate

    International Nuclear Information System (INIS)

    Lashof, D.A.; Tirpak, D.A.

    1990-12-01

    This report to congress by the US EPA explains the greenhouse effect and its influence on global climate. It outlines the trends in the greenhouse gases - their concentration history, distribution, sources and sinks and chemical and radiative properties. Climate change processes are discussed including climate feedbacks. Human activities affecting trace gases and climate are explained, followed by a chapter on the technical options for reducing greenhouse gas emissions which looks at energy services, energy supply, industry, forestry and agriculture. The future is considered, and the final chapters are concerned with policy options and international cooperation to reduce greenhouse gas emissions. 934 refs., 102 figs., 84 tabs

  2. Economic growth and greenhouse gas emissions

    Energy Technology Data Exchange (ETDEWEB)

    Ansuategi, Alberto [Environment Department, University of York, York (United Kingdom); Escapa, Marta [Foundations of Economic Analysis Department, University of the Basque Country, Bilbao (Spain)

    2002-01-01

    Recent empirical research has examined the relationship between certain indicators of environmental degradation and income, concluding that in some cases an inverted U-shaped relationship, which has been called an environmental Kuznets curve (EKC), exists between these variables. Unfortunately, this inverted U-shaped relationship does not hold for greenhouse gas emissions. One explanation of the absence of EKC-like behavior in greenhouse gas emissions is that greenhouse gases are special pollutants that create global, not local, disutility. But the international nature of global warming is not the only reason that prevents de-linking greenhouse gas emissions from economic growth. The intergenerational nature of the negative impact of greenhouse gas emissions may have also been an important factor preventing the implementation of greenhouse gas abatement measures in the past. In this paper we explore the effect that the presence of intergenerational spillovers has on the emissions-income relationship. We use a numerically calibrated overlapping generations model of climate-economy interactions. We conclude that: (1) the intertemporal responsibility of the regulatory agency, (2) the institutional capacity to make intergenerational transfers and (3) the presence of intergenerationally lagged impact of emissions constitute important determinants of the relationship between economic growth and greenhouse gas emissions.

  3. Global atmospheric changes.

    Science.gov (United States)

    Piver, W T

    1991-12-01

    Increasing concentrations of CO2 and other greenhouse gases in the atmosphere can be directly related to global warming. In terms of human health, because a major cause of increasing atmospheric concentrations of CO2 is the increased combustion of fossil fuels, global warming also may result in increases in air pollutants, acid deposition, and exposure to ultraviolet (UV) radiation. To understand better the impacts of global warming phenomena on human health, this review emphasizes the processes that are responsible for the greenhouse effect, air pollution, acid deposition, and increased exposure to UV radiation.

  4. Recycling of plastic: accounting of greenhouse gases and global warming contributions.

    Science.gov (United States)

    Astrup, Thomas; Fruergaard, Thilde; Christensen, Thomas H

    2009-11-01

    Major greenhouse gas (GHG) emissions related to plastic waste recycling were evaluated with respect to three management alternatives: recycling of clean, single-type plastic, recycling of mixed/contaminated plastic, and use of plastic waste as fuel in industrial processes. Source-separated plastic waste was received at a material recovery facility (MRF) and processed for granulation and subsequent downstream use. In the three alternatives, plastic was assumed to be substituting virgin plastic in new products, wood in low-strength products (outdoor furniture, fences, etc.), and coal or fuel oil in the case of energy utilization. GHG accounting was organized in terms of indirect upstream emissions (e.g. provision of energy, fuels, and materials), direct emissions at the MRF (e.g. fuel combustion), and indirect downstream emissions (e.g. avoided emissions from production of virgin plastic, wood, or coal/oil). Combined, upstream and direct emissions were estimated to be roughly between 5 and 600 kg CO(2)-eq. tonne( -1) of plastic waste depending on treatment at the MRF and CO(2) emissions from electricity production. Potential downstream savings arising from substitution of virgin plastic, wood, and energy fuels were estimated to be around 60- 1600 kg CO(2)-eq. tonne( -1) of plastic waste depending on substitution ratios and CO(2) emissions from electricity production. Based on the reviewed data, it was concluded that substitution of virgin plastic should be preferred. If this is not viable due to a mixture of different plastic types and/or contamination, the plastic should be used for energy utilization. Recycling of plastic waste for substitution of other materials such as wood provided no savings with respect to global warming.

  5. Recycling of paper: accounting of greenhouse gases and global warming contributions.

    Science.gov (United States)

    Merrild, Hanna; Damgaard, Anders; Christensen, Thomas H

    2009-11-01

    Greenhouse gas (GHG) emissions have been established for recycling of paper waste with focus on a material recovery facility (MRF). The MRF upgrades the paper and cardboard waste before it is delivered to other industries where new paper or board products are produced. The accounting showed that the GHG contributions from the upstream activities and operational activities, with global warming factors (GWFs) of respectively 1 to 29 and 3 to 9 kg CO(2)-eq. tonne(- 1) paper waste, were small in comparison wih the downstream activities. The GHG contributions from the downstream reprocessing of the paper waste ranged from approximately 490 to 1460 kg CO(2)-eq. tonne( -1) of paper waste. The system may be expanded to include crediting of avoided virgin paper production which would result in GHG contributions from -1270 to 390 kg CO(2)-eq. tonne(- 1) paper waste. It may also be assumed that the wood not used for virgin paper production instead is used for production of energy that in turn is assumed to substitute for fossil fuel energy. This would result in GHG contributions from -1850 to -4400 kg CO(2)-eq. tonne(- 1) of paper waste. These system expansions reveal very large GHG savings, suggesting that the indirect upstream and operational GHG contributions are negligible in comparison with the indirect downstream emissions. However, the data for reprocessing of paper waste and the data for virgin paper production are highly variable. These differences are mainly related to different energy sources for the mills, both in regards to energy form (heat or electricity) and fuel (biomass or fossil fuels).

  6. A model for policy analysis of the greenhouse effect

    International Nuclear Information System (INIS)

    Hope, C.

    1992-01-01

    This paper describes the PAGE model (for Policy Analysis of the Greenhouse Effect), developed by Cambridge Decision Analysts for the Directorate general for Environment, Nuclear Safety and Civil Protection of the Commission of the European Communities. The rest of this section describes the motivation for developing PAGE; it is followed by sections outlining the features of PAGE, explaining its structure in more detail, and reporting some of the uses to which it is being put. The current consensus is that unchecked emissions of greenhouse gases will lead to a rise in global mean temperature. The causal chain from emissions to temperature is complex, and current estimates give a range of 2 - 5 deg C for the temperature rise by the year 2100 if no specific actions are taken to control emissions. The damage that a global temperature rise of a few degrees over a century would cause is also not well known. Some influential groups are sufficiently alarmed to have called for global agreements to stabilize or reduce the emissions of greenhouse gases. Others claim that the costs of doing so would not be justified, and that adapting to a changed climate would be the best policy. Negotiations are further complicated by the global nature of the problem; if a country, or even a major trading block such as the European Community, decided to control emissions of a greenhouse gas, some of the benefit would be gained in other parts of the world that have not shared in the cost of control. 12 refs., 6 figs

  7. Greenhouse Gas Emissions from Reservoir Water Surfaces: A New Global Synthesis - journal

    Science.gov (United States)

    Collectively, reservoirs are an important anthropogenic source of greenhouse gases (GHGs) to the atmosphere. Attempts to model reservoir GHG fluxes, however, have been limited by inconsistencies in methodological approaches and data availability. An increase in the number of pu...

  8. The economics of global warming

    International Nuclear Information System (INIS)

    Pillet, G.; Hediger, W.; Kypreos, S.; Corbaz, C.

    1993-05-01

    The global warming threat is challenging the world community to both international cooperation and national policy action. This report focuses on the necessity to alternate between ''global and national climate policies''. The Swiss perspective is at issue. The economic rationales for comparing national climate policy options are analyzed. This report explicitly focusses on the fundamental role of the normative framework and the related environmental-economic requisites for establishing an efficient national climate policy and computing a ''carbon tax''. Finally, the latest results of the energy and greenhouse gas scenarios for Switzerland, elaborated on within the network of the IEA/ETSAP Project, Annex IV, ''Greenhouse Gases and National Energy Options: Technologies and Costs for Reducing Emissions of Greenhouse Gases'', illustrate Switzerland's difficulties in reducing greenhouse gas emissions at ''reasonable cost'' compared with other countries. This should make Switzerland very sensitive to the implementation of efficient environmental-policy instruments and international cooperation. (author) figs., tabs., refs

  9. Greenhouse gases emissions from waste management practices using Life Cycle Inventory model.

    Science.gov (United States)

    Chen, Tsao-Chou; Lin, Cheng-Fang

    2008-06-30

    When exploring the correlation between municipal solid waste management and green house gas emission, the volume and physical composition of the waste matter must be taken into account. Due to differences in local environments and lifestyles the quantity and composition of waste often vary. This leads to differences in waste treatment methods and causes different volumes of greenhouse gases (GHGs), highlighting the need for local research. In this study the Life Cycle Inventory method was used with global warming indicator GHGs as the variables. By quantifying the data and adopting a region-based approach, this created a model of household MSWM in Taipei City, a metropolitan region in Taiwan. To allow analysis and comparison a compensatory system was then added to expand the system boundary. The results of the analysis indicated that out of all the solid waste management sub-models for a function unit, recycling was the most effective method for reducing GHG emissions while using kitchen food waste as swine feeding resulted in the most GHG emissions. As for the impact of waste collection vehicles on emissions, if the efficiency of transportation could be improved and energy consumption reduced, this will help solid waste management to achieve its goal of reducing GHG emissions.

  10. Greenhouse gases emissions from waste management practices using Life Cycle Inventory model

    International Nuclear Information System (INIS)

    Chen, T.-C.; Lin, C.-F.

    2008-01-01

    When exploring the correlation between municipal solid waste management and green house gas emission, the volume and physical composition of the waste matter must be taken into account. Due to differences in local environments and lifestyles the quantity and composition of waste often vary. This leads to differences in waste treatment methods and causes different volumes of greenhouse gases (GHGs), highlighting the need for local research. In this study the Life Cycle Inventory method was used with global warming indicator GHGs as the variables. By quantifying the data and adopting a region-based approach, this created a model of household MSWM in Taipei City, a metropolitan region in Taiwan. To allow analysis and comparison a compensatory system was then added to expand the system boundary. The results of the analysis indicated that out of all the solid waste management sub-models for a function unit, recycling was the most effective method for reducing GHG emissions while using kitchen food waste as swine feeding resulted in the most GHG emissions. As for the impact of waste collection vehicles on emissions, if the efficiency of transportation could be improved and energy consumption reduced, this will help solid waste management to achieve its goal of reducing GHG emissions

  11. Cost effective method for valuation of impacts caused by greenhouse gases emissions for oil and gas companies; Metodo de custo-efetividade para avaliacao de impactos causados pelas emissoes de gases de efeito estufa em empresas de oleo e gas

    Energy Technology Data Exchange (ETDEWEB)

    Carneiro, Elisa Vieira [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil); Barros, Sergio Ricardo da Silveira [Universidade Federal Fluminense (LATEC/UFF), Niteroi, RJ (Brazil). Mestrado em Sistemas de Gestao

    2012-07-01

    The objective of this work is to apply the method of cost-effectiveness in economic evaluation of new investment projects, based on information about reducing greenhouse gases emissions. In the context of the commitment of companies with the Climate Change and Sustainability, this work is important and contributes to the oil and gas industry, because it integrates information on reducing emissions of greenhouse gases in negative Net Present Value (NPV) projects, helping the portfolio manager on decision making between alternative projects. In this article, examples are given of two investment projects, in which the cost effectiveness methodology is applied, considering the reduction of emission of greenhouse gases such as additional environmental benefit, or cost avoidance, in an adjusted model of the economic viability analysis of meritorious projects. (author)

  12. Fluxes of greenhouse gases CH{sub 4}, CO{sub 2} and N{sub 2}O on some peat mining areas in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Nykaenen, H; Martikainen, P J [National Public Health Inst., Kuopio (Finland). Dept. of Biology; Silvola, J; Alm, J [Joensuu Univ. (Finland). Dept. of Biology

    1997-12-31

    The increase in concentration of greenhouse gases (CO{sub 2}, CH{sub 4} and N{sub 2}O) in atmosphere is associated with burning of fossil fuels and also changes in biogeochemistry due to land use activities. Virgin peatlands are globally important stores of carbon and sources of CH4. Peatland drainage changes the processes in carbon and nitrogen cycles responsible for the fluxes of CO{sub 2}, CH{sub 4} and N{sub 2}O. Preparing of peatlands for peat mining greatly change their biogeochemical processes. Effective drainage decreases water table and allows air to penetrate deep into peat profile. Aerobic conditions inhibit activities of anaerobic microbes, including the methanogens, whereas aerobic processes like methane oxidation are stimulated. Destruction of vegetation cover stops the carbon input to peat. In Finland the actual peat mining area is 0.05 x 106 hectares and further 0.03 x 106 hectares have been prepared or are under preparation for peat mining. The current total peatland area in the world used for mining is 0.94 x 106 ha and the area already mined is 1.15 x 106 ha. In this presentation fluxes of greenhouse gases (CH{sub 4}, CO{sub 2} and N{sub 2}O) on some mires under peat mining are reported and compared with those on natural mires and with the emissions from peat combustion. (15 refs.)

  13. Fluxes of greenhouse gases CH{sub 4}, CO{sub 2} and N{sub 2}O on some peat mining areas in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Nykaenen, H.; Martikainen, P.J. [National Public Health Inst., Kuopio (Finland). Dept. of Biology; Silvola, J.; Alm, J. [Joensuu Univ. (Finland). Dept. of Biology

    1996-12-31

    The increase in concentration of greenhouse gases (CO{sub 2}, CH{sub 4} and N{sub 2}O) in atmosphere is associated with burning of fossil fuels and also changes in biogeochemistry due to land use activities. Virgin peatlands are globally important stores of carbon and sources of CH4. Peatland drainage changes the processes in carbon and nitrogen cycles responsible for the fluxes of CO{sub 2}, CH{sub 4} and N{sub 2}O. Preparing of peatlands for peat mining greatly change their biogeochemical processes. Effective drainage decreases water table and allows air to penetrate deep into peat profile. Aerobic conditions inhibit activities of anaerobic microbes, including the methanogens, whereas aerobic processes like methane oxidation are stimulated. Destruction of vegetation cover stops the carbon input to peat. In Finland the actual peat mining area is 0.05 x 106 hectares and further 0.03 x 106 hectares have been prepared or are under preparation for peat mining. The current total peatland area in the world used for mining is 0.94 x 106 ha and the area already mined is 1.15 x 106 ha. In this presentation fluxes of greenhouse gases (CH{sub 4}, CO{sub 2} and N{sub 2}O) on some mires under peat mining are reported and compared with those on natural mires and with the emissions from peat combustion. (15 refs.)

  14. Creating a Methodology for Coordinating High-resolution Air Quality Improvement Map and Greenhouse Gas Mitigation Strategies in Pittsburgh City

    Science.gov (United States)

    Shi, J.; Donahue, N. M.; Klima, K.; Blackhurst, M.

    2016-12-01

    In order to tradeoff global impacts of greenhouse gases with highly local impacts of conventional air pollution, researchers require a method to compare global and regional impacts. Unfortunately, we are not aware of a method that allows these to be compared, "apples-to-apples". In this research we propose a three-step model to compare possible city-wide actions to reduce greenhouse gases and conventional air pollutants. We focus on Pittsburgh, PA, a city with consistently poor air quality that is interested in reducing both greenhouse gases and conventional air pollutants. First, we use the 2013 Pittsburgh Greenhouse Gas Inventory to update the Blackhurst et al. model and conduct a greenhouse gas abatement potentials and implementation costs of proposed greenhouse gas reduction efforts. Second, we use field tests for PM2.5, NOx, SOx, organic carbon (OC) and elemental carbon (EC) data to inform a Land-use Regression Model for local air pollution at a 100m x 100m spatial level, which combined with a social cost of air pollution model (EASIUR) allows us to calculate economic social damages. Third, we combine these two models into a three-dimensional greenhouse gas cost abatement curve to understand the implementation costs and social benefits in terms of air quality improvement and greenhouse gas abatement for each potential intervention. We anticipated such results could provide policy-maker insights in green city development.

  15. The greenhouse theory and climate change

    International Nuclear Information System (INIS)

    Murray, W.

    1994-01-01

    Background information is presented on the theory of the greenhouse effect and its implications for the environment and for government policies. The relationship between climate and atmospheric CO 2 , the major greenhouse gas, is explained. Sources of CO 2 , notably fossil fuel combustion, and sinks (vegetation and oceans) are described. Evidence is presented for an increase in greenhouse gases in the atmosphere. Irrefutable data indicate an increase in atmospheric CO 2 over 1850-1980 from ca 290 ppM to 345 ppM; other evidence indicates a doubling of atmospheric methane since the eighteenth century. More recent increases have been noted for atmospheric N 2 O and chlorofluorocarbons. The implications of increased atmospheric levels of CO 2 are discussed, and new scientific evidence from Greenland ice-core data is presented which seems to indicate that higher CO 2 concentrations are a result of global warming rather than the cause. Canadian parliamentary action in response to the global warming phenomenon is outlined. A chronology of international efforts in response to global warming is appended. 11 refs

  16. Composting and compost utilization: accounting of greenhouse gases and global warming contributions.

    Science.gov (United States)

    Boldrin, Alessio; Andersen, Jacob K; Møller, Jacob; Christensen, Thomas H; Favoino, Enzo

    2009-11-01

    Greenhouse gas (GHG) emissions related to composting of organic waste and the use of compost were assessed from a waste management perspective. The GHG accounting for composting includes use of electricity and fuels, emissions of methane and nitrous oxide from the composting process, and savings obtained by the use of the compost. The GHG account depends on waste type and composition (kitchen organics, garden waste), technology type (open systems, closed systems, home composting), the efficiency of off-gas cleaning at enclosed composting systems, and the use of the compost. The latter is an important issue and is related to the long-term binding of carbon in the soil, to related effects in terms of soil improvement and to what the compost substitutes; this could be fertilizer and peat for soil improvement or for growth media production. The overall global warming factor (GWF) for composting therefore varies between significant savings (-900 kg CO(2)-equivalents tonne(-1) wet waste (ww)) and a net load (300 kg CO(2)-equivalents tonne( -1) ww). The major savings are obtained by use of compost as a substitute for peat in the production of growth media. However, it may be difficult for a specific composting plant to document how the compost is used and what it actually substitutes for. Two cases representing various technologies were assessed showing how GHG accounting can be done when specific information and data are available.

  17. Carbon sequestration and greenhouse gases emissions in soil under sewage sludge residual effects

    Directory of Open Access Journals (Sweden)

    Leonardo Machado Pitombo

    2015-02-01

    Full Text Available The large volume of sewage sludge (SS generated with high carbon (C and nutrient content suggests that its agricultural use may represent an important alternative to soil carbon sequestration and provides a potential substitute for synthetic fertilizers. However, emissions of CH4 and N2O could neutralize benefits with increases in soil C or saving fertilizer production because these gases have a Global Warming Potential (GWP 25 and 298 times greater than CO2, respectively. Thus, this study aimed to determine C and N content as well as greenhouse gases (GHG fluxes from soils historically amended with SS. Sewage sludge was applied between 2001 and 2007, and maize (Zea mays L. was sowed in every year between 2001 and 2009. We evaluated three treatments: Control (mineral fertilizer, 1SS (recommended rate and 2SS (double rate. Carbon stocks (0-40 cm were 58.8, 72.5 and 83.1 Mg ha–1in the Control, 1SS and 2SS, respectively, whereas N stocks after two years without SS treatment were 4.8, 5.8, and 6.8 Mg ha–1, respectively. Soil CO2 flux was highly responsive to soil temperature in SS treatments, and soil water content greatly impacted gas flux in the Control. Soil N2O flux increased under the residual effects of SS, but in 1SS, the flux was similar to that found in moist tropical forests. Soil remained as a CH4sink. Large stores of carbon following historical SS application indicate that its use could be used as a method for carbon sequestration, even under tropical conditions.

  18. Emission estimates for some acidifying and greenhouse gases and options for their control in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Pipatti, R. [VTT Energy, Espoo (Finland). Energy Systems

    1998-11-01

    This thesis presents estimates and options for control of anthropogenic ammonia (NH{sub 3}), methane (CH{sub 4}), nitrous oxide (N{sub 2}O) and some halocarbon emissions in Finland. Ammonia is an air pollutant which contributes to both acidification and nitrogen eutrophication of ecosystems. Its emissions are mainly caused by livestock manure. In Finland the anthropogenic emissions of NH{sub 3} have been estimated to be approximately 44 Gg in 1985 and 43 Gg in 1990. In the 1990`s the emissions have declined due to the reduced number of cattle and voluntary implementation of emission reducing measures. The impact of NH{sub 3} emissions on acidification is serious but in Finland it is less than the impact of the other acidifying gases sulphur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}). All three gases and their transformation products are transported by the atmosphere up to distances of hundreds or even more than a thousand kilometres. NH{sub 3} emissions can be reduced with relatively cost-effective measures and the measures can partly replace the implementation of more costly abatement measures on SO{sub 2} and NO{sub x} emissions needed to lower the acidifying deposition in Finland. The other gases studied in this thesis are greenhouse gases. Some of the gases also deplete stratospheric ozone. Finnish anthropogenic CH{sub 4} emissions have been estimated to be around 250 Gg per year during the 1990`s. The emissions come mainly from landfills and agricultural sources (enteric fermentation and manure). The significance of other CH{sub 4} sources in Finland is minor. The potential to reduce the Finnish CH{sub 4} emissions is estimated to be good. Landfill gas recovery offers an option to reduce the emissions significantly at negligible cost if the energy produced can be utilised in electricity and/or heat production. Measures directed at reducing the emissions from livestock manure management are more costly, and the achievable reduction in the emissions

  19. The southern Brazilian grassland biome: soil carbon stocks, fluxes of greenhouse gases and some options for mitigation.

    Science.gov (United States)

    Pillar, V D; Tornquist, C G; Bayer, C

    2012-08-01

    The southern Brazilian grassland biome contains highly diverse natural ecosystems that have been used for centuries for grazing livestock and that also provide other important environmental services. Here we outline the main factors controlling ecosystem processes, review and discuss the available data on soil carbon stocks and greenhouse gases emissions from soils, and suggest opportunities for mitigation of climatic change. The research on carbon and greenhouse gases emissions in these ecosystems is recent and the results are still fragmented. The available data indicate that the southern Brazilian natural grassland ecosystems under adequate management contain important stocks of organic carbon in the soil, and therefore their conservation is relevant for the mitigation of climate change. Furthermore, these ecosystems show a great and rapid loss of soil organic carbon when converted to crops based on conventional tillage practices. However, in the already converted areas there is potential to mitigate greenhouse gas emissions by using cropping systems based on no soil tillage and cover-crops, and the effect is mainly related to the potential of these crop systems to accumulate soil organic carbon in the soil at rates that surpass the increased soil nitrous oxide emissions. Further modelling with these results associated with geographic information systems could generate regional estimates of carbon balance.

  20. Global warming on trial

    International Nuclear Information System (INIS)

    Broeker, W.S.

    1992-01-01

    Jim Hansen, a climatologist at NASA's Goddard Space Institute, is convinced that the earth's temperature is rising and places the blame on the buildup of greenhouse gases in the atmosphere. Unconvinced, John Sununu, former White House chief of staff, doubts that the warming will be great enough to produce serious threat and fears that measures to reduce the emissions would throw a wrench into the gears that drive the Unites States' troubled economy. During his three years at the White House, Sununu's view prevailed, and although his role in the debate has diminished, others continue to cast doubt on the reality of global warming. A new lobbying group called the Climate Council has been created to do just this. Burning fossil fuels is not the only problem; a fifth of emissions of carbon dioxide now come from clearing and burning forests. Scientists are also tracking a host of other greenhouse gases that emanate from a variety of human activities; the warming effect of methane, chlorofluorocarbons and nitrous oxide combined equals that of carbon dioxide. Although the current warming from these gases may be difficult to detect against the background noise of natural climate variation, most climatologists are certain that as the gases continue to accumulate, increases in the earth's temperature will become evident even to skeptics. If the reality of global warming were put on trial, each side would have trouble making its case. Jim Hansen's side could not prove beyond a reasonable doubt that carbon dioxide and other greenhouse gases have warmed the planet. But neither could John Sununu's side prove beyond a reasonable doubt that the warming expected from greenhouse gases has not occurred. To see why each side would have difficulty proving its case, this article reviews the arguments that might be presented in such a hearing

  1. Understanding the behavior of materials for caputre of greenhouse gases by molecular simulations

    OpenAIRE

    Builes Toro, Santiago

    2012-01-01

    Descripció del recurs: el 01 setembre 2012 Establecer una cota global a las emisiones de gases de efecto invernadero ha sido imposibilitado por la complejidad que conlleva demostrar los efectos de la contribución humana al efecto invernadero. Para alcanzar un desarrollo sostenible es necesario, primero limitar y en lo posible eliminar las emisiones de dichos gases a la atmosfera. En este contexto, la adsorción de gases se ha establecido como una de las alternativas más efectivas a mediano ...

  2. Trees against the greenhouse effect. Reforestation for climate protection

    International Nuclear Information System (INIS)

    Sauer, H.D.

    1994-01-01

    Climate experts have voiced their warnings: If we continue to accumulate greenhouse gases in the Earth atmosphere, it must be expected that the global average temperature will increase by 1.5 degrees centigrade to 4.5 degrees centigrade, and significant climte changes will occur. (orig.) [de

  3. The greenhouse effect, v. 15(59)

    International Nuclear Information System (INIS)

    Tsitsonkov, Risto

    2007-01-01

    An explanation for the greenhouse effect, i.e. global warning and reasons which contribute to this effect. Greenhouse gases (GHG) and GWP (Global Warning Potential) as a factor for estimating their contributing on the greenhouse effect. Indicators of the climate change in the previous period and projecting of likely scenarios for the future. Consequences on the environment and human activities: industry, energy, agriculture, water resource. The main lines of the Kyoto Protocols and problems in its realization. Suggestions to the country strategy concerning to the acts of the Kyoto Protocol. A special attention is pointed out on the energy, its recourse, the structure of energy consumption and energy efficiency. Main sectors of the energy efficiency: buildings, industry and transport. Buildings: importance of heat insulation. District heating, suggestions for space heating. Heat pumps and CHP. Air conditioning and refrigeration. Industry: process heating, and integrated energy system, heat recovery, refrigeration, compressed air. Need of quality maintenance and servicing. Monitoring and automatic control. Education for energy and its saving. (Author)

  4. The greenhouse effect, v. 15(58)

    International Nuclear Information System (INIS)

    Tsitsonkov, Risto

    2007-01-01

    An explanation for the greenhouse effect, i.e. global warning and reasons which contribute to this effect. Greenhouse gases (GHG) and GWP (Global Warning Potential) as a factor for estimating their contributing on the greenhouse effect. Indicators of the climate change in the previous period and projecting of likely scenarios for the future. Consequences on the environment and human activities: industry, energy, agriculture, water resource. The main lines of the Kyoto Protocols and problems in its realization. Suggestions to the country strategy concerning to the acts of the Kyoto Protocol. A special attention is pointed out on the energy, its recourse, the structure of energy consumption and energy efficiency. Main sectors of the energy efficiency: buildings, industry and transport. Buildings: importance of heat insulation. District heating, suggestions for space heating. Heat pumps and CHP. Air conditioning and refrigeration. Industry: process heating, and integrated energy system, heat recovery, refrigeration, compressed air. Need of quality maintenance and servicing. Monitoring and automatic control. Education for energy and its saving. (Author)

  5. Miniaturized Laser Heterodyne Radiometer (LHR) for Measurements of Greenhouse Gases in the Atmospheric Column

    Science.gov (United States)

    Steel, Emily; McLinden, Matthew

    2012-01-01

    This passive laser heterodyne radiometer (LHR) instrument simultaneously measures multiple trace gases in the atmospheric column including carbon dioxide (CO2) and methane (CH4), and resolves their concentrations at different altitudes. This instrument has been designed to operate in tandem with the passive aerosol sensor currently used in AERONET (an established network of more than 450 ground aerosol monitoring instruments worldwide). Because aerosols induce a radiative effect that influences terrestrial carbon exchange, simultaneous detection of aerosols with these key carbon cycle gases offers a uniquely comprehensive measurement approach. Laser heterodyne radiometry is a technique for detecting weak signals that was adapted from radio receiver technology. In a radio receiver, a weak input signal from a radio antenna is mixed with a stronger local oscillator signal. The mixed signal (beat note, or intermediate frequency) has a frequency equal to the difference between the input signal and the local oscillator. The intermediate frequency is amplified and sent to a detector that extracts the audio from the signal. In the LHR instrument described here, sunlight that has undergone absorption by the trace gas is mixed with laser light at a frequency matched to a trace gas absorption feature in the infrared (IR). Mixing results in a beat signal in the RF (radio frequency) region that can be related to the atmospheric concentration. For a one-second integration, the estimated column sensitivities are 0.1 ppmv for CO2, and Greenhouse gases Observational SATellite). The only network that currently measures CO2 and CH4 in the atmospheric column is TCCON (Total Carbon Column Observing Network), and only two of its 16 operational sites are in the United States. TCCON data is used for validation of GOSAT data, and will be used for OCO-2 validation. While these Fourier-transform spectrometers (FTS) can measure the largest range of trace gases, the network is severely limited

  6. INFLUENCE OF AGRICULTURAL POLLUTANTS ON THE GREENHOUSE EFFECT

    Directory of Open Access Journals (Sweden)

    B. LIXANDRU

    2007-05-01

    Full Text Available The general heating of our planet has become a proved fact today, and its consequences are observed in more climatic disturbances which affect almost the whole Earth. At the base of this climatic process there is the excessive development of the greenhouse effect. The greenhouse effect is a natural physical phenomenon which has gradually developed with the geophysical and biological evolution of the Earth, and its consequence is the thermical constancy of +150C as medium global temperature. The main physical factories which contribute at the realization of greenhouse effect are CO2, watery vapors, NOx and CH4. Naturally, the greenhouse gases have the perfectly global self-regulation cycles. This capacity of self-regulation seems to be troubled by the huge amounts of polluted gaseous thrown in the air by different and usual human activities. In this sense, the agriculture has an important role and the main pollution sources are the rice plantations, inorganic fertilizations and animal farms.

  7. Nuclear power and the greenhouse effect

    International Nuclear Information System (INIS)

    Donaldson, D.M.; Tolland, H.G.

    1989-05-01

    Global levels of the ''Greenhouse'' gases - carbon dioxide, the chlorofluorocarbons (CFCs), methane, nitrous oxide and tropospheric ozone are increasing as a result of man's activities. This increase is widely expected to bring about a rise in global temperature with concomitant environmental impacts. Global warming has been observed over the last century, and the last decade has seen seven of the warmest years on record. There has also been increased variability in the weather (an expected consequence of global warming). However, these possible manifestations of the Greenhouse Effect are within natural variations and proof must await more definitive indications. A brief outline of current views on the Greenhouse Effect is given. This report addresses the energy sector using CO 2 emissions as a measure of its ''Greenhouse'' contribution. This approach understates the energy sector contribution. However, the difference is within the error band. It seems likely that the warming effect of non-energy related emissions will remain the same and there will be more pressure to reduce the emissions from the energy sector. To assess policy options the pattern of future energy demand is estimated. Two scenarios have been adopted to provide alternative frameworks. Both assume low energy growth projections based on increased energy efficiency. The role of nuclear power in reducing carbon dioxide emissions is considered. (author)

  8. Nuclear power in the context of global warming

    International Nuclear Information System (INIS)

    Bodansky, D.

    1989-01-01

    The paper examines the extent to which nuclear power could help ameliorate the greenhouse problem. Topics discussed include: (1) How serious is the environmental threat posed by the greenhouse effect? (2) How large a part do fossil fuels play in producing greenhouse gases? (3) Is it possible to prevent or abate the anticipated global warming? (4) Can nuclear power play a significant role? (5) What overall approached might best reduce greenhouse emissions? Global cooperativeness in addressing the problem will be essential. 14 refs., 5 tabs

  9. GHGs (greenhouse gases) emission and economic analysis of a GCRES (grid-connected renewable energy system) in the arid region, Algeria

    International Nuclear Information System (INIS)

    Saheb Koussa, Djohra; Koussa, Mustapha

    2016-01-01

    This paper presents a method for economic evaluation and GHGs (greenhouse gases) emissions calculation from a GCRES (grid-connected renewable energy system). An investigation is made on large-scale operations of 67 MWh/day GCRES. A comparison is performed between a GCRES and a standard grid operation focusing on environmental and economic impacts. Emissions and the Renewable energy generation fraction (RF) of total energy consumption are calculated as the main environmental indicators. Costs including NPC (net present cost), COE (cost of energy) and payback period are calculated as the economic indicators. Using the hourly mean global solar irradiance, temperature and wind speed data relative to In Salah and Adrar locations characterized by an arid and hot climate according to the Koppen–Geiger climate classification, a long-term continuous implementation of hybrid renewable energy systems are simulated using HOMER software and are discussed. As results, it is observed that a GCRES reduce 30% and 35% of GHGs emission, and 81% and 76% of COE during the operation phase respectively for In Salah and Adrar. Investments in GCRES should be considered only by planning to produce parts of the equipment locally, which leads to significantly reduce the costs and, consequently, the emissions. - Highlights: • Grid-connected renewable energy system (GCRES). • Economic evaluation and greenhouse gases (GHGs) emissions calculation. • In Salah and Adrar are taken as two examples of the famous Algerian arid land. • The climatic data are used to simulate the long-term implementation of the system.

  10. Stabilizing greenhouse gases. Global and regional consequences

    International Nuclear Information System (INIS)

    Alcamo, J.; Krol, M.; Leemans, R.

    1995-01-01

    This paper assesses the environmental consequences of two targets for CO 2 stabilization: 350 ppm by the year 2150 (367 ppm by 2100), and 450 ppm by 2100. As a tool for this investigation we use the IMAGE 2 integrated model of climate change. It was found that these targets lead to much lower regional impacts on crop productivity, natural vegetation, and sea level rise as compared to the baseline case. Nevertheless some negative impacts do occur, and to further reduce these impacts would require more stringent stabilization targets. It was also found that to achieve these stabilization targets in the atmosphere, global emissions should not substantially increase at any time in the future, and eventually they must be significantly reduced. 8 figs., 1 tab., 7 refs., 1 appendix

  11. Integrated approach for combining sustainability and safety into a RAM analysis, RAM2S (Reliability, Availability, Maintainability, Sustainability and Safety) towards greenhouse gases emission targets

    Energy Technology Data Exchange (ETDEWEB)

    Alvarenga, Tobias V. [Det Norske Veritas (DNV), Hovik, Oslo (Norway)

    2009-07-01

    This paper aims to present an approach to integrate sustainability and safety concerns on top of a typical RAM Analysis to support new enterprises to find alternatives to align themselves to the greenhouse gases emission targets, measured as CO{sub 2} (carbon dioxide) equivalent. This approach can be used to measure the impact of the potential CO{sub 2} equivalent emission levels mainly related to new enterprises with high CO{sub 2} content towards environment and production, as per example, the extraction of oil and gas from the Brazilian Pre-salt layers. In this sense, this integrated approach, combining Sustainability and Safety into a RAM analysis, RAM2S (Reliability, Availability, Maintainability, Sustainability and Safety), can be used to assess the impact of CO{sub 2} 'production' along the entire enterprise life-cycle, including the impact of possible facility shutdown due to emission restrictions limits, as well as due to the occurrence of additional failures modes related to CO{sub 2} corrosion capabilities. Thus, at the end, this integrated approach would allow companies to find out a more cost-effective alternative to adapt their business into the global warming reality, overcoming the inherent threats of greenhouse gases. (author)

  12. Fighting global warming by greenhouse gas removal: destroying atmospheric nitrous oxide thanks to synergies between two breakthrough technologies.

    Science.gov (United States)

    Ming, Tingzhen; de Richter, Renaud; Shen, Sheng; Caillol, Sylvain

    2016-04-01

    Even if humans stop discharging CO2 into the atmosphere, the average global temperature will still increase during this century. A lot of research has been devoted to prevent and reduce the amount of carbon dioxide (CO2) emissions in the atmosphere, in order to mitigate the effects of climate change. Carbon capture and sequestration (CCS) is one of the technologies that might help to limit emissions. In complement, direct CO2 removal from the atmosphere has been proposed after the emissions have occurred. But, the removal of all the excess anthropogenic atmospheric CO2 will not be enough, due to the fact that CO2 outgases from the ocean as its solubility is dependent of its atmospheric partial pressure. Bringing back the Earth average surface temperature to pre-industrial levels would require the removal of all previously emitted CO2. Thus, the atmospheric removal of other greenhouse gases is necessary. This article proposes a combination of disrupting techniques to transform nitrous oxide (N2O), the third most important greenhouse gas (GHG) in terms of current radiative forcing, which is harmful for the ozone layer and possesses quite high global warming potential. Although several scientific publications cite "greenhouse gas removal," to our knowledge, it is the first time innovative solutions are proposed to effectively remove N2O or other GHGs from the atmosphere other than CO2.

  13. Assessment of Eco-friendly Gases for Electrical Insulation to Replace the Most Potent Industrial Greenhouse Gas SF6.

    Science.gov (United States)

    Rabie, Mohamed; Franck, Christian M

    2018-01-16

    Gases for electrical insulation are essential for the operation of electric power equipment. This Review gives a brief history of gaseous insulation that involved the emergence of the most potent industrial greenhouse gas known today, namely sulfur hexafluoride. SF 6 paved the way to space-saving equipment for the transmission and distribution of electrical energy. Its ever-rising usage in the electrical grid also played a decisive role in the continuous increase of atmospheric SF 6 abundance over the last decades. This Review broadly covers the environmental concerns related to SF 6 emissions and assesses the latest generation of eco-friendly replacement gases. They offer great potential for reducing greenhouse gas emissions from electrical equipment but at the same time involve technical trade-offs. The rumors of one or the other being superior seem premature, in particular because of the lack of dielectric, environmental, and chemical information for these relatively novel compounds and their dissociation products during operation.

  14. Quantification of the greenhouse effect gases at the territorial scale. Final report; Quantification des emissions de gaz a effet de serre a l'echelle territoriale. Rapport final

    Energy Technology Data Exchange (ETDEWEB)

    Magnin, G.; Lacassagne, S

    2003-07-01

    An efficient action against the greenhouse effect needs the implication of the local collectivities. To implement appropriate energy policies, deciders need information and tools to quantify the greenhouse gases and evaluate the obtained results of their greenhouse gases reduction policies. This study is a feasibility study of the tools realization, adapted to the french context. It was done in three steps: analysis of the existing tools, application to the french context and elaboration of the requirements of appropriate tools. This report presents the study methodology, the information analysis and the conclusions. (A.L.B.)

  15. Global Warming: How Much and Why?

    Science.gov (United States)

    Lanouette, William

    1990-01-01

    Summarizes the history of the study of global warming and includes a discussion of the role of gases, like carbon dioxide, methane, and chlorofluorocarbon (CFC). Discusses modern research on the global warming, including computer modelling and the super-greenhouse effect. (YP)

  16. Greenhouse effect and its climatic consequences: scientific evaluation

    International Nuclear Information System (INIS)

    1994-11-01

    The greenhouse effect plays a major role in climate evolution and the increase observed at present in the concentration of the main gases causing the greenhouse effect (carbon dioxide, chlorofluorocarbons, methane) stems very definitely from human activities. The global warming potential by the various greenhouse effect gases is calculated through restrictive hypotheses. An essential element in the importance given to the growth of the greenhouse effect phenomena was the regular rise in the concentration of carbon dioxide in the atmosphere. The overall carbon cycle balance still needs to be worked out. The aerosols caused by sulfurous releases have grown. The decrease in the amount of ozone in the stratosphere brings on a slight cooling of the surface of the Earth. The local increase of tropospheric ozone brings on a slight local warming with a comparable order of magnitude. Despite all the progress that has been achieved in modelling the phenomena, we cannot affirm today that these predictions are accurate. Recent work involving analyses of the polar ice-caps along with other indications of past climates have given a better understanding of the North Atlantic climate over the past 200,000 years. 119 refs., 10 figs., 6 tabs

  17. The challenge of global warming

    International Nuclear Information System (INIS)

    Bryner, G.C.

    1992-01-01

    The chapter outlines the science of global warming, the likely consequences of global warming and some of the major challenges in dealing with global climate change. Some of the major international organisations concerned with environmental issues are listed. International agreements might be used to limit emissions of greenhouse gases. 32 refs., 2 tabs

  18. Canada and global warming: Meeting the challenge

    International Nuclear Information System (INIS)

    1991-01-01

    Canada accounts for ca 2% of total world emissions of greenhouse gases. Carbon dioxide emissions are by far the largest greenhouse gas source in Canada, primarily from energy consumption. On a per capita basis, Canada ranks second among industrialized countries in terms of energy related carbon dioxide emissions. Canada's northern geography and climate, its export-oriented economy with energy-intensive resource industries, and its relatively small population dispersed over a wide land mass contribute to this high per-capita value. The effects of global warming induced by greenhouse gases are outlined, including a reduction in water supplies, droughts affecting agriculture and forestry, and large-scale thawing of permafrost. A national strategy to respond to global warming has been developed which includes limiting and reducing greenhouse gas emissions, preparing for potential climatic changes, and improving scientific understanding and predictive capabilities with respect to climate change. Details of this strategy are outlined, including provincial and territorial strategies in partnership with the national strategy. 11 figs., 2 tabs

  19. Electric energy auctions in Brazil and its effect on emissions of greenhouse gases by the electric sector; Leiloes de energia eletrica no Brasil e sua influencia nas emissoes de gases de efeito estufa pelo setor eletrico

    Energy Technology Data Exchange (ETDEWEB)

    Alpire, Ricardo; Pereira, Osvaldo Livio Soliano [Universidade Salvador (UNIFACS), BA (Brazil)

    2010-07-01

    The result of the auctions of electricity, after the new regulatory framework in 2004, has shown the increased participation of fossil sources of thermal generation, contributing to increased emission of greenhouse gases by the Brazilian Electricity Sector. This article aims to analyze the correlation between growth in electric generation sector and rising greenhouse gases, especially through the study of the winning projects of electric power auctions conducted with the advent of the New Institutional Model of the Power Sector from 2004, comparing with the existing policies and prospects of the next auction of the electric sector. (author)

  20. Renewable energies in electricity generation for reduction of greenhouse gases in Mexico 2025.

    Science.gov (United States)

    Islas, Jorge; Manzini, Fabio; Martínez, Manuel

    2002-02-01

    This study presents 4 scenarios relating to the environmental futures of electricity generation in Mexico up to the year 2025. The first scenario emphasizes the use of oil products, particularly fuel oil, and represents the historic path of Mexico's energy policy. The second scenario prioritizes the use of natural gas, reflecting the energy consumption pattern that arose in the mid-1990s as a result of reforms in the energy sector. In the third scenario, the high participation of renewable sources of energy is considered feasible from a technical and economic point of view. The fourth scenario takes into account the present- and medium-term use of natural-gas technologies that the energy reform has produced, but after 2007 a high and feasible participation of renewable sources of energy is considered. The 4 scenarios are evaluated up to the year 2025 in terms of greenhouse gases (GHG) and acid rain precursor gases (ARPG).

  1. Moisture effects on greenhouse gases generation in nitrifying gas-phase compost biofilters.

    Science.gov (United States)

    Maia, Guilherme D N; Day, George B; Gates, Richard S; Taraba, Joseph L; Coyne, Mark S

    2012-06-01

    Gas-phase compost biofilters are extensively used in concentrated animal feeding operations to remove odors and, in some cases, ammonia from air sources. The expected biochemical pathway for these predominantly aerobic systems is nitrification. However, non-uniform media with low oxygen levels can shift biofilter microbial pathways to denitrification, a source of greenhouse gases. Several factors contribute to the formation of anoxic/anaerobic zones: media aging, media and particle structure, air velocity distribution, compaction, biofilm thickness, and moisture content (MC) distribution. The present work studies the effects of media moisture conditions on ammonia (NH(3)) removal and greenhouse gas generation (nitrous oxide, N(2)O and methane, CH(4)) for gas-phase compost biofilters subject to a 100-day controlled drying process. Continuous recordings were made for the three gases and water vapor (2.21-h sampling cycle, each cycle consisted of three gas species, and water vapor, for a total of 10,050 data points). Media moisture conditions were classified into three corresponding media drying rate (DR) stages: Constant DR (wetter media), falling DR, and stable-dry system. The first-half of the constant DR period (0-750 h; MC=65-52%, w.b.) facilitated high NH(3) removal rates, but higher N(2)O generation and no CH(4) generation. At the drier stages of the constant DR (750-950 h; MC=52-48%, w.b.) NH(3) removal remained high but N(2)O net generation decreased to near zero. In the falling DR stage (1200-1480 h; MC=44-13%) N(2)O generation decreased, CH(4) increased, and NH(3) was no longer removed. No ammonia removal or greenhouse gas generation was observed in the stable-dry system (1500-2500 h; MC=13%). These results indicate that media should remain toward the drier region of the constant DR (in close proximity to the falling DR stage; MC=50%, approx.), to maintain high levels of NH(3) removal, reduced levels of N(2)O generation, and nullify levels of CH(4

  2. The contribution of biomass burning to global warming: An integrated assessment

    International Nuclear Information System (INIS)

    Lashof, D.A.

    1991-01-01

    An analysis of studies of emissions form biomass burning suggests that while biomass burning is less significant than fossil fuel combustion on global basis, it is a major contributor to the greenhouse gas buildup, responsible for perhaps 10% to 15% of the total forcing from current emissions. Uncertainties about emissions and the relative impact of different gases are large, yielding a range of 5% to 30%. Nonetheless, biomass burning is probably the dominant source of greenhouse gases in some regions. A comprehensive policy to limit global climate change must, therefore, address biomass burning

  3. Effect of increasing greenhouse gases on Indian monsoon rainfall as downscaled from the ECHAM coupled model

    International Nuclear Information System (INIS)

    Singh, S.V.; Storch, H.V.

    1994-01-01

    It is more or less accepted that the increasing anthropogenic gases will result in global warming through the greenhouse effect. The major influence of this will be felt in the form of ice melts and rising sea levels. The influence on regional climates like monsoons is not very clear. Since the monsoons arise due to surface heating, one would expect that global warming will lead to more vigorous monsoons. The expected change in a climate parameter can be studied by analyzing the historical data and then extrapolating in time. Alternatively, one can use the state-of-the-art coupled GCMs which are able to simulate the earth's climate with reasonable accuracy. Both methods have some limitations. The first method cannot adequately consider the nonlinearity, and the second method may not be efficient for regional scales. So that the projections can be trusted, the regional features should be well simulated. None of the current models are able to simulate the Indian monsoon satisfactorily. Therefore it is desirable to infer the expected change in monsoons from other large and near global scale features which are better simulated. This approach, which depends on the concurrent association between a large-scale modeled feature and a regional scale, is known as downscaling, after Storch et al., and is adopted here to project the Indian monsoon rainfall for the next 100 years from the ECHAM T21 coupled model

  4. Possible future scenarios for atmospheric concentration of greenhouse gases. A simplified thermodynamic approach

    International Nuclear Information System (INIS)

    Angulo-Brown, F.; Sanchez-Salas, N.; Barranco-Jimenez, M.A.; Rosales, M.A.

    2009-01-01

    Most of the increase in concentrations of greenhouse gases in the Earth's atmosphere is mainly due to anthropogenic activities. This is particularly significant in the case of CO 2 . The atmospheric concentration of CO 2 has systematically increased since the Industrial Revolution (260 ppm), with a remarkable raise after the 1970s until the present day (380 ppm). If this increasing tendency is maintained, the last report of the Intergovernmental Panel on Climate Change (IPCC) estimates that, for the year 2100, the CO 2 concentration can augment up to approximately 675 ppm. In this work it is assumed that the quantity of anthropogenic greenhouse gases emitted to the Earth's atmosphere is proportional to the quantity of heat rejected to the environment by internal combustion heat engines. It is also assumed that this increasing tendency of CO 2 due to men's activity stems from a mode of energy production mainly based on a maximum-power output paradigm. With these hypotheses, a thermoeconomic optimization of a thermal engine model under two regimes of performance: the maximum-power regime and the so-called ecological function criterion is presented. This last regime consists in maximizing a function that represents a good compromise between high power output and low entropy production. It is showed that, under maximum ecological conditions, the emissions of thermal energy to the environment are reduced approximately up to 50%. Thus working under this mode of performance the slope of the curves of CO 2 concentration, for instance, drastically diminishes. A simple qualitative criterion to design ecological taxes is also suggested. (author)

  5. CO2, the greenhouse effect and global warming: from the pioneering work of Arrhenius and Callendar to today's Earth System Models.

    Science.gov (United States)

    Anderson, Thomas R; Hawkins, Ed; Jones, Philip D

    2016-09-01

    Climate warming during the course of the twenty-first century is projected to be between 1.0 and 3.7°C depending on future greenhouse gas emissions, based on the ensemble-mean results of state-of-the-art Earth System Models (ESMs). Just how reliable are these projections, given the complexity of the climate system? The early history of climate research provides insight into the understanding and science needed to answer this question. We examine the mathematical quantifications of planetary energy budget developed by Svante Arrhenius (1859-1927) and Guy Stewart Callendar (1898-1964) and construct an empirical approximation of the latter, which we show to be successful at retrospectively predicting global warming over the course of the twentieth century. This approximation is then used to calculate warming in response to increasing atmospheric greenhouse gases during the twenty-first century, projecting a temperature increase at the lower bound of results generated by an ensemble of ESMs (as presented in the latest assessment by the Intergovernmental Panel on Climate Change). This result can be interpreted as follows. The climate system is conceptually complex but has at its heart the physical laws of radiative transfer. This basic, or "core" physics is relatively straightforward to compute mathematically, as exemplified by Callendar's calculations, leading to quantitatively robust projections of baseline warming. The ESMs include not only the physical core but also climate feedbacks that introduce uncertainty into the projections in terms of magnitude, but not sign: positive (amplification of warming). As such, the projections of end-of-century global warming by ESMs are fundamentally trustworthy: quantitatively robust baseline warming based on the well-understood physics of radiative transfer, with extra warming due to climate feedbacks. These projections thus provide a compelling case that global climate will continue to undergo significant warming in response

  6. Estimation of the Atmosphere-Ocean Fluxes of Greenhouse Gases and Aerosols at the Finer Resolution of the Coastal Ocean

    Czech Academy of Sciences Publication Activity Database

    Vieira, V.; Sahlée, E.; Juruš, Pavel; Clementi, E.; Pettersson, H.; Mateus, M.

    2016-01-01

    Roč. 18 (2016), EGU2016-1990-1 ISSN 1607-7962. [EGU General Assembly 2016. 17.04.2016-22.04.2016, Vienna] Institutional support: RVO:67985807 Keywords : greenhouse gases * carbon cycle * atmosphere- ocean interaction * atmosphere modelling * ocean modelling Subject RIV: DG - Athmosphere Sciences, Meteorology

  7. Joint implementation, clean development mechanism and tradable permits. International regulation of greenhouse gases

    DEFF Research Database (Denmark)

    Nielsen, L.; Olsen, K.R.

    2000-01-01

    ). The report describes the background for the international co-operation on reducing the greenhouse gases and the background for the instruments. How the instruments work in theory and what the practical problemsmay be. What agents' incentives are when they engage in JI or CDM, and how the initiation...... the developing countries incentives to participate in the coalition of committed countries. In the concludingchapter some recommendations on the use of JI, TP and CDM are given. The recommendations are a kind of dialog with especially the Norwegian and Swedish reports on tradable permits. Some of the issues...

  8. Greenhouse effects. Attempts of two sciences academy reports synthesis

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    This work deals with the greenhouse effect. It is divided into three parts. In the first one, are given the main questions which are raised by the greenhouse effect: what will be the global increase of the earth if the developed countries continue to release gases as carbon oxides or chlorofluorocarbons? What will it be with the increase of the population and with the development of the countries less industrialized nowadays (80% of the earth's population)? What will be the effect on the global climate and on the regional climates? What will be the consequences for the nature, the men and the living species? The possible consequences are explained and some solutions are proposed. (O.L.)

  9. Performance Verification of GOSAT-2 FTS-2 Simulator and Sensitivity Analysis for Greenhouse Gases Retrieval

    Science.gov (United States)

    Kamei, A.; Yoshida, Y.; Dupuy, E.; Hiraki, K.; Matsunaga, T.

    2015-12-01

    The GOSAT-2, which is scheduled for launch in early 2018, is the successor mission to the Greenhouse gases Observing Satellite (GOSAT). The FTS-2 onboard the GOSAT-2 is a Fourier transform spectrometer, which has three bands in the near to short-wavelength infrared (SWIR) region and two bands in the thermal infrared (TIR) region to observe infrared light reflected and emitted from the Earth's surface and atmosphere with high-resolution spectra. Column amounts and vertical profiles of major greenhouse gases such as carbon dioxide (CO2) and methane (CH4) are retrieved from acquired radiance spectra. In addition, the FTS-2 has several improvements from the FTS onboard the GOSAT: 1) added spectral coverage in the SWIR region for carbon monoxide (CO) retrieval, 2) increased signal-to-noise ratio (SNR) for all bands, 3) extended range of along-track pointing angles for sunglint observations, 4) intelligent pointing to avoid cloud contamination. Since 2012, we have been developing a software tool, which is called the GOSAT-2 FTS-2 simulator, to simulate spectral radiance data that will be acquired by the GOSAT-2 FTS-2. The objective of it is to analyze/optimize data with respect to the sensor specification, the parameters for Level 1 processing, and the improvement of Level 2 retrieval algorithms. It consists of six components: 1) overall control, 2) sensor carrying platform, 3) spectral radiance calculation, 4) Fourier transform module, 5) Level 1B (L1B) processing, and 6) L1B data output. More realistic and faster simulations have been made possible by the improvement of details about sensor characteristics, the sophistication of data processing and algorithms, the addition of various observation modes, the use of surface and atmospheric ancillary data, and the speed-up and parallelization of radiative transfer code. This simulator is confirmed to be working properly from the reproduction of GOSAT FTS L1B data depends on the ancillary data. We will summarize the

  10. National Greenhouse Gas Emission Inventory

    Data.gov (United States)

    U.S. Environmental Protection Agency — The National Greenhouse Gas Emission Inventory contains information on direct emissions of greenhouse gases as well as indirect or potential emissions of greenhouse...

  11. Global warming: A vicious circle

    International Nuclear Information System (INIS)

    Sinclair, J.

    1991-01-01

    As a result of increasing atmospheric concentrations of greenhouse gases the planet is already committed to regional droughts, storms, disruption of fisheries and the extinction of many plant and animal species. But current predictions of global warming do not take into account the reactions and interactions of the planet's land, ocean and ice masses to the rise in temperatures. It seems likely that the greenhouse effect will give rise to positive feedback reactions, leading to greater global warming than predicted

  12. The enlargement of the European Union. Effects on trade and emissions of greenhouse gases

    International Nuclear Information System (INIS)

    Zhu, Xueqin; Van Ierland, Ekko

    2006-01-01

    With the gradual accession of various Central and Eastern European Countries (CEECs) to the European Union (EU), international trade between the EU and the CEECs will change as a result of trade liberalisation and the mobility of production factors within the EU. The EU and most of the CEECs have already committed themselves to reduce by 2008-2012 their emissions of greenhouse gases (GHGs) by 8% compared to the 1990 level. This paper reports on an investigation of the potential consequences of the enlargement of the EU and of the emission reduction target set by the Kyoto Protocol on the sectoral production patterns and international trade. A comparative-static general equilibrium model was developed to examine the impacts under different scenarios. For illustrative purposes, two regions (the EU and the CEECs) and three categories of goods and services (agricultural goods, industrial goods, and services) were included. The model was calibrated by the 1998 data. The model was subsequently applied to study the effects of free trade, the mobility of factors and the environmental constraints on production and international trade in light of the enlargement of the EU. We show that in this specific context, free trade is beneficial to economic welfare and does not necessarily increase emissions of greenhouse gases. The mobility of factors also increases economic welfare, but in the case of fixed production technology it may harm the environment through more emissions of GHGs. (author)

  13. The contribution of China's emissions to global climate forcing.

    Science.gov (United States)

    Li, Bengang; Gasser, Thomas; Ciais, Philippe; Piao, Shilong; Tao, Shu; Balkanski, Yves; Hauglustaine, Didier; Boisier, Juan-Pablo; Chen, Zhuo; Huang, Mengtian; Li, Laurent Zhaoxin; Li, Yue; Liu, Hongyan; Liu, Junfeng; Peng, Shushi; Shen, Zehao; Sun, Zhenzhong; Wang, Rong; Wang, Tao; Yin, Guodong; Yin, Yi; Zeng, Hui; Zeng, Zhenzhong; Zhou, Feng

    2016-03-17

    Knowledge of the contribution that individual countries have made to global radiative forcing is important to the implementation of the agreement on "common but differentiated responsibilities" reached by the United Nations Framework Convention on Climate Change. Over the past three decades, China has experienced rapid economic development, accompanied by increased emission of greenhouse gases, ozone precursors and aerosols, but the magnitude of the associated radiative forcing has remained unclear. Here we use a global coupled biogeochemistry-climate model and a chemistry and transport model to quantify China's present-day contribution to global radiative forcing due to well-mixed greenhouse gases, short-lived atmospheric climate forcers and land-use-induced regional surface albedo changes. We find that China contributes 10% ± 4% of the current global radiative forcing. China's relative contribution to the positive (warming) component of global radiative forcing, mainly induced by well-mixed greenhouse gases and black carbon aerosols, is 12% ± 2%. Its relative contribution to the negative (cooling) component is 15% ± 6%, dominated by the effect of sulfate and nitrate aerosols. China's strongest contributions are 0.16 ± 0.02 watts per square metre for CO2 from fossil fuel burning, 0.13 ± 0.05 watts per square metre for CH4, -0.11 ± 0.05 watts per square metre for sulfate aerosols, and 0.09 ± 0.06 watts per square metre for black carbon aerosols. China's eventual goal of improving air quality will result in changes in radiative forcing in the coming years: a reduction of sulfur dioxide emissions would drive a faster future warming, unless offset by larger reductions of radiative forcing from well-mixed greenhouse gases and black carbon.

  14. Good practices reducing the greenhouse gases in the transport sector

    International Nuclear Information System (INIS)

    Crespo Garcia, L.; Garcia Cortes, A.; Jimenez Arroyo, F.; Montane Lopez, M. M.

    2010-01-01

    Public policies addressing the reduction of the greenhouse gases emission have to give response to the improvement of mobility in three aspects: passengers, freights, and urban and metropolitan areas. Passenger transport, because it involves long transportation distances consuming an important part of transport energy and raises difficult organizational problems. Freight transport, due to the complexity of interconnecting a lot of modes of transportation and the big range for improvement. Urban and metropolitan mobility, by the impact of actions in this field in the quality of life of a big part of the population. According to the peculiarities of their respective territories, different strategies of sustainable mobility that address the three considered aspects have been set up in Spain and its neighbouring countries. This article reviews some action lines implemented in spain, France and Germany, as a previous step to assess their possible adaptation to other territories. (Author) 6 refs.

  15. Comparison of energy sources in terms of their full-energy-chain emission factors of greenhouse gases. Proceedings of an IAEA advisory group meeting/workshop

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    Sustainable and therefore climate benign energy planning is becoming a cornerstone of national energy policies in many countries that ratified the United Nations Framework Convention on Climate Change. The ratification implies a commitment to lowering greenhouse gas emissions by the so-called Annex I countries, i.e. the developed countries. Sustainable energy planning requires comparing the advantages and disadvantages of different energy sources. Such comparison cannot be done objectively without accounting for the emissions of all greenhouse gases (GHGs) - not only CO{sub 2} - from the whole energy chain, from ``cradle to grave``. The greenhouse gas emissions upstream and downstream of the energy conversion step are inherently associated with the production of any energy carrier, such as electricity. Therefore, analysis of the emissions of all greenhouse gases from the full energy chain FENCH is considered to be the only fair approach in comparing energy sources for climate benign energy planning. This publication reports on the IAEA Advisory Group Meeting on Analysis of Net Energy Balance and Full-Energy-Chain Greenhouse Gas Emissions for Nuclear and Other Energy Systems, held in Beijing, China, 4-7 October 1994. Refs., figs., tabs.

  16. Comparison of energy sources in terms of their full-energy-chain emission factors of greenhouse gases. Proceedings of an IAEA advisory group meeting/workshop

    International Nuclear Information System (INIS)

    1996-07-01

    Sustainable and therefore climate benign energy planning is becoming a cornerstone of national energy policies in many countries that ratified the United Nations Framework Convention on Climate Change. The ratification implies a commitment to lowering greenhouse gas emissions by the so-called Annex I countries, i.e. the developed countries. Sustainable energy planning requires comparing the advantages and disadvantages of different energy sources. Such comparison cannot be done objectively without accounting for the emissions of all greenhouse gases (GHGs) - not only CO 2 - from the whole energy chain, from ''cradle to grave''. The greenhouse gas emissions upstream and downstream of the energy conversion step are inherently associated with the production of any energy carrier, such as electricity. Therefore, analysis of the emissions of all greenhouse gases from the full energy chain FENCH is considered to be the only fair approach in comparing energy sources for climate benign energy planning. This publication reports on the IAEA Advisory Group Meeting on Analysis of Net Energy Balance and Full-Energy-Chain Greenhouse Gas Emissions for Nuclear and Other Energy Systems, held in Beijing, China, 4-7 October 1994. Refs., figs., tabs

  17. Norwegian environmental policy: From continued increase of the emission of greenhouse gases to decrease

    International Nuclear Information System (INIS)

    2002-01-01

    According to Norway's Minister of the Environment, Norway will be one of the first among the industrialized countries to ratify the Kyoto Protocol on the emission of greenhouse gases. The tax on carbon dioxide will be continued and from 2005 there will be a national quota system for emission from sources not previously included. Several other measures have also been proposed. The current regulations admit 16 percent increase in the emissions up to 2008, while the measures proposed by the government and listed in this article may give a reduction of 12 percent

  18. How well can global chemistry models calculate the reactivity of short-lived greenhouse gases in the remote troposphere, knowing the chemical composition

    Science.gov (United States)

    Prather, Michael J.; Flynn, Clare M.; Zhu, Xin; Steenrod, Stephen D.; Strode, Sarah A.; Fiore, Arlene M.; Correa, Gustavo; Murray, Lee T.; Lamarque, Jean-Francois

    2018-05-01

    We develop a new protocol for merging in situ measurements with 3-D model simulations of atmospheric chemistry with the goal of integrating these data to identify the most reactive air parcels in terms of tropospheric production and loss of the greenhouse gases ozone and methane. Presupposing that we can accurately measure atmospheric composition, we examine whether models constrained by such measurements agree on the chemical budgets for ozone and methane. In applying our technique to a synthetic data stream of 14 880 parcels along 180° W, we are able to isolate the performance of the photochemical modules operating within their global chemistry-climate and chemistry-transport models, removing the effects of modules controlling tracer transport, emissions, and scavenging. Differences in reactivity across models are driven only by the chemical mechanism and the diurnal cycle of photolysis rates, which are driven in turn by temperature, water vapor, solar zenith angle, clouds, and possibly aerosols and overhead ozone, which are calculated in each model. We evaluate six global models and identify their differences and similarities in simulating the chemistry through a range of innovative diagnostics. All models agree that the more highly reactive parcels dominate the chemistry (e.g., the hottest 10 % of parcels control 25-30 % of the total reactivities), but do not fully agree on which parcels comprise the top 10 %. Distinct differences in specific features occur, including the spatial regions of maximum ozone production and methane loss, as well as in the relationship between photolysis and these reactivities. Unique, possibly aberrant, features are identified for each model, providing a benchmark for photochemical module development. Among the six models tested here, three are almost indistinguishable based on the inherent variability caused by clouds, and thus we identify four, effectively distinct, chemical models. Based on this work, we suggest that water vapor

  19. Emission factor of gases from the greenhouse effect for the brazilian interconnected system; Fator de emissao de gases de efeito estufa para o sistema interligado brasileiro

    Energy Technology Data Exchange (ETDEWEB)

    Esparta, A. Ricardo J. [Ecoinvest Carbon S.A., Sao Paulo, SP (Brazil)]. E-mail: esparta@iee.usp.br; esparta@ecoinvestcarbon.com; Fernandez, Pablo [EcoSecurities, Rio de Janeiro, RJ (Brazil)]. E-mail: pablo.fernandez@ecosecurities.com.br; Costa, David Freire da [Econergy Brasil, Sao Paulo, SP (Brazil)]. E-mail: freire@econergy.com.br

    2006-07-01

    The participation of new power generation projects of the Brazilian interconnected system in the Clean Development Mechanism of the Kyoto Protocol demand the definition of greenhouse gases baseline emission scenarios and monitoring methodologies. The present paper describes the reasoning behind approved methodologies for capacity addition from renewable sources as well as carries out the calculation of the emission factor for the Brazilian interconnected grid. (author)

  20. Global warming: the complete briefing

    Energy Technology Data Exchange (ETDEWEB)

    Houghton, J

    1994-01-01

    The science of global warming, its impacts, and what action might be taken, are described in this book, in a way which the intelligent non-scientist can understand. It also examines ethical and moral issues of concern about global warming, considering mankind as stewards of the earth. Chapter headings of the book are: global warming and climate change; the greenhouse effect; the greenhouse gases; climates of the past; modelling the climate; climate change and business-as-usual; the impacts of climate change; why should we be concerned ; weighing the uncertainty; action to slow and stabilize climate change; energy and transport for the future; and the global village.

  1. Interactive Photochemistry in Earth System Models to Assess Uncertainty in Ozone and Greenhouse Gases. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Prather, Michael J. [Univ. of California, Irvine, CA (United States); Hsu, Juno [Univ. of California, Irvine, CA (United States); Nicolau, Alex [Univ. of California, Irvine, CA (United States); Veidenbaum, Alex [Univ. of California, Irvine, CA (United States); Smith, Philip Cameron [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bergmann, Dan [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-11-07

    Atmospheric chemistry controls the abundances and hence climate forcing of important greenhouse gases including N2O, CH4, HFCs, CFCs, and O3. Attributing climate change to human activities requires, at a minimum, accurate models of the chemistry and circulation of the atmosphere that relate emissions to abundances. This DOE-funded research provided realistic, yet computationally optimized and affordable, photochemical modules to the Community Earth System Model (CESM) that augment the CESM capability to explore the uncertainty in future stratospheric-tropospheric ozone, stratospheric circulation, and thus the lifetimes of chemically controlled greenhouse gases from climate simulations. To this end, we have successfully implemented Fast-J (radiation algorithm determining key chemical photolysis rates) and Linoz v3.0 (linearized photochemistry for interactive O3, N2O, NOy and CH4) packages in LLNL-CESM and for the first time demonstrated how change in O2 photolysis rate within its uncertainty range can significantly impact on the stratospheric climate and ozone abundances. From the UCI side, this proposal also helped LLNL develop a CAM-Superfast Chemistry model that was implemented for the IPCC AR5 and contributed chemical-climate simulations to CMIP5.

  2. Global warming update: Recent scientific findings

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This study, from the George C. Marshall Institute, considers recent scientific findings on the extent of human-induced global warming. The earth's temperature has risen by approximately half a degree Celsius in the last 100 years, coinciding with a substantial increase in greenhouse gases in the atmosphere, apparently the result of human activity. Several scientific groups have concluded that manmade emissions of greenhouse gases has produced much or all of the recent rise in global temperatures. They predict a doubling of carbon dioxide by the mid-21st century resulting in a global temperature rise of 5 degrees C and causing severe disruptions in the earth's ecosystem. The available data on climatic change, however, do not support these predictions, nor do they support the idea that human activity has caused, or will cause, a dangerous increase in global temperatures. Enormous economic stakes ride on government decisions about carbon taxes and other CO 2 emission restrictions. Attention must be paid to the scientific evidence, no matter how contrary to popular opinion its implications appear to be. The discussion is divided into five parts: introduction; Are the Greenhouse Forecasts Reliable?; The Cause of Recent Climate Changes; New Results on Global Flooding; Conclusions; Policy Implications. 27 refs., 9 figs

  3. Technical papers 2: regional evaluation of the greenhouse gases emissions bound to the energy; Cahiers techniques 2: bilan regional des emissions de gaz a effet de serre liees a l'energie

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    The regional evaluation of the greenhouse gases emissions is realized in the framework of the climatic change fight. This technical paper aims to give regions information on the greenhouse gases emissions bound the the energy consumption. It provides a sectoral analysis in function of the energy sources and pollution sources. (A.L.B.)

  4. Impact of Trade Openness and Sector Trade on Embodied Greenhouse Gases Emissions and Air Pollutants

    OpenAIRE

    Islam, Moinul; Kanemoto, Keiichiro; Managi, Shunsuke

    2016-01-01

    The production of goods and services generates greenhouse gases (GHGs) and air pollution both directly and through the activities of the supply chains on which they depend. The analysis of the latter—called embodied emissions—in the cause of internationally traded goods and services is the subject of this paper. We find that trade openness increases embodied emissions in international trade (EET). We also examine the impact of sector trade on EET. By applying a fixed-effect model using large...

  5. Carbon Dioxide Information Analysis Center and World Data Center for Atmospheric Trace Gases Fiscal Year 2000 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Cushman, R.M.

    2001-11-15

    The Carbon Dioxide Information Analysis Center (CDIAC), which includes the World Data Center (WDC) for Atmospheric Trace Gases, is the primary global change data and information analysis center of the U.S. Department of Energy (DOE). More than just an archive of data sets and publications, CDIAC has, since its inception in 1982, enhanced the value of its holdings through intensive quality assurance, documentation, and integration. Whereas many traditional data centers are discipline-based (for example, meteorology or oceanography), CDIAC's scope includes potentially anything and everything that would be of value to users concerned with the greenhouse effect and global climate change, including concentrations of carbon dioxide (CO{sub 2}) and other radiatively active gases in the atmosphere; the role of the terrestrial biosphere and the oceans in the biogeochemical cycles of greenhouse gases; emissions of CO{sub 2} and other trace gases to the atmosphere; long-term climate trends; the effects of elevated CO{sub 2} on vegetation; and the vulnerability of coastal areas to rising sea levels.

  6. Throat gases against the CO2

    International Nuclear Information System (INIS)

    Michaut, C.

    2006-01-01

    The steel production needs carbon consumption and generates carbon dioxide, the main greenhouse gases. It represents about 6 % of the greenhouse gases emissions in the world. That is why the steel industry began last year a research program, Ideogaz, to reduce its CO 2 releases. The first results on the throat gases recovery seems very promising: it uses 25 % less of carbon. The author presents the program and the main technical aspects of the method. (A.L.B.)

  7. Emissions from animal husbandry. Greenhouse gases, environmental assessment, state of the art; Emissionen der Tierhaltung. Treibhausgase, Umweltbewertung, Stand der Technik

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    Within the KTBL conference (KTBL = Board of trustees for technology and construction science in the field of agriculture, Darmstadt, Federal Republic of Germany) from 6th to 8th December, 2011, in the monastery Banz, Bad Staffelstein (Federal Republic of Germany), the following lectures were held: (1) Development and environmental impacts of livestock production worldwide (Harald Menzl); (2) Methods to assess environmental aspects of livestock (Hayo van der Werf); (3) Methological aspects of environmental assessment of livestock production by Life Cycle Assessment (Lorie Hamelin); (4) Life Cycle Assessment of milk production systems (Gerard Gaillard); (5) Environmental impact assessment of beef production systems demonstrated for greenhouse gases (Monika Ziehetmeier); (6) Environmental impact assessment of pig production systems in Europe - From land use to feed efficiency (Ingrid Strid); (7) Envionmental impact assessment of egg production systems in Europe as seen from the United Kingdom (Adrian Willias); (8) Environmental impacts and improvement options of chicken meat production (Juha-Matti Katajajuuri); (9) Greenhouse gas emissions from livestock farming (Annette Freibauer); (10) Methane and nitrous oxide emissions from livestock manure: The scientific basis (Soeren O. Petersen); (11) Strategic measures to influence methane emissions from livestock (Michael Kreuzer); (12) Enteric methane production - Results from respiration chambers (Michael Derno); (13) Greenhouse gas emissions from cattle housing systems (Inga Schiefler); (14) Towards reduced methane from grass-based Irish milk production systems (Eva Lewis); (15) Greenhouse gas emissions from pig housing (Knut-Haakan Jeppsson); (16) Greenhouse gas emissions from poultry housings and manure management: inventory and update of emission factors (Peter Groot Koerkamp); (17) Greenhouse gas emissions from the storage of liquid and solid manure and abatement strategies (Lena Rodhe); (18) Nitrous oxide emissions

  8. 1988 Pilot Institute on Global Change on trace gases and the biosphere

    Energy Technology Data Exchange (ETDEWEB)

    Eddy, J.A.; Moore, B. III

    1998-07-01

    This proposal seeks multi-agency funding to conduct an international, multidisciplinary 1988 Pilot Institute on Global Change to take place from August 7 through 21, 1988, on the topic: Trace Gases and the Biosphere. The institute, to be held in Snowmass, Colorado, is envisioned as a pilot version of a continuing series of institutes on Global Change (IGC). This proposal seeks support for the 1988 pilot institute only. The concept and structure for the continuing series, and the definition of the 1988 pilot institute, were developed at an intensive and multidisciplinary Summer Institute Planning Meeting in Boulder, Colorado, on August 24--25, 1987. The theme for the 1988 PIGC, Trace Gases and the Biosphere, will focus a concerted, high-level multidisciplinary effort on a scientific problem central to the Global Change Program. Dramatic year-to-year increases in the global concentrations of radiatively-active trace gases such as methane and carbon dioxide are now well documented. The predicted climatic effects of these changes lend special urgency to efforts to study the biospheric sources and sinks of these gases and to clarify their interactions and role in the geosphere-biosphere system.

  9. A meteorologist's view of the greenhouse effect

    International Nuclear Information System (INIS)

    Zillman, J.W.

    2001-01-01

    The greenhouse effect is a natural process in the atmosphere which keeps the earth's surface warm enough for human life There are theoretical and observational reasons for believing that increasing atmospheric concentrations of the trace gases responsible for this surface warmth are leading to enhanced warming and other changes of global and regional climate By modifying the meteorological models used for routine numerical weather prediction to incorporate the influences that are believed to be of most importance on decade to century and longer time scales, the climate research community are able to explore the possible impacts on global and regional climate of a range of possible future greenhouse gas emissions and concentrations. Despite many uncertainties, these provide the principal scientific basis for intergovernmental negotiation on the development of global strategies for averting or minimising adverse human impacts on climate and assisting national communities in planning to live with natural climate variability and possible future human-induced change

  10. The contribution of China’s emissions to global climate forcing

    Science.gov (United States)

    Li, Bengang; Gasser, Thomas; Ciais, Philippe; Piao, Shilong; Tao, Shu; Balkanski, Yves; Hauglustaine, Didier; Boisier, Juan-Pablo; Chen, Zhuo; Huang, Mengtian; Li, Laurent Zhaoxin; Li, Yue; Liu, Hongyan; Liu, Junfeng; Peng, Shushi; Shen, Zehao; Sun, Zhenzhong; Wang, Rong; Wang, Tao; Yin, Guodong; Yin, Yi; Zeng, Hui; Zeng, Zhenzhong; Zhou, Feng

    2016-03-01

    Knowledge of the contribution that individual countries have made to global radiative forcing is important to the implementation of the agreement on “common but differentiated responsibilities” reached by the United Nations Framework Convention on Climate Change. Over the past three decades, China has experienced rapid economic development, accompanied by increased emission of greenhouse gases, ozone precursors and aerosols, but the magnitude of the associated radiative forcing has remained unclear. Here we use a global coupled biogeochemistry-climate model and a chemistry and transport model to quantify China’s present-day contribution to global radiative forcing due to well-mixed greenhouse gases, short-lived atmospheric climate forcers and land-use-induced regional surface albedo changes. We find that China contributes 10% ± 4% of the current global radiative forcing. China’s relative contribution to the positive (warming) component of global radiative forcing, mainly induced by well-mixed greenhouse gases and black carbon aerosols, is 12% ± 2%. Its relative contribution to the negative (cooling) component is 15% ± 6%, dominated by the effect of sulfate and nitrate aerosols. China’s strongest contributions are 0.16 ± 0.02 watts per square metre for CO2 from fossil fuel burning, 0.13 ± 0.05 watts per square metre for CH4, -0.11 ± 0.05 watts per square metre for sulfate aerosols, and 0.09 ± 0.06 watts per square metre for black carbon aerosols. China’s eventual goal of improving air quality will result in changes in radiative forcing in the coming years: a reduction of sulfur dioxide emissions would drive a faster future warming, unless offset by larger reductions of radiative forcing from well-mixed greenhouse gases and black carbon.

  11. Coal and the greenhouse effect: strategies for the future

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, K M [Australian Coal Association, Sydney, NSW (Australia)

    1991-07-01

    A number of gases, including carbon dioxide, methane, water vapour, nitrous oxide, ozone and chlorofluorocarbons are transparent to incoming short-wave radiation, but are relatively opaque to outgoing longwave radiation. Variations in the concentration of these gases in the troposphere can alter the thermal balance of the earth's atmosphere. Outgoing terrestrial radiation which would otherwise escape to space, is trapped within the inner layer of the atmosphere, resulting in a potential warming and the greenhouse effect. It is estimated that at present greenhouse gases other than carbon dioxide, contribute about 50% to the greenhouse effect. However, in the future, the contribution made by gases other than CO{sub 2} will be become greater. Greenhouse gases arise from a wide range of sources and their escalating increase is largely related to an increase in the world's population, and the standard of living of many areas as well as changes in lifestyle. The effect of increasing man-made greenhouse gases in the troposphere is unknown, but it is proposed that it may increase temperature and may modify climate, agricultural response and land use. The facts and uncertainties relating to potential greenhouse warming are examined. Man-generated emissions are quantified and their source identified. Coal's contribution worldwide is examined in detail and is shown to be small, being about 10% of man-made greenhouse gases. Strategies for minimising emissions, having maximum potential for reduction, with minimum impact on man are suggested. 16 refs., 1 fig., 3 tabs.

  12. A basis for greenhouse gas trading in agriculture : Final report of the emission reduction trading protocol team

    International Nuclear Information System (INIS)

    2002-01-01

    A link has been established between increasing levels of greenhouse gases in the atmosphere and the rise in global temperatures. The burning of fossil fuels, land use changes, agricultural and industrial activities play a large part in the increase of greenhouse gases and result in in changes to temperature, precipitation and weather patterns. The two methods that can be used to reduce the buildup of greenhouse gases in the atmosphere are the reduction of the gases and the sequestration of carbon dioxide (carbon dioxide is absorbed) into terrestrial processes. Several policy options are being considered to effect this reduction in buildup, and one of those includes the implementation of a tradable system of emission permits. Such a scenario would involve the agricultural sector removing and reducing on-farm emissions of greenhouse gases, thereby earning it credits that could then be sold to those industries that face tougher greenhouse gases control costs. The study led to several findings: (1) trades in carbon dioxide in the Albertan agricultural sector and changes in agricultural practices could lead to reductions of up to 5 million tonnes per year to 2008, (2) the sector is in a good position to trade carbon removals and credits into a large final emitter cap and trade system, (3) some uncertainties in the policy area remain, (4) the early years of trading are not risk-free, and (5) the risks are being hedged through a number of mechanisms and tools that have already been identified. 18 refs., 3 tabs., 3 figs

  13. A mental picture of the greenhouse effect. A pedagogic explanation

    Science.gov (United States)

    Benestad, Rasmus E.

    2017-05-01

    The popular picture of the greenhouse effect emphasises the radiation transfer but fails to explain the observed climate change. An old conceptual model for the greenhouse effect is revisited and presented as a useful resource in climate change communication. It is validated against state-of-the-art data, and nontraditional diagnostics show a physically consistent picture. The earth's climate is constrained by well-known and elementary physical principles, such as energy balance, flow, and conservation. Greenhouse gases affect the atmospheric optical depth for infrared radiation, and increased opacity implies higher altitude from which earth's equivalent bulk heat loss takes place. Such an increase is seen in the reanalyses, and the outgoing long-wave radiation has become more diffuse over time, consistent with an increased influence of greenhouse gases on the vertical energy flow from the surface to the top of the atmosphere. The reanalyses further imply increases in the overturning in the troposphere, consistent with a constant and continuous vertical energy flow. The increased overturning can explain a slowdown in the global warming, and the association between these aspects can be interpreted as an entanglement between the greenhouse effect and the hydrological cycle, where reduced energy transfer associated with increased opacity is compensated by tropospheric overturning activity.

  14. Atmospheric greenhouse effect - simple model; Atmosfaerens drivhuseffekt - enkel modell

    Energy Technology Data Exchange (ETDEWEB)

    Kanestroem, Ingolf; Henriksen, Thormod

    2011-07-01

    The article shows a simple model for the atmospheric greenhouse effect based on consideration of both the sun and earth as 'black bodies', so that the physical laws that apply to them, may be used. Furthermore, explained why some gases are greenhouse gases, but other gases in the atmosphere has no greenhouse effect. But first, some important concepts and physical laws encountered in the article, are repeated. (AG)

  15. Carbon Dioxide Information Analysis Center and World Data Center for Atmospheric Trace Gases, Fiscal Year 2002 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Cushman, R.M.

    2003-08-28

    The Carbon Dioxide Information Analysis Center (CDIAC), which includes the World Data Center (WDC) for Atmospheric Trace Gases, is the primary global change data and information analysis center of the U.S. Department of Energy (DOE). More than just an archive of data sets and publications, CDIAC has, since its inception in 1982, enhanced the value of its holdings through intensive quality assurance, documentation, and integration. Whereas many traditional data centers are discipline-based (for example, meteorology or oceanography), CDIAC's scope includes potentially anything and everything that would be of value to users concerned with the greenhouse effect and global climate change, including atmospheric concentrations and atmospheric emissions of carbon dioxide (CO{sub 2}) and other radiatively active gases; the role of the terrestrial biosphere and the oceans in the biogeochemical cycles of greenhouse gases; long-term climate trends; the effects of elevated CO{sub 2} on vegetation; and the vulnerability of coastal areas to rising sea levels.

  16. SF6-alternative gases for application in gas-insulated switchgear

    Science.gov (United States)

    Li, Xingwen; Zhao, Hu; Murphy, Anthony B.

    2018-04-01

    The environmental problems caused by greenhouse gases have received unprecedented attention. Sulfur hexafluoride (SF6), which is the preferred gas for use in gas-insulated switchgear (circuit breakers, disconnect switches, etc. for high-voltage electrical circuits), has a very high global warming potential, and there is a large international effort to find alternative gases. Recently, this effort has made important progress, with promising alternative gases being identified and tested. An overview, in particular the current state of the art, of the study of SF6-alternative gases is presented in the paper. The review focuses on the application of the SF6-alternative gases in gas-insulated switchgear, with detailed analysis of calculations and measurements of their basic physical properties, dielectric strengths, and arc-quenching capabilities. Finally, a discussion of and perspectives on current research and future research directions are presented.

  17. Measurement of greenhouse gases in UAE by using Unmanned Aerial Vehicle (UAV)

    Science.gov (United States)

    Abou-Elnour, Ali; Odeh, Mohamed; Abdelrhman, Mohammed; Balkis, Ahmed; Amira, Abdelraouf

    2017-04-01

    In the present work, a reliable and low cost system has been designed and implemented to measure greenhouse gases (GHG) in United Arab Emirates (UAE) by using unmanned aerial vehicle (UAV). A set of accurate gas, temperature, pressure, humidity sensors are integrated together with a wireless communication system on a microcontroller based platform to continuously measure the required data. The system instantaneously sends the measured data to a center monitoring unit via the wireless communication system. In addition, the proposed system has the features that all measurements are recorded directly in a storage device to allow effective monitoring in regions with weak or no wireless coverage. The obtained data will be used in all further sophisticated calculations for environmental research and monitoring purposes.

  18. In-Situ Microbial Conversion of Sequestered Greenhouse Gases

    Energy Technology Data Exchange (ETDEWEB)

    Scott, A R; Mukhopadhyay, M; Balin, D F

    2012-09-06

    The objectives of the project are to use microbiological in situ bioconversion technology to convert sequestered or naturally-occurring greenhouse gases, including carbon dioxide and carbon monoxide, into methane and other useful organic compounds. The key factors affecting coal bioconversion identified in this research include (1) coal properties, (2) thermal maturation and coalification process, (3) microbial population dynamics, (4) hydrodynamics (5) reservoir conditions, and (6) the methodology of getting the nutrients into the coal seams. While nearly all cultures produced methane, we were unable to confirm sustained methane production from the enrichments. We believe that the methane generation may have been derived from readily metabolized organic matter in the coal samples and/or biosoluble organic material in the coal formation water. This raises the intriguing possibility that pretreatment of the coal in the subsurface to bioactivate the coal prior to the injection of microbes and nutrients might be possible. We determined that it would be more cost effective to inject nutrients into coal seams to stimulate indigenous microbes in the coal seams, than to grow microbes in fermentation vats and transport them to the well site. If the coal bioconversion process can be developed on a larger scale, then the cost to generate methane could be less than $1 per Mcf

  19. The enhanced greenhouse signal versus natural variations in observed climate time series: a statistical approach

    Energy Technology Data Exchange (ETDEWEB)

    Schoenwiese, C D [J.W. Goethe Univ., Frankfurt (Germany). Inst. for Meteorology and Geophysics

    1996-12-31

    It is a well-known fact that human activities lead to an atmospheric concentration increase of some IR-active trace gases (greenhouse gases GHG) and that this influence enhances the `greenhouse effect`. However, there are major quantitative and regional uncertainties in the related climate model projections and the observational data reflect the whole complex of both anthropogenic and natural forcing of the climate system. This contribution aims at the separation of the anthropogenic enhanced greenhouse signal in observed global surface air temperature data versus other forcing using statistical methods such as multiple (multiforced) regressions and neural networks. The competitive natural forcing considered are volcanic and solar activity, in addition the ENSO (El Nino/Southern Oscillation) mechanism. This analysis will be extended also to the NAO (North Atlantic Oscillation) and anthropogenic sulfate formation in the troposphere

  20. The enhanced greenhouse signal versus natural variations in observed climate time series: a statistical approach

    Energy Technology Data Exchange (ETDEWEB)

    Schoenwiese, C.D. [J.W. Goethe Univ., Frankfurt (Germany). Inst. for Meteorology and Geophysics

    1995-12-31

    It is a well-known fact that human activities lead to an atmospheric concentration increase of some IR-active trace gases (greenhouse gases GHG) and that this influence enhances the `greenhouse effect`. However, there are major quantitative and regional uncertainties in the related climate model projections and the observational data reflect the whole complex of both anthropogenic and natural forcing of the climate system. This contribution aims at the separation of the anthropogenic enhanced greenhouse signal in observed global surface air temperature data versus other forcing using statistical methods such as multiple (multiforced) regressions and neural networks. The competitive natural forcing considered are volcanic and solar activity, in addition the ENSO (El Nino/Southern Oscillation) mechanism. This analysis will be extended also to the NAO (North Atlantic Oscillation) and anthropogenic sulfate formation in the troposphere

  1. Carbon Dioxide Information Analysis Center and World Data Center for Atmospheric Trace Gases Fiscal Year 2000 Annual Report; ANNUAL

    International Nuclear Information System (INIS)

    Cushman, R.M.

    2001-01-01

    The Carbon Dioxide Information Analysis Center (CDIAC), which includes the World Data Center (WDC) for Atmospheric Trace Gases, is the primary global change data and information analysis center of the U.S. Department of Energy (DOE). More than just an archive of data sets and publications, CDIAC has, since its inception in 1982, enhanced the value of its holdings through intensive quality assurance, documentation, and integration. Whereas many traditional data centers are discipline-based (for example, meteorology or oceanography), CDIAC's scope includes potentially anything and everything that would be of value to users concerned with the greenhouse effect and global climate change, including concentrations of carbon dioxide (CO(sub 2)) and other radiatively active gases in the atmosphere; the role of the terrestrial biosphere and the oceans in the biogeochemical cycles of greenhouse gases; emissions of CO(sub 2) and other trace gases to the atmosphere; long-term climate trends; the effects of elevated CO(sub 2) on vegetation; and the vulnerability of coastal areas to rising sea levels

  2. European trends in greenhouse gases emissions from integrated solid waste management.

    Science.gov (United States)

    Calabrò, Paolo S; Gori, Manuela; Lubello, Claudio

    2015-01-01

    The European Union (EU) has 28 member states, each with very different characteristics (e.g. surface, population density, per capita gross domestic product, per capita municipal solid waste (MSW) production, MSW composition, MSW management options). In this paper several integrated waste management scenarios representative of the European situation have been generated and analysed in order to evaluate possible trends in the net emission of greenhouse gases and in the required landfill volume. The results demonstrate that an integrated system with a high level of separate collection, efficient energy recovery in waste-to-energy plants and very limited landfill disposal is the most effective according to the indices adopted. Moreover, it is evident that a fully integrated system can make MSW management a carbon sink with a potentiality of up to approximately 40 Mt CO2eq year(-1).

  3. EMISSION MEASUREMENTS OF GEOGENIC GREENHOUSE GASES IN THE AREA OF "PUSTY LAS" ABANDONED OILFIELD (POLISH OUTER CARPATHIANS

    Directory of Open Access Journals (Sweden)

    Piotr Guzy

    2017-07-01

    Full Text Available The emission of geogenic methane and carbon dioxide contributes to the world climate changes. The results of studies run worldwide demonstrate that the emission of geogenic gases strongly influences the increasing concentrations of greenhouse gases in the atmosphere, including methane and carbon dioxide. The Outer Carpathians reveal significant hydrocarbon potential and host numerous macro- and microseepages of hydrocarbons including the natural gas. Migration of hydrocarbons from deep accumulations towards the surface is controlled by diffusion and effusion. It appears that the Carpathians may play significant role as a supplier of greenhouse gases to the atmosphere.Before the World War II, oil macroseepages were the principal premises in petroleum exploration. In the Carpathians, hydrocarbons have been exploited since the XIX century. Unfortunately, most of discovered oil and gas deposits are recently only the historical objects. An example is the Sękowa-Ropica Górna-Siary oil deposit located in the marginal part of the Magura Nappe where oil has been extracted with dug wells until the mid XX century. One of such extraction sites is the "Pusty Las" oilfield. In that area, 10 methane and carbon dioxide emission measurement sites were located, among which 4 in dried dug wells and 6 in dig wells still filled with oil and/or water. Dynamics of methane and carbon dioxide concentration changes were measured with the modified static chambers method. Gas samples were collected immediately after the installation of the chamber and again, after 5 and 10 minutes. In the case of reclaimed or dry dug wells, static chamber was installed directly at the ground surface. In wells still filled with oil and/or water the chamber was equipped with an "apron" mounted on special sticks.The dynamics of concentrations changes varied from -0.871 to 119.924 ppm∙min-1 for methane and from -0.005 to 0.053 %obj∙min-1 for carbon dioxide. Average methane emission was 1

  4. Towards European organisation for integrated greenhouse gas observation system

    Science.gov (United States)

    Kaukolehto, Marjut; Vesala, Timo; Sorvari, Sanna; Juurola, Eija; Paris, Jean-Daniel

    2013-04-01

    Climate change is one the most challenging problems that humanity will have to cope with in the coming decades. The perturbed global biogeochemical cycles of the greenhouse gases (carbon dioxide, methane and nitrous oxide) are a major driving force of current and future climate change. Deeper understanding of the driving forces of climate change requires full quantification of the greenhouse gas emissions and sinks and their evolution. Regional greenhouse gas budgets, tipping-points, vulnerabilities and the controlling mechanisms can be assessed by long term, high precision observations in the atmosphere and at the ocean and land surface. ICOS RI is a distributed infrastructure for on-line, in-situ monitoring of greenhouse gases (GHG) necessary to understand their present-state and future sinks and sources. ICOS RI provides the long-term observations required to understand the present state and predict future behaviour of the global carbon cycle and greenhouse gas emissions. Linking research, education and innovation promotes technological development and demonstrations related to greenhouse gases. The first objective of ICOS RI is to provide effective access to coherent and precise data and to provide assessments of GHG inventories with high temporal and spatial resolution. The second objective is to provide profound information for research and understanding of regional budgets of greenhouse gas sources and sinks, their human and natural drivers, and the controlling mechanisms. ICOS is one of several ESFRI initiatives in the environmental science domain. There is significant potential for structural and synergetic interaction with several other ESFRI initiatives. ICOS RI is relevant for Joint Programming by providing the data access for the researchers and acting as a contact point for developing joint strategic research agendas among European member states. The preparatory phase ends in March 2013 and there will be an interim period before the legal entity will

  5. Global climate change

    International Nuclear Information System (INIS)

    Gugele, B.; Radunsky, K.; Spangl, W.

    2001-01-01

    In Austria the CO 2 emissions increased by 5.9 % from 1990 to 1999, the other greenhouse gases by 2.6 %. The Federal Ministry for Agriculture, Environment and Water Management, in cooperation with other ministries and the countries, has worked out an action plan for reduction of greenhouse gas emissions, to meet the targets of the Kyoto protocol. This study analyzes the greenhouse gas emissions in Austria, in the European Union and globally. The measured emission values throughout Austria and in the other European countries are given in tables, the environmental impact for Austria and globally is discussed, statistical data and time series of the emission sources are given and legal regulations and measures for an effective environmental emission control in Austria, the European Union and worldwide are discussed. In particular the impact of fossil-fuel power plants on the greenhouse gas emissions is analysed. (a.n.)

  6. Using global warming potential to compare methane and CO2 emissions

    International Nuclear Information System (INIS)

    Dufresne, J.L.

    2009-01-01

    Greenhouse gases affect the planetary heat budget. Any change of their concentration affects this budget and therefore the global mean surface temperature of the Earth. These gases have different radiative properties and different lifetimes in the atmosphere, which prevents any direct comparison of the consequences of their emissions on global warming. Almost twenty years ago, the Intergovernmental Panel on Climate Change (IPCC) proposed the global warming potential (GWP) as an index to compare the emissions of the various greenhouse gases. In a recent paper, it has been stated that the use of GWP leads to strongly underestimating the global warming due to constant methane emissions compared to that of constant CO 2 emissions. Here we show that it is not really the case. The GWP enables comparisons of global warming due to constant emissions for any prescribed period, 100 years being often used. But this comparison is not universal. For instance, the impact of methane is underestimated at the beginning of the chosen period while the impact of CO 2 is underestimated after this period

  7. Climate change - global warming

    International Nuclear Information System (INIS)

    Ciconkov, Risto

    2001-01-01

    An explanation about climate, weather, climate changes. What is a greenhouse effect, i.e. global warming and reasons which contribute to this effect. Greenhouse gases (GHG) and GWP (Global Warming Potential) as a factor for estimating their influence on the greenhouse effect. Indicators of the climate changes in the previous period by known international institutions, higher concentrations of global average temperature. Projecting of likely scenarios for the future climate changes and consequences of them on the environment and human activities: industry, energy, agriculture, water resources. The main points of the Kyoto Protocol and problems in its realization. The need of preparing a country strategy concerning the acts of the Kyoto Protocol, suggestions which could contribute in the preparation of the strategy. A special attention is pointed to the energy, its resources, the structure of energy consumption and the energy efficiency. (Author)

  8. How to globally reduce the greenhouse gas emissions from sewage systems?

    International Nuclear Information System (INIS)

    Batz, S. de; Bonardet, P.; Trouve, J.P.

    2007-01-01

    A reliable and exhaustive measurement of the global greenhouse gas emissions from a given sewage plant must be performed prior to the implementation of any abatement measure. The method presented in this paper takes into consideration both the direct emissions but also the indirect ones generated by the plant activity and identified using a life cycle-type approach. Three examples of projects or realizations are presented in this paper to illustrate the different means of abatement of greenhouse gas emissions from a sewage plant in a global way. The first example concerns a project of abatement of the electricity consumption of a plant for sludges and fats digestion and biogas valorization. A 85% global abatement of CO 2 emissions is obtained thanks to the substitution of the aerobic digestion process by an anaerobic one. The second example presents an optimization of the greenhouse gas emissions of the municipal sewage plant of Valenton (Paris region) thanks to a valorization of sludges as fertilizers and fuels and to the recovery of the process heat. The last example concerns the Seine-aval sewage plant which gathers several projects of improvement: setting up of a second biogas turbine, redesign of the heat loop, use of river transport for a significant abatement of greenhouse gas emissions. (J.S.)

  9. The role of clouds and oceans in global greenhouse warming. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hoffert, M.I.

    1996-10-01

    This research focuses on assessing connections between anthropogenic greenhouse gas emissions and global climatic change. it has been supported since the early 1990s in part by the DOE ``Quantitative Links`` Program (QLP). A three-year effort was originally proposed to the QLP to investigate effects f global cloudiness on global climate and its implications for cloud feedback; and to continue the development and application of climate/ocean models, with emphasis on coupled effects of greenhouse warming and feedbacks by clouds and oceans. It is well-known that cloud and ocean processes are major sources of uncertainty in the ability to predict climatic change from humankind`s greenhouse gas and aerosol emissions. And it has always been the objective to develop timely and useful analytical tools for addressing real world policy issues stemming from anthropogenic climate change.

  10. A primer for trading greenhouse gas reductions from landfills

    International Nuclear Information System (INIS)

    2000-06-01

    This introductory level primer on domestic greenhouse gas emissions trading addresses the challenge of dealing with landfill gas emissions of carbon dioxide (CO 2 ) and methane (CH 4 ). It describes the first major emissions trading projects in Canada, the Pilot Emission Reduction Trading (PERT) and the Greenhouse Gas Emission Reduction Trading (GERT) pilot projects which calculate and document the GHG emission reductions that are available from landfill sites. PERT initially focused on nitrogen oxides, volatile organic compounds, carbon monoxide, sulphur dioxide and carbon dioxide. PERT uses the Clean Air Emission Reduction Registry for its emissions trading. Canada completed negotiations of the Kyoto Protocol in December 1997 along with 160 other countries. Upon ratification, Canada will commit to reducing 6 greenhouse gases by 6 per cent below 1990 levels in the period 2008 to 2012. Canada has recognized that it must reduce domestic greenhouse gas emissions to slow global warming which leads to climate change. It has been shown that the capture and destruction of landfill gas can profoundly contribute to meeting the target. One tool that can be used to help meet the objective of reducing GHG emissions is domestic GHG emission trading, or carbon trading, as a result of landfill gas capture and flaring. Landfill gas is generally composed of equal parts of carbon dioxide and methane with some other trace emissions. Accounting for quantities of greenhouse gas emissions is done in equivalent tonnes of carbon dioxide where one tonne of methane reduction is equivalent to 21 tonnes of carbon dioxide in terms of global warming potential. Organics in landfills which lead to the generation of methane are considered to be coming from renewable biomass, therefore, the collection and combustion of landfill gas is also considered to reduce GHG emissions from landfills by 100 per cent on a global basis. Destroying landfill gases can also reduce volatile organic compounds, which

  11. Global Warming: Physics and Facts

    International Nuclear Information System (INIS)

    Levi, B.G.; Hafemeister, D.; Scribner, R.

    1992-01-01

    This report contains papers on: A tutorial on global atmospheric energetics and the greenhouse effect; global climate models: what and how; comparison of general circulation models; climate and the earth's radiation budget; temperature and sea level change; short-term climate variability and predictions; the great ocean conveyor; trace gases in the atmosphere: temporal and spatial trends; the geochemical carbon cycle and the uptake of fossil fuel CO 2 ; forestry and global warming; the physical and policy linkages; policy implications of greenhouse warming; options for lowering US carbon dioxide emissions; options for reducing carbon dioxide emissions; and science and diplomacy: a new partnership to protect the environment

  12. Measurements of greenhouse gases at Beromünster tall-tower station in Switzerland

    Science.gov (United States)

    Ayalneh Berhanu, Tesfaye; Satar, Ece; Schanda, Rudiger; Nyfeler, Peter; Moret, Hanspeter; Brunner, Dominik; Oney, Brian; Leuenberger, Markus

    2016-06-01

    In order to constrain the regional flux of greenhouse gases, an automated measurement system was built on an old radio tower at Beromünster, Switzerland. The measurement system has been running since November 2012 as part of the Swiss greenhouse gases monitoring network (CarboCount-CH), which is composed of four measurement sites across the country. The Beromünster tall tower has five sampling lines with inlets at 12.5, 44.6, 71.5, 131.6, and 212.5 m above ground level, and it is equipped with a Picarro cavity ring-down spectrometer (CRDS) analyzer (G-2401), which continuously measures CO, CO2, CH4, and H2O. Sensors for detection of wind speed and direction, air temperature, barometric pressure, and humidity have also been installed at each height level. We have observed a non-negligible temperature effect in the calibration measurements, which was found to be dependent on the type of cylinder (steel or aluminum) as well as trace gas species (strongest for CO). From a target gas of known mixing ratio that has been measured once a day, we have calculated a long-term reproducibility of 2.79 ppb, 0.05 ppm, and 0.29 ppb for CO, CO2, and CH4, respectively, over 19 months of measurements. The values obtained for CO2 and CH4 are compliant with the WMO recommendations, while the value calculated for CO is higher than the recommendation. Since the installation of an air-conditioning system recently at the measurement cabin, we have acquired better temperature stability of the measurement system, but no significant improvement was observed in the measurement precision inferred from the target gas measurements. Therefore, it seems that the observed higher variation in CO measurements is associated with the instrumental noise, compatible with the precision provided by the manufacturer.

  13. Global atmospheric changes.

    OpenAIRE

    Piver, W T

    1991-01-01

    Increasing concentrations of CO2 and other greenhouse gases in the atmosphere can be directly related to global warming. In terms of human health, because a major cause of increasing atmospheric concentrations of CO2 is the increased combustion of fossil fuels, global warming also may result in increases in air pollutants, acid deposition, and exposure to ultraviolet (UV) radiation. To understand better the impacts of global warming phenomena on human health, this review emphasizes the proces...

  14. Renewable energies for reduction of greenhouse gases in the Mexican electricity generation in 2025

    Energy Technology Data Exchange (ETDEWEB)

    Islas, J; Manzini, F; Martinez, M [Centre for Energy Research, UNAM, Temixco, Morelos (Mexico)

    2000-07-01

    This study presents three scenarios relating to the environmental futures of electricity generation in Mexico up to the year 2025. The first scenario emphasizes the use of oil products, particularly fuel oil, and represents the energy policy path that was in effect until 1990. The second scenario prioritizes the use of natural gas, reflecting the energy consumption pattern that arose in the mid-90's as a result of reforms in the energy sector. In the third scenario, the high participation of renewable sources of energy is considered feasible from a technical and economic point of view. The three scenarios are evaluated up to the year 2025 in terms of greenhouse gases (GHG) and acid rain precursor gases (ARPG). [Spanish] Este estudio presenta tres escenarios relacionados de los futuros ambientales de generacion de electricidad en Mexico hasta el ano 2025. El primer escenario enfatiza la utilizacion de productos del petroleo, particularmente el combustoleo, y representa el curso de la politica de energia vigente hasta 1990. El segundo escenario da prioridad al uso de gas natural, reflejando el patron de consumo de energia que surgio a mediados de los 90's como resultado de reformas en el sector energetico. En el tercer escenario, la alta participacion de las fuentes renovables de energia es considerada factible desde los puntos de vista tecnico y economico. Los tres escenarios son evaluados hasta el ano 2025 en terminos de los gases de efecto invernadero (GHG) y de gases precursores de lluvia acida (ARPG).

  15. Effect van inkuilmanagement op emissie van broeikasgassen op bedrijfsniveau = Effect of ensiling management on emission of greenhouse gases at farm level

    NARCIS (Netherlands)

    Schooten, van H.A.; Philipsen, A.P.

    2011-01-01

    This report described the losses during harvesting, storage and feed out period of grass silage. It was estimated that there was a considerable risk of extra losses due to aerobic deterioration and moderate conservation. Farmrelated computations showed that economics and emission of greenhouse gases

  16. Greenhouse gases reduction potential through consumer’s behavioral changes in terms of food-related product selection

    International Nuclear Information System (INIS)

    Yoshikawa, Naoki; Fujiwara, Natsumi; Nagata, Junko; Amano, Koji

    2016-01-01

    Highlights: • Greenhouse gases (GHG) reduction potential by shopping behavior change is analyzed. • Four scenarios related to food consumption is evaluated using life cycle assessment. • Total GHG reduction potential by four scenarios in Japan is 1367 kt-CO_2/year. • Potential reduces to 45% when considering feasible ratio of taking behavior change. • Contribution of seasonal production/consumption scenario is highest among scenarios. - Abstract: Sustainable consumption plays an important role in the mitigation of global warming and the conservation of energy. Promoting more environmentally responsible consumer behavior, especially through open communication between stakeholders, is one way to achieve low-carbon consumption. This study evaluates the potential for reducing greenhouse gas (GHG) emissions through behavioral transformation of consumers in terms of their daily shopping habits. In this context, the behavioral transformative actions pertain to certain foods and daily necessities, and are analyzed from a life cycle assessment perspective. We developed multiple product-selection scenarios to evaluate GHG emissions related to the daily purchase of commodities. Based on the life cycle assessment, we estimated the GHG emissions that result from the production and distribution of these commodities, pertaining to both the current product selection and to a possibly improved selection. The results of our study show that because of seasonal consumption patterns and energy conversion, there is a substantial potential to reduce GHG emissions resulting from out-of-season produce cultivation. The GHG reduction potential is not high for each individual commodity because diverse commodities are needed on a daily basis. However, various actions in combination could have substantial potential for reducing emissions.

  17. Using Interactive Technology to Support Students' Understanding of the Greenhouse Effect and Global Warming

    Science.gov (United States)

    Varma, Keisha; Linn, Marcia C.

    2012-01-01

    In this work, we examine middle school students' understanding of the greenhouse effect and global warming. We designed and refined a technology-enhanced curriculum module called "Global Warming: Virtual Earth". In the module activities, students conduct virtual experiments with a visualization of the greenhouse effect. They analyze data and draw…

  18. Energy consumption estimation for greenhouse gas separation processes by clathrate hydrate formation

    International Nuclear Information System (INIS)

    Tajima, Hideo; Yamasaki, Akihiro; Kiyono, Fumio

    2004-01-01

    The process energy consumption was estimated for gas separation processes by the formation of clathrate hydrates. The separation process is based on the equilibrium partition of the components between the gaseous phase and the hydrate phase. The separation and capturing processes of greenhouse gases were examined in this study. The target components were hydrofluorocarbon (HFC-134a) from air, sulfur hexafluoride (SF 6 ) from nitrogen, and CO 2 from flue gas. Since these greenhouse gases would form hydrates under much lower pressure and higher temperature conditions than the accompanying components, the effective capturing of the greenhouse gases could be achieved by using hydrate formation. A model separation process for each gaseous mixture was designed from the basis of thermodynamics, and the process energy consumption was estimated. The obtained results were then compared with those for conventional separation processes such as liquefaction separation processes. For the recovery of SF 6 , the hydrate process is preferable to liquefaction process in terms of energy consumption. On the other hand, the liquefaction process consumes less energy than the hydrate process for the recovery of HFC-134a. The capturing of CO 2 by the hydrate process from a flue gas will consume a considerable amount of energy; mainly due to the extremely high pressure conditions required for hydrate formation. The influences of the operation conditions on the heat of hydrate formation were elucidated by sensitivity analysis. The hydrate processes for separating these greenhouse gases were evaluated in terms of reduction of global warming potential (GWP)

  19. Regional greenhouse climate effects

    International Nuclear Information System (INIS)

    Hansen, J.; Rind, D.; Delgenio, A.; Lacis, A.; Lebedeff, S.; Prather, M.; Ruedy, R.; Karl, T.

    1990-01-01

    The authors discuss the impact of an increasing greenhouse effect on three aspects of regional climate: droughts, storms and temperature. A continuous of current growth rates of greenhouse gases causes an increase in the frequency and severity of droughts in their climate model simulations, with the greatest impacts in broad regions of the subtropics and middle latitudes. But the greenhouse effect enhances both ends of the hydrologic cycle in the model, that is, there is an increased frequency of extreme wet situations, as well as increased drought. Model results are shown to imply that increased greenhouse warming will lead to more intense thunderstorms, that is, deeper thunderstorms with greater rainfall. Emanual has shown that the model results also imply that the greenhouse warming leads to more destructive tropical cyclones. The authors present updated records of observed temperatures and show that the observations and model results, averaged over the globe and over the US, are generally consistent. The impacts of simulated climate changes on droughts, storms and temperature provide no evidence that there will be regional winners if greenhouse gases continue to increase rapidly

  20. Non-CO2 greenhouse gas emissions associated with food production: methane (CH4) and nitrous oxide (N2O)

    International Nuclear Information System (INIS)

    Carlsson-Kanyama, Annika

    2007-01-01

    It is well known that the agriculture and livestock sectors are large contributors of N 2 O and CH 4 emissions in countries with agricultural activities and that remedial measures are needed in these sectors in order to curb contributions to global warming. This study examines non- CO 2 greenhouse gas emissions associated with the production of food. Methane (CH 4 ) and nitrous oxide (N 2 O) are the most relevant greenhouse gases in this category, and they are emitted mainly in the agricultural sector. These greenhouse gases have a Global Warming Potential much higher than CO 2 itself (25- and 298-fold higher, respectively, in a 100-year perspective). Emission intensities and the corresponding uncertainties were calculated based on the latest procedures and data published by the Intergovernmental Panel on Climate Change and used to facilitate calculations comparing greenhouse gas emissions for food products and diets. When the proposed emission intensities were applied to agricultural production, the results showed products of animal origin and the cultivation of rice under water to have high emissions compared with products of vegetable origin cultivated on upland soils, such as wheat and beans. In animal production the main source of greenhouse gas emissions was methane from enteric fermentation, while emissions of nitrous oxides from fertilisers were the main sources of greenhouse gas emissions for cereal and legume cultivation. For rice cultivation, methane emissions from flooded rice fields contributed most. Other significant sources of greenhouse gas emissions during animal production were manure storage and management. We suggest that the proposed emission factors, together with the associated uncertainties, can be a tool for better understanding the potential to mitigate emissions of greenhouse gases through changes in the diet

  1. Incineration and co-combustion of waste: accounting of greenhouse gases and global warming contributions

    DEFF Research Database (Denmark)

    Astrup, Thomas; Møller, Jacob; Fruergaard, Thilde

    2009-01-01

    Important greenhouse gas (GHG) emissions related to waste incineration and co-combustion of waste were identified and considered relative to critical aspects such as: the contents of biogenic and fossil carbon, N2O emissions, fuel and material consumptions at the plants, energy recovery, and soli...

  2. High-accuracy continuous airborne measurements of greenhouse gases (CO2 and CH4) using the cavity ring-down spectroscopy (CRDS) technique

    NARCIS (Netherlands)

    Chen, H.; Winderlich, J.; Gerbig, C.; Hoefer, A.; Rella, C. W.; Crosson, E. R.; Van Pelt, A. D.; Steinbach, J.; Kolle, O.; Beck, V.; Daube, B. C.; Gottlieb, E. W.; Chow, V. Y.; Santoni, G. W.; Wofsy, S. C.

    2010-01-01

    High-accuracy continuous measurements of greenhouse gases (CO2 and CH4) during the BARCA (Balancao Atmosferico Regional de Carbono na Amazonia) phase B campaign in Brazil in May 2009 were accomplished using a newly available analyzer based on the cavity ring-down spectroscopy (CRDS) technique. This

  3. Climate Golden Age or Greenhouse Gas Dark Age Legacy?

    Science.gov (United States)

    Carter, P.

    2016-12-01

    Relying on the IPCC Assessments, this paper assesses legacy from total committed global warming over centuries, correlated with comprehensive projected impacts. Socio-economic inertia, climate system inertia, atmospheric greenhouse gas (GHG) concentrations, amplifying feedback emissions, and unmasking of cooling aerosols are determinants. Stabilization of global temperature (and ocean acidification for CO2) requires emissions of "long lived greenhouse gases" to be "about zero," including feedbacks. "The feedback … is positive" this century; many large feedback sources tend to be self- and inter-reinforcing. Only timely total conversion of all fossil fuel power to clean, virtually zero-carbon renewable power can achieve virtual zero carbon emissions. This results in multiple, increasing benefits for the entire world population of today's and all future generations, as laid out here. Conversions of methane- and nitrous oxide-emitting sources have large benefits. Without timely conversion to virtual zero emissions, the global climate and ocean disruptions are predicted to become progressively more severe and practically irreversible. "Continued emission of greenhouse gases will increase the likelihood of severe, pervasive and irreversible impacts for people and ecosystems." Crop yields in all main food-producing regions are projected to decline progressively with rising temperature (as proxy to multiple adverse effects) (AR5). Ocean heating, acidification, and de-oxygenation are projected to increase under all scenarios, as is species extinction. The legacy for humanity depends on reducing long-lived global emissions fast enough to virtual zero. Today's surface warming with unprecedented and accelerating atmospheric GHG concentrations requires an immediate response. The only IPCC scenario to possibly meet this and not exceed 2ºC by and after 2100 is the best-case RCP2.6, which requires CO2 eq. emissions to peak right away and decline at the latest by 2020.

  4. Radiative forcing due to greenhouse gas emission and sink histories in Finland and its future control potential

    Energy Technology Data Exchange (ETDEWEB)

    Savolainen, I; Sinisalo, J; Pipatti, R [VTT Energy, Espoo (Finland)

    1996-12-31

    The effective atmospheric lifetimes of the greenhouse gases like carbon dioxide (CO{sub 2}),nitrous oxide (N{sub 2}O) and many of the CFCs are of the order of 100 years. Human activities, as an example GDP, very often change at rates of a few per cents per year,corresponding time constants of some tens of years. Also the forest ecosystems have time constants of this order. Even the human population of the globe is increasing by about two percent per year. Because so many natural and human-linked processes, which are relevant to global warming, have slow change rates of about same order, a time-dependent consideration of the greenhouse warming and its control can give useful information for the understanding of the problem. The objective of the work is to study the anthropogenic greenhouse gas emissions and sinks in Finland and their greenhouse impact as a function of time. The greenhouse impact is expressed in terms of radiative forcing which describes the perturbation in the Earth`s radiation budget. Radiative forcing allows a comparison of the impact of various greenhouse gases and their possible control options as a function of time. The idea behind the calculations is that Finland should in some way steer its share of the global radiative forcing and greenhouse effect. This presentation describes the calculation model REFUGE and the projects in which it has been used

  5. Radiative forcing due to greenhouse gas emission and sink histories in Finland and its future control potential

    Energy Technology Data Exchange (ETDEWEB)

    Savolainen, I.; Sinisalo, J.; Pipatti, R. [VTT Energy, Espoo (Finland)

    1995-12-31

    The effective atmospheric lifetimes of the greenhouse gases like carbon dioxide (CO{sub 2}),nitrous oxide (N{sub 2}O) and many of the CFCs are of the order of 100 years. Human activities, as an example GDP, very often change at rates of a few per cents per year,corresponding time constants of some tens of years. Also the forest ecosystems have time constants of this order. Even the human population of the globe is increasing by about two percent per year. Because so many natural and human-linked processes, which are relevant to global warming, have slow change rates of about same order, a time-dependent consideration of the greenhouse warming and its control can give useful information for the understanding of the problem. The objective of the work is to study the anthropogenic greenhouse gas emissions and sinks in Finland and their greenhouse impact as a function of time. The greenhouse impact is expressed in terms of radiative forcing which describes the perturbation in the Earth`s radiation budget. Radiative forcing allows a comparison of the impact of various greenhouse gases and their possible control options as a function of time. The idea behind the calculations is that Finland should in some way steer its share of the global radiative forcing and greenhouse effect. This presentation describes the calculation model REFUGE and the projects in which it has been used

  6. How well can global chemistry models calculate the reactivity of short-lived greenhouse gases in the remote troposphere, knowing the chemical composition

    Directory of Open Access Journals (Sweden)

    M. J. Prather

    2018-05-01

    Full Text Available We develop a new protocol for merging in situ measurements with 3-D model simulations of atmospheric chemistry with the goal of integrating these data to identify the most reactive air parcels in terms of tropospheric production and loss of the greenhouse gases ozone and methane. Presupposing that we can accurately measure atmospheric composition, we examine whether models constrained by such measurements agree on the chemical budgets for ozone and methane. In applying our technique to a synthetic data stream of 14 880 parcels along 180° W, we are able to isolate the performance of the photochemical modules operating within their global chemistry-climate and chemistry-transport models, removing the effects of modules controlling tracer transport, emissions, and scavenging. Differences in reactivity across models are driven only by the chemical mechanism and the diurnal cycle of photolysis rates, which are driven in turn by temperature, water vapor, solar zenith angle, clouds, and possibly aerosols and overhead ozone, which are calculated in each model. We evaluate six global models and identify their differences and similarities in simulating the chemistry through a range of innovative diagnostics. All models agree that the more highly reactive parcels dominate the chemistry (e.g., the hottest 10 % of parcels control 25–30 % of the total reactivities, but do not fully agree on which parcels comprise the top 10 %. Distinct differences in specific features occur, including the spatial regions of maximum ozone production and methane loss, as well as in the relationship between photolysis and these reactivities. Unique, possibly aberrant, features are identified for each model, providing a benchmark for photochemical module development. Among the six models tested here, three are almost indistinguishable based on the inherent variability caused by clouds, and thus we identify four, effectively distinct, chemical models. Based on this

  7. The winning cards of small-scale hydroelectric power in the prevention of greenhouse effect

    International Nuclear Information System (INIS)

    Chabot, B.

    1991-01-01

    Among global environment problems, the risk of global warming is one of the most important. This risk and the associated climatic or socio-economic disorders are in relationships with the growth of greenhouse gases content in the atmosphere, connected with massive fossil fuels uses. This paper presents the advantages of small-scale hydroelectric power, often ignored, which can be a substitution energy source. 14 refs., 4 figs

  8. GLOBAL CLIMATE CHANGE--THE TECHNOLOGY CHALLENGE

    Science.gov (United States)

    Anthropogenic emissions of greenhouse gases, such as carbon dioxide, have led to increasing atmospheric concentrations which are at least partly responsible for the roughly 0.7% degree C global warming earth has experienced since the industrial revolution. With industrial activit...

  9. Human dimensions of global change: Toward a research agenda

    International Nuclear Information System (INIS)

    Burton, I.

    1991-01-01

    The Earth's environment is being transformed by human activity. Human activity, in turn, is being affected by these transformations. This interaction is being studied under the aegis of global change in the geosphere-biosphere. The purpose here is to explore the basis for and the substance of a proposed research program focused on the human dimensions of global change. Global warming due to the greenhouse effect, CO2 reduction, environment impacts, land use management, and the removal of greenhouse gases from the atmosphere are among the topics covered

  10. Contribution of the renewable energies to the decrease of the greenhouse gases emission for 2010; Contribution des EnR a la reduction des emissions de gaz a effet de serre a l'horizon 2010

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2003-03-01

    To illustrate the renewable energies contribution to the decrease of the greenhouse gases emission in 2010 (19 Mt of CO{sub 2} per year, of greenhouse gases emission avoided), this document presents the different renewable energies sources and the international context of their implementation. Today data and estimations for 2010 are provided. (A.L.B.)

  11. Adaptation to Impacts of Greenhouse Gases on the Ocean (Invited)

    Science.gov (United States)

    Caldeira, K.

    2010-12-01

    Greenhouse gases are producing changes in ocean temperature and circulation, and these changes are already adversely affecting marine biota. Furthermore, carbon dioxide is absorbed by the oceans from the atmosphere, and this too is already adversely affecting some marine ecosystems. And, of course, sea-level rise affects both what is above and below the waterline. Clearly, the most effective approach to limit the negative impacts of climate change and acidification on the marine environment is to greatly diminish the rate of greenhouse gas emissions. However, there are other measures that can be taken to limit some of the negative effects of these stresses in the marine environment. Marine ecosystems are subject to multiple stresses, including overfishing, pollution, and loss of coastal wetlands that often serve as nurseries for the open ocean. The adaptive capacity of marine environments can be improved by limiting these other stresses. If current carbon dioxide emission trends continue, for some cases (e.g., coral reefs), it is possible that no amount of reduction in other stresses can offset the increase in stresses posed by warming and acidification. For other cases (e.g., blue-water top-predator fisheries), better fisheries management might yield improved population health despite continued warming and acidification. In addition to reducing stresses so as to improve the adaptive capacity of marine ecosystems, there is also the issue of adaptation in human communities that depend on this changing marine environment. For example, communities that depend on services provided by coral reefs may need to locate alternative foundations for their economies. The fishery industry will need to adapt to changes in fish abundance, timing and location. Most of the things we would like to do to increase the adaptive capacity of marine ecosystems (e.g., reduce fishing pressure, reduce coastal pollution, preserve coastal wetlands) are things that would make sense to do even in

  12. Global warming: Economic policy responses

    International Nuclear Information System (INIS)

    Dornbusch, R.; Poterba, J.M.

    1991-01-01

    This volume contains the proceedings of a conference that brought together economic experts from Europe, the US, Latin America, and Japan to evaluate key issues in the policy debate in global warming. The following issues are at the center of debates on alternative policies to address global warming: scientific evidence on the magnitude of global warming and the extent to which it is due to human activities; availability of economic tools to control the anthropogenic emissions of greenhouse gases, and how vigorously should they be applied; and political economy considerations which influence the design of an international program for controlling greenhouse gases. Many perspectives are offered on the approaches to remedying environmental problems that are currently being pursued in Europe and the Pacific Rim. Deforestation in the Amazon is discussed, as well as ways to slow it. Public finance assessments are presented of both the domestic and international policy issues raised by plans to levy a tax on the carbon emissions from various fossil fuels. Nine chapters have been processed separately for inclusion in the appropriate data bases

  13. Greenhouse gas mitigation options for Washington State

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, N.

    1996-04-01

    President Clinton, in 1993, established a goal for the United States to return emissions of greenhouse gases to 1990 levels by the year 2000. One effort established to help meet this goal was a three part Environmental Protection Agency state grant program. Washington State completed part one of this program with the release of the 1990 greenhouse gas emissions inventory and 2010 projected inventory. This document completes part two by detailing alternative greenhouse gas mitigation options. In part three of the program EPA, working in partnership with the States, may help fund innovative greenhouse gas reduction strategies. The greenhouse gas control options analyzed in this report have a wide range of greenhouse gas reductions, costs, and implementation requirements. In order to select and implement a prudent mix of control strategies, policy makers need to have some notion of the potential change in climate, the consequences of that change and the uncertainties contained therein. By understanding the risks of climate change, policy makers can better balance the use of scarce public resources for concerns that are immediate and present against those that affect future generations. Therefore, prior to analyzing alternative greenhouse gas control measures, this report briefly describes the phenomenon and uncertainties of global climate change, and then projects the likely consequences for Washington state.

  14. EFFECTS OF GLOBAL WARMING

    OpenAIRE

    Dr. Basanti Jain

    2017-01-01

    The abnormal increase in the concentration of the greenhouse gases is resulting in higher temperatures. We call this effect is global warming. The average temperature around the world has increased about 1'c over 140 years, 75% of this has risen just over the past 30 years. The solar radiation, as it reaches the earth, produces "greenhouse effect" in the atmosphere. The thick atmospheric layers over the earth behaves as a glass surface, as it permits short wave radiations from coming in, but ...

  15. Position in the World-System and National Emissions of Greenhouse Gases

    Directory of Open Access Journals (Sweden)

    Thomas J. Burns

    2015-08-01

    Full Text Available Despite the apparent importance of these dynamics, there is relatively little social science theorization and cross-national research on such global environmental issues. There is especially a paucity of cross-national, quantitative research in sociology that focuses on the social antecedents to environmental outcomes (for exceptions, see Burns et al. 1994, 1995; Kick et al. 1996; Grimes and Roberts 1995. We find this condition surprising given the substantial initial work of environmental sociologists (Dunlap and Catton 1978, 1979; Buttel 1987 and the key role social scientists might in principle play in addressing such worldwide problems (Laska 1993. As a consequence, we propose and assess a perspective on the global and national social causes of one environmental dynamic, the greenhouse effect.

  16. Pilot Institute on Global Change on Trace Gases and the Biosphere, 1988

    Science.gov (United States)

    Eddy, J. A.; Moore, B.

    1998-01-01

    Table of Contents: Summary; Background; General Framework for a Series of Institutes on Global Change; The 1988 Pilot Institute on Global Changes: Trace Gases and the Biosphere; Budget; List of Acronyms; and Attachments.

  17. Reversal of Long-Term Trends in Ethane Identified from the Global Atmosphere Watch Reactive Gases Measurement Network

    OpenAIRE

    Helmig, Detlev; Buchmann, Brigitte; Carpenter, Lucy; Claude, Anja; Emmons, Louisa; Flocke, Frank; Franco, Bruno; Galbally, Ian; Hannigan, James; Hueber, Jacques; Koide, Hiroshi; Lewis, Alastair; Masarie, Ken; Mahieu, Emmanuel; Montzka, Stephen

    2016-01-01

    Reactive gases play an important role in climate and air pollution issues. They control the self-cleansing capability of the troposphere, contribute to air pollution and acid deposition, regulate the lifetimes and provide tracers for deciphering sources and sinks for greenhouse gases. Within GAW, the focus is placed on long-term, high-quality observations of ozone (O3), carbon monoxide (CO), volatile organic compounds (VOC), nitrogen oxides (NOx), and sulfur dioxide (SO2). More than 100 stati...

  18. Global Responses to Potential Climate Change: A Simulation.

    Science.gov (United States)

    Williams, Mary Louise; Mowry, George

    This interdisciplinary five-day unit provides students with an understanding of the issues in the debate on global climate change. Introductory lessons enhance understanding of the "greenhouse gases" and their sources with possible global effects of climate change. Students then roleplay negotiators from 10 nations in a simulation of the…

  19. Greenhouse gas emissions from food and garden waste composting

    OpenAIRE

    Ermolaev, Evgheni

    2015-01-01

    Composting is a robust waste treatment technology. Use of finished compost enables plant nutrient recycling, carbon sequestration, soil structure improvement and mineral fertiliser replacement. However, composting also emits greenhouse gases (GHG) such as methane (CH₄) and nitrous oxide (N₂O) with high global warming potential (GWP). This thesis analysed emissions of CH₄ and N₂O during composting as influenced by management and process conditions and examined how these emissions could be ...

  20. Greenhouse effect of NO{sub x}

    Energy Technology Data Exchange (ETDEWEB)

    Lammel, G; Grassl, H [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany)

    1995-07-01

    Through various processes the nitrogen oxides (NO{sub x}) interact with trace gases in the troposphere and stratosphere which do absorb in the spectral range relevant to the greenhouse effect (infrared wavelengths). The net effect is an enhancement of the greenhouse effect. The catalytic role of NO{sub x} in the production of tropospheric ozone provides the most prominent contribution. The global waming potential is estimated as GWP (NO{sub x}) = 30-33 and 7-10 for the respective time horizons of 20 and 100 years, and is thereby comparable to that of methane. NO{sub x} emissions in rural areas of anthropogenically influenced regions, or those in the vicinity of the tropopause caused by air traffic, cause the greenhouse effectivity to be substantially more intense. We estimate an additional 5-23% for Germany`s contribution to the anthropogenic greenhouse effect as a result of the indirect greenhouse effects stemming from NO{sub x}. Furthermore, a small and still inaccurately defined amount of the deposited NO{sub x} which has primarily been converted into nitrates is again released from the soil into the atmosphere in the form of the long-lived greenhouse gas nitrous oxide (N{sub i}O). Thus, anthropogenically induced NO{sub x} emissions contribute to enhanced greenhouse effect and to stratospheric ozone depletion in the time scale of more than a century. (orig.)

  1. Greenhouse effect and the fuel fossil burning in Brazil

    International Nuclear Information System (INIS)

    Rosa, L.P.; Cecchi, J.C.

    1994-01-01

    In Brazil, the global energy consumption per inhabitant is low and the fraction of renewable energy is high, which represents an advantage in terms of gas released. On the other hand the burning in the Amazon Region releases more greenhouse gases than fossil fuel combustion. This article, considering trends in the energy consumption by different economic sectors, discusses the greenhouse effect and its repercussion in energy planning. As known the energy generation process is in great part responsible for the emission of CO 2 , the main anthropogenic gas which causes the greenhouse effect. A comparison of the brazilian case with other studies from developed countries was made to show the advantages and disadvantages of the adopted energetic solution. Carbon emissions were calculated in different scenarios leading to same interesting conclusions. (B.C.A.)

  2. The marginal costs of greenhouse gas emissions

    International Nuclear Information System (INIS)

    Tol, R.S.J.

    1999-01-01

    Estimates of the marginal costs of greenhouse gas emissions are on important input to the decision how much society would want to spend on greenhouse gas emission reduction. Marginal cost estimates in the literature range between $5 and $25 per ton of carbon. Using similar assumptions, the FUND model finds marginal costs of $9--23/tC, depending on the discount rate. If the aggregation of impacts over countries accounts for inequalities in income distribution or for risk aversion, marginal costs would rise by about a factor of 3. Marginal costs per region are an order of magnitude smaller than global marginal costs. The ratios between the marginal costs of CO 2 and those of CH 4 and N 2 O are roughly equal to the global warming potentials of these gases. The uncertainty about the marginal costs is large and right-skewed. The expected value of the marginal costs lies about 35% above the best guess, the 95-percentile about 250%

  3. Evaluation of organical fertilizers in relation to minimalization of air polution by greenhouse gases and amonia

    Directory of Open Access Journals (Sweden)

    Patrik Burg

    2006-01-01

    Full Text Available Agricultural production presents one of the biggest producers of greenhouse gases. Between the most significant belongs carbon dioxide (CO2, methane (CH4, nitrous oxide (N2O, ozon (O3 and hydrogen sulphide (H2S. The work deals with classification of quantity by liberate emissions in relation to different variants of fertilization by cultivation of horticultural crops (head cabbage. For the metering was exploited gas analyzer INNOVA 1312. The results demonstrate significant difference between experimental variants by quantity of liberate emission, but also in the height of production.

  4. Myths and realities of global climate change

    Energy Technology Data Exchange (ETDEWEB)

    Bruce, J.P.

    1991-01-01

    Greenhouse gases in the environment are increasing, resulting in global warming. This paper discusses three misconceptions about global warming. The three topics are the level of consensus among world scientists about global warming, how 'costly' remedies for global warming will be, and will growth in developing countries offset any changes made in developed countries. Possibilities for Canadian leadership on this critical issue are discussed. 1 fig.

  5. National action strategy on global warming

    International Nuclear Information System (INIS)

    1990-11-01

    A document prepared by a committee of Canadian environmental ministries proposes a strategic framework for a national action plan concerning global warming. The strategy would be carried out jointly by governments and all other sectors of the economy, taking into account the present state of scientific knowledge on global warming. Within this framework, the governments in cooperation with interested parties would take certain measures in their respective areas of competence. The main recommendations of the document include the following. The action strategy should comprise 3 elements: limiting emissions of greenhouse gases; forecasting climatic changes which Canada could undergo due to global warming and preparing for such changes; and improving scientific knowledge and the capacity to predict climatic changes. Limitations on this strategy should take into account such matters as the interaction of greenhouse gases with other pollutants, the importance of the international context, the need to adapt to new discoveries, and the importance of regional differences. Implementation of the strategy should incorporate widespread consultation of all affected sectors, sustained work on establishing international conventions and protocols on reducing greenhouse gas emissions, objectives and schedules for such reductions, and stepwise actions to control emissions in order to enable an adequate evaluation of the consequences and effectiveness of such measures. 10 figs., 2 tabs

  6. Emissions of Non-CO2 Greenhouse Gases From the Production and Use of Transportation Fuels and Electricity

    OpenAIRE

    Delucchi, Mark

    1997-01-01

    The use of energy accounts for a major fraction of all anthropogenic emissions of greenhouse gases (IPCC, 1995) , and in most industrialized countries the use of transportation fuels and electricity accounts for a major fraction of all energy-related emissions. In the transportation sector alone, emissions of carbon dioxide (CO2) from the production and use of motor-vehicle fuels account for as much as 30% of CO2 emissions from the use of all fossil fuels (DeLuchi, 1991). The production and...

  7. Inventory of Greenhouse Gases Emissions from Gasoline and Diesel Consumption in Nigeria

    Directory of Open Access Journals (Sweden)

    S. O. Giwa

    2017-06-01

    Full Text Available Emissions from fossil fuel combustion are of global concern due to their negative effects on public health and environment. This paper is an inventory of the greenhouse gases (GHGs released into the environment through consumption of fuels (gasoline and diesel in Nigeria from 1980 to 2014. The fuel consumption data for the period in view were sourced from bulletins released by Nigeria National Petroleum Corporation, (NNPC and were utilized for GHGs estimation based on default emission factors (69300 kg/TJ (CO2; gasoline, 74100 kg/TJ (CO2; diesel, 18 kg/TJ (CH4; gasoline, 3.85 kg/TJ (CH4; diesel, 1.9 kg/TJ (N2O; gasoline and 2.25 kg/TJ (N2O; diesel. In addition, the uncertainty and sensitivity analyses associated with the inventory were carried out. Total amount of GHGs emitted into the environment for the period under consideration was 7.30 x 108 tCO2 e (5.20 x 108 tCO2 e and 2.10 x 108 tCO2 e of gasoline and diesel, respectively. It is worth noting that gasoline consumption accounted for 71.23% of the total amount of GHGs with CO2 making up 98.72 % (CH4 = 1.39 % and N2O = 0.61 % of the emissions. For this study, uncertainty of estimate was between -80.93 % and 78.36 % while volume of diesel is more sensitive than the volume of gasoline of the input parameters. National policy and enforcement on low or neutral emission fuels utilization are amongst the recommended actions toward reducing GHG emissions in the country.

  8. The fight against the greenhouse effect. Equity and efficiency; La lutte contre l'effet de serre. Equite et efficacite

    Energy Technology Data Exchange (ETDEWEB)

    Vallee, A. [Paris-12 Univ., 94 - Creteil (France)

    2003-07-01

    The author discusses the definition of an equitable division rule of the global effort of greenhouse gases emissions decrease, the research of the economic efficiency, the flexibility mechanisms and the emissions trading. (A.L.B.)

  9. Air Pollution Policy in Europe. Quantifying the Interaction with Greenhouse Gases and Climate Change Policies

    Energy Technology Data Exchange (ETDEWEB)

    Bollen, J. [CPB Netherlands Bureau for Economic Policy Analysis, Den Haag (Netherlands); Brink, C. [Netherlands Environmental Assessment Agency PBL, Den Haag (Netherlands)

    2012-10-15

    In this study the Computable General Equilibrium Model called WorldScan is used to analyse interactions between European air pollution policies and policies aimed at addressing climate change. WorldScan incorporates the emissions of both greenhouse gases (CO2, N2O and CH4) and air pollutants (SO2, NOx, NH3 and PM2.5). WorldScan has been extended with equations that enable the simulation of end-of-pipe measures that remove pollutants without affecting the emission-producing activity itself. Air pollution policy will depend on end-of-pipe controls for not more than 50%, thus also at least 50% of the required emission reduction will come from changes in the use of energy through efficiency improvements, fuel switching and other structural changes in the economy. Greenhouse gas emissions thereby decrease which renders climate change policies less costly. Our results show that carbon prices will fall, but not more than 33%, although they could drop to zero when the EU agrees on a more stringent air pollution policy.

  10. Modeling the Acceleration of Global Surface Temperture

    Science.gov (United States)

    Jones, B.

    2017-12-01

    A mathematical projection focusing on the changing rate of acceleration of Global Surface Temperatures. Using historical trajectory and informed expert near-term prediction, it is possible to extend this further forward drawing a reference arc of acceleration. Presented here is an example of this technique based on data found in the Summary of Findings of A New Estimate of the Average Earth Surface Land Temperature Spanning 1753 to 2011 and that same team's stated prediction to 2050. With this, we can project a curve showing future acceleration: Decade (midpoint) Change in Global Land Temp Degrees C Known Slope Projected Trend 1755 0.000 1955 0.600 0.0030 2005 1.500 0.0051 2045 3.000 0.0375 2095 5.485 0.0497 2145 8.895 0.0682 2195 13.488 0.0919 Observations: Slopes are getting steeper and doing so faster in an "acceleration of the acceleration" or an "arc of acceleration". This is consistent with the non-linear accelerating feedback loops of global warming. Such projected temperatures threaten human civilization and human life. This `thumbnail' projection is consistent with the other long term predictions based on anthropogenic greenhouse gases. This projection is low when compared to those whose forecasts include greenhouse gases released from thawing permafrost and clathrate hydrates. A reference line: This curve should be considered a point of reference. In the near term and absent significant drawdown of greenhouse gases, my "bet" for this AGU session is that future temperatures will generally be above this reference curve. For example, the decade ending 2020 - more than 1.9C and the decade ending 2030 - more than 2.3C - again measured from the 1750 start point. *Caveat: The long term curve and prediction assumes that mankind does not move quickly away from high cost fossil fuels and does not invent, mobilize and take actions drawing down greenhouse gases. Those seeking a comprehensive action plan are directed to drawdown.org

  11. Reduced emissions of greenhouse gases 2050: Technological wedges - Input to the Commission on Low Emissions; Reduserte klimagassutslipp 2050: Teknologiske kiler - Innspill til Lavutslippsutvalget

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, Eva; Espegren, Kari Aamodt; Finden, Per; Hageman, Rolf; Stenersen, Dag

    2006-09-15

    The Commission on Low Emissions was established in March 2005 and has been charged with the task of describing how Norway can achieve a 50-80 percent reduction in emissions of greenhouse gases by 2050. The commission describes the desired total reduction in emissions to be a set of actions or 'wedges', meaning that the reduction in emissions are linked to an array of technological and behavioural changes. The technological wedges are described here, while the behavioural wedges are treated in a different report. The potentials described are based on the Low Emission's reference line. Possible changes in the reference line will result in changed potentials. The technological wedges studied comprise to a great extent a potential of 50-80 percent reduction in greenhouse gases by 2050. This depends on considerable effort from research and development, and a determination to change external conditions.

  12. Biomass fuel burning and its implications: deforestation and greenhouse gases emissions in Pakistan.

    Science.gov (United States)

    Tahir, S N A; Rafique, M; Alaamer, A S

    2010-07-01

    Pakistan is facing problem of deforestation. Pakistan lost 14.7% of its forest habitat between 1990 and 2005 interval. This paper assesses the present forest wood consumption rate by 6000 brick kilns established in the country and its implications in terms of deforestation and emission of greenhouse gases. Information regarding consumption of forest wood by the brick kilns was collected during a manual survey of 180 brick kiln units conducted in eighteen provincial divisions of country. Considering annual emission contributions of three primary GHGs i.e., CO(2), CH(4) and N(2)O, due to burning of forest wood in brick kiln units in Pakistan and using IPCC recommended GWP indices, the combined CO(2)-equivalent has been estimated to be 533019 t y(-1). Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  13. Stratospheric measurements of ozone-depleting substances and greenhouse gases using AirCores

    Science.gov (United States)

    Laube, Johannes; Leedham Elvidge, Emma; Kaiser, Jan; Sturges, Bill; Heikkinen, Pauli; Laurila, Tuomas; Hatakka, Juha; Kivi, Rigel; Chen, Huilin; Fraser, Paul; van der Veen, Carina; Röckmann, Thomas

    2017-04-01

    Retrieving air samples from the stratosphere has previously required aircraft or large balloons, both of which are expensive to operate. The novel "AirCore" technique (Karion et al., 2010) enables stratospheric sampling using weather balloons, which is much more cost effective. AirCores are long (up to 200 m) stainless steel tubes which are placed as a payload on a small balloon, can ascend to over 30 km and fill upon descent, collecting a vertical profile of the atmosphere. Retrieved volumes are much smaller though, which presents a challenge for trace gas analysis. To date, only the more abundant trace gases such as carnon dioxide (CO2) and methane (CH4) have been quantified in AirCores. Halogenated trace gases are also important greenhouse gases and many also deplete stratospheric ozone. Their concentrations are however much lower i.e. typically in the part per trillion (ppt) molar range. We here present the first stratospheric measurements of halocarbons in AirCores obtained using UEA's highly sensitive (detection limits of 0.01-0.1 ppt in 10 ml of air) gas chromatography mass spectrometry system. The analysed air originates from a Stratospheric Air Sub-sampler (Mrozek et al., 2016) which collects AirCore segments after the non-destructive CO2 and CH4 analysis. Successfully measured species include CFC-11, CFC-12, CFC-113, CFC-115, H-1211, H-1301, HCFC-22, HCFC-141b, HCFC-142b, HCFC-133a, and sulphur hexafluoride (SF6). We compare the observed mixing ratios and precisions with data obtained from samples collected during various high-altitude aircraft campaigns between 2009 and 2016 as well as with southern hemisphere tropospheric long-term trends. As part of the ERC-funded EXC3ITE (EXploring stratospheric Composition, Chemistry and Circulation with Innovative Techniques) project more than 40 AirCore flights are planned in the next 3 years with an expanded range of up to 30 gases in order to explore seasonal and interannual variability in the stratosphere

  14. CANDU reactors and greenhouse gas emissions

    International Nuclear Information System (INIS)

    Andseta, S.; Thompson, M.J.; Jarrell, J.P.; Pendergast, D.R.

    1999-01-01

    This paper was originally presented at the 11th Pacific Basin Nuclear Conference, Banff, Alberta, Canada, May 3-7, 1998. It has been updated to include additional lifecycle data on chemical releases from ore treatment and CANDU fuel fabrication. It is sometimes stated that nuclear power plants can supply electricity with zero emissions of greenhouse gases. In fact, consideration of the entire fuel cycle indicates that some greenhouse gases are generated during their construction and decommissioning and by the preparation of fuel and other materials required for their operation. This follows from the use of fossil fuels in the preparation of materials and during the construction and decommissioning of the plants. This paper reviews life cycle studies of several different kinds of power plants. Greenhouse gases generated by fossil fuels during the preparation of fuel and heavy water used by operating CANDU power plants are estimated. The total greenhouse gas emissions from CANDU nuclear plants, per unit of electricity ultimately produced, are very small in comparison with emissions from most other types of power plants. (author)

  15. CANDU reactors and greenhouse gas emissions

    International Nuclear Information System (INIS)

    Andseta, S.; Thompson, M.J.; Jarrell, J.P.; Pendergast, D.R.

    1998-01-01

    This paper was originally presented at the 11th Pacific Basin Nuclear Conference, Banff, Alberta, Canada, May 3-7, 1998. It has been updated to include additional lifecycle data on chemical releases from ore treatment and CANDU fuel fabrication. It is sometimes stated that nuclear power plants can supply electricity with zero emissions of greenhouse gases. In fact, consideration of the entire fuel cycle indicates that some greenhouse gases are generated during their construction and decommissioning and by the preparation of fuel and other materials required for their operation. This follows from the use of fossil fuels in the preparation of materials and during the construction and decommissioning of the plants. This paper reviews life cycle studies of several different kinds of power plants. Greenhouse gases generated by fossil fuels during the preparation of fuel and heavy water used by operating CANDU power plants are estimated. The total greenhouse gas emissions from CANDU nuclear plants, per unit of electricity ultimately produced, are very small in comparison with emissions from most other types of power plants. (author)

  16. [Effects of understory removal on soil greenhouse gas emissions in Carya cathayensis stands].

    Science.gov (United States)

    Liu, Juan; Chen, Xue-shuang; Wu, Jia-sen; Jiang, Pei-kun; Zhou, Guo-mo; Li, Yong-fu

    2015-03-01

    CO2, N2O and CH4 are important greenhouse gases, and soils in forest ecosystems are their important sources. Carya cathayensis is a unique tree species with seeds used for high-grade dry fruit and oil production. Understory vegetation management plays an important role in soil greenhouse gases emission of Carya cathayensis stands. A one-year in situ experiment was conducted to study the effects of understory removal on soil CO2, N2O and CH4 emissions in C. cathayensis plantation by closed static chamber technique and gas chromatography method. Soil CO2 flux had a similar seasonal trend in the understory removal and preservation treatments, which was high in summer and autumn, and low in winter and spring. N2O emission occurred mainly in summer, while CH4 emission showed no seasonal trend. Understory removal significantly decreased soil CO, emission, increased N2O emission and CH4 uptake, but had no significant effect on soil water soluble organic carbon and microbial biomass carbon. The global warming potential of soil greenhouse gases emitted in the understory removal. treatment was 15.12 t CO2-e . hm-2 a-1, which was significantly lower than that in understory preservation treatment (17.04 t CO2-e . hm-2 . a-1).

  17. Preface: Towards a full greenhouse gas balance of the biosphere

    DEFF Research Database (Denmark)

    Merbold, L.; Wohlfahrt, G.; Butterbach-Bahl, K.

    2015-01-01

    Ecosystem greenhouse gas (GHG) emissions (CO2, CH4, and N2O) represent a major driver of global environmental change (IPCC, 2014). While there exists an emerging understanding on the net exchange of CO2 across terrestrial and aquatic ecosystems due in part to the existence of large measurement...... and modeling networks (Baldocchi et al., 2001; Friend et al., 2007; Raymond et al., 2013; Tranvik et al., 2009), similar information on the biosphere–atmosphere exchange of non-CO2 greenhouse gases (i.e., CH4 and N2O) is sparsely available in comparison. To date, a strong focus has been given to so-called high...

  18. What do near-term observations tell us about long-term developments in greenhouse gas emissions? A letter

    NARCIS (Netherlands)

    Vuuren, van D.P.; Edmonds, J.; Smith, S.J.; Calvin, K.V.; Karas, J.; Kainuma, M.; Nakicenovic, N.; Riahi, K.; Ruijven, B.J.; Swart, R.J.; Thomson, A.

    2010-01-01

    Long-term scenarios developed by integrated assessment models are used in climate research to provide an indication of plausible long-term emissions of greenhouse gases and other radiatively active substances based on developments in the global energy system, land-use and the emissions associated

  19. Greenhouse gases study in Amazonia; Estudo de gases de efeito estufa na Amazonia

    Energy Technology Data Exchange (ETDEWEB)

    D' Amelio, Monica Tais Siqueira

    2006-07-01

    The Amazon plays an important role on the global carbon cycle, as changing as carbon storage, since Amazon Basin is the biggest area of tropical forest, around 50% of global. Natural's process, deforestation, and use land are CO{sub 2} sources. The Amazon forest is a significant source of N{sub 2}O by soil process, and CH{sub 4} by anaerobic process like flooded areas, rice cultures, and others sources. This project is part of the LBA project (Large-Scale Biosphere Atmosphere Experiment in Amazonia), and this project is 'Vertical profiles of carbon dioxide and other trace gas species over the Amazon basin using small aircraft'. Since December 2000 vertical profiles of CO{sub 2}, CH{sub 4}, CO, H{sub 2}, N{sub 2}O and SF{sub 6} have been measured above central Amazonia. The local sampling was over Tapajos National Forest, a primary forest in Para State, where had a CO{sub 2} flux tower and an east impact area with sources like animals, rice cultivation, biomass burning, etc, to compare the influence of an impact area and a preserved area in the profiles. The Reserva Biologica de Cuieiras, at Amazon State, is the other studied place, where there already exists a CO{sub 2} flux tower, and an east preserved area at this State, to compare with the Cuieiras. The sampling has been carried out on vertical profile from 1000 ft up to 12000 ft using a semi-automated sampling package developed at GMD/NOAA and a small aircraft. The analysis uses the MAGICC system (Multiple Analysis of Gases Influence Climate Change) which is installed at the Atmospheric Chemistry Laboratory (LQA) in IPEN (Instituto de Pesquisas Energeticas e Nucleares). The results showed that all gases studied, except H{sub 2} gas, has been following the global trend. At the Para State, for the studied years, the Amazonian Forest performed as small CO{sub 2} sink. To compare Wet and Dry Seasons, subtracted the Ascension concentration values in the period to remove the global influence. So that, in the 2004 and

  20. Greenhouse gases study in Amazonia; Estudo de gases de efeito estufa na Amazonia

    Energy Technology Data Exchange (ETDEWEB)

    D' Amelio, Monica Tais Siqueira

    2006-07-01

    The Amazon plays an important role on the global carbon cycle, as changing as carbon storage, since Amazon Basin is the biggest area of tropical forest, around 50% of global. Natural's process, deforestation, and use land are CO{sub 2} sources. The Amazon forest is a significant source of N{sub 2}O by soil process, and CH{sub 4} by anaerobic process like flooded areas, rice cultures, and others sources. This project is part of the LBA project (Large-Scale Biosphere Atmosphere Experiment in Amazonia), and this project is 'Vertical profiles of carbon dioxide and other trace gas species over the Amazon basin using small aircraft'. Since December 2000 vertical profiles of CO{sub 2}, CH{sub 4}, CO, H{sub 2}, N{sub 2}O and SF{sub 6} have been measured above central Amazonia. The local sampling was over Tapajos National Forest, a primary forest in Para State, where had a CO{sub 2} flux tower and an east impact area with sources like animals, rice cultivation, biomass burning, etc, to compare the influence of an impact area and a preserved area in the profiles. The Reserva Biologica de Cuieiras, at Amazon State, is the other studied place, where there already exists a CO{sub 2} flux tower, and an east preserved area at this State, to compare with the Cuieiras. The sampling has been carried out on vertical profile from 1000 ft up to 12000 ft using a semi-automated sampling package developed at GMD/NOAA and a small aircraft. The analysis uses the MAGICC system (Multiple Analysis of Gases Influence Climate Change) which is installed at the Atmospheric Chemistry Laboratory (LQA) in IPEN (Instituto de Pesquisas Energeticas e Nucleares). The results showed that all gases studied, except H{sub 2} gas, has been following the global trend. At the Para State, for the studied years, the Amazonian Forest performed as small CO{sub 2} sink. To compare Wet and Dry Seasons, subtracted the Ascension concentration values in the period to remove the global influence. So that

  1. Unified force and its relation with global warming crave for hydrogen energy and promote fuel cell technology

    International Nuclear Information System (INIS)

    Krishnan, K.J.; Kalam, A.

    2011-01-01

    Global warming is presently a tremendous public interest and has become a threat to every individual. Huge quantities of CO/sub 2/ are emitted to the atmosphere by burning of fossil fuels to produce electricity in power plants and burning of gasoline in aeroplanes and vehicles. Enormous amount of greenhouse gasses are sent into the air when garbage is burnt in landfills. Cutting down of trees and other plants which collect CO/sub 2/ a greenhouse gas which is inhaled and which gives back oxygen which is exhaled makes global warming worse. 'Self-Compressive Surrounding Pressure Force' which is also known as Unified Force is also related with global warming which is proportional to increase of H/sub 2/O level in sea and causes floods, storms, droughts and severe impacts to the environment and society. In order to better understand global warming and its relation with Unified Force, this paper discusses the cause and effect system on the amount of greenhouse gases emitted to the atmosphere from the burning of fossil fuels and also the other green house gases like CH/sub 4/, water vapour, NOx etc. and emphasis its importance to focus on crave for Hydrogen Energy and to promote Fuel Cell technology to keep the earth green and safer from the impacts of global warming. The benefit of switching from fossil fuels to Hydrogen Energy and Fuel Cell technology reduces the impact of global warming, elimination of pollution caused by fossil fuels and greenhouse gases, economic dependence and distributed production. (author)

  2. For a better control of the greenhouse gases emissions of the international maritime and aerial baggage holds: evaluation and possible actions; Pour une maitrise des emissions de gaz a effet de serre des soutes internationales aeriennes et maritimes: constat et actions possibles

    Energy Technology Data Exchange (ETDEWEB)

    Sassi, O. [Ecole Nationale des Ponts et Chaussees, 77 - Marne la Vallee (France)

    2003-07-01

    The greenhouse gases emissions resulting from the aerial and marine baggage holds, are not taken into account in the national objectives of greenhouse gases reduction, defined by the Kyoto protocol. Thus they have to be controlled separately by each country concerned by the Kyoto protocol and urgent actions to reduce the greenhouse gases emissions are necessary. This study brings in first parts information on the context (legislation, traffic), the emission inventories and the options of allocation. It proposes then control methods and analyzes the possible measures. (A.L.B.)

  3. Heating GLOBAL vs LOCAL Contamination. Problematic National

    International Nuclear Information System (INIS)

    Turtos Carbonell, Leonor; Fernandez Rondon, Manuel; Meneses Ruiz, Elieza; Rivero Oliva, Jesus; Diaz Rivero, Norberto; Sanchez Gacita, Madeleine; Curbelo Garea, Lariza

    2007-01-01

    The tendency of growth year after year of the half temperature of the planet in correspondence with the increase of the concentrations of gases of greenhouse effect in the atmosphere, is an unequivocal sign that the greenhouse effect and its consequence, the one global heating, is a threat that hangs on the Earth. At national level and international conscience of this situation is won and the actions are increased directed to to mitigate it. The contribution of the energy sector to these emissions is considerable. The work it analyzes the contribution from Cuba to the global climatic change

  4. Microbial production and consumption of greenhouse gases: methane, nitrogen oxides, and halomethanes

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, J.E.; Whitman, W.B.

    1991-01-01

    The aim is to provide an overview of the biological processes that contribute to the increase in trace gases (CH[sub 4], N[sub 2]O, NO[sub x] and halocarbons) in the atmosphere. Physical and chemical processes are discussed as they relate to biological processes. It is an introduction to biological processes that contribute to changes in global climate and processes that can be influenced by biofeedback mechanisms as climate changes occur.

  5. Estimates of global biomass burning emissions for reactive greenhouse gases (CO, NMHCs, and NOx) and CO2

    Science.gov (United States)

    Jain, Atul K.; Tao, Zhining; Yang, Xiaojuan; Gillespie, Conor

    2006-03-01

    Open fire biomass burning and domestic biofuel burning (e.g., cooking, heating, and charcoal making) algorithms have been incorporated into a terrestrial ecosystem model to estimate CO2 and key reactive GHGs (CO, NOx, and NMHCs) emissions for the year 2000. The emissions are calculated over the globe at a 0.5° × 0.5° spatial resolution using tree density imagery, and two separate sets of data each for global area burned and land clearing for croplands, along with biofuel consumption rate data. The estimated global and annual total dry matter (DM) burned due to open fire biomass burning ranges between 5221 and 7346 Tg DM/yr, whereas the resultant emissions ranges are 6564-9093 Tg CO2/yr, 438-568 Tg CO/yr, 11-16 Tg NOx/yr (as NO), and 29-40 Tg NMHCs/yr. The results indicate that land use changes for cropland is one of the major sources of biomass burning, which amounts to 25-27% (CO2), 25 -28% (CO), 20-23% (NO), and 28-30% (NMHCs) of the total open fire biomass burning emissions of these gases. Estimated DM burned associated with domestic biofuel burning is 3,114 Tg DM/yr, and resultant emissions are 4825 Tg CO2/yr, 243 Tg CO/yr, 3 Tg NOx/yr, and 23 Tg NMHCs/yr. Total emissions from biomass burning are highest in tropical regions (Asia, America, and Africa), where we identify important contributions from primary forest cutting for croplands and domestic biofuel burning.

  6. Greenhouse gases emissions inventory in 2005 by the Mexican energy sector; Inventario de emisiones en 2005 de gases de efecto invernadero por el sector energetico mexicano

    Energy Technology Data Exchange (ETDEWEB)

    Flores Velazquez, R.; Munoz Lerdo Carranza, R.; Villalba Valle, D. [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)]. E-mail: rfv@iie.org.mx; rml@iie.org.mx; danviva17@yahoo.com.mx

    2010-01-15

    In the present work, it is estimated the greenhouse gases (GHG, GEI in this paper) emissions in 2005 by the consumption and/or transformation of energy in Mexico. This document is not official, and it is used as reference the fuel consumption reported in the Balance National de Energia 2005 published by the Secretaria de Energia. In this way, it is standardized the emission source that will be used in the near future to estimated the official 2005 GHG Emissions Inventory. In order to solve the absence of own emission factors in Mexico, it is used the default global emission factors proposed by the Intergovernmental Panel for Climate Change. The Sectorial Method was used to estimate the GHG emissions taking in account the fuel consumption in each subsector considered in the energy sector. It was found that the transport and energy industries sector had the most GHG emissions, and that Mexico as a non-industrialized country had lower per capita emissions that developed countries. [Spanish] En este trabajo se calcularon las emisiones de Gases de Efecto de inventario (GEI's) del 2005 por la seccion de consumo y/o transformacion de energia en Mexico. El documento obtenido no es oficial, y como referencia, se utiliza el consumo de combustible que refiere el Balance Nacional de Energia 2005, publicado por la Secretaria de Energia. Con esto, se estandarizan las fuentes de emision que en algun momento usara el Inventario Nacional de Emisiones de GEI's 2005. Para resolver la falta de factores de emision propios de Mexico, se recurre a los factores globales de emision propuestos como valores por omision por el Panel Intergubernamental de Cambio Climatico. Para la estimacion de las emisiones de GEI's se utilizo el Metodo Sectorial tomando en consideracion el consumo de combustible de cada uno de los subsectores en que se encuentra dividido el sector energetico. Se encontro que los sectores transporte y de la industria de la transformacion de energia son los que

  7. Stakeholder resource information on greenhouse gas emissions

    International Nuclear Information System (INIS)

    1997-01-01

    Some of the many measures which have already been taken by the petroleum industry to safeguard the air, land and water were described in a background paper produced by the Petroleum Communication Foundation. It is entitled 'Canada's oil and gas industry and our global environment'. This complementary report includes a brief review of greenhouse gases and related issues such as the nature of global warming, Canadian emissions in a global context, the relationship between the economy and the environment, mitigation possibilities and successes achieved by actions such as those undertaken by the Voluntary Challenge and Registry (VCR) program. Also included are notes and quotes from authoritative sources regarding emissions, emissions control and success stories. A sample presentation was also provided that could be used to discuss global warming issues with general audiences and other communication activities. figs

  8. Model for calculating regional energy use, industrial production and greenhouse gas emissions for evaluating global climate scenarios

    International Nuclear Information System (INIS)

    Vries, H.J.M. de; Olivier, J.G.J.; Wijngaart, R.A. van den; Kreileman, G.J.J.; Toet, A.M.C.

    1994-01-01

    In the integrated IMAGE 2.0 model the 'Energy-Industry System' is implemented as a set of models to develop global scenarios for energy use and industrial processes and for the related emissions of greenhouse gases on a region specific basis. The Energy-Economy model computes total energy use, with a focus on final energy consumption in end-use sectors, based on economic activity levels and the energy conservation potential (end-use approach). The Industrial Production and Consumption model computes the future levels of activities other than energy use, which lead to greenhouse gas emissions, based on relations with activities defined in the Energy-Economy model. These two models are complemented by two emissions models, to compute the associated emissions by using emission factors per compound and per activity defined. For investigating energy conservation and emissions control strategy scenarios various techno-economic coefficients in the model can be modified. In this paper the methodology and implementation of the 'Energy-Industry System' models is described as well as results from their testing against data for the period 1970-1990. In addition, the application of the models is presented for a specific scenario calculation. Future extensions of the models are in preparation. 59 refs., 17 figs., 21 tabs

  9. IMPACTS OF LIVESTOCK FEEDING TECHNOLOGIES ON GREENHOUSE GAS EMISSIONS

    OpenAIRE

    Weindl, Isabelle; Lotze-Campen, Hermann; Popp, Alexander; Bodirsky, Benjamin; Rolinski, Susanne

    2010-01-01

    Until 2050, the global population is projected to reach almost 9 billion people resulting in a rising demand and competition for biomass used as food, feed, raw material and bio-energy, while land and water resources are limited. Moreover, agricultural production will be constrained by the need to mitigate dangerous climate change. The agricultural sector is a major emitter of anthropogenic greenhouse gases (GHG). It is responsible for about 47 % and 58 % of total anthropogenic emissions of m...

  10. Greenhouse gases emission from soils under major crops in Northwest India

    Energy Technology Data Exchange (ETDEWEB)

    Jain, N., E-mail: nivetajain@gmail.com [Centre for Environment Science and Climate Resilient Agriculture, ICAR-Indian Agricultural Research Institute, New Delhi 110 012 (India); Arora, P.; Tomer, R.; Mishra, Shashi Vind; Bhatia, A.; Pathak, H. [Centre for Environment Science and Climate Resilient Agriculture, ICAR-Indian Agricultural Research Institute, New Delhi 110 012 (India); Chakraborty, D. [Division of Agricultural Physics, ICAR-Indian Agricultural Research Institute, New Delhi 110 012 (India); Kumar, Vinod; Dubey, D.S.; Harit, R.C.; Singh, J.P. [Centre for Environment Science and Climate Resilient Agriculture, ICAR-Indian Agricultural Research Institute, New Delhi 110 012 (India)

    2016-01-15

    Quantification of greenhouse gases (GHGs) emissions from agriculture is necessary to prepare the national inventories and to develop the mitigation strategies. Field experiments were conducted during 2008–2010 at the experimental farm of the Indian Agricultural Research Institute, New Delhi, India to quantify nitrous oxide (N{sub 2}O), methane (CH{sub 4}), and carbon dioxide (CO{sub 2}) emissions from soils under cereals, pulses, millets, and oilseed crops. Total cumulative N{sub 2}O emissions were significantly different (P > 0.05) among the crop types. Emission of N{sub 2}O as percentage of applied N was the highest in pulses (0.67%) followed by oilseeds (0.55%), millets (0.43%) and cereals (0.40%). The emission increased with increasing rate of N application (r{sup 2} = 0.74, P < 0.05). The cumulative flux of CH{sub 4} from the rice crop was 28.64 ± 4.40 kg ha{sup −1}, while the mean seasonal integrated flux of CO{sub 2} from soils ranged from 3058 ± 236 to 3616 ± 157 kg CO{sub 2} ha{sup −1} under different crops. The global warming potential (GWP) of crops varied between 3053 kg CO{sub 2} eq. ha{sup −1} (pigeon pea) and 3968 kg CO{sub 2} eq. ha{sup −1} (wheat). The carbon equivalent emission (CEE) was least in pigeon pea (833 kg C ha{sup −1}) and largest in wheat (1042 kg C ha{sup −1}). The GWP per unit of economic yield was the highest in pulses and the lowest in cereal crops. The uncertainties in emission values varied from 4.6 to 22.0%. These emission values will be useful in updating the GHGs emission inventory of Indian agriculture. - Highlights: • Nitrous oxide, methane and carbon dioxide emission were quantified from soils under cereals, millets, oilseeds, and pulses in northwest India. • The emission of nitrous oxide ranged from 0.57–1.3 kg ha{sup −1}, methane from 27.78–29.50 kg ha{sup −1} and carbon dioxide from 2377–3910 kg ha{sup −1}. • Emission of nitrous oxide as percent of applied N was highest in pulses (0

  11. Greenhouse gases emission from soils under major crops in Northwest India

    International Nuclear Information System (INIS)

    Jain, N.; Arora, P.; Tomer, R.; Mishra, Shashi Vind; Bhatia, A.; Pathak, H.; Chakraborty, D.; Kumar, Vinod; Dubey, D.S.; Harit, R.C.; Singh, J.P.

    2016-01-01

    Quantification of greenhouse gases (GHGs) emissions from agriculture is necessary to prepare the national inventories and to develop the mitigation strategies. Field experiments were conducted during 2008–2010 at the experimental farm of the Indian Agricultural Research Institute, New Delhi, India to quantify nitrous oxide (N 2 O), methane (CH 4 ), and carbon dioxide (CO 2 ) emissions from soils under cereals, pulses, millets, and oilseed crops. Total cumulative N 2 O emissions were significantly different (P > 0.05) among the crop types. Emission of N 2 O as percentage of applied N was the highest in pulses (0.67%) followed by oilseeds (0.55%), millets (0.43%) and cereals (0.40%). The emission increased with increasing rate of N application (r 2 = 0.74, P < 0.05). The cumulative flux of CH 4 from the rice crop was 28.64 ± 4.40 kg ha −1 , while the mean seasonal integrated flux of CO 2 from soils ranged from 3058 ± 236 to 3616 ± 157 kg CO 2 ha −1 under different crops. The global warming potential (GWP) of crops varied between 3053 kg CO 2 eq. ha −1 (pigeon pea) and 3968 kg CO 2 eq. ha −1 (wheat). The carbon equivalent emission (CEE) was least in pigeon pea (833 kg C ha −1 ) and largest in wheat (1042 kg C ha −1 ). The GWP per unit of economic yield was the highest in pulses and the lowest in cereal crops. The uncertainties in emission values varied from 4.6 to 22.0%. These emission values will be useful in updating the GHGs emission inventory of Indian agriculture. - Highlights: • Nitrous oxide, methane and carbon dioxide emission were quantified from soils under cereals, millets, oilseeds, and pulses in northwest India. • The emission of nitrous oxide ranged from 0.57–1.3 kg ha −1 , methane from 27.78–29.50 kg ha −1 and carbon dioxide from 2377–3910 kg ha −1 . • Emission of nitrous oxide as percent of applied N was highest in pulses (0.67%) followed by oilseeds (0.55%). • Global warming potential (GWP) of soils under different

  12. Microtrap assembly for greenhouse gas and air pollution monitoring

    Science.gov (United States)

    Mitra, Somenath; Saridara, Chutarat

    2015-08-25

    A microtrap assembly includes a carbon nanotube sorbent. The microtrap assembly may be employed as a preconcentrator operable to deliver a sample to an analytical device to measure the concentrations of greenhouse gases. A system includes a microtrap having a carbon nanotube sorbent for measuring the concentrations of greenhouse gases in a sample.

  13. Technology Opportunities to Reduce U.S. Greenhouse Gas Emissions

    Energy Technology Data Exchange (ETDEWEB)

    National Lab Directors, . .

    2001-04-05

    The rise in greenhouse gas emissions from fossil fuel combustion and industrial and agricultural activities has aroused international concern about the possible impacts of these emissions on climate. Greenhouse gases--mostly carbon dioxide, some methane, nitrous oxide and other trace gases--are emitted to the atmosphere, enhancing an effect in which heat reflected from the earth's surface is kept from escaping into space, as in a greenhouse. Thus, there is concern that the earth's surface temperature may rise enough to cause global climate change. Approximately 90% of U.S. greenhouse gas emissions from anthropogenic sources come from energy production and use, most of which are a byproduct of the combustion of fossil fuels. On a per capita basis, the United States is one of the world's largest sources of greenhouse gas emissions, comprising 4% of the world's population, yet emitting 23% of the world's greenhouse gases. Emissions in the United States are increasing at around 1.2% annually, and the Energy Information Administration forecasts that emissions levels will continue to increase at this rate in the years ahead if we proceed down the business-as-usual path. President Clinton has presented a two-part challenge for the United States: reduce greenhouse gas emissions and grow the economy. Meeting the challenge will mean that in doing tomorrow's work, we must use energy more efficiently and emit less carbon for the energy expended than we do today. To accomplish these goals, President Clinton proposed on June 26, 1997, that the United States ''invest more in the technologies of the future''. In this report to Secretary of Energy Pena, 47 technology pathways are described that have significant potential to reduce carbon dioxide emissions. The present study was completed before the December 1997 United Nations Framework Convention on Climate Change and is intended to provide a basis to evaluate technology

  14. Emerging pattern of global change in the upper atmosphere and ionosphere

    Directory of Open Access Journals (Sweden)

    J. Laštovička

    2008-05-01

    Full Text Available In the upper atmosphere, greenhouse gases produce a cooling effect, instead of a warming effect. Increases in greenhouse gas concentrations are expected to induce substantial changes in the mesosphere, thermosphere, and ionosphere, including a thermal contraction of these layers. In this article we construct for the first time a pattern of the observed long-term global change in the upper atmosphere, based on trend studies of various parameters. The picture we obtain is qualitative, and contains several gaps and a few discrepancies, but the overall pattern of observed long-term changes throughout the upper atmosphere is consistent with model predictions of the effect of greenhouse gas increases. Together with the large body of lower atmospheric trend research, our synthesis indicates that anthropogenic emissions of greenhouse gases are affecting the atmosphere at nearly all altitudes between ground and space.

  15. Anthropogenic effects on the subtropical jet in the Southern Hemisphere: aerosols versus long-lived greenhouse gases

    International Nuclear Information System (INIS)

    Rotstayn, L D; Collier, M A; Jeffrey, S J; Syktus, J I; Wong, K K; Kidston, J

    2013-01-01

    We use single-forcing historical simulations with a coupled atmosphere–ocean global climate model to compare the effects of anthropogenic aerosols (AAs) and increasing long-lived greenhouse gases (LLGHGs) on simulated winter circulation in the Southern Hemisphere (SH). Our primary focus is on the subtropical jet, which is an important source of baroclinic instability, especially in the Australasian region, where the speed of the jet is largest. For the period 1950 to 2005, our simulations suggest that AAs weaken the jet, whereas increasing LLGHGs strengthen the jet. The different responses are explained in terms of thermal wind balance: increasing LLGHGs preferentially warm the tropical mid-troposphere and upper troposphere, whereas AAs have a similar effect of opposite sign. In the mid-troposphere, the warming (cooling) effect of LLGHGs (AAs) is maximal between 20S and 30S; this coincides with the descending branch of the Hadley circulation, which may advect temperature changes from the tropical upper troposphere to the subtropics of the SH. It follows that LLGHGs (AAs) increase (decrease) the mid-tropospheric temperature gradient between low latitudes and the SH mid-latitudes. The strongest effects are seen at longitudes where the southward branches of the Hadley cell in the upper troposphere are strongest, notably at those that correspond to Asia and the western Pacific warm pool. (letter)

  16. If Canada is serious about reducing greenhouse gases, we need nuclear energy

    International Nuclear Information System (INIS)

    Lemieux, C.

    2003-01-01

    Canada's energy options are reviewed in light of the need to find practical solutions to supply the nation's growing demand for power, coupled with equally pressing need to reduce greenhouse gas emissions to meet Kyoto commitments, and to do so without costing Canadians jobs and economic disaster. Among the options available - renewable, hydro, fossil fuels, nuclear -- nuclear power is identified as the only one that promises to meet the growing demand for power without the practical, economic and environmental disadvantages associated with the alternatives. Based on Canadian experience with nuclear power in the past, it is pointed out that between 1971 and 2000 Canada , by using nuclear fuel , has averted the production of 32 million tonnes of acid gases, millions of tonnes of other pollutants and well over a billion tonnes of carbon dioxide, while producing only 14 per cent of its energy requirements from nuclear fuel The principal argument made is that given our position as the world's leading supplier of uranium to electric utilities, the safety record of our CANDU reactors , and the fact that nuclear power is one of the cleanest large-scale energy source, nuclear power has the potential to make significant contribution to Canada's ability to meet its future energy requirements, and achieve the GHG emission reduction targets imposed by the Kyoto Agreement, without causing serious harm to the economy. The author goes as far as to say that without serious consideration being given to nuclear power, Canada has no chance even to come close to its Kyoto greenhouse emission targets without disastrous consequences to the economy. (author)

  17. Nuclear power planning in the context of global climate change - the Malaysian perspective

    International Nuclear Information System (INIS)

    Alawiah Musa; Fairuz Suzana Mohd Chachuli; Nik Arlina Nik Ali

    2007-01-01

    The global warming effect due to ?greenhouse gases? is a hot topic discussed by world climate scientists today. This effect causes sea levels to rise, countries experiencing extreme weather conditions, violent storms and long dry spells. In centuries to come, these catastrophic effects can cause the spread of diseases and destroy food production and human habitat. Over one-third of the greenhouse gases come from the burning of fossil fuel to generate electricity. Nuclear power plants do not generate these gases. This paper presents the results obtained from a case study using MESSAGE, an analytical tool developed by the IAEA, which was used to evaluate Malaysia future energy requirements and strategies in addressing climate change issues. (Author)

  18. High-accuracy continuous airborne measurements of greenhouse gases (CO2 and CH4) during BARCA

    Science.gov (United States)

    Chen, H.; Winderlich, J.; Gerbig, C.; Hoefer, A.; Rella, C. W.; Crosson, E. R.; van Pelt, A. D.; Steinbach, J.; Kolle, O.; Beck, V.; Daube, B. C.; Gottlieb, E. W.; Chow, V. Y.; Santoni, G. W.; Wofsy, S. C.

    2009-12-01

    High-accuracy continuous measurements of greenhouse gases (CO2 and CH4) during the BARCA (Balanço Atmosférico Regional de Carbono na Amazônia) phase B campaign in Brazil in May 2009 were accomplished using a newly available analyzer based on the cavity ring-down spectroscopy (CRDS) technique. This analyzer was flown without a drying system or any in-flight calibration gases. Water vapor corrections associated with dilution and pressure-broadening effects for CO2 and CH4 were derived from laboratory experiments employing measurements of water vapor by the CRDS analyzer. Before the campaign, the stability of the analyzer was assessed by laboratory tests under simulated flight conditions. During the campaign, a comparison of CO2 measurements between the CRDS analyzer and a nondispersive infrared (NDIR) analyzer on board the same aircraft showed a mean difference of 0.22±0.09 ppm for all flights over the Amazon rain forest. At the end of the campaign, CO2 concentrations of the synthetic calibration gases used by the NDIR analyzer were determined by the CRDS analyzer. After correcting for the isotope and the pressure-broadening effects that resulted from changes of the composition of synthetic vs. ambient air, and applying those concentrations as calibrated values of the calibration gases to reprocess the CO2 measurements made by the NDIR, the mean difference between the CRDS and the NDIR during BARCA was reduced to 0.05±0.09 ppm, with the mean standard deviation of 0.23±0.05 ppm. The results clearly show that the CRDS is sufficiently stable to be used in flight without drying the air or calibrating in flight and the water corrections are fully adequate for high-accuracy continuous airborne measurements of CO2 and CH4.

  19. The second generation model of greenhouse gas emissions: background and initial development

    International Nuclear Information System (INIS)

    Baron, R.; Wise, M.A.; Edmonds, J.A.; Pitcher, H.M.; Barns, D.

    1992-01-01

    The analysis of greenhouse gas emissions has made enormous progress during the course of the past decade. We have progressed from the use of simple time-trend extrapolations to the analysis of emissions of several greenhouse gases with parallel but independent behavioral and optimization models of energy, manufacturing, agriculture, and land-use systems. But our ability to examine potential future scenarios of greenhouse gas emissions is limited because modeling tools adequate to the task of integrating analyses of technologies and human activities on a global scale with regional detail, including energy production and consumption, agriculture, manufacture, capital formation, and land-use, along with the interdependencies between these categories, do not yet exist. The first generation of models were specialty models which focused on a particular aspect of the emissions problem without regard to how that activity interacted with other human and natural activities. The natural science pertaining to greenhouse warming now emphasizes the variety of gases associated with potential changes in the radiative composition of the atmosphere: CO 2 , CH 4 , CO, N 2 O, NO x , SO 2 , VOC's, chlorofluorocarbons, (CFC's) and CFC substitutes. Human activities generating the emissions of these gases are interdependent; actions taken to limit emissions from one segment of the economy will affect other segments of the economy. Policy issues such as the recycling of revenues from a carbon tax, land-use changes due to to tree-planting to sequestrate carbon dioxide or extensive development of biomass energy resources, require a more comprehensive modeling approach in which the relationship between technology, institutions, land use, economics and human activity is explicitly represented. The purpose of this paper is to describe briefly the design of a model which is capable of addressing greenhouse gas emissions and the consequences of alternative policy options. 7 refs

  20. The Peculiar Negative Greenhouse Effect Over Antarctica

    Science.gov (United States)

    Sejas, S.; Taylor, P. C.; Cai, M.

    2017-12-01

    Greenhouse gases warm the climate system by reducing the energy loss to space through the greenhouse effect. Thus, a common way to measure the strength of the greenhouse effect is by taking the difference between the surface longwave (LW) emission and the outgoing LW radiation. Based on this definition, a paradoxical negative greenhouse effect is found over the Antarctic Plateau, which suprisingly indicates that greenhouse gases enhance energy loss to space. Using 13 years of NASA satellite observations, we verify the existence of the negative greenhouse effect and find that the magnitude and sign of the greenhouse effect varies seasonally and spectrally. A previous explanation attributes the negative greenhouse effect solely to stratospheric CO2 and warmer than surface stratospheric temperatures. However, we surprisingly find that the negative greenhouse effect is predominantly caused by tropospheric water vapor. A novel principle-based explanation provides the first complete account of the Antarctic Plateau's negative greenhouse effect indicating that it is controlled by the vertical variation of temperature and greenhouse gas absorption strength. Our findings indicate that the strong surface-based temperature inversion and scarcity of free tropospheric water vapor over the Antarctic Plateau cause the negative greenhouse effect. These are climatological features uniquely found in the Antarctic Plateau region, explaining why the greenhouse effect is positive everywhere else.

  1. The role of clouds and oceans in global greenhouse warming

    International Nuclear Information System (INIS)

    Hoffert, M.I.

    1992-12-01

    During the past three years we have conducted several studies using models and a combination of satellite data, in situ meteorological and oceanic data, and paleoclimate reconstructions, under the DoE program, ''Quantifying the Link Between Change in Radiative Balance and Atmospheric Temperature''. Our goals were to investigate effects of global cloudiness variations on global climate and their implications for cloud feedback and continue development and application of NYU transient climate/ocean models, with emphasis on coupled effects of greenhouse warming and feedbacks by both the clouds and oceans. Our original research plan emphasized the use of cloud, surface temperature and ocean data sets interpreted by focused climate/ocean models to develop a cloud radiative forcing scenario for the past 100 years and to assess the transient climate response; to narrow key uncertainties in the system; and to identify those aspects of the climate system most likely to be affected by greenhouse warming over short, medium and long time scales

  2. Radiations in space and global environment

    International Nuclear Information System (INIS)

    Oguti, Takasi

    1994-01-01

    It has been well known that the global environment of the earth is basically determined by the radiation equilibrium of the earth atmosphere system embedded in the solar radiation. However, the surface temperature of about 15 degC on average is much higher than that determined by the radiation equilibrium. This is due to the so-called greenhouse gases in the atmosphere such as carbon dioxide, water vapor, methane and others. Also the global environment has evolved by interacting with the living things on the earth, for example, tree oxygen by photosynthesis, and a small amount of ozone protecting living things from the fetal damage due to solar ultraviolet radiation. The solar radiation of short wavelength, that is, ultraviolet to X-ray influences atmospheric constituents, and the thermal structure and dynamics of the atmosphere through chemical reaction. The solar energetic particles produced by solar flares precipitate in the polar regions, and the nitric oxides are produced by auroral X-ray. Auroral activities accelerate particles in the magnetosphere. All these radiations cause significant global changes. Human activities increase greenhouse gases rapidly and cause global warming, and atmospheric chloro-fluoro-carbon (CFC) makes the ozone hole. Now, human activities must be modified to match the natural cycle of materials. (K.I.)

  3. Global climate change

    International Nuclear Information System (INIS)

    Gugele, B.; Radunsky, K.; Spangl, W.

    2002-01-01

    In the last decade marked changes of climatic factors have been observed, such as increases in average global earth temperatures, the amount of precipitation and the number of extreme weather events. Green house gases influence the energy flow in the atmosphere by absorbing infra-red radiation. An overview of the Austrian greenhouse gas emissions is given, including statistical data and their major sources. In 1999 the emissions of all six Kyoto greenhouse gases ( CO 2 , CH 4 , N 2 O, HFC s , PFC s and SF 6 ) amounted to 79.2 million tonnes of CO 2 equivalents . A comparison between the EC Members states is also presented. Finally the climate change strategy prepared by the Austrian Federal Ministry of Agriculture, Forestry, Environment and Water Management together with other ministries and the federal provinces is discussed, which main aim is to lead to an annual emission reduction of 16 million tonnes of CO 2 . Figs. 2, Tables 1. (nevyjel)

  4. Experimental Studies of CO2 Capturing from the Flue Gases

    Directory of Open Access Journals (Sweden)

    Ehsan Rahmandoost

    2014-10-01

    Full Text Available CO2 emissions from combustion flue gases have turned into a major factor in global warming. Post-combustion carbon capture (PCC from industrial utility flue gases by reactive absorption can substantially reduce the emissions of the greenhouse gas CO2. To test a new solvent (AIT600 for this purpose, a small pilot plant was used. This paper presents the results of studies on chemical methods of absorbing CO2 from flue gases with the new solvent, and evaluates the effects of operating conditions on CO2 absorption efficiency. CO2 removal rate of the AIT600 solvent was higher in comparison to the conventional monoethanolamine (MEA solvent. The optimized temperature of the absorber column was 60 °C for CO2 absorption in this pilot plant. The overall absorption rate (Φ and the volumetric overall mass transfer coefficient (KGaV were also investigated.

  5. Hydrological droughts in the 21st century, hotspots and uncertainties from a global multimodel ensemble experiment

    NARCIS (Netherlands)

    Prudhomme, C.; Giuntoli, L.; Robinson, E.L.; Clark, D.B.; Arnell, N.W.; Dankers, R.; Fekete, B.M.; Franssen, W.H.P.

    2014-01-01

    Increasing concentrations of greenhouse gases in the atmosphere are expected to modify the global water cycle with significant consequences for terrestrial hydrology. We assess the impact of climate change on hydrological droughts in a multimodel experiment including seven global impact models

  6. Greenhouse gases emissions in rivers of the Tibetan Plateau.

    Science.gov (United States)

    Qu, Bin; Aho, Kelly Sue; Li, Chaoliu; Kang, Shichang; Sillanpää, Mika; Yan, Fangping; Raymond, Peter A

    2017-11-29

    Greenhouse gases (GHGs) emissions from streams are important to regional biogeochemical budgets. This study is one of the first to incorporate stream GHGs (CO 2 , CH 4 and N 2 O) concentrations and emissions in rivers of the Tibetan Plateau. With one-time sampling from 32 sites in rivers of the plateau, we found that most of the rivers were supersaturated with CO 2 , CH 4 and N 2 O during the study period. Medians of partial pressures of CO 2 (pCO 2 ), pCH 4 and pN 2 O were presented 864 μatm, 6.3 μatm, and 0.25 μatm respectively. Based on a scaling model of the flux of gas, the calculated fluxes of CO 2 , CH 4 and N 2 O (3,452 mg-C m 2 d -1 , 26.7 mg-C m 2 d -1 and 0.18 mg-N m 2 d -1 , respectively) in rivers of the Tibetan Plateau were found comparable with most other rivers in the world; and it was revealed that the evasion rates of CO 2 and CH 4 in tributaries of the rivers of the plateau were higher than those in the mainstream despite its high altitude. Furthermore, concentrations of GHGs in the studied rivers were related to dissolved carbon and nitrogen, indicating that riverine dissolved components could be used to scale GHGs envision in rivers of the Tibetan Plateau.

  7. Anticipated changes in the emissions of green-house gases and ammonia from pork production due to shifts from fattening of barrows towards fattening of boars

    DEFF Research Database (Denmark)

    Dämmgen, Ulrich; Berk, Andreas; Otten, Caroline

    2013-01-01

    Greenhouse gases and of ammonia emissions from pork production will change when fattening of barrows switches towards to fattening of (intact) boars. The results of an accurate feeding experiment allow for the differentiation of the effects on emissions of gender (differentiating in boars, barrow...

  8. Comparison of gas-solid chromatography and MM2 force field molecular binding energies for greenhouse gases on a carbonaceous surface.

    Science.gov (United States)

    Rybolt, Thomas R; Bivona, Kevin T; Thomas, Howard E; O'Dell, Casey M

    2009-10-01

    Gas-solid chromatography was used to determine B(2s) (gas-solid virial coefficient) values for eight molecular adsorbates interacting with a carbon powder (Carbopack B, Supelco). B(2s) values were determined by multiple size variant injections within the temperature range of 313-553 K. The molecular adsorbates included: carbon dioxide (CO(2)); tetrafluoromethane (CF(4)); hexafluoroethane (C(2)F(6)); 1,1-difluoroethane (C(2)H(4)F(2)); 1-chloro-1,1-difluoroethane (C(2)H(3)ClF(2)); dichlorodifluoromethane (CCl(2)F(2)); trichlorofluoromethane (CCl(3)F); and 1,1,1-trichloroethane (C(2)H(3)Cl(3)). Two of these molecules are of special interest because they are "super greenhouse gases". The global warming potential, GWP, for CF(4) is 6500 and for C(2)F(6) is 9200 relative to the reference value of 1 for CO(2). The GWP index considers both radiative blocking and molecular lifetime. For these and other industrial greenhouse gases, adsorptive trapping on a carbonaceous solid, which depends on molecule-surface binding energy, could avoid atmospheric release. The temperature variations of the gas-solid virial coefficients in conjunction with van't Hoff plots were used to find the experimental adsorption energy or binding energy values (E(*)) for each adsorbate. A molecular mechanics based, rough-surface model was used to calculate the molecule-surface binding energy (Ecal(*)) using augmented MM2 parameters. The surface model consisted of parallel graphene layers with two separated nanostructures each containing 17 benzene rings arranged in linear strips. The separation of the parallel nanostructures had been optimized in a prior study to appropriately represent molecule-surface interactions for Carbopack B. Linear regressions of E(*) versus Ecal(*) for the current data set of eight molecules and the same surface model gave E(*)=0.926 Ecal(*) and r(2)=0.956. A combined set of the current and prior Carbopack B adsorbates studied (linear alkanes, branched alkanes, cyclic alkanes

  9. Global warming and local dimming. The statistical evidence

    Energy Technology Data Exchange (ETDEWEB)

    Magnus, J.R.; Melenberg, B. [Department of Econometrics and Operations Research, Tilburg University, Tilburg (Netherlands); Muris, C. [CentER, Tilburg University, Tilburg (Netherlands)

    2011-01-15

    Two effects largely determine global warming: the well-known greenhouse effect and the less well-known solar radiation effect. An increase in concentrations of carbon dioxide and other greenhouse gases contributes to global warming: the greenhouse effect. In addition, small particles, called aerosols, reflect and absorb sunlight in the atmosphere. More pollution causes an increase in aerosols, so that less sunlight reaches the Earth (global dimming). Despite its name, global dimming is primarily a local (or regional) effect. Because of the dimming the Earth becomes cooler: the solar radiation effect. Global warming thus consists of two components: the (global) greenhouse effect and the (local) solar radiation effect, which work in opposite directions. Only the sum of the greenhouse effect and the solar radiation effect is observed, not the two effects separately. Our purpose is to identify the two effects. This is important, because the existence of the solar radiation effect obscures the magnitude of the greenhouse effect. We propose a simple climate model with a small number of parameters. We gather data from a large number of weather stations around the world for the period 1959-2002. We then estimate the parameters using dynamic panel data methods, and quantify the parameter uncertainty. Next, we decompose the estimated temperature change of 0.73C (averaged over the weather stations) into a greenhouse effect of 1.87C, a solar radiation effect of -1.09C, and a small remainder term. Finally, we subject our findings to extensive sensitivity analyses.

  10. Global warming and local dimming. The statistical evidence

    International Nuclear Information System (INIS)

    Magnus, J.R.; Melenberg, B.; Muris, C.

    2011-01-01

    Two effects largely determine global warming: the well-known greenhouse effect and the less well-known solar radiation effect. An increase in concentrations of carbon dioxide and other greenhouse gases contributes to global warming: the greenhouse effect. In addition, small particles, called aerosols, reflect and absorb sunlight in the atmosphere. More pollution causes an increase in aerosols, so that less sunlight reaches the Earth (global dimming). Despite its name, global dimming is primarily a local (or regional) effect. Because of the dimming the Earth becomes cooler: the solar radiation effect. Global warming thus consists of two components: the (global) greenhouse effect and the (local) solar radiation effect, which work in opposite directions. Only the sum of the greenhouse effect and the solar radiation effect is observed, not the two effects separately. Our purpose is to identify the two effects. This is important, because the existence of the solar radiation effect obscures the magnitude of the greenhouse effect. We propose a simple climate model with a small number of parameters. We gather data from a large number of weather stations around the world for the period 1959-2002. We then estimate the parameters using dynamic panel data methods, and quantify the parameter uncertainty. Next, we decompose the estimated temperature change of 0.73C (averaged over the weather stations) into a greenhouse effect of 1.87C, a solar radiation effect of -1.09C, and a small remainder term. Finally, we subject our findings to extensive sensitivity analyses.

  11. Recycling of glass: accounting of greenhouse gases and global warming contributions

    DEFF Research Database (Denmark)

    Larsen, Anna Warberg; Merrild, Hanna Kristina; Christensen, Thomas Højlund

    2009-01-01

    -wash facility (combustion of fuels) as well as indirect downstream activities in terms of using the recovered glass waste in other industries and, thereby, avoiding emissions from conventional production. The GHG accounting was presented as aggregated global warming factors (GWFs) for the direct and indirect...

  12. The comparison of fossil carbon fraction and greenhouse gas emissions through an analysis of exhaust gases from urban solid waste incineration facilities.

    Science.gov (United States)

    Kim, Seungjin; Kang, Seongmin; Lee, Jeongwoo; Lee, Seehyung; Kim, Ki-Hyun; Jeon, Eui-Chan

    2016-10-01

    In this study, in order to understand accurate calculation of greenhouse gas emissions of urban solid waste incineration facilities, which are major waste incineration facilities, and problems likely to occur at this time, emissions were calculated by classifying calculation methods into 3 types. For the comparison of calculation methods, the waste characteristics ratio, dry substance content by waste characteristics, carbon content in dry substance, and (12)C content were analyzed; and in particular, CO2 concentration in incineration gases and (12)C content were analyzed together. In this study, 3 types of calculation methods were made through the assay value, and by using each calculation method, emissions of urban solid waste incineration facilities were calculated then compared. As a result of comparison, with Calculation Method A, which used the default value as presented in the IPCC guidelines, greenhouse gas emissions were calculated for the urban solid waste incineration facilities A and B at 244.43 ton CO2/day and 322.09 ton CO2/day, respectively. Hence, it showed a lot of difference from Calculation Methods B and C, which used the assay value of this study. It is determined that this was because the default value as presented in IPCC, as the world average value, could not reflect the characteristics of urban solid waste incineration facilities. Calculation Method B indicated 163.31 ton CO2/day and 230.34 ton CO2/day respectively for the urban solid waste incineration facilities A and B; also, Calculation Method C indicated 151.79 ton CO2/day and 218.99 ton CO2/day, respectively. This study intends to compare greenhouse gas emissions calculated using (12)C content default value provided by the IPCC (Intergovernmental Panel on Climate Change) with greenhouse gas emissions calculated using (12)C content and waste assay value that can reflect the characteristics of the target urban solid waste incineration facilities. Also, the concentration and (12)C content

  13. Assessment of the greenhouse gases in Mexico: Importance of the electric sector; Inventario de gases de invernadero en Mexico: Importancia del sector electrico

    Energy Technology Data Exchange (ETDEWEB)

    Sheinbaum Pardo, Claudia [Instituto de Ingenieria, UNAM, Mexico, D. F. (Mexico)

    1997-12-31

    In this paper are presented the principal results of the various studies on energy end uses developed by the Grupo de Energia y Ambiente del Instituto de Ingenieria de la Universidad Nacional Autonoma de Mexico (UNAM Group of Energy and Environment) for years 1987 and 1993, emphasizing on the emissions originated by the generation of electricity and for the following greenhouse effect gases: carbon dioxide (CO{sub 2}), carbon monoxide (CO), nitrogen oxides (NOx) and methane (CH{sub 4}). Also, a comparison is presented among Mexico and other Latin America countries based on statistics of OLADE (Latin American Organization of Energy) [Espanol] En este trabajo se presentan los principales resultados de estudios diversos sobre usos finales de energia desarrollados por el Grupo de Energia y Ambiente del Instituto de Ingenieria de la Universidad Nacional Autonoma de Mexico (UNAM) para los anos 1987 y 1993, poniendo enfasis en las emisiones debidas a la generacion de electricidad y para los siguientes gases de efecto invernadero: bioxido de carbono (CO{sub 2}), monoxido de carbono (CO), oxidos de nitrogeno (NOx) y metano (HC{sub 4}). Asi mismo se presenta una comparacion entre Mexico y otros paises de Latinoamerica basado en estadisticas de la Organizacion Latinoamericana de Energia

  14. Assessment of the greenhouse gases in Mexico: Importance of the electric sector; Inventario de gases de invernadero en Mexico: Importancia del sector electrico

    Energy Technology Data Exchange (ETDEWEB)

    Sheinbaum Pardo, Claudia [Instituto de Ingenieria, UNAM, Mexico, D. F. (Mexico)

    1996-12-31

    In this paper are presented the principal results of the various studies on energy end uses developed by the Grupo de Energia y Ambiente del Instituto de Ingenieria de la Universidad Nacional Autonoma de Mexico (UNAM Group of Energy and Environment) for years 1987 and 1993, emphasizing on the emissions originated by the generation of electricity and for the following greenhouse effect gases: carbon dioxide (CO{sub 2}), carbon monoxide (CO), nitrogen oxides (NOx) and methane (CH{sub 4}). Also, a comparison is presented among Mexico and other Latin America countries based on statistics of OLADE (Latin American Organization of Energy) [Espanol] En este trabajo se presentan los principales resultados de estudios diversos sobre usos finales de energia desarrollados por el Grupo de Energia y Ambiente del Instituto de Ingenieria de la Universidad Nacional Autonoma de Mexico (UNAM) para los anos 1987 y 1993, poniendo enfasis en las emisiones debidas a la generacion de electricidad y para los siguientes gases de efecto invernadero: bioxido de carbono (CO{sub 2}), monoxido de carbono (CO), oxidos de nitrogeno (NOx) y metano (HC{sub 4}). Asi mismo se presenta una comparacion entre Mexico y otros paises de Latinoamerica basado en estadisticas de la Organizacion Latinoamericana de Energia

  15. Comprehensive development of industrial symbiosis for the response of greenhouse gases emission mitigation: Challenges and opportunities in China

    International Nuclear Information System (INIS)

    Liu, Zhe; Adams, Michelle; Cote, Raymond P.; Geng, Yong; Chen, Qinghua; Liu, Weili; Sun, Lu; Yu, Xiaoman

    2017-01-01

    Although not yet a global consensus, there is widespread agreement that climate change is the result of anthropogenic sources of greenhouse gases (GHG) emissions. In order to respond to this issue, society has applied such strategies as clean energy development, improving industrial resource efficiency etc. Despite this, GHG emissions are still pursuing an upward trend. As the largest global GHG emitter, China faces a considerable challenge in responding to its agreed target of 40–45% GHG emission mitigation per unit gross domestic production (GDP) by 2020 as compared to 2005 levels. How to practically achieve this is still largely undecided. Comprehensive development of industrial symbiosis around nationwide is considered part of the solution. However, few researchers have studied how to actually implement a comprehensive development of industrial symbiosis for the purpose of GHG emission mitigation. This work intends to address this gap through highlighting the opportunities to develop such an approach for particular application to GHG emissions reduction in China. In addition, this study will also address the challenges ahead associated with the implementation of such a strategy, and outlines the where future research could be focused. Policy implications like establishing industrial symbiosis indicators associated with GHG emission mitigation are proposed. - Highlights: • Urgent issue of GHG mitigation and background of industrial symbiosis are introduced. • The challenges like lack of indicator, investigating methodologies and regional disparity are analyzed. • Opportunities for GHG mitigation through comprehensive development of industrial symbiosis are detailed. • Policy implications for responding GHG mitigation through industrial symbiosis are proposed.

  16. A matter of degrees: A primer on global warming

    International Nuclear Information System (INIS)

    1993-01-01

    A primer on global warming is presented in order to provide information to Canadians on making environmentally responsible decisions. The fundamentals of natural climate change, the atmospheric environment, factors that influence climate, and the greenhouse effect are explained. Global warming is then discussed with reference to paleoclimatic research, the influence of human activity on increased concentrations of greenhouse gases, and predictions of future climates. The possible impacts of global warming on Canada are described for such sectors as forests, fisheries, agriculture, sea levels, health, energy supply and demand, and the Arctic regions. The actions that citizens and governments can take in order to mitigate or adapt to global warming are then presented. A glossary and index are included. 55 refs., 17 figs

  17. Development and Deployment of Mobile Emissions Laboratory for Continuous Long-Term Unattended Measurements of Greenhouse Gases, Fluxes, Isotopes and Pollutants

    Science.gov (United States)

    Gardner, A.; Baer, D. S.; Owano, T. G.; Provencal, R. A.; Gupta, M.; Parsotam, V.; Graves, P.; Goldstein, A.; Guha, A.

    2010-12-01

    Development and Deployment of Mobile Emissions Laboratory for Continuous Long-Term Unattended Measurements of Greenhouse Gases, Fluxes, Isotopes and Pollutants A. Gardner(1), D. Baer (1), T. Owano (1), R. Provencal (1), V. Parsotam (1), P. Graves (1), M. Gupta (1), Allen Goldstein (2), Abhinav Guha (2) (1) Los Gatos Research, 67 East Evelyn Avenue, Suite 3, Mountain View, CA 94041-1529 (2) Department of Environmental Science, Policy, and Management, University of California at Berkeley Quantifying the Urban Fossil Fuel Plume: Convergence of top-down and bottom-up approaches (Session A54). We report on the design, development and deployment of a novel Mobile Emissions Laboratory, consisting of innovative laser-based gas analyzers, for rapid measurements of multiple greenhouse gases and pollutants. Designed for real-time mobile and stationery emissions monitoring, the Mobile Emissions Laboratory was deployed at several locations during 2010, including CalNEX 2010, Caldecott Tunnel (Oakland, CA), and Altamont Landfill (Livermore, CA), to record real-time continuous measurements of isotopic CO2 (δ13C, CO2), methane (CH4), acetylene (C2H2), nitrous oxide (N2O), carbon monoxide (CO), and isotopic water vapor (H2O; δ18O, δ2H). The commercial gas analyzers are based on novel cavity-enhanced laser absorption spectroscopy. The portable analyzers provide measurements in real time, require about 150 watts (each) of power and do not need liquid nitrogen to operate. These instruments have been applied in the field for applications that require high data rates (for eddy correlation flux), wide dynamic range (e.g., for chamber flux and other applications with concentrations that can be 10-1000 times higher than typical ambient levels) and highest accuracy (atmospheric monitoring stations). The Mobile Emissions Laboratory, which contains onboard batteries for long-term unattended measurements without access to mains power, can provide regulatory agencies, monitoring stations

  18. Coping With Global Warming

    OpenAIRE

    Jan-Erik Lane

    2015-01-01

    The process of globalization that has framed developments in the societies on Planet Earth the last decades will be supplanted by the climate change process, which no country can evade. It amounts to a set of giant forces shaping the environment, the economies and the politics of the world. It is somehow believed that the process of change can be controlled by halting the increase in greenhouse gases so that average global temperature would only augment by 2 degrees. This is a dire illusion, ...

  19. Joint implementation: Biodiversity and greenhouse gas offsets

    Science.gov (United States)

    Cutright, Noel J.

    1996-11-01

    One of the most pressing environmental issues today is the possibility that projected increases in global emissions of greenhouse gases from increased deforestation, development, and fossil-fuel combustion could significantly alter global climate patterns. Under the terms of the United Nations Framework Convention on Climate Change, signed in Rio de Janeiro during the June 1992 Earth Summit, the United States and other industrialized countries committed to balancing greenhouse gas emissions at 1990 levels in the year 2000. Included in the treaty is a provision titled “Joint Implementation,” whereby industrialized countries assist developing countries in jointly modifying long-term emission trends, either through emission reductions or by protecting and enhancing greenhouse gas sinks (carbon sequestration). The US Climate Action Plan, signed by President Clinton in 1993, calls for voluntary climate change mitigation measures by various sectors, and the action plan included a new program, the US Initiative on Joint Implementation. Wisconsin Electric decided to invest in a Jl project because its concept encourages creative, cost-effective solutions to environmental problems through partnering, international cooperation, and innovation. The project chosen, a forest preservation and management effort in Belize, will sequester more than five million tons of carbon dioxide over a 40-year period, will become economically selfsustaining after ten years, and will have substantial biodiversity benefits.

  20. If Canada is serious about reducing greenhouse gases, we need nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    Lemieux, C.

    2003-07-01

    Canada's energy options are reviewed in light of the need to find practical solutions to supply the nation's growing demand for power, coupled with equally pressing need to reduce greenhouse gas emissions to meet Kyoto commitments, and to do so without costing Canadians jobs and economic disaster. Among the options available -- renewable, hydro, fossil fuels, nuclear -- nuclear power is identified as the only one that promises to meet the growing demand for power without the practical, economic and environmental disadvantages associated with the alternatives. Based on Canadian experience with nuclear power in the past, it is pointed out that between 1971 and 2000 Canada, by using nuclear fuel, has averted the production of 32 million tonnes of acid gases, millions of tonnes of other pollutants and well over a billion tonnes of carbon dioxide, while producing only 14 per cent of its energy requirements from nuclear fuel. The principal argument made is that given our position as the world's leading supplier of uranium to electric utilities, the safety record of our CANDU reactors, and the fact that nuclear power is one of the cleanest large-scale energy source, nuclear power has the potential to make significant contribution to Canada's ability to meet its future energy requirements, and achieve the GHG emission reduction targets imposed by the Kyoto Agreement, without causing serious harm to the economy. The author goes as far as to say that without serious consideration being given to nuclear power, Canada has no chance even to come close to its Kyoto greenhouse emission targets without disastrous consequences to the economy.

  1. Long-term scenarios for global energy demand and supply. Four global greenhouse mitigation scenarios. Final report

    International Nuclear Information System (INIS)

    Soerensen, B.; Meibom, P.; Kuemmel, B.

    1999-01-01

    The scenario method is used to investigate energy demand and supply systems for the 21st century. A geographical information system (GIS) is employed to assess the spatial match between supply and demand, and the robustness of the scenario against changes in assumptions is discussed, for scenarios using fossil fuels without carbon dioxide emissions, nuclear fuels with reduced accident and proliferation risks, and renewable energy from local and from more centralised installations: The year 2050 demand scenario is based on a very high goal satisfaction in all regions of the world, for the middle UN population projection. All energy efficiency measures that are technically ready and economic today are assumed in effect by year 2050. An increased fraction of total activities are assumed to occur in non-material sectors. Technical, economic and implementation issues are discussed, including the resilience to changes in particularly demand assumptions and the type of framework that would allow energy policy to employ any of (or a mix of) the scenario options. Results are presented as average energy flows per unit of land area. This geographically based presentation method gives additional insights, particularly for the dispersed renewable energy systems, but in all cases it allows to identify the need for energy transmission and trade between regions, and to display it in a visually suggestive fashion. The scenarios are examples of greenhouse mitigation scenarios, all characterised by near-zero emissions of greenhouse gases to the atmosphere. All are more expensive than the present system, but only if the cost of the negative impacts from the current system is neglected. As options for global energy policy during the next decades, the clean fossil and the renewable energy options (possibly in combination) are the only realistic ones, because the safe nuclear option requires research and development that most likely will take longer time, if it can at all be carried

  2. Long-term scenarios for global energy demand and supply. Four global greenhouse mitigation scenarios. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, B; Meibom, P [Technical Univ. of Denmark, Lyngby (Denmark); Kuemmel, B [Royal Agricultural and Veterinary Univ., Tastrup (Denmark)

    1999-01-01

    The scenario method is used to investigate energy demand and supply systems for the 21st century. A geographical information system (GIS) is employed to assess the spatial match between supply and demand, and the robustness of the scenario against changes in assumptions is discussed, for scenarios using fossil fuels without carbon dioxide emissions, nuclear fuels with reduced accident and proliferation risks, and renewable energy from local and from more centralised installations: The year 2050 demand scenario is based on a very high goal satisfaction in all regions of the world, for the middle UN population projection. All energy efficiency measures that are technically ready and economic today are assumed in effect by year 2050. An increased fraction of total activities are assumed to occur in non-material sectors. Technical, economic and implementation issues are discussed, including the resilience to changes in particularly demand assumptions and the type of framework that would allow energy policy to employ any of (or a mix of) the scenario options. Results are presented as average energy flows per unit of land area. This geographically based presentation method gives additional insights, particularly for the dispersed renewable energy systems, but in all cases it allows to identify the need for energy transmission and trade between regions, and to display it in a visually suggestive fashion. The scenarios are examples of greenhouse mitigation scenarios, all characterised by near-zero emissions of greenhouse gases to the atmosphere. All are more expensive than the present system, but only if the cost of the negative impacts from the current system is neglected. As options for global energy policy during the next decades, the clean fossil and the renewable energy options (possibly in combination) are the only realistic ones, because the safe nuclear option requires research and development that most likely will take longer time, if it can at all be carried

  3. Mobility as a territorial key factor in the emission of greenhouse gases; La movilidad como factor territorial dominante en la emision de gases de efecto invernadero

    Energy Technology Data Exchange (ETDEWEB)

    Crespo Garcia, L.; Montane Lopez, M. M.; Garcia Cortes, A.; Jimenez Arroyo, F.

    2011-07-01

    Transport and energy generation are the two dominant sectors in the overall balance of energy consumption, and thus of greenhouse gases emissions. Placement of energy generation plants responds to strategic reasons relate to energy supply in the Spanish territory, while transport is an economic activity tightly related to the productive structure and territorial characteristics: density of populations, geographic situation, efficient space organization, etc. The analysis of these factors enables to prioritize different strategies according the their energetic efficiency in order to pursue an economy less dependent of fossil fuels, focused in activities of higher added value and that keeps in mind limits and strengths of Spanish reality. (Author) 9 refs.

  4. Steps toward a cooler greenhouse

    International Nuclear Information System (INIS)

    Kerr, R.A.

    1991-01-01

    In April a committee of the National Academies of Science and Engineering and the Institute of Medicine urged the Bush Administration and Congress to begin cutting emissions of greenhouse gases immediately. The risk of delay is great, and the cost of insurance against disastrous climate warming is cheap. Now the committee's panel on mitigation has issued a 500-page report describing just how cheap that hedge against a climate calamity could be. The panel found that it would not be unreasonable to expect that a 25% reduction in US greenhouse gas emissions might be achieved at a cost of less than $10 per ton of carbon dioxide or its equivalent in other greenhouse gases. In more familiar terms, that considerable reduction in greenhouse emissions would cost about $4.75 for each barrel of oil burned or $0.11 per gallon of gasoline. The most cost-effective measures for reducing emissions, are increasing the energy efficiency of residential and commercial buildings and activities, vehicles, and industrial processes that use electricity

  5. Greenhouse effect

    International Nuclear Information System (INIS)

    Lepetit, J.P.

    1992-01-01

    This book speaks about the growth of greenhouse gases content in the atmosphere and try to forecast the different scenarios which may happen. But, in spite of international cooperation and coordinated research programs, nobody owns the answer. So possible future climatic changes depend on the behavior of the concerned actors. A review of energy policy driven by USA, Japan, Sweden, United Kingdom and Federal Republic of Germany is given. Political management of this file and public opinion in front of greenhouse effect are also described. 7 refs., 3 figs., 6 tabs

  6. Recycling of paper: Accounting of greenhouse gases and global warming contributions

    DEFF Research Database (Denmark)

    Merrild, Hanna Kristina; Damgaard, Anders; Christensen, Thomas Højlund

    2009-01-01

    that the GHG contributions from the upstream activities and operational activities, with global warming factors (GWFs) of respectively 1 to 29 and 3 to 9 kg CO2-eq. tonne— 1 paper waste, were small in comparison wih the downstream activities. The GHG contributions from the downstream reprocessing of the paper...

  7. Environmental policy and the greenhouse effect

    International Nuclear Information System (INIS)

    Weenink, J.B.

    1993-01-01

    Emissions, resulting from human activity, are substantially increasing the atmospheric concentration of greenhouse gases. This is causing an additional average warming of the Earth's surface. This article presents an overview of recent developments in the international discussion on climate change, taking into account the work of other organizations such as the Intergovernmental Panel on Climate Change (IPCC). The long term and global character of the climate change problem requires an international long term strategy based on internationally agreed principles such as sustainable development and the precautionary principle. Research is needed to further develop risk assessment and environmental quality standards, from which emission targets can be derived. As a first step, governments of many industrialized countries have already set provisional national CO 2 emission targets, aimed at stabilization at present levels by the year 2000 and in some cases, reductions thereafter. Under the auspices of United Nations, negotiations have begun on an international framework climate convention and associated agreements, on, for example, greenhouse gas emissions, forestry and funding mechanisms. Obligations imposed on individual nations may be expected to reflect their responsibility for greenhouse warming; this paper presents some views on the equity of burden sharing. 17 refs., 5 tabs

  8. Biomass fuel burning and its implications: Deforestation and greenhouse gases emissions in Pakistan

    International Nuclear Information System (INIS)

    Tahir, S.N.A.; Rafique, M.; Alaamer, A.S.

    2010-01-01

    Pakistan is facing problem of deforestation. Pakistan lost 14.7% of its forest habitat between 1990 and 2005 interval. This paper assesses the present forest wood consumption rate by 6000 brick kilns established in the country and its implications in terms of deforestation and emission of greenhouse gases. Information regarding consumption of forest wood by the brick kilns was collected during a manual survey of 180 brick kiln units conducted in eighteen provincial divisions of country. Considering annual emission contributions of three primary GHGs i.e., CO 2 , CH 4 and N 2 O, due to burning of forest wood in brick kiln units in Pakistan and using IPCC recommended GWP indices, the combined CO 2 -equivalent has been estimated to be 533019 t y -1 . - Consumption of forest wood in the brick industry poses the problem of deforestation in Pakistan in addition to release of GHGs in the environment owing to biomass burning.

  9. The Greenhouse Effect and Built Environment Education.

    Science.gov (United States)

    Greenall Gough, Annette; Gough, Noel

    The greenhouse effect has always existed. Without the greenhouse effect, Earth could well have the oven-like environment of Venus or the deep-freeze environment of Mars. There is some debate about how much the Earth's surface temperature will rise given a certain amount of increase in the amount of greenhouse gases such as carbon dioxide, nitrous…

  10. Full energy chain analysis of greenhouse gas emissions from different energy sources

    International Nuclear Information System (INIS)

    Vate, J.F. van de

    1996-01-01

    The field of work of the Advisory Group Meeting/Workshop, i.e. full-energy chain emissions of greenhouse gases, is defined, and its environment, i.e. the Earth Summit -the 1992 UN Conference on Environment and Development in Rio-, is discussed. It is inferred that countries that ratified the Earth Summit's Convention on Climate Change have committed themselves to lower the greenhouse gas emissions from their energy use, and that this can be done most effectively by accounting in energy planning for the full-energy chain emissions of all greenhouse gases. The scatter in literature values of greenhouse gas emission factors of the full energy chain of individual energy sources is discussed. The scatter among others is due to different analytical methods, data bases and system boundaries, and due to neglect of the non-CO 2 greenhouse gases and professional biases. Generic values for greenhouse gas emission factors of energy and materials use are proposed. (author). 10 refs, 2 tabs

  11. Modeling the global society-biosphere-climate system : Part 2: Computed scenarios

    NARCIS (Netherlands)

    Alcamo, J.; Van Den Born, G.J.; Bouwman, A.F.; De Haan, B.J.; Klein Goldewijk, K.; Klepper, O.; Krabec, J.; Leemans, R.; Olivier, J.G.J.; Toet, A.M.C.; De Vries, H.J.M.; Van Der Woerd, H.J.

    1994-01-01

    This paper presents scenarios computed with IMAGE 2.0, an integrated model of the global environment and climate change. Results are presented for selected aspects of the society-biosphere-climate system including primary energy consumption, emissions of various greenhouse gases, atmospheric

  12. Recycling of metals: accounting of greenhouse gases and global warming contributions

    DEFF Research Database (Denmark)

    Damgaard, Anders; Larsen, Anna Warberg; Christensen, Thomas Højlund

    2009-01-01

    at the MRF as well as indirect downstream activities in terms of reprocessing of the metal scrap and savings in terms of avoided production of virgin metal. The global warming factor (GWF) shows that upstream activities and the MRF causes negligible GHG emissions (12.8 to 52.6 kg CO2-equivalents tonne—1...

  13. Impacts of sugarcane agriculture expansion over low-intensity cattle ranch pasture in Brazil on greenhouse gases.

    Science.gov (United States)

    Bento, Camila Bolfarini; Filoso, Solange; Pitombo, Leonardo Machado; Cantarella, Heitor; Rossetto, Raffaella; Martinelli, Luiz Antonio; do Carmo, Janaina Braga

    2018-01-15

    Sugarcane is a widespread bioenergy crop in tropical regions, and the growing global demand for renewable energy in recent years has led to a dramatic expansion and intensification of sugarcane agriculture in Brazil. Currently, extensive areas of low-intensity pasture are being converted to sugarcane, while management in the remaining pasture is becoming more intensive, i.e., includes tilling and fertilizer use. In this study, we assessed how such changes in land use and management practices alter emissions of greenhouse gases (GHG) such as CO 2 , N 2 O and CH 4 by measuring in situ fluxes for one year after conversion from low-intensity pasture to conventional sugarcane agriculture and management-intensive pasture. Results show that CO 2 and N 2 O fluxes increased significantly in pasture and sugarcane with tillage, fertilizer use, or both combined. Emissions were highly variable for all GHGs, yet, cumulatively, it was clear that annual emissions in CO 2 -equivalent (CO 2 -eq) were higher in management-intense pasture and sugarcane than in unmanaged pasture. Surprisingly, tilled pasture with fertilizer (management-intensive pasture) resulted in higher CO 2 -eq emissions than conventional sugarcane. We concluded that intensification of pasture management and the conversion of pasture to sugarcane can increase the emission factor (EF) estimated for sugarcane produced in Brazil. The role of management practices and environmental conditions and the potential for reducing emissions are discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Greenhouse gas emissions related to Dutch food consumption

    NARCIS (Netherlands)

    Kramer, KJ; Moll, HC; Nonhebel, S; Wilting, HC

    The consumption of food products involves emissions of greenhouse gases. Emissions occur in the various stages of the life cycle of food products. In this paper we discuss the greenhouse gas emissions, CO2, CH4, and N2O, related to Dutch household food consumption. Combinations of greenhouse gas

  15. Climate Change and the Greenhouse Effect - Nature and Humans

    Science.gov (United States)

    Alevizos, Anastasios; Zygouras, Grigorios

    2014-05-01

    In this project twenty A grade students of Lyceum (age 16) were involved (2011-12) and had been learning to give answers to questions about greenhouse gases, their origin and the processes forming them with regard to human activity on our planet and our dependence on fossil fuels. They had considered whether and how this dependence affects global warming, how this dependence can be reduced by changing attitudes and using renewable energy sources and further more they had put questions and doubts about anthropogenic global warming existence. The student dialogues during a '' TV series debate '' concerning the views, questions and answers of three groups, the ''IPCCs'', the ''CLIMATE SCEPTICS'' and the '' REALISTS'' are exposed on a poster.

  16. A global meta-analysis on the impact of management practices on net global warming potential and greenhouse gas intensity from cropland soils

    Science.gov (United States)

    Agricultural practices contribute significant amount of greenhouse gas (GHG) emissions, but little is known about their effects on net global warming potential (GWP) and greenhouse gas intensity (GHGI) that account for all sources and sinks of carbon dioxide emissions per unit area or crop yield. Se...

  17. Sustainable supply of global energy needs and greenhouse gas reductions

    International Nuclear Information System (INIS)

    Miller, A.I.; Duffey, R.B.

    2009-01-01

    Nuclear plants emit virtually no greenhouse gases over their full life-cycle. Consequently, continued operation of existing nuclear plants is recognized as essential to meeting even the modest greenhouse gas reduction targets of the Kyoto Accord. However, much expanded nuclear deployment will be needed as developing economies aggressively grow GDP with its associated growth in electrical power. Projecting to 2040 and based on the scenarios of the United Nations Intergovernmental Panel on Climate Change's (IPCC), we have examined deploying increased non-carbon energy sources for electricity production, including further conversion of electricity to hydrogen using conventional low-temperature water electrolysis. Our NuWind model has been used to calculate the production costs for hydrogen in typical potential markets, using the actual prices of electricity paid by the Alberta Power Pool and by the Ontario Grid. The analysis shows clearly that by optimizing the co-production of hydrogen and electricity (referred to as the H2/e process) the cost for hydrogen produced can comfortably meet the US Department of Energy's target for realistic nuclear investment costs, hydrogen generation systems, and wind capacity factors. The synergy of nuclear plus wind power for hydrogen generation plus co-production of electricity improves the economics of harnessing wind energy to produce hydrogen. (author)

  18. Observational determination of the greenhouse effect

    Science.gov (United States)

    Raval, A.; Ramanathan, V.

    1989-01-01

    Satellite measurements are used to quantify the atmospheric greenhouse effect, defined here as the infrared radiation energy trapped by atmospheric gases and clouds. The greenhouse effect is found to increase significantly with sea surface temperature. The rate of increase gives compelling evidence for the positive feedback between surface temperature, water vapor and the greenhouse effect; the magnitude of the feedback is consistent with that predicted by climate models. This study demonstrates an effective method for directly monitoring, from space, future changes in the greenhouse effect.

  19. Switching to a U.S. hydrogen fuel cell vehicle fleet: The resultant change in emissions, energy use, and greenhouse gases

    Science.gov (United States)

    Colella, W. G.; Jacobson, M. Z.; Golden, D. M.

    This study examines the potential change in primary emissions and energy use from replacing the current U.S. fleet of fossil-fuel on-road vehicles (FFOV) with hybrid electric fossil fuel vehicles or hydrogen fuel cell vehicles (HFCV). Emissions and energy usage are analyzed for three different HFCV scenarios, with hydrogen produced from: (1) steam reforming of natural gas, (2) electrolysis powered by wind energy, and (3) coal gasification. With the U.S. EPA's National Emission Inventory as the baseline, other emission inventories are created using a life cycle assessment (LCA) of alternative fuel supply chains. For a range of reasonable HFCV efficiencies and methods of producing hydrogen, we find that the replacement of FFOV with HFCV significantly reduces emission associated with air pollution, compared even with a switch to hybrids. All HFCV scenarios decrease net air pollution emission, including nitrogen oxides, volatile organic compounds, particulate matter, ammonia, and carbon monoxide. These reductions are achieved with hydrogen production from either a fossil fuel source such as natural gas or a renewable source such as wind. Furthermore, replacing FFOV with hybrids or HFCV with hydrogen derived from natural gas, wind or coal may reduce the global warming impact of greenhouse gases and particles (measured in carbon dioxide equivalent emission) by 6, 14, 23, and 1%, respectively. Finally, even if HFCV are fueled by a fossil fuel such as natural gas, if no carbon is sequestered during hydrogen production, and 1% of methane in the feedstock gas is leaked to the environment, natural gas HFCV still may achieve a significant reduction in greenhouse gas and air pollution emission over FFOV.

  20. Analysis of the influence of the expansion of the South American electric system in emissions of greenhouse gases; Analise da influencia da expansao do sistema eletrico Sul-Americano nas emissoes de gases de efeito estufa

    Energy Technology Data Exchange (ETDEWEB)

    Castagna, Annemarlen Gehrke [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil); Blesl, Markus [Institute of Economics and the Rational Use of Energie (IER), Stuttgart (Germany)

    2010-07-01

    South America combines economic and population growth with a consequent rapid increase in electricity demand. This can only be covered by building new power plants, use of the remaining renewable potential and expansion of transmission lines. The expansion of supply in all regions, with reliable generation and transmission systems is the greatest challenge for the continent in order to reduce social differences and not to curb economic development. To support the energy planning the application of system models represents useful method. This paper intends to analyze the expansion effect of power plant parks in regard of greenhouse gases emissions using a regionalized model system 'TIMES (The Integrated Markal - EFOM System)'. The model includes 10 South American countries (Argentina, Brazil, Bolivia, Chile, Colombia, Ecuador, Paraguay, Peru, Uruguay and Venezuela) with their respective power parks and transmission lines, demand divided in sectors, potential use of renewable energy sources, gas pipelines and possibilities of new interconnections within and between countries. As results are obtained the future installed capacity and generation according the energy use, greenhouse gases emissions, as well as the investments needed to expand the electric system in different scenarios. (author)

  1. Pakistan: Preliminary National Greenhouse Gas Inventory | KHAN ...

    African Journals Online (AJOL)

    PROMOTING ACCESS TO AFRICAN RESEARCH ... The gases covered in the inventory are the direct greenhouse gases (carbon ... Industrial processes, Agriculture, Land?use change and forestry and Waste (guided by Intergovernmental Panel on Climate Change). ... EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT

  2. Slow Light Based On-Chip High Resolution Fourier Transform Spectrometer For Geostationary Imaging of Atmospheric Greenhouse Gases, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Fourier transform spectroscopy (FTS) in infrared wavelength range is an effective measure for global greenhouse gas monitoring. However, conventional FTS instruments...

  3. A comparative analysis of methodology for inventory of greenhouse gases emissions - IPCC and CORINAIR

    International Nuclear Information System (INIS)

    Vasilev, Kh.

    1998-01-01

    The inventory of greenhouse gases (GHG) is performed by two accepted methods - CORINAIR (of EU) and IPCC (of UN Intergovernmental Panel on Climate Changes). The first one is applied only in European countries, the second is conformable to GHG emissions from all over the world. The versions IPCC-95 and CORINAIR94 are compared from theoretical and methodological point of view. In Bulgaria the version CORINAIR95 is not applied yet and the inventory analysis for 1994 uses CORINAIR90. The emissions of main GHG and gases-precursors are compared. The main elements of inventory are analyzed. The values recommended by CORINAIR94 are taken into account. A table for accordance between the two methods is used. The differences concerning transport vehicles are taken into account also. Differences between the two methods are noticed in the following directions: nomenclature of the activities emitting GHG; organization of the inventory guides; kind of the activities and technologies included. The qualitative comparison are done for energy sector and for industry separately. The results show too big differences in the volume of the emitted GHG and the reasons could be classified as methodological ones and differences in the kind and values of the emission coefficients. For their determining standard values for Eastern Europe from IPCC guide have been applied as well as data from experimental investigations. Respectively, in the method CORINAIR emission coefficients CORINAIR90 are used. The differences between the emission coefficients determined in the two methods are as big as twice or even more for CO at solid fuels, i.g. at energy production; as big as three times at NO x and up to twenty times at methane also at solid fuels. The two methods do not read the emissions of gases-precursors at some industrial processes. This disadvantage is overcome at IPCC96 and it is necessary to complement the emission coefficients in the data base, especially for gases-precursors regarding the

  4. Teachers and Students Knowledge about Global Warming: A Study in Smoke Disaster Area of Indonesia

    Science.gov (United States)

    Rosidin, Undang; Suyatna, Agus

    2017-01-01

    The average temperature on the Earth's surface has globally increased. This issue was generally caused by the increasing of greenhouse gases concentrations due to human activities. Therefore, the knowledge about global warming becomes major topics for students and educators. This research aimed to investigate how the teachers and students…

  5. The greenhouse effect and energy efficiency: some facts and figures

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    Human activities are changing the composition of the atmosphere. In particular the burning of fossil fuels emits carbon dioxide, one of the so-called ''greenhouse gases'' that help maintain the Earth's surface at a temperature suitable for life. They transmit incoming sunlight but trap outgoing radiated heat. Levels of greenhouse gases are increasing, giving rise to concern that the world may warm further, leading to climate change. Energy efficiency can make an important contribution to controlling the greenhouse effect, and brings further benefits for industry and commerce through cost savings. 17 figs

  6. Greenhouse gas contribution of municipal solid waste collection: A case study in the city of Istanbul, Turkey.

    Science.gov (United States)

    Korkut, Nafiz E; Yaman, Cevat; Küçükağa, Yusuf; Jaunich, Megan K; Demir, İbrahim

    2018-02-01

    This article estimates greenhouse gas emissions and global warming factors resulting from collection of municipal solid waste to the transfer stations or landfills in Istanbul for the year of 2015. The aim of this study is to quantify and compare diesel fuel consumption and estimate the greenhouse gas emissions and global warming factors associated with municipal solid waste collection of the 39 districts of Istanbul. Each district's greenhouse gas emissions resulting from the provision and combustion of diesel fuel was estimated by considering the number of collection trips and distances to municipal solid waste facilities. The estimated greenhouse gases and global warming factors for the districts varied from 61.2 to 2759.1 t CO 2 -eq and from 4.60 to 15.20 kg CO 2 -eq t -1 , respectively. The total greenhouse gas emission was estimated as 46.4E3 t CO 2 -eq. Lastly, the collection data from the districts was used to parameterise a collection model that can be used to estimate fuel consumption associated with municipal solid waste collection. This mechanistic model can then be used to predict future fuel consumption and greenhouse gas emissions associated with municipal solid waste collection based on projected population, waste generation, and distance to transfer stations and landfills. The greenhouse gas emissions can be reduced by decreasing the trip numbers and trip distances, building more transfer stations around the city, and making sure that the collection trucks are full in each trip.

  7. Combustion efficiency: Greenhouse gas emission reductions from the power generation sector

    Energy Technology Data Exchange (ETDEWEB)

    Kane, R.; South, D.W.; Fish, A.L. [Argonne National Laboratory, Upton, IL (United States)

    1993-12-31

    Concern for the possibility of an enhanced greenhouse effect and global climate change (GCC) has often been associated with energy use in general, and fossil fuel combustion in particular, because of associated emissions of CO{sub 2} and other greenhouse gases (GHG). Therefore, energy policies play a significant role in determining greenhouse gas emissions. The generation of electricity and power from more efficient fossil energy technologies provides an opportunity to significantly lower GHG emissions, together with other pollutants. The U.S. government oversees a broad-based program to facilitate the development, demonstration, and deployment of these technologies. Advanced fossil technologies offer other benefits as well, in that they permit continued use of widely available fuels such as coal. An international perspective is critical for assessing the role of these fuels, since countries differ in terms of their ability to maximize these benefits. Often, new technologies are considered the domain of industrialized countries. Yet more efficient technologies may have their greatest potential - to concurrently permit the utilization of indigenous fuels and to lower global GHG emissions in developing countries, especially those in the Asia-Pacific region.

  8. Greenhouse Gas Emissions From Cattle

    Directory of Open Access Journals (Sweden)

    Podkówka Zbigniew

    2015-03-01

    Full Text Available Cattle produce greenhouse gases (GHG which lead to changes in the chemical composition of the atmosphere. These gases which cause greenhouse effect include: methane (CH4, nitrous oxide (N2O, nitrogen oxides (NOx, sulphur dioxide (SO2, ammonia (NH3, dust particles and non-methane volatile organic compounds, commonly described as other than methane hydrocarbons. Fermentation processes taking place in the digestive tract produce ‘digestive gases’, distinguished from gases which are emitted during the decomposition of manure. Among these digestive gases methane and non-methane volatile organic compounds are of particular relevance importance. The amount of gases produced by cows can be reduced by choosing to rear animals with an improved genetically based performance. A dairy cow with higher production efficiency, producing milk with higher protein content and at the same time reduced fat content emits less GHG into the environment. Increasing the ratio of feed mixtures in a feed ration also reduces GHG emissions, especially of methane. By selection of dairy cows with higher production efficiency and appropriate nutrition, the farm's expected milk production target can be achieved while at the same time, the size of the herd is reduced, leading to a reduction of GHG emissions.

  9. Gases emissions of Green house Effect in Colombia

    International Nuclear Information System (INIS)

    Gonzalez B, Fabio

    1999-01-01

    Colombia when signing the agreement mark of the united nations for the global change in 1992 and to ratify it in 1996 committed, together with the other signatory countries, to elaborate and to publish national inventories of anthropogenic emissions of green house gases and plans for its reduction and control. In this reference mark a group of professionals inside the Colombian academy of exact, physical and natural sciences, began in July of 1995, the national inventory of greenhouse gases for Colombia, having the approval of the ministry of the environment, the financial support of the organization of German technical cooperation GTZ and the technical consultantship of the work group that it is carrying out the study in the case of Venezuela. This article presents a summary of the results of the project, making emphasis in the main anthropogenic activities responsible for these emissions, especially those related with the energetic sector

  10. Climate and greenhouse effect gas: glaciated archives data

    International Nuclear Information System (INIS)

    Lorius, C.

    1991-01-01

    Ice caps in Antarctica or Greenland have recorded the anthropogenic effect on atmospheric composition and especially on greenhouse effect gases such as carbon dioxide and methane. 2000 meter depth drilling samples allowed to study the climates for 150 000 years ago; hot and cold climates are ruled by periodic movement of the Earth around the sun and by more or less elevated concentration of greenhouse effect gases in the atmosphere. Prospects for to morrow climates and anthropogenic contribution are then possible [fr

  11. A Global Meta-Analysis on the Impact of Management Practices on Net Global Warming Potential and Greenhouse Gas Intensity from Cropland Soils

    Science.gov (United States)

    Sainju, Upendra M.

    2016-01-01

    Management practices, such as tillage, crop rotation, and N fertilization, may affect net global warming potential (GWP) and greenhouse gas intensity (GHGI), but their global impact on cropland soils under different soil and climatic conditions need further evaluation. Available global data from 57 experiments and 225 treatments were evaluated for individual and combined effects of tillage, cropping systems, and N fertilization rates on GWP and GHGI which accounted for CO2 equivalents from N2O and CH4 emissions with or without equivalents from soil C sequestration rate (ΔSOC), farm operations, and N fertilization. The GWP and GHGI were 66 to 71% lower with no-till than conventional till and 168 to 215% lower with perennial than annual cropping systems, but 41 to 46% greater with crop rotation than monocroppping. With no-till vs. conventional till, GWP and GHGI were 2.6- to 7.4-fold lower when partial than full accounting of all sources and sinks of greenhouse gases (GHGs) were considered. With 100 kg N ha-1, GWP and GHGI were 3.2 to 11.4 times greater with partial than full accounting. Both GWP and GHGI increased curvilinearly with increased N fertilization rate. Net GWP and GHGI were 70 to 87% lower in the improved combined management that included no-till, crop rotation/perennial crop, and reduced N rate than the traditional combined management that included conventional till, monocopping/annual crop, and recommended N rate. An alternative soil respiration method, which replaces ΔSOC by soil respiration and crop residue returned to soil in the previous year, similarly reduced GWP and GHGI by 133 to 158% in the improved vs. the traditional combined management. Changes in GWP and GHGI due to improved vs. traditional management varied with the duration of the experiment and inclusion of soil and climatic factors in multiple linear regressions improved their relationships. Improved management practices reduced GWP and GHGI compared with traditional management

  12. A Global Meta-Analysis on the Impact of Management Practices on Net Global Warming Potential and Greenhouse Gas Intensity from Cropland Soils.

    Science.gov (United States)

    Sainju, Upendra M

    2016-01-01

    Management practices, such as tillage, crop rotation, and N fertilization, may affect net global warming potential (GWP) and greenhouse gas intensity (GHGI), but their global impact on cropland soils under different soil and climatic conditions need further evaluation. Available global data from 57 experiments and 225 treatments were evaluated for individual and combined effects of tillage, cropping systems, and N fertilization rates on GWP and GHGI which accounted for CO2 equivalents from N2O and CH4 emissions with or without equivalents from soil C sequestration rate (ΔSOC), farm operations, and N fertilization. The GWP and GHGI were 66 to 71% lower with no-till than conventional till and 168 to 215% lower with perennial than annual cropping systems, but 41 to 46% greater with crop rotation than monocroppping. With no-till vs. conventional till, GWP and GHGI were 2.6- to 7.4-fold lower when partial than full accounting of all sources and sinks of greenhouse gases (GHGs) were considered. With 100 kg N ha-1, GWP and GHGI were 3.2 to 11.4 times greater with partial than full accounting. Both GWP and GHGI increased curvilinearly with increased N fertilization rate. Net GWP and GHGI were 70 to 87% lower in the improved combined management that included no-till, crop rotation/perennial crop, and reduced N rate than the traditional combined management that included conventional till, monocopping/annual crop, and recommended N rate. An alternative soil respiration method, which replaces ΔSOC by soil respiration and crop residue returned to soil in the previous year, similarly reduced GWP and GHGI by 133 to 158% in the improved vs. the traditional combined management. Changes in GWP and GHGI due to improved vs. traditional management varied with the duration of the experiment and inclusion of soil and climatic factors in multiple linear regressions improved their relationships. Improved management practices reduced GWP and GHGI compared with traditional management

  13. Reducing greenhouses and the temperature history of earth and Mars

    Science.gov (United States)

    Sagan, C.

    1977-01-01

    It has been suggested that NH3 and other reducing gases were present in the earth's primitive atmosphere, enhancing the global greenhouse effect; data obtained through isotopic archeothermometry support this hypothesis. Computations have been applied to the evolution of surface temperatures on Mars, considering various bolometric albedos and compositions. The results are of interest in the study of Martian sinuous channels which may have been created by aqueous fluvial errosion, and imply that clement conditions may have previously occurred on Mars, and may occur in the future.

  14. Monitoring variation in greenhouse gases concentration in urban environment of Delhi.

    Science.gov (United States)

    Sahay, Samraj; Ghosh, Chirashree

    2013-01-01

    Cities across the globe are considered as major anthropogenic sources of greenhouse gases (GHG), yet very few efforts has been made to monitor ambient concentration of GHG in cities, especially in a developing country like India. Here, variations in the ambient concentrations of carbon dioxide (CO(2)) and methane (CH(4)) in residential, commercial, and industrial areas of Delhi are determined from fortnightly daytime observations from July, 2008 to March, 2009. Results indicate that the average daytime ambient concentration of CO(2) varied from 495 to 554 ppm in authorized residential areas, 503 to 621 ppm in the slums or jhuggies in the unauthorized residential areas, 489 to 582 ppm in commercial areas, and 512 to 568 ppm in industrial areas with an average of 541 ± 27 ppm. CH(4) concentration varied from 652 to 5,356 ppbv in authorized residential areas, 500 to 15,220 ppbv in the unauthorized residential areas, 921 to 11,000 ppbv in the commercial areas, and 250 to 2,550 ppbv in the industrial areas with an average of 3,226 ± 1,090 ppbv. A low mid-afternoon CO(2) concentration was observed at most of the sites, primarily due to strong biospheric photosynthesis coupled with strong vertical mixing.

  15. Multi-layer Retrievals of Greenhouse Gases from a Combined Use of GOSAT TANSO-FTS SWIR and TIR

    Science.gov (United States)

    Kikuchi, N.; Kuze, A.; Kataoka, F.; Shiomi, K.; Hashimoto, M.; Suto, H.; Knuteson, R. O.; Iraci, L. T.; Yates, E. L.; Gore, W.; Tanaka, T.; Yokota, T.

    2016-12-01

    The TANSO-FTS sensor onboard GOSAT has three frequency bands in the shortwave infrared (SWIR) and the fourth band in the thermal infrared (TIR). Observations of high-resolution spectra of reflected sunlight in the SWIR are extensively utilized to retrieve column-averaged concentrations of the major greenhouse gases such as carbon dioxide (XCO2) and methane (XCH4). Although global XCO2 and XCH4 distribution retrieved from SWIR data can reduce the uncertainty in the current knowledge about sources and sinks of these gases, information on the vertical profiles would be more useful to constrain the surface flux and also to identify the local emission sources. Based on the degrees of freedom for signal, Kulawik et al. (2016, IWGGMS-12 presentation) shows that 2-layer information on the concentration of CO2 can be extracted from TANSO-FTS SWIR measurements, and the retrieval error is predicted to be about 5 ppm in the lower troposphere. In this study, we present multi-layer retrievals of CO2 and CH4 from a combined use of measurements of TANSO-FTS SWIR and TIR. We selected GOSAT observations at Railroad Valley Playa in Nevada, USA, which is a vicarious calibration site for TANSO-FTS, as we have various ancillary data including atmospheric temperature and humidity taken by a radiosonde, surface temperature, and surface emissivity with a ground based FTS. All of these data are useful especially for retrievals using TIR spectra. Currently, we use the 700-800 cm-1 and 1200-1300 cm-1 TIR windows for CO2 and CH4 retrievals, respectively, in addition to the SWIR bands. We found that by adding TIR windows, 3-layer information can be extracted, and the predicted retrieval error in the CO2 concentration was reduced about 1 ppm in the lower troposphere. We expect that the retrieval error could be further reduced by optimizing TIR windows and by reducing systematic forward model errors.

  16. Quantifying the Sources and Sinks of Greenhouse Gases: What Does It Take to Satisfy Scientific and Decision-Making Needs?

    Science.gov (United States)

    Davis, K. J.; Keller, K.; Ogle, S. M.; Smith, S.

    2014-12-01

    Changes in the sources and sinks of greenhouse gases (GHGs) are key drivers of anthropogenic climate change. It is hence not surprising that current and emerging U.S. governmental science priorities and programs focused on climate change (e.g. a U.S. Carbon Cycle Science Plan; the U.S. Carbon Cycle Science Program, the U.S. Global Change Research Program, Executive Order 13653 'Preparing the U.S. for the Impacts of Climate Change') all call for an improved understanding of these sources and sinks.. Measurements of the total atmospheric burden of these gases are well established, but measurements of their sources and sinks are difficult to make over spatial and temporal scales that are relevant for scientific and decisionmaking needs. Quantifying the uncertainty in these measurements is particularly challenging. This talk reviews the intersection of the state of knowledge of GHG sources and sinks, focusing in particular on CO2 and CH4, and science and decision-making needs for this information. Different science and decision-making needs require differing levels of uncertainty. A number of high-priority needs (early detection of changes in the Earth system, projections of future climate, support of markets or regulations) often require a high degree of accuracy and/or precision. We will critically evaluate current U.S. planning to documents to infer current perceived needs for GHG source/sink quantification, attempting to translate these needs into quantitative uncertainty metrics. We will compare these perceived needs with the current state of the art of GHG source/sink quantification, including the apparent pattern of systematic differences between so-called "top down" and "bottom-up" flux estimates. This comparison will enable us to identify where needs can be readily satisfied, and where gaps in technology exist. Finally, we will examine what steps could be taken to close existing gaps.

  17. Climate, greenhouse effect, energy

    International Nuclear Information System (INIS)

    Henriksen, Thormod; Kanestroem, Ingolf

    2001-01-01

    The book has sections on the sun as energy source, the earth climate and it's changes and factors influencing this, the greenhouse effect on earth and other planets, greenhouse gases and aerosols and their properties and importance, historic climate and paleoclimate, climatic models and their uses and limitations, future climate, consequences of climatic changes, uncertainties regarding the climate and measures for reducing the greenhouse effect. Finally there are sections on energy and energy resources, the use, sources such as fossil fuels, nuclear power, renewable resources, heat pumps, energy storage and environmental aspects and the earth magnetic field is briefly surveyed

  18. Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems.

    Science.gov (United States)

    Herrero, Mario; Havlík, Petr; Valin, Hugo; Notenbaert, An; Rufino, Mariana C; Thornton, Philip K; Blümmel, Michael; Weiss, Franz; Grace, Delia; Obersteiner, Michael

    2013-12-24

    We present a unique, biologically consistent, spatially disaggregated global livestock dataset containing information on biomass use, production, feed efficiency, excretion, and greenhouse gas emissions for 28 regions, 8 livestock production systems, 4 animal species (cattle, small ruminants, pigs, and poultry), and 3 livestock products (milk, meat, and eggs). The dataset contains over 50 new global maps containing high-resolution information for understanding the multiple roles (biophysical, economic, social) that livestock can play in different parts of the world. The dataset highlights: (i) feed efficiency as a key driver of productivity, resource use, and greenhouse gas emission intensities, with vast differences between production systems and animal products; (ii) the importance of grasslands as a global resource, supplying almost 50% of biomass for animals while continuing to be at the epicentre of land conversion processes; and (iii) the importance of mixed crop–livestock systems, producing the greater part of animal production (over 60%) in both the developed and the developing world. These data provide critical information for developing targeted, sustainable solutions for the livestock sector and its widely ranging contribution to the global food system.

  19. Collection, transfer and transport of waste: accounting of greenhouse gases and global warming contribution

    DEFF Research Database (Denmark)

    Eisted, Rasmus; Larsen, Anna Warberg; Christensen, Thomas Højlund

    2009-01-01

    ) emissions were quantified. The emission factors were assigned a global warming potential (GWP) and aggregated into global warming factors (GWFs), which express the potential contribution to global warming from collection, transport and transfer of 1 tonne of wet waste. Six examples involving collection...

  20. Synthetic greenhouse gases under control

    International Nuclear Information System (INIS)

    Horisberger, B.; Karlaganis, G.

    2003-01-01

    This article discusses new Swiss regulations on the use of synthetic materials that posses a considerable greenhouse-warming potential. Synthetic materials such as hydro-chlorofluorocarbons HCFCs, perfluoride-hydrocarbons and sulphur hexafluoride have, in recent years, replaced chlorofluorocarbons CFCs, which were banned on account of their ozone depletion characteristics. The use of these persistent substances is now being limited to applications where more environment-friendly alternatives are not available. The measures decreed in the legislation, which include a general ban on HCFCs as of 2004 and a ban on the export of installations and equipment that use ozone-depleting refrigerants are described. Details on the legislation's effects on the Swiss refrigeration industry are listed and discussed

  1. Decoupling of greenhouse gas emissions from global agricultural production

    DEFF Research Database (Denmark)

    Bennetzen, Eskild Hohlmann; Smith, Pete; Porter, John Roy

    2016-01-01

    Since 1970 global agricultural production has more than doubled; contributing ~1/4 of total anthropogenic greenhouse gas (GHG) burden in 2010. Food production must increase to feed our growing demands, but to address climate change, GHG emissions must decrease. Using an identity approach, we...... estimate and analyse past trends in GHG emission intensities from global agricultural production and land-use change and project potential future emissions. The novel Kaya-Porter identity framework deconstructs the entity of emissions from a mix of multiple sources of GHGs into attributable elements...... to increase food security whilst reducing emissions. The identity approach presented here could be used as a methodological framework for more holistic food systems analysis....

  2. Greenhouse effect contributions of US landfill methane

    International Nuclear Information System (INIS)

    Augenstein, D.

    1991-01-01

    The greenhouse effect has recently been receiving a great deal of scientific and popular attention. The term refers to a cause-and-effect relationship in which ''heat blanketing'' of the earth, due to trace gas increases in the atmosphere, is expected to result in global warming. The trace gases are increasing as the result of human activities. Carbon dioxide (CO 2 ) is the trace gas contributing most importantly to the ''heat blanketing'' and currently receives the most attention. Less widely recognized has been the high importance of methane (CH 4 ). Methane's contribution to the increased heat blanketing occurring since 1980 is estimated to be over a third as much as that of carbon dioxide. Gas from landfills has in turn been recognized to be a source of methane to the atmospheric buildup. However the magnitude of the landfill methane contribution, and the overall significance of landfill methane to the greenhouse phenomenon has been uncertain and the subject of some debate. (Author)

  3. The use of biofuels to mitigate global warming

    International Nuclear Information System (INIS)

    Ackerson, M.D.; Clausen, E.C.; Gaddy, J.L.

    1993-01-01

    This planet is habitable because of the warming effect because trace gases in the atmosphere that absorb and trap longer IR wavelengths reradiated from the Earth's surface. These trace greenhouse gases include carbon dioxide (CO 2 ), water vapor, methane (CH 4 ) halocarbons, nitrogen oxides (N 2 O), and ozone (O 3 ). CO 2 concentrations in the atmosphere are rising at the rate of about 0.5%/year (Smith, 1988). As the levels of greenhouse gases increase, more solar radiation is trapped and the Earth's temperature increases. Measurements show that the average global temperature has risen only about 1 degrees F, but the problem appears to be accelerating. The 5 warmest years have occurred in the last decade, with 1987 the warmest. Although the consequences are not yet clear, many scientists predict radial climatic changes, with melting of the polar ice caps and the creation of vast deserts. It is recognized that the increase in greenhouse gases is largely due to fossil fuel use, as well as changing land use. While deforestation and land exploitation have been responsible for high CO 2 emissions in the past, these sources will be comparatively small in the future, since the rate of deforestation will decline. Hence, future trends in the atmospheric CO 2 concentration will depend primarily upon fossil energy usage. Except for a short period following the 1973 oil embargo, world CO 2 emissions from combustion of fossil fuels have increased about 3%/year during the last 40 years, to about 24 billion ton in 1988. The US consumes one third of the world's energy, and contributes about one fourth of the CO 2 emissions, or 6 billion ton/year. Clearly the energy policies of the US will have a significant influence on potential global warming

  4. An environmental and economic evaluation of pyrolysis for energy generation in Taiwan with endogenous land greenhouse gases emissions.

    Science.gov (United States)

    Kung, Chih-Chun; McCarl, Bruce A; Chen, Chi-Chung

    2014-03-11

    Taiwan suffers from energy insecurity and the threat of potential damage from global climate changes. Finding ways to alleviate these forces is the key to Taiwan's future social and economic development. This study examines the economic and environmental impacts when ethanol, conventional electricity and pyrolysis-based electricity are available alternatives. Biochar, as one of the most important by-product from pyrolysis, has the potential to provide significant environmental benefits. Therefore, alternative uses of biochar are also examined in this study. In addition, because planting energy crops would change the current land use pattern, resulting in significant land greenhouse gases (GHG) emissions, this important factor is also incorporated. Results show that bioenergy production can satisfy part of Taiwan's energy demand, but net GHG emissions offset declines if ethanol is chosen. Moreover, at high GHG price conventional electricity and ethanol will be driven out and pyrolysis will be a dominant technology. Fast pyrolysis dominates when ethanol and GHG prices are low, but slow pyrolysis is dominant at high GHG price, especially when land GHG emissions are endogenously incorporated. The results indicate that when land GHG emission is incorporated, up to 3.8 billion kWh electricity can be produced from fast pyrolysis, while up to 2.2 million tons of CO2 equivalent can be offset if slow pyrolysis is applied.

  5. Influence of meteorology and interrelationship with greenhouse gases (CO2 and CH4) at a sub-urban site of India

    Science.gov (United States)

    Sreenivas, G.; Mahesh, P.; Subin, J.; Kanchana, A. L.; Rao, P. V. N.; Dadhwal, V. K.

    2015-12-01

    Atmospheric greenhouse gases (GHGs) such as carbon dioxide (CO2) and methane (CH4) are important climate forcing agents due to their significant impact on the climate system. The present study brings out first continuous measurements of atmospheric GHG's using high precision Los Gatos Research's-greenhouse gas analyser (LGR-GGA) over Shadnagar, a suburban site of Central India during the period 2014. The annual mean of CO2 and CH4 over the study region is found to be 394 ± 2.92 and 1.92 ± 0.07 ppm (mean, μ ± 1 SD, σ) respectively. CO2 and CH4 showed a significant seasonal variation during the study period with maximum (minimum) CO2 observed during Pre-monsoon (Monsoon), while CH4 recorded maximum during post-monsoon and minimum in monsoon. A consistent diurnal mixing ratio of these gases is observed with high (low) during night (afternoon) hours throughout the study period. Influences of prevailing meteorology (air temperature, wind speed, wind direction and relative humidity) on GHG's have also been investigated. CO2 and CH4 showed a strong positive correlation during winter, pre-monsoon, monsoon and post-monsoon with R equal to 0.80, 0.80, 0.61 and 0.72 respectively. It implies the seasonal variations in source-sink mechanisms of CO2 and CH4. Present study also confirms implicitly the presence OH radicals as a major sink of CH4 over the study region.

  6. The Greenhouse Effect - Re-examination of the Impact of an Increase in Carbon Dioxide in the Atmosphere

    Science.gov (United States)

    Underwood, T. G.

    2017-12-01

    Examination of the radiation budget at the surface of the Earth shows that there are three factors affecting the surface temperature; the amount of solar radiation absorbed by the atmosphere and by the surface respectively, and the amount of leakage of infrared radiation emitted from the surface directly into space. If there were no leakage, the upwelling infrared radiation from the Earth's surface would be equal to the incoming solar radiation absorbed by the atmosphere plus twice the solar radiation absorbed by the surface. This results from the summation of a sequence of equal upward and downward re-emissions of infrared radiation absorbed by the atmosphere following the initial absorption of solar radiation. At current levels of solar absorption, this would result in total upwelling radiation of approximately 398.6 W/m2, or a maximum surface temperature of 16.4°C. Allowing for leakage of infrared radiation through the atmospheric window, the resulting emission from the Earth's surface is reduced to around 396 W/m2, corresponding to the current average global surface temperature of around 15.9°C. Absorption of solar and infrared radiation by greenhouse gases is determined by the absorption bands for the respective gases and their concentrations. Absorption of incoming solar radiation is largely by water vapor and ozone, and an increase in absorption would reduce not increase the surface temperature. Moreover, it is probable that all emitted infrared radiation that can be absorbed by greenhouse gases, primarily water vapor, with a small contribution from carbon dioxide and ozone, is already fully absorbed, and the leakage of around 5.5 % corresponds to the part of the infrared red spectrum that is not absorbed by greenhouse gases. The carbon dioxide absorption bands, which represent a very small percentage of the infrared spectrum, are most likely fully saturated. In these circumstances, increased concentrations of greenhouse gases, and carbon dioxide in

  7. Greenhouse gas emissions in the Netherlands 1990-1996: Updated methodology

    NARCIS (Netherlands)

    Spakman J; Olivier JGJ; Loon MMJ van; LAE

    1997-01-01

    This inventory of greenhouse gas emissions in the Netherlands has been prepared according to the IPCC Guidelines and complies with the obligations under the European Union's Greenhouse Gas Monitoring Mechanism and the UN-FCCC for emission reports on greenhouse gases not covered under the Montreal

  8. The potentional of renewable energy sources for greenhouse gases emissions reduction in Macedonia

    Directory of Open Access Journals (Sweden)

    Dedinec Aleksandar

    2012-01-01

    Full Text Available As European Union (EU candidate country, Macedonia is in the process of adoption of the EU strategic energy policies, harmonization of the national legislation with the EU legislation and defining the respective national goals. In this regard, the government has recently adopted a National Strategy for Utilization of Renewable Energy Sources (RES, prepared by ICEIM-MANU. The main goal of this paper is to assess the potential for greenhouse gases (GHG emissions reduction by implementation of 21%-RES-scenarios from the Strategy. The corresponding emissions reduction is calculated against the baseline (reference scenario developed within the Second National Communication on Climate Change. Furthermore, all potential RES technologies are analyzed from economic aspect and combined in a form of emissions reduction cost curve, displaying the total marginal cost of the GHG emissions reduction by RES. Finally, on the bases of the environmental and economic effectiveness of the considered RES technologies, as well as taking into account the country specific barriers, the priority actions for GHG emissions reduction are identified.

  9. Overview of existing studies on full-energy-chain (FENCH) emissions of greenhouse gases

    International Nuclear Information System (INIS)

    Vate, J.F. van de

    1996-01-01

    Literature on investigations into full-energy-chain emissions of greenhouse gases is scanty. Fourteen different studies are reviewed most of which deal with energy use only in parts of the fuel chain or with CO 2 only. The scatter in full-energy-chain emissions factors of individual energy sources is not very large, except that in the emission factors of gas-fired power, biomass-fueled power and hydropower generation. The sources of this scatter are discussed. Fossil fuels have emission factors in the range of 500-1200 g CO 2 equiv./kW(e).h. Wind, nuclear and geothermal power generation are in the range of low emission factors: 10-70 g CO 2 equiv./kW(e).h. Emission factors of hydropower and sustainable biomass-fueled power generation range 10-400 and 40-180 g CO 2 equiv./kW(e).h, resp. The solar and ocean power generating sources are in the range of 100-300 g CO 2 equiv./kW(e).h. (author). 14 refs, 2 figs, 3 tabs

  10. Future Climate Impacts of Direct Radiative Forcing Anthropogenic Aerosols, Tropospheric Ozone, and Long-lived Greenhouse Gases

    Science.gov (United States)

    Chen, Wei-Ting; Liao, Hong; Seinfeld, John H.

    2007-01-01

    Long-lived greenhouse gases (GHGs) are the most important driver of climate change over the next century. Aerosols and tropospheric ozone (O3) are expected to induce significant perturbations to the GHG-forced climate. To distinguish the equilibrium climate responses to changes in direct radiative forcing of anthropogenic aerosols, tropospheric ozone, and GHG between present day and year 2100, four 80-year equilibrium climates are simulated using a unified tropospheric chemistry-aerosol model within the Goddard Institute for Space Studies (GISS) general circulation model (GCM) 110. Concentrations of sulfate, nitrate, primary organic (POA) carbon, secondary organic (SOA) carbon, black carbon (BC) aerosols, and tropospheric ozone for present day and year 2100 are obtained a priori by coupled chemistry-aerosol GCM simulations, with emissions of aerosols, ozone, and precursors based on the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenario (SRES) A2. Changing anthropogenic aerosols, tropospheric ozone, and GHG from present day to year 2100 is predicted to perturb the global annual mean radiative forcing by +0.18 (considering aerosol direct effects only), +0.65, and +6.54 W m(sup -2) at the tropopause, and to induce an equilibrium global annual mean surface temperature change of +0.14, +0.32, and +5.31 K, respectively, with the largest temperature response occurring at northern high latitudes. Anthropogenic aerosols, through their direct effect, are predicted to alter the Hadley circulation owing to an increasing interhemispheric temperature gradient, leading to changes in tropical precipitation. When changes in both aerosols and tropospheric ozone are considered, the predicted patterns of change in global circulation and the hydrological cycle are similar to those induced by aerosols alone. GHG-induced climate changes, such as amplified warming over high latitudes, weakened Hadley circulation, and increasing precipitation over the

  11. Impact of equatorial and continental airflow on primary greenhouse gases in the northern South China Sea

    International Nuclear Information System (INIS)

    Ou-Yang, Chang-Feng; Yen, Ming-Cheng; Lin, Neng-Huei; Lin, Tang-Huang; Wang, Jia-Lin; Schnell, Russell C; Lang, Patricia M; Chantara, Somporn

    2015-01-01

    Four-year ground-level measurements of the two primary greenhouse gases (carbon dioxide (CO 2 ) and methane (CH 4 )) were conducted at Dongsha Island (DSI), situated in the northern South China Sea (SCS), from March 2010 to February 2014. Their mean mixing ratios are calculated to be 396.3 ± 5.4 ppm and 1863.6 ± 50.5 ppb, with an annual growth rate of +2.19 ± 0.5 ppm yr –1 and +4.70 ± 4.4 ppb yr –1 for CO 2 and CH 4 , respectively, over the study period. Our results suggest that the Asian continental outflow driven by the winter northeast monsoon could have brought air pollutants into the northern SCS, as denoted by significantly elevated levels of 6.5 ppm for CO 2 and 59.6 ppb for CH 4 , which are greater than the marine boundary layer references at Cape Kumukahi (KUM) in the tropical northern Pacific in January. By contrast, the summertime CH 4 at DSI is shown to be lower than that at KUM by 19.7 ppb, whereas CO 2 is shown to have no differences (<0.42 ppm in July) during the same period. Positive biases of the Greenhouse Gases Observing Satellite (GOSAT) L4B data against the surface measurements are estimated to be 2.4 ± 3.4 ppm for CO 2 and 43.2 ± 36.8 ppb for CH 4 . The satellite products retrieved from the GOSAT showed the effects of anthropogenic emissions and vegetative sinks on land on a vertical profiling basis. The prevailing southeasterly winds originating from as far south as the equator or Southern Hemisphere pass through the lower troposphere in the northern SCS, forming a tunnel of relatively clean air masses as indicated by the low CH 4 mixing ratios observed on the DSI in summer. (letter)

  12. Elements for a policy of greenhouse effect gases reduction; Elements pour une politique de reduction des emissions de gaz a effet de serre

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-01-15

    In the framework of the ''Grenelle de l'environnement'' on the fight against the greenhouse effect gases, the authors aim to offer propositions and recommendations for the future energy policy. They explain the possible confusions. They discuss the economic efficiency of propositions of CO{sub 2} emissions reduction, the actions propositions in the different sectors and the axis of research and development. (A.L.B.)

  13. Comparation of Greenhouse Gas Emission Disclosure Before and After Enactment of the Indonesia Act No. 17 of 2004

    Directory of Open Access Journals (Sweden)

    Yuztitya Asmaranti

    2014-12-01

    Full Text Available Indonesia, as a country with high vulnerable to the effects of global climate change due to greenhouse gas emissions, is committed to implementing the Kyoto Protocol by issuing the Law No. 17 of 2004 regulating the ratification of the Kyoto Protocol to the United Nations Framework Convention on Climate Change. On the other hand, Indonesia with the second largest tropical forest in the world is expected to contribute oxygen to protect the world's top greenhouse gas effect as the main cause of global warming. This study aims to provide empirical evidence of the extent to which the response of companies in Indonesia in addressing global warming due to carbon emissions leading to dumping greenhouse gases and what efforts done as a form of corporate social responsibility. This study found that there are differences in the disclosure of carbon emissions before and after the enactment of Indonesian Act No. 17 of 2004. However, the study also found that only about 10% of manufacturing companies in Indonesia have an action associated with a reduction in carbon emissions of the company.

  14. Greenhouse gas trading

    Energy Technology Data Exchange (ETDEWEB)

    Drazilov, P. [Natsource-Tullett Emissions Brokerage, Toronto, ON (Canada)

    2001-07-01

    Natsource-Tullett Emissions Brokerage is a market leader in natural gas, electricity, coal, and weather, emissions with a total of more than $2 billion by volume in emissions transactions in the United States, Canada, Australia, Japan, and Europe. This power point presentation addressed issues dealing with global warming, the Kyoto Protocol, and explained where we are in terms of reaching commitments for the first compliance period between 2008-2012. The paper focused on international emissions trading (IET), joint implementation (JI) and the clean development mechanism (CDM) and explained how greenhouse gases are traded. Emissions trading refers to the trade of carbon dioxide, methane, nitrous oxides, perfluoro-carbons, hydrofluorocarbons, and sulphur hexafluorides. The motivational drivers for trading were outlined in terms of liability for buyers and assets for sellers. To date, trading activity is nearly 120 transactions with nearly 70 million tons of carbon dioxide equivalent. tabs., figs.

  15. Heat-Wave Effects on Oxygen, Nutrients, and Phytoplankton Can Alter Global Warming Potential of Gases Emitted from a Small Shallow Lake.

    Science.gov (United States)

    Bartosiewicz, Maciej; Laurion, Isabelle; Clayer, François; Maranger, Roxane

    2016-06-21

    Increasing air temperatures may result in stronger lake stratification, potentially altering nutrient and biogenic gas cycling. We assessed the impact of climate forcing by comparing the influence of stratification on oxygen, nutrients, and global-warming potential (GWP) of greenhouse gases (the sum of CH4, CO2, and N2O in CO2 equivalents) emitted from a shallow productive lake during an average versus a heat-wave year. Strong stratification during the heat wave was accompanied by an algal bloom and chemically enhanced carbon uptake. Solar energy trapped at the surface created a colder, isolated hypolimnion, resulting in lower ebullition and overall lower GWP during the hotter-than-average year. Furthermore, the dominant CH4 emission pathway shifted from ebullition to diffusion, with CH4 being produced at surprisingly high rates from sediments (1.2-4.1 mmol m(-2) d(-1)). Accumulated gases trapped in the hypolimnion during the heat wave resulted in a peak efflux to the atmosphere during fall overturn when 70% of total emissions were released, with littoral zones acting as a hot spot. The impact of climate warming on the GWP of shallow lakes is a more complex interplay of phytoplankton dynamics, emission pathways, thermal structure, and chemical conditions, as well as seasonal and spatial variability, than previously reported.

  16. The IAGOS-core greenhouse gas package : a measurement system for continuous airborne observations of CO2, CH4, H2O and CO

    NARCIS (Netherlands)

    Filges, Annette; Gerbig, Christoph; Chen, Huilin; Franke, Harald; Klaus, Christoph; Jordan, Armin

    2015-01-01

    Within the framework of IAGOS-ERI (In-service Aircraft for a Global Observing System - European Research Infrastructure), a cavity ring-down spectroscopy (CRDS)-based measurement system for the autonomous measurement of the greenhouse gases (GHGs) CO2 and CH4, as well as CO and water vapour was

  17. Response of greenhouse gas emissions from three types of wetland soils to simulated temperature change on the Qinghai-Tibetan Plateau

    Science.gov (United States)

    Liu, Yi; Liu, Guihua; Xiong, Ziqian; Liu, Wenzhi

    2017-12-01

    Wetlands emit a large quantity of greenhouse gases into the atmosphere and contribute significantly to global warming. The Qinghai-Tibetan Plateau, known as the ;Third Pole; of the earth, contains abundant and diverse wetlands. Due to increasing human-induced pressures such as reclamation, overgrazing and climate change, many plateau wetlands have been degraded or destroyed. Until now, the response of soil greenhouse gas emissions to extreme summer temperatures in the plateau wetlands remains unknown. In this study, we collected 36 soil samples from riverine, lacustrine and palustrine wetlands on the Qinghai-Tibetan Plateau. We compared the carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) emissions from soils incubated aerobically at 7, 12, and 19 °C. The results showed that the emissions of CH4 and N2O but not CO2 were significantly affected by the simulated temperature change. The N2O emission rate was considerably higher in palustrine wetlands compared with lacustrine and riverine wetlands. However, the CO2 and CH4 emissions did not differ significantly among the three wetland types. The ratio of CO2 to CH4 production increased with increasing incubation temperatures. The global warming potential of greenhouse gases at 19 °C was approximately 1.18 and 2.12 times greater than that at 12 and 7 °C, respectively. Our findings suggest that temperature change has a strong effect on soil greenhouse gas emissions and global warming potential of wetlands on the Qinghai-Tibetan Plateau, especially palustrine wetlands. Therefore, targeted strategies should be developed to mitigate the potential impacts of climate warming on the plateau.

  18. Global initiatives to mitigate greenhouse gas emissions

    International Nuclear Information System (INIS)

    Helme, N.; Gille, J.A.

    1994-01-01

    Joint implementation (JI) is a provision, included in the Framework Convention on Climate Change, that allows for two or more nations to jointly plan and implement a greenhouse gas or offsetting project. Joint implementation is important environmentally for two principal reasons: (1) it provides an opportunity to select projects on a global basis that maximize both greenhouse gas reduction benefits and other environmental benefits such as air pollution reduction while minimizing cost, and (2) it creates incentives for developing countries as well as multinational companies to begin to evaluate potential investments through a climate-friendly lens. While the debate on how to establish the criteria and institutional capacity necessary to encourage joint implementation projects continues in the international community, the US government is creating new incentives for US companies to develop joint implementation pilot projects now. While delegates to the United Nations' International Negotiating Committee (INC) debate whether to permit all Parties to the convention to participate in JI, opportunities in Eastern and Central Europe and the former Soviet states abound. The US has taken a leadership role in joint implementation, establishing two complementary domestic programs that allow US companies to measure, track and score their net greenhouse gas reduction achievements now. With a financial investment by three US utilities, the Center for Clean Air Policy is developing a fuel-switching and energy efficiency project in the city of Decin in the Czech Republic which offers a concrete example of what a real-world JI project could look like. The Decin project provides an ideal test case for assessing the adequacy and potential impact of the draft criteria for the US Initiative on Joint Implementation, as well as for the draft criteria prepared by the INC Secretariat

  19. EVALUATION OF SIGNIFICANT ANTHROPOGENIC SOURCES OF RADIATIVELY IMPORTANT TRACE GASES

    Science.gov (United States)

    The report is an initial evaluation of significant anthropogenic sources of radiatively important trace gases. missions of greenhouse gases from human activities--including fossil fuel combustion, industrial/agricultural activities, and transportation--contribute to the increasin...

  20. Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems

    Science.gov (United States)

    Herrero, Mario; Havlík, Petr; Valin, Hugo; Notenbaert, An; Rufino, Mariana C.; Thornton, Philip K.; Blümmel, Michael; Weiss, Franz; Grace, Delia; Obersteiner, Michael

    2013-01-01

    We present a unique, biologically consistent, spatially disaggregated global livestock dataset containing information on biomass use, production, feed efficiency, excretion, and greenhouse gas emissions for 28 regions, 8 livestock production systems, 4 animal species (cattle, small ruminants, pigs, and poultry), and 3 livestock products (milk, meat, and eggs). The dataset contains over 50 new global maps containing high-resolution information for understanding the multiple roles (biophysical, economic, social) that livestock can play in different parts of the world. The dataset highlights: (i) feed efficiency as a key driver of productivity, resource use, and greenhouse gas emission intensities, with vast differences between production systems and animal products; (ii) the importance of grasslands as a global resource, supplying almost 50% of biomass for animals while continuing to be at the epicentre of land conversion processes; and (iii) the importance of mixed crop–livestock systems, producing the greater part of animal production (over 60%) in both the developed and the developing world. These data provide critical information for developing targeted, sustainable solutions for the livestock sector and its widely ranging contribution to the global food system. PMID:24344273