WorldWideScience

Sample records for greenhouse gas warming

  1. Greenhouse gas emissions increase global warming

    OpenAIRE

    Mohajan, Haradhan

    2011-01-01

    This paper discusses the greenhouse gas emissions which cause the global warming in the atmosphere. In the 20th century global climate change becomes more sever which is due to greenhouse gas emissions. According to International Energy Agency data, the USA and China are approximately tied and leading global emitters of greenhouse gas emissions. Together they emit approximately 40% of global CO2 emissions, and about 35% of total greenhouse gases. The developed and developing industrialized co...

  2. Net global warming potential and greenhouse gas intensity

    Science.gov (United States)

    Various methods exist to calculate global warming potential (GWP) and greenhouse gas intensity (GHG) as measures of net greenhouse gas (GHG) emissions from agroecosystems. Little is, however, known about net GWP and GHGI that account for all sources and sinks of GHG emissions. Sources of GHG include...

  3. Comparing and contrasting Holocene and Eemian warm periods with greenhouse-gas-induced warming

    International Nuclear Information System (INIS)

    MacCracken, M.C.; Kutzbach, J.

    1990-01-01

    Periods of the past that are estimated to have been warmer than present are of great potential interest for comparison with simulations of future climates associated with greenhouse-gas-induced warming. Certain features of the climates of the mid-Holocene and Eemian periods, both interglacial maxima, are described. The simulated climatic responses to both types of forcing, in terms of land/ocean and latitudinal averages, are also compared. The zonal average and annual (or seasonal) average radiation fluxes associated with the different-from-present orbital conditions that existed for those interglacials are compared to the radiation flux associated with CO 2 -induced warming. There are some similarities but also significant differences in the two types of radiation flux perturbations, and there are both similarities and differences in the simulated climatic responses

  4. Net global warming potential and greenhouse gas intensity influenced by irrigation, tillage, crop rotation, and nitrogen fertilization

    Science.gov (United States)

    Little information exists about sources and sinks of greenhouse gases (GHGs) affected by management practices to account for net emissions from agroecosystems. We evaluated the effects of irrigation, tillage, crop rotation, and N fertilization on net global warming potential (GWP) and greenhouse gas...

  5. Comparison of net global warming potential and greenhouse gas intensity affected by management practices in two dryland cropping sites

    Science.gov (United States)

    Little is known about the effect of management practices on net global warming potential (GWP) and greenhouse gas intensity (GHGI) that account for all sources and sinks of greenhouse gas (GHG) emissions in dryland cropping systems. The objective of this study was to compare the effect of a combinat...

  6. Positive feedback of greenhouse gas balances to warming is determined by non-growing season emissions in an alpine meadow

    Science.gov (United States)

    Niu, S.; Wang, J.; Quan, Q.; Chen, W.; Wen, X.; Yu, G.

    2017-12-01

    Large uncertainties exist in the sources and sinks of greenhouse gases (CO2, CH4, N2O) in response to climate warming and human activity. So far, numerous previous studies have evaluated the CO2 budget, but little attention has paid to CH4 and N2O budgets and the concurrent balance of these three gases in combination, especially in the non-growing season. Here, we synthesized eddy covariance measurement with the automatic chamber measurements of CO2, CH4, and N2O exposed to three levels of temperature treatments (ambient, +1.5 °C, +2.5 °C) and two disturbance treatments (ummowing, mowing) in an alpine meadow on the Tibetan Plateau. We have found that warming caused increase in CH4 uptake and decrease in N2O emission offset little of the enhancement in CO2 emission, triggering a positive feedback to climate warming. Warming switches the ecosystem from a net sink (-17 ± 14 g CO2-eq m-2 yr-1) in the control to a net source of greenhouse gases of 94 ± 36 gCO2-eq m-2 yr-1 in the plots with +1.5 °C warming treatment, and 177 ± 6 gCO2-eq m-2 yr-1 in the plots with +2.5 °C warming treatment. The changes in the non-growing season balance, rather than those in the growing season, dominate the warming responses of annual greehouse gas balance. And this is not changed by mowing. The dominant role of responses of winter greenhouse gas balance in the positive feedback of ecosystem to climate warming highlights that greenhouse gas balance in cold season has to be considered when assessing climate-carbon cycle feedback.

  7. Greenhouse gas emissions from hydroelectric reservoirs

    International Nuclear Information System (INIS)

    Rosa, L.P.; Schaeffer, R.

    1994-01-01

    In a recent paper, Rudd et al. have suggested that, per unit of electrical energy produced, greenhouse-gas emissions from some hydroelectric reservoirs in northern Canada may be comparable to emissions from fossil-fuelled power plants. The purpose of this comment is to elaborate these issues further so as to understand the potential contribution of hydroelectric reservoirs to the greenhouse effect. More than focusing on the total budget of carbon emissions (be they in the form of CH 4 or be they in the form of CO 2 ), this requires an evaluation of the accumulated greenhouse effect of gas emissions from hydroelectric reservoirs and fossil-fuelled power plants. Two issues will be considered: (a) global warming potential (GWP) for CH 4 ; and (b) how greenhouse-gas emissions from hydroelectric power plants stand against emissions from fossil-fuelled power plants with respect to global warming

  8. A global meta-analysis on the impact of management practices on net global warming potential and greenhouse gas intensity from cropland soils

    Science.gov (United States)

    Agricultural practices contribute significant amount of greenhouse gas (GHG) emissions, but little is known about their effects on net global warming potential (GWP) and greenhouse gas intensity (GHGI) that account for all sources and sinks of carbon dioxide emissions per unit area or crop yield. Se...

  9. Greenhouse Warming Research

    DEFF Research Database (Denmark)

    Sørensen, Bent Erik

    2016-01-01

    The changing greenhouse effect caused by natural and anthropogenic causes is explained and efforts to model the behavior of the near-surface constituents of the Earth's land, ocean and atmosphere are discussed. Emissions of various substances and other aspects of human activity influence...... the greenhouse warming, and the impacts of the warming may again impact the wellbeing of human societies. Thus physical modeling of the near-surface ocean-soil-atmosphere system cannot be carried out without an idea of the development of human activities, which is done by scenario analysis. The interactive...

  10. The role of nuclear energy in mitigating greenhouse warming

    International Nuclear Information System (INIS)

    Krakowski, R.A.

    1997-01-01

    A behavioral, top-down, forced-equilibrium market model of long-term (∼ 2,100) global energy-economics interactions has been modified with a bottom-up nuclear energy model and used to construct consistent scenarios describing future impacts of civil nuclear materials flows in an expanding, multi-regional (13) world economy. The relative measures and tradeoffs between economic (GNP, tax impacts, productivity, etc.), environmental (greenhouse gas accumulations, waste accumulation, proliferation risk), and energy (resources, energy mixes, supply-side versus demand-side attributes) interactions that emerge from these analyses are focused herein on advancing understanding of the role that nuclear energy (and other non-carbon energy sources) might play in mitigating greenhouse warming. Two ostensibly opposing scenario drivers are investigated: (a) demand-side improvements in (non-price-induced) autonomous energy efficiency improvements; and (b) supply-side carbon-tax inducements to shift energy mixes towards reduced- or non-carbon forms. In terms of stemming greenhouse warming for minimal cost of greenhouse-gas abatement, and with the limitations of the simplified taxing schedule used, a symbiotic combination of these two approaches may offer advantages not found if each is applied separately

  11. Economic growth and greenhouse gas emissions

    Energy Technology Data Exchange (ETDEWEB)

    Ansuategi, Alberto [Environment Department, University of York, York (United Kingdom); Escapa, Marta [Foundations of Economic Analysis Department, University of the Basque Country, Bilbao (Spain)

    2002-01-01

    Recent empirical research has examined the relationship between certain indicators of environmental degradation and income, concluding that in some cases an inverted U-shaped relationship, which has been called an environmental Kuznets curve (EKC), exists between these variables. Unfortunately, this inverted U-shaped relationship does not hold for greenhouse gas emissions. One explanation of the absence of EKC-like behavior in greenhouse gas emissions is that greenhouse gases are special pollutants that create global, not local, disutility. But the international nature of global warming is not the only reason that prevents de-linking greenhouse gas emissions from economic growth. The intergenerational nature of the negative impact of greenhouse gas emissions may have also been an important factor preventing the implementation of greenhouse gas abatement measures in the past. In this paper we explore the effect that the presence of intergenerational spillovers has on the emissions-income relationship. We use a numerically calibrated overlapping generations model of climate-economy interactions. We conclude that: (1) the intertemporal responsibility of the regulatory agency, (2) the institutional capacity to make intergenerational transfers and (3) the presence of intergenerationally lagged impact of emissions constitute important determinants of the relationship between economic growth and greenhouse gas emissions.

  12. CF3SF5 : a ‘super’ greenhouse gas

    OpenAIRE

    Tuckett, R. P.

    2008-01-01

    One molecule of the anthropogenic pollutant trifluoromethyl sulphur pentafluoride (CF\\(_3\\)SF\\(_5\\)), an adduct of the CF\\(_3\\) and SF\\(_5\\) free radicals, causes more global warming than one molecule of any other greenhouse gas yet detected in the Earth’s atmosphere. That is, it has the highest per molecule radiative forcing of any greenhouse pollutant, and the value of its global warming potential is only exceeded by that of SF\\(_6\\). First, the greenhouse effect is described, the propertie...

  13. Technological substitution options for controlling greenhouse gas emissions

    International Nuclear Information System (INIS)

    Barbier, E.B.; Burgess, J.C.; Pearce, D.W.

    1991-01-01

    This chapter is concerned with technological options for greenhouse gas substitution. The authors interpret the term substitution to exclude energy conservation/efficiency measures, investments in afforestation (sinks), and greenhouse gas removal or abatement technologies. Their working definition of greenhouse gas substitution includes (1) replacement technologies, for example, substituting a greenhouse gas technology with a nongreenhouse gas technology; and (2) reduction technologies, for example, substituting a greenhouse gas technology with an alternative technology that reduces greenhouse gas emissions. Essentially, replacement technologies involve 100 percent reduction in CO 2 ; reduction technologies involve a partial reduction in CO 2 . Of the man-made sources of greenhouse gases, energy is the most important and is expected to contribute to at least half of the global warming effect in the near future. The majority of this impact is from fossil fuel combustion as a source of carbon dioxide (CO 2 ), although fossil fuels also contribute significantly to methane (CH 4 ), to nitrous oxide (N 2 O), and to low-level ozone (O 3 ) through production of various nitrogen gases (NO x ) and carbon monoxide (CO). This study analyzes the available greenhouse gas substitutions and their costs. The authors concentrate particularly on substitutions for fossil-fuel combustion and CFC production and consumption. They conclude by summarizing the potential for greenhouse gas substitution, the cost-effectiveness of the various options and the design of incentives for substitution

  14. Greenhouse gases and global warming

    International Nuclear Information System (INIS)

    1995-01-01

    From previous articles we have learned about the complexities of our environment, its atmosphere and its climate system. we have also learned that climate change and, therefore global warm and cool periods are naturally occurring phenomena. Moreover, all scientific evidence suggests that global warming, are likely to occur again naturally in the future. However, we have not yet considered the role of the rates of climate change in affecting the biosphere. It appears that how quickly the climate changes may be more important than the change itself. In light of this concern, let us now consider the possibility that, is due to human activity. We may over the next century experience global warming at rates and magnitudes unparalleled in recent geologic history. The following questions are answered; What can we learn from past climates? What do we know about global climates over the past 100 years? What causes temperature change? What are the greenhouse gases? How much have concentration of greenhouse gases increased in recent years? Why are increases in concentrations of greenhouse of concern? What is the e nhanced greenhouse effect ? How can human activity impact the global climate? What are some reasons for increased concentrations of greenhouse gases? What are fossil fuel and how do they transform into greenhouse gases? Who are the biggest emitters of greenhouse gases? Why are canada per capita emissions of greenhouse gases relatively high? (Author)

  15. Modeling of municipal greenhouse gas emissions. Calculation of greenhouse gas emissions and the reduction possibilities of Dutch municipalities

    NARCIS (Netherlands)

    Vries de, Willem

    2011-01-01

    Summary Municipalities represent an active governmental layer in the Netherlands. They often have ambitions to reduce greenhouse gas emissions. In this way the municipalities take responsibility to reduce the threat of global warming. To implement effect

  16. Mitigation of global warming and the role of identification of greenhouse gas sources

    International Nuclear Information System (INIS)

    Kaya, Y.

    2002-01-01

    Japan Science and Technology Corporation (JST) is an organization supporting R and D of frontier science and technologies under the full sponsorship of the government of Japan. Under the umbrella of JST the author is in charge of a program called 'Environment friendly social systems' which includes more than 20 research projects for better environment (with as an average of 1 million US dollars per project per year). One of the projects in this program is on development of isotopomer technology and its use in identifying greenhouse gas (GHG) sources headed by Prof. N.Yoshida. JST earnestly hopes that it can contribute as much as possible to mitigation of global warming through the support of important research projects such as Yoshida's. (author)

  17. Accounting for carbon cycle feedbacks in a comparison of the global warming effects of greenhouse gases

    Energy Technology Data Exchange (ETDEWEB)

    Gillett, Nathan P [Canadian Centre for Climate Modelling and Analysis, Environment Canada, University of Victoria, PO Box 1700, STN CSC, Victoria, BC, V8W 3V6 (Canada); Matthews, H Damon, E-mail: nathan.gillett@ec.gc.ca [Department of Geography, Planning and Environment, Concordia University, 1455 de Maisonneuve West, H 1255-26, Montreal, QC, H3G 1M8 (Canada)

    2010-07-15

    Greenhouse gases other than CO{sub 2} make a significant contribution to human-induced climate change, and multi-gas mitigation strategies are cheaper to implement than those which limit CO{sub 2} emissions alone. Most practical multi-gas mitigation strategies require metrics to relate the climate warming effects of CO{sub 2} and other greenhouse gases. Global warming potential (GWP), defined as the ratio of time-integrated radiative forcing of a particular gas to that of CO{sub 2} following a unit mass emission, is the metric used in the Kyoto Protocol, and we define mean global temperature change potential (MGTP) as an equivalent metric of the temperature response. Here we show that carbon-climate feedbacks inflate the GWPs and MGTPs of methane and nitrous oxide by {approx} 20% in coupled carbon-climate model simulations of the response to a pulse of 50 x 1990 emissions, due to a warming-induced release of CO{sub 2} from the land biosphere and ocean. The magnitude of this effect is expected to be dependent on the model, but it is not captured at all by the analytical models usually used to calculate metrics such as GWP. We argue that the omission of carbon cycle dynamics has led to a low bias of uncertain but potentially substantial magnitude in metrics of the global warming effect of other greenhouse gases, and we suggest that the carbon-climate feedback should be considered when greenhouse gas metrics are calculated and applied.

  18. Accounting for carbon cycle feedbacks in a comparison of the global warming effects of greenhouse gases

    International Nuclear Information System (INIS)

    Gillett, Nathan P; Matthews, H Damon

    2010-01-01

    Greenhouse gases other than CO 2 make a significant contribution to human-induced climate change, and multi-gas mitigation strategies are cheaper to implement than those which limit CO 2 emissions alone. Most practical multi-gas mitigation strategies require metrics to relate the climate warming effects of CO 2 and other greenhouse gases. Global warming potential (GWP), defined as the ratio of time-integrated radiative forcing of a particular gas to that of CO 2 following a unit mass emission, is the metric used in the Kyoto Protocol, and we define mean global temperature change potential (MGTP) as an equivalent metric of the temperature response. Here we show that carbon-climate feedbacks inflate the GWPs and MGTPs of methane and nitrous oxide by ∼ 20% in coupled carbon-climate model simulations of the response to a pulse of 50 x 1990 emissions, due to a warming-induced release of CO 2 from the land biosphere and ocean. The magnitude of this effect is expected to be dependent on the model, but it is not captured at all by the analytical models usually used to calculate metrics such as GWP. We argue that the omission of carbon cycle dynamics has led to a low bias of uncertain but potentially substantial magnitude in metrics of the global warming effect of other greenhouse gases, and we suggest that the carbon-climate feedback should be considered when greenhouse gas metrics are calculated and applied.

  19. Greenhouse gas emissions from high demand, natural gas-intensive energy scenarios

    International Nuclear Information System (INIS)

    Victor, D.G.

    1990-01-01

    Since coal and oil emit 70% and 30% more CO 2 per unit of energy than natural gas (methane), fuel switching to natural gas is an obvious pathway to lower CO 2 emissions and reduced theorized greenhouse warming. However, methane is, itself, a strong greenhouse gas so the CO 2 advantages of natural gas may be offset by leaks in the natural gas recovery and supply system. Simple models of atmospheric CO 2 and methane are used to test this hypothesis for several natural gas-intensive energy scenarios, including the work of Ausubel et al (1988). It is found that the methane leaks are significant and may increase the total 'greenhouse effect' from natural gas-intensive energy scenarios by 10%. Furthermore, because methane is short-lived in the atmosphere, leaking methane from natural gas-intensive, high energy growth scenarios effectively recharges the concentration of atmospheric methane continuously. For such scenarios, the problem of methane leaks is even more serious. A second objective is to explore some high demand scenarios that describe the role of methane leaks in the greenhouse tradeoff between gas and coal as energy sources. It is found that the uncertainty in the methane leaks from the natural gas system are large enough to consume the CO 2 advantages from using natural gas instead of coal for 20% of the market share. (author)

  20. Recent data concerning contribution of various greenhouse effect gas sources

    International Nuclear Information System (INIS)

    Lambert, G.

    1991-01-01

    The greenhouse effect contributes to a +33 degrees C warming of the earth atmosphere (mean temperature of +15 deg C instead of -18 deg C without any greenhouse effect). The roles of water vapour, carbon dioxide and methane in greenhouse effect are discussed; the CH 4 raise seems to be due to rice cultivation and cattle farming; the CO 2 raise is mainly due oil, coal and natural gas burning. Greenhouse gas increase will cause a 2 to 4 deg C increase of the earth mean temperature but the anthropogenous causes will be obviously seen only during the next century

  1. Offsetting global warming-induced elevated greenhouse gas emissions from an arable soil by biochar application.

    Science.gov (United States)

    Bamminger, Chris; Poll, Christian; Marhan, Sven

    2018-01-01

    Global warming will likely enhance greenhouse gas (GHG) emissions from soils. Due to its slow decomposability, biochar is widely recognized as effective in long-term soil carbon (C) sequestration and in mitigation of soil GHG emissions. In a long-term soil warming experiment (+2.5 °C, since July 2008) we studied the effect of applying high-temperature Miscanthus biochar (0, 30 t/ha, since August 2013) on GHG emissions and their global warming potential (GWP) during 2 years in a temperate agroecosystem. Crop growth, physical and chemical soil properties, temperature sensitivity of soil respiration (R s ), and metabolic quotient (qCO 2 ) were investigated to yield further information about single effects of soil warming and biochar as well as on their interactions. Soil warming increased total CO 2 emissions by 28% over 2 years. The effect of warming on soil respiration did not level off as has often been observed in less intensively managed ecosystems. However, the temperature sensitivity of soil respiration was not affected by warming. Overall, biochar had no effect on most of the measured parameters, suggesting its high degradation stability and its low influence on microbial C cycling even under elevated soil temperatures. In contrast, biochar × warming interactions led to higher total N 2 O emissions, possibly due to accelerated N-cycling at elevated soil temperature and to biochar-induced changes in soil properties and environmental conditions. Methane uptake was not affected by soil warming or biochar. The incorporation of biochar-C into soil was estimated to offset warming-induced elevated GHG emissions for 25 years. Our results highlight the suitability of biochar for C sequestration in cultivated temperate agricultural soil under a future elevated temperature. However, the increased N 2 O emissions under warming limit the GHG mitigation potential of biochar. © 2017 John Wiley & Sons Ltd.

  2. The ice-core record - Climate sensitivity and future greenhouse warming

    Science.gov (United States)

    Lorius, C.; Raynaud, D.; Jouzel, J.; Hansen, J.; Le Treut, H.

    1990-01-01

    The prediction of future greenhouse-gas-warming depends critically on the sensitivity of earth's climate to increasing atmospheric concentrations of these gases. Data from cores drilled in polar ice sheets show a remarkable correlation between past glacial-interglacial temperature changes and the inferred atmospheric concentration of gases such as carbon dioxide and methane. These and other palaeoclimate data are used to assess the role of greenhouse gases in explaining past global climate change, and the validity of models predicting the effect of increasing concentrations of such gases in the atmosphere.

  3. Selection of appropriate greenhouse gas mitigation options

    Energy Technology Data Exchange (ETDEWEB)

    Ramanathan, R. [Indira Ghandi Institute of Development Research, Mumbai (India)

    1999-10-01

    Greenhouse gas mitigation options help in reducing greenhouse gas emissions so as to avoid the adverse environmental impacts due to global warming/climate change. They have different characteristics when evaluated using different criteria. For example, some options may be very cost effective, while some may have an additional advantage of reducing local pollution. Hence, selection of these options, for consideration by a national government or by a funding agency, has to incorporate multiple criteria. In this paper, some important criteria relevant to the selection are discussed, and a multi-criteria methodology is suggested for making appropriate selection. The methodology, called the Analytic Hierarchy Process, is described using two illustrations. (author)

  4. A primer for trading greenhouse gas reductions from landfills

    International Nuclear Information System (INIS)

    2000-06-01

    This introductory level primer on domestic greenhouse gas emissions trading addresses the challenge of dealing with landfill gas emissions of carbon dioxide (CO 2 ) and methane (CH 4 ). It describes the first major emissions trading projects in Canada, the Pilot Emission Reduction Trading (PERT) and the Greenhouse Gas Emission Reduction Trading (GERT) pilot projects which calculate and document the GHG emission reductions that are available from landfill sites. PERT initially focused on nitrogen oxides, volatile organic compounds, carbon monoxide, sulphur dioxide and carbon dioxide. PERT uses the Clean Air Emission Reduction Registry for its emissions trading. Canada completed negotiations of the Kyoto Protocol in December 1997 along with 160 other countries. Upon ratification, Canada will commit to reducing 6 greenhouse gases by 6 per cent below 1990 levels in the period 2008 to 2012. Canada has recognized that it must reduce domestic greenhouse gas emissions to slow global warming which leads to climate change. It has been shown that the capture and destruction of landfill gas can profoundly contribute to meeting the target. One tool that can be used to help meet the objective of reducing GHG emissions is domestic GHG emission trading, or carbon trading, as a result of landfill gas capture and flaring. Landfill gas is generally composed of equal parts of carbon dioxide and methane with some other trace emissions. Accounting for quantities of greenhouse gas emissions is done in equivalent tonnes of carbon dioxide where one tonne of methane reduction is equivalent to 21 tonnes of carbon dioxide in terms of global warming potential. Organics in landfills which lead to the generation of methane are considered to be coming from renewable biomass, therefore, the collection and combustion of landfill gas is also considered to reduce GHG emissions from landfills by 100 per cent on a global basis. Destroying landfill gases can also reduce volatile organic compounds, which

  5. What to do about greenhouse warming: Look before you leap

    International Nuclear Information System (INIS)

    Singer, S.F.; Revelle, R.; Starr, C.

    1993-01-01

    Greenhouse warming has emerged as one of the most complex and controversial environmental foreign-policy issues of the 1990s. Carbon dioxide (CO 2 ), generated from the burning of oil, gas, and coal, is thought to enhance the natural greenhouse effect that has kept the planet warm for billions of years. Some scientists predict drastic climatic changes in the 21st Century. It is a foreign-policy issue because the US has taken a more cautious approach to dealing with CO 2 emissions than have many industrialized nations. Wide acceptance of the Montreal Protocol, which limits and rolls back the manufacture of chlorofluorocarbons (CFCs) to protect the ozone layer, has encouraged environmental activists at international conferences the past three years to call for similar controls on CO 2 from fossil-fuel burning. These activists are disappointed with the White House for not supporting immediate action. But should the US assume leadership in a hastily-conceived campaign that could cripple the global economy, or would it be more prudent to assure first, through scientific research, that the problem is both real and urgent? The authors sum up their conclusions in a simple message: The scientific base for a greenhouse warming is too uncertain to justify drastic action at this time. There is little risk in delaying policy responses to this century-old problem since there is every expectation that scientific understanding will be substantially improved within the next decade. Instead of premature and likely ineffective controls on fuel use that would only slow down CO 2 , the same resources could be used to increase our economic and technological resilience so that we can apply specific remedies as necessary to reduce climate change or to adapt to it. Prudent steps now include energy conservation and efficiency increases and make economic sense even without the threat of greenhouse warming

  6. Greenhouse gas contribution of municipal solid waste collection: A case study in the city of Istanbul, Turkey.

    Science.gov (United States)

    Korkut, Nafiz E; Yaman, Cevat; Küçükağa, Yusuf; Jaunich, Megan K; Demir, İbrahim

    2018-02-01

    This article estimates greenhouse gas emissions and global warming factors resulting from collection of municipal solid waste to the transfer stations or landfills in Istanbul for the year of 2015. The aim of this study is to quantify and compare diesel fuel consumption and estimate the greenhouse gas emissions and global warming factors associated with municipal solid waste collection of the 39 districts of Istanbul. Each district's greenhouse gas emissions resulting from the provision and combustion of diesel fuel was estimated by considering the number of collection trips and distances to municipal solid waste facilities. The estimated greenhouse gases and global warming factors for the districts varied from 61.2 to 2759.1 t CO 2 -eq and from 4.60 to 15.20 kg CO 2 -eq t -1 , respectively. The total greenhouse gas emission was estimated as 46.4E3 t CO 2 -eq. Lastly, the collection data from the districts was used to parameterise a collection model that can be used to estimate fuel consumption associated with municipal solid waste collection. This mechanistic model can then be used to predict future fuel consumption and greenhouse gas emissions associated with municipal solid waste collection based on projected population, waste generation, and distance to transfer stations and landfills. The greenhouse gas emissions can be reduced by decreasing the trip numbers and trip distances, building more transfer stations around the city, and making sure that the collection trucks are full in each trip.

  7. The role of clouds and oceans in global greenhouse warming. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hoffert, M.I.

    1996-10-01

    This research focuses on assessing connections between anthropogenic greenhouse gas emissions and global climatic change. it has been supported since the early 1990s in part by the DOE ``Quantitative Links`` Program (QLP). A three-year effort was originally proposed to the QLP to investigate effects f global cloudiness on global climate and its implications for cloud feedback; and to continue the development and application of climate/ocean models, with emphasis on coupled effects of greenhouse warming and feedbacks by clouds and oceans. It is well-known that cloud and ocean processes are major sources of uncertainty in the ability to predict climatic change from humankind`s greenhouse gas and aerosol emissions. And it has always been the objective to develop timely and useful analytical tools for addressing real world policy issues stemming from anthropogenic climate change.

  8. Fighting global warming by greenhouse gas removal: destroying atmospheric nitrous oxide thanks to synergies between two breakthrough technologies.

    Science.gov (United States)

    Ming, Tingzhen; de Richter, Renaud; Shen, Sheng; Caillol, Sylvain

    2016-04-01

    Even if humans stop discharging CO2 into the atmosphere, the average global temperature will still increase during this century. A lot of research has been devoted to prevent and reduce the amount of carbon dioxide (CO2) emissions in the atmosphere, in order to mitigate the effects of climate change. Carbon capture and sequestration (CCS) is one of the technologies that might help to limit emissions. In complement, direct CO2 removal from the atmosphere has been proposed after the emissions have occurred. But, the removal of all the excess anthropogenic atmospheric CO2 will not be enough, due to the fact that CO2 outgases from the ocean as its solubility is dependent of its atmospheric partial pressure. Bringing back the Earth average surface temperature to pre-industrial levels would require the removal of all previously emitted CO2. Thus, the atmospheric removal of other greenhouse gases is necessary. This article proposes a combination of disrupting techniques to transform nitrous oxide (N2O), the third most important greenhouse gas (GHG) in terms of current radiative forcing, which is harmful for the ozone layer and possesses quite high global warming potential. Although several scientific publications cite "greenhouse gas removal," to our knowledge, it is the first time innovative solutions are proposed to effectively remove N2O or other GHGs from the atmosphere other than CO2.

  9. Amplified Arctic warming by phytoplankton under greenhouse warming.

    Science.gov (United States)

    Park, Jong-Yeon; Kug, Jong-Seong; Bader, Jürgen; Rolph, Rebecca; Kwon, Minho

    2015-05-12

    Phytoplankton have attracted increasing attention in climate science due to their impacts on climate systems. A new generation of climate models can now provide estimates of future climate change, considering the biological feedbacks through the development of the coupled physical-ecosystem model. Here we present the geophysical impact of phytoplankton, which is often overlooked in future climate projections. A suite of future warming experiments using a fully coupled ocean-atmosphere model that interacts with a marine ecosystem model reveals that the future phytoplankton change influenced by greenhouse warming can amplify Arctic surface warming considerably. The warming-induced sea ice melting and the corresponding increase in shortwave radiation penetrating into the ocean both result in a longer phytoplankton growing season in the Arctic. In turn, the increase in Arctic phytoplankton warms the ocean surface layer through direct biological heating, triggering additional positive feedbacks in the Arctic, and consequently intensifying the Arctic warming further. Our results establish the presence of marine phytoplankton as an important potential driver of the future Arctic climate changes.

  10. Greenhouse gas emissions from shale gas and coal for electricity generation in South Africa

    Directory of Open Access Journals (Sweden)

    Brett Cohen

    2014-03-01

    Full Text Available There is increased interest, both in South Africa and globally, in the use of shale gas for electricity and energy supply. The exploitation of shale gas is, however, not without controversy, because of the reported environmental impacts associated with its extraction. The focus of this article is on the greenhouse gas footprint of shale gas, which some literature suggests may be higher than what would have been expected as a consequence of the contribution of fugitive emissions during extraction, processing and transport. Based on some studies, it has been suggested that life-cycle emissions may be higher than those from coal-fired power. Here we review a number of studies and analyse the data to provide a view of the likely greenhouse gas emissions from producing electricity from shale gas, and compare these emissions to those of coal-fired power in South Africa. Consideration was given to critical assumptions that determine the relative performance of the two sources of feedstock for generating electricity � that is the global warming potential of methane and the extent of fugitive emissions. The present analysis suggests that a 100-year time horizon is appropriate in analysis related to climate change, over which period the relative contribution is lower than for shorter periods. The purpose is to limit temperature increase in the long term and the choice of metric should be appropriate. The analysis indicates that, regardless of the assumptions about fugitive emissions and the period over which global warming potential is assessed, shale gas has lower greenhouse gas emissions per MWh of electricity generated than coal. Depending on various factors, electricity from shale gas would have a specific emissions intensity between 0.3 tCO2/MWh and 0.6 tCO2/MWh, compared with about 1 tCO2/MWh for coal-fired electricity in South Africa.

  11. Global Warming: Understanding and Teaching the Forecast. Part A The Greenhouse Effect.

    Science.gov (United States)

    Andrews, Bill

    1993-01-01

    Provides information necessary for an interdisciplinary analysis of the greenhouse effect, enhanced greenhouse effect, global warming, global climate change, greenhouse gases, carbon dioxide, and scientific study of global warming for students grades 4-12. Several activity ideas accompany the information. (LZ)

  12. Energy utilization and greenhouse-gas emissions: Transportation sector, topical report

    International Nuclear Information System (INIS)

    Darrow, K.G.

    1992-06-01

    The objective of the report is to compare the emissions of greenhouse gases for alternative end-use technologies in the transportation sector. Scientists assert that global warming is occurring and will continue to occur as a result of increasing concentrations of certain gases in the atmosphere. Carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) are the focus of this analysis because they are believed to cause three-fourths of the global warming effect and because energy production and use are a significant source of these emissions. Greenhouse gas emissions in the energy sector occur during energy production, conversion, transportation and end-use. This analysis compares alternative transportation sector fuel/technology choices in terms of their total fuel-cycle emissions of greenhouse gases. The emphasis of this report is on the end use comparison. The fuel-cycle emissions comparison was developed in a companion report

  13. Policy implications of greenhouse warming: Mitigation, adaptation, and the science base

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This book discusses the policy implications of greenhouse warming by examining three major areas: general summary of information about the greenhouse effect leading to a framework for policy; the science basis for the greenhouse effect; mitigation of greenhouse warming. Each section contains 9-13 chapters on specific subjects including the following: overview of greenhouse gases; policy implications; internations considerations; climate records and models; sea levels; temperature rise estimation; energy management at several levels; nonenergy emission reduction; human populations; deforestation. Conclusions are summarized at the end of each section

  14. Man -made greenhouse gases trigger unified force to start global warming impacts referred to as climate change

    International Nuclear Information System (INIS)

    Karishnan, K.J.; Kalam, A.

    2011-01-01

    Global warming problems due to man-made greenhouse gases (GHGs), appear to be a serious concern and threat to the globe. CO/sub 2/, O/sub 3, NOx and HFC's are the main greenhouse gases and CO/sub 2/ is one of the main cause of global warming. CO/sub 2/ is emitted from burning fossil fuels to produce electricity from power plants and burning of gasoline in vehicles and airplanes. Global greenhouse gases and its sources in regions are discussed in this paper. This paper initially discusses the CO/sub 2/ emissions and the recycle of CO/sub 2/ in biodiesel. This paper mainly focuses on 'Unified Force'. The increase of H/sub 2/O in the sea due to warming of the globe triggers the 'Unified Force' or 'Self-Compressive Surrounding Pressure Force' which is proportional to the H/sub 2/O level in the sea to start global warming impacts referred to as climate change. This paper also points out the climate change and the ten surprising results of global warming. Finally, this paper suggests switching from fossil fuel technology to green energy technologies like biodiesel which recycles CO/sub 2/ emissions and also Hydrogen Energy and Fuel Cell Technologies which eradicates global warming impacts. The benefits of switching from fossil fuel to biodiesel and Hydrogen Energy utilization includes reduction of greenhouse gas emissions and pollution, economic independence by having distributed production and burning of biodiesel does not add extra CO/sub 2/ to the air that contributes global warming impacts. (author)

  15. Economic approaches to greenhouse warming

    International Nuclear Information System (INIS)

    Nordhaus, W.D.

    1991-01-01

    Global environmental problems raise a host of major policy questions. They are all scientifically complex and controversial, and no scientific consensus is likely to emerge until irreversible decisions have been made. The costs and benefits of these changes transcend national boundaries, and nations, which cannot appropriate the global costs and benefits of such changes, are unlikely to be able or willing to make efficient decisions on how to combat these global externalities. In addition, these concerns sometimes have impacts over hundreds of years and thereby strain political decision making, which often functions effectively only when the crisis is at hand. This chapter considers some of the economic issues involved in deciding how to react to the threat of global warming. The author first reviews the theory and evidence on the greenhouse effect. He then presents evidence on the impacts of greenhouse warming, the costs of stabilizing climate, and the kinds of adaptations that might be available. In the final section, he reviews the policy initiatives that nations might follow in the near term

  16. The marginal costs of greenhouse gas emissions

    International Nuclear Information System (INIS)

    Tol, R.S.J.

    1999-01-01

    Estimates of the marginal costs of greenhouse gas emissions are on important input to the decision how much society would want to spend on greenhouse gas emission reduction. Marginal cost estimates in the literature range between $5 and $25 per ton of carbon. Using similar assumptions, the FUND model finds marginal costs of $9--23/tC, depending on the discount rate. If the aggregation of impacts over countries accounts for inequalities in income distribution or for risk aversion, marginal costs would rise by about a factor of 3. Marginal costs per region are an order of magnitude smaller than global marginal costs. The ratios between the marginal costs of CO 2 and those of CH 4 and N 2 O are roughly equal to the global warming potentials of these gases. The uncertainty about the marginal costs is large and right-skewed. The expected value of the marginal costs lies about 35% above the best guess, the 95-percentile about 250%

  17. The effects of rape residue mulching on net global warming potential and greenhouse gas intensity from no-tillage paddy fields.

    Science.gov (United States)

    Zhang, Zhi-Sheng; Cao, Cou-Gui; Guo, Li-Jin; Li, Cheng-Fang

    2014-01-01

    A field experiment was conducted to provide a complete greenhouse gas (GHG) accounting for global warming potential (GWP), net GWP, and greenhouse gas intensity (GHGI) from no-tillage (NT) paddy fields with different amounts of oilseed rape residue mulch (0, 3000, 4000, and 6000 kg dry matter (DM) ha(-1)) during a rice-growing season after 3 years of oilseed rape-rice cultivation. Residue mulching treatments showed significantly more organic carbon (C) density for the 0-20 cm soil layer at harvesting than no residue treatment. During a rice-growing season, residue mulching treatments sequestered significantly more organic C from 687 kg C ha(-1) season(-1) to 1654 kg C ha(-1) season(-1) than no residue treatment. Residue mulching significantly increased emissions of CO2 and N2O but decreased CH4 emissions. Residue mulching treatments significantly increased GWP by 9-30% but significantly decreased net GWP by 33-71% and GHGI by 35-72% relative to no residue treatment. These results suggest that agricultural economic viability and GHG mitigation can be achieved simultaneously by residue mulching on NT paddy fields in central China.

  18. Recycling of plastic: accounting of greenhouse gases and global warming contributions

    DEFF Research Database (Denmark)

    Astrup, Thomas; Fruergaard, Thilde; Christensen, Thomas Højlund

    2009-01-01

    Major greenhouse gas (GHG) emissions related to plastic waste recycling were evaluated with respect to three management alternatives: recycling of clean, single-type plastic, recycling of mixed/contaminated plastic, and use of plastic waste as fuel in industrial processes. Source-separated plasti...... to a mixture of different plastic types and/or contamination, the plastic should be used for energy utilization. Recycling of plastic waste for substitution of other materials such as wood provided no savings with respect to global warming....

  19. National post-2020 greenhouse gas targets and diversity-aware leadership

    NARCIS (Netherlands)

    Meinshausen, M.; Jeffery, Louise; Guetschow, Johannes; Hoehne, N.E.; Schaeffer, M.

    2015-01-01

    Achieving the collective goal of limiting warming to below 2 °C or 1.5 °C compared to pre-industrial levels requires a transition towards a fully decarbonized world. Annual greenhouse gas emissions on such a path in 2025 or 2030 can be allocated to individual countries using a variety of allocation

  20. Global warming description using Daisyworld model with greenhouse gases.

    Science.gov (United States)

    Paiva, Susana L D; Savi, Marcelo A; Viola, Flavio M; Leiroz, Albino J K

    2014-11-01

    Daisyworld is an archetypal model of the earth that is able to describe the global regulation that can emerge from the interaction between life and environment. This article proposes a model based on the original Daisyworld considering greenhouse gases emission and absorption, allowing the description of the global warming phenomenon. Global and local analyses are discussed evaluating the influence of greenhouse gases in the planet dynamics. Numerical simulations are carried out showing the general qualitative behavior of the Daisyworld for different scenarios that includes solar luminosity variations and greenhouse gases effect. Nonlinear dynamics perspective is of concern discussing a way that helps the comprehension of the global warming phenomenon. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  1. Greenhouse gas trading

    Energy Technology Data Exchange (ETDEWEB)

    Drazilov, P. [Natsource-Tullett Emissions Brokerage, Toronto, ON (Canada)

    2001-07-01

    Natsource-Tullett Emissions Brokerage is a market leader in natural gas, electricity, coal, and weather, emissions with a total of more than $2 billion by volume in emissions transactions in the United States, Canada, Australia, Japan, and Europe. This power point presentation addressed issues dealing with global warming, the Kyoto Protocol, and explained where we are in terms of reaching commitments for the first compliance period between 2008-2012. The paper focused on international emissions trading (IET), joint implementation (JI) and the clean development mechanism (CDM) and explained how greenhouse gases are traded. Emissions trading refers to the trade of carbon dioxide, methane, nitrous oxides, perfluoro-carbons, hydrofluorocarbons, and sulphur hexafluorides. The motivational drivers for trading were outlined in terms of liability for buyers and assets for sellers. To date, trading activity is nearly 120 transactions with nearly 70 million tons of carbon dioxide equivalent. tabs., figs.

  2. Reducing the greenhouse gas footprint of shale gas

    International Nuclear Information System (INIS)

    Wang Jinsheng; Ryan, David; Anthony, Edward J.

    2011-01-01

    Shale gas is viewed by many as a global energy game-changer. However, serious concerns exist that shale gas generates more greenhouse gas emissions than does coal. In this work the related published data are reviewed and a reassessment is made. It is shown that the greenhouse gas effect of shale gas is less than that of coal over long term if the higher power generation efficiency of shale gas is taken into account. In short term, the greenhouse gas effect of shale gas can be lowered to the level of that of coal if methane emissions are kept low using existing technologies. Further reducing the greenhouse gas effect of shale gas by storing CO 2 in depleted shale gas reservoirs is also discussed, with the conclusion that more CO 2 than the equivalent CO 2 emitted by the extracted shale gas could be stored in the reservoirs at significantly reduced cost. - Highlights: ► The long-term greenhouse gas footprint of shale gas is smaller than that of coal. ► Carbon capture and storage should be considered for fossil fuels including shale gas. ► Depleted shale gas fields could store more CO 2 than the equivalent emissions. ► Linking shale gas development with CO 2 storage could largely reduce the total cost.

  3. A microclimate model to investigate greenhouse warming of a sub- Alpine ecosystem

    International Nuclear Information System (INIS)

    Shen, K.P.

    1992-01-01

    Increasing concentrations of greenhouse gases in the earth's atmosphere are expected to result in a global warming of several degrees Celsius in the coming decades. This warming will have far-reaching impacts on the biosphere, and while General Circulation Models (GCMs) try to predict the magnitude and scope of the warming, there is little information regarding the potential impacts of greenhouse warming on natural systems. An experiment currently under way in a meadow in the Colorado Rocky Mountains attempts to investigate the many consequences of greenhouse warming for soil ecosystems. A mathematical model of the soil microclimate was developed to simulate the soil temperature and moisture content of the meadow. The model simulates both treatment and control scenarios so as to investigate the potential effects of warming. Results of model simulation studies indicate warmer, drier soils under treatment conditions, with the greatest temperature effects of warming occurring at night. These results could have several implications regarding the dynamics of the ecosystem, and future model studies will investigate these connections

  4. The Effects of Rape Residue Mulching on Net Global Warming Potential and Greenhouse Gas Intensity from No-Tillage Paddy Fields

    Science.gov (United States)

    Zhang, Zhi-Sheng; Cao, Cou-Gui; Guo, Li-Jin; Li, Cheng-Fang

    2014-01-01

    A field experiment was conducted to provide a complete greenhouse gas (GHG) accounting for global warming potential (GWP), net GWP, and greenhouse gas intensity (GHGI) from no-tillage (NT) paddy fields with different amounts of oilseed rape residue mulch (0, 3000, 4000, and 6000 kg dry matter (DM) ha−1) during a rice-growing season after 3 years of oilseed rape-rice cultivation. Residue mulching treatments showed significantly more organic carbon (C) density for the 0–20 cm soil layer at harvesting than no residue treatment. During a rice-growing season, residue mulching treatments sequestered significantly more organic C from 687 kg C ha−1 season−1 to 1654 kg C ha−1 season−1 than no residue treatment. Residue mulching significantly increased emissions of CO2 and N2O but decreased CH4 emissions. Residue mulching treatments significantly increased GWP by 9–30% but significantly decreased net GWP by 33–71% and GHGI by 35–72% relative to no residue treatment. These results suggest that agricultural economic viability and GHG mitigation can be achieved simultaneously by residue mulching on NT paddy fields in central China. PMID:25140329

  5. Greenhouse gas emission factor development for coal-fired power plants in Korea

    International Nuclear Information System (INIS)

    Jeon, Eui-Chan; Myeong, Soojeong; Sa, Jae-Whan; Kim, Jinsu; Jeong, Jae-Hak

    2010-01-01

    Accurate estimation of greenhouse gas emissions is essential for developing an appropriate strategy to mitigate global warming. This study examined the characteristics of greenhouse gas emission from power plants, a major greenhouse gas source in Korea. The power plants examined use bituminous coal, anthracite, and sub-bituminous coal as fuel. The CO 2 concentration from power plants was measured using GC-FID with methanizer. The amount of carbon, hydrogen, and calorific values in the input fuel was measured using an elemental analyzer and calorimeter. For fuel analysis, CO 2 emission factors for anthracite, bituminous coal, and sub-bituminous coal were 108.9, 88.4, and 97.9 Mg/kJ, respectively. The emission factors developed in this study were compared with those for IPCC. The results showed that CO 2 emission was 10.8% higher for anthracite, 5.5% lower for bituminous coal, and 1.9% higher for sub-bituminous coal than the IPCC figures.

  6. Greenhouse gas measurements from aircraft during CARVE

    Science.gov (United States)

    Chang, R. Y.; Miller, C. E.; Dinardo, S. J.; Karion, A.; Sweeney, C.; Daube, B.; Pittman, J. V.; Miller, J. B.; Budney, J. W.; Gottlieb, E. W.; Santoni, G. W.; Kort, E. A.; Wofsy, S. C.

    2012-12-01

    Permafrost in the Arctic contain large carbon pools that are currently non-labile. As the polar regions warm, these carbon reserves can be released into the atmosphere and impact the greenhouse gas budget. In order to predict future climate scenarios, we need to understand the emissions of these greenhouse gases under varying environmental conditions. This study presents aircraft measurements made as a part of the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) which flew over Alaska from May to September 2012 and captured seasonal and spatial variations. Results from in situ cavity ring down spectroscopy measurements of CO2, CH4 and CO will be discussed and compared with aircraft measurements made during the summer of 1988 as a part of the Arctic Boundary Layer Expedition as well as relevant measurements from the HIAPER Pole-to-Pole Observations experiments (2009-2011).

  7. Greenhouse gas emissions from Swiss agriculture since 1990: implications for environmental policies to mitigate global warming

    Energy Technology Data Exchange (ETDEWEB)

    Leifeld, Jens [AGROSCOPE, Swiss Federal Research Station for Agroecology and Agriculture, Air Pollution/Climate Group, Reckenholzstrasse 191, 8046 Zurich (Switzerland)]. E-mail: jens.leifeld@fal.admin.ch; Fuhrer, Juerg [AGROSCOPE, Swiss Federal Research Station for Agroecology and Agriculture, Air Pollution/Climate Group, Reckenholzstrasse 191, 8046 Zurich (Switzerland)

    2005-08-01

    Agricultural greenhouse gas (GHG) emissions contribute significantly to global warming, and environmental protection strategies have thus to integrate emission reduction measures from this source. In Switzerland, legislation together with monetary incentives has forced primarily integrated, and to a lesser extend organic farming, both covering nowadays more than 95% of the agriculturally useful area. Though reducing greenhouse gas emissions was not a primary intention of this reorganisation, the measures were successful in reducing the overall emissions of nitrous oxide and methane by 10% relative to 1990. A reduction of the animal herd, namely of dairy cattle, non-dairy cattle and swine, and decreasing inputs of mineral N are the main contributors to the achieved emission reduction. Crop productivity was not negatively affected and milk productivity even increased, referring to the ecological potential of agricultural reorganisation that has been tapped. Total meat production declined proportional to the animal herd. Stabilised animal numbers and fertiliser use during the last 4 years refer to an exhaustion of future reduction potentials without further legislative action because this stabilisation is most likely due to the adaptation to the production guidelines. A comparison of emission trends and carbon sequestration potentials in the broader context of the EU15 reveals that nitrous oxide (N{sub 2}O) and methane (CH{sub 4}) have been reduced more efficiently most probably due to the measures taken, but that sequestration potentials are smaller than in the EU15 mainly because of differences in the agricultural structure. The change from an intensified towards a more environmental sound integrated production has a significant reduction potential, but in any case, agriculture will remain a net GHG source in spite of emission mitigation and carbon sequestration.

  8. Assessment of greenhouse gas emissions from natural gas

    International Nuclear Information System (INIS)

    Anon

    2000-01-01

    The study, 'Assesment of greenhouse gas emission from natural gas' by independent consultants Energetics Pty Ltd, shows that natural gas has significantly fewer greenhouses gas emissions than either black or brown cola for the defined life cycle stages. The life cycle emissions from natural gas use by an Australian Major User are approximately 50% less than the emissions from Victorian brown coal and approximately 38% less than the emissions from Australian average black coal. Australian Best Practice gas fired electricity generation is estimated to emit between 514 and 658 kg CO 2 e/MWh. By comparison, Australian Best Practice coal-fired electricity generation is estimated to emit between 907 and 1,246 kg CO 2 e/MWh for black and brown coal respectively. Greenhouse gas emissions from Australian Best Practice gas-fired electricity generation using combined cycle gas turbines (including full fuel cycle emissions) vary from 41% to 46% of the emissions from brown coal-fired electricity generation and 57% to 64% of emissions from black coal-fired electricity generation. Greenhouse gas emissions from direct gas supply water heating range from 1,470 to 2,042 kilograms per annum. This compares with emissions of 1,922 to 2,499 kg for electric heating from gas-fired electricity generation and 3,975 to 5,393 kg for coal-fired electricity generation. The implications for greenhouse policy nationally are also discussed, emphasising the need to review national energy policy, currently tied to 'fuel neutrality' doctrine

  9. Governance Mechanism for Global Greenhouse Gas Emissions: A Stochastic Differential Game Approach

    Directory of Open Access Journals (Sweden)

    Wei Yu

    2013-01-01

    Full Text Available Today developed and developing countries have to admit the fact that global warming is affecting the earth, but the fundamental problem of how to divide up necessary greenhouse gas reductions between developed and developing countries remains. In this paper, we propose cooperative and noncooperative stochastic differential game models to describe greenhouse gas emissions decision makings of developed and developing countries, calculate their feedback Nash equilibrium and the Pareto optimal solution, characterize parameter spaces that developed and developing countries can cooperate, design cooperative conditions under which participants buy the cooperative payoff, and distribute the cooperative payoff with Nash bargaining solution. Lastly, numerical simulations are employed to illustrate the above results.

  10. Stakeholder resource information on greenhouse gas emissions

    International Nuclear Information System (INIS)

    1997-01-01

    Some of the many measures which have already been taken by the petroleum industry to safeguard the air, land and water were described in a background paper produced by the Petroleum Communication Foundation. It is entitled 'Canada's oil and gas industry and our global environment'. This complementary report includes a brief review of greenhouse gases and related issues such as the nature of global warming, Canadian emissions in a global context, the relationship between the economy and the environment, mitigation possibilities and successes achieved by actions such as those undertaken by the Voluntary Challenge and Registry (VCR) program. Also included are notes and quotes from authoritative sources regarding emissions, emissions control and success stories. A sample presentation was also provided that could be used to discuss global warming issues with general audiences and other communication activities. figs

  11. The net greenhouse warming forcing of methanol produced from biomass

    International Nuclear Information System (INIS)

    Ellington, R.T.; Meo, M.; El-Sayed, D.A.

    1993-01-01

    Recent national and international actions regarding atmosphere warming mitigation, clean technology, and technology transfer have emphasized the need for a method for unambiguous greenhouse gas emissions analysis for comparing technologies, documentation of application of the method, and proof of applicability. We have developed and applied such an approach to production of methanol fuel from woody biomass. The system was defined, its emission for its entire lifetime delineated, and the atmospheric warming forcing calculated for that lifetime plus after effects. The results are presented with materials and energy balances including ancillary equipment, external energy subsidies and invested quantities. These extend the analysis considerably beyond those possible using the global warming potential (GWP). For wood input of 283 mg day -1 , 70 mg of methanol are produced. System carbon dioxide emissions are 3.18 tonne/tonne methanol produced, with another 1.37 mg emitted when that tonne methanol is burned in a vehicle. System energy usage efficiency was 41.2%, and 41.1% with inclusion of energy to construct the system. In essence, more than two Joules of carbon must be produced in wood for every Joule burned in the vehicle. (author)

  12. Greenhouse Gas Data Publication Tool

    Data.gov (United States)

    U.S. Environmental Protection Agency — This tool to gives you access to greenhouse gas data reported to EPA by large facilities and suppliers in the United States through EPA's Greenhouse Gas Reporting...

  13. Animal health and greenhouse gas intensity: the paradox of periparturient parasitism.

    Science.gov (United States)

    Houdijk, J G M; Tolkamp, B J; Rooke, J A; Hutchings, M R

    2017-09-01

    Here we provide the first known direct measurements of pathogen challenge impacts on greenhouse gas production, yield and intensity. Twin-rearing ewes were ad libitum fed pelleted lucerne from day -32 to 36 (day 0 is parturition), and repeatedly infected with 10,000 Teladorsagia circumcincta infective larvae (n=16), or sham-dosed with water (n=16). A third group of 16 ewes were fed at 80% of uninfected ewes' feed intake during lactation. Methane emissions were measured in respiration chambers (day 30-36) whilst total tract apparent nutrient digestibility around day 28 informed calculated manure methane and nitrous oxide emissions estimates. Periparturient parasitism reduced feed intake (-9%) and litter weight gain (-7%) and doubled maternal body weight loss. Parasitism reduced daily enteric methane production by 10%, did not affect the methane yield per unit of dry matter intake but increased the yield per unit of digestible organic matter intake by 14%. Parasitism did not affect the daily calculated manure methane and nitrous oxide production, but increased the manure methane and nitrous oxide yields per unit of dry matter intake by 16% and 4%, respectively, and per unit of digestible organic matter intake by 46% and 31%, respectively. Accounting for increased lucerne input for delayed weaning and maternal body weight loss compensation, parasitism increased the calculated greenhouse gas intensity per kg of lamb weight gain for enteric methane (+11%), manure methane (+32%) and nitrous oxide (+30%). Supplemented with the global warming potential associated with production of pelleted lucerne, we demonstrated that parasitism increased calculated global warming potential per kg of lamb weight gain by 16%, which was similar to the measured impact of parasitism on the feed conversion ratio. Thus, arising from a pathogen-induced feed efficiency reduction and modified greenhouse gas emissions, we demonstrated that ovine periparturient parasitism increases greenhouse gas

  14. Greenhouse warming and changes in sea level

    NARCIS (Netherlands)

    Oerlemans, J.

    1989-01-01

    It is likely that the anticipated warming due to the effect of increasing concentration of carbon dioxide and other greenhouse gases will lead to a further and faster rise in world mean sea level. There are many processes in the climate system controlling sea level, but the most important

  15. The greenhouse effect and climate warming up

    International Nuclear Information System (INIS)

    Leygonie, R.

    1992-01-01

    The present article is a follow-up to a previous article, under the same title, which describes the scientific bases of the greenhouse effect and the prospect, based on climatic global models, of a potential climate warming up. The conclusions of the Intergovernmental Panel on Climate Change (IPCC, August 1990) were summarized, predicting a mean global temperature increase between 2.4 and 5.1 deg C in 2070, among other changes. The recent IPCC work confirms 1990 conclusions but states that the decline of ozone in the lower stratosphere could neutralize the radiative forcing of chlorofluorocarbons. At least ten more years of investigation are needed to ascertain an increase of the greenhouse effect. Information is given on recent events which may be connected with the global climate problem, in particular the spectacular eruption of the Pinatubo volcano, in mid 1991, cause of a probable cooling of the atmosphere and a potential decrease of radiative forcing due to anthropogenic dioxide emissions. The most important recent events in the political field is a directive proposal by the European Commission aimed at a taxation of both energy in general and of carbon dioxide emissions by fossil fuels. Another event is the United Nations Convention on climate change, signed by 155 countries at the Rio de Janeiro Conference on Environment and Development, which pledges signatories to decrease their greenhouse gas - emissions but no figures are given on percentages and calendar of reduction. At last, a short chapter is devoted to the French ECLAT programme on climate change which consists both in participating in world programmes and in performing original investigations by French Scientists

  16. Multi-sectorial convergence in greenhouse gas emissions.

    Science.gov (United States)

    Oliveira, Guilherme de; Bourscheidt, Deise Maria

    2017-07-01

    This paper uses the World Input-Output Database (WIOD) to test the hypothesis of per capita convergence in greenhouse gas (GHG) emissions for a multi-sectorial panel of countries. The empirical strategy applies conventional estimators of random and fixed effects and Arellano and Bond's (1991) GMM to the main pollutants related to the greenhouse effect. For reasonable empirical specifications, the model revealed robust evidence of per capita convergence in CH 4 emissions in the agriculture, food, and services sectors. The evidence of convergence in CO 2 emissions was moderate in the following sectors: agriculture, food, non-durable goods manufacturing, and services. In all cases, the time for convergence was less than 15 years. Regarding emissions by energy use, the largest source of global warming, there was only moderate evidence in the extractive industry sector-all other pollutants presented little or no evidence. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Quantification and Controls of Wetland Greenhouse Gas Emissions

    Energy Technology Data Exchange (ETDEWEB)

    McNicol, Gavin [Univ. of California, Berkeley, CA (United States)

    2016-05-10

    Wetlands cover only a small fraction of the Earth’s land surface, but have a disproportionately large influence on global climate. Low oxygen conditions in wetland soils slows down decomposition, leading to net carbon dioxide sequestration over long timescales, while also favoring the production of redox sensitive gases such as nitrous oxide and methane. Freshwater marshes in particular sustain large exchanges of greenhouse gases under temperate or tropical climates and favorable nutrient regimes, yet have rarely been studied, leading to poor constraints on the magnitude of marsh gas sources, and the biogeochemical drivers of flux variability. The Sacramento-San Joaquin Delta in California was once a great expanse of tidal and freshwater marshes but underwent drainage for agriculture during the last two centuries. The resulting landscape is unsustainable with extreme rates of land subsidence and oxidation of peat soils lowering the surface elevation of much of the Delta below sea level. Wetland restoration has been proposed as a means to slow further subsidence and rebuild peat however the balance of greenhouse gas exchange in these novel ecosystems is still poorly described. In this dissertation I first explore oxygen availability as a control on the composition and magnitude of greenhouse gas emissions from drained wetland soils. In two separate experiments I quantify both the temporal dynamics of greenhouse gas emission and the kinetic sensitivity of gas production to a wide range of oxygen concentrations. This work demonstrated the very high sensitivity of carbon dioxide, methane, and nitrous oxide production to oxygen availability, in carbon rich wetland soils. I also found the temporal dynamics of gas production to follow a sequence predicted by thermodynamics and observed spatially in other soil or sediment systems. In the latter part of my dissertation I conduct two field studies to quantify greenhouse gas exchange and understand the carbon sources for

  18. The economics of greenhouse gas mitigation in developing Asia

    OpenAIRE

    Aleluia Reis, Lara; Emmerling, Johannes; Tavoni, Massimo; Raitzer, David

    2016-01-01

    Developing Asia has the world's fastest greenhouse gas emissions growth. This study uses an economy-energy-climate model to assess the effects of Paris Agreement pledges on Asia, in comparison with business as usual (BAU) and more ambitious scenarios. Results confirm that pledges must be strongly increased in ambition to achieve the Paris Agreement's goal of less than 2 degrees Celsius (2êC) warming. The policy costs of Asia's pledges are found to be less than 1% of gross domestic product (GD...

  19. Greenhouse gas inventories for England, Scotland, Wales and Northern Ireland: 1990 and 1995. A scoping study

    Energy Technology Data Exchange (ETDEWEB)

    Salway, A.G.; Dore, C.; Watterson, J.; Murrells, T.

    1999-11-01

    This report presents the results of a scoping study to develop a methodology to produce desegregated greenhouse gas emission inventories for the devoved administrations of the UK. Separate greenhouse gas emission inventories were estimated for England, Scotland, Wales and Northern Ireland for the years 1990 and 1995. The gases reported are carbon dioxide, methane, nitrous oxide, hydrofluorocarbons, perfluorocarbons, and SF{sub 6}. The estimates are consistent with the 1997 UK Greenhouse Gas Inventory and hence the UNFCCC reporting guidelines. Some emissions mainly mobile and offshore sources could not be allocated to any region, so an extra unallocated category was used to report these. Where possible the same methodology was used to calculate the regional emissions as for the UK Inventory. The study showed that the distribution of regional greenhouse gas emissions expressed as global warming potentials in 1995 were: England 75.5%, Scotland, 11.4%; Wales 6.4%; Northern Ireland 3.1%: unallocated, 4%. Following this scoping study, it is intended to publish annually disaggregated inventories for each year from 1990 for England, Scotland, Wales and Northern Ireland, in addition to the UK Greenhouse Gas Inventory. 50 refs., 6 figs., 16 tabs., 2 apps.

  20. The potential role of nuclear energy in greenhouse gas abatement strategies

    International Nuclear Information System (INIS)

    Cobb, J.; Cornish, E.

    2000-01-01

    Nuclear energy will make a significant contribution to meeting the world's future electricity demand while helping reduce greenhouse gas emissions. However the scale of that contribution will be strongly influenced by the way in which this contribution is recognised in national and international policies designed to tackle climate change. The debate continues to rage over the science of climate change: is climate change the result of human intervention or is it a naturally occurring phenomenon? The majority of scientists involved in this debate would agree that enhanced global warming, as witnessed in recent years, has come about as a result of the massive explosion in greenhouse gas emissions since the beginning of the industrial era. This paper will give an overview of the institutions and organisations involved in the international climate change negotiations. It will describe the political positions of different countries on their perceived role of nuclear power in mechanisms designed to reduce greenhouse gas emissions. The paper will also give an insight into the financial impact of assigning a value to carbon emissions and how that might change the relative economics of nuclear power in comparison to fossil fuel generation

  1. Environmental Accounts of the Netherlands. Greenhouse gas emissions by Dutch economic activities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-08-15

    Climate change is one of the major global challenges of our time. There is abundant scientific evidence that the emission of greenhouse gases caused by economic activities contributes to climate change. Accelerating emissions of carbon dioxide, methane, and other greenhouse gases since the beginning of the 20th century have increased the average global temperature by about 0.8C and altered global precipitation patterns. Combustion of fossil fuels, deforestation, but also specific agricultural activities and industrial processes are the main drivers of the increased emission of greenhouse gasses. Enhanced concentrations of greenhouse gasses in the atmosphere will increase global temperatures by radiative forcing. Likewise, climate change has a direct impact on all kinds of economic processes. These impacts may be positive or negative, but it is expected that the overall impact will be primarily negative. In order to design effective mitigation policies, one must have a good conception of the economic driving forces of climate change. The air emission accounts can be used to analyse the environmental implications in terms of greenhouse gas emissions, of production and consumption patterns. Because of their compatibility with the national accounts, greenhouse gas data can be directly linked to the economic drivers of global warming. There are several frameworks for estimating the greenhouse gas emissions for a country, yielding different results. Well-known are the emissions reported to the UNFCCC (United National Framework Convention on Climate Change) in particular under the Kyoto Protocol, but also environment statistics as well as the air emission accounts provide independent greenhouse gas estimates. The differences are not the result of disputes about the accuracy of the estimates themselves, but arise from different interpretations of what has to be counted. The inclusion or exclusion of certain elements depends on the concepts and definitions that underlie

  2. Agricultural sources of greenhouse gas emissions

    International Nuclear Information System (INIS)

    Rochette, P.

    2003-01-01

    The author described different sources of greenhouse gas emissions resulting from agricultural activities and the process by which carbon dioxide, nitrous oxide, and methane are generated on Canadian farms. The author also proposed some practices that would contribute to the reduction of greenhouse gas emissions. A brief description of the greenhouse effect was also provided with special emphasis on the agricultural sector. In 1996, the Canadian agricultural sector was responsible for approximately 10 per cent of greenhouse gas emissions in the country. Given the increase in farm animals and more intensive agricultural activities, it is estimated that greenhouse gas emissions generated by the agricultural sector will increase by 20 per cent by 2010 if current practices remain in effect. The most optimistic scenarios indicate that the agricultural sector could achieve or even exceed Canada's Kyoto Protocol commitments mainly through organic material sequestration in soils. The possibility for farmers to sell greenhouse gas credits could motivate farmers into adopting various practices that reduce emissions of greenhouse gases. However, the author indicated that the best motivation for farmers is the fact that adopting such practices would also lead to more efficient agricultural production. 5 refs., 4 figs

  3. National Greenhouse Gas Emission Inventory

    Data.gov (United States)

    U.S. Environmental Protection Agency — The National Greenhouse Gas Emission Inventory contains information on direct emissions of greenhouse gases as well as indirect or potential emissions of greenhouse...

  4. Movement of global warming issues

    International Nuclear Information System (INIS)

    Sugiyama, Taishi

    2015-01-01

    This paper summarizes the report of IPCC (Intergovernmental Panel on Climate Change), and the movement of the global warming issues as seen from the United Nations Framework Convention on Climate Change (Conference of the Parties: COP) and the policy discussions in Japan. From the Fifth Assessment Report published by IPCC, it shows the following items: (1) increasing trends of greenhouse effect gas emissions during 1970 and 2010, (2) trends in world's greenhouse effect gas emissions according to income segment, and (3) factor analysis of changes in greenhouse effect gas emissions. Next, it takes up the greenhouse gas emission scenario of IPCC, shows the scenario due to temperature rise pattern, and introduces the assumption of emission reduction due to BECCS. Regarding the 2 deg. scenario that has become a hot topic in international negotiations, it describes the reason for difficulties in its implementation. In addition, as the international trends of global warming, it describes the agreement of numerical targets for emissions at COP3 (Kyoto Conference) and the subsequent movements. Finally, it introduces Japan's measures against global warming, as well as the future movement. (A.O.)

  5. Non-CO2 greenhouse gas emissions associated with food production: methane (CH4) and nitrous oxide (N2O)

    International Nuclear Information System (INIS)

    Carlsson-Kanyama, Annika

    2007-01-01

    It is well known that the agriculture and livestock sectors are large contributors of N 2 O and CH 4 emissions in countries with agricultural activities and that remedial measures are needed in these sectors in order to curb contributions to global warming. This study examines non- CO 2 greenhouse gas emissions associated with the production of food. Methane (CH 4 ) and nitrous oxide (N 2 O) are the most relevant greenhouse gases in this category, and they are emitted mainly in the agricultural sector. These greenhouse gases have a Global Warming Potential much higher than CO 2 itself (25- and 298-fold higher, respectively, in a 100-year perspective). Emission intensities and the corresponding uncertainties were calculated based on the latest procedures and data published by the Intergovernmental Panel on Climate Change and used to facilitate calculations comparing greenhouse gas emissions for food products and diets. When the proposed emission intensities were applied to agricultural production, the results showed products of animal origin and the cultivation of rice under water to have high emissions compared with products of vegetable origin cultivated on upland soils, such as wheat and beans. In animal production the main source of greenhouse gas emissions was methane from enteric fermentation, while emissions of nitrous oxides from fertilisers were the main sources of greenhouse gas emissions for cereal and legume cultivation. For rice cultivation, methane emissions from flooded rice fields contributed most. Other significant sources of greenhouse gas emissions during animal production were manure storage and management. We suggest that the proposed emission factors, together with the associated uncertainties, can be a tool for better understanding the potential to mitigate emissions of greenhouse gases through changes in the diet

  6. Greenhouse gas trading starts up

    Science.gov (United States)

    Showstack, Randy

    While nations decide on whether to sign on to the Kyoto Protocol on climate change, some countries and private companies are moving forward with greenhouse gas emissions trading.A 19 March report, "The Emerging International Greenhouse Gas Market," by the Pew Center on Global Climate Change, reports that about 65 greenhouse gas emissions trades for quantities above 1,000 metric tons of carbon dioxideequivalent already have occurred worldwide since 1996. Many of these trades have taken place under a voluntary, ad hoc framework, though the United Kingdom and Denmark have established their own domestic emissions trading programs.

  7. Greenhouse Gases Emission and Global Warming Potential as Affected by Chemical Inputs for Main Cultivated Crops in Kerman Province: - Horticultural Crops

    OpenAIRE

    Nasibe Pourghasemian; Rooholla Moradi

    2017-01-01

    Introduction The latest report of the IPCC states that future emissions of greenhouse gases (GHGs) will continue to increase and will be the main cause of global climatic changes, as well as Iran. The three greenhouse gases associated with agriculture are CO2, CH4, and N2O. Chemical inputs consumption in agriculture has increased annually, while more intensive use of energy led to some important human health and environmental problems such as greenhouse gas emissions and global warming. Th...

  8. Greenhouse gas strategy

    International Nuclear Information System (INIS)

    2001-03-01

    Because the overall effects of climate change will likely be more pronounced in the North than in other parts of the country, the Government of the Northwest Territories considers it imperative to support global and local actions to reduce greenhouse gas emissions. Government support is manifested through a coordinating role played by senior government representatives in the development of the NWT Greenhouse Gas Strategy, and by participation on a multi-party working committee to identify and coordinate northern actions and to contribute a northern perspective to Canada's National Climate Change Implementation Strategy. This document outlines the NWT Government's goals and objectives regarding greenhouse gas emission reduction actions. These will include efforts to enhance awareness and understanding; demonstrate leadership by putting the Government's own house in order; encouraging action across sectors; promote technology development and innovation; invest in knowledge and building the foundation for informed future decisions. The strategy also outlines the challenges peculiar to the NWT, such as the high per person carbon dioxide emissions compared to the national average (30 tonnes per person per year as opposed to the national average of 21 tonnes per person per year) and the increasing economic activity in the Territories, most of which are resource-based and therefore energy-intensive. Appendices which form part of the greenhouse gas strategy document, provide details of the potential climate change impact in the NWT, a detailed explanation of the proposed measures, an emission forecast to 2004 from industrial processes, fuel combustion and incineration, and a statement of the official position of the Government of the NWT on climate change

  9. Using Interactive Technology to Support Students' Understanding of the Greenhouse Effect and Global Warming

    Science.gov (United States)

    Varma, Keisha; Linn, Marcia C.

    2012-01-01

    In this work, we examine middle school students' understanding of the greenhouse effect and global warming. We designed and refined a technology-enhanced curriculum module called "Global Warming: Virtual Earth". In the module activities, students conduct virtual experiments with a visualization of the greenhouse effect. They analyze data and draw…

  10. Nuclear power and the greenhouse effect

    International Nuclear Information System (INIS)

    1989-01-01

    Carbon dioxide from fossil fuel combustion accounts for about 40% of the global warming due to the 'greenhouse effect'. Thus national energy policies of the fuels used to generate electricity can have a significant effect on the levels of gas emissions which contribute to the 'greenhouse effect'. The more efficient use of energy is the first way of controlling the increase in gas emissions. The use of natural gas instead of coal or oil would also be beneficial but the reserves of natural gas are limited. The use of nuclear-generated electricity has already reduced the level of global warming by 3% but could have a greater effect in the future. Ways in which the government could reduce 'greenhouse' gas emissions are listed. These include the more extensive use of nuclear power for generating electricity not only for domestic but industrial uses. (U.K.)

  11. The greenhouse advantage of natural gas appliances

    International Nuclear Information System (INIS)

    Coombe, N.

    2000-01-01

    The life cycle report prepared recently by Energetics for the AGA, Assessment of Greenhouse Gas Emissions from Natural Gas, demonstrates clearly the greenhouse advantage natural gas has over coal in generating electricity. This study also goes one step further in applying this life cycle approach to the use of space and water heating within the home. The study shows the significant green-house advantage that natural gas appliances have over electric appliances. Findings from other studies also support this claim. The natural gas suppliers are encouraged to take advantage of the marketing opportunity that these studies provide, offering the householders the fuel that will significantly reduce their contribution to greenhouse emission

  12. Modeling Impacts of Alternative Practices on Net Global Warming Potential and Greenhouse Gas Intensity from Rice–Wheat Annual Rotation in China

    Science.gov (United States)

    Wang, Jinyang; Zhang, Xiaolin; Liu, Yinglie; Pan, Xiaojian; Liu, Pingli; Chen, Zhaozhi; Huang, Taiqing; Xiong, Zhengqin

    2012-01-01

    Background Evaluating the net exchange of greenhouse gas (GHG) emissions in conjunction with soil carbon sequestration may give a comprehensive insight on the role of agricultural production in global warming. Materials and Methods Measured data of methane (CH4) and nitrous oxide (N2O) were utilized to test the applicability of the Denitrification and Decomposition (DNDC) model to a winter wheat – single rice rotation system in southern China. Six alternative scenarios were simulated against the baseline scenario to evaluate their long-term (45-year) impacts on net global warming potential (GWP) and greenhouse gas intensity (GHGI). Principal Results The simulated cumulative CH4 emissions fell within the statistical deviation ranges of the field data, with the exception of N2O emissions during rice-growing season and both gases from the control treatment. Sensitivity tests showed that both CH4 and N2O emissions were significantly affected by changes in both environmental factors and management practices. Compared with the baseline scenario, the long-term simulation had the following results: (1) high straw return and manure amendment scenarios greatly increased CH4 emissions, while other scenarios had similar CH4 emissions, (2) high inorganic N fertilizer increased N2O emissions while manure amendment and reduced inorganic N fertilizer scenarios decreased N2O emissions, (3) the mean annual soil organic carbon sequestration rates (SOCSR) under manure amendment, high straw return, and no-tillage scenarios averaged 0.20 t C ha−1 yr−1, being greater than other scenarios, and (4) the reduced inorganic N fertilizer scenario produced the least N loss from the system, while all the scenarios produced comparable grain yields. Conclusions In terms of net GWP and GHGI for the comprehensive assessment of climate change and crop production, reduced inorganic N fertilizer scenario followed by no-tillage scenario would be advocated for this specified cropping system. PMID

  13. Modeling impacts of alternative practices on net global warming potential and greenhouse gas intensity from rice-wheat annual rotation in China.

    Directory of Open Access Journals (Sweden)

    Jinyang Wang

    Full Text Available BACKGROUND: Evaluating the net exchange of greenhouse gas (GHG emissions in conjunction with soil carbon sequestration may give a comprehensive insight on the role of agricultural production in global warming. MATERIALS AND METHODS: Measured data of methane (CH(4 and nitrous oxide (N(2O were utilized to test the applicability of the Denitrification and Decomposition (DNDC model to a winter wheat - single rice rotation system in southern China. Six alternative scenarios were simulated against the baseline scenario to evaluate their long-term (45-year impacts on net global warming potential (GWP and greenhouse gas intensity (GHGI. PRINCIPAL RESULTS: The simulated cumulative CH(4 emissions fell within the statistical deviation ranges of the field data, with the exception of N(2O emissions during rice-growing season and both gases from the control treatment. Sensitivity tests showed that both CH(4 and N(2O emissions were significantly affected by changes in both environmental factors and management practices. Compared with the baseline scenario, the long-term simulation had the following results: (1 high straw return and manure amendment scenarios greatly increased CH(4 emissions, while other scenarios had similar CH(4 emissions, (2 high inorganic N fertilizer increased N(2O emissions while manure amendment and reduced inorganic N fertilizer scenarios decreased N(2O emissions, (3 the mean annual soil organic carbon sequestration rates (SOCSR under manure amendment, high straw return, and no-tillage scenarios averaged 0.20 t C ha(-1 yr(-1, being greater than other scenarios, and (4 the reduced inorganic N fertilizer scenario produced the least N loss from the system, while all the scenarios produced comparable grain yields. CONCLUSIONS: In terms of net GWP and GHGI for the comprehensive assessment of climate change and crop production, reduced inorganic N fertilizer scenario followed by no-tillage scenario would be advocated for this specified

  14. Greenhouse gas mitigation options for Washington State

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, N.

    1996-04-01

    President Clinton, in 1993, established a goal for the United States to return emissions of greenhouse gases to 1990 levels by the year 2000. One effort established to help meet this goal was a three part Environmental Protection Agency state grant program. Washington State completed part one of this program with the release of the 1990 greenhouse gas emissions inventory and 2010 projected inventory. This document completes part two by detailing alternative greenhouse gas mitigation options. In part three of the program EPA, working in partnership with the States, may help fund innovative greenhouse gas reduction strategies. The greenhouse gas control options analyzed in this report have a wide range of greenhouse gas reductions, costs, and implementation requirements. In order to select and implement a prudent mix of control strategies, policy makers need to have some notion of the potential change in climate, the consequences of that change and the uncertainties contained therein. By understanding the risks of climate change, policy makers can better balance the use of scarce public resources for concerns that are immediate and present against those that affect future generations. Therefore, prior to analyzing alternative greenhouse gas control measures, this report briefly describes the phenomenon and uncertainties of global climate change, and then projects the likely consequences for Washington state.

  15. Reservoir Greenhouse Gas Emissions at Russian HPP

    Energy Technology Data Exchange (ETDEWEB)

    Fedorov, M. P.; Elistratov, V. V.; Maslikov, V. I.; Sidorenko, G. I.; Chusov, A. N.; Atrashenok, V. P.; Molodtsov, D. V. [St. Petersburg State Polytechnic University (Russian Federation); Savvichev, A. S. [Russian Academy of Sciences, S. N. Vinogradskii Institute of Microbiology (Russian Federation); Zinchenko, A. V. [A. I. Voeikov Main Geophysical Observatory (Russian Federation)

    2015-05-15

    Studies of greenhouse-gas emissions from the surfaces of the world’s reservoirs, which has demonstrated ambiguity of assessments of the effect of reservoirs on greenhouse-gas emissions to the atmosphere, is analyzed. It is recommended that greenhouse- gas emissions from various reservoirs be assessed by the procedure “GHG Measurement Guidelines for Fresh Water Reservoirs” (2010) for the purpose of creating a data base with results of standardized measurements. Aprogram for research into greenhouse-gas emissions is being developed at the St. Petersburg Polytechnic University in conformity with the IHA procedure at the reservoirs impounded by the Sayano-Shushenskaya and Mainskaya HPP operated by the RusHydro Co.

  16. Energy market reform and greenhouse gas emission reductions

    International Nuclear Information System (INIS)

    Anon.

    1999-01-01

    The report reviews micro-economic reform in the energy market and measures the impact that energy market reform is expected to have on greenhouse gas outcomes. It indicates that reform in the electricity and gas industries is delivering what was promised, an efficient market with lower energy prices and, over the longer term, will deliver a gradually reducing rate of greenhouse gas emissions per unit of energy produced. It also recognises that energy market reform has removed some barriers to the entry of less greenhouse gas intense fuels. These trends will result in reduced greenhouse gas intensity in the supply of energy and significant reductions in the growth in greenhouse gas emissions compared to what may have been expected without the reforms

  17. Scaling Potential Evapotranspiration with Greenhouse Warming (Invited)

    Science.gov (United States)

    Scheff, J.; Frierson, D. M.

    2013-12-01

    Potential evapotranspiration (PET) is a supply-independent measure of the evaporative demand of a terrestrial climate, of basic importance in climatology, hydrology, and agriculture. Future increases in PET from greenhouse warming are often cited as key drivers of global trends toward drought and aridity. The present work computes recent and business-as-usual-future Penman-Monteith (i.e. physically-based) PET fields at 3-hourly resolution in 14 modern global climate models. The %-change in local annual-mean PET over the upcoming century is almost always positive, modally low double-digit in magnitude, usually increasing with latitude, yet quite divergent between models. These patterns are understood as follows. In every model, the global field of PET %-change is found to be dominated by the direct, positive effects of constant-relative-humidity warming (via increasing vapor pressure deficit and increasing Clausius-Clapeyron slope.) This direct-warming term very accurately scales as the PET-weighted (warm-season daytime) local warming, times 5-6% per degree (related to the Clausius-Clapeyron equation), times an analytic factor ranging from about 0.25 in warm climates to 0.75 in cold climates, plus a small correction. With warming of several degrees, this product is of low double-digit magnitude, and the strong temperature dependence gives the latitude dependence. Similarly, the inter-model spread in the amount of warming gives most of the spread in this term. Additional spread in the total change comes from strong disagreement on radiation, relative-humidity, and windspeed changes, which make smaller yet substantial contributions to the full PET %-change fields.

  18. Comparation of Greenhouse Gas Emission Disclosure Before and After Enactment of the Indonesia Act No. 17 of 2004

    Directory of Open Access Journals (Sweden)

    Yuztitya Asmaranti

    2014-12-01

    Full Text Available Indonesia, as a country with high vulnerable to the effects of global climate change due to greenhouse gas emissions, is committed to implementing the Kyoto Protocol by issuing the Law No. 17 of 2004 regulating the ratification of the Kyoto Protocol to the United Nations Framework Convention on Climate Change. On the other hand, Indonesia with the second largest tropical forest in the world is expected to contribute oxygen to protect the world's top greenhouse gas effect as the main cause of global warming. This study aims to provide empirical evidence of the extent to which the response of companies in Indonesia in addressing global warming due to carbon emissions leading to dumping greenhouse gases and what efforts done as a form of corporate social responsibility. This study found that there are differences in the disclosure of carbon emissions before and after the enactment of Indonesian Act No. 17 of 2004. However, the study also found that only about 10% of manufacturing companies in Indonesia have an action associated with a reduction in carbon emissions of the company.

  19. Comment 1 on workshop in adaptation and mitigation strategies - why greenhouse warming stays a hot topic

    International Nuclear Information System (INIS)

    Coppock, R.

    1992-01-01

    The rapidity with which greenhouse warming burst onto the national and international political agendas is surprising. So too is the fact that it has remained of central interest despite the lack of understanding of the phenomenon exhibited by the general public. Even with lackluster public response, politicians and governments around the world are advocating costly actions designed to counter greenhouse warming. A certain amount of attention and concern is necessary to establish and sustain the attention of government decision makers. There are several attributes of the greenhouse warming problem that generated enough attention and concern to propel it so quickly onto the international agenda and keep it in the forefront for action. First, it is one of a new set of global problems that is intimately connected to scientific analysis. A great deal of data has been collected and analyzed since the early 1960s. Scientists have been carefully laying the groundwork for decades and have a solid foundation for addressing the problem. They were ready in 1988 to capitalize on the North American drought as a vehicle to bring the longer-term problem of greenhouse warming to more wide-spread attention. In short, there is a large body of knowledge about the problem and possible remediative actions. Second, greenhouse warming is a vivid problem with considerable psychological impact. Following close on the heels of the antarctic ozone hole and more widespread depletion of stratospheric ozone, it also demonstrates human capacity to directly alter the physical planet on which we depend for survival. Greenhouse warming is symbolic of some of our deepest fears

  20. Persistence of climate changes due to a range of greenhouse gases.

    Science.gov (United States)

    Solomon, Susan; Daniel, John S; Sanford, Todd J; Murphy, Daniel M; Plattner, Gian-Kasper; Knutti, Reto; Friedlingstein, Pierre

    2010-10-26

    Emissions of a broad range of greenhouse gases of varying lifetimes contribute to global climate change. Carbon dioxide displays exceptional persistence that renders its warming nearly irreversible for more than 1,000 y. Here we show that the warming due to non-CO(2) greenhouse gases, although not irreversible, persists notably longer than the anthropogenic changes in the greenhouse gas concentrations themselves. We explore why the persistence of warming depends not just on the decay of a given greenhouse gas concentration but also on climate system behavior, particularly the timescales of heat transfer linked to the ocean. For carbon dioxide and methane, nonlinear optical absorption effects also play a smaller but significant role in prolonging the warming. In effect, dampening factors that slow temperature increase during periods of increasing concentration also slow the loss of energy from the Earth's climate system if radiative forcing is reduced. Approaches to climate change mitigation options through reduction of greenhouse gas or aerosol emissions therefore should not be expected to decrease climate change impacts as rapidly as the gas or aerosol lifetime, even for short-lived species; such actions can have their greatest effect if undertaken soon enough to avoid transfer of heat to the deep ocean.

  1. Second Greenhouse Gas Information System Workshop

    Science.gov (United States)

    Boland, S. W.; Duren, R. M.; Mitchiner, J.; Rotman, D.; Sheffner, E.; Ebinger, M. H.; Miller, C. E.; Butler, J. H.; Dimotakis, P.; Jonietz, K.

    2009-12-01

    The second Greenhouse Gas Information System (GHGIS) workshop was held May 20-22, 2009 at the Sandia National Laboratories in Albuquerque, New Mexico. The workshop brought together 74 representatives from 28 organizations including U.S. government agencies, national laboratories, and members of the academic community to address issues related to the understanding, operational monitoring, and tracking of greenhouse gas emissions and carbon offsets. The workshop was organized by an interagency collaboration between NASA centers, DOE laboratories, and NOAA. It was motivated by the perceived need for an integrated interagency, community-wide initiative to provide information about greenhouse gas sources and sinks at policy-relevant temporal and spatial scales in order to significantly enhance the ability of national and regional governments, industry, and private citizens to implement and evaluate effective climate change mitigation policies. This talk provides an overview of the second Greenhouse Gas Information System workshop, presents its key findings, and discusses current status and next steps in this interagency collaborative effort.

  2. Physics of greenhouse effect and convection in warm oceans

    Science.gov (United States)

    Inamdar, A. K.; Ramanathan, V.

    1994-01-01

    Sea surface temperature (SST) in roughly 50% of the tropical Pacific Ocean is warm enough (SST greater than 300 K) to permit deep convection. This paper examines the effects of deep convection on the climatological mean vertical distributions of water vapor and its greenhouse effect over such warm oceans. The study, which uses a combination of satellite radiation budget observations, atmospheric soundings deployed from ships, and radiation model calculations, also examines the link between SST, vertical distribution of water vapor, and its greenhouse effect in the tropical oceans. Since the focus of the study is on the radiative effects of water vapor, the radiation model calculations do not include the effects of clouds. The data are grouped into nonconvective and convective categories using SST as an index for convective activity. On average, convective regions are more humid, trap significantly more longwave radiation, and emit more radiation to the sea surface. The greenhouse effect in regions of convection operates as per classical ideas, that is, as the SST increases, the atmosphere traps the excess longwave energy emitted by the surface and reradiates it locally back to the ocean surface. The important departure from the classical picture is that the net (up minus down) fluxes at the surface and at the top of the atmosphere decrease with an increase in SST; that is, the surface and the surface-troposphere column lose the ability to radiate the excess energy to space. The cause of this super greenhouse effect at the surface is the rapid increase in the lower-troposphere humidity with SST; that of the column is due to a combination of increase in humidity in the entire column and increase in the lapse rate within the lower troposphere. The increase in the vertical distribution of humidity far exceeds that which can be attributed to the temperature dependence of saturation vapor pressure; that is, the tropospheric relative humidity is larger in convective

  3. Glacial greenhouse-gas fluctuations controlled by ocean circulation changes.

    Science.gov (United States)

    Schmittner, Andreas; Galbraith, Eric D

    2008-11-20

    Earth's climate and the concentrations of the atmospheric greenhouse gases carbon dioxide (CO(2)) and nitrous oxide (N(2)O) varied strongly on millennial timescales during past glacial periods. Large and rapid warming events in Greenland and the North Atlantic were followed by more gradual cooling, and are highly correlated with fluctuations of N(2)O as recorded in ice cores. Antarctic temperature variations, on the other hand, were smaller and more gradual, showed warming during the Greenland cold phase and cooling while the North Atlantic was warm, and were highly correlated with fluctuations in CO(2). Abrupt changes in the Atlantic meridional overturning circulation (AMOC) have often been invoked to explain the physical characteristics of these Dansgaard-Oeschger climate oscillations, but the mechanisms for the greenhouse-gas variations and their linkage to the AMOC have remained unclear. Here we present simulations with a coupled model of glacial climate and biogeochemical cycles, forced only with changes in the AMOC. The model simultaneously reproduces characteristic features of the Dansgaard-Oeschger temperature, as well as CO(2) and N(2)O fluctuations. Despite significant changes in the land carbon inventory, CO(2) variations on millennial timescales are dominated by slow changes in the deep ocean inventory of biologically sequestered carbon and are correlated with Antarctic temperature and Southern Ocean stratification. In contrast, N(2)O co-varies more rapidly with Greenland temperatures owing to fast adjustments of the thermocline oxygen budget. These results suggest that ocean circulation changes were the primary mechanism that drove glacial CO(2) and N(2)O fluctuations on millennial timescales.

  4. Scientific perspectives on greenhouse problem. Part 2

    International Nuclear Information System (INIS)

    Jastrow, R.; Nierenberg, W.; Seitz, F.

    1992-01-01

    The spectre of major climate change caused by the greenhouse effect has generated intensive research, heated scientific debate and a concerted international effort to draft agreements for the reduction of greenhouse gas emissions. This report of Scientific Perspectives on the greenhouse problem explains the technical issues in the debate in language readily understandable to the non-specialist. The inherent complexities of attempts to simulate the earth's climate are explained, particularly with regard to the effects of clouds and the circulation of the oceans, which together represent the largest factors of uncertainty in current global warming forecasts. Results of the search for the 'greenhouse signal' in existing climate records aredescribed in chapter 3 (part two). Chapter 5 (part two) develops a projection of 21st-century warming based on relatively firm evidence of the earth's actual response to known increases in greenhouse gas emissions during the last 100 years

  5. Rice management interventions to mitigate greenhouse gas emissions: a review.

    Science.gov (United States)

    Hussain, Saddam; Peng, Shaobing; Fahad, Shah; Khaliq, Abdul; Huang, Jianliang; Cui, Kehui; Nie, Lixiao

    2015-03-01

    Global warming is one of the gravest threats to crop production and environmental sustainability. Rice, the staple food of more than half of the world's population, is the most prominent cause of greenhouse gas (GHG) emissions in agriculture and gives way to global warming. The increasing demand for rice in the future has deployed tremendous concerns to reduce GHG emissions for minimizing the negative environmental impacts of rice cultivation. In this review, we presented a contemporary synthesis of existing data on how crop management practices influence emissions of GHGs in rice fields. We realized that modifications in traditional crop management regimes possess a huge potential to overcome GHG emissions. We examined and evaluated the different possible options and found that modifying tillage permutations and irrigation patterns, managing organic and fertilizer inputs, selecting suitable cultivar, and cropping regime can mitigate GHG emissions. Previously, many authors have discussed the feasibility principle and the influence of these practices on a single gas or, in particular, in the whole agricultural sector. Nonetheless, changes in management practices may influence more than one gas at the same time by different mechanisms or sometimes their effects may be antagonistic. Therefore, in the present attempt, we estimated the overall global warming potential of each approach to consider the magnitude of its effects on all gases and provided a comprehensive assessment of suitable crop management practices for reducing GHG emissions in rice culture.

  6. A review of greenhouse gas research in Canada

    International Nuclear Information System (INIS)

    Yundt, P.

    1995-11-01

    Greenhouse gas research programs and projects that relate to the Canadian natural gas industry were presented. Fossil fuel related emissions, primarily methane and carbon dioxide, impact on the atmospheric concentrations of the greenhouse gases. Therefore, strategies to reduce these emissions should impact on the Canadian natural gas industry. A list of 39 projects and 18 research programs of potential interest to the natural gas industry were presented in summary form. The involvement of CANMET (Canada Centre for Mineral and Energy Technology), Environment Canada, and NSERC (Natural Sciences and Engineering Research Council) in doing or sponsoring research projects directed towards greenhouse gas emission reduction was highlighted. Some potential options for member companies of the Canadian natural gas industry, to support climate change and greenhouse gas research, were outlined. 6 refs., 12 tabs

  7. Panorama 2009 - greenhouse gas emissions and the transport sector

    International Nuclear Information System (INIS)

    2008-01-01

    The fact that the transport sector is growing quickly brings advantages, such as quick access to any geographical location on earth, but also disadvantages: noise, congestion and polluting emissions such as carbon dioxide (CO 2 ), the greenhouse gas (GHG) primarily responsible for global warming. In the effort to bring GHG emissions under control, improving results in the transport sector is a prime long-term objective. What proportion of CO 2 emissions generated at global and national level are due to the road, air, maritime and rail transport sectors, respectively? What mechanisms can be used to reduce GHG emissions in the transport sector at large?

  8. Accounting for Greenhouse Gas Emissions from Reservoirs

    Science.gov (United States)

    Nearly three decades of research has demonstrated that the impoundment of rivers and the flooding of terrestrial ecosystems behind dams can increase rates of greenhouse gas emission, particularly methane. The 2006 IPCC Guidelines for National Greenhouse Gas Inventories includes ...

  9. The super greenhouse effect in a warming world: the role of dynamics and thermodynamics

    Science.gov (United States)

    Kashinath, Karthik; O'Brien, Travis; Collins, William

    2016-04-01

    Over warm tropical oceans the increase in greenhouse trapping with increasing SST can be faster than that of the surface emission, resulting in a decrease in clear sky outgoing longwave radiation at the top of the atmosphere (OLR) when SST increases, also known as the super greenhouse effect (SGE). If the SGE is directly linked to SST changes, there are profound implications for positive climate feedbacks in the tropics. We show that CMIP5 models perform well in simulating the observed clear-sky greenhouse effect in the present day. Using global warming experiments we show that the onset and shutdown SST of the SGE, as well as the magnitude of the SGE, increase as the convective threshold SST increases. To account for an increasing convective threshold SST we use an invariant coordinate for convection proposed in a recent study [Williams et al., GRL (2009)]. However, even after accounting for the increase in tropical SST (by normalizing the SGE by surface emission) and accounting for the increase in the threshold temperature for convection (by using the invariant coordinate) we find that the models predict a distinct increase in the clear-sky greenhouse effect in a warmed world. This suggests that thermodynamics (i.e. SST) plays a crucial role in regulating the increasing clear sky greenhouse effect in a warming world. We use theoretical arguments to estimate this increase in SGE and derive its dependence on SST. Finally, as shown in previous studies, we confirm that the increase in the clear-sky greenhouse effect is primarily due to upper tropospheric moistening. Although the absolute increase in upper tropospheric water vapor is small compared to that of the lower troposphere, since the absorptivity scales with fractional changes in water vapor, the contribution of the upper troposphere is more significant, as shown by Chung et al., PNAS (2014).

  10. Energy consumption estimation for greenhouse gas separation processes by clathrate hydrate formation

    International Nuclear Information System (INIS)

    Tajima, Hideo; Yamasaki, Akihiro; Kiyono, Fumio

    2004-01-01

    The process energy consumption was estimated for gas separation processes by the formation of clathrate hydrates. The separation process is based on the equilibrium partition of the components between the gaseous phase and the hydrate phase. The separation and capturing processes of greenhouse gases were examined in this study. The target components were hydrofluorocarbon (HFC-134a) from air, sulfur hexafluoride (SF 6 ) from nitrogen, and CO 2 from flue gas. Since these greenhouse gases would form hydrates under much lower pressure and higher temperature conditions than the accompanying components, the effective capturing of the greenhouse gases could be achieved by using hydrate formation. A model separation process for each gaseous mixture was designed from the basis of thermodynamics, and the process energy consumption was estimated. The obtained results were then compared with those for conventional separation processes such as liquefaction separation processes. For the recovery of SF 6 , the hydrate process is preferable to liquefaction process in terms of energy consumption. On the other hand, the liquefaction process consumes less energy than the hydrate process for the recovery of HFC-134a. The capturing of CO 2 by the hydrate process from a flue gas will consume a considerable amount of energy; mainly due to the extremely high pressure conditions required for hydrate formation. The influences of the operation conditions on the heat of hydrate formation were elucidated by sensitivity analysis. The hydrate processes for separating these greenhouse gases were evaluated in terms of reduction of global warming potential (GWP)

  11. Response of greenhouse gas emissions from three types of wetland soils to simulated temperature change on the Qinghai-Tibetan Plateau

    Science.gov (United States)

    Liu, Yi; Liu, Guihua; Xiong, Ziqian; Liu, Wenzhi

    2017-12-01

    Wetlands emit a large quantity of greenhouse gases into the atmosphere and contribute significantly to global warming. The Qinghai-Tibetan Plateau, known as the ;Third Pole; of the earth, contains abundant and diverse wetlands. Due to increasing human-induced pressures such as reclamation, overgrazing and climate change, many plateau wetlands have been degraded or destroyed. Until now, the response of soil greenhouse gas emissions to extreme summer temperatures in the plateau wetlands remains unknown. In this study, we collected 36 soil samples from riverine, lacustrine and palustrine wetlands on the Qinghai-Tibetan Plateau. We compared the carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) emissions from soils incubated aerobically at 7, 12, and 19 °C. The results showed that the emissions of CH4 and N2O but not CO2 were significantly affected by the simulated temperature change. The N2O emission rate was considerably higher in palustrine wetlands compared with lacustrine and riverine wetlands. However, the CO2 and CH4 emissions did not differ significantly among the three wetland types. The ratio of CO2 to CH4 production increased with increasing incubation temperatures. The global warming potential of greenhouse gases at 19 °C was approximately 1.18 and 2.12 times greater than that at 12 and 7 °C, respectively. Our findings suggest that temperature change has a strong effect on soil greenhouse gas emissions and global warming potential of wetlands on the Qinghai-Tibetan Plateau, especially palustrine wetlands. Therefore, targeted strategies should be developed to mitigate the potential impacts of climate warming on the plateau.

  12. Multiagency Initiative to Provide Greenhouse Gas Information

    Science.gov (United States)

    Boland, Stacey W.; Duren, Riley M.

    2009-11-01

    Global Greenhouse Gas Information System Workshop; Albuquerque, New Mexico, 20-22 May 2009; The second Greenhouse Gas Information System (GHGIS) workshop brought together 74 representatives from 28 organizations including U.S. government agencies, national laboratories, and members of the academic community to address issues related to the understanding, operational monitoring, and tracking of greenhouse gas emissions and carbon offsets. The workshop was held at Sandia National Laboratories and organized by an interagency collaboration among NASA centers, Department of Energy laboratories, and the U.S. National Oceanic and Atmospheric Administration. It was motivated by the perceived need for an integrated interagency, community-wide initiative to provide information about greenhouse gas sources and sinks at policy-relevant temporal and spatial scales. Such an initiative could significantly enhance the ability of national and regional governments, industry, and private citizens to implement and evaluate effective climate change mitigation policies.

  13. Ozone: The secret greenhouse gas

    International Nuclear Information System (INIS)

    Berntsen, Terje; Tjernshaugen, Andreas

    2001-01-01

    The atmospheric ozone not only protects against harmful ultraviolet radiation; it also contributes to the greenhouse effect. Ozone is one of the jokers to make it difficult to calculate the climatic effect of anthropogenic emissions. The greenhouse effect and the ozone layer should not be confused. The greenhouse effect creates problems when it becomes enhanced, so that the earth becomes warmer. The problem with the ozone layer, on the contrary, is that it becomes thinner and so more of the harmful ultraviolet radiation gets through to the earth. However, ozone is also a greenhouse gas and so the greenhouse effect and the ozone layer are connected

  14. Energy consumption, greenhouse gas emissions and assessment of sustainability index in corn agroecosystems of Iran

    International Nuclear Information System (INIS)

    Yousefi, Mohammad; Damghani, Abdolmajid Mahdavi; Khoramivafa, Mahmud

    2014-01-01

    The objectives of this study were to assess the energy flow, greenhouse gas (GHG) emission, global warming potential (GWP) and sustainability of corn production systems in Kermanshah province, western Iran. The data were collected from 70 corn agroecosystems which were selected based on randomly sampled method in the summer of 2011. The results indicated that total input and output energy were 50,485 and 134,946 MJ ha −1 , respectively. The highest share of total input energy in corn production systems was recorded for N fertilizer, electricity power and diesel fuel with 35, 25 and 20%, respectively. Energy use efficiency and energy productivity were 2.67 and 0.18 kg MJ −1 , respectively. Also agrochemical energy ratio was estimated as 40%. Applying chemical inputs produced the following emissions of greenhouse gases: 2994.66 kg CO 2, 31.58 kg N 2 O and 3.82 kg CH 4 per hectare . Hence, total GWP was 12,864.84 kg Co 2 eq ha −1 in corn production systems. In terms of CO 2 equivalents 23% of the GWPs came from CO 2 , 76% from N 2 O, and 1% from CH 4 . In this study input and output C equivalents per total GHG and Biomass production were 3508.59 and 10,696.34 kg C ha −1 . Net carbon and sustainability indexes in corn production systems were 7187.75 kg C ha −1 and 2.05. Accordingly, efficient use of energy is essential to reduce the greenhouse gas emissions and environmental impact in corn agroecosystems. - Highlights: • Increasing of energy consumption leaded to decreasing energy use efficiency in corn agroecosystems. • Total greenhouse gas (GHG) emission as CO 2 , N 2 O and CH 4 in corn production systems were 2994.66, 31.58 and 3.82 kg ha -1 , respectively. • Global warming potential (GWP) was 12864.84 kg CO 2 eq ha -1 in corn production systems. • Sustainability index in corn production systems was 2.05. • Reducing use of chemicals fertilizer and diesel fuel are necessary for better management of energy flow, global warming potential and

  15. Corporate actions for the climate - Greenhouse gas reduction practices at EpE member companies

    International Nuclear Information System (INIS)

    Chalendar, Pierre-Andre de

    2012-11-01

    Corporate awareness of the reality of climate change and the impact of human activity on global warming goes back some twenty years. It was at this time that EpE members decided to take voluntary action towards lowering greenhouse gas emissions. EpE member companies started out by measuring their emissions (see EpE publication entitled 'Measuring and Controlling Greenhouse Gas Emissions'), then worked to identify initiatives easiest to implement and those that would have the best reduction potential. This booklet is prepared to contribute to other businesses improving their knowledge and understanding of the best practices identified and implemented by EpE members, in order to speed up the reduction of global emissions, without hampering their competitiveness. The practices showcased here have intentionally been detailed so that they can be easier to adopt. (authors)

  16. Greenhouse gas emissions related to Dutch food consumption

    NARCIS (Netherlands)

    Kramer, KJ; Moll, HC; Nonhebel, S; Wilting, HC

    The consumption of food products involves emissions of greenhouse gases. Emissions occur in the various stages of the life cycle of food products. In this paper we discuss the greenhouse gas emissions, CO2, CH4, and N2O, related to Dutch household food consumption. Combinations of greenhouse gas

  17. Reduction of greenhouse gas emission on a medium-pressure boiler using hydrogen-rich fuel control

    International Nuclear Information System (INIS)

    Hsieh, S.-C.; Jou, Chih-Ju G.

    2007-01-01

    The increasing emission of greenhouse gases from the combustion of fossil fuel is believed to be responsible for global warming. A study was carried out to probe the influence of replacing fuel gas with hydrogen-rich refinery gas (R.G.) on the reduction of gas emission (CO 2 and NO x ) and energy saving. Test results show that the emission of CO 2 can be reduced by 16.4% annually (or 21,500 tons per year). The NO x emission can be 8.2% lower, or 75 tons less per year. Furthermore, the use of refinery gas leads to a saving of NT$57 million (approximately US$1.73 million) on fuel costs each year. There are no CO 2 , CO, SO x , unburned hydrocarbon, or particles generated from the combustion of added hydrogen. The hydrogen content in R.G. employed in this study was between 50 and 80 mol%, so the C/H ratio of the feeding fuel was reduced. Therefore, the use of hydrogen-rich fuel has practical benefits for both energy saving and the reduction of greenhouse gas emission

  18. Bibliography of greenhouse-gas reduction strategies

    Energy Technology Data Exchange (ETDEWEB)

    Tompkins, M.M.; Mintz, M.M.

    1995-03-01

    A bibliography of greenhouse-gas reduction strategies has been compiled to assist the Climate change Action Plan Task Force in their consideration of strategies to reduce greenhouse-gas emissions from personal motor vehicles. The document contains a summary of the literature, including it major directions and implications; and annotated listing of 32 recent pertinent documents; and a listing of a larger group of related reports.

  19. Greenhouse science; Global warming: the origin and nature of alleged scientific consensus

    Energy Technology Data Exchange (ETDEWEB)

    Lindzen, R. (Massachusetts Institute of Technology, Cambridge, MA (USA))

    1992-01-01

    The paper contends that there is not a scientific consensus on the existence of global warming. The scientific issues associated with the prediction of global warming are reviewed and it is concluded that there is no substantive basis for predictions of sizeable global warming due to observed increases in greenhouse gases such as CO[sub 2], methane and chlorofluorocarbons. The history of the current concern over global warming is described. Political aspects, scientists' concerns over funding and the desire of industrial companies to improve their public image by supporting environmental activists are some of the factors seen as responsible for the current global warming 'hysteria'. 6 figs.

  20. CO2, the greenhouse effect and global warming: from the pioneering work of Arrhenius and Callendar to today's Earth System Models.

    Science.gov (United States)

    Anderson, Thomas R; Hawkins, Ed; Jones, Philip D

    2016-09-01

    Climate warming during the course of the twenty-first century is projected to be between 1.0 and 3.7°C depending on future greenhouse gas emissions, based on the ensemble-mean results of state-of-the-art Earth System Models (ESMs). Just how reliable are these projections, given the complexity of the climate system? The early history of climate research provides insight into the understanding and science needed to answer this question. We examine the mathematical quantifications of planetary energy budget developed by Svante Arrhenius (1859-1927) and Guy Stewart Callendar (1898-1964) and construct an empirical approximation of the latter, which we show to be successful at retrospectively predicting global warming over the course of the twentieth century. This approximation is then used to calculate warming in response to increasing atmospheric greenhouse gases during the twenty-first century, projecting a temperature increase at the lower bound of results generated by an ensemble of ESMs (as presented in the latest assessment by the Intergovernmental Panel on Climate Change). This result can be interpreted as follows. The climate system is conceptually complex but has at its heart the physical laws of radiative transfer. This basic, or "core" physics is relatively straightforward to compute mathematically, as exemplified by Callendar's calculations, leading to quantitatively robust projections of baseline warming. The ESMs include not only the physical core but also climate feedbacks that introduce uncertainty into the projections in terms of magnitude, but not sign: positive (amplification of warming). As such, the projections of end-of-century global warming by ESMs are fundamentally trustworthy: quantitatively robust baseline warming based on the well-understood physics of radiative transfer, with extra warming due to climate feedbacks. These projections thus provide a compelling case that global climate will continue to undergo significant warming in response

  1. The second generation model of greenhouse gas emissions: background and initial development

    International Nuclear Information System (INIS)

    Baron, R.; Wise, M.A.; Edmonds, J.A.; Pitcher, H.M.; Barns, D.

    1992-01-01

    The analysis of greenhouse gas emissions has made enormous progress during the course of the past decade. We have progressed from the use of simple time-trend extrapolations to the analysis of emissions of several greenhouse gases with parallel but independent behavioral and optimization models of energy, manufacturing, agriculture, and land-use systems. But our ability to examine potential future scenarios of greenhouse gas emissions is limited because modeling tools adequate to the task of integrating analyses of technologies and human activities on a global scale with regional detail, including energy production and consumption, agriculture, manufacture, capital formation, and land-use, along with the interdependencies between these categories, do not yet exist. The first generation of models were specialty models which focused on a particular aspect of the emissions problem without regard to how that activity interacted with other human and natural activities. The natural science pertaining to greenhouse warming now emphasizes the variety of gases associated with potential changes in the radiative composition of the atmosphere: CO 2 , CH 4 , CO, N 2 O, NO x , SO 2 , VOC's, chlorofluorocarbons, (CFC's) and CFC substitutes. Human activities generating the emissions of these gases are interdependent; actions taken to limit emissions from one segment of the economy will affect other segments of the economy. Policy issues such as the recycling of revenues from a carbon tax, land-use changes due to to tree-planting to sequestrate carbon dioxide or extensive development of biomass energy resources, require a more comprehensive modeling approach in which the relationship between technology, institutions, land use, economics and human activity is explicitly represented. The purpose of this paper is to describe briefly the design of a model which is capable of addressing greenhouse gas emissions and the consequences of alternative policy options. 7 refs

  2. The macroeconomic consequences of controlling greenhouse gases: a survey

    International Nuclear Information System (INIS)

    Boero, Gianna; Clarke, Rosemary; Winters, L.A.

    1991-01-01

    This is the summary of a major report which provides a survey of existing estimates of the macroeconomic consequences of controlling greenhouse gas emissions, particularly carbon dioxide (CO 2 ). There are broadly speaking two main questions. What are the consequences of global warming for economic activity and welfare? What, if any, are the economic consequences of reducing the levels of greenhouse gas (GHG) emissions? This survey covers only those studies which quantify the overall (macroeconomic) costs of abating greenhouse gas emissions. It is not concerned with whether any particular degree of abatement is sufficient to reduce global warming, nor whether it is worth undertaking in the light of its benefits. These are topics for other researchers and other papers. Here we are concerned only to map the relationship between economic welfare and GHG abatement. (author)

  3. The role of clouds and oceans in global greenhouse warming

    International Nuclear Information System (INIS)

    Hoffert, M.I.

    1992-12-01

    During the past three years we have conducted several studies using models and a combination of satellite data, in situ meteorological and oceanic data, and paleoclimate reconstructions, under the DoE program, ''Quantifying the Link Between Change in Radiative Balance and Atmospheric Temperature''. Our goals were to investigate effects of global cloudiness variations on global climate and their implications for cloud feedback and continue development and application of NYU transient climate/ocean models, with emphasis on coupled effects of greenhouse warming and feedbacks by both the clouds and oceans. Our original research plan emphasized the use of cloud, surface temperature and ocean data sets interpreted by focused climate/ocean models to develop a cloud radiative forcing scenario for the past 100 years and to assess the transient climate response; to narrow key uncertainties in the system; and to identify those aspects of the climate system most likely to be affected by greenhouse warming over short, medium and long time scales

  4. The Global Potential for Drastic Reduction of Greenhouse Gas Emissions. On the interaction between technological innovation, sustainable growth and lifestyle development

    Energy Technology Data Exchange (ETDEWEB)

    Bruggink, J.J.C. [ECN Policy Studies, Petten (Netherlands)

    2000-03-01

    Technological innovation is often viewed as the key to drastic reduction of greenhouse gas emissions, and rightly so. In fact there are already a number of technologies on the shelf that could fix global warming problems in no time. The trouble is that few people in the developing world can afford them or that few people in the developed world find them acceptable. Most people are simply too poor or too critical. So what are the decisive fault lines that should distinguish a climate-friendly next century from a climate-hostile past? First, only a more equal world will make drastic reduction of greenhouse gas emissions affordable. Secondly, mankind will have to accept that in addition to technological innovation, drastic reduction of greenhouse gas emissions depends on lifestyle innovation.

  5. The potential role of nuclear energy in greenhouse gas abatement strategies

    International Nuclear Information System (INIS)

    Cobb, J.; Cornish, E.

    2002-01-01

    Nuclear energy plays an essential role in avoiding greenhouse gas emissions. The contribution of nuclear power to electricity supplies has grown rapidly since the 1970's. As of July 2000, 432 power reactors were in operation in 31 countries. Nuclear power provided some 2300 TWh. This is about 17% of the world's total electricity, or 7% of total primary energy. This contribution avoids the emissions of about 2300 million tonnes of carbon dioxide annually, assuming that it would otherwise be provided mainly by coal-fired plants. This represents nearly one-third of the carbon dioxide presently emitted by power generation. Since electricity generation accounts for about 30% of all anthropogenic carbon dioxide emissions, total emissions would be about 10% higher if it were not for nuclear power. In contrast, the objective of the Kyoto Protocol is to reduce greenhouse gas emissions in industrialized nations by 5% by 2008-12 compared to a 1990 baseline. In order for atmospheric greenhouse gas concentrations to be stabilized at a sustainable level, it will be necessary to reduce emissions by around 60% from the 1990 level. Advocates of a policy of 'convergence and contraction', where developed and developing countries are to be allowed similar levels of emissions on a per capita basis, state that developed countries may have to reduce emissions by as much as 80%. Nuclear energy will make a significant contribution to meeting the world's future electricity demand while helping reduce greenhouse gas emissions. However, the scale of that contribution will be strongly influenced by the way in which this contribution is recognized in national and international policies designed to tackle climate change. The debate continues to rage over the science of climate change: is climate change the result of human intervention or is it a naturally occurring phenomenon? The majority of scientists involved in this debate would agree that enhanced global warming, as witnessed in recent

  6. Do mitigation strategies reduce global warming potential in the northern U.S. corn belt?

    Science.gov (United States)

    Johnson, Jane M-F; Archer, David W; Weyers, Sharon L; Barbour, Nancy W

    2011-01-01

    Agricultural management practices that enhance C sequestration, reduce greenhouse gas emission (nitrous oxide [N₂O], methane [CH₄], and carbon dioxide [CO₂]), and promote productivity are needed to mitigate global warming without sacrificing food production. The objectives of the study were to compare productivity, greenhouse gas emission, and change in soil C over time and to assess whether global warming potential and global warming potential per unit biomass produced were reduced through combined mitigation strategies when implemented in the northern U.S. Corn Belt. The systems compared were (i) business as usual (BAU); (ii) maximum C sequestration (MAXC); and (iii) optimum greenhouse gas benefit (OGGB). Biomass production, greenhouse gas flux change in total and organic soil C, and global warming potential were compared among the three systems. Soil organic C accumulated only in the surface 0 to 5 cm. Three-year average emission of N₂O and CH was similar among all management systems. When integrated from planting to planting, N₂O emission was similar for MAXC and OGGB systems, although only MAXC was fertilized. Overall, the three systems had similar global warming potential based on 4-yr changes in soil organic C, but average rotation biomass was less in the OGGB systems. Global warming potential per dry crop yield was the least for the MAXC system and the most for OGGB system. This suggests management practices designed to reduce global warming potential can be achieved without a loss of productivity. For example, MAXC systems over time may provide sufficient soil C sequestration to offset associated greenhouse gas emission. by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  7. US major crops’ uncertain climate change risks and greenhouse gas mitigation benefits

    International Nuclear Information System (INIS)

    Wing, Ian Sue; Monier, Erwan; Stern, Ari; Mundra, Anupriya

    2015-01-01

    We estimate the costs of climate change to US agriculture, and associated potential benefits of abating greenhouse gas emissions. Five major crops’ yield responses to climatic variation are modeled empirically, and the results combined with climate projections for a no-policy, high-warming future, as well as moderate and stringent mitigation scenarios. Unabated warming reduces yields of wheat and soybeans by 2050, and cotton by 2100, but moderate warming increases yields of all crops except wheat. Yield changes are monetized using the results of economic simulations within an integrated climate-economy modeling framework. Uncontrolled warming’s economic effects on major crops are slightly positive—annual benefits <$4 B. These are amplified by emission reductions, but subject to diminishing returns—by 2100 reaching $17 B under moderate mitigation, but only $7 B with stringent mitigation. Costs and benefits are sensitive to irreducible uncertainty about the fertilization effects of elevated atmospheric carbon dioxide, without which unabated warming incurs net costs of up to $18 B, generating benefits to moderate (stringent) mitigation as large as $26 B ($20 B). (letter)

  8. Reflections on greenhouse gas life cycle assessment

    International Nuclear Information System (INIS)

    Jarrell, J.; Phillips, B.; Pendergast, D.

    1999-01-01

    The amount of carbon dioxide equivalent greenhouse gas emitted per unit of electricity produced is an important consideration in the planning of future greenhouse gas reduced electricity supply systems. Useful estimates of emissions must also take into account the entire cradle to grave life cycle emissions of alternative systems. Thus emissions of greenhouse gases take into account all of the components of building operating, and decommissioning facilities. This requires an accounting of emissions from production of all materials used to build the plants, transportation of materials to the site as well as fuels used for their construction, operation, and decommissioning. The construction of facilities may also have effects which tend to affect greenhouse gas emissions through modification of the local environment. A notable example, often cited, is the evolution of methane from the decay of organic matter submerged by dams built to serve hydro power facilities. In the long term, we anticipate that some kind of cost will be associated with the release of greenhouse gases. In that event it may be argued that the modified economic system established by inclusion of this cost will naturally control the emission of greenhouse gases from competing means of electricity production. Greenhouse gas emissions from all stages involved in the birth and retirement of electricity producing plant could be suitably constrained as the least cost method of production is sought. Such an ideal system is far from in place. At this point in time the results of life cycle accounting of greenhouse gas emissions are a needed means of comparing emissions from alternative sources of electricity. Many life cycle studies have been undertaken in the past. Many of the estimates are based on past practice which does not take into account any possible need to limit the production of greenhouse gas during the design of the plant and operational processes. Sources of energy used to produce materials

  9. Documentation for the Waste Reduction Model (WARM)

    Science.gov (United States)

    This page describes the WARM documentation files and provides links to all documentation files associated with EPA’s Waste Reduction Model (WARM). The page includes a brief summary of the chapters documenting the greenhouse gas emission and energy factors.

  10. Effect of freeze-thaw cycles on greenhouse gas fluxes from peat soils

    Science.gov (United States)

    Oh, H. D.; Rezanezhad, F.; Markelov, I.; McCarter, C. P. R.; Van Cappellen, P.

    2017-12-01

    The ongoing displacement of climate zones by global warming is increasing the frequency and intensity of freeze-thaw cycles in middle and high latitude regions, many of which are dominated by organic soils such as peat. Repeated freezing and thawing of soils changes their physical properties, geochemistry, and microbial community structure, which together govern the biogeochemical cycling of carbon and nutrients. In this presentation, we focus on how freeze-thaw cycles influence greenhouse gas fluxes from peat using a newly developed experimental soil column system that simulates realistic soil temperature profiles during freeze-thaw cycles. We measured the surface and subsurface changes to gas and aqueous phase chemistry to delineate the diffusion pathways and quantify soil greenhouse gas fluxes during freeze-thaw cycles using sulfur hexafluoride (SF6) as a conservative tracer. Three peat columns were assembled inside a temperature controlled chamber with different soil structures. All three columns were packed with 40 cm of undisturbed, slightly decomposed peat, where the soil of two columns had an additional 10 cm layer on top (one with loose Sphagnum moss and one with an impermeable plug). The results indicate that the release of SF6 and CO2 gas from the soil surface was influenced by the recurrent development of a physical ice barrier, which prevented gas exchange between the soil and atmosphere during freezing conditions. With the onset of thawing a pulse of SF6 and CO2 occurred, resulting in a flux of 3.24 and 2095.52 µmol/m2h, respectively, due to the build-up of gases in the liquid-phase pore space during freezing. Additionally, we developed a model to determine the specific diffusion coefficients for each peat column. These data allow us to better predict how increased frequency and intensity of freeze-thaw cycles will affect greenhouse gas emissions in northern peat soils.

  11. 'Home made' model to study the greenhouse effect and global warming

    Science.gov (United States)

    Onorato, P.; Mascheretti, P.; DeAmbrosis, A.

    2011-03-01

    In this paper a simplified two-parameter model of the greenhouse effect on the Earth is developed, starting from the well known two-layer model. It allows both the analysis of the temperatures of the inner planets, by focusing on the role of the greenhouse effect, and a comparison between the temperatures the planets should have in the absence of greenhouse effect and their actual ones. It may also be used to predict the average temperature of the Earth surface in the future, depending on the variations of the concentration of greenhouse gases in the atmosphere due to human activities. This model can promote an elementary understanding of global warming since it allows a simple formalization of the energy balance for the Earth in the stationary condition, in the presence of greenhouse gases. For these reasons it can be introduced in courses for undergraduate physics students and for teacher preparation.

  12. 'Home made' model to study the greenhouse effect and global warming

    International Nuclear Information System (INIS)

    Onorato, P; Mascheretti, P; DeAmbrosis, A

    2011-01-01

    In this paper a simplified two-parameter model of the greenhouse effect on the Earth is developed, starting from the well known two-layer model. It allows both the analysis of the temperatures of the inner planets, by focusing on the role of the greenhouse effect, and a comparison between the temperatures the planets should have in the absence of greenhouse effect and their actual ones. It may also be used to predict the average temperature of the Earth surface in the future, depending on the variations of the concentration of greenhouse gases in the atmosphere due to human activities. This model can promote an elementary understanding of global warming since it allows a simple formalization of the energy balance for the Earth in the stationary condition, in the presence of greenhouse gases. For these reasons it can be introduced in courses for undergraduate physics students and for teacher preparation.

  13. Climate Golden Age or Greenhouse Gas Dark Age Legacy?

    Science.gov (United States)

    Carter, P.

    2016-12-01

    Relying on the IPCC Assessments, this paper assesses legacy from total committed global warming over centuries, correlated with comprehensive projected impacts. Socio-economic inertia, climate system inertia, atmospheric greenhouse gas (GHG) concentrations, amplifying feedback emissions, and unmasking of cooling aerosols are determinants. Stabilization of global temperature (and ocean acidification for CO2) requires emissions of "long lived greenhouse gases" to be "about zero," including feedbacks. "The feedback … is positive" this century; many large feedback sources tend to be self- and inter-reinforcing. Only timely total conversion of all fossil fuel power to clean, virtually zero-carbon renewable power can achieve virtual zero carbon emissions. This results in multiple, increasing benefits for the entire world population of today's and all future generations, as laid out here. Conversions of methane- and nitrous oxide-emitting sources have large benefits. Without timely conversion to virtual zero emissions, the global climate and ocean disruptions are predicted to become progressively more severe and practically irreversible. "Continued emission of greenhouse gases will increase the likelihood of severe, pervasive and irreversible impacts for people and ecosystems." Crop yields in all main food-producing regions are projected to decline progressively with rising temperature (as proxy to multiple adverse effects) (AR5). Ocean heating, acidification, and de-oxygenation are projected to increase under all scenarios, as is species extinction. The legacy for humanity depends on reducing long-lived global emissions fast enough to virtual zero. Today's surface warming with unprecedented and accelerating atmospheric GHG concentrations requires an immediate response. The only IPCC scenario to possibly meet this and not exceed 2ºC by and after 2100 is the best-case RCP2.6, which requires CO2 eq. emissions to peak right away and decline at the latest by 2020.

  14. Emission Characteristics of Greenhouse Gas from Maize Field of Black Soil Region Under Long-term Fertilization

    Directory of Open Access Journals (Sweden)

    GAO Hong-jun

    2017-08-01

    Full Text Available Study on greenhouse gases emission and their global warming potential under different fertilizations would be the theoretical basis for establishing measurements to reduce greenhouses gas emissions. Based on a long-term fertilization experiment, greenhouses gas(GHG emissions from black soil of summer maize were measured by using a static chamber-gas chromatograph technique, and global warming potential(GWP effect was also estimated. The results showed the peaks of CO2 and N2O emissions occurred at maize jointing period. The CO2 and N2O emission flux and CH4 uptake flux in the M2NPK treatment(mixed application of organic fertilizer and chemical fertilizer were significantly higher than those of the chemical fertilizer treatments(P2 and N2O emission flux in the chemical fertilizer treatments were higher than that of the no fertilizer treatment. The CO2 emission flux of the fallow treatment was the highest among all the treatments, but its N2O emission flux was significantly lower than that of the chemical fertilizer treatment. Under equal N rates, the N2O emission flux of the NPK treatment was significantly higher than that of the SNPK treatment(straw returning, but CH4 uptake flux was the opposite result. Compared with no fertilizer treatment(CK, GWP of the N and NPK treatments increased by 142% and 32% respectively, GWP of SNPK treatment decreased by 38%, and GWP in the M2NPK treatment was negative value. Greenhouse gas emission intensity(GHGI of the NPK, SNPK and M2NPK treatments were significantly lower than that of the CK and the N treatments, GHGI of the M2NPK treatment was -222 kg CO2-eq·t-1. Therefore, in order to implement the higher maize yield with lower GHGI synchronously, mixed application of organic fertilizer and chemical fertilizer would be the optimal fertilization measurement in black soil region of Northeast China.

  15. Greenhouse gas emission from Australian coal mining

    International Nuclear Information System (INIS)

    Williams, D.

    1998-01-01

    Since 1997, when the Australian Coal Association (ACA) signed a letter of Intent in respect of the governments Greenhouse Challenge Program, it has encouraged its member companies to participate. Earlier this year, the ACA commissioned an independent scoping study on greenhouse gas emissions in the black coal mining industry This was to provide background information, including identification of information gaps and R and D needs, to guide the formulation of a strategy for the mitigation of greenhouse gas emissions associated with the mining, processing and handling of black coals in Australia. A first step in the process of reducing emission levels is an appreciation of the source, quantity and type of emissions om nine sites. It is shown that greenhouse gas emissions on mine sites come from five sources: energy consumption during mining activities, the coal seam gas liberated due to the extraction process i.e. fugitive emissions, oxidation of carbonaceous wastes, land use, and embodied energy. Also listed are indications of the degree of uncertainty associated with each of the estimates

  16. Greenhouse gas balances of biomass energy systems

    International Nuclear Information System (INIS)

    Marland, G.; Schlamadinger, B.

    1996-01-01

    A full energy-cycle analysis of greenhouse gas emissions of biomass energy systems requires analysis well beyond the energy sector. For example, production of biomass fuels impacts on the global carbon cycle by altering the amount of carbon stored in the biosphere and often by producing a stream of by-products or co-products which substitute for other energy-intensive products like cement, steel, concrete or, in case of ethanol form corn, animal feed. It is necessary to distinguish between greenhouse gas emissions associated with the energy product as opposed to those associated with other products. Production of biomass fuels also has an opportunity cost because it uses large land areas which could have been used otherwise. Accounting for the greenhouse gas emissions from biomass fuels in an environment of credits and debits creates additional challenges because there are large non-linearities in carbon flows over time. This paper presents some of the technical challenges of comprehensive greenhouse gas accounting and distinguishes between technical and public policy issues. (author). 5 refs, 5 figs

  17. Greenhouse gas balances of biomass energy systems

    International Nuclear Information System (INIS)

    Marland, G.; Schlamadinger, B.

    1994-01-01

    A full energy-cycle analysis of greenhouse gas emissions of biomass energy systems requires analysis well beyond the energy sector. For example, production of biomass fuels impacts on the global carbon cycle by altering the amount of carbon stored in the biosphere and often by producing a stream of by-products or co-products which substitute for other energy-intensive products like cement, steel, concrete or, in case of ethanol from corn, animal feed. It is necessary to distinguish between greenhouse gas emissions associated with the energy product as opposed to those associated with other products. Production of biomass fuels also has an opportunity cost because it uses large land areas which could have been used otherwise. Accounting for the greenhouse gas emissions from biomass fuels in an environment of credits and debits creates additional challenges because there are large nonlinearities in the carbon flows over time. This paper presents some of the technical challenges of comprehensive greenhouse gas accounting and distinguishes between technical and public policy issues

  18. Greenhouse gas production and efficiency of planted and artificially aerated constructed wetlands

    Energy Technology Data Exchange (ETDEWEB)

    Maltais-Landry, Gabriel [Departement des sciences biologiques, Universite de Montreal 90, rue Vincent-D' Indy, Montreal (Ciheam), H2V 2S9 (Canada); Institut de recherche en biologie vegetale, Universite de Montreal 4101, rue Sherbrooke Est, Montreal (Ciheam), H1X 2B2 (Canada)], E-mail: gabriel.maltais-landry@umontreal.ca; Maranger, Roxane [Departement des sciences biologiques, Universite de Montreal 90, rue Vincent-D' Indy, Montreal (Ciheam), H2V 2S9 (Canada)], E-mail: r.maranger@umontreal.ca; Brisson, Jacques [Departement des sciences biologiques, Universite de Montreal 90, rue Vincent-D' Indy, Montreal (Ciheam), H2V 2S9 (Canada); Institut de recherche en biologie vegetale, Universite de Montreal 4101, rue Sherbrooke Est, Montreal (Ciheam), H1X 2B2 (Canada)], E-mail: jacques.brisson@umontreal.ca; Chazarenc, Florent [Institut de recherche en biologie vegetale, Universite de Montreal 4101, rue Sherbrooke Est, Montreal (Ciheam), H1X 2B2 (Canada)

    2009-03-15

    Greenhouse gas (GHG) emissions by constructed wetlands (CWs) could mitigate the environmental benefits of nutrient removal in these man-made ecosystems. We studied the effect of 3 different macrophyte species and artificial aeration on the rates of nitrous oxide (N{sub 2}O), carbon dioxide (CO{sub 2}) and methane (CH{sub 4}) production in CW mesocosms over three seasons. CW emitted 2-10 times more GHG than natural wetlands. Overall, CH{sub 4} was the most important GHG emitted in unplanted treatments. Oxygen availability through artificial aeration reduced CH{sub 4} fluxes. Plant presence also decreased CH{sub 4} fluxes but favoured CO{sub 2} production. Nitrous oxide had a minor contribution to global warming potential (GWP < 15%). The introduction of oxygen through artificial aeration combined with plant presence, particularly Typha angustifolia, had the overall best performance among the treatments tested in this study, including lowest GWP, greatest nutrient removal, and best hydraulic properties. - Methane is the main greenhouse gas produced in constructed wetlands and oxygen availability is the main factor controlling fluxes.

  19. State and Territory Greenhouse Gas Emissions 2004

    International Nuclear Information System (INIS)

    2006-06-01

    This document provides an overview of the latest available estimates of greenhouse gas emissions for Australia's States and Territories. Australia's total greenhouse gas emissions in 2004 amounted to 564.7 million tonnes. The State and Territory breakdown was: New South Wales: 158.7 million tonnes (Mt); Queensland: 158.5 Mt; Victoria: 123.0 Mt; Western Australia: 68.5 Mt; South Australia: 27.6 Mt; Northern Territory: 15.6 Mt; Tasmania: 10.7 Mt; ACT: 1.2 Mt. The summary of State and Territory inventories presented in this document reports estimates of greenhouse gas emissions for each State and Territory for the period 1990 to 2004. It is the first time that a complete annual time-series has been reported

  20. Detection of greenhouse-gas-induced climatic change

    International Nuclear Information System (INIS)

    Wigley, T.M.L.; Jones, P.D.

    1992-01-01

    The aims of the US Department of Energy's Carbon Dioxide Research Program are to improve assessments of greenhouse-gas-induced climatic change and to define and reduce uncertainties through selected research. This project will address: The regional and seasonal details of the expected climatic changes; how rapidly will these changes occur; how and when will the climatic effects of CO 2 and other greenhouse gases be first detected; and the relationships between greenhouse-gas-induced climatic change and changes caused by other external and internal factors. The present project addresses all of these questions. Many of the diverse facets of greenhouse-gas-related climate research can be grouped under three interlinked subject areas: modeling, first detection and supporting data. This project will include the analysis of climate forcing factors, the development and refinement of transient response climate models, and the use of instrumental data in validating General Circulation Models (GCMs)

  1. Radiative forcing due to greenhouse gas emission and sink histories in Finland and its future control potential

    Energy Technology Data Exchange (ETDEWEB)

    Savolainen, I; Sinisalo, J; Pipatti, R [VTT Energy, Espoo (Finland)

    1996-12-31

    The effective atmospheric lifetimes of the greenhouse gases like carbon dioxide (CO{sub 2}),nitrous oxide (N{sub 2}O) and many of the CFCs are of the order of 100 years. Human activities, as an example GDP, very often change at rates of a few per cents per year,corresponding time constants of some tens of years. Also the forest ecosystems have time constants of this order. Even the human population of the globe is increasing by about two percent per year. Because so many natural and human-linked processes, which are relevant to global warming, have slow change rates of about same order, a time-dependent consideration of the greenhouse warming and its control can give useful information for the understanding of the problem. The objective of the work is to study the anthropogenic greenhouse gas emissions and sinks in Finland and their greenhouse impact as a function of time. The greenhouse impact is expressed in terms of radiative forcing which describes the perturbation in the Earth`s radiation budget. Radiative forcing allows a comparison of the impact of various greenhouse gases and their possible control options as a function of time. The idea behind the calculations is that Finland should in some way steer its share of the global radiative forcing and greenhouse effect. This presentation describes the calculation model REFUGE and the projects in which it has been used

  2. Radiative forcing due to greenhouse gas emission and sink histories in Finland and its future control potential

    Energy Technology Data Exchange (ETDEWEB)

    Savolainen, I.; Sinisalo, J.; Pipatti, R. [VTT Energy, Espoo (Finland)

    1995-12-31

    The effective atmospheric lifetimes of the greenhouse gases like carbon dioxide (CO{sub 2}),nitrous oxide (N{sub 2}O) and many of the CFCs are of the order of 100 years. Human activities, as an example GDP, very often change at rates of a few per cents per year,corresponding time constants of some tens of years. Also the forest ecosystems have time constants of this order. Even the human population of the globe is increasing by about two percent per year. Because so many natural and human-linked processes, which are relevant to global warming, have slow change rates of about same order, a time-dependent consideration of the greenhouse warming and its control can give useful information for the understanding of the problem. The objective of the work is to study the anthropogenic greenhouse gas emissions and sinks in Finland and their greenhouse impact as a function of time. The greenhouse impact is expressed in terms of radiative forcing which describes the perturbation in the Earth`s radiation budget. Radiative forcing allows a comparison of the impact of various greenhouse gases and their possible control options as a function of time. The idea behind the calculations is that Finland should in some way steer its share of the global radiative forcing and greenhouse effect. This presentation describes the calculation model REFUGE and the projects in which it has been used

  3. Accounting For Greenhouse Gas Emissions From Flooded Lands

    Science.gov (United States)

    Nearly three decades of research has demonstrated that the inundation of rivers and terrestrial ecosystems behind dams can lead to enhanced rates of greenhouse gas emissions, particularly methane. The 2006 IPCC Guidelines for National Greenhouse Gas Inventories includes a method...

  4. Differences in net global warming potential and greenhouse gas intensity between major rice-based cropping systems in China

    Science.gov (United States)

    Xiong, Zhengqin; Liu, Yinglie; Wu, Zhen; Zhang, Xiaolin; Liu, Pingli; Huang, Taiqing

    2015-01-01

    Double rice (DR) and upland crop-single rice (UR) systems are the major rice-based cropping systems in China, yet differences in net global warming potential (NGWP) and greenhouse gas intensity (GHGI) between the two systems are poorly documented. Accordingly, a 3-year field experiment was conducted to simultaneously measure methane (CH4) and nitrous oxide (N2O) emissions and changes in soil organic carbon (SOC) in oil rape-rice-rice and wheat-rice (representing DR and UR, respectively) systems with straw incorporation (0, 3 and 6 t/ha) during the rice-growing seasons. Compared with the UR system, the annual CH4, N2O, grain yield and NGWP were significantly increased in the DR system, though little effect on SOC sequestration or GHGI was observed without straw incorporation. Straw incorporation increased CH4 emission and SOC sequestration but had no significant effect on N2O emission in both systems. Averaged over the three study years, straw incorporation had no significant effect on NGWP and GHGI in the UR system, whereas these parameters were greatly increased in the DR system, i.e., by 108% (3 t/ha) and 180% (6 t/ha) for NGWP and 103% (3 t/ha) and 168% (6 t/ha) for GHGI. PMID:26626733

  5. Differences in net global warming potential and greenhouse gas intensity between major rice-based cropping systems in China.

    Science.gov (United States)

    Xiong, Zhengqin; Liu, Yinglie; Wu, Zhen; Zhang, Xiaolin; Liu, Pingli; Huang, Taiqing

    2015-12-02

    Double rice (DR) and upland crop-single rice (UR) systems are the major rice-based cropping systems in China, yet differences in net global warming potential (NGWP) and greenhouse gas intensity (GHGI) between the two systems are poorly documented. Accordingly, a 3-year field experiment was conducted to simultaneously measure methane (CH4) and nitrous oxide (N2O) emissions and changes in soil organic carbon (SOC) in oil rape-rice-rice and wheat-rice (representing DR and UR, respectively) systems with straw incorporation (0, 3 and 6 t/ha) during the rice-growing seasons. Compared with the UR system, the annual CH4, N2O, grain yield and NGWP were significantly increased in the DR system, though little effect on SOC sequestration or GHGI was observed without straw incorporation. Straw incorporation increased CH4 emission and SOC sequestration but had no significant effect on N2O emission in both systems. Averaged over the three study years, straw incorporation had no significant effect on NGWP and GHGI in the UR system, whereas these parameters were greatly increased in the DR system, i.e., by 108% (3 t/ha) and 180% (6 t/ha) for NGWP and 103% (3 t/ha) and 168% (6 t/ha) for GHGI.

  6. Energy consumption, greenhouse gas emissions and assessment of sustainability index in corn agroecosystems of Iran

    Energy Technology Data Exchange (ETDEWEB)

    Yousefi, Mohammad, E-mail: m.yousefi@pgs.razi.ac.ir [Department of Agronomy and Plant Breeding, Campus of Agriculture and Natural Resources, Razi University, Kermanshah (Iran, Islamic Republic of); Damghani, Abdolmajid Mahdavi [Departments of Agroecology, Environmental Sciences Research Institute, Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Khoramivafa, Mahmud [Department of Agronomy and Plant Breeding, Campus of Agriculture and Natural Resources, Razi University, Kermanshah (Iran, Islamic Republic of)

    2014-09-15

    The objectives of this study were to assess the energy flow, greenhouse gas (GHG) emission, global warming potential (GWP) and sustainability of corn production systems in Kermanshah province, western Iran. The data were collected from 70 corn agroecosystems which were selected based on randomly sampled method in the summer of 2011. The results indicated that total input and output energy were 50,485 and 134,946 MJ ha{sup −1}, respectively. The highest share of total input energy in corn production systems was recorded for N fertilizer, electricity power and diesel fuel with 35, 25 and 20%, respectively. Energy use efficiency and energy productivity were 2.67 and 0.18 kg MJ{sup −1}, respectively. Also agrochemical energy ratio was estimated as 40%. Applying chemical inputs produced the following emissions of greenhouse gases: 2994.66 kg CO{sub 2,} 31.58 kg N{sub 2}O and 3.82 kg CH{sub 4} per hectare{sub .} Hence, total GWP was 12,864.84 kg Co{sub 2}eq ha{sup −1} in corn production systems. In terms of CO{sub 2} equivalents 23% of the GWPs came from CO{sub 2}, 76% from N{sub 2}O, and 1% from CH{sub 4}. In this study input and output C equivalents per total GHG and Biomass production were 3508.59 and 10,696.34 kg C ha{sup −1}. Net carbon and sustainability indexes in corn production systems were 7187.75 kg C ha{sup −1} and 2.05. Accordingly, efficient use of energy is essential to reduce the greenhouse gas emissions and environmental impact in corn agroecosystems. - Highlights: • Increasing of energy consumption leaded to decreasing energy use efficiency in corn agroecosystems. • Total greenhouse gas (GHG) emission as CO{sub 2}, N{sub 2}O and CH{sub 4} in corn production systems were 2994.66, 31.58 and 3.82 kg ha{sup -1}, respectively. • Global warming potential (GWP) was 12864.84 kg CO{sub 2}eq ha{sup -1} in corn production systems. • Sustainability index in corn production systems was 2.05. • Reducing use of chemicals fertilizer and diesel fuel

  7. ON THE STUDY OF GHG (GREENHOUSE GAS EMISSIONS IN RICE PRODUCTION SYSTEMS IN DARGAZ, IRAN

    Directory of Open Access Journals (Sweden)

    Ghorbanali RASSAM

    2015-12-01

    Full Text Available The most important issue which has attracted the attention of many scientists is the climate change and global warming due to greenhouse gas emission which has caused the world faced with a great human and environmental disaster. In this study, the amount of greenhouse gas (GHG emissions was estimated in the semi-traditional and semi-mechanized rice production systems in Dargaz region, Iran. All the agricultural and consuming inputs procedures responsible for greenhouse gas emissions were collected and recorded in both systems. The amount of GHG emission in semi-traditional and semi-mechanized was 813.17 and 968.31 kg CO2-eq ha-1, respectively. The fuel consumption with the share of 38.22% in semi-traditional method and 43.32% in semi-mechanized system had the largest share in GHG emission and using Nitrogen fertilizer on farms with the share of 31.97% in semi-traditional method and 26.91% in semi-mechanized system is in the second place of GHG emission. The semi-traditional system had greater GHG emissions in the unit of tone of harvested grain and unit of energy output. The use of alternative methods such as conservation tillage and organic fertilizers can be effective in improving the environmental status of the production area.

  8. Intelligent Bioreactor Management Information System (IBM-IS) for Mitigation of Greenhouse Gas Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Paul Imhoff; Ramin Yazdani; Don Augenstein; Harold Bentley; Pei Chiu

    2010-04-30

    Methane is an important contributor to global warming with a total climate forcing estimated to be close to 20% that of carbon dioxide (CO2) over the past two decades. The largest anthropogenic source of methane in the US is 'conventional' landfills, which account for over 30% of anthropogenic emissions. While controlling greenhouse gas emissions must necessarily focus on large CO2 sources, attention to reducing CH4 emissions from landfills can result in significant reductions in greenhouse gas emissions at low cost. For example, the use of 'controlled' or bioreactor landfilling has been estimated to reduce annual US greenhouse emissions by about 15-30 million tons of CO2 carbon (equivalent) at costs between $3-13/ton carbon. In this project we developed or advanced new management approaches, landfill designs, and landfill operating procedures for bioreactor landfills. These advances are needed to address lingering concerns about bioreactor landfills (e.g., efficient collection of increased CH4 generation) in the waste management industry, concerns that hamper bioreactor implementation and the consequent reductions in CH4 emissions. Collectively, the advances described in this report should result in better control of bioreactor landfills and reductions in CH4 emissions. Several advances are important components of an Intelligent Bioreactor Management Information System (IBM-IS).

  9. Canada and global warming: Meeting the challenge

    International Nuclear Information System (INIS)

    1991-01-01

    Canada accounts for ca 2% of total world emissions of greenhouse gases. Carbon dioxide emissions are by far the largest greenhouse gas source in Canada, primarily from energy consumption. On a per capita basis, Canada ranks second among industrialized countries in terms of energy related carbon dioxide emissions. Canada's northern geography and climate, its export-oriented economy with energy-intensive resource industries, and its relatively small population dispersed over a wide land mass contribute to this high per-capita value. The effects of global warming induced by greenhouse gases are outlined, including a reduction in water supplies, droughts affecting agriculture and forestry, and large-scale thawing of permafrost. A national strategy to respond to global warming has been developed which includes limiting and reducing greenhouse gas emissions, preparing for potential climatic changes, and improving scientific understanding and predictive capabilities with respect to climate change. Details of this strategy are outlined, including provincial and territorial strategies in partnership with the national strategy. 11 figs., 2 tabs

  10. OPIC Greenhouse Gas Emissions Inventory

    Data.gov (United States)

    Overseas Private Investment Corporation — Independent analysis details quantifying the greenhouse gas ("GHG") emissions directly attributable to projects to which the Overseas Private Investment Corporation...

  11. Utilization of paleoclimate results to validate projections of a future greenhouse warming

    International Nuclear Information System (INIS)

    Crowley, T.J.

    1990-01-01

    Paleoclimate data provide a rich source of information for testing projections of future greenhouse trends. This paper summarizes the present state-of-the-art as to assessments of two important climate problems. (1) Validation of climate models - The same climate models that have been used to make greenhouse forecasts have also been used for paleoclimate simulations. Comparisons of model results and observations indicate some impressive successes but also some cases where there are significant divergences between models and observations. However, special conditions associated with the impressive successes could lead to a false confidence in the models; disagreements are a topic of greater concern. It remains to be determined whether the disagreements are due to model limitations or uncertainties in geologic data. (2) Role of CO 2 as a significant climate feedback: Paleoclimate studies indicate that the climate system is generally more sensitive than our ability to model it. Addition or subtraction of CO 2 leads to a closer agreement between models and observations. In this respect paleoclimate results in general support the conclusion that CO 2 is an important climate feedback, with the magnitude of the feedback approximately comparable to the sensitivity of present climate models. If the CO 2 projections are correct, comparison of the future warming with past warm periods indicate that there may be no geologic analogs for a future warming; the future greenhouse climate may represent a unique climate realization in earth history

  12. 76 FR 22825 - Mandatory Reporting of Greenhouse Gases: Petroleum and Natural Gas Systems

    Science.gov (United States)

    2011-04-25

    ... Reporting of Greenhouse Gases: Petroleum and Natural Gas Systems AGENCY: Environmental Protection Agency... Subpart W: Petroleum and Natural Gas Systems of the Greenhouse Gas Reporting Rule. As part of the... greenhouse gas emissions for the petroleum and natural gas systems source category of the greenhouse gas...

  13. Greenhouse gas neutral Germany in 2050

    International Nuclear Information System (INIS)

    Benndorf, Rosemarie; Bernicke, Maja; Bertram, Andreas

    2014-01-01

    In order to answer the question how a greenhouse gas neutral Germany would look like an interdisciplinary process was started by the Federal Environmental Agency. It was clear from the beginning of this work that a sustainable regenerative energy supply could not be sufficient. Therefore all relevant emission sources were included into the studies: traffic, industry, waste and waste water, agriculture, land usage, land usage changes and forestry. The necessary transformation paths to reach the aim of a greenhouse gas neutral Germany in 2050, economic considerations and political instruments were not part of this study.

  14. International greenhouse gas trading programs: a discussion of measurement and accounting issues

    International Nuclear Information System (INIS)

    Vine, Edward; Kats, Gregory; Sathaye, Jayant; Joshi, Hemant

    2003-01-01

    There is general scientific consensus that global warming is occurring and that this results from human activities, primarily burning fossil fuels. There is also a growing international consensus that the most cost-effective way to slow global warming is to establish international climate change trading programs that let institutions sell greenhouse gas (GHG) reductions in an international trading program. A well designed international GHG trading program could save billions or tens of billions of dollars and could result in a more rapid transfer of cleaner, more modern energy generating, transmitting and using technologies to developing nations. Establishing an international GHG trading program will require the development of international consensus rules on how to value and credit investments, for example in energy efficiency, that result in reduced emissions of greenhouse gases. Such a program would require the development of an international technical agreement on how to value emissions reductions attributed to energy-efficiency investments that reflect realistic estimates of future energy savings--and emissions reductions--that come from those investments. This paper examines five possible approaches for valuing energy savings which might serve as the basis for an international agreement, discusses the strengths and weaknesses of each approach, and discusses lessons learned from conducting this evaluation process

  15. Greenhouse gas emissions trading and project-based mechanisms. Proceedings - CATEP

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-01-01

    Greenhouse gas emissions trading and project-based mechanisms for greenhouse gas reduction are emerging market-based instruments for climate change policy. This book presents a selection of papers from an international workshop co-sponsored by the OECD and Concerted Action on Tradeable Emissions Permits (CATEP), to discuss key research and policy issues relating to the design and implementation of these instruments. The papers cover the experience of developing and transition countries with greenhouse gas emissions trading and project-based mechanisms. In addition, the papers examine the use of tradeable permits in policy mixes and harmonisation of emissions trading schemes, as well as transition issues relating to greenhouse gas emissions trading markets.

  16. Literature review on the greenhouse effect and global warming

    International Nuclear Information System (INIS)

    English, M.; Petri, H.; Wong, R.K.W.; Kochtubajda, B.

    1990-08-01

    A literature review of recent (1988-1990) publications on global warming and climate change was carried out by the Alberta Research Council. The objectives of the project were to develop a listing of relevant citations, review the publications, prepare a short summary of the contents of each, and develop statistics with respect to the degree to which scientific consensus exists on the various topics of interest. The bibliography contains 1,557 citations, and a total of 501 publications were reviewed. Topics of interest include computer modelling of world climate, potential impacts of climate change, potential strategies for responding to climate change, and technological solutions. Statistical results are presented of numbers of papers reviewed addressing types of emission, time of effective doubling of greenhouse gases, global temperature increase predicted for effective doubling of greenhouse gases, temperature increase in northern lattitudes for an effective doubling of greenhouse gases, components of atmosphere that are changing, potential impacts on agriculture, forestry, and health, suggested emission limitations, and suggested technological solutions. 4 refs., 11 figs., 3 tabs

  17. Greenhouse gas emissions in the Netherlands 1990-1996: Updated methodology

    NARCIS (Netherlands)

    Spakman J; Olivier JGJ; Loon MMJ van; LAE

    1997-01-01

    This inventory of greenhouse gas emissions in the Netherlands has been prepared according to the IPCC Guidelines and complies with the obligations under the European Union's Greenhouse Gas Monitoring Mechanism and the UN-FCCC for emission reports on greenhouse gases not covered under the Montreal

  18. Greenhouse gas and energy analysis of substitute natural gas from biomass for space heat

    International Nuclear Information System (INIS)

    Pucker, Johanna; Zwart, Robin; Jungmeier, Gerfried

    2012-01-01

    In this paper, the greenhouse gas and energy balances of the production and use for space heating of substitute natural gas from biomass (bio-SNG) for space heat are analysed. These balances are compared to the use of natural gas and solid biomass as wood chips to provide the same service. The reduction of the greenhouse gas emissions (CO 2 -eq.) – carbon dioxide, methane and nitrous oxide – and of the fossil primary energy use is investigated in a life cycle assessment (LCA). This assessment was performed for nine systems for bio-SNG; three types of gasification technologies (O 2 -blown entrained flow, O 2 -blown circulating fluidised bed and air–steam indirect gasification) with three different types of feedstock (forest residues, miscanthus and short rotation forestry). The greenhouse gas analysis shows that forest residues using the air–steam indirect gasification technology result in the lowest greenhouse gas emissions (in CO 2 -eq. 32 kg MWh −1 of heat output). This combination results in 80% reduction of greenhouse gas emissions when compared to natural gas and a 29% reduction of greenhouse gases if the forest residues were converted to wood chips and combusted. The gasification technologies O 2 -blown entrained flow and O 2 -blown circulating fluidised bed gasification have higher greenhouse gas emissions that range between in CO 2 -eq. 41 to 75 kg MWh −1 of heat output depending on the feedstock. When comparing feedstocks in the bio-SNG systems, miscanthus had the highest greenhouse gas emissions bio-SNG systems producing in CO 2 -eq. 57–75 kg MWh −1 of heat output. Energy analysis shows that the total primary energy use is higher for bio-SNG systems (1.59–2.13 MWh MWh −1 of heat output) than for the reference systems (in 1.37–1.51 MWh MWh −1 of heat output). However, with bio-SNG the fossil primary energy consumption is reduced compared to natural gas. For example, fossil primary energy use is reduced by 92% when air

  19. Climate change and global warming potentials

    International Nuclear Information System (INIS)

    Vate, J.F. van de

    1996-01-01

    Climate change and the global budgets of the two main energy consumption related greenhouse gases, CO 2 and CH 4 , are discussed. The global warming potential (GWP) of the non-CO 2 greenhouse gases is defined and the large range of GWPs of CH 4 in the literature is discussed. GWPs are expected to play an important role in energy policies and negotiations concerning lowering greenhouse gas emissions. (author). 20 refs, 4 figs, 4 tabs

  20. Energy efficiency and fuel switching in Canadian industry under greenhouse gas regulation

    International Nuclear Information System (INIS)

    Margolick, M.

    1992-01-01

    The application of financial instruments to greenhouse gas control, particularly a greenhouse gas tax, is discussed. As of June 1991, Finland, the Netherlands, Sweden and Norway have imposed taxes on greenhouse gas emissions, while taxes are imminent in Denmark and Germany. A study has been carried out to model the effects of such taxes on greenhouse gas emissions in Canada, using the Intra-Sectoral Technology Use Model (ISTUM) and an end-use energy demand computer model. Only carbon dioxide and methane were considered. The limitations of the ISTUM model are discussed. Industry results are presented by sector, including an overview of greenhouse gas-producing processes, emission reduction measures possible, energy and greenhouse emissions, and results of taxes at varying levels. Different basic physical and chemical processes among industries would cause widely varying responses to a greenhouse gas tax. Issues which bear directly on greenhouse gas emissions include the burning of biomass fuels in the pulp and paper industry, strategic choices between existing and new technologies in the iron and steel sector, the possibility of a nearly greenhouse gas-free aluminum smelting sector, and the advent of reformulated gasoline requirements and declining crude oil quantity in the petroleum refining sector. 15 refs., 6 figs

  1. Greenhouse gas and energy analysis of substitute natural gas from biomass for space heat

    Energy Technology Data Exchange (ETDEWEB)

    Pucker, J.; Jungmeier, G. [JOANNEUM RESEARCH Forschungsgesellschaft mbH, RESOURCES - Institute for Water, Energy and Sustainability, Steyrergasse 17, 8010 Graz (Austria); Zwart, R. [Energy Research Centre of The Netherlands (ECN), Westerduinweg 3, 1755 LE Petten (Netherlands)

    2012-03-15

    In this paper, the greenhouse gas and energy balances of the production and use for space heating of substitute natural gas from biomass (bio-SNG) for space heat are analysed. These balances are compared to the use of natural gas and solid biomass as wood chips to provide the same service. The reduction of the greenhouse gas emissions (CO{sub 2}-eq.) - carbon dioxide, methane and nitrous oxide - and of the fossil primary energy use is investigated in a life cycle assessment (LCA). This assessment was performed for nine systems for bio-SNG; three types of gasification technologies (O{sub 2}-blown entrained flow, O{sub 2}-blown circulating fluidised bed and air-steam indirect gasification) with three different types of feedstock (forest residues, miscanthus and short rotation forestry). The greenhouse gas analysis shows that forest residues using the air-steam indirect gasification technology result in the lowest greenhouse gas emissions (in CO{sub 2}-eq. 32 kg MWh{sup -1} of heat output). This combination results in 80% reduction of greenhouse gas emissions when compared to natural gas and a 29% reduction of greenhouse gases if the forest residues were converted to wood chips and combusted. The gasification technologies O{sub 2}-blown entrained flow and O{sub 2}-blown circulating fluidised bed gasification have higher greenhouse gas emissions that range between in CO{sub 2}-eq. 41 to 75 kg MWh{sup -1} of heat output depending on the feedstock. When comparing feedstocks in the bio-SNG systems, miscanthus had the highest greenhouse gas emissions bio-SNG systems producing in CO2-eq. 57-75 kg MWh{sup -1} of heat output. Energy analysis shows that the total primary energy use is higher for bio-SNG systems (1.59-2.13 MWh MWh{sup -1} of heat output) than for the reference systems (in 1.37-1.51 MWh MWh{sup -1} of heat output). However, with bio-SNG the fossil primary energy consumption is reduced compared to natural gas. For example, fossil primary energy use is reduced by

  2. The climatic warming up (the greenhouse effect); Le rechauffement climatique (l'effet de serre)

    Energy Technology Data Exchange (ETDEWEB)

    Jancovici, J M; Jouzel, J [CEA Saclay, Lab. des Sciences du Climat et de l' Environnement, 91 - Gif-sur-Yvette (France); Lorius, C [Centre National de la Recherche Scientifique (CNRS), Lab. de Glaciologie et Geophysique de l' Environnement, 38 - Grenoble (France); and others

    2000-05-01

    Facing the environmental and biological impacts of the climatic warming up, scientists and economists organized a debate on the subject. After a theoretical presentation of the greenhouse effect and the greenhouse gases, the climatic changes are discussed and simulation of the effects are presented. The today effects and tomorrow impacts on the agriculture and the public health are also presented. A synthesis is proposed to discuss the contribution of the energy policy and of the technological progress in measures of greenhouse effect control. (A.L.B.)

  3. Self-Calibrating Greenhouse Gas Balloon-Borne Sensor, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Understanding the sources and sinks of carbon dioxide and other greenhouse gases has been recognized as critical to predicting climate change and global warming. A...

  4. FETC Programs for Reducing Greenhouse Gas Emissions

    International Nuclear Information System (INIS)

    Ruether, J.A.

    1998-02-01

    Mark Twain once quipped that everyone talks about the weather but no one does anything about it. With interest in global climate change on the rise, researchers in the fossil-energy sector are feeling the heat to provide new technology to permit continued use of fossil fuels but with reduced emissions of so-called 'greenhouse gases.' Three important greenhouse gases, carbon dioxide, methane, and nitrous oxide, are released to the atmosphere in the course of recovering and combusting fossil fuels. Their importance for trapping radiation, called forcing, is in the order given. In this report, we briefly review how greenhouse gases cause forcing and why this has a warming effect on the Earth's atmosphere. Then we discuss programs underway at FETC that are aimed at reducing emissions of methane and carbon dioxide

  5. Substrate potential of last interglacial to Holocene permafrost organic matter for future microbial greenhouse gas production

    Science.gov (United States)

    Stapel, Janina G.; Schwamborn, Georg; Schirrmeister, Lutz; Horsfield, Brian; Mangelsdorf, Kai

    2018-04-01

    In this study the organic matter (OM) in several permafrost cores from Bol'shoy Lyakhovsky Island in NE Siberia was investigated. In the context of the observed global warming the aim was to evaluate the potential of freeze-locked OM from different depositional ages to act as a substrate provider for microbial production of greenhouse gases from thawing permafrost. To assess this potential, the concentrations of free and bound acetate, which form an appropriate substrate for methanogenesis, were determined. The largest free-acetate (in pore water) and bound-acetate (organic-matrix-linked) substrate pools were present in interstadial marine isotope stage (MIS) 3 and stadial MIS 4 Yedoma permafrost deposits. In contrast, deposits from the last interglacial MIS 5e (Eemian) contained only a small pool of substrates. The Holocene (MIS 1) deposits revealed a significant bound-acetate pool, representing a future substrate potential upon release during OM degradation. Additionally, pyrolysis experiments on the OM allocated an increased aliphatic character to the MIS 3 and 4 Late Pleistocene deposits, which might indicate less decomposed and presumably more easily degradable OM. Biomarkers for past microbial communities, including those for methanogenic archaea, also showed the highest abundance during MIS 3 and 4, which indicated OM-stimulated microbial degradation and presumably greenhouse gas production during time of deposition. On a broader perspective, Arctic warming will increase and deepen permafrost thaw and favor substrate availability from older freeze-locked permafrost deposits. Thus, the Yedoma deposits especially showed a high potential for providing substrates relevant for microbial greenhouse gas production.

  6. Does the Swedish consumer's choice of food influence greenhouse gas emissions?

    International Nuclear Information System (INIS)

    Wallen, Anna; Brandt, Nils; Wennersten, Ronald

    2004-01-01

    Consumer's choice of food can influence the environment. In Sweden, in common with many other countries, consumers need to be given information so they can make environmentally informed shopping choices. However, what is the most advantageous dietary choice to lower greenhouse emissions? This study investigates the greenhouse gas emissions associated with food production for food consumed in Sweden annually. Specifically, this study compares greenhouse gas emissions associated with a nutritionally and environmentally sustainable diet with the average consumption of food in Sweden 1999. The study concludes that the change in energy use and greenhouse gas emission associated with this change of diet is negligible. Lowering greenhouse gas emissions by changing food production processes results in more profound changes than teaching consumers to make environmentally correct choices. There is a basic need for a reduction or a replacement of the use of fossil fuels to produce and distribute our food in order to reach any significant reduction in the emission of greenhouse gases. Swedish agricultural policy does not provide ways to reduce greenhouse gas emissions. In Sweden therefore there is an immediate need to design policy instruments with the primary aim of reducing the greenhouse effect

  7. Transit Greenhouse Gas Management Compendium

    Science.gov (United States)

    2011-01-12

    This Compendium provides a framework for identifying greenhouse gas (GHG) reduction opportunities while highlighting specific examples of effective GHG reduction practices. The GHG savings benefits of public transit are first described. GHG saving op...

  8. Future forecast for life-cycle greenhouse gas emissions of LNG and city gas 13A

    International Nuclear Information System (INIS)

    Okamura, Tomohito; Furukawa, Michinobu; Ishitani, Hisashi

    2007-01-01

    The objective of this paper is to analyze the most up-to-date data available on total greenhouse-gas emissions of a LNG fuel supply chain and life-cycle of city gas 13A based on surveys of the LNG projects delivering to Japan, which should provide useful basic-data for conducting life-cycle analyses of other product systems as well as future alternative energy systems, because of highly reliable data qualified in terms of its source and representativeness. In addition, the life-cycle greenhouse-gas emissions of LNG and city-gas 13A in 2010 were also predicted, taking into account not only the improvement of technologies, but also the change of composition of LNG projects. As a result of this analysis, the total amount of greenhouse-gas emissions of the whole city-gas 13A chain at present was calculated to be 61.91 g-CO 2 /MJ, and the life-cycle greenhouse-gas emissions of LNG and city-gas 13A in 2010 could be expected to decrease by about 1.1% of the current emissions

  9. Life-cycle greenhouse gas emissions of shale gas, natural gas, coal, and petroleum.

    Science.gov (United States)

    Burnham, Andrew; Han, Jeongwoo; Clark, Corrie E; Wang, Michael; Dunn, Jennifer B; Palou-Rivera, Ignasi

    2012-01-17

    The technologies and practices that have enabled the recent boom in shale gas production have also brought attention to the environmental impacts of its use. It has been debated whether the fugitive methane emissions during natural gas production and transmission outweigh the lower carbon dioxide emissions during combustion when compared to coal and petroleum. Using the current state of knowledge of methane emissions from shale gas, conventional natural gas, coal, and petroleum, we estimated up-to-date life-cycle greenhouse gas emissions. In addition, we developed distribution functions for key parameters in each pathway to examine uncertainty and identify data gaps such as methane emissions from shale gas well completions and conventional natural gas liquid unloadings that need to be further addressed. Our base case results show that shale gas life-cycle emissions are 6% lower than conventional natural gas, 23% lower than gasoline, and 33% lower than coal. However, the range in values for shale and conventional gas overlap, so there is a statistical uncertainty whether shale gas emissions are indeed lower than conventional gas. Moreover, this life-cycle analysis, among other work in this area, provides insight on critical stages that the natural gas industry and government agencies can work together on to reduce the greenhouse gas footprint of natural gas.

  10. Soil greenhouse gas fluxes from different tree species on Taihang Mountain, North China

    Science.gov (United States)

    Liu, X. P.; Zhang, W. J.; Hu, C. S.; Tang, X. G.

    2014-03-01

    The objectives of this study were to investigate seasonal variation of greenhouse gas fluxes from soils on sites dominated by plantation (Robinia pseudoacacia, Punica granatum, and Ziziphus jujube) and natural regenerated forests (Vitex negundo var. heterophylla, Leptodermis oblonga, and Bothriochloa ischcemum), and to identify how tree species, litter exclusion, and soil properties (soil temperature, soil moisture, soil organic carbon, total N, soil bulk density, and soil pH) explained the temporal and spatial variation in soil greenhouse gas fluxes. Fluxes of greenhouse gases were measured using static chamber and gas chromatography techniques. Six static chambers were randomly installed in each tree species. Three chambers were randomly designated to measure the impacts of surface litter exclusion, and the remaining three were used as a control. Field measurements were conducted biweekly from May 2010 to April 2012. Soil CO2 emissions from all tree species were significantly affected by soil temperature, soil moisture, and their interaction. Driven by the seasonality of temperature and precipitation, soil CO2 emissions demonstrated a clear seasonal pattern, with fluxes significantly higher during the rainy season than during the dry season. Soil CH4 and N2O fluxes were not significantly correlated with soil temperature, soil moisture, or their interaction, and no significant seasonal differences were detected. Soil organic carbon and total N were significantly positively correlated with CO2 and N2O fluxes. Soil bulk density was significantly negatively correlated with CO2 and N2O fluxes. Soil pH was not correlated with CO2 and N2O emissions. Soil CH4 fluxes did not display pronounced dependency on soil organic carbon, total N, soil bulk density, and soil pH. Removal of surface litter significantly decreased in CO2 emissions and CH4 uptakes. Soils in six tree species acted as sinks for atmospheric CH4. With the exception of Ziziphus jujube, soils in all tree

  11. 'Home made' model to study the greenhouse effect and global warming

    Energy Technology Data Exchange (ETDEWEB)

    Onorato, P; Mascheretti, P; DeAmbrosis, A, E-mail: pasquale.onorato@unipv.it, E-mail: anna.deambrosisvigna@unipv.it [Department of Physics ' A. Volta' , University of Pavia, Via Bassi 6, I-27100 Pavia (Italy)

    2011-03-15

    In this paper a simplified two-parameter model of the greenhouse effect on the Earth is developed, starting from the well known two-layer model. It allows both the analysis of the temperatures of the inner planets, by focusing on the role of the greenhouse effect, and a comparison between the temperatures the planets should have in the absence of greenhouse effect and their actual ones. It may also be used to predict the average temperature of the Earth surface in the future, depending on the variations of the concentration of greenhouse gases in the atmosphere due to human activities. This model can promote an elementary understanding of global warming since it allows a simple formalization of the energy balance for the Earth in the stationary condition, in the presence of greenhouse gases. For these reasons it can be introduced in courses for undergraduate physics students and for teacher preparation.

  12. Technology Opportunities to Reduce U.S. Greenhouse Gas Emissions

    Energy Technology Data Exchange (ETDEWEB)

    National Lab Directors, . .

    2001-04-05

    The rise in greenhouse gas emissions from fossil fuel combustion and industrial and agricultural activities has aroused international concern about the possible impacts of these emissions on climate. Greenhouse gases--mostly carbon dioxide, some methane, nitrous oxide and other trace gases--are emitted to the atmosphere, enhancing an effect in which heat reflected from the earth's surface is kept from escaping into space, as in a greenhouse. Thus, there is concern that the earth's surface temperature may rise enough to cause global climate change. Approximately 90% of U.S. greenhouse gas emissions from anthropogenic sources come from energy production and use, most of which are a byproduct of the combustion of fossil fuels. On a per capita basis, the United States is one of the world's largest sources of greenhouse gas emissions, comprising 4% of the world's population, yet emitting 23% of the world's greenhouse gases. Emissions in the United States are increasing at around 1.2% annually, and the Energy Information Administration forecasts that emissions levels will continue to increase at this rate in the years ahead if we proceed down the business-as-usual path. President Clinton has presented a two-part challenge for the United States: reduce greenhouse gas emissions and grow the economy. Meeting the challenge will mean that in doing tomorrow's work, we must use energy more efficiently and emit less carbon for the energy expended than we do today. To accomplish these goals, President Clinton proposed on June 26, 1997, that the United States ''invest more in the technologies of the future''. In this report to Secretary of Energy Pena, 47 technology pathways are described that have significant potential to reduce carbon dioxide emissions. The present study was completed before the December 1997 United Nations Framework Convention on Climate Change and is intended to provide a basis to evaluate technology

  13. Evaluation of greenhouse gas emissions from waste management approaches in the islands.

    Science.gov (United States)

    Chen, Ying-Chu

    2017-07-01

    Concerns about waste generation and climate change have attracted worldwide attention. Small islands, which account for more than one-sixth of the global land area, are facing problems caused by global climate change. This study evaluated the greenhouse gas emissions from five small islands surrounding Taiwan. These islands - Penghu County, Liuqui Island, Kinmen County, Matsu Island and Green Island - have their own waste management approaches that can serve as a guideline for waste management with greenhouse gas mitigation. The findings indicate that the total annual greenhouse gas emissions of the islands ranged from 292.1 to 29,096.2 [metric] tonne CO 2 -equivalent. The loading waste volumes and shipping distances were positively related to greenhouse gas emissions from transportation. The greenhouse gas emissions from waste-to-energy plants, mainly carbon dioxide and nitrous oxide, can be offset by energy recovery (approximately 38.6% of greenhouse gas emissions from incineration). In addition, about 34% and 11% of waste generated on the islands was successfully recycled and composted, respectively. This study provides valuable insights into the applicability of a policy framework for waste management approaches for greenhouse gas mitigation.

  14. Shale gas production: potential versus actual greenhouse gas emissions

    OpenAIRE

    O'Sullivan, Francis Martin; Paltsev, Sergey

    2012-01-01

    Estimates of greenhouse gas (GHG) emissions from shale gas production and use are controversial. Here we assess the level of GHG emissions from shale gas well hydraulic fracturing operations in the United States during 2010. Data from each of the approximately 4000 horizontal shale gas wells brought online that year are used to show that about 900 Gg CH[subscript 4] of potential fugitive emissions were generated by these operations, or 228 Mg CH[subscript 4] per well—a figure inappropriately ...

  15. Comparing greenhouse gases for policy purposes

    International Nuclear Information System (INIS)

    Schmalensee, R.

    1993-01-01

    In order to derive optimal policies for greenhouse gas emissions control, the discounted marginal damages of emissions from different gases must be compared. The greenhouse warming potential (GWP) index, which is most often used to compare greenhouse gases, is not based on such a damage comparison. This essay presents assumptions under which ratios of gas-specific discounted marginal damages reduce to ratios of discounted marginal contributions to radiative forcing, where the discount rate is the difference between the discount rate relevant to climate-related damages and the rate of growth of marginal climate-related damages over time. If there are important gas-specific costs or benefits not tied to radiative forcing, however, such as direct effects of carbon dioxide on plant growth, there is in general no shortcut around explicit comparison of discounted net marginal damages. 16 refs

  16. Estimating greenhouse gas fluxes from constructed wetlands used for water quality improvement

    Directory of Open Access Journals (Sweden)

    Sukanda Chuersuwan

    2014-06-01

    Full Text Available Methane (CH4 , nitrous oxide (N2O and carbon dioxide (CO2 fluxes were evaluated from constructed wetlands (CWs used to improve domestic wastewater quality. Experiments employed subsurface flow (SF and free water surface flow (FWS CWs planted with Cyperus spp. Results showed seasonal fluctuations of greenhouse gas fluxes. Greenhouse gas fluxes from SF-CWs and FWS-CWS were significantly different (p<0.05 while pollutant removal efficiencies of both CWs were not significantly different. The average CH4 , N2O and CO2 fluxes from SF-CWs were 2.9±3.5, 1.0±1.7, and 15.2±12.3 mg/m2 /hr, respectively, corresponding to the average global warming potential (GWP of 392 mg CO2 equivalents/m2 /hr. For FWS-CWs, the average CH4 , N2O and CO2 fluxes were 5.9±4.8, 1.8±1.0, and 29.6±20.2 mg/m2 /hr, respectively, having an average GWP of 698 mg CO2 equivalents/m2 /hr. Thus, FWS-CWs have a higher GWP than SF-CWs when they were used as a system for domestic water improvement.

  17. Sectoral Approaches to Greenhouse Gas Mitigation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    This paper explores sectoral approaches as a new set of options to enhance the effectiveness of greenhouse gas reduction policies and to engage emerging economies on a lower emission path. It surveys existing literature and recent policy trends in international climate change discussions, and provides an overview of sectoral approaches and related issues for trade-exposed, greenhouse-gas intensive industries (cement, iron and steel and aluminium). It is also based on interviews conducted by the IEA Secretariat in Australia, China, Europe, Japan, and the United States. Sectoral approaches were also discussed during workshops on technology and energy efficiency policies in industry, following the IEA's mandate under the Gleneagles Plan of Action.

  18. Will greenhouse gas-induced warming over the next 50 years lead to higher frequency and greater intensity of hurricanes?

    International Nuclear Information System (INIS)

    Bengtsson, L.; Botzet, M.; Esch, M.

    1994-01-01

    The use of a high resolution atmospheric model at T106 resolution, for studying the influence on greenhouse warming on tropical storm climatology, is investigated. The same method for identifying the storms has been used as in a previous study by Bengtsson et al (1994). The sea surface temperature anomalies have been taken from a previous climate change experiment, obtained with a low resolution ocean-atmosphere coupled model. The global distribution of the storms agree in their geographical position and seasonal variability with that of the present climate, but the number of storms is significantly reduced, particularly at the Southern hemisphere. The main reason to this is related to increased tropospheric stability, associated with increased warming at the upper troposphere and changes in the large scale circulation such as a weaker Hadley circulation and stronger upper air westerlies. The surface winds in the tropics are generally weaker and evaporation is also somewhat reduced, in spite of higher sea surface temperatures. (orig.)

  19. The climatic warming up (the greenhouse effect); Le rechauffement climatique (l'effet de serre)

    Energy Technology Data Exchange (ETDEWEB)

    Jancovici, J.M.; Jouzel, J. [CEA Saclay, Lab. des Sciences du Climat et de l' Environnement, 91 - Gif-sur-Yvette (France); Lorius, C. [Centre National de la Recherche Scientifique (CNRS), Lab. de Glaciologie et Geophysique de l' Environnement, 38 - Grenoble (France)] [and others

    2000-05-01

    Facing the environmental and biological impacts of the climatic warming up, scientists and economists organized a debate on the subject. After a theoretical presentation of the greenhouse effect and the greenhouse gases, the climatic changes are discussed and simulation of the effects are presented. The today effects and tomorrow impacts on the agriculture and the public health are also presented. A synthesis is proposed to discuss the contribution of the energy policy and of the technological progress in measures of greenhouse effect control. (A.L.B.)

  20. OPIC Greenhouse Gas Emissions Analysis Details

    Data.gov (United States)

    Overseas Private Investment Corporation — Summary project inventory with independent analysis to quantify the greenhouse gas ("GHG") emissions directly attributable to projects to which the Overseas Private...

  1. Danish greenhouse gas reduction scenarios for 2020 and 2050

    Energy Technology Data Exchange (ETDEWEB)

    Karlsson, K; Joergensen, Kaj [Risoe DTU, Roskilde (DK); Werling, J; OErsted Pedersen, H; Kofoed-Wiuff, A [Ea energy Analysis, Copenhagen (DK)

    2008-02-15

    The aim of the project presented in this report was to develop scenarios for reducing Danish greenhouse gas emissions in 2020 and 2050. The scenarius provide a basis for estimating which technologies should be combined in order to obtain future reductions in greenhouse gas emissions in a cost-effective way. The scenarios include all emissions of greenhouse gases from agriculture, industry and oil extraction activities in the North Sea as well as the transport and energy sectors. Foreign air and sea carriage is not included because emissions related to such activities are not yet subject to international climate change agreements. The scenarios focus particularly on the technological possibilities and the necessary system changes in the Danish energy system and transport sector. Parallel to this, COWI has carried out analyses for the Danish Environmental Protection Agency focussing primarily on the reduction potentials in the transport sector and other emissions. COWI's results regarding agriculture and other emissions have been included in this analysis. Two timeframes are applied in the scenarios: the medium term, 2020, and the long term, 2050. For each timeframe, we have set up indicative targets that the scenarios must reach: 1) 2020: 30 and 40 % reduction in greenhouse gas emissions compared to 1990 2) 2050: 60 and 80 % reduction in greenhouse gas emissions compared to 1990. The scenarios for 2020 focus primarily on technologies that are already commercially available, whereas the scenarios for 2050 also examine technological options at the experimental or developmental stage. This includes hydrogen technologies and fuel cells as well as CO{sub 2} capture and sequestration (CCS) technologies. The scenarios should be seen in connection with the EU objectives of a 20-30 % reduction in greenhouse gas emissions in 2020 and 60-80 % in 2050 compared to 1990. The EU's 30 % objective is contingent upon global efforts to reduce the world's greenhouse gas emissions

  2. Wellbeing impacts of city policies for reducing greenhouse gas emissions

    DEFF Research Database (Denmark)

    Hiscock, Rosemary; Mudu, Pierpaolo; Braubach, Matthias

    2014-01-01

    To mitigate climate change, city authorities are developing policies in areas such as transportation, housing and energy use, to reduce greenhouse gas emissions. In addition to their effects on greenhouse gas emissions, these policies are likely to have consequences for the wellbeing...... and subjective aspects which can be measured quantitatively; our review of measures informs the development of a theoretical model linking wellbeing to policies which cities use to reduce greenhouse gas emissions. Finally, we discuss the extent to which the links proposed in the conceptual model are supported...

  3. Global warming: Towards a strategy for Ontario

    International Nuclear Information System (INIS)

    1990-01-01

    A discussion paper is provided as background to a proposed public review of a strategy for Ontario's response to global warming. Global warming arises from the generation of greenhouse gases, which come from the use of fossil fuels, the use of chlorofluorocarbons, and deforestation. Energy policy is the backbone of achieving climate stability since the burning of fossil fuels releases most of the greenhouse gases, mainly carbon dioxide. Canada is, by international standards, a very energy-intensive country and is among the world's largest emitters of carbon dioxide on a per capita basis. Ontario is the largest energy-using province in Canada, and fossil fuels represent over 80% of provincial energy use. A proposed goal for Ontario is to provide leadership in stabilizing atmospheric concentrations of the greenhouse gases, while minimizing the social, economic, and environmental costs in Ontario of adapting to global warming. A proposed first step to address global warming is to achieve reductions in expected emissions of the greenhouse gases, especially carbon dioxide, so that levels by the year 2000 are lower than in 1989. Current policies and regulations helping to reduce the greenhouse effect include some of the current controls on automotive emissions and the adoption by the provincial electric utility of targets to reduce electricity demand. New initiatives include establishment of minimum energy efficiency standards and reduction of peak-day electricity use. Action steps for future consideration are detailed in the categories of greenhouse gas emissions reductions, carbon dioxide absorption, and research and analysis into global warming

  4. Climate Response to Negative Greenhouse Gas Radiative Forcing in Polar Winter

    Science.gov (United States)

    Flanner, M. G.; Huang, X.; Chen, X.; Krinner, G.

    2018-02-01

    Greenhouse gas (GHG) additions to Earth's atmosphere initially reduce global outgoing longwave radiation, thereby warming the planet. In select environments with temperature inversions, however, increased GHG concentrations can actually increase local outgoing longwave radiation. Negative top of atmosphere and effective radiative forcing (ERF) from this situation give the impression that local surface temperatures could cool in response to GHG increases. Here we consider an extreme scenario in which GHG concentrations are increased only within the warmest layers of winter near-surface inversions of the Arctic and Antarctic. We find, using a fully coupled Earth system model, that the underlying surface warms despite the GHG addition exerting negative ERF and cooling the troposphere in the vicinity of the GHG increase. This unique radiative forcing and thermal response is facilitated by the high stability of the polar winter atmosphere, which inhibit thermal mixing and amplify the impact of surface radiative forcing on surface temperature. These findings also suggest that strategies to exploit negative ERF via injections of short-lived GHGs into inversion layers would likely be unsuccessful in cooling the planetary surface.

  5. 77 FR 63537 - Greenhouse Gas Reporting Program: Proposed Amendments and Confidentiality Determinations for...

    Science.gov (United States)

    2012-10-16

    ... Greenhouse Gas Reporting Program: Proposed Amendments and Confidentiality Determinations for Subpart I...-AR61 Greenhouse Gas Reporting Program: Proposed Amendments and Confidentiality Determinations for... Manufacturing, of the Greenhouse Gas Reporting Rule. Proposed changes include revising certain calculation...

  6. The greenhouse theory and climate change

    International Nuclear Information System (INIS)

    Murray, W.

    1994-01-01

    Background information is presented on the theory of the greenhouse effect and its implications for the environment and for government policies. The relationship between climate and atmospheric CO 2 , the major greenhouse gas, is explained. Sources of CO 2 , notably fossil fuel combustion, and sinks (vegetation and oceans) are described. Evidence is presented for an increase in greenhouse gases in the atmosphere. Irrefutable data indicate an increase in atmospheric CO 2 over 1850-1980 from ca 290 ppM to 345 ppM; other evidence indicates a doubling of atmospheric methane since the eighteenth century. More recent increases have been noted for atmospheric N 2 O and chlorofluorocarbons. The implications of increased atmospheric levels of CO 2 are discussed, and new scientific evidence from Greenland ice-core data is presented which seems to indicate that higher CO 2 concentrations are a result of global warming rather than the cause. Canadian parliamentary action in response to the global warming phenomenon is outlined. A chronology of international efforts in response to global warming is appended. 11 refs

  7. Environmental policy: Meeting the challenge of global warming

    International Nuclear Information System (INIS)

    Gotzaman, P.

    1990-01-01

    The Canadian government's overall approach to resolving the environmental problems due to global warming is discussed, with reference to how this approach is related to actions taken by other countries. Canada's environmental strategy is based the need to correct the failure to take into account the environmental consequences of daily actions. One element seen necessary for such correction, better environmental decisionmaking, is underlain by such key factors as the need to provide a strong scientific base on which to make decisions, resolving uncertainties regarding the greenhouse effect, and an environmentally educated population. Direct governmental measures can be taken to factor environmental considerations into decisions, such as regulatory instruments regarding the environment and economic incentives to encourage taking the environment into account. With respect to global warming, Canada has signed the Hague Declaration on international cooperation to reduce greenhouse gas emissions. About half the annual world emissions of greenhouse gases come from fossil fuel combustion. Canada is the fourth largest producer per capita of the single most important greenhouse gas, carbon dioxide. The transport and industrial sectors each account for ca 25% of Canada's CO 2 emissions, and energy conservation is seen as a first step in reducing these emissions. The greatest scope for reducing greenhouse gas emissions in the transport sector appears to lie in the development of convenient and economic alternate fuels

  8. USDA Northeast climate hub greenhouse gas mitigation workshop technical report

    Science.gov (United States)

    In April 2015, USDA Secretary Vilsack announced the Greenhouse Gas Building Blocks for Climate Smart Agriculture and Forestry in an effort to reduce greenhouse gas emissions, increase carbon sequestration, and expand renewable energy production in the agricultural and forestry sectors. This initiati...

  9. Greenhouse gas emissions of Dutch biomass. Quantification of greenhouse gases emission of Dutch biomass for electricity and heat

    International Nuclear Information System (INIS)

    Koop, K.; Yildiz, I.

    2010-09-01

    The greenhouse gas emissions of all available flows of the biomass chain have been established. This report has the following aims: (1) to establish the greenhouse gas emission of Dutch biomass available for generating electricity and heat; (2) to obtain insight in the opportunities and threats for using the potential of the biomass chains that have the highest potential to reduce greenhouse gas emissions. This report can be seen as a supplement to the report 'Availability of Dutch biomass for electricity and heat in 2020' (2009) [nl

  10. 2012 Stakeholder Workshop on Natural Gas in the Inventory of U.S. Greenhouse Gas Emissions and Sinks

    Science.gov (United States)

    This page describes EPA's September 2012 stakeholder workshop on key aspects of the estimates of greenhouse gas emissions from the natural gas sector in the Inventory of U.S. Greenhouse Gas Emissions and Sinks.

  11. Effects of nitrogen fertilizer application on greenhouse gas emissions and economics of corn production.

    Science.gov (United States)

    Kim, Seungdo; Dale, Bruce E

    2008-08-15

    Nitrogen fertilizer plays an important role in corn cultivation in terms of both economic and environmental aspects. Nitrogen fertilizer positively affects corn yield and the soil organic carbon level, but it also has negative environmental effects through nitrogen-related emissions from soil (e.g., N20, NOx, NO3(-) leaching, etc.). Effects of nitrogen fertilizer on greenhouse gas emissions associated with corn grain are investigated via life cycle assessment. Ecoefficiency analysis is also used to determine an economically and environmentally optimal nitrogen application rate (NAR). The ecoefficiency index in this study is defined as the ratio of economic return due to nitrogen fertilizer to the greenhouse gas emissions of corn cultivation. Greenhouse gas emissions associated with corn grain decrease as NAR increases at a lower NAR until a minimum greenhouse gas emission level is reached because corn yield and soil organic carbon level increase with NAR. Further increasing NAR after a minimum greenhouse gas emission level raises greenhouse gas emissions associated with corn grain. Increased greenhouse gas emissions of corn grain due to nitrous oxide emissions from soil are much higher than reductions of greenhouse gas emissions of corn grain due to corn yield and changes in soil organic carbon levels at a higher NAR. Thus, there exists an environmentally optimal NAR in terms of greenhouse gas emissions. The trends of the ecoefficiency index are similar to those of economic return to nitrogen and greenhouse gas emissions associated with corn grain. Therefore, an appropriate NAR could enhance profitability as well as reduce greenhouse gas emissions associated with corn grain.

  12. Time-dependent climate sensitivity and the legacy of anthropogenic greenhouse gas emissions.

    Science.gov (United States)

    Zeebe, Richard E

    2013-08-20

    Climate sensitivity measures the response of Earth's surface temperature to changes in forcing. The response depends on various climate processes that feed back on the initial forcing on different timescales. Understanding climate sensitivity is fundamental to reconstructing Earth's climatic history as well as predicting future climate change. On timescales shorter than centuries, only fast climate feedbacks including water vapor, lapse rate, clouds, and snow/sea ice albedo are usually considered. However, on timescales longer than millennia, the generally higher Earth system sensitivity becomes relevant, including changes in ice sheets, vegetation, ocean circulation, biogeochemical cycling, etc. Here, I introduce the time-dependent climate sensitivity, which unifies fast-feedback and Earth system sensitivity. I show that warming projections, which include a time-dependent climate sensitivity, exhibit an enhanced feedback between surface warming and ocean CO2 solubility, which in turn leads to higher atmospheric CO2 levels and further warming. Compared with earlier studies, my results predict a much longer lifetime of human-induced future warming (23,000-165,000 y), which increases the likelihood of large ice sheet melting and major sea level rise. The main point regarding the legacy of anthropogenic greenhouse gas emissions is that, even if the fast-feedback sensitivity is no more than 3 K per CO2 doubling, there will likely be additional long-term warming from slow climate feedbacks. Time-dependent climate sensitivity also helps explaining intense and prolonged warming in response to massive carbon release as documented for past events such as the Paleocene-Eocene Thermal Maximum.

  13. The relative greenhouse gas impacts of realistic dietary choices

    International Nuclear Information System (INIS)

    Berners-Lee, M.; Hoolohan, C.; Cammack, H.; Hewitt, C.N.

    2012-01-01

    The greenhouse gas (GHG) emissions embodied in 61 different categories of food are used, with information on the diet of different groups of the population (omnivorous, vegetarian and vegan), to calculate the embodied GHG emissions in different dietary scenarios. We calculate that the embodied GHG content of the current UK food supply is 7.4 kg CO 2 e person −1 day −1 , or 2.7 t CO 2 e person −1 y −1 . This gives total food-related GHG emissions of 167 Mt CO 2 e (1 Mt=10 6 metric tonnes; CO 2 e being the mass of CO 2 that would have the same global warming potential, when measured over 100 years, as a given mixture of greenhouse gases) for the entire UK population in 2009. This is 27% of total direct GHG emissions in the UK, or 19% of total GHG emissions from the UK, including those embodied in goods produced abroad. We calculate that potential GHG savings of 22% and 26% can be made by changing from the current UK-average diet to a vegetarian or vegan diet, respectively. Taking the average GHG saving from six vegetarian or vegan dietary scenarios compared with the current UK-average diet gives a potential national GHG saving of 40 Mt CO 2 e y −1 . This is equivalent to a 50% reduction in current exhaust pipe emissions from the entire UK passenger car fleet. Hence realistic choices about diet can make substantial differences to embodied GHG emissions. - Highlights: ► We calculate the greenhouse gas emissions embodied in different diets. ► The embodied GHG content of the current UK food supply is 7.4 kg CO 2 e person −1 day −1 . ► Changing to a vegetarian or vegan diet reduces GHG emissions by 22–26%. ► Changing to a vegetarian or vegan diet would reduce UK GHG emissions by 40 Mt CO 2 e y −1 .

  14. How do farm models compare when estimating greenhouse gas emissions from dairy cattle production?

    DEFF Research Database (Denmark)

    Hutchings, Nicholas John; Özkan, Şeyda; de Haan, M

    2018-01-01

    The European Union Effort Sharing Regulation (ESR) will require a 30% reduction in greenhouse gas (GHG) emissions by 2030 compared with 2005 from the sectors not included in the European Emissions Trading Scheme, including agriculture. This will require the estimation of current and future...... from four farm-scale models (DairyWise, FarmAC, HolosNor and SFARMMOD) were calculated for eight dairy farming scenarios within a factorial design consisting of two climates (cool/dry and warm/wet)×two soil types (sandy and clayey)×two feeding systems (grass only and grass/maize). The milk yield per...

  15. Air quality and greenhouse gas emissions (Chapter 3)

    CSIR Research Space (South Africa)

    Winkler, H

    2016-01-01

    Full Text Available Shale gas development (SGD) presents opportunities and risks with regards to air pollution and greenhouse gas (GHG) emissions. There is a potential opportunity to reduce emissions, if shale gas replaces ‘dirtier’ (more emissions-intensive) fuels...

  16. 78 FR 68161 - Greenhouse Gas Reporting Program: Final Amendments and Confidentiality Determinations for...

    Science.gov (United States)

    2013-11-13

    ... 98 Greenhouse Gas Reporting Program: Final Amendments and Confidentiality Determinations for...-HQ-OAR-2011-0028; FRL-9845-6] RIN 2060-AR61 Greenhouse Gas Reporting Program: Final Amendments and... monitoring methodologies for electronics manufacturers covered by the Greenhouse Gas Reporting Rule. These...

  17. Greenhouse Gas Emissions Calculator for Grain and Biofuel Farming Systems

    Science.gov (United States)

    McSwiney, Claire P.; Bohm, Sven; Grace, Peter R.; Robertson, G. Philip

    2010-01-01

    Opportunities for farmers to participate in greenhouse gas (GHG) credit markets require that growers, students, extension educators, offset aggregators, and other stakeholders understand the impact of agricultural practices on GHG emissions. The Farming Systems Greenhouse Gas Emissions Calculator, a web-based tool linked to the SOCRATES soil…

  18. Energy and greenhouse-gas emissions in irrigated agriculture of SE (southeast) Spain. Effects of alternative water supply scenarios

    International Nuclear Information System (INIS)

    Martin-Gorriz, B.; Soto-García, M.; Martínez-Alvarez, V.

    2014-01-01

    Global warming is leading to a water resources decrease in the Mediterranean basin, where future farming resilience depends on incorporating alternative water sources and improving water-energy use efficiency. This paper assesses water and energy consumption when natural water sources are partially replaced by desalinated sea water. Initially, energy consumption, water supply and GHG (greenhouse gas) emissions were recorded for the current farming practices in SE (southeast) Spain. The results of our study indicate that citrus orchards have the lowest energy consumption and GHG emissions. Annual vegetables were the least energy efficient crops. Subsequently, two alternative water supply scenarios were analysed, in which the reduction of natural water resources associated to climate change was compensated with desalinated sea water. The use of 16.8% of desalinated seawater would increase energy consumption by 32.4% and GHG emissions by 19.6%, whereas for the use of 26.5% of desalinated seawater such increases would amount to 50.0% and 30.3%, respectively. Therefore maintaining irrigated agriculture in water-stressed regions by incorporating high energy demanding non-traditional water sources could negatively contribute to combat global warming. - Highlights: • Water supply, energy consumption and GHG (greenhouse gas) emissions in irrigated agriculture are very connected. • The use of desalinated sea water will increase the energy consumption, and GHG emissions will rise. • The use of non-traditional water resources enhances global warming processes. • Citrus orchards are the less sensitive crop to alternative water supplied scenarios. • Artichoke is the most sensitive crop to alternative water supplied scenarios

  19. Efficiency of energy recovery from municipal solid waste and the resultant effect on the greenhouse gas balance.

    Science.gov (United States)

    Gohlke, Oliver

    2009-11-01

    Global warming is a focus of political interest and life-cycle assessment of waste management systems reveals that energy recovery from municipal solid waste is a key issue. This paper demonstrates how the greenhouse gas effects of waste treatment processes can be described in a simplified manner by considering energy efficiency indicators. For evaluation to be consistent, it is necessary to use reasonable system boundaries and to take the generation of electricity and the use of heat into account. The new European R1 efficiency criterion will lead to the development and implementation of optimized processes/systems with increased energy efficiency which, in turn, will exert an influence on the greenhouse gas effects of waste management in Europe. Promising technologies are: the increase of steam parameters, reduction of in-plant energy consumption, and the combined use of heat and power. Plants in Brescia and Amsterdam are current examples of good performance with highly efficient electricity generation. Other examples of particularly high heat recovery rates are the energy-from-waste (EfW) plants in Malmö and Gothenburg. To achieve the full potential of greenhouse gas reduction in waste management, it is necessary to avoid landfilling combustible wastes, for example, by means of landfill taxes and by putting incentives in place for increasing the efficiency of EfW systems.

  20. Danish greenhouse gas reduction scenarios for 2020 and 2050

    Energy Technology Data Exchange (ETDEWEB)

    Karlsson, K.; Joergensen, Kaj. (Risoe DTU, Roskilde (DK)); Werling, J.; OErsted Pedersen, H.; Kofoed-Wiuff, A. (Ea energy Analysis, Copenhagen (DK))

    2008-02-15

    The aim of the project presented in this report was to develop scenarios for reducing Danish greenhouse gas emissions in 2020 and 2050. The scenarius provide a basis for estimating which technologies should be combined in order to obtain future reductions in greenhouse gas emissions in a cost-effective way. The scenarios include all emissions of greenhouse gases from agriculture, industry and oil extraction activities in the North Sea as well as the transport and energy sectors. Foreign air and sea carriage is not included because emissions related to such activities are not yet subject to international climate change agreements. The scenarios focus particularly on the technological possibilities and the necessary system changes in the Danish energy system and transport sector. Parallel to this, COWI has carried out analyses for the Danish Environmental Protection Agency focussing primarily on the reduction potentials in the transport sector and other emissions. COWI's results regarding agriculture and other emissions have been included in this analysis. Two timeframes are applied in the scenarios: the medium term, 2020, and the long term, 2050. For each timeframe, we have set up indicative targets that the scenarios must reach: 1) 2020: 30 and 40 % reduction in greenhouse gas emissions compared to 1990 2) 2050: 60 and 80 % reduction in greenhouse gas emissions compared to 1990. The scenarios for 2020 focus primarily on technologies that are already commercially available, whereas the scenarios for 2050 also examine technological options at the experimental or developmental stage. This includes hydrogen technologies and fuel cells as well as CO{sub 2} capture and sequestration (CCS) technologies. The scenarios should be seen in connection with the EU objectives of a 20-30 % reduction in greenhouse gas emissions in 2020 and 60-80 % in 2050 compared to 1990. The EU's 30 % objective is contingent upon global efforts to reduce the world's greenhouse gas

  1. 78 FR 69337 - Greenhouse Gas Reporting Program: Amendments and Confidentiality Determinations for Fluorinated...

    Science.gov (United States)

    2013-11-19

    ...-AR78 Greenhouse Gas Reporting Program: Amendments and Confidentiality Determinations for Fluorinated... Greenhouse Gas Reporting Rule. The proposed changes would reduce the level of detail in which emissions were..., please go to the Greenhouse Gas Reporting Rule Program Web site at http://www.epa.gov/climatechange...

  2. Global greenhouse and energy situation and outlook

    International Nuclear Information System (INIS)

    Allen, R.W.; Clively, S.R.; Tilley, J.W.

    1990-01-01

    Fossil fuels provide the basis for world energy usage and, in the absence of fundamental policy changes, are expected to continue to do so for the next few decades. However, the prospect of global warming due to the greenhouse effect will have profound implications for the use of energy. This paper outlines the current situation and trends in world energy use, with a focus on energy requirements by region and fuel. Implications for greenhouse gas emissions and greenhouse policy challenges are also discussed. 8 refs., 1 tab., 2 figs

  3. The causes of the municipal solid waste and the greenhouse gas emissions from the waste sector in the United States.

    Science.gov (United States)

    Lee, Seungtaek; Kim, Jonghoon; Chong, Wai K O

    2016-10-01

    The United States generated approximately 730kg of waste per capita in 2013, which is the highest amount of waste among OECD countries. The waste has adverse effects to human health and the environment. One of the most serious adverse effects is greenhouse gas emissions, especially methane (CH4), which causes global warming. However, the United States' amount of waste generation is not decreasing, and the recycling rate is only 26%, which is lower than other OECD countries. In order to decrease waste generation and greenhouse gas emissions, identifying the causality of the waste generation and greenhouse gas emissions from waste sector should be made a priority. The research objective is to verify whether the Environmental Kuznets Curve relationship is supported for waste generation and GDP across the U.S. Moreover, it also confirmed that total waste generation and recycling of waste influences carbon dioxide emissions from the waste sector. Based on the results, critical insight and suggestions were offered to policymakers, which is the potential way to lower the solid waste and greenhouse gas emissions from the waste sector. This research used annually based U.S. data from 1990 to 2012, and these data were collected from various data sources. To verify the causal relationship, the Granger causality test was applied. The results showed that there is no causality between GDP and waste generation, but total waste and recycling generate significantly increasing and decreasing greenhouse gas emissions from the waste sector, respectively. This implies that waste generation will not decrease even if GDP increases. And, if waste generation decreases or the recycling rate increases, greenhouse gas emission will decrease. Based on these results, increasing the recycling rate is first suggested. The second suggestion is to break the causal relationship between MSW and greenhouse gas emission from the waste sector. The third is that the U.S. government should benchmark a

  4. Direct greenhouse gas emissions of the game industry in South Africa

    African Journals Online (AJOL)

    Direct greenhouse gas emissions of the game industry in South Africa. ... Previous greenhouse gas (GHG) inventories did not include game as an emissions source. Recently game farming has ... AJOL African Journals Online. HOW TO USE ...

  5. Requirements for a Global Greenhouse Gas Information System

    Science.gov (United States)

    Duren, R.; Boland, S.; Lempert, R.; Miller, C.

    2008-12-01

    A global greenhouse gas information system will prove a critical component of any successful effort to mitigate climate change which relies on limiting the atmospheric concentration of greenhouse gases. The system will provide the situational awareness necessary to actively reduce emissions, influence land use change, and sequester carbon. The information from such a system will be subject to intense scrutiny. Therefore, an effective system must openly and transparently produce data of unassailable quality. A global greenhouse gas information system will likely require a combination of space-and air-based remote- sensing assets, ground-based measurements, carbon cycle modeling and self-reporting. The specific requirements on such a system will be shaped by the degree of international cooperation it enjoys and the needs of the policy regime it aims to support, which might range from verifying treaty obligations, to certifying the tradable permits and offsets underlying a market in greenhouse gas emission reductions, to providing a comprehensive inventory of high and low emitters that could be used by non-governmental organizations and other international actors. While some technical studies have examined particular system components in single scenarios, there remains a need for a comprehensive survey of the range of potential requirements, options, and strategies for the overall system. We have initiated such a survey and recently hosted a workshop which engaged a diverse community of stakeholders to begin synthesizing requirements for such a system, with an initial focus on carbon dioxide. In this paper we describe our plan for completing the definition of the requirements, options, and strategies for a global greenhouse gas monitoring system. We discuss our overall approach and provide a status on the initial requirements synthesis activity.

  6. Greenhouse-gas emissions from soils increased by earthworms

    NARCIS (Netherlands)

    Lubbers, I.M.; Groenigen, van K.J.; Fonte, S.J.; Six, J.; Brussaard, L.; Groenigen, van J.W.

    2013-01-01

    Earthworms play an essential part in determining the greenhouse-gas balance of soils worldwide, and their influence is expected to grow over the next decades. They are thought to stimulate carbon sequestration in soil aggregates, but also to increase emissions of the main greenhouse gases carbon

  7. Enhanced greenhouse warming: Regional response and believability

    International Nuclear Information System (INIS)

    Etkin, D.

    1991-01-01

    Climate models predict significant changes in the world's climate over the next 50-100 y due to increasing atmospheric greenhouse gases. To what extent these predictions can be believed has been the subject of considerable scientific debate. The ability of climate models to reproduce the current climate depends on how well the available data sets specify the earth's climate and how well the models reproduce that specification. A study of historical and paleo climates provides information on how the climate system operates and on past fluctuations in climate, and may also provide useful analogues of future climates. The best tools for understanding and predicting future climate changes are likely numerical models. Sophisticated climate models suffer from uncertainties about the feedback loops present in the real climate system. The ability of global circulation models to replicate current climate globally is fairly good, but significant disagreements have been found among different models at regional scales. For a region such as the Mackenzie Valley, understanding of historical and current climate is essential in terms of developing reasonable scenarios of future climate change. Uncertainty will probably remain an issue with respect to greenhouse warming for the foreseeable future, and as a result the detailed climate prediction on a regional scale needed for some kinds of impact studies may not be attainable. 73 refs., 9 figs., 1 tab

  8. Paris Agreement climate proposals need a boost to keep warming well below 2 °C.

    Science.gov (United States)

    Rogelj, Joeri; den Elzen, Michel; Höhne, Niklas; Fransen, Taryn; Fekete, Hanna; Winkler, Harald; Schaeffer, Roberto; Sha, Fu; Riahi, Keywan; Meinshausen, Malte

    2016-06-30

    The Paris climate agreement aims at holding global warming to well below 2 degrees Celsius and to "pursue efforts" to limit it to 1.5 degrees Celsius. To accomplish this, countries have submitted Intended Nationally Determined Contributions (INDCs) outlining their post-2020 climate action. Here we assess the effect of current INDCs on reducing aggregate greenhouse gas emissions, its implications for achieving the temperature objective of the Paris climate agreement, and potential options for overachievement. The INDCs collectively lower greenhouse gas emissions compared to where current policies stand, but still imply a median warming of 2.6-3.1 degrees Celsius by 2100. More can be achieved, because the agreement stipulates that targets for reducing greenhouse gas emissions are strengthened over time, both in ambition and scope. Substantial enhancement or over-delivery on current INDCs by additional national, sub-national and non-state actions is required to maintain a reasonable chance of meeting the target of keeping warming well below 2 degrees Celsius.

  9. Is global warming mostly at night?

    International Nuclear Information System (INIS)

    Kukla, G.; Quayle, R.G.; Karl, T.

    1994-01-01

    The release of greenhouse gases is expected to lead to substantial future warming. The global mean temperature has indeed risen in recent decades. The causes of the observed warming, and its relation to the greenhouse gas buildup are, however, still debated. One important aspect of the observed temperature change relates to its asymmetry during the day and night. The day-night temperature difference over land in North America, most of Eurasia, Oceania, and portions of Africa and Australia shows a decrease since about 1950. The changes of the daily mean temperature in these areas are principally due to the rising night or early morning temperature, and are accompanied by increasing cloudiness. Their results support the notion that the increase of cloud cover, possibly due to industrial sulfur emissions, mitigates the greenhouse warming. The causes of the changing diurnal temperature range and of the increasing cloudiness will have to be clarified and the future SO 2 emissions reliably projected before any trustworthy prediction of future climates can be made. 37 refs., 7 figs., 2 tabs

  10. Why natural gas for CO2 and climate control?

    International Nuclear Information System (INIS)

    Roose, T.R.

    1996-01-01

    The Intergovernmental Panel on Climate Change (IPCC) and the US Environmental Protection Agency (EPA) have suggested that increased use of natural gas is a possible strategy for reducing the potential for global warming. Carbon dioxide (CO 2 ) contributes as much to global warming as all other greenhouse gases combined. During combustion, natural gas generates less CO 2 per unit of energy produced than either coal or oil. On the basis of the amount of CO 2 emitted, the potential for global warming could be reduced by substituting natural gas to coal or oil. However, since natural gas is primarily methane, a potent greenhouse gas, these emissions could reduce natural gas's inherent advantage of lower CO 2 emissions. To address this issue and compare the fuels on an equivalent basis, it is necessary to account for emissions of all greenhouse gases throughout the fuel cycle of each fuel and to determine the impact of these gases on global warming. Gas Research Institute and EPA jointly funded a study to quantify methane emissions from the natural gas industry so that this information could be used as input to address the issue of the fuel switching strategy. The study found that the natural gas industry emitted 1.4% of natural gas production (314 Bscf of methane) to the atmosphere in 1992. Today, due to voluntary reductions from the gas industry, the percent leaked is even less. This 1992 amount has been analyzed over a broad range of global warming potentials, and the conclusion that fuel switching to natural gas reduces the potential for global warming is supported. The results of this study are presented in this paper

  11. Improving material management to reduce greenhouse gas emissions

    NARCIS (Netherlands)

    Hekkert, Marko Peter

    2000-01-01

    Climate change due to greenhouse gas emissions caused by human actions is probably one of the major global environmental problems that we face today. In order to reduce the risk of climate change and the potential effects thereof, the emission of greenhouse gases like carbon dioxide (CO2) and

  12. Methodology for reporting 2011 B.C. public sector greenhouse gas emissions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-12-15

    In order to reduce its greenhouse gas emissions, British Columbia promulgated legislation under which the public sector is expected to become carbon neutral starting in 2010 and provincial public sector organizations (PSOs) must report their emissions annually. The aim of this report is to present the emission factors and methodology for calculating and reporting PSO emissions used in 2011. Emission factors represent the amount of greenhouse gas emitted from a specific activity. This document provides emission factors for all in scope categories: stationary sources, indirect emissions, mobile sources and business travel; it also presents a sample calculation of greenhouse gas emissions. The government of British Columbia developed SMARTTool, a web-based program which calculates and reports emissions from stationary sources, indirect emissions and mobile sources. In addition the SMART Travel Emissions Calculator was created to report business travel greenhouse gas emissions through SMARTTool.

  13. The economics of global warming

    International Nuclear Information System (INIS)

    Pillet, G.; Hediger, W.; Kypreos, S.; Corbaz, C.

    1993-05-01

    The global warming threat is challenging the world community to both international cooperation and national policy action. This report focuses on the necessity to alternate between ''global and national climate policies''. The Swiss perspective is at issue. The economic rationales for comparing national climate policy options are analyzed. This report explicitly focusses on the fundamental role of the normative framework and the related environmental-economic requisites for establishing an efficient national climate policy and computing a ''carbon tax''. Finally, the latest results of the energy and greenhouse gas scenarios for Switzerland, elaborated on within the network of the IEA/ETSAP Project, Annex IV, ''Greenhouse Gases and National Energy Options: Technologies and Costs for Reducing Emissions of Greenhouse Gases'', illustrate Switzerland's difficulties in reducing greenhouse gas emissions at ''reasonable cost'' compared with other countries. This should make Switzerland very sensitive to the implementation of efficient environmental-policy instruments and international cooperation. (author) figs., tabs., refs

  14. Component greenhouse gas fluxes and radiative balance from two deltaic marshes in Louisiana: Pairing chamber techniques and eddy covariance

    Science.gov (United States)

    Krauss, Ken W.; Holm, Guerry O.; Perez, Brian C.; McWhorter, David E.; Cormier, Nicole; Moss, Rebecca; Johnson, Darren; Neubauer, Scott C; Raynie, Richard C

    2016-01-01

    Coastal marshes take up atmospheric CO2 while emitting CO2, CH4, and N2O. This ability to sequester carbon (C) is much greater for wetlands on a per-area basis than from most ecosystems, facilitating scientific, political, and economic interest in their value as greenhouse gas sinks. However, the greenhouse gas balance of Gulf of Mexico wetlands is particularly understudied. We describe the net ecosystem exchange (NEEc) of CO2 and CH4 using eddy covariance (EC) in comparison with fluxes of CO2, CH4, and N2O using chambers from brackish and freshwater marshes in Louisiana, USA. From EC, we found that 182 g C m-2 y-1 was lost through NEEc from the brackish marsh. Of this, 11 g C m-2 y-1 resulted from net CH4 emissions and the remaining 171 g C m-2 y-1 resulted from net CO2 emissions. In contrast, -290 g C m2 y-1 was taken up through NEEc by the freshwater marsh, with 47 g C m-2 y-1 emitted as CH4 and -337 g C m-2 y-1 taken up as CO2. From chambers, we discovered that neither site had large fluxes of N2O. Sustained-flux greenhouse gas accounting metrics indicated that both marshes had a positive (warming) radiative balance, with the brackish marsh having a substantially greater warming effect than the freshwater marsh. That net respiratory emissions of CO2 and CH4 as estimated through chamber techniques were 2-4 times different from emissions estimated through EC requires additional understanding of the artifacts created by different spatial and temporal sampling footprints between techniques.

  15. UNEP greenhouse gas abatement costing studies

    Energy Technology Data Exchange (ETDEWEB)

    Shakespeare Maya, R. (Southern Centre for Energy and Environment (Zimbabwe)); Muguti, E. (Ministry of Transport and Energy. Department of Energy (Zimbabwe)); Fenhann, J.; Morthorst, P.E. (Risoe National Laboratory. Systems Analysis Department (Denmark))

    1992-08-01

    The UNEP (United Nations Environment Programme) programme of Greenhouse Gas Abatement Costing Studies is intended to clarify the economic issues involved in assessing the costs of limiting emissions of greenhouse gases and to propose approaches to comparable costing studies. Phase 1 of the Zimbabwe country study describes the current energy situation in Zimbabwe related to the national economy, energy supply and demand and amounts of greenhouse gas emissions. Factors regarding the geography, (including a map illustrating the degree and character of land degradation by erosion) population, politics, international relations, land-use and management of the energy sector are dealt with in detail and the text is illustrated with data compiled from the study. It is estimated that Zimbabwe consumed 270.4 Tj of energy during 1988 and emitted 21.7 tonnes of carbon dioxide. An emission intensity of 80.2 tonnes/Tj for the whole economy and 63.6 tonnes/Tj for electric power generation alone was calculated. Forecasting for the year 2020 estimated carbon dioxide emission intensities of 73.5 tonnes/Tj for the whole economy and 43.7 tonnes for power generation. Net carbon dioxide emissions are predicted to be 30-42 tonnes during 2020. (AB).

  16. UNEP greenhouse gas abatement costing studies

    International Nuclear Information System (INIS)

    Shakespeare Maya, R.; Muguti, E.; Fenhann, J.; Morthorst, P.E.

    1992-08-01

    The UNEP (United Nations Environment Programme) programme of Greenhouse Gas Abatement Costing Studies is intended to clarify the economic issues involved in assessing the costs of limiting emissions of greenhouse gases and to propose approaches to comparable costing studies. Phase 1 of the Zimbabwe country study describes the current energy situation in Zimbabwe related to the national economy, energy supply and demand and amounts of greenhouse gas emissions. Factors regarding the geography, (including a map illustrating the degree and character of land degradation by erosion) population, politics, international relations, land-use and management of the energy sector are dealt with in detail and the text is illustrated with data compiled from the study. It is estimated that Zimbabwe consumed 270.4 Tj of energy during 1988 and emitted 21.7 tonnes of carbon dioxide. An emission intensity of 80.2 tonnes/Tj for the whole economy and 63.6 tonnes/Tj for electric power generation alone was calculated. Forecasting for the year 2020 estimated carbon dioxide emission intensities of 73.5 tonnes/Tj for the whole economy and 43.7 tonnes for power generation. Net carbon dioxide emissions are predicted to be 30-42 tonnes during 2020. (AB)

  17. Statistical polarization in greenhouse gas emissions: Theory and evidence.

    Science.gov (United States)

    Remuzgo, Lorena; Trueba, Carmen

    2017-11-01

    The current debate on climate change is over whether global warming can be limited in order to lessen its impacts. In this sense, evidence of a decrease in the statistical polarization in greenhouse gas (GHG) emissions could encourage countries to establish a stronger multilateral climate change agreement. Based on the interregional and intraregional components of the multivariate generalised entropy measures (Maasoumi, 1986), Gigliarano and Mosler (2009) proposed to study the statistical polarization concept from a multivariate view. In this paper, we apply this approach to study the evolution of such phenomenon in the global distribution of the main GHGs. The empirical analysis has been carried out for the time period 1990-2011, considering an endogenous grouping of countries (Aghevli and Mehran, 1981; Davies and Shorrocks, 1989). Most of the statistical polarization indices showed a slightly increasing pattern that was similar regardless of the number of groups considered. Finally, some policy implications are commented. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Greenhouse gas emissions in an agroforestry system in the southeastern USA

    Science.gov (United States)

    Agroforestry systems may provide diverse ecosystem services and economic benefits that conventional agriculture cannot, e.g. potentially mitigating greenhouse gas emissions by enhancing nutrient cycling, since tree roots can capture nutrients not taken up by crops. However, greenhouse gas emission ...

  19. National greenhouse gas accounts: Current anthropogenic sources and sinks

    International Nuclear Information System (INIS)

    Subak, S.; Raskin, P.; Hippel, David von

    1992-01-01

    This study provides spatially disaggregated estimates of greenhouse gas emissions from the major anthropogenic sources for 145 countries. The data compilation is comprehensive in approach, including emissions from CO, CH 4 , N 2 O and ten halocarbons, in addition to CO 2 . The sources include emissions from fossil fuel production and use, cement production, halocarbons, landfills, land use changes, biomass burning, rice and livestock production and fertilizer consumption. The approach used to derive these estimates corresponds closely with the simple methodologies proposed by the Greenhouse Gas Emissions Task Force of the Intergovernmental Panel on Climate Change. The inventory includes a new estimate of greenhouse gas emissions from fossil fuel combustion based principally on data from the International Energy Agency. The research methodologies for estimating emissions from all sources is briefly described and compared with other recent studies in the literature. (112 refs.)

  20. High accuracy Primary Reference gas Mixtures for high-impact greenhouse gases

    Science.gov (United States)

    Nieuwenkamp, Gerard; Zalewska, Ewelina; Pearce-Hill, Ruth; Brewer, Paul; Resner, Kate; Mace, Tatiana; Tarhan, Tanil; Zellweger, Christophe; Mohn, Joachim

    2017-04-01

    Climate change, due to increased man-made emissions of greenhouse gases, poses one of the greatest risks to society worldwide. High-impact greenhouse gases (CO2, CH4 and N2O) and indirect drivers for global warming (e.g. CO) are measured by the global monitoring stations for greenhouse gases, operated and organized by the World Meteorological Organization (WMO). Reference gases for the calibration of analyzers have to meet very challenging low level of measurement uncertainty to comply with the Data Quality Objectives (DQOs) set by the WMO. Within the framework of the European Metrology Research Programme (EMRP), a project to improve the metrology for high-impact greenhouse gases was granted (HIGHGAS, June 2014-May 2017). As a result of the HIGHGAS project, primary reference gas mixtures in cylinders for ambient levels of CO2, CH4, N2O and CO in air have been prepared with unprecedented low uncertainties, typically 3-10 times lower than usually previously achieved by the NMIs. To accomplish these low uncertainties in the reference standards, a number of preparation and analysis steps have been studied and improved. The purity analysis of the parent gases had to be performed with lower detection limits than previously achievable. E.g., to achieve an uncertainty of 2•10-9 mol/mol (absolute) on the amount fraction for N2O, the detection limit for the N2O analysis in the parent gases has to be in the sub nmol/mol domain. Results of an OPO-CRDS analyzer set-up in the 5µm wavelength domain, with a 200•10-12 mol/mol detection limit for N2O, will be presented. The adsorption effects of greenhouse gas components at cylinder surfaces are critical, and have been studied for different cylinder passivation techniques. Results of a two-year stability study will be presented. The fit-for-purpose of the reference materials was studied for possible variation on isotopic composition between the reference material and the sample. Measurement results for a suit of CO2 in air

  1. 75 FR 57275 - Information Collection; Supplier Greenhouse Gas Emissions Inventory Pilot

    Science.gov (United States)

    2010-09-20

    ...] Information Collection; Supplier Greenhouse Gas Emissions Inventory Pilot AGENCY: Federal Acquisition Service... Greenhouse Gas (GHG) Emissions Inventory pilot. Public comments are particularly invited on: Whether this... Inventory pilot, and whether it will have practical utility; whether our estimate of the public burden of...

  2. The Greenhouse Effect and Climate Feedbacks

    Science.gov (United States)

    Covey, C.; Haberle, R. M.; McKay, C. P.; Titov, D. V.

    This chapter reviews the theory of the greenhouse effect and climate feedback. It also compares the theory with observations, using examples taken from all four known terrestrial worlds with substantial atmospheres: Venus, Earth, Mars, and Titan. The greenhouse effect traps infrared radiation in the atmosphere, thereby increasing surface temperature. It is one of many factors that affect a world's climate. (Others include solar luminosity and the atmospheric scattering and absorption of solar radiation.) A change in these factors — defined as climate forcing — may change the climate in a way that brings other processes — defined as feedbacks — into play. For example, when Earth's atmospheric carbon dioxide increases, warming the surface, the water vapor content of the atmosphere increases. This is a positive feedback on global warming because water vapor is itself a potent greenhouse gas. Many positive and negative feedback processes are significant in determining Earth's climate, and probably the climates of our terrestrial neighbors.

  3. Greenhouse gas emissions from the production and use of alternative transport fuels

    International Nuclear Information System (INIS)

    Le Cornu, J.K.

    1990-01-01

    A number of the commonly proposed alternative transport fuels were ranked according to both the cumulative greenhouse gas emissions and the production costs incurred between the recovery of the prime resource and the fuel's end use by the Australian transport fleet. An examination of the emissions of each greenhouse gas at each production stage confirmed the common presumption that the low levels of secondary greenhouse gas emissions involved contribute little to the overall greenhouse impact of a fuel's production and use. From a greenhouse point of view the transport fuels studied could be reasonable well ranked by considering their carbon dioxide emissions alone. A possible exception may apply in the case of the compressed natural gas option, which may need to separate consideration of the effect of fugitive emissions of methane from gas distribution systems. An assumption involved in reaching this result was that nitrous oxide emissions, on which there was inadequate hard data, would not form more than 1% of the total nitrogen oxide emissions. At such an emission level it could contribute up to 5% of a fuel's total greenhouse impact. It is concluded that apart from some small niche opportunities, there is no Australian alternative transport fuel option whose production cost and greenhouse impact makes it one which policy should favour over other fuels. It is stressed that this is no more than a preliminary scouting study of generic options, which addresses only greenhouse issues. 17 refs., 1 tab., 8 figs

  4. Competitiveness of terrestrial greenhouse gas offsets. Are they a bridge to the future?

    International Nuclear Information System (INIS)

    McCarl, B.A.; Sands, R.D.

    2007-01-01

    Activities to reduce net greenhouse gas emissions by biological soil or forest carbon sequestration predominantly utilize currently known, readily implementable technologies. Many other greenhouse gas emission reduction options require future technological development or must wait for turnover of capital stock. Carbon sequestration options in soils and forests, while ready to go now, generally have a finite life, allowing use until other strategies are developed. This paper reports on an investigation of the competitiveness of biological carbon sequestration from a dynamic and multiple strategy viewpoint. Key factors affecting the competitiveness of terrestrial mitigation options are land availability and cost effectiveness relative to other options including CO2 capture and storage, energy efficiency improvements, fuel switching, and non-CO2 greenhouse gas emission reductions. The analysis results show that, at lower CO2 prices and in the near term, soil carbon and other agricultural/forestry options can be important bridges to the future, initially providing a substantial portion of attainable reductions in net greenhouse gas emissions, but with a limited role in later years. At higher CO2 prices, afforestation and biofuels are more dominant among terrestrial options to offset greenhouse gas emissions. But in the longer run, allowing for capital stock turnover, options to reduce greenhouse gas emissions from the energy system and biofuels provide an increasing share of potential reductions in total US greenhouse gas emissions

  5. Assessing the Greenhouse Gas Emissions from Natural Gas Fired Power Plants

    Science.gov (United States)

    Hajny, K. D.; Shepson, P. B.; Rudek, J.; Stirm, B. H.; Kaeser, R.; Stuff, A. A.

    2017-12-01

    Natural gas is often discussed as a "bridge fuel" to transition to renewable energy as it only produces 51% the amount of CO2 per unit energy as coal. This, coupled with rapid increases in production fueled by technological advances, has led to a near tripling of natural gas used for electricity generation since 2005. One concern with this idea of a "bridge fuel" is that methane, the primary component of natural gas, is itself a potent greenhouse gas with 28 and 84 times the global warming potential of CO2 based on mass over a 100 and 20 year period, respectively. Studies have estimated that leaks from the point of extraction to end use of 3.2% would offset the climate benefits of natural gas. Previous work from our group saw that 3 combined cycle power plants emitted unburned CH4 from the stacks and leaked additional CH4 from equipment on site, but total loss rates were still less than 2.2%. Using Purdue's Airborne Laboratory for Atmospheric Research (ALAR) we completed additional aircraft based mass balance experiments combined with passes directly over power plant stacks to expand on the previous study. In this work, we have measured at 12 additional natural gas fired power plants including a mix of operation types (baseload, peaking, intermediate) and firing methods (combined cycle, simple thermal, combustion turbine). We have also returned to the 3 plants previously sampled to reinvestigate emissions for each of those, to assess reproducibility of the results. Here we report the comparison of reported continuous emissions monitoring systems (CEMS) data for CO2 to our emission rates calculated from mass balance experiments, as well as a comparison of calculated CH4 emission rates to estimated emission rates based on the EPA emission factor of 1 g CH4/mmbtu natural gas and CEMS reported heat input. We will also discuss emissions from a coal-fired plant which has been sampled by the group in the past and has since converted to natural gas. Lastly, we discuss the

  6. [Effects of understory removal on soil greenhouse gas emissions in Carya cathayensis stands].

    Science.gov (United States)

    Liu, Juan; Chen, Xue-shuang; Wu, Jia-sen; Jiang, Pei-kun; Zhou, Guo-mo; Li, Yong-fu

    2015-03-01

    CO2, N2O and CH4 are important greenhouse gases, and soils in forest ecosystems are their important sources. Carya cathayensis is a unique tree species with seeds used for high-grade dry fruit and oil production. Understory vegetation management plays an important role in soil greenhouse gases emission of Carya cathayensis stands. A one-year in situ experiment was conducted to study the effects of understory removal on soil CO2, N2O and CH4 emissions in C. cathayensis plantation by closed static chamber technique and gas chromatography method. Soil CO2 flux had a similar seasonal trend in the understory removal and preservation treatments, which was high in summer and autumn, and low in winter and spring. N2O emission occurred mainly in summer, while CH4 emission showed no seasonal trend. Understory removal significantly decreased soil CO, emission, increased N2O emission and CH4 uptake, but had no significant effect on soil water soluble organic carbon and microbial biomass carbon. The global warming potential of soil greenhouse gases emitted in the understory removal. treatment was 15.12 t CO2-e . hm-2 a-1, which was significantly lower than that in understory preservation treatment (17.04 t CO2-e . hm-2 . a-1).

  7. 77 FR 10373 - Greenhouse Gas Reporting Program: Electronics Manufacturing: Revisions to Heat Transfer Fluid...

    Science.gov (United States)

    2012-02-22

    ... Greenhouse Gas Reporting Program: Electronics Manufacturing: Revisions to Heat Transfer Fluid Provisions... technical revisions to the electronics manufacturing source category of the Greenhouse Gas Reporting Rule... final rule will also be available through the WWW on the EPA's Greenhouse Gas Reporting Program Web site...

  8. The Effects of Concept Cartoons on Eliminating Students’ Misconceptions: Greenhouse Effect and Global Warming

    Directory of Open Access Journals (Sweden)

    Lale Cerrah Ozsevgeç

    2012-10-01

    Full Text Available The aim of the study is to examine the effects of concept cartoons on eliminating students’ misconceptions about the global warming and greenhouse effect. The sample of the study is consisted of 17 students from the 7 grade of Rize Çay Primary School. Simple experimental study design was used in the study. Test and semi-structured interview were used to collect the data. The results of the study showed that the students had misconceptions about global warming and greenhouse effect. The teaching process comprising concept cartoons treated most of these misconceptions. Students indicated that the teaching process was enjoyable and it eased the students’ remembering of the given knowledge. Based on the results, it was suggested that the teachers should be informed about the usage of concept cartoon in the classroom and combination of different teaching methods which is supported by concept cartoon may be more useful for different science subjects.

  9. Urban form and greenhouse gas emissions in Finland

    International Nuclear Information System (INIS)

    Harmaajaervi, Irmeli

    2003-01-01

    Finland's regional form is becoming more concentrated, while urban sprawl is causing growth centres to become fragmented. The effects caused by these changes on greenhouse gas emissions were studied up to the year 2010, when, in accordance with the Kyoto protocol, Finland's greenhouse gas emissions should be reduced to the 1990 level. The urban form affects especially transportation inside regions, the potential to utilise district heating and the need for infrastructure. By preventing urban sprawl and by encouraging teleworking and some lifestyle changes, it would be possible to reduce annual transportation emissions by the year 2010 by 1.1 million tonnes CO 2 eq., i.e. 27%, the emissions from residential and service buildings by 1.1 million tonnes CO 2 eq., i.e. 5%, and the emissions from municipal infrastructure by 0.1 million tonnes CO 2 eq., i.e. 6%. Altogether, it is possible to reduce the greenhouse gas emissions by 2.3 million tonnes, which amounts to 15% of Finland's target for emissions reductions in 2010. If the target-oriented scenario is realised, the subsequent decrease of emissions would accelerate. To stop urban sprawl, measures are required in planning, land use and housing policy as well as in transportation and tax policies. Additionally, more needs to be done in regard to co-operation, interaction and information dissemination. This paper introduces a report which estimates, for the first time, the effects caused by changes in the regional and urban forms on the levels of greenhouse gas emissions in Finland

  10. Greenhouse gas mitigation with scarce land

    DEFF Research Database (Denmark)

    Meyer-Aurich, A; Olesen, Jørgen E; Prochnow, A

    2013-01-01

    Agricultural lands have been identified to mitigate greenhouse gas (GHG) emissions primarily by production of energy crops and substituting fossil energy resources and through carbon sequestration in soils. Increased fertilizer input resulting in increased yields may reduce the area needed for crop...

  11. A "Greenhouse Gas" Experiment for the Undergraduate Laboratory

    Science.gov (United States)

    Gomez, Elaine; Paul, Melissa; Como, Charles; Barat, Robert

    2014-01-01

    This experiment and analysis offer an effective experience in greenhouse gas reduction. Ammoniated water is flowed counter-current to a simulated flue gas of air and CO2 in a packed column. The gaseous CO2 concentrations are measured with an on-line, non- dispersive, infrared analyzer. Column operating parameters include total gas flux, dissolved…

  12. Greenhouse gas emission reduction options and strategies

    International Nuclear Information System (INIS)

    Kane, R.L.

    1994-01-01

    This paper describes the energy-related components of the Clinton Administration's Climate Change Action Plan. The Action Plan was formulated to meet the Administration's commitment of returning US emissions of greenhouse gases to 1990 levels by the year 2000. The paper discusses what the energy industry and energy consumers will be requested to do in order to meet this commitment. Several themes addressed in this paper include: (1) the largely voluntary nature of the actions identified in the Action Plan; (2) consideration of diverse opportunities to reduce emissions; (3) the outlook for US greenhouse gas emissions after 2000; and (4) actions involved for speeding the utilization of new, energy efficient technologies both domestically and abroad. The value of employing a diverse set of activities and the important role of technology improvements will be explored further in section 10 of this volume: ''Greenhouse Gas Emission Mitigation Strategies.'' Papers presented there include the utilization of more efficient fossil energy technologies, energy conservation and demand-side management programs, renewable energy and reforestation, and carbon dioxide capture and disposal

  13. Method for greenhouse gas emission assessments according to the article 75 of the 2010-788 law of July 12, 2010 bearing national commitment for the environment (ENE)

    International Nuclear Information System (INIS)

    2011-01-01

    This document presents mandatory methodological principles, optional prescriptions and optional recommendations for the assessment of greenhouse gas emissions. After having recalled some basic definitions, and regulatory arrangements and performance principles for greenhouse gas emission assessment, this document proposes a diagram indicating the main steps of such an assessment. It defines the organisational frame (for companies or communities), presents the concept of operational perimeter. It reviews the general principles of the assessment: global approach and priorities, calculation with respect to measurement, emission factors, gas global warming potential, reporting and reference year, uncertainty management, case of electricity, case of biomass CO 2 , cogeneration and electricity production from renewable energy, compensation. It presents the reporting format. Some aspects are more precisely presented or described in appendix

  14. Greenhouse-gas emissions from biomass energy use: Comparison with other energy technologies

    International Nuclear Information System (INIS)

    Morris, G.P.; Norman, N.A.; Gleick, P.H.

    1991-01-01

    Recently a major new concern has arisen: the accumulation of greenhouse gases in the atmosphere. It is now generally believed that continued emissions of these gases are current or increasing levels will lead to significant climatic changes with the potential for dramatic, adverse impacts. Since the major anthropogenic source of greenhouse gas emissions is energy production and use, it is essential to future energy policy to understand how energy sources differ with respect to greenhouse gas emissions. Characterizing the greenhouse gas emissions associated with biomass energy use is extremely complicated. It is necessary to consider both the source and alternative use of the biomass material and its alternative disposal (if any), as well as the biomass energy application itself. It is desirable also to consider not just CO 2 emissions, but also CH 4 and N 2 O, both potent greenhouse gases. The authors' analysis shows that in many cases biomass energy use can actually help to ameliorate the greenhouse effect by converting emissions that would have been CH 4 into the less potent greenhouse gas CO 2 . In many cases the beneficial effect is very dramatic. This major new research result should help increase public support for biomass research and development, and for further development of waste conversion technology and installations

  15. Canada's nuclear industry, greenhouse gas emissions, and the Kyoto Protocol

    International Nuclear Information System (INIS)

    Pendergast, D.R.; Duffey, R.B.; Tregunno, D.

    1998-01-01

    The Kyoto Protocol of the United Nations Framework Convention on Climate change, dated December 10, 1997 committed Canada to reduce greenhouse gases to 6% below 1990 levels by 2008-2012. Other nations also committed to varying degrees of reduction. The Protocol includes provisions for credit to the 'developed' counties for initiatives which lead to greenhouse gas reduction in the 'developing' countries and for the sharing of credit between 'developed' countries for projects undertaken jointly. The rules and details for implementation of these guidelines remain to be negotiated. We begin our study by establishing the magnitude of greenhouse gas emissions already avoided by the nuclear industry in Canada since the inception of commercial power plants in 1971. We then review projections of energy use in Canada and anticipated increase in electricity use up to the year 2020. These studies have anticipated no (or have 'not permitted') further development of nuclear electricity production in spite of the clear benefit with respect to greenhouse gas emission. The studies also predict a relatively small growth of electricity use. In fact the projections indicate a reversal of a trend toward increased per capita electricity use which is contrary to observations of electricity usage in national economies as they develop. We then provide estimates of the magnitude of greenhouse gas reduction which would result from replacing the projected increase in fossil fuel electricity by nuclear generation through the building of more plants and/or making better use of existing installations. This is followed by an estimate of additional nuclear capacity needed to avoid CO 2 emissions while providing the electricity needed should per capita usage remain constant. Canada's greenhouse gas reduction goal is a small fraction of international commitments. The Kyoto agreement's 'flexibility mechanism' provisions provide some expectation that Canada could obtain some credit for greenhouse gas

  16. Greenhouse gas emissions, energy consumption and economic growth: A panel cointegration analysis from Canadian industrial sector perspective

    International Nuclear Information System (INIS)

    Hamit-Haggar, Mahamat

    2012-01-01

    This paper investigates the long-run and the causal relationship between greenhouse gas emissions, energy consumption and economic growth for Canadian industrial sectors over the period 1990–2007. The empirical findings suggest that in the long-run equilibrium, energy consumption has a positive and statistically significant impact on greenhouse gas emissions whereas a non-linear relationship is found between greenhouse gas emissions and economic growth, consistent with the environmental Kuznets curve. The short-run dynamics conveys that there is a unidirectional Granger causality running from energy consumption to greenhouse gas emissions; from economic growth to greenhouse gas emissions and a weak unidirectional causality running from greenhouse gas emissions to energy consumption; from economic growth to energy consumption. In the long-run however, there seems to be a weak one way causality flowing from energy consumption and economic growth to greenhouse gas emissions. - Highlights: ► A long-run and a causal relationship between greenhouse gas emissions, energy consumption and economic growth is investigated. ► Energy consumption has a positive impact on greenhouse gas emissions in the long run. ► Unidirectional causality runs from energy consumption and economic growth to greenhouse gas emissions. ► A weak unidirectional causality runs from greenhouse gas emissions and economic growth to energy consumption.

  17. Impact of evolving greenhouse gas forcing on the warming signal in regional climate model experiments.

    Science.gov (United States)

    Jerez, S; López-Romero, J M; Turco, M; Jiménez-Guerrero, P; Vautard, R; Montávez, J P

    2018-04-03

    Variations in the atmospheric concentrations of greenhouse gases (GHG) may not be included as external forcing when running regional climate models (RCMs); at least, this is a non-regulated, non-documented practice. Here we investigate the so far unexplored impact of considering the rising evolution of the CO 2 , CH 4 , and N 2 O atmospheric concentrations on near-surface air temperature (TAS) trends, for both the recent past and the near future, as simulated by a state-of-the-art RCM over Europe. The results show that the TAS trends are significantly affected by 1-2 K century -1 , which under 1.5 °C global warming translates into a non-negligible impact of up to 1 K in the regional projections of TAS, similarly affecting projections for maximum and minimum temperatures. In some cases, these differences involve a doubling signal, laying further claim to careful reconsideration of the RCM setups with regard to the inclusion of GHG concentrations as an evolving external forcing which, for the sake of research reproducibility and reliability, should be clearly documented in the literature.

  18. Are greenhouse gas emissions from international shipping a type of marine pollution?

    Science.gov (United States)

    Shi, Yubing

    2016-12-15

    Whether greenhouse gas emissions from international shipping are a type of marine pollution is a controversial issue and is currently open to debate. This article examines the current treaty definitions of marine pollution, and applies them to greenhouse gas emissions from ships. Based on the legal analysis of treaty definitions and relevant international and national regulation on this issue, this article asserts that greenhouse gas emissions from international shipping are a type of 'conditional' marine pollution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Full energy chain analysis of greenhouse gas emissions from different energy sources

    International Nuclear Information System (INIS)

    Vate, J.F. van de

    1996-01-01

    The field of work of the Advisory Group Meeting/Workshop, i.e. full-energy chain emissions of greenhouse gases, is defined, and its environment, i.e. the Earth Summit -the 1992 UN Conference on Environment and Development in Rio-, is discussed. It is inferred that countries that ratified the Earth Summit's Convention on Climate Change have committed themselves to lower the greenhouse gas emissions from their energy use, and that this can be done most effectively by accounting in energy planning for the full-energy chain emissions of all greenhouse gases. The scatter in literature values of greenhouse gas emission factors of the full energy chain of individual energy sources is discussed. The scatter among others is due to different analytical methods, data bases and system boundaries, and due to neglect of the non-CO 2 greenhouse gases and professional biases. Generic values for greenhouse gas emission factors of energy and materials use are proposed. (author). 10 refs, 2 tabs

  20. Are there pre-Quaternary geological analogues for a future greenhouse warming?

    Science.gov (United States)

    Haywood, A.M.; Ridgwell, A.; Lunt, D.J.; Hill, D.J.; Pound, M.J.; Dowsett, H.J.; Dolan, A.M.; Francis, J.E.; Williams, M.

    2011-01-01

    Given the inherent uncertainties in predicting how climate and environments will respond to anthropogenic emissions of greenhouse gases, it would be beneficial to society if science could identify geological analogues to the human race's current grand climate experiment. This has been a focus of the geological and palaeoclimate communities over the last 30 years, with many scientific papers claiming that intervals in Earth history can be used as an analogue for future climate change. Using a coupled ocean-atmosphere modelling approach, we test this assertion for the most probable pre-Quaternary candidates of the last 100 million years: the Mid- and Late Cretaceous, the Palaeocene-Eocene Thermal Maximum (PETM), the Early Eocene, as well as warm intervals within the Miocene and Pliocene epochs. These intervals fail as true direct analogues since they either represent equilibrium climate states to a long-term CO2 forcing-whereas anthropogenic emissions of greenhouse gases provide a progressive (transient) forcing on climate-or the sensitivity of the climate system itself to CO2 was different. While no close geological analogue exists, past warm intervals in Earth history provide a unique opportunity to investigate processes that operated during warm (high CO2) climate states. Palaeoclimate and environmental reconstruction/modelling are facilitating the assessment and calculation of the response of global temperatures to increasing CO2 concentrations in the longer term (multiple centuries); this is now referred to as the Earth System Sensitivity, which is critical in identifying CO2 thresholds in the atmosphere that must not be crossed to avoid dangerous levels of climate change in the long term. Palaeoclimatology also provides a unique and independent way to evaluate the qualities of climate and Earth system models used to predict future climate. ?? 2011 The Royal Society.

  1. REDUCING GREENHOUSE GAS EMISSIONS AND THE INFLUENCES ON ECONOMIC DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    ANGHELUȚĂ PETRICĂ SORIN

    2016-06-01

    Full Text Available In the recent years, there has been observed a degradation of the environment. This has negative effects on human activities. Besides the influence of the environment on people, also the economic crisis had a negative contribution. The imbalances manifested in the environment influence the economic systems. This article presents an analysis of the greenhouse gas emissions. Also, there is a link between the greenhouse gas emissions and the economic development. In the situation in which the environmental pollution is increasingly affecting humanity, the transition to an economy with reduced greenhouse gas emissions appears to be a viable solution. This transition provides a number of opportunities, as well. Therefore, one of these opportunities is the one related to the employment. In this regard, retraining people working in polluting industries is very important

  2. Accounting for Greenhouse Gas Emissions from Reservoirs ...

    Science.gov (United States)

    Nearly three decades of research has demonstrated that the impoundment of rivers and the flooding of terrestrial ecosystems behind dams can increase rates of greenhouse gas emission, particularly methane. The 2006 IPCC Guidelines for National Greenhouse Gas Inventories includes a methodology for estimating methane emissions from flooded lands, but the methodology was published as an appendix to be used as a ‘basis for future methodological development’ due to a lack of data. Since the 2006 Guidelines were published there has been a 6-fold increase in the number of peer reviewed papers published on the topic including reports from reservoirs in India, China, Africa, and Russia. Furthermore, several countries, including Iceland, Switzerland, and Finland, have developed country specific methodologies for including flooded lands methane emissions in their National Greenhouse Gas Inventories. This presentation will include a review of the literature on flooded land methane emissions and approaches that have been used to upscale emissions for national inventories. We will also present ongoing research in the United States to develop a country specific methodology. In the U.S., research approaches include: 1) an effort to develop predictive relationships between methane emissions and reservoir characteristics that are available in national databases, such as reservoir size and drainage area, and 2) a national-scale probabilistic survey of reservoir methane em

  3. Accounting For Greenhouse Gas Emissions From Flooded ...

    Science.gov (United States)

    Nearly three decades of research has demonstrated that the inundation of rivers and terrestrial ecosystems behind dams can lead to enhanced rates of greenhouse gas emissions, particularly methane. The 2006 IPCC Guidelines for National Greenhouse Gas Inventories includes a methodology for estimating methane emissions from flooded lands, but the methodology was published as an appendix to be used a ‘basis for future methodological development’ due to a lack of data. Since the 2006 Guidelines were published there has been a 6-fold increase in the number of peer reviewed papers published on the topic including reports from reservoirs in India, China, Africa, and Russia. Furthermore, several countries, including Iceland, Switzerland, and Finland, have developed country specific methodologies for including flooded lands methane emissions in their National Greenhouse Gas Inventories. This presentation will include a review of the literature on flooded land methane emissions and approaches that have been used to upscale emissions for national inventories. We will also present ongoing research in the United States to develop a country specific methodology. The research approaches include 1) an effort to develop predictive relationships between methane emissions and reservoir characteristics that are available in national databases, such as reservoir size and drainage area, and 2) a national-scale probabilistic survey of reservoir methane emissions. To inform th

  4. Accouting for Greenhouse Gas Emissions from Reservoirs

    Science.gov (United States)

    Beaulieu, J. J.; Deemer, B. R.; Harrison, J. A.; Nietch, C. T.; Waldo, S.

    2016-12-01

    Nearly three decades of research has demonstrated that the impoundment of rivers and the flooding of terrestrial ecosystems behind dams can increase rates of greenhouse gas emission, particularly methane. The 2006 IPCC Guidelines for National Greenhouse Gas Inventories includes a methodology for estimating methane emissions from flooded lands, but the methodology was published as an appendix to be used as a `basis for future methodological development' due to a lack of data. Since the 2006 Guidelines were published there has been a 6-fold increase in the number of peer reviewed papers published on the topic including reports from reservoirs in India, China, Africa, and Russia. Furthermore, several countries, including Iceland, Switzerland, and Finland, have developed country specific methodologies for including flooded lands methane emissions in their National Greenhouse Gas Inventories. This presentation will include a review of the literature on flooded land methane emissions and approaches that have been used to upscale emissions for national inventories. We will also present ongoing research in the United States to develop a country specific methodology. In the U.S., research approaches include: 1) an effort to develop predictive relationships between methane emissions and reservoir characteristics that are available in national databases, such as reservoir size and drainage area, and 2) a national-scale probabilistic survey of reservoir methane emissions linked to the National Lakes Assessment.

  5. Are greenhouse gas emissions from international shipping a type of marine pollution?

    International Nuclear Information System (INIS)

    Shi, Yubing

    2016-01-01

    Whether greenhouse gas emissions from international shipping are a type of marine pollution is a controversial issue and is currently open to debate. This article examines the current treaty definitions of marine pollution, and applies them to greenhouse gas emissions from ships. Based on the legal analysis of treaty definitions and relevant international and national regulation on this issue, this article asserts that greenhouse gas emissions from international shipping are a type of ‘conditional’ marine pollution. - Highlights: • Greenhouse gas (GHG) emissions from international shipping are a type of ‘conditional’ marine pollution. • Shipping CO 2 may be treated as marine pollution under the 1972 London Dumping Convention. • Countries have adopted different legislation concerning the legal nature of GHG emissions from ships. • Regulating CO 2 emissions from ships as marine pollution may expedite global GHG emissions reduction.

  6. Improving the Greenlandic Greenhouse Gas Inventory

    DEFF Research Database (Denmark)

    Nielsen, Ole-Kenneth; Baunbæk, Lene; Gyldenkærne, Steen

    The project to improve the Greenlandic greenhouse gas (GHG) inventory was undertaken due to the recommendations made by the UNFCCC review team in connection with the 2008 and 2009 submissions by the Kingdom of Denmark. The improvements made to the Greenlandic GHG emission inventory were substantial...

  7. 75 FR 63823 - Final Guidance, “Federal Greenhouse Gas Accounting and Reporting”

    Science.gov (United States)

    2010-10-18

    ... COUNCIL ON ENVIRONMENTAL QUALITY Final Guidance, ``Federal Greenhouse Gas Accounting and Reporting...''), entitled ``Federal Leadership in Environmental, Energy, and Economic Performance.'' 74 FR 52117, Oct. 8... emissions associated with agency operations. This Final Guidance, ``Federal Greenhouse Gas Accounting and...

  8. CANDU reactors and greenhouse gas emissions

    International Nuclear Information System (INIS)

    Andseta, S.; Thompson, M.J.; Jarrell, J.P.; Pendergast, D.R.

    1999-01-01

    This paper was originally presented at the 11th Pacific Basin Nuclear Conference, Banff, Alberta, Canada, May 3-7, 1998. It has been updated to include additional lifecycle data on chemical releases from ore treatment and CANDU fuel fabrication. It is sometimes stated that nuclear power plants can supply electricity with zero emissions of greenhouse gases. In fact, consideration of the entire fuel cycle indicates that some greenhouse gases are generated during their construction and decommissioning and by the preparation of fuel and other materials required for their operation. This follows from the use of fossil fuels in the preparation of materials and during the construction and decommissioning of the plants. This paper reviews life cycle studies of several different kinds of power plants. Greenhouse gases generated by fossil fuels during the preparation of fuel and heavy water used by operating CANDU power plants are estimated. The total greenhouse gas emissions from CANDU nuclear plants, per unit of electricity ultimately produced, are very small in comparison with emissions from most other types of power plants. (author)

  9. CANDU reactors and greenhouse gas emissions

    International Nuclear Information System (INIS)

    Andseta, S.; Thompson, M.J.; Jarrell, J.P.; Pendergast, D.R.

    1998-01-01

    This paper was originally presented at the 11th Pacific Basin Nuclear Conference, Banff, Alberta, Canada, May 3-7, 1998. It has been updated to include additional lifecycle data on chemical releases from ore treatment and CANDU fuel fabrication. It is sometimes stated that nuclear power plants can supply electricity with zero emissions of greenhouse gases. In fact, consideration of the entire fuel cycle indicates that some greenhouse gases are generated during their construction and decommissioning and by the preparation of fuel and other materials required for their operation. This follows from the use of fossil fuels in the preparation of materials and during the construction and decommissioning of the plants. This paper reviews life cycle studies of several different kinds of power plants. Greenhouse gases generated by fossil fuels during the preparation of fuel and heavy water used by operating CANDU power plants are estimated. The total greenhouse gas emissions from CANDU nuclear plants, per unit of electricity ultimately produced, are very small in comparison with emissions from most other types of power plants. (author)

  10. Resurgent beaver ponds in the northeastern United States: implications for greenhouse gas emissions.

    Science.gov (United States)

    Lazar, Julia G; Addy, Kelly; Welsh, Molly K; Gold, Arthur J; Groffman, Peter M

    2014-11-01

    Beaver ponds, a wetland type of increasing density in the northeastern United States, vary spatially and temporally, creating high uncertainty in their impact to greenhouse gas (GHG) emissions. We used floating static gas chambers to assess diffusive fluxes of methane (CH), carbon dioxide (CO), and nitrous oxide (NO) from the air-water interface of three beaver ponds (0.05-8 ha) in Rhode Island from fall 2012 to summer 2013. Gas flux was based on linear changes of gas concentrations in chambers over 1 h. Our results show that these beaver ponds generated considerable CH and CO emissions. Methane flux (18-556 mg m d) showed no significant seasonal differences, but the shallowest pond generated significantly higher CH flux than the other ponds. Carbon dioxide flux (0.5-22.0 g m d) was not significantly different between sites, but it was significantly higher in the fall, possibly due to the degradation of fresh leaves. Nitrous oxide flux was low (0-2.4 mg m d). Overall, CH and CO comprised most of the global warming potential, 61 and 38%, respectively. The shallowness of the beaver ponds may have limited the time needed for CH oxidation to CO before CH escaped to the atmosphere. Beaver dams also increase the aerial extent of hydric soils, which may transform riparian areas from upland GHG sinks to wetland GHG sources thereby changing the net global warming potential. Further studies tracking the pattern and conditions of beaver pond creation and abandonment will be essential to understanding their role as GHG sources. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  11. Quality manual for the Danish greenhouse gas inventory

    DEFF Research Database (Denmark)

    Nielsen, Ole-Kenneth; Plejdrup, Marlene Schmidt; Winther, Morten

    The report outlines the quality work undertaken by the emission inventory group at the Department of Environmental Science, Aarhus University in connection with the preparation and reporting of the Danish greenhouse gas inventory. The report updates and expands on the first version of the quality...... manual published in 2005. The report fulfils the mandatory requirements for a quality assurance/quality control (QA/QC) plan as lined out in the UNFCCC reporting guidelines and the specifications related to reporting under the Kyoto Protocol. The report describes all elements of the internal QC...... procedures as well as the QA and verification activities carried out in connection with the Danish greenhouse gas inventory....

  12. 75 FR 41452 - Draft Guidance, “Federal Greenhouse Gas Accounting and Reporting”

    Science.gov (United States)

    2010-07-16

    ... COUNCIL ON ENVIRONMENTAL QUALITY Draft Guidance, ``Federal Greenhouse Gas Accounting and Reporting... Greenhouse Gas Accounting and Reporting.'' SUMMARY: On October 5, 2009, President Obama signed Executive Order (E.O.) 13514--Federal Leadership in Environmental, Energy, and Economic Performance (74 FR 52117...

  13. Greenhouse Gas Emissions Trading for the Transport Sector

    International Nuclear Information System (INIS)

    Holmgren, Kristina; Belhaj, Mohammed; Gode, Jenny; Saernholm, Erik; Zetterberg, Lars; Aahman, Markus

    2006-12-01

    In this study we have analysed different options to apply emissions trading for greenhouse gas emissions to the transport sector. The main focus has been on the EU transport sector and the possibility to include it in the current EU ETS in the trading period beginning in 2013. The purpose was to study how different alternatives will affect different actors. Focus has been on three sub-sectors; road transport, aviation and shipping. The railway sector has only been treated on a general level. The study includes the following three parts: 1. An economic analysis of the consequences of greenhouse gas emissions trading for the transport sector including an analysis of how the total cost for reaching an emission target will be affected by an integrated emissions trading system for the transport sector and the industry (currently included sectors) compared to separate systems for the sectors, 2. An analysis of design possibilities for the different sub-sectors. Discussion of positive and negative aspects with different choices of design parameters, such as trading entity, covered greenhouse gases, allocation of emission allowances and monitoring systems, 3. Examination of the acceptance among different actors for different options of using greenhouse gas emissions trading in the transport sector. When setting up an emissions trading scheme there are a number of design parameters that have to be analysed in order to find an appropriate system, with limited administrative and transaction costs and as small distortions as possible to competitiveness

  14. Risk Assessment from Radon Gas in the Greenhouses

    International Nuclear Information System (INIS)

    Fahmi, N.M.; El-Khatib, A.M.; Abd El-Zaher, M

    2009-01-01

    Radon is a naturally occurring radioactive gas found in varying amounts in all soils. Therefore, it is very important to study radon emanation from different soils in different circumstances; especially, in green houses which widely used to propagate and cultivate of plants. In greenhouses radon comes from either soil or the substances which make suitable flooring in the greenhouse. Radon and its progeny are accumulated in the air and on the plants themselves, which causes hazard for workers and customers in a later stage. Radon gas is measured in two kinds of greenhouses, one of them is constructed from plastic sheet and the other from glass (Agriculture Research Center - Horticulture Research Institute) using CR-39 NTDs as a passive technique. It based on the production of track in the detector due to alpha-particles emitted from radon and its progeny. The observed track densities are then converted to annual radon dose to be 12.36 mSv and 8.3 mSv for the plastic and glass greenhouses under investigation, respectively. It is also found that the workers have been subject to regulatory control

  15. Composting and compost utilization: accounting of greenhouse gases and global warming contributions.

    Science.gov (United States)

    Boldrin, Alessio; Andersen, Jacob K; Møller, Jacob; Christensen, Thomas H; Favoino, Enzo

    2009-11-01

    Greenhouse gas (GHG) emissions related to composting of organic waste and the use of compost were assessed from a waste management perspective. The GHG accounting for composting includes use of electricity and fuels, emissions of methane and nitrous oxide from the composting process, and savings obtained by the use of the compost. The GHG account depends on waste type and composition (kitchen organics, garden waste), technology type (open systems, closed systems, home composting), the efficiency of off-gas cleaning at enclosed composting systems, and the use of the compost. The latter is an important issue and is related to the long-term binding of carbon in the soil, to related effects in terms of soil improvement and to what the compost substitutes; this could be fertilizer and peat for soil improvement or for growth media production. The overall global warming factor (GWF) for composting therefore varies between significant savings (-900 kg CO(2)-equivalents tonne(-1) wet waste (ww)) and a net load (300 kg CO(2)-equivalents tonne( -1) ww). The major savings are obtained by use of compost as a substitute for peat in the production of growth media. However, it may be difficult for a specific composting plant to document how the compost is used and what it actually substitutes for. Two cases representing various technologies were assessed showing how GHG accounting can be done when specific information and data are available.

  16. Cloud Feedbacks on Greenhouse Warming in a Multi-Scale Modeling Framework with a Higher-Order Turbulence Closure

    Science.gov (United States)

    Cheng, Anning; Xu, Kuan-Man

    2015-01-01

    Five-year simulation experiments with a multi-scale modeling Framework (MMF) with a advanced intermediately prognostic higher-order turbulence closure (IPHOC) in its cloud resolving model (CRM) component, also known as SPCAM-IPHOC (super parameterized Community Atmospheric Model), are performed to understand the fast tropical (30S-30N) cloud response to an instantaneous doubling of CO2 concentration with SST held fixed at present-day values. SPCAM-IPHOC has substantially improved the low-level representation compared with SPCAM. It is expected that the cloud responses to greenhouse warming in SPCAM-IPHOC is more realistic. The change of rising motion, surface precipitation, cloud cover, and shortwave and longwave cloud radiative forcing in SPCAM-IPHOC from the greenhouse warming will be presented in the presentation.

  17. Greenhouse gas emissions in Hawaii. Household and visitor expenditure analysis

    International Nuclear Information System (INIS)

    Konan, Denise Eby; Chan, Hing Ling

    2010-01-01

    This paper focuses on petroleum use and greenhouse gas emissions associated with economic activities in Hawaii. Data on economic activity, petroleum consumption by type (gasoline, diesel, aviation fuel, residual, propane), and emissions factors are compiled and analyzed. In the baseline year 1997, emissions are estimated to total approximately 23.2 million metric tons of carbon, 181 thousand metric tons of nitrous oxide, and 31 thousand metric tons of methane in terms of carbon-equivalent global warming potential over a 100-year horizon. Air transportation, electricity, and other transportation are the key economic activity responsible for GHG emissions associated with fossil fuel use. More than 22% of total emissions are attributed to visitor expenditures. On a per person per annum basis, emission rates generated by visitor demand are estimated to be higher than that of residents by a factor of 4.3 for carbon, 3.2 for methane, and 4.8 for nitrous oxide. (author)

  18. Evaluation of greenhouse gas emission risks from storage of wood residue

    International Nuclear Information System (INIS)

    Wihersaari, Margareta

    2005-01-01

    The use of renewable energy sources instead of fossil fuels is one of the most important means of limiting greenhouse gas emissions in the near future. In Finland, wood energy is considered to be a very important potential energy source in this sense. There might, however, still be some elements of uncertainty when evaluating biofuel production chains. By combining data from a stack of composting biodegradable materials and forest residue storage research there was an indication that rather great amounts of greenhouse gases maybe released during storage of wood chip, especially if there is rapid decomposition. Unfortunately, there have not been many evaluations of greenhouse gas emissions of biomass handling and storage heaps. The greenhouse gas emissions are probably methane, when the temperature in the fuel stack is above the ambient temperature, and nitrous oxide, when the temperature is falling and the decaying process is slowing down. Nowadays it is still rather unusual to store logging residue as chips, because the production is small, but in Finland storage of bark and other by-products from the forest industry is a normal process. The evaluations made indicate that greenhouse gas emissions from storage can, in some cases, be much greater than emissions from the rest of the biofuel production and transportation chain

  19. Mediterranean climate change and Indian Ocean warming

    International Nuclear Information System (INIS)

    Hoerling, M.; Eischeid, J.; Hurrel, J.

    2006-01-01

    General circulation model (GCM) responses to 20. century changes in sea surface temperatures (SSTs) and greenhouse gases are diagnosed, with emphasis on their relationship to observed regional climate change over the Mediterranean region. A major question is whether the Mediterranean region's drying trend since 1950 can be understood as a consequence of the warming trend in tropical SSTs. We focus on the impact of Indian Ocean warming, which is itself the likely result of increasing greenhouse gases. It is discovered that a strong projection onto the positive polarity of the North Atlantic Oscillation (NAO) index characterizes the atmospheric response structure to the 1950-1999 warming of Indian Ocean SSTs. This influence appears to be robust in so far as it is reproduced in ensembles of experiments using three different GCMs. Both the equilibrium and transient responses to Indian Ocean warming are examined. Under each scenario, the latitude of prevailing mid latitude westerlies shifts poleward during the November-April period. The consequence is a drying of the Mediterranean region, whereas northern Europe and Scandinavia receive increased precipitation in concert with the poleward shift of storminess. The IPCC (TAR) 20. century coupled ocean-atmosphere simulations forced by observed greenhouse gas changes also yield a post-1950 drying trend over the Mediterranean. We argue that this feature of human-induced regional climate change is the outcome of a dynamical feedback, one involving Indian Ocean warming and a requisite adjustment of atmospheric circulation systems to such ocean warming

  20. Greenhouse Gas Emissions from Excavation on Residential Construction Sites

    Directory of Open Access Journals (Sweden)

    Perry Forsythe

    2014-12-01

    Full Text Available Despite considerable research concerning the manifestation of greenhouse gases in the usage of buildings, little has been done concerning emissions arising from the construction process itself. This paper specifically examines emissions arising from cut and fill excavation on residential construction sites. Even though such excavation is often seen as being economical in terms of providing a flat base for concrete raft slab construction, the environmental consequences of this approach need to be considered more fully in terms of impact on the environment. This is particularly important when steeply sloping sites are involved and for different soil types. The paper undertakes a study that quantitatively assesses the cumulative greenhouse gas emissions caused by cut and fill excavation on 52 residential projects in Australia for a range of slope and soil types. The paper presents results from the study and concludes that greenhouse gas emissions increase as site slope increases; the building footprint area (as distinct from Gross Floor Area, exposes the need to reduce the area of the building to reduce greenhouse gas emissions; excavation of rock soils creates higher emissions than other soil types; and cut and fill excavation on steeply slope sites increase emissions. Potential alternative construction includes suspended floor construction systems which involve less excavation.

  1. Greenhouse Gas Emissions from Excavation on Residential Construction Sites

    Directory of Open Access Journals (Sweden)

    Perry Forsythe

    2014-12-01

    Full Text Available Despite considerable research concerning the manifestation of greenhouse gases in the usage of buildings, little has been done concerning emissions arising from the construction process itself. This paper specifically examines emissions arising from cut and fill excavation on residential construction sites. Even though such excavation is often seen as being economical in terms of providing a flat base for concrete raft slab construction, the environmental consequences of this approach need to be considered more fully in terms of impact on the environment. This is particularly important when steeply sloping sites are involved and for different soil types. The paper undertakes a study that quantitatively assesses the cumulative greenhouse gas emissions caused by cut and fill excavation on 52 residential projects in Australia for a range of slope and soil types. The paper presents results from the study and concludes that greenhouse gas emissions increase as site slope increases; the building footprint area (as distinct from Gross Floor Area, exposes the need to reduce the area of the building to reduce greenhouse gas emissions; excavation of rock soils creates higher emissions than other soil types; and cut and fill excavation on steeply slope sites increase emissions. Potential alternative construction includes suspended floor construction systems which involve less excavation. 

  2. Innovative technologies for greenhouse gas emission reduction in steel production

    Directory of Open Access Journals (Sweden)

    D. Burchart-Korol

    2016-01-01

    Full Text Available The main goal of the study was to present the most significant technological innovations aiming at reduction of greenhouse gas emission in steel production. Reduction of greenhouse gas and dust pollution is a very important aspect in the iron and steel industry. New solutions are constantly being searched for to reduce greenhouse gases (GHG. The article presents the most recent innovative technologies which may be applied in the steel industry in order to limit the emission of GHG. The significance of CCS (CO2 Capture and Storage and CCU (CO2 Capture and Utilization in the steel industry are also discussed.

  3. Nuclear energy, a solution in the struggle against global warming in quest of recognition

    International Nuclear Information System (INIS)

    Faudon, Valerie

    2014-01-01

    In this article, the author first comments assessments of the continuous increase of greenhouse gas emissions as they appear in the IPCC report of September 2013 and in the results published by the Global Carbon Project. She also evokes the commitments in emission reductions in compliance with the Kyoto Protocol and some dramatic consequences global warming may have according to the IPCC scenarios. Then, she addresses the share of nuclear energy in energy production and outlines its stakes and benefits in terms of greenhouse gas emissions. She notices that international bodies (European Commission, World Bank) do not mention nuclear energy in their plan for energy production development, but mainly rely on the development of renewable energies. The author then outlines the reasons why the development of renewable energies does not necessarily goes with the reduction of greenhouse gas emissions. She also notices that a new generation of ecologists considers nuclear energy as a tool to struggle against climate warming

  4. Lifecycle greenhouse gas emissions of coal, conventional and unconventional natural gas for electricity generation

    Science.gov (United States)

    An analysis of the lifecycle greenhouse gas (GHG) emissions associated with natural gas use recently published by Howarth et al. (2011) stated that use of natural gas produced from shale formations via hydraulic fracturing would generate greater lifecycle GHG emissions than petro...

  5. Biofuels, land use change, and greenhouse gas emissions: some unexplored variables.

    Science.gov (United States)

    Kim, Hyungtae; Kim, Seungdo; Dale, Bruce E

    2009-02-01

    Greenhouse gas release from land use change (the so-called "carbon debt") has been identified as a potentially significant contributor to the environmental profile of biofuels. The time required for biofuels to overcome this carbon debt due to land use change and begin providing cumulative greenhouse gas benefits is referred to as the "payback period" and has been estimated to be 100-1000 years depending on the specific ecosystem involved in the land use change event. Two mechanisms for land use change exist: "direct" land use change, in which the land use change occurs as part of a specific supply chain for a specific biofuel production facility, and "indirect" land use change, in which market forces act to produce land use change in land that is not part of a specific biofuel supply chain, including, for example, hypothetical land use change on another continent. Existing land use change studies did not consider many of the potentially important variables that might affect the greenhouse gas emissions of biofuels. We examine here several variables that have not yet been addressed in land use change studies. Our analysis shows that cropping management is a key factor in estimating greenhouse gas emissions associated with land use change. Sustainable cropping management practices (no-till and no-till plus cover crops) reduce the payback period to 3 years for the grassland conversion case and to 14 years for the forest conversion case. It is significant that no-till and cover crop practices also yield higher soil organic carbon (SOC) levels in corn fields derived from former grasslands or forests than the SOC levels that result if these grasslands or forests are allowed to continue undisturbed. The United States currently does not hold any of its domestic industries responsible for its greenhouse gas emissions. Thus the greenhouse gas standards established for renewable fuels such as corn ethanol in the Energy Independence and Security Act (EISA) of 2007 set a

  6. Implications of greenhouse gas emission mitigation scenarios for the main Asian regions

    NARCIS (Netherlands)

    van Ruijven, B.J.|info:eu-repo/dai/nl/304834521; van Vuuren, D.P.|info:eu-repo/dai/nl/11522016X; van Vliet, J.; Mendoza Beltran, A.; Deetman, S.; den Elzen, M.G.J.

    2012-01-01

    In order to limit global mean temperature increase, long-term greenhouse gas emissions need to be reduced. This paper discusses the implications of greenhouse gas emission reductions for major Asian regions (China, India, Indonesia, South-East Asia, Japan and Korea) based on results from the IMAGE

  7. Greenhouse gas emissions from the energy sector

    International Nuclear Information System (INIS)

    Mbuthi, P.N.

    1998-01-01

    This study quantifies greenhouse gas emissions from Kenya's energy activities. It is organised in four major sections, namely, an overview of the energy sector; data sources and methodology of analysis; results and recommendations for future climate change mitigation

  8. Detection of Greenhouse-Gas-Induced Climatic Change

    Energy Technology Data Exchange (ETDEWEB)

    Jones, P.D.; Wigley, T.M.L.

    1998-05-26

    The objective of this report is to assemble and analyze instrumental climate data and to develop and apply climate models as a basis for (1) detecting greenhouse-gas-induced climatic change, and (2) validation of General Circulation Models.

  9. Greenhouse Gas Emissions from Hydroelectric Reservoirs in Tropical Regions

    International Nuclear Information System (INIS)

    Pinguelli Rosa, L.; Aurelio dos Santos, M.; Oliveira dos Santos, E.; Matvienko, B.; Sikar, E.

    2004-01-01

    This paper discusses emissions by power-dams in the tropics. Greenhouse gas emissions from tropical power-dams are produced underwater through biomass decomposition by bacteria. The gases produced in these dams are mainly nitrogen, carbon dioxide and methane. A methodology was established for measuring greenhouse gases emitted by various power-dams in Brazil. Experimental measurements of gas emissions by dams were made to determine accurately their emissions of methane (CH4) and carbon dioxide (CO2) gases through bubbles formed on the lake bottom by decomposing organic matter, as well as rising up the lake gradient by molecular diffusion. The main source of gas in power-dams reservoirs is the bacterial decomposition (aerobic and anaerobic) of autochthonous and allochthonous organic matter that basically produces CO2 and CH4. The types and modes of gas production and release in the tropics are reviewed

  10. Greenhouse gas emissions from South Africa

    CSIR Research Space (South Africa)

    Scholes, RJ

    1996-05-01

    Full Text Available of CO2. These gases included 350 Tg CO2 (65.6% of the effect), 183 Tg CH4 (34.2%) and 1.2 Tg N2O (0.2%). The mining and burning of coal contributed more than 80% of the greenhouse gas emissions from South African territory....

  11. Greenhouse gas emissions of pilot buildings in 2009-2011; Pilottikiinteistoejen kasvihuonekaasupaeaestoet vuosina 2009-2011

    Energy Technology Data Exchange (ETDEWEB)

    Riihimaki, M.

    2012-07-01

    The Julia 2030 use of premises project sought to reduce the greenhouse gas emissions of selected pilot buildings by 10 per cent over the period from 2009 to 2011 by changing patterns of use. The project also provided an opportunity for further refinement of a climate calculator developed and maintained by WWF for reckoning greenhouse gas emissions of this kind. The use of premises project covered a total of 32 pilot buildings in Helsinki, Espoo, Vantaa, Kauniainen, Kirkkonummi and Kerava. These buildings included nurseries and schools, swimming baths, offices, multi-purpose activity buildings, depots, a sports hall and a health centre. The combined greenhouse gas emissions of the pilot buildings in 2011 amounted to 10,416 tCO{sub 2}e, which was 8 per cent lower than the total of 11,293 tCO{sub 2}e recorded in 2009. This means that the project fell slightly short of its targeted 10 per cent reduction in greenhouse gas emissions. The total greenhouse gas emissions of the pilot buildings adjusted for heating requirement amounted to 10,733 tCO{sub 2}e in 2011, which was about 7 per cent lower than in 2009. Reckoned on a per capita basis for employees or visitors, the total greenhouse gas emissions adjusted for heating requirement fell in 25 buildings, but increased in seven buildings over the period from 2009 to 2011. Particularly significant emission reductions were achieved in Vantaa, where all buildings were able to cut their emissions by between 9 and 45 per cent. The principal cause of greenhouse gas emissions in the pilot buildings was heating consumption, which also accounts for the increase in their unadjusted greenhouse gas emissions over the cold winters of 2009 and 2010. The second most important emission source in the pilot buildings was electricity consumption. Air travel contributed significantly to the overall greenhouse gas emissions of the pilot buildings used by employees taking work-related flights, whereas the contribution of paper consumption and

  12. 77 FR 69585 - Greenhouse Gas Reporting Program: Proposed Amendments and Confidentiality Determinations for...

    Science.gov (United States)

    2012-11-20

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 98 [EPA-HQ-OAR-2011-0028; FRL-9753-2] Greenhouse Gas... announcing an extension of the public comment period for the proposed rule titled ``Greenhouse Gas Reporting... [[Page 69586

  13. Global warming potential and greenhouse gas intensity in rice agriculture driven by high yields and nitrogen use efficiency

    Science.gov (United States)

    Zhang, Xiaoxu; Xu, Xin; Liu, Yinglie; Wang, Jinyang; Xiong, Zhengqin

    2016-05-01

    Our understanding of how global warming potential (GWP) and greenhouse gas intensity (GHGI) is affected by management practices aimed at food security with respect to rice agriculture remains limited. In the present study, a field experiment was conducted in China to evaluate the effects of integrated soil-crop system management (ISSM) on GWP and GHGI after accounting for carbon dioxide (CO2) equivalent emissions from all sources, including methane (CH4) and nitrous oxide (N2O) emissions, agrochemical inputs and farm operations and sinks (i.e., soil organic carbon sequestration). The ISSM mainly consisted of different nitrogen (N) fertilization rates and split, manure, Zn and Na2SiO3 fertilization and planting density for the improvement of rice yield and agronomic nitrogen use efficiency (NUE). Four ISSM scenarios consisting of different chemical N rates relative to the local farmers' practice (FP) rate were carried out, namely, ISSM-N1 (25 % reduction), ISSM-N2 (10 % reduction), ISSM-N3 (FP rate) and ISSM-N4 (25 % increase). The results showed that compared with the FP, the four ISSM scenarios significantly increased the rice yields by 10, 16, 28 and 41 % and the agronomic NUE by 75, 67, 35 and 40 %, respectively. In addition, compared with the FP, the ISSM-N1 and ISSM-N2 scenarios significantly reduced the GHGI by 14 and 18 %, respectively, despite similar GWPs. The ISSM-N3 and ISSM-N4 scenarios remarkably increased the GWP and GHGI by an average of 69 and 39 %, respectively. In conclusion, the ISSM strategies are promising for both food security and environmental protection, and the ISSM scenario of ISSM-N2 is the optimal strategy to realize high yields and high NUE together with low environmental impacts for this agricultural rice field.

  14. Can savannas help balance the South African greenhouse gas budget?

    CSIR Research Space (South Africa)

    Scholes, RJ

    1996-02-01

    Full Text Available This article discusses the South African Greenhouse Experiment on Savannas (SAGES) study conducted by the CSIR' Division of Forest Science and Technology (Foretek) on the role of savannas in the balance of the greenhouse gas budget of South Africa...

  15. Life Cycle Assessment of Greenhouse Gas Emissions

    NARCIS (Netherlands)

    Reijnders, L.; Chen, W.Y.; Suzuki, T.; Lackner, M.

    2015-01-01

    Life cycle assessments of greenhouse gas emissions have been developed for analyzing products "from cradle to grave": from resource extraction to waste disposal. Life cycle assessment methodology has also been applied to economies, trade between countries, aspects of production, and waste

  16. Introduction of nuclear power plant for mitigating the impact of global warming

    International Nuclear Information System (INIS)

    Ida Nuryatin Finahari

    2008-01-01

    Energy utilization for power plants in Indonesia is still highly depending on the burning of fossil fuel like coal, oil, and gas. From the combustion of fossil fuel, greenhouse gases such as CO 2 and N 2 O are produced. An increase of CO 2 gas emission to the atmosphere can block the heat loss from the earth surface and will increase the greenhouse effect that results in the temperature increase of the earth surface (global warming). Global warming can cause a very extreme climate change on earth. One of the solutions to reduce CO 2 gas emission produced by fossil fuel power plants is to utilize the plants with flue gas treatment facility. At such facility, CO 2 gas is reacted with certain mineral based substances thus can be used as base material in food-, pharmaceutical-, construction-, and cosmetic industry. Another alternative to reduce CO 2 gas emission is by replacing fossil fuel power plants with nuclear power plants. Considering the environmental and economic aspects, the nuclear power plant does not emit CO 2 gas, so that the use of nuclear power plant can mitigate the impact of global warming. Based on the operational experience of nuclear power plants in advanced countries, the cost of generating electricity from nuclear power plants is more competitive than that of fossil fuel power plant. (author)

  17. Energy consumption, greenhouse gas emissions and assessment of sustainability index in corn agroecosystems of Iran.

    Science.gov (United States)

    Yousefi, Mohammad; Damghani, Abdolmajid Mahdavi; Khoramivafa, Mahmud

    2014-09-15

    The objectives of this study were to assess the energy flow, greenhouse gas (GHG) emission, global warming potential (GWP) and sustainability of corn production systems in Kermanshah province, western Iran. The data were collected from 70 corn agroecosystems which were selected based on randomly sampled method in the summer of 2011. The results indicated that total input and output energy were 50,485 and 134,946 MJ ha(-1), respectively. The highest share of total input energy in corn production systems was recorded for N fertilizer, electricity power and diesel fuel with 35, 25 and 20%, respectively. Energy use efficiency and energy productivity were 2.67 and 0.18 kg MJ(-1), respectively. Also agrochemical energy ratio was estimated as 40%. Applying chemical inputs produced the following emissions of greenhouse gases: 2994.66 kg CO2, 31.58 kg N2O and 3.82 kg CH4 per hectare. Hence, total GWP was 12,864.84 kg Co2eq ha(-1) in corn production systems. In terms of CO2 equivalents 23% of the GWPs came from CO2, 76% from N2O, and 1% from CH4. In this study input and output C equivalents per total GHG and Biomass production were 3508.59 and 10,696.34 kg Cha(-1). Net carbon and sustainability indexes in corn production systems were 7187.75 kg Cha(-1) and 2.05. Accordingly, efficient use of energy is essential to reduce the greenhouse gas emissions and environmental impact in corn agroecosystems. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Simulating greenhouse gas (GHG) allowance cost and GHG emission reduction in Western Europe

    International Nuclear Information System (INIS)

    Delarue, Erik; Lamberts, Hans; D'haeseleer, William

    2007-01-01

    Due to the growing concern for global warming, the EU25 have implemented the European Union Greenhouse Gas Emission Trading Scheme (EU ETS). In the first trading period (2005-2007), part of the targeted GHG emission reductions presumably will have to result from a switch from coal fired electricity generation to gas fired electricity generation. It is possible to calculate the allowance cost necessary to switch a certain coal fired plant with a certain gas fired plant in the merit order. The allowance cost obtained is a so called switching point. When comparing historic European Union Allowance (EUA) prices (2005) with the corresponding historic switching points, the EUA prices were found high enough to cause a certain switch in the summer season. This finding leads to the use of switching points in establishing allowance cost profiles for several scenarios. A variable gas price profile is used in the simulation tool E-Simulate to simulate electricity generation and related GHG emissions in an eight zonal model representing Western Europe. Several GHG allowance cost profile scenarios are examined. For each scenario, electricity generation in the considered countries is clarified. The focus however lies on the GHG emission reduction potentials. These potentials are addressed for each scenario

  19. Local and regional greenhouse gas management

    International Nuclear Information System (INIS)

    Fleming, P.D.; Webber, P.H.

    2004-01-01

    This paper discusses the role of local government, working at both the local and regional level, to achieve substantial (greater than 20%) greenhouse gas emissions reductions. It identifies many different funding regimes and organisations supporting greenhouse gas emissions reductions and a lack of data with which to measure progress. The work in the East Midlands and in the City of Leicester are summarised and an evaluation of progress towards Leicester's target of 50% carbon dioxide (CO 2 ) emission reduction by 2025 based on 1990 is presented. Leicester's initiatives to reduce carbon emissions for the domestic and non-domestic sectors between 1996 and 1999 are analysed. Progress has been made in reducing the rate of rise in energy demand in Leicester and where energy efficiency activities have been concentrated, savings of 20-30% have been obtained. Significant CO 2 savings are achievable at the local and regional level, but the streamlining of support mechanisms for local authorities and a clearer national framework to support implementation are needed to enable all, rather than a few, UK local authorities to make progress

  20. Estimation of Energy Consumption and Greenhouse Gas Emissions of Transportation in Beef Cattle Production

    Directory of Open Access Journals (Sweden)

    Narayanan Kannan

    2016-11-01

    Full Text Available Accounting for transportation is an important part of the life cycle analysis (LCA of beef cattle production because it is associated with energy consumption and greenhouse gas emissions. This paper describes the development and application of a model that estimates energy consumption and greenhouse gas emissions of transport in beef cattle production. The animal transport model is based on the weight and number of animals in each weight category, type of trailer, vehicle, and fuel used. The energy consumption and greenhouse gas emission estimates of animal feed transportation are based on the weight of a truckload and the number of truckloads of feed transported. Our results indicate that a truckload is travelling approximately 326 km in connection with beef cattle production in the study region. The fuel consumption amounts to 24 L of fossil fuel per 1000 kg of boneless beef. The corresponding greenhouse gas emission is 83 kg. It appears from our results that the majority of energy consumption and greenhouse gas emissions are associated with sending the finished cattle to slaughterhouses and bringing feeder cattle to feedlots. Our results point out appreciable reductions in energy consumption and greenhouse gas emissions by changing from conventional fuel to bio-fuel.

  1. Towards European organisation for integrated greenhouse gas observation system

    Science.gov (United States)

    Kaukolehto, Marjut; Vesala, Timo; Sorvari, Sanna; Juurola, Eija; Paris, Jean-Daniel

    2013-04-01

    Climate change is one the most challenging problems that humanity will have to cope with in the coming decades. The perturbed global biogeochemical cycles of the greenhouse gases (carbon dioxide, methane and nitrous oxide) are a major driving force of current and future climate change. Deeper understanding of the driving forces of climate change requires full quantification of the greenhouse gas emissions and sinks and their evolution. Regional greenhouse gas budgets, tipping-points, vulnerabilities and the controlling mechanisms can be assessed by long term, high precision observations in the atmosphere and at the ocean and land surface. ICOS RI is a distributed infrastructure for on-line, in-situ monitoring of greenhouse gases (GHG) necessary to understand their present-state and future sinks and sources. ICOS RI provides the long-term observations required to understand the present state and predict future behaviour of the global carbon cycle and greenhouse gas emissions. Linking research, education and innovation promotes technological development and demonstrations related to greenhouse gases. The first objective of ICOS RI is to provide effective access to coherent and precise data and to provide assessments of GHG inventories with high temporal and spatial resolution. The second objective is to provide profound information for research and understanding of regional budgets of greenhouse gas sources and sinks, their human and natural drivers, and the controlling mechanisms. ICOS is one of several ESFRI initiatives in the environmental science domain. There is significant potential for structural and synergetic interaction with several other ESFRI initiatives. ICOS RI is relevant for Joint Programming by providing the data access for the researchers and acting as a contact point for developing joint strategic research agendas among European member states. The preparatory phase ends in March 2013 and there will be an interim period before the legal entity will

  2. Assessing and Projecting Greenhouse Gas Release due to Abrupt Permafrost Degradation

    Science.gov (United States)

    Saito, K.; Ohno, H.; Yokohata, T.; Iwahana, G.; Machiya, H.

    2017-12-01

    Permafrost is a large reservoir of frozen soil organic carbon (SOC; about half of all the terrestrial storage). Therefore, its degradation (i.e., thawing) under global warming may lead to a substantial amount of additional greenhouse gas (GHG) release. However, understanding of the processes, geographical distribution of such hazards, and implementation of the relevant processes in the advanced climate models are insufficient yet so that variations in permafrost remains one of the large source of uncertainty in climatic and biogeochemical assessment and projections. Thermokarst, induced by melting of ground ice in ice-rich permafrost, leads to dynamic surface subsidence up to 60 m, which further affects local and regional societies and eco-systems in the Arctic. It can also accelerate a large-scale warming process through a positive feedback between released GHGs (especially methane), atmospheric warming and permafrost degradation. This three-year research project (2-1605, Environment Research and Technology Development Fund of the Ministry of the Environment, Japan) aims to assess and project the impacts of GHG release through dynamic permafrost degradation through in-situ and remote (e.g., satellite and airborn) observations, lab analysis of sampled ice and soil cores, and numerical modeling, by demonstrating the vulnerability distribution and relative impacts between large-scale degradation and such dynamic degradation. Our preliminary laboratory analysis of ice and soil cores sampled in 2016 at the Alaskan and Siberian sites largely underlain by ice-rich permafrost, shows that, although gas volumes trapped in unit mass are more or less homogenous among sites both for ice and soil cores, large variations are found in the methane concentration in the trapped gases, ranging from a few ppm (similar to that of the atmosphere) to hundreds of thousands ppm We will also present our numerical approach to evaluate relative impacts of GHGs released through dynamic

  3. Life cycle assessment of greenhouse gas emissions

    NARCIS (Netherlands)

    Reijnders, L.; Chen, W.Y.; Seiner, J.; Suzuki, T.; Lackner, M.

    2012-01-01

    Life cycle assessments of greenhouse gas emissions have been developed for analyzing products "from cradle to grave": from resource extraction to waste disposal. Life cycle assessment methodology has also been applied to economies, trade between countries, aspects of production and to waste

  4. Life cycle assessment of greenhouse gas emissions

    NARCIS (Netherlands)

    Reijnders, L.; Chen, W.-Y.; Suzuki, T.; Lackner, M.

    2017-01-01

    Life cycle assessments of greenhouse gas emissions have been developed for analyzing products “from cradle to grave”: from resource extraction to waste disposal. Life cycle assessment methodology has also been applied to economies, trade between countries, aspects of production, and waste

  5. Wellbeing Impacts of City Policies for Reducing Greenhouse Gas Emissions

    Directory of Open Access Journals (Sweden)

    Rosemary Hiscock

    2014-11-01

    Full Text Available To mitigate climate change, city authorities are developing policies in areas such as transportation, housing and energy use, to reduce greenhouse gas emissions. In addition to their effects on greenhouse gas emissions, these policies are likely to have consequences for the wellbeing of their populations for example through changes in opportunities to take physical exercise. In order to explore the potential consequences for wellbeing, we first explore what ‘wellbeing’ is and how it can be operationalised for urban planners. In this paper, we illustrate how wellbeing can be divided into objective and subjective aspects which can be measured quantitatively; our review of measures informs the development of a theoretical model linking wellbeing to policies which cities use to reduce greenhouse gas emissions. Finally, we discuss the extent to which the links proposed in the conceptual model are supported by the literature and how cities can assess wellbeing implications of policies.

  6. Greenhouse gas emissions from industrial activities

    International Nuclear Information System (INIS)

    Kinyanjui, L.N.

    1998-01-01

    This study considers greenhouse gas emissions stemming from industrial activities such as cement production; limestone use and lime production. The Intergovernmental Panel on Climate Change (IPCC) (1995a) methodology for industrial sector was applied for the three components selected. Limitations hindering the handling of other industrial process are listed as budgetary and time. Data sources and recommendations are listed

  7. Greenhouse gas and livestock emissions and climate change

    DEFF Research Database (Denmark)

    Caro, Dario

    2018-01-01

    The paper summarizes the current knowledge about the impact of livestock sector on climate change. The main sources of greenhouse gas (GHG) emissions from livestock are described and the contribution of livestock sector to the global GHG emissions is presented on the basis of the latest results...... obtained from the scientific research. The most recent mitigation strategies for reducing greenhouse gas emissions from livestock sector are also discussed. The paper aims to provide a general overview of an emergent environmental issue such as the impact of livestock sector on climate change. While...... the paper is easy to understand for non-expert readers, it may also be a relevant reference point for academic researchers and for policy makers aimed at achieving the sustainability of livestock/food sector....

  8. Landfilling of waste: accounting of greenhouse gases and global warming contributions

    DEFF Research Database (Denmark)

    Manfredi, Simone; Tonini, Davide; Christensen, Thomas Højlund

    2009-01-01

    Accounting of greenhouse gas (GHG) emissions from waste landfilling is summarized with the focus on processes and technical data for a number of different landfilling technologies: open dump (which was included as the worst-case-scenario), conventional landfills with flares and with energy recove...

  9. National action strategy on global warming

    International Nuclear Information System (INIS)

    1990-11-01

    A document prepared by a committee of Canadian environmental ministries proposes a strategic framework for a national action plan concerning global warming. The strategy would be carried out jointly by governments and all other sectors of the economy, taking into account the present state of scientific knowledge on global warming. Within this framework, the governments in cooperation with interested parties would take certain measures in their respective areas of competence. The main recommendations of the document include the following. The action strategy should comprise 3 elements: limiting emissions of greenhouse gases; forecasting climatic changes which Canada could undergo due to global warming and preparing for such changes; and improving scientific knowledge and the capacity to predict climatic changes. Limitations on this strategy should take into account such matters as the interaction of greenhouse gases with other pollutants, the importance of the international context, the need to adapt to new discoveries, and the importance of regional differences. Implementation of the strategy should incorporate widespread consultation of all affected sectors, sustained work on establishing international conventions and protocols on reducing greenhouse gas emissions, objectives and schedules for such reductions, and stepwise actions to control emissions in order to enable an adequate evaluation of the consequences and effectiveness of such measures. 10 figs., 2 tabs

  10. Net global warming potential and greenhouse gas intensity as affected by different water management strategies in Chinese double rice-cropping systems.

    Science.gov (United States)

    Wu, Xiaohong; Wang, Wei; Xie, Xiaoli; Yin, Chunmei; Hou, Haijun; Yan, Wende; Wang, Guangjun

    2018-01-15

    This study provides a complete account of global warming potential (GWP) and greenhouse gas intensity (GHGI) in relation to a long-term water management experiment in Chinese double-rice cropping systems. The three strategies of water management comprised continuous (year-round) flooding (CF), flooding during the rice season but with drainage during the midseason and harvest time (F-D-F), and irrigation only for flooding during transplanting and the tillering stage (F-RF). The CH 4 and N 2 O fluxes were measured with the static chamber method. Soil organic carbon (SOC) sequestration rates were estimated based on the changes in the carbon stocks during 1998-2014. Longer periods of soil flooding led to increased CH 4 emissions, reduced N 2 O emissions, and enhanced SOC sequestration. The net GWPs were 22,497, 8,895, and 1,646 kg CO 2 -equivalent ha -1 yr -1 for the CF, F-D-F, and F-RF, respectively. The annual rice grain yields were comparable between the F-D-F and CF, but were reduced significantly (by 13%) in the F-RF. The GHGIs were 2.07, 0.87, and 0.18 kg CO 2 -equivalent kg -1 grain yr -1 for the CF, F-D-F, and F-RF, respectively. These results suggest that F-D-F could be used to maintain the grain yields and simultaneously mitigate the climatic impact of double rice-cropping systems.

  11. Greenhouse Gas Mitigation Options Database and Tool - Data repository of GHG mitigation technologies.

    Science.gov (United States)

    Industry and electricity production facilities generate over 50 percent of greenhouse gas (GHG) emissions in the United States. There is a growing consensus among scientists that the primary cause of climate change is anthropogenic greenhouse gas (GHG) emissions. Reducing GHG emi...

  12. What are the health and greenhouse gas implications of travel patterns in different European settings?

    DEFF Research Database (Denmark)

    Woodcock, J.; Götschi, T.; Nielsen, Thomas Alexander Sick

    Modelling studies have indicated the potential for substitution of car use with walking and cycling to achieve both large health benefits and reductions in greenhouse gas emissions. There is considerable variation in walking, cycling, car and public transport use between different European settings....... However, there has been limited rigorous investigation of the impact of these differences on health and greenhouse gas emissions. In this paper we present modelled results on what would be the health and greenhouse gas implications if a setting with high levels of car use and low levels of cycling (urban......) and greenhouse gas modelling were conducted using ITHIM (Integrated Transport and Health Impact Modelling tool). The analysis suggests that differences in travel patterns are making an important contribution to population health but that lower transport related greenhouse gas emissions do not always coincide...

  13. Country-Level Life Cycle Assessment of Greenhouse Gas Emissions from Liquefied Natural Gas Trade for Electricity Generation.

    Science.gov (United States)

    Kasumu, Adebola S; Li, Vivian; Coleman, James W; Liendo, Jeanne; Jordaan, Sarah M

    2018-02-20

    In the determination of the net impact of liquefied natural gas (LNG) on greenhouse gas emissions, life cycle assessments (LCA) of electricity generation have yet to combine the effects of transport distances between exporting and importing countries, country-level infrastructure in importing countries, and the fuel sources displaced in importing countries. To address this, we conduct a LCA of electricity generated from LNG export from British Columbia, Canada with a three-step approach: (1) a review of viable electricity generation markets for LNG, (2) the development of results for greenhouse gas emissions that account for transport to importing nations as well as the infrastructure required for power generation and delivery, and (3) emissions displacement scenarios to test assumptions about what electricity is being displaced in the importing nation. Results show that while the ultimate magnitude of the greenhouse gas emissions associated with natural gas production systems is still unknown, life cycle greenhouse gas emissions depend on country-level infrastructure (specifically, the efficiency of the generation fleet, transmission and distribution losses and LNG ocean transport distances) as well as the assumptions on what is displaced in the domestic electricity generation mix. Exogenous events such as the Fukushima nuclear disaster have unanticipated effects on the emissions displacement results. We highlight national regulations, environmental policies, and multilateral agreements that could play a role in mitigating emissions.

  14. Assessing the greenhouse gas emissions from poultry fat biodiesel

    DEFF Research Database (Denmark)

    Jørgensen, Andreas; Bikker, Paul; Herrmann, Ivan Tengbjerg

    2012-01-01

    This article attempts to answer the question: What will most likely happen in terms of emitted greenhouse gases if the use of poultry fat for making biodiesel used in transportation is increased? Through a well-to-wheel assessment, several different possible scenarios are assessed, showing...... that under average conditions, the use of poultry fat biodiesel instead of diesel leads to a slight reduction (6%) in greenhouse gas emissions. The analysis shows that poultry fat is already used for different purposes and using poultry fat for biodiesel will therefore remove the poultry fat from its...... original use. This implies that even though the use of biodiesel is assumed to displace petrochemical diesel, the ‘original user’ of the poultry fat will have to find a substitute, whose production leads to a greenhouse gas emissions comparable to what is saved through driving on poultry fat biodiesel...

  15. Greenhouse Gas Emissions in the Netherlands 1990-2010. National Inventory Report 2012

    Energy Technology Data Exchange (ETDEWEB)

    Coenen, P.W.H.G.; Van der Hoek, K.W.; Te Molder, R.; Droege, R. [Netherlands Organisation for Applied Scientific Research TNO, P.O. Box 80015, NL-3508 TA Utrecht (Netherlands); Van der Maas, C.W.M.; Zijlema, P.J.; Van den Berghe, A.C.W.M. [NL Agency, P.O. Box 8242, NL-3503 RE Utrecht (Netherlands); Baas, K. [Statistics Netherlands CBS, P.O. Box 24500, NL-2490 HA Den Haag (Netherlands); Te Biesebeek, J.D.; Brandt, A.T. [Dutch Emission Authority, P.O. Box 91503, IPC 652, NL-2509 EC Den Haag (Netherlands); Geilenkirchen, G. [Netherlands Environmental Assessment Agency PBL, P.O. Box 303 NL-3720 AH Bilthoven (Netherlands); Montfoort, J.A.; Peek, C.J.; Vonk, J.; Van den Wyngaert, I. [Alterra Wageningen UR, P.O. Box 47 NL-6700 AA Wageningen (Netherlands)

    2012-03-15

    The total greenhouse gas emission from the Netherlands in 2010 increased by approximately 6% compared to the emission in 2009. This increase is mainly the result of increased fuel combustion in the energy sector and space heating. In 2010, total direct greenhouse gas emissions (excluding emissions from LULUCF - land use, land use change and forestry) in the Netherlands amounted to 210.1 Tg CO2 eq. This is approximately 1.5% below the emissions in the base year (213.3 Tg CO2 eq). This report documents the 2012 Netherlands' annual submission of its greenhouse gas emission inventory in accordance with the guidelines provided by the United Nations Framework Convention on Climate Change (UNFCCC), the Kyoto Protocol and the European Union's Greenhouse Gas Monitoring Mechanism. The report comprises explanations of observed trends in emissions; a description of an assessment of key sources and their uncertainty; documentation of methods, data sources and emission factors applied; and a description of the quality assurance system and the verification activities performed on the data.

  16. Greenhouse Gas Emissions in the Netherlands 1990-2009. National Inventory Report 2011

    Energy Technology Data Exchange (ETDEWEB)

    Coenen, P.W.H.G.; Van der Hoek, K.W.; Te Molder, R.; Droege, R. [Netherlands Organisation for Applied Scientific Research TNO, P.O. Box 80015, NL-3508 TA Utrecht (Netherlands); Van der Maas, C.W.M.; Zijlema, P.J.; Van den Berghe, A.C.W.M. [NL Agency, P.O. Box 8242, NL-3503 RE Utrecht (Netherlands); Baas, K. [Statistics Netherlands CBS, P.O. Box 24500, NL-2490 HA Den Haag (Netherlands); Te Biesebeek, J.D.; Brandt, A.T. [Dutch Emission Authority, P.O. Box 91503, IPC 652, NL-2509 EC Den Haag (Netherlands); Geilenkirchen, G. [Netherlands Environmental Assessment Agency PBL, P.O. Box 303 NL-3720 AH Bilthoven (Netherlands); Montfoort, J.A.; Peek, C.J.; Vonk, J.; Van den Wyngaert, I. [Alterra Wageningen UR, P.O. Box 47 NL-6700 AA Wageningen (Netherlands)

    2012-03-15

    The total greenhouse gas emission from the Netherlands in 2010 increased by approximately 6% compared to the emission in 2009. This increase is mainly the result of increased fuel combustion in the energy sector and space heating. In 2010, total direct greenhouse gas emissions (excluding emissions from LULUCF - land use, land use change and forestry) in the Netherlands amounted to 210.1 Tg CO2 eq. This is approximately 1.5% below the emissions in the base year (213.3 Tg CO2 eq). This report documents the 2012 Netherlands' annual submission of its greenhouse gas emission inventory in accordance with the guidelines provided by the United Nations Framework Convention on Climate Change (UNFCCC), the Kyoto Protocol and the European Union's Greenhouse Gas Monitoring Mechanism. The report comprises explanations of observed trends in emissions; a description of an assessment of key sources and their uncertainty; documentation of methods, data sources and emission factors applied; and a description of the quality assurance system and the verification activities performed on the data.

  17. Greenhouse Gas Emissions in the Netherlands 1990-2009. National Inventory Report 2011

    International Nuclear Information System (INIS)

    Van der Maas, C.W.M.; Coenen, P.W.H.G.; Van der Hoek, K.W.; Te Molder, R.; Droege, R.; Zijlema, P.J.; Van den Berghe, G.; Baas, K.; Te Biesebeek, J.D.; Brandt, A.T.; Geilenkirchen, G.; Peek, C.J.; Vonk, J.; Van den Wyngaert, I.

    2011-04-01

    The total greenhouse gas emission from the Netherlands in 2009 decreased by approximately 3% compared to the emission in 2008. This decrease is a result of the economic crisis, especially due to the decrease in the industrial production. In 2009, total direct greenhouse gas emissions (excluding emissions from LULUCF - land use, land use change and forestry) in the Netherlands amount to 198.9Tg CO2 eq. This is nearly 7 % below the emissions in the base year 1990 (213.2 Tg CO2 eq). This report documents the 2011 Netherlands' annual submission of its greenhouse gas emission inventory in accordance with the guidelines provided by the United Nations Framework Convention on Climate Change (UNFCCC), the Kyoto Protocol and the European Union's Greenhouse Gas Monitoring Mechanism. The report comprises explanations of observed trends in emissions; a description of an assessment of key sources and their uncertainty; documentation of methods, data sources and emission factors applied; and a description of the quality assurance system and the verification activities performed on the data.

  18. Greenhouse Gas Emissions in the Netherlands 1990-2009. National Inventory Report 2011

    Energy Technology Data Exchange (ETDEWEB)

    Coenen, P W.H.G.; Van der Hoek, K W; Te Molder, R; Droege, R [Netherlands Organisation for Applied Scientific Research TNO, P.O. Box 80015, NL-3508 TA Utrecht (Netherlands); Van der Maas, C W.M.; Zijlema, P J; Van den Berghe, A C.W.M. [NL Agency, P.O. Box 8242, NL-3503 RE Utrecht (Netherlands); Baas, K [Statistics Netherlands CBS, P.O. Box 24500, NL-2490 HA Den Haag (Netherlands); Te Biesebeek, J D; Brandt, A T [Dutch Emission Authority, P.O. Box 91503, IPC 652, NL-2509 EC Den Haag (Netherlands); Geilenkirchen, G [Netherlands Environmental Assessment Agency PBL, P.O. Box 303 NL-3720 AH Bilthoven (Netherlands); Montfoort, J A; Peek, C J; Vonk, J; Van den Wyngaert, I [Alterra Wageningen UR, P.O. Box 47 NL-6700 AA Wageningen (Netherlands)

    2012-03-15

    The total greenhouse gas emission from the Netherlands in 2010 increased by approximately 6% compared to the emission in 2009. This increase is mainly the result of increased fuel combustion in the energy sector and space heating. In 2010, total direct greenhouse gas emissions (excluding emissions from LULUCF - land use, land use change and forestry) in the Netherlands amounted to 210.1 Tg CO2 eq. This is approximately 1.5% below the emissions in the base year (213.3 Tg CO2 eq). This report documents the 2012 Netherlands' annual submission of its greenhouse gas emission inventory in accordance with the guidelines provided by the United Nations Framework Convention on Climate Change (UNFCCC), the Kyoto Protocol and the European Union's Greenhouse Gas Monitoring Mechanism. The report comprises explanations of observed trends in emissions; a description of an assessment of key sources and their uncertainty; documentation of methods, data sources and emission factors applied; and a description of the quality assurance system and the verification activities performed on the data.

  19. Greenhouse Gas Emissions in the Netherlands 1990-2010. National Inventory Report 2012

    Energy Technology Data Exchange (ETDEWEB)

    Coenen, P. W.H.G.; Van der Hoek, K. W.; Te Molder, R.; Droege, R. [Netherlands Organisation for Applied Scientific Research TNO, P.O. Box 80015, NL-3508 TA Utrecht (Netherlands); Van der Maas, C. W.M.; Zijlema, P. J.; Van den Berghe, A. C.W.M. [NL Agency, P.O. Box 8242, NL-3503 RE Utrecht (Netherlands); Baas, K. [Statistics Netherlands CBS, P.O. Box 24500, NL-2490 HA Den Haag (Netherlands); Te Biesebeek, J. D.; Brandt, A. T. [Dutch Emission Authority, P.O. Box 91503, IPC 652, NL-2509 EC Den Haag (Netherlands); Geilenkirchen, G. [Netherlands Environmental Assessment Agency PBL, P.O. Box 303 NL-3720 AH Bilthoven (Netherlands); Montfoort, J. A.; Peek, C. J.; Vonk, J.; Van den Wyngaert, I. [Alterra Wageningen UR, P.O. Box 47 NL-6700 AA Wageningen (Netherlands)

    2012-03-15

    The total greenhouse gas emission from the Netherlands in 2010 increased by approximately 6% compared to the emission in 2009. This increase is mainly the result of increased fuel combustion in the energy sector and space heating. In 2010, total direct greenhouse gas emissions (excluding emissions from LULUCF - land use, land use change and forestry) in the Netherlands amounted to 210.1 Tg CO2 eq. This is approximately 1.5% below the emissions in the base year (213.3 Tg CO2 eq). This report documents the 2012 Netherlands' annual submission of its greenhouse gas emission inventory in accordance with the guidelines provided by the United Nations Framework Convention on Climate Change (UNFCCC), the Kyoto Protocol and the European Union's Greenhouse Gas Monitoring Mechanism. The report comprises explanations of observed trends in emissions; a description of an assessment of key sources and their uncertainty; documentation of methods, data sources and emission factors applied; and a description of the quality assurance system and the verification activities performed on the data.

  20. 77 FR 14507 - Revision to Guidance, “Federal Greenhouse Gas Accounting and Reporting”

    Science.gov (United States)

    2012-03-12

    ... accounting procedures. CEQ provides this draft revision of the guidance for public review and comment to... COUNCIL ON ENVIRONMENTAL QUALITY Revision to Guidance, ``Federal Greenhouse Gas Accounting and..., ``Federal Greenhouse Gas Accounting and Reporting''. SUMMARY: On October 5, 2009, President Obama signed...

  1. Modeling Greenhouse Gas Emissions from Enteric Fermentation

    NARCIS (Netherlands)

    Kebreab, E.; Tedeschi, L.; Dijkstra, J.; Ellis, J.L.; Bannink, A.; France, J.

    2016-01-01

    Livestock directly contribute to greenhouse gas (GHG) emissions mainly through methane (CH4) and nitrous oxide (N2O) emissions. For cost and practicality reasons, quantification of GHG has been through development of various types of mathematical models. This chapter addresses the utility and

  2. Earthworms and the soil greenhouse gas balance

    NARCIS (Netherlands)

    Lubbers, I.M.

    2014-01-01

    Earthworms play an essential part in determining the greenhouse gas (GHG) balance of soils worldwide. Their activity affects both biotic and abiotic soil properties, which in turn influence soil GHG emissions, carbon (C) sequestration and plant growth. Yet, the balance of earthworms

  3. Why nuclear energy is essential to reduce anthropogenic greenhouse gas emission rates

    International Nuclear Information System (INIS)

    Alonso, A.; Brook, B.W.; Meneley, D.A.; Misak, J.; Blees, T.; Van Erp, J.B.

    2015-01-01

    Reduction of anthropogenic greenhouse gas emissions is advocated by the Intergovernmental Panel on Climate Change. To achieve this target, countries have opted for renewable energy sources, primarily wind and solar. These renewables will be unable to supply the needed large quantities of energy to run industrial societies sustainably, economically and reliably because they are inherently intermittent, depending on flexible backup power or on energy storage for delivery of base-load quantities of electrical energy. The backup power is derived in most cases from combustion of natural gas. Intermittent energy sources, if used in this way, do not meet the requirements of sustainability, nor are they economically viable because they require redundant, under- utilized investment in capacity both for generation and for transmission. Because methane is a potent greenhouse gas, the equivalent carbon dioxide value of methane may cause gas-fired stations to emit more greenhouse gas than coal-fired plants of the same power for currently reported leakage rates of the natural gas. Likewise, intermittent wind/solar photovoltaic systems backed up by gas-fu:ed power plants also release substantial amounts of carbon-dioxide- equivalent greenhouse gas to make such a combination environmentally unacceptable. In the long term, nuclear fission technology is the only known energy source that is capable of delivering the needed large quantities of energy safely, economically, reliably and in a sustainable way, both environmentally and as regards the available resource-base. (author)

  4. Why nuclear energy is essential to reduce anthropogenic greenhouse gas emission rates

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, A. [Univ. Politecnica de Madrid, Madrid (Spain); Brook, B.W. [Univ. of Tasmania, Hobart TAS (Australia); Meneley, D.A. [Candu Energy Inc., Mississauga, Ontario (Canada); Misak, J. [UJV-Rez, Prague (Czech Republic); Blees, T. [Science Council for Global Initiatives, Chicago, Illinois (United States); Van Erp, J.B. [Illinois Commission on Atomic Energy, Chicago, Illinois (United States)

    2015-12-15

    Reduction of anthropogenic greenhouse gas emissions is advocated by the Intergovernmental Panel on Climate Change. To achieve this target, countries have opted for renewable energy sources, primarily wind and solar. These renewables will be unable to supply the needed large quantities of energy to run industrial societies sustainably, economically and reliably because they are inherently intermittent, depending on flexible backup power or on energy storage for delivery of base-load quantities of electrical energy. The backup power is derived in most cases from combustion of natural gas. Intermittent energy sources, if used in this way, do not meet the requirements of sustainability, nor are they economically viable because they require redundant, under- utilized investment in capacity both for generation and for transmission. Because methane is a potent greenhouse gas, the equivalent carbon dioxide value of methane may cause gas-fired stations to emit more greenhouse gas than coal-fired plants of the same power for currently reported leakage rates of the natural gas. Likewise, intermittent wind/solar photovoltaic systems backed up by gas-fu:ed power plants also release substantial amounts of carbon-dioxide- equivalent greenhouse gas to make such a combination environmentally unacceptable. In the long term, nuclear fission technology is the only known energy source that is capable of delivering the needed large quantities of energy safely, economically, reliably and in a sustainable way, both environmentally and as regards the available resource-base. (author)

  5. Global Warming and the Greenhouse Effect: January 1986-January 1992. Quick Bibliography Series: QB 92-36.

    Science.gov (United States)

    MacLean, Jayne T.

    This bibliography contains 442 journal article, book, and audiovisual citations on global warming and the greenhouse effect entered into the National Agricultural Library's AGRICOLA database between January 1979 and March 1992. The bibliography contains an author and subject index as well as information on obtaining documents. (LZ)

  6. Mass Media and Global Warming: A Public Arenas Model of the Greenhouse Effect's Scientific Roots.

    Science.gov (United States)

    Neuzil, Mark

    1995-01-01

    Uses the Public Arenas model to examine the historical roots of the greenhouse effect issue as communicated in scientific literature from the early 1800s to modern times. Utilizes a constructivist approach to discuss several possible explanations for the rise and fall of global warming as a social problem in the scientific arena. (PA)

  7. Greenhouse gas emissions from food and garden waste composting

    OpenAIRE

    Ermolaev, Evgheni

    2015-01-01

    Composting is a robust waste treatment technology. Use of finished compost enables plant nutrient recycling, carbon sequestration, soil structure improvement and mineral fertiliser replacement. However, composting also emits greenhouse gases (GHG) such as methane (CH₄) and nitrous oxide (N₂O) with high global warming potential (GWP). This thesis analysed emissions of CH₄ and N₂O during composting as influenced by management and process conditions and examined how these emissions could be ...

  8. How to globally reduce the greenhouse gas emissions from sewage systems?

    International Nuclear Information System (INIS)

    Batz, S. de; Bonardet, P.; Trouve, J.P.

    2007-01-01

    A reliable and exhaustive measurement of the global greenhouse gas emissions from a given sewage plant must be performed prior to the implementation of any abatement measure. The method presented in this paper takes into consideration both the direct emissions but also the indirect ones generated by the plant activity and identified using a life cycle-type approach. Three examples of projects or realizations are presented in this paper to illustrate the different means of abatement of greenhouse gas emissions from a sewage plant in a global way. The first example concerns a project of abatement of the electricity consumption of a plant for sludges and fats digestion and biogas valorization. A 85% global abatement of CO 2 emissions is obtained thanks to the substitution of the aerobic digestion process by an anaerobic one. The second example presents an optimization of the greenhouse gas emissions of the municipal sewage plant of Valenton (Paris region) thanks to a valorization of sludges as fertilizers and fuels and to the recovery of the process heat. The last example concerns the Seine-aval sewage plant which gathers several projects of improvement: setting up of a second biogas turbine, redesign of the heat loop, use of river transport for a significant abatement of greenhouse gas emissions. (J.S.)

  9. Request for Correction 12003 Greenhouse Gas Emissions Reporting from the Petroleum and Natural Gas Industry

    Science.gov (United States)

    Request for Correction by the U.S. Chamber of Commerce for information in Greenhouse Gas Emissions Reporting from the Petroleum Gas Industry that regarding methane emissions, volatile organic compounds, and hazardous air pollutants.

  10. Natural gas industry and global warming

    International Nuclear Information System (INIS)

    Staropoli, R.; Darras, M.

    1997-01-01

    Natural gas has a very good potential compared to other fossil fuels as regard to global warming because of its high content of hydrogen, and its versatility in uses. To take full advantage of this potential, further development of gas designed boilers and furnaces, gas catalytic combustion, fuel cells are needed, but progresses in the recent years have been very promising. The natural gas industry' environmental potential is discussed. Regarding methane emission, progresses have been done is Western Europe on the distribution network, and some improvement are underway. It is however important to rationalize the effort by acting on the most emitting subsystem: this can be achieved by cooperation along the whole gas chain. (R.P.)

  11. Climate warming: what we can actually expect

    International Nuclear Information System (INIS)

    Delbecq, Denis; Lemarchand, Fabienne; Boucher, Olivier; Dessus, Benjamin; Laponche, Bernard; Le Treut, Herve

    2013-01-01

    As the next IPCC (Intergovernmental Panel on Climate Change) report is soon to be published, a paleo-climatologist answers few questions about issues related to climate change (recent climate events, slower temperature increase during the past ten years, lessons learned from the previous IPCC report, evolutions of models, remaining opportunities to limit temperature increase to 2 degrees). A second article comments climate modelling improvements (finer description of oceans, atmosphere and ice field, introduction of new mechanisms in IPCC models such as carbon cycle, vegetation evolution, aerosols and atmospheric chemistry, models relying on greenhouse gas emission principles and not on socioeconomic scenarios any longer). A third article outlines that Earth has never been so warm since 1850 and proposes some explanations about the fact that warming has slowed down during the last ten years. A fourth article discusses how greenhouse gas emissions can be reduced, notices that their accounting underestimates the short-term and medium-term impact of methane emission reduction, and stresses the importance of an increased attention to methane emissions

  12. Reducing greenhouse gas emissions from the Ontario automotive sector

    International Nuclear Information System (INIS)

    Anon.

    1995-11-01

    A variety of options to reduce greenhouse gas emissions from the automotive sector in Ontario over the next decade were discussed. Each option was assessed in terms of practicality and implications for implementation. I was concluded that improvements in fuel economy anticipated from advancing technology, with or without new mandated standards, will not be enough to offset the impact of growth in vehicle fleet size and kilometres driven. If the goal is to stabilize greenhouse gas emissions, other measures such as reducing the fleet size and vehicle kilometres travelled and accelerated vehicle retirement (scrappage) programs must be considered. Key constraints on expansion of the alternative fuel fleet were identified. These include: (1) limited availability of an adequate range of alternative fuel vehicles at competitive prices, (2) limited refuelling facility infrastructure in the case of natural gas, limited range and fuel storage capacity for natural gas; (3)current limited fuel ethanol production capacity, and (4) market perceptions of performance, reliability and safety. tabs

  13. Towards a Global Greenhouse Gas Information System (GHGIS)

    Science.gov (United States)

    Duren, Riley; Butler, James; Rotman, Doug; Miller, Charles; Decola, Phil; Sheffner, Edwin; Tucker, Compton; Mitchiner, John; Jonietz, Karl; Dimotakis, Paul

    2010-05-01

    Over the next few years, an increasing number of entities ranging from international, national, and regional governments, to businesses and private land-owners, are likely to become more involved in efforts to limit atmospheric concentrations of greenhouse gases. In such a world, geospatially resolved information about the location, amount, and rate of greenhouse gas (GHG) emissions will be needed, as well as the stocks and flows of all forms of carbon through terrestrial ecosystems and in the oceans. The ability to implement policies that limit GHG concentrations would be enhanced by a global, open, and transparent greenhouse gas information system (GHGIS). An operational and scientifically robust GHGIS would combine ground-based and space-based observations, carbon-cycle modeling, GHG inventories, meta-analysis, and an extensive data integration and distribution system, to provide information about sources, sinks, and fluxes of greenhouse gases at policy-relevant temporal and spatial scales. The GHGIS effort was initiated in 2008 as a grassroots inter-agency collaboration intended to rigorously identify the needs for such a system, assess the capabilities of current assets, and suggest priorities for future research and development. We will present a status of the GHGIS effort including our latest analysis and ideas for potential near-term pilot projects with potential relevance to European initiatives including the Global Monitoring for Environment and Security (GMES) and the Integrated Carbon Observing System (ICOS).

  14. 76 FR 57105 - Greenhouse Gas Emissions Standards and Fuel Efficiency Standards for Medium- and Heavy-Duty...

    Science.gov (United States)

    2011-09-15

    ... CFR Parts 523, 534, and 535 Greenhouse Gas Emissions Standards and Fuel Efficiency Standards for...-2010-0079; FRL-9455-1] RIN 2060-AP61; 2127-AK74 Greenhouse Gas Emissions Standards and Fuel Efficiency... Heavy-Duty National Program that will reduce greenhouse gas emissions and fuel consumption for on-road...

  15. 75 FR 81952 - Greenhouse Gas Emissions Standards and Fuel Efficiency Standards for Medium- and Heavy-Duty...

    Science.gov (United States)

    2010-12-29

    ...-HQ-OAR-2010-0162; FRL-9219-4; NHTSA 2010-0079] RIN 2060-AP61; RIN 2127-AK74 Greenhouse Gas Emissions... will increase fuel efficiency and reduce greenhouse gas emissions for on-road heavy-duty vehicles...-Duty National Program that will increase fuel efficiency and reduce greenhouse gas emissions for on...

  16. Implications of possible interpretations of 'greenhouse gas balance' in the Paris Agreement.

    Science.gov (United States)

    Fuglestvedt, J; Rogelj, J; Millar, R J; Allen, M; Boucher, O; Cain, M; Forster, P M; Kriegler, E; Shindell, D

    2018-05-13

    The main goal of the Paris Agreement as stated in Article 2 is 'holding the increase in the global average temperature to well below 2°C above pre-industrial levels and pursuing efforts to limit the temperature increase to 1.5°C'. Article 4 points to this long-term goal and the need to achieve 'balance between anthropogenic emissions by sources and removals by sinks of greenhouse gases'. This statement on 'greenhouse gas balance' is subject to interpretation, and clarifications are needed to make it operational for national and international climate policies. We study possible interpretations from a scientific perspective and analyse their climatic implications. We clarify how the implications for individual gases depend on the metrics used to relate them. We show that the way in which balance is interpreted, achieved and maintained influences temperature outcomes. Achieving and maintaining net-zero CO 2 -equivalent emissions conventionally calculated using GWP 100 (100-year global warming potential) and including substantial positive contributions from short-lived climate-forcing agents such as methane would result in a sustained decline in global temperature. A modified approach to the use of GWP 100 (that equates constant emissions of short-lived climate forcers with zero sustained emission of CO 2 ) results in global temperatures remaining approximately constant once net-zero CO 2 -equivalent emissions are achieved and maintained. Our paper provides policymakers with an overview of issues and choices that are important to determine which approach is most appropriate in the context of the Paris Agreement.This article is part of the theme issue 'The Paris Agreement: understanding the physical and social challenges for a warming world of 1.5°C above pre-industrial levels'. © 2018 The Authors.

  17. Implications of possible interpretations of `greenhouse gas balance' in the Paris Agreement

    Science.gov (United States)

    Fuglestvedt, J.; Rogelj, J.; Millar, R. J.; Allen, M.; Boucher, O.; Cain, M.; Forster, P. M.; Kriegler, E.; Shindell, D.

    2018-05-01

    The main goal of the Paris Agreement as stated in Article 2 is `holding the increase in the global average temperature to well below 2°C above pre-industrial levels and pursuing efforts to limit the temperature increase to 1.5°C'. Article 4 points to this long-term goal and the need to achieve `balance between anthropogenic emissions by sources and removals by sinks of greenhouse gases'. This statement on `greenhouse gas balance' is subject to interpretation, and clarifications are needed to make it operational for national and international climate policies. We study possible interpretations from a scientific perspective and analyse their climatic implications. We clarify how the implications for individual gases depend on the metrics used to relate them. We show that the way in which balance is interpreted, achieved and maintained influences temperature outcomes. Achieving and maintaining net-zero CO2-equivalent emissions conventionally calculated using GWP100 (100-year global warming potential) and including substantial positive contributions from short-lived climate-forcing agents such as methane would result in a sustained decline in global temperature. A modified approach to the use of GWP100 (that equates constant emissions of short-lived climate forcers with zero sustained emission of CO2) results in global temperatures remaining approximately constant once net-zero CO2-equivalent emissions are achieved and maintained. Our paper provides policymakers with an overview of issues and choices that are important to determine which approach is most appropriate in the context of the Paris Agreement. This article is part of the theme issue `The Paris Agreement: understanding the physical and social challenges for a warming world of 1.5°C above pre-industrial levels'.

  18. Anesthetic gases and global warming: Potentials, prevention and future of anesthesia.

    Science.gov (United States)

    Gadani, Hina; Vyas, Arun

    2011-01-01

    Global warming refers to an average increase in the earth's temperature, which in turn causes changes in climate. A warmer earth may lead to changes in rainfall patterns, a rise in sea level, and a wide range of impacts on plants, wildlife, and humans. Greenhouse gases make the earth warmer by trapping energy inside the atmosphere. Greenhouse gases are any gas that absorbs infrared radiation in the atmosphere and include: water vapor, carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), halogenated fluorocarbons (HCFCs), ozone (O3), perfluorinated carbons (PFCs), and hydrofluorocarbons (HFCs). Hazardous chemicals enter the air we breathe as a result of dozens of activities carried out during a typical day at a healthcare facility like processing lab samples, burning fossil fuels etc. We sometimes forget that anesthetic agents are also greenhouse gases (GHGs). Anesthetic agents used today are volatile halogenated ethers and the common carrier gas nitrous oxide known to be aggressive GHGs. With less than 5% of the total delivered halogenated anesthetic being metabolized by the patient, the vast majority of the anesthetic is routinely vented to the atmosphere through the operating room scavenging system. The global warming potential (GWP) of a halogenated anesthetic is up to 2,000 times greater than CO2. Global warming potentials are used to compare the strength of different GHGs to trap heat in the atmosphere relative to that of CO2. Here we discuss about the GWP of anesthetic gases, preventive measures to decrease the global warming effects of anesthetic gases and Xenon, a newer anesthetic gas for the future of anesthesia.

  19. A Comparative Study on the Impact of Global Warming of Applying Low Carbon Factor Concrete Products

    OpenAIRE

    Su-Hyun Cho; Chang-U Chae

    2015-01-01

    Environmental impact assessment techniques have been developed as a result of the worldwide efforts to reduce the environmental impact of global warming. By using the quantification method in the construction industry, it is now possible to manage the greenhouse gas is to systematically evaluate the impact on the environment over the entire construction process. In particular, the proportion of greenhouse gas emissions at the production stage of construction material occu...

  20. The EU Greenhouse Gas Emissions Trading Scheme

    NARCIS (Netherlands)

    Woerdman, Edwin; Woerdman, Edwin; Roggenkamp, Martha; Holwerda, Marijn

    2015-01-01

    This chapter explains how greenhouse gas emissions trading works, provides the essentials of the Directive on the European Union Emissions Trading Scheme (EU ETS) and summarizes the main implementation problems of the EU ETS. In addition, a law and economics approach is used to discuss the dilemmas

  1. Australia’s Consumption-based Greenhouse Gas Emissions

    DEFF Research Database (Denmark)

    Levitt, Clinton J.; Saaby, Morten; Sørensen, Anders

    2017-01-01

    We use data from the World Input-Output Database in a multiregional input–output model to analyse Australian consumption-based greenhouse gas emissions for the years 1995 to 2009. We find that the emission content of Australian macroeconomic activity has changed over the 15-year period. Consumption...

  2. Cogeneration, renewables and reducing greenhouse gas emissions

    International Nuclear Information System (INIS)

    Naughten, B.; Dlugosz, J.

    1996-01-01

    The MENSA model is used to assess the potential role of cogeneration and selected new renewable energy technologies in cost-effectively reducing Greenhouse gas emissions. The model framework for analyzing these issues is introduced, together with an account of relevant aspects of its application. In the discussion of selected new renewable energy technologies, it is shown how microeconomic reform may encourage these technologies and fuels, and thereby reduce sector wide carbon dioxide emissions. Policy scenarios modelled are described and the simulation results are presented. Certain interventions in microeconomic reform may result in economic benefits while also reducing emissions: no regrets' opportunities. Some renewable energy technologies are also shown to be cost-effective in the event that targets and timetables for reducing Greenhouse gas emissions are imposed. However, ad hoc interventions in support of particular renewables options are unlikely to be consistent with a least cost approach to achieving environmental objectives. (author). 5 tabs., 5 figs., 21 refs

  3. Potential for greenhouse gas emission reductions using surplus electricity in hydrogen, methane and methanol production via electrolysis

    International Nuclear Information System (INIS)

    Uusitalo, Ville; Väisänen, Sanni; Inkeri, Eero; Soukka, Risto

    2017-01-01

    Highlights: • Greenhouse gas emission reductions using power-to-x processes are studied using life cycle assessment. • Surplus electricity use led to greenhouse gas emission reductions in all studied cases. • Highest reductions can be achieved by using hydrogen to replace fossil based hydrogen. • High reductions are also achieved when fossil transportation fuels are replaced. - Abstract: Using a life cycle perspective, potentials for greenhouse gas emission reductions using various power-to-x processes via electrolysis have been compared. Because of increasing renewable electricity production, occasionally surplus renewable electricity is produced, which leads to situations where the price of electricity approach zero. This surplus electricity can be used in hydrogen, methane and methanol production via electrolysis and other additional processes. Life cycle assessments have been utilized to compare these options in terms of greenhouse gas emission reductions. All of the power-to-x options studied lead to greenhouse gas emission reductions as compared to conventional production processes based on fossil fuels. The highest greenhouse gas emission reductions can be gained when hydrogen from steam reforming is replaced by hydrogen from the power-to-x process. High greenhouse gas emission reductions can also be achieved when power-to-x products are utilized as an energy source for transportation, replacing fossil transportation fuels. A third option with high greenhouse gas emission reduction potential is methane production, storing and electricity conversion in gas engines during peak consumption hours. It is concluded that the power-to-x processes provide a good potential solution for reducing greenhouse gas emissions in various sectors.

  4. Estimating Policy-Driven Greenhouse Gas Emissions Trajectories in California: The California Greenhouse Gas Inventory Spreadsheet (GHGIS) Model

    Energy Technology Data Exchange (ETDEWEB)

    Greenblatt, Jeffery B.

    2013-10-10

    A California Greenhouse Gas Inventory Spreadsheet (GHGIS) model was developed to explore the impact of combinations of state policies on state greenhouse gas (GHG) and regional criteria pollutant emissions. The model included representations of all GHG- emitting sectors of the California economy (including those outside the energy sector, such as high global warming potential gases, waste treatment, agriculture and forestry) in varying degrees of detail, and was carefully calibrated using available data and projections from multiple state agencies and other sources. Starting from basic drivers such as population, numbers of households, gross state product, numbers of vehicles, etc., the model calculated energy demands by type (various types of liquid and gaseous hydrocarbon fuels, electricity and hydrogen), and finally calculated emissions of GHGs and three criteria pollutants: reactive organic gases (ROG), nitrogen oxides (NOx), and fine (2.5 ?m) particulate matter (PM2.5). Calculations were generally statewide, but in some sectors, criteria pollutants were also calculated for two regional air basins: the South Coast Air Basin (SCAB) and the San Joaquin Valley (SJV). Three scenarios were developed that attempt to model: (1) all committed policies, (2) additional, uncommitted policy targets and (3) potential technology and market futures. Each scenario received extensive input from state energy planning agencies, in particular the California Air Resources Board. Results indicate that all three scenarios are able to meet the 2020 statewide GHG targets, and by 2030, statewide GHG emissions range from between 208 and 396 MtCO2/yr. However, none of the scenarios are able to meet the 2050 GHG target of 85 MtCO2/yr, with emissions ranging from 188 to 444 MtCO2/yr, so additional policies will need to be developed for California to meet this stringent future target. A full sensitivity study of major scenario assumptions was also performed. In terms of criteria pollutants

  5. 40 CFR Table A-1 to Subpart A of... - Global Warming Potentials

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Global Warming Potentials A Table A-1 to Subpart A of Part 98 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING General Provision Pt. 98, Subpt. A, Table A-1 Table A-1 to Subpart A of Part 98—Global Warming...

  6. The importance of grid integration for achievable greenhouse gas emissions reductions from alternative vehicle technologies

    International Nuclear Information System (INIS)

    Tarroja, Brian; Shaffer, Brendan; Samuelsen, Scott

    2015-01-01

    Alternative vehicles must appropriately interface with the electric grid and renewable generation to contribute to decarbonization. This study investigates the impact of infrastructure configurations and management strategies on the vehicle–grid interface and vehicle greenhouse gas reduction potential with regard to California's Executive Order S-21-09 goal. Considered are battery electric vehicles, gasoline-fueled plug-in hybrid electric vehicles, hydrogen-fueled fuel cell vehicles, and plug-in hybrid fuel cell vehicles. Temporally resolved models of the electric grid, electric vehicle charging, hydrogen infrastructure, and vehicle powertrain simulations are integrated. For plug-in vehicles, consumer travel patterns can limit the greenhouse gas reductions without smart charging or energy storage. For fuel cell vehicles, the fuel production mix must be optimized for minimal greenhouse gas emissions. The plug-in hybrid fuel cell vehicle has the largest potential for emissions reduction due to smaller battery and fuel cells keeping efficiencies higher and meeting 86% of miles on electric travel keeping the hydrogen demand low. Energy storage is required to meet Executive Order S-21-09 goals in all cases. Meeting the goal requires renewable capacities of 205 GW for plug-in hybrid fuel cell vehicles and battery electric vehicle 100s, 255 GW for battery electric vehicle 200s, and 325 GW for fuel cell vehicles. - Highlights: • Consumer travel patterns limit greenhouse gas reductions with immediate charging. • Smart charging or energy storage are required for large greenhouse gas reductions. • Fuel cells as a plug-in vehicle range extender provided the most greenhouse gas reductions. • Energy storage is required to meet greenhouse gas goals regardless of vehicle type. • Smart charging reduces the required energy storage size for a given greenhouse gas goal

  7. NF ISO 14064-1 Greenhouse gases. Part 1: specifications and guidance at the organization level for quantification and reporting of greenhouse gas emissions and removals

    International Nuclear Information System (INIS)

    2005-01-01

    This document describes methodology for quantification, monitoring of greenhouse gas as well as for drafting of inventory report for organisms. Thus it suggests a method for inventory declarations for organism greenhouse gas and provides support for the monitoring and the management of their emission. It provides the terms and definitions, the principles, the greenhouse gases inventory design, development and components, the greenhouse inventory quality management, the reporting of greenhouse gases and the organization role in verification activities. (A.L.B.)

  8. The role of nuclear power in the reduction of greenhouse gas emissions

    International Nuclear Information System (INIS)

    Baratta, A.J.

    2010-01-01

    Nuclear energy is a low greenhouse gas emitter and is capable of providing large amounts of power using proven technology. In the immediate future, it can contribute to greenhouse gas reduction but only on a modest scale, replacing a portion of the electricity produced by coal fired power plants. While it has the potential to do more, there are significant resource issues that must be addressed if nuclear power is to replace coal or natural gas as a source of electricity

  9. NWT greenhouse gas strategy 2007-2011

    International Nuclear Information System (INIS)

    2007-03-01

    In response to concerns about climate change, the Government of the Northwest Territories (GNWT) is committed to working with federal, provincial and territorial governments to develop an equitable approach to Canada's international commitment to reduce national emissions to 6 per cent below 1990 levels by the year 2012. In 2001, the GNWT released its greenhouse gas strategy, which was subsequently revised after a review in 2005. This report discussed the GNWT's greenhouse gas strategy. It provided background information on global climate change and impacts in the Northwest Territories (NWT), NWT emission challenges, as well as the 2001 strategy and its renewal. The report also presented the strategy framework with reference to goals and objectives; principles; emissions inventory; forest carbon sinks and sources; and targets and measures. The report also presented the action plan for the community and residential sector; commercial and industrial sector; government sector; cross-cutting; and a summary of actions. Some of these 39 actions include energy conservation initiatives by the NWT Housing Corporation; community woodlot planning; community energy planning; commercial energy efficiency audits; and energy efficiency measures in industry. 2 tabs, 3 figs., 2 appendices

  10. Environmental policy and the greenhouse effect

    International Nuclear Information System (INIS)

    Weenink, J.B.

    1993-01-01

    Emissions, resulting from human activity, are substantially increasing the atmospheric concentration of greenhouse gases. This is causing an additional average warming of the Earth's surface. This article presents an overview of recent developments in the international discussion on climate change, taking into account the work of other organizations such as the Intergovernmental Panel on Climate Change (IPCC). The long term and global character of the climate change problem requires an international long term strategy based on internationally agreed principles such as sustainable development and the precautionary principle. Research is needed to further develop risk assessment and environmental quality standards, from which emission targets can be derived. As a first step, governments of many industrialized countries have already set provisional national CO 2 emission targets, aimed at stabilization at present levels by the year 2000 and in some cases, reductions thereafter. Under the auspices of United Nations, negotiations have begun on an international framework climate convention and associated agreements, on, for example, greenhouse gas emissions, forestry and funding mechanisms. Obligations imposed on individual nations may be expected to reflect their responsibility for greenhouse warming; this paper presents some views on the equity of burden sharing. 17 refs., 5 tabs

  11. Equity effects of economic instruments for greenhouse gas abatement

    International Nuclear Information System (INIS)

    Harrison, D. Jr.

    1994-01-01

    This paper discusses the equity effects of using economic instruments--such as a carbon tax or carbon emissions trading program--to regulate greenhouse gas emissions. Determining these equity effects is more complicated than assessing overall costs and benefits, although some of the same issues arise. Among the key issues are the following: (1) benchmark for evaluating impacts of economic instruments (status quo or regulatory program that achieves the same emission reductions); (2) use of any government revenues collected, which are transfers overall but affect gains and losses; (3) time period (long-term or transitional impacts); and (4) groupings (income groups, sectors or regions). Empirical studies suggest that a national tax is regressive in the US but may be less so in other countries. The equity impacts of an international carbon tax or emissions trading program differ greatly depending upon the specific elements. The paper considers options to compensate or mitigate adverse effects to income groups, sectors, or regions of the world. Although impossible to avoid all losses to every group, it would be possible to avoid major equity effects if carbon taxes or carbon trading programs were used to control global warming

  12. Priority setting of strategies and mechanisms for limiting global warming

    International Nuclear Information System (INIS)

    Lewis, S.J.L.

    1994-01-01

    Scientific communities have reached a consensus that increases of greenhouse gas emission will result in climatic warming and sea level rises despite existing uncertainties. Major uncertainties include the sensitivities of climate changes in terms of timing, magnitude, and scales of regional changes. Socioeconomic uncertainties encompass population and economic growth, changes in technology, future reliance on fossil fuel, and policies compiled to stabilize the global warming. Moreover, increase in world population coupled with limited resources will increase the vulnerability of ecosystems and social systems. Global warming has become an international concern since the destinies of all nations are closely interwoven by this issue and how nations deal with it. Appropriate strategies and mechanisms are need to slow down the buildup of CO 2 and other greenhouse gases. Questionnaires were sent to 150 experts in 30 countries to evaluate such strategies and mechanisms for dealing with global warming, from both the domestic and international perspectives. This paper will focus primarily on strategy selection

  13. Low Power Greenhouse Gas Sensors for Unmanned Aerial Vehicles

    Directory of Open Access Journals (Sweden)

    David J. Lary

    2012-05-01

    Full Text Available We demonstrate compact, low power, lightweight laser-based sensors for measuring trace gas species in the atmosphere designed specifically for electronic unmanned aerial vehicle (UAV platforms. The sensors utilize non-intrusive optical sensing techniques to measure atmospheric greenhouse gas concentrations with unprecedented vertical and horizontal resolution (~1 m within the planetary boundary layer. The sensors are developed to measure greenhouse gas species including carbon dioxide, water vapor and methane in the atmosphere. Key innovations are the coupling of very low power vertical cavity surface emitting lasers (VCSELs to low power drive electronics and sensitive multi-harmonic wavelength modulation spectroscopic techniques. The overall mass of each sensor is between 1–2 kg including batteries and each one consumes less than 2 W of electrical power. In the initial field testing, the sensors flew successfully onboard a T-Rex Align 700E robotic helicopter and showed a precision of 1% or less for all three trace gas species. The sensors are battery operated and capable of fully automated operation for long periods of time in diverse sensing environments. Laser-based trace gas sensors for UAVs allow for high spatial mapping of local greenhouse gas concentrations in the atmospheric boundary layer where land/atmosphere fluxes occur. The high-precision sensors, coupled to the ease-of-deployment and cost effectiveness of UAVs, provide unprecedented measurement capabilities that are not possible with existing satellite-based and suborbital aircraft platforms.

  14. A Hiatus of the Greenhouse Effect

    Science.gov (United States)

    Song, Jinjie; Wang, Yuan; Tang, Jianping

    2016-01-01

    The rate at which the global average surface temperature is increasing has slowed down since the end of the last century. This study investigates whether this warming hiatus results from a change in the well-known greenhouse effect. Using long-term, reliable, and consistent observational data from the Earth’s surface and the top of the atmosphere (TOA), two monthly gridded atmospheric and surface greenhouse effect parameters (Ga and Gs) are estimated to represent the radiative warming effects of the atmosphere and the surface in the infrared range from 1979 to 2014. The atmospheric and surface greenhouse effect over the tropical monsoon-prone regions is found to contribute substantially to the global total. Furthermore, the downward tendency of cloud activity leads to a greenhouse effect hiatus after the early 1990 s, prior to the warming pause. Additionally, this pause in the greenhouse effect is mostly caused by the high number of La Niña events between 1991 and 2014. A strong La Niña indicates suppressed convection in the tropical central Pacific that reduces atmospheric water vapor content and cloud volume. This significantly weakened regional greenhouse effect offsets the enhanced warming influence in other places and decelerates the rising global greenhouse effect. This work suggests that the greenhouse effect hiatus can be served as an additional factor to cause the recent global warming slowdown. PMID:27616203

  15. A Hiatus of the Greenhouse Effect.

    Science.gov (United States)

    Song, Jinjie; Wang, Yuan; Tang, Jianping

    2016-09-12

    The rate at which the global average surface temperature is increasing has slowed down since the end of the last century. This study investigates whether this warming hiatus results from a change in the well-known greenhouse effect. Using long-term, reliable, and consistent observational data from the Earth's surface and the top of the atmosphere (TOA), two monthly gridded atmospheric and surface greenhouse effect parameters (Ga and Gs) are estimated to represent the radiative warming effects of the atmosphere and the surface in the infrared range from 1979 to 2014. The atmospheric and surface greenhouse effect over the tropical monsoon-prone regions is found to contribute substantially to the global total. Furthermore, the downward tendency of cloud activity leads to a greenhouse effect hiatus after the early 1990 s, prior to the warming pause. Additionally, this pause in the greenhouse effect is mostly caused by the high number of La Niña events between 1991 and 2014. A strong La Niña indicates suppressed convection in the tropical central Pacific that reduces atmospheric water vapor content and cloud volume. This significantly weakened regional greenhouse effect offsets the enhanced warming influence in other places and decelerates the rising global greenhouse effect. This work suggests that the greenhouse effect hiatus can be served as an additional factor to cause the recent global warming slowdown.

  16. A Hiatus of the Greenhouse Effect

    Science.gov (United States)

    Song, Jinjie; Wang, Yuan; Tang, Jianping

    2016-09-01

    The rate at which the global average surface temperature is increasing has slowed down since the end of the last century. This study investigates whether this warming hiatus results from a change in the well-known greenhouse effect. Using long-term, reliable, and consistent observational data from the Earth’s surface and the top of the atmosphere (TOA), two monthly gridded atmospheric and surface greenhouse effect parameters (Ga and Gs) are estimated to represent the radiative warming effects of the atmosphere and the surface in the infrared range from 1979 to 2014. The atmospheric and surface greenhouse effect over the tropical monsoon-prone regions is found to contribute substantially to the global total. Furthermore, the downward tendency of cloud activity leads to a greenhouse effect hiatus after the early 1990 s, prior to the warming pause. Additionally, this pause in the greenhouse effect is mostly caused by the high number of La Niña events between 1991 and 2014. A strong La Niña indicates suppressed convection in the tropical central Pacific that reduces atmospheric water vapor content and cloud volume. This significantly weakened regional greenhouse effect offsets the enhanced warming influence in other places and decelerates the rising global greenhouse effect. This work suggests that the greenhouse effect hiatus can be served as an additional factor to cause the recent global warming slowdown.

  17. Assessment of urgent impacts of greenhouse gas emissions—the climate tipping potential (CTP)

    DEFF Research Database (Denmark)

    Jørgensen, Susanne Vedel; Hauschild, Michael Zwicky; Nielsen, Per H.

    2014-01-01

    The impact of anthropogenic greenhouse gas (GHG) emissions on climate change receives much focus today. This impact is however often considered only in terms of global warming potential (GWP), which does not take into account the need for staying below climatic target levels, in order to avoid...... passing critical climate tipping points. Some suggestions to include a target level in climate change impact assessment have been made, but with the consequence of disregarding impacts beyond that target level. The aim of this paper is to introduce the climate tipping impact category, which represents...... as on the chosen climatic target level and background scenario for atmospheric GHG concentration development. In order to enable direct application in life cycle assessment (LCA), CTP characterisation factors are presented for the three main anthropogenic GHGs, CO2, CH4 and N2O.The CTP metric distinguishes...

  18. Joint implementation: Biodiversity and greenhouse gas offsets

    Science.gov (United States)

    Cutright, Noel J.

    1996-11-01

    One of the most pressing environmental issues today is the possibility that projected increases in global emissions of greenhouse gases from increased deforestation, development, and fossil-fuel combustion could significantly alter global climate patterns. Under the terms of the United Nations Framework Convention on Climate Change, signed in Rio de Janeiro during the June 1992 Earth Summit, the United States and other industrialized countries committed to balancing greenhouse gas emissions at 1990 levels in the year 2000. Included in the treaty is a provision titled “Joint Implementation,” whereby industrialized countries assist developing countries in jointly modifying long-term emission trends, either through emission reductions or by protecting and enhancing greenhouse gas sinks (carbon sequestration). The US Climate Action Plan, signed by President Clinton in 1993, calls for voluntary climate change mitigation measures by various sectors, and the action plan included a new program, the US Initiative on Joint Implementation. Wisconsin Electric decided to invest in a Jl project because its concept encourages creative, cost-effective solutions to environmental problems through partnering, international cooperation, and innovation. The project chosen, a forest preservation and management effort in Belize, will sequester more than five million tons of carbon dioxide over a 40-year period, will become economically selfsustaining after ten years, and will have substantial biodiversity benefits.

  19. Greenhouse Gas Emissions in the Netherlands 1990-2011. National Inventory Report 2013

    Energy Technology Data Exchange (ETDEWEB)

    Coenen, P. W.H.G.; Droege, R. [Netherlands Organisation for Applied Scientific Research TNO, P.O. Box 80015, NL-3508 TA Utrecht (Netherlands); Zijlema, P. J. [NL Agency, P.O. Box 8242, NL-3503 RE Utrecht (Netherlands); Arets, E. J.M.M. [Alterra Wageningen UR, P.O. Box 47 NL-6700 AA Wageningen (Netherlands); Baas, K. [Statistics Netherlands CBS, P.O. Box 24500, NL-2490 HA Den Haag (Netherlands); Van den Berghe, A. C.W.M. [Rijkswaterstaat, P.O. Box 8242, NL-3503 RE Utrecht (Netherlands); Brandt, A. T. [Dutch Emissions Authority NEa, P.O. Box 91503, NL-2509 EC Den Haag (Netherlands); Geilenkirchen, G. [PBL Netherlands Environmental Assessment Agency, P.O. Box 303 NL-3720 AH Bilthoven (Netherlands); Van der Maas, C. W.M.; Te Biesebeek, J. D.; Van der Hoek, K. W.; Te Molder, R.; Montfoort, J. A.; Peek, C. J.; Vonk, J. [National Institute of Public Health and Environmental Protection RIVM, Bilthoven (Netherlands)

    2013-04-15

    Total greenhouse gas emissions from The Netherlands in 2011 decreased by approximately 7 per cent compared with 2010 emissions. This decrease is mainly the result of decreased fuel combustion in the Energy sector (less electricity production) and in the petrochemical industry. Fuel use for space heating decreased due to the mild winter compared with the very cold 2010 winter. In 2011, total direct greenhouse gas emissions (excluding emissions from LULUCF (land use, land use change and forestry) in The Netherlands amounted to 194.4 Tg CO2 eq. This is approximately 9 per cent below the emissions in the base year 2 (213.2 Tg CO2 eq). This report documents the Netherlands' 2012 annual submission of its greenhouse gas emissions inventory in accordance with the guidelines provided by the United Nations Framework Convention on Climate Change (UNFCCC), the Kyoto Protocol and the European Union's Greenhouse Gas Monitoring Mechanism. The report comprises explanations of observed trends in emissions; a description of an assessment of key sources and their uncertainty; documentation of methods, data sources and emission factors applied; and a description of the quality assurance system and the verification activities performed on the data.

  20. Greenhouse Gas Emissions in the Netherlands 1990-2011. National Inventory Report 2013

    Energy Technology Data Exchange (ETDEWEB)

    Coenen, P.W.H.G.; Droege, R. [Netherlands Organisation for Applied Scientific Research TNO, P.O. Box 80015, NL-3508 TA Utrecht (Netherlands); Zijlema, P.J. [NL Agency, P.O. Box 8242, NL-3503 RE Utrecht (Netherlands); Arets, E.J.M.M. [Alterra Wageningen UR, P.O. Box 47 NL-6700 AA Wageningen (Netherlands); Baas, K. [Statistics Netherlands CBS, P.O. Box 24500, NL-2490 HA Den Haag (Netherlands); Van den Berghe, A.C.W.M. [Rijkswaterstaat, P.O. Box 8242, NL-3503 RE Utrecht (Netherlands); Brandt, A.T. [Dutch Emissions Authority NEa, P.O. Box 91503, NL-2509 EC Den Haag (Netherlands); Geilenkirchen, G. [PBL Netherlands Environmental Assessment Agency, P.O. Box 303 NL-3720 AH Bilthoven (Netherlands); Van der Maas, C.W.M.; Te Biesebeek, J.D.; Van der Hoek, K.W.; Te Molder, R.; Montfoort, J.A.; Peek, C.J.; Vonk, J. [National Institute of Public Health and Environmental Protection RIVM, Bilthoven (Netherlands)

    2013-04-15

    Total greenhouse gas emissions from The Netherlands in 2011 decreased by approximately 7 per cent compared with 2010 emissions. This decrease is mainly the result of decreased fuel combustion in the Energy sector (less electricity production) and in the petrochemical industry. Fuel use for space heating decreased due to the mild winter compared with the very cold 2010 winter. In 2011, total direct greenhouse gas emissions (excluding emissions from LULUCF (land use, land use change and forestry) in The Netherlands amounted to 194.4 Tg CO2 eq. This is approximately 9 per cent below the emissions in the base year 2 (213.2 Tg CO2 eq). This report documents the Netherlands' 2012 annual submission of its greenhouse gas emissions inventory in accordance with the guidelines provided by the United Nations Framework Convention on Climate Change (UNFCCC), the Kyoto Protocol and the European Union's Greenhouse Gas Monitoring Mechanism. The report comprises explanations of observed trends in emissions; a description of an assessment of key sources and their uncertainty; documentation of methods, data sources and emission factors applied; and a description of the quality assurance system and the verification activities performed on the data.

  1. Proceedings of PEIA Forum 2007 : adapting and applying California's greenhouse gas strategies in Canada

    International Nuclear Information System (INIS)

    2007-01-01

    The key challenge in addressing climate change lies in identifying and implementing cost-effective measures to reduce greenhouse gas (GHG) emissions. The purpose of this forum was to stimulate action for reducing GHGs in British Columbia, the western provinces and Canada. The successes realized in California which are adaptable in BC and Canada were highlighted. In September 2006, California demonstrated leadership in taking determined action on climate change, with its signing of the California Global Warming Solutions Act. This landmark legislation calls for GHG reductions to 1990 levels by 2020, and 80 per cent below 1990 levels by 2050. The BC Energy plan calls for an aggressive target to reduce GHG emissions to 33 per cent below current levels by 2020, which will place emissions 10 per cent below 1990 levels; net zero GHG emissions from all electric power plants by 2016; acquiring 50 per cent of BC Hydro's new resource needs through conservation by 2020; ensuring electricity self-sufficiency by 2016; and, establishing a standing offer for clean electricity projects up to 10 megawatts. In May 2007, the province of British Columbia demonstrated a commitment to follow California's lead in GHG control, and to collaborate on projects such as the Hydrogen Highway. The actions are intended to make a significant contribution to the control of energy and greenhouse gas emissions in British Columbia and Canada. The conference featured 6 presentations, of which 2 have been catalogued separately for inclusion in this database. tabs., figs

  2. Life Cycle Greenhouse Gas Emissions from Electricity Generation: A Comparative Analysis of Australian Energy Sources

    Directory of Open Access Journals (Sweden)

    Robert G. Hynes

    2012-03-01

    Full Text Available Electricity generation is one of the major contributors to global greenhouse gas emissions. Transitioning the World’s energy economy to a lower carbon future will require significant investment in a variety of cleaner technologies, including renewables and nuclear power. In the short term, improving the efficiency of fossil fuel combustion in energy generation can provide an important contribution. Availability of life cycle GHG intensity data will allow decision-makers to move away from overly simplistic assertions about the relative merits of certain fuels, and focus on the complete picture, especially the critical roles of technology selection and application of best practice. This analysis compares the life-cycle greenhouse gas (GHG intensities per megawatt-hour (MWh of electricity produced for a range of Australian and other energy sources, including coal, conventional liquefied natural gas (LNG, coal seam gas LNG, nuclear and renewables, for the Australian export market. When Australian fossil fuels are exported to China, life cycle greenhouse gas emission intensity in electricity production depends to a significant degree on the technology used in combustion. LNG in general is less GHG intensive than black coal, but the gap is smaller for gas combusted in open cycle gas turbine plant (OCGT and for LNG derived from coal seam gas (CSG. On average, conventional LNG burned in a conventional OCGT plant is approximately 38% less GHG intensive over its life cycle than black coal burned in a sub-critical plant, per MWh of electricity produced. However, if OCGT LNG combustion is compared to the most efficient new ultra-supercritical coal power, the GHG intensity gap narrows considerably. Coal seam gas LNG is approximately 13–20% more GHG intensive across its life cycle, on a like-for like basis, than conventional LNG. Upstream fugitive emissions from CSG (assuming best practice gas extraction techniques do not materially alter the life cycle

  3. Continuous greenhouse gas measurements from ice cores

    DEFF Research Database (Denmark)

    Stowasser, Christopher

    Ice cores offer the unique possibility to study the history of past atmospheric greenhouse gases over the last 800,000 years, since past atmospheric air is trapped in bubbles in the ice. Since the 1950s, paleo-scientists have developed a variety of techniques to extract the trapped air from...... individual ice core samples, and to measure the mixing ratio of greenhouse gases such as carbon dioxide, methane and nitrous oxide in the extracted air. The discrete measurements have become highly accurate and reproducible, but require relatively large amounts of ice per measured species and are both time......-consuming and labor-intensive. This PhD thesis presents the development of a new method for measurements of greenhouse gas mixing ratios from ice cores based on a melting device of a continuous flow analysis (CFA) system. The coupling to a CFA melting device enables time-efficient measurements of high resolution...

  4. Preparing for the regulation of greenhouse gases

    International Nuclear Information System (INIS)

    Ezekiel, R.; Wilson, P.

    2001-01-01

    The Earth is warming, and this belief is shared by the leading scientists that sit on the Intergovernmental Panel on Climate Change, where it is expected that the average surface temperature of the Earth will rise 2.5 to 10.4 degrees Fahrenheit between 1990 and 2100. It is felt that the main culprit is greenhouse gas emissions such as carbon dioxide. The Kyoto Protocol was adopted in 1992 with the aim of reducing greenhouse gas emissions to specified targets below 1990 levels by 2012. For Canada, this commitment is a reduction to 6 per cent below 1990 levels. To avoid penalizing a country that adopts greenhouse gas regulations where the neighbouring country does not follow, negotiations are being held at the international level in an attempt to keep everyone on a level playing field. The United States recently decided not to pursue a cap on greenhouse gas emissions, which could seriously jeopardize the effectiveness of the Kyoto Protocol. The authors examined what the future looks like, in terms of policy options and market-based instruments. In the next section, they discussed the preparations for the regulation of greenhouse gases. The topics reviewed were carbon taxes, command and control regulation, emissions trading, contracts and baseline protection. Canada's baseline protection initiative (BPI) process was closely examined, and identified what reductions are eligible and touched upon ownership issues. The authors concluded that it might be prudent for emitters in Canada to prepare for a variety of regulatory scenarios, as there are a number of uncertainties remaining. Emissions trading must be carefully documented

  5. Multi-objective optimisation of wastewater treatment plant control to reduce greenhouse gas emissions.

    Science.gov (United States)

    Sweetapple, Christine; Fu, Guangtao; Butler, David

    2014-05-15

    This study investigates the potential of control strategy optimisation for the reduction of operational greenhouse gas emissions from wastewater treatment in a cost-effective manner, and demonstrates that significant improvements can be realised. A multi-objective evolutionary algorithm, NSGA-II, is used to derive sets of Pareto optimal operational and control parameter values for an activated sludge wastewater treatment plant, with objectives including minimisation of greenhouse gas emissions, operational costs and effluent pollutant concentrations, subject to legislative compliance. Different problem formulations are explored, to identify the most effective approach to emissions reduction, and the sets of optimal solutions enable identification of trade-offs between conflicting objectives. It is found that multi-objective optimisation can facilitate a significant reduction in greenhouse gas emissions without the need for plant redesign or modification of the control strategy layout, but there are trade-offs to consider: most importantly, if operational costs are not to be increased, reduction of greenhouse gas emissions is likely to incur an increase in effluent ammonia and total nitrogen concentrations. Design of control strategies for a high effluent quality and low costs alone is likely to result in an inadvertent increase in greenhouse gas emissions, so it is of key importance that effects on emissions are considered in control strategy development and optimisation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Determining greenhouse gas balances of biomass fuel cycles. Results to date from task 15 of IEA bio-energy

    International Nuclear Information System (INIS)

    Schlamadinger, B.; Spitzer, J.

    1997-01-01

    Selected activities of IEA Bio-energy Task 15 are described. Task 15 of IEA Bio-energy, entitled 'Greenhouse Gas Balances of Bio-energy Systems', aims at investigating processes involved in the use of bio-energy systems on a full fuel-cycle basis to establish overall greenhouse gas balances. The work of Task 15 includes, among other things, a compilation of existing data on greenhouse gas emissions from various biomass production and conversion processes, a standard methodology for greenhouse gas balances of bio-energy systems, a bibliography, and recommendations for selection of appropriate national strategies for greenhouse gas mitigation. (K.A.)

  7. Climate warming: answering some basic questions

    International Nuclear Information System (INIS)

    Jancovici, J.M.

    2009-01-01

    Illustrated by many graphs, drawings, figures and tables, this long publication offers a detailed overview of the physical aspects of climatic change (definition of the greenhouse effect, explanation and assessment of warming, relationship and differences between greenhouse effect and ozone depletion, between climate change and greenhouse effect induced by human activity, and between meteorology and climate) and states some generalities on greenhouse effect gases. The author then discusses prospective issues on climatic change (notion of average temperature, role and liability of climate models, evolutions of temperatures and precipitations in different places, influence of greenhouse gas reduction), the various risks associated with climatic change (changes of sea currents, impact on ecosystems, diseases, ozone depletion, geographical differences, threat from methane hydrate). After a presentation of the carbon cycle, the next chapters are discussing the scientific discourses, the assessment of greenhouse effect in our everyday life, the impact of possible collective and individual actions, the relationship between greenhouse effect and economy, and strategic choices in France on airports and on nuclear energy

  8. SOFIA Observations of S106: Dynamics of the Warm Gas

    Science.gov (United States)

    Simon, R.; Schneider, N.; Stutzki, J.; Gusten, R.; Graf, U. U.; Hartogh, P.; Guan, X.; Staguhn, J. G.; Benford, D. J.

    2012-01-01

    Context The H II region/PDR/molecular cloud complex S106 is excited by a single O-star. The full extent of the warm and dense gas close to the star has not been mapped in spectrally resolved high-J CO or [C II] lines, so the kinematics of the warm. partially ionized gas, are unknown. Whether the prominent dark lane bisecting the hourglass-shaped nebula is due solely to the shadow cast by a small disk around the exciting star or also to extinction in high column foreground gas was an open question until now. Aims. To disentangle the morphology and kinematics of warm neutral and ionized gas close to the star, study their relation to the bulk of the molecular gas. and to investigate the nature of the dark lane. Methods. We use the heterodyne receiver GREAT on board SOFIA to observe velocity resolved spectral lines of [C II] and CO 11 yields 10 in comparison with so far unpublished submm continuum data at 350 micron (8HARC-Il) and complementary molecular line data. Results. The high angular and spectral resolution observations show a very complex morphology and kinematics of the inner S106 region, with many different components at different excitation conditions contributing to the observed emission. The [C II] lines are found to be bright and very broad. tracing high velocity gas close to the interface of molecular cloud and H II region. CO 11 yields 10 emission is more confined.. both spatially and in velocity, to the immediate surroundings of S 106 IR showing the presence of warm, high density (clumpy) gas. Our high angular resolution submm continuum observations rule out the scenario where the dark lane separating the two lobes is due solely to the shadow cast by a small disk close to the star. The lane is clearly seen also as warm, high column density gas at the boundary of the molecular cloud and H II region.

  9. Global warming

    International Nuclear Information System (INIS)

    Houghton, John

    2005-01-01

    'Global warming' is a phrase that refers to the effect on the climate of human activities, in particular the burning of fossil fuels (coal, oil and gas) and large-scale deforestation, which cause emissions to the atmosphere of large amounts of 'greenhouse gases', of which the most important is carbon dioxide. Such gases absorb infrared radiation emitted by the Earth's surface and act as blankets over the surface keeping it warmer than it would otherwise be. Associated with this warming are changes of climate. The basic science of the 'greenhouse effect' that leads to the warming is well understood. More detailed understanding relies on numerical models of the climate that integrate the basic dynamical and physical equations describing the complete climate system. Many of the likely characteristics of the resulting changes in climate (such as more frequent heat waves, increases in rainfall, increase in frequency and intensity of many extreme climate events) can be identified. Substantial uncertainties remain in knowledge of some of the feedbacks within the climate system (that affect the overall magnitude of change) and in much of the detail of likely regional change. Because of its negative impacts on human communities (including for instance substantial sea-level rise) and on ecosystems, global warming is the most important environmental problem the world faces. Adaptation to the inevitable impacts and mitigation to reduce their magnitude are both necessary. International action is being taken by the world's scientific and political communities. Because of the need for urgent action, the greatest challenge is to move rapidly to much increased energy efficiency and to non-fossil-fuel energy sources

  10. Greenhouse gas accounting and waste management.

    Science.gov (United States)

    Gentil, Emmanuel; Christensen, Thomas H; Aoustin, Emmanuelle

    2009-11-01

    Accounting of emissions of greenhouse gas (GHG) is a major focus within waste management. This paper analyses and compares the four main types of GHG accounting in waste management including their special features and approaches: the national accounting, with reference to the Intergovernmental Panel on Climate Change (IPCC), the corporate level, as part of the annual reporting on environmental issues and social responsibility, life-cycle assessment (LCA), as an environmental basis for assessing waste management systems and technologies, and finally, the carbon trading methodology, and more specifically, the clean development mechanism (CDM) methodology, introduced to support cost-effective reduction in GHG emissions. These types of GHG accounting, in principle, have a common starting point in technical data on GHG emissions from specific waste technologies and plants, but the limited availability of data and, moreover, the different scopes of the accounting lead to many ways of quantifying emissions and producing the accounts. The importance of transparency in GHG accounting is emphasised regarding waste type, waste composition, time period considered, GHGs included, global warming potential (GWP) assigned to the GHGs, counting of biogenic carbon dioxide, choice of system boundaries, interactions with the energy system, and generic emissions factors. In order to enhance transparency and consistency, a format called the upstream-operating-downstream framework (UOD) is proposed for reporting basic technology-related data regarding GHG issues including a clear distinction between direct emissions from waste management technologies, indirect upstream (use of energy and materials) and indirect downstream (production of energy, delivery of secondary materials) activities.

  11. Monitoring soil greenhouse gas emissions from managed grasslands

    Science.gov (United States)

    Díaz-Pinés, Eugenio; Lu, Haiyan; Butterbach-Bahl, Klaus; Kiese, Ralf

    2014-05-01

    Grasslands in Central Europe are of enormous social, ecological and economical importance. They are intensively managed, but the influence of different common practices (i.e. fertilization, harvesting) on the total greenhouse gas budget of grasslands is not fully understood, yet. In addition, it is unknown how these ecosystems will react due to climate change. Increasing temperatures and changing precipitation will likely have an effect on productivity of grasslands and on bio-geo-chemical processes responsible for emissions of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). In the frame of the TERENO Project (www.tereno.net), a long-term observatory has been implemented in the Ammer catchment, southern Germany. Acting as an in situ global change experiment, 36 big lysimeters (1 m2 section, 150 cm height) have been translocated along an altitudinal gradient, including three sites ranging from 600 to 860 meters above sea level. In addition, two treatments have been considered, corresponding to different management intensities. The overall aim of the pre-alpine TERENO observatory is improving our understanding of the consequences of climate change and management on productivity, greenhouse gas balance, soil nutritional status, nutrient leaching and hydrology of grasslands. Two of the sites are equipped with a fully automated measurement system in order to continuously and accurately monitor the soil-atmosphere greenhouse gas exchange. Thus, a stainless steel chamber (1 m2 section, 80 cm height) is controlled by a robotized system. The chamber is hanging on a metal structure which can move both vertically and horizontally, so that the chamber is able to be set onto each of the lysimeters placed on the field. Furthermore, the headspace of the chamber is connected with a gas tube to a Quantum Cascade Laser, which continuously measures CO2, CH4, N2O and H2O mixing ratios. The chamber acts as a static chamber and sets for 15 minutes onto each lysimeter

  12. Greenhouse gas mitigation can reduce sea-ice loss and increase polar bear persistence

    Science.gov (United States)

    Amstrup, Steven C.; Deweaver, E.T.; Douglas, David C.; Marcot, B.G.; Durner, George M.; Bitz, C.M.; Bailey, D.A.

    2010-01-01

    On the basis of projected losses of their essential sea-ice habitats, a United States Geological Survey research team concluded in 2007 that two-thirds of the worlds polar bears (Ursus maritimus) could disappear by mid-century if business-as-usual greenhouse gas emissions continue. That projection, however, did not consider the possible benefits of greenhouse gas mitigation. A key question is whether temperature increases lead to proportional losses of sea-ice habitat, or whether sea-ice cover crosses a tipping point and irreversibly collapses when temperature reaches a critical threshold. Such a tipping point would mean future greenhouse gas mitigation would confer no conservation benefits to polar bears. Here we show, using a general circulation model, that substantially more sea-ice habitat would be retained if greenhouse gas rise is mitigated. We also show, with Bayesian network model outcomes, that increased habitat retention under greenhouse gas mitigation means that polar bears could persist throughout the century in greater numbers and more areas than in the business-as-usual case. Our general circulation model outcomes did not reveal thresholds leading to irreversible loss of ice; instead, a linear relationship between global mean surface air temperature and sea-ice habitat substantiated the hypothesis that sea-ice thermodynamics can overcome albedo feedbacks proposed to cause sea-ice tipping points. Our outcomes indicate that rapid summer ice losses in models and observations represent increased volatility of a thinning sea-ice cover, rather than tipping-point behaviour. Mitigation-driven Bayesian network outcomes show that previously predicted declines in polar bear distribution and numbers are not unavoidable. Because polar bears are sentinels of the Arctic marine ecosystem and trends in their sea-ice habitats foreshadow future global changes, mitigating greenhouse gas emissions to improve polar bear status would have conservation benefits throughout

  13. Greenhouse gas mitigation can reduce sea-ice loss and increase polar bear persistence.

    Science.gov (United States)

    Amstrup, Steven C; Deweaver, Eric T; Douglas, David C; Marcot, Bruce G; Durner, George M; Bitz, Cecilia M; Bailey, David A

    2010-12-16

    On the basis of projected losses of their essential sea-ice habitats, a United States Geological Survey research team concluded in 2007 that two-thirds of the world's polar bears (Ursus maritimus) could disappear by mid-century if business-as-usual greenhouse gas emissions continue. That projection, however, did not consider the possible benefits of greenhouse gas mitigation. A key question is whether temperature increases lead to proportional losses of sea-ice habitat, or whether sea-ice cover crosses a tipping point and irreversibly collapses when temperature reaches a critical threshold. Such a tipping point would mean future greenhouse gas mitigation would confer no conservation benefits to polar bears. Here we show, using a general circulation model, that substantially more sea-ice habitat would be retained if greenhouse gas rise is mitigated. We also show, with Bayesian network model outcomes, that increased habitat retention under greenhouse gas mitigation means that polar bears could persist throughout the century in greater numbers and more areas than in the business-as-usual case. Our general circulation model outcomes did not reveal thresholds leading to irreversible loss of ice; instead, a linear relationship between global mean surface air temperature and sea-ice habitat substantiated the hypothesis that sea-ice thermodynamics can overcome albedo feedbacks proposed to cause sea-ice tipping points. Our outcomes indicate that rapid summer ice losses in models and observations represent increased volatility of a thinning sea-ice cover, rather than tipping-point behaviour. Mitigation-driven Bayesian network outcomes show that previously predicted declines in polar bear distribution and numbers are not unavoidable. Because polar bears are sentinels of the Arctic marine ecosystem and trends in their sea-ice habitats foreshadow future global changes, mitigating greenhouse gas emissions to improve polar bear status would have conservation benefits throughout

  14. Reducing greenhouse gas emissions from u.s. transportation

    Science.gov (United States)

    2010-01-01

    This report examines the prospects for substantially reducing the greenhouse gas (GHG) emissions from the U.S. transportation sector, which accounts for 27 percent of the GHG emissions of the entire U.S. economy and 30 percent of the world's transpor...

  15. Night-time warming and the greenhouse effect

    International Nuclear Information System (INIS)

    Kukla, G.; Karl, T.R.

    1993-01-01

    Studies of temperature data collected mainly from rural stations in North America, China, the Commonwealth of Independent States, Australia, Sudan, Japan, Denmark, Northern Finland, several Pacific Islands, Pakistan, South Africa and Europe suggest that the reported warming of the Northern Hemisphere since WWII is principally a result of an increase in night-time temperatures. The average monthly maximum and minimum temperatures, as well as the mean diurnal temperature range (DTR), were calculated for various regions from data supplied by 1000 stations from 1951 to 1990. Average and minimum temperatures generally rose during the analysed interval and the rise in night-time temperatures was more pronounced than the increase in daily maximum temperatures. As a result, the mean DTR decreased almost everywhere. The most probable causes of the rise in night-time temperatures are: an increase in cloudiness owing to natural changes in the circulation patterns of oceans and the atmosphere; increased cloud cover density caused by industrial pollution; urban heat islands, generated by cities, which are strongest during the night; irrigation which keeps the surface warmer at night and cooler by day; and anthropogenic greenhouse gases. 18 refs., 3 figs

  16. Interagency Pilot of Greenhouse Gas Accounting Tools: Lessons Learned

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, A.; Hotchkiss, E.; Kandt, A.

    2013-02-01

    The Greater Yellowstone Area (GYA) and Tongass National Forest (Tongass) partnered with the National Renewable Energy Laboratory (NREL) to conduct a pilot study of three greenhouse gas (GHG) inventorying tools.

  17. Greenhouse Gas Emissions from Educational Facilities and the EPA Greenhouse Gas Reporting Rule: Actions You Need to Take Now

    Science.gov (United States)

    Wurmbrand, Mitchell M.; Klotz, Thomas C.

    2010-01-01

    On September 22, 2009, The United States Environmental Protection Agency (EPA) issued its final rule on greenhouse gas (GHG) emission reporting. The informational literature that EPA has published to support the rule clearly states that EPA believes the vast majority of smaller GHG-emitting facilities, such as educational facilities, will not be…

  18. The terrestrial biosphere as a net source of greenhouse gases to the atmosphere.

    Science.gov (United States)

    Tian, Hanqin; Lu, Chaoqun; Ciais, Philippe; Michalak, Anna M; Canadell, Josep G; Saikawa, Eri; Huntzinger, Deborah N; Gurney, Kevin R; Sitch, Stephen; Zhang, Bowen; Yang, Jia; Bousquet, Philippe; Bruhwiler, Lori; Chen, Guangsheng; Dlugokencky, Edward; Friedlingstein, Pierre; Melillo, Jerry; Pan, Shufen; Poulter, Benjamin; Prinn, Ronald; Saunois, Marielle; Schwalm, Christopher R; Wofsy, Steven C

    2016-03-10

    The terrestrial biosphere can release or absorb the greenhouse gases, carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O), and therefore has an important role in regulating atmospheric composition and climate. Anthropogenic activities such as land-use change, agriculture and waste management have altered terrestrial biogenic greenhouse gas fluxes, and the resulting increases in methane and nitrous oxide emissions in particular can contribute to climate change. The terrestrial biogenic fluxes of individual greenhouse gases have been studied extensively, but the net biogenic greenhouse gas balance resulting from anthropogenic activities and its effect on the climate system remains uncertain. Here we use bottom-up (inventory, statistical extrapolation of local flux measurements, and process-based modelling) and top-down (atmospheric inversions) approaches to quantify the global net biogenic greenhouse gas balance between 1981 and 2010 resulting from anthropogenic activities and its effect on the climate system. We find that the cumulative warming capacity of concurrent biogenic methane and nitrous oxide emissions is a factor of about two larger than the cooling effect resulting from the global land carbon dioxide uptake from 2001 to 2010. This results in a net positive cumulative impact of the three greenhouse gases on the planetary energy budget, with a best estimate (in petagrams of CO2 equivalent per year) of 3.9 ± 3.8 (top down) and 5.4 ± 4.8 (bottom up) based on the GWP100 metric (global warming potential on a 100-year time horizon). Our findings suggest that a reduction in agricultural methane and nitrous oxide emissions, particularly in Southern Asia, may help mitigate climate change.

  19. Global initiatives to mitigate greenhouse gas emissions

    International Nuclear Information System (INIS)

    Helme, N.; Gille, J.A.

    1994-01-01

    Joint implementation (JI) is a provision, included in the Framework Convention on Climate Change, that allows for two or more nations to jointly plan and implement a greenhouse gas or offsetting project. Joint implementation is important environmentally for two principal reasons: (1) it provides an opportunity to select projects on a global basis that maximize both greenhouse gas reduction benefits and other environmental benefits such as air pollution reduction while minimizing cost, and (2) it creates incentives for developing countries as well as multinational companies to begin to evaluate potential investments through a climate-friendly lens. While the debate on how to establish the criteria and institutional capacity necessary to encourage joint implementation projects continues in the international community, the US government is creating new incentives for US companies to develop joint implementation pilot projects now. While delegates to the United Nations' International Negotiating Committee (INC) debate whether to permit all Parties to the convention to participate in JI, opportunities in Eastern and Central Europe and the former Soviet states abound. The US has taken a leadership role in joint implementation, establishing two complementary domestic programs that allow US companies to measure, track and score their net greenhouse gas reduction achievements now. With a financial investment by three US utilities, the Center for Clean Air Policy is developing a fuel-switching and energy efficiency project in the city of Decin in the Czech Republic which offers a concrete example of what a real-world JI project could look like. The Decin project provides an ideal test case for assessing the adequacy and potential impact of the draft criteria for the US Initiative on Joint Implementation, as well as for the draft criteria prepared by the INC Secretariat

  20. Greenhouse effect contributions of US landfill methane

    International Nuclear Information System (INIS)

    Augenstein, D.

    1991-01-01

    The greenhouse effect has recently been receiving a great deal of scientific and popular attention. The term refers to a cause-and-effect relationship in which ''heat blanketing'' of the earth, due to trace gas increases in the atmosphere, is expected to result in global warming. The trace gases are increasing as the result of human activities. Carbon dioxide (CO 2 ) is the trace gas contributing most importantly to the ''heat blanketing'' and currently receives the most attention. Less widely recognized has been the high importance of methane (CH 4 ). Methane's contribution to the increased heat blanketing occurring since 1980 is estimated to be over a third as much as that of carbon dioxide. Gas from landfills has in turn been recognized to be a source of methane to the atmospheric buildup. However the magnitude of the landfill methane contribution, and the overall significance of landfill methane to the greenhouse phenomenon has been uncertain and the subject of some debate. (Author)

  1. Possibilities of using ISO 1406X standards in the management of greenhouse gas emissions

    International Nuclear Information System (INIS)

    Fabian, G.; Priesol, J.

    2009-01-01

    Aim of this paper is to define and describe using of ISO 1406X standards for organization, which production of greenhouse gas emissions represents an important environmental aspect especially in terms of financial benefits accruing from trading with saved / reduced emissions. Following the main aim of this paper, we have set the following sub-objectives and tasks: - Define and describe the algorithm of implementation of program on greenhouse gas emissions according to the requirements and guidelines of the ISO 1406X in the organization; - Create a model of comprehensive management of greenhouse gas emissions standards as described.

  2. Australia's Greenhouse Challenge is a positive step towards abatement of gas emissions

    International Nuclear Information System (INIS)

    Anon.

    1997-01-01

    Australian industry has responded favourably to the Federal Government's Greenhouse Clallenge Program (GCP) which has focused on curbing greenhouse gas emission from the manufacturing, mining and energy sector. It is a carefully shaped program which prompts companies and groups to thoroughly review their individual operations and identify areas where credible new or addition emission control can be employed. There are now 42 companies and associations that have signed agreements in GCP. Together they account for some 15 % of Australia's total greenhouse gas emissions. It is expected that by 2000 the emission increase will be cut to 7 % and the total emissions cut by 16 million tonnes for the 42 companies concerned

  3. Comparing the sensitivity of permafrost and marine gas hydrate to climate warming

    International Nuclear Information System (INIS)

    Taylor, A.E.; Dallimore, S.R.; Hyndman, R.D.; Wright, F.

    2005-01-01

    The sensitivity of Arctic subpermafrost gas hydrate at the Mallik borehole was compared to temperate marine gas hydrate located offshore southwestern Canada. In particular, a finite element geothermal model was used to determine the sensitivity to the end of the ice age, and contemporary climate warming of a 30 m thick methane hydrate layer lying at the base of a gas hydrate stability zone prior to 13.5 kiloannum (ka) before present (BP). It was suggested that the 30 m gas-hydrate-bearing layer would have disappeared by now, according to the thermal signal alone. However, the same gas-hydrate-bearing layer underlying permafrost would persist until at least 4 ka after present, even with contemporary climate warming. The longer time for subpermafrost gas hydrate comes from the thawing pore ice at the base of permafrost, at the expense of dissociation of the deeper gas hydrate. The dissociation of underlying gas hydrate from climate surface warming is buffered by the overlying permafrost

  4. Technologies for a greenhouse-constrained society

    International Nuclear Information System (INIS)

    Kuliasha, M.A.; Zucker, A.; Ballew, K.J.

    1992-01-01

    This conference explored how three technologies might help society adjust to life in a greenhouse-constrained environment. Technology experts and policy makers from around the world met June 11--13, 1991, in Oak Ridge, Tennessee, to address questions about how energy efficiency, biomass, and nuclear technologies can mitigate the greenhouse effect and to explore energy production and use in countries in various stages of development. The conference was organized by Oak Ridge National Laboratory and sponsored by the US Department of Energy. Energy efficiency biomass, and nuclear energy are potential substitutes for fossil fuels that might help slow or even reverse the global warming changes that may result from mankind's thirst for energy. Many other conferences have questioned whether the greenhouse effect is real and what reductions in greenhouse gas emissions might be necessary to avoid serious ecological consequences; this conference studied how these reductions might actually be achieved. For these conference proceedings, individuals papers are processed separately for the Energy Data Base

  5. Essays on the economics of energy markets. Security of supply and greenhouse gas abatement

    International Nuclear Information System (INIS)

    Dieckhoener, Caroline

    2013-01-01

    In summary, the presented thesis analyzes two distinct economic subjects: security of supply in natural gas markets and greenhouse gas abatement potentials in the residential heating market. These subjects considered both reflect key points in the triangle of energy policy and are both associated with transnational market failures within energy markets. The security of supply analyses in an intermeshed network are approached from a rather normative, top-down perspective of a social planner. On the contrary, the analyses of greenhouse gases emitted by households are positive analyses of consumer choices. The normative analyses of security of supply in natural gas markets and the positive analyses on greenhouse gas abatement in the residential heating market are organized in two parts of the thesis. 1. Normative analyses - Security of supply in natural gas markets: The two papers of the first part of the dissertation thesis are based on a normative approach with the European natural gas market and infrastructure model TIGER that allows for security of supply analyses. The general idea behind the modeling approach is based on the assumption of a social planner and finds an efficient utilization of the natural gas infrastructure. More precisely, the security of supply analyses conducted in the first part of the thesis refer to scenario simulations of disrupted supply routes in the European natural gas network. The effects of these security of supply scenarios on the usage of other infrastructure components, on marginal supply costs and disruptions to consumers are investigated. 2. Positive analyses of greenhouse gas abatement potentials - Econometric modeling of consumer choices and evaluation of public policies: The second part of the thesis includes two positive analyses which investigate household choices to derive greenhouse gas abatement potentials. In the residential heating market, the energy efficiency level exhibited and the type of energy carrier used are

  6. Essays on the economics of energy markets. Security of supply and greenhouse gas abatement

    Energy Technology Data Exchange (ETDEWEB)

    Dieckhoener, Caroline

    2013-02-01

    In summary, the presented thesis analyzes two distinct economic subjects: security of supply in natural gas markets and greenhouse gas abatement potentials in the residential heating market. These subjects considered both reflect key points in the triangle of energy policy and are both associated with transnational market failures within energy markets. The security of supply analyses in an intermeshed network are approached from a rather normative, top-down perspective of a social planner. On the contrary, the analyses of greenhouse gases emitted by households are positive analyses of consumer choices. The normative analyses of security of supply in natural gas markets and the positive analyses on greenhouse gas abatement in the residential heating market are organized in two parts of the thesis. 1. Normative analyses - Security of supply in natural gas markets: The two papers of the first part of the dissertation thesis are based on a normative approach with the European natural gas market and infrastructure model TIGER that allows for security of supply analyses. The general idea behind the modeling approach is based on the assumption of a social planner and finds an efficient utilization of the natural gas infrastructure. More precisely, the security of supply analyses conducted in the first part of the thesis refer to scenario simulations of disrupted supply routes in the European natural gas network. The effects of these security of supply scenarios on the usage of other infrastructure components, on marginal supply costs and disruptions to consumers are investigated. 2. Positive analyses of greenhouse gas abatement potentials - Econometric modeling of consumer choices and evaluation of public policies: The second part of the thesis includes two positive analyses which investigate household choices to derive greenhouse gas abatement potentials. In the residential heating market, the energy efficiency level exhibited and the type of energy carrier used are

  7. Implications of possible interpretations of ‘greenhouse gas balance’ in the Paris Agreement

    Science.gov (United States)

    Millar, R. J.; Allen, M.; Boucher, O.; Cain, M.; Forster, P. M.; Shindell, D.

    2018-01-01

    The main goal of the Paris Agreement as stated in Article 2 is ‘holding the increase in the global average temperature to well below 2°C above pre-industrial levels and pursuing efforts to limit the temperature increase to 1.5°C’. Article 4 points to this long-term goal and the need to achieve ‘balance between anthropogenic emissions by sources and removals by sinks of greenhouse gases'. This statement on ‘greenhouse gas balance’ is subject to interpretation, and clarifications are needed to make it operational for national and international climate policies. We study possible interpretations from a scientific perspective and analyse their climatic implications. We clarify how the implications for individual gases depend on the metrics used to relate them. We show that the way in which balance is interpreted, achieved and maintained influences temperature outcomes. Achieving and maintaining net-zero CO2-equivalent emissions conventionally calculated using GWP100 (100-year global warming potential) and including substantial positive contributions from short-lived climate-forcing agents such as methane would result in a sustained decline in global temperature. A modified approach to the use of GWP100 (that equates constant emissions of short-lived climate forcers with zero sustained emission of CO2) results in global temperatures remaining approximately constant once net-zero CO2-equivalent emissions are achieved and maintained. Our paper provides policymakers with an overview of issues and choices that are important to determine which approach is most appropriate in the context of the Paris Agreement. This article is part of the theme issue ‘The Paris Agreement: understanding the physical and social challenges for a warming world of 1.5°C above pre-industrial levels'. PMID:29610378

  8. Greenhouse gas emissions trading: Cogen case studies in the early trading market

    International Nuclear Information System (INIS)

    Buerer, Mary Jean

    2001-01-01

    An increasing number of companies are interested in opportunities to trade their reduction in greenhouse gas emissions from cogeneration on the emerging greenhouse gas emissions market. Only the UK and Denmark currently have emissions trading schemes, but they are under development in other European countries. Two frameworks currently exist for trading. Baseline-and-credit trading is used in Canada where companies can take part in two voluntary schemes (Greenhouse Gas Emission Reduction Trading Pilot or Clean Air Canada Inc). An example project from the CHP unit at DuPont's Maitland chemical production facility is given, with details of the baselines and calculations used. The other option is company-wide emissions trading. The example given here features the CHP units at BP's refinery and chemicals operations in Texas. The potential revenue from emission reduction projects could help to boost the economics of cogeneration projects

  9. Assessment of alternative disposal methods to reduce greenhouse gas emissions from municipal solid waste in India.

    Science.gov (United States)

    Yedla, Sudhakar; Sindhu, N T

    2016-06-01

    Open dumping, the most commonly practiced method of solid waste disposal in Indian cities, creates serious environment and economic challenges, and also contributes significantly to greenhouse gas emissions. The present article attempts to analyse and identify economically effective ways to reduce greenhouse gas emissions from municipal solid waste. The article looks at the selection of appropriate methods for the control of methane emissions. Multivariate functional models are presented, based on theoretical considerations as well as the field measurements to forecast the greenhouse gas mitigation potential for all the methodologies under consideration. Economic feasibility is tested by calculating the unit cost of waste disposal for the respective disposal process. The purpose-built landfill system proposed by Yedla and Parikh has shown promise in controlling greenhouse gas and saving land. However, these studies show that aerobic composting offers the optimal method, both in terms of controlling greenhouse gas emissions and reducing costs, mainly by requiring less land than other methods. © The Author(s) 2016.

  10. Reducing greenhouse gas emissions and improving air quality: Two global challenges.

    Science.gov (United States)

    Erickson, Larry E

    2017-07-01

    There are many good reasons to promote sustainable development and reduce greenhouse gas emissions and other combustion emissions. The air quality in many urban environments is causing many premature deaths because of asthma, cardiovascular disease, chronic obstructive pulmonary disease, lung cancer, and dementia associated with combustion emissions. The global social cost of air pollution is at least $3 trillion/year; particulates, nitrogen oxides and ozone associated with combustion emissions are very costly pollutants. Better air quality in urban environments is one of the reasons for countries to work together to reduce greenhouse gas emissions through the Paris Agreement on Climate Change. There are many potential benefits associated with limiting climate change. In the recent past, the concentrations of greenhouse gases in the atmosphere have been increasing and the number of weather and climate disasters with costs over $1 billion has been increasing. The average global temperature set new record highs in 2014, 2015, and 2016. To reduce greenhouse gas emissions, the transition to electric vehicles and electricity generation using renewable energy must take place in accord with the goals of the Paris Agreement on Climate Change. This work reviews progress and identifies some of the health benefits associated with reducing combustion emissions. © 2017 American Institute of Chemical Engineers Environ Prog, 36: 982-988, 2017.

  11. FY2010 Federal Government Greenhouse Gas Inventory by Agency

    Data.gov (United States)

    Council on Environmental Quality, Executive Office of the President — The comprehensive Greenhouse Gas (GHG) Emissions Inventory for the Federal Government accounts for emissions associated with Federal operations in FY 2010. Attached...

  12. Quality manual for the Danish greenhouse gas inventory. Version 2

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, O.-K.; Plejdrup, M.S.; Winther, M. [and others

    2013-02-15

    This report outlines the quality work undertaken by the emission inventory group at the Department of Environmental Science, Aarhus University in connection with the preparation and reporting of the Danish greenhouse gas inventory. This report updates and expands on the first version of the quality manual published in 2005. The report fulfils the mandatory requirements for a quality assurance/quality control (QA/QC) plan as lined out in the UNFCCC reporting guidelines and the specifications related to reporting under the Kyoto Protocol. The report describes all elements of the internal QC procedures as well as the QA and verification activities carried out in connection with the Danish greenhouse gas inventory. (Author)

  13. Reducing greenhouse gas emissions through operations and supply chain management

    International Nuclear Information System (INIS)

    Plambeck, Erica L.

    2012-01-01

    The experiences of the largest corporation in the world and those of a start-up company show how companies can profitably reduce greenhouse gas emissions in their supply chains. The operations management literature suggests additional opportunities to profitably reduce emissions in existing supply chains, and provides guidance for expanding the capacity of new “zero emission” supply chains. The potential for companies to profitably reduce emissions is substantial but (without effective climate policy) likely insufficient to avert dangerous climate change. - Highlights: ► Describes how firms are profitably reducing greenhouse gas emissions in their supply chains ► Highlights academic literature relevant to supply chain emission reduction

  14. An alternative to the global warming potential for comparing climate impacts of emissions of greenhouse gases

    International Nuclear Information System (INIS)

    Shine, Keith P.; Fuglestvedt, Jan S.; Stuber, Nicola

    2003-01-01

    The global warming potential (GWP) is used within the Kyoto Protocol to the United Nations Framework Convention on Climate Change as a metric for weighting the climate impact of emissions of different greenhouse gases. The GQP has been subject at many criticism because of its formulation but nevertheless it has retained some favour because of the simplicity of this design and application and its transparency compared to proposed alternatives. Here a new metric which we call the Global Temperature Change Potential (GTP) is proposed which is based on a simple analytical climate model that represents the temperature change as a given time due to either a pulse emission of a gas or a sustained emission change relative to a similar emission change of carbon dioxide. The GTP for a pulse emission illustrates that the GWP does not represent well the relative temperature response; however, the GWP is shown to be very close to the GTP for a sustained emission change for time horizons of 100 years or more. The new metric retains the advantage of the GWP in terms of transparency and the relatively small number of input parameters required for calculation. However, it has an enhanced relevance as it is further down the cause-effect chain of the impacts of greenhouse gases emissions. The GTP for a sustained emission appears to be robust to a number of uncertainties and simplifications in its derivation and may be an attractive alternative to the GWP. (Author)

  15. WARM GAS IN THE VIRGO CLUSTER. I. DISTRIBUTION OF Lyα ABSORBERS

    International Nuclear Information System (INIS)

    Yoon, Joo Heon; Putman, Mary E.; Bryan, Greg L.; Thom, Christopher; Chen, Hsiao-Wen

    2012-01-01

    The first systematic study of the warm gas (T = 10 4–5 K) distribution across a galaxy cluster is presented using multiple background QSOs in and around the Virgo Cluster. We detect 25 Lyα absorbers (N HI = 10 13.1–15.4 cm –2 ) in the Virgo velocity range toward 9 of 12 QSO sightlines observed with the Cosmic Origin Spectrograph, with a cluster impact parameter range of 0.36-1.65 Mpc (0.23-1.05 R vir ). Including 18 Lyα absorbers previously detected by STIS or GHRS toward 7 of 11 background QSOs in and around the Virgo Cluster, we establish a sample of 43 absorbers toward a total of 23 background probes for studying the incidence of Lyα absorbers in and around the Virgo Cluster. With these absorbers, we find (1) warm gas is predominantly in the outskirts of the cluster and avoids the X-ray-detected hot intracluster medium (ICM). Also, Lyα absorption strength increases with cluster impact parameter. (2) Lyα-absorbing warm gas traces cold H I-emitting gas in the substructures of the Virgo Cluster. (3) Including the absorbers associated with the surrounding substructures, the warm gas covering fraction (100% for N HI > 10 13.1 cm –2 ) is in agreement with cosmological simulations. We speculate that the observed warm gas is part of large-scale gas flows feeding the cluster both in the ICM and galaxies.

  16. Peat and the greenhouse effect - Comparison of peat with coal, oil, natural gas and wood

    International Nuclear Information System (INIS)

    Hillebrand, K.

    1993-01-01

    The earth's climate is effected both by natural factors and human activities. So called greenhouse gas emissions increase the increment of the temperature of the air nearby the earth's surface, due to which the social changes can be large. The increment of greenhouse gas concentration in the atmosphere is due to increasing energy consumption. About 50 % of the climatic changes are caused by increase of the CO 2 concentration in the atmosphere. Other gases, formed in the energy production, intensifying the greenhouse effect are methane and nitrous oxide. The effect of greenhouse gases is based on their ability to absorb infrared radiation coming from the earth. This presentation discusses some of the greenhouse effect caused by some peat production and utilization chains in comparison with corresponding effects of coal, oil, natural gas and wood. The instantaneous greenhouse effects and the cumulative effects of the emissions of the gases (CO 2 , CH 4 and N 2 O) during a time period has been reviewed. The greenhouse effect has been calculated as CO 2 - equivalents. (5 figs.)

  17. Greenhouse gas emissions from alternative futures of deforestation and agricultural management in the southern Amazon.

    Science.gov (United States)

    Galford, Gillian L; Melillo, Jerry M; Kicklighter, David W; Cronin, Timothy W; Cerri, Carlos E P; Mustard, John F; Cerri, Carlos C

    2010-11-16

    The Brazilian Amazon is one of the most rapidly developing agricultural areas in the world and represents a potentially large future source of greenhouse gases from land clearing and subsequent agricultural management. In an integrated approach, we estimate the greenhouse gas dynamics of natural ecosystems and agricultural ecosystems after clearing in the context of a future climate. We examine scenarios of deforestation and postclearing land use to estimate the future (2006-2050) impacts on carbon dioxide (CO(2)), methane (CH(4)), and nitrous oxide (N(2)O) emissions from the agricultural frontier state of Mato Grosso, using a process-based biogeochemistry model, the Terrestrial Ecosystems Model (TEM). We estimate a net emission of greenhouse gases from Mato Grosso, ranging from 2.8 to 15.9 Pg CO(2)-equivalents (CO(2)-e) from 2006 to 2050. Deforestation is the largest source of greenhouse gas emissions over this period, but land uses following clearing account for a substantial portion (24-49%) of the net greenhouse gas budget. Due to land-cover and land-use change, there is a small foregone carbon sequestration of 0.2-0.4 Pg CO(2)-e by natural forests and cerrado between 2006 and 2050. Both deforestation and future land-use management play important roles in the net greenhouse gas emissions of this frontier, suggesting that both should be considered in emissions policies. We find that avoided deforestation remains the best strategy for minimizing future greenhouse gas emissions from Mato Grosso.

  18. Greenhouse gas emissions from integrated urban drainage systems

    DEFF Research Database (Denmark)

    Mannina, Giorgio; Butler, David; Benedetti, Lorenzo

    2018-01-01

    As sources of greenhouse gas (GHG) emissions, integrated urban drainage systems (IUDSs) (i.e., sewer systems, wastewater treatment plants and receiving water bodies) contribute to climate change. This paper, produced by the International Working Group on Data and Models, which works under the IWA...

  19. Greenhouse gases - an up-date on the contribution of automotive fuels

    International Nuclear Information System (INIS)

    Williams, M.L.

    1992-01-01

    This paper examines the contribution to global emissions of greenhouse gases from automotive fuels. The Greenhouse Effect and Climate Change are explained briefly. Data is presented on the global warming potential of automobile emissions, actual measured emission rates and greenhouse gas emissions as CO 2 equivalents. It is concluded that insufficient data exists to assess accurately the contribution of automotive fuel use to all the important greenhouse gases. Over short timescales (say 20 years) low emission technologies do show significant reductions in CO 2 equivalent emissions compared with current technology vehicles. However, in the longer term, fuel economy rather than emissions of non-CO 2 gases, is likely to become the determining factor. (UK)

  20. Global warming potential and greenhouse gas emission under different soil nutrient management practices in soybean-wheat system of central India.

    Science.gov (United States)

    Lenka, Sangeeta; Lenka, Narendra Kumar; Singh, Amar Bahadur; Singh, B; Raghuwanshi, Jyothi

    2017-02-01

    Soil nutrient management is a key component contributing to the greenhouse gas (GHG) flux and mitigation potential of agricultural production systems. However, the effect of soil nutrient management practices on GHG flux and global warming potential (GWP) is less understood in agricultural soils of India. The present study was conducted to compare three nutrient management systems practiced for nine consecutive years in a soybean-wheat cropping system in the Vertisols of India, in terms of GHG flux and GWP. The treatments were composed of 100% organic (ONM), 100% inorganic (NPK), and integrated nutrient management (INM) with 50% organic + 50% inorganic inputs. The gas samples for GHGs (CO 2 , CH 4 , and N 2 O) were collected by static chamber method at about 15-day interval during 2012-13 growing season. The change in soil organic carbon (SOC) content was estimated in terms of the changes in SOC stock in the 0-15 cm soil over the 9-year period covering 2004 to 2013. There was a net uptake of CH 4 in all the treatments in both soybean and wheat crop seasons. The cumulative N 2 O and CO 2 emissions were in the order of INM > ONM > NPK with significant difference between treatments (p < 0.05) in both the crop seasons. The annual GWP, expressed in terms of CH 4 and N 2 O emission, also followed the same trend and was estimated to be 1126, 1002, and 896 kg CO 2 eq ha -1  year -1 under INM, ONM, and NPK treatments, respectively. However, the change in SOC stock was significantly higher under ONM (1250 kg ha -1  year -1 ) followed by INM (417 kg ha -1  year -1 ) and least under NPK (198 kg ha -1  year -1 ) treatment. The wheat equivalent yield was similar under ONM and INM treatments and was significantly lower under NPK treatment. Thus, the GWP per unit grain yield was lower under ONM followed by NPK and INM treatments and varied from 250, 261, and 307 kg CO 2 eq Mg -1 grain yield under ONM, NPK, and INM treatments, respectively.

  1. A meteorologist's view of the greenhouse effect

    International Nuclear Information System (INIS)

    Zillman, J.W.

    2001-01-01

    The greenhouse effect is a natural process in the atmosphere which keeps the earth's surface warm enough for human life There are theoretical and observational reasons for believing that increasing atmospheric concentrations of the trace gases responsible for this surface warmth are leading to enhanced warming and other changes of global and regional climate By modifying the meteorological models used for routine numerical weather prediction to incorporate the influences that are believed to be of most importance on decade to century and longer time scales, the climate research community are able to explore the possible impacts on global and regional climate of a range of possible future greenhouse gas emissions and concentrations. Despite many uncertainties, these provide the principal scientific basis for intergovernmental negotiation on the development of global strategies for averting or minimising adverse human impacts on climate and assisting national communities in planning to live with natural climate variability and possible future human-induced change

  2. Emerging economies. Potentials, pledges and fair shares of greenhouse gas reduction

    Energy Technology Data Exchange (ETDEWEB)

    Fekete, Hanna; Hoehne, Niklas; Hagemann, Markus [Ecofys Germany GmbH, Koeln (Germany); Wehnert, Timon; Mersmann, Florian [Wuppertal Institute for Climate, Environment, Energy GmbH (Germany); Vieweg, Marion; Rocha, Marcia; Schaeffer, Michiel; Hare, William [Climate Analytics gGmbH, Berlin (Germany)

    2013-04-15

    Greenhouse gas emissions need to decrease substantially to limit global average temperature to a maximum of 2 C warming above the preindustrial level in 2100. Emerging economies are of increasing importance in this global effort. In this report we assess how ambitious emission reduction pledges of emerging economies are compared to business as usual emissions, the countries' mitigation potential and respective efforts based on different equity principles. We also compare the pledges and the identified mitigation potential of emerging economies to a global emissions pathway needed to limit global temperature increase to 2 C. Our assessment includes Brazil, China, India, Mexico, South Africa and South Korea. We find that emerging economies have a substantial impact on future global emission levels. This is due to high current levels and high projected growth rates. Also, in most of the countries a large emission reduction potential is available. Action needs to be taken soon to enable the full use of the potential until 2020 and most emerging economies will need significant support from developed countries to implement those.

  3. Steps toward a cooler greenhouse

    International Nuclear Information System (INIS)

    Kerr, R.A.

    1991-01-01

    In April a committee of the National Academies of Science and Engineering and the Institute of Medicine urged the Bush Administration and Congress to begin cutting emissions of greenhouse gases immediately. The risk of delay is great, and the cost of insurance against disastrous climate warming is cheap. Now the committee's panel on mitigation has issued a 500-page report describing just how cheap that hedge against a climate calamity could be. The panel found that it would not be unreasonable to expect that a 25% reduction in US greenhouse gas emissions might be achieved at a cost of less than $10 per ton of carbon dioxide or its equivalent in other greenhouse gases. In more familiar terms, that considerable reduction in greenhouse emissions would cost about $4.75 for each barrel of oil burned or $0.11 per gallon of gasoline. The most cost-effective measures for reducing emissions, are increasing the energy efficiency of residential and commercial buildings and activities, vehicles, and industrial processes that use electricity

  4. High-global warming potential F-gas emissions in California: comparison of ambient-based versus inventory-based emission estimates, and implications of refined estimates.

    Science.gov (United States)

    Gallagher, Glenn; Zhan, Tao; Hsu, Ying-Kuang; Gupta, Pamela; Pederson, James; Croes, Bart; Blake, Donald R; Barletta, Barbara; Meinardi, Simone; Ashford, Paul; Vetter, Arnie; Saba, Sabine; Slim, Rayan; Palandre, Lionel; Clodic, Denis; Mathis, Pamela; Wagner, Mark; Forgie, Julia; Dwyer, Harry; Wolf, Katy

    2014-01-21

    To provide information for greenhouse gas reduction policies, the California Air Resources Board (CARB) inventories annual emissions of high-global-warming potential (GWP) fluorinated gases, the fastest growing sector of greenhouse gas (GHG) emissions globally. Baseline 2008 F-gas emissions estimates for selected chlorofluorocarbons (CFC-12), hydrochlorofluorocarbons (HCFC-22), and hydrofluorocarbons (HFC-134a) made with an inventory-based methodology were compared to emissions estimates made by ambient-based measurements. Significant discrepancies were found, with the inventory-based emissions methodology resulting in a systematic 42% under-estimation of CFC-12 emissions from older refrigeration equipment and older vehicles, and a systematic 114% overestimation of emissions for HFC-134a, a refrigerant substitute for phased-out CFCs. Initial, inventory-based estimates for all F-gas emissions had assumed that equipment is no longer in service once it reaches its average lifetime of use. Revised emission estimates using improved models for equipment age at end-of-life, inventories, and leak rates specific to California resulted in F-gas emissions estimates in closer agreement to ambient-based measurements. The discrepancies between inventory-based estimates and ambient-based measurements were reduced from -42% to -6% for CFC-12, and from +114% to +9% for HFC-134a.

  5. Alternatives to the Global Warming Potential for Comparing Climate Impacts of Emissions of Greenhouse Gases

    International Nuclear Information System (INIS)

    Shine, Keith P.; Fuglestvedt, J.S.; Hailemariam, K.; Stuber, N.

    2005-01-01

    The Global Warming Potential (GWP) is used within the Kyoto Protocol to the United Nations Framework Convention on Climate Change as a metric for weighting the climatic impact of emissions of different greenhouse gases. The GWP has been subjected to many criticisms because of its formulation, but nevertheless it has retained some favour because of the simplicity of its design and application, and its transparency compared to proposed alternatives. Here, two new metrics are proposed, which are based on a simple analytical climate model. The first metric is called the Global Temperature Change Potential and represents the temperature change at a given time due to a pulse emission of a gas (GTPP); the second is similar but represents the effect of a sustained emission change (hence GTPS). Both GTPP and GTPS are presented as relative to the temperature change due to a similar emission change of a reference gas, here taken to be carbon dioxide. Both metrics are compared against an upwelling-diffusion energy balance model that resolves land and ocean and the hemispheres. The GTPP does not perform well, compared to the energy balance model, except for long-lived gases. By contrast, the GTPS is shown to perform well relative to the energy balance model, for gases with a wide variety of lifetimes. It is also shown that for time horizons in excess of about 100 years, the GTPS and GWP produce very similar results, indicating an alternative interpretation for the GWP. The GTPS retains the advantage of the GWP in terms of transparency, and the relatively small number of input parameters required for calculation. However, it has an enhanced relevance, as it is further down the cause-effect chain of the impacts of greenhouse gases emissions and has an unambiguous interpretation. It appears to be robust to key uncertainties and simplifications in its derivation and may be an attractive alternative to the GWP

  6. Greenhouse Gas Emissions of Beef Cattle Production in the Southern Great Plains

    Science.gov (United States)

    Kannan, N.; Niraula, R.; Saleh, A.; Osei, E.; Cole, A.; Todd, R.; Waldrip, H.; Aljoe, H.

    2017-12-01

    A five-year USDA-funded study titled "Resilience and vulnerability of beef cattle production in the Southern Great Plains under changing climate, land use, and markets" was initiated as a multi-institutional collaboration involving Texas Institute for Applied Environmental Research (TIAER)—Tarleton State University, United States Department of Agriculture (USDA)—Agricultural Research Service (ARS) in El Reno, Oklahoma, USDA—ARS in Bushland, Texas, Kansas State University, Oklahoma State University, University of Oklahoma, and the Noble Research Institute in Ardmore, Oklahoma. The project goal is to safeguard and promote regional beef production while mitigating its environmental footprint. Conducting a full Life Cycle Analysis (LCA) is one of the major objectives of the study, in addition to field experiments, extension, outreach, and education. Estimation of all the resource use and greenhouse gas emissions are parts of the LCA. A computer model titled Animal Production Life Cycle Analysis Tool (APLCAT) is developed and applied to conduct the LCA on beef cattle production in the study region. The model estimates water use, energy requirements, and emissions of enteric methane, manure methane, nitrous oxide, and carbon dioxide. Also included in the LCA analysis are land-atmospheric exchanges of methane, nitrous oxide, carbon dioxide and the global warming potential. Our study is focused on the cow-calf and stocker phases of beef cattle production. The animal production system in the study region is predominantly forage based with protein and energy supplements when needed. Spring calving typical to the study region. In the cow-calf phase animals typically graze native prairie although introduced pasture grazing is also prevalent. Stockers use winter pasture as the major feed. The results of greenhouse gas emissions summarized per kg of hot carcass weight or animal fed will be presented.

  7. Practices for Reducing Greenhouse Gas Emissions from Rice Production in Northeast Thailand

    Directory of Open Access Journals (Sweden)

    Noppol Arunrat

    2017-01-01

    Full Text Available Land management practices for rice productivity and carbon storage have been a key focus of research leading to opportunities for substantial greenhouse gas (GHG mitigation. The effects of land management practices on global warming potential (GWP and greenhouse gas intensity (GHGI from rice production within the farm gate were investigated. For the 13 study sites, soil samples were collected by the Land Development Department in 2004. In 2014, at these same sites, soil samples were collected again to estimate the soil organic carbon sequestration rate (SOCSR from 2004 to 2014. Surveys were conducted at each sampling site to record the rice yield and management practices. The carbon dioxide (CO2, methane (CH4, and nitrous oxide (N2O emissions, Net GWP, and GHGI associated with the management practices were calculated. Mean rice yield and SOCSR were 3307 kg·ha−1·year−1 and 1173 kg·C·ha−1·year−1, respectively. The net GWP varied across sites, from 819 to 5170 kg·CO2eq·ha−1·year−1, with an average value of 3090 kg·CO2eq·ha−1·year−1. GHGI ranged from 0.31 to 1.68 kg·CO2eq·kg−1 yield, with an average value of 0.97 kg·CO2eq·kg−1 yield. Our findings revealed that the amount of potassium (potash, K2O fertilizer application rate is the most significant factor explaining rice yield and SOCSR. The burning of rice residues in the field was the main factor determining GHGI in this area. An effective way to reduce GHG emissions and contribute to sustainable rice production for food security with low GHGI and high productivity is avoiding the burning of rice residues.

  8. State and Territory Greenhouse Gas Emissions. An overview

    International Nuclear Information System (INIS)

    2005-04-01

    This document is a summary of the latest available estimates of greenhouse gas emissions for the States and Territories. They are taken from the national inventory and show emissions for 2002, the latest year for which national statistics on fuel and electricity consumption are available. The report shows that Australia's total greenhouse gas emissions in 2002 amounted to 541.8 million tonnes. The State and Territory breakdown was: New South Wales: 151.5 million tonnes (Mt); Queensland: 145.1 Mt; Victoria: 117.0 Mt; Western Australia: 70.4 Mt; South Australia: 30.9 Mt; Northern Territory: 17.7 Mt; Tasmania: 7.2 Mt; ACT: 1.3 Mt. The State and Territory inventories are the first of what will be an annual series. The national inventory and State and Territory inventories are all prepared according to the international rules and procedures applicable to Australia's Kyoto 108% emissions target. The national inventory undergoes regular independent international review

  9. Greenhouse Gas and Noxious Emissions from Dual Fuel Diesel and Natural Gas Heavy Goods Vehicles.

    Science.gov (United States)

    Stettler, Marc E J; Midgley, William J B; Swanson, Jacob J; Cebon, David; Boies, Adam M

    2016-02-16

    Dual fuel diesel and natural gas heavy goods vehicles (HGVs) operate on a combination of the two fuels simultaneously. By substituting diesel for natural gas, vehicle operators can benefit from reduced fuel costs and as natural gas has a lower CO2 intensity compared to diesel, dual fuel HGVs have the potential to reduce greenhouse gas (GHG) emissions from the freight sector. In this study, energy consumption, greenhouse gas and noxious emissions for five after-market dual fuel configurations of two vehicle platforms are compared relative to their diesel-only baseline values over transient and steady state testing. Over a transient cycle, CO2 emissions are reduced by up to 9%; however, methane (CH4) emissions due to incomplete combustion lead to CO2e emissions that are 50-127% higher than the equivalent diesel vehicle. Oxidation catalysts evaluated on the vehicles at steady state reduced CH4 emissions by at most 15% at exhaust gas temperatures representative of transient conditions. This study highlights that control of CH4 emissions and improved control of in-cylinder CH4 combustion are required to reduce total GHG emissions of dual fuel HGVs relative to diesel vehicles.

  10. The Greenhouse and Anti-Greenhouse Effects on Titan

    Science.gov (United States)

    McKay, C. P.; Cuzzi, Jeffrey N. (Technical Monitor)

    1994-01-01

    Titan is the largest moon of Saturn and is the only moon in the solar system with a substantial atmosphere. Its atmosphere is mostly made of nitrogen, with a few percent CH4, 0.1% H2 and an uncertain level of Ar (less than 10%). The surface pressure is 1.5 atms and the surface temperature is 95 K, decreasing to 71 at the tropopause before rising to stratospheric temperatures of 180 K. In pressure and composition Titan's atmosphere is the closest twin to Earth's. The surface of Titan remains unknown, hidden by the thick smog layer, but it may be an ocean of liquid methane and ethane. Titan's atmosphere has a greenhouse effect which is much stronger than the Earth's - 92% of the surface warming is due to greenhouse radiation. However an organic smog layer in the upper atmosphere produces an anti-greenhouse effect that cuts the greenhouse warming in half - removing 35% of the incoming solar radiation. Models suggest that during its formation Titan's atmosphere was heated to high temperatures due to accretional energy. This was followed by a cold Triton-like period which gradually warmed to the present conditions. The coupled greenhouse and haze anti-greenhouse may be relevant to recent suggestions for haze shielding of a CH4 - NH3 early atmosphere on Earth or Mars. When the NASA/ESA mission to the Saturn System, Cassini, launches in a few years it will carry a probe that will be sent to the surface of Titan and show us this world that is strange and yet in many ways similar to our own.

  11. A Global Meta-Analysis on the Impact of Management Practices on Net Global Warming Potential and Greenhouse Gas Intensity from Cropland Soils

    Science.gov (United States)

    Sainju, Upendra M.

    2016-01-01

    Management practices, such as tillage, crop rotation, and N fertilization, may affect net global warming potential (GWP) and greenhouse gas intensity (GHGI), but their global impact on cropland soils under different soil and climatic conditions need further evaluation. Available global data from 57 experiments and 225 treatments were evaluated for individual and combined effects of tillage, cropping systems, and N fertilization rates on GWP and GHGI which accounted for CO2 equivalents from N2O and CH4 emissions with or without equivalents from soil C sequestration rate (ΔSOC), farm operations, and N fertilization. The GWP and GHGI were 66 to 71% lower with no-till than conventional till and 168 to 215% lower with perennial than annual cropping systems, but 41 to 46% greater with crop rotation than monocroppping. With no-till vs. conventional till, GWP and GHGI were 2.6- to 7.4-fold lower when partial than full accounting of all sources and sinks of greenhouse gases (GHGs) were considered. With 100 kg N ha-1, GWP and GHGI were 3.2 to 11.4 times greater with partial than full accounting. Both GWP and GHGI increased curvilinearly with increased N fertilization rate. Net GWP and GHGI were 70 to 87% lower in the improved combined management that included no-till, crop rotation/perennial crop, and reduced N rate than the traditional combined management that included conventional till, monocopping/annual crop, and recommended N rate. An alternative soil respiration method, which replaces ΔSOC by soil respiration and crop residue returned to soil in the previous year, similarly reduced GWP and GHGI by 133 to 158% in the improved vs. the traditional combined management. Changes in GWP and GHGI due to improved vs. traditional management varied with the duration of the experiment and inclusion of soil and climatic factors in multiple linear regressions improved their relationships. Improved management practices reduced GWP and GHGI compared with traditional management

  12. A Global Meta-Analysis on the Impact of Management Practices on Net Global Warming Potential and Greenhouse Gas Intensity from Cropland Soils.

    Science.gov (United States)

    Sainju, Upendra M

    2016-01-01

    Management practices, such as tillage, crop rotation, and N fertilization, may affect net global warming potential (GWP) and greenhouse gas intensity (GHGI), but their global impact on cropland soils under different soil and climatic conditions need further evaluation. Available global data from 57 experiments and 225 treatments were evaluated for individual and combined effects of tillage, cropping systems, and N fertilization rates on GWP and GHGI which accounted for CO2 equivalents from N2O and CH4 emissions with or without equivalents from soil C sequestration rate (ΔSOC), farm operations, and N fertilization. The GWP and GHGI were 66 to 71% lower with no-till than conventional till and 168 to 215% lower with perennial than annual cropping systems, but 41 to 46% greater with crop rotation than monocroppping. With no-till vs. conventional till, GWP and GHGI were 2.6- to 7.4-fold lower when partial than full accounting of all sources and sinks of greenhouse gases (GHGs) were considered. With 100 kg N ha-1, GWP and GHGI were 3.2 to 11.4 times greater with partial than full accounting. Both GWP and GHGI increased curvilinearly with increased N fertilization rate. Net GWP and GHGI were 70 to 87% lower in the improved combined management that included no-till, crop rotation/perennial crop, and reduced N rate than the traditional combined management that included conventional till, monocopping/annual crop, and recommended N rate. An alternative soil respiration method, which replaces ΔSOC by soil respiration and crop residue returned to soil in the previous year, similarly reduced GWP and GHGI by 133 to 158% in the improved vs. the traditional combined management. Changes in GWP and GHGI due to improved vs. traditional management varied with the duration of the experiment and inclusion of soil and climatic factors in multiple linear regressions improved their relationships. Improved management practices reduced GWP and GHGI compared with traditional management

  13. Greenhouse gases, radiative forcing, global warming potential and waste management – an introduction

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Kjeldsen, Peter; Gentil, Emmanuel

    2009-01-01

    forcing (RF) and global warming potential (GWP). This paper provides a general introduction of the factors that define a GHG and explains the scientific background for estimating RF and GWP, thereby exposing the lay reader to a brief overview of the methods for calculating the effects of GHGs on climate......Management of post-consumer solid waste contributes to emission of greenhouse gases (GHGs) representing about 3% of global anthropogenic GHG emissions. Most GHG reporting initiatives around the world utilize two metrics proposed by the Intergovernmental Panel on Climate Change (IPCC): radiative...

  14. The possibilities of municipal operations to control greenhouse gas emissions of road traffic

    Energy Technology Data Exchange (ETDEWEB)

    Saeily, S.

    2004-07-01

    Kyoto protocol obligates industrialized countries to decrease their greenhouse gas emissions averagely by 5,2 percent from the 1990 level before 2008-2012. Finland is committed to stabilize its greenhouse gas emissions to the level of year 1990 before 2008-2012. Carbon monoxide, hydrocarbon, nitric oxide, sulphur dioxide, particles and carbon dioxide are regarded as hazardous emissions of road traffic. These gases are generated by impure burning which is generally expected. From these gases carbon dioxide is considered to be the actual greenhouse gas. Nitric oxide, vaporizing hydrocarbons, sulphur dioxide and carbon monoxide are considered to be indirect greenhouse gases. 20 percent of Finland's carbon dioxide emissions comes from road traffic. Actions aimed to decrease greenhouse gas emissions can be executed at various levels. The smaller the size of an actor is, the more specific the possible actions are. The actions of public administration are based on controlling economy, traffic systems and maintenance of order. The actions of private companies and communities are based on economical profitability. Decisions of individual persons are still the most significant factor in decreasing green house gases generated by passenger traffic. In this study an operations model was developed for municipalities to reduce their greenhouse gas emissions. As a case city of the study was the city of Tampere. Tampere is the third largest city in Finland and has over 15,000 employees. A more specific set of measures was introduced to three different operational units, the University Hospital of Tampere, the primary school of Tammela and the amusement park Saerkaenniemi. For each unit suitable measures were searched by studying the unit's traffic-related significance to help to decrease the unit's greenhouse gas emissions. The traffic generated by municipal operations is mainly related to commuting, work-related, customer and maintenance traffic. Measures which are

  15. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300

    NARCIS (Netherlands)

    Meinhausen, M.; Smith, S.J.; Calvin, K.; Daniel, J.S.; Kainuma, M.L.T.; Lamarque, J.; Matsumoto, K.; Montzka, S.A.; Raper, S.C.B.; Riahi, K.; Thomson, A.; Velders, G.J.M.; van Vuuren, D.P.|info:eu-repo/dai/nl/11522016X

    2011-01-01

    We present the greenhouse gas concentrations for the Representative Concentration Pathways (RCPs) and their extensions beyond 2100, the Extended Concentration Pathways (ECPs). These projections include all major anthropogenic greenhouse gases and are a result of a multi-year effort to produce new

  16. Greenhouse gas emissions - a global challenge

    International Nuclear Information System (INIS)

    Aarebrot, Eivind; Langvik, Sveinung

    2000-01-01

    The article describes some greenhouse gas emission challenges in the Norwegian petroleum industry. Some of the conclusions are that the national taxation policies are insufficient and that international co-operation is essential in order to obtain significant pollution abatement. The mechanisms for this are not yet in place. Some possible measures are mentioned. The main solution to the problems internationally seems to be international co-operation projects generally with quota trade in order to meet the Kyoto agreement obligations

  17. Statistical polarization in greenhouse gas emissions: Theory and evidence

    International Nuclear Information System (INIS)

    Remuzgo, Lorena; Trueba, Carmen

    2017-01-01

    The current debate on climate change is over whether global warming can be limited in order to lessen its impacts. In this sense, evidence of a decrease in the statistical polarization in greenhouse gas (GHG) emissions could encourage countries to establish a stronger multilateral climate change agreement. Based on the interregional and intraregional components of the multivariate generalised entropy measures (Maasoumi, 1986), Gigliarano and Mosler (2009) proposed to study the statistical polarization concept from a multivariate view. In this paper, we apply this approach to study the evolution of such phenomenon in the global distribution of the main GHGs. The empirical analysis has been carried out for the time period 1990–2011, considering an endogenous grouping of countries (Aghevli and Mehran, 1981; Davies and Shorrocks, 1989). Most of the statistical polarization indices showed a slightly increasing pattern that was similar regardless of the number of groups considered. Finally, some policy implications are commented. - Highlights: • We study the evolution of global polarization in GHG emissions. • We consider the four main GHGs: CO2, CH4, N2O and F-gases. • We use the multidimensional polarization indices (). • We consider an endogenous grouping of countries (). • Most of the polarization indices showed a slightly increasing pattern.

  18. The Peculiar Negative Greenhouse Effect Over Antarctica

    Science.gov (United States)

    Sejas, S.; Taylor, P. C.; Cai, M.

    2017-12-01

    Greenhouse gases warm the climate system by reducing the energy loss to space through the greenhouse effect. Thus, a common way to measure the strength of the greenhouse effect is by taking the difference between the surface longwave (LW) emission and the outgoing LW radiation. Based on this definition, a paradoxical negative greenhouse effect is found over the Antarctic Plateau, which suprisingly indicates that greenhouse gases enhance energy loss to space. Using 13 years of NASA satellite observations, we verify the existence of the negative greenhouse effect and find that the magnitude and sign of the greenhouse effect varies seasonally and spectrally. A previous explanation attributes the negative greenhouse effect solely to stratospheric CO2 and warmer than surface stratospheric temperatures. However, we surprisingly find that the negative greenhouse effect is predominantly caused by tropospheric water vapor. A novel principle-based explanation provides the first complete account of the Antarctic Plateau's negative greenhouse effect indicating that it is controlled by the vertical variation of temperature and greenhouse gas absorption strength. Our findings indicate that the strong surface-based temperature inversion and scarcity of free tropospheric water vapor over the Antarctic Plateau cause the negative greenhouse effect. These are climatological features uniquely found in the Antarctic Plateau region, explaining why the greenhouse effect is positive everywhere else.

  19. Talisman Energy Inc. progress on reducing greenhouse gas emissions. Revised ed.

    International Nuclear Information System (INIS)

    2001-01-01

    Talisman Energy Inc., as the largest independent Canadian oil and gas producer, is committed to supporting the Voluntary Challenge and Registry (VCR) Program. To this effect, voluntary measures have been implemented for achieving energy efficiency and greenhouse gas emissions reductions. Some of those measures include a yearly electrical audit in each field, the establishment of facility design and equipment procurement practices, gas well deliverability testing, gas conservation and flare reduction, a new energy data management system, senior management monitoring of greenhouse gas emissions reductions, and several others. Each of these measures was briefly described, and the base year quantification was included along with projections and target setting. Section 6 of the document introduced the measures to achieve targets, followed by section 7 containing results achieved. In section 8, the topic of education, training and awareness was discussed. A brief acknowledgements section was included at the end of the document. 10 tabs., 6 figs

  20. Greenhouse gas footprints of different biofuel production systems

    NARCIS (Netherlands)

    Hoefnagels, E.T.A.; Smeets, E.M.W.; Faaij, A.P.C.

    2010-01-01

    The aim of this study is to show the impact of different assumptions and methodological choices on the life-cycle greenhouse gas (GHG) performance of biofuels by providing the results for different key parameters on a consistent basis. These include co-products allocation or system expansion, N2O

  1. Greenhouse gas emissions from energy production in Russia: Current status and possible scenarios for the future

    International Nuclear Information System (INIS)

    Ginzburg, V.

    1998-01-01

    In accordance with the framework Convention on Climate Change that was signed and ratified by Russian Federation, periodical reports about the actions of Russia are published. An inventory of human origin sources of greenhouse gas was prepared. Carbondioxide represented 72% of total greenhouse das emissions. Policy and action plans for limiting of greenhouse gas emissions are developing

  2. Interaction and coupling in the emission of greenhouse gases from animal husbandry

    NARCIS (Netherlands)

    Monteny, G.J.; Groenestein, C.M.; Hilhorst, M.A.

    2001-01-01

    The gases methane (CH4) and nitrous oxide (N2O) contribute to global warming, while N2O also affects the ozone layer. Sources of greenhouse gas emissions in animal husbandry include animals, animal houses (indoor storage of animal excreta), outdoor storage, manure and slurry treatment (e.g.,

  3. Emissions of greenhouse gases in the United States, 1985--1990

    International Nuclear Information System (INIS)

    1993-01-01

    The Earth's capacity to support life depends on the moderating influences of gases that envelop the planet and warm its surface and protect it from harmful radiation. These gases are referred to as ''greenhouse gases.'' Their warming capacity, called ''the greenhouse effect,'' is essential to maintaining a climate hospitable to all plant, animal, and human life. In recent years, however, there has been increasing concern that human activity may be affecting the intricate balance between the Earth's absorption of heat from the sun and its capacity to reradiate excess heat back into space. Emissions of greenhouse gases from human activities may be an important mechanism that affects global climate. Thus, research is intensifying to improve our understanding of the role human activities might play in influencing atmospheric concentrations of greenhouse gases. On the basis of scientific findings of the past few decades, the US Government and the international community at large are now taking steps toward stabilizing greenhouse gas emissions. This report contributes to that process. Mandated by Congress this report provides estimates of US emissions of the principal greenhouse gases--carbon dioxide, methane, nitrous oxide, chlorofluorcarbons, carbon monoxide, nitrogen oxides, and nonmethane volatile organic compounds. Estimates are for the period 1985 to 1990. Preliminary estimates for 1991 have also been included, whenever data were available

  4. Emissions of greenhouse gases in the United States, 1985--1990

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-10

    The Earth`s capacity to support life depends on the moderating influences of gases that envelop the planet and warm its surface and protect it from harmful radiation. These gases are referred to as ``greenhouse gases.`` Their warming capacity, called ``the greenhouse effect,`` is essential to maintaining a climate hospitable to all plant, animal, and human life. In recent years, however, there has been increasing concern that human activity may be affecting the intricate balance between the Earth`s absorption of heat from the sun and its capacity to reradiate excess heat back into space. Emissions of greenhouse gases from human activities may be an important mechanism that affects global climate. Thus, research is intensifying to improve our understanding of the role human activities might play in influencing atmospheric concentrations of greenhouse gases. On the basis of scientific findings of the past few decades, the US Government and the international community at large are now taking steps toward stabilizing greenhouse gas emissions. This report contributes to that process. Mandated by Congress this report provides estimates of US emissions of the principal greenhouse gases--carbon dioxide, methane, nitrous oxide, chlorofluorcarbons, carbon monoxide, nitrogen oxides, and nonmethane volatile organic compounds. Estimates are for the period 1985 to 1990. Preliminary estimates for 1991 have also been included, whenever data were available.

  5. Implications of possible interpretations of "greenhouse gas balance" in the Paris Agreement

    Science.gov (United States)

    Millar, R.; Fuglestvedt, J. S.; Rogelj, J.; Allen, M. R.; Boucher, O.; Forster, P.; Kriegler, E.; Shindell, D. T.

    2017-12-01

    The main goal of the Paris Agreement as stated in its Article 2 is "Holding the increase in the global average temperature to well below 2°C above pre-industrial levels and pursuing efforts to limit the temperature increase to 1.5°C above pre-industrial levels…". Article 4 points to this long-term goal and the need to "… achieve balance between anthropogenic emissions by sources and removals by sinks of greenhouse gases …". The statement on "greenhouse gas balance" is subject to interpretation, and several clarifications are needed in order to make it operational for implementation in climate policies. Here we study possible interpretations from a scientific perspective and analyze their climatic implications. We clarify how the balance referred to in Article 4 of the Paris Agreement applies to anthropogenic sources and anthropogenic sinks and how the implications for individual gases depends strongly on the emission metrics used to relate them. We also show that the way in which balance is interpreted, achieved and maintained influences the anticipated temperature outcome over time. For example, achieving and maintaining net zero CO2-equivalent emissions calculated with the widely used metric Global Warming Potential with a horizon of 100 years (GWP100) - adopted for the implementation of the Kyoto Protocol and in UNFCCC reporting - would result in a peak and decline in global mean temperature. Adopting a different metric, like GWP* (Allen et al., 2016), would result in global mean temperatures remaining approximately constant once net zero CO2-equivalent emissions are achieved and maintained. Policymakers should be aware of these issues and choices and determine which approach is most appropriate in the context of the goals of the Paris Agreement.Reference:Allen, Fuglestvedt, Shine, Reisinger, Pierrehumbert, Forster: New use of global warming potentials to compare cumulative and short-lived climate pollutants. Nature Climate Change (2016). doi:10

  6. Greenhouse Gases Emission and Global Warming Potential as Affected by Chemicals Inputs for Main Cultivated Crops in Kerman Province: - Cereal

    Directory of Open Access Journals (Sweden)

    Rooholla Moradi

    2017-10-01

    Full Text Available Introduction Agriculture is a major consumer of chemical resources. Increasing use of the inputs in agriculture has led to numerous environmental problems such as high consumption of nonrenewable energy resources, loss of biodiversity and pollution of the aquatic environment (Moradi et al., 2014. This environmental change will have the serious impacts on different growth and development processes of crops. The latest report of the Intergovernmental Panel on Climate Change (IPCC states that future emissions of greenhouse gases (GHGs will continue to increase and cause to climatic change (IPCC, 2007. This condition is also true for Iran. The three greenhouse gases associated with agriculture are carbon dioxide (CO2, methane (CH4, and nitrous oxide (N2O. Consistent with the development of agricultural production systems and move towards modernization in this sector increased dependence of the chemical resource (Salinger, 2005. There is even less data on CO2, N2O, and CH4 gas emission analysis as affected by cultivating various crops in Kerman province. Therefore, this study was conducted to assess the greenhouse gases (GHGs emission and global warming potential (GWP caused by chemical inputs (various chemical fertilizers and pesticides for cultivating wheat, barley and maize in some regions of Kerman province at 2011-2012 growth season. Materials and methods The study was conducted in Kerman province of Iran. Information about planting area of potato, onion and watermelon in various regions of Kerman was collected. Data were collected from potato, onion and watermelon growers by using a face to face questionnaire in 2014 for different regions of Kerman. In addition to the data obtained by surveys, previous studies of related organization (Agricultural Ministry of Kerman were also utilized during the study. The application rates of the chemical inputs were collected by using a face-to-face questionnaire in various regions (Bardsir, Bam, Jiroft

  7. Greenhouse gas emission impacts of carsharing in North America

    Science.gov (United States)

    2010-06-01

    This report presents the results of a study evaluating the greenhouse gas (GHG) emission changes that result from individuals participating in a carsharing organization. In this study, the authors conducted a survey of carsharing members across the c...

  8. Towards a standard methodology for greenhouse gas balances of bioenergy systems in comparison with fossil energy systems

    International Nuclear Information System (INIS)

    Schlamadinger, B.; Jungmeier, G.; Apps, M.; Bohlin, F.; Gustavsson, L.; Marland, G.; Pingoud, K.; Savolainen, I.

    1997-01-01

    In this paper, which was prepared as part of IEA Bioenergy Task XV (''Greenhouse Gas Balances of Bioenergy Systems''), we outline a standard methodology for comparing the greenhouse gas balances of bioenergy systems with those of fossil energy systems. Emphasis is on a careful definition of system boundaries. The following issues are dealt with in detail: time interval analysed and changes of carbon stocks; reference energy systems; energy inputs required to produce, process and transport fuels; mass and energy losses along the entire fuel chain; energy embodied in facility infrastructure; distribution systems; cogeneration systems; by-products; waste wood and other biomass waste for energy; reference land use; and other environmental issues. For each of these areas recommendations are given on how analyses of greenhouse gas balances should be performed. In some cases we also point out alternative ways of doing the greenhouse gas accounting. Finally, the paper gives some recommendations on how bioenergy systems should be optimized from a greenhouse-gas emissions point of view. (author)

  9. Assessment of the impact of the greenhouse gas emission and sink scenarios in Finland on radiative forcing and greenhouse effect

    Energy Technology Data Exchange (ETDEWEB)

    Savolainen, I; Sinisalo, J; Pipatti, R [Technical Research Centre of Finland, Espoo (Finland)

    1997-12-31

    The objective of this work is to study greenhouse gas emissions and sinks and their greenhouse impact as a function of time. The greenhouse impact is expressed in terms of global average radiative forcing, which measures the perturbation in the Earth`s radiation budget. Radiative forcing is calculated on the basis of the concentration changes of the greenhouse gases and the radiation absorption properties of the gases. It takes into account the relatively slow changes in the concentrations due to natural removal and transformation processes and also allows a comparison of the impact of various greenhouse gases and their possible control options as a function of time. In addition to the applications mentioned above, the anthropogenic greenhouse gas emission histories of Nordic countries have been estimated, and the radiative forcing caused by them has been calculated with REFUGE. The dynamic impact of aerosol emissions both from the global point of view and in the context of different energy sources (coal, oil and natural gas) have also been studied. In some instances the caused radiative forcing has been examined on a per capita basis. The radiative forcing calculations contain considerable uncertainty due to inaccurately known factors at several stages of the calculation (emission estimation, concentration calculation and radiative forcing calculation). The total uncertainty of the results is typically on the order of +- 40 %, when absolute values are used. If the results are used in a relative way, e.g. to compare the impacts of different scenarios, the final uncertainty is considerably less (typically + 10 %), due to correlations in almost all stages of the calculation process

  10. Assessment of the impact of the greenhouse gas emission and sink scenarios in Finland on radiative forcing and greenhouse effect

    Energy Technology Data Exchange (ETDEWEB)

    Savolainen, I.; Sinisalo, J.; Pipatti, R. [Technical Research Centre of Finland, Espoo (Finland)

    1996-12-31

    The objective of this work is to study greenhouse gas emissions and sinks and their greenhouse impact as a function of time. The greenhouse impact is expressed in terms of global average radiative forcing, which measures the perturbation in the Earth`s radiation budget. Radiative forcing is calculated on the basis of the concentration changes of the greenhouse gases and the radiation absorption properties of the gases. It takes into account the relatively slow changes in the concentrations due to natural removal and transformation processes and also allows a comparison of the impact of various greenhouse gases and their possible control options as a function of time. In addition to the applications mentioned above, the anthropogenic greenhouse gas emission histories of Nordic countries have been estimated, and the radiative forcing caused by them has been calculated with REFUGE. The dynamic impact of aerosol emissions both from the global point of view and in the context of different energy sources (coal, oil and natural gas) have also been studied. In some instances the caused radiative forcing has been examined on a per capita basis. The radiative forcing calculations contain considerable uncertainty due to inaccurately known factors at several stages of the calculation (emission estimation, concentration calculation and radiative forcing calculation). The total uncertainty of the results is typically on the order of +- 40 %, when absolute values are used. If the results are used in a relative way, e.g. to compare the impacts of different scenarios, the final uncertainty is considerably less (typically + 10 %), due to correlations in almost all stages of the calculation process

  11. Model of Emissions of Greenhouse Gases (Ghg's in the Oil and Gas Industry

    Directory of Open Access Journals (Sweden)

    Amarildo da Cruz Fernandes

    2012-06-01

    Full Text Available The warming of Earth's atmosphere is a natural phenomenon and necessary to sustain life on the planet, being caused by the balance between the electromagnetic radiation received by the Earth from the Sun and the infrared radiation emitted by the Earth back into space. Since the mid-eighteenth century, with the advent of the Industrial Revolution and the consequent increase in burning fossil fuels, changes in land use and agriculture, the concentrations of carbon dioxide (CO2, methane (CH4 and nitrous oxide (N2O has increased significantly. By the year 2010, the concentrations of these three gases showed increments respectively in the order of 39%, 158% and 20% (WMO 2009, 2010 and 2011. Such increases in the concentrations of these gases are changing the Earth's radioactive balance, intensifying the natural greenhouse effect, which over millions of years has been essential to support life on the planet. The main objective of this paper is to present the development of a model based on the language of System Dynamics (SD, of how the emission of Greenhouse Gases (GHGs is in complex installations Exploration and Production (E & P of oil and gas. To illustrate one of the results of this modeling process a computer simulation was performed involving emissions from production estimate for the Pilot Production System and Drainage Area Tupi - Tupi Pilot (ICF, 2008.

  12. Basic study for Joint Implementation Pipeline System Optimization Project including rehabilitation of gas pipeline in Ukraine for greenhouse gas reduction

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    For the purpose of reducing greenhouse effect gas emissions, a study was conducted of a project for repair/optimization of the Shebelinka, Dikanka-Kyiv, gas pipeline system in the Republic of Ukraine. As a result of the study, the following plans were proposed. The gas turbine compressor now in use has been used more than 30 years, and is needed to be changed due to the superannuation. Changes are needed of the equipment used for pipeline inspection, corrosion prevention equipment, damaged data collecting equipment, pressure detection automatic drive valve, etc. Further needed are a portable compressor by which repair work can be done without gas release into the atmospheric air. The investment required for repair/installation of these equipment totaled approximately 216 million dollars. This brings the reduction in greenhouse effect gas emissions of 512,000 tons/year, and the energy conservation of 103,000 tons/year of crude oil or its equivalent. These are estimated at about 10 million dollars in greenhouse effect gas reduction and at 15 million dollars in energy conservation. (NEDO)

  13. Changes in Arctic vegetation amplify high-latitude warming through the greenhouse effect.

    Science.gov (United States)

    Swann, Abigail L; Fung, Inez Y; Levis, Samuel; Bonan, Gordon B; Doney, Scott C

    2010-01-26

    Arctic climate is projected to change dramatically in the next 100 years and increases in temperature will likely lead to changes in the distribution and makeup of the Arctic biosphere. A largely deciduous ecosystem has been suggested as a possible landscape for future Arctic vegetation and is seen in paleo-records of warm times in the past. Here we use a global climate model with an interactive terrestrial biosphere to investigate the effects of adding deciduous trees on bare ground at high northern latitudes. We find that the top-of-atmosphere radiative imbalance from enhanced transpiration (associated with the expanded forest cover) is up to 1.5 times larger than the forcing due to albedo change from the forest. Furthermore, the greenhouse warming by additional water vapor melts sea-ice and triggers a positive feedback through changes in ocean albedo and evaporation. Land surface albedo change is considered to be the dominant mechanism by which trees directly modify climate at high-latitudes, but our findings suggest an additional mechanism through transpiration of water vapor and feedbacks from the ocean and sea-ice.

  14. [Effects of superphosphate addition on NH3 and greenhouse gas emissions during vegetable waste composting].

    Science.gov (United States)

    Yang, Yan; Sun, Qin-ping; Li, Ni; Liu, Chun-sheng; Li, Ji-jin; Liu, Ben-sheng; Zou, Guo-yuan

    2015-01-01

    To study the effects of superphosphate (SP) on the NH, and greenhouse gas emissions, vegetable waste composting was performed for 27 days using 6 different treatments. In addition to the controls, five vegetable waste mixtures (0.77 m3 each) were treated with different amounts of the SP additive, namely, 5%, 10%, 15%, 20% and 25%. The ammonia volatilization loss and greenhouse gas emissions were measured during composting. Results indicated that the SP additive significantly decreased the ammonia volatilization and greenhouse gas emissions during vegetable waste composting. The additive reduced the total NH3 emission by 4.0% to 16.7%. The total greenhouse gas emissions (CO2-eq) of all treatments with SP additives were decreased by 10.2% to 20.8%, as compared with the controls. The NH3 emission during vegetable waste composting had the highest contribution to the greenhouse effect caused by the four different gases. The amount of NH3 (CO2-eq) from each treatment ranged from 59.90 kg . t-1 to 81.58 kg . t-1; NH3(CO2-eq) accounted for 69% to 77% of the total emissions from the four gases. Therefore, SP is a cost-effective phosphorus-based fertilizer that can be used as an additive during vegetable waste composting to reduce the NH3 and greenhouse gas emissions as well as to improve the value of compost as a fertilizer.

  15. Research on Greenhouse-Gas-Induced Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Schlesinger, M. E.

    2001-07-15

    During the 5 years of NSF grant ATM 95-22681 (Research on Greenhouse-Gas-Induced Climate Change, $1,605,000, 9/15/1995 to 8/31/2000) we have performed work which we are described in this report under three topics: (1) Development and Application of Atmosphere, Ocean, Photochemical-Transport, and Coupled Models; (2) Analysis Methods and Estimation; and (3) Climate-Change Scenarios, Impacts and Policy.

  16. Results using flue gas desulfurization gypsum in soilless substrates for greenhouse crops

    Science.gov (United States)

    Recent availability of Flue Gas Desulfurization gypsum (FGDG) has led to interested in its possible use in horticulture greenhouse production. Three studies were conducted to determine the effects of increasing rates of FGDG on six greenhouse crops. In the first study, substrates (6:1 pine bark:san...

  17. A global warming forum: Scientific, economic, and legal overview

    International Nuclear Information System (INIS)

    Geyer, R.A.

    1993-01-01

    A Global Warming Forum covers in detail five general subject areas aimed at providing first, the scientific background and technical information available on global warming and second, a study and evaluation of the role of economic, legal, and political considerations in global warming. The five general topic areas discussed are the following: (1) The role of geophysical and geoengineering methods to solve problems related to global climatic change; (2) the role of oceanographic and geochemical methods to provide evidence for global climatic change; (3) the global assessment of greenhouse gas production including the need for additional information; (4) natural resource management needed to provide long-term global energy and agricultural uses; (5) legal, policy, and educational considerations required to properly evaluate global warming proposals

  18. The role of process intensification in cutting greenhouse gas emissions

    International Nuclear Information System (INIS)

    Reay, David

    2008-01-01

    Between 1900 and 1955 the average rate of global energy use rose from about 1 TW to 2 TW. Between 1955 and 1999 energy use rose from 2 TW to about 12 TW, and to 2006 a further 16% growth in primary energy use was recorded world-wide. There are recommendations by the UK Royal Commission on Environmental Pollution, subsequently supported by others in the UK, that we need to reduce CO 2 emissions by over 50% in order to stabilise their impact on global warming (CO 2 being the principal gas believed to be contributing to this phenomenon). One way in which we can address this is by judicious use of process intensification technology. Process intensification may be defined as: 'Any engineering development that leads to a substantially smaller, cleaner, safer and more energy-efficient technology.' It is most often characterised by a huge reduction in plant volume - orders of magnitude - but its contribution to reducing greenhouse gas emissions may also be significant. Potential energy savings due to investment in process intensification were studied by several UK organisations in the mid 1990s, to assist the UK Government in formulating a strategy on intensification. It is relevant to the themes of the PRES 07 Conference that process integration features in these analyses. Overall plant intensification in the UK was identified as having a technical potential of 40 PJ/year (about 1 million tonnes of oil equivalent/annum). The total potential energy savings due to investment in process intensification in a range of process unit operations were predicted to be over 74 PJ/year (1 PJ = 10 15 J). Projections for The Netherlands suggest that savings of 50-100 PJ/year should be achieved across chemicals and food processing by 2050. Substantial benefits to industry in the USA are highlighted by US Department of Energy studies. This paper relates by discussion and example process intensification to the main themes of the PRES 07 Conference, including process integration. It also

  19. Recycling of metals: accounting of greenhouse gases and global warming contributions.

    Science.gov (United States)

    Damgaard, Anders; Larsen, Anna W; Christensen, Thomas H

    2009-11-01

    Greenhouse gas (GHG) emissions related to recycling of metals in post-consumer waste are assessed from a waste management perspective; here the material recovery facility (MRF), for the sorting of the recovered metal. The GHG accounting includes indirect upstream emissions, direct activities at the MRF as well as indirect downstream activities in terms of reprocessing of the metal scrap and savings in terms of avoided production of virgin metal. The global warming factor (GWF) shows that upstream activities and the MRF causes negligible GHG emissions (12.8 to 52.6 kg CO(2)-equivalents tonne(-1) recovered metal) compared to the reprocessing of the metal itself (360-1260 kg CO(2)-equivalents tonne(-1) of recovered aluminium and 400- 1020 kg CO(2)-equivalents tonne(- 1) of recovered steel).The reprocessing is however counterbalanced by large savings of avoided virgin production of steel and aluminium. The net downstream savings were found to be 5040-19 340 kg CO(2)-equivalents tonne(-1) of treated aluminium and 560-2360 kg CO(2)-equivalents tonne(-1) of treated steel. Due to the huge differences in reported data it is hard to compare general data on the recovery of metal scrap as they are very dependent on the technology and data choices. Furthermore, the energy used in both the recovery process as well as the avoided primary production is crucial. The range of avoided impact shows that recovery of metals will always be beneficial over primary production, due to the high energy savings, and that the GHG emissions associated with the sorting of metals are negligible.

  20. No effect of cropping system on the greenhouse gas N2O

    DEFF Research Database (Denmark)

    Carter, Mette Sustmann; Chirinda, N.

    2009-01-01

    Organic farming is comparable to conventional in terms of field emissions of the strong greenhouse gas nitrous oxide (N2O). Our study points to the need for increased yields in organic farming as measure to reduced emissions per unit of produce.......Organic farming is comparable to conventional in terms of field emissions of the strong greenhouse gas nitrous oxide (N2O). Our study points to the need for increased yields in organic farming as measure to reduced emissions per unit of produce....

  1. Greenhouse Gas Emissions in the Netherlands 1990-2007. National Inventory Report 2009

    International Nuclear Information System (INIS)

    Van der Maas, C.W.M.; Brandes, L.J.; Baas, K.; Van den Born, G.J.; Geilenkirchen, G.; Te Molder, R.; Nijdam, D.S.; Olivier, J.G.J.; Peek, C.J.; Van Schijndel, M.W.; Van der Sluis, S.M.; Coenen, P.W.H.G; Zijlema, P.J.; Van den Berghe, G.; Guis, B.

    2009-04-01

    This report documents the 2009 Netherlands annual submission of its greenhouse gas emission inventory in accordance with the guidelines provided by the United Nations Framework Convention on Climate Change (UNFCCC), the Kyoto Protocol and the European Union's Greenhouse Gas Monitoring Mechanism. The report comprises explanations of observed trends in emissions; a description of an assessment of key sources and their uncertainty; documentation of methods, data sources and emission factors applied; and a description of the quality assurance system and the verification activities performed on the data

  2. Communicating the Uncertainty in Greenhouse Gas Emissions from Agriculture

    Science.gov (United States)

    Milne, Alice; Glendining, Margaret; Perryman, Sarah; Whitmore, Andy

    2014-05-01

    Effective communication of the uncertainty in estimates of greenhouse gas emissions is important. It allows an individual, whether they are a scientist, policy maker or member of the public, to draw proper conclusions and so make sound decisions. Communicating uncertainty is challenging, however. There is no single best method for communicating uncertainty and the success of a particular method will depend on the subject matter and the target audience. Our interest is in communicating the uncertainty in estimates of greenhouse gas emissions from agriculture to those who might directly use the results from a national inventory. We tested six methods of communication. These were: calibrated phrases such as 'very uncertain' and 'likely'; probabilities, whereby the probability of being within a defined range of values is given; confidence intervals for the expected value; histograms; box plots and shaded arrays. We asked 64 individuals who use results from the greenhouse gas inventory for their opinions on how successfully these methods communicated uncertainty. We analysed the results to see which methods were preferred and to see whether this preference was affected either by the professional group to which individuals belonged or the level of mathematics to which they were educated. The professional groups represented in our study were categorised as (i) those who influence policy (ii) research scientists (iii) those representing the environment and (iv) those representing the agricultural industry. The responses to our questionnaire were varied but some clear messages came through. Our analysis showed that although calibrated phrases were thought to be a good method of communication they did not convey enough information and were open to misinterpretation. Shaded arrays were similarly criticized for being open to misinterpretation, but proved to give the best indication of uncertainty when individuals were asked to interpret results from the greenhouse gas

  3. Estimating greenhouse gas emissions of European cities--modeling emissions with only one spatial and one socioeconomic variable.

    Science.gov (United States)

    Baur, Albert H; Lauf, Steffen; Förster, Michael; Kleinschmit, Birgit

    2015-07-01

    Substantive and concerted action is needed to mitigate climate change. However, international negotiations struggle to adopt ambitious legislation and to anticipate more climate-friendly developments. Thus, stronger actions are needed from other players. Cities, being greenhouse gas emission centers, play a key role in promoting the climate change mitigation movement by becoming hubs for smart and low-carbon lifestyles. In this context, a stronger linkage between greenhouse gas emissions and urban development and policy-making seems promising. Therefore, simple approaches are needed to objectively identify crucial emission drivers for deriving appropriate emission reduction strategies. In analyzing 44 European cities, the authors investigate possible socioeconomic and spatial determinants of urban greenhouse gas emissions. Multiple statistical analyses reveal that the average household size and the edge density of discontinuous dense urban fabric explain up to 86% of the total variance of greenhouse gas emissions of EU cities (when controlled for varying electricity carbon intensities). Finally, based on these findings, a multiple regression model is presented to determine greenhouse gas emissions. It is independently evaluated with ten further EU cities. The reliance on only two indicators shows that the model can be easily applied in addressing important greenhouse gas emission sources of European urbanites, when varying power generations are considered. This knowledge can help cities develop adequate climate change mitigation strategies and promote respective policies on the EU or the regional level. The results can further be used to derive first estimates of urban greenhouse gas emissions, if no other analyses are available. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Greenhouse gas emissions from solid waste in Beijing: The rising trend and the mitigation effects by management improvements.

    Science.gov (United States)

    Yu, Yongqiang; Zhang, Wen

    2016-04-01

    Disposal of solid waste poses great challenges to city managements. Changes in solid waste composition and disposal methods, along with urbanisation, can certainly affect greenhouse gas emissions from municipal solid waste. In this study, we analysed the changes in the generation, composition and management of municipal solid waste in Beijing. The changes of greenhouse gas emissions from municipal solid waste management were thereafter calculated. The impacts of municipal solid waste management improvements on greenhouse gas emissions and the mitigation effects of treatment techniques of greenhouse gas were also analysed. Municipal solid waste generation in Beijing has increased, and food waste has constituted the most substantial component of municipal solid waste over the past decade. Since the first half of 1950s, greenhouse gas emission has increased from 6 CO2-eq Gg y(-1)to approximately 200 CO2-eq Gg y(-1)in the early 1990s and 2145 CO2-eq Gg y(-1)in 2013. Landfill gas flaring, landfill gas utilisation and energy recovery in incineration are three techniques of the after-emission treatments in municipal solid waste management. The scenario analysis showed that three techniques might reduce greenhouse gas emissions by 22.7%, 4.5% and 9.8%, respectively. In the future, if waste disposal can achieve a ratio of 4:3:3 by landfill, composting and incineration with the proposed after-emission treatments, as stipulated by the Beijing Municipal Waste Management Act, greenhouse gas emissions from municipal solid waste will decrease by 41%. © The Author(s) 2016.

  5. The effect of floating vegetation on denitrification and greenhouse gas production in wetland mesocosms

    Science.gov (United States)

    Jacobs, A. E.; Harrison, J. A.

    2012-12-01

    Anthropogenic intensification of nitrogen (N) loading to aquatic ecosystems is widespread and can lead to the degradation of these systems. Wetlands are important sites for N removal via denitrification, the microbially mediated reduction of reactive nitrate to inert N2 gas, but they can also produce high levels of greenhouse gases. Floating plants play an important role in encouraging denitrification, since they create low oxygen conditions that may favor denitrification. We investigated whether wetland sediments with floating plant cover had higher denitrification and greenhouse gas production rates than wetland sediments without floating plants. Replicate flow-through mesocosms with wetland sediment and water were constructed in a growth chamber to mimic the wetland where the sediment and water were collected. Mesocosm treatments were covered with floating vegetation (duckweed), an opaque tarp, or no cover to determine how cover type affects denitrification and greenhouse gas production and whether biotic or abiotic factors are likely responsible for observed differences. Denitrification and greenhouse gas production rates were calculated by measuring excess N2 gas, methane, and nitrous oxide concentrations in the water column and measuring the gas exchange rates between the water column and the atmosphere. Gas exchange rates were measured using an inert volatile tracer added to the water column and accumulation of gas in the mesocosm headspace. Additional mesocosm experiments were performed to determine how duckweed-dominated wetland systems respond to nitrogen loading and which mechanism for lowering dissolved oxygen concentrations is important in affecting denitrification under floating vegetation. Mesocosms with floating vegetation had lower dissolved oxygen than no cover or tarp-covered mesocosms, which is consistent with field and literature observations. Water flowing out of the mesocosms had statistically lower total nitrogen and nitrate concentrations

  6. NF ISO 14064-2. Greenhouse gases. Part 2: specifications and guidance at the project level for quantification, monitoring and reporting of greenhouse gas emission reductions or removal enhancements

    International Nuclear Information System (INIS)

    2005-01-01

    This document describes methodology for quantification, monitoring and reporting of activities intended to cause greenhouse gas emissions and reductions at projects level (activity modifying the conditions identified in a baseline scenario, intended to reduce emissions or to increase the removal of greenhouse gases). Thus it suggests a method for the declarations of inventory of projects greenhouse gases and provides support for the monitoring and the management of emissions. It provides terms and definitions, principles, the introduction to greenhouse gases projects and the requirements for greenhouse gas projects. (A.L.B.)

  7. Greenhouse gas reductions; not warranted, not beneficial

    International Nuclear Information System (INIS)

    Green, K.

    2003-01-01

    This report deals with climate change and greenhouse gas emissions, especially regional climate change predictions, from a sceptic's point of view. It rejects all the conventional evidence supporting claims of extreme man-made climate changes, dismissing them as alarmist and inherently uncertain. Similarly, it characterizes policy prescriptions based on this evidence as faulty and as measures which, if implemented, would do both current and future generations considerably more harm than good. Calls for energy efficiency and conservation, reliance on renewable energy sources, improved efficiency of conventional vehicles, hybrid and fuel-cell-driven cars, reducing the amount of driving, establishing greenhouse gas registries, are all dismissed as impractical, imposing higher costs on energy generally, slowing economic growth in the process, and scaring people to adopt unwise public policies by exaggerating the certainty of predictions about man-made climate change. While dismissing the arguments advanced by 'old-school' environmentalists, the report does not question the validity of the overall theory or details of the core greenhouse effect, its main targets are the anthropogenic components of the observed temperature record, and the evidence of a clear cause-and-effect link between anthropogenic forcing and changes in the Earth's surface temperature. Overall, the report dismisses the 'conventional' view of the extent of climate change, the cause of that change and the risk it poses. It emphasizes the limitations on economic freedom that proposed policies would inflict, and argues in favour of more studies to provide the foundation for a societal response based on a solid understanding of the science behind climate change, and the impact of proposed policy options. 32 refs., 2 figs

  8. Aerosol Observing System Greenhouse Gas (AOS GhG) Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Biraud, S. C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Reichl, K. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-03-01

    The Greenhouse Gas (GhG) Measurement system is a combination of two systems in series: (1) the Tower Gas Processing (TGP) System, an instrument rack which pulls, pressurizes, and dries air streams from an atmospheric sampling tower through a series of control and monitoring components, and (2) the Picarro model G2301 cavity ringdown spectrometer (CRDS), which measures CO2, CH4, and H2O vapor; the primary measurements of the GhG system.

  9. Greenhouse gas emissions in milk and dairy product chains

    DEFF Research Database (Denmark)

    Flysjö, Anna Maria

    Reducing greenhouse gas emissions from dairy products is one important step towards a more sustainable dairy sector. To ensure effective mitigation, reliable assessment methods are required. The present PhD thesis focuses on some of the most critical methodological aspects influencing the carbon ...... throughout the value chain – from cow to consumer.......Reducing greenhouse gas emissions from dairy products is one important step towards a more sustainable dairy sector. To ensure effective mitigation, reliable assessment methods are required. The present PhD thesis focuses on some of the most critical methodological aspects influencing the carbon...... footprint (CF) of milk and dairy products, namely; estimating CH4 and N2O emissions; accounting for land use change; co-product handling; and defining the functional unit. In addition, the CF is calculated for different types of dairy products, and suggestions on various mitigation measures are presented...

  10. Buying greenhouse insurance

    International Nuclear Information System (INIS)

    Manne, A.S.; Richels, R.G.

    1992-01-01

    A growing concern that the increasing accumulation of greenhouse gases will lead to undesirable changes in global climate has resulted in proposals, both in the United States and internationally, to set physical targets for reducing greenhouse gas emissions. But what will these proposals cost? This book outlines a way to think about greenhouse-effect decisions under uncertainty. It describes an insightful model for determining the economic costs of limiting CO 2 emissions produced by burning fossil fuels and provides a solid analytical base for rethinking public policy on the far-reaching issue of global warming. It presents region-by-region estimates of the costs that would underlie an international agreement. Using a computer model known as Global 2100, they analyze the economic impacts of limiting CO 2 emissions under alternative supply and conservation scenarios. The results clearly indicate that a reduction in emissions is not the sole policy response to potential climate change. Following a summary of the greenhouse effect, its likely causes, and possible consequences, this book takes up issues that concern the public at large. They provide an overview of Global 2100, look at how the U.S. energy sector is likely to evolve under business-as-usual conditions and under carbon constraints, and describe the concept of greenhouse insurance. They consider possible global agreements, including an estimate of benefits that might result from trading in an international market in emission rights. They conclude with a technical description directed toward modeling specialists

  11. ICT and greenhouse gas emissions; IKT og klimagassutslipp

    Energy Technology Data Exchange (ETDEWEB)

    2009-08-15

    ICT can go from being a part of the climate challenge to be an important part of the solution by simplify, rationalize and replace a variety of features and services. ICT's contribute through production and operation for approx. 2.5 % of global greenhouse gas emissions. At the same time estimates show that ICT could help to reduce total greenhouse gas emissions by up to 15 % by 2020 through a series of measures. ICT can, for example. contribute to reduce travel activity through remote collaboration, the transition from material to virtual products and by greater energy efficiency in buildings and vehicles. Through remote collaboration, green tender rounds and change of focus from products to services, can authorities reduce their own emissions. In addition, the authorities go ahead as good examples by illustrating how environment benefits from governmental ICT investments. If we assume that video conferencing can replace 1 of 5 flights among the 140 000 state employees, this can lead to a reducted emission of 14 600 tonnes of CO{sub 2} per year. (AG)

  12. Impact of cutting meat intake on hidden greenhouse gas emissions in an import-reliant city

    Science.gov (United States)

    Yau, Y. Y.; Thibodeau, B.; Not, C.

    2018-06-01

    Greenhouse gas emissions embodied in trade is a growing concern for the international community. Multiple studies have highlighted drawbacks in the territorial and production-based accounting of greenhouse gas emissions because it neglects emissions from the consumption of goods in trade. This creates weak carbon leakage and complicates international agreements on emissions regulations. Therefore, we estimated consumption-based emissions using input-output analysis and life cycle assessment to calculate the greenhouse gas emissions hidden in meat and dairy products in Hong Kong, a city predominately reliant on imports. We found that emissions solely from meat and dairy consumption were higher than the city’s total greenhouse gas emissions using conventional production-based calculation. This implies that government reports underestimate more than half of the emissions, as 62% of emissions are embodied in international trade. The discrepancy emphasizes the need of transitioning climate targets and policy to consumption-based accounting. Furthermore, we have shown that dietary change from a meat-heavy diet to a diet in accordance with governmental nutrition guidelines could achieve a 67% reduction in livestock-related emissions, allowing Hong Kong to achieve the Paris Agreement targets for 2030. Consequently, we concluded that consumption-based accounting for greenhouse gas emissions is crucial to target the areas where emissions reduction is realistically achievable, especially for import-reliant cities like Hong Kong.

  13. Energy budget and greenhouse gas balance evaluation of sustainable coppice systems for electricity production

    International Nuclear Information System (INIS)

    Lettens, Suzanna; Muys, Bart; Ceulemans, Reinhart; Moons, Ellen; Garcia, Juan; Coppin, Pol

    2003-01-01

    The use of bio-energy crops for electricity production is considered an effective means to mitigate the greenhouse effect, mainly due to its ability to substitute fossil fuels. A whole range of crops qualify for bio-energy production and a rational choice is not readily made. This paper evaluates the energy and greenhouse gas balance of a mixed indigenous hardwood coppice as an extensive, low-input bio-energy crop. The impact on fossil energy use and greenhouse gas emission is calculated and discussed by comparing its life cycle (cultivation, processing and conversion into energy) with two conventional bio-energy crops (short rotation systems of willow and Miscanthus). For each life cycle process, the flows of fossil energy and greenhouse gas that are created for the production of one functional unit are calculated. The results show that low-input bio-energy crops use comparatively less fossil fuel and avoid more greenhouse gas emission per unit of produced energy than conventional bio-energy crops during the first 100 yr. Where the mixed coppice system avoids up till 0.13 t CO 2 eq./GJ, Miscanthus does not exceed 0.07 t CO 2 eq./GJ. After 100 yr their performances become comparable, amounting to 0.05 t CO 2 eq./ha/GJ. However, if the land surface itself is chosen as a functional unit, conventional crops perform better with respect to mitigating the greenhouse effect. Miscanthus avoids a maximum of 12.9 t CO 2 eq./ha/yr, while mixed coppice attains 9.5 t CO 2 eq./ha/yr at the most

  14. Greenhouse gas emissions in the Netherlands 1990 - 1995. Methodology and data for 1994 and provisional data for 1995

    NARCIS (Netherlands)

    Spakman J; Olivier JGJ; Amstel AR van; LAE

    1996-01-01

    The inventory presented in this report complies with the obligations under the European Union's Greenhouse Gas Monitoring Mechanism and the UN-FCCC for emission reports on all greenhouse gases not covered under the Montreal protocol. This inventory of greenhouse gas emissions in the Netherlands has

  15. Economic impact analysis for global warming: Sensitivity analysis for cost and benefit estimates

    International Nuclear Information System (INIS)

    Ierland, E.C. van; Derksen, L.

    1994-01-01

    Proper policies for the prevention or mitigation of the effects of global warming require profound analysis of the costs and benefits of alternative policy strategies. Given the uncertainty about the scientific aspects of the process of global warming, in this paper a sensitivity analysis for the impact of various estimates of costs and benefits of greenhouse gas reduction strategies is carried out to analyze the potential social and economic impacts of climate change

  16. Chinese Grade Eight Students' Understanding about the Concept of Global Warming

    Science.gov (United States)

    Lin, Jing

    2017-01-01

    China is one of the world's biggest greenhouse gas emitters. Chinese students' awareness and understanding about global warming have a significant impact on the future of mankind. This study, as an initial research of this kind in Mainland China, uses clinical interviews to survey 37 grade eight students on their understanding about global…

  17. Greenhouse gas abatement cost curves of the residential heating market. A microeconomic approach

    International Nuclear Information System (INIS)

    Dieckhoener, Caroline; Hecking, Harald

    2012-01-01

    In this paper, we develop a microeconomic approach to deduce greenhouse gas abatement cost curves of the residential heating sector. By accounting for household behavior, we find that welfare-based abatement costs are generally higher than pure technical equipment costs. Our results are based on a microsimulation of private households' investment decision for heating systems until 2030. The households' investment behavior in the simulation is derived from a discrete choice estimation which allows investigating the welfare costs of different abatement policies in terms of the compensating variation and the excess burden. We simulate greenhouse gas abatements and welfare costs of carbon taxes and subsidies on heating system investments until 2030 to deduce abatement curves. Given utility maximizing households, our results suggest a carbon tax to be the welfare efficient policy. Assuming behavioral misperceptions instead, a subsidy on investments might have lower marginal greenhouse gas abatement costs than a carbon tax.

  18. Studying the physical basis of global warming: thermal effects of the interaction between radiation and matter and greenhouse effect

    Energy Technology Data Exchange (ETDEWEB)

    Besson, Ugo; De Ambrosis, Anna; Mascheretti, Paolo [Department of Physics ' A Volta' , University of Pavia, Via A Bassi 6, 27100 Pavia (Italy)], E-mail: ugo.besson@unipv.it, E-mail: anna.deambrosisvigna@unipv.it

    2010-03-15

    We present a teaching module dealing with the thermal effects of interaction between radiation and matter, the infrared emission of bodies and the greenhouse effect devoted to university level and teacher education. The module stresses the dependence of the optical properties of materials (transparency, absorptivity and emissivity) on radiation frequency, as a result of interaction between matter and radiation. Multiple experiences are suggested to favour a progressive construction of knowledge on the physical aspects necessary to understand the greenhouse effect and global warming. Some results obtained with university students are briefly reported.

  19. Studying the physical basis of global warming: thermal effects of the interaction between radiation and matter and greenhouse effect

    International Nuclear Information System (INIS)

    Besson, Ugo; De Ambrosis, Anna; Mascheretti, Paolo

    2010-01-01

    We present a teaching module dealing with the thermal effects of interaction between radiation and matter, the infrared emission of bodies and the greenhouse effect devoted to university level and teacher education. The module stresses the dependence of the optical properties of materials (transparency, absorptivity and emissivity) on radiation frequency, as a result of interaction between matter and radiation. Multiple experiences are suggested to favour a progressive construction of knowledge on the physical aspects necessary to understand the greenhouse effect and global warming. Some results obtained with university students are briefly reported.

  20. Recent global-warming hiatus tied to equatorial Pacific surface cooling.

    Science.gov (United States)

    Kosaka, Yu; Xie, Shang-Ping

    2013-09-19

    Despite the continued increase in atmospheric greenhouse gas concentrations, the annual-mean global temperature has not risen in the twenty-first century, challenging the prevailing view that anthropogenic forcing causes climate warming. Various mechanisms have been proposed for this hiatus in global warming, but their relative importance has not been quantified, hampering observational estimates of climate sensitivity. Here we show that accounting for recent cooling in the eastern equatorial Pacific reconciles climate simulations and observations. We present a novel method of uncovering mechanisms for global temperature change by prescribing, in addition to radiative forcing, the observed history of sea surface temperature over the central to eastern tropical Pacific in a climate model. Although the surface temperature prescription is limited to only 8.2% of the global surface, our model reproduces the annual-mean global temperature remarkably well with correlation coefficient r = 0.97 for 1970-2012 (which includes the current hiatus and a period of accelerated global warming). Moreover, our simulation captures major seasonal and regional characteristics of the hiatus, including the intensified Walker circulation, the winter cooling in northwestern North America and the prolonged drought in the southern USA. Our results show that the current hiatus is part of natural climate variability, tied specifically to a La-Niña-like decadal cooling. Although similar decadal hiatus events may occur in the future, the multi-decadal warming trend is very likely to continue with greenhouse gas increase.

  1. 77 FR 51499 - Greenhouse Gas Emissions Standards and Fuel Efficiency Standards for Medium- and Heavy-Duty...

    Science.gov (United States)

    2012-08-24

    ... DEPARTMENT OF TRANSPORTATION National Highway Traffic Safety Administration 49 CFR Part 535 [NHTSA 2012-0126] RIN 2127-AK74 Greenhouse Gas Emissions Standards and Fuel Efficiency Standards for Medium... purpose of reducing greenhouse gas (GHG) emissions because the GHG standards fundamentally regulate fuel...

  2. Vision for an Open, Global Greenhouse Gas Information System (GHGIS)

    Science.gov (United States)

    Duren, R. M.; Butler, J. H.; Rotman, D.; Ciais, P.; Greenhouse Gas Information System Team

    2010-12-01

    Over the next few years, an increasing number of entities ranging from international, national, and regional governments, to businesses and private land-owners, are likely to become more involved in efforts to limit atmospheric concentrations of greenhouse gases. In such a world, geospatially resolved information about the location, amount, and rate of greenhouse gas (GHG) emissions will be needed, as well as the stocks and flows of all forms of carbon through the earth system. The ability to implement policies that limit GHG concentrations would be enhanced by a global, open, and transparent greenhouse gas information system (GHGIS). An operational and scientifically robust GHGIS would combine ground-based and space-based observations, carbon-cycle modeling, GHG inventories, synthesis analysis, and an extensive data integration and distribution system, to provide information about anthropogenic and natural sources, sinks, and fluxes of greenhouse gases at temporal and spatial scales relevant to decision making. The GHGIS effort was initiated in 2008 as a grassroots inter-agency collaboration intended to identify the needs for such a system, assess the capabilities of current assets, and suggest priorities for future research and development. We will present a vision for an open, global GHGIS including latest analysis of system requirements, critical gaps, and relationship to related efforts at various agencies, the Group on Earth Observations, and the Intergovernmental Panel on Climate Change.

  3. A suggestion to assess spilled hydrocarbons as a greenhouse gas source

    Energy Technology Data Exchange (ETDEWEB)

    McAlexander, Benjamin L., E-mail: bmcalexander@trihydro.com

    2014-11-15

    Petroleum-contaminated site management typically counts destruction of hydrocarbons by either natural or engineered processes as a beneficial component of remediation. While such oxidation of spilled hydrocarbons is often necessary for achieving risk reduction for nearby human and ecological receptors, site assessments tend to neglect that this also means that the pollutants are converted to greenhouse gases and emitted to the atmosphere. This article presents a suggestion that the current and long term greenhouse gas emissions from spilled hydrocarbons be incorporated to petroleum site assessments. This would provide a more complete picture of pollutant effects that could then be incorporated to remedial objectives. At some sites, this additional information may affect remedy selection. Possible examples include a shift in emphasis to remedial technologies that reduce pollutant greenhouse gas effects (e.g., by conversion of methane to carbon dioxide in the subsurface), and a more holistic context for considering remedial technologies with low emission footprints.

  4. Greenhouse Gas Emissions, Energy Consumption and Economic Growth: A Panel Cointegration Analysis for 16 Asian Countries.

    Science.gov (United States)

    Lu, Wen-Cheng

    2017-11-22

    This research investigates the co-movement and causality relationships between greenhouse gas emissions, energy consumption and economic growth for 16 Asian countries over the period 1990-2012. The empirical findings suggest that in the long run, bidirectional Granger causality between energy consumption, GDP and greenhouse gas emissions and between GDP, greenhouse gas emissions and energy consumption is established. A non-linear, quadratic relationship is revealed between greenhouse gas emissions, energy consumption and economic growth, consistent with the environmental Kuznets curve for these 16 Asian countries and a subsample of the Asian new industrial economy. Short-run relationships are regionally specific across the Asian continent. From the viewpoint of energy policy in Asia, various governments support low-carbon or renewable energy use and are reducing fossil fuel combustion to sustain economic growth, but in some countries, evidence suggests that energy conservation might only be marginal.

  5. Greenhouse Gas Emissions, Energy Consumption and Economic Growth: A Panel Cointegration Analysis for 16 Asian Countries

    Science.gov (United States)

    2017-01-01

    This research investigates the co-movement and causality relationships between greenhouse gas emissions, energy consumption and economic growth for 16 Asian countries over the period 1990–2012. The empirical findings suggest that in the long run, bidirectional Granger causality between energy consumption, GDP and greenhouse gas emissions and between GDP, greenhouse gas emissions and energy consumption is established. A non-linear, quadratic relationship is revealed between greenhouse gas emissions, energy consumption and economic growth, consistent with the environmental Kuznets curve for these 16 Asian countries and a subsample of the Asian new industrial economy. Short-run relationships are regionally specific across the Asian continent. From the viewpoint of energy policy in Asia, various governments support low-carbon or renewable energy use and are reducing fossil fuel combustion to sustain economic growth, but in some countries, evidence suggests that energy conservation might only be marginal. PMID:29165399

  6. Greenhouse Gas Emissions, Energy Consumption and Economic Growth: A Panel Cointegration Analysis for 16 Asian Countries

    Directory of Open Access Journals (Sweden)

    Wen-Cheng Lu

    2017-11-01

    Full Text Available This research investigates the co-movement and causality relationships between greenhouse gas emissions, energy consumption and economic growth for 16 Asian countries over the period 1990–2012. The empirical findings suggest that in the long run, bidirectional Granger causality between energy consumption, GDP and greenhouse gas emissions and between GDP, greenhouse gas emissions and energy consumption is established. A non-linear, quadratic relationship is revealed between greenhouse gas emissions, energy consumption and economic growth, consistent with the environmental Kuznets curve for these 16 Asian countries and a subsample of the Asian new industrial economy. Short-run relationships are regionally specific across the Asian continent. From the viewpoint of energy policy in Asia, various governments support low-carbon or renewable energy use and are reducing fossil fuel combustion to sustain economic growth, but in some countries, evidence suggests that energy conservation might only be marginal.

  7. Warm Pressurant Gas Effects on the Liquid Hydrogen Bubble Point

    Science.gov (United States)

    Hartwig, Jason W.; McQuillen, John B.; Chato, David J.

    2013-01-01

    This paper presents experimental results for the liquid hydrogen bubble point tests using warm pressurant gases conducted at the Cryogenic Components Cell 7 facility at the NASA Glenn Research Center in Cleveland, Ohio. The purpose of the test series was to determine the effect of elevating the temperature of the pressurant gas on the performance of a liquid acquisition device. Three fine mesh screen samples (325 x 2300, 450 x 2750, 510 x 3600) were tested in liquid hydrogen using cold and warm noncondensible (gaseous helium) and condensable (gaseous hydrogen) pressurization schemes. Gases were conditioned from 0 to 90 K above the liquid temperature. Results clearly indicate a degradation in bubble point pressure using warm gas, with a greater reduction in performance using condensable over noncondensible pressurization. Degradation in the bubble point pressure is inversely proportional to screen porosity, as the coarsest mesh demonstrated the highest degradation. Results here have implication on both pressurization and LAD system design for all future cryogenic propulsion systems. A detailed review of historical heated gas tests is also presented for comparison to current results.

  8. Greenhouse-gas-induced climatic change: A critical appraisal of simulations and observations

    International Nuclear Information System (INIS)

    Schlesinger, M.E.

    1990-01-01

    This book is the culmination of a Workshop on Greenhouse-Gas-Induced Climatic Change: A Critical Appraisal of Simulations and Observations which was held at the University of Massachusetts, Amherst, during 8--12 May 1989. The objectives of the Workshop were to: (1) present and evaluate the current status of climate model simulations of greenhouse-gas-induced changes of both the equilibrium and nonequilibrium (transient) climates; (2) present and assess the current status of the observations of global and regional climates from the beginning of the industrial revolution to the present, circa 1850 to 1989; (3) present reconstructions of climatic change during the last millennium to determine the ''natural variability'' of climate on the intra-century time scale; (4) critically evaluate whether or not the climate has changes from circa 1850 to 1989; and (5) compare the observations with the model simulations to ascertain whether a greenhouse-gas-induced climatic change has occurred and, if not, to estimate when in the future such a climatic change will likely become detectable against the background of the ''natural variability.''

  9. Greenhouse gas emission controls : differentiated vs. flat rate targets : impacts and concerts

    International Nuclear Information System (INIS)

    Heydanek, D.

    1997-01-01

    Continuing the discussion on differentiation in greenhouse gas emission targets and timetables for all nations, the different implications of differentiation vs. flat rate controls were examined. A scenario of how different targets for different countries based on national circumstances might be implemented, was presented. Implications of differentiation for the Dow Chemical Company were also reviewed. For more than 20 years, Dow has practiced leading edge energy efficiency in environmental management systems and has committed to a series of environmental, health and safety goals. The company believes that at the international level, fully differentiated targets and timetables need to be negotiated, party by party, by the 150 nations who agreed to stabilize greenhouse gas emissions at 1990 levels by year 2000. It was suggested that a strong disincentive exists to delivering energy efficiency beyond compliance. It was predicted that despite efficiency, the energy intensive assets in place today in Annex I countries will be disadvantaged and prematurely retired as the costs of greenhouse gas emission controls grow and exert pressure to move productive capacity offshore

  10. 75 FR 25323 - Light-Duty Vehicle Greenhouse Gas Emission Standards and Corporate Average Fuel Economy Standards...

    Science.gov (United States)

    2010-05-07

    ... Greenhouse Gas Emission Standards and Corporate Average Fuel Economy Standards; Final Rule #0;#0;Federal... Fuel Economy Standards; Final Rule AGENCY: Environmental Protection Agency (EPA) and National Highway... reduce greenhouse gas emissions and improve fuel economy. This joint Final Rule is consistent with the...

  11. Coastal vegetation invasion increases greenhouse gas emission from wetland soils but also increases soil carbon accumulation

    International Nuclear Information System (INIS)

    Chen, Yaping; Chen, Guangcheng; Ye, Yong

    2015-01-01

    Soil properties and soil–atmosphere fluxes of CO 2 , CH 4 and N 2 O from four coastal wetlands were studied throughout the year, namely, native Kandelia obovata mangrove forest vs. exotic Sonneratia apetala mangrove forest, and native Cyperus malaccensis salt marsh vs. exotic Spartina alterniflora salt marsh. Soils of the four wetlands were all net sources of greenhouse gases while Sonneratia forest contributed the most with a total soil–atmosphere CO 2 -equivalent flux of 137.27 mg CO 2 m −2 h −1 , which is 69.23%, 99.75% and 44.56% higher than that of Kandelia, Cyperus and Spartina, respectively. The high underground biomass and distinctive root structure of Sonneratia might be responsible for its high greenhouse gas emission from the soil. Soils in Spartina marsh emitted the second largest amount of total greenhouse gases but it ranked first in emitting trace greenhouse gases. Annual average CH 4 and N 2 O fluxes from Spartina soil were 13.77 and 1.14 μmol m −2 h −1 , respectively, which are 2.08 and 1.46 times that of Kandelia, 1.03 and 1.15 times of Sonneratia, and 1.74 and 1.02 times of Cyperus, respectively. Spartina has longer growing season and higher productivity than native marshes which might increase greenhouse gas emission in cold seasons. Exotic wetland soils had higher carbon stock as compared to their respective native counterparts but their carbon stocks were offset by a larger proportion because of their higher greenhouse gas emissions. Annual total soil–atmosphere fluxes of greenhouse gases reduced soil carbon burial benefits by 8.1%, 9.5%, 6.4% and 7.2% for Kandelia, Sonneratia, Cyperus and Spartina, respectively, which narrowed down the gaps in net soil carbon stock between native and exotic wetlands. The results indicated that the invasion of exotic wetland plants might convert local coastal soils into a considerable atmospheric source of greenhouse gases although they at the same time increase soil carbon accumulation

  12. Coastal vegetation invasion increases greenhouse gas emission from wetland soils but also increases soil carbon accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yaping [Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian (China); Chen, Guangcheng [Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, Fujian (China); Ye, Yong, E-mail: yeyong.xmu@gmail.com [Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian (China)

    2015-09-01

    Soil properties and soil–atmosphere fluxes of CO{sub 2}, CH{sub 4} and N{sub 2}O from four coastal wetlands were studied throughout the year, namely, native Kandelia obovata mangrove forest vs. exotic Sonneratia apetala mangrove forest, and native Cyperus malaccensis salt marsh vs. exotic Spartina alterniflora salt marsh. Soils of the four wetlands were all net sources of greenhouse gases while Sonneratia forest contributed the most with a total soil–atmosphere CO{sub 2}-equivalent flux of 137.27 mg CO{sub 2} m{sup −2} h{sup −1}, which is 69.23%, 99.75% and 44.56% higher than that of Kandelia, Cyperus and Spartina, respectively. The high underground biomass and distinctive root structure of Sonneratia might be responsible for its high greenhouse gas emission from the soil. Soils in Spartina marsh emitted the second largest amount of total greenhouse gases but it ranked first in emitting trace greenhouse gases. Annual average CH{sub 4} and N{sub 2}O fluxes from Spartina soil were 13.77 and 1.14 μmol m{sup −2} h{sup −1}, respectively, which are 2.08 and 1.46 times that of Kandelia, 1.03 and 1.15 times of Sonneratia, and 1.74 and 1.02 times of Cyperus, respectively. Spartina has longer growing season and higher productivity than native marshes which might increase greenhouse gas emission in cold seasons. Exotic wetland soils had higher carbon stock as compared to their respective native counterparts but their carbon stocks were offset by a larger proportion because of their higher greenhouse gas emissions. Annual total soil–atmosphere fluxes of greenhouse gases reduced soil carbon burial benefits by 8.1%, 9.5%, 6.4% and 7.2% for Kandelia, Sonneratia, Cyperus and Spartina, respectively, which narrowed down the gaps in net soil carbon stock between native and exotic wetlands. The results indicated that the invasion of exotic wetland plants might convert local coastal soils into a considerable atmospheric source of greenhouse gases although they at the

  13. Warm gas towards young stellar objects in Corona Australis

    DEFF Research Database (Denmark)

    Lindberg, Johan; Jørgensen, Jes Kristian; D. Green, Joel

    2014-01-01

    The effects of external irradiation on the chemistry and physics in the protostellar envelope around low-mass young stellar objects are poorly understood. The Corona Australis star-forming region contains the R CrA dark cloud, comprising several low-mass protostellar cores irradiated by an interm......The effects of external irradiation on the chemistry and physics in the protostellar envelope around low-mass young stellar objects are poorly understood. The Corona Australis star-forming region contains the R CrA dark cloud, comprising several low-mass protostellar cores irradiated...... by an intermediate-mass young star. We study the effects on the warm gas and dust in a group of low-mass young stellar objects from the irradiation by the young luminous Herbig Be star R CrA. Herschel/PACS far-infrared datacubes of two low-mass star-forming regions in the R CrA dark cloud are presented...... Be star R CrA. Our results show that a nearby luminous star does not increase the molecular excitation temperatures in the warm gas around a young stellar object (YSO). However, the emission from photodissociation products of H2O, such as OH and O, is enhanced in the warm gas associated...

  14. Use green taxes and market instruments to reduce greenhouse gas emissions

    International Nuclear Information System (INIS)

    Hodgson, G.; Rheaume, G.; Coad, L.

    2008-01-01

    This briefing is part of the Conference Board of Canada's CanCompete program, which was designed to help leading decision makers advance Canada on a path of national competitiveness. Many members of the scientific community have concluded that anthropogenic greenhouse gas (GHG) emissions are responsible for the current pace of global warming. It is widely believed that the changing climate will have a negative impact on the economy and the environment. This briefing considered a set of reforms to the Canadian tax system designed to ensure sustainable growth within a changing climate. The briefing was prepared in response to an earlier paper calling for a market-based policy on climate change. Tax incentives were examined, as well as price signalling systems to ensure successful climate change adjustment for Canadian businesses. It was concluded that a combination of efficient regulations, market forces, and tax measures will be needed to set accurate and effective prices for GHGs. Green taxes and tax credits will also be necessary in order to accelerate technological adaptation to a carbon pricing system, along with a complementary cap and trade system. 1 fig

  15. Potential Greenhouse Gas Emissions Reductions from Optimizing Urban Transit Networks

    Science.gov (United States)

    2016-05-01

    Public transit systems with efficient designs and operating plans can reduce greenhouse gas (GHG) emissions relative to low-occupancy transportation modes, but many current transit systems have not been designed to reduce environmental impacts. This ...

  16. An alternative method for the estimation of greenhouse gas ...

    African Journals Online (AJOL)

    Lindeque

    Abstract. Previous greenhouse gas (GHG) inventories did not include game as an emissions source. Recently game farming has become a recognized commercial enterprise in the agricultural sector in South Africa, contributing approximately R10 billion to the sectorial gross domestic product. The objective of this study.

  17. Aligning corporate greenhouse-gas emissions targets with climate goals

    NARCIS (Netherlands)

    Krabbe, Oskar; Linthorst, Giel; Blok, Kornelis; Crijns-Graus, Wina; Vuuren, Van Detlef P.; Höhne, Niklas; Faria, Pedro; Aden, Nate; Pineda, Alberto Carrillo

    2015-01-01

    Corporate climate action is increasingly considered important in driving the transition towards a low-carbon economy. For this, it is critical to ensure translation of global goals to greenhouse-gas (GHG) emissions reduction targets at company level. At the moment, however, there is a lack of

  18. Aligning corporate greenhouse-gas emissions targets with climate goals

    NARCIS (Netherlands)

    Krabbe, Oskar; Linthorst, Giel; Blok, Kornelis|info:eu-repo/dai/nl/07170275X; Crijns-Graus, Wina|info:eu-repo/dai/nl/308005015; Van Vuuren, Detlef P.|info:eu-repo/dai/nl/11522016X; Höhne, Niklas; Faria, Pedro; Aden, Nate; Pineda, Alberto Carrillo

    2015-01-01

    Corporate climate action is increasingly considered important in driving the transition towards a low-carbon economy. For this, it is critical to ensure translation of global goals to greenhouse-gas (GHG) emissions reduction targets at company level. At the moment, however, there is a lack of clear

  19. The comparison of greenhouse gas emissions in sewage treatment plants with different treatment processes.

    Science.gov (United States)

    Masuda, Shuhei; Sano, Itsumi; Hojo, Toshimasa; Li, Yu-You; Nishimura, Osamu

    2018-02-01

    Greenhouse gas emissions from different sewage treatment plants: oxidation ditch process, double-circulated anoxic-oxic process and anoxic-oxic process were evaluated based on the survey. The methane and nitrous oxide characteristics were discussed based on the gaseous and dissolved gas profiles. As a result, it was found that methane was produced in the sewer pipes and the primary sedimentation tank. Additionally, a ventilation system would promote the gasification of dissolved methane in the first treatment units. Nitrous oxide was produced and emitted in oxic tanks with nitrite accumulation inside the sewage treatment plant. A certain amount of nitrous oxide was also discharged as dissolved gas through the effluent water. If the amount of dissolved nitrous oxide discharge is not included, 7-14% of total nitrous oxide emission would be overlooked. Based on the greenhouse gas calculation, electrical consumption and the N 2 O emission from incineration process were major sources in all the plants. For greenhouse gas reduction, oxidation ditch process has an advantage over the other advanced systems due to lower energy consumption, sludge production, and nitrogen removal without gas stripping. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Separate effects of flooding and anaerobiosis on soil greenhouse gas emissions and redox sensitive biogeochemistry

    Science.gov (United States)

    Gavin McNicol; Whendee L. Silver

    2014-01-01

    Soils are large sources of atmospheric greenhouse gases, and both the magnitude and composition of soil gas emissions are strongly controlled by redox conditions. Though the effect of redox dynamics on greenhouse gas emissions has been well studied in flooded soils, less research has focused on redox dynamics without total soil inundation. For the latter, all that is...

  1. The Dynamic Greenhouse Challenge

    Science.gov (United States)

    Roman, Harry T.

    2010-01-01

    Greenhouses are marvelous devices, allowing one to enjoy the flower spectacle of summer all year round. At night, greenhouses use supplemental heat to keep the fragile plants warm. Over the last 30 years, greenhouse technology has undergone many changes, with the structures being automated and monitored and low-cost plastic structures emerging as…

  2. Limiting net greenhouse gas emissions in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, R A; Watts, E C; Williams, E R [eds.

    1991-09-01

    In 2988 the Congress requested DOE produce a study on carbon dioxide inventory and policy to provide an inventory of emissions sources and to analyze policies to achieve a 20% reduction in carbon dioxide emissions in 5 to 10 years and a 50% reduction in 15 to 20 years. This report presents the results of that study. Energy and environmental technology data were analyzed using computational analysis models. This information was then evaluated, drawing on current scientific understanding of global climate change, the possible consequences of anthropogenic climate change (change caused by human activity), and the relationship between energy production and use and the emission of radiactively important gases. Topics discussed include: energy and environmental technology to reduce greenhouse gas emissions, fossil energy production and electricity generation technologies, nuclear energy technology, renewable energy technologies, energy storage, transmission, and distribution technology, transportation, technology, industrial technology, residential and commercial building technology, greenhouse gas removal technology, approaches to restructuring the demand for energy.

  3. Global warming factors modelled for 40 generic municipal waste management scenarios

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Simion, F.; Tonini, Davide

    2009-01-01

    Global warming factors (kg CO2-eq.-tonne—1 of waste) have been modelled for 40 different municipal waste management scenarios involving a variety of recycling systems (paper, glass, plastic and organics) and residual waste management by landfilling, incineration or mechanical—biological waste...... treatment. For average European waste composition most waste management scenarios provided negative global warming factors and hence overall savings in greenhouse gas emissions: Scenarios with landfilling saved 0—400, scenarios with incineration saved 200—700, and scenarios with mechanical...

  4. Does the correlation between solar cycle lengths and Northern Hemisphere land temperatures rule out any significant global warming from greenhouse gases?

    DEFF Research Database (Denmark)

    Laut, Peter; Gundermann, Jesper

    1998-01-01

    Since the discovery of a striking correlation between solar cycle lengths and Northern Hemisphere land temperatures there have been widespread speculations as to whether these findings would rule out any significant contributions to global warming from the enhanced concentrations of greenhouse...... gases. The present analysis shows that a similar degree of correlation is obtained when testing the solar data against a couple of fictitious temperature series representing different global warming trends. Therefore, the correlation cannot be used to estimate the magnitude of a possible contribution...... to global warming from human activities, nor to rule out a sizable contribution from that source....

  5. The effect on climate change impacts for building products when including the timing of greenhouse gas emissions

    Science.gov (United States)

    Richard D Bergman

    2012-01-01

    Greenhouse gases (GHGs) trap infrared radiation emitting from the Earth’s surface to generate the “greenhouse effect” thus keeping the planet warm. Many natural activities including rotting vegetation emit GHGs such as carbon dioxide to produce this natural affect. However, in the last 200 years or so, human activity has increased the atmospheric concentrations of GHGs...

  6. A synthesis of research on wood products and greenhouse gas impacts

    International Nuclear Information System (INIS)

    Sathre, R.; O'Connor, J.

    2008-11-01

    Existing scientific literature on the wood products industry was reviewed in an effort to summarize consensus findings, or range of findings, addressing the net life cycle greenhouse gas footprint of wood construction products. The report sought to clarify whether actively managing forests for wood production was better, worse or neutral for climate change than leaving the forest in its natural state. In addition, it sought to quantify the greenhouse gas emissions avoided per unit of wood substituted for non-wood materials. Forty-eight international studies were examined in terms of fossil energy used in wood manufacturing and compared alternatives, such as the avoidance of industrial process carbon emissions as with cement manufacturing; the storage of carbon in forests and forest products; the use of wood by-products as a biofuel replacement for fossil fuels; and carbon storage and emission due to forest products in landfills. The report presented a list of studies reviewed and individual summaries of study findings. A meta-analysis of displacement factors of wood product use was also presented. It was concluded from all of the studies reviewed, that the production of wood-based materials and products results in less greenhouse gas emission than the production of functionally comparable non-wood materials and products. 48 refs., 1 tab.

  7. Pollution prevention through energy efficiency: methodology for evaluating greenhouse gas reductions

    International Nuclear Information System (INIS)

    Widge, V.; Arnold, F.; Karmali, A.

    1992-01-01

    This paper outlines an analytical framework for evaluating the potential for greenhouse gas emission reductions through investments in energy efficiency. In particular, it will describe a model called the Energy and Technology Switching (ETS) model which has been developed at ICF Incorporated. The ETS model has several useful capabilities - it can assess the implications of changing the energy efficiency of new shipments and existing stock of equipment and appliances, or even changes in patterns of fuel use. The ETS model predicts energy use, emissions of related carbon dioxide and other greenhouse gases, and private and social costs (such as energy costs, avoided capital and fuel costs). It also tracks changes in fuel and technology use over time for a user specified end-use application. The paper is organized into three parts: - The first part of the paper describes the methodology used in estimating the reduction in greenhouse gas emissions and the associated net costs of policies that could affect energy use. - In order to demonstrate the model's capabilities, in the second part of the paper, a sample analysis is presented. ICF incorporated has used the ETS model to estimate for the Global Change Division of the U.S. Environmental Protection Agency the costs of reducing greenhouse gas emissions in the residential and commercial sectors of the U.S. economy, encompassing a wide range of technologies and fuel-types. The assumptions and results of this analysis are presented. - Finally, the paper outlines some of the potential uses of this model in assessing pollution prevention opportunities through energy efficient measures. 11 figs

  8. Mitigating greenhouse gas emissions: Voluntary reporting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    The Voluntary Reporting Program, developed pursuant to Section 1605(b) of the Energy Policy Act of 1992, permits corporations, government agencies, households, and voluntary organizations to report on their emissions of greenhouse gases, and on actions taken that have reduced or avoided emissions or sequestered carbon, to the Energy Information Administration (EIA). This, the second annual report of the Voluntary Reporting Program, describes information provided by the participating organizations on their aggregate emissions and emissions reductions, as well as their emissions reduction or avoidance projects, through 1995. This information has been compiled into a database that includes reports from 142 organizations and descriptions of 967 projects that either reduced greenhouse gas emissions or sequestered carbon. Fifty-one reporters also provided estimates of emissions, and emissions reductions achieved, for their entire organizations. The projects described actions taken to reduce emissions of carbon dioxide from energy production and use; to reduce methane and nitrous oxide emissions from energy use, waste management, and agricultural processes; to reduce emissions of halocarbons, such as CFCs and their replacements; and to increase carbon sequestration.

  9. UNEP greenhouse gas abatement costing studies

    International Nuclear Information System (INIS)

    Maya, R.S.; Nziramasanga, N.; Muguti, E.; Fenhann, J.

    1993-10-01

    The aim was to assess options and cost of reducing emissions of greenhouse gases (with emphasis on carbon dioxide) from human activity in Zimbabwe. A brief description of the country's economy and energy sector, policy and pricing and regulations is given and substantial data related to the country's economy, technology, energy consumption, emission and fuel prices are presented. The energy demand in households and for other sectors in Zimbabwe are assessed, and documented in the case of the former. The reference scenarios on energy demand and supply assess greenhouse gas emissions under conditions whereby the present economic growth trends predominate. Energy efficiency improvements are discussed. Abatement technology options are stated as afforestation for carbon sequestration, more efficient coal-fired industrial boilers, extended use of hydroelectricity, prepayment electric meters, minimum tillage, optimization of coal-fired tobacco barns, industrial power factor correction equipment, domestic biogas digesters, solar water heating systems, time switches in electric geysers, optimization of industrial furnaces, photovoltaic water pumps, production of ammonia from coal for fertilizing purposes, and recovery of coke oven gases for use in thermal power generation. (AB)

  10. Regulations for Greenhouse Gas Emissions from Passenger Cars and Trucks

    Science.gov (United States)

    EPA and the National Highway Traffic Safety Administration (NHTSA) are taking coordinated steps to enable the production of a new generation of clean vehicles, through reduced greenhouse gas (GHG) emissions and improved fuel use from onroad vehicles.

  11. Recycling of plastic: accounting of greenhouse gases and global warming contributions.

    Science.gov (United States)

    Astrup, Thomas; Fruergaard, Thilde; Christensen, Thomas H

    2009-11-01

    Major greenhouse gas (GHG) emissions related to plastic waste recycling were evaluated with respect to three management alternatives: recycling of clean, single-type plastic, recycling of mixed/contaminated plastic, and use of plastic waste as fuel in industrial processes. Source-separated plastic waste was received at a material recovery facility (MRF) and processed for granulation and subsequent downstream use. In the three alternatives, plastic was assumed to be substituting virgin plastic in new products, wood in low-strength products (outdoor furniture, fences, etc.), and coal or fuel oil in the case of energy utilization. GHG accounting was organized in terms of indirect upstream emissions (e.g. provision of energy, fuels, and materials), direct emissions at the MRF (e.g. fuel combustion), and indirect downstream emissions (e.g. avoided emissions from production of virgin plastic, wood, or coal/oil). Combined, upstream and direct emissions were estimated to be roughly between 5 and 600 kg CO(2)-eq. tonne( -1) of plastic waste depending on treatment at the MRF and CO(2) emissions from electricity production. Potential downstream savings arising from substitution of virgin plastic, wood, and energy fuels were estimated to be around 60- 1600 kg CO(2)-eq. tonne( -1) of plastic waste depending on substitution ratios and CO(2) emissions from electricity production. Based on the reviewed data, it was concluded that substitution of virgin plastic should be preferred. If this is not viable due to a mixture of different plastic types and/or contamination, the plastic should be used for energy utilization. Recycling of plastic waste for substitution of other materials such as wood provided no savings with respect to global warming.

  12. Recycling of paper: accounting of greenhouse gases and global warming contributions.

    Science.gov (United States)

    Merrild, Hanna; Damgaard, Anders; Christensen, Thomas H

    2009-11-01

    Greenhouse gas (GHG) emissions have been established for recycling of paper waste with focus on a material recovery facility (MRF). The MRF upgrades the paper and cardboard waste before it is delivered to other industries where new paper or board products are produced. The accounting showed that the GHG contributions from the upstream activities and operational activities, with global warming factors (GWFs) of respectively 1 to 29 and 3 to 9 kg CO(2)-eq. tonne(- 1) paper waste, were small in comparison wih the downstream activities. The GHG contributions from the downstream reprocessing of the paper waste ranged from approximately 490 to 1460 kg CO(2)-eq. tonne( -1) of paper waste. The system may be expanded to include crediting of avoided virgin paper production which would result in GHG contributions from -1270 to 390 kg CO(2)-eq. tonne(- 1) paper waste. It may also be assumed that the wood not used for virgin paper production instead is used for production of energy that in turn is assumed to substitute for fossil fuel energy. This would result in GHG contributions from -1850 to -4400 kg CO(2)-eq. tonne(- 1) of paper waste. These system expansions reveal very large GHG savings, suggesting that the indirect upstream and operational GHG contributions are negligible in comparison with the indirect downstream emissions. However, the data for reprocessing of paper waste and the data for virgin paper production are highly variable. These differences are mainly related to different energy sources for the mills, both in regards to energy form (heat or electricity) and fuel (biomass or fossil fuels).

  13. The CO2 diet for a greenhouse planet: Assessing individual actions for slowing global warming

    International Nuclear Information System (INIS)

    DeCicco, J.; Cook, J.; Bolze, D.; Beyea, J.

    1990-01-01

    Because of uncontrolled population growth and a short-sighted choice of technologies, humankind is emitting enormous quantities of greenhouse gases. Reducing emissions of these gases which can disrupt the Earth's climate will require action by individuals as well as by governments and industries. Most energy use currently entails carbon dioxide (CO 2 ) emissions; increasing energy efficiency can therefore address a major portion of the emissions. Reducing emissions of other greenhouse gases, such as halocarbons, is also necessary. Following such a low-CO 2 diet will require lifestyle changes and prudent consumption choices by individuals. This paper focuses on the activities related to greenhouse gas emissions in the US over which individuals have some control

  14. Interpretation of Series National Standards of China on “Greenhouse Gas Emissions Accounting and Reporting for Enterprises”

    Science.gov (United States)

    Chen, Liang; Zong, Jianfang; Guo, Huiting; Sun, Liang; Liu, Mei

    2018-05-01

    Standardization is playing an increasingly important role in reducing greenhouse gas emission and in climatic change adaptation, especially in the “three” greenhouse gas emission aspects (measurement, report, verification). Standardization has become one of the most important ways in mitigating the global climate change. Standardization Administration of China (SAC) has taken many productive measures in actively promoting standardization work to cope with climate change. In April 2014, SAC officially approved the establishment of “National Carbon Emission Management Standardization Technical Committee” In November 2015, SAC officially issued the first 11 national standards on carbon management including > and the requirements of the greenhouse gas emissions accounting and reporting in 10 sectors including power generation, power grid, iron and steel, chemical engineering, electrolytic aluminum, magnesium smelting, plate glass, cement, ceramics and civil aviation, which proposes unified requirements of “what to calculate and how to calculate” the greenhouse gas emission for enterprises. This paper focuses on the detailed interpretation of the main contents of the first 11 national standards, so as to provide technical supports for users of the standards and to comprehensively promote the emission reduction of greenhouse gas at the enterprise level.

  15. 76 FR 65971 - Greenhouse Gas Emissions Standards and Fuel Efficiency Standards for Medium- and Heavy-Duty...

    Science.gov (United States)

    2011-10-25

    ... DEPARTMENT OF TRANSPORTATION National Highway Traffic Safety Administration 49 CFR Parts 523 and 535 [NHTSA 2010-0079; EPA-HQ-OAR-2010-0162; FRL-9455-1] RIN 2127-AK74 Greenhouse Gas Emissions... fuel efficiency and reduce greenhouse gas emissions for on-road heavy-duty vehicles, responding to the...

  16. 76 FR 59922 - Greenhouse Gas Emissions Standards and Fuel Efficiency Standards for Medium- and Heavy-Duty...

    Science.gov (United States)

    2011-09-28

    ... DEPARTMENT OF TRANSPORTATION National Highway Traffic Safety Administration 49 CFR Part 535 [NHTSA 2010-0079; EPA-HQ-OAR-2010-0162; FRL-9455-1] RIN 2127-AK74 Greenhouse Gas Emissions Standards and Fuel... comprehensive Heavy-Duty National Program that will increase fuel efficiency and reduce greenhouse gas emissions...

  17. Comparison of Gross Greenhouse Gas Fluxes from Hydroelectric Reservoirs in Brazil with Thermopower Generation

    Science.gov (United States)

    Rogerio, J. P.; Dos Santos, M. A.; Matvienko, B.; dos Santos, E.; Rocha, C. H.; Sikar, E.; Junior, A. M.

    2013-05-01

    Widespread interest in human impacts on the Earth has prompted much questioning in fields of concern to the general public. One of these issues is the extent of the impacts on the environment caused by hydro-based power generation, once viewed as a clean energy source. From the early 1990s onwards, papers and studies have been challenging this assumption through claims that hydroelectric dams also emit greenhouse gases, generated by the decomposition of biomass flooded by filling these reservoirs. Like as other freshwater bodies, hydroelectric reservoirs produce gases underwater by biology decomposition of organic matter. Some of these biogenic gases are effective in terms of Global Warming. The decomposition is mainly due by anaerobically regime, emitting methane (CH4), nitrogen (N2) and carbon dioxide (CO2). This paper compare results obtained from gross greenhouse fluxes in Brazilian hydropower reservoirs with thermo power plants using different types of fuels and technology. Measurements were carried in the Manso, Serra da Mesa, Corumbá, Itumbiara, Estreito, Furnas and Peixoto reservoirs, located in Cerrado biome and in Funil reservoir located at Atlantic forest biome with well defined climatologically regimes. Fluxes of carbon dioxide and methane in each of the reservoirs selected, whether through bubbles and/or diffusive exchange between water and atmosphere, were assessed by sampling. The intensity of emissions has a great variability and some environmental factors could be responsible for these variations. Factors that influence the emissions could be the water and air temperature, depth, wind velocity, sunlight, physical and chemical parameters of water, the composition of underwater biomass and the operational regime of the reservoir. Based in this calculations is possible to conclude that the large amount of hydro-power studied is better than thermopower source in terms of atmospheric greenhouse emissions. The comparisons between the reservoirs studied

  18. Portuguese agriculture and the evolution of greenhouse gas emissions-can vegetables control livestock emissions?

    Science.gov (United States)

    Mourao, Paulo Reis; Domingues Martinho, Vítor

    2017-07-01

    One of the most serious externalities of agricultural activity relates to greenhouse gas emissions. This work tests this relationship for the Portuguese case by examining data compiled since 1961. Employing cointegration techniques and vector error correction models (VECMs), we conclude that the evolution of the most representative vegetables and fruits in Portuguese production are associated with higher controls on the evolution of greenhouse gas emissions. Reversely, the evolution of the output levels of livestock and the most representative animal production have significantly increased the level of CO 2 (carbon dioxide) reported in Portugal. We also analyze the cycle length of the long-term relationship between agricultural activity and greenhouse gas emissions. In particular, we highlight the case of synthetic fertilizers, whose values of CO 2 have quickly risen due to changes in Portuguese vegetables, fruit, and animal production levels.

  19. Regional greenhouse climate effects

    International Nuclear Information System (INIS)

    Hansen, J.; Rind, D.; Delgenio, A.; Lacis, A.; Lebedeff, S.; Prather, M.; Ruedy, R.; Karl, T.

    1990-01-01

    The authors discuss the impact of an increasing greenhouse effect on three aspects of regional climate: droughts, storms and temperature. A continuous of current growth rates of greenhouse gases causes an increase in the frequency and severity of droughts in their climate model simulations, with the greatest impacts in broad regions of the subtropics and middle latitudes. But the greenhouse effect enhances both ends of the hydrologic cycle in the model, that is, there is an increased frequency of extreme wet situations, as well as increased drought. Model results are shown to imply that increased greenhouse warming will lead to more intense thunderstorms, that is, deeper thunderstorms with greater rainfall. Emanual has shown that the model results also imply that the greenhouse warming leads to more destructive tropical cyclones. The authors present updated records of observed temperatures and show that the observations and model results, averaged over the globe and over the US, are generally consistent. The impacts of simulated climate changes on droughts, storms and temperature provide no evidence that there will be regional winners if greenhouse gases continue to increase rapidly

  20. Cradle-to-gate greenhouse gas emissions of battery electric and internal combustion engine vehicles in China

    International Nuclear Information System (INIS)

    Qiao, Qinyu; Zhao, Fuquan; Liu, Zongwei; Jiang, Shuhua; Hao, Han

    2017-01-01

    Highlights: •Cradle-to-gate greenhouse gas emissions of internal combustion engine and battery electric vehicles are compared. •Greenhouse gas emissions of battery electric vehicles are 50% higher than internal combustion engine vehicles. •Traction battery production causes about 20% greenhouse gas emissions increase. •10% variations of curb weight, electricity and Li-ion battery production affect the results by 7%, 4% and 2%. •Manufacturing technique improvement, vehicle recycling and energy structure optimization are major mitigation opportunities. -- Abstract: Electric drive vehicles are equipped with totally different propulsion systems compared with conventional vehicles, for which the energy consumption and cradle-to-gate greenhouse gas emissions associated with vehicle production could substantially change. In this study, the life cycle energy consumption and greenhouse gas emissions of vehicle production are compared between battery electric and internal combustion engine vehicles in China’s context. The results reveal that the energy consumption and greenhouse gas emissions of a battery electric vehicle production range from 92.4 to 94.3 GJ and 15.0 to 15.2 t CO 2 eq, which are about 50% higher than those of an internal combustion engine vehicle, 63.5 GJ and 10.0 t CO 2 eq. This substantial change can be mainly attributed to the production of traction batteries, the essential components for battery electric vehicles. Moreover, the larger weight and different weight distribution of materials used in battery electric vehicles also contribute to the larger environmental impact. This situation can be improved through the development of new traction battery production techniques, vehicle recycling and a low-carbon energy structure.

  1. An accurate analytical solution of a zero-dimensional greenhouse model for global warming

    International Nuclear Information System (INIS)

    Foong, S K

    2006-01-01

    In introducing the complex subject of global warming, books and papers usually use the zero-dimensional greenhouse model. When the ratio of the infrared radiation energy of the Earth's surface that is lost to outer space to the non-reflected average solar radiation energy is small, the model admits an accurate approximate analytical solution-the resulting energy balance equation of the model is a quartic equation that can be solved analytically-and thus provides an alternative solution and instructional strategy. A search through the literature fails to find an analytical solution, suggesting that the solution may be new. In this paper, we review the model, derive the approximation and obtain its solution. The dependence of the temperature of the surface of the Earth and the temperature of the atmosphere on seven parameters is made explicit. A simple and convenient formula for global warming (or cooling) in terms of the percentage change of the parameters is derived. The dependence of the surface temperature on the parameters is illustrated by several representative graphs

  2. Germany 2050 a greenhouse gas-neutral country. Background paper

    Energy Technology Data Exchange (ETDEWEB)

    Werner, Kathrin; Nissler, Diana (eds.)

    2013-10-15

    For several years, the German Federal Environment Agency (UBA) has been looking at the question how the climate target of a GHG-neutral Germany can be achieved. In a multi-disciplinary project launched by the agency, the first point of call was power generation because of its high emissions. It was shown in 2010 that power generation from 100 % renewable energy is possible. Even then it was understood that a renewable energy supply alone would not be enough to completely abolish greenhouse gas emissions. Other sectors of the economy would have to follow suit and undergo major changes, relying on low-GHG technology. Consequently, the study now submitted, ''Greenhouse gas-neutral Germany 2050'', includes in its research all relevant emission sources that are described in the annual National Inventory Report (NIR) on emissions and removal of greenhouse gases. Alongside complete energy supply, including heating and transport, we also look at emissions from industry, waste disposal, agriculture and forestry as well as changes in land use. We develop a target scenario. The transformations that lead to the target and related economic considerations or the selection of appropriate policy instruments, however, are not part of our study. The scenario analysis is based on the assumption that in 2050, Germany will still be an exporting industrial country with an average annual growth of 0.7 % of its gross domestic product.

  3. [Greenhouse gas emissions, carbon leakage and net carbon sequestration from afforestation and forest management: A review.

    Science.gov (United States)

    Liu, Bo Jie; Lu, Fei; Wang, Xiao Ke; Liu, Wei Wei

    2017-02-01

    Forests play an important role in climate change mitigation and concentration of CO 2 reduction in the atmosphere. Forest management, especially afforestation and forest protection, could increase carbon stock of forests significantly. Carbon sequestration rate of afforestation ranges from 0.04 to 7.52 t C·hm -2 ·a -1 , while that of forest protection is 0.33-5.20 t C·hm -2 ·a -1 . At the same time, greenhouse gas (GHG) is generated within management boundary due to the production and transportation of the materials consumed in relevant activities of afforestation and forest management. In addition, carbon leakage is also generated outside boundary from activity shifting, market effects and change of environments induced by forest management. In this review, we summarized the definition of emission sources of GHG, monitoring methods, quantity and rate of greenhouse gas emissions within boundary of afforestation and forest management. In addition, types, monitoring methods and quantity of carbon leakage outside boundary of forest management were also analyzed. Based on the reviewed results of carbon sequestration, we introduced greenhouse gas emissions within boundary and carbon leakage, net carbon sequestration as well as the countervailing effects of greenhouse gas emissions and carbon leakage to carbon sequestration. Greenhouse gas emissions within management boundary counteract 0.01%-19.3% of carbon sequestration, and such counteraction could increase to as high as 95% considering carbon leakage. Afforestation and forest management have substantial net carbon sequestration benefits, when only taking direct greenhouse gas emissions within boundary and measurable carbon leakage from activity shifting into consideration. Compared with soil carbon sequestration measures in croplands, afforestation and forest management is more advantageous in net carbon sequestration and has better prospects for application in terms of net mitigation potential. Along with the

  4. 40 CFR 86.1818-12 - Greenhouse gas emission standards for light-duty vehicles, light-duty trucks, and medium-duty...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Greenhouse gas emission standards for... Complete Otto-Cycle Heavy-Duty Vehicles § 86.1818-12 Greenhouse gas emission standards for light-duty... group of six greenhouse gases: Carbon dioxide, nitrous oxide, methane, hydrofluorocarbons...

  5. UNEP greenhouse gas abatement costing studies

    International Nuclear Information System (INIS)

    Morthorst, P.E.; Grohnheit, P.E.

    1992-04-01

    The project initiated by the United Nations Environment Programme aims to clarify some economic issues involved in greenhouse gas limitation by carrying out comparative studies of various nations. The programme should contribute to the establishment of a consistent methodological framework for making cost assessments of greenhouse gas abatement and help to support countries in the process of establishing national and international agreements on actions to combat climate change. The publication gives a survey of Danish energy demand and supply, emissions and current energy policy issues and reviews existing studies of carbon dioxide reductions. This includes the overall national environmental policy and the plan of action for the transport sector. Conclusions are that there seems to be a long-term potential for significant reduction of CO 2 emission by 10-15% by 2010 with no additional costs, a 50% reduction will cost DKK 25-50 per kg reduced CO 2 . The most promising options include increased use of cogeneration of heat and electricity, and electricity conservation in households, services and in industry. Economic growth is forecast as ca. 2.7% and energy prices for oil products should increase by ca. 4.8%. A 40% reduction of CO 2 emission in the year 2005 would increase costs by 1-2%, and a reduction of two thirds of present emission should be possible at no additional cost compared to the reference cases. There is general agreement that a reduction of carbon dioxide emission of 15-30% by 2005-10 should involve no additional costs to society. (AB) (11 refs.)

  6. Incorporating greenhouse gas (GHG) emissions in long range transportation planning.

    Science.gov (United States)

    2014-05-01

    Greenhouse gas (GHG) emissions continue to be an important focus area for state, local, and federal : agencies. The transportation sector is the second biggest contributor to GHG emissions in the U.S., and : Texas contributes the highest emissions am...

  7. Effects of treated poultry litter on potential Greenhouse Gas ...

    African Journals Online (AJOL)

    This study examined the effects of different treatments of poultry faecal matter on potential greenhouse gas emission and its field application. Poultry litters were randomly assigned to four treatments viz; salt solution, alum, air exclusion and the control (untreated). Alum treated faeces had higher (p<0.05) percentage nitrogen ...

  8. How to design greenhouse gas trading in the EU?

    DEFF Research Database (Denmark)

    Svendsen, Gert Tinggaard; Vesterdal, Morten

    2001-01-01

    A new and remarkable Green Paper about how to trade Greenhouse gases (GHG) in the EU has recently been published by the Commission of the European Union. This to achieve the stated 8% reduction target level. The Green Paper raises ten questions about how greenhouse gas permit trading should...... be designed in the EU before year 2005. These ten questions can be compressed into four main issues, namely target group, allocation of emission allowances, how to mix emission trading with other instruments and fourth enforcement. In the literature, there is a strong need to guide decision...... concerning the future design of GHG permit trading in the EU....

  9. How to Design Greenhouse Gas Trading in the EU?

    DEFF Research Database (Denmark)

    Svendsen, Gert Tinggaard; Vesterdal, Morten

    2003-01-01

    A new and remarkable Green Paper about how to trade Greenhouse gases (GHG) in the EU has recently been published by the Commission of the European Union. This to achieve the stated 8% reduction target level. The Green Paper raises ten questions about how greenhouse gas permit trading should...... be designed in the EU before year 2005. These ten questions can be compressed into four main issues, namely target group, allocation of emission allowances, how to mix emission trading with other instruments and fourth enforcement. In the literature, there is a strong need to guide decision...... concerning the future design of GHG permit trading in the EU. Udgivelsesdato: NOV...

  10. The greenhouse gas emissions performance of cellulosic ethanol supply chains in Europe

    Directory of Open Access Journals (Sweden)

    Bauen Ausilio

    2009-08-01

    Full Text Available Abstract Background Calculating the greenhouse gas savings that may be attributed to biofuels is problematic because production systems are inherently complex and methods used to quantify savings are subjective. Differing approaches and interpretations have fuelled a debate about the environmental merit of biofuels, and consequently about the level of policy support that can be justified. This paper estimates and compares emissions from plausible supply chains for lignocellulosic ethanol production, exemplified using data specific to the UK and Sweden. The common elements that give rise to the greatest greenhouse gas emissions are identified and the sensitivity of total emissions to variations in these elements is estimated. The implications of including consequential impacts including indirect land-use change, and the effects of selecting alternative allocation methods on the interpretation of results are discussed. Results We find that the most important factors affecting supply chain emissions are the emissions embodied in biomass production, the use of electricity in the conversion process and potentially consequential impacts: indirect land-use change and fertiliser replacement. The large quantity of electricity consumed during enzyme manufacture suggests that enzymatic conversion processes may give rise to greater greenhouse gas emissions than the dilute acid conversion process, even though the dilute acid process has a somewhat lower ethanol yield. Conclusion The lignocellulosic ethanol supply chains considered here all lead to greenhouse gas savings relative to gasoline An important caveat to this is that if lignocellulosic ethanol production uses feedstocks that lead to indirect land-use change, or other significant consequential impacts, the benefit may be greatly reduced. Co-locating ethanol, electricity generation and enzyme production in a single facility may improve performance, particularly if this allows the number of energy

  11. Patterns of Carbon Storage and Greenhouse Gas Losses in Urban Residential Lawns

    Science.gov (United States)

    Contosta, A.; Varner, R.; Xiao, J.

    2017-12-01

    Population density and housing age are two factors believed to impact carbon (C) storage and greenhouse gas emissions in one of the most extensively managed landscapes in the U.S.: the urban lawn. Previous research focusing on either above- or below-ground C dynamics has also not explicitly considered how they interact to affect the net carbon balance in urban residential areas. We addressed this knowledge gap by quantifying both soil and vegetative C stocks and greenhouse gas fluxes across an urban gradient in Manchester, NH, USA that included 34 lawns comprising three population density categories, five housing age classes, and the interaction between them. Using a combination of both weekly, manual measurements and continuous, automated estimates, we also sampled emissions of CH4, CO2, and N2O within a subset of these lawns that represented a range of citywide population density and housing age characteristics and management practices. We found that neither above- nor below-ground C storage varied with population density, but both differed among housing age classes. Soil C storage increased with housing age and was highest in the oldest lawns sampled. By contrast, C stocks in aboveground, woody biomass was highest at intermediate ages and lowest in older and new parcels. Unlike C stocks, soil greenhouse gas emissions did not change among population density categories, housing age classes, or with irrigation and fertilization management, but instead followed temporal trends in soil moisture and temperature. Overall, our results suggest that drivers of C storage and greenhouse gas losses in urban residential areas may not be uniform and their accurate representation in Earth system models may require a variety of approaches.

  12. Fuel poverty, affordability, and energy justice in England: Policy insights from the Warm Front Program

    International Nuclear Information System (INIS)

    Sovacool, Benjamin K.

    2015-01-01

    Millions of homes around the world suffer from “fuel poverty,” commonly defined as the necessity to spend more than 10 percent of their income paying energy bills. This article first discusses how home energy efficiency schemes, such as those that pay to weatherize doors and windows, install insulation, and give free energy audits, can significantly reduce the prevalence of fuel poverty. It then examines the “Warm Front” program in England, which over the course of 2000–2013 saw 2.3 million “fuel poor” British homes receive energy efficiency upgrades to save them money and improve their overall health. Warm Front not only lessened the prevalence of fuel poverty; it cut greenhouse gas emissions, produced an average extra annual income of £1894.79 per participating household, and reported exceptional customer satisfaction with more than 90 percent of its customers praising the scheme. This study details the history, benefits, and challenges of the program, and it teases out six noteworthy lessons for energy analysts, planners, and policymakers. - Highlights: • Millions of homes around the world suffer from “fuel poverty”. • The “Warm Front” program in England saw 2.3 million “fuel poor” British homes receive energy efficiency upgrades. • Warm Front ran from over the course of 2000–2013. • Warm Front lessened the prevalence of fuel poverty, cut greenhouse gas emissions, and saved households money. • Warm Front offers important lessons for energy analysts, planners, and policymakers.

  13. Greenhouse gas balance over thaw-freeze cycles in discontinuous zone permafrost

    Science.gov (United States)

    Wilson, R. M.; Fitzhugh, L.; Whiting, G. J.; Frolking, S.; Harrison, M. D.; Dimova, N.; Burnett, W. C.; Chanton, J. P.

    2017-02-01

    Peat in the discontinuous permafrost zone contains a globally significant reservoir of carbon that has undergone multiple permafrost-thaw cycles since the end of the mid-Holocene ( 3700 years before present). Periods of thaw increase C decomposition rates which leads to the release of CO2 and CH4 to the atmosphere creating potential climate feedback. To determine the magnitude and direction of such feedback, we measured CO2 and CH4 emissions and modeled C accumulation rates and radiative fluxes from measurements of two radioactive tracers with differing lifetimes to describe the C balance of the peatland over multiple permafrost-thaw cycles since the initiation of permafrost at the site. At thaw features, the balance between increased primary production and higher CH4 emission stimulated by warmer temperatures and wetter conditions favors C sequestration and enhanced peat accumulation. Flux measurements suggest that frozen plateaus may intermittently (order of years to decades) act as CO2 sources depending on temperature and net ecosystem respiration rates, but modeling results suggest that—despite brief periods of net C loss to the atmosphere at the initiation of thaw—integrated over millennia, these sites have acted as net C sinks via peat accumulation. In greenhouse gas terms, the transition from frozen permafrost to thawed wetland is accompanied by increasing CO2 uptake that is partially offset by increasing CH4 emissions. In the short-term (decadal time scale) the net effect of this transition is likely enhanced warming via increased radiative C emissions, while in the long-term (centuries) net C deposition provides a negative feedback to climate warming.

  14. Combining policy instruments to curb greenhouse gas emissions

    International Nuclear Information System (INIS)

    Bahn, O.

    2001-01-01

    The Kyoto Protocol has set greenhouse gas emission reduction targets for selected countries. To comply with these reduction requirements, decision-makers may use market-based instruments on a national or international basis. This paper advocates the combining of national emission taxes with international trade of emission permits. As a numerical application, this paper analyses macro-economic impacts of such a strategy for Switzerland. (Author)

  15. Incineration and co-combustion of waste: accounting of greenhouse gases and global warming contributions

    DEFF Research Database (Denmark)

    Astrup, Thomas; Møller, Jacob; Fruergaard, Thilde

    2009-01-01

    Important greenhouse gas (GHG) emissions related to waste incineration and co-combustion of waste were identified and considered relative to critical aspects such as: the contents of biogenic and fossil carbon, N2O emissions, fuel and material consumptions at the plants, energy recovery, and soli...

  16. Creating a Methodology for Coordinating High-resolution Air Quality Improvement Map and Greenhouse Gas Mitigation Strategies in Pittsburgh City

    Science.gov (United States)

    Shi, J.; Donahue, N. M.; Klima, K.; Blackhurst, M.

    2016-12-01

    In order to tradeoff global impacts of greenhouse gases with highly local impacts of conventional air pollution, researchers require a method to compare global and regional impacts. Unfortunately, we are not aware of a method that allows these to be compared, "apples-to-apples". In this research we propose a three-step model to compare possible city-wide actions to reduce greenhouse gases and conventional air pollutants. We focus on Pittsburgh, PA, a city with consistently poor air quality that is interested in reducing both greenhouse gases and conventional air pollutants. First, we use the 2013 Pittsburgh Greenhouse Gas Inventory to update the Blackhurst et al. model and conduct a greenhouse gas abatement potentials and implementation costs of proposed greenhouse gas reduction efforts. Second, we use field tests for PM2.5, NOx, SOx, organic carbon (OC) and elemental carbon (EC) data to inform a Land-use Regression Model for local air pollution at a 100m x 100m spatial level, which combined with a social cost of air pollution model (EASIUR) allows us to calculate economic social damages. Third, we combine these two models into a three-dimensional greenhouse gas cost abatement curve to understand the implementation costs and social benefits in terms of air quality improvement and greenhouse gas abatement for each potential intervention. We anticipated such results could provide policy-maker insights in green city development.

  17. Global warming on trial

    International Nuclear Information System (INIS)

    Broeker, W.S.

    1992-01-01

    Jim Hansen, a climatologist at NASA's Goddard Space Institute, is convinced that the earth's temperature is rising and places the blame on the buildup of greenhouse gases in the atmosphere. Unconvinced, John Sununu, former White House chief of staff, doubts that the warming will be great enough to produce serious threat and fears that measures to reduce the emissions would throw a wrench into the gears that drive the Unites States' troubled economy. During his three years at the White House, Sununu's view prevailed, and although his role in the debate has diminished, others continue to cast doubt on the reality of global warming. A new lobbying group called the Climate Council has been created to do just this. Burning fossil fuels is not the only problem; a fifth of emissions of carbon dioxide now come from clearing and burning forests. Scientists are also tracking a host of other greenhouse gases that emanate from a variety of human activities; the warming effect of methane, chlorofluorocarbons and nitrous oxide combined equals that of carbon dioxide. Although the current warming from these gases may be difficult to detect against the background noise of natural climate variation, most climatologists are certain that as the gases continue to accumulate, increases in the earth's temperature will become evident even to skeptics. If the reality of global warming were put on trial, each side would have trouble making its case. Jim Hansen's side could not prove beyond a reasonable doubt that carbon dioxide and other greenhouse gases have warmed the planet. But neither could John Sununu's side prove beyond a reasonable doubt that the warming expected from greenhouse gases has not occurred. To see why each side would have difficulty proving its case, this article reviews the arguments that might be presented in such a hearing

  18. Holistic greenhouse gas management

    Energy Technology Data Exchange (ETDEWEB)

    Read, P. [Dept. of Applied and International Economics, Massey Univ. (New Zealand); Parshotam, A. [Inst. of Fundamental Sciences, Massey Univ. (New Zealand)

    2005-07-01

    A holistic greenhouse gas management strategy is described. The first stage is the growth of a large-scale global bio-energy market with world trade in bio-fuels and with a strategic stock of biomass raw material in new plantation forests. Later stages, more costly - as needs may be in response to possible future precursors of abrupt climate change - would involve linking CO2 capture and sequestration to bio-energy, yielding a negative emissions energy system. Illustrative calculations point to the feasibility of a return to pre-industrial CO{sub 2} levels before mid-century. This result is subject to significant caveats, but, prima facie, the first stage can provide several environmental and socio-economic side-benefits while yielding a positive financial return if oil prices remain above 35$/bbl. The vision is that the polluter pays principle can be turned to a greening of the earth. (orig.)

  19. Land Use Effects on Net Greenhouse Gas Fluxes in the US Great Plains: Historical Trends and Model Projections

    Science.gov (United States)

    Del Grosso, S. J.; Parton, W. J.; Ojima, D. S.; Mosier, A. R.; Mosier, A. R.; Paustian, K.; Peterson, G. A.

    2001-12-01

    We present maps showing regional patterns of land use change and soil C levels in the US Great Plains during the 20th century and time series of net greenhouse gas fluxes associated with different land uses. Net greenhouse gas fluxes were calculated by accounting for soil CO2 fluxes, the CO2 equivalents of N2O emissions and CH4 uptake, and the CO2 costs of N fertilizer production. Both historical and modern agriculture in this region have been net sources of greenhouse gases. The primary reason for this, prior to 1950, is that agriculture mined soil C and resulted in net CO2 emissions. When chemical N fertilizer became widely used in the 1950's agricultural soils began to sequester CO2-C but these soils were still net greenhouse gas sources if the effects of increased N2O emissions and decreased CH4 uptake are included. The sensitivity of net greenhouse gas fluxes to conventional and alternative land uses was explored using the DAYCENT ecosystem model. Model projections suggest that conversion to no-till, reduction of the fallow period, and use of nitrification inhibitors can significantly decrease net greenhouse gas emissions in dryland and irrigated systems, while maintaining or increasing crop yields.

  20. Greenhouse gas emissions related to agriculture and land-use practices

    International Nuclear Information System (INIS)

    Burke, L.M.; Lashof, D.A.

    1990-01-01

    This paper reports on the effects of increasing trace gas concentrations and concomitant climate change on agriculture which are likely to be substantial. With cropland and pasture now covering 2 , CH 4 , and N 2 O. Land clearing for agriculture and other purposes is responsible for 10 to 30% of total net CO 2 emissions; the rest is due to fossil fuel combustion. In addition, intentional burning of agricultural wastes, grasslands, and forests makes a significant contribution to global emissions of CO, CH 4 , NO x and N 2 O. Methane emissions from anaerobic respiration in rice (Oryza sativa L.) paddies and domestic animal remains account for 30 to 50% of the global total, making agriculture the dominant anthropogenic source of this gas. The amount of N 2 O emitted as a result of N fertilizer applications is highly uncertain, but may be on the order of 10% of total N 2 O emissions. Future agricultural greenhouse gas emissions will be affected by population growth, economic development, and agricultural practices. Greenhouse gas emissions are likely to increase substantially in the future unless steps are taken to control them. Investigating potential approaches to reducing these emissions while expanding production presents a major challenge to the agricultural research community

  1. Grappling with greenhouse

    International Nuclear Information System (INIS)

    Mitchell, C.D.

    1992-01-01

    A natural greenhouse effect keeps the Earth at a temperature suitable for life. Some of the gases responsible for the greenhouse effect are increasing at an unprecedented rate because of human activity. These increased levels of greenhouse gases in the atmosphere will strengthen the natural greenhouse effect, leading to an overall warming of the Earth's surface. Global warming resulting from the enhanced greenhouse effect is likely to be obscured by normal climatic fluctuations for another ten years or more. The extent of human-caused climate change will depend largely on future concentrations of greenhouse gases in the atmosphere. In turn, the composition of the atmosphere depends on the release of greenhouse gases. Releases are hard to predict, because they require an understanding of future human activity. The composition of the atmosphere also depends on the processes which remove greenhouse gases from it. This booklet is summarizing the latest research results in the form of climate change scenarios. The present scenarios of change are based on climate models, together with an understanding of how present-day climate, with its inherent natural variability, affects human activities. These scenarios present a coherent range of future possibilities for climate; they are not predictions but they serve as a useful starting point. It is estimated that human-caused climate change will affect all aspects of life in Australia, including our cities, agriculture, pests and diseases, fisheries and natural ecosystems. 15 figs., ills

  2. Emission and Sink of Greenhouse Gases in Soils of Moscow

    Science.gov (United States)

    Mozharova, N. V.; Kulachkova, S. A.; Lebed'-Sharlevich, Ya. I.

    2018-03-01

    The first inventory and zoning of the emission and sink of methane and carbon dioxide in the urban structure of greenhouse gases from soils and surface technogenic formations (STFs) (Technosols) on technogenic, recrementogenic, and natural sediments have been performed with consideration for the global warming potential under conditions of different formation rate of these gases, underflooding, and sealing. From gas geochemical criteria and anthropogenic pedogenesis features, the main sources of greenhouse gases, their intensity, and mass emission were revealed. The mass fractions of emissions from the sectors of waste and land use in the inventories of greenhouse gas emissions have been determined. New sources of gas emission have been revealed in the first sector, the emissions from which add tens of percent to the literature and state reports. In the second sector, emissions exceed the available data in 70 times. Estimation criteria based on the degree of manifestation and chemical composition of soil-geochemical anomalies and barrier capacities have been proposed. The sink of greenhouse gases from the atmosphere and the internal (latent) sink of methane in soils and STFs have been determined. Ecological functions of soils and STFs have been shown, and the share of latent methane sink has been calculated. The bacterial oxidation of methane in soils and STFs exceeds its emission to the atmosphere in almost hundred times.

  3. Greenhouse gas emissions related to landscape elements in the subarctic environment at Churchill, Manitoba

    International Nuclear Information System (INIS)

    Churchill, J.; Tenuta, M.; Bello, R.; Papakyriakou, T.

    2006-01-01

    The relationship between greenhouse gas (GHG) emissions, landscape elements and major environmental regulators was studied. The hydrologic regimes of the Hudson Bay Lowlands are expected to change along with the extent of permafrost and composition of vegetation due to increased levels of GHGs associated with global warming. Two transects were created at a Polygonized-Peat Plateau (PPP) and a Spruce Forest (SF) site in 2005. A sub-set on 4 dominant landscape elements of each transect were used to estimate emissions of carbon dioxide (CO 2 ), methane (CH 4 ), and nitric oxide (N 2 O) on a weekly basis from June to August. In order to obtain a good sampling representation of environmental conditions and of the gradients in plant communities, the entire transect at PPP was sampled monthly. In order to examine the role of soil conditions on the production and consumption of GHG leading to surface fluxes, soil gas samplers were installed at 2 depths at both sites. N 2 O production and consumption were found to be inconsequential at both sites. However, high methane emissions were observed when the volumetric moisture content (VMC) rose higher than 80 per cent at the edge of the ponds. Methane consumption was found to be related to low VMC values (20-40 per cent) for the tops of peat polygons. Soil atmosphere concentrations for CO 2 and CH 4 at PPP were typically much higher at depths of 23-32 cm compared to depths of 5-9 cm. Some of the wettest landscape elements had very high CH 4 content, but had no corresponding CH 4 flux from the soil surface, suggesting that the gas was consumed under aerobic conditions at the soil surface. It was concluded that GHG emissions from both sites were altered by both landscape elements and environmental regulators such as temperature and moisture. Future work will focus on identifying the association of these relationships to processes responsible for GHG emissions in subarctic environments. The impact of global warming on these

  4. Climate Leadership webinar on Greenhouse Gas Management Resources for Small Businesses

    Science.gov (United States)

    Small businesses can calculate their carbon footprint and construct a greenhouse gas inventory to help track progress towards reaching emissions reduction goals. One strategy for this is EPA's Simplified GHG Emissions Calculator.

  5. Intensified Arctic warming under greenhouse warming by vegetation–atmosphere–sea ice interaction

    International Nuclear Information System (INIS)

    Jeong, Jee-Hoon; Kug, Jong-Seong; Linderholm, Hans W; Chen, Deliang; Kim, Baek-Min; Jun, Sang-Yoon

    2014-01-01

    Observations and modeling studies indicate that enhanced vegetation activities over high latitudes under an elevated CO 2 concentration accelerate surface warming by reducing the surface albedo. In this study, we suggest that vegetation-atmosphere-sea ice interactions over high latitudes can induce an additional amplification of Arctic warming. Our hypothesis is tested by a series of coupled vegetation-climate model simulations under 2xCO 2 environments. The increased vegetation activities over high latitudes under a 2xCO 2 condition induce additional surface warming and turbulent heat fluxes to the atmosphere, which are transported to the Arctic through the atmosphere. This causes additional sea-ice melting and upper-ocean warming during the warm season. As a consequence, the Arctic and high-latitude warming is greatly amplified in the following winter and spring, which further promotes vegetation activities the following year. We conclude that the vegetation-atmosphere-sea ice interaction gives rise to additional positive feedback of the Arctic amplification. (letter)

  6. Global warming without global mean precipitation increase?

    Science.gov (United States)

    Salzmann, Marc

    2016-06-01

    Global climate models simulate a robust increase of global mean precipitation of about 1.5 to 2% per kelvin surface warming in response to greenhouse gas (GHG) forcing. Here, it is shown that the sensitivity to aerosol cooling is robust as well, albeit roughly twice as large. This larger sensitivity is consistent with energy budget arguments. At the same time, it is still considerably lower than the 6.5 to 7% K(-1) decrease of the water vapor concentration with cooling from anthropogenic aerosol because the water vapor radiative feedback lowers the hydrological sensitivity to anthropogenic forcings. When GHG and aerosol forcings are combined, the climate models with a realistic 20th century warming indicate that the global mean precipitation increase due to GHG warming has, until recently, been completely masked by aerosol drying. This explains the apparent lack of sensitivity of the global mean precipitation to the net global warming recently found in observations. As the importance of GHG warming increases in the future, a clear signal will emerge.

  7. Exploring a suitable nitrogen fertilizer rate to reduce greenhouse gas emissions and ensure rice yields in paddy fields

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Yiming; Wang, Xiaopeng; Yang, Jingping, E-mail: jpyang@zju.edu.cn; Zhao, Xing; Ye, Xinyi

    2016-09-15

    The application rate of nitrogen fertilizer was believed to dramatically influence greenhouse gas (GHG) emissions from paddy fields. Thus, providing a suitable nitrogen fertilization rate to ensure rice yields, reducing GHG emissions and exploring emission behavior are important issues for field management. In this paper, a two year experiment with six rates (0, 75, 150, 225, 300, 375 kg N/ha) of nitrogen fertilizer application was designed to examine GHG emissions by measuring carbon dioxide (CO{sub 2}), methane (CH{sub 4}), nitrous oxide (N{sub 2}O) flux and their cumulative global warming potential (GWP) from paddy fields in Hangzhou, Zhejiang in 2013 and 2014. The results indicated that the GWP and rice yields increased with an increasing application rate of nitrogen fertilizer. Emission peaks of CH{sub 4} mainly appeared at the vegetative phase, and emission peaks of CO{sub 2}, and N{sub 2}O mainly appeared at reproductive phase of rice growth. The CO{sub 2} flux was significantly correlated with soil temperature, while the CH{sub 4} flux was influenced by logging water remaining period and N{sub 2}O flux was significantly associated with nitrogen application rates. This study showed that 225 kg N/ha was a suitable nitrogen fertilizer rate to minimize GHG emissions with low yield-scaled emissions of 3.69 (in 2013) and 2.23 (in 2014) kg CO{sub 2}-eq/kg rice yield as well as to ensure rice yields remained at a relatively high level of 8.89 t/ha in paddy fields. - Highlights: • Exploiting co-benefits of rice yield and reduction of greenhouse gas emission. • Global warming potential and rice yield increased with nitrogen fertilizer rate up. • Emission peaks of CH{sub 4,} CO{sub 2} and N{sub 2}O appeared at vegetative and reproductive phase. • 225 kg N/ha rate benefits both rice yields and GWP reduction.

  8. How ground-based observations can support satellite greenhouse gas retrievals

    Science.gov (United States)

    Butler, J. H.; Tans, P. P.; Sweeney, C.; Dlugokencky, E. J.

    2012-04-01

    Global society will eventually accelerate efforts to reduce greenhouse gas emissions in a variety of ways. These would likely involve international treaties, national policies, and regional strategies that will affect a number of economic, social, and environmental sectors. Some strategies will work better than others and some will not work at all. Because trillions of dollars will be involved in pursuing greenhouse gas emission reductions - through realignment of energy production, improvement of efficiencies, institution of taxes, implementation of carbon trading markets, and use of offsets - it is imperative that society be given all the tools at its disposal to ensure the ultimate success of these efforts. Providing independent, globally coherent information on the success of these efforts will give considerable strength to treaties, policies, and strategies. Doing this will require greenhouse gas observations greatly expanded from what we have today. Satellite measurements may ultimately be indispensable in achieving global coverage, but the requirements for accuracy and continuity of measurements over time are demanding if the data are to be relevant. Issues such as those associated with sensor drift, aging electronics, and retrieval artifacts present challenges that can be addressed in part by close coordination with ground-based and in situ systems. This presentation identifies the information that ground-based systems provide very well, but it also looks at what would be deficient even in a greatly expanded surface system, where satellites can fill these gaps, and how on-going, ground and in situ measurements can aid in addressing issues associated with accuracy, long-term continuity, and retrieval artifacts.

  9. How to stop global warming

    International Nuclear Information System (INIS)

    Goldenberg, J.

    1990-01-01

    This paper reports on how to stop global warming. At the Toronto Conference on Climate Change in 1988, the world's industrialized nations agreed on a goal of cutting greenhouse gas emissions 20 percent by the year 2005. This would not stabilize atmospheric levels of greenhouse gases but would at least slow their accumulation. Although difficult to achieve, the Toronto goal is certainly reachable. Newer, more efficient technologies can lower energy consumption without effecting economic output. CFC- substitutes can provide refrigeration. In fact, an international carbon tax of just $1 per barrel of oil, or $6 per ton of coal, would generate more than enough revenue to pay for the necessary fuel-saving measures. This tax could result from an international agreement similar to the 1987 Montreal Protocol, which obliges its signatories to cut down on production of CFCs

  10. Greenhouse gas emission factor for coal power chain in China and the comparison with nuclear power chain

    International Nuclear Information System (INIS)

    Ma Zhonghai; Pan Ziqiang; He Huimin

    1999-01-01

    The Greenhouse Gas Emission for coal power chain in China is analyzed in detail and comprehensively by using the Life Cycle Analysis method. The Greenhouse Gas Emission Factors (GGEF) in each link and for the total power chain are calculated. The total GGEF for coal power chain is 1302.3 gCO 2 /kWh, about 40 times more than that for nuclear power chain. And consequently greenhouse effect could not be aggravated further by nuclear power. The energy strategy for nuclear power development is one of reality ways to retard the greenhouse effect, put resources into rational use and protect environment

  11. RE: Request for Correction, Technical Support Document, Greenhouse Gas Emissions Reporting from the Petroleum and Natural Gas Industry

    Science.gov (United States)

    The Industrial Energy Consumers of America (IECA) joins the U.S. Chamber of Commerce in its request for correction of information developed by the Environmental Protection Agency (EPA) in a background technical support document titled Greenhouse Gas Emissions Reporting from the Petroleum and Natural Gas Industry

  12. Estimating the Impact of US Agriculture Subsidies on Greenhouse Gas Emissions

    Science.gov (United States)

    Eshel, G.; Martin, P. A.

    2006-12-01

    It has been proposed in the popular media that US agricultural subsidies contribute deleteriously to both the American diet and environment. In this view, subsidies render mostly corn-based, animal products and sweeteners artificically cheap, leading to enhanced consumption. Problems accompanying this structure mentioned include enhanced meat, fat and sugar consumption and the associated enhancement of obesity, cardiovascular diseases, type II diabetes and possible various types of cancer, as well as air, soil and water pollution. Often overlooked in these discussions is the potential enhancement of greenhouse gas emissions accompanying this policy-based steering of food consumption toward certain products at the expense of others, possibly more nutritionally and environmentally benign. If such enhancements are in fact borne out by data, the policies that give rise to them will prove to constitute government-sponsored enhancement of greenhouse gas emissions, in contrast to any climate change mitigation efforts. If so, they represent low- hanging fruits in the national effort to reduce greenhouse gas emissions which may one day be launched. Agriculture subsidies impact the emissions of CO2 (by direct energy consumption), nitrous oxide (by land use alteration and manure management), and methane (by ruminant digestion and manure treatment). Quantifying the impacts of agricultural subsidies is complicated by many compounding and conflicting effects (many related to human behavior rather than the natural sciences) and the relatively short data timeseries. For example, subsidy policies change over time, certain subsidy types are introduced or eliminated, food preferences change as nutritional understanding (or propaganda) shift, etc. Despite the difficulties, such quantification is crucial to better estimate the overall effect and variability of dietary choices on greenhouse gas emissions, and ultimately minimize environmental impacts. In this study, we take preliminary

  13. Estimating greenhouse gas emissions of European cities — Modeling emissions with only one spatial and one socioeconomic variable

    International Nuclear Information System (INIS)

    Baur, Albert H.; Lauf, Steffen; Förster, Michael; Kleinschmit, Birgit

    2015-01-01

    Substantive and concerted action is needed to mitigate climate change. However, international negotiations struggle to adopt ambitious legislation and to anticipate more climate-friendly developments. Thus, stronger actions are needed from other players. Cities, being greenhouse gas emission centers, play a key role in promoting the climate change mitigation movement by becoming hubs for smart and low-carbon lifestyles. In this context, a stronger linkage between greenhouse gas emissions and urban development and policy-making seems promising. Therefore, simple approaches are needed to objectively identify crucial emission drivers for deriving appropriate emission reduction strategies. In analyzing 44 European cities, the authors investigate possible socioeconomic and spatial determinants of urban greenhouse gas emissions. Multiple statistical analyses reveal that the average household size and the edge density of discontinuous dense urban fabric explain up to 86% of the total variance of greenhouse gas emissions of EU cities (when controlled for varying electricity carbon intensities). Finally, based on these findings, a multiple regression model is presented to determine greenhouse gas emissions. It is independently evaluated with ten further EU cities. The reliance on only two indicators shows that the model can be easily applied in addressing important greenhouse gas emission sources of European urbanites, when varying power generations are considered. This knowledge can help cities develop adequate climate change mitigation strategies and promote respective policies on the EU or the regional level. The results can further be used to derive first estimates of urban greenhouse gas emissions, if no other analyses are available. - Highlights: • Two variables determine urban GHG emissions in Europe, assuming equal power generation. • Household size, inner-urban compactness and power generation drive urban GHG emissions. • Climate policies should consider

  14. Estimating greenhouse gas emissions of European cities — Modeling emissions with only one spatial and one socioeconomic variable

    Energy Technology Data Exchange (ETDEWEB)

    Baur, Albert H., E-mail: Albert.H.Baur@campus.tu-berlin.de; Lauf, Steffen; Förster, Michael; Kleinschmit, Birgit

    2015-07-01

    Substantive and concerted action is needed to mitigate climate change. However, international negotiations struggle to adopt ambitious legislation and to anticipate more climate-friendly developments. Thus, stronger actions are needed from other players. Cities, being greenhouse gas emission centers, play a key role in promoting the climate change mitigation movement by becoming hubs for smart and low-carbon lifestyles. In this context, a stronger linkage between greenhouse gas emissions and urban development and policy-making seems promising. Therefore, simple approaches are needed to objectively identify crucial emission drivers for deriving appropriate emission reduction strategies. In analyzing 44 European cities, the authors investigate possible socioeconomic and spatial determinants of urban greenhouse gas emissions. Multiple statistical analyses reveal that the average household size and the edge density of discontinuous dense urban fabric explain up to 86% of the total variance of greenhouse gas emissions of EU cities (when controlled for varying electricity carbon intensities). Finally, based on these findings, a multiple regression model is presented to determine greenhouse gas emissions. It is independently evaluated with ten further EU cities. The reliance on only two indicators shows that the model can be easily applied in addressing important greenhouse gas emission sources of European urbanites, when varying power generations are considered. This knowledge can help cities develop adequate climate change mitigation strategies and promote respective policies on the EU or the regional level. The results can further be used to derive first estimates of urban greenhouse gas emissions, if no other analyses are available. - Highlights: • Two variables determine urban GHG emissions in Europe, assuming equal power generation. • Household size, inner-urban compactness and power generation drive urban GHG emissions. • Climate policies should consider

  15. Accounting for greenhouse gas emissions outside the national borders in FENCH-GHG energy planning

    International Nuclear Information System (INIS)

    Vate, J.F. van de

    1996-01-01

    This paper aims at providing guidance to the workshop discussion on the accountability of full-energy-chain greenhouse gas emissions from the use of energy sources if emissions did not take place inside the national borders of a country. Examples of such emissions are those from the generation of imported electricity or from mining and transportation of coal and natural gas. The FENCH-GHG approach, if used in energy planning, would automatically take such greenhouse gas emissions, which are inherent to energy systems, into account. The paper raises the basics, practicality and the feasibility of dealing with extra-boundary emissions in energy planning. (author). 3 refs

  16. Unified force and its relation with global warming crave for hydrogen energy and promote fuel cell technology

    International Nuclear Information System (INIS)

    Krishnan, K.J.; Kalam, A.

    2011-01-01

    Global warming is presently a tremendous public interest and has become a threat to every individual. Huge quantities of CO/sub 2/ are emitted to the atmosphere by burning of fossil fuels to produce electricity in power plants and burning of gasoline in aeroplanes and vehicles. Enormous amount of greenhouse gasses are sent into the air when garbage is burnt in landfills. Cutting down of trees and other plants which collect CO/sub 2/ a greenhouse gas which is inhaled and which gives back oxygen which is exhaled makes global warming worse. 'Self-Compressive Surrounding Pressure Force' which is also known as Unified Force is also related with global warming which is proportional to increase of H/sub 2/O level in sea and causes floods, storms, droughts and severe impacts to the environment and society. In order to better understand global warming and its relation with Unified Force, this paper discusses the cause and effect system on the amount of greenhouse gases emitted to the atmosphere from the burning of fossil fuels and also the other green house gases like CH/sub 4/, water vapour, NOx etc. and emphasis its importance to focus on crave for Hydrogen Energy and to promote Fuel Cell technology to keep the earth green and safer from the impacts of global warming. The benefit of switching from fossil fuels to Hydrogen Energy and Fuel Cell technology reduces the impact of global warming, elimination of pollution caused by fossil fuels and greenhouse gases, economic dependence and distributed production. (author)

  17. The ocean's role in polar climate change: asymmetric Arctic and Antarctic responses to greenhouse gas and ozone forcing.

    Science.gov (United States)

    Marshall, John; Armour, Kyle C; Scott, Jeffery R; Kostov, Yavor; Hausmann, Ute; Ferreira, David; Shepherd, Theodore G; Bitz, Cecilia M

    2014-07-13

    In recent decades, the Arctic has been warming and sea ice disappearing. By contrast, the Southern Ocean around Antarctica has been (mainly) cooling and sea-ice extent growing. We argue here that interhemispheric asymmetries in the mean ocean circulation, with sinking in the northern North Atlantic and upwelling around Antarctica, strongly influence the sea-surface temperature (SST) response to anthropogenic greenhouse gas (GHG) forcing, accelerating warming in the Arctic while delaying it in the Antarctic. Furthermore, while the amplitude of GHG forcing has been similar at the poles, significant ozone depletion only occurs over Antarctica. We suggest that the initial response of SST around Antarctica to ozone depletion is one of cooling and only later adds to the GHG-induced warming trend as upwelling of sub-surface warm water associated with stronger surface westerlies impacts surface properties. We organize our discussion around 'climate response functions' (CRFs), i.e. the response of the climate to 'step' changes in anthropogenic forcing in which GHG and/or ozone-hole forcing is abruptly turned on and the transient response of the climate revealed and studied. Convolutions of known or postulated GHG and ozone-hole forcing functions with their respective CRFs then yield the transient forced SST response (implied by linear response theory), providing a context for discussion of the differing warming/cooling trends in the Arctic and Antarctic. We speculate that the period through which we are now passing may be one in which the delayed warming of SST associated with GHG forcing around Antarctica is largely cancelled by the cooling effects associated with the ozone hole. By mid-century, however, ozone-hole effects may instead be adding to GHG warming around Antarctica but with diminished amplitude as the ozone hole heals. The Arctic, meanwhile, responding to GHG forcing but in a manner amplified by ocean heat transport, may continue to warm at an accelerating rate.

  18. Dynamical Analysis of the Global Warming

    Directory of Open Access Journals (Sweden)

    J. A. Tenreiro Machado

    2012-01-01

    Full Text Available Global warming is a major concern nowadays. Weather conditions are changing, and it seems that human activity is one of the main causes. In fact, since the beginning of the industrial revolution, the burning of fossil fuels has increased the nonnatural emissions of carbon dioxide to the atmosphere. Carbon dioxide is a greenhouse gas that absorbs the infrared radiation produced by the reflection of the sunlight on the Earth’s surface, trapping the heat in the atmosphere. Global warming and the associated climate changes are being the subject of intensive research due to their major impact on social, economic, and health aspects of human life. This paper studies the global warming trend in the perspective of dynamical systems and fractional calculus, which is a new standpoint in this context. Worldwide distributed meteorological stations and temperature records for the last 100 years are analysed. It is shown that the application of Fourier transforms and power law trend lines leads to an assertive representation of the global warming dynamics and a simpler analysis of its characteristics.

  19. FY 2000 report on the basic study/survey on the policy mix for reducing the greenhouse gas emissions; 2000 nendo onshitsu koka gas haishutsu sakugen no policy mix ni kansuru kisoteki kento

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Described herein are the FY 2000 results of the survey on policies for reducing the greenhouse gas emissions. For Japan to meet the emission reduction targets stated in the Kyoto Protocol, it is necessary to examine in detail what the most desirable policy measures should be for each sector. In this context, it is also essential to determine particular features of the various policies that may include action plans, environment taxes, and emission trading in addition to conventional regulations and subsidy measures, and to assess their anticipated effects and problems. After examining the policies adopted by various countries to reduce greenhouse gas emissions, this study has attempted to identify the merits and demerits of the various emission reduction policies and to present a systematic account of progress achieved in Japan during basic investigations into this issue. This reports provides a systematic overview of the action plans adopted by the other major countries to prevent global warming and makes a comparative study of the contents of the policies that have been introduced by these countries; identifies the arguments raised in the overseas debates on the effects and problems of global warming prevention policies, and attempts to put the arguments into some systematic order; examines the statuses of the current progress made by various countries with regard to methane and N{sub 2}O emission reduction policies, and discusses the related problems; gives a systematic account of how the policy options are being scrutinized by the government as the base for studying the policy mix for Japan; and examines statuses of the current progress made by Japan with regard to methane and N{sub 2}O emission reduction policies. (NEDO)

  20. Reduction of greenhouse gas in power industry by emission trading system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun Myung; Lee, Kee Hoon [Korea Energy Economics Institute, Euiwang (Korea)

    1999-04-01

    The rules governing their implementation and operation for implementing the Kyoto Protocol including emissions permit trading, project-based credit trading and the Clean Development Mechanism are to be decided at future talks. How these policies are eventually designed will determine the effectiveness of the Protocol. However, it has been passive and insufficient to deal with the Kyoto Protocol since there is no obligation on reduction of greenhouse gas emissions. Therefore, the issues on emissions permit trading are analyzed and the strategies for utilizing the Kyoto mechanism effectively are presented through reviewing the existing negotiation strategies. Moreover, how to use emissions permit trading in the power industry, the largest greenhouse gas emissions industry, is examined by dividing into two sections, domestic and abroad. (author). 62 refs., 2 figs., 42 tabs.