WorldWideScience

Sample records for greenhouse gas offsets

  1. Offsets : An innovative approach to reducing greenhouse gases

    International Nuclear Information System (INIS)

    Steward, B.

    1998-01-01

    One of the most innovative ways to address climate change is the use of offsets, which refers to actions taken outside of a company's operations, domestically and internationally, to reduce greenhouse gas emissions. This paper is devoted to a discussion of Suncor Energy's action plan for greenhouse gases which include offsets, and to an explanation of the reasons why offsets are fundamental to successful greenhouse gas management. Suncor Energy Inc., has developed a plan with seven elements to meet their target of stabilizing their greenhouse gas emissions at 1990 levels by year 2000. The seven elements include: (1) energy efficiency and process improvements at their oil sands facility, (2) the development of alternative and renewable sources of energy, such as ethanol blended gasolines and the use of wind turbines to generate electricity, (3) promoting environmental and economic research to develop more advanced oil and gas technology to reduce greenhouse gas emissions, (4) implementing a constructive public policy input in support of sustainable development, (5) educating employees, customers and communities on global climate change, (6) measuring and reporting the company's environmental progress, and (7) pursuing domestic and international offset opportunities such as transfer of technology to developing countries, cogeneration of energy using natural gas, energy efficiency, renewable energy sources, emission reduction purchases and forest conservation. Of these proposed measures, offsets are the critical element which could spell the difference between success and failure in managing greenhouse gas emissions and the difference between economic hardship and economic opportunity

  2. Competitiveness of terrestrial greenhouse gas offsets. Are they a bridge to the future?

    International Nuclear Information System (INIS)

    McCarl, B.A.; Sands, R.D.

    2007-01-01

    Activities to reduce net greenhouse gas emissions by biological soil or forest carbon sequestration predominantly utilize currently known, readily implementable technologies. Many other greenhouse gas emission reduction options require future technological development or must wait for turnover of capital stock. Carbon sequestration options in soils and forests, while ready to go now, generally have a finite life, allowing use until other strategies are developed. This paper reports on an investigation of the competitiveness of biological carbon sequestration from a dynamic and multiple strategy viewpoint. Key factors affecting the competitiveness of terrestrial mitigation options are land availability and cost effectiveness relative to other options including CO2 capture and storage, energy efficiency improvements, fuel switching, and non-CO2 greenhouse gas emission reductions. The analysis results show that, at lower CO2 prices and in the near term, soil carbon and other agricultural/forestry options can be important bridges to the future, initially providing a substantial portion of attainable reductions in net greenhouse gas emissions, but with a limited role in later years. At higher CO2 prices, afforestation and biofuels are more dominant among terrestrial options to offset greenhouse gas emissions. But in the longer run, allowing for capital stock turnover, options to reduce greenhouse gas emissions from the energy system and biofuels provide an increasing share of potential reductions in total US greenhouse gas emissions

  3. Consultations on the design of a greenhouse gas offset system for Canada 2003 : Summary report

    International Nuclear Information System (INIS)

    2003-10-01

    A series of one-day consultation sessions were held from June 16 to 26, 2003 in 6 cities throughout Canada, hosted by the federal government's interdepartmental Working Group on Offsets (WGO). The consultations were held in an effort to: (1) disseminate information to the provinces, territories and stakeholders concerning options and process for the development of an offset system for greenhouse gases, (2) promote the exchange of ideas and discussion on the feasibility of an offset system, (3) gather initial feedback on design considerations, elements and options, and (4) provide advice to provinces and territories on ways to provide further input on the offset system design. The 295 people who attended the sessions represented industries considered to be potential buyers of offset credits, industries considered to be potential sellers of such credits, and other sectors such as consultants, traders, insurance and finance. In addition, academia and other stakeholders were present. This document provides a summary of the main messages that emerged from the discussions. The comments reflected the following notions: support for the concept was expressed; principles should be as open as possible; surplus eligibility criteria should be less restrictive; administrative issues should consider a third party for active government involvement; design issues; forestry issues; agriculture issues; landfill gas issues; regional issues; and, next steps. These comments will be considered during the development phase of a greenhouse gas offset system in Canada. tabs

  4. Administration and transaction cost estimates for a greenhouse gas offset system : final report

    International Nuclear Information System (INIS)

    2004-01-01

    Canada's Climate Change Plan provides large final emitters (LFEs) with the option to meet their emission targets through the purchase of domestic greenhouse gas (GHG) offset credits. This paper presents the results of a study which identified and estimated transaction costs associated with an offset system. The cost to both proponents and governments were identified. The study also suggested ways to reduce administration and transaction costs through design options. The study considered projects involving agriculture, forests, landfill gas capture, renewable energy and energy efficiency within a potential domestic offset system. It was determined that average transaction costs per tonne range from $19 per tonne to $0.05 depending on the design choice and project type. Total administration costs did not vary more than 5 per cent between different design choices. The total system costs, which are the combination of all transaction and administration costs, are the best indicator for the potential of a project. Eight case studies were examined and costs per tonne were presented. According to the results, the best opportunities to reduce both transaction and administration costs are to choose a broad approach to baselines, boundaries and quantification; and, to allow pooling in the forestry and agriculture sectors. Transaction costs can be lowered further by reducing the frequency of monitoring and verification and allowing pre-2008 crediting. refs., tabs., figs

  5. Joint implementation: Biodiversity and greenhouse gas offsets

    Science.gov (United States)

    Cutright, Noel J.

    1996-11-01

    One of the most pressing environmental issues today is the possibility that projected increases in global emissions of greenhouse gases from increased deforestation, development, and fossil-fuel combustion could significantly alter global climate patterns. Under the terms of the United Nations Framework Convention on Climate Change, signed in Rio de Janeiro during the June 1992 Earth Summit, the United States and other industrialized countries committed to balancing greenhouse gas emissions at 1990 levels in the year 2000. Included in the treaty is a provision titled “Joint Implementation,” whereby industrialized countries assist developing countries in jointly modifying long-term emission trends, either through emission reductions or by protecting and enhancing greenhouse gas sinks (carbon sequestration). The US Climate Action Plan, signed by President Clinton in 1993, calls for voluntary climate change mitigation measures by various sectors, and the action plan included a new program, the US Initiative on Joint Implementation. Wisconsin Electric decided to invest in a Jl project because its concept encourages creative, cost-effective solutions to environmental problems through partnering, international cooperation, and innovation. The project chosen, a forest preservation and management effort in Belize, will sequester more than five million tons of carbon dioxide over a 40-year period, will become economically selfsustaining after ten years, and will have substantial biodiversity benefits.

  6. Greenhouse Gas Emissions Calculator for Grain and Biofuel Farming Systems

    Science.gov (United States)

    McSwiney, Claire P.; Bohm, Sven; Grace, Peter R.; Robertson, G. Philip

    2010-01-01

    Opportunities for farmers to participate in greenhouse gas (GHG) credit markets require that growers, students, extension educators, offset aggregators, and other stakeholders understand the impact of agricultural practices on GHG emissions. The Farming Systems Greenhouse Gas Emissions Calculator, a web-based tool linked to the SOCRATES soil…

  7. Second Greenhouse Gas Information System Workshop

    Science.gov (United States)

    Boland, S. W.; Duren, R. M.; Mitchiner, J.; Rotman, D.; Sheffner, E.; Ebinger, M. H.; Miller, C. E.; Butler, J. H.; Dimotakis, P.; Jonietz, K.

    2009-12-01

    The second Greenhouse Gas Information System (GHGIS) workshop was held May 20-22, 2009 at the Sandia National Laboratories in Albuquerque, New Mexico. The workshop brought together 74 representatives from 28 organizations including U.S. government agencies, national laboratories, and members of the academic community to address issues related to the understanding, operational monitoring, and tracking of greenhouse gas emissions and carbon offsets. The workshop was organized by an interagency collaboration between NASA centers, DOE laboratories, and NOAA. It was motivated by the perceived need for an integrated interagency, community-wide initiative to provide information about greenhouse gas sources and sinks at policy-relevant temporal and spatial scales in order to significantly enhance the ability of national and regional governments, industry, and private citizens to implement and evaluate effective climate change mitigation policies. This talk provides an overview of the second Greenhouse Gas Information System workshop, presents its key findings, and discusses current status and next steps in this interagency collaborative effort.

  8. Multiagency Initiative to Provide Greenhouse Gas Information

    Science.gov (United States)

    Boland, Stacey W.; Duren, Riley M.

    2009-11-01

    Global Greenhouse Gas Information System Workshop; Albuquerque, New Mexico, 20-22 May 2009; The second Greenhouse Gas Information System (GHGIS) workshop brought together 74 representatives from 28 organizations including U.S. government agencies, national laboratories, and members of the academic community to address issues related to the understanding, operational monitoring, and tracking of greenhouse gas emissions and carbon offsets. The workshop was held at Sandia National Laboratories and organized by an interagency collaboration among NASA centers, Department of Energy laboratories, and the U.S. National Oceanic and Atmospheric Administration. It was motivated by the perceived need for an integrated interagency, community-wide initiative to provide information about greenhouse gas sources and sinks at policy-relevant temporal and spatial scales. Such an initiative could significantly enhance the ability of national and regional governments, industry, and private citizens to implement and evaluate effective climate change mitigation policies.

  9. Greenhouse gas emissions from high demand, natural gas-intensive energy scenarios

    International Nuclear Information System (INIS)

    Victor, D.G.

    1990-01-01

    Since coal and oil emit 70% and 30% more CO 2 per unit of energy than natural gas (methane), fuel switching to natural gas is an obvious pathway to lower CO 2 emissions and reduced theorized greenhouse warming. However, methane is, itself, a strong greenhouse gas so the CO 2 advantages of natural gas may be offset by leaks in the natural gas recovery and supply system. Simple models of atmospheric CO 2 and methane are used to test this hypothesis for several natural gas-intensive energy scenarios, including the work of Ausubel et al (1988). It is found that the methane leaks are significant and may increase the total 'greenhouse effect' from natural gas-intensive energy scenarios by 10%. Furthermore, because methane is short-lived in the atmosphere, leaking methane from natural gas-intensive, high energy growth scenarios effectively recharges the concentration of atmospheric methane continuously. For such scenarios, the problem of methane leaks is even more serious. A second objective is to explore some high demand scenarios that describe the role of methane leaks in the greenhouse tradeoff between gas and coal as energy sources. It is found that the uncertainty in the methane leaks from the natural gas system are large enough to consume the CO 2 advantages from using natural gas instead of coal for 20% of the market share. (author)

  10. Evaluation of greenhouse gas emissions from waste management approaches in the islands.

    Science.gov (United States)

    Chen, Ying-Chu

    2017-07-01

    Concerns about waste generation and climate change have attracted worldwide attention. Small islands, which account for more than one-sixth of the global land area, are facing problems caused by global climate change. This study evaluated the greenhouse gas emissions from five small islands surrounding Taiwan. These islands - Penghu County, Liuqui Island, Kinmen County, Matsu Island and Green Island - have their own waste management approaches that can serve as a guideline for waste management with greenhouse gas mitigation. The findings indicate that the total annual greenhouse gas emissions of the islands ranged from 292.1 to 29,096.2 [metric] tonne CO 2 -equivalent. The loading waste volumes and shipping distances were positively related to greenhouse gas emissions from transportation. The greenhouse gas emissions from waste-to-energy plants, mainly carbon dioxide and nitrous oxide, can be offset by energy recovery (approximately 38.6% of greenhouse gas emissions from incineration). In addition, about 34% and 11% of waste generated on the islands was successfully recycled and composted, respectively. This study provides valuable insights into the applicability of a policy framework for waste management approaches for greenhouse gas mitigation.

  11. Reducing greenhouse gas emissions from the Ontario automotive sector

    International Nuclear Information System (INIS)

    Anon.

    1995-11-01

    A variety of options to reduce greenhouse gas emissions from the automotive sector in Ontario over the next decade were discussed. Each option was assessed in terms of practicality and implications for implementation. I was concluded that improvements in fuel economy anticipated from advancing technology, with or without new mandated standards, will not be enough to offset the impact of growth in vehicle fleet size and kilometres driven. If the goal is to stabilize greenhouse gas emissions, other measures such as reducing the fleet size and vehicle kilometres travelled and accelerated vehicle retirement (scrappage) programs must be considered. Key constraints on expansion of the alternative fuel fleet were identified. These include: (1) limited availability of an adequate range of alternative fuel vehicles at competitive prices, (2) limited refuelling facility infrastructure in the case of natural gas, limited range and fuel storage capacity for natural gas; (3)current limited fuel ethanol production capacity, and (4) market perceptions of performance, reliability and safety. tabs

  12. Requirements for a Global Greenhouse Gas Information System

    Science.gov (United States)

    Duren, R.; Boland, S.; Lempert, R.; Miller, C.

    2008-12-01

    A global greenhouse gas information system will prove a critical component of any successful effort to mitigate climate change which relies on limiting the atmospheric concentration of greenhouse gases. The system will provide the situational awareness necessary to actively reduce emissions, influence land use change, and sequester carbon. The information from such a system will be subject to intense scrutiny. Therefore, an effective system must openly and transparently produce data of unassailable quality. A global greenhouse gas information system will likely require a combination of space-and air-based remote- sensing assets, ground-based measurements, carbon cycle modeling and self-reporting. The specific requirements on such a system will be shaped by the degree of international cooperation it enjoys and the needs of the policy regime it aims to support, which might range from verifying treaty obligations, to certifying the tradable permits and offsets underlying a market in greenhouse gas emission reductions, to providing a comprehensive inventory of high and low emitters that could be used by non-governmental organizations and other international actors. While some technical studies have examined particular system components in single scenarios, there remains a need for a comprehensive survey of the range of potential requirements, options, and strategies for the overall system. We have initiated such a survey and recently hosted a workshop which engaged a diverse community of stakeholders to begin synthesizing requirements for such a system, with an initial focus on carbon dioxide. In this paper we describe our plan for completing the definition of the requirements, options, and strategies for a global greenhouse gas monitoring system. We discuss our overall approach and provide a status on the initial requirements synthesis activity.

  13. Comparison of Greenhouse Gas Offset Quantification Protocols for Nitrogen Management in Dryland Wheat Cropping Systems of the Pacific Northwest

    Directory of Open Access Journals (Sweden)

    Tabitha T. Brown

    2017-11-01

    Full Text Available In the carbon market, greenhouse gas (GHG offset protocols need to ensure that emission reductions are of high quality, quantifiable, and real. Lack of consistency across protocols for quantifying emission reductions compromise the credibility of offsets generated. Thus, protocol quantification methodologies need to be periodically reviewed to ensure emission offsets are credited accurately and updated to support practical climate policy solutions. Current GHG emission offset credits generated by agricultural nitrogen (N management activities are based on reducing the annual N fertilizer application rate for a given crop without reducing yield. We performed a “road test” of agricultural N management protocols to evaluate differences among protocol components and quantify nitrous oxide (N2O emission reductions under sample projects relevant to N management in dryland, wheat-based cropping systems of the inland Pacific Northwest (iPNW. We evaluated five agricultural N management offset protocols applicable to North America: two methodologies of American Carbon Registry (ACR1 and ACR2, Verified Carbon Standard (VCS, Climate Action Reserve (CAR, and Alberta Offset Credit System (Alberta. We found that only two protocols, ACR2 and VCS, were suitable for this study, in which four sample projects were developed representing feasible N fertilizer rate reduction activities. The ACR2 and VCS protocols had identical baseline and project emission quantification methodologies resulting in identical emission reduction values. Reducing N fertilizer application rate by switching to variable rate N (sample projects 1–3 or split N application (sample project 4 management resulted in a N2O emission reduction ranging from 0.07 to 0.16, and 0.26 Mg CO2e ha−1, respectively. Across the range of C prices considered ($5, $10, and $50 per metric ton of CO2 equivalent, we concluded that the N2O emission offset payment alone ($0.35–$13.0 ha−1 was unlikely to

  14. Should we plant trees to offset greenhouse gas emissions in semi-arid environments?

    Science.gov (United States)

    Pataki, D. E.; Pincetl, S.; Gillespie, T. W.; Li, W.; McCarthy, H. R.; Saatchi, S.; Saphores, J.

    2008-12-01

    Urban tree planting programs have been gaining popularity in the United States. Urban trees have been associated with a variety of environmental benefits, including improvements in air quality, mitigation of urban heat island effects, reductions in stormwater runoff, and more recently, carbon sequestration. There are also other potential aesthetic and economic benefits of urban forests, which have been shown to affect real estate values. However, there may also be significant economic and environmental costs of planting and maintaining trees in urban areas, particularly in semi-arid environments where trees are not native and require irrigation and fertilization. We are conducting an analysis of the Million Tree Initiative in the city of Los Angeles, which has committed to a major tree planting program. Los Angeles currently has a low tree canopy cover relative to other cities, particularly in its low income neighborhoods. We are evaluating the decision-making processes associated with the new tree planting program, its perceived benefits, and its actual benefits based on measurements of plant and ecosystem processes such as transpiration, photosynthesis, and water use efficiency; remote sensing analyses of tree cover and surface temperature; and economic analyses. We have found great variability in the interpretation of the program by its various participants, but also significant institutional learning as the program has evolved. Our datasets have challenged some of the common assumptions of the program, for example, the assumption that native species use less water than imported species and are therefore more environmentally beneficial in terms of water resources. We have also found significant impacts of the urban forest on air temperature, which may reduce energy use during the summer due to reductions in air conditioning. This is likely to be a larger effect of urban trees on greenhouse gas emissions than direct carbon sequestration alone, which is a very

  15. Estimates of Future Supply of International Greenhouse Gas Offsets: A Critical Review

    Energy Technology Data Exchange (ETDEWEB)

    Erickson, Peter; Lazarus, Michael (Stockholm Environment Inst. (United States)), e-mail: mlaz@sei-us.org; Kelly, Alexia (World Resources Inst., (United States))

    2010-07-01

    This report reviews estimates of the projected availability (i.e., supply) of international offsets, evaluates the various methods used and outlines factors that should be incorporated into future analyses of international offset supply and quality. U.S. policymakers have relied on offsets from developing countries as a primary form of cost containment in proposed cap-and-trade legislation. These legislative proposals allow for emitters to use up to 1.5 billion tons CO{sub 2}e of offsets from developing countries to meet their annual compliance obligations. In this paper, we review estimates of the projected availability (i.e., supply) of international offsets, and evaluate the various methods used. We find that: (1) Estimates of supply of international offsets to global markets vary widely, with estimates differing by billions of tons CO{sub 2}e annually in 2020; (2) Despite the variation, existing studies suggest that by 2020 gross international offset supply will likely exceed U.S. demand for international offsets under current Congressional cap-and-trade designs; (3) Competition with governments and entities with emission reduction obligations (e.g. the EU), as well as with policies and measures undertaken by developing countries as part of their own mitigation contributions, could reduce the net offset supply available to U.S. entities; and (4) Several important offset program design and market factors that are central to future offset markets and credit issuance (e.g., sources of offset supply, program stringency and crediting methods, establishment of international governance and market structures) have yet to be systematically considered in offset supply assessments. This paper outlines factors that should be incorporated into future analyses of international offset supply and quality. 7 Such analyses could prove particularly germane as policy makers continue to deliberate on the role of international offsets, including whether and how to recognize credits

  16. Towards a comprehensive greenhouse gas emissions inventory for biosolids.

    Science.gov (United States)

    Alvarez-Gaitan, J P; Short, Michael D; Lundie, Sven; Stuetz, Richard

    2016-06-01

    Effective handling and treatment of the solids fraction from advanced wastewater treatment operations carries a substantial burden for water utilities relative to the total economic and environmental impacts from modern day wastewater treatment. While good process-level data for a range of wastewater treatment operations are becoming more readily available, there remains a dearth of high quality operational data for solids line processes in particular. This study seeks to address this data gap by presenting a suite of high quality, process-level life cycle inventory data covering a range of solids line wastewater treatment processes, extending from primary treatment through to biosolids reuse in agriculture. Within the study, the impacts of secondary treatment technology and key parameters such as sludge retention time, activated sludge age and primary-to-waste activated sludge ratio (PS:WAS) on the life cycle inventory data of solids processing trains for five model wastewater treatment plant configurations are presented. BioWin(®) models are calibrated with real operational plant data and estimated electricity consumption values were reconciled against overall plant energy consumption. The concept of "representative crop" is also introduced in order to reduce the uncertainty associated with nitrous oxide emissions and soil carbon sequestration offsets under biosolids land application scenarios. Results indicate that both the treatment plant biogas electricity offset and the soil carbon sequestration offset from land-applied biosolids, represent the main greenhouse gas mitigation opportunities. In contrast, fertiliser offsets are of relatively minor importance in terms of the overall life cycle emissions impacts. Results also show that fugitive methane emissions at the plant, as well as nitrous oxide emissions both at the plant and following agricultural application of biosolids, are significant contributors to the overall greenhouse gas balance and combined are

  17. Reducing the greenhouse gas footprint of shale gas

    International Nuclear Information System (INIS)

    Wang Jinsheng; Ryan, David; Anthony, Edward J.

    2011-01-01

    Shale gas is viewed by many as a global energy game-changer. However, serious concerns exist that shale gas generates more greenhouse gas emissions than does coal. In this work the related published data are reviewed and a reassessment is made. It is shown that the greenhouse gas effect of shale gas is less than that of coal over long term if the higher power generation efficiency of shale gas is taken into account. In short term, the greenhouse gas effect of shale gas can be lowered to the level of that of coal if methane emissions are kept low using existing technologies. Further reducing the greenhouse gas effect of shale gas by storing CO 2 in depleted shale gas reservoirs is also discussed, with the conclusion that more CO 2 than the equivalent CO 2 emitted by the extracted shale gas could be stored in the reservoirs at significantly reduced cost. - Highlights: ► The long-term greenhouse gas footprint of shale gas is smaller than that of coal. ► Carbon capture and storage should be considered for fossil fuels including shale gas. ► Depleted shale gas fields could store more CO 2 than the equivalent emissions. ► Linking shale gas development with CO 2 storage could largely reduce the total cost.

  18. The voluntary offset - approaches and limitations

    International Nuclear Information System (INIS)

    2012-06-01

    After having briefly presented the voluntary offset mechanism which aims at funding a project of reduction or capture of greenhouse gas emissions, this document describes the approach to be followed to adopt this voluntary offset, for individuals as well as for companies, communities or event organisations. It describes other important context issues (projects developed under the voluntary offset, actors of the voluntary offsetting market, market status, offset labels), and how to proceed in practice (definition of objectives and expectations, search for needed requirements, to ensure the meeting of requirements with respect to expectations). It addresses the case of voluntary offset in France (difficult implantation, possible solutions)

  19. Governing the carbon offset market

    OpenAIRE

    Lovell, Heather C.

    2010-01-01

    Carbon offsets are produced and sold under the international climate change regime (the United Nations Kyoto Protocol) and also within an expanding voluntary offset market in which companies and individuals can voluntarily opt to compensate for their greenhouse gas emissions. The volume of carbon produced and consumed within compliance and voluntary markets has grown dramatically in the last 5 years, raising a number of governance challenges. This Focus Article gives an overview of the govern...

  20. Assessment of greenhouse gas emissions from natural gas

    International Nuclear Information System (INIS)

    Anon

    2000-01-01

    The study, 'Assesment of greenhouse gas emission from natural gas' by independent consultants Energetics Pty Ltd, shows that natural gas has significantly fewer greenhouses gas emissions than either black or brown cola for the defined life cycle stages. The life cycle emissions from natural gas use by an Australian Major User are approximately 50% less than the emissions from Victorian brown coal and approximately 38% less than the emissions from Australian average black coal. Australian Best Practice gas fired electricity generation is estimated to emit between 514 and 658 kg CO 2 e/MWh. By comparison, Australian Best Practice coal-fired electricity generation is estimated to emit between 907 and 1,246 kg CO 2 e/MWh for black and brown coal respectively. Greenhouse gas emissions from Australian Best Practice gas-fired electricity generation using combined cycle gas turbines (including full fuel cycle emissions) vary from 41% to 46% of the emissions from brown coal-fired electricity generation and 57% to 64% of emissions from black coal-fired electricity generation. Greenhouse gas emissions from direct gas supply water heating range from 1,470 to 2,042 kilograms per annum. This compares with emissions of 1,922 to 2,499 kg for electric heating from gas-fired electricity generation and 3,975 to 5,393 kg for coal-fired electricity generation. The implications for greenhouse policy nationally are also discussed, emphasising the need to review national energy policy, currently tied to 'fuel neutrality' doctrine

  1. Global initiatives to mitigate greenhouse gas emissions

    International Nuclear Information System (INIS)

    Helme, N.; Gille, J.A.

    1994-01-01

    Joint implementation (JI) is a provision, included in the Framework Convention on Climate Change, that allows for two or more nations to jointly plan and implement a greenhouse gas or offsetting project. Joint implementation is important environmentally for two principal reasons: (1) it provides an opportunity to select projects on a global basis that maximize both greenhouse gas reduction benefits and other environmental benefits such as air pollution reduction while minimizing cost, and (2) it creates incentives for developing countries as well as multinational companies to begin to evaluate potential investments through a climate-friendly lens. While the debate on how to establish the criteria and institutional capacity necessary to encourage joint implementation projects continues in the international community, the US government is creating new incentives for US companies to develop joint implementation pilot projects now. While delegates to the United Nations' International Negotiating Committee (INC) debate whether to permit all Parties to the convention to participate in JI, opportunities in Eastern and Central Europe and the former Soviet states abound. The US has taken a leadership role in joint implementation, establishing two complementary domestic programs that allow US companies to measure, track and score their net greenhouse gas reduction achievements now. With a financial investment by three US utilities, the Center for Clean Air Policy is developing a fuel-switching and energy efficiency project in the city of Decin in the Czech Republic which offers a concrete example of what a real-world JI project could look like. The Decin project provides an ideal test case for assessing the adequacy and potential impact of the draft criteria for the US Initiative on Joint Implementation, as well as for the draft criteria prepared by the INC Secretariat

  2. Greenhouse Gas Data Publication Tool

    Data.gov (United States)

    U.S. Environmental Protection Agency — This tool to gives you access to greenhouse gas data reported to EPA by large facilities and suppliers in the United States through EPA's Greenhouse Gas Reporting...

  3. Greenhouse gas emissions increase global warming

    OpenAIRE

    Mohajan, Haradhan

    2011-01-01

    This paper discusses the greenhouse gas emissions which cause the global warming in the atmosphere. In the 20th century global climate change becomes more sever which is due to greenhouse gas emissions. According to International Energy Agency data, the USA and China are approximately tied and leading global emitters of greenhouse gas emissions. Together they emit approximately 40% of global CO2 emissions, and about 35% of total greenhouse gases. The developed and developing industrialized co...

  4. Economic growth and greenhouse gas emissions

    Energy Technology Data Exchange (ETDEWEB)

    Ansuategi, Alberto [Environment Department, University of York, York (United Kingdom); Escapa, Marta [Foundations of Economic Analysis Department, University of the Basque Country, Bilbao (Spain)

    2002-01-01

    Recent empirical research has examined the relationship between certain indicators of environmental degradation and income, concluding that in some cases an inverted U-shaped relationship, which has been called an environmental Kuznets curve (EKC), exists between these variables. Unfortunately, this inverted U-shaped relationship does not hold for greenhouse gas emissions. One explanation of the absence of EKC-like behavior in greenhouse gas emissions is that greenhouse gases are special pollutants that create global, not local, disutility. But the international nature of global warming is not the only reason that prevents de-linking greenhouse gas emissions from economic growth. The intergenerational nature of the negative impact of greenhouse gas emissions may have also been an important factor preventing the implementation of greenhouse gas abatement measures in the past. In this paper we explore the effect that the presence of intergenerational spillovers has on the emissions-income relationship. We use a numerically calibrated overlapping generations model of climate-economy interactions. We conclude that: (1) the intertemporal responsibility of the regulatory agency, (2) the institutional capacity to make intergenerational transfers and (3) the presence of intergenerationally lagged impact of emissions constitute important determinants of the relationship between economic growth and greenhouse gas emissions.

  5. Agricultural sources of greenhouse gas emissions

    International Nuclear Information System (INIS)

    Rochette, P.

    2003-01-01

    The author described different sources of greenhouse gas emissions resulting from agricultural activities and the process by which carbon dioxide, nitrous oxide, and methane are generated on Canadian farms. The author also proposed some practices that would contribute to the reduction of greenhouse gas emissions. A brief description of the greenhouse effect was also provided with special emphasis on the agricultural sector. In 1996, the Canadian agricultural sector was responsible for approximately 10 per cent of greenhouse gas emissions in the country. Given the increase in farm animals and more intensive agricultural activities, it is estimated that greenhouse gas emissions generated by the agricultural sector will increase by 20 per cent by 2010 if current practices remain in effect. The most optimistic scenarios indicate that the agricultural sector could achieve or even exceed Canada's Kyoto Protocol commitments mainly through organic material sequestration in soils. The possibility for farmers to sell greenhouse gas credits could motivate farmers into adopting various practices that reduce emissions of greenhouse gases. However, the author indicated that the best motivation for farmers is the fact that adopting such practices would also lead to more efficient agricultural production. 5 refs., 4 figs

  6. National Greenhouse Gas Emission Inventory

    Data.gov (United States)

    U.S. Environmental Protection Agency — The National Greenhouse Gas Emission Inventory contains information on direct emissions of greenhouse gases as well as indirect or potential emissions of greenhouse...

  7. Greenhouse gas trading starts up

    Science.gov (United States)

    Showstack, Randy

    While nations decide on whether to sign on to the Kyoto Protocol on climate change, some countries and private companies are moving forward with greenhouse gas emissions trading.A 19 March report, "The Emerging International Greenhouse Gas Market," by the Pew Center on Global Climate Change, reports that about 65 greenhouse gas emissions trades for quantities above 1,000 metric tons of carbon dioxideequivalent already have occurred worldwide since 1996. Many of these trades have taken place under a voluntary, ad hoc framework, though the United Kingdom and Denmark have established their own domestic emissions trading programs.

  8. Greenhouse gas strategy

    International Nuclear Information System (INIS)

    2001-03-01

    Because the overall effects of climate change will likely be more pronounced in the North than in other parts of the country, the Government of the Northwest Territories considers it imperative to support global and local actions to reduce greenhouse gas emissions. Government support is manifested through a coordinating role played by senior government representatives in the development of the NWT Greenhouse Gas Strategy, and by participation on a multi-party working committee to identify and coordinate northern actions and to contribute a northern perspective to Canada's National Climate Change Implementation Strategy. This document outlines the NWT Government's goals and objectives regarding greenhouse gas emission reduction actions. These will include efforts to enhance awareness and understanding; demonstrate leadership by putting the Government's own house in order; encouraging action across sectors; promote technology development and innovation; invest in knowledge and building the foundation for informed future decisions. The strategy also outlines the challenges peculiar to the NWT, such as the high per person carbon dioxide emissions compared to the national average (30 tonnes per person per year as opposed to the national average of 21 tonnes per person per year) and the increasing economic activity in the Territories, most of which are resource-based and therefore energy-intensive. Appendices which form part of the greenhouse gas strategy document, provide details of the potential climate change impact in the NWT, a detailed explanation of the proposed measures, an emission forecast to 2004 from industrial processes, fuel combustion and incineration, and a statement of the official position of the Government of the NWT on climate change

  9. Offsetting global warming-induced elevated greenhouse gas emissions from an arable soil by biochar application.

    Science.gov (United States)

    Bamminger, Chris; Poll, Christian; Marhan, Sven

    2018-01-01

    Global warming will likely enhance greenhouse gas (GHG) emissions from soils. Due to its slow decomposability, biochar is widely recognized as effective in long-term soil carbon (C) sequestration and in mitigation of soil GHG emissions. In a long-term soil warming experiment (+2.5 °C, since July 2008) we studied the effect of applying high-temperature Miscanthus biochar (0, 30 t/ha, since August 2013) on GHG emissions and their global warming potential (GWP) during 2 years in a temperate agroecosystem. Crop growth, physical and chemical soil properties, temperature sensitivity of soil respiration (R s ), and metabolic quotient (qCO 2 ) were investigated to yield further information about single effects of soil warming and biochar as well as on their interactions. Soil warming increased total CO 2 emissions by 28% over 2 years. The effect of warming on soil respiration did not level off as has often been observed in less intensively managed ecosystems. However, the temperature sensitivity of soil respiration was not affected by warming. Overall, biochar had no effect on most of the measured parameters, suggesting its high degradation stability and its low influence on microbial C cycling even under elevated soil temperatures. In contrast, biochar × warming interactions led to higher total N 2 O emissions, possibly due to accelerated N-cycling at elevated soil temperature and to biochar-induced changes in soil properties and environmental conditions. Methane uptake was not affected by soil warming or biochar. The incorporation of biochar-C into soil was estimated to offset warming-induced elevated GHG emissions for 25 years. Our results highlight the suitability of biochar for C sequestration in cultivated temperate agricultural soil under a future elevated temperature. However, the increased N 2 O emissions under warming limit the GHG mitigation potential of biochar. © 2017 John Wiley & Sons Ltd.

  10. Guidance document to the BC emission offsets regulation

    International Nuclear Information System (INIS)

    2010-11-01

    British Columbia's (BC) emission offset regulations were established under the Greenhouse Gas Reduction Targets Act passed in 2007. Targets for greenhouse gas (GHG) emission reductions included a 6 percent reduction by 2012; an 18 percent reduction by 2016; a 33 percent reduction by 2020; and an 80 percent reduction by 2050. Carbon neutral agreements began in 2008, and covered emissions produced from government business travel and by provincial government ministries and agencies. This report presented a list of key recommendations developed by the Pacific Carbon Trust for use in future carbon offset projects. Recommendations included the use of correct emission factors when quantifying projected emission reductions from an offset project; the use of a robust data management system; and the use of evidence in supporting additionality arguments. The document outlined planning procedures for project baseline selection processes, protocol selections, and the identification of sources sinks and reservoirs. Issues related to quantification and measurements, emissions factors, and accuracy and uncertainty were also addressed. Validation, verification, and contracting options were also presented. 6 tabs., 3 figs.

  11. The greenhouse advantage of natural gas appliances

    International Nuclear Information System (INIS)

    Coombe, N.

    2000-01-01

    The life cycle report prepared recently by Energetics for the AGA, Assessment of Greenhouse Gas Emissions from Natural Gas, demonstrates clearly the greenhouse advantage natural gas has over coal in generating electricity. This study also goes one step further in applying this life cycle approach to the use of space and water heating within the home. The study shows the significant green-house advantage that natural gas appliances have over electric appliances. Findings from other studies also support this claim. The natural gas suppliers are encouraged to take advantage of the marketing opportunity that these studies provide, offering the householders the fuel that will significantly reduce their contribution to greenhouse emission

  12. Technological substitution options for controlling greenhouse gas emissions

    International Nuclear Information System (INIS)

    Barbier, E.B.; Burgess, J.C.; Pearce, D.W.

    1991-01-01

    This chapter is concerned with technological options for greenhouse gas substitution. The authors interpret the term substitution to exclude energy conservation/efficiency measures, investments in afforestation (sinks), and greenhouse gas removal or abatement technologies. Their working definition of greenhouse gas substitution includes (1) replacement technologies, for example, substituting a greenhouse gas technology with a nongreenhouse gas technology; and (2) reduction technologies, for example, substituting a greenhouse gas technology with an alternative technology that reduces greenhouse gas emissions. Essentially, replacement technologies involve 100 percent reduction in CO 2 ; reduction technologies involve a partial reduction in CO 2 . Of the man-made sources of greenhouse gases, energy is the most important and is expected to contribute to at least half of the global warming effect in the near future. The majority of this impact is from fossil fuel combustion as a source of carbon dioxide (CO 2 ), although fossil fuels also contribute significantly to methane (CH 4 ), to nitrous oxide (N 2 O), and to low-level ozone (O 3 ) through production of various nitrogen gases (NO x ) and carbon monoxide (CO). This study analyzes the available greenhouse gas substitutions and their costs. The authors concentrate particularly on substitutions for fossil-fuel combustion and CFC production and consumption. They conclude by summarizing the potential for greenhouse gas substitution, the cost-effectiveness of the various options and the design of incentives for substitution

  13. How ground-based observations can support satellite greenhouse gas retrievals

    Science.gov (United States)

    Butler, J. H.; Tans, P. P.; Sweeney, C.; Dlugokencky, E. J.

    2012-04-01

    Global society will eventually accelerate efforts to reduce greenhouse gas emissions in a variety of ways. These would likely involve international treaties, national policies, and regional strategies that will affect a number of economic, social, and environmental sectors. Some strategies will work better than others and some will not work at all. Because trillions of dollars will be involved in pursuing greenhouse gas emission reductions - through realignment of energy production, improvement of efficiencies, institution of taxes, implementation of carbon trading markets, and use of offsets - it is imperative that society be given all the tools at its disposal to ensure the ultimate success of these efforts. Providing independent, globally coherent information on the success of these efforts will give considerable strength to treaties, policies, and strategies. Doing this will require greenhouse gas observations greatly expanded from what we have today. Satellite measurements may ultimately be indispensable in achieving global coverage, but the requirements for accuracy and continuity of measurements over time are demanding if the data are to be relevant. Issues such as those associated with sensor drift, aging electronics, and retrieval artifacts present challenges that can be addressed in part by close coordination with ground-based and in situ systems. This presentation identifies the information that ground-based systems provide very well, but it also looks at what would be deficient even in a greatly expanded surface system, where satellites can fill these gaps, and how on-going, ground and in situ measurements can aid in addressing issues associated with accuracy, long-term continuity, and retrieval artifacts.

  14. Greenhouse gas mitigation options for Washington State

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, N.

    1996-04-01

    President Clinton, in 1993, established a goal for the United States to return emissions of greenhouse gases to 1990 levels by the year 2000. One effort established to help meet this goal was a three part Environmental Protection Agency state grant program. Washington State completed part one of this program with the release of the 1990 greenhouse gas emissions inventory and 2010 projected inventory. This document completes part two by detailing alternative greenhouse gas mitigation options. In part three of the program EPA, working in partnership with the States, may help fund innovative greenhouse gas reduction strategies. The greenhouse gas control options analyzed in this report have a wide range of greenhouse gas reductions, costs, and implementation requirements. In order to select and implement a prudent mix of control strategies, policy makers need to have some notion of the potential change in climate, the consequences of that change and the uncertainties contained therein. By understanding the risks of climate change, policy makers can better balance the use of scarce public resources for concerns that are immediate and present against those that affect future generations. Therefore, prior to analyzing alternative greenhouse gas control measures, this report briefly describes the phenomenon and uncertainties of global climate change, and then projects the likely consequences for Washington state.

  15. Reservoir Greenhouse Gas Emissions at Russian HPP

    Energy Technology Data Exchange (ETDEWEB)

    Fedorov, M. P.; Elistratov, V. V.; Maslikov, V. I.; Sidorenko, G. I.; Chusov, A. N.; Atrashenok, V. P.; Molodtsov, D. V. [St. Petersburg State Polytechnic University (Russian Federation); Savvichev, A. S. [Russian Academy of Sciences, S. N. Vinogradskii Institute of Microbiology (Russian Federation); Zinchenko, A. V. [A. I. Voeikov Main Geophysical Observatory (Russian Federation)

    2015-05-15

    Studies of greenhouse-gas emissions from the surfaces of the world’s reservoirs, which has demonstrated ambiguity of assessments of the effect of reservoirs on greenhouse-gas emissions to the atmosphere, is analyzed. It is recommended that greenhouse- gas emissions from various reservoirs be assessed by the procedure “GHG Measurement Guidelines for Fresh Water Reservoirs” (2010) for the purpose of creating a data base with results of standardized measurements. Aprogram for research into greenhouse-gas emissions is being developed at the St. Petersburg Polytechnic University in conformity with the IHA procedure at the reservoirs impounded by the Sayano-Shushenskaya and Mainskaya HPP operated by the RusHydro Co.

  16. Energy market reform and greenhouse gas emission reductions

    International Nuclear Information System (INIS)

    Anon.

    1999-01-01

    The report reviews micro-economic reform in the energy market and measures the impact that energy market reform is expected to have on greenhouse gas outcomes. It indicates that reform in the electricity and gas industries is delivering what was promised, an efficient market with lower energy prices and, over the longer term, will deliver a gradually reducing rate of greenhouse gas emissions per unit of energy produced. It also recognises that energy market reform has removed some barriers to the entry of less greenhouse gas intense fuels. These trends will result in reduced greenhouse gas intensity in the supply of energy and significant reductions in the growth in greenhouse gas emissions compared to what may have been expected without the reforms

  17. Estimating the financial risks of Andropogon gayanus to greenhouse gas abatement projects in northern Australia

    Science.gov (United States)

    Adams, Vanessa M.; Setterfield, Samantha A.

    2013-06-01

    Financial mechanisms such as offsets are one strategy to abate greenhouse gas emissions, and the carbon market is expanding with a growing demand for offset products. However, in the case of carbon offsets, if the carbon is released due to intentional or unintentional reversal through environmental events such as fire, the financial liability to replace lost offsets will likely fall on the provider. This liability may have implications for future participation in programmes, but common strategies such as buffer pool and insurance products can be used to minimize this liability. In order for these strategies to be effective, an understanding of the spatial and temporal distributions of expected reversals is needed. We use the case study of savanna burning, an approved greenhouse gas abatement methodology under the Carbon Farming Initiative in Australia, to examine potential risks to carbon markets in northern Australia and quantify the financial risks. We focus our analysis on the threat of Andropogon gayanus (gamba grass) to savanna burning due to its documented impacts of increased fuel loads and altered fire regimes. We assess the spatial and financial extent to which gamba grass poses a risk to savanna burning programmes in northern Australia. We find that 75% of the eligible area for savanna burning is spatially coincident with the high suitability range for gamba grass. Our analysis demonstrates that the presence of gamba grass seriously impacts the financial viability of savanna burning projects. For example, in order to recuperate the annual costs of controlling 1 ha of gamba grass infestation, 290 ha of land must be enrolled in annual carbon abatement credits. Our results show an immediate need to contain gamba grass to its current extent to avoid future spread into large expanses of land, which are currently profitable for savanna burning.

  18. Estimating the financial risks of Andropogon gayanus to greenhouse gas abatement projects in northern Australia

    International Nuclear Information System (INIS)

    Adams, Vanessa M; Setterfield, Samantha A

    2013-01-01

    Financial mechanisms such as offsets are one strategy to abate greenhouse gas emissions, and the carbon market is expanding with a growing demand for offset products. However, in the case of carbon offsets, if the carbon is released due to intentional or unintentional reversal through environmental events such as fire, the financial liability to replace lost offsets will likely fall on the provider. This liability may have implications for future participation in programmes, but common strategies such as buffer pool and insurance products can be used to minimize this liability. In order for these strategies to be effective, an understanding of the spatial and temporal distributions of expected reversals is needed. We use the case study of savanna burning, an approved greenhouse gas abatement methodology under the Carbon Farming Initiative in Australia, to examine potential risks to carbon markets in northern Australia and quantify the financial risks. We focus our analysis on the threat of Andropogon gayanus (gamba grass) to savanna burning due to its documented impacts of increased fuel loads and altered fire regimes. We assess the spatial and financial extent to which gamba grass poses a risk to savanna burning programmes in northern Australia. We find that 75% of the eligible area for savanna burning is spatially coincident with the high suitability range for gamba grass. Our analysis demonstrates that the presence of gamba grass seriously impacts the financial viability of savanna burning projects. For example, in order to recuperate the annual costs of controlling 1 ha of gamba grass infestation, 290 ha of land must be enrolled in annual carbon abatement credits. Our results show an immediate need to contain gamba grass to its current extent to avoid future spread into large expanses of land, which are currently profitable for savanna burning. (letter)

  19. A review of greenhouse gas research in Canada

    International Nuclear Information System (INIS)

    Yundt, P.

    1995-11-01

    Greenhouse gas research programs and projects that relate to the Canadian natural gas industry were presented. Fossil fuel related emissions, primarily methane and carbon dioxide, impact on the atmospheric concentrations of the greenhouse gases. Therefore, strategies to reduce these emissions should impact on the Canadian natural gas industry. A list of 39 projects and 18 research programs of potential interest to the natural gas industry were presented in summary form. The involvement of CANMET (Canada Centre for Mineral and Energy Technology), Environment Canada, and NSERC (Natural Sciences and Engineering Research Council) in doing or sponsoring research projects directed towards greenhouse gas emission reduction was highlighted. Some potential options for member companies of the Canadian natural gas industry, to support climate change and greenhouse gas research, were outlined. 6 refs., 12 tabs

  20. A model of greenhouse gas emissions from the management of turf on two golf courses

    International Nuclear Information System (INIS)

    Bartlett, Mark D.; James, Iain T.

    2011-01-01

    An estimated 32,000 golf courses worldwide (approximately 25,600 km 2 ), provide ecosystem goods and services and support an industry contributing over $124 billion globally. Golf courses can impact positively on local biodiversity however their role in the global carbon cycle is not clearly understood. To explore this relationship, the balance between plant-soil system sequestration and greenhouse gas emissions from turf management on golf courses was modelled. Input data were derived from published studies of emissions from agriculture and turfgrass management. Two UK case studies of golf course type were used, a Links course (coastal, medium intensity management, within coastal dune grasses) and a Parkland course (inland, high intensity management, within woodland). Playing surfaces of both golf courses were marginal net sources of greenhouse gas emissions due to maintenance (Links 0.4 ± 0.1 Mg CO 2 e ha -1 y -1 ; Parkland 0.7 ± 0.2 Mg CO 2 e ha -1 y -1 ). A significant proportion of emissions were from the use of nitrogen fertiliser, especially on tees and greens such that 3% of the golf course area contributed 16% of total greenhouse gas emissions. The area of trees on a golf course was important in determining whole-course emission balance. On the Parkland course, emissions from maintenance were offset by sequestration from trees which comprised 48% of total area, resulting in a net balance of -4.3 ± 0.9 Mg CO 2e ha -1 y -1 . On the Links course, the proportion of trees was much lower (2%) and sequestration from links grassland resulted in a net balance of 0.0 ± 0.2 Mg CO 2e ha -1 y -1 . Recommendations for golf course management and design include the reduction of nitrogen fertiliser, improved operational efficiency when mowing, the inclusion of appropriate tree-planting and the scaling of component areas to maximise golf course sequestration capacity. The findings are transferrable to the management and design of urban parks and gardens, which range

  1. A model of greenhouse gas emissions from the management of turf on two golf courses

    Energy Technology Data Exchange (ETDEWEB)

    Bartlett, Mark D., E-mail: m.d.bartlett@cranfield.ac.uk; James, Iain T., E-mail: i.t.james@cranfield.ac.uk

    2011-03-15

    An estimated 32,000 golf courses worldwide (approximately 25,600 km{sup 2}), provide ecosystem goods and services and support an industry contributing over $124 billion globally. Golf courses can impact positively on local biodiversity however their role in the global carbon cycle is not clearly understood. To explore this relationship, the balance between plant-soil system sequestration and greenhouse gas emissions from turf management on golf courses was modelled. Input data were derived from published studies of emissions from agriculture and turfgrass management. Two UK case studies of golf course type were used, a Links course (coastal, medium intensity management, within coastal dune grasses) and a Parkland course (inland, high intensity management, within woodland). Playing surfaces of both golf courses were marginal net sources of greenhouse gas emissions due to maintenance (Links 0.4 {+-} 0.1 Mg CO{sub 2}e ha{sup -1} y{sup -1}; Parkland 0.7 {+-} 0.2 Mg CO{sub 2}e ha{sup -1} y{sup -1}). A significant proportion of emissions were from the use of nitrogen fertiliser, especially on tees and greens such that 3% of the golf course area contributed 16% of total greenhouse gas emissions. The area of trees on a golf course was important in determining whole-course emission balance. On the Parkland course, emissions from maintenance were offset by sequestration from trees which comprised 48% of total area, resulting in a net balance of -4.3 {+-} 0.9 Mg CO{sub 2e} ha{sup -1} y{sup -1}. On the Links course, the proportion of trees was much lower (2%) and sequestration from links grassland resulted in a net balance of 0.0 {+-} 0.2 Mg CO{sub 2e} ha{sup -1} y{sup -1}. Recommendations for golf course management and design include the reduction of nitrogen fertiliser, improved operational efficiency when mowing, the inclusion of appropriate tree-planting and the scaling of component areas to maximise golf course sequestration capacity. The findings are transferrable to the

  2. Workshop Papers: CERI's Alberta Offset Development Workshop

    International Nuclear Information System (INIS)

    1998-01-01

    New and innovative policy approaches are necessary to help Canada achieve its target for greenhouse gas (GHG) emission reductions, since it is becoming clear that the voluntary action plans that are currently in place are not adequate to address climate change. The use of economic instruments to reduce greenhouse gas emissions was the focus of this conference. Topics included various forms of greenhouse gas emissions trading, taxation instruments, and hybrid instruments which make use of both emissions trading and emissions charges. The three forms of emission trading - carbon content trading, allowance trading, and credit trading - which have the potential to beneficially influence climate change were explored by several participants. Technical and policy related issues were explored in detail and the manner in which offsets fit into global, regional and local scenarios were reviewed. It was emphasized that clear and consistent policy signals and a flexible attitude from government is necessary to interest greenhouse gas emitters in taking action to reduce emissions without sacrificing the economy. Under a joint implementation framework recently agreed to at Kyoto, developed countries could earn credits for limiting emissions or enhancing carbon sinks in other countries by taking advantage of the low costs of emission reductions in developing countries. To date, this is the most fertile area for innovative action for effecting a global reduction in greenhouse gas emissions. refs., tabs., figs

  3. Correlation between centre offsets and gas velocity dispersion of galaxy clusters in cosmological simulations

    Science.gov (United States)

    Li, Ming-Hua; Zhu, Weishan; Zhao, Dong

    2018-05-01

    The gas is the dominant component of baryonic matter in most galaxy groups and clusters. The spatial offsets of gas centre from the halo centre could be an indicator of the dynamical state of cluster. Knowledge of such offsets is important for estimate the uncertainties when using clusters as cosmological probes. In this paper, we study the centre offsets roff between the gas and that of all the matter within halo systems in ΛCDM cosmological hydrodynamic simulations. We focus on two kinds of centre offsets: one is the three-dimensional PB offsets between the gravitational potential minimum of the entire halo and the barycentre of the ICM, and the other is the two-dimensional PX offsets between the potential minimum of the halo and the iterative centroid of the projected synthetic X-ray emission of the halo. Haloes at higher redshifts tend to have larger values of rescaled offsets roff/r200 and larger gas velocity dispersion σ v^gas/σ _{200}. For both types of offsets, we find that the correlation between the rescaled centre offsets roff/r200 and the rescaled 3D gas velocity dispersion, σ _v^gas/σ _{200} can be approximately described by a quadratic function as r_{off}/r_{200} ∝ (σ v^gas/σ _{200} - k_2)2. A Bayesian analysis with MCMC method is employed to estimate the model parameters. Dependence of the correlation relation on redshifts and the gas mass fraction are also investigated.

  4. Coastal vegetation invasion increases greenhouse gas emission from wetland soils but also increases soil carbon accumulation

    International Nuclear Information System (INIS)

    Chen, Yaping; Chen, Guangcheng; Ye, Yong

    2015-01-01

    Soil properties and soil–atmosphere fluxes of CO 2 , CH 4 and N 2 O from four coastal wetlands were studied throughout the year, namely, native Kandelia obovata mangrove forest vs. exotic Sonneratia apetala mangrove forest, and native Cyperus malaccensis salt marsh vs. exotic Spartina alterniflora salt marsh. Soils of the four wetlands were all net sources of greenhouse gases while Sonneratia forest contributed the most with a total soil–atmosphere CO 2 -equivalent flux of 137.27 mg CO 2 m −2 h −1 , which is 69.23%, 99.75% and 44.56% higher than that of Kandelia, Cyperus and Spartina, respectively. The high underground biomass and distinctive root structure of Sonneratia might be responsible for its high greenhouse gas emission from the soil. Soils in Spartina marsh emitted the second largest amount of total greenhouse gases but it ranked first in emitting trace greenhouse gases. Annual average CH 4 and N 2 O fluxes from Spartina soil were 13.77 and 1.14 μmol m −2 h −1 , respectively, which are 2.08 and 1.46 times that of Kandelia, 1.03 and 1.15 times of Sonneratia, and 1.74 and 1.02 times of Cyperus, respectively. Spartina has longer growing season and higher productivity than native marshes which might increase greenhouse gas emission in cold seasons. Exotic wetland soils had higher carbon stock as compared to their respective native counterparts but their carbon stocks were offset by a larger proportion because of their higher greenhouse gas emissions. Annual total soil–atmosphere fluxes of greenhouse gases reduced soil carbon burial benefits by 8.1%, 9.5%, 6.4% and 7.2% for Kandelia, Sonneratia, Cyperus and Spartina, respectively, which narrowed down the gaps in net soil carbon stock between native and exotic wetlands. The results indicated that the invasion of exotic wetland plants might convert local coastal soils into a considerable atmospheric source of greenhouse gases although they at the same time increase soil carbon accumulation

  5. Coastal vegetation invasion increases greenhouse gas emission from wetland soils but also increases soil carbon accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yaping [Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian (China); Chen, Guangcheng [Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, Fujian (China); Ye, Yong, E-mail: yeyong.xmu@gmail.com [Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian (China)

    2015-09-01

    Soil properties and soil–atmosphere fluxes of CO{sub 2}, CH{sub 4} and N{sub 2}O from four coastal wetlands were studied throughout the year, namely, native Kandelia obovata mangrove forest vs. exotic Sonneratia apetala mangrove forest, and native Cyperus malaccensis salt marsh vs. exotic Spartina alterniflora salt marsh. Soils of the four wetlands were all net sources of greenhouse gases while Sonneratia forest contributed the most with a total soil–atmosphere CO{sub 2}-equivalent flux of 137.27 mg CO{sub 2} m{sup −2} h{sup −1}, which is 69.23%, 99.75% and 44.56% higher than that of Kandelia, Cyperus and Spartina, respectively. The high underground biomass and distinctive root structure of Sonneratia might be responsible for its high greenhouse gas emission from the soil. Soils in Spartina marsh emitted the second largest amount of total greenhouse gases but it ranked first in emitting trace greenhouse gases. Annual average CH{sub 4} and N{sub 2}O fluxes from Spartina soil were 13.77 and 1.14 μmol m{sup −2} h{sup −1}, respectively, which are 2.08 and 1.46 times that of Kandelia, 1.03 and 1.15 times of Sonneratia, and 1.74 and 1.02 times of Cyperus, respectively. Spartina has longer growing season and higher productivity than native marshes which might increase greenhouse gas emission in cold seasons. Exotic wetland soils had higher carbon stock as compared to their respective native counterparts but their carbon stocks were offset by a larger proportion because of their higher greenhouse gas emissions. Annual total soil–atmosphere fluxes of greenhouse gases reduced soil carbon burial benefits by 8.1%, 9.5%, 6.4% and 7.2% for Kandelia, Sonneratia, Cyperus and Spartina, respectively, which narrowed down the gaps in net soil carbon stock between native and exotic wetlands. The results indicated that the invasion of exotic wetland plants might convert local coastal soils into a considerable atmospheric source of greenhouse gases although they at the

  6. Greenhouse gas emissions from hydroelectric reservoirs

    International Nuclear Information System (INIS)

    Rosa, L.P.; Schaeffer, R.

    1994-01-01

    In a recent paper, Rudd et al. have suggested that, per unit of electrical energy produced, greenhouse-gas emissions from some hydroelectric reservoirs in northern Canada may be comparable to emissions from fossil-fuelled power plants. The purpose of this comment is to elaborate these issues further so as to understand the potential contribution of hydroelectric reservoirs to the greenhouse effect. More than focusing on the total budget of carbon emissions (be they in the form of CH 4 or be they in the form of CO 2 ), this requires an evaluation of the accumulated greenhouse effect of gas emissions from hydroelectric reservoirs and fossil-fuelled power plants. Two issues will be considered: (a) global warming potential (GWP) for CH 4 ; and (b) how greenhouse-gas emissions from hydroelectric power plants stand against emissions from fossil-fuelled power plants with respect to global warming

  7. Accounting for Greenhouse Gas Emissions from Reservoirs

    Science.gov (United States)

    Nearly three decades of research has demonstrated that the impoundment of rivers and the flooding of terrestrial ecosystems behind dams can increase rates of greenhouse gas emission, particularly methane. The 2006 IPCC Guidelines for National Greenhouse Gas Inventories includes ...

  8. Ozone: The secret greenhouse gas

    International Nuclear Information System (INIS)

    Berntsen, Terje; Tjernshaugen, Andreas

    2001-01-01

    The atmospheric ozone not only protects against harmful ultraviolet radiation; it also contributes to the greenhouse effect. Ozone is one of the jokers to make it difficult to calculate the climatic effect of anthropogenic emissions. The greenhouse effect and the ozone layer should not be confused. The greenhouse effect creates problems when it becomes enhanced, so that the earth becomes warmer. The problem with the ozone layer, on the contrary, is that it becomes thinner and so more of the harmful ultraviolet radiation gets through to the earth. However, ozone is also a greenhouse gas and so the greenhouse effect and the ozone layer are connected

  9. Greenhouse gas emissions related to Dutch food consumption

    NARCIS (Netherlands)

    Kramer, KJ; Moll, HC; Nonhebel, S; Wilting, HC

    The consumption of food products involves emissions of greenhouse gases. Emissions occur in the various stages of the life cycle of food products. In this paper we discuss the greenhouse gas emissions, CO2, CH4, and N2O, related to Dutch household food consumption. Combinations of greenhouse gas

  10. Bibliography of greenhouse-gas reduction strategies

    Energy Technology Data Exchange (ETDEWEB)

    Tompkins, M.M.; Mintz, M.M.

    1995-03-01

    A bibliography of greenhouse-gas reduction strategies has been compiled to assist the Climate change Action Plan Task Force in their consideration of strategies to reduce greenhouse-gas emissions from personal motor vehicles. The document contains a summary of the literature, including it major directions and implications; and annotated listing of 32 recent pertinent documents; and a listing of a larger group of related reports.

  11. Assessing Greenhouse Gas emissions in the Greater Toronto Area using atmospheric observations (Invited)

    Science.gov (United States)

    Vogel, F. R.; Chan, E.; Huang, L.; Levin, I.; Worthy, D.

    2013-12-01

    Urban areas are said to be responsible for approximately 75% of anthropogenic Greenhouse Gases (GHGs) emissions while comprising only two percent of the land area [1]. This limited spatial expansion should facilitate a monitoring of anthropogenic GHGs from atmospheric observations. As major sources of emissions, cities also have a huge potential to drive emissions reductions. To effectively manage emissions, cities must however, first measure and report these publicly [2]. Modelling studies and measurements of CO2 from fossil fuel burning (FFCO2) in densely populated areas does, however, pose several challenges: Besides continuous in-situ observations, i.e. finding an adequate atmospheric transport model, a sufficiently fine-grained FFCO2 emission model and the proper background reference observations to distinguish the large-scale from the local/urban contributions to the observed FFCO2 concentration offsets ( ΔFFCO2) are required. Pilot studies which include the data from two 'sister sites*' in the vicinity of Toronto, Canada helped to derive flux estimates for Non-CO2 GHGs [3] and improve our understanding of urban FFCO2 emissions. Our 13CO2 observations reveal that the contribution of natural gas burning (mostly due to domestic heating) account for 80%×7% of FFCO2 emissions in the Greater Toronto Area (GTA) during winter. Our 14CO2 observations in the GTA, furthermore, show that the local offset of CO2 (ΔCO2) between our two sister sites can be largely attributed to urban FFCO2 emissions. The seasonal cycle of the observed ΔFFCO2 in Toronto, combined with high-resolution atmospheric modeling, helps to independently assess the contribution from different emission sectors (transportation, primary energy and industry, domestic heating) as predicted by a dedicated city-scale emission inventory, which deviates from a UNFCCC-based inventory. [1] D. Dodman. 2009. Blaming cities for climate change? An analysis of urban greenhouse gas emissions inventories

  12. Reflections on greenhouse gas life cycle assessment

    International Nuclear Information System (INIS)

    Jarrell, J.; Phillips, B.; Pendergast, D.

    1999-01-01

    The amount of carbon dioxide equivalent greenhouse gas emitted per unit of electricity produced is an important consideration in the planning of future greenhouse gas reduced electricity supply systems. Useful estimates of emissions must also take into account the entire cradle to grave life cycle emissions of alternative systems. Thus emissions of greenhouse gases take into account all of the components of building operating, and decommissioning facilities. This requires an accounting of emissions from production of all materials used to build the plants, transportation of materials to the site as well as fuels used for their construction, operation, and decommissioning. The construction of facilities may also have effects which tend to affect greenhouse gas emissions through modification of the local environment. A notable example, often cited, is the evolution of methane from the decay of organic matter submerged by dams built to serve hydro power facilities. In the long term, we anticipate that some kind of cost will be associated with the release of greenhouse gases. In that event it may be argued that the modified economic system established by inclusion of this cost will naturally control the emission of greenhouse gases from competing means of electricity production. Greenhouse gas emissions from all stages involved in the birth and retirement of electricity producing plant could be suitably constrained as the least cost method of production is sought. Such an ideal system is far from in place. At this point in time the results of life cycle accounting of greenhouse gas emissions are a needed means of comparing emissions from alternative sources of electricity. Many life cycle studies have been undertaken in the past. Many of the estimates are based on past practice which does not take into account any possible need to limit the production of greenhouse gas during the design of the plant and operational processes. Sources of energy used to produce materials

  13. Comparison of potential greenhouse gas emissions from disposal of MSW in sanitary landfills vs. waste-to-energy facilities

    International Nuclear Information System (INIS)

    Taylor, H.F.

    1991-01-01

    The Environmental Protection Agency (EPA) estimates the US currently generates about 160 million tons of municipal solid waste (MSW) per year, and this figure will exceed 200 million tons annually by the year 2000. About 80 percent of the MSW will be disposed of in landfills and waste-to-energy (WTE) facilities, both of which generate greenhouse gases, namely methane and carbon dioxide. This paper provides an introductory level analysis of the potential long term greenhouse gas emissions from these two MSW disposal alternatives. Carbon dioxide credits are derived for fossil fuel offset by WTE and methane emissions are converted to equivalent CO 2 emissions in order to derive a single emission figure for comparison of the greenhouse contribution of the two disposal strategies. A secondary analysis is presented to compare the net equivalent CO 2 emissions from WTE facilities to those from landfills with methane gas recovery, combustion and energy generation. The conclusion is, that for a given amount of MSW, landfilling contributes to the greenhouse effect about 10 times more than a modern Waste-To-Energy facility. Even with 50% of all landfill methane emissions recovered and converted to electricity, the contribution to the greenhouse effect by the landfill alternative is about 6 times greater than the waste-to-energy alternative

  14. Greenhouse gas emission from Australian coal mining

    International Nuclear Information System (INIS)

    Williams, D.

    1998-01-01

    Since 1997, when the Australian Coal Association (ACA) signed a letter of Intent in respect of the governments Greenhouse Challenge Program, it has encouraged its member companies to participate. Earlier this year, the ACA commissioned an independent scoping study on greenhouse gas emissions in the black coal mining industry This was to provide background information, including identification of information gaps and R and D needs, to guide the formulation of a strategy for the mitigation of greenhouse gas emissions associated with the mining, processing and handling of black coals in Australia. A first step in the process of reducing emission levels is an appreciation of the source, quantity and type of emissions om nine sites. It is shown that greenhouse gas emissions on mine sites come from five sources: energy consumption during mining activities, the coal seam gas liberated due to the extraction process i.e. fugitive emissions, oxidation of carbonaceous wastes, land use, and embodied energy. Also listed are indications of the degree of uncertainty associated with each of the estimates

  15. Greenhouse gas balances of biomass energy systems

    International Nuclear Information System (INIS)

    Marland, G.; Schlamadinger, B.

    1996-01-01

    A full energy-cycle analysis of greenhouse gas emissions of biomass energy systems requires analysis well beyond the energy sector. For example, production of biomass fuels impacts on the global carbon cycle by altering the amount of carbon stored in the biosphere and often by producing a stream of by-products or co-products which substitute for other energy-intensive products like cement, steel, concrete or, in case of ethanol form corn, animal feed. It is necessary to distinguish between greenhouse gas emissions associated with the energy product as opposed to those associated with other products. Production of biomass fuels also has an opportunity cost because it uses large land areas which could have been used otherwise. Accounting for the greenhouse gas emissions from biomass fuels in an environment of credits and debits creates additional challenges because there are large non-linearities in carbon flows over time. This paper presents some of the technical challenges of comprehensive greenhouse gas accounting and distinguishes between technical and public policy issues. (author). 5 refs, 5 figs

  16. Greenhouse gas balances of biomass energy systems

    International Nuclear Information System (INIS)

    Marland, G.; Schlamadinger, B.

    1994-01-01

    A full energy-cycle analysis of greenhouse gas emissions of biomass energy systems requires analysis well beyond the energy sector. For example, production of biomass fuels impacts on the global carbon cycle by altering the amount of carbon stored in the biosphere and often by producing a stream of by-products or co-products which substitute for other energy-intensive products like cement, steel, concrete or, in case of ethanol from corn, animal feed. It is necessary to distinguish between greenhouse gas emissions associated with the energy product as opposed to those associated with other products. Production of biomass fuels also has an opportunity cost because it uses large land areas which could have been used otherwise. Accounting for the greenhouse gas emissions from biomass fuels in an environment of credits and debits creates additional challenges because there are large nonlinearities in the carbon flows over time. This paper presents some of the technical challenges of comprehensive greenhouse gas accounting and distinguishes between technical and public policy issues

  17. State and Territory Greenhouse Gas Emissions 2004

    International Nuclear Information System (INIS)

    2006-06-01

    This document provides an overview of the latest available estimates of greenhouse gas emissions for Australia's States and Territories. Australia's total greenhouse gas emissions in 2004 amounted to 564.7 million tonnes. The State and Territory breakdown was: New South Wales: 158.7 million tonnes (Mt); Queensland: 158.5 Mt; Victoria: 123.0 Mt; Western Australia: 68.5 Mt; South Australia: 27.6 Mt; Northern Territory: 15.6 Mt; Tasmania: 10.7 Mt; ACT: 1.2 Mt. The summary of State and Territory inventories presented in this document reports estimates of greenhouse gas emissions for each State and Territory for the period 1990 to 2004. It is the first time that a complete annual time-series has been reported

  18. Detection of greenhouse-gas-induced climatic change

    International Nuclear Information System (INIS)

    Wigley, T.M.L.; Jones, P.D.

    1992-01-01

    The aims of the US Department of Energy's Carbon Dioxide Research Program are to improve assessments of greenhouse-gas-induced climatic change and to define and reduce uncertainties through selected research. This project will address: The regional and seasonal details of the expected climatic changes; how rapidly will these changes occur; how and when will the climatic effects of CO 2 and other greenhouse gases be first detected; and the relationships between greenhouse-gas-induced climatic change and changes caused by other external and internal factors. The present project addresses all of these questions. Many of the diverse facets of greenhouse-gas-related climate research can be grouped under three interlinked subject areas: modeling, first detection and supporting data. This project will include the analysis of climate forcing factors, the development and refinement of transient response climate models, and the use of instrumental data in validating General Circulation Models (GCMs)

  19. Effects of Greenhouse Gas Emissions on World Agriculture, Food Consumption, and Economic Welfare

    International Nuclear Information System (INIS)

    Darwin, R.

    2004-01-01

    New Zealand suffer from this effect in this analysis because under improved economic conditions they are assumed to obtain a relatively large share of income from agricultural exports. When the climate-change and CO2-fertilization scenarios in this analysis are also included, agricultural exports from Australia plus New Zealand decline on average. The resultant declines in agricultural income in Australia plus New Zealand are too large to be completely offset by rising incomes in other sectors. This indicates that regions that rely on agricultural exports for relatively large shares of their income may be vulnerable not only to direct climate-induced agricultural damages, but also to positive impacts induced by greenhouse gas emissions elsewhere

  20. Accounting For Greenhouse Gas Emissions From Flooded Lands

    Science.gov (United States)

    Nearly three decades of research has demonstrated that the inundation of rivers and terrestrial ecosystems behind dams can lead to enhanced rates of greenhouse gas emissions, particularly methane. The 2006 IPCC Guidelines for National Greenhouse Gas Inventories includes a method...

  1. Greenhouse gas emissions and carbon sequestration by agroforestry systems in southeastern Brazil.

    Science.gov (United States)

    Torres, Carlos Moreira Miquelino Eleto; Jacovine, Laércio Antônio Gonçalves; Nolasco de Olivera Neto, Sílvio; Fraisse, Clyde William; Soares, Carlos Pedro Boechat; de Castro Neto, Fernando; Ferreira, Lino Roberto; Zanuncio, José Cola; Lemes, Pedro Guilherme

    2017-12-01

    Agrosilvopastoral and silvopastoral systems can increase carbon sequestration, offset greenhouse gas (GHG) emissions and reduce the carbon footprint generated by animal production. The objective of this study was to estimate GHG emissions, the tree and grass aboveground biomass production and carbon storage in different agrosilvopastoral and silvopastoral systems in southeastern Brazil. The number of trees required to offset these emissions were also estimated. The GHG emissions were calculated based on pre-farm (e.g. agrochemical production, storage, and transportation), and on-farm activities (e.g. fertilization and machinery operation). Aboveground tree grass biomass and carbon storage in all systems was estimated with allometric equations. GHG emissions from the agroforestry systems ranged from 2.81 to 7.98 t CO 2 e ha -1 . Carbon storage in the aboveground trees and grass biomass were 54.6, 11.4, 25.7 and 5.9 t C ha -1 , and 3.3, 3.6, 3.8 and 3.3 t C ha -1 for systems 1, 2, 3 and 4, respectively. The number of trees necessary to offset the emissions ranged from 17 to 44 trees ha -1 , which was lower than the total planted in the systems. Agroforestry systems sequester CO 2 from the atmosphere and can help the GHG emission-reduction policy of the Brazilian government.

  2. Net global warming potential and greenhouse gas intensity

    Science.gov (United States)

    Various methods exist to calculate global warming potential (GWP) and greenhouse gas intensity (GHG) as measures of net greenhouse gas (GHG) emissions from agroecosystems. Little is, however, known about net GWP and GHGI that account for all sources and sinks of GHG emissions. Sources of GHG include...

  3. OPIC Greenhouse Gas Emissions Inventory

    Data.gov (United States)

    Overseas Private Investment Corporation — Independent analysis details quantifying the greenhouse gas ("GHG") emissions directly attributable to projects to which the Overseas Private Investment Corporation...

  4. 76 FR 22825 - Mandatory Reporting of Greenhouse Gases: Petroleum and Natural Gas Systems

    Science.gov (United States)

    2011-04-25

    ... Reporting of Greenhouse Gases: Petroleum and Natural Gas Systems AGENCY: Environmental Protection Agency... Subpart W: Petroleum and Natural Gas Systems of the Greenhouse Gas Reporting Rule. As part of the... greenhouse gas emissions for the petroleum and natural gas systems source category of the greenhouse gas...

  5. Greenhouse gas neutral Germany in 2050

    International Nuclear Information System (INIS)

    Benndorf, Rosemarie; Bernicke, Maja; Bertram, Andreas

    2014-01-01

    In order to answer the question how a greenhouse gas neutral Germany would look like an interdisciplinary process was started by the Federal Environmental Agency. It was clear from the beginning of this work that a sustainable regenerative energy supply could not be sufficient. Therefore all relevant emission sources were included into the studies: traffic, industry, waste and waste water, agriculture, land usage, land usage changes and forestry. The necessary transformation paths to reach the aim of a greenhouse gas neutral Germany in 2050, economic considerations and political instruments were not part of this study.

  6. Greenhouse gas emissions trading and project-based mechanisms. Proceedings - CATEP

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-01-01

    Greenhouse gas emissions trading and project-based mechanisms for greenhouse gas reduction are emerging market-based instruments for climate change policy. This book presents a selection of papers from an international workshop co-sponsored by the OECD and Concerted Action on Tradeable Emissions Permits (CATEP), to discuss key research and policy issues relating to the design and implementation of these instruments. The papers cover the experience of developing and transition countries with greenhouse gas emissions trading and project-based mechanisms. In addition, the papers examine the use of tradeable permits in policy mixes and harmonisation of emissions trading schemes, as well as transition issues relating to greenhouse gas emissions trading markets.

  7. Greenhouse gas emissions in the Netherlands 1990-1996: Updated methodology

    NARCIS (Netherlands)

    Spakman J; Olivier JGJ; Loon MMJ van; LAE

    1997-01-01

    This inventory of greenhouse gas emissions in the Netherlands has been prepared according to the IPCC Guidelines and complies with the obligations under the European Union's Greenhouse Gas Monitoring Mechanism and the UN-FCCC for emission reports on greenhouse gases not covered under the Montreal

  8. Greenhouse gas and energy analysis of substitute natural gas from biomass for space heat

    International Nuclear Information System (INIS)

    Pucker, Johanna; Zwart, Robin; Jungmeier, Gerfried

    2012-01-01

    In this paper, the greenhouse gas and energy balances of the production and use for space heating of substitute natural gas from biomass (bio-SNG) for space heat are analysed. These balances are compared to the use of natural gas and solid biomass as wood chips to provide the same service. The reduction of the greenhouse gas emissions (CO 2 -eq.) – carbon dioxide, methane and nitrous oxide – and of the fossil primary energy use is investigated in a life cycle assessment (LCA). This assessment was performed for nine systems for bio-SNG; three types of gasification technologies (O 2 -blown entrained flow, O 2 -blown circulating fluidised bed and air–steam indirect gasification) with three different types of feedstock (forest residues, miscanthus and short rotation forestry). The greenhouse gas analysis shows that forest residues using the air–steam indirect gasification technology result in the lowest greenhouse gas emissions (in CO 2 -eq. 32 kg MWh −1 of heat output). This combination results in 80% reduction of greenhouse gas emissions when compared to natural gas and a 29% reduction of greenhouse gases if the forest residues were converted to wood chips and combusted. The gasification technologies O 2 -blown entrained flow and O 2 -blown circulating fluidised bed gasification have higher greenhouse gas emissions that range between in CO 2 -eq. 41 to 75 kg MWh −1 of heat output depending on the feedstock. When comparing feedstocks in the bio-SNG systems, miscanthus had the highest greenhouse gas emissions bio-SNG systems producing in CO 2 -eq. 57–75 kg MWh −1 of heat output. Energy analysis shows that the total primary energy use is higher for bio-SNG systems (1.59–2.13 MWh MWh −1 of heat output) than for the reference systems (in 1.37–1.51 MWh MWh −1 of heat output). However, with bio-SNG the fossil primary energy consumption is reduced compared to natural gas. For example, fossil primary energy use is reduced by 92% when air

  9. Energy efficiency and fuel switching in Canadian industry under greenhouse gas regulation

    International Nuclear Information System (INIS)

    Margolick, M.

    1992-01-01

    The application of financial instruments to greenhouse gas control, particularly a greenhouse gas tax, is discussed. As of June 1991, Finland, the Netherlands, Sweden and Norway have imposed taxes on greenhouse gas emissions, while taxes are imminent in Denmark and Germany. A study has been carried out to model the effects of such taxes on greenhouse gas emissions in Canada, using the Intra-Sectoral Technology Use Model (ISTUM) and an end-use energy demand computer model. Only carbon dioxide and methane were considered. The limitations of the ISTUM model are discussed. Industry results are presented by sector, including an overview of greenhouse gas-producing processes, emission reduction measures possible, energy and greenhouse emissions, and results of taxes at varying levels. Different basic physical and chemical processes among industries would cause widely varying responses to a greenhouse gas tax. Issues which bear directly on greenhouse gas emissions include the burning of biomass fuels in the pulp and paper industry, strategic choices between existing and new technologies in the iron and steel sector, the possibility of a nearly greenhouse gas-free aluminum smelting sector, and the advent of reformulated gasoline requirements and declining crude oil quantity in the petroleum refining sector. 15 refs., 6 figs

  10. Greenhouse gas and energy analysis of substitute natural gas from biomass for space heat

    Energy Technology Data Exchange (ETDEWEB)

    Pucker, J.; Jungmeier, G. [JOANNEUM RESEARCH Forschungsgesellschaft mbH, RESOURCES - Institute for Water, Energy and Sustainability, Steyrergasse 17, 8010 Graz (Austria); Zwart, R. [Energy Research Centre of The Netherlands (ECN), Westerduinweg 3, 1755 LE Petten (Netherlands)

    2012-03-15

    In this paper, the greenhouse gas and energy balances of the production and use for space heating of substitute natural gas from biomass (bio-SNG) for space heat are analysed. These balances are compared to the use of natural gas and solid biomass as wood chips to provide the same service. The reduction of the greenhouse gas emissions (CO{sub 2}-eq.) - carbon dioxide, methane and nitrous oxide - and of the fossil primary energy use is investigated in a life cycle assessment (LCA). This assessment was performed for nine systems for bio-SNG; three types of gasification technologies (O{sub 2}-blown entrained flow, O{sub 2}-blown circulating fluidised bed and air-steam indirect gasification) with three different types of feedstock (forest residues, miscanthus and short rotation forestry). The greenhouse gas analysis shows that forest residues using the air-steam indirect gasification technology result in the lowest greenhouse gas emissions (in CO{sub 2}-eq. 32 kg MWh{sup -1} of heat output). This combination results in 80% reduction of greenhouse gas emissions when compared to natural gas and a 29% reduction of greenhouse gases if the forest residues were converted to wood chips and combusted. The gasification technologies O{sub 2}-blown entrained flow and O{sub 2}-blown circulating fluidised bed gasification have higher greenhouse gas emissions that range between in CO{sub 2}-eq. 41 to 75 kg MWh{sup -1} of heat output depending on the feedstock. When comparing feedstocks in the bio-SNG systems, miscanthus had the highest greenhouse gas emissions bio-SNG systems producing in CO2-eq. 57-75 kg MWh{sup -1} of heat output. Energy analysis shows that the total primary energy use is higher for bio-SNG systems (1.59-2.13 MWh MWh{sup -1} of heat output) than for the reference systems (in 1.37-1.51 MWh MWh{sup -1} of heat output). However, with bio-SNG the fossil primary energy consumption is reduced compared to natural gas. For example, fossil primary energy use is reduced by

  11. Long-run implications for developing countries of joint implementation of greenhouse gas mitigation

    International Nuclear Information System (INIS)

    Rose, A.; Bulte, E.; Folmer, H.

    1999-01-01

    Joint Implementation (JI) calls for cooperation between industrialized and developing countries in the mitigation of greenhouse gas (GHG) emissions. However, a major concern of potential host countries is that if they utilize their low-cost options for JI now, they will be left with only high cost options in the future, thereby penalizing them at a time when they may be obligated to mitigate GHGs themselves. This paper formalizes this hypothesis by utilizing an optimal control framework analogous to the Hotelling model of non-renewable resource extraction. The results are that cumulative abatement effects can impose costs on the future, but that they can be offset by technological change, market power, or compensation. 11 refs

  12. Does the Swedish consumer's choice of food influence greenhouse gas emissions?

    International Nuclear Information System (INIS)

    Wallen, Anna; Brandt, Nils; Wennersten, Ronald

    2004-01-01

    Consumer's choice of food can influence the environment. In Sweden, in common with many other countries, consumers need to be given information so they can make environmentally informed shopping choices. However, what is the most advantageous dietary choice to lower greenhouse emissions? This study investigates the greenhouse gas emissions associated with food production for food consumed in Sweden annually. Specifically, this study compares greenhouse gas emissions associated with a nutritionally and environmentally sustainable diet with the average consumption of food in Sweden 1999. The study concludes that the change in energy use and greenhouse gas emission associated with this change of diet is negligible. Lowering greenhouse gas emissions by changing food production processes results in more profound changes than teaching consumers to make environmentally correct choices. There is a basic need for a reduction or a replacement of the use of fossil fuels to produce and distribute our food in order to reach any significant reduction in the emission of greenhouse gases. Swedish agricultural policy does not provide ways to reduce greenhouse gas emissions. In Sweden therefore there is an immediate need to design policy instruments with the primary aim of reducing the greenhouse effect

  13. Transit Greenhouse Gas Management Compendium

    Science.gov (United States)

    2011-01-12

    This Compendium provides a framework for identifying greenhouse gas (GHG) reduction opportunities while highlighting specific examples of effective GHG reduction practices. The GHG savings benefits of public transit are first described. GHG saving op...

  14. Future forecast for life-cycle greenhouse gas emissions of LNG and city gas 13A

    International Nuclear Information System (INIS)

    Okamura, Tomohito; Furukawa, Michinobu; Ishitani, Hisashi

    2007-01-01

    The objective of this paper is to analyze the most up-to-date data available on total greenhouse-gas emissions of a LNG fuel supply chain and life-cycle of city gas 13A based on surveys of the LNG projects delivering to Japan, which should provide useful basic-data for conducting life-cycle analyses of other product systems as well as future alternative energy systems, because of highly reliable data qualified in terms of its source and representativeness. In addition, the life-cycle greenhouse-gas emissions of LNG and city-gas 13A in 2010 were also predicted, taking into account not only the improvement of technologies, but also the change of composition of LNG projects. As a result of this analysis, the total amount of greenhouse-gas emissions of the whole city-gas 13A chain at present was calculated to be 61.91 g-CO 2 /MJ, and the life-cycle greenhouse-gas emissions of LNG and city-gas 13A in 2010 could be expected to decrease by about 1.1% of the current emissions

  15. Life-cycle greenhouse gas emissions of shale gas, natural gas, coal, and petroleum.

    Science.gov (United States)

    Burnham, Andrew; Han, Jeongwoo; Clark, Corrie E; Wang, Michael; Dunn, Jennifer B; Palou-Rivera, Ignasi

    2012-01-17

    The technologies and practices that have enabled the recent boom in shale gas production have also brought attention to the environmental impacts of its use. It has been debated whether the fugitive methane emissions during natural gas production and transmission outweigh the lower carbon dioxide emissions during combustion when compared to coal and petroleum. Using the current state of knowledge of methane emissions from shale gas, conventional natural gas, coal, and petroleum, we estimated up-to-date life-cycle greenhouse gas emissions. In addition, we developed distribution functions for key parameters in each pathway to examine uncertainty and identify data gaps such as methane emissions from shale gas well completions and conventional natural gas liquid unloadings that need to be further addressed. Our base case results show that shale gas life-cycle emissions are 6% lower than conventional natural gas, 23% lower than gasoline, and 33% lower than coal. However, the range in values for shale and conventional gas overlap, so there is a statistical uncertainty whether shale gas emissions are indeed lower than conventional gas. Moreover, this life-cycle analysis, among other work in this area, provides insight on critical stages that the natural gas industry and government agencies can work together on to reduce the greenhouse gas footprint of natural gas.

  16. Technology Opportunities to Reduce U.S. Greenhouse Gas Emissions

    Energy Technology Data Exchange (ETDEWEB)

    National Lab Directors, . .

    2001-04-05

    The rise in greenhouse gas emissions from fossil fuel combustion and industrial and agricultural activities has aroused international concern about the possible impacts of these emissions on climate. Greenhouse gases--mostly carbon dioxide, some methane, nitrous oxide and other trace gases--are emitted to the atmosphere, enhancing an effect in which heat reflected from the earth's surface is kept from escaping into space, as in a greenhouse. Thus, there is concern that the earth's surface temperature may rise enough to cause global climate change. Approximately 90% of U.S. greenhouse gas emissions from anthropogenic sources come from energy production and use, most of which are a byproduct of the combustion of fossil fuels. On a per capita basis, the United States is one of the world's largest sources of greenhouse gas emissions, comprising 4% of the world's population, yet emitting 23% of the world's greenhouse gases. Emissions in the United States are increasing at around 1.2% annually, and the Energy Information Administration forecasts that emissions levels will continue to increase at this rate in the years ahead if we proceed down the business-as-usual path. President Clinton has presented a two-part challenge for the United States: reduce greenhouse gas emissions and grow the economy. Meeting the challenge will mean that in doing tomorrow's work, we must use energy more efficiently and emit less carbon for the energy expended than we do today. To accomplish these goals, President Clinton proposed on June 26, 1997, that the United States ''invest more in the technologies of the future''. In this report to Secretary of Energy Pena, 47 technology pathways are described that have significant potential to reduce carbon dioxide emissions. The present study was completed before the December 1997 United Nations Framework Convention on Climate Change and is intended to provide a basis to evaluate technology

  17. Shale gas production: potential versus actual greenhouse gas emissions

    OpenAIRE

    O'Sullivan, Francis Martin; Paltsev, Sergey

    2012-01-01

    Estimates of greenhouse gas (GHG) emissions from shale gas production and use are controversial. Here we assess the level of GHG emissions from shale gas well hydraulic fracturing operations in the United States during 2010. Data from each of the approximately 4000 horizontal shale gas wells brought online that year are used to show that about 900 Gg CH[subscript 4] of potential fugitive emissions were generated by these operations, or 228 Mg CH[subscript 4] per well—a figure inappropriately ...

  18. Sectoral Approaches to Greenhouse Gas Mitigation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    This paper explores sectoral approaches as a new set of options to enhance the effectiveness of greenhouse gas reduction policies and to engage emerging economies on a lower emission path. It surveys existing literature and recent policy trends in international climate change discussions, and provides an overview of sectoral approaches and related issues for trade-exposed, greenhouse-gas intensive industries (cement, iron and steel and aluminium). It is also based on interviews conducted by the IEA Secretariat in Australia, China, Europe, Japan, and the United States. Sectoral approaches were also discussed during workshops on technology and energy efficiency policies in industry, following the IEA's mandate under the Gleneagles Plan of Action.

  19. OPIC Greenhouse Gas Emissions Analysis Details

    Data.gov (United States)

    Overseas Private Investment Corporation — Summary project inventory with independent analysis to quantify the greenhouse gas ("GHG") emissions directly attributable to projects to which the Overseas Private...

  20. Danish greenhouse gas reduction scenarios for 2020 and 2050

    Energy Technology Data Exchange (ETDEWEB)

    Karlsson, K; Joergensen, Kaj [Risoe DTU, Roskilde (DK); Werling, J; OErsted Pedersen, H; Kofoed-Wiuff, A [Ea energy Analysis, Copenhagen (DK)

    2008-02-15

    The aim of the project presented in this report was to develop scenarios for reducing Danish greenhouse gas emissions in 2020 and 2050. The scenarius provide a basis for estimating which technologies should be combined in order to obtain future reductions in greenhouse gas emissions in a cost-effective way. The scenarios include all emissions of greenhouse gases from agriculture, industry and oil extraction activities in the North Sea as well as the transport and energy sectors. Foreign air and sea carriage is not included because emissions related to such activities are not yet subject to international climate change agreements. The scenarios focus particularly on the technological possibilities and the necessary system changes in the Danish energy system and transport sector. Parallel to this, COWI has carried out analyses for the Danish Environmental Protection Agency focussing primarily on the reduction potentials in the transport sector and other emissions. COWI's results regarding agriculture and other emissions have been included in this analysis. Two timeframes are applied in the scenarios: the medium term, 2020, and the long term, 2050. For each timeframe, we have set up indicative targets that the scenarios must reach: 1) 2020: 30 and 40 % reduction in greenhouse gas emissions compared to 1990 2) 2050: 60 and 80 % reduction in greenhouse gas emissions compared to 1990. The scenarios for 2020 focus primarily on technologies that are already commercially available, whereas the scenarios for 2050 also examine technological options at the experimental or developmental stage. This includes hydrogen technologies and fuel cells as well as CO{sub 2} capture and sequestration (CCS) technologies. The scenarios should be seen in connection with the EU objectives of a 20-30 % reduction in greenhouse gas emissions in 2020 and 60-80 % in 2050 compared to 1990. The EU's 30 % objective is contingent upon global efforts to reduce the world's greenhouse gas emissions

  1. Assessing the Greenhouse Gas Emissions from Natural Gas Fired Power Plants

    Science.gov (United States)

    Hajny, K. D.; Shepson, P. B.; Rudek, J.; Stirm, B. H.; Kaeser, R.; Stuff, A. A.

    2017-12-01

    Natural gas is often discussed as a "bridge fuel" to transition to renewable energy as it only produces 51% the amount of CO2 per unit energy as coal. This, coupled with rapid increases in production fueled by technological advances, has led to a near tripling of natural gas used for electricity generation since 2005. One concern with this idea of a "bridge fuel" is that methane, the primary component of natural gas, is itself a potent greenhouse gas with 28 and 84 times the global warming potential of CO2 based on mass over a 100 and 20 year period, respectively. Studies have estimated that leaks from the point of extraction to end use of 3.2% would offset the climate benefits of natural gas. Previous work from our group saw that 3 combined cycle power plants emitted unburned CH4 from the stacks and leaked additional CH4 from equipment on site, but total loss rates were still less than 2.2%. Using Purdue's Airborne Laboratory for Atmospheric Research (ALAR) we completed additional aircraft based mass balance experiments combined with passes directly over power plant stacks to expand on the previous study. In this work, we have measured at 12 additional natural gas fired power plants including a mix of operation types (baseload, peaking, intermediate) and firing methods (combined cycle, simple thermal, combustion turbine). We have also returned to the 3 plants previously sampled to reinvestigate emissions for each of those, to assess reproducibility of the results. Here we report the comparison of reported continuous emissions monitoring systems (CEMS) data for CO2 to our emission rates calculated from mass balance experiments, as well as a comparison of calculated CH4 emission rates to estimated emission rates based on the EPA emission factor of 1 g CH4/mmbtu natural gas and CEMS reported heat input. We will also discuss emissions from a coal-fired plant which has been sampled by the group in the past and has since converted to natural gas. Lastly, we discuss the

  2. Wellbeing impacts of city policies for reducing greenhouse gas emissions

    DEFF Research Database (Denmark)

    Hiscock, Rosemary; Mudu, Pierpaolo; Braubach, Matthias

    2014-01-01

    To mitigate climate change, city authorities are developing policies in areas such as transportation, housing and energy use, to reduce greenhouse gas emissions. In addition to their effects on greenhouse gas emissions, these policies are likely to have consequences for the wellbeing...... and subjective aspects which can be measured quantitatively; our review of measures informs the development of a theoretical model linking wellbeing to policies which cities use to reduce greenhouse gas emissions. Finally, we discuss the extent to which the links proposed in the conceptual model are supported...

  3. 77 FR 63537 - Greenhouse Gas Reporting Program: Proposed Amendments and Confidentiality Determinations for...

    Science.gov (United States)

    2012-10-16

    ... Greenhouse Gas Reporting Program: Proposed Amendments and Confidentiality Determinations for Subpart I...-AR61 Greenhouse Gas Reporting Program: Proposed Amendments and Confidentiality Determinations for... Manufacturing, of the Greenhouse Gas Reporting Rule. Proposed changes include revising certain calculation...

  4. USDA Northeast climate hub greenhouse gas mitigation workshop technical report

    Science.gov (United States)

    In April 2015, USDA Secretary Vilsack announced the Greenhouse Gas Building Blocks for Climate Smart Agriculture and Forestry in an effort to reduce greenhouse gas emissions, increase carbon sequestration, and expand renewable energy production in the agricultural and forestry sectors. This initiati...

  5. Greenhouse gas emissions of Dutch biomass. Quantification of greenhouse gases emission of Dutch biomass for electricity and heat

    International Nuclear Information System (INIS)

    Koop, K.; Yildiz, I.

    2010-09-01

    The greenhouse gas emissions of all available flows of the biomass chain have been established. This report has the following aims: (1) to establish the greenhouse gas emission of Dutch biomass available for generating electricity and heat; (2) to obtain insight in the opportunities and threats for using the potential of the biomass chains that have the highest potential to reduce greenhouse gas emissions. This report can be seen as a supplement to the report 'Availability of Dutch biomass for electricity and heat in 2020' (2009) [nl

  6. 2012 Stakeholder Workshop on Natural Gas in the Inventory of U.S. Greenhouse Gas Emissions and Sinks

    Science.gov (United States)

    This page describes EPA's September 2012 stakeholder workshop on key aspects of the estimates of greenhouse gas emissions from the natural gas sector in the Inventory of U.S. Greenhouse Gas Emissions and Sinks.

  7. Effects of nitrogen fertilizer application on greenhouse gas emissions and economics of corn production.

    Science.gov (United States)

    Kim, Seungdo; Dale, Bruce E

    2008-08-15

    Nitrogen fertilizer plays an important role in corn cultivation in terms of both economic and environmental aspects. Nitrogen fertilizer positively affects corn yield and the soil organic carbon level, but it also has negative environmental effects through nitrogen-related emissions from soil (e.g., N20, NOx, NO3(-) leaching, etc.). Effects of nitrogen fertilizer on greenhouse gas emissions associated with corn grain are investigated via life cycle assessment. Ecoefficiency analysis is also used to determine an economically and environmentally optimal nitrogen application rate (NAR). The ecoefficiency index in this study is defined as the ratio of economic return due to nitrogen fertilizer to the greenhouse gas emissions of corn cultivation. Greenhouse gas emissions associated with corn grain decrease as NAR increases at a lower NAR until a minimum greenhouse gas emission level is reached because corn yield and soil organic carbon level increase with NAR. Further increasing NAR after a minimum greenhouse gas emission level raises greenhouse gas emissions associated with corn grain. Increased greenhouse gas emissions of corn grain due to nitrous oxide emissions from soil are much higher than reductions of greenhouse gas emissions of corn grain due to corn yield and changes in soil organic carbon levels at a higher NAR. Thus, there exists an environmentally optimal NAR in terms of greenhouse gas emissions. The trends of the ecoefficiency index are similar to those of economic return to nitrogen and greenhouse gas emissions associated with corn grain. Therefore, an appropriate NAR could enhance profitability as well as reduce greenhouse gas emissions associated with corn grain.

  8. Air quality and greenhouse gas emissions (Chapter 3)

    CSIR Research Space (South Africa)

    Winkler, H

    2016-01-01

    Full Text Available Shale gas development (SGD) presents opportunities and risks with regards to air pollution and greenhouse gas (GHG) emissions. There is a potential opportunity to reduce emissions, if shale gas replaces ‘dirtier’ (more emissions-intensive) fuels...

  9. 78 FR 68161 - Greenhouse Gas Reporting Program: Final Amendments and Confidentiality Determinations for...

    Science.gov (United States)

    2013-11-13

    ... 98 Greenhouse Gas Reporting Program: Final Amendments and Confidentiality Determinations for...-HQ-OAR-2011-0028; FRL-9845-6] RIN 2060-AR61 Greenhouse Gas Reporting Program: Final Amendments and... monitoring methodologies for electronics manufacturers covered by the Greenhouse Gas Reporting Rule. These...

  10. A primer for trading greenhouse gas reductions from landfills

    International Nuclear Information System (INIS)

    2000-06-01

    This introductory level primer on domestic greenhouse gas emissions trading addresses the challenge of dealing with landfill gas emissions of carbon dioxide (CO 2 ) and methane (CH 4 ). It describes the first major emissions trading projects in Canada, the Pilot Emission Reduction Trading (PERT) and the Greenhouse Gas Emission Reduction Trading (GERT) pilot projects which calculate and document the GHG emission reductions that are available from landfill sites. PERT initially focused on nitrogen oxides, volatile organic compounds, carbon monoxide, sulphur dioxide and carbon dioxide. PERT uses the Clean Air Emission Reduction Registry for its emissions trading. Canada completed negotiations of the Kyoto Protocol in December 1997 along with 160 other countries. Upon ratification, Canada will commit to reducing 6 greenhouse gases by 6 per cent below 1990 levels in the period 2008 to 2012. Canada has recognized that it must reduce domestic greenhouse gas emissions to slow global warming which leads to climate change. It has been shown that the capture and destruction of landfill gas can profoundly contribute to meeting the target. One tool that can be used to help meet the objective of reducing GHG emissions is domestic GHG emission trading, or carbon trading, as a result of landfill gas capture and flaring. Landfill gas is generally composed of equal parts of carbon dioxide and methane with some other trace emissions. Accounting for quantities of greenhouse gas emissions is done in equivalent tonnes of carbon dioxide where one tonne of methane reduction is equivalent to 21 tonnes of carbon dioxide in terms of global warming potential. Organics in landfills which lead to the generation of methane are considered to be coming from renewable biomass, therefore, the collection and combustion of landfill gas is also considered to reduce GHG emissions from landfills by 100 per cent on a global basis. Destroying landfill gases can also reduce volatile organic compounds, which

  11. Recent data concerning contribution of various greenhouse effect gas sources

    International Nuclear Information System (INIS)

    Lambert, G.

    1991-01-01

    The greenhouse effect contributes to a +33 degrees C warming of the earth atmosphere (mean temperature of +15 deg C instead of -18 deg C without any greenhouse effect). The roles of water vapour, carbon dioxide and methane in greenhouse effect are discussed; the CH 4 raise seems to be due to rice cultivation and cattle farming; the CO 2 raise is mainly due oil, coal and natural gas burning. Greenhouse gas increase will cause a 2 to 4 deg C increase of the earth mean temperature but the anthropogenous causes will be obviously seen only during the next century

  12. Danish greenhouse gas reduction scenarios for 2020 and 2050

    Energy Technology Data Exchange (ETDEWEB)

    Karlsson, K.; Joergensen, Kaj. (Risoe DTU, Roskilde (DK)); Werling, J.; OErsted Pedersen, H.; Kofoed-Wiuff, A. (Ea energy Analysis, Copenhagen (DK))

    2008-02-15

    The aim of the project presented in this report was to develop scenarios for reducing Danish greenhouse gas emissions in 2020 and 2050. The scenarius provide a basis for estimating which technologies should be combined in order to obtain future reductions in greenhouse gas emissions in a cost-effective way. The scenarios include all emissions of greenhouse gases from agriculture, industry and oil extraction activities in the North Sea as well as the transport and energy sectors. Foreign air and sea carriage is not included because emissions related to such activities are not yet subject to international climate change agreements. The scenarios focus particularly on the technological possibilities and the necessary system changes in the Danish energy system and transport sector. Parallel to this, COWI has carried out analyses for the Danish Environmental Protection Agency focussing primarily on the reduction potentials in the transport sector and other emissions. COWI's results regarding agriculture and other emissions have been included in this analysis. Two timeframes are applied in the scenarios: the medium term, 2020, and the long term, 2050. For each timeframe, we have set up indicative targets that the scenarios must reach: 1) 2020: 30 and 40 % reduction in greenhouse gas emissions compared to 1990 2) 2050: 60 and 80 % reduction in greenhouse gas emissions compared to 1990. The scenarios for 2020 focus primarily on technologies that are already commercially available, whereas the scenarios for 2050 also examine technological options at the experimental or developmental stage. This includes hydrogen technologies and fuel cells as well as CO{sub 2} capture and sequestration (CCS) technologies. The scenarios should be seen in connection with the EU objectives of a 20-30 % reduction in greenhouse gas emissions in 2020 and 60-80 % in 2050 compared to 1990. The EU's 30 % objective is contingent upon global efforts to reduce the world's greenhouse gas

  13. 78 FR 69337 - Greenhouse Gas Reporting Program: Amendments and Confidentiality Determinations for Fluorinated...

    Science.gov (United States)

    2013-11-19

    ...-AR78 Greenhouse Gas Reporting Program: Amendments and Confidentiality Determinations for Fluorinated... Greenhouse Gas Reporting Rule. The proposed changes would reduce the level of detail in which emissions were..., please go to the Greenhouse Gas Reporting Rule Program Web site at http://www.epa.gov/climatechange...

  14. Direct greenhouse gas emissions of the game industry in South Africa

    African Journals Online (AJOL)

    Direct greenhouse gas emissions of the game industry in South Africa. ... Previous greenhouse gas (GHG) inventories did not include game as an emissions source. Recently game farming has ... AJOL African Journals Online. HOW TO USE ...

  15. An evaluation of greenhouse gas mitigation options for coal-fired power plants in the US Great Lakes States

    International Nuclear Information System (INIS)

    Froese, Robert E.; Shonnard, David R.; Miller, Chris A.; Koers, Ken P.; Johnson, Dana M.

    2010-01-01

    We assessed options for mitigating greenhouse gas emissions from electricity generation in the US Great Lakes States, a region heavily dependent on coal-fired power plants. A proposed 600 MW power plant in northern Lower Michigan, USA provided context for our evaluation. Options to offset fossil CO 2 emissions by 20% included biomass fuel substitution from (1) forest residuals, (2) short-rotation woody crops, or (3) switchgrass; (4) biologic sequestration in forest plantations; and (5) geologic sequestration using CO 2 capture. Review of timber product output data, land cover data, and expected energy crop productivity on idle agriculture land within 120 km of the plant revealed that biomass from forestry residuals has the potential to offset 6% and from energy crops 27% of the annual fossil fuel requirement. Furthermore, annual forest harvest in the region is only 26% of growth and the surplus represents a large opportunity for forest products and bioenergy applications. We used Life Cycle Assessment (LCA) to compare mitigation options, using fossil energy demand and greenhouse gas emissions per unit electricity generation as criteria. LCA results revealed that co-firing with forestry residuals is the most attractive option and geologic sequestration is the least attractive option, based on the two criteria. Biologic sequestration is intermediate but likely infeasible because of very large land area requirements. Our study revealed that biomass feedstock potentials from land and forest resources are not limiting mitigation activities, but the most practical approach is likely a combination of options that optimize additional social, environmental and economic criteria.

  16. Greenhouse-gas emissions from soils increased by earthworms

    NARCIS (Netherlands)

    Lubbers, I.M.; Groenigen, van K.J.; Fonte, S.J.; Six, J.; Brussaard, L.; Groenigen, van J.W.

    2013-01-01

    Earthworms play an essential part in determining the greenhouse-gas balance of soils worldwide, and their influence is expected to grow over the next decades. They are thought to stimulate carbon sequestration in soil aggregates, but also to increase emissions of the main greenhouse gases carbon

  17. Selection of appropriate greenhouse gas mitigation options

    Energy Technology Data Exchange (ETDEWEB)

    Ramanathan, R. [Indira Ghandi Institute of Development Research, Mumbai (India)

    1999-10-01

    Greenhouse gas mitigation options help in reducing greenhouse gas emissions so as to avoid the adverse environmental impacts due to global warming/climate change. They have different characteristics when evaluated using different criteria. For example, some options may be very cost effective, while some may have an additional advantage of reducing local pollution. Hence, selection of these options, for consideration by a national government or by a funding agency, has to incorporate multiple criteria. In this paper, some important criteria relevant to the selection are discussed, and a multi-criteria methodology is suggested for making appropriate selection. The methodology, called the Analytic Hierarchy Process, is described using two illustrations. (author)

  18. Energy potential and greenhouse gas emissions from bioenergy cropping systems on marginally productive cropland.

    Directory of Open Access Journals (Sweden)

    Marty R Schmer

    Full Text Available Low-carbon biofuel sources are being developed and evaluated in the United States and Europe to partially offset petroleum transport fuels. Current and potential biofuel production systems were evaluated from a long-term continuous no-tillage corn (Zea mays L. and switchgrass (Panicum virgatum L. field trial under differing harvest strategies and nitrogen (N fertilizer intensities to determine overall environmental sustainability. Corn and switchgrass grown for bioenergy resulted in near-term net greenhouse gas (GHG reductions of -29 to -396 grams of CO2 equivalent emissions per megajoule of ethanol per year as a result of direct soil carbon sequestration and from the adoption of integrated biofuel conversion pathways. Management practices in switchgrass and corn resulted in large variation in petroleum offset potential. Switchgrass, using best management practices produced 3919±117 liters of ethanol per hectare and had 74±2.2 gigajoules of petroleum offsets per hectare which was similar to intensified corn systems (grain and 50% residue harvest under optimal N rates. Co-locating and integrating cellulosic biorefineries with existing dry mill corn grain ethanol facilities improved net energy yields (GJ ha-1 of corn grain ethanol by >70%. A multi-feedstock, landscape approach coupled with an integrated biorefinery would be a viable option to meet growing renewable transportation fuel demands while improving the energy efficiency of first generation biofuels.

  19. Energy Potential and Greenhouse Gas Emissions from Bioenergy Cropping Systems on Marginally Productive Cropland

    Science.gov (United States)

    Schmer, Marty R.; Vogel, Kenneth P.; Varvel, Gary E.; Follett, Ronald F.; Mitchell, Robert B.; Jin, Virginia L.

    2014-01-01

    Low-carbon biofuel sources are being developed and evaluated in the United States and Europe to partially offset petroleum transport fuels. Current and potential biofuel production systems were evaluated from a long-term continuous no-tillage corn (Zea mays L.) and switchgrass (Panicum virgatum L.) field trial under differing harvest strategies and nitrogen (N) fertilizer intensities to determine overall environmental sustainability. Corn and switchgrass grown for bioenergy resulted in near-term net greenhouse gas (GHG) reductions of −29 to −396 grams of CO2 equivalent emissions per megajoule of ethanol per year as a result of direct soil carbon sequestration and from the adoption of integrated biofuel conversion pathways. Management practices in switchgrass and corn resulted in large variation in petroleum offset potential. Switchgrass, using best management practices produced 3919±117 liters of ethanol per hectare and had 74±2.2 gigajoules of petroleum offsets per hectare which was similar to intensified corn systems (grain and 50% residue harvest under optimal N rates). Co-locating and integrating cellulosic biorefineries with existing dry mill corn grain ethanol facilities improved net energy yields (GJ ha−1) of corn grain ethanol by >70%. A multi-feedstock, landscape approach coupled with an integrated biorefinery would be a viable option to meet growing renewable transportation fuel demands while improving the energy efficiency of first generation biofuels. PMID:24594783

  20. Improving material management to reduce greenhouse gas emissions

    NARCIS (Netherlands)

    Hekkert, Marko Peter

    2000-01-01

    Climate change due to greenhouse gas emissions caused by human actions is probably one of the major global environmental problems that we face today. In order to reduce the risk of climate change and the potential effects thereof, the emission of greenhouse gases like carbon dioxide (CO2) and

  1. Methodology for reporting 2011 B.C. public sector greenhouse gas emissions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-12-15

    In order to reduce its greenhouse gas emissions, British Columbia promulgated legislation under which the public sector is expected to become carbon neutral starting in 2010 and provincial public sector organizations (PSOs) must report their emissions annually. The aim of this report is to present the emission factors and methodology for calculating and reporting PSO emissions used in 2011. Emission factors represent the amount of greenhouse gas emitted from a specific activity. This document provides emission factors for all in scope categories: stationary sources, indirect emissions, mobile sources and business travel; it also presents a sample calculation of greenhouse gas emissions. The government of British Columbia developed SMARTTool, a web-based program which calculates and reports emissions from stationary sources, indirect emissions and mobile sources. In addition the SMART Travel Emissions Calculator was created to report business travel greenhouse gas emissions through SMARTTool.

  2. UNEP greenhouse gas abatement costing studies

    Energy Technology Data Exchange (ETDEWEB)

    Shakespeare Maya, R. (Southern Centre for Energy and Environment (Zimbabwe)); Muguti, E. (Ministry of Transport and Energy. Department of Energy (Zimbabwe)); Fenhann, J.; Morthorst, P.E. (Risoe National Laboratory. Systems Analysis Department (Denmark))

    1992-08-01

    The UNEP (United Nations Environment Programme) programme of Greenhouse Gas Abatement Costing Studies is intended to clarify the economic issues involved in assessing the costs of limiting emissions of greenhouse gases and to propose approaches to comparable costing studies. Phase 1 of the Zimbabwe country study describes the current energy situation in Zimbabwe related to the national economy, energy supply and demand and amounts of greenhouse gas emissions. Factors regarding the geography, (including a map illustrating the degree and character of land degradation by erosion) population, politics, international relations, land-use and management of the energy sector are dealt with in detail and the text is illustrated with data compiled from the study. It is estimated that Zimbabwe consumed 270.4 Tj of energy during 1988 and emitted 21.7 tonnes of carbon dioxide. An emission intensity of 80.2 tonnes/Tj for the whole economy and 63.6 tonnes/Tj for electric power generation alone was calculated. Forecasting for the year 2020 estimated carbon dioxide emission intensities of 73.5 tonnes/Tj for the whole economy and 43.7 tonnes for power generation. Net carbon dioxide emissions are predicted to be 30-42 tonnes during 2020. (AB).

  3. UNEP greenhouse gas abatement costing studies

    International Nuclear Information System (INIS)

    Shakespeare Maya, R.; Muguti, E.; Fenhann, J.; Morthorst, P.E.

    1992-08-01

    The UNEP (United Nations Environment Programme) programme of Greenhouse Gas Abatement Costing Studies is intended to clarify the economic issues involved in assessing the costs of limiting emissions of greenhouse gases and to propose approaches to comparable costing studies. Phase 1 of the Zimbabwe country study describes the current energy situation in Zimbabwe related to the national economy, energy supply and demand and amounts of greenhouse gas emissions. Factors regarding the geography, (including a map illustrating the degree and character of land degradation by erosion) population, politics, international relations, land-use and management of the energy sector are dealt with in detail and the text is illustrated with data compiled from the study. It is estimated that Zimbabwe consumed 270.4 Tj of energy during 1988 and emitted 21.7 tonnes of carbon dioxide. An emission intensity of 80.2 tonnes/Tj for the whole economy and 63.6 tonnes/Tj for electric power generation alone was calculated. Forecasting for the year 2020 estimated carbon dioxide emission intensities of 73.5 tonnes/Tj for the whole economy and 43.7 tonnes for power generation. Net carbon dioxide emissions are predicted to be 30-42 tonnes during 2020. (AB)

  4. Potential for large-scale solar collector system to offset carbon-based heating in the Ontario greenhouse sector

    Science.gov (United States)

    Semple, Lucas M.; Carriveau, Rupp; Ting, David S.-K.

    2018-04-01

    In the Ontario greenhouse sector the misalignment of available solar radiation during the summer months and large heating demand during the winter months makes solar thermal collector systems an unviable option without some form of seasonal energy storage. Information obtained from Ontario greenhouse operators has shown that over 20% of annual natural gas usage occurs during the summer months for greenhouse pre-heating prior to sunrise. A transient model of the greenhouse microclimate and indoor conditioning systems is carried out using TRNSYS software and validated with actual natural gas usage data. A large-scale solar thermal collector system is then incorporated and found to reduce the annual heating energy demand by approximately 35%. The inclusion of the collector system correlates to a reduction of about 120 tonnes of CO2 equivalent emissions per acre of greenhouse per year. System payback period is discussed considering the benefits of a future Ontario carbon tax.

  5. The potential role for management of U.S. public lands in greenhouse gas mitigation and climate policy.

    Science.gov (United States)

    Olander, Lydia P; Cooley, David M; Galik, Christopher S

    2012-03-01

    Management of forests, rangelands, and wetlands on public lands, including the restoration of degraded lands, has the potential to increase carbon sequestration or reduce greenhouse gas (GHG) emissions beyond what is occurring today. In this paper we discuss several policy options for increasing GHG mitigation on public lands. These range from an extension of current policy by generating supplemental mitigation on public lands in an effort to meet national emissions reduction goals, to full participation in an offsets market by allowing GHG mitigation on public lands to be sold as offsets either by the overseeing agency or by private contractors. To help place these policy options in context, we briefly review the literature on GHG mitigation and public lands to examine the potential for enhanced mitigation on federal and state public lands in the United States. This potential will be tempered by consideration of the tradeoffs with other uses of public lands, the needs for climate change adaptation, and the effects on other ecosystem services.

  6. Greenhouse gas emissions in an agroforestry system in the southeastern USA

    Science.gov (United States)

    Agroforestry systems may provide diverse ecosystem services and economic benefits that conventional agriculture cannot, e.g. potentially mitigating greenhouse gas emissions by enhancing nutrient cycling, since tree roots can capture nutrients not taken up by crops. However, greenhouse gas emission ...

  7. National greenhouse gas accounts: Current anthropogenic sources and sinks

    International Nuclear Information System (INIS)

    Subak, S.; Raskin, P.; Hippel, David von

    1992-01-01

    This study provides spatially disaggregated estimates of greenhouse gas emissions from the major anthropogenic sources for 145 countries. The data compilation is comprehensive in approach, including emissions from CO, CH 4 , N 2 O and ten halocarbons, in addition to CO 2 . The sources include emissions from fossil fuel production and use, cement production, halocarbons, landfills, land use changes, biomass burning, rice and livestock production and fertilizer consumption. The approach used to derive these estimates corresponds closely with the simple methodologies proposed by the Greenhouse Gas Emissions Task Force of the Intergovernmental Panel on Climate Change. The inventory includes a new estimate of greenhouse gas emissions from fossil fuel combustion based principally on data from the International Energy Agency. The research methodologies for estimating emissions from all sources is briefly described and compared with other recent studies in the literature. (112 refs.)

  8. 75 FR 57275 - Information Collection; Supplier Greenhouse Gas Emissions Inventory Pilot

    Science.gov (United States)

    2010-09-20

    ...] Information Collection; Supplier Greenhouse Gas Emissions Inventory Pilot AGENCY: Federal Acquisition Service... Greenhouse Gas (GHG) Emissions Inventory pilot. Public comments are particularly invited on: Whether this... Inventory pilot, and whether it will have practical utility; whether our estimate of the public burden of...

  9. Greenhouse gas emissions from the production and use of alternative transport fuels

    International Nuclear Information System (INIS)

    Le Cornu, J.K.

    1990-01-01

    A number of the commonly proposed alternative transport fuels were ranked according to both the cumulative greenhouse gas emissions and the production costs incurred between the recovery of the prime resource and the fuel's end use by the Australian transport fleet. An examination of the emissions of each greenhouse gas at each production stage confirmed the common presumption that the low levels of secondary greenhouse gas emissions involved contribute little to the overall greenhouse impact of a fuel's production and use. From a greenhouse point of view the transport fuels studied could be reasonable well ranked by considering their carbon dioxide emissions alone. A possible exception may apply in the case of the compressed natural gas option, which may need to separate consideration of the effect of fugitive emissions of methane from gas distribution systems. An assumption involved in reaching this result was that nitrous oxide emissions, on which there was inadequate hard data, would not form more than 1% of the total nitrogen oxide emissions. At such an emission level it could contribute up to 5% of a fuel's total greenhouse impact. It is concluded that apart from some small niche opportunities, there is no Australian alternative transport fuel option whose production cost and greenhouse impact makes it one which policy should favour over other fuels. It is stressed that this is no more than a preliminary scouting study of generic options, which addresses only greenhouse issues. 17 refs., 1 tab., 8 figs

  10. The life cycle greenhouse gas implications of a UK gas supply transformation on a future low carbon electricity sector

    International Nuclear Information System (INIS)

    Hammond, Geoffrey P.; O'Grady, Áine

    2017-01-01

    Natural gas used for power generation will be increasingly sourced from more geographically diverse sites, and unconventional sources such as shale and biomethane, as natural gas reserves diminish. A consequential life cycle approach was employed to examine the implications of an evolving gas supply on the greenhouse gas (GHG) performance of a future United Kingdom (UK) electricity system. Three gas supply mixes were developed based on supply trends, from present day to the year 2050. The contribution of upstream gas emissions - such as extraction, processing/refining, - is not fully reported or covered by UK government legislation. However, upstream gas emissions were seen to be very influential on the future electricity systems analysed; with upstream gas emissions per MJ rising between 2.7 and 3.4 times those of the current supply. Increased biomethane in the gas supply led to a substantial reduction in direct fossil emissions, which was found to be critical in offsetting rising upstream emissions. Accordingly, the modelled high shale gas scenario, with the lowest biomethane adoption; resulted in the highest GHG emissions on a life cycle basis. The long-term dynamics of upstream processes are explored in this work to help guide future decarbonisation policies. - Highlights: • United Kingdom is set to undergo a large gas supply transformation. • Three potential gas mix scenarios were developed based on supply trends. • A consequential life cycle approach was taken to examine the evolving gas supply. • Upstream emissions were seen to rise substantially for all gas supply scenarios. • High shale gas mix resulted in greatest emissions due to low influx of biomethane.

  11. Carbon Offsets in California: What Role for Earth Scientists in the Policy Process? (Invited)

    Science.gov (United States)

    Cullenward, D.; Strong, A. L.

    2013-12-01

    This talk addresses the policy structure in California for developing and approving carbon offset protocols, which rely on findings from the environmental and earth sciences communities. In addition to providing an overview of the legal requirements of carbon offsets, we describe a series of case studies of how scientists can engage with policymakers. Based on those experiences, we suggest ways for the earth sciences community to become more involved in climate policy development. California's climate law, known as AB 32, requires that major sectors of the state's economy reduce their emissions to 1990 levels by 2020. As part of AB 32, the California Air Resources Board created a cap-and-trade market to ensure compliance with the statutory target. Under this system, regulated companies have to acquire tradable emissions permits (called 'compliance instruments') for the greenhouse gas emissions they release. The State allocates a certain number of allowances to regulated entities through a mixture of auctions and free transfers, with the total number equal to the overall emissions target; these allowances, along with approved offsets credits, are the compliance instruments that regulated entities are required to obtain by law. One of the key policy design issues in California's cap-and-trade market concerns the use of carbon offsets. Under AB 32, the Air Resources Board can issue offset credits to project developers who reduce emissions outside of the capped sectors (electricity, industry, and transportation)--or even outside of California--pursuant to approved offset protocols. Project developers then sell the credits to regulated companies in California. Essentially, offsets allow regulated entities in California to earn credit for emissions reductions that take place outside the scope of AB 32. Many regulated entities and economists are in favor of offsets because they view them as a source of low-cost compliance instruments. On the other hand, critics argue that

  12. 77 FR 10373 - Greenhouse Gas Reporting Program: Electronics Manufacturing: Revisions to Heat Transfer Fluid...

    Science.gov (United States)

    2012-02-22

    ... Greenhouse Gas Reporting Program: Electronics Manufacturing: Revisions to Heat Transfer Fluid Provisions... technical revisions to the electronics manufacturing source category of the Greenhouse Gas Reporting Rule... final rule will also be available through the WWW on the EPA's Greenhouse Gas Reporting Program Web site...

  13. Quantification and Controls of Wetland Greenhouse Gas Emissions

    Energy Technology Data Exchange (ETDEWEB)

    McNicol, Gavin [Univ. of California, Berkeley, CA (United States)

    2016-05-10

    Wetlands cover only a small fraction of the Earth’s land surface, but have a disproportionately large influence on global climate. Low oxygen conditions in wetland soils slows down decomposition, leading to net carbon dioxide sequestration over long timescales, while also favoring the production of redox sensitive gases such as nitrous oxide and methane. Freshwater marshes in particular sustain large exchanges of greenhouse gases under temperate or tropical climates and favorable nutrient regimes, yet have rarely been studied, leading to poor constraints on the magnitude of marsh gas sources, and the biogeochemical drivers of flux variability. The Sacramento-San Joaquin Delta in California was once a great expanse of tidal and freshwater marshes but underwent drainage for agriculture during the last two centuries. The resulting landscape is unsustainable with extreme rates of land subsidence and oxidation of peat soils lowering the surface elevation of much of the Delta below sea level. Wetland restoration has been proposed as a means to slow further subsidence and rebuild peat however the balance of greenhouse gas exchange in these novel ecosystems is still poorly described. In this dissertation I first explore oxygen availability as a control on the composition and magnitude of greenhouse gas emissions from drained wetland soils. In two separate experiments I quantify both the temporal dynamics of greenhouse gas emission and the kinetic sensitivity of gas production to a wide range of oxygen concentrations. This work demonstrated the very high sensitivity of carbon dioxide, methane, and nitrous oxide production to oxygen availability, in carbon rich wetland soils. I also found the temporal dynamics of gas production to follow a sequence predicted by thermodynamics and observed spatially in other soil or sediment systems. In the latter part of my dissertation I conduct two field studies to quantify greenhouse gas exchange and understand the carbon sources for

  14. Urban form and greenhouse gas emissions in Finland

    International Nuclear Information System (INIS)

    Harmaajaervi, Irmeli

    2003-01-01

    Finland's regional form is becoming more concentrated, while urban sprawl is causing growth centres to become fragmented. The effects caused by these changes on greenhouse gas emissions were studied up to the year 2010, when, in accordance with the Kyoto protocol, Finland's greenhouse gas emissions should be reduced to the 1990 level. The urban form affects especially transportation inside regions, the potential to utilise district heating and the need for infrastructure. By preventing urban sprawl and by encouraging teleworking and some lifestyle changes, it would be possible to reduce annual transportation emissions by the year 2010 by 1.1 million tonnes CO 2 eq., i.e. 27%, the emissions from residential and service buildings by 1.1 million tonnes CO 2 eq., i.e. 5%, and the emissions from municipal infrastructure by 0.1 million tonnes CO 2 eq., i.e. 6%. Altogether, it is possible to reduce the greenhouse gas emissions by 2.3 million tonnes, which amounts to 15% of Finland's target for emissions reductions in 2010. If the target-oriented scenario is realised, the subsequent decrease of emissions would accelerate. To stop urban sprawl, measures are required in planning, land use and housing policy as well as in transportation and tax policies. Additionally, more needs to be done in regard to co-operation, interaction and information dissemination. This paper introduces a report which estimates, for the first time, the effects caused by changes in the regional and urban forms on the levels of greenhouse gas emissions in Finland

  15. Greenhouse gas mitigation with scarce land

    DEFF Research Database (Denmark)

    Meyer-Aurich, A; Olesen, Jørgen E; Prochnow, A

    2013-01-01

    Agricultural lands have been identified to mitigate greenhouse gas (GHG) emissions primarily by production of energy crops and substituting fossil energy resources and through carbon sequestration in soils. Increased fertilizer input resulting in increased yields may reduce the area needed for crop...

  16. A "Greenhouse Gas" Experiment for the Undergraduate Laboratory

    Science.gov (United States)

    Gomez, Elaine; Paul, Melissa; Como, Charles; Barat, Robert

    2014-01-01

    This experiment and analysis offer an effective experience in greenhouse gas reduction. Ammoniated water is flowed counter-current to a simulated flue gas of air and CO2 in a packed column. The gaseous CO2 concentrations are measured with an on-line, non- dispersive, infrared analyzer. Column operating parameters include total gas flux, dissolved…

  17. Greenhouse gas emission reduction options and strategies

    International Nuclear Information System (INIS)

    Kane, R.L.

    1994-01-01

    This paper describes the energy-related components of the Clinton Administration's Climate Change Action Plan. The Action Plan was formulated to meet the Administration's commitment of returning US emissions of greenhouse gases to 1990 levels by the year 2000. The paper discusses what the energy industry and energy consumers will be requested to do in order to meet this commitment. Several themes addressed in this paper include: (1) the largely voluntary nature of the actions identified in the Action Plan; (2) consideration of diverse opportunities to reduce emissions; (3) the outlook for US greenhouse gas emissions after 2000; and (4) actions involved for speeding the utilization of new, energy efficient technologies both domestically and abroad. The value of employing a diverse set of activities and the important role of technology improvements will be explored further in section 10 of this volume: ''Greenhouse Gas Emission Mitigation Strategies.'' Papers presented there include the utilization of more efficient fossil energy technologies, energy conservation and demand-side management programs, renewable energy and reforestation, and carbon dioxide capture and disposal

  18. Greenhouse-gas emissions from biomass energy use: Comparison with other energy technologies

    International Nuclear Information System (INIS)

    Morris, G.P.; Norman, N.A.; Gleick, P.H.

    1991-01-01

    Recently a major new concern has arisen: the accumulation of greenhouse gases in the atmosphere. It is now generally believed that continued emissions of these gases are current or increasing levels will lead to significant climatic changes with the potential for dramatic, adverse impacts. Since the major anthropogenic source of greenhouse gas emissions is energy production and use, it is essential to future energy policy to understand how energy sources differ with respect to greenhouse gas emissions. Characterizing the greenhouse gas emissions associated with biomass energy use is extremely complicated. It is necessary to consider both the source and alternative use of the biomass material and its alternative disposal (if any), as well as the biomass energy application itself. It is desirable also to consider not just CO 2 emissions, but also CH 4 and N 2 O, both potent greenhouse gases. The authors' analysis shows that in many cases biomass energy use can actually help to ameliorate the greenhouse effect by converting emissions that would have been CH 4 into the less potent greenhouse gas CO 2 . In many cases the beneficial effect is very dramatic. This major new research result should help increase public support for biomass research and development, and for further development of waste conversion technology and installations

  19. Canada's nuclear industry, greenhouse gas emissions, and the Kyoto Protocol

    International Nuclear Information System (INIS)

    Pendergast, D.R.; Duffey, R.B.; Tregunno, D.

    1998-01-01

    The Kyoto Protocol of the United Nations Framework Convention on Climate change, dated December 10, 1997 committed Canada to reduce greenhouse gases to 6% below 1990 levels by 2008-2012. Other nations also committed to varying degrees of reduction. The Protocol includes provisions for credit to the 'developed' counties for initiatives which lead to greenhouse gas reduction in the 'developing' countries and for the sharing of credit between 'developed' countries for projects undertaken jointly. The rules and details for implementation of these guidelines remain to be negotiated. We begin our study by establishing the magnitude of greenhouse gas emissions already avoided by the nuclear industry in Canada since the inception of commercial power plants in 1971. We then review projections of energy use in Canada and anticipated increase in electricity use up to the year 2020. These studies have anticipated no (or have 'not permitted') further development of nuclear electricity production in spite of the clear benefit with respect to greenhouse gas emission. The studies also predict a relatively small growth of electricity use. In fact the projections indicate a reversal of a trend toward increased per capita electricity use which is contrary to observations of electricity usage in national economies as they develop. We then provide estimates of the magnitude of greenhouse gas reduction which would result from replacing the projected increase in fossil fuel electricity by nuclear generation through the building of more plants and/or making better use of existing installations. This is followed by an estimate of additional nuclear capacity needed to avoid CO 2 emissions while providing the electricity needed should per capita usage remain constant. Canada's greenhouse gas reduction goal is a small fraction of international commitments. The Kyoto agreement's 'flexibility mechanism' provisions provide some expectation that Canada could obtain some credit for greenhouse gas

  20. Greenhouse gas emissions, energy consumption and economic growth: A panel cointegration analysis from Canadian industrial sector perspective

    International Nuclear Information System (INIS)

    Hamit-Haggar, Mahamat

    2012-01-01

    This paper investigates the long-run and the causal relationship between greenhouse gas emissions, energy consumption and economic growth for Canadian industrial sectors over the period 1990–2007. The empirical findings suggest that in the long-run equilibrium, energy consumption has a positive and statistically significant impact on greenhouse gas emissions whereas a non-linear relationship is found between greenhouse gas emissions and economic growth, consistent with the environmental Kuznets curve. The short-run dynamics conveys that there is a unidirectional Granger causality running from energy consumption to greenhouse gas emissions; from economic growth to greenhouse gas emissions and a weak unidirectional causality running from greenhouse gas emissions to energy consumption; from economic growth to energy consumption. In the long-run however, there seems to be a weak one way causality flowing from energy consumption and economic growth to greenhouse gas emissions. - Highlights: ► A long-run and a causal relationship between greenhouse gas emissions, energy consumption and economic growth is investigated. ► Energy consumption has a positive impact on greenhouse gas emissions in the long run. ► Unidirectional causality runs from energy consumption and economic growth to greenhouse gas emissions. ► A weak unidirectional causality runs from greenhouse gas emissions and economic growth to energy consumption.

  1. An assessment of the torrefaction of North American pine and life cycle greenhouse gas emissions

    International Nuclear Information System (INIS)

    McNamee, P.; Adams, P.W.R.; McManus, M.C.; Dooley, B.; Darvell, L.I.; Williams, A.; Jones, J.M.

    2016-01-01

    Highlights: • Torrefaction of North American pine improves fuel properties. • Comparative LCA is presented of wood pellet and torrefied wood pellet supply. • Torrefied pellets offer energy and greenhouse gas savings but increase land use. • Torgas use is crucial for emission savings to offset fossil fuel use as utility fuel. • Shipping contributes largest emissions and long distance favours torrefied pellets. - Abstract: Bioenergy is increasingly being used to meet EU objectives for renewable energy generation and reducing greenhouse gas (GHG) emissions. Problems with using biomass however include high moisture contents, lower calorific value and poor grindability when compared to fossil fuels. Torrefaction is a pre-treatment process that aims to address these issues. In this paper four torrefaction treatments of pine were performed and a mass–energy balance calculated. Using experimental data, a pellet production supply chain incorporating torrefaction was modelled and compared to an existing wood pellet system to determine life-cycle GHG emissions. Two utility fuels, wood chips and natural gas, were considered to provide process heat in addition to volatile gases released during torrefaction (torgas). Experimental results show that torrefaction reduces the moisture content and increases the calorific value of the fuels. Increasing torrefaction temperature and residence time results in lower mass and energy yields. GHG emissions reduce with increasing torrefaction severity. Emissions from drying & torrefaction and shipping are the highest GHG contributors to the supply chain. All 4 torrefaction conditions assessed outperformed traditional wood pellet supply chain emissions but more land is required which increases with temperature and residence time. Sensitivity analysis results show that emissions increase significantly where natural gas is used for utility fuel and no torgas is utilised.

  2. Are greenhouse gas emissions from international shipping a type of marine pollution?

    Science.gov (United States)

    Shi, Yubing

    2016-12-15

    Whether greenhouse gas emissions from international shipping are a type of marine pollution is a controversial issue and is currently open to debate. This article examines the current treaty definitions of marine pollution, and applies them to greenhouse gas emissions from ships. Based on the legal analysis of treaty definitions and relevant international and national regulation on this issue, this article asserts that greenhouse gas emissions from international shipping are a type of 'conditional' marine pollution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Modeling of municipal greenhouse gas emissions. Calculation of greenhouse gas emissions and the reduction possibilities of Dutch municipalities

    NARCIS (Netherlands)

    Vries de, Willem

    2011-01-01

    Summary Municipalities represent an active governmental layer in the Netherlands. They often have ambitions to reduce greenhouse gas emissions. In this way the municipalities take responsibility to reduce the threat of global warming. To implement effect

  4. Full energy chain analysis of greenhouse gas emissions from different energy sources

    International Nuclear Information System (INIS)

    Vate, J.F. van de

    1996-01-01

    The field of work of the Advisory Group Meeting/Workshop, i.e. full-energy chain emissions of greenhouse gases, is defined, and its environment, i.e. the Earth Summit -the 1992 UN Conference on Environment and Development in Rio-, is discussed. It is inferred that countries that ratified the Earth Summit's Convention on Climate Change have committed themselves to lower the greenhouse gas emissions from their energy use, and that this can be done most effectively by accounting in energy planning for the full-energy chain emissions of all greenhouse gases. The scatter in literature values of greenhouse gas emission factors of the full energy chain of individual energy sources is discussed. The scatter among others is due to different analytical methods, data bases and system boundaries, and due to neglect of the non-CO 2 greenhouse gases and professional biases. Generic values for greenhouse gas emission factors of energy and materials use are proposed. (author). 10 refs, 2 tabs

  5. REDUCING GREENHOUSE GAS EMISSIONS AND THE INFLUENCES ON ECONOMIC DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    ANGHELUȚĂ PETRICĂ SORIN

    2016-06-01

    Full Text Available In the recent years, there has been observed a degradation of the environment. This has negative effects on human activities. Besides the influence of the environment on people, also the economic crisis had a negative contribution. The imbalances manifested in the environment influence the economic systems. This article presents an analysis of the greenhouse gas emissions. Also, there is a link between the greenhouse gas emissions and the economic development. In the situation in which the environmental pollution is increasingly affecting humanity, the transition to an economy with reduced greenhouse gas emissions appears to be a viable solution. This transition provides a number of opportunities, as well. Therefore, one of these opportunities is the one related to the employment. In this regard, retraining people working in polluting industries is very important

  6. Lifecycle greenhouse gas implications of US national scenarios for cellulosic ethanol production

    Science.gov (United States)

    Scown, Corinne D.; Nazaroff, William W.; Mishra, Umakant; Strogen, Bret; Lobscheid, Agnes B.; Masanet, Eric; Santero, Nicholas J.; Horvath, Arpad; McKone, Thomas E.

    2012-03-01

    The Energy Independence and Security Act of 2007 set an annual US national production goal of 39.7 billion l of cellulosic ethanol by 2020. This paper explores the possibility of meeting that target by growing and processing Miscanthus × giganteus. We define and assess six production scenarios in which active cropland and/or Conservation Reserve Program land are used to grow to Miscanthus. The crop and biorefinery locations are chosen with consideration of economic, land-use, water management and greenhouse gas (GHG) emissions reduction objectives. Using lifecycle assessment, the net GHG footprint of each scenario is evaluated, providing insight into the climate costs and benefits associated with each scenario’s objectives. Assuming that indirect land-use change is successfully minimized or mitigated, the results suggest two major drivers for overall GHG impact of cellulosic ethanol from Miscanthus: (a) net soil carbon sequestration or emissions during Miscanthus cultivation and (b) GHG offset credits for electricity exported by biorefineries to the grid. Without these factors, the GHG intensity of bioethanol from Miscanthus is calculated to be 11-13 g CO2-equivalent per MJ of fuel, which is 80-90% lower than gasoline. Including soil carbon sequestration and the power-offset credit results in net GHG sequestration up to 26 g CO2-equivalent per MJ of fuel.

  7. Lifecycle greenhouse gas implications of US national scenarios for cellulosic ethanol production

    International Nuclear Information System (INIS)

    Scown, Corinne D; Nazaroff, William W; Strogen, Bret; Santero, Nicholas J; Horvath, Arpad; Mishra, Umakant; Lobscheid, Agnes B; Masanet, Eric; McKone, Thomas E

    2012-01-01

    The Energy Independence and Security Act of 2007 set an annual US national production goal of 39.7 billion l of cellulosic ethanol by 2020. This paper explores the possibility of meeting that target by growing and processing Miscanthus × giganteus. We define and assess six production scenarios in which active cropland and/or Conservation Reserve Program land are used to grow to Miscanthus. The crop and biorefinery locations are chosen with consideration of economic, land-use, water management and greenhouse gas (GHG) emissions reduction objectives. Using lifecycle assessment, the net GHG footprint of each scenario is evaluated, providing insight into the climate costs and benefits associated with each scenario’s objectives. Assuming that indirect land-use change is successfully minimized or mitigated, the results suggest two major drivers for overall GHG impact of cellulosic ethanol from Miscanthus: (a) net soil carbon sequestration or emissions during Miscanthus cultivation and (b) GHG offset credits for electricity exported by biorefineries to the grid. Without these factors, the GHG intensity of bioethanol from Miscanthus is calculated to be 11–13 g CO 2 -equivalent per MJ of fuel, which is 80–90% lower than gasoline. Including soil carbon sequestration and the power-offset credit results in net GHG sequestration up to 26 g CO 2 -equivalent per MJ of fuel. (letter)

  8. Accounting for Greenhouse Gas Emissions from Reservoirs ...

    Science.gov (United States)

    Nearly three decades of research has demonstrated that the impoundment of rivers and the flooding of terrestrial ecosystems behind dams can increase rates of greenhouse gas emission, particularly methane. The 2006 IPCC Guidelines for National Greenhouse Gas Inventories includes a methodology for estimating methane emissions from flooded lands, but the methodology was published as an appendix to be used as a ‘basis for future methodological development’ due to a lack of data. Since the 2006 Guidelines were published there has been a 6-fold increase in the number of peer reviewed papers published on the topic including reports from reservoirs in India, China, Africa, and Russia. Furthermore, several countries, including Iceland, Switzerland, and Finland, have developed country specific methodologies for including flooded lands methane emissions in their National Greenhouse Gas Inventories. This presentation will include a review of the literature on flooded land methane emissions and approaches that have been used to upscale emissions for national inventories. We will also present ongoing research in the United States to develop a country specific methodology. In the U.S., research approaches include: 1) an effort to develop predictive relationships between methane emissions and reservoir characteristics that are available in national databases, such as reservoir size and drainage area, and 2) a national-scale probabilistic survey of reservoir methane em

  9. Accounting For Greenhouse Gas Emissions From Flooded ...

    Science.gov (United States)

    Nearly three decades of research has demonstrated that the inundation of rivers and terrestrial ecosystems behind dams can lead to enhanced rates of greenhouse gas emissions, particularly methane. The 2006 IPCC Guidelines for National Greenhouse Gas Inventories includes a methodology for estimating methane emissions from flooded lands, but the methodology was published as an appendix to be used a ‘basis for future methodological development’ due to a lack of data. Since the 2006 Guidelines were published there has been a 6-fold increase in the number of peer reviewed papers published on the topic including reports from reservoirs in India, China, Africa, and Russia. Furthermore, several countries, including Iceland, Switzerland, and Finland, have developed country specific methodologies for including flooded lands methane emissions in their National Greenhouse Gas Inventories. This presentation will include a review of the literature on flooded land methane emissions and approaches that have been used to upscale emissions for national inventories. We will also present ongoing research in the United States to develop a country specific methodology. The research approaches include 1) an effort to develop predictive relationships between methane emissions and reservoir characteristics that are available in national databases, such as reservoir size and drainage area, and 2) a national-scale probabilistic survey of reservoir methane emissions. To inform th

  10. Accouting for Greenhouse Gas Emissions from Reservoirs

    Science.gov (United States)

    Beaulieu, J. J.; Deemer, B. R.; Harrison, J. A.; Nietch, C. T.; Waldo, S.

    2016-12-01

    Nearly three decades of research has demonstrated that the impoundment of rivers and the flooding of terrestrial ecosystems behind dams can increase rates of greenhouse gas emission, particularly methane. The 2006 IPCC Guidelines for National Greenhouse Gas Inventories includes a methodology for estimating methane emissions from flooded lands, but the methodology was published as an appendix to be used as a `basis for future methodological development' due to a lack of data. Since the 2006 Guidelines were published there has been a 6-fold increase in the number of peer reviewed papers published on the topic including reports from reservoirs in India, China, Africa, and Russia. Furthermore, several countries, including Iceland, Switzerland, and Finland, have developed country specific methodologies for including flooded lands methane emissions in their National Greenhouse Gas Inventories. This presentation will include a review of the literature on flooded land methane emissions and approaches that have been used to upscale emissions for national inventories. We will also present ongoing research in the United States to develop a country specific methodology. In the U.S., research approaches include: 1) an effort to develop predictive relationships between methane emissions and reservoir characteristics that are available in national databases, such as reservoir size and drainage area, and 2) a national-scale probabilistic survey of reservoir methane emissions linked to the National Lakes Assessment.

  11. Are greenhouse gas emissions from international shipping a type of marine pollution?

    International Nuclear Information System (INIS)

    Shi, Yubing

    2016-01-01

    Whether greenhouse gas emissions from international shipping are a type of marine pollution is a controversial issue and is currently open to debate. This article examines the current treaty definitions of marine pollution, and applies them to greenhouse gas emissions from ships. Based on the legal analysis of treaty definitions and relevant international and national regulation on this issue, this article asserts that greenhouse gas emissions from international shipping are a type of ‘conditional’ marine pollution. - Highlights: • Greenhouse gas (GHG) emissions from international shipping are a type of ‘conditional’ marine pollution. • Shipping CO 2 may be treated as marine pollution under the 1972 London Dumping Convention. • Countries have adopted different legislation concerning the legal nature of GHG emissions from ships. • Regulating CO 2 emissions from ships as marine pollution may expedite global GHG emissions reduction.

  12. Greenhouse gas emissions from a created brackish marsh in eastern North Carolina

    Science.gov (United States)

    Shiau, Yo-Jin; Burchell, Michael R.; Krauss, Ken W.; Birgand, François; Broome, Stephen W.

    2016-01-01

    Tidal marsh creation helps remediate global warming because tidal wetlands are especially proficient at sequestering carbon (C) in soils. However, greenhouse gas (GHG) losses can offset the climatic benefits gained from C storage depending on how these tidal marshes are constructed and managed. This study attempts to determine the GHG emissions from a 4–6 year old created brackish marsh, what environmental factors governed these emissions, and how the magnitude of the fluxes relates to other wetland ecosystems. The static flux chamber method was used to measure GHG fluxes across three distinct plant zones segregated by elevation. The major of soil GHG fluxes from the marsh were from CO2 (−48–192 mg C m-2 h-1), although it was near the lower end of values reported from other wetland types having lower salinities, and would mostly be offset by photosynthetic uptake in this created brackish marsh. Methane flux was also low (−0.33–0.86 mg C m-2 h-1), likely inhibited by the high soil SO42−and soil redox potentials poised above −150 mV in this in this created brackish marsh environment. Low N2O flux (−0.11–0.10 mg N m-2 h-1) was due to low soil NO3− and soil redox conditions favoring complete denitrification. GHG fluxes from this created brackish marsh were generally lower than those recorded from natural marshes, suggesting that C sequestration may not be offset by the radiative forcing from soil GHG emissions if projects are designed properly.

  13. Public health benefits of strategies to reduce greenhouse-gas emissions: low-carbon electricity generation.

    Science.gov (United States)

    Markandya, Anil; Armstrong, Ben G; Hales, Simon; Chiabai, Aline; Criqui, Patrick; Mima, Silvana; Tonne, Cathryn; Wilkinson, Paul

    2009-12-12

    In this report, the third in this Series on health and climate change, we assess the changes in particle air pollution emissions and consequent effects on health that are likely to result from greenhouse-gas mitigation measures in the electricity generation sector in the European Union (EU), China, and India. We model the effect in 2030 of policies that aim to reduce total carbon dioxide (CO(2)) emissions by 50% by 2050 globally compared with the effect of emissions in 1990. We use three models: the POLES model, which identifies the distribution of production modes that give the desired CO(2) reductions and associated costs; the GAINS model, which estimates fine particulate matter with aerodynamic diameter 2.5 microm or less (PM(2.5)) concentrations; and a model to estimate the effect of PM(2.5) on mortality on the basis of the WHO's Comparative Risk Assessment methods. Changes in modes of production of electricity to reduce CO(2) emissions would, in all regions, reduce PM(2.5) and deaths caused by it, with the greatest effect in India and the smallest in the EU. Health benefits greatly offset costs of greenhouse-gas mitigation, especially in India where pollution is high and costs of mitigation are low. Our estimates are approximations but suggest clear health gains (co-benefits) through decarbonising electricity production, and provide additional information about the extent of such gains.

  14. Improving the Greenlandic Greenhouse Gas Inventory

    DEFF Research Database (Denmark)

    Nielsen, Ole-Kenneth; Baunbæk, Lene; Gyldenkærne, Steen

    The project to improve the Greenlandic greenhouse gas (GHG) inventory was undertaken due to the recommendations made by the UNFCCC review team in connection with the 2008 and 2009 submissions by the Kingdom of Denmark. The improvements made to the Greenlandic GHG emission inventory were substantial...

  15. 75 FR 63823 - Final Guidance, “Federal Greenhouse Gas Accounting and Reporting”

    Science.gov (United States)

    2010-10-18

    ... COUNCIL ON ENVIRONMENTAL QUALITY Final Guidance, ``Federal Greenhouse Gas Accounting and Reporting...''), entitled ``Federal Leadership in Environmental, Energy, and Economic Performance.'' 74 FR 52117, Oct. 8... emissions associated with agency operations. This Final Guidance, ``Federal Greenhouse Gas Accounting and...

  16. CANDU reactors and greenhouse gas emissions

    International Nuclear Information System (INIS)

    Andseta, S.; Thompson, M.J.; Jarrell, J.P.; Pendergast, D.R.

    1999-01-01

    This paper was originally presented at the 11th Pacific Basin Nuclear Conference, Banff, Alberta, Canada, May 3-7, 1998. It has been updated to include additional lifecycle data on chemical releases from ore treatment and CANDU fuel fabrication. It is sometimes stated that nuclear power plants can supply electricity with zero emissions of greenhouse gases. In fact, consideration of the entire fuel cycle indicates that some greenhouse gases are generated during their construction and decommissioning and by the preparation of fuel and other materials required for their operation. This follows from the use of fossil fuels in the preparation of materials and during the construction and decommissioning of the plants. This paper reviews life cycle studies of several different kinds of power plants. Greenhouse gases generated by fossil fuels during the preparation of fuel and heavy water used by operating CANDU power plants are estimated. The total greenhouse gas emissions from CANDU nuclear plants, per unit of electricity ultimately produced, are very small in comparison with emissions from most other types of power plants. (author)

  17. CANDU reactors and greenhouse gas emissions

    International Nuclear Information System (INIS)

    Andseta, S.; Thompson, M.J.; Jarrell, J.P.; Pendergast, D.R.

    1998-01-01

    This paper was originally presented at the 11th Pacific Basin Nuclear Conference, Banff, Alberta, Canada, May 3-7, 1998. It has been updated to include additional lifecycle data on chemical releases from ore treatment and CANDU fuel fabrication. It is sometimes stated that nuclear power plants can supply electricity with zero emissions of greenhouse gases. In fact, consideration of the entire fuel cycle indicates that some greenhouse gases are generated during their construction and decommissioning and by the preparation of fuel and other materials required for their operation. This follows from the use of fossil fuels in the preparation of materials and during the construction and decommissioning of the plants. This paper reviews life cycle studies of several different kinds of power plants. Greenhouse gases generated by fossil fuels during the preparation of fuel and heavy water used by operating CANDU power plants are estimated. The total greenhouse gas emissions from CANDU nuclear plants, per unit of electricity ultimately produced, are very small in comparison with emissions from most other types of power plants. (author)

  18. Quality manual for the Danish greenhouse gas inventory

    DEFF Research Database (Denmark)

    Nielsen, Ole-Kenneth; Plejdrup, Marlene Schmidt; Winther, Morten

    The report outlines the quality work undertaken by the emission inventory group at the Department of Environmental Science, Aarhus University in connection with the preparation and reporting of the Danish greenhouse gas inventory. The report updates and expands on the first version of the quality...... manual published in 2005. The report fulfils the mandatory requirements for a quality assurance/quality control (QA/QC) plan as lined out in the UNFCCC reporting guidelines and the specifications related to reporting under the Kyoto Protocol. The report describes all elements of the internal QC...... procedures as well as the QA and verification activities carried out in connection with the Danish greenhouse gas inventory....

  19. 75 FR 41452 - Draft Guidance, “Federal Greenhouse Gas Accounting and Reporting”

    Science.gov (United States)

    2010-07-16

    ... COUNCIL ON ENVIRONMENTAL QUALITY Draft Guidance, ``Federal Greenhouse Gas Accounting and Reporting... Greenhouse Gas Accounting and Reporting.'' SUMMARY: On October 5, 2009, President Obama signed Executive Order (E.O.) 13514--Federal Leadership in Environmental, Energy, and Economic Performance (74 FR 52117...

  20. Greenhouse Gas Emissions Trading for the Transport Sector

    International Nuclear Information System (INIS)

    Holmgren, Kristina; Belhaj, Mohammed; Gode, Jenny; Saernholm, Erik; Zetterberg, Lars; Aahman, Markus

    2006-12-01

    In this study we have analysed different options to apply emissions trading for greenhouse gas emissions to the transport sector. The main focus has been on the EU transport sector and the possibility to include it in the current EU ETS in the trading period beginning in 2013. The purpose was to study how different alternatives will affect different actors. Focus has been on three sub-sectors; road transport, aviation and shipping. The railway sector has only been treated on a general level. The study includes the following three parts: 1. An economic analysis of the consequences of greenhouse gas emissions trading for the transport sector including an analysis of how the total cost for reaching an emission target will be affected by an integrated emissions trading system for the transport sector and the industry (currently included sectors) compared to separate systems for the sectors, 2. An analysis of design possibilities for the different sub-sectors. Discussion of positive and negative aspects with different choices of design parameters, such as trading entity, covered greenhouse gases, allocation of emission allowances and monitoring systems, 3. Examination of the acceptance among different actors for different options of using greenhouse gas emissions trading in the transport sector. When setting up an emissions trading scheme there are a number of design parameters that have to be analysed in order to find an appropriate system, with limited administrative and transaction costs and as small distortions as possible to competitiveness

  1. Risk Assessment from Radon Gas in the Greenhouses

    International Nuclear Information System (INIS)

    Fahmi, N.M.; El-Khatib, A.M.; Abd El-Zaher, M

    2009-01-01

    Radon is a naturally occurring radioactive gas found in varying amounts in all soils. Therefore, it is very important to study radon emanation from different soils in different circumstances; especially, in green houses which widely used to propagate and cultivate of plants. In greenhouses radon comes from either soil or the substances which make suitable flooring in the greenhouse. Radon and its progeny are accumulated in the air and on the plants themselves, which causes hazard for workers and customers in a later stage. Radon gas is measured in two kinds of greenhouses, one of them is constructed from plastic sheet and the other from glass (Agriculture Research Center - Horticulture Research Institute) using CR-39 NTDs as a passive technique. It based on the production of track in the detector due to alpha-particles emitted from radon and its progeny. The observed track densities are then converted to annual radon dose to be 12.36 mSv and 8.3 mSv for the plastic and glass greenhouses under investigation, respectively. It is also found that the workers have been subject to regulatory control

  2. Cap and trade offsets regulation - consultation paper

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Due to increasing concerns about the environment, British Columbia has committed to reducing its 2007 greenhouse gas emissions levels by 33% in 2020 and 80% in 2050. To reach those objectives, emissions trading and offset regulations are being developed by the Climate Action Secretariat. The aim of this document is to present a first draft of the regulations to the various stakeholders, including First Nations and the general public, together with the proposed offset eligibility criteria and related process, and to get their feedback. This document is itself part of the 5-phase process of developing the regulations. Following the 45 days during which comments on the proposed regulation were sought, the climate action secretariat will complete legal drafting of the regulations, drawing on help from this stakeholder input, and the regulation will subsequently be implemented. An accompanying response form was attached to this consultation paper.

  3. Positive feedback of greenhouse gas balances to warming is determined by non-growing season emissions in an alpine meadow

    Science.gov (United States)

    Niu, S.; Wang, J.; Quan, Q.; Chen, W.; Wen, X.; Yu, G.

    2017-12-01

    Large uncertainties exist in the sources and sinks of greenhouse gases (CO2, CH4, N2O) in response to climate warming and human activity. So far, numerous previous studies have evaluated the CO2 budget, but little attention has paid to CH4 and N2O budgets and the concurrent balance of these three gases in combination, especially in the non-growing season. Here, we synthesized eddy covariance measurement with the automatic chamber measurements of CO2, CH4, and N2O exposed to three levels of temperature treatments (ambient, +1.5 °C, +2.5 °C) and two disturbance treatments (ummowing, mowing) in an alpine meadow on the Tibetan Plateau. We have found that warming caused increase in CH4 uptake and decrease in N2O emission offset little of the enhancement in CO2 emission, triggering a positive feedback to climate warming. Warming switches the ecosystem from a net sink (-17 ± 14 g CO2-eq m-2 yr-1) in the control to a net source of greenhouse gases of 94 ± 36 gCO2-eq m-2 yr-1 in the plots with +1.5 °C warming treatment, and 177 ± 6 gCO2-eq m-2 yr-1 in the plots with +2.5 °C warming treatment. The changes in the non-growing season balance, rather than those in the growing season, dominate the warming responses of annual greehouse gas balance. And this is not changed by mowing. The dominant role of responses of winter greenhouse gas balance in the positive feedback of ecosystem to climate warming highlights that greenhouse gas balance in cold season has to be considered when assessing climate-carbon cycle feedback.

  4. Evaluation of greenhouse gas emission risks from storage of wood residue

    International Nuclear Information System (INIS)

    Wihersaari, Margareta

    2005-01-01

    The use of renewable energy sources instead of fossil fuels is one of the most important means of limiting greenhouse gas emissions in the near future. In Finland, wood energy is considered to be a very important potential energy source in this sense. There might, however, still be some elements of uncertainty when evaluating biofuel production chains. By combining data from a stack of composting biodegradable materials and forest residue storage research there was an indication that rather great amounts of greenhouse gases maybe released during storage of wood chip, especially if there is rapid decomposition. Unfortunately, there have not been many evaluations of greenhouse gas emissions of biomass handling and storage heaps. The greenhouse gas emissions are probably methane, when the temperature in the fuel stack is above the ambient temperature, and nitrous oxide, when the temperature is falling and the decaying process is slowing down. Nowadays it is still rather unusual to store logging residue as chips, because the production is small, but in Finland storage of bark and other by-products from the forest industry is a normal process. The evaluations made indicate that greenhouse gas emissions from storage can, in some cases, be much greater than emissions from the rest of the biofuel production and transportation chain

  5. Greenhouse Gas Emissions from Excavation on Residential Construction Sites

    Directory of Open Access Journals (Sweden)

    Perry Forsythe

    2014-12-01

    Full Text Available Despite considerable research concerning the manifestation of greenhouse gases in the usage of buildings, little has been done concerning emissions arising from the construction process itself. This paper specifically examines emissions arising from cut and fill excavation on residential construction sites. Even though such excavation is often seen as being economical in terms of providing a flat base for concrete raft slab construction, the environmental consequences of this approach need to be considered more fully in terms of impact on the environment. This is particularly important when steeply sloping sites are involved and for different soil types. The paper undertakes a study that quantitatively assesses the cumulative greenhouse gas emissions caused by cut and fill excavation on 52 residential projects in Australia for a range of slope and soil types. The paper presents results from the study and concludes that greenhouse gas emissions increase as site slope increases; the building footprint area (as distinct from Gross Floor Area, exposes the need to reduce the area of the building to reduce greenhouse gas emissions; excavation of rock soils creates higher emissions than other soil types; and cut and fill excavation on steeply slope sites increase emissions. Potential alternative construction includes suspended floor construction systems which involve less excavation.

  6. Greenhouse Gas Emissions from Excavation on Residential Construction Sites

    Directory of Open Access Journals (Sweden)

    Perry Forsythe

    2014-12-01

    Full Text Available Despite considerable research concerning the manifestation of greenhouse gases in the usage of buildings, little has been done concerning emissions arising from the construction process itself. This paper specifically examines emissions arising from cut and fill excavation on residential construction sites. Even though such excavation is often seen as being economical in terms of providing a flat base for concrete raft slab construction, the environmental consequences of this approach need to be considered more fully in terms of impact on the environment. This is particularly important when steeply sloping sites are involved and for different soil types. The paper undertakes a study that quantitatively assesses the cumulative greenhouse gas emissions caused by cut and fill excavation on 52 residential projects in Australia for a range of slope and soil types. The paper presents results from the study and concludes that greenhouse gas emissions increase as site slope increases; the building footprint area (as distinct from Gross Floor Area, exposes the need to reduce the area of the building to reduce greenhouse gas emissions; excavation of rock soils creates higher emissions than other soil types; and cut and fill excavation on steeply slope sites increase emissions. Potential alternative construction includes suspended floor construction systems which involve less excavation. 

  7. Innovative technologies for greenhouse gas emission reduction in steel production

    Directory of Open Access Journals (Sweden)

    D. Burchart-Korol

    2016-01-01

    Full Text Available The main goal of the study was to present the most significant technological innovations aiming at reduction of greenhouse gas emission in steel production. Reduction of greenhouse gas and dust pollution is a very important aspect in the iron and steel industry. New solutions are constantly being searched for to reduce greenhouse gases (GHG. The article presents the most recent innovative technologies which may be applied in the steel industry in order to limit the emission of GHG. The significance of CCS (CO2 Capture and Storage and CCU (CO2 Capture and Utilization in the steel industry are also discussed.

  8. Lifecycle greenhouse gas emissions of coal, conventional and unconventional natural gas for electricity generation

    Science.gov (United States)

    An analysis of the lifecycle greenhouse gas (GHG) emissions associated with natural gas use recently published by Howarth et al. (2011) stated that use of natural gas produced from shale formations via hydraulic fracturing would generate greater lifecycle GHG emissions than petro...

  9. Biofuels, land use change, and greenhouse gas emissions: some unexplored variables.

    Science.gov (United States)

    Kim, Hyungtae; Kim, Seungdo; Dale, Bruce E

    2009-02-01

    Greenhouse gas release from land use change (the so-called "carbon debt") has been identified as a potentially significant contributor to the environmental profile of biofuels. The time required for biofuels to overcome this carbon debt due to land use change and begin providing cumulative greenhouse gas benefits is referred to as the "payback period" and has been estimated to be 100-1000 years depending on the specific ecosystem involved in the land use change event. Two mechanisms for land use change exist: "direct" land use change, in which the land use change occurs as part of a specific supply chain for a specific biofuel production facility, and "indirect" land use change, in which market forces act to produce land use change in land that is not part of a specific biofuel supply chain, including, for example, hypothetical land use change on another continent. Existing land use change studies did not consider many of the potentially important variables that might affect the greenhouse gas emissions of biofuels. We examine here several variables that have not yet been addressed in land use change studies. Our analysis shows that cropping management is a key factor in estimating greenhouse gas emissions associated with land use change. Sustainable cropping management practices (no-till and no-till plus cover crops) reduce the payback period to 3 years for the grassland conversion case and to 14 years for the forest conversion case. It is significant that no-till and cover crop practices also yield higher soil organic carbon (SOC) levels in corn fields derived from former grasslands or forests than the SOC levels that result if these grasslands or forests are allowed to continue undisturbed. The United States currently does not hold any of its domestic industries responsible for its greenhouse gas emissions. Thus the greenhouse gas standards established for renewable fuels such as corn ethanol in the Energy Independence and Security Act (EISA) of 2007 set a

  10. Implications of greenhouse gas emission mitigation scenarios for the main Asian regions

    NARCIS (Netherlands)

    van Ruijven, B.J.|info:eu-repo/dai/nl/304834521; van Vuuren, D.P.|info:eu-repo/dai/nl/11522016X; van Vliet, J.; Mendoza Beltran, A.; Deetman, S.; den Elzen, M.G.J.

    2012-01-01

    In order to limit global mean temperature increase, long-term greenhouse gas emissions need to be reduced. This paper discusses the implications of greenhouse gas emission reductions for major Asian regions (China, India, Indonesia, South-East Asia, Japan and Korea) based on results from the IMAGE

  11. Greenhouse gas emissions from the energy sector

    International Nuclear Information System (INIS)

    Mbuthi, P.N.

    1998-01-01

    This study quantifies greenhouse gas emissions from Kenya's energy activities. It is organised in four major sections, namely, an overview of the energy sector; data sources and methodology of analysis; results and recommendations for future climate change mitigation

  12. Detection of Greenhouse-Gas-Induced Climatic Change

    Energy Technology Data Exchange (ETDEWEB)

    Jones, P.D.; Wigley, T.M.L.

    1998-05-26

    The objective of this report is to assemble and analyze instrumental climate data and to develop and apply climate models as a basis for (1) detecting greenhouse-gas-induced climatic change, and (2) validation of General Circulation Models.

  13. Greenhouse Gas Emissions from Hydroelectric Reservoirs in Tropical Regions

    International Nuclear Information System (INIS)

    Pinguelli Rosa, L.; Aurelio dos Santos, M.; Oliveira dos Santos, E.; Matvienko, B.; Sikar, E.

    2004-01-01

    This paper discusses emissions by power-dams in the tropics. Greenhouse gas emissions from tropical power-dams are produced underwater through biomass decomposition by bacteria. The gases produced in these dams are mainly nitrogen, carbon dioxide and methane. A methodology was established for measuring greenhouse gases emitted by various power-dams in Brazil. Experimental measurements of gas emissions by dams were made to determine accurately their emissions of methane (CH4) and carbon dioxide (CO2) gases through bubbles formed on the lake bottom by decomposing organic matter, as well as rising up the lake gradient by molecular diffusion. The main source of gas in power-dams reservoirs is the bacterial decomposition (aerobic and anaerobic) of autochthonous and allochthonous organic matter that basically produces CO2 and CH4. The types and modes of gas production and release in the tropics are reviewed

  14. Greenhouse gas emissions from South Africa

    CSIR Research Space (South Africa)

    Scholes, RJ

    1996-05-01

    Full Text Available of CO2. These gases included 350 Tg CO2 (65.6% of the effect), 183 Tg CH4 (34.2%) and 1.2 Tg N2O (0.2%). The mining and burning of coal contributed more than 80% of the greenhouse gas emissions from South African territory....

  15. Greenhouse gas emissions of pilot buildings in 2009-2011; Pilottikiinteistoejen kasvihuonekaasupaeaestoet vuosina 2009-2011

    Energy Technology Data Exchange (ETDEWEB)

    Riihimaki, M.

    2012-07-01

    The Julia 2030 use of premises project sought to reduce the greenhouse gas emissions of selected pilot buildings by 10 per cent over the period from 2009 to 2011 by changing patterns of use. The project also provided an opportunity for further refinement of a climate calculator developed and maintained by WWF for reckoning greenhouse gas emissions of this kind. The use of premises project covered a total of 32 pilot buildings in Helsinki, Espoo, Vantaa, Kauniainen, Kirkkonummi and Kerava. These buildings included nurseries and schools, swimming baths, offices, multi-purpose activity buildings, depots, a sports hall and a health centre. The combined greenhouse gas emissions of the pilot buildings in 2011 amounted to 10,416 tCO{sub 2}e, which was 8 per cent lower than the total of 11,293 tCO{sub 2}e recorded in 2009. This means that the project fell slightly short of its targeted 10 per cent reduction in greenhouse gas emissions. The total greenhouse gas emissions of the pilot buildings adjusted for heating requirement amounted to 10,733 tCO{sub 2}e in 2011, which was about 7 per cent lower than in 2009. Reckoned on a per capita basis for employees or visitors, the total greenhouse gas emissions adjusted for heating requirement fell in 25 buildings, but increased in seven buildings over the period from 2009 to 2011. Particularly significant emission reductions were achieved in Vantaa, where all buildings were able to cut their emissions by between 9 and 45 per cent. The principal cause of greenhouse gas emissions in the pilot buildings was heating consumption, which also accounts for the increase in their unadjusted greenhouse gas emissions over the cold winters of 2009 and 2010. The second most important emission source in the pilot buildings was electricity consumption. Air travel contributed significantly to the overall greenhouse gas emissions of the pilot buildings used by employees taking work-related flights, whereas the contribution of paper consumption and

  16. 77 FR 69585 - Greenhouse Gas Reporting Program: Proposed Amendments and Confidentiality Determinations for...

    Science.gov (United States)

    2012-11-20

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 98 [EPA-HQ-OAR-2011-0028; FRL-9753-2] Greenhouse Gas... announcing an extension of the public comment period for the proposed rule titled ``Greenhouse Gas Reporting... [[Page 69586

  17. CF3SF5 : a ‘super’ greenhouse gas

    OpenAIRE

    Tuckett, R. P.

    2008-01-01

    One molecule of the anthropogenic pollutant trifluoromethyl sulphur pentafluoride (CF\\(_3\\)SF\\(_5\\)), an adduct of the CF\\(_3\\) and SF\\(_5\\) free radicals, causes more global warming than one molecule of any other greenhouse gas yet detected in the Earth’s atmosphere. That is, it has the highest per molecule radiative forcing of any greenhouse pollutant, and the value of its global warming potential is only exceeded by that of SF\\(_6\\). First, the greenhouse effect is described, the propertie...

  18. Handbook of Carbon Offset Programs. Trading Systems, Funds, Protocols and Standards

    Energy Technology Data Exchange (ETDEWEB)

    Kollmuss, Anja; Lazarus, Michael; Lee, Carrie; Polycarp, Clifford (SEI-US (United States)); LeFranc, Maurice (US EPA (United States))

    2010-03-15

    Greenhouse gas (GHG) offsets have long been promoted as an important element of a comprehensive climate policy approach. Offset programs can reduce the overall cost of achieving a given emission goal by enabling emission reductions to occur where costs are lower. Offsets have the potential to deliver sustainability co-benefits, through technology development and transfer. They can also develop human and institutional capacity for reducing emissions in sectors and locations not included in a cap and trade or a mandatory government policy. However, offsets can pose a risk to the environmental integrity of climate actions, especially if issues surrounding additionality, permanence, leakage, quantification and verification are not adequately addressed. The challenge is to design offset programs and policies that can maximize their potential benefits while minimizing their potential risks. This handbook provides a systematic and comprehensive review of existing offset programs. It looks are what offsets are, how offset mechanisms function, and the successes and pitfalls they have encountered. Coverage includes offset programs across the full swath of applications including mandatory and voluntary systems, government regulated and private markets, carbon offset funds, and accounting and reporting protocols such as the WBCSD/WRI GHG Protocol and ISO 14064. Learning from the successes and failures of these programs will be essential to crafting effective climate policy. A reference for regulators, policy makers, business leaders and NGOs concerned with the design and operation of GHG offset programs world-wide

  19. Can savannas help balance the South African greenhouse gas budget?

    CSIR Research Space (South Africa)

    Scholes, RJ

    1996-02-01

    Full Text Available This article discusses the South African Greenhouse Experiment on Savannas (SAGES) study conducted by the CSIR' Division of Forest Science and Technology (Foretek) on the role of savannas in the balance of the greenhouse gas budget of South Africa...

  20. Life Cycle Assessment of Greenhouse Gas Emissions

    NARCIS (Netherlands)

    Reijnders, L.; Chen, W.Y.; Suzuki, T.; Lackner, M.

    2015-01-01

    Life cycle assessments of greenhouse gas emissions have been developed for analyzing products "from cradle to grave": from resource extraction to waste disposal. Life cycle assessment methodology has also been applied to economies, trade between countries, aspects of production, and waste

  1. Analyzing the Effects of Car Sharing Services on the Reduction of Greenhouse Gas (GHG Emissions

    Directory of Open Access Journals (Sweden)

    Jiyeon Jung

    2018-02-01

    Full Text Available This study examines the environmental impacts of roundtrip car sharing services by investigating transportation behavior. Car sharing should contribute to reduced greenhouse gas GHG emissions; however, such schemes include both positive and negative environmental effects, including: (1 reduced CO2e (carbon dioxide equivalent from substituting private vehicle use for more fuel-efficient car sharing vehicles, (2 increased CO2e as car-less individuals switch from public transit to car sharing vehicles and (3 reduced CO2e due to fewer vehicles. This study examines the impacts of this modal shift on greenhouse gas (GHG emissions using three types of models: a mixed logit model to analyze car sharing service preferences; a binary logit model to analyze whether individuals are willing to forgo vehicle ownership or planned purchases to use car sharing services; and a linear regression to determine how much private vehicle or public transportation use would be replaced by car sharing and the resulting effects on mobility. Total emissions from the current car sharing market equal 1,025,589.36 t CO2e/year. However, an increase in electric vehicle (EV charging stations to 50% of the number of gasoline-fuel stations would increase the probability of electric car sharing vehicle use, thereby reducing emissions by 655,773 t CO2e. This study shows that forgoing vehicle purchases does not offset the increased GHG emissions caused by the shift from public transportation or private vehicle use to car sharing.

  2. Local and regional greenhouse gas management

    International Nuclear Information System (INIS)

    Fleming, P.D.; Webber, P.H.

    2004-01-01

    This paper discusses the role of local government, working at both the local and regional level, to achieve substantial (greater than 20%) greenhouse gas emissions reductions. It identifies many different funding regimes and organisations supporting greenhouse gas emissions reductions and a lack of data with which to measure progress. The work in the East Midlands and in the City of Leicester are summarised and an evaluation of progress towards Leicester's target of 50% carbon dioxide (CO 2 ) emission reduction by 2025 based on 1990 is presented. Leicester's initiatives to reduce carbon emissions for the domestic and non-domestic sectors between 1996 and 1999 are analysed. Progress has been made in reducing the rate of rise in energy demand in Leicester and where energy efficiency activities have been concentrated, savings of 20-30% have been obtained. Significant CO 2 savings are achievable at the local and regional level, but the streamlining of support mechanisms for local authorities and a clearer national framework to support implementation are needed to enable all, rather than a few, UK local authorities to make progress

  3. Estimation of Energy Consumption and Greenhouse Gas Emissions of Transportation in Beef Cattle Production

    Directory of Open Access Journals (Sweden)

    Narayanan Kannan

    2016-11-01

    Full Text Available Accounting for transportation is an important part of the life cycle analysis (LCA of beef cattle production because it is associated with energy consumption and greenhouse gas emissions. This paper describes the development and application of a model that estimates energy consumption and greenhouse gas emissions of transport in beef cattle production. The animal transport model is based on the weight and number of animals in each weight category, type of trailer, vehicle, and fuel used. The energy consumption and greenhouse gas emission estimates of animal feed transportation are based on the weight of a truckload and the number of truckloads of feed transported. Our results indicate that a truckload is travelling approximately 326 km in connection with beef cattle production in the study region. The fuel consumption amounts to 24 L of fossil fuel per 1000 kg of boneless beef. The corresponding greenhouse gas emission is 83 kg. It appears from our results that the majority of energy consumption and greenhouse gas emissions are associated with sending the finished cattle to slaughterhouses and bringing feeder cattle to feedlots. Our results point out appreciable reductions in energy consumption and greenhouse gas emissions by changing from conventional fuel to bio-fuel.

  4. Are forestation, bio-char and landfilled biomass adequate offsets for the climate effects of burning fossil fuels?

    International Nuclear Information System (INIS)

    Reijnders, L.

    2009-01-01

    Forestation and landfilling purpose-grown biomass are not adequate offsets for the CO 2 emission from burning fossil fuels. Their permanence is insufficiently guaranteed and landfilling purpose-grown biomass may even be counterproductive. As to permanence, bio-char may do better than forests or landfilled biomass, but there are major uncertainties about net greenhouse gas emissions linked to the bio-char life cycle, which necessitate suspension of judgement about the adequacy of bio-char addition to soils as an offset for CO 2 emissions from burning fossil fuels.

  5. Towards European organisation for integrated greenhouse gas observation system

    Science.gov (United States)

    Kaukolehto, Marjut; Vesala, Timo; Sorvari, Sanna; Juurola, Eija; Paris, Jean-Daniel

    2013-04-01

    Climate change is one the most challenging problems that humanity will have to cope with in the coming decades. The perturbed global biogeochemical cycles of the greenhouse gases (carbon dioxide, methane and nitrous oxide) are a major driving force of current and future climate change. Deeper understanding of the driving forces of climate change requires full quantification of the greenhouse gas emissions and sinks and their evolution. Regional greenhouse gas budgets, tipping-points, vulnerabilities and the controlling mechanisms can be assessed by long term, high precision observations in the atmosphere and at the ocean and land surface. ICOS RI is a distributed infrastructure for on-line, in-situ monitoring of greenhouse gases (GHG) necessary to understand their present-state and future sinks and sources. ICOS RI provides the long-term observations required to understand the present state and predict future behaviour of the global carbon cycle and greenhouse gas emissions. Linking research, education and innovation promotes technological development and demonstrations related to greenhouse gases. The first objective of ICOS RI is to provide effective access to coherent and precise data and to provide assessments of GHG inventories with high temporal and spatial resolution. The second objective is to provide profound information for research and understanding of regional budgets of greenhouse gas sources and sinks, their human and natural drivers, and the controlling mechanisms. ICOS is one of several ESFRI initiatives in the environmental science domain. There is significant potential for structural and synergetic interaction with several other ESFRI initiatives. ICOS RI is relevant for Joint Programming by providing the data access for the researchers and acting as a contact point for developing joint strategic research agendas among European member states. The preparatory phase ends in March 2013 and there will be an interim period before the legal entity will

  6. Life cycle assessment of greenhouse gas emissions

    NARCIS (Netherlands)

    Reijnders, L.; Chen, W.Y.; Seiner, J.; Suzuki, T.; Lackner, M.

    2012-01-01

    Life cycle assessments of greenhouse gas emissions have been developed for analyzing products "from cradle to grave": from resource extraction to waste disposal. Life cycle assessment methodology has also been applied to economies, trade between countries, aspects of production and to waste

  7. Life cycle assessment of greenhouse gas emissions

    NARCIS (Netherlands)

    Reijnders, L.; Chen, W.-Y.; Suzuki, T.; Lackner, M.

    2017-01-01

    Life cycle assessments of greenhouse gas emissions have been developed for analyzing products “from cradle to grave”: from resource extraction to waste disposal. Life cycle assessment methodology has also been applied to economies, trade between countries, aspects of production, and waste

  8. Wellbeing Impacts of City Policies for Reducing Greenhouse Gas Emissions

    Directory of Open Access Journals (Sweden)

    Rosemary Hiscock

    2014-11-01

    Full Text Available To mitigate climate change, city authorities are developing policies in areas such as transportation, housing and energy use, to reduce greenhouse gas emissions. In addition to their effects on greenhouse gas emissions, these policies are likely to have consequences for the wellbeing of their populations for example through changes in opportunities to take physical exercise. In order to explore the potential consequences for wellbeing, we first explore what ‘wellbeing’ is and how it can be operationalised for urban planners. In this paper, we illustrate how wellbeing can be divided into objective and subjective aspects which can be measured quantitatively; our review of measures informs the development of a theoretical model linking wellbeing to policies which cities use to reduce greenhouse gas emissions. Finally, we discuss the extent to which the links proposed in the conceptual model are supported by the literature and how cities can assess wellbeing implications of policies.

  9. Greenhouse gas emissions from industrial activities

    International Nuclear Information System (INIS)

    Kinyanjui, L.N.

    1998-01-01

    This study considers greenhouse gas emissions stemming from industrial activities such as cement production; limestone use and lime production. The Intergovernmental Panel on Climate Change (IPCC) (1995a) methodology for industrial sector was applied for the three components selected. Limitations hindering the handling of other industrial process are listed as budgetary and time. Data sources and recommendations are listed

  10. Greenhouse gas and livestock emissions and climate change

    DEFF Research Database (Denmark)

    Caro, Dario

    2018-01-01

    The paper summarizes the current knowledge about the impact of livestock sector on climate change. The main sources of greenhouse gas (GHG) emissions from livestock are described and the contribution of livestock sector to the global GHG emissions is presented on the basis of the latest results...... obtained from the scientific research. The most recent mitigation strategies for reducing greenhouse gas emissions from livestock sector are also discussed. The paper aims to provide a general overview of an emergent environmental issue such as the impact of livestock sector on climate change. While...... the paper is easy to understand for non-expert readers, it may also be a relevant reference point for academic researchers and for policy makers aimed at achieving the sustainability of livestock/food sector....

  11. Greenhouse Gas Mitigation Options Database and Tool - Data repository of GHG mitigation technologies.

    Science.gov (United States)

    Industry and electricity production facilities generate over 50 percent of greenhouse gas (GHG) emissions in the United States. There is a growing consensus among scientists that the primary cause of climate change is anthropogenic greenhouse gas (GHG) emissions. Reducing GHG emi...

  12. What are the health and greenhouse gas implications of travel patterns in different European settings?

    DEFF Research Database (Denmark)

    Woodcock, J.; Götschi, T.; Nielsen, Thomas Alexander Sick

    Modelling studies have indicated the potential for substitution of car use with walking and cycling to achieve both large health benefits and reductions in greenhouse gas emissions. There is considerable variation in walking, cycling, car and public transport use between different European settings....... However, there has been limited rigorous investigation of the impact of these differences on health and greenhouse gas emissions. In this paper we present modelled results on what would be the health and greenhouse gas implications if a setting with high levels of car use and low levels of cycling (urban......) and greenhouse gas modelling were conducted using ITHIM (Integrated Transport and Health Impact Modelling tool). The analysis suggests that differences in travel patterns are making an important contribution to population health but that lower transport related greenhouse gas emissions do not always coincide...

  13. Country-Level Life Cycle Assessment of Greenhouse Gas Emissions from Liquefied Natural Gas Trade for Electricity Generation.

    Science.gov (United States)

    Kasumu, Adebola S; Li, Vivian; Coleman, James W; Liendo, Jeanne; Jordaan, Sarah M

    2018-02-20

    In the determination of the net impact of liquefied natural gas (LNG) on greenhouse gas emissions, life cycle assessments (LCA) of electricity generation have yet to combine the effects of transport distances between exporting and importing countries, country-level infrastructure in importing countries, and the fuel sources displaced in importing countries. To address this, we conduct a LCA of electricity generated from LNG export from British Columbia, Canada with a three-step approach: (1) a review of viable electricity generation markets for LNG, (2) the development of results for greenhouse gas emissions that account for transport to importing nations as well as the infrastructure required for power generation and delivery, and (3) emissions displacement scenarios to test assumptions about what electricity is being displaced in the importing nation. Results show that while the ultimate magnitude of the greenhouse gas emissions associated with natural gas production systems is still unknown, life cycle greenhouse gas emissions depend on country-level infrastructure (specifically, the efficiency of the generation fleet, transmission and distribution losses and LNG ocean transport distances) as well as the assumptions on what is displaced in the domestic electricity generation mix. Exogenous events such as the Fukushima nuclear disaster have unanticipated effects on the emissions displacement results. We highlight national regulations, environmental policies, and multilateral agreements that could play a role in mitigating emissions.

  14. Assessing the greenhouse gas emissions from poultry fat biodiesel

    DEFF Research Database (Denmark)

    Jørgensen, Andreas; Bikker, Paul; Herrmann, Ivan Tengbjerg

    2012-01-01

    This article attempts to answer the question: What will most likely happen in terms of emitted greenhouse gases if the use of poultry fat for making biodiesel used in transportation is increased? Through a well-to-wheel assessment, several different possible scenarios are assessed, showing...... that under average conditions, the use of poultry fat biodiesel instead of diesel leads to a slight reduction (6%) in greenhouse gas emissions. The analysis shows that poultry fat is already used for different purposes and using poultry fat for biodiesel will therefore remove the poultry fat from its...... original use. This implies that even though the use of biodiesel is assumed to displace petrochemical diesel, the ‘original user’ of the poultry fat will have to find a substitute, whose production leads to a greenhouse gas emissions comparable to what is saved through driving on poultry fat biodiesel...

  15. Greenhouse Gas Emissions in the Netherlands 1990-2010. National Inventory Report 2012

    Energy Technology Data Exchange (ETDEWEB)

    Coenen, P.W.H.G.; Van der Hoek, K.W.; Te Molder, R.; Droege, R. [Netherlands Organisation for Applied Scientific Research TNO, P.O. Box 80015, NL-3508 TA Utrecht (Netherlands); Van der Maas, C.W.M.; Zijlema, P.J.; Van den Berghe, A.C.W.M. [NL Agency, P.O. Box 8242, NL-3503 RE Utrecht (Netherlands); Baas, K. [Statistics Netherlands CBS, P.O. Box 24500, NL-2490 HA Den Haag (Netherlands); Te Biesebeek, J.D.; Brandt, A.T. [Dutch Emission Authority, P.O. Box 91503, IPC 652, NL-2509 EC Den Haag (Netherlands); Geilenkirchen, G. [Netherlands Environmental Assessment Agency PBL, P.O. Box 303 NL-3720 AH Bilthoven (Netherlands); Montfoort, J.A.; Peek, C.J.; Vonk, J.; Van den Wyngaert, I. [Alterra Wageningen UR, P.O. Box 47 NL-6700 AA Wageningen (Netherlands)

    2012-03-15

    The total greenhouse gas emission from the Netherlands in 2010 increased by approximately 6% compared to the emission in 2009. This increase is mainly the result of increased fuel combustion in the energy sector and space heating. In 2010, total direct greenhouse gas emissions (excluding emissions from LULUCF - land use, land use change and forestry) in the Netherlands amounted to 210.1 Tg CO2 eq. This is approximately 1.5% below the emissions in the base year (213.3 Tg CO2 eq). This report documents the 2012 Netherlands' annual submission of its greenhouse gas emission inventory in accordance with the guidelines provided by the United Nations Framework Convention on Climate Change (UNFCCC), the Kyoto Protocol and the European Union's Greenhouse Gas Monitoring Mechanism. The report comprises explanations of observed trends in emissions; a description of an assessment of key sources and their uncertainty; documentation of methods, data sources and emission factors applied; and a description of the quality assurance system and the verification activities performed on the data.

  16. Greenhouse Gas Emissions in the Netherlands 1990-2009. National Inventory Report 2011

    Energy Technology Data Exchange (ETDEWEB)

    Coenen, P.W.H.G.; Van der Hoek, K.W.; Te Molder, R.; Droege, R. [Netherlands Organisation for Applied Scientific Research TNO, P.O. Box 80015, NL-3508 TA Utrecht (Netherlands); Van der Maas, C.W.M.; Zijlema, P.J.; Van den Berghe, A.C.W.M. [NL Agency, P.O. Box 8242, NL-3503 RE Utrecht (Netherlands); Baas, K. [Statistics Netherlands CBS, P.O. Box 24500, NL-2490 HA Den Haag (Netherlands); Te Biesebeek, J.D.; Brandt, A.T. [Dutch Emission Authority, P.O. Box 91503, IPC 652, NL-2509 EC Den Haag (Netherlands); Geilenkirchen, G. [Netherlands Environmental Assessment Agency PBL, P.O. Box 303 NL-3720 AH Bilthoven (Netherlands); Montfoort, J.A.; Peek, C.J.; Vonk, J.; Van den Wyngaert, I. [Alterra Wageningen UR, P.O. Box 47 NL-6700 AA Wageningen (Netherlands)

    2012-03-15

    The total greenhouse gas emission from the Netherlands in 2010 increased by approximately 6% compared to the emission in 2009. This increase is mainly the result of increased fuel combustion in the energy sector and space heating. In 2010, total direct greenhouse gas emissions (excluding emissions from LULUCF - land use, land use change and forestry) in the Netherlands amounted to 210.1 Tg CO2 eq. This is approximately 1.5% below the emissions in the base year (213.3 Tg CO2 eq). This report documents the 2012 Netherlands' annual submission of its greenhouse gas emission inventory in accordance with the guidelines provided by the United Nations Framework Convention on Climate Change (UNFCCC), the Kyoto Protocol and the European Union's Greenhouse Gas Monitoring Mechanism. The report comprises explanations of observed trends in emissions; a description of an assessment of key sources and their uncertainty; documentation of methods, data sources and emission factors applied; and a description of the quality assurance system and the verification activities performed on the data.

  17. Greenhouse Gas Emissions in the Netherlands 1990-2009. National Inventory Report 2011

    International Nuclear Information System (INIS)

    Van der Maas, C.W.M.; Coenen, P.W.H.G.; Van der Hoek, K.W.; Te Molder, R.; Droege, R.; Zijlema, P.J.; Van den Berghe, G.; Baas, K.; Te Biesebeek, J.D.; Brandt, A.T.; Geilenkirchen, G.; Peek, C.J.; Vonk, J.; Van den Wyngaert, I.

    2011-04-01

    The total greenhouse gas emission from the Netherlands in 2009 decreased by approximately 3% compared to the emission in 2008. This decrease is a result of the economic crisis, especially due to the decrease in the industrial production. In 2009, total direct greenhouse gas emissions (excluding emissions from LULUCF - land use, land use change and forestry) in the Netherlands amount to 198.9Tg CO2 eq. This is nearly 7 % below the emissions in the base year 1990 (213.2 Tg CO2 eq). This report documents the 2011 Netherlands' annual submission of its greenhouse gas emission inventory in accordance with the guidelines provided by the United Nations Framework Convention on Climate Change (UNFCCC), the Kyoto Protocol and the European Union's Greenhouse Gas Monitoring Mechanism. The report comprises explanations of observed trends in emissions; a description of an assessment of key sources and their uncertainty; documentation of methods, data sources and emission factors applied; and a description of the quality assurance system and the verification activities performed on the data.

  18. Greenhouse Gas Emissions in the Netherlands 1990-2009. National Inventory Report 2011

    Energy Technology Data Exchange (ETDEWEB)

    Coenen, P W.H.G.; Van der Hoek, K W; Te Molder, R; Droege, R [Netherlands Organisation for Applied Scientific Research TNO, P.O. Box 80015, NL-3508 TA Utrecht (Netherlands); Van der Maas, C W.M.; Zijlema, P J; Van den Berghe, A C.W.M. [NL Agency, P.O. Box 8242, NL-3503 RE Utrecht (Netherlands); Baas, K [Statistics Netherlands CBS, P.O. Box 24500, NL-2490 HA Den Haag (Netherlands); Te Biesebeek, J D; Brandt, A T [Dutch Emission Authority, P.O. Box 91503, IPC 652, NL-2509 EC Den Haag (Netherlands); Geilenkirchen, G [Netherlands Environmental Assessment Agency PBL, P.O. Box 303 NL-3720 AH Bilthoven (Netherlands); Montfoort, J A; Peek, C J; Vonk, J; Van den Wyngaert, I [Alterra Wageningen UR, P.O. Box 47 NL-6700 AA Wageningen (Netherlands)

    2012-03-15

    The total greenhouse gas emission from the Netherlands in 2010 increased by approximately 6% compared to the emission in 2009. This increase is mainly the result of increased fuel combustion in the energy sector and space heating. In 2010, total direct greenhouse gas emissions (excluding emissions from LULUCF - land use, land use change and forestry) in the Netherlands amounted to 210.1 Tg CO2 eq. This is approximately 1.5% below the emissions in the base year (213.3 Tg CO2 eq). This report documents the 2012 Netherlands' annual submission of its greenhouse gas emission inventory in accordance with the guidelines provided by the United Nations Framework Convention on Climate Change (UNFCCC), the Kyoto Protocol and the European Union's Greenhouse Gas Monitoring Mechanism. The report comprises explanations of observed trends in emissions; a description of an assessment of key sources and their uncertainty; documentation of methods, data sources and emission factors applied; and a description of the quality assurance system and the verification activities performed on the data.

  19. Greenhouse Gas Emissions in the Netherlands 1990-2010. National Inventory Report 2012

    Energy Technology Data Exchange (ETDEWEB)

    Coenen, P. W.H.G.; Van der Hoek, K. W.; Te Molder, R.; Droege, R. [Netherlands Organisation for Applied Scientific Research TNO, P.O. Box 80015, NL-3508 TA Utrecht (Netherlands); Van der Maas, C. W.M.; Zijlema, P. J.; Van den Berghe, A. C.W.M. [NL Agency, P.O. Box 8242, NL-3503 RE Utrecht (Netherlands); Baas, K. [Statistics Netherlands CBS, P.O. Box 24500, NL-2490 HA Den Haag (Netherlands); Te Biesebeek, J. D.; Brandt, A. T. [Dutch Emission Authority, P.O. Box 91503, IPC 652, NL-2509 EC Den Haag (Netherlands); Geilenkirchen, G. [Netherlands Environmental Assessment Agency PBL, P.O. Box 303 NL-3720 AH Bilthoven (Netherlands); Montfoort, J. A.; Peek, C. J.; Vonk, J.; Van den Wyngaert, I. [Alterra Wageningen UR, P.O. Box 47 NL-6700 AA Wageningen (Netherlands)

    2012-03-15

    The total greenhouse gas emission from the Netherlands in 2010 increased by approximately 6% compared to the emission in 2009. This increase is mainly the result of increased fuel combustion in the energy sector and space heating. In 2010, total direct greenhouse gas emissions (excluding emissions from LULUCF - land use, land use change and forestry) in the Netherlands amounted to 210.1 Tg CO2 eq. This is approximately 1.5% below the emissions in the base year (213.3 Tg CO2 eq). This report documents the 2012 Netherlands' annual submission of its greenhouse gas emission inventory in accordance with the guidelines provided by the United Nations Framework Convention on Climate Change (UNFCCC), the Kyoto Protocol and the European Union's Greenhouse Gas Monitoring Mechanism. The report comprises explanations of observed trends in emissions; a description of an assessment of key sources and their uncertainty; documentation of methods, data sources and emission factors applied; and a description of the quality assurance system and the verification activities performed on the data.

  20. 77 FR 14507 - Revision to Guidance, “Federal Greenhouse Gas Accounting and Reporting”

    Science.gov (United States)

    2012-03-12

    ... accounting procedures. CEQ provides this draft revision of the guidance for public review and comment to... COUNCIL ON ENVIRONMENTAL QUALITY Revision to Guidance, ``Federal Greenhouse Gas Accounting and..., ``Federal Greenhouse Gas Accounting and Reporting''. SUMMARY: On October 5, 2009, President Obama signed...

  1. Modeling Greenhouse Gas Emissions from Enteric Fermentation

    NARCIS (Netherlands)

    Kebreab, E.; Tedeschi, L.; Dijkstra, J.; Ellis, J.L.; Bannink, A.; France, J.

    2016-01-01

    Livestock directly contribute to greenhouse gas (GHG) emissions mainly through methane (CH4) and nitrous oxide (N2O) emissions. For cost and practicality reasons, quantification of GHG has been through development of various types of mathematical models. This chapter addresses the utility and

  2. Earthworms and the soil greenhouse gas balance

    NARCIS (Netherlands)

    Lubbers, I.M.

    2014-01-01

    Earthworms play an essential part in determining the greenhouse gas (GHG) balance of soils worldwide. Their activity affects both biotic and abiotic soil properties, which in turn influence soil GHG emissions, carbon (C) sequestration and plant growth. Yet, the balance of earthworms

  3. Why nuclear energy is essential to reduce anthropogenic greenhouse gas emission rates

    International Nuclear Information System (INIS)

    Alonso, A.; Brook, B.W.; Meneley, D.A.; Misak, J.; Blees, T.; Van Erp, J.B.

    2015-01-01

    Reduction of anthropogenic greenhouse gas emissions is advocated by the Intergovernmental Panel on Climate Change. To achieve this target, countries have opted for renewable energy sources, primarily wind and solar. These renewables will be unable to supply the needed large quantities of energy to run industrial societies sustainably, economically and reliably because they are inherently intermittent, depending on flexible backup power or on energy storage for delivery of base-load quantities of electrical energy. The backup power is derived in most cases from combustion of natural gas. Intermittent energy sources, if used in this way, do not meet the requirements of sustainability, nor are they economically viable because they require redundant, under- utilized investment in capacity both for generation and for transmission. Because methane is a potent greenhouse gas, the equivalent carbon dioxide value of methane may cause gas-fired stations to emit more greenhouse gas than coal-fired plants of the same power for currently reported leakage rates of the natural gas. Likewise, intermittent wind/solar photovoltaic systems backed up by gas-fu:ed power plants also release substantial amounts of carbon-dioxide- equivalent greenhouse gas to make such a combination environmentally unacceptable. In the long term, nuclear fission technology is the only known energy source that is capable of delivering the needed large quantities of energy safely, economically, reliably and in a sustainable way, both environmentally and as regards the available resource-base. (author)

  4. Why nuclear energy is essential to reduce anthropogenic greenhouse gas emission rates

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, A. [Univ. Politecnica de Madrid, Madrid (Spain); Brook, B.W. [Univ. of Tasmania, Hobart TAS (Australia); Meneley, D.A. [Candu Energy Inc., Mississauga, Ontario (Canada); Misak, J. [UJV-Rez, Prague (Czech Republic); Blees, T. [Science Council for Global Initiatives, Chicago, Illinois (United States); Van Erp, J.B. [Illinois Commission on Atomic Energy, Chicago, Illinois (United States)

    2015-12-15

    Reduction of anthropogenic greenhouse gas emissions is advocated by the Intergovernmental Panel on Climate Change. To achieve this target, countries have opted for renewable energy sources, primarily wind and solar. These renewables will be unable to supply the needed large quantities of energy to run industrial societies sustainably, economically and reliably because they are inherently intermittent, depending on flexible backup power or on energy storage for delivery of base-load quantities of electrical energy. The backup power is derived in most cases from combustion of natural gas. Intermittent energy sources, if used in this way, do not meet the requirements of sustainability, nor are they economically viable because they require redundant, under- utilized investment in capacity both for generation and for transmission. Because methane is a potent greenhouse gas, the equivalent carbon dioxide value of methane may cause gas-fired stations to emit more greenhouse gas than coal-fired plants of the same power for currently reported leakage rates of the natural gas. Likewise, intermittent wind/solar photovoltaic systems backed up by gas-fu:ed power plants also release substantial amounts of carbon-dioxide- equivalent greenhouse gas to make such a combination environmentally unacceptable. In the long term, nuclear fission technology is the only known energy source that is capable of delivering the needed large quantities of energy safely, economically, reliably and in a sustainable way, both environmentally and as regards the available resource-base. (author)

  5. Greenhouse gas emissions from shale gas and coal for electricity generation in South Africa

    Directory of Open Access Journals (Sweden)

    Brett Cohen

    2014-03-01

    Full Text Available There is increased interest, both in South Africa and globally, in the use of shale gas for electricity and energy supply. The exploitation of shale gas is, however, not without controversy, because of the reported environmental impacts associated with its extraction. The focus of this article is on the greenhouse gas footprint of shale gas, which some literature suggests may be higher than what would have been expected as a consequence of the contribution of fugitive emissions during extraction, processing and transport. Based on some studies, it has been suggested that life-cycle emissions may be higher than those from coal-fired power. Here we review a number of studies and analyse the data to provide a view of the likely greenhouse gas emissions from producing electricity from shale gas, and compare these emissions to those of coal-fired power in South Africa. Consideration was given to critical assumptions that determine the relative performance of the two sources of feedstock for generating electricity � that is the global warming potential of methane and the extent of fugitive emissions. The present analysis suggests that a 100-year time horizon is appropriate in analysis related to climate change, over which period the relative contribution is lower than for shorter periods. The purpose is to limit temperature increase in the long term and the choice of metric should be appropriate. The analysis indicates that, regardless of the assumptions about fugitive emissions and the period over which global warming potential is assessed, shale gas has lower greenhouse gas emissions per MWh of electricity generated than coal. Depending on various factors, electricity from shale gas would have a specific emissions intensity between 0.3 tCO2/MWh and 0.6 tCO2/MWh, compared with about 1 tCO2/MWh for coal-fired electricity in South Africa.

  6. Environmental Accounts of the Netherlands. Greenhouse gas emissions by Dutch economic activities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-08-15

    Climate change is one of the major global challenges of our time. There is abundant scientific evidence that the emission of greenhouse gases caused by economic activities contributes to climate change. Accelerating emissions of carbon dioxide, methane, and other greenhouse gases since the beginning of the 20th century have increased the average global temperature by about 0.8C and altered global precipitation patterns. Combustion of fossil fuels, deforestation, but also specific agricultural activities and industrial processes are the main drivers of the increased emission of greenhouse gasses. Enhanced concentrations of greenhouse gasses in the atmosphere will increase global temperatures by radiative forcing. Likewise, climate change has a direct impact on all kinds of economic processes. These impacts may be positive or negative, but it is expected that the overall impact will be primarily negative. In order to design effective mitigation policies, one must have a good conception of the economic driving forces of climate change. The air emission accounts can be used to analyse the environmental implications in terms of greenhouse gas emissions, of production and consumption patterns. Because of their compatibility with the national accounts, greenhouse gas data can be directly linked to the economic drivers of global warming. There are several frameworks for estimating the greenhouse gas emissions for a country, yielding different results. Well-known are the emissions reported to the UNFCCC (United National Framework Convention on Climate Change) in particular under the Kyoto Protocol, but also environment statistics as well as the air emission accounts provide independent greenhouse gas estimates. The differences are not the result of disputes about the accuracy of the estimates themselves, but arise from different interpretations of what has to be counted. The inclusion or exclusion of certain elements depends on the concepts and definitions that underlie

  7. How to globally reduce the greenhouse gas emissions from sewage systems?

    International Nuclear Information System (INIS)

    Batz, S. de; Bonardet, P.; Trouve, J.P.

    2007-01-01

    A reliable and exhaustive measurement of the global greenhouse gas emissions from a given sewage plant must be performed prior to the implementation of any abatement measure. The method presented in this paper takes into consideration both the direct emissions but also the indirect ones generated by the plant activity and identified using a life cycle-type approach. Three examples of projects or realizations are presented in this paper to illustrate the different means of abatement of greenhouse gas emissions from a sewage plant in a global way. The first example concerns a project of abatement of the electricity consumption of a plant for sludges and fats digestion and biogas valorization. A 85% global abatement of CO 2 emissions is obtained thanks to the substitution of the aerobic digestion process by an anaerobic one. The second example presents an optimization of the greenhouse gas emissions of the municipal sewage plant of Valenton (Paris region) thanks to a valorization of sludges as fertilizers and fuels and to the recovery of the process heat. The last example concerns the Seine-aval sewage plant which gathers several projects of improvement: setting up of a second biogas turbine, redesign of the heat loop, use of river transport for a significant abatement of greenhouse gas emissions. (J.S.)

  8. Request for Correction 12003 Greenhouse Gas Emissions Reporting from the Petroleum and Natural Gas Industry

    Science.gov (United States)

    Request for Correction by the U.S. Chamber of Commerce for information in Greenhouse Gas Emissions Reporting from the Petroleum Gas Industry that regarding methane emissions, volatile organic compounds, and hazardous air pollutants.

  9. Towards a Global Greenhouse Gas Information System (GHGIS)

    Science.gov (United States)

    Duren, Riley; Butler, James; Rotman, Doug; Miller, Charles; Decola, Phil; Sheffner, Edwin; Tucker, Compton; Mitchiner, John; Jonietz, Karl; Dimotakis, Paul

    2010-05-01

    Over the next few years, an increasing number of entities ranging from international, national, and regional governments, to businesses and private land-owners, are likely to become more involved in efforts to limit atmospheric concentrations of greenhouse gases. In such a world, geospatially resolved information about the location, amount, and rate of greenhouse gas (GHG) emissions will be needed, as well as the stocks and flows of all forms of carbon through terrestrial ecosystems and in the oceans. The ability to implement policies that limit GHG concentrations would be enhanced by a global, open, and transparent greenhouse gas information system (GHGIS). An operational and scientifically robust GHGIS would combine ground-based and space-based observations, carbon-cycle modeling, GHG inventories, meta-analysis, and an extensive data integration and distribution system, to provide information about sources, sinks, and fluxes of greenhouse gases at policy-relevant temporal and spatial scales. The GHGIS effort was initiated in 2008 as a grassroots inter-agency collaboration intended to rigorously identify the needs for such a system, assess the capabilities of current assets, and suggest priorities for future research and development. We will present a status of the GHGIS effort including our latest analysis and ideas for potential near-term pilot projects with potential relevance to European initiatives including the Global Monitoring for Environment and Security (GMES) and the Integrated Carbon Observing System (ICOS).

  10. 76 FR 57105 - Greenhouse Gas Emissions Standards and Fuel Efficiency Standards for Medium- and Heavy-Duty...

    Science.gov (United States)

    2011-09-15

    ... CFR Parts 523, 534, and 535 Greenhouse Gas Emissions Standards and Fuel Efficiency Standards for...-2010-0079; FRL-9455-1] RIN 2060-AP61; 2127-AK74 Greenhouse Gas Emissions Standards and Fuel Efficiency... Heavy-Duty National Program that will reduce greenhouse gas emissions and fuel consumption for on-road...

  11. 75 FR 81952 - Greenhouse Gas Emissions Standards and Fuel Efficiency Standards for Medium- and Heavy-Duty...

    Science.gov (United States)

    2010-12-29

    ...-HQ-OAR-2010-0162; FRL-9219-4; NHTSA 2010-0079] RIN 2060-AP61; RIN 2127-AK74 Greenhouse Gas Emissions... will increase fuel efficiency and reduce greenhouse gas emissions for on-road heavy-duty vehicles...-Duty National Program that will increase fuel efficiency and reduce greenhouse gas emissions for on...

  12. The EU Greenhouse Gas Emissions Trading Scheme

    NARCIS (Netherlands)

    Woerdman, Edwin; Woerdman, Edwin; Roggenkamp, Martha; Holwerda, Marijn

    2015-01-01

    This chapter explains how greenhouse gas emissions trading works, provides the essentials of the Directive on the European Union Emissions Trading Scheme (EU ETS) and summarizes the main implementation problems of the EU ETS. In addition, a law and economics approach is used to discuss the dilemmas

  13. Australia’s Consumption-based Greenhouse Gas Emissions

    DEFF Research Database (Denmark)

    Levitt, Clinton J.; Saaby, Morten; Sørensen, Anders

    2017-01-01

    We use data from the World Input-Output Database in a multiregional input–output model to analyse Australian consumption-based greenhouse gas emissions for the years 1995 to 2009. We find that the emission content of Australian macroeconomic activity has changed over the 15-year period. Consumption...

  14. The marginal costs of greenhouse gas emissions

    International Nuclear Information System (INIS)

    Tol, R.S.J.

    1999-01-01

    Estimates of the marginal costs of greenhouse gas emissions are on important input to the decision how much society would want to spend on greenhouse gas emission reduction. Marginal cost estimates in the literature range between $5 and $25 per ton of carbon. Using similar assumptions, the FUND model finds marginal costs of $9--23/tC, depending on the discount rate. If the aggregation of impacts over countries accounts for inequalities in income distribution or for risk aversion, marginal costs would rise by about a factor of 3. Marginal costs per region are an order of magnitude smaller than global marginal costs. The ratios between the marginal costs of CO 2 and those of CH 4 and N 2 O are roughly equal to the global warming potentials of these gases. The uncertainty about the marginal costs is large and right-skewed. The expected value of the marginal costs lies about 35% above the best guess, the 95-percentile about 250%

  15. Cogeneration, renewables and reducing greenhouse gas emissions

    International Nuclear Information System (INIS)

    Naughten, B.; Dlugosz, J.

    1996-01-01

    The MENSA model is used to assess the potential role of cogeneration and selected new renewable energy technologies in cost-effectively reducing Greenhouse gas emissions. The model framework for analyzing these issues is introduced, together with an account of relevant aspects of its application. In the discussion of selected new renewable energy technologies, it is shown how microeconomic reform may encourage these technologies and fuels, and thereby reduce sector wide carbon dioxide emissions. Policy scenarios modelled are described and the simulation results are presented. Certain interventions in microeconomic reform may result in economic benefits while also reducing emissions: no regrets' opportunities. Some renewable energy technologies are also shown to be cost-effective in the event that targets and timetables for reducing Greenhouse gas emissions are imposed. However, ad hoc interventions in support of particular renewables options are unlikely to be consistent with a least cost approach to achieving environmental objectives. (author). 5 tabs., 5 figs., 21 refs

  16. Potential for greenhouse gas emission reductions using surplus electricity in hydrogen, methane and methanol production via electrolysis

    International Nuclear Information System (INIS)

    Uusitalo, Ville; Väisänen, Sanni; Inkeri, Eero; Soukka, Risto

    2017-01-01

    Highlights: • Greenhouse gas emission reductions using power-to-x processes are studied using life cycle assessment. • Surplus electricity use led to greenhouse gas emission reductions in all studied cases. • Highest reductions can be achieved by using hydrogen to replace fossil based hydrogen. • High reductions are also achieved when fossil transportation fuels are replaced. - Abstract: Using a life cycle perspective, potentials for greenhouse gas emission reductions using various power-to-x processes via electrolysis have been compared. Because of increasing renewable electricity production, occasionally surplus renewable electricity is produced, which leads to situations where the price of electricity approach zero. This surplus electricity can be used in hydrogen, methane and methanol production via electrolysis and other additional processes. Life cycle assessments have been utilized to compare these options in terms of greenhouse gas emission reductions. All of the power-to-x options studied lead to greenhouse gas emission reductions as compared to conventional production processes based on fossil fuels. The highest greenhouse gas emission reductions can be gained when hydrogen from steam reforming is replaced by hydrogen from the power-to-x process. High greenhouse gas emission reductions can also be achieved when power-to-x products are utilized as an energy source for transportation, replacing fossil transportation fuels. A third option with high greenhouse gas emission reduction potential is methane production, storing and electricity conversion in gas engines during peak consumption hours. It is concluded that the power-to-x processes provide a good potential solution for reducing greenhouse gas emissions in various sectors.

  17. The importance of grid integration for achievable greenhouse gas emissions reductions from alternative vehicle technologies

    International Nuclear Information System (INIS)

    Tarroja, Brian; Shaffer, Brendan; Samuelsen, Scott

    2015-01-01

    Alternative vehicles must appropriately interface with the electric grid and renewable generation to contribute to decarbonization. This study investigates the impact of infrastructure configurations and management strategies on the vehicle–grid interface and vehicle greenhouse gas reduction potential with regard to California's Executive Order S-21-09 goal. Considered are battery electric vehicles, gasoline-fueled plug-in hybrid electric vehicles, hydrogen-fueled fuel cell vehicles, and plug-in hybrid fuel cell vehicles. Temporally resolved models of the electric grid, electric vehicle charging, hydrogen infrastructure, and vehicle powertrain simulations are integrated. For plug-in vehicles, consumer travel patterns can limit the greenhouse gas reductions without smart charging or energy storage. For fuel cell vehicles, the fuel production mix must be optimized for minimal greenhouse gas emissions. The plug-in hybrid fuel cell vehicle has the largest potential for emissions reduction due to smaller battery and fuel cells keeping efficiencies higher and meeting 86% of miles on electric travel keeping the hydrogen demand low. Energy storage is required to meet Executive Order S-21-09 goals in all cases. Meeting the goal requires renewable capacities of 205 GW for plug-in hybrid fuel cell vehicles and battery electric vehicle 100s, 255 GW for battery electric vehicle 200s, and 325 GW for fuel cell vehicles. - Highlights: • Consumer travel patterns limit greenhouse gas reductions with immediate charging. • Smart charging or energy storage are required for large greenhouse gas reductions. • Fuel cells as a plug-in vehicle range extender provided the most greenhouse gas reductions. • Energy storage is required to meet greenhouse gas goals regardless of vehicle type. • Smart charging reduces the required energy storage size for a given greenhouse gas goal

  18. NF ISO 14064-1 Greenhouse gases. Part 1: specifications and guidance at the organization level for quantification and reporting of greenhouse gas emissions and removals

    International Nuclear Information System (INIS)

    2005-01-01

    This document describes methodology for quantification, monitoring of greenhouse gas as well as for drafting of inventory report for organisms. Thus it suggests a method for inventory declarations for organism greenhouse gas and provides support for the monitoring and the management of their emission. It provides the terms and definitions, the principles, the greenhouse gases inventory design, development and components, the greenhouse inventory quality management, the reporting of greenhouse gases and the organization role in verification activities. (A.L.B.)

  19. The role of nuclear power in the reduction of greenhouse gas emissions

    International Nuclear Information System (INIS)

    Baratta, A.J.

    2010-01-01

    Nuclear energy is a low greenhouse gas emitter and is capable of providing large amounts of power using proven technology. In the immediate future, it can contribute to greenhouse gas reduction but only on a modest scale, replacing a portion of the electricity produced by coal fired power plants. While it has the potential to do more, there are significant resource issues that must be addressed if nuclear power is to replace coal or natural gas as a source of electricity

  20. NWT greenhouse gas strategy 2007-2011

    International Nuclear Information System (INIS)

    2007-03-01

    In response to concerns about climate change, the Government of the Northwest Territories (GNWT) is committed to working with federal, provincial and territorial governments to develop an equitable approach to Canada's international commitment to reduce national emissions to 6 per cent below 1990 levels by the year 2012. In 2001, the GNWT released its greenhouse gas strategy, which was subsequently revised after a review in 2005. This report discussed the GNWT's greenhouse gas strategy. It provided background information on global climate change and impacts in the Northwest Territories (NWT), NWT emission challenges, as well as the 2001 strategy and its renewal. The report also presented the strategy framework with reference to goals and objectives; principles; emissions inventory; forest carbon sinks and sources; and targets and measures. The report also presented the action plan for the community and residential sector; commercial and industrial sector; government sector; cross-cutting; and a summary of actions. Some of these 39 actions include energy conservation initiatives by the NWT Housing Corporation; community woodlot planning; community energy planning; commercial energy efficiency audits; and energy efficiency measures in industry. 2 tabs, 3 figs., 2 appendices

  1. Low Power Greenhouse Gas Sensors for Unmanned Aerial Vehicles

    Directory of Open Access Journals (Sweden)

    David J. Lary

    2012-05-01

    Full Text Available We demonstrate compact, low power, lightweight laser-based sensors for measuring trace gas species in the atmosphere designed specifically for electronic unmanned aerial vehicle (UAV platforms. The sensors utilize non-intrusive optical sensing techniques to measure atmospheric greenhouse gas concentrations with unprecedented vertical and horizontal resolution (~1 m within the planetary boundary layer. The sensors are developed to measure greenhouse gas species including carbon dioxide, water vapor and methane in the atmosphere. Key innovations are the coupling of very low power vertical cavity surface emitting lasers (VCSELs to low power drive electronics and sensitive multi-harmonic wavelength modulation spectroscopic techniques. The overall mass of each sensor is between 1–2 kg including batteries and each one consumes less than 2 W of electrical power. In the initial field testing, the sensors flew successfully onboard a T-Rex Align 700E robotic helicopter and showed a precision of 1% or less for all three trace gas species. The sensors are battery operated and capable of fully automated operation for long periods of time in diverse sensing environments. Laser-based trace gas sensors for UAVs allow for high spatial mapping of local greenhouse gas concentrations in the atmospheric boundary layer where land/atmosphere fluxes occur. The high-precision sensors, coupled to the ease-of-deployment and cost effectiveness of UAVs, provide unprecedented measurement capabilities that are not possible with existing satellite-based and suborbital aircraft platforms.

  2. Greenhouse Gas Emissions in the Netherlands 1990-2011. National Inventory Report 2013

    Energy Technology Data Exchange (ETDEWEB)

    Coenen, P. W.H.G.; Droege, R. [Netherlands Organisation for Applied Scientific Research TNO, P.O. Box 80015, NL-3508 TA Utrecht (Netherlands); Zijlema, P. J. [NL Agency, P.O. Box 8242, NL-3503 RE Utrecht (Netherlands); Arets, E. J.M.M. [Alterra Wageningen UR, P.O. Box 47 NL-6700 AA Wageningen (Netherlands); Baas, K. [Statistics Netherlands CBS, P.O. Box 24500, NL-2490 HA Den Haag (Netherlands); Van den Berghe, A. C.W.M. [Rijkswaterstaat, P.O. Box 8242, NL-3503 RE Utrecht (Netherlands); Brandt, A. T. [Dutch Emissions Authority NEa, P.O. Box 91503, NL-2509 EC Den Haag (Netherlands); Geilenkirchen, G. [PBL Netherlands Environmental Assessment Agency, P.O. Box 303 NL-3720 AH Bilthoven (Netherlands); Van der Maas, C. W.M.; Te Biesebeek, J. D.; Van der Hoek, K. W.; Te Molder, R.; Montfoort, J. A.; Peek, C. J.; Vonk, J. [National Institute of Public Health and Environmental Protection RIVM, Bilthoven (Netherlands)

    2013-04-15

    Total greenhouse gas emissions from The Netherlands in 2011 decreased by approximately 7 per cent compared with 2010 emissions. This decrease is mainly the result of decreased fuel combustion in the Energy sector (less electricity production) and in the petrochemical industry. Fuel use for space heating decreased due to the mild winter compared with the very cold 2010 winter. In 2011, total direct greenhouse gas emissions (excluding emissions from LULUCF (land use, land use change and forestry) in The Netherlands amounted to 194.4 Tg CO2 eq. This is approximately 9 per cent below the emissions in the base year 2 (213.2 Tg CO2 eq). This report documents the Netherlands' 2012 annual submission of its greenhouse gas emissions inventory in accordance with the guidelines provided by the United Nations Framework Convention on Climate Change (UNFCCC), the Kyoto Protocol and the European Union's Greenhouse Gas Monitoring Mechanism. The report comprises explanations of observed trends in emissions; a description of an assessment of key sources and their uncertainty; documentation of methods, data sources and emission factors applied; and a description of the quality assurance system and the verification activities performed on the data.

  3. Greenhouse Gas Emissions in the Netherlands 1990-2011. National Inventory Report 2013

    Energy Technology Data Exchange (ETDEWEB)

    Coenen, P.W.H.G.; Droege, R. [Netherlands Organisation for Applied Scientific Research TNO, P.O. Box 80015, NL-3508 TA Utrecht (Netherlands); Zijlema, P.J. [NL Agency, P.O. Box 8242, NL-3503 RE Utrecht (Netherlands); Arets, E.J.M.M. [Alterra Wageningen UR, P.O. Box 47 NL-6700 AA Wageningen (Netherlands); Baas, K. [Statistics Netherlands CBS, P.O. Box 24500, NL-2490 HA Den Haag (Netherlands); Van den Berghe, A.C.W.M. [Rijkswaterstaat, P.O. Box 8242, NL-3503 RE Utrecht (Netherlands); Brandt, A.T. [Dutch Emissions Authority NEa, P.O. Box 91503, NL-2509 EC Den Haag (Netherlands); Geilenkirchen, G. [PBL Netherlands Environmental Assessment Agency, P.O. Box 303 NL-3720 AH Bilthoven (Netherlands); Van der Maas, C.W.M.; Te Biesebeek, J.D.; Van der Hoek, K.W.; Te Molder, R.; Montfoort, J.A.; Peek, C.J.; Vonk, J. [National Institute of Public Health and Environmental Protection RIVM, Bilthoven (Netherlands)

    2013-04-15

    Total greenhouse gas emissions from The Netherlands in 2011 decreased by approximately 7 per cent compared with 2010 emissions. This decrease is mainly the result of decreased fuel combustion in the Energy sector (less electricity production) and in the petrochemical industry. Fuel use for space heating decreased due to the mild winter compared with the very cold 2010 winter. In 2011, total direct greenhouse gas emissions (excluding emissions from LULUCF (land use, land use change and forestry) in The Netherlands amounted to 194.4 Tg CO2 eq. This is approximately 9 per cent below the emissions in the base year 2 (213.2 Tg CO2 eq). This report documents the Netherlands' 2012 annual submission of its greenhouse gas emissions inventory in accordance with the guidelines provided by the United Nations Framework Convention on Climate Change (UNFCCC), the Kyoto Protocol and the European Union's Greenhouse Gas Monitoring Mechanism. The report comprises explanations of observed trends in emissions; a description of an assessment of key sources and their uncertainty; documentation of methods, data sources and emission factors applied; and a description of the quality assurance system and the verification activities performed on the data.

  4. Continuous greenhouse gas measurements from ice cores

    DEFF Research Database (Denmark)

    Stowasser, Christopher

    Ice cores offer the unique possibility to study the history of past atmospheric greenhouse gases over the last 800,000 years, since past atmospheric air is trapped in bubbles in the ice. Since the 1950s, paleo-scientists have developed a variety of techniques to extract the trapped air from...... individual ice core samples, and to measure the mixing ratio of greenhouse gases such as carbon dioxide, methane and nitrous oxide in the extracted air. The discrete measurements have become highly accurate and reproducible, but require relatively large amounts of ice per measured species and are both time......-consuming and labor-intensive. This PhD thesis presents the development of a new method for measurements of greenhouse gas mixing ratios from ice cores based on a melting device of a continuous flow analysis (CFA) system. The coupling to a CFA melting device enables time-efficient measurements of high resolution...

  5. Multi-objective optimisation of wastewater treatment plant control to reduce greenhouse gas emissions.

    Science.gov (United States)

    Sweetapple, Christine; Fu, Guangtao; Butler, David

    2014-05-15

    This study investigates the potential of control strategy optimisation for the reduction of operational greenhouse gas emissions from wastewater treatment in a cost-effective manner, and demonstrates that significant improvements can be realised. A multi-objective evolutionary algorithm, NSGA-II, is used to derive sets of Pareto optimal operational and control parameter values for an activated sludge wastewater treatment plant, with objectives including minimisation of greenhouse gas emissions, operational costs and effluent pollutant concentrations, subject to legislative compliance. Different problem formulations are explored, to identify the most effective approach to emissions reduction, and the sets of optimal solutions enable identification of trade-offs between conflicting objectives. It is found that multi-objective optimisation can facilitate a significant reduction in greenhouse gas emissions without the need for plant redesign or modification of the control strategy layout, but there are trade-offs to consider: most importantly, if operational costs are not to be increased, reduction of greenhouse gas emissions is likely to incur an increase in effluent ammonia and total nitrogen concentrations. Design of control strategies for a high effluent quality and low costs alone is likely to result in an inadvertent increase in greenhouse gas emissions, so it is of key importance that effects on emissions are considered in control strategy development and optimisation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Determining greenhouse gas balances of biomass fuel cycles. Results to date from task 15 of IEA bio-energy

    International Nuclear Information System (INIS)

    Schlamadinger, B.; Spitzer, J.

    1997-01-01

    Selected activities of IEA Bio-energy Task 15 are described. Task 15 of IEA Bio-energy, entitled 'Greenhouse Gas Balances of Bio-energy Systems', aims at investigating processes involved in the use of bio-energy systems on a full fuel-cycle basis to establish overall greenhouse gas balances. The work of Task 15 includes, among other things, a compilation of existing data on greenhouse gas emissions from various biomass production and conversion processes, a standard methodology for greenhouse gas balances of bio-energy systems, a bibliography, and recommendations for selection of appropriate national strategies for greenhouse gas mitigation. (K.A.)

  7. Monitoring soil greenhouse gas emissions from managed grasslands

    Science.gov (United States)

    Díaz-Pinés, Eugenio; Lu, Haiyan; Butterbach-Bahl, Klaus; Kiese, Ralf

    2014-05-01

    Grasslands in Central Europe are of enormous social, ecological and economical importance. They are intensively managed, but the influence of different common practices (i.e. fertilization, harvesting) on the total greenhouse gas budget of grasslands is not fully understood, yet. In addition, it is unknown how these ecosystems will react due to climate change. Increasing temperatures and changing precipitation will likely have an effect on productivity of grasslands and on bio-geo-chemical processes responsible for emissions of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). In the frame of the TERENO Project (www.tereno.net), a long-term observatory has been implemented in the Ammer catchment, southern Germany. Acting as an in situ global change experiment, 36 big lysimeters (1 m2 section, 150 cm height) have been translocated along an altitudinal gradient, including three sites ranging from 600 to 860 meters above sea level. In addition, two treatments have been considered, corresponding to different management intensities. The overall aim of the pre-alpine TERENO observatory is improving our understanding of the consequences of climate change and management on productivity, greenhouse gas balance, soil nutritional status, nutrient leaching and hydrology of grasslands. Two of the sites are equipped with a fully automated measurement system in order to continuously and accurately monitor the soil-atmosphere greenhouse gas exchange. Thus, a stainless steel chamber (1 m2 section, 80 cm height) is controlled by a robotized system. The chamber is hanging on a metal structure which can move both vertically and horizontally, so that the chamber is able to be set onto each of the lysimeters placed on the field. Furthermore, the headspace of the chamber is connected with a gas tube to a Quantum Cascade Laser, which continuously measures CO2, CH4, N2O and H2O mixing ratios. The chamber acts as a static chamber and sets for 15 minutes onto each lysimeter

  8. Greenhouse gas mitigation can reduce sea-ice loss and increase polar bear persistence

    Science.gov (United States)

    Amstrup, Steven C.; Deweaver, E.T.; Douglas, David C.; Marcot, B.G.; Durner, George M.; Bitz, C.M.; Bailey, D.A.

    2010-01-01

    On the basis of projected losses of their essential sea-ice habitats, a United States Geological Survey research team concluded in 2007 that two-thirds of the worlds polar bears (Ursus maritimus) could disappear by mid-century if business-as-usual greenhouse gas emissions continue. That projection, however, did not consider the possible benefits of greenhouse gas mitigation. A key question is whether temperature increases lead to proportional losses of sea-ice habitat, or whether sea-ice cover crosses a tipping point and irreversibly collapses when temperature reaches a critical threshold. Such a tipping point would mean future greenhouse gas mitigation would confer no conservation benefits to polar bears. Here we show, using a general circulation model, that substantially more sea-ice habitat would be retained if greenhouse gas rise is mitigated. We also show, with Bayesian network model outcomes, that increased habitat retention under greenhouse gas mitigation means that polar bears could persist throughout the century in greater numbers and more areas than in the business-as-usual case. Our general circulation model outcomes did not reveal thresholds leading to irreversible loss of ice; instead, a linear relationship between global mean surface air temperature and sea-ice habitat substantiated the hypothesis that sea-ice thermodynamics can overcome albedo feedbacks proposed to cause sea-ice tipping points. Our outcomes indicate that rapid summer ice losses in models and observations represent increased volatility of a thinning sea-ice cover, rather than tipping-point behaviour. Mitigation-driven Bayesian network outcomes show that previously predicted declines in polar bear distribution and numbers are not unavoidable. Because polar bears are sentinels of the Arctic marine ecosystem and trends in their sea-ice habitats foreshadow future global changes, mitigating greenhouse gas emissions to improve polar bear status would have conservation benefits throughout

  9. Greenhouse gas mitigation can reduce sea-ice loss and increase polar bear persistence.

    Science.gov (United States)

    Amstrup, Steven C; Deweaver, Eric T; Douglas, David C; Marcot, Bruce G; Durner, George M; Bitz, Cecilia M; Bailey, David A

    2010-12-16

    On the basis of projected losses of their essential sea-ice habitats, a United States Geological Survey research team concluded in 2007 that two-thirds of the world's polar bears (Ursus maritimus) could disappear by mid-century if business-as-usual greenhouse gas emissions continue. That projection, however, did not consider the possible benefits of greenhouse gas mitigation. A key question is whether temperature increases lead to proportional losses of sea-ice habitat, or whether sea-ice cover crosses a tipping point and irreversibly collapses when temperature reaches a critical threshold. Such a tipping point would mean future greenhouse gas mitigation would confer no conservation benefits to polar bears. Here we show, using a general circulation model, that substantially more sea-ice habitat would be retained if greenhouse gas rise is mitigated. We also show, with Bayesian network model outcomes, that increased habitat retention under greenhouse gas mitigation means that polar bears could persist throughout the century in greater numbers and more areas than in the business-as-usual case. Our general circulation model outcomes did not reveal thresholds leading to irreversible loss of ice; instead, a linear relationship between global mean surface air temperature and sea-ice habitat substantiated the hypothesis that sea-ice thermodynamics can overcome albedo feedbacks proposed to cause sea-ice tipping points. Our outcomes indicate that rapid summer ice losses in models and observations represent increased volatility of a thinning sea-ice cover, rather than tipping-point behaviour. Mitigation-driven Bayesian network outcomes show that previously predicted declines in polar bear distribution and numbers are not unavoidable. Because polar bears are sentinels of the Arctic marine ecosystem and trends in their sea-ice habitats foreshadow future global changes, mitigating greenhouse gas emissions to improve polar bear status would have conservation benefits throughout

  10. Reducing greenhouse gas emissions from u.s. transportation

    Science.gov (United States)

    2010-01-01

    This report examines the prospects for substantially reducing the greenhouse gas (GHG) emissions from the U.S. transportation sector, which accounts for 27 percent of the GHG emissions of the entire U.S. economy and 30 percent of the world's transpor...

  11. Interagency Pilot of Greenhouse Gas Accounting Tools: Lessons Learned

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, A.; Hotchkiss, E.; Kandt, A.

    2013-02-01

    The Greater Yellowstone Area (GYA) and Tongass National Forest (Tongass) partnered with the National Renewable Energy Laboratory (NREL) to conduct a pilot study of three greenhouse gas (GHG) inventorying tools.

  12. Greenhouse Gas Emissions from Educational Facilities and the EPA Greenhouse Gas Reporting Rule: Actions You Need to Take Now

    Science.gov (United States)

    Wurmbrand, Mitchell M.; Klotz, Thomas C.

    2010-01-01

    On September 22, 2009, The United States Environmental Protection Agency (EPA) issued its final rule on greenhouse gas (GHG) emission reporting. The informational literature that EPA has published to support the rule clearly states that EPA believes the vast majority of smaller GHG-emitting facilities, such as educational facilities, will not be…

  13. Possibilities of using ISO 1406X standards in the management of greenhouse gas emissions

    International Nuclear Information System (INIS)

    Fabian, G.; Priesol, J.

    2009-01-01

    Aim of this paper is to define and describe using of ISO 1406X standards for organization, which production of greenhouse gas emissions represents an important environmental aspect especially in terms of financial benefits accruing from trading with saved / reduced emissions. Following the main aim of this paper, we have set the following sub-objectives and tasks: - Define and describe the algorithm of implementation of program on greenhouse gas emissions according to the requirements and guidelines of the ISO 1406X in the organization; - Create a model of comprehensive management of greenhouse gas emissions standards as described.

  14. A model of greenhouse gas emissions from the management of turf on two golf courses.

    Science.gov (United States)

    Bartlett, Mark D; James, Iain T

    2011-11-01

    An estimated 32,000 golf courses worldwide (approximately 25,600 km2), provide ecosystem goods and services and support an industry contributing over $124 billion globally. Golf courses can impact positively on local biodiversity however their role in the global carbon cycle is not clearly understood. To explore this relationship, the balance between plant–soil system sequestration and greenhouse gas emissions from turf management on golf courses was modelled. Input data were derived from published studies of emissions from agriculture and turfgrass management. Two UK case studies of golf course type were used, a Links course (coastal, medium intensity management, within coastal dune grasses) and a Parkland course (inland, high intensity management, within woodland).Playing surfaces of both golf courses were marginal net sources of greenhouse gas emissions due to maintenance (Links −2.2 ± 0.4 Mg CO2e ha(−1) y(−1); Parkland − 2.0 ± 0.4 Mg CO2e ha(−1) y(−1)). A significant proportion of emissions were from the use of nitrogen fertiliser, especially on tees and greens such that 3% of the golf course area contributed 16% of total greenhouse gas emissions. The area of trees on a golf course was important in determining whole-course emission balance. On the Parkland course, emissions from maintenance were offset by sequestration from turfgrass, and trees which comprised 48% of total area, resulting in a net balance of −5.4 ± 0.9 Mg CO2e ha(−1) y(−1). On the Links course, the proportion of trees was much lower (2%) and sequestration from links grassland resulted in a net balance of −1.6 ± 0.3 Mg CO2e ha(−1) y(−1). Recommendations for golf course management and design include the reduction of nitrogen fertiliser, improved operational efficiency when mowing, the inclusion of appropriate tree-planting and the scaling of component areas to maximise golf course sequestration capacity. The findings are transferrable to the management and design of

  15. Australia's Greenhouse Challenge is a positive step towards abatement of gas emissions

    International Nuclear Information System (INIS)

    Anon.

    1997-01-01

    Australian industry has responded favourably to the Federal Government's Greenhouse Clallenge Program (GCP) which has focused on curbing greenhouse gas emission from the manufacturing, mining and energy sector. It is a carefully shaped program which prompts companies and groups to thoroughly review their individual operations and identify areas where credible new or addition emission control can be employed. There are now 42 companies and associations that have signed agreements in GCP. Together they account for some 15 % of Australia's total greenhouse gas emissions. It is expected that by 2000 the emission increase will be cut to 7 % and the total emissions cut by 16 million tonnes for the 42 companies concerned

  16. Essays on the economics of energy markets. Security of supply and greenhouse gas abatement

    International Nuclear Information System (INIS)

    Dieckhoener, Caroline

    2013-01-01

    In summary, the presented thesis analyzes two distinct economic subjects: security of supply in natural gas markets and greenhouse gas abatement potentials in the residential heating market. These subjects considered both reflect key points in the triangle of energy policy and are both associated with transnational market failures within energy markets. The security of supply analyses in an intermeshed network are approached from a rather normative, top-down perspective of a social planner. On the contrary, the analyses of greenhouse gases emitted by households are positive analyses of consumer choices. The normative analyses of security of supply in natural gas markets and the positive analyses on greenhouse gas abatement in the residential heating market are organized in two parts of the thesis. 1. Normative analyses - Security of supply in natural gas markets: The two papers of the first part of the dissertation thesis are based on a normative approach with the European natural gas market and infrastructure model TIGER that allows for security of supply analyses. The general idea behind the modeling approach is based on the assumption of a social planner and finds an efficient utilization of the natural gas infrastructure. More precisely, the security of supply analyses conducted in the first part of the thesis refer to scenario simulations of disrupted supply routes in the European natural gas network. The effects of these security of supply scenarios on the usage of other infrastructure components, on marginal supply costs and disruptions to consumers are investigated. 2. Positive analyses of greenhouse gas abatement potentials - Econometric modeling of consumer choices and evaluation of public policies: The second part of the thesis includes two positive analyses which investigate household choices to derive greenhouse gas abatement potentials. In the residential heating market, the energy efficiency level exhibited and the type of energy carrier used are

  17. Essays on the economics of energy markets. Security of supply and greenhouse gas abatement

    Energy Technology Data Exchange (ETDEWEB)

    Dieckhoener, Caroline

    2013-02-01

    In summary, the presented thesis analyzes two distinct economic subjects: security of supply in natural gas markets and greenhouse gas abatement potentials in the residential heating market. These subjects considered both reflect key points in the triangle of energy policy and are both associated with transnational market failures within energy markets. The security of supply analyses in an intermeshed network are approached from a rather normative, top-down perspective of a social planner. On the contrary, the analyses of greenhouse gases emitted by households are positive analyses of consumer choices. The normative analyses of security of supply in natural gas markets and the positive analyses on greenhouse gas abatement in the residential heating market are organized in two parts of the thesis. 1. Normative analyses - Security of supply in natural gas markets: The two papers of the first part of the dissertation thesis are based on a normative approach with the European natural gas market and infrastructure model TIGER that allows for security of supply analyses. The general idea behind the modeling approach is based on the assumption of a social planner and finds an efficient utilization of the natural gas infrastructure. More precisely, the security of supply analyses conducted in the first part of the thesis refer to scenario simulations of disrupted supply routes in the European natural gas network. The effects of these security of supply scenarios on the usage of other infrastructure components, on marginal supply costs and disruptions to consumers are investigated. 2. Positive analyses of greenhouse gas abatement potentials - Econometric modeling of consumer choices and evaluation of public policies: The second part of the thesis includes two positive analyses which investigate household choices to derive greenhouse gas abatement potentials. In the residential heating market, the energy efficiency level exhibited and the type of energy carrier used are

  18. Greenhouse gas emissions trading: Cogen case studies in the early trading market

    International Nuclear Information System (INIS)

    Buerer, Mary Jean

    2001-01-01

    An increasing number of companies are interested in opportunities to trade their reduction in greenhouse gas emissions from cogeneration on the emerging greenhouse gas emissions market. Only the UK and Denmark currently have emissions trading schemes, but they are under development in other European countries. Two frameworks currently exist for trading. Baseline-and-credit trading is used in Canada where companies can take part in two voluntary schemes (Greenhouse Gas Emission Reduction Trading Pilot or Clean Air Canada Inc). An example project from the CHP unit at DuPont's Maitland chemical production facility is given, with details of the baselines and calculations used. The other option is company-wide emissions trading. The example given here features the CHP units at BP's refinery and chemicals operations in Texas. The potential revenue from emission reduction projects could help to boost the economics of cogeneration projects

  19. Assessment of alternative disposal methods to reduce greenhouse gas emissions from municipal solid waste in India.

    Science.gov (United States)

    Yedla, Sudhakar; Sindhu, N T

    2016-06-01

    Open dumping, the most commonly practiced method of solid waste disposal in Indian cities, creates serious environment and economic challenges, and also contributes significantly to greenhouse gas emissions. The present article attempts to analyse and identify economically effective ways to reduce greenhouse gas emissions from municipal solid waste. The article looks at the selection of appropriate methods for the control of methane emissions. Multivariate functional models are presented, based on theoretical considerations as well as the field measurements to forecast the greenhouse gas mitigation potential for all the methodologies under consideration. Economic feasibility is tested by calculating the unit cost of waste disposal for the respective disposal process. The purpose-built landfill system proposed by Yedla and Parikh has shown promise in controlling greenhouse gas and saving land. However, these studies show that aerobic composting offers the optimal method, both in terms of controlling greenhouse gas emissions and reducing costs, mainly by requiring less land than other methods. © The Author(s) 2016.

  20. Reducing greenhouse gas emissions and improving air quality: Two global challenges.

    Science.gov (United States)

    Erickson, Larry E

    2017-07-01

    There are many good reasons to promote sustainable development and reduce greenhouse gas emissions and other combustion emissions. The air quality in many urban environments is causing many premature deaths because of asthma, cardiovascular disease, chronic obstructive pulmonary disease, lung cancer, and dementia associated with combustion emissions. The global social cost of air pollution is at least $3 trillion/year; particulates, nitrogen oxides and ozone associated with combustion emissions are very costly pollutants. Better air quality in urban environments is one of the reasons for countries to work together to reduce greenhouse gas emissions through the Paris Agreement on Climate Change. There are many potential benefits associated with limiting climate change. In the recent past, the concentrations of greenhouse gases in the atmosphere have been increasing and the number of weather and climate disasters with costs over $1 billion has been increasing. The average global temperature set new record highs in 2014, 2015, and 2016. To reduce greenhouse gas emissions, the transition to electric vehicles and electricity generation using renewable energy must take place in accord with the goals of the Paris Agreement on Climate Change. This work reviews progress and identifies some of the health benefits associated with reducing combustion emissions. © 2017 American Institute of Chemical Engineers Environ Prog, 36: 982-988, 2017.

  1. FY2010 Federal Government Greenhouse Gas Inventory by Agency

    Data.gov (United States)

    Council on Environmental Quality, Executive Office of the President — The comprehensive Greenhouse Gas (GHG) Emissions Inventory for the Federal Government accounts for emissions associated with Federal operations in FY 2010. Attached...

  2. Quality manual for the Danish greenhouse gas inventory. Version 2

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, O.-K.; Plejdrup, M.S.; Winther, M. [and others

    2013-02-15

    This report outlines the quality work undertaken by the emission inventory group at the Department of Environmental Science, Aarhus University in connection with the preparation and reporting of the Danish greenhouse gas inventory. This report updates and expands on the first version of the quality manual published in 2005. The report fulfils the mandatory requirements for a quality assurance/quality control (QA/QC) plan as lined out in the UNFCCC reporting guidelines and the specifications related to reporting under the Kyoto Protocol. The report describes all elements of the internal QC procedures as well as the QA and verification activities carried out in connection with the Danish greenhouse gas inventory. (Author)

  3. Reducing greenhouse gas emissions through operations and supply chain management

    International Nuclear Information System (INIS)

    Plambeck, Erica L.

    2012-01-01

    The experiences of the largest corporation in the world and those of a start-up company show how companies can profitably reduce greenhouse gas emissions in their supply chains. The operations management literature suggests additional opportunities to profitably reduce emissions in existing supply chains, and provides guidance for expanding the capacity of new “zero emission” supply chains. The potential for companies to profitably reduce emissions is substantial but (without effective climate policy) likely insufficient to avert dangerous climate change. - Highlights: ► Describes how firms are profitably reducing greenhouse gas emissions in their supply chains ► Highlights academic literature relevant to supply chain emission reduction

  4. Peat and the greenhouse effect - Comparison of peat with coal, oil, natural gas and wood

    International Nuclear Information System (INIS)

    Hillebrand, K.

    1993-01-01

    The earth's climate is effected both by natural factors and human activities. So called greenhouse gas emissions increase the increment of the temperature of the air nearby the earth's surface, due to which the social changes can be large. The increment of greenhouse gas concentration in the atmosphere is due to increasing energy consumption. About 50 % of the climatic changes are caused by increase of the CO 2 concentration in the atmosphere. Other gases, formed in the energy production, intensifying the greenhouse effect are methane and nitrous oxide. The effect of greenhouse gases is based on their ability to absorb infrared radiation coming from the earth. This presentation discusses some of the greenhouse effect caused by some peat production and utilization chains in comparison with corresponding effects of coal, oil, natural gas and wood. The instantaneous greenhouse effects and the cumulative effects of the emissions of the gases (CO 2 , CH 4 and N 2 O) during a time period has been reviewed. The greenhouse effect has been calculated as CO 2 - equivalents. (5 figs.)

  5. Greenhouse gas emissions from alternative futures of deforestation and agricultural management in the southern Amazon.

    Science.gov (United States)

    Galford, Gillian L; Melillo, Jerry M; Kicklighter, David W; Cronin, Timothy W; Cerri, Carlos E P; Mustard, John F; Cerri, Carlos C

    2010-11-16

    The Brazilian Amazon is one of the most rapidly developing agricultural areas in the world and represents a potentially large future source of greenhouse gases from land clearing and subsequent agricultural management. In an integrated approach, we estimate the greenhouse gas dynamics of natural ecosystems and agricultural ecosystems after clearing in the context of a future climate. We examine scenarios of deforestation and postclearing land use to estimate the future (2006-2050) impacts on carbon dioxide (CO(2)), methane (CH(4)), and nitrous oxide (N(2)O) emissions from the agricultural frontier state of Mato Grosso, using a process-based biogeochemistry model, the Terrestrial Ecosystems Model (TEM). We estimate a net emission of greenhouse gases from Mato Grosso, ranging from 2.8 to 15.9 Pg CO(2)-equivalents (CO(2)-e) from 2006 to 2050. Deforestation is the largest source of greenhouse gas emissions over this period, but land uses following clearing account for a substantial portion (24-49%) of the net greenhouse gas budget. Due to land-cover and land-use change, there is a small foregone carbon sequestration of 0.2-0.4 Pg CO(2)-e by natural forests and cerrado between 2006 and 2050. Both deforestation and future land-use management play important roles in the net greenhouse gas emissions of this frontier, suggesting that both should be considered in emissions policies. We find that avoided deforestation remains the best strategy for minimizing future greenhouse gas emissions from Mato Grosso.

  6. Greenhouse gas emissions from integrated urban drainage systems

    DEFF Research Database (Denmark)

    Mannina, Giorgio; Butler, David; Benedetti, Lorenzo

    2018-01-01

    As sources of greenhouse gas (GHG) emissions, integrated urban drainage systems (IUDSs) (i.e., sewer systems, wastewater treatment plants and receiving water bodies) contribute to climate change. This paper, produced by the International Working Group on Data and Models, which works under the IWA...

  7. Carbon offsets as an economic alternative to large-scale logging: a case study in Guyana

    Energy Technology Data Exchange (ETDEWEB)

    Osborne, T. [Energy and Resources Group, University of California Berkeley, 310 Barrows Hall, Berkeley CA 94720 (United States); Kiker, C. [Food and Resource Economics Department, University of Florida, PO Box 110240, Gainesville, FL 32611 (United States)

    2005-03-01

    The objective of this study is to analyze the economic viability of carbon-offset projects that avoid logging in Guyana's forests. The results of this case study illustrate the cost effectiveness of alternative land-use options that reduce deforestation and associated greenhouse gas (GHG) emissions. This analysis demonstrates that using Guyana's rainforests for climate change mitigation can generate equivalent revenue to that of conventional large-scale logging without detrimental environmental impacts. At a 12% discount rate, the break-even price for carbon is estimated to be about US$ 0.20/tC. This estimate falls toward the low range of carbon prices for existing carbon offset projects that avoid deforestation.

  8. Japanese citizens’ preferences regarding voluntary carbon offsets: an experimental social survey of Yokohama and Kitakyushu

    International Nuclear Information System (INIS)

    Nakamura, Hidenori; Kato, Takaaki

    2013-01-01

    This study uses an experimental social survey in two large Japanese cities to explore citizens’ attitudes toward international voluntary carbon offsetting that encourages low carbon development in developing countries. In particular, the study focuses on whether the offsetting is a contribution to meet national target of greenhouse gas (GHG) emissions reduction under the Kyoto Protocol or reduction beyond the national target, using Kyoto credits generated from climate change mitigation projects in developing countries. The study finds that around 40% of the survey respondents chose real carbon offsetting over a gift certificate as compensation for their participation in the survey, around half of whom chose carbon offsetting contribution to the world. However, most of the current Japanese carbon offsetting providers utilise only the carbon offsetting contribution to the Japanese government. Thus, Japanese citizens have significant untapped potential for undertaking more carbon offsetting to meet targets other than national targets. However, the results also show that there is a general lack of understanding regarding the mechanism of carbon offsetting. Carbon offsetting providers in Japan and other countries that may have national self-imposed targets and allowing the usage of international carbon offsetting should therefore be considered, so as to provide individuals with the options of either contributing to their government to help it meet its national target or contributing to the world to help reduce GHG emissions beyond the national targets.

  9. Greenhouse gas trading

    Energy Technology Data Exchange (ETDEWEB)

    Drazilov, P. [Natsource-Tullett Emissions Brokerage, Toronto, ON (Canada)

    2001-07-01

    Natsource-Tullett Emissions Brokerage is a market leader in natural gas, electricity, coal, and weather, emissions with a total of more than $2 billion by volume in emissions transactions in the United States, Canada, Australia, Japan, and Europe. This power point presentation addressed issues dealing with global warming, the Kyoto Protocol, and explained where we are in terms of reaching commitments for the first compliance period between 2008-2012. The paper focused on international emissions trading (IET), joint implementation (JI) and the clean development mechanism (CDM) and explained how greenhouse gases are traded. Emissions trading refers to the trade of carbon dioxide, methane, nitrous oxides, perfluoro-carbons, hydrofluorocarbons, and sulphur hexafluorides. The motivational drivers for trading were outlined in terms of liability for buyers and assets for sellers. To date, trading activity is nearly 120 transactions with nearly 70 million tons of carbon dioxide equivalent. tabs., figs.

  10. State and Territory Greenhouse Gas Emissions. An overview

    International Nuclear Information System (INIS)

    2005-04-01

    This document is a summary of the latest available estimates of greenhouse gas emissions for the States and Territories. They are taken from the national inventory and show emissions for 2002, the latest year for which national statistics on fuel and electricity consumption are available. The report shows that Australia's total greenhouse gas emissions in 2002 amounted to 541.8 million tonnes. The State and Territory breakdown was: New South Wales: 151.5 million tonnes (Mt); Queensland: 145.1 Mt; Victoria: 117.0 Mt; Western Australia: 70.4 Mt; South Australia: 30.9 Mt; Northern Territory: 17.7 Mt; Tasmania: 7.2 Mt; ACT: 1.3 Mt. The State and Territory inventories are the first of what will be an annual series. The national inventory and State and Territory inventories are all prepared according to the international rules and procedures applicable to Australia's Kyoto 108% emissions target. The national inventory undergoes regular independent international review

  11. Greenhouse Gas and Noxious Emissions from Dual Fuel Diesel and Natural Gas Heavy Goods Vehicles.

    Science.gov (United States)

    Stettler, Marc E J; Midgley, William J B; Swanson, Jacob J; Cebon, David; Boies, Adam M

    2016-02-16

    Dual fuel diesel and natural gas heavy goods vehicles (HGVs) operate on a combination of the two fuels simultaneously. By substituting diesel for natural gas, vehicle operators can benefit from reduced fuel costs and as natural gas has a lower CO2 intensity compared to diesel, dual fuel HGVs have the potential to reduce greenhouse gas (GHG) emissions from the freight sector. In this study, energy consumption, greenhouse gas and noxious emissions for five after-market dual fuel configurations of two vehicle platforms are compared relative to their diesel-only baseline values over transient and steady state testing. Over a transient cycle, CO2 emissions are reduced by up to 9%; however, methane (CH4) emissions due to incomplete combustion lead to CO2e emissions that are 50-127% higher than the equivalent diesel vehicle. Oxidation catalysts evaluated on the vehicles at steady state reduced CH4 emissions by at most 15% at exhaust gas temperatures representative of transient conditions. This study highlights that control of CH4 emissions and improved control of in-cylinder CH4 combustion are required to reduce total GHG emissions of dual fuel HGVs relative to diesel vehicles.

  12. The possibilities of municipal operations to control greenhouse gas emissions of road traffic

    Energy Technology Data Exchange (ETDEWEB)

    Saeily, S.

    2004-07-01

    Kyoto protocol obligates industrialized countries to decrease their greenhouse gas emissions averagely by 5,2 percent from the 1990 level before 2008-2012. Finland is committed to stabilize its greenhouse gas emissions to the level of year 1990 before 2008-2012. Carbon monoxide, hydrocarbon, nitric oxide, sulphur dioxide, particles and carbon dioxide are regarded as hazardous emissions of road traffic. These gases are generated by impure burning which is generally expected. From these gases carbon dioxide is considered to be the actual greenhouse gas. Nitric oxide, vaporizing hydrocarbons, sulphur dioxide and carbon monoxide are considered to be indirect greenhouse gases. 20 percent of Finland's carbon dioxide emissions comes from road traffic. Actions aimed to decrease greenhouse gas emissions can be executed at various levels. The smaller the size of an actor is, the more specific the possible actions are. The actions of public administration are based on controlling economy, traffic systems and maintenance of order. The actions of private companies and communities are based on economical profitability. Decisions of individual persons are still the most significant factor in decreasing green house gases generated by passenger traffic. In this study an operations model was developed for municipalities to reduce their greenhouse gas emissions. As a case city of the study was the city of Tampere. Tampere is the third largest city in Finland and has over 15,000 employees. A more specific set of measures was introduced to three different operational units, the University Hospital of Tampere, the primary school of Tammela and the amusement park Saerkaenniemi. For each unit suitable measures were searched by studying the unit's traffic-related significance to help to decrease the unit's greenhouse gas emissions. The traffic generated by municipal operations is mainly related to commuting, work-related, customer and maintenance traffic. Measures which are

  13. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300

    NARCIS (Netherlands)

    Meinhausen, M.; Smith, S.J.; Calvin, K.; Daniel, J.S.; Kainuma, M.L.T.; Lamarque, J.; Matsumoto, K.; Montzka, S.A.; Raper, S.C.B.; Riahi, K.; Thomson, A.; Velders, G.J.M.; van Vuuren, D.P.|info:eu-repo/dai/nl/11522016X

    2011-01-01

    We present the greenhouse gas concentrations for the Representative Concentration Pathways (RCPs) and their extensions beyond 2100, the Extended Concentration Pathways (ECPs). These projections include all major anthropogenic greenhouse gases and are a result of a multi-year effort to produce new

  14. Greenhouse gas emissions - a global challenge

    International Nuclear Information System (INIS)

    Aarebrot, Eivind; Langvik, Sveinung

    2000-01-01

    The article describes some greenhouse gas emission challenges in the Norwegian petroleum industry. Some of the conclusions are that the national taxation policies are insufficient and that international co-operation is essential in order to obtain significant pollution abatement. The mechanisms for this are not yet in place. Some possible measures are mentioned. The main solution to the problems internationally seems to be international co-operation projects generally with quota trade in order to meet the Kyoto agreement obligations

  15. Greenhouse-gas Consequences of US Corn-based Ethanol in a Flat World

    Science.gov (United States)

    Davidson, E. A.; Coe, M. T.; Nepstad, D. C.; Donner, S. D.; Bustamante, M. M.; Neill, C.

    2008-12-01

    Competition for arable land is now occurring among food, fiber, and fuel production sectors. In the USA, increased corn production for ethanol has come primarily at the expense of reduced soybean production. Only a few countries, mainly Brazil, have appropriate soils, climate, and infrastructure needed for large absolute increases in cropped area in the next decade that could make up the lost US soybean production. Our objective is to improve estimates of the potential net greenhouse gas (GHG) consequences, both domestically and in Brazil, of meeting the new goals established by the US Congress for expansion of corn- based ethanol in the USA. To meet this goal of 57 billion liters per year of corn-based ethanol production, an additional 1-7 million hectares will need to be planted in corn, depending upon assumptions regarding future increases in corn yield. Net GHG emissions saved in the USA by substituting ethanol for gasoline are estimated at 14 Tg CO2-equivalents once the production goal of 57 million L/yr is reached. If reduced US soybean production caused by this increase in US corn planting results in a compensatory increase in Brazilian production of soybeans in the Cerrado and Amazon regions, we estimate a potential net release of 1800 to 9100 Tg CO2-equivalents of GHG emissions due to land-use change. Many opportunities exist for agricultural intensification that would minimize new land clearing and its environmental impacts, but if Brazilian deforestation is held to only 15% of the area estimated here to compensate lost US soybean production, the GHG mitigation of US corn-based ethanol production during the next 15 years would be more than offset by emissions from Brazilian land-use change. Other motivations for advancing corn-based ethanol production in the USA, such as reduced reliance on foreign oil and increased prosperity for farming communities, must be considered separately, but the greenhouse-gas-mitigation rationale is clearly unsupportable.

  16. Talisman Energy Inc. progress on reducing greenhouse gas emissions. Revised ed.

    International Nuclear Information System (INIS)

    2001-01-01

    Talisman Energy Inc., as the largest independent Canadian oil and gas producer, is committed to supporting the Voluntary Challenge and Registry (VCR) Program. To this effect, voluntary measures have been implemented for achieving energy efficiency and greenhouse gas emissions reductions. Some of those measures include a yearly electrical audit in each field, the establishment of facility design and equipment procurement practices, gas well deliverability testing, gas conservation and flare reduction, a new energy data management system, senior management monitoring of greenhouse gas emissions reductions, and several others. Each of these measures was briefly described, and the base year quantification was included along with projections and target setting. Section 6 of the document introduced the measures to achieve targets, followed by section 7 containing results achieved. In section 8, the topic of education, training and awareness was discussed. A brief acknowledgements section was included at the end of the document. 10 tabs., 6 figs

  17. Impacts of urban form on future US passenger-vehicle greenhouse gas emissions

    Energy Technology Data Exchange (ETDEWEB)

    Hankey, Steve; Marshall, Julian D. [Department of Civil Engineering, University of Minnesota, 500 Pillsbury Drive SE, Minneapolis, MN 55455 (United States)

    2010-09-15

    Urban form - for example, sprawl versus infill development - impacts people's daily travel patterns and annual vehicle-kilometers traveled (VKT). This paper explores how urban form impacts greenhouse gas (GHG) emissions from passenger-vehicles, the largest source of urban transportation GHG emissions. Our research uses a recently published urban scaling rule to develop six scenarios for high- and low-sprawl US urban growth. We develop and apply a Monte Carlo approach that describes ensemble statistics for several dozen urban areas rather than forecasting changes in individual urban areas. Then, employing three vehicle- and fuel-technology scenarios, we estimate total passenger VKT and resulting GHG emissions for US urban areas. Our results indicate that comprehensive compact development could reduce US 2000-2020 cumulative emissions by up to 3.2 GtCO{sub 2}e (15-20% of projected cumulative emissions). In general, vehicle GHG mitigation may involve three types of approaches: more-efficient vehicles, lower-GHG fuels, and reduced VKT. Our analyses suggest that all three categories must be evaluated; otherwise, improvements in one or two areas (e.g., vehicle fuel economy, fuel carbon content) can be offset by backsliding in a third area (e.g., VKT growth). (author)

  18. Impacts of urban form on future US passenger-vehicle greenhouse gas emissions

    International Nuclear Information System (INIS)

    Hankey, Steve; Marshall, Julian D.

    2010-01-01

    Urban form - for example, sprawl versus infill development - impacts people's daily travel patterns and annual vehicle-kilometers traveled (VKT). This paper explores how urban form impacts greenhouse gas (GHG) emissions from passenger-vehicles, the largest source of urban transportation GHG emissions. Our research uses a recently published urban scaling rule to develop six scenarios for high- and low-sprawl US urban growth. We develop and apply a Monte Carlo approach that describes ensemble statistics for several dozen urban areas rather than forecasting changes in individual urban areas. Then, employing three vehicle- and fuel-technology scenarios, we estimate total passenger VKT and resulting GHG emissions for US urban areas. Our results indicate that comprehensive compact development could reduce US 2000-2020 cumulative emissions by up to 3.2 GtCO 2 e (15-20% of projected cumulative emissions). In general, vehicle GHG mitigation may involve three types of approaches: more-efficient vehicles, lower-GHG fuels, and reduced VKT. Our analyses suggest that all three categories must be evaluated; otherwise, improvements in one or two areas (e.g., vehicle fuel economy, fuel carbon content) can be offset by backsliding in a third area (e.g., VKT growth).

  19. Greenhouse gas footprints of different biofuel production systems

    NARCIS (Netherlands)

    Hoefnagels, E.T.A.; Smeets, E.M.W.; Faaij, A.P.C.

    2010-01-01

    The aim of this study is to show the impact of different assumptions and methodological choices on the life-cycle greenhouse gas (GHG) performance of biofuels by providing the results for different key parameters on a consistent basis. These include co-products allocation or system expansion, N2O

  20. Greenhouse gas emissions from energy production in Russia: Current status and possible scenarios for the future

    International Nuclear Information System (INIS)

    Ginzburg, V.

    1998-01-01

    In accordance with the framework Convention on Climate Change that was signed and ratified by Russian Federation, periodical reports about the actions of Russia are published. An inventory of human origin sources of greenhouse gas was prepared. Carbondioxide represented 72% of total greenhouse das emissions. Policy and action plans for limiting of greenhouse gas emissions are developing

  1. The effects of carbon tax on the Oregon economy and state greenhouse gas emissions

    Science.gov (United States)

    Rice, A. L.; Butenhoff, C. L.; Renfro, J.; Liu, J.

    2014-12-01

    Of the numerous mechanisms to mitigate greenhouse gas emissions on statewide, regional or national scales in the United States, a tax on carbon is perhaps one of the simplest. By taxing emissions directly, the costs of carbon emissions are incorporated into decision-making processes of market actors including consumers, energy suppliers and policy makers. A carbon tax also internalizes the social costs of climate impacts. In structuring carbon tax revenues to reduce corporate and personal income taxes, the negative incentives created by distortionary income taxes can be reduced or offset entirely. In 2008, the first carbon tax in North America across economic sectors was implemented in British Columbia through such a revenue-neutral program. In this work, we investigate the economic and environmental effects of a carbon tax in the state of Oregon with the goal of informing the state legislature, stakeholders and the public. The study investigates 70 different economic sectors in the Oregon economy and six geographical regions of the state. The economic model is built upon the Carbon Tax Analysis Model (C-TAM) to provide price changes in fuel with data from: the Energy Information Agency National Energy Modeling System (EIA-NEMS) Pacific Region Module which provides Oregon-specific energy forecasts; and fuel price increases imposed at different carbon fees based on fuel-specific carbon content and current and projected regional-specific electricity fuel mixes. CTAM output is incorporated into the Regional Economic Model (REMI) which is used to dynamically forecast economic impacts by region and industry sector including: economic output, employment, wages, fiscal effects and equity. Based on changes in economic output and fuel demand, we further project changes in greenhouse gas emissions resulting from economic activity and calculate revenue generated through a carbon fee. Here, we present results of this modeling effort under different scenarios of carbon fee and

  2. The impact of soil amendments on greenhouse gas emissions: a comprehensive life cycle assessment approach

    Science.gov (United States)

    DeLonge, M. S.; Ryals, R.; Silver, W. L.

    2011-12-01

    Soil amendments, such as compost and manure, can be applied to grasslands to improve soil conditions and enhance aboveground net primary productivity. Applying such amendments can also lead to soil carbon (C) sequestration and, when materials are diverted from waste streams (e.g., landfills, manure lagoons), can offset greenhouse gas (GHG) emissions. However, amendment production and application is also associated with GHG emissions, and the net impact of these amendments remains unclear. To investigate the potential for soil amendments to reduce net GHG emissions, we developed a comprehensive, field-scale life cycle assessment (LCA) model. The LCA includes GHG (i.e., CO2, CH4, N2O) emissions of soil amendment production, application, and ecosystem response. Emissions avoided by diverting materials from landfills or manure management systems are also considered. We developed the model using field observations from grazed annual grassland in northern California (e.g., soil C; above- and belowground net primary productivity; C:N ratios; trace gas emissions from soils, manure piles, and composting), CENTURY model simulations (e.g., long-term soil C and trace gas emissions from soils under various land management strategies), and literature values (e.g., GHG emissions from transportation, inorganic fertilizer production, composting, and enteric fermentation). The LCA quantifies and contrasts the potential net GHG impacts of applying compost, manure, and commercial inorganic fertilizer to grazing lands. To estimate the LCA uncertainty, sensitivity tests were performed on the most widely ranging or highly uncertain parameters (e.g., compost materials, landfill emissions, manure management system emissions). Finally, our results are scaled-up to assess the feasibility and potential impacts of large-scale adoption of soil amendment application as a land-management strategy in California. Our base case results indicate that C sinks and emissions offsets associated with

  3. The potential role of nuclear energy in greenhouse gas abatement strategies

    International Nuclear Information System (INIS)

    Cobb, J.; Cornish, E.

    2002-01-01

    Nuclear energy plays an essential role in avoiding greenhouse gas emissions. The contribution of nuclear power to electricity supplies has grown rapidly since the 1970's. As of July 2000, 432 power reactors were in operation in 31 countries. Nuclear power provided some 2300 TWh. This is about 17% of the world's total electricity, or 7% of total primary energy. This contribution avoids the emissions of about 2300 million tonnes of carbon dioxide annually, assuming that it would otherwise be provided mainly by coal-fired plants. This represents nearly one-third of the carbon dioxide presently emitted by power generation. Since electricity generation accounts for about 30% of all anthropogenic carbon dioxide emissions, total emissions would be about 10% higher if it were not for nuclear power. In contrast, the objective of the Kyoto Protocol is to reduce greenhouse gas emissions in industrialized nations by 5% by 2008-12 compared to a 1990 baseline. In order for atmospheric greenhouse gas concentrations to be stabilized at a sustainable level, it will be necessary to reduce emissions by around 60% from the 1990 level. Advocates of a policy of 'convergence and contraction', where developed and developing countries are to be allowed similar levels of emissions on a per capita basis, state that developed countries may have to reduce emissions by as much as 80%. Nuclear energy will make a significant contribution to meeting the world's future electricity demand while helping reduce greenhouse gas emissions. However, the scale of that contribution will be strongly influenced by the way in which this contribution is recognized in national and international policies designed to tackle climate change. The debate continues to rage over the science of climate change: is climate change the result of human intervention or is it a naturally occurring phenomenon? The majority of scientists involved in this debate would agree that enhanced global warming, as witnessed in recent

  4. Greenhouse gas emission factor development for coal-fired power plants in Korea

    International Nuclear Information System (INIS)

    Jeon, Eui-Chan; Myeong, Soojeong; Sa, Jae-Whan; Kim, Jinsu; Jeong, Jae-Hak

    2010-01-01

    Accurate estimation of greenhouse gas emissions is essential for developing an appropriate strategy to mitigate global warming. This study examined the characteristics of greenhouse gas emission from power plants, a major greenhouse gas source in Korea. The power plants examined use bituminous coal, anthracite, and sub-bituminous coal as fuel. The CO 2 concentration from power plants was measured using GC-FID with methanizer. The amount of carbon, hydrogen, and calorific values in the input fuel was measured using an elemental analyzer and calorimeter. For fuel analysis, CO 2 emission factors for anthracite, bituminous coal, and sub-bituminous coal were 108.9, 88.4, and 97.9 Mg/kJ, respectively. The emission factors developed in this study were compared with those for IPCC. The results showed that CO 2 emission was 10.8% higher for anthracite, 5.5% lower for bituminous coal, and 1.9% higher for sub-bituminous coal than the IPCC figures.

  5. Greenhouse gas emission impacts of carsharing in North America

    Science.gov (United States)

    2010-06-01

    This report presents the results of a study evaluating the greenhouse gas (GHG) emission changes that result from individuals participating in a carsharing organization. In this study, the authors conducted a survey of carsharing members across the c...

  6. Towards a standard methodology for greenhouse gas balances of bioenergy systems in comparison with fossil energy systems

    International Nuclear Information System (INIS)

    Schlamadinger, B.; Jungmeier, G.; Apps, M.; Bohlin, F.; Gustavsson, L.; Marland, G.; Pingoud, K.; Savolainen, I.

    1997-01-01

    In this paper, which was prepared as part of IEA Bioenergy Task XV (''Greenhouse Gas Balances of Bioenergy Systems''), we outline a standard methodology for comparing the greenhouse gas balances of bioenergy systems with those of fossil energy systems. Emphasis is on a careful definition of system boundaries. The following issues are dealt with in detail: time interval analysed and changes of carbon stocks; reference energy systems; energy inputs required to produce, process and transport fuels; mass and energy losses along the entire fuel chain; energy embodied in facility infrastructure; distribution systems; cogeneration systems; by-products; waste wood and other biomass waste for energy; reference land use; and other environmental issues. For each of these areas recommendations are given on how analyses of greenhouse gas balances should be performed. In some cases we also point out alternative ways of doing the greenhouse gas accounting. Finally, the paper gives some recommendations on how bioenergy systems should be optimized from a greenhouse-gas emissions point of view. (author)

  7. Assessment of the impact of the greenhouse gas emission and sink scenarios in Finland on radiative forcing and greenhouse effect

    Energy Technology Data Exchange (ETDEWEB)

    Savolainen, I; Sinisalo, J; Pipatti, R [Technical Research Centre of Finland, Espoo (Finland)

    1997-12-31

    The objective of this work is to study greenhouse gas emissions and sinks and their greenhouse impact as a function of time. The greenhouse impact is expressed in terms of global average radiative forcing, which measures the perturbation in the Earth`s radiation budget. Radiative forcing is calculated on the basis of the concentration changes of the greenhouse gases and the radiation absorption properties of the gases. It takes into account the relatively slow changes in the concentrations due to natural removal and transformation processes and also allows a comparison of the impact of various greenhouse gases and their possible control options as a function of time. In addition to the applications mentioned above, the anthropogenic greenhouse gas emission histories of Nordic countries have been estimated, and the radiative forcing caused by them has been calculated with REFUGE. The dynamic impact of aerosol emissions both from the global point of view and in the context of different energy sources (coal, oil and natural gas) have also been studied. In some instances the caused radiative forcing has been examined on a per capita basis. The radiative forcing calculations contain considerable uncertainty due to inaccurately known factors at several stages of the calculation (emission estimation, concentration calculation and radiative forcing calculation). The total uncertainty of the results is typically on the order of +- 40 %, when absolute values are used. If the results are used in a relative way, e.g. to compare the impacts of different scenarios, the final uncertainty is considerably less (typically + 10 %), due to correlations in almost all stages of the calculation process

  8. Assessment of the impact of the greenhouse gas emission and sink scenarios in Finland on radiative forcing and greenhouse effect

    Energy Technology Data Exchange (ETDEWEB)

    Savolainen, I.; Sinisalo, J.; Pipatti, R. [Technical Research Centre of Finland, Espoo (Finland)

    1996-12-31

    The objective of this work is to study greenhouse gas emissions and sinks and their greenhouse impact as a function of time. The greenhouse impact is expressed in terms of global average radiative forcing, which measures the perturbation in the Earth`s radiation budget. Radiative forcing is calculated on the basis of the concentration changes of the greenhouse gases and the radiation absorption properties of the gases. It takes into account the relatively slow changes in the concentrations due to natural removal and transformation processes and also allows a comparison of the impact of various greenhouse gases and their possible control options as a function of time. In addition to the applications mentioned above, the anthropogenic greenhouse gas emission histories of Nordic countries have been estimated, and the radiative forcing caused by them has been calculated with REFUGE. The dynamic impact of aerosol emissions both from the global point of view and in the context of different energy sources (coal, oil and natural gas) have also been studied. In some instances the caused radiative forcing has been examined on a per capita basis. The radiative forcing calculations contain considerable uncertainty due to inaccurately known factors at several stages of the calculation (emission estimation, concentration calculation and radiative forcing calculation). The total uncertainty of the results is typically on the order of +- 40 %, when absolute values are used. If the results are used in a relative way, e.g. to compare the impacts of different scenarios, the final uncertainty is considerably less (typically + 10 %), due to correlations in almost all stages of the calculation process

  9. A Review of Offset Programs: Trading Systems, Funds, Protocols, Standards and Retailers

    Energy Technology Data Exchange (ETDEWEB)

    Kollmuss, Anja; Lazarus, Michael; Lee, Carrie; Polycarp, Clifford

    2008-11-15

    Carbon or greenhouse gas (GHG) offsets have long been promoted as an important element of a comprehensive climate policy approach. Offset programs can reduce the overall cost of achieving a given emission goal by enabling emission reductions to occur where costs are lower. Furthermore, offsets have the potential to deliver sustainability co-benefits, spurred through technology development and transfer, and to develop human and institutional capacity for reducing emissions in sectors and locations not included in a cap and trade or a mandatory government policy. However, offsets can pose a risk to the environmental integrity of climate actions, especially if issues surrounding additionality, permanence, leakage, quantification and verification are not adequately addressed. The challenge for policymakers is clear: to design offset programs and policies that can maximize their potential benefits while minimizing their potential risks. The goal of this review is to provide an up-to-date analysis and synthesis of the most influential offset programs and activities, to reflect on lessons learned, and thus to inform participants and designers of current and future offset programs. Our intention is to periodically update this review to stay abreast of ongoing developments, and to develop a website portal to make this information more accessible. This version targets programs that meet one or more of the following criteria: - a significant volume of credit transactions occurring or anticipated; - an established set of rules or protocols - path-breaking, novel or otherwise notable initiatives or important lessons learned

  10. Basic study for Joint Implementation Pipeline System Optimization Project including rehabilitation of gas pipeline in Ukraine for greenhouse gas reduction

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    For the purpose of reducing greenhouse effect gas emissions, a study was conducted of a project for repair/optimization of the Shebelinka, Dikanka-Kyiv, gas pipeline system in the Republic of Ukraine. As a result of the study, the following plans were proposed. The gas turbine compressor now in use has been used more than 30 years, and is needed to be changed due to the superannuation. Changes are needed of the equipment used for pipeline inspection, corrosion prevention equipment, damaged data collecting equipment, pressure detection automatic drive valve, etc. Further needed are a portable compressor by which repair work can be done without gas release into the atmospheric air. The investment required for repair/installation of these equipment totaled approximately 216 million dollars. This brings the reduction in greenhouse effect gas emissions of 512,000 tons/year, and the energy conservation of 103,000 tons/year of crude oil or its equivalent. These are estimated at about 10 million dollars in greenhouse effect gas reduction and at 15 million dollars in energy conservation. (NEDO)

  11. [Effects of superphosphate addition on NH3 and greenhouse gas emissions during vegetable waste composting].

    Science.gov (United States)

    Yang, Yan; Sun, Qin-ping; Li, Ni; Liu, Chun-sheng; Li, Ji-jin; Liu, Ben-sheng; Zou, Guo-yuan

    2015-01-01

    To study the effects of superphosphate (SP) on the NH, and greenhouse gas emissions, vegetable waste composting was performed for 27 days using 6 different treatments. In addition to the controls, five vegetable waste mixtures (0.77 m3 each) were treated with different amounts of the SP additive, namely, 5%, 10%, 15%, 20% and 25%. The ammonia volatilization loss and greenhouse gas emissions were measured during composting. Results indicated that the SP additive significantly decreased the ammonia volatilization and greenhouse gas emissions during vegetable waste composting. The additive reduced the total NH3 emission by 4.0% to 16.7%. The total greenhouse gas emissions (CO2-eq) of all treatments with SP additives were decreased by 10.2% to 20.8%, as compared with the controls. The NH3 emission during vegetable waste composting had the highest contribution to the greenhouse effect caused by the four different gases. The amount of NH3 (CO2-eq) from each treatment ranged from 59.90 kg . t-1 to 81.58 kg . t-1; NH3(CO2-eq) accounted for 69% to 77% of the total emissions from the four gases. Therefore, SP is a cost-effective phosphorus-based fertilizer that can be used as an additive during vegetable waste composting to reduce the NH3 and greenhouse gas emissions as well as to improve the value of compost as a fertilizer.

  12. Redefining RECs-Part 1: Untangling attributes and offsets

    International Nuclear Information System (INIS)

    Gillenwater, Michael

    2008-01-01

    Renewable energy and greenhouse gas emissions markets are currently in a state of confusion regarding the treatment of Renewable Energy Certificates (RECs). Should consumers buy RECs or emission offsets? After examining this question, the author concludes that RECs are not equivalent to emission offset credits, and as currently defined, the retiring of a REC may have no impact on emissions from electric power generation. Consumers who purchase RECs in voluntary green power markets are providing financial assistance to renewable generators in the form of a production subsidy. Generators that sell RECs are not transferring emission reductions, since they are unlikely to have ownership or the ability to quantify reductions using a commonly accepted standard. More importantly, RECs currently sold in voluntary markets do not pass credible additionality tests and can, at best, be expected to have a market demand effect, which will be less than the supply of RECs on the market. REC definitions that use the term 'environmental attributes' or 'environmental benefits' are almost universally ambiguous, providing the mistaken impression that consumers are purchasing a good instead of subsidizing a public good

  13. Research on Greenhouse-Gas-Induced Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Schlesinger, M. E.

    2001-07-15

    During the 5 years of NSF grant ATM 95-22681 (Research on Greenhouse-Gas-Induced Climate Change, $1,605,000, 9/15/1995 to 8/31/2000) we have performed work which we are described in this report under three topics: (1) Development and Application of Atmosphere, Ocean, Photochemical-Transport, and Coupled Models; (2) Analysis Methods and Estimation; and (3) Climate-Change Scenarios, Impacts and Policy.

  14. Results using flue gas desulfurization gypsum in soilless substrates for greenhouse crops

    Science.gov (United States)

    Recent availability of Flue Gas Desulfurization gypsum (FGDG) has led to interested in its possible use in horticulture greenhouse production. Three studies were conducted to determine the effects of increasing rates of FGDG on six greenhouse crops. In the first study, substrates (6:1 pine bark:san...

  15. No effect of cropping system on the greenhouse gas N2O

    DEFF Research Database (Denmark)

    Carter, Mette Sustmann; Chirinda, N.

    2009-01-01

    Organic farming is comparable to conventional in terms of field emissions of the strong greenhouse gas nitrous oxide (N2O). Our study points to the need for increased yields in organic farming as measure to reduced emissions per unit of produce.......Organic farming is comparable to conventional in terms of field emissions of the strong greenhouse gas nitrous oxide (N2O). Our study points to the need for increased yields in organic farming as measure to reduced emissions per unit of produce....

  16. Greenhouse Gas Emissions in the Netherlands 1990-2007. National Inventory Report 2009

    International Nuclear Information System (INIS)

    Van der Maas, C.W.M.; Brandes, L.J.; Baas, K.; Van den Born, G.J.; Geilenkirchen, G.; Te Molder, R.; Nijdam, D.S.; Olivier, J.G.J.; Peek, C.J.; Van Schijndel, M.W.; Van der Sluis, S.M.; Coenen, P.W.H.G; Zijlema, P.J.; Van den Berghe, G.; Guis, B.

    2009-04-01

    This report documents the 2009 Netherlands annual submission of its greenhouse gas emission inventory in accordance with the guidelines provided by the United Nations Framework Convention on Climate Change (UNFCCC), the Kyoto Protocol and the European Union's Greenhouse Gas Monitoring Mechanism. The report comprises explanations of observed trends in emissions; a description of an assessment of key sources and their uncertainty; documentation of methods, data sources and emission factors applied; and a description of the quality assurance system and the verification activities performed on the data

  17. Advancing agricultural greenhouse gas quantification*

    Science.gov (United States)

    Olander, Lydia; Wollenberg, Eva; Tubiello, Francesco; Herold, Martin

    2013-03-01

    1. Introduction Better information on greenhouse gas (GHG) emissions and mitigation potential in the agricultural sector is necessary to manage these emissions and identify responses that are consistent with the food security and economic development priorities of countries. Critical activity data (what crops or livestock are managed in what way) are poor or lacking for many agricultural systems, especially in developing countries. In addition, the currently available methods for quantifying emissions and mitigation are often too expensive or complex or not sufficiently user friendly for widespread use. The purpose of this focus issue is to capture the state of the art in quantifying greenhouse gases from agricultural systems, with the goal of better understanding our current capabilities and near-term potential for improvement, with particular attention to quantification issues relevant to smallholders in developing countries. This work is timely in light of international discussions and negotiations around how agriculture should be included in efforts to reduce and adapt to climate change impacts, and considering that significant climate financing to developing countries in post-2012 agreements may be linked to their increased ability to identify and report GHG emissions (Murphy et al 2010, CCAFS 2011, FAO 2011). 2. Agriculture and climate change mitigation The main agricultural GHGs—methane and nitrous oxide—account for 10%-12% of anthropogenic emissions globally (Smith et al 2008), or around 50% and 60% of total anthropogenic methane and nitrous oxide emissions, respectively, in 2005. Net carbon dioxide fluxes between agricultural land and the atmosphere linked to food production are relatively small, although significant carbon emissions are associated with degradation of organic soils for plantations in tropical regions (Smith et al 2007, FAO 2012). Population growth and shifts in dietary patterns toward more meat and dairy consumption will lead to

  18. Communicating the Uncertainty in Greenhouse Gas Emissions from Agriculture

    Science.gov (United States)

    Milne, Alice; Glendining, Margaret; Perryman, Sarah; Whitmore, Andy

    2014-05-01

    Effective communication of the uncertainty in estimates of greenhouse gas emissions is important. It allows an individual, whether they are a scientist, policy maker or member of the public, to draw proper conclusions and so make sound decisions. Communicating uncertainty is challenging, however. There is no single best method for communicating uncertainty and the success of a particular method will depend on the subject matter and the target audience. Our interest is in communicating the uncertainty in estimates of greenhouse gas emissions from agriculture to those who might directly use the results from a national inventory. We tested six methods of communication. These were: calibrated phrases such as 'very uncertain' and 'likely'; probabilities, whereby the probability of being within a defined range of values is given; confidence intervals for the expected value; histograms; box plots and shaded arrays. We asked 64 individuals who use results from the greenhouse gas inventory for their opinions on how successfully these methods communicated uncertainty. We analysed the results to see which methods were preferred and to see whether this preference was affected either by the professional group to which individuals belonged or the level of mathematics to which they were educated. The professional groups represented in our study were categorised as (i) those who influence policy (ii) research scientists (iii) those representing the environment and (iv) those representing the agricultural industry. The responses to our questionnaire were varied but some clear messages came through. Our analysis showed that although calibrated phrases were thought to be a good method of communication they did not convey enough information and were open to misinterpretation. Shaded arrays were similarly criticized for being open to misinterpretation, but proved to give the best indication of uncertainty when individuals were asked to interpret results from the greenhouse gas

  19. Estimating greenhouse gas emissions of European cities--modeling emissions with only one spatial and one socioeconomic variable.

    Science.gov (United States)

    Baur, Albert H; Lauf, Steffen; Förster, Michael; Kleinschmit, Birgit

    2015-07-01

    Substantive and concerted action is needed to mitigate climate change. However, international negotiations struggle to adopt ambitious legislation and to anticipate more climate-friendly developments. Thus, stronger actions are needed from other players. Cities, being greenhouse gas emission centers, play a key role in promoting the climate change mitigation movement by becoming hubs for smart and low-carbon lifestyles. In this context, a stronger linkage between greenhouse gas emissions and urban development and policy-making seems promising. Therefore, simple approaches are needed to objectively identify crucial emission drivers for deriving appropriate emission reduction strategies. In analyzing 44 European cities, the authors investigate possible socioeconomic and spatial determinants of urban greenhouse gas emissions. Multiple statistical analyses reveal that the average household size and the edge density of discontinuous dense urban fabric explain up to 86% of the total variance of greenhouse gas emissions of EU cities (when controlled for varying electricity carbon intensities). Finally, based on these findings, a multiple regression model is presented to determine greenhouse gas emissions. It is independently evaluated with ten further EU cities. The reliance on only two indicators shows that the model can be easily applied in addressing important greenhouse gas emission sources of European urbanites, when varying power generations are considered. This knowledge can help cities develop adequate climate change mitigation strategies and promote respective policies on the EU or the regional level. The results can further be used to derive first estimates of urban greenhouse gas emissions, if no other analyses are available. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Greenhouse gas inventories for England, Scotland, Wales and Northern Ireland: 1990 and 1995. A scoping study

    Energy Technology Data Exchange (ETDEWEB)

    Salway, A.G.; Dore, C.; Watterson, J.; Murrells, T.

    1999-11-01

    This report presents the results of a scoping study to develop a methodology to produce desegregated greenhouse gas emission inventories for the devoved administrations of the UK. Separate greenhouse gas emission inventories were estimated for England, Scotland, Wales and Northern Ireland for the years 1990 and 1995. The gases reported are carbon dioxide, methane, nitrous oxide, hydrofluorocarbons, perfluorocarbons, and SF{sub 6}. The estimates are consistent with the 1997 UK Greenhouse Gas Inventory and hence the UNFCCC reporting guidelines. Some emissions mainly mobile and offshore sources could not be allocated to any region, so an extra unallocated category was used to report these. Where possible the same methodology was used to calculate the regional emissions as for the UK Inventory. The study showed that the distribution of regional greenhouse gas emissions expressed as global warming potentials in 1995 were: England 75.5%, Scotland, 11.4%; Wales 6.4%; Northern Ireland 3.1%: unallocated, 4%. Following this scoping study, it is intended to publish annually disaggregated inventories for each year from 1990 for England, Scotland, Wales and Northern Ireland, in addition to the UK Greenhouse Gas Inventory. 50 refs., 6 figs., 16 tabs., 2 apps.

  1. The potential role of nuclear energy in greenhouse gas abatement strategies

    International Nuclear Information System (INIS)

    Cobb, J.; Cornish, E.

    2000-01-01

    Nuclear energy will make a significant contribution to meeting the world's future electricity demand while helping reduce greenhouse gas emissions. However the scale of that contribution will be strongly influenced by the way in which this contribution is recognised in national and international policies designed to tackle climate change. The debate continues to rage over the science of climate change: is climate change the result of human intervention or is it a naturally occurring phenomenon? The majority of scientists involved in this debate would agree that enhanced global warming, as witnessed in recent years, has come about as a result of the massive explosion in greenhouse gas emissions since the beginning of the industrial era. This paper will give an overview of the institutions and organisations involved in the international climate change negotiations. It will describe the political positions of different countries on their perceived role of nuclear power in mechanisms designed to reduce greenhouse gas emissions. The paper will also give an insight into the financial impact of assigning a value to carbon emissions and how that might change the relative economics of nuclear power in comparison to fossil fuel generation

  2. Greenhouse gas emissions from solid waste in Beijing: The rising trend and the mitigation effects by management improvements.

    Science.gov (United States)

    Yu, Yongqiang; Zhang, Wen

    2016-04-01

    Disposal of solid waste poses great challenges to city managements. Changes in solid waste composition and disposal methods, along with urbanisation, can certainly affect greenhouse gas emissions from municipal solid waste. In this study, we analysed the changes in the generation, composition and management of municipal solid waste in Beijing. The changes of greenhouse gas emissions from municipal solid waste management were thereafter calculated. The impacts of municipal solid waste management improvements on greenhouse gas emissions and the mitigation effects of treatment techniques of greenhouse gas were also analysed. Municipal solid waste generation in Beijing has increased, and food waste has constituted the most substantial component of municipal solid waste over the past decade. Since the first half of 1950s, greenhouse gas emission has increased from 6 CO2-eq Gg y(-1)to approximately 200 CO2-eq Gg y(-1)in the early 1990s and 2145 CO2-eq Gg y(-1)in 2013. Landfill gas flaring, landfill gas utilisation and energy recovery in incineration are three techniques of the after-emission treatments in municipal solid waste management. The scenario analysis showed that three techniques might reduce greenhouse gas emissions by 22.7%, 4.5% and 9.8%, respectively. In the future, if waste disposal can achieve a ratio of 4:3:3 by landfill, composting and incineration with the proposed after-emission treatments, as stipulated by the Beijing Municipal Waste Management Act, greenhouse gas emissions from municipal solid waste will decrease by 41%. © The Author(s) 2016.

  3. Greenhouse gas contribution of municipal solid waste collection: A case study in the city of Istanbul, Turkey.

    Science.gov (United States)

    Korkut, Nafiz E; Yaman, Cevat; Küçükağa, Yusuf; Jaunich, Megan K; Demir, İbrahim

    2018-02-01

    This article estimates greenhouse gas emissions and global warming factors resulting from collection of municipal solid waste to the transfer stations or landfills in Istanbul for the year of 2015. The aim of this study is to quantify and compare diesel fuel consumption and estimate the greenhouse gas emissions and global warming factors associated with municipal solid waste collection of the 39 districts of Istanbul. Each district's greenhouse gas emissions resulting from the provision and combustion of diesel fuel was estimated by considering the number of collection trips and distances to municipal solid waste facilities. The estimated greenhouse gases and global warming factors for the districts varied from 61.2 to 2759.1 t CO 2 -eq and from 4.60 to 15.20 kg CO 2 -eq t -1 , respectively. The total greenhouse gas emission was estimated as 46.4E3 t CO 2 -eq. Lastly, the collection data from the districts was used to parameterise a collection model that can be used to estimate fuel consumption associated with municipal solid waste collection. This mechanistic model can then be used to predict future fuel consumption and greenhouse gas emissions associated with municipal solid waste collection based on projected population, waste generation, and distance to transfer stations and landfills. The greenhouse gas emissions can be reduced by decreasing the trip numbers and trip distances, building more transfer stations around the city, and making sure that the collection trucks are full in each trip.

  4. The effect of floating vegetation on denitrification and greenhouse gas production in wetland mesocosms

    Science.gov (United States)

    Jacobs, A. E.; Harrison, J. A.

    2012-12-01

    Anthropogenic intensification of nitrogen (N) loading to aquatic ecosystems is widespread and can lead to the degradation of these systems. Wetlands are important sites for N removal via denitrification, the microbially mediated reduction of reactive nitrate to inert N2 gas, but they can also produce high levels of greenhouse gases. Floating plants play an important role in encouraging denitrification, since they create low oxygen conditions that may favor denitrification. We investigated whether wetland sediments with floating plant cover had higher denitrification and greenhouse gas production rates than wetland sediments without floating plants. Replicate flow-through mesocosms with wetland sediment and water were constructed in a growth chamber to mimic the wetland where the sediment and water were collected. Mesocosm treatments were covered with floating vegetation (duckweed), an opaque tarp, or no cover to determine how cover type affects denitrification and greenhouse gas production and whether biotic or abiotic factors are likely responsible for observed differences. Denitrification and greenhouse gas production rates were calculated by measuring excess N2 gas, methane, and nitrous oxide concentrations in the water column and measuring the gas exchange rates between the water column and the atmosphere. Gas exchange rates were measured using an inert volatile tracer added to the water column and accumulation of gas in the mesocosm headspace. Additional mesocosm experiments were performed to determine how duckweed-dominated wetland systems respond to nitrogen loading and which mechanism for lowering dissolved oxygen concentrations is important in affecting denitrification under floating vegetation. Mesocosms with floating vegetation had lower dissolved oxygen than no cover or tarp-covered mesocosms, which is consistent with field and literature observations. Water flowing out of the mesocosms had statistically lower total nitrogen and nitrate concentrations

  5. NF ISO 14064-2. Greenhouse gases. Part 2: specifications and guidance at the project level for quantification, monitoring and reporting of greenhouse gas emission reductions or removal enhancements

    International Nuclear Information System (INIS)

    2005-01-01

    This document describes methodology for quantification, monitoring and reporting of activities intended to cause greenhouse gas emissions and reductions at projects level (activity modifying the conditions identified in a baseline scenario, intended to reduce emissions or to increase the removal of greenhouse gases). Thus it suggests a method for the declarations of inventory of projects greenhouse gases and provides support for the monitoring and the management of emissions. It provides terms and definitions, principles, the introduction to greenhouse gases projects and the requirements for greenhouse gas projects. (A.L.B.)

  6. Greenhouse gas reductions; not warranted, not beneficial

    International Nuclear Information System (INIS)

    Green, K.

    2003-01-01

    This report deals with climate change and greenhouse gas emissions, especially regional climate change predictions, from a sceptic's point of view. It rejects all the conventional evidence supporting claims of extreme man-made climate changes, dismissing them as alarmist and inherently uncertain. Similarly, it characterizes policy prescriptions based on this evidence as faulty and as measures which, if implemented, would do both current and future generations considerably more harm than good. Calls for energy efficiency and conservation, reliance on renewable energy sources, improved efficiency of conventional vehicles, hybrid and fuel-cell-driven cars, reducing the amount of driving, establishing greenhouse gas registries, are all dismissed as impractical, imposing higher costs on energy generally, slowing economic growth in the process, and scaring people to adopt unwise public policies by exaggerating the certainty of predictions about man-made climate change. While dismissing the arguments advanced by 'old-school' environmentalists, the report does not question the validity of the overall theory or details of the core greenhouse effect, its main targets are the anthropogenic components of the observed temperature record, and the evidence of a clear cause-and-effect link between anthropogenic forcing and changes in the Earth's surface temperature. Overall, the report dismisses the 'conventional' view of the extent of climate change, the cause of that change and the risk it poses. It emphasizes the limitations on economic freedom that proposed policies would inflict, and argues in favour of more studies to provide the foundation for a societal response based on a solid understanding of the science behind climate change, and the impact of proposed policy options. 32 refs., 2 figs

  7. Aerosol Observing System Greenhouse Gas (AOS GhG) Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Biraud, S. C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Reichl, K. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-03-01

    The Greenhouse Gas (GhG) Measurement system is a combination of two systems in series: (1) the Tower Gas Processing (TGP) System, an instrument rack which pulls, pressurizes, and dries air streams from an atmospheric sampling tower through a series of control and monitoring components, and (2) the Picarro model G2301 cavity ringdown spectrometer (CRDS), which measures CO2, CH4, and H2O vapor; the primary measurements of the GhG system.

  8. Greenhouse gas emissions in milk and dairy product chains

    DEFF Research Database (Denmark)

    Flysjö, Anna Maria

    Reducing greenhouse gas emissions from dairy products is one important step towards a more sustainable dairy sector. To ensure effective mitigation, reliable assessment methods are required. The present PhD thesis focuses on some of the most critical methodological aspects influencing the carbon ...... throughout the value chain – from cow to consumer.......Reducing greenhouse gas emissions from dairy products is one important step towards a more sustainable dairy sector. To ensure effective mitigation, reliable assessment methods are required. The present PhD thesis focuses on some of the most critical methodological aspects influencing the carbon...... footprint (CF) of milk and dairy products, namely; estimating CH4 and N2O emissions; accounting for land use change; co-product handling; and defining the functional unit. In addition, the CF is calculated for different types of dairy products, and suggestions on various mitigation measures are presented...

  9. ICT and greenhouse gas emissions; IKT og klimagassutslipp

    Energy Technology Data Exchange (ETDEWEB)

    2009-08-15

    ICT can go from being a part of the climate challenge to be an important part of the solution by simplify, rationalize and replace a variety of features and services. ICT's contribute through production and operation for approx. 2.5 % of global greenhouse gas emissions. At the same time estimates show that ICT could help to reduce total greenhouse gas emissions by up to 15 % by 2020 through a series of measures. ICT can, for example. contribute to reduce travel activity through remote collaboration, the transition from material to virtual products and by greater energy efficiency in buildings and vehicles. Through remote collaboration, green tender rounds and change of focus from products to services, can authorities reduce their own emissions. In addition, the authorities go ahead as good examples by illustrating how environment benefits from governmental ICT investments. If we assume that video conferencing can replace 1 of 5 flights among the 140 000 state employees, this can lead to a reducted emission of 14 600 tonnes of CO{sub 2} per year. (AG)

  10. Impact of cutting meat intake on hidden greenhouse gas emissions in an import-reliant city

    Science.gov (United States)

    Yau, Y. Y.; Thibodeau, B.; Not, C.

    2018-06-01

    Greenhouse gas emissions embodied in trade is a growing concern for the international community. Multiple studies have highlighted drawbacks in the territorial and production-based accounting of greenhouse gas emissions because it neglects emissions from the consumption of goods in trade. This creates weak carbon leakage and complicates international agreements on emissions regulations. Therefore, we estimated consumption-based emissions using input-output analysis and life cycle assessment to calculate the greenhouse gas emissions hidden in meat and dairy products in Hong Kong, a city predominately reliant on imports. We found that emissions solely from meat and dairy consumption were higher than the city’s total greenhouse gas emissions using conventional production-based calculation. This implies that government reports underestimate more than half of the emissions, as 62% of emissions are embodied in international trade. The discrepancy emphasizes the need of transitioning climate targets and policy to consumption-based accounting. Furthermore, we have shown that dietary change from a meat-heavy diet to a diet in accordance with governmental nutrition guidelines could achieve a 67% reduction in livestock-related emissions, allowing Hong Kong to achieve the Paris Agreement targets for 2030. Consequently, we concluded that consumption-based accounting for greenhouse gas emissions is crucial to target the areas where emissions reduction is realistically achievable, especially for import-reliant cities like Hong Kong.

  11. Energy budget and greenhouse gas balance evaluation of sustainable coppice systems for electricity production

    International Nuclear Information System (INIS)

    Lettens, Suzanna; Muys, Bart; Ceulemans, Reinhart; Moons, Ellen; Garcia, Juan; Coppin, Pol

    2003-01-01

    The use of bio-energy crops for electricity production is considered an effective means to mitigate the greenhouse effect, mainly due to its ability to substitute fossil fuels. A whole range of crops qualify for bio-energy production and a rational choice is not readily made. This paper evaluates the energy and greenhouse gas balance of a mixed indigenous hardwood coppice as an extensive, low-input bio-energy crop. The impact on fossil energy use and greenhouse gas emission is calculated and discussed by comparing its life cycle (cultivation, processing and conversion into energy) with two conventional bio-energy crops (short rotation systems of willow and Miscanthus). For each life cycle process, the flows of fossil energy and greenhouse gas that are created for the production of one functional unit are calculated. The results show that low-input bio-energy crops use comparatively less fossil fuel and avoid more greenhouse gas emission per unit of produced energy than conventional bio-energy crops during the first 100 yr. Where the mixed coppice system avoids up till 0.13 t CO 2 eq./GJ, Miscanthus does not exceed 0.07 t CO 2 eq./GJ. After 100 yr their performances become comparable, amounting to 0.05 t CO 2 eq./ha/GJ. However, if the land surface itself is chosen as a functional unit, conventional crops perform better with respect to mitigating the greenhouse effect. Miscanthus avoids a maximum of 12.9 t CO 2 eq./ha/yr, while mixed coppice attains 9.5 t CO 2 eq./ha/yr at the most

  12. Greenhouse gas emissions in the Netherlands 1990 - 1995. Methodology and data for 1994 and provisional data for 1995

    NARCIS (Netherlands)

    Spakman J; Olivier JGJ; Amstel AR van; LAE

    1996-01-01

    The inventory presented in this report complies with the obligations under the European Union's Greenhouse Gas Monitoring Mechanism and the UN-FCCC for emission reports on all greenhouse gases not covered under the Montreal protocol. This inventory of greenhouse gas emissions in the Netherlands has

  13. Greenhouse gas abatement cost curves of the residential heating market. A microeconomic approach

    International Nuclear Information System (INIS)

    Dieckhoener, Caroline; Hecking, Harald

    2012-01-01

    In this paper, we develop a microeconomic approach to deduce greenhouse gas abatement cost curves of the residential heating sector. By accounting for household behavior, we find that welfare-based abatement costs are generally higher than pure technical equipment costs. Our results are based on a microsimulation of private households' investment decision for heating systems until 2030. The households' investment behavior in the simulation is derived from a discrete choice estimation which allows investigating the welfare costs of different abatement policies in terms of the compensating variation and the excess burden. We simulate greenhouse gas abatements and welfare costs of carbon taxes and subsidies on heating system investments until 2030 to deduce abatement curves. Given utility maximizing households, our results suggest a carbon tax to be the welfare efficient policy. Assuming behavioral misperceptions instead, a subsidy on investments might have lower marginal greenhouse gas abatement costs than a carbon tax.

  14. Willingness to pay for carbon offset certification and co-benefits among (high-)flying young adults in the UK

    International Nuclear Information System (INIS)

    MacKerron, George J.; Mourato, Susana; Egerton, Catrin; Gaskell, Christopher; Parpia, Aimie

    2009-01-01

    Voluntary carbon offsets represent a growing share of the carbon market as a whole, and have the potential to contribute to meeting greenhouse gas emissions targets and reducing anthropogenic climate change. Certain offset project types may also deliver co-benefits including safeguarding or promoting biodiversity, supporting human development and poverty reduction, and enabling market and technology development in low-carbon sectors. These co-benefits might encourage consumers to participate in the voluntary offset market, depending on their effects both on consumers' willingness to pay (WTP) for offsets and on implementation costs. However, the offset market is not yet sufficiently developed to give a clear indication of consumer WTP for offsets with varying attributes. This exploratory stated preference study therefore uses a choice experiment to estimate WTP for certified and uncertified offsets, with or without these specific co-benefits, in an aviation context. It is, to the best of our knowledge, the first to do so. Our results suggest that uptake of voluntary offsets may be encouraged by investing in projects with co-benefits and by emphasising those co-benefits to consumers. They also suggest that certification regimes will add value to offsets, helping compensate for increased costs, provided that consumers are made fully aware of them. (author)

  15. Providing policy-relevant information for greenhouse gas management: Perspectives from science and technology policy research

    Science.gov (United States)

    Dilling, L.

    2009-12-01

    In the 12 years since the Kyoto Protocol was signed setting forth targets for greenhouse gas emissions from several nations, the number of policies, voluntary programs and commercial enterprises that have developed to manage carbon has grown exponentially. Many of these programs have occurred in a voluntary context, such as carbon trading, carbon offset programs, and climate registries . To date, no single, common system for accrediting, verifying and recording carbon credits has developed. Moreover, as the international community continues to negotiate the dimensions of an international agreement for the post-Kyoto time period, discussions still center on targets for fossil fuel emissions, biospheric carbon protection, and appropriate distribution of the burden of compliance globally. If carbon still remains the currency for discussion in a climate agreement, some type of effective measurement and verification system will be needed to ensure that commitments are being met. While entire volumes over the past decade have been written on what it is possible to observe about the carbon cycle and how to do so-- these tend to describe observations from the perspective of studying the carbon cycle to discover fundamental new knowledge. I will argue, however, that for the application under consideration in this session, i.e. a global greenhouse gas information system, it is essential to bring in the perspective of the policy and regulatory community. The needs of the scientific community for measuring the uncertainties in the global carbon cycle are not necessarily the same as those for the policy community. To ensure that such a system can serve a policy-relevant function, the scientific community must engage with policy makers, entrepreneurs, those who must comply, and others involved in constructing the policy framework. This paper will examine some of the key fundamentals that the policy community may be considering in designing a greenhouse gas monitoring system. I

  16. 77 FR 51499 - Greenhouse Gas Emissions Standards and Fuel Efficiency Standards for Medium- and Heavy-Duty...

    Science.gov (United States)

    2012-08-24

    ... DEPARTMENT OF TRANSPORTATION National Highway Traffic Safety Administration 49 CFR Part 535 [NHTSA 2012-0126] RIN 2127-AK74 Greenhouse Gas Emissions Standards and Fuel Efficiency Standards for Medium... purpose of reducing greenhouse gas (GHG) emissions because the GHG standards fundamentally regulate fuel...

  17. Vision for an Open, Global Greenhouse Gas Information System (GHGIS)

    Science.gov (United States)

    Duren, R. M.; Butler, J. H.; Rotman, D.; Ciais, P.; Greenhouse Gas Information System Team

    2010-12-01

    Over the next few years, an increasing number of entities ranging from international, national, and regional governments, to businesses and private land-owners, are likely to become more involved in efforts to limit atmospheric concentrations of greenhouse gases. In such a world, geospatially resolved information about the location, amount, and rate of greenhouse gas (GHG) emissions will be needed, as well as the stocks and flows of all forms of carbon through the earth system. The ability to implement policies that limit GHG concentrations would be enhanced by a global, open, and transparent greenhouse gas information system (GHGIS). An operational and scientifically robust GHGIS would combine ground-based and space-based observations, carbon-cycle modeling, GHG inventories, synthesis analysis, and an extensive data integration and distribution system, to provide information about anthropogenic and natural sources, sinks, and fluxes of greenhouse gases at temporal and spatial scales relevant to decision making. The GHGIS effort was initiated in 2008 as a grassroots inter-agency collaboration intended to identify the needs for such a system, assess the capabilities of current assets, and suggest priorities for future research and development. We will present a vision for an open, global GHGIS including latest analysis of system requirements, critical gaps, and relationship to related efforts at various agencies, the Group on Earth Observations, and the Intergovernmental Panel on Climate Change.

  18. A suggestion to assess spilled hydrocarbons as a greenhouse gas source

    Energy Technology Data Exchange (ETDEWEB)

    McAlexander, Benjamin L., E-mail: bmcalexander@trihydro.com

    2014-11-15

    Petroleum-contaminated site management typically counts destruction of hydrocarbons by either natural or engineered processes as a beneficial component of remediation. While such oxidation of spilled hydrocarbons is often necessary for achieving risk reduction for nearby human and ecological receptors, site assessments tend to neglect that this also means that the pollutants are converted to greenhouse gases and emitted to the atmosphere. This article presents a suggestion that the current and long term greenhouse gas emissions from spilled hydrocarbons be incorporated to petroleum site assessments. This would provide a more complete picture of pollutant effects that could then be incorporated to remedial objectives. At some sites, this additional information may affect remedy selection. Possible examples include a shift in emphasis to remedial technologies that reduce pollutant greenhouse gas effects (e.g., by conversion of methane to carbon dioxide in the subsurface), and a more holistic context for considering remedial technologies with low emission footprints.

  19. Greenhouse Gas Emissions, Energy Consumption and Economic Growth: A Panel Cointegration Analysis for 16 Asian Countries.

    Science.gov (United States)

    Lu, Wen-Cheng

    2017-11-22

    This research investigates the co-movement and causality relationships between greenhouse gas emissions, energy consumption and economic growth for 16 Asian countries over the period 1990-2012. The empirical findings suggest that in the long run, bidirectional Granger causality between energy consumption, GDP and greenhouse gas emissions and between GDP, greenhouse gas emissions and energy consumption is established. A non-linear, quadratic relationship is revealed between greenhouse gas emissions, energy consumption and economic growth, consistent with the environmental Kuznets curve for these 16 Asian countries and a subsample of the Asian new industrial economy. Short-run relationships are regionally specific across the Asian continent. From the viewpoint of energy policy in Asia, various governments support low-carbon or renewable energy use and are reducing fossil fuel combustion to sustain economic growth, but in some countries, evidence suggests that energy conservation might only be marginal.

  20. Greenhouse Gas Emissions, Energy Consumption and Economic Growth: A Panel Cointegration Analysis for 16 Asian Countries

    Science.gov (United States)

    2017-01-01

    This research investigates the co-movement and causality relationships between greenhouse gas emissions, energy consumption and economic growth for 16 Asian countries over the period 1990–2012. The empirical findings suggest that in the long run, bidirectional Granger causality between energy consumption, GDP and greenhouse gas emissions and between GDP, greenhouse gas emissions and energy consumption is established. A non-linear, quadratic relationship is revealed between greenhouse gas emissions, energy consumption and economic growth, consistent with the environmental Kuznets curve for these 16 Asian countries and a subsample of the Asian new industrial economy. Short-run relationships are regionally specific across the Asian continent. From the viewpoint of energy policy in Asia, various governments support low-carbon or renewable energy use and are reducing fossil fuel combustion to sustain economic growth, but in some countries, evidence suggests that energy conservation might only be marginal. PMID:29165399

  1. Greenhouse Gas Emissions, Energy Consumption and Economic Growth: A Panel Cointegration Analysis for 16 Asian Countries

    Directory of Open Access Journals (Sweden)

    Wen-Cheng Lu

    2017-11-01

    Full Text Available This research investigates the co-movement and causality relationships between greenhouse gas emissions, energy consumption and economic growth for 16 Asian countries over the period 1990–2012. The empirical findings suggest that in the long run, bidirectional Granger causality between energy consumption, GDP and greenhouse gas emissions and between GDP, greenhouse gas emissions and energy consumption is established. A non-linear, quadratic relationship is revealed between greenhouse gas emissions, energy consumption and economic growth, consistent with the environmental Kuznets curve for these 16 Asian countries and a subsample of the Asian new industrial economy. Short-run relationships are regionally specific across the Asian continent. From the viewpoint of energy policy in Asia, various governments support low-carbon or renewable energy use and are reducing fossil fuel combustion to sustain economic growth, but in some countries, evidence suggests that energy conservation might only be marginal.

  2. Greenhouse-gas-induced climatic change: A critical appraisal of simulations and observations

    International Nuclear Information System (INIS)

    Schlesinger, M.E.

    1990-01-01

    This book is the culmination of a Workshop on Greenhouse-Gas-Induced Climatic Change: A Critical Appraisal of Simulations and Observations which was held at the University of Massachusetts, Amherst, during 8--12 May 1989. The objectives of the Workshop were to: (1) present and evaluate the current status of climate model simulations of greenhouse-gas-induced changes of both the equilibrium and nonequilibrium (transient) climates; (2) present and assess the current status of the observations of global and regional climates from the beginning of the industrial revolution to the present, circa 1850 to 1989; (3) present reconstructions of climatic change during the last millennium to determine the ''natural variability'' of climate on the intra-century time scale; (4) critically evaluate whether or not the climate has changes from circa 1850 to 1989; and (5) compare the observations with the model simulations to ascertain whether a greenhouse-gas-induced climatic change has occurred and, if not, to estimate when in the future such a climatic change will likely become detectable against the background of the ''natural variability.''

  3. Greenhouse gas emission controls : differentiated vs. flat rate targets : impacts and concerts

    International Nuclear Information System (INIS)

    Heydanek, D.

    1997-01-01

    Continuing the discussion on differentiation in greenhouse gas emission targets and timetables for all nations, the different implications of differentiation vs. flat rate controls were examined. A scenario of how different targets for different countries based on national circumstances might be implemented, was presented. Implications of differentiation for the Dow Chemical Company were also reviewed. For more than 20 years, Dow has practiced leading edge energy efficiency in environmental management systems and has committed to a series of environmental, health and safety goals. The company believes that at the international level, fully differentiated targets and timetables need to be negotiated, party by party, by the 150 nations who agreed to stabilize greenhouse gas emissions at 1990 levels by year 2000. It was suggested that a strong disincentive exists to delivering energy efficiency beyond compliance. It was predicted that despite efficiency, the energy intensive assets in place today in Annex I countries will be disadvantaged and prematurely retired as the costs of greenhouse gas emission controls grow and exert pressure to move productive capacity offshore

  4. A comparative analysis of vehicle-related greenhouse gas emissions between organic and conventional dairy production.

    Science.gov (United States)

    Aggestam, Vivianne; Buick, Jon

    2017-08-01

    Agricultural industrialisation and globalisation have steadily increased the transportation of food across the world. In efforts to promote sustainability and self-sufficiency, organic milk producers in Sweden are required to produce a higher level of cattle feed on-farm in the hope that increased self-sufficiency will reduce reliance on external inputs and reduce transport-related greenhouse gas emissions. Using data collected from 20 conventional and 20 organic milk producers in Sweden this paper aims to assess the global warming impact of farmyard vehicles and the transportation of feed produced 'off-farm' in order to compare the impact of vehicle-related emissions from the different production methods. The findings show organic and conventional production methods have different vehicle-related emission outputs that vary according to a reliance on either road transportation or increased farmyard machinery use. Mechanical weeding is more fuel demanding than conventional agrichemical sprayers. However, artificial fertilising is one of the highest farmyard vehicle-related emitters. The general findings show organic milk production emits higher levels of farm vehicle-related emissions that fail to be offset by reduced emissions occurring from international transport emissions. This paper does not propose to cover a comprehensive supply chain carbon footprint for milk production or attempt to determine which method of production has the largest climatic impact. However, it does demonstrate that Sweden's legal requirements for organic producers to produce more feed on-farm to reduce transport emissions have brought emissions back within Sweden's greenhouse gas inventory and raises questions around the effectiveness of policies to reduce vehicle-related emissions. Further research is needed into the effectiveness of climate change mitigation on food production policies, in particular looking at various trade-offs that affects the entire food supply chain.

  5. Greenhouse gas measurements from aircraft during CARVE

    Science.gov (United States)

    Chang, R. Y.; Miller, C. E.; Dinardo, S. J.; Karion, A.; Sweeney, C.; Daube, B.; Pittman, J. V.; Miller, J. B.; Budney, J. W.; Gottlieb, E. W.; Santoni, G. W.; Kort, E. A.; Wofsy, S. C.

    2012-12-01

    Permafrost in the Arctic contain large carbon pools that are currently non-labile. As the polar regions warm, these carbon reserves can be released into the atmosphere and impact the greenhouse gas budget. In order to predict future climate scenarios, we need to understand the emissions of these greenhouse gases under varying environmental conditions. This study presents aircraft measurements made as a part of the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) which flew over Alaska from May to September 2012 and captured seasonal and spatial variations. Results from in situ cavity ring down spectroscopy measurements of CO2, CH4 and CO will be discussed and compared with aircraft measurements made during the summer of 1988 as a part of the Arctic Boundary Layer Expedition as well as relevant measurements from the HIAPER Pole-to-Pole Observations experiments (2009-2011).

  6. 75 FR 25323 - Light-Duty Vehicle Greenhouse Gas Emission Standards and Corporate Average Fuel Economy Standards...

    Science.gov (United States)

    2010-05-07

    ... Greenhouse Gas Emission Standards and Corporate Average Fuel Economy Standards; Final Rule #0;#0;Federal... Fuel Economy Standards; Final Rule AGENCY: Environmental Protection Agency (EPA) and National Highway... reduce greenhouse gas emissions and improve fuel economy. This joint Final Rule is consistent with the...

  7. Land clearing and greenhouse gas emissions from Jatropha biofuels on African Miombo Woodlands

    Energy Technology Data Exchange (ETDEWEB)

    Romijn, Henny A., E-mail: h.a.romijn@tue.nl [Technology and Development Studies, Faculty of Industrial Engineering and Innovation Sciences, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands)

    2011-10-15

    The paper investigates greenhouse gas (GHG) emissions from land use change associated with the introduction of large-scale Jatropha curcas cultivation on Miombo Woodland, using data from extant forestry and ecology studies about this ecosystem. Its results support the notion that Jatropha can help sequester atmospheric carbon when grown on complete wastelands and in severely degraded conditions. Conversely, when introduced on tropical woodlands with substantial biomass and medium/high organic soil carbon content, Jatropha will induce significant emissions that offset any GHG savings from the rest of the biofuel production chain. A carbon debt of more than 30 years is projected. On semi-degraded Miombo the overall GHG balance of Jatropha is found to hinge a lot on the extent of carbon depletion of the soil, more than on the state of the biomass. This finding points to the urgent need for detailed measurements of soil carbon in a range of Miombo sub-regions and similar tropical dryland ecosystems in Asia and Latin America. Efforts should be made to clarify concepts such as 'degraded lands' and 'wastelands' and to refine land allocation criteria and official GHG calculation methodologies for biofuels on that basis.

  8. Land clearing and greenhouse gas emissions from Jatropha biofuels on African Miombo Woodlands

    International Nuclear Information System (INIS)

    Romijn, Henny A.

    2011-01-01

    The paper investigates greenhouse gas (GHG) emissions from land use change associated with the introduction of large-scale Jatropha curcas cultivation on Miombo Woodland, using data from extant forestry and ecology studies about this ecosystem. Its results support the notion that Jatropha can help sequester atmospheric carbon when grown on complete wastelands and in severely degraded conditions. Conversely, when introduced on tropical woodlands with substantial biomass and medium/high organic soil carbon content, Jatropha will induce significant emissions that offset any GHG savings from the rest of the biofuel production chain. A carbon debt of more than 30 years is projected. On semi-degraded Miombo the overall GHG balance of Jatropha is found to hinge a lot on the extent of carbon depletion of the soil, more than on the state of the biomass. This finding points to the urgent need for detailed measurements of soil carbon in a range of Miombo sub-regions and similar tropical dryland ecosystems in Asia and Latin America. Efforts should be made to clarify concepts such as 'degraded lands' and 'wastelands' and to refine land allocation criteria and official GHG calculation methodologies for biofuels on that basis.

  9. Potential Greenhouse Gas Emissions Reductions from Optimizing Urban Transit Networks

    Science.gov (United States)

    2016-05-01

    Public transit systems with efficient designs and operating plans can reduce greenhouse gas (GHG) emissions relative to low-occupancy transportation modes, but many current transit systems have not been designed to reduce environmental impacts. This ...

  10. An alternative method for the estimation of greenhouse gas ...

    African Journals Online (AJOL)

    Lindeque

    Abstract. Previous greenhouse gas (GHG) inventories did not include game as an emissions source. Recently game farming has become a recognized commercial enterprise in the agricultural sector in South Africa, contributing approximately R10 billion to the sectorial gross domestic product. The objective of this study.

  11. Aligning corporate greenhouse-gas emissions targets with climate goals

    NARCIS (Netherlands)

    Krabbe, Oskar; Linthorst, Giel; Blok, Kornelis; Crijns-Graus, Wina; Vuuren, Van Detlef P.; Höhne, Niklas; Faria, Pedro; Aden, Nate; Pineda, Alberto Carrillo

    2015-01-01

    Corporate climate action is increasingly considered important in driving the transition towards a low-carbon economy. For this, it is critical to ensure translation of global goals to greenhouse-gas (GHG) emissions reduction targets at company level. At the moment, however, there is a lack of

  12. Aligning corporate greenhouse-gas emissions targets with climate goals

    NARCIS (Netherlands)

    Krabbe, Oskar; Linthorst, Giel; Blok, Kornelis|info:eu-repo/dai/nl/07170275X; Crijns-Graus, Wina|info:eu-repo/dai/nl/308005015; Van Vuuren, Detlef P.|info:eu-repo/dai/nl/11522016X; Höhne, Niklas; Faria, Pedro; Aden, Nate; Pineda, Alberto Carrillo

    2015-01-01

    Corporate climate action is increasingly considered important in driving the transition towards a low-carbon economy. For this, it is critical to ensure translation of global goals to greenhouse-gas (GHG) emissions reduction targets at company level. At the moment, however, there is a lack of clear

  13. The comparison of greenhouse gas emissions in sewage treatment plants with different treatment processes.

    Science.gov (United States)

    Masuda, Shuhei; Sano, Itsumi; Hojo, Toshimasa; Li, Yu-You; Nishimura, Osamu

    2018-02-01

    Greenhouse gas emissions from different sewage treatment plants: oxidation ditch process, double-circulated anoxic-oxic process and anoxic-oxic process were evaluated based on the survey. The methane and nitrous oxide characteristics were discussed based on the gaseous and dissolved gas profiles. As a result, it was found that methane was produced in the sewer pipes and the primary sedimentation tank. Additionally, a ventilation system would promote the gasification of dissolved methane in the first treatment units. Nitrous oxide was produced and emitted in oxic tanks with nitrite accumulation inside the sewage treatment plant. A certain amount of nitrous oxide was also discharged as dissolved gas through the effluent water. If the amount of dissolved nitrous oxide discharge is not included, 7-14% of total nitrous oxide emission would be overlooked. Based on the greenhouse gas calculation, electrical consumption and the N 2 O emission from incineration process were major sources in all the plants. For greenhouse gas reduction, oxidation ditch process has an advantage over the other advanced systems due to lower energy consumption, sludge production, and nitrogen removal without gas stripping. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Separate effects of flooding and anaerobiosis on soil greenhouse gas emissions and redox sensitive biogeochemistry

    Science.gov (United States)

    Gavin McNicol; Whendee L. Silver

    2014-01-01

    Soils are large sources of atmospheric greenhouse gases, and both the magnitude and composition of soil gas emissions are strongly controlled by redox conditions. Though the effect of redox dynamics on greenhouse gas emissions has been well studied in flooded soils, less research has focused on redox dynamics without total soil inundation. For the latter, all that is...

  15. Limiting net greenhouse gas emissions in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, R A; Watts, E C; Williams, E R [eds.

    1991-09-01

    In 2988 the Congress requested DOE produce a study on carbon dioxide inventory and policy to provide an inventory of emissions sources and to analyze policies to achieve a 20% reduction in carbon dioxide emissions in 5 to 10 years and a 50% reduction in 15 to 20 years. This report presents the results of that study. Energy and environmental technology data were analyzed using computational analysis models. This information was then evaluated, drawing on current scientific understanding of global climate change, the possible consequences of anthropogenic climate change (change caused by human activity), and the relationship between energy production and use and the emission of radiactively important gases. Topics discussed include: energy and environmental technology to reduce greenhouse gas emissions, fossil energy production and electricity generation technologies, nuclear energy technology, renewable energy technologies, energy storage, transmission, and distribution technology, transportation, technology, industrial technology, residential and commercial building technology, greenhouse gas removal technology, approaches to restructuring the demand for energy.

  16. Willingness to Pay of Air Passengers for Carbon-Offset

    Directory of Open Access Journals (Sweden)

    Rong-Chang Jou

    2015-03-01

    Full Text Available An important source of anthropogenic greenhouse gas (GHG emissions is the air transport sector, which accounts for approximately 2% of global GHG emissions. Therefore, reducing GHG emissions from aircrafts has become a major challenge for transportation authorities worldwide. In recent years, much research has focused on tax ideas related to the CO2 emissions produced by air transport, such as the voluntary carbon offset (VCO. This study investigates the willingness of economy class air passengers to pay to compensate for the CO2 emissions produced during their journeys from Taiwan to Hong Kong. Together with the Spike model, a framework known as the contingent valuation (CV method offers a way to investigate how much the air passenger would be willing to pay to offset a journey’s airplane-generated CO2 emissions. The Spike model was applied to address the problem of zero willingness to pay (WTP. The results obtained in this study are consistent with the results found in previous studies and therefore can provide valuable insights into pricing strategies for airlines.

  17. A synthesis of research on wood products and greenhouse gas impacts

    International Nuclear Information System (INIS)

    Sathre, R.; O'Connor, J.

    2008-11-01

    Existing scientific literature on the wood products industry was reviewed in an effort to summarize consensus findings, or range of findings, addressing the net life cycle greenhouse gas footprint of wood construction products. The report sought to clarify whether actively managing forests for wood production was better, worse or neutral for climate change than leaving the forest in its natural state. In addition, it sought to quantify the greenhouse gas emissions avoided per unit of wood substituted for non-wood materials. Forty-eight international studies were examined in terms of fossil energy used in wood manufacturing and compared alternatives, such as the avoidance of industrial process carbon emissions as with cement manufacturing; the storage of carbon in forests and forest products; the use of wood by-products as a biofuel replacement for fossil fuels; and carbon storage and emission due to forest products in landfills. The report presented a list of studies reviewed and individual summaries of study findings. A meta-analysis of displacement factors of wood product use was also presented. It was concluded from all of the studies reviewed, that the production of wood-based materials and products results in less greenhouse gas emission than the production of functionally comparable non-wood materials and products. 48 refs., 1 tab.

  18. Pollution prevention through energy efficiency: methodology for evaluating greenhouse gas reductions

    International Nuclear Information System (INIS)

    Widge, V.; Arnold, F.; Karmali, A.

    1992-01-01

    This paper outlines an analytical framework for evaluating the potential for greenhouse gas emission reductions through investments in energy efficiency. In particular, it will describe a model called the Energy and Technology Switching (ETS) model which has been developed at ICF Incorporated. The ETS model has several useful capabilities - it can assess the implications of changing the energy efficiency of new shipments and existing stock of equipment and appliances, or even changes in patterns of fuel use. The ETS model predicts energy use, emissions of related carbon dioxide and other greenhouse gases, and private and social costs (such as energy costs, avoided capital and fuel costs). It also tracks changes in fuel and technology use over time for a user specified end-use application. The paper is organized into three parts: - The first part of the paper describes the methodology used in estimating the reduction in greenhouse gas emissions and the associated net costs of policies that could affect energy use. - In order to demonstrate the model's capabilities, in the second part of the paper, a sample analysis is presented. ICF incorporated has used the ETS model to estimate for the Global Change Division of the U.S. Environmental Protection Agency the costs of reducing greenhouse gas emissions in the residential and commercial sectors of the U.S. economy, encompassing a wide range of technologies and fuel-types. The assumptions and results of this analysis are presented. - Finally, the paper outlines some of the potential uses of this model in assessing pollution prevention opportunities through energy efficient measures. 11 figs

  19. Mitigating greenhouse gas emissions: Voluntary reporting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    The Voluntary Reporting Program, developed pursuant to Section 1605(b) of the Energy Policy Act of 1992, permits corporations, government agencies, households, and voluntary organizations to report on their emissions of greenhouse gases, and on actions taken that have reduced or avoided emissions or sequestered carbon, to the Energy Information Administration (EIA). This, the second annual report of the Voluntary Reporting Program, describes information provided by the participating organizations on their aggregate emissions and emissions reductions, as well as their emissions reduction or avoidance projects, through 1995. This information has been compiled into a database that includes reports from 142 organizations and descriptions of 967 projects that either reduced greenhouse gas emissions or sequestered carbon. Fifty-one reporters also provided estimates of emissions, and emissions reductions achieved, for their entire organizations. The projects described actions taken to reduce emissions of carbon dioxide from energy production and use; to reduce methane and nitrous oxide emissions from energy use, waste management, and agricultural processes; to reduce emissions of halocarbons, such as CFCs and their replacements; and to increase carbon sequestration.

  20. UNEP greenhouse gas abatement costing studies

    International Nuclear Information System (INIS)

    Maya, R.S.; Nziramasanga, N.; Muguti, E.; Fenhann, J.

    1993-10-01

    The aim was to assess options and cost of reducing emissions of greenhouse gases (with emphasis on carbon dioxide) from human activity in Zimbabwe. A brief description of the country's economy and energy sector, policy and pricing and regulations is given and substantial data related to the country's economy, technology, energy consumption, emission and fuel prices are presented. The energy demand in households and for other sectors in Zimbabwe are assessed, and documented in the case of the former. The reference scenarios on energy demand and supply assess greenhouse gas emissions under conditions whereby the present economic growth trends predominate. Energy efficiency improvements are discussed. Abatement technology options are stated as afforestation for carbon sequestration, more efficient coal-fired industrial boilers, extended use of hydroelectricity, prepayment electric meters, minimum tillage, optimization of coal-fired tobacco barns, industrial power factor correction equipment, domestic biogas digesters, solar water heating systems, time switches in electric geysers, optimization of industrial furnaces, photovoltaic water pumps, production of ammonia from coal for fertilizing purposes, and recovery of coke oven gases for use in thermal power generation. (AB)

  1. Regulations for Greenhouse Gas Emissions from Passenger Cars and Trucks

    Science.gov (United States)

    EPA and the National Highway Traffic Safety Administration (NHTSA) are taking coordinated steps to enable the production of a new generation of clean vehicles, through reduced greenhouse gas (GHG) emissions and improved fuel use from onroad vehicles.

  2. Interpretation of Series National Standards of China on “Greenhouse Gas Emissions Accounting and Reporting for Enterprises”

    Science.gov (United States)

    Chen, Liang; Zong, Jianfang; Guo, Huiting; Sun, Liang; Liu, Mei

    2018-05-01

    Standardization is playing an increasingly important role in reducing greenhouse gas emission and in climatic change adaptation, especially in the “three” greenhouse gas emission aspects (measurement, report, verification). Standardization has become one of the most important ways in mitigating the global climate change. Standardization Administration of China (SAC) has taken many productive measures in actively promoting standardization work to cope with climate change. In April 2014, SAC officially approved the establishment of “National Carbon Emission Management Standardization Technical Committee” In November 2015, SAC officially issued the first 11 national standards on carbon management including > and the requirements of the greenhouse gas emissions accounting and reporting in 10 sectors including power generation, power grid, iron and steel, chemical engineering, electrolytic aluminum, magnesium smelting, plate glass, cement, ceramics and civil aviation, which proposes unified requirements of “what to calculate and how to calculate” the greenhouse gas emission for enterprises. This paper focuses on the detailed interpretation of the main contents of the first 11 national standards, so as to provide technical supports for users of the standards and to comprehensively promote the emission reduction of greenhouse gas at the enterprise level.

  3. 76 FR 65971 - Greenhouse Gas Emissions Standards and Fuel Efficiency Standards for Medium- and Heavy-Duty...

    Science.gov (United States)

    2011-10-25

    ... DEPARTMENT OF TRANSPORTATION National Highway Traffic Safety Administration 49 CFR Parts 523 and 535 [NHTSA 2010-0079; EPA-HQ-OAR-2010-0162; FRL-9455-1] RIN 2127-AK74 Greenhouse Gas Emissions... fuel efficiency and reduce greenhouse gas emissions for on-road heavy-duty vehicles, responding to the...

  4. 76 FR 59922 - Greenhouse Gas Emissions Standards and Fuel Efficiency Standards for Medium- and Heavy-Duty...

    Science.gov (United States)

    2011-09-28

    ... DEPARTMENT OF TRANSPORTATION National Highway Traffic Safety Administration 49 CFR Part 535 [NHTSA 2010-0079; EPA-HQ-OAR-2010-0162; FRL-9455-1] RIN 2127-AK74 Greenhouse Gas Emissions Standards and Fuel... comprehensive Heavy-Duty National Program that will increase fuel efficiency and reduce greenhouse gas emissions...

  5. Portuguese agriculture and the evolution of greenhouse gas emissions-can vegetables control livestock emissions?

    Science.gov (United States)

    Mourao, Paulo Reis; Domingues Martinho, Vítor

    2017-07-01

    One of the most serious externalities of agricultural activity relates to greenhouse gas emissions. This work tests this relationship for the Portuguese case by examining data compiled since 1961. Employing cointegration techniques and vector error correction models (VECMs), we conclude that the evolution of the most representative vegetables and fruits in Portuguese production are associated with higher controls on the evolution of greenhouse gas emissions. Reversely, the evolution of the output levels of livestock and the most representative animal production have significantly increased the level of CO 2 (carbon dioxide) reported in Portugal. We also analyze the cycle length of the long-term relationship between agricultural activity and greenhouse gas emissions. In particular, we highlight the case of synthetic fertilizers, whose values of CO 2 have quickly risen due to changes in Portuguese vegetables, fruit, and animal production levels.

  6. Cradle-to-gate greenhouse gas emissions of battery electric and internal combustion engine vehicles in China

    International Nuclear Information System (INIS)

    Qiao, Qinyu; Zhao, Fuquan; Liu, Zongwei; Jiang, Shuhua; Hao, Han

    2017-01-01

    Highlights: •Cradle-to-gate greenhouse gas emissions of internal combustion engine and battery electric vehicles are compared. •Greenhouse gas emissions of battery electric vehicles are 50% higher than internal combustion engine vehicles. •Traction battery production causes about 20% greenhouse gas emissions increase. •10% variations of curb weight, electricity and Li-ion battery production affect the results by 7%, 4% and 2%. •Manufacturing technique improvement, vehicle recycling and energy structure optimization are major mitigation opportunities. -- Abstract: Electric drive vehicles are equipped with totally different propulsion systems compared with conventional vehicles, for which the energy consumption and cradle-to-gate greenhouse gas emissions associated with vehicle production could substantially change. In this study, the life cycle energy consumption and greenhouse gas emissions of vehicle production are compared between battery electric and internal combustion engine vehicles in China’s context. The results reveal that the energy consumption and greenhouse gas emissions of a battery electric vehicle production range from 92.4 to 94.3 GJ and 15.0 to 15.2 t CO 2 eq, which are about 50% higher than those of an internal combustion engine vehicle, 63.5 GJ and 10.0 t CO 2 eq. This substantial change can be mainly attributed to the production of traction batteries, the essential components for battery electric vehicles. Moreover, the larger weight and different weight distribution of materials used in battery electric vehicles also contribute to the larger environmental impact. This situation can be improved through the development of new traction battery production techniques, vehicle recycling and a low-carbon energy structure.

  7. Multi-sectorial convergence in greenhouse gas emissions.

    Science.gov (United States)

    Oliveira, Guilherme de; Bourscheidt, Deise Maria

    2017-07-01

    This paper uses the World Input-Output Database (WIOD) to test the hypothesis of per capita convergence in greenhouse gas (GHG) emissions for a multi-sectorial panel of countries. The empirical strategy applies conventional estimators of random and fixed effects and Arellano and Bond's (1991) GMM to the main pollutants related to the greenhouse effect. For reasonable empirical specifications, the model revealed robust evidence of per capita convergence in CH 4 emissions in the agriculture, food, and services sectors. The evidence of convergence in CO 2 emissions was moderate in the following sectors: agriculture, food, non-durable goods manufacturing, and services. In all cases, the time for convergence was less than 15 years. Regarding emissions by energy use, the largest source of global warming, there was only moderate evidence in the extractive industry sector-all other pollutants presented little or no evidence. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Germany 2050 a greenhouse gas-neutral country. Background paper

    Energy Technology Data Exchange (ETDEWEB)

    Werner, Kathrin; Nissler, Diana (eds.)

    2013-10-15

    For several years, the German Federal Environment Agency (UBA) has been looking at the question how the climate target of a GHG-neutral Germany can be achieved. In a multi-disciplinary project launched by the agency, the first point of call was power generation because of its high emissions. It was shown in 2010 that power generation from 100 % renewable energy is possible. Even then it was understood that a renewable energy supply alone would not be enough to completely abolish greenhouse gas emissions. Other sectors of the economy would have to follow suit and undergo major changes, relying on low-GHG technology. Consequently, the study now submitted, ''Greenhouse gas-neutral Germany 2050'', includes in its research all relevant emission sources that are described in the annual National Inventory Report (NIR) on emissions and removal of greenhouse gases. Alongside complete energy supply, including heating and transport, we also look at emissions from industry, waste disposal, agriculture and forestry as well as changes in land use. We develop a target scenario. The transformations that lead to the target and related economic considerations or the selection of appropriate policy instruments, however, are not part of our study. The scenario analysis is based on the assumption that in 2050, Germany will still be an exporting industrial country with an average annual growth of 0.7 % of its gross domestic product.

  9. [Greenhouse gas emissions, carbon leakage and net carbon sequestration from afforestation and forest management: A review.

    Science.gov (United States)

    Liu, Bo Jie; Lu, Fei; Wang, Xiao Ke; Liu, Wei Wei

    2017-02-01

    Forests play an important role in climate change mitigation and concentration of CO 2 reduction in the atmosphere. Forest management, especially afforestation and forest protection, could increase carbon stock of forests significantly. Carbon sequestration rate of afforestation ranges from 0.04 to 7.52 t C·hm -2 ·a -1 , while that of forest protection is 0.33-5.20 t C·hm -2 ·a -1 . At the same time, greenhouse gas (GHG) is generated within management boundary due to the production and transportation of the materials consumed in relevant activities of afforestation and forest management. In addition, carbon leakage is also generated outside boundary from activity shifting, market effects and change of environments induced by forest management. In this review, we summarized the definition of emission sources of GHG, monitoring methods, quantity and rate of greenhouse gas emissions within boundary of afforestation and forest management. In addition, types, monitoring methods and quantity of carbon leakage outside boundary of forest management were also analyzed. Based on the reviewed results of carbon sequestration, we introduced greenhouse gas emissions within boundary and carbon leakage, net carbon sequestration as well as the countervailing effects of greenhouse gas emissions and carbon leakage to carbon sequestration. Greenhouse gas emissions within management boundary counteract 0.01%-19.3% of carbon sequestration, and such counteraction could increase to as high as 95% considering carbon leakage. Afforestation and forest management have substantial net carbon sequestration benefits, when only taking direct greenhouse gas emissions within boundary and measurable carbon leakage from activity shifting into consideration. Compared with soil carbon sequestration measures in croplands, afforestation and forest management is more advantageous in net carbon sequestration and has better prospects for application in terms of net mitigation potential. Along with the

  10. 40 CFR 86.1818-12 - Greenhouse gas emission standards for light-duty vehicles, light-duty trucks, and medium-duty...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Greenhouse gas emission standards for... Complete Otto-Cycle Heavy-Duty Vehicles § 86.1818-12 Greenhouse gas emission standards for light-duty... group of six greenhouse gases: Carbon dioxide, nitrous oxide, methane, hydrofluorocarbons...

  11. Offset drilling obligations

    International Nuclear Information System (INIS)

    Boyd, K.D.; Kalmakoff, J.J.

    1998-01-01

    A review of the 'offset well' clause found in freehold and Crown natural gas and petroleum leases was presented. The objective was to provide lessors and lessees with a clear understanding of the rights and obligations associated with offset wells. It was noted that offset well obligations vary according to the form of lease used, the type of offsetting well, the regulatory regime and the geophysical characteristics of the producing formation. Some suggestions were made as to how current versions of the offset well clause can be amended to overcome some of the problems encountered in applying the clause to an offset horizontal well that has been drilled on adjoining lands. Failure to resolve the new issues presented by horizontal drilling technology in terms of documentation, which records respective rights and obligations on the basis of generally accepted principles, will result in large numbers of conflicts and unnecessary litigation. 144 refs., 1 fig

  12. UNEP greenhouse gas abatement costing studies

    International Nuclear Information System (INIS)

    Morthorst, P.E.; Grohnheit, P.E.

    1992-04-01

    The project initiated by the United Nations Environment Programme aims to clarify some economic issues involved in greenhouse gas limitation by carrying out comparative studies of various nations. The programme should contribute to the establishment of a consistent methodological framework for making cost assessments of greenhouse gas abatement and help to support countries in the process of establishing national and international agreements on actions to combat climate change. The publication gives a survey of Danish energy demand and supply, emissions and current energy policy issues and reviews existing studies of carbon dioxide reductions. This includes the overall national environmental policy and the plan of action for the transport sector. Conclusions are that there seems to be a long-term potential for significant reduction of CO 2 emission by 10-15% by 2010 with no additional costs, a 50% reduction will cost DKK 25-50 per kg reduced CO 2 . The most promising options include increased use of cogeneration of heat and electricity, and electricity conservation in households, services and in industry. Economic growth is forecast as ca. 2.7% and energy prices for oil products should increase by ca. 4.8%. A 40% reduction of CO 2 emission in the year 2005 would increase costs by 1-2%, and a reduction of two thirds of present emission should be possible at no additional cost compared to the reference cases. There is general agreement that a reduction of carbon dioxide emission of 15-30% by 2005-10 should involve no additional costs to society. (AB) (11 refs.)

  13. Incorporating greenhouse gas (GHG) emissions in long range transportation planning.

    Science.gov (United States)

    2014-05-01

    Greenhouse gas (GHG) emissions continue to be an important focus area for state, local, and federal : agencies. The transportation sector is the second biggest contributor to GHG emissions in the U.S., and : Texas contributes the highest emissions am...

  14. Effects of treated poultry litter on potential Greenhouse Gas ...

    African Journals Online (AJOL)

    This study examined the effects of different treatments of poultry faecal matter on potential greenhouse gas emission and its field application. Poultry litters were randomly assigned to four treatments viz; salt solution, alum, air exclusion and the control (untreated). Alum treated faeces had higher (p<0.05) percentage nitrogen ...

  15. How to design greenhouse gas trading in the EU?

    DEFF Research Database (Denmark)

    Svendsen, Gert Tinggaard; Vesterdal, Morten

    2001-01-01

    A new and remarkable Green Paper about how to trade Greenhouse gases (GHG) in the EU has recently been published by the Commission of the European Union. This to achieve the stated 8% reduction target level. The Green Paper raises ten questions about how greenhouse gas permit trading should...... be designed in the EU before year 2005. These ten questions can be compressed into four main issues, namely target group, allocation of emission allowances, how to mix emission trading with other instruments and fourth enforcement. In the literature, there is a strong need to guide decision...... concerning the future design of GHG permit trading in the EU....

  16. How to Design Greenhouse Gas Trading in the EU?

    DEFF Research Database (Denmark)

    Svendsen, Gert Tinggaard; Vesterdal, Morten

    2003-01-01

    A new and remarkable Green Paper about how to trade Greenhouse gases (GHG) in the EU has recently been published by the Commission of the European Union. This to achieve the stated 8% reduction target level. The Green Paper raises ten questions about how greenhouse gas permit trading should...... be designed in the EU before year 2005. These ten questions can be compressed into four main issues, namely target group, allocation of emission allowances, how to mix emission trading with other instruments and fourth enforcement. In the literature, there is a strong need to guide decision...... concerning the future design of GHG permit trading in the EU. Udgivelsesdato: NOV...

  17. The greenhouse gas emissions performance of cellulosic ethanol supply chains in Europe

    Directory of Open Access Journals (Sweden)

    Bauen Ausilio

    2009-08-01

    Full Text Available Abstract Background Calculating the greenhouse gas savings that may be attributed to biofuels is problematic because production systems are inherently complex and methods used to quantify savings are subjective. Differing approaches and interpretations have fuelled a debate about the environmental merit of biofuels, and consequently about the level of policy support that can be justified. This paper estimates and compares emissions from plausible supply chains for lignocellulosic ethanol production, exemplified using data specific to the UK and Sweden. The common elements that give rise to the greatest greenhouse gas emissions are identified and the sensitivity of total emissions to variations in these elements is estimated. The implications of including consequential impacts including indirect land-use change, and the effects of selecting alternative allocation methods on the interpretation of results are discussed. Results We find that the most important factors affecting supply chain emissions are the emissions embodied in biomass production, the use of electricity in the conversion process and potentially consequential impacts: indirect land-use change and fertiliser replacement. The large quantity of electricity consumed during enzyme manufacture suggests that enzymatic conversion processes may give rise to greater greenhouse gas emissions than the dilute acid conversion process, even though the dilute acid process has a somewhat lower ethanol yield. Conclusion The lignocellulosic ethanol supply chains considered here all lead to greenhouse gas savings relative to gasoline An important caveat to this is that if lignocellulosic ethanol production uses feedstocks that lead to indirect land-use change, or other significant consequential impacts, the benefit may be greatly reduced. Co-locating ethanol, electricity generation and enzyme production in a single facility may improve performance, particularly if this allows the number of energy

  18. Patterns of Carbon Storage and Greenhouse Gas Losses in Urban Residential Lawns

    Science.gov (United States)

    Contosta, A.; Varner, R.; Xiao, J.

    2017-12-01

    Population density and housing age are two factors believed to impact carbon (C) storage and greenhouse gas emissions in one of the most extensively managed landscapes in the U.S.: the urban lawn. Previous research focusing on either above- or below-ground C dynamics has also not explicitly considered how they interact to affect the net carbon balance in urban residential areas. We addressed this knowledge gap by quantifying both soil and vegetative C stocks and greenhouse gas fluxes across an urban gradient in Manchester, NH, USA that included 34 lawns comprising three population density categories, five housing age classes, and the interaction between them. Using a combination of both weekly, manual measurements and continuous, automated estimates, we also sampled emissions of CH4, CO2, and N2O within a subset of these lawns that represented a range of citywide population density and housing age characteristics and management practices. We found that neither above- nor below-ground C storage varied with population density, but both differed among housing age classes. Soil C storage increased with housing age and was highest in the oldest lawns sampled. By contrast, C stocks in aboveground, woody biomass was highest at intermediate ages and lowest in older and new parcels. Unlike C stocks, soil greenhouse gas emissions did not change among population density categories, housing age classes, or with irrigation and fertilization management, but instead followed temporal trends in soil moisture and temperature. Overall, our results suggest that drivers of C storage and greenhouse gas losses in urban residential areas may not be uniform and their accurate representation in Earth system models may require a variety of approaches.

  19. Combining policy instruments to curb greenhouse gas emissions

    International Nuclear Information System (INIS)

    Bahn, O.

    2001-01-01

    The Kyoto Protocol has set greenhouse gas emission reduction targets for selected countries. To comply with these reduction requirements, decision-makers may use market-based instruments on a national or international basis. This paper advocates the combining of national emission taxes with international trade of emission permits. As a numerical application, this paper analyses macro-economic impacts of such a strategy for Switzerland. (Author)

  20. Creating a Methodology for Coordinating High-resolution Air Quality Improvement Map and Greenhouse Gas Mitigation Strategies in Pittsburgh City

    Science.gov (United States)

    Shi, J.; Donahue, N. M.; Klima, K.; Blackhurst, M.

    2016-12-01

    In order to tradeoff global impacts of greenhouse gases with highly local impacts of conventional air pollution, researchers require a method to compare global and regional impacts. Unfortunately, we are not aware of a method that allows these to be compared, "apples-to-apples". In this research we propose a three-step model to compare possible city-wide actions to reduce greenhouse gases and conventional air pollutants. We focus on Pittsburgh, PA, a city with consistently poor air quality that is interested in reducing both greenhouse gases and conventional air pollutants. First, we use the 2013 Pittsburgh Greenhouse Gas Inventory to update the Blackhurst et al. model and conduct a greenhouse gas abatement potentials and implementation costs of proposed greenhouse gas reduction efforts. Second, we use field tests for PM2.5, NOx, SOx, organic carbon (OC) and elemental carbon (EC) data to inform a Land-use Regression Model for local air pollution at a 100m x 100m spatial level, which combined with a social cost of air pollution model (EASIUR) allows us to calculate economic social damages. Third, we combine these two models into a three-dimensional greenhouse gas cost abatement curve to understand the implementation costs and social benefits in terms of air quality improvement and greenhouse gas abatement for each potential intervention. We anticipated such results could provide policy-maker insights in green city development.

  1. Holistic greenhouse gas management

    Energy Technology Data Exchange (ETDEWEB)

    Read, P. [Dept. of Applied and International Economics, Massey Univ. (New Zealand); Parshotam, A. [Inst. of Fundamental Sciences, Massey Univ. (New Zealand)

    2005-07-01

    A holistic greenhouse gas management strategy is described. The first stage is the growth of a large-scale global bio-energy market with world trade in bio-fuels and with a strategic stock of biomass raw material in new plantation forests. Later stages, more costly - as needs may be in response to possible future precursors of abrupt climate change - would involve linking CO2 capture and sequestration to bio-energy, yielding a negative emissions energy system. Illustrative calculations point to the feasibility of a return to pre-industrial CO{sub 2} levels before mid-century. This result is subject to significant caveats, but, prima facie, the first stage can provide several environmental and socio-economic side-benefits while yielding a positive financial return if oil prices remain above 35$/bbl. The vision is that the polluter pays principle can be turned to a greening of the earth. (orig.)

  2. Land Use Effects on Net Greenhouse Gas Fluxes in the US Great Plains: Historical Trends and Model Projections

    Science.gov (United States)

    Del Grosso, S. J.; Parton, W. J.; Ojima, D. S.; Mosier, A. R.; Mosier, A. R.; Paustian, K.; Peterson, G. A.

    2001-12-01

    We present maps showing regional patterns of land use change and soil C levels in the US Great Plains during the 20th century and time series of net greenhouse gas fluxes associated with different land uses. Net greenhouse gas fluxes were calculated by accounting for soil CO2 fluxes, the CO2 equivalents of N2O emissions and CH4 uptake, and the CO2 costs of N fertilizer production. Both historical and modern agriculture in this region have been net sources of greenhouse gases. The primary reason for this, prior to 1950, is that agriculture mined soil C and resulted in net CO2 emissions. When chemical N fertilizer became widely used in the 1950's agricultural soils began to sequester CO2-C but these soils were still net greenhouse gas sources if the effects of increased N2O emissions and decreased CH4 uptake are included. The sensitivity of net greenhouse gas fluxes to conventional and alternative land uses was explored using the DAYCENT ecosystem model. Model projections suggest that conversion to no-till, reduction of the fallow period, and use of nitrification inhibitors can significantly decrease net greenhouse gas emissions in dryland and irrigated systems, while maintaining or increasing crop yields.

  3. Greenhouse gas emissions related to agriculture and land-use practices

    International Nuclear Information System (INIS)

    Burke, L.M.; Lashof, D.A.

    1990-01-01

    This paper reports on the effects of increasing trace gas concentrations and concomitant climate change on agriculture which are likely to be substantial. With cropland and pasture now covering 2 , CH 4 , and N 2 O. Land clearing for agriculture and other purposes is responsible for 10 to 30% of total net CO 2 emissions; the rest is due to fossil fuel combustion. In addition, intentional burning of agricultural wastes, grasslands, and forests makes a significant contribution to global emissions of CO, CH 4 , NO x and N 2 O. Methane emissions from anaerobic respiration in rice (Oryza sativa L.) paddies and domestic animal remains account for 30 to 50% of the global total, making agriculture the dominant anthropogenic source of this gas. The amount of N 2 O emitted as a result of N fertilizer applications is highly uncertain, but may be on the order of 10% of total N 2 O emissions. Future agricultural greenhouse gas emissions will be affected by population growth, economic development, and agricultural practices. Greenhouse gas emissions are likely to increase substantially in the future unless steps are taken to control them. Investigating potential approaches to reducing these emissions while expanding production presents a major challenge to the agricultural research community

  4. Climate Leadership webinar on Greenhouse Gas Management Resources for Small Businesses

    Science.gov (United States)

    Small businesses can calculate their carbon footprint and construct a greenhouse gas inventory to help track progress towards reaching emissions reduction goals. One strategy for this is EPA's Simplified GHG Emissions Calculator.

  5. Greenhouse gas emission factor for coal power chain in China and the comparison with nuclear power chain

    International Nuclear Information System (INIS)

    Ma Zhonghai; Pan Ziqiang; He Huimin

    1999-01-01

    The Greenhouse Gas Emission for coal power chain in China is analyzed in detail and comprehensively by using the Life Cycle Analysis method. The Greenhouse Gas Emission Factors (GGEF) in each link and for the total power chain are calculated. The total GGEF for coal power chain is 1302.3 gCO 2 /kWh, about 40 times more than that for nuclear power chain. And consequently greenhouse effect could not be aggravated further by nuclear power. The energy strategy for nuclear power development is one of reality ways to retard the greenhouse effect, put resources into rational use and protect environment

  6. RE: Request for Correction, Technical Support Document, Greenhouse Gas Emissions Reporting from the Petroleum and Natural Gas Industry

    Science.gov (United States)

    The Industrial Energy Consumers of America (IECA) joins the U.S. Chamber of Commerce in its request for correction of information developed by the Environmental Protection Agency (EPA) in a background technical support document titled Greenhouse Gas Emissions Reporting from the Petroleum and Natural Gas Industry

  7. Estimating the Impact of US Agriculture Subsidies on Greenhouse Gas Emissions

    Science.gov (United States)

    Eshel, G.; Martin, P. A.

    2006-12-01

    It has been proposed in the popular media that US agricultural subsidies contribute deleteriously to both the American diet and environment. In this view, subsidies render mostly corn-based, animal products and sweeteners artificically cheap, leading to enhanced consumption. Problems accompanying this structure mentioned include enhanced meat, fat and sugar consumption and the associated enhancement of obesity, cardiovascular diseases, type II diabetes and possible various types of cancer, as well as air, soil and water pollution. Often overlooked in these discussions is the potential enhancement of greenhouse gas emissions accompanying this policy-based steering of food consumption toward certain products at the expense of others, possibly more nutritionally and environmentally benign. If such enhancements are in fact borne out by data, the policies that give rise to them will prove to constitute government-sponsored enhancement of greenhouse gas emissions, in contrast to any climate change mitigation efforts. If so, they represent low- hanging fruits in the national effort to reduce greenhouse gas emissions which may one day be launched. Agriculture subsidies impact the emissions of CO2 (by direct energy consumption), nitrous oxide (by land use alteration and manure management), and methane (by ruminant digestion and manure treatment). Quantifying the impacts of agricultural subsidies is complicated by many compounding and conflicting effects (many related to human behavior rather than the natural sciences) and the relatively short data timeseries. For example, subsidy policies change over time, certain subsidy types are introduced or eliminated, food preferences change as nutritional understanding (or propaganda) shift, etc. Despite the difficulties, such quantification is crucial to better estimate the overall effect and variability of dietary choices on greenhouse gas emissions, and ultimately minimize environmental impacts. In this study, we take preliminary

  8. Animal health and greenhouse gas intensity: the paradox of periparturient parasitism.

    Science.gov (United States)

    Houdijk, J G M; Tolkamp, B J; Rooke, J A; Hutchings, M R

    2017-09-01

    Here we provide the first known direct measurements of pathogen challenge impacts on greenhouse gas production, yield and intensity. Twin-rearing ewes were ad libitum fed pelleted lucerne from day -32 to 36 (day 0 is parturition), and repeatedly infected with 10,000 Teladorsagia circumcincta infective larvae (n=16), or sham-dosed with water (n=16). A third group of 16 ewes were fed at 80% of uninfected ewes' feed intake during lactation. Methane emissions were measured in respiration chambers (day 30-36) whilst total tract apparent nutrient digestibility around day 28 informed calculated manure methane and nitrous oxide emissions estimates. Periparturient parasitism reduced feed intake (-9%) and litter weight gain (-7%) and doubled maternal body weight loss. Parasitism reduced daily enteric methane production by 10%, did not affect the methane yield per unit of dry matter intake but increased the yield per unit of digestible organic matter intake by 14%. Parasitism did not affect the daily calculated manure methane and nitrous oxide production, but increased the manure methane and nitrous oxide yields per unit of dry matter intake by 16% and 4%, respectively, and per unit of digestible organic matter intake by 46% and 31%, respectively. Accounting for increased lucerne input for delayed weaning and maternal body weight loss compensation, parasitism increased the calculated greenhouse gas intensity per kg of lamb weight gain for enteric methane (+11%), manure methane (+32%) and nitrous oxide (+30%). Supplemented with the global warming potential associated with production of pelleted lucerne, we demonstrated that parasitism increased calculated global warming potential per kg of lamb weight gain by 16%, which was similar to the measured impact of parasitism on the feed conversion ratio. Thus, arising from a pathogen-induced feed efficiency reduction and modified greenhouse gas emissions, we demonstrated that ovine periparturient parasitism increases greenhouse gas

  9. The second generation model of greenhouse gas emissions: background and initial development

    International Nuclear Information System (INIS)

    Baron, R.; Wise, M.A.; Edmonds, J.A.; Pitcher, H.M.; Barns, D.

    1992-01-01

    The analysis of greenhouse gas emissions has made enormous progress during the course of the past decade. We have progressed from the use of simple time-trend extrapolations to the analysis of emissions of several greenhouse gases with parallel but independent behavioral and optimization models of energy, manufacturing, agriculture, and land-use systems. But our ability to examine potential future scenarios of greenhouse gas emissions is limited because modeling tools adequate to the task of integrating analyses of technologies and human activities on a global scale with regional detail, including energy production and consumption, agriculture, manufacture, capital formation, and land-use, along with the interdependencies between these categories, do not yet exist. The first generation of models were specialty models which focused on a particular aspect of the emissions problem without regard to how that activity interacted with other human and natural activities. The natural science pertaining to greenhouse warming now emphasizes the variety of gases associated with potential changes in the radiative composition of the atmosphere: CO 2 , CH 4 , CO, N 2 O, NO x , SO 2 , VOC's, chlorofluorocarbons, (CFC's) and CFC substitutes. Human activities generating the emissions of these gases are interdependent; actions taken to limit emissions from one segment of the economy will affect other segments of the economy. Policy issues such as the recycling of revenues from a carbon tax, land-use changes due to to tree-planting to sequestrate carbon dioxide or extensive development of biomass energy resources, require a more comprehensive modeling approach in which the relationship between technology, institutions, land use, economics and human activity is explicitly represented. The purpose of this paper is to describe briefly the design of a model which is capable of addressing greenhouse gas emissions and the consequences of alternative policy options. 7 refs

  10. Estimating greenhouse gas emissions of European cities — Modeling emissions with only one spatial and one socioeconomic variable

    International Nuclear Information System (INIS)

    Baur, Albert H.; Lauf, Steffen; Förster, Michael; Kleinschmit, Birgit

    2015-01-01

    Substantive and concerted action is needed to mitigate climate change. However, international negotiations struggle to adopt ambitious legislation and to anticipate more climate-friendly developments. Thus, stronger actions are needed from other players. Cities, being greenhouse gas emission centers, play a key role in promoting the climate change mitigation movement by becoming hubs for smart and low-carbon lifestyles. In this context, a stronger linkage between greenhouse gas emissions and urban development and policy-making seems promising. Therefore, simple approaches are needed to objectively identify crucial emission drivers for deriving appropriate emission reduction strategies. In analyzing 44 European cities, the authors investigate possible socioeconomic and spatial determinants of urban greenhouse gas emissions. Multiple statistical analyses reveal that the average household size and the edge density of discontinuous dense urban fabric explain up to 86% of the total variance of greenhouse gas emissions of EU cities (when controlled for varying electricity carbon intensities). Finally, based on these findings, a multiple regression model is presented to determine greenhouse gas emissions. It is independently evaluated with ten further EU cities. The reliance on only two indicators shows that the model can be easily applied in addressing important greenhouse gas emission sources of European urbanites, when varying power generations are considered. This knowledge can help cities develop adequate climate change mitigation strategies and promote respective policies on the EU or the regional level. The results can further be used to derive first estimates of urban greenhouse gas emissions, if no other analyses are available. - Highlights: • Two variables determine urban GHG emissions in Europe, assuming equal power generation. • Household size, inner-urban compactness and power generation drive urban GHG emissions. • Climate policies should consider

  11. Estimating greenhouse gas emissions of European cities — Modeling emissions with only one spatial and one socioeconomic variable

    Energy Technology Data Exchange (ETDEWEB)

    Baur, Albert H., E-mail: Albert.H.Baur@campus.tu-berlin.de; Lauf, Steffen; Förster, Michael; Kleinschmit, Birgit

    2015-07-01

    Substantive and concerted action is needed to mitigate climate change. However, international negotiations struggle to adopt ambitious legislation and to anticipate more climate-friendly developments. Thus, stronger actions are needed from other players. Cities, being greenhouse gas emission centers, play a key role in promoting the climate change mitigation movement by becoming hubs for smart and low-carbon lifestyles. In this context, a stronger linkage between greenhouse gas emissions and urban development and policy-making seems promising. Therefore, simple approaches are needed to objectively identify crucial emission drivers for deriving appropriate emission reduction strategies. In analyzing 44 European cities, the authors investigate possible socioeconomic and spatial determinants of urban greenhouse gas emissions. Multiple statistical analyses reveal that the average household size and the edge density of discontinuous dense urban fabric explain up to 86% of the total variance of greenhouse gas emissions of EU cities (when controlled for varying electricity carbon intensities). Finally, based on these findings, a multiple regression model is presented to determine greenhouse gas emissions. It is independently evaluated with ten further EU cities. The reliance on only two indicators shows that the model can be easily applied in addressing important greenhouse gas emission sources of European urbanites, when varying power generations are considered. This knowledge can help cities develop adequate climate change mitigation strategies and promote respective policies on the EU or the regional level. The results can further be used to derive first estimates of urban greenhouse gas emissions, if no other analyses are available. - Highlights: • Two variables determine urban GHG emissions in Europe, assuming equal power generation. • Household size, inner-urban compactness and power generation drive urban GHG emissions. • Climate policies should consider

  12. Accounting for greenhouse gas emissions outside the national borders in FENCH-GHG energy planning

    International Nuclear Information System (INIS)

    Vate, J.F. van de

    1996-01-01

    This paper aims at providing guidance to the workshop discussion on the accountability of full-energy-chain greenhouse gas emissions from the use of energy sources if emissions did not take place inside the national borders of a country. Examples of such emissions are those from the generation of imported electricity or from mining and transportation of coal and natural gas. The FENCH-GHG approach, if used in energy planning, would automatically take such greenhouse gas emissions, which are inherent to energy systems, into account. The paper raises the basics, practicality and the feasibility of dealing with extra-boundary emissions in energy planning. (author). 3 refs

  13. Reduction of greenhouse gas in power industry by emission trading system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun Myung; Lee, Kee Hoon [Korea Energy Economics Institute, Euiwang (Korea)

    1999-04-01

    The rules governing their implementation and operation for implementing the Kyoto Protocol including emissions permit trading, project-based credit trading and the Clean Development Mechanism are to be decided at future talks. How these policies are eventually designed will determine the effectiveness of the Protocol. However, it has been passive and insufficient to deal with the Kyoto Protocol since there is no obligation on reduction of greenhouse gas emissions. Therefore, the issues on emissions permit trading are analyzed and the strategies for utilizing the Kyoto mechanism effectively are presented through reviewing the existing negotiation strategies. Moreover, how to use emissions permit trading in the power industry, the largest greenhouse gas emissions industry, is examined by dividing into two sections, domestic and abroad. (author). 62 refs., 2 figs., 42 tabs.

  14. Estimating the benefits of greenhouse gas emission reduction from agricultural policy reform

    International Nuclear Information System (INIS)

    Adger, W.N.; Moran, D.C.

    1993-01-01

    Land use and agricultural activities contribute directly to the increased concentrations of atmospheric greenhouse gases. Economic support in industrialized countries generally increases agriculture's contribution to global greenhouse gas concentrations through fluxes associated with land use change and other sources. Changes in economic support offers opportunities to reduce net emissions, through this so far has gone unaccounted. Estimates are presented here of emissions of methane from livestock in the UK and show that, in monetary terms, when compared to the costs of reducing support, greenhouse gases are a significant factor. As signatory parties to the Climate Change Convection are required to stabilize emissions of all greenhouse gases, options for reduction of emissions of methane and other trace gases from the agricultural sector should form part of these strategies

  15. Effects of nitrogen loading on greenhouse gas emissions in salt marshes

    Science.gov (United States)

    Tang, J.; Moseman-Valtierra, S.; Kroeger, K. D.; Morkeski, K.; Mora, J.; Chen, X.; Carey, J.

    2014-12-01

    Salt marshes play an important role in global and regional carbon and nitrogen cycling. We tested the hypothesis that anthropogenic nitrogen loading alters greenhouse gas (GHG, including CO2, CH4, and N2O) emissions and carbon sequestration in salt marshes. We measured GHG emissions biweekly for two growing seasons across a nitrogen-loading gradient of four Spartina salt marshes in Waquoit Bay, Massachusetts. In addition, we conducted nitrogen addition experiments in a pristine marsh by adding low and high nitrate to triplicate plots bi-weekly during the summer. The GHG flux measurements were made in situ with a state-of-the-art mobile gas measurement system using the cavity ring down technology that consists of a CO2/CH4 analyzer (Picarro) and an N2O/CO analyzer (Los Gatos). We observed strong seasonal variations in greenhouse gas emissions. The differences in gas emissions across the nitrogen gradient were not significant, but strong pulse emissions of N2O were observed after nitrogen was artificially added to the marsh. Our results will facilitate model development to simulate GHG emissions in coastal wetlands and support methodology development to assess carbon credits in preserving and restoring coastal wetlands.

  16. How much carbon offsetting and where? Implications of efficiency, effectiveness, and ethicality considerations for public opinion formation

    International Nuclear Information System (INIS)

    Anderson, Brilé; Bernauer, Thomas

    2016-01-01

    A fundamental policy design choice in government-led climate change mitigation is: what role should flexibility mechanisms like carbon offsetting play in reducing greenhouse gas (GHG) emissions. Since public opinion affects the policy choices of government, we investigate how arguments regarding carbon offsetting's economic efficiency, effectiveness, and ethicality, which have been key points in the public debate, impact the public's preferences. We fielded an online framing experiment in the United States (N=995) to empirically identify how arguments for and against carbon offsetting influence public preferences for the inclusion of offsetting in national GHG mitigation policy. We find that the public's support for international offsetting increases and support for reductions at their source (i.e. within firms' own operations) diminishes when considerations of economic efficiency gains are at the forefront. Support for offsetting declines when individuals are confronted with arguments concerning its effectiveness and ethicality, which suggests that future policies will require clear standards of additionality in order to address these concerns. Moreover, we find that how carbon offsetting is framed matters even amongst climate skeptics and support could potentially be enhanced via improved communication on efficiency gains. - Highlights: •We use a framing survey experiment to study public opinion on carbon offsetting. •Efficiency gains increase public support for international carbon offsetting. •Concerns about effectiveness/additionality and ethicality reduce support. •More information on efficiency gains and strengthening additionality could help increase support.

  17. Governance Mechanism for Global Greenhouse Gas Emissions: A Stochastic Differential Game Approach

    Directory of Open Access Journals (Sweden)

    Wei Yu

    2013-01-01

    Full Text Available Today developed and developing countries have to admit the fact that global warming is affecting the earth, but the fundamental problem of how to divide up necessary greenhouse gas reductions between developed and developing countries remains. In this paper, we propose cooperative and noncooperative stochastic differential game models to describe greenhouse gas emissions decision makings of developed and developing countries, calculate their feedback Nash equilibrium and the Pareto optimal solution, characterize parameter spaces that developed and developing countries can cooperate, design cooperative conditions under which participants buy the cooperative payoff, and distribute the cooperative payoff with Nash bargaining solution. Lastly, numerical simulations are employed to illustrate the above results.

  18. Energy and greenhouse gas profiles of polyhydroxybutyrates derived from corn grain: a life cycle perspective.

    Science.gov (United States)

    Kim, Seungdo; Dale, Bruce E

    2008-10-15

    Polyhydroxybutyrates (PHB) are well-known biopolymers derived from sugars orvegetable oils. Cradle-to-gate environmental performance of PHB derived from corn grain is evaluated through life cycle assessment (LCA), particularly nonrenewable energy consumption and greenhouse gas emissions. Site-specific process information on the corn wet milling and PHB fermentation and recovery processes was obtained from Telles. Most of energy used in the corn wet milling and PHB fermentation and recovery processes is generated in a cogeneration power plant in which corn stover, assumed to be representative of a variety of biomass sources that could be used, is burned to generate electricity and steam. County level agricultural information is used in estimating the environmental burdens associated with both corn grain and corn stover production. Results show that PHB derived from corn grain offers environmental advantages over petroleum-derived polymers in terms of nonrenewable energy consumption and greenhouse gas emissions. Furthermore, PHB provides greenhouse gas credits, and thus PHB use reduces greenhouse gas emissions compared to petroleum-derived polymers. Corn cultivation is one of the environmentally sensitive areas in the PHB production system. More sustainable practices in corn cultivation (e.g., using no-tillage and winter cover crops) could reduce the environmental impacts of PHB by up to 72%.

  19. Climate change science : high quality greenhouse gas emissions data are a cornerstone of programs to address climate change

    Science.gov (United States)

    2009-02-24

    This testimony focuses on (1) the importance of quality data on emissions in the context of a program intended to limit greenhouse gas emissions, and (2) key considerations in developing reliable data on greenhouse gas emissions. This testimony is ba...

  20. Residential greenhouse

    Energy Technology Data Exchange (ETDEWEB)

    1985-02-01

    The following report examines the technical and economic viability of residential greenhouse additions in Whitehorse, Yukon. The greenhouse was constructed using the south facing wall of an existing residence as a common wall. Total construction costs were $18,000, including labour. Annual fuel demand for the residence has been reduced by about 10 per cent for an annual saving of $425. In addition, produce to the value of $1,000 is grown annually in the greenhouse for domestic consumption and commercial resale. Typically the greenhouse operates for nine months each year. There is a net thermal loss during the months of November, December and January as a result of the large area of glazing. As well as supplementing the heating supply solar greenhouses can provide additional cash crops which can be used to offset the cost of construction. Humidity problems are minimal and can be dealt with by exhausting high humidity air. One system which has been considered for the greenhouse is to use a standard residential heat pump to remove excess moisture and to pump heat into the house. This would have a secondary benefit of excluding the need to circulate greenhouse air through the house. Thus any allergenic reactions to the greenhouse air would be prevented. 8 refs., 3 figs, 2 tabs.

  1. Lifecycle Greenhouse Gas Analysis of an Anaerobic Codigestion Facility Processing Dairy Manure and Industrial Food Waste.

    Science.gov (United States)

    Ebner, Jacqueline H; Labatut, Rodrigo A; Rankin, Matthew J; Pronto, Jennifer L; Gooch, Curt A; Williamson, Anahita A; Trabold, Thomas A

    2015-09-15

    Anaerobic codigestion (AcoD) can address food waste disposal and manure management issues while delivering clean, renewable energy. Quantifying greenhouse gas (GHG) emissions due to implementation of AcoD is important to achieve this goal. A lifecycle analysis was performed on the basis of data from an on-farm AcoD in New York, resulting in a 71% reduction in GHG, or net reduction of 37.5 kg CO2e/t influent relative to conventional treatment of manure and food waste. Displacement of grid electricity provided the largest reduction, followed by avoidance of alternative food waste disposal options and reduced impacts associated with storage of digestate vs undigested manure. These reductions offset digester emissions and the net increase in emissions associated with land application in the AcoD case relative to the reference case. Sensitivity analysis showed that using feedstock diverted from high impact disposal pathways, control of digester emissions, and managing digestate storage emissions were opportunities to improve the AcoD GHG benefits. Regional and parametrized emissions factors for the storage emissions and land application phases would reduce uncertainty.

  2. The effects of potential changes in United States beef production on global grazing systems and greenhouse gas emissions

    International Nuclear Information System (INIS)

    Dumortier, Jerome; Hayes, Dermot J; Carriquiry, Miguel; Elobeid, Amani; Fabiosa, Jacinto F; Dong, Fengxia; Du Xiaodong; Martin, Pamela A; Mulik, Kranti

    2012-01-01

    We couple a global agricultural production and trade model with a greenhouse gas model to assess leakage associated with modified beef production in the United States. The effects on emissions from agricultural production (i.e., methane and nitrous oxide emissions from livestock and crop management) as well as from land-use change, especially grazing system, are assessed. We find that a reduction of US beef production induces net carbon emissions from global land-use change ranging from 37 to 85 kg CO 2 -equivalent per kg of beef annualized over 20 years. The increase in emissions is caused by an inelastic domestic demand as well as more land-intensive cattle production systems internationally. Changes in livestock production systems such as increasing stocking rate could partially offset emission increases from pasture expansion. In addition, net emissions from enteric fermentation increase because methane emissions per kilogram of beef tend to be higher globally. (letter)

  3. Energy consumption estimation for greenhouse gas separation processes by clathrate hydrate formation

    International Nuclear Information System (INIS)

    Tajima, Hideo; Yamasaki, Akihiro; Kiyono, Fumio

    2004-01-01

    The process energy consumption was estimated for gas separation processes by the formation of clathrate hydrates. The separation process is based on the equilibrium partition of the components between the gaseous phase and the hydrate phase. The separation and capturing processes of greenhouse gases were examined in this study. The target components were hydrofluorocarbon (HFC-134a) from air, sulfur hexafluoride (SF 6 ) from nitrogen, and CO 2 from flue gas. Since these greenhouse gases would form hydrates under much lower pressure and higher temperature conditions than the accompanying components, the effective capturing of the greenhouse gases could be achieved by using hydrate formation. A model separation process for each gaseous mixture was designed from the basis of thermodynamics, and the process energy consumption was estimated. The obtained results were then compared with those for conventional separation processes such as liquefaction separation processes. For the recovery of SF 6 , the hydrate process is preferable to liquefaction process in terms of energy consumption. On the other hand, the liquefaction process consumes less energy than the hydrate process for the recovery of HFC-134a. The capturing of CO 2 by the hydrate process from a flue gas will consume a considerable amount of energy; mainly due to the extremely high pressure conditions required for hydrate formation. The influences of the operation conditions on the heat of hydrate formation were elucidated by sensitivity analysis. The hydrate processes for separating these greenhouse gases were evaluated in terms of reduction of global warming potential (GWP)

  4. Decarbonising meat : Exploring greenhouse gas emissions in the meat sector

    NARCIS (Netherlands)

    Aan Den Toorn, S. I.; Van Den Broek, M. A.; Worrell, E.

    Consumption of meat is an important source of global greenhouse gas (GHG) emission and deep decarbonisation of the whole meat production chain is required to be able to meet global climate change (CC) mitigation goals. Emissions happen in different stages of meat production ranging from agricultural

  5. Scenarios for a Nordic Power System without Greenhouse Gas Emissions

    DEFF Research Database (Denmark)

    Graabak, Ingeborg; Nilsson, Måns; Wu, Qiuwei

    2014-01-01

    The paper presents scenarios for power production without greenhouse gas (GHG) emissions in Denmark, Finland, Norway and Sweden by 2050. The Nordic region already has a high share of renewables in its power production portfolio (about 60% in 2010), and possibilities for further deployment are very...

  6. UNEP greenhouse gas abatement costing studies. Zimbabwe country study. Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Shakespeare Maya, R. [Southern Centre for Energy and Environment (Zimbabwe); Muguti, E. [Ministry of Transport and Energy. Department of Energy (Zimbabwe); Fenhann, J.; Morthorst, P.E. [Risoe National Laboratory. Systems Analysis Department (Denmark)

    1992-08-01

    The UNEP (United Nations Environment Programme) programme of Greenhouse Gas Abatement Costing Studies is intended to clarify the economic issues involved in assessing the costs of limiting emissions of greenhouse gases and to propose approaches to comparable costing studies. Phase 1 of the Zimbabwe country study describes the current energy situation in Zimbabwe related to the national economy, energy supply and demand and amounts of greenhouse gas emissions. Factors regarding the geography, (including a map illustrating the degree and character of land degradation by erosion) population, politics, international relations, land-use and management of the energy sector are dealt with in detail and the text is illustrated with data compiled from the study. It is estimated that Zimbabwe consumed 270.4 Tj of energy during 1988 and emitted 21.7 tonnes of carbon dioxide. An emission intensity of 80.2 tonnes/Tj for the whole economy and 63.6 tonnes/Tj for electric power generation alone was calculated. Forecasting for the year 2020 estimated carbon dioxide emission intensities of 73.5 tonnes/Tj for the whole economy and 43.7 tonnes for power generation. Net carbon dioxide emissions are predicted to be 30-42 tonnes during 2020. (AB).

  7. Price-related sensitivities of greenhouse gas intensity targets

    International Nuclear Information System (INIS)

    Muller, Benito; Muller-Furstenberger, Georg

    2003-12-01

    Greenhouse gas intensities are an appealing tool to foster abatement without imposing constraints on economic growth. This paper shows, however, that the computation of intensities is subject to some significant statistical and conceptual problems which relate to the inflation proofing of GDP growth. It is shown that the choice of price-index, the updating of quantity weights and the choice of base year prices can have a significant impact upon the commitment of intensity targets

  8. Idaho National Laboratory FY12 Greenhouse Gas Report

    Energy Technology Data Exchange (ETDEWEB)

    Kimberly Frerichs

    2013-03-01

    A greenhouse gas (GHG) inventory is a systematic approach to account for the production and release of certain gases generated by an institution from various emission sources. The gases of interest are those that climate science has identified as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during Fiscal Year (FY) 2012 by Idaho National Laboratory (INL), a Department of Energy (DOE) sponsored entity, located in southeastern Idaho.

  9. Transformative Reduction of Transportation Greenhouse Gas Emissions. Opportunities for Change in Technologies and Systems

    Energy Technology Data Exchange (ETDEWEB)

    Vimmerstedt, Laura [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Brown, Austin [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Newes, Emily [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Markel, Tony [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Schroeder, Alex [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhang, Yimin [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Chipman, Peter [U.S. Department of Transportation, Washington, D.C. (United States); Johnson, Shawn [U.S. Department of Transportation, Washington, D.C. (United States)

    2015-04-30

    The transportation sector is changing, influenced by concurrent, ongoing, dynamic trends that could dramatically affect the future energy landscape, including effects on the potential for greenhouse gas emissions reductions. Battery cost reductions and improved performance coupled with a growing number of electric vehicle model offerings are enabling greater battery electric vehicle market penetration, and advances in fuel cell technology and decreases in hydrogen production costs are leading to initial fuel cell vehicle offerings. Radically more efficient vehicles based on both conventional and new drivetrain technologies reduce greenhouse gas emissions per vehicle-mile. Net impacts also depend on the energy sources used for propulsion, and these are changing with increased use of renewable energy and unconventional fossil fuel resources. Connected and automated vehicles are emerging for personal and freight transportation systems and could increase use of low- or non-emitting technologies and systems; however, the net effects of automation on greenhouse gas emissions are uncertain. The longstanding trend of an annual increase in transportation demand has reversed for personal vehicle miles traveled in recent years, demonstrating the possibility of lower-travel future scenarios. Finally, advanced biofuel pathways have continued to develop, highlighting low-carbon and in some cases carbon-negative fuel pathways. We discuss the potential for transformative reductions in petroleum use and greenhouse gas emissions through these emerging transportation-sector technologies and trends and present a Clean Transportation Sector Initiative scenario for such reductions, which are summarized in Table ES-1.

  10. Effect of freeze-thaw cycles on greenhouse gas fluxes from peat soils

    Science.gov (United States)

    Oh, H. D.; Rezanezhad, F.; Markelov, I.; McCarter, C. P. R.; Van Cappellen, P.

    2017-12-01

    The ongoing displacement of climate zones by global warming is increasing the frequency and intensity of freeze-thaw cycles in middle and high latitude regions, many of which are dominated by organic soils such as peat. Repeated freezing and thawing of soils changes their physical properties, geochemistry, and microbial community structure, which together govern the biogeochemical cycling of carbon and nutrients. In this presentation, we focus on how freeze-thaw cycles influence greenhouse gas fluxes from peat using a newly developed experimental soil column system that simulates realistic soil temperature profiles during freeze-thaw cycles. We measured the surface and subsurface changes to gas and aqueous phase chemistry to delineate the diffusion pathways and quantify soil greenhouse gas fluxes during freeze-thaw cycles using sulfur hexafluoride (SF6) as a conservative tracer. Three peat columns were assembled inside a temperature controlled chamber with different soil structures. All three columns were packed with 40 cm of undisturbed, slightly decomposed peat, where the soil of two columns had an additional 10 cm layer on top (one with loose Sphagnum moss and one with an impermeable plug). The results indicate that the release of SF6 and CO2 gas from the soil surface was influenced by the recurrent development of a physical ice barrier, which prevented gas exchange between the soil and atmosphere during freezing conditions. With the onset of thawing a pulse of SF6 and CO2 occurred, resulting in a flux of 3.24 and 2095.52 µmol/m2h, respectively, due to the build-up of gases in the liquid-phase pore space during freezing. Additionally, we developed a model to determine the specific diffusion coefficients for each peat column. These data allow us to better predict how increased frequency and intensity of freeze-thaw cycles will affect greenhouse gas emissions in northern peat soils.

  11. The challenge of meeting Canada's greenhouse gas reduction targets

    International Nuclear Information System (INIS)

    Hughes, Larry; Chaudhry, Nikhil

    2011-01-01

    In 2007, the Government of Canada announced its medium- and long-term greenhouse gas (GHG) emissions reduction plan entitled Turning the Corner, proposed emission cuts of 20% below 2006 levels by 2020 and 60-70% below 2006 levels by 2050. A report from a Canadian government advisory organization, the National Round Table on Environment and Economy (NRTEE), Achieving 2050: A carbon pricing policy for Canada, recommended 'fast and deep' energy pathways to emissions reduction through large-scale electrification of Canada's economy by relying on a major expansion of hydroelectricity, adoption of carbon capture and storage for coal and natural gas, and increasing the use of nuclear. This paper examines the likelihood of the pathways being met by considering the report's proposed energy systems, their associated energy sources, and the magnitude of the changes. It shows that the pathways assume some combination of technological advances, access to secure energy supplies, or rapid installation in order to meet both the 2020 and 2050 targets. This analysis suggests that NRTEE's projections are optimistic and unlikely to be achieved. The analysis described in this paper can be applied to other countries to better understand and develop strategies that can help reduce global greenhouse gas emissions. - Research highlights: → An analysis of a Canadian government advisory organization's GHG reduction plans. → Hydroelectricity and wind development is overly optimistic. → Declining coal and natural gas supplies and lack of CO 2 storage may hamper CCS. → Changing precipitation patterns may limit nuclear and hydroelectricity. → Bioenergy and energy reduction policies largely ignored despite their promise.

  12. The analysis of energy consumption and greenhouse gas emissions of a large-scale commercial building in Shanghai, China

    Directory of Open Access Journals (Sweden)

    Xin Wang

    2016-02-01

    Full Text Available Reasonable test, diagnosis, and analysis are meaningful for building energy efficiency retrofit and management. Energy consumption and greenhouse gas emission of a large-scale commercial building are described in this article. Basic information about energy consumption equipment is included in the investigation. Further diagnoses about the operational state of air-conditioning water systems, and ducted systems were implemented. Energy consumption decreased 200 kWh/m2 per year from 2007 to 2009 after energy-saving reconstruction in 2006. Next, a carbon audit was carried out; this comprised CO2 emission statistics associated with the energy use and categorization and structural analysis (categorization refers to energy categorization and structural analysis means the composition and its proportion relationship of all kinds of primary energy and secondary energy in energy production or consumption. Greenhouse gas emissions could be less than 150 kg/m2 per year from 2007 to 2009. An analysis of the correlation between CO2 emissions, building gross domestic product, and energy efficiency is also presented. This article makes an analysis on the energy utilization and energy-saving reconstruction of a public commercial building in Shanghai and then makes an analysis of carbon audit about greenhouse gas emissions related to energy utilization (it analyzes the status of building’s energy utilization and greenhouse gas emissions, to have a more comprehensive understanding on the internal relationship between energy consumption and its greenhouse gas emissions and provide researchful reference data for the development with reduction strategies of greenhouse gas emission in future building.

  13. Biochars mitigate greenhouse gas emissions and bioaccumulation of potentially toxic elements and arsenic speciation in Phaseolus vulgaris L.

    Science.gov (United States)

    Ibrahim, Muhammad; Li, Gang; Khan, Sardar; Chi, Qiaoqiao; Xu, Yaoyang; Zhu, Yongguan

    2017-08-01

    Anthropogenic and natural activities can lead to increased greenhouse gas emissions and discharge of potentially toxic elements (PTEs) into soil environment. Biochar amendment to soils is a cost-effective technology and sustainable approach used to mitigate greenhouse gas emissions, improve phytoremediation, and minimize the health risks associated with consumption of PTE-contaminated vegetables. Greenhouse pot experiments were conducted to investigate the effects of peanut shell biochar (PNB) and sewage sludge biochar (SSB) on greenhouse gas (GHG) emissions, plant growth, PTE bioaccumulation, and arsenic (As) speciation in bean plants. Results indicated that amendments of PNB and SSB increased plant biomass production by increasing soil fertility and reducing bioavailability of PTEs. Addition of biochars also increased soil pH, total nitrogen (TN), total carbon (TC), dissolved organic carbon (DOC), and ammonium-nitrogen (NH 4 -N) but decreased available concentrations of PTEs such as cadmium (Cd), lead (Pb), and As. The concentration of nitrate-nitrogen (NO 3 - -N) was also decreased in biochar-amended soils. In addition, PNB and SSB amendments significantly (P Greenhouse gases such as carbon dioxide (CO 2 ) and methane (CH 4 ) emissions were significantly (P greenhouse gas emissions and PTE bioaccumulation as well as arsenic speciation in P. vulgaris L.

  14. Greenhouse gas emissions from dairy manure management: a review of field-based studies.

    Science.gov (United States)

    Owen, Justine J; Silver, Whendee L

    2015-02-01

    Livestock manure management accounts for almost 10% of greenhouse gas emissions from agriculture globally, and contributes an equal proportion to the US methane emission inventory. Current emissions inventories use emissions factors determined from small-scale laboratory experiments that have not been compared to field-scale measurements. We compiled published data on field-scale measurements of greenhouse gas emissions from working and research dairies and compared these to rates predicted by the IPCC Tier 2 modeling approach. Anaerobic lagoons were the largest source of methane (368 ± 193 kg CH4 hd(-1) yr(-1)), more than three times that from enteric fermentation (~120 kg CH4 hd(-1) yr(-1)). Corrals and solid manure piles were large sources of nitrous oxide (1.5 ± 0.8 and 1.1 ± 0.7 kg N2O hd(-1) yr(-1), respectively). Nitrous oxide emissions from anaerobic lagoons (0.9 ± 0.5 kg N2O hd(-1) yr(-1)) and barns (10 ± 6 kg N2O hd(-1) yr(-1)) were unexpectedly large. Modeled methane emissions underestimated field measurement means for most manure management practices. Modeled nitrous oxide emissions underestimated field measurement means for anaerobic lagoons and manure piles, but overestimated emissions from slurry storage. Revised emissions factors nearly doubled slurry CH4 emissions for Europe and increased N2O emissions from solid piles and lagoons in the United States by an order of magnitude. Our results suggest that current greenhouse gas emission factors generally underestimate emissions from dairy manure and highlight liquid manure systems as promising target areas for greenhouse gas mitigation. © 2014 John Wiley & Sons Ltd.

  15. The greenhouse impact of unconventional gas for electricity generation

    Energy Technology Data Exchange (ETDEWEB)

    Hultman, Nathan; Ramig, Christopher [School of Public Policy, University of Maryland, 2101 Van Munching Hall, College Park, MD 20742 (United States); Rebois, Dylan [Department of Mechanical Engineering, University of Maryland, 2181 Glenn L Martin Hall, Building 088, College Park, MD 20742 (United States); Scholten, Michael [Joint Quantum Institute, University of Maryland, 2207 Computer and Space Sciences Building, College Park, MD 20742 (United States)

    2011-10-15

    New techniques to extract natural gas from unconventional resources have become economically competitive over the past several years, leading to a rapid and largely unanticipated expansion in natural gas production. The US Energy Information Administration projects that unconventional gas will supply nearly half of US gas production by 2035. In addition, by significantly expanding and diversifying the gas supply internationally, the exploitation of new unconventional gas resources has the potential to reshape energy policy at national and international levels-altering geopolitics and energy security, recasting the economics of energy technology investment decisions, and shifting trends in greenhouse gas (GHG) emissions. In anticipation of this expansion, one of the perceived core advantages of unconventional gas-its relatively moderate GHG impact compared to coal-has recently come under scrutiny. In this paper, we compare the GHG footprints of conventional natural gas, unconventional natural gas (i.e. shale gas that has been produced using the process of hydraulic fracturing, or 'fracking'), and coal in a transparent and consistent way, focusing primarily on the electricity generation sector. We show that for electricity generation the GHG impacts of shale gas are 11% higher than those of conventional gas, and only 56% that of coal for standard assumptions.

  16. Optimizing Location of Bulk Metallic Minerals Processing Based on Greenhouse Gas Avoidance

    Directory of Open Access Journals (Sweden)

    Benjamin C. McLellan

    2011-12-01

    Full Text Available The bulk minerals iron ore and bauxite cause significant greenhouse emissions in their processing to steel and aluminum respectively. The level of these emissions is highly dependent on the source of electrical and thermal energy. However, they also cause significant greenhouse gas emissions from their transportation across the globe for processing. This study examines these minerals from the perspective of greenhouse gas avoidance, examining the location of processing as an option for reducing transportation-based and process-based emissions. The analysis proposes a “radius of reduction” to define the potential for transporting ore to reduce emissions by offshore processing. Overall scenarios for localized steel production indicate potential for 85% reduction of transport emissions in the steel industry and 14% of overall industry emissions. Local high-carbon electricity grids and inefficient production mean that the benefit of reduced transportation is partially counteracted by increased processing emissions. The transportation of all global bauxite to Norway and other nations with low-emissions electricity for production of aluminum could result in an overall reduction of industry emissions of up to 44%.

  17. Different palm oil production systems for energy purposes and their greenhouse gas implications

    NARCIS (Netherlands)

    Wicke, B.|info:eu-repo/dai/nl/306645955; Dornburg, V.|info:eu-repo/dai/nl/189955007; Junginger, H.M.|info:eu-repo/dai/nl/202130703; Faaij, A.P.C.|info:eu-repo/dai/nl/10685903X

    2008-01-01

    This study analyses the greenhouse gas (GHG) emissions of crude palm oil (CPO) and palm fatty acid distillate (PFAD) production in northern Borneo (Malaysia), their transport to the Netherlands and their co-firing with natural gas for electricity production. In the case of CPO, conversion to

  18. Energy utilization and greenhouse-gas emissions: Transportation sector, topical report

    International Nuclear Information System (INIS)

    Darrow, K.G.

    1992-06-01

    The objective of the report is to compare the emissions of greenhouse gases for alternative end-use technologies in the transportation sector. Scientists assert that global warming is occurring and will continue to occur as a result of increasing concentrations of certain gases in the atmosphere. Carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) are the focus of this analysis because they are believed to cause three-fourths of the global warming effect and because energy production and use are a significant source of these emissions. Greenhouse gas emissions in the energy sector occur during energy production, conversion, transportation and end-use. This analysis compares alternative transportation sector fuel/technology choices in terms of their total fuel-cycle emissions of greenhouse gases. The emphasis of this report is on the end use comparison. The fuel-cycle emissions comparison was developed in a companion report

  19. Effects of treated poultry litter on potential greenhouse gas emission ...

    African Journals Online (AJOL)

    A study was conducted to evaluate the effects of different treatments of poultry faecal waste on potential greenhouse gas emission and inherent agronomic potentials. Sugar solution at 100g/l salt solution at 350g/l and oven-drying were the various faecal treatments examined using a completely randomized design.

  20. Comparative analysis of greenhouse gas emissions of various residential heating systems in the Canadian provinces

    International Nuclear Information System (INIS)

    Pare, D.

    2010-04-01

    The Kyoto Protocol compels signatory countries to reduce their greenhouse gas emissions by at least 5 percent by 2010 as compared to 1990 levels. In Canada, however, questions remain regarding the effects of greenhouse gases as they relate to the adoption of geoexchange systems in certain provinces because of the sources of electricity. This report presented a comprehensive analysis of the specific and strategic role of geoexchange technology, and ground source heat pumps in particular. The purpose was to compare, on a common basis, the greenhouse gas emissions of different residential heating systems utilized in the Canadian provinces. Comparisons were conducted from an environmental standpoint, and excluded the exergy and economic aspect, or other related issues. The report discussed the methodology and hypotheses of the study and presented the results for Canada, and for each province. It was concluded that according to the hypotheses employed for the purposes of this study, geoexchange systems offer a solution for greenhouse gas reduction and climatic change in all of the analyzed scenarios, with few exceptions and for a specific scenario. 32 refs., 37 tabs., 12 figs., 4 appendices.

  1. Effects of dry period length on production, cash flows and greenhouse gas emissions of the dairy herd: A dynamic stochastic simulation model.

    Directory of Open Access Journals (Sweden)

    Akke Kok

    Full Text Available Shortening or omitting the dry period of dairy cows improves metabolic health in early lactation and reduces management transitions for dairy cows. The success of implementation of these strategies depends on their impact on milk yield and farm profitability. Insight in these impacts is valuable for informed decision-making by farmers. The aim of this study was to investigate how shortening or omitting the dry period of dairy cows affects production and cash flows at the herd level, and greenhouse gas emissions per unit of milk, using a dynamic stochastic simulation model. The effects of dry period length on milk yield and calving interval assumed in this model were derived from actual performance of commercial dairy cows over multiple lactations. The model simulated lactations, and calving and culling events of individual cows for herds of 100 cows. Herds were simulated for 5 years with a dry period of 56 (conventional, 28 or 0 days (n = 50 herds each. Partial cash flows were computed from revenues from sold milk, calves, and culled cows, and costs from feed and rearing youngstock. Greenhouse gas emissions were computed using a life cycle approach. A dry period of 28 days reduced milk production of the herd by 3.0% in years 2 through 5, compared with a dry period of 56 days. A dry period of 0 days reduced milk production by 3.5% in years 3 through 5, after a dip in milk production of 6.9% in year 2. On average, dry periods of 28 and 0 days reduced partial cash flows by €1,249 and €1,632 per herd per year, and increased greenhouse gas emissions by 0.7% and 0.5%, respectively. Considering the potential for enhancing cow welfare, these negative impacts of shortening or omitting the dry period seem justifiable, and they might even be offset by improved health.

  2. Preface: Towards a full greenhouse gas balance of the biosphere

    DEFF Research Database (Denmark)

    Merbold, L.; Wohlfahrt, G.; Butterbach-Bahl, K.

    2015-01-01

    Ecosystem greenhouse gas (GHG) emissions (CO2, CH4, and N2O) represent a major driver of global environmental change (IPCC, 2014). While there exists an emerging understanding on the net exchange of CO2 across terrestrial and aquatic ecosystems due in part to the existence of large measurement...... and modeling networks (Baldocchi et al., 2001; Friend et al., 2007; Raymond et al., 2013; Tranvik et al., 2009), similar information on the biosphere–atmosphere exchange of non-CO2 greenhouse gases (i.e., CH4 and N2O) is sparsely available in comparison. To date, a strong focus has been given to so-called high...

  3. The greenhouse impact of unconventional gas for electricity generation

    International Nuclear Information System (INIS)

    Hultman, Nathan; Ramig, Christopher; Rebois, Dylan; Scholten, Michael

    2011-01-01

    New techniques to extract natural gas from unconventional resources have become economically competitive over the past several years, leading to a rapid and largely unanticipated expansion in natural gas production. The US Energy Information Administration projects that unconventional gas will supply nearly half of US gas production by 2035. In addition, by significantly expanding and diversifying the gas supply internationally, the exploitation of new unconventional gas resources has the potential to reshape energy policy at national and international levels—altering geopolitics and energy security, recasting the economics of energy technology investment decisions, and shifting trends in greenhouse gas (GHG) emissions. In anticipation of this expansion, one of the perceived core advantages of unconventional gas—its relatively moderate GHG impact compared to coal—has recently come under scrutiny. In this paper, we compare the GHG footprints of conventional natural gas, unconventional natural gas (i.e. shale gas that has been produced using the process of hydraulic fracturing, or 'fracking'), and coal in a transparent and consistent way, focusing primarily on the electricity generation sector. We show that for electricity generation the GHG impacts of shale gas are 11% higher than those of conventional gas, and only 56% that of coal for standard assumptions.

  4. Greenhouse gas and carbon profile of the U.S. forest products industry value chain

    Science.gov (United States)

    Linda S. Heath; Van Maltby; Reid Miner; Kenneth E. Skog; James E. Smith; Jay Unwin; Brad Upton

    2010-01-01

    A greenhouse gas and carbon accounting profile was developed for the U.S. forest products industry value chain for 1990 and 2004-2005 by examining net atmospheric fluxes of CO2 and other greenhouse gases (GHGs) using a variety of methods and data sources. Major GHG emission sources include direct and indirect (from purchased electricity...

  5. Which is the preferable transport fuel on a greenhouse gas basis; biomethane or ethanol?

    International Nuclear Information System (INIS)

    Power, Niamh M.; Murphy, Jerry D.

    2009-01-01

    Biomethane and ethanol are both biofuels which are generated from agricultural crops that can be utilised to meet the Biofuels Directive. In Ireland with the demise of the sugar industry 48,000 Ha of land is readily available for biofuel production, without unduly effecting food production. Which biofuel should dominate? This paper investigates biofuel production for three different crop rotations: wheat, barley and sugar beet; wheat, wheat and sugar beet; wheat only. A greenhouse gas balance is performed to determine under what conditions each biofuel is preferable. For both biofuels, the preferred crop on a weight basis is wheat, while on an area basis the preferred crop is sugar beet. Biomethane scenarios produce more gross energy than ethanol scenarios. Under the base assumption (7.41% biogas losses, and biomethane utilised in a converted petrol engine, such as a bi-fuel car, and thus underperforming on a km/MJ basis) ethanol generated more net greenhouse gas savings than biomethane. This was unexpected as biomethane produces twice the net energy per hectare as ethanol. If either biogas losses were reduced or biomethane was utilised in a vehicular engine optimised for biomethane (such as a bus powered solely on gaseous biofuel) then biomethane would generate significantly more net greenhouse gas savings than ethanol. It was found that if biogas losses were eliminated and the biomethane was used in a vehicle optimised for biomethane, then the net greenhouse gas savings are 2.4 times greater than those from ethanol generated from the same feedstock.

  6. Analysis and control design of sustainable policies for greenhouse gas emissions

    International Nuclear Information System (INIS)

    Chu, Bing; Duncan, Stephen; Papachristodoulou, Antonis; Hepburn, Cameron

    2013-01-01

    Reducing greenhouse gas emissions is now an urgent priority. Systems control theory, and in particular feedback control, can be helpful in designing policies that achieve sustainable levels of emissions of CO 2 (and other greenhouse gases) while minimizing the impact on the economy, and at the same time explicitly addressing the high levels of uncertainty associated with predictions of future emissions. In this paper, we describe preliminary results for an approach where model predictive control (MPC) is applied to a model of the UK economy (UK 4see model) as a test bed to design sustainable policies for greenhouse gas emissions. Using feedback control, the policies are updated on the basis of the actual emissions, rather than on the predicted level of emissions. The basic structure and principle of the UK 4see model is described and its implementation in Simulink is presented. A linearized state space model is obtained and model predictive control is applied to design policies for CO 2 emissions. Simulation results are presented to demonstrate the effectiveness of the proposed method. The preliminary results obtained in this paper illustrate the strength of the proposed design approach and form the basis for future research on using systems control theory to design optimal sustainable policies

  7. Effects of US biofuel policies on US and world petroleum product markets with consequences for greenhouse gas emissions

    International Nuclear Information System (INIS)

    Thompson, Wyatt; Whistance, Jarrett; Meyer, Seth

    2011-01-01

    US biofuel policy includes greenhouse gas reduction targets. Regulators do not address the potential that biofuel policy can have indirect impacts on greenhouse gases through its impacts on petroleum product markets, and scientific research only partially addresses this question. We use economic models of US biofuel and agricultural markets and US and world petroleum and petroleum product markets to show that discontinuing biofuel tax credits and ethanol tariff lower biofuel use could lead to increased US petroleum product use, and a reduction in petroleum product use in other parts of the world. The net effect is lower greenhouse gas emissions. Under certain assumptions, we show that biofuel use mandate elimination can have positive or negative impacts on greenhouse gas emissions. The magnitude and the direction of effects depend on how US biofuel trade affects biofuel in other countries with different emissions, context that determines how important use mandates are in the first place, who pays mandate costs, and the price responsiveness of global petroleum supplies and uses. However, our results show that counter-intuitive effects are possible and discourage broad conclusions about the greenhouse gas impacts of removing these elements of US biofuel policy. - Highlights: → Biofuel policy has counter-intuitive greenhouse gas effects under certain conditions. → US biofuel policies affect global petroleum markets, with implications for GHGs. → US biofuel use mandate GHG effects depend on whether they are binding and who pays. → US biofuel GHGs are sensitive to policy, petroleum market responses, and biofuel trade.

  8. National post-2020 greenhouse gas targets and diversity-aware leadership

    NARCIS (Netherlands)

    Meinshausen, M.; Jeffery, Louise; Guetschow, Johannes; Hoehne, N.E.; Schaeffer, M.

    2015-01-01

    Achieving the collective goal of limiting warming to below 2 °C or 1.5 °C compared to pre-industrial levels requires a transition towards a fully decarbonized world. Annual greenhouse gas emissions on such a path in 2025 or 2030 can be allocated to individual countries using a variety of allocation

  9. Quantifying greenhouse gas sources and sinks in managed wetland systems

    Science.gov (United States)

    Stephen M Ogle; Patrick Hunt; Carl Trettin

    2014-01-01

    This chapter provides methodologies and guidance for reporting greenhouse gas (GHG) emissions and sinks at the entity scale for managed wetland systems. More specifically, it focuses on methods for managed palustrine wetlands.1 Section 4.1 provides an overview of wetland systems and resulting GHG emissions, system boundaries and temporal scale, a summary of the...

  10. Australian greenhouse governance; the twilight zone

    International Nuclear Information System (INIS)

    O'Brien, B. J.

    1999-01-01

    Australia is committed to limit greenhouse gas emissions in nine years' time to no more than 8% higher than an uncertain 1990 baseline. This will require a cut of 25 % points or some 100 millions tonnes of carbon dioxide equivalent from the Business-as-Usual expected growth by 2010. Meeting the target will directly reduce global warming in about 50 years time by 0.001 degrees Celsius, at an opportunity cost estimated by ABARE as about 1% of GDP unless an emissions trading scheme is established. The author indicates that, if one accepts the Kyoto commitment, emissions trading and other flexibility mechanisms should be set up to minimise but not eliminate its negative impacts, while other beneficial returns from greenhouse governance, such as increased energy efficiency and improved technologies, must be developed driven in part by public enthusiasms for 'greenhouse' but mostly by economic returns. Even so, Australia with a greenhouse limit and already world-leader in efficiency in many areas, is faced by international competitors without such limits or efficiencies, so investments in energy-intensive value-adding industries may move offshore even though global emissions will increase. Australia may thus revert to a 'quarry' economy unless it can minimise the impacts of Kyoto and offset emissions against substantial new carbon 'sinks', and be given credit by way of emissions trading and other flexibility mechanisms. Australia cannot make a sensible decision about ratification without a comprehensive National Interest Analysis

  11. Indicators for the international comparison of energy consumption and greenhouse-gas emissions

    International Nuclear Information System (INIS)

    Hohmann, R.; Steiner, S.; Koch, P.

    2007-11-01

    This comprehensive report for the Swiss Federal Office of Energy (SFOE) examines the energy consumption and greenhouse-gas emissions of various Swiss economical sectors including industry, services, households and traffic. Comparisons are made with the corresponding areas in the European Union and other countries. In spite of the relatively good situation in the Swiss industrial sector, further investigation is recommended. Room for improvement in the services sector is mentioned and average performance as far as energy consumption in households is concerned is noted. It is estimated that a considerable potential for improvement is available in this sector. Motorised traffic is quoted as being the main source of greenhouse-gas emissions, Switzerland being the second worst European country in this respect. Estimates are made concerning the potential for emission reductions in the various areas

  12. International markets for greenhouse gas emission reduction policies - possibilities for integrating developing countries

    DEFF Research Database (Denmark)

    Halsnæs, K.; Olhoff, A.

    2005-01-01

    Greenhouse gas (GHG) emissions are affecting a global common: the climate, and as a global environmental problem with a public good character it provides attractive opportunities for minimising control costs through the use of emission trading markets. This paper introduces cost and benefit princ...... principles that can be applied to the assessment of global markets for GHG emission reduction options and evaluates the scope for and the potential economic gains of such markets.......Greenhouse gas (GHG) emissions are affecting a global common: the climate, and as a global environmental problem with a public good character it provides attractive opportunities for minimising control costs through the use of emission trading markets. This paper introduces cost and benefit...

  13. Greenhouse gas credits trade versus biomass trade – weighing (Workshop Summary)

    NARCIS (Netherlands)

    Junginger, H.M.; Faaij, A.P.C.; Robertson, K.; Woes-Gallasch, S.; Schlamadinger, B.

    2006-01-01

    A workshop entitled ‘Greenhouse gas credits trade versus biomass trade – weighing the benefits’, jointly organised by IEA Bioenergy Tasks 38 (GHG Balances of Biomass and Bioenergy Systems) and 40 (Sustainable International Bioenergy Trade: Securing Supply and Demand), and ENOVA, took place in

  14. Greenhouse gas emission impacts of electric vehicles under varying driving cycles in various counties and US cities

    International Nuclear Information System (INIS)

    Wang, M.Q.; Marr, W.W.

    1994-01-01

    Electric vehicles (EVs) can reduce greenhouse gas emissions, relative to emissions from gasoline-fueled vehicles. However, those studies have not considered all aspects that determine greenhouse gas emissions from both gasoline vehicles (GVs) and EVs. Aspects often overlooked include variations in vehicle trip characteristics, inclusion of all greenhouse gases, and vehicle total fuel cycle. In this paper, we estimate greenhouse gas emission reductions for EVs, including these important aspects. We select four US cities (Boston, Chicago, Los Angeles, and Washington, D.C.) and six countries (Australia, France, Japan, Norway, the United Kingdom, and the United States) and analyze greenhouse emission impacts of EVs in each city or country. We also select six driving cycles developed around the world (i.e., the US federal urban driving cycle, the Economic Community of Europe cycle 15, the Japanese 10-mode cycle, the Los Angeles 92 cycle, the New York City cycle, and the Sydney cycle). Note that we have not analyzed EVs in high-speed driving (e.g., highway driving), where the results would be less favorable to EVs; here, EVs are regarded as urban vehicles only. We choose one specific driving cycle for a given city or country and estimate the energy consumption of four-passenger compact electric and gasoline cars in the given city or country. Finally, we estimate total fuel cycle greenhouse gas emissions of both GVs and EVs by accounting for emissions from primary energy recovery, transportation, and processing; energy product transportation; and powerplant and vehicle operations

  15. Transit investments for greenhouse gas and energy reduction program : second assessment report.

    Science.gov (United States)

    2014-08-01

    This report is the second assessment of the U.S. Department of Transportation, Federal Transit Administrations Transit Investments for : Greenhouse Gas and Energy Reduction (TIGGER) Program. The TIGGER Program provides capital funds to transit age...

  16. Structural decomposition analysis of Australia's greenhouse gas emissions

    International Nuclear Information System (INIS)

    Wood, Richard

    2009-01-01

    A complex system of production links our greenhouse gas emissions to our consumer demands. Whilst progress may be made in improving efficiency, other changes in the production structure may easily annul global improvements. Utilising a structural decomposition analysis, a comparative-static technique of input-output analysis, over a time period of around 30 years, net greenhouse emissions are decomposed in this study into the effects, due to changes in industrial efficiency, forward linkages, inter-industry structure, backward linkages, type of final demand, cause of final demand, population affluence, population size, and mix and level of exports. Historically, significant competing forces at both the whole of economy and industrial scale have been mitigating potential improvements. Key sectors and structural influences are identified that have historically shown the greatest potential for change, and would likely have the greatest net impact. Results clearly reinforce that the current dichotomy of growth and exports are the key problems in need of address.

  17. Accounting for time-dependent effects in biofuel life cycle greenhouse gas emissions calculations.

    Science.gov (United States)

    Kendall, Alissa; Chang, Brenda; Sharpe, Benjamin

    2009-09-15

    This paper proposes a time correction factor (TCF) to properly account for the timing of land use change-derived greenhouse gas emissions in the biofuels life cycle. Land use change emissions occur at the outset of biofuel feedstock production, and are typically amortized over an assumed time horizon to assign the burdens of land use change to multiple generations of feedstock crops. Greenhouse gas intensity calculations amortize emissions by dividing them equally over a time horizon, overlooking the fact that the effect of a greenhouse gas increases with the time it remains in the atmosphere. The TCF is calculated based on the relative climate change effect of an emission occurring at the outset of biofuel feedstock cultivation versus one amortized over a time horizon. For time horizons between 10 and 50 years, the TCF varies between 1.7 and 1.8 for carbon dioxide emissions, indicating that the actual climate change effect of an emission is 70-80% higher than the effect of its amortized values. The TCF has broad relevance for correcting the treatment of emissions timing in other life cycle assessment applications, such as emissions from capital investments for production systems or manufacturing emissions for renewable energy technologies.

  18. International workshop on greenhouse gas mitigation technologies and measures: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    More than 150 countries are now Party to the United Nations Framework Convention on Climate Change (FCCC), which seeks to stabilize atmospheric concentrations of greenhouse gases at a level that would prevent dangerous human interference with the global climate system. Climate change country studies are a significant step for developing countries and countries with economies in transition to meet their national reporting commitments to the FCCC. These studies also provide the basis for preparation of National Climate Change Action Plans and implementation of technologies and practices which reduce greenhouse gas emissions or enhance carbon sinks. The broad goals of the workshop were to: (1) present results of country study mitigation assessments, (2) identify promising no-regrets greenhouse gas mitigation options in land-use and energy sectors, (3) share information on development of mitigation technologies and measures which contribute to improved National Climate Change Actions Plans, and (4) begin the process of synthesizing mitigation assessments for use by FCCC subsidiary bodies. The 59 papers are arranged into the following topical sections: (1) national mitigation assessments, technology priorities, and measures; (2) sector-specific mitigation assessment results, subdivided further into: energy sector; non-energy sector; renewable energy; energy efficiency in industry and buildings; transportation; electricity supply; forestry; and methane mitigation; (3) support for mitigation technologies and measures; and (4) activities implemented jointly. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  19. Non-CO2 greenhouse gas emissions associated with food production: methane (CH4) and nitrous oxide (N2O)

    International Nuclear Information System (INIS)

    Carlsson-Kanyama, Annika

    2007-01-01

    It is well known that the agriculture and livestock sectors are large contributors of N 2 O and CH 4 emissions in countries with agricultural activities and that remedial measures are needed in these sectors in order to curb contributions to global warming. This study examines non- CO 2 greenhouse gas emissions associated with the production of food. Methane (CH 4 ) and nitrous oxide (N 2 O) are the most relevant greenhouse gases in this category, and they are emitted mainly in the agricultural sector. These greenhouse gases have a Global Warming Potential much higher than CO 2 itself (25- and 298-fold higher, respectively, in a 100-year perspective). Emission intensities and the corresponding uncertainties were calculated based on the latest procedures and data published by the Intergovernmental Panel on Climate Change and used to facilitate calculations comparing greenhouse gas emissions for food products and diets. When the proposed emission intensities were applied to agricultural production, the results showed products of animal origin and the cultivation of rice under water to have high emissions compared with products of vegetable origin cultivated on upland soils, such as wheat and beans. In animal production the main source of greenhouse gas emissions was methane from enteric fermentation, while emissions of nitrous oxides from fertilisers were the main sources of greenhouse gas emissions for cereal and legume cultivation. For rice cultivation, methane emissions from flooded rice fields contributed most. Other significant sources of greenhouse gas emissions during animal production were manure storage and management. We suggest that the proposed emission factors, together with the associated uncertainties, can be a tool for better understanding the potential to mitigate emissions of greenhouse gases through changes in the diet

  20. Life-cycle energy and greenhouse gas emission impacts of different corn ethanol plant types

    International Nuclear Information System (INIS)

    Wang, Michael; Wu, May; Hong Huo

    2007-01-01

    Since the United States began a programme to develop ethanol as a transportation fuel, its use has increased from 175 million gallons in 1980 to 4.9 billion gallons in 2006. Virtually all of the ethanol used for transportation has been produced from corn. During the period of fuel ethanol growth, corn farming productivity has increased dramatically, and energy use in ethanol plants has been reduced by almost by half. The majority of corn ethanol plants are powered by natural gas. However, as natural gas prices have skyrocketed over the last several years, efforts have been made to further reduce the energy used in ethanol plants or to switch from natural gas to other fuels, such as coal and wood chips. In this paper, we examine nine corn ethanol plant types-categorized according to the type of process fuels employed, use of combined heat and power, and production of wet distiller grains and solubles. We found that these ethanol plant types can have distinctly different energy and greenhouse gas emission effects on a full fuel-cycle basis. In particular, greenhouse gas emission impacts can vary significantly-from a 3% increase if coal is the process fuel to a 52% reduction if wood chips are used. Our results show that, in order to achieve energy and greenhouse gas emission benefits, researchers need to closely examine and differentiate among the types of plants used to produce corn ethanol so that corn ethanol production would move towards a more sustainable path

  1. BC Hydro shops for GHG offsets

    International Nuclear Information System (INIS)

    Anon.

    2000-01-01

    BC Hydro is reported to have offered to purchase one million tonnes of carbon dioxide reductions in Canada's Greenhouse Gas Emissions Reduction Trading program (GERT). The program uses a baseline and credit system, where emitters purchase measurable quantities of site-specific GHG reductions. Since mid-1998, the program registered five bilateral trades and seven offers to sell. BC Hydro's recent offer is the first offer to buy. BC Hydro has made the offer to buy in expectation of the introduction of the start of the Kyoto Protocol reductions, and expects to be in the game for some time to come if it is to meet its obligations under the Kyoto Protocol. Preference will be given to projects located in Canada, but BC Hydro will consider reductions created anywhere in the world. The financial range of a single trade is between $50,000 and $1 million. (GHG offsets are currently trading in North America for between $.50 and $3.00 Cdn per metric tonne of carbon dioxide equivalent.) At present, offsets are selling at a heavily discounted price because of the uncertainty that investments made now will be credited against future regulations curbing emitters. Consequently, buying now while prices are low, may lead to sizable benefits later, depending on the actual regulations when they are promulgated. Trading now will also give BC Hydro greater credibility and assurance to have its voice heard when discussions about emissions trading and the implementation of emission trading rules reaches the serious stage

  2. 77 FR 29935 - 2012 Technical Corrections, Clarifying and Other Amendments to the Greenhouse Gas Reporting Rule...

    Science.gov (United States)

    2012-05-21

    .... Fluorinated Gas Production..... 325120 Industrial gases manufacturing facilities. Industrial Waste Landfills... 2012 Technical Corrections, Clarifying and Other Amendments to the Greenhouse Gas Reporting Rule, and Proposed Confidentiality Determinations for Certain Data Elements of the Fluorinated Gas Source Category...

  3. Total greenhouse gas emissions related to the Dutch crop production system

    NARCIS (Netherlands)

    Kramer, K.J.; Moll, H.C.; Nonhebel, S.

    1999-01-01

    This article discusses the greenhouse gas emissions (CO2, CH4, N2O) related to Dutch agricultural crop production. Emissions occur during agricultural processes (direct emissions) as well as in the life cycle of the required inputs (indirect emissions). An integrated approach assesses the total

  4. Potential for the reduction of greenhouse gas emissions through the use of mobility services

    DEFF Research Database (Denmark)

    Grischkat, Sylvie; Hunecke, Marcel; Böhler, Susanne

    2014-01-01

    gas emissions per person and year was found to be 78 kg in an optimistic scenario and 25 kg in a pessimistic scenario. Extrapolated to the German metropolitan population, behaviour-related measures alone could result in a 1.8 million ton (optimistic scenario) or 0.6 million ton (pessimistic scenario......This study evaluates potential for the reduction of greenhouse gas emissions in the passenger transport sector achievable through the use of mobility services. Beside car-sharing and -pooling, six services targeted at improving and encouraging the use of urban public transportation were considered......) reduction of greenhouse gas emissions, respectively. In order to exploit this potential fully, however, target group specific information should be obtained and communication strategies developed, as addressed in this paper. This study further presents the limitation of reduction potential quantification...

  5. Transit investments for greenhouse gas and energy reduction program : first assessment report.

    Science.gov (United States)

    2012-07-01

    The purpose of this report is to provide an overview and preliminary analysis of the U.S. Department of Transportation, Federal Transit Administrations TIGGER Program. TIGGER, which stands for Transit Investments for Greenhouse Gas and Energy Redu...

  6. Impact of improved technology on industrial greenhouse-gas emissions in developing countries. Phase 1

    International Nuclear Information System (INIS)

    1997-06-01

    In response to a formal request by the Group of 77 and China, the United Nations Industrial Development Organization (UNIDO) initiated a study to identify opportunities to reduce the emissions of greenhouse gases from energy-intensive industries in developing countries. These sectors currently include iron and steel, petroleum refining, cement, paper and pulp and nitrogen fertilizers. The aim of this first phase was to describe: how energy is used in the energy-intensive industries in developing countries today; what current trends indicate for the future; the potential contribution of improved technologies and practices to moving toward more sustainable industrial production in developing countries, and to provide developing countries with an analytical tool for evaluating opportunities to limit industrial greenhouse-gas (GHG) emissions in their industrial sectors through the transfer of improved technologies and processes. The immediate objectives of Phase 1 were twofold: to provide information to developing countries in the form of an inventory of energy-efficient, best-available technologies and processes that can be used to abate greenhouse-gas emissions in the most energy-intensive industrial sub-sectors as well as cross-cutting measures applicable in a range of sub-sectors, and; to provide an analytical methodology in the form of a software tool that enables the user to evaluate and compare the costs, energy requirements, and greenhouse-gas emissions associated with scenarios of specific technology and process options. To meet these objectives, the first phase of the study comprised: a Report entitled Industrial Greenhouse-gas Emissions from Developing Countries; a Software Package containing, an Industrial Technology Inventory, and an Analysis Tool, and; Industry/country-specific Case Studies. The Report describes current energy use and greenhouse-gas emissions in energy-intensive industries in developing countries, and similar industries exemplifying good

  7. Quantifying and reporting greenhouse gas emissions at local level

    Directory of Open Access Journals (Sweden)

    Sόwka Izabela

    2017-01-01

    Full Text Available Cities as global centers of consumption and production often are a significant and growing source of greenhouse gas (GHG emissions. At the same time, local authorities are increasingly taking action on climate change by focusing on reducing GHG emissions and efficiency improvement opportunities. To assess and reduce the overall greenhouse gas emission level from an urban area, it is necessary to identify all the activities and processes which generate these emissions. GHG inventory gives an opportunity to get wider knowledge for city’s community about spatial emission processes and emissions contribution of key sources categories at the local scale. Inventory is being used for decision-making purposes and strategic planning in emission reduction policy. The goal of this paper was to clarify the major methodological challenges of GHG monitoring at the urban level. The paper is based on the discussion of different methods and approaches to assessing GHG emissions at the local level. It is presented sectoral GHGs emission trends in selected urban areas and compared CO2 emission level in different countries and metropolises and variable European cities guidance. The study determines the inventory tools of GHGs emission taking into account the characteristics of main sources at local levels.

  8. Comparison of net global warming potential and greenhouse gas intensity affected by management practices in two dryland cropping sites

    Science.gov (United States)

    Little is known about the effect of management practices on net global warming potential (GWP) and greenhouse gas intensity (GHGI) that account for all sources and sinks of greenhouse gas (GHG) emissions in dryland cropping systems. The objective of this study was to compare the effect of a combinat...

  9. Greenhouse gas emissions from aviation and marine transportation : mitigation potential and policies

    Science.gov (United States)

    2009-12-01

    This paper provides an overview of greenhouse gas (GHG) emissions : from aviation and marine transportation and the various mitigation options to reduce these emissions. Reducing global emissions by 50 to 80 percent below 1990 levels by 2050reduct...

  10. Energy and greenhouse gas profile of the Nouvelle Aquitaine region. Release 2017

    International Nuclear Information System (INIS)

    Rousset, Alain; Poitevin, Lionel; Loeb, Amandine; Philippot, Herve; Rebouillat, Lea; Jacquelin, Antoine

    2017-06-01

    This publication first proposes graphs and comments characterising final energy consumption of the Nouvelle Aquitaine region: regional situation in 2015 (analysis per sector and per energy), primary resources, social-economic analysis (energy bill, level of energy poverty, burden due to old housing and commuting for households), evolution of energy consumption between 2005 and 2015 (per sector, per source of energy, evolution of energy intensity and of the energy bill). The next part addresses greenhouse gas emissions: regional situation in 2015 (distribution in terms of emission type and per gas), evolutions between 1990 and 2015, evolutions per sector. The third part addresses renewable energies: regional situation for the different types of renewable energy, comparison with final energy consumption, comparison with national data, production evolutions, focus per sector (wood and wood by-products, heat pumps in the housing sector, urban waste valorisation units, biogas valorisation, bio-fuels, wind energy, hydroelectricity, solar photovoltaic). The last part recalls national objectives related to energy, to greenhouse gas emissions for France and for the region, in relationship with the law on energy transition and for a green growth

  11. 6.1 Greenhouse gas emissions and climate change

    International Nuclear Information System (INIS)

    2004-01-01

    In Austria, greenhouse gas emissions (GHG) have increased by about 10 % between 1990 and 2001. This means that already in 2001 the emissions reached the level projected with current measures for 2010. Thus Austria is far from complying with the 13 % reduction required under the Kyoto Protocol, meaning that GHG emissions will have to be reduce annually by 1.4 million tons of CO 2 -equivalents to fulfill its protocol obligation. It is shown that 2001 GHG emissions had increased by 9.6 % since the base year 1990, the main reason for this increase is the growing use of fossil fuels and the resulting increase in CO 2 emissions. The highest growth rates can be observed in the transport sector by almost half (+ 49 %). Basically, greenhouse gas emission trends depend on a number of factors, about two thirds of them are caused by energy production, so the most important parameters affecting GHG are the trends of energy consumption, the energy mix and the following factors: population growth, economic growth, outdoor temperature and the resulting heating requirements, improvement of energy efficiency, the proportion of renewable energy sources such as electricity generation in hydroelectric power stations (which influences the need for supplementary power production in thermal power plants), the mix of fossil fuels, for example in caloric power plants (natural gas combustion produces about 40 % less CO 2 per energy unit than coal combustion), the structure and price effects of energy market liberalization, which influence the use of various fuels in electricity production and the import of electricity, world market prices for energy, structural changes in the economy and in the behavior of consumers. Changes in important driving forces and in GHG emissions, sector emissions trends and Austrian, European and global emissions projections are provided. (nevyjel)

  12. Pile mixing increases greenhouse gas emissions during composting of dairy manure

    Science.gov (United States)

    The effect of pile mixing on greenhouse gas (GHG) emissions from stored dairy manure was determined using large flux chambers designed to completely cover pilot-scale manure piles. GHG emissions from piles that were mixed four times during the 80 day trial were about 20% higher than unmixed piles. ...

  13. Greenhouse Gas Mitigation: Austria's Long and Expensive Journey to Buenos Aires

    International Nuclear Information System (INIS)

    Reuter, A.; Kuehner, R.

    1998-01-01

    In this paper the following topics are worked out, with special emphasis on Austria: past trends in Greenhouse Gas Emissions, current legal situation, the cost of emission reduction, effective set of measures, the role of flexible instruments, Joint Implementation, Clean Development Mechanism, Emission Trading and the journey ahead. (author)

  14. A life cycle greenhouse gas inventory of a tree production system

    Science.gov (United States)

    Alissa Kendall; E. Gregory McPherson

    2012-01-01

    PurposeThis study provides a detailed, process-based life cycle greenhouse gas (GHG) inventory of an ornamental tree production system for urban forestry. The success of large-scale tree planting initiatives for climate protection depends on projects being net sinks for CO2 over their entire life cycle....

  15. 76 FR 80553 - Mandatory Reporting of Greenhouse Gases: Technical Revisions to the Petroleum and Natural Gas...

    Science.gov (United States)

    2011-12-23

    ... permeability gas, shale gas, coal seam, or other tight reservoir rock. For example, wells producing coal bed... separation means one or more of the following processes: forced extraction of natural gas liquids, sulfur and... Mandatory Reporting of Greenhouse Gases: Technical Revisions to the Petroleum and Natural Gas Systems...

  16. The national-economic cost of reduction of greenhouse gases emission. Comparison of investments aimed towards a reduced greenhouse gas emission in power industry, agriculture, transportation sector and other essential greenhouse gas sources

    International Nuclear Information System (INIS)

    1995-01-01

    For a number of years the cost of reducing CO 2 emissions in the energy sector in Denmark has been investigated in detail. The same has not been the case what concerns the cost of reducing other greenhouse gases (CH 4 and N 2 O) and especially not what concerns the possibilities of reducing greenhouse gases in other sectors in the Danish economy, i.e. agriculture, transport, industry, domestic waste and forestry. Thus, the objective of this project was twofold: 1) To calculate the national economic costs related to a number of options for reducing Danish greenhouse gas emissions (CO 2 , CH 4 and N 2 O) by using the same methodology for all important sectors in the economy and 2) To compare the cost efficiency of these options not only wihtin the individual sectors but also across the sectoral boundaries to achieve an overall view of the reduction possibilities in society and the associated costs. (au) 80 refs.; Prepared by Forskningscenter Risoe and Danmarks Miljoeundersoegelser. Afdeling for Systemanalyse

  17. Uncertainties in the Norwegian greenhouse gas emission inventory

    Energy Technology Data Exchange (ETDEWEB)

    Flugsrud, Ketil; Hoem, Britta

    2011-11-15

    The national greenhouse gas (GHG) emission inventory is compiled from estimates based on emission factors and activity data and from direct measurements by plants. All these data and parameters will contribute to the overall inventory uncertainty. The uncertainties and probability distributions of the inventory input parameters have been assessed based on available data and expert judgements.Finally, the level and trend uncertainties of the national GHG emission inventory have been estimated using Monte Carlo simulation. The methods used in the analysis correspond to an IPCC tier 2 method, as described in the IPCC Good Practice Guidance (IPCC 2000) (IPCC 2000). Analyses have been made both excluding and including the sector LULUCF (land use, land-use change and forestry). The uncertainty analysis performed in 2011 is an update of the uncertainty analyses performed for the greenhouse gas inventory in 2006 and 2000. During the project we have been in contact with experts, and have collected information about uncertainty from them. Main focus has been on the source categories where changes have occured since the last uncertainty analysis was performed in 2006. This includes new methodology for several source categories (for example for solvents and road traffic) as well as revised uncertainty estimates. For the installations included in the emission trading system, new information from the annual ETS reports about uncertainty in activity data and CO2 emission factor (and N2O emission factor for nitric acid production) has been used. This has improved the quality of the uncertainty estimates for the energy and manufacturing sectors. The results show that the uncertainty level in the total calculated greenhouse gas emissions for 2009 is around 4 per cent. When including the LULUCF sector, the total uncertainty is around 17 per cent in 2009. The uncertainty estimate is lower now than previous analyses have shown. This is partly due to a considerable work made to improve

  18. Managing soil organic carbon in agriculture: the net effect on greenhouse gas emissions

    International Nuclear Information System (INIS)

    Marland, Gregg; West, Tristram O.; Schlamadinger, Bernhard; Canella, Lorenza

    2003-01-01

    A change in agricultural practice can increase carbon sequestration in agricultural soils. To know the net effect on greenhouse gas emissions to the atmosphere, however, we consider associated changes in CO 2 emissions resulting from the consumption of fossil fuels, emissions of other greenhouse gases and effects on land productivity and crop yield. We also consider how these factors will evolve over time. A change from conventional tillage to no-till agriculture, based on data for average practice in the U.S.; will result in net carbon sequestration in the soil that averages 337 kg C/ha/yr for the initial 20 yr with a decline to near zero in the following 20 yr, and continuing savings in CO 2 emissions because of reduced use of fossil fuels. The long-term results, considering all factors, can generally be expected to show decreased net greenhouse gas emissions. The quantitative details, however, depend on the site-specific impact of the conversion from conventional to no-till agriculture on agricultural yield and N 2 O emissions from nitrogen fertilizer

  19. Bayesian Learning and the Regulation of Greenhouse Gas Emissions

    OpenAIRE

    Karp, Larry; Zhang, Jiangfeng

    2001-01-01

    We study the importance of anticipated learning - about both environmental damages and abatement costs - in determining the level and the method of controlling greenhouse gas emissions. We also compare active learning, passive learning, and parameter uncertainty without learning. Current beliefs about damages and abatement costs have an important effect on the optimal level of emissions, However, the optimal level of emissions is not sensitive either to the possibility of learning about damag...

  20. Contribution of cooperative sector recycling to greenhouse gas emissions reduction: A case study of Ribeirão Pires, Brazil

    International Nuclear Information System (INIS)

    King, Megan F.; Gutberlet, Jutta

    2013-01-01

    Highlights: • Cooperative recycling achieves environmental, economic and social objectives. • We calculate GHG emissions reduction for a recycling cooperative in São Paulo, Brazil. • The cooperative merits consideration as a Clean Development Mechanism (CDM) project. • A CDM project would enhance the achievements of the recycling cooperative. • National and local waste management policies support the recycling cooperative. - Abstract: Solid waste, including municipal waste and its management, is a major challenge for most cities and among the key contributors to climate change. Greenhouse gas emissions can be reduced through recovery and recycling of resources from the municipal solid waste stream. In São Paulo, Brazil, recycling cooperatives play a crucial role in providing recycling services including collection, separation, cleaning, stocking, and sale of recyclable resources. The present research attempts to measure the greenhouse gas emission reductions achieved by the recycling cooperative Cooperpires, as well as highlight its socioeconomic benefits. Methods include participant observation, structured interviews, questionnaire application, and greenhouse gas accounting of recycling using a Clean Development Mechanism methodology. The results show that recycling cooperatives can achieve important energy savings and reductions in greenhouse gas emissions, and suggest there is an opportunity for Cooperpires and other similar recycling groups to participate in the carbon credit market. Based on these findings, the authors created a simple greenhouse gas accounting calculator for recyclers to estimate their emissions reductions

  1. Contribution of cooperative sector recycling to greenhouse gas emissions reduction: A case study of Ribeirão Pires, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    King, Megan F., E-mail: mfking@uvic.ca [The Community-Based Research Laboratory, Department of Geography, University of Victoria, PO Box 3060 STN CSC, Victoria, BC V8W 3R4 (Canada); Gutberlet, Jutta, E-mail: gutber@uvic.ca [Department of Geography, University of Victoria, PO Box 3060 STN CSC, Victoria, BC V8W 3R4 (Canada)

    2013-12-15

    Highlights: • Cooperative recycling achieves environmental, economic and social objectives. • We calculate GHG emissions reduction for a recycling cooperative in São Paulo, Brazil. • The cooperative merits consideration as a Clean Development Mechanism (CDM) project. • A CDM project would enhance the achievements of the recycling cooperative. • National and local waste management policies support the recycling cooperative. - Abstract: Solid waste, including municipal waste and its management, is a major challenge for most cities and among the key contributors to climate change. Greenhouse gas emissions can be reduced through recovery and recycling of resources from the municipal solid waste stream. In São Paulo, Brazil, recycling cooperatives play a crucial role in providing recycling services including collection, separation, cleaning, stocking, and sale of recyclable resources. The present research attempts to measure the greenhouse gas emission reductions achieved by the recycling cooperative Cooperpires, as well as highlight its socioeconomic benefits. Methods include participant observation, structured interviews, questionnaire application, and greenhouse gas accounting of recycling using a Clean Development Mechanism methodology. The results show that recycling cooperatives can achieve important energy savings and reductions in greenhouse gas emissions, and suggest there is an opportunity for Cooperpires and other similar recycling groups to participate in the carbon credit market. Based on these findings, the authors created a simple greenhouse gas accounting calculator for recyclers to estimate their emissions reductions.

  2. Greenhouse gas emissions in an agroforestry system in the southeastern U.S.

    Science.gov (United States)

    Agroforestry systems can provide diverse ecosystem services and economic benefits that conventional farming practices cannot. Importantly, these systems have the potential to mitigate greenhouse gas emissions by reducing the need for external inputs, enhancing nutrient cycling and promoting C seques...

  3. Better greenhouse gas emissions accounting for biofuels : A key to biofuels sustainability

    NARCIS (Netherlands)

    Peeters, Marjan; Yue, Taotao

    2016-01-01

    Biofuels are promoted by governments as a replacement for fossil fuels in the transport sector. However, according to current scientific evidence, their use does not necessarily significantly reduce greenhouse gas emissions. This article examines issues related to the regulation of biofuels’

  4. How to prevent greenhouse gas emissions in electrical installations: lighting energy savings and solar energy approaches

    Energy Technology Data Exchange (ETDEWEB)

    Yavuz, C.; Aksoy, C. [Sakarya University, Faculty of Engineering, Electrical and Electronics Engineering Department, Serdivan (Turkey)

    2012-07-01

    Day by day greenhouse gas emissions increase dramatically. A passive adaptive method of lighting energy savings, daylight responsive systems are considered one of the best solutions for energy efficiency, saving and prevent CO{sub 2} emissions. Results of an annual experiment which was held in Sakarya University proves the necessity of daylight responsive systems with a 41% energy saving and 942.5 kg of prevented CO{sub 2} emissions Thinking this prevention is realized just only in a 36 m{sup 2} room with the use of 8 luminaries spreading such systems to nationwide, a major amount of greenhouse gas emissions would be prohibited. On the other hand energy saving is not the only way to reduce CO{sub 2} emissions. Again in Sakarya University a project has started to investigate the possibility of illumination of a complete building by using solar energy. This paper evaluates these mentioned systems both in energy efficiency, greenhouse gas emissions prevention and economic point of views. (author)

  5. Inside Story of Gas Processes within Stormwater Biofilters: Does Greenhouse Gas Production Tarnish the Benefits of Nitrogen Removal?

    Science.gov (United States)

    Payne, Emily G I; Pham, Tracey; Cook, Perran L M; Deletic, Ana; Hatt, Belinda E; Fletcher, Tim D

    2017-04-04

    Stormwater biofilters are dynamic environments, supporting diverse processes that act to capture and transform incoming pollutants. However, beneficial water treatment processes can be accompanied by undesirable greenhouse gas production. This study investigated the potential for nitrous oxide (N 2 O) and methane (CH 4 ) generation in dissolved form at the base of laboratory-scale stormwater biofilter columns. The influence of plant presence, species, inflow frequency, and inclusion of a saturated zone and carbon source were studied. Free-draining biofilters remained aerobic with negligible greenhouse gas production during storm events. Designs with a saturated zone were oxygenated at their base by incoming stormwater before anaerobic conditions rapidly re-established, although extended dry periods allowed the reintroduction of oxygen by evapotranspiration. Production of CH 4 and N 2 O in the saturated zone varied significantly in response to plant presence, species, and wetting and drying. Concentrations of N 2 O typically peaked rapidly following stormwater inundation, associated with limited plant root systems and poorer nitrogen removal from biofilter effluent. Production of CH 4 also commenced quickly but continued throughout the anaerobic interevent period and lacked clear relationships with plant characteristics or nitrogen removal performance. Dissolved greenhouse gas concentrations were highly variable, but peak concentrations of N 2 O accounted for nitrogen load. While further work is required to measure surface emissions, the potential for substantial release of N 2 O or CH 4 in biofilter effluent appears relatively low.

  6. Management of gas releases with greenhouse effect: which economical tools?; Maitriser les emissions de gaz a effet de serre: quels instruments economiques?

    Energy Technology Data Exchange (ETDEWEB)

    Lepeltier, Serge [Senat, Paris (France)

    2000-06-09

    The climatic change represents the most severe danger to the durable world development, public health and future prosperity. This document concerning the gas releases with greenhouse effect is a report of the Senate Planning delegation regarding the economic and fiscal tools envisaging abatement of releases of gases with greenhouse effect. These issues are presented in four chapters titled as follows: 1. Since the scientific evidencing, requirement of managing the releases of gas with greenhouse effect has been unanimously recognized at the summits of Rio (1992) and Kyoto (1997); 2. The economic theory suggests instruments for reducing the gas releases with greenhouse effect at a minimum cost; 3. Challenges and ways of international cooperation in the field of climatic change; 4. Joining the political will with the pragmatic use of the economic instruments at national scale. The document contains a synthesis of proposals directed towards the following goals: international negotiations relating to climatic change; creating the community framework of managing the gas releases resulting in greenhouse effect; establishing national measures for managing the gas releases leading to greenhouse effect; actions to be undertaken by the territorial collectivities.

  7. Curbing Air Pollution and Greenhouse Gas Emissions from Industrial Boilers in China

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Bo [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Price, Lynn K [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lu, Hongyou [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Liu, Xu [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Tsen, Katherine [Univ. of California, Berkeley, CA (United States); Xiangyang, Wei [National Energy Conservation Center (China); Yunpeng, Zhang [National Energy Conservation Center (China); Jian, Guan [China Special Equipment Inspection & Test Inst. (China); Rui, Hou [China Machinery Industry Conservation & Resource Utilization Center (China); Junfeng, Zhang [China National Offshore Oil Corp. (China); Yuqun, Zhuo [Tsinghua Univ., Beijing (China); Shumao, Xia [China Energy Conservation & Environmental Protection Group (China); Yafeng, Han [Xi' an Jiatong Univ. (China); Manzhi, Liu [China Univ. of Mining and Technology (China)

    2015-10-28

    China’s industrial boiler systems consume 700 million tons of coal annually, accounting for 18% of the nation’s total coal consumption. Together these boiler systems are one of the major sources of China’s greenhouse gas (GHG) emissions, producing approximately 1.3 gigatons (Gt) of carbon dioxide (CO2) annually. These boiler systems are also responsible for 33% and 27% of total soot and sulfur dioxide (SO2) emissions in China, respectively, making a substantial contribution to China’s local environmental degradation. The Chinese government - at both the national and local level - is taking actions to mitigate the significant greenhouse gas (GHG) emissions and air pollution related to the country’s extensive use of coal-fired industrial boilers. The United States and China are pursuing a collaborative effort under the U.S.-China Climate Change Working Group to conduct a comprehensive assessment of China’s coal-fired industrial boilers and to develop an implementation roadmap that will improve industrial boiler efficiency and maximize fuel-switching opportunities. Two Chinese cities – Ningbo and Xi’an – have been selected for the assessment. These cities represent coastal areas with access to liquefied natural gas (LNG) imports and inland regions with access to interprovincial natural gas pipelines, respectively.

  8. The governance challenge for implementing effective market-based climate policies: A case study of The New South Wales Greenhouse Gas Reduction Scheme

    International Nuclear Information System (INIS)

    Passey, Robert; MacGill, Iain; Outhred, Hugh

    2008-01-01

    The New South Wales (NSW) Greenhouse Gas Reduction Scheme (GGAS) in Australia is a baseline and credit emissions trading scheme with the stated aim of reducing the per-capita greenhouse emissions associated with electricity consumption in the state of NSW. Here we provide a detailed assessment of the GGAS design and operation, with a particular emphasis on its effectiveness in delivering physical emissions reductions that would not have occurred in its absence. We find that a number of design features mean a significant proportion of the tradeable 'abatement' certificates are unlikely to correspond to the claimed emissions reductions. While some of these adverse design choices might be corrected, others would seem inherent to the underlying scheme design. Our analysis highlights the major governance challenges with emissions trading approaches and hence the importance of good policy implementation processes including the need for separation of powers through a scheme development process that involves design, assessment and revision. These GGAS lessons would seem relevant for governance with all emissions trading schemes, and has particular implications for cap and trade schemes that incorporate baseline and credit offset schemes, as well as to the 'White Certificate' schemes increasingly being seen as a means of fostering enhanced end-use energy efficiency

  9. Greenhouse gas accounting and waste management

    DEFF Research Database (Denmark)

    Gentil, Emmanuel; Christensen, Thomas Højlund; Aoustin, E.

    2009-01-01

    Accounting of emissions of greenhouse gas (GHG) is a major focus within waste management. This paper analyses and compares the four main types of GHG accounting in waste management including their special features and approaches: the national accounting, with reference to the Intergovernmental...... specifically, the clean development mechanism (CDM) methodology, introduced to support cost-effective reduction in GHG emissions. These types of GHG accounting, in principle, have a common starting point in technical data on GHG emissions from specific waste technologies and plants, but the limited...... Panel on Climate Change (IPCC), the corporate level, as part of the annual reporting on environmental issues and social responsibility, life-cycle assessment (LCA), as an environmental basis for assessing waste management systems and technologies, and finally, the carbon trading methodology, and more...

  10. Asia least-cost greenhouse gas abatement strategy identification and assessment of mitigation options for the energy sector

    International Nuclear Information System (INIS)

    Gupta, Sujata; Bhandari, Preety

    1998-01-01

    The focus of the presentation was on greenhouse gas mitigation options for the energy sector for India. Results from the Asia Least-cost Greenhouse gas Abatement Strategies (ALGAS) project were presented. The presentation comprised of a review of the sources of greenhouse gases, the optimisation model, ie the Markal model, used for determining the least-cost options, discussion of the results from the baseline and the abatement scenarios. The second half of the presentation focussed on a multi-criteria assessment of the abatement options using the Analytical Hierarchical Process (AHP) model. The emissions of all greenhouse gases, for India, are estimated to be 986.3 Tg of carbon dioxide equivalent for 1990. The energy sector accounted for 58 percent of the total emissions and over 90 percent of the CO2 emissions. Net emissions form land use change and forestry were zero. (au)

  11. Greenhouse effects of the peat production and use as compared to coal, oil, natural gas and wood

    International Nuclear Information System (INIS)

    Hillebrand, K.; Wihersaari, M.

    1993-01-01

    This report examines the greenhouse effects of greenhouse gas emissions (carbon dioxide, methane and nitrous oxide) arising from certain production and utilization chains of peat and compares them with the corresponding effects associated with the production and utilization chains of coal, oil, natural gas and wood. In order to estimate the greenhouse effects of the peat production and utilization chains, the initial state of the peat bog together with the instantaneous and cumulative greenhouse effects associated with the production and burning of peat as well as subsequent use of the production area were taken into account. The initial state of the peat bog was taken to be either a bog in its natural sale, a forest-drained bog or a cultivated peatland. As regards alternatives for subsequent use of the peat production area, afforestation, paludification and lake formation were all examined

  12. 75 FR 49913 - Draft Guidance, “Federal Greenhouse Gas Accounting and Reporting”

    Science.gov (United States)

    2010-08-16

    ... provides this draft guidance for public review and comment to ensure accessibility of Federal accounting... COUNCIL ON ENVIRONMENTAL QUALITY Draft Guidance, ``Federal Greenhouse Gas Accounting and Reporting... recommended Federal GHG reporting and accounting procedures. On April 5, 2010, DOE-FEMP submitted the final...

  13. Energy consumption and greenhouse gas emissions in the recovery and extraction of crude bitumen from Canada’s oil sands

    International Nuclear Information System (INIS)

    Nimana, Balwinder; Canter, Christina; Kumar, Amit

    2015-01-01

    Highlights: • A model to estimate energy consumption and GHG emissions in oil sands is presented. • The model is developed from fundamental engineering principles. • Cogeneration in the oil sands has the ability to offset GHG emissions. • The effect of key parameters is investigated through a sensitivity analysis. - Abstract: A model – FUNNEL-GHG-OS (FUNdamental ENgineering PrinciplEs-based ModeL for Estimation of GreenHouse Gases in the Oil Sands) was developed to estimate project-specific energy consumption and greenhouse gas emissions (GHGs) in major recovery and extraction processes in the oil sands, namely surface mining and in situ production. This model estimates consumption of diesel (4.4–7.1 MJ/GJ of bitumen), natural gas (52.7–86.4 MJ/GJ of bitumen) and electricity (1.8–2.1 kW h/GJ of bitumen) as fuels in surface mining. The model also estimates the consumption of natural gas (123–462.7 MJ/GJ of bitumen) and electricity (1.2–3.5 kW h/GJ of bitumen) in steam assisted gravity drainage (SAGD), based on fundamental engineering principles. Cogeneration in the oil sands, with excess electricity exported to Alberta’s grid, was also explored. Natural gas consumption forms a major portion of the total energy consumption in surface mining and SAGD and thus is a main contributor to GHG emissions. Emissions in surface mining and SAGD range from 4.4 to 7.4 gCO 2 eq/MJ of bitumen and 8.0 to 34.0 gCO 2 eq/MJ of bitumen, respectively, representing a wide range of variability in oil sands projects. Depending upon the cogeneration technology and the efficiency of the process, emissions in oil sands recovery and extraction can be reduced by 16–25% in surface mining and 33–48% in SAGD. Further, a sensitivity analysis was performed to determine the effects of key parameters on the GHG emissions in surface mining and SAGD. Temperature and the consumption of warm water in surface mining and the steam-to-oil ratio (SOR) in SAGD are major parameters

  14. Earth observations for estimating greenhouse gas emissions from deforestation in developing countries

    International Nuclear Information System (INIS)

    DeFries, Ruth; Achard, Frederic; Brown, Sandra; Herold, Martin; Murdiyarso, Daniel; Schlamadinger, Bernhard; Souza, Carlos de

    2007-01-01

    In response to the United Nations Framework Convention on Climate Change (UNFCCC) process investigating the technical issues surrounding the ability to reduce greenhouse gas (GHG) emissions from deforestation in developing countries, this paper reviews technical capabilities for monitoring deforestation and estimating emissions. Implementation of policies to reduce emissions from deforestation require effective deforestation monitoring systems that are reproducible, provide consistent results, meet standards for mapping accuracy, and can be implemented at the national level. Remotely sensed data supported by ground observations are key to effective monitoring. Capacity in developing countries for deforestation monitoring is well-advanced in a few countries and is a feasible goal in most others. Data sources exist to determine base periods in the 1990s as historical reference points. Forest degradation (e.g. from high impact logging and fragmentation) also contribute to greenhouse gas emissions but it is more technically challenging to measure than deforestation. Data on carbon stocks, which are needed to estimate emissions, cannot currently be observed directly over large areas with remote sensing. Guidelines for carbon accounting from deforestation exist and are available in approved Intergovernmental Panel on Climate Change (IPCC) reports and can be applied at national scales in the absence of forest inventory or other data. Key constraints for implementing programs to monitor greenhouse gas emissions from deforestation are international commitment of resources to increase capacity, coordination of observations to ensure pan-tropical coverage, access to free or low-cost data, and standard and consensual protocols for data interpretation and analysis

  15. Sector trends and driving forces of global energy use and greenhouse gas emissions: focus in industry and buildings

    Energy Technology Data Exchange (ETDEWEB)

    Price, Lynn; Worrell, Ernst; Khrushch, Marta

    1999-09-01

    Disaggregation of sectoral energy use and greenhouse gas emissions trends reveals striking differences between sectors and regions of the world. Understanding key driving forces in the energy end-use sectors provides insights for development of projections of future greenhouse gas emissions. This report examines global and regional historical trends in energy use and carbon emissions in the industrial, buildings, transport, and agriculture sectors, with a more detailed focus on industry and buildings. Activity and economic drivers as well as trends in energy and carbon intensity are evaluated. The authors show that macro-economic indicators, such as GDP, are insufficient for comprehending trends and driving forces at the sectoral level. These indicators need to be supplemented with sector-specific information for a more complete understanding of future energy use and greenhouse gas emissions.

  16. Sector trends and driving forces of global energy use and greenhouse gas emissions: focus in industry and buildings

    International Nuclear Information System (INIS)

    Price, Lynn; Worrell, Ernst; Khrushch, Marta

    1999-01-01

    Disaggregation of sectoral energy use and greenhouse gas emissions trends reveals striking differences between sectors and regions of the world. Understanding key driving forces in the energy end-use sectors provides insights for development of projections of future greenhouse gas emissions. This report examines global and regional historical trends in energy use and carbon emissions in the industrial, buildings, transport, and agriculture sectors, with a more detailed focus on industry and buildings. Activity and economic drivers as well as trends in energy and carbon intensity are evaluated. The authors show that macro-economic indicators, such as GDP, are insufficient for comprehending trends and driving forces at the sectoral level. These indicators need to be supplemented with sector-specific information for a more complete understanding of future energy use and greenhouse gas emissions

  17. Modelling greenhouse gas emissions for municipal solid waste management strategies in Ottawa, Ontario, Canada

    Energy Technology Data Exchange (ETDEWEB)

    Mohareb, Adrian K. [Technology Early Action Measures (TEAM) Office, 55 Murray Street, Suite 230, Ottawa, ON (Canada); Warith, Mostafa A.; Diaz, Rodrigo [Department of Civil Engineering, Ryerson University, 350 Victoria Street, Toronto, ON (Canada)

    2008-09-15

    Human-induced climate change, through the emission of greenhouse gases, may result in a significant negative impact on Earth. Canada is one of the largest per capita emitters of greenhouse gas, generating 720 megatonnes (Mt) carbon dioxide equivalents (CO{sub 2}e), or per capita emissions of 23.2 t CO{sub 2}e. The solid waste sector in Canada was directly responsible for 25 Mt CO{sub 2}e in 2001, of which 23 Mt CO{sub 2}e were produced by landfill gas (LFG). A modelling exercise was undertaken to determine greenhouse gas (GHG) emissions from the waste sector using the waste disposal, recycling, and composting data from Ottawa, Ontario, Canada for the year 2003, as well as the results of an audit of residential units performed in the same year. This evaluation determined that, among the options examined, waste incineration, further source separation of recyclables, and anaerobic digestion of an organic wastes have the greatest benefits for reducing GHG emissions in the City of Ottawa's waste sector. Challenges surrounding the installation of incineration facilities in Canada suggest that improved diversion of recyclable materials and anaerobic digestion of organic materials are the optimal options for the City of Ottawa to pursue. (author)

  18. Providing low-budget estimations of carbon sequestration and greenhouse gas emissions in agricultural wetlands

    International Nuclear Information System (INIS)

    Lloyd, Colin R; Rebelo, Lisa-Maria; Max Finlayson, C

    2013-01-01

    The conversion of wetlands to agriculture through drainage and flooding, and the burning of wetland areas for agriculture have important implications for greenhouse gas (GHG) production and changing carbon stocks. However, the estimation of net GHG changes from mitigation practices in agricultural wetlands is complex compared to dryland crops. Agricultural wetlands have more complicated carbon and nitrogen cycles with both above- and below-ground processes and export of carbon via vertical and horizontal movement of water through the wetland. This letter reviews current research methodologies in estimating greenhouse gas production and provides guidance on the provision of robust estimates of carbon sequestration and greenhouse gas emissions in agricultural wetlands through the use of low cost reliable and sustainable measurement, modelling and remote sensing applications. The guidance is highly applicable to, and aimed at, wetlands such as those in the tropics and sub-tropics, where complex research infrastructure may not exist, or agricultural wetlands located in remote regions, where frequent visits by monitoring scientists prove difficult. In conclusion, the proposed measurement-modelling approach provides guidance on an affordable solution for mitigation and for investigating the consequences of wetland agricultural practice on GHG production, ecological resilience and possible changes to agricultural yields, variety choice and farming practice. (letter)

  19. Modeling greenhouse gas emissions from dairy farms.

    Science.gov (United States)

    Rotz, C Alan

    2017-11-15

    Dairy farms have been identified as an important source of greenhouse gas emissions. Within the farm, important emissions include enteric CH 4 from the animals, CH 4 and N 2 O from manure in housing facilities during long-term storage and during field application, and N 2 O from nitrification and denitrification processes in the soil used to produce feed crops and pasture. Models using a wide range in level of detail have been developed to represent or predict these emissions. They include constant emission factors, variable process-related emission factors, empirical or statistical models, mechanistic process simulations, and life cycle assessment. To fully represent farm emissions, models representing the various emission sources must be integrated to capture the combined effects and interactions of all important components. Farm models have been developed using relationships across the full scale of detail, from constant emission factors to detailed mechanistic simulations. Simpler models, based upon emission factors and empirical relationships, tend to provide better tools for decision support, whereas more complex farm simulations provide better tools for research and education. To look beyond the farm boundaries, life cycle assessment provides an environmental accounting tool for quantifying and evaluating emissions over the full cycle, from producing the resources used on the farm through processing, distribution, consumption, and waste handling of the milk and dairy products produced. Models are useful for improving our understanding of farm processes and their interacting effects on greenhouse gas emissions. Through better understanding, they assist in the development and evaluation of mitigation strategies for reducing emissions and improving overall sustainability of dairy farms. The Authors. Published by the Federation of Animal Science Societies and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article

  20. Regional greenhouse gas emissions from cultivation of winter wheat and winter rapeseed for biofuels in Denmark

    DEFF Research Database (Denmark)

    Elsgaard, Lars; Olesen, Jørgen E; Hermansen, John Erik

    2013-01-01

    Biofuels from bioenergy crops may substitute a significant part of fossil fuels in the transport sector where, e.g., the European Union has set a target of using 10% renewable energy by 2020. Savings of greenhouse gas emissions by biofuels vary according to cropping systems and are influenced...... by such regional factors as soil conditions, climate and input of agrochemicals. Here we analysed at a regional scale the greenhouse gas (GHG) emissions associated with cultivation of winter wheat for bioethanol and winter rapeseed for rapeseed methyl ester (RME) under Danish conditions. Emitted CO2 equivalents...

  1. Drops of energy: conserving urban water to reduce greenhouse gas emissions.

    Science.gov (United States)

    Zhou, Yuanchun; Zhang, Bing; Wang, Haikun; Bi, Jun

    2013-10-01

    Water and energy are two essential resources of modern civilization and are inherently linked. Indeed, the optimization of the water supply system would reduce energy demands and greenhouse gas emissions in the municipal water sector. This research measured the climatic cobenefit of water conservation based on a water flow analysis. The results showed that the estimated energy consumption of the total water system in Changzhou, China, reached approximately 10% of the city's total energy consumption, whereas the industrial sector was found to be more energy intensive than other sectors within the entire water system, accounting for nearly 70% of the total energy use of the water system. In addition, four sustainable water management scenarios would bring the cobenefit of reducing the total energy use of the water system by 13.9%, and 77% of the energy savings through water conservation was indirect. To promote sustainable water management and reduce greenhouse gas emissions, China would require its water price system, both for freshwater and recycled water, to be reformed.

  2. Designing building energy efficiency programs for greenhouse gas reductions

    International Nuclear Information System (INIS)

    Blackhurst, Michael; Lima Azevedo, Ines; Scott Matthews, H.; Hendrickson, Chris T.

    2011-01-01

    Costs and benefits of building energy efficiency are estimated as a means of reducing greenhouse gas emissions in Pittsburgh, PA and Austin, TX. The analysis includes electricity and natural gas consumption, covering 75% of building energy consumption in Pittsburgh and 85% in Austin. Two policy objectives were evaluated: maximize GHG reductions given initial budget constraints or maximize social savings given target GHG reductions. This approach evaluates the trade-offs between three primary and often conflicting program design parameters: initial capital constraints, social savings, and GHG reductions. Results suggest uncertainty in local stocks, demands, and efficiency significantly impacts anticipated outcomes. Annual GHG reductions of 1 ton CO 2 eq/capita/yr in Pittsburgh could cost near nothing or over $20 per capita annually. Capital-constrained policies generate slightly less social savings (a present value of a few hundred dollars per capita) than policies that maximize social savings. However, sectors and end uses targeted for intervention vary depending on policy objectives and constraints. Optimal efficiency investment strategies for some end uses vary significantly (in excess of 100%) between Pittsburgh and Austin, suggesting that resources and guidance conducted at the national scale may mislead state and local decision-makers. Results are used to provide recommendations for efficiency program administrators. - Highlights: → We use public data to estimate local building energy costs, benefits and greenhouse gas reductions. → We use optimization to evaluate trade-offs between program objectives and capital constraints. → Local energy market conditions significantly influence efficiency expectations. → Different program objectives can lead to different effective investment strategies. → We reflect on the implications of our results for efficiency program design.

  3. Designing building energy efficiency programs for greenhouse gas reductions

    Energy Technology Data Exchange (ETDEWEB)

    Blackhurst, Michael, E-mail: mfb@andrew.cmu.edu [Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, 1 University Station C1752, Austin, TX 78712 (United States); Lima Azevedo, Ines, E-mail: iazevedo@cmu.edu [Department of Engineering and Public Policy, Carnegie Mellon University, 119 Porter Hall, Pittsburgh, PA 15213 (United States); Scott Matthews, H., E-mail: hsm@cmu.edu [Department of Engineering and Public Policy, Carnegie Mellon University, 119 Porter Hall, Pittsburgh, PA 15213 (United States); Department of Civil and Environmental Engineering, Carnegie Mellon University, 119 Porter Hall, Pittsburgh, PA 15213 (United States); Hendrickson, Chris T., E-mail: cth@andrew.cmu.edu [Department of Civil and Environmental Engineering, Carnegie Mellon University, 119 Porter Hall, Pittsburgh, PA 15213 (United States)

    2011-09-15

    Costs and benefits of building energy efficiency are estimated as a means of reducing greenhouse gas emissions in Pittsburgh, PA and Austin, TX. The analysis includes electricity and natural gas consumption, covering 75% of building energy consumption in Pittsburgh and 85% in Austin. Two policy objectives were evaluated: maximize GHG reductions given initial budget constraints or maximize social savings given target GHG reductions. This approach evaluates the trade-offs between three primary and often conflicting program design parameters: initial capital constraints, social savings, and GHG reductions. Results suggest uncertainty in local stocks, demands, and efficiency significantly impacts anticipated outcomes. Annual GHG reductions of 1 ton CO{sub 2} eq/capita/yr in Pittsburgh could cost near nothing or over $20 per capita annually. Capital-constrained policies generate slightly less social savings (a present value of a few hundred dollars per capita) than policies that maximize social savings. However, sectors and end uses targeted for intervention vary depending on policy objectives and constraints. Optimal efficiency investment strategies for some end uses vary significantly (in excess of 100%) between Pittsburgh and Austin, suggesting that resources and guidance conducted at the national scale may mislead state and local decision-makers. Results are used to provide recommendations for efficiency program administrators. - Highlights: > We use public data to estimate local building energy costs, benefits and greenhouse gas reductions. > We use optimization to evaluate trade-offs between program objectives and capital constraints. > Local energy market conditions significantly influence efficiency expectations. > Different program objectives can lead to different effective investment strategies. > We reflect on the implications of our results for efficiency program design.

  4. Net global warming potential and greenhouse gas intensity influenced by irrigation, tillage, crop rotation, and nitrogen fertilization

    Science.gov (United States)

    Little information exists about sources and sinks of greenhouse gases (GHGs) affected by management practices to account for net emissions from agroecosystems. We evaluated the effects of irrigation, tillage, crop rotation, and N fertilization on net global warming potential (GWP) and greenhouse gas...

  5. Greenhouse Gas Emissions from Intermittently Flooded (Dambo) Rice under Different Tillage Practices in Chiota Smallholder Farming Area of Zimbabwe

    DEFF Research Database (Denmark)

    Nyamadzawo, George; Wuta, Menas; Chirinda, Ngoni

    2013-01-01

    Agriculture is one of the biggest sources of greenhouse gases. Rice production has been identified as one of the major sources of greenhouse gases, especially methane. However, data on the contributions of rice towards greenhouse gas emissions in tropical Africa are limited. In Zimbabwe, as in mo...

  6. The economics of greenhouse gas mitigation in developing Asia

    OpenAIRE

    Aleluia Reis, Lara; Emmerling, Johannes; Tavoni, Massimo; Raitzer, David

    2016-01-01

    Developing Asia has the world's fastest greenhouse gas emissions growth. This study uses an economy-energy-climate model to assess the effects of Paris Agreement pledges on Asia, in comparison with business as usual (BAU) and more ambitious scenarios. Results confirm that pledges must be strongly increased in ambition to achieve the Paris Agreement's goal of less than 2 degrees Celsius (2êC) warming. The policy costs of Asia's pledges are found to be less than 1% of gross domestic product (GD...

  7. Greenhouse Gas Emissions From Energy Systems: Comparison And Overview

    International Nuclear Information System (INIS)

    Dones, R.; Heck, T.; Hirschberg, S.

    2004-01-01

    The paper provides an overview and comparison of Greenhouse Gas Emissions associated with fossil, nuclear and renewable energy systems. In this context both the direct technology-specific emissions and the contributions from full energy chains within the Life Cycle Assessment framework are considered. Examples illustrating the differences between countries and regional electricity mixes are also provided. Core results presented here are based on the work performed at PSI, and by partners within the Swiss Centre for Life-Cycle Inventories. (author)

  8. Greenhouse Gas Emissions From Energy Systems: Comparison And Overview

    Energy Technology Data Exchange (ETDEWEB)

    Dones, R.; Heck, T.; Hirschberg, S

    2004-03-01

    The paper provides an overview and comparison of Greenhouse Gas Emissions associated with fossil, nuclear and renewable energy systems. In this context both the direct technology-specific emissions and the contributions from full energy chains within the Life Cycle Assessment framework are considered. Examples illustrating the differences between countries and regional electricity mixes are also provided. Core results presented here are based on the work performed at PSI, and by partners within the Swiss Centre for Life-Cycle Inventories. (author)

  9. Inventory and action plan for greenhouse gas emissions and capture in the Lower Saint Lawrence

    International Nuclear Information System (INIS)

    Granger, F.; Avoine, G.; Michon, P.-Y.; Drainville, L.

    2003-01-01

    The authors reported on a project designed to provide farmers with concrete information based on data from their enterprise to develop an action plan for the reduction of greenhouse gas emissions. This project involved completing an inventory of greenhouse gas emissions and capture for seven farms located in the Lower Saint Lawrence region of Quebec. The authors presented a balance sheet and action plan for the region under study. A total of six priorities were identified. They encompassed measures such as the optimization of nitrogen management in agricultural soils, to increasing the capture rate of carbon dioxide, and reducing the use of fossil fuels. 6 refs., 6 figs

  10. Greenhouse gas quotas on the Norwegian continental shelf

    International Nuclear Information System (INIS)

    Torvanger, Asbjoern; Godal, Odd; Kolshus, Hans H.; Aaheim, Asbjoern

    2002-01-01

    This report discusses advantages and disadvantages of voluntary quota obligations in a greenhouse gas emissions trading system at the company level, and advantages and disadvantages associated with various initial allocation mechanisms in a quota system. The analysis is based on the situation for the Norwegian oil industry in an early Norwegian emissions trading system in the period 2005-2007, and on oil companies' participation in international emissions trading under the Kyoto Protocol in the period 2008-2012. The report has been commissioned by the Norwegian Oil Industry Association, and was written in the period March-April 2002. (author)

  11. High accuracy Primary Reference gas Mixtures for high-impact greenhouse gases

    Science.gov (United States)

    Nieuwenkamp, Gerard; Zalewska, Ewelina; Pearce-Hill, Ruth; Brewer, Paul; Resner, Kate; Mace, Tatiana; Tarhan, Tanil; Zellweger, Christophe; Mohn, Joachim

    2017-04-01

    Climate change, due to increased man-made emissions of greenhouse gases, poses one of the greatest risks to society worldwide. High-impact greenhouse gases (CO2, CH4 and N2O) and indirect drivers for global warming (e.g. CO) are measured by the global monitoring stations for greenhouse gases, operated and organized by the World Meteorological Organization (WMO). Reference gases for the calibration of analyzers have to meet very challenging low level of measurement uncertainty to comply with the Data Quality Objectives (DQOs) set by the WMO. Within the framework of the European Metrology Research Programme (EMRP), a project to improve the metrology for high-impact greenhouse gases was granted (HIGHGAS, June 2014-May 2017). As a result of the HIGHGAS project, primary reference gas mixtures in cylinders for ambient levels of CO2, CH4, N2O and CO in air have been prepared with unprecedented low uncertainties, typically 3-10 times lower than usually previously achieved by the NMIs. To accomplish these low uncertainties in the reference standards, a number of preparation and analysis steps have been studied and improved. The purity analysis of the parent gases had to be performed with lower detection limits than previously achievable. E.g., to achieve an uncertainty of 2•10-9 mol/mol (absolute) on the amount fraction for N2O, the detection limit for the N2O analysis in the parent gases has to be in the sub nmol/mol domain. Results of an OPO-CRDS analyzer set-up in the 5µm wavelength domain, with a 200•10-12 mol/mol detection limit for N2O, will be presented. The adsorption effects of greenhouse gas components at cylinder surfaces are critical, and have been studied for different cylinder passivation techniques. Results of a two-year stability study will be presented. The fit-for-purpose of the reference materials was studied for possible variation on isotopic composition between the reference material and the sample. Measurement results for a suit of CO2 in air

  12. How to design greenhouse gas trading in the EU?

    International Nuclear Information System (INIS)

    Svendsen, G.T.

    2003-01-01

    A new and remarkable Green Paper about how to trade greenhouse gases (GHG) in the EU has recently been published by the Commission of the European Union. This to achieve the stated 8% reduction target level. The Green Paper raises ten questions about how greenhouse gas permit trading should be designed in the EU before year 2005. These ten questions can be compressed into four main issues, namely target group, allocation of emission allowances, how to mix emission trading with other instruments and fourth enforcement. In the literature, there is a strong need to guide decision-makers and stimulate academic debates concerning the actual design of a simple and workable GHG market model for the EU. This model must take both economic, administrative and political concerns into account so that it is feasible in practice. Based on our findings, we therefore develop a policy recommendation concerning the future design of GHG permit trading in the EU. (author)

  13. How to design greenhouse gas trading in the EU?

    International Nuclear Information System (INIS)

    Tinggaard Svendsen, G.; Vesterdal, M.

    2001-01-01

    A new and remarkable Green Paper about how to trade Greenhouse gases (GHG) in the EU has recently been published by the Commission of the European Union. This to achieve the stated 8% reduction target level. The Green paper raises ten questions about how greenhouse gas permit trading should be designed in the EU before year 2005. These ten questions can be compressed into four main issues, namely target group, allocation of emission allowances, how to mix emission trading with other instruments and fourth enforcement. In the literature, there is a strong need to guide decision-makers and stimulate academic debates concerning the actual design of a simple and workable GHG market model for the EU. This model must take both economic, administrative and political concerns into account so that it is feasible in practice. Based on our findings, we therefore develop a policy recommendation concerning the future design of GHG permit trading in the EU. (au)

  14. How to design greenhouse gas trading in the EU?

    Energy Technology Data Exchange (ETDEWEB)

    Tinggaard Svendsen, G; Vesterdal, M

    2001-07-01

    A new and remarkable Green Paper about how to trade Greenhouse gases (GHG) in the EU has recently been published by the Commission of the European Union. This to achieve the stated 8% reduction target level. The Green paper raises ten questions about how greenhouse gas permit trading should be designed in the EU before year 2005. These ten questions can be compressed into four main issues, namely target group, allocation of emission allowances, how to mix emission trading with other instruments and fourth enforcement. In the literature, there is a strong need to guide decision-makers and stimulate academic debates concerning the actual design of a simple and workable GHG market model for the EU. This model must take both economic, administrative and political concerns into account so that it is feasible in practice. Based on our findings, we therefore develop a policy recommendation concerning the future design of GHG permit trading in the EU. (au)

  15. Estimating the greenhouse gas benefits of forestry projects: A Costa Rican Case Study

    Energy Technology Data Exchange (ETDEWEB)

    Busch, Christopher; Sathaye, Jayant; Sanchez Azofeifa, G. Arturo

    2000-09-01

    If the Clean Development Mechanism proposed under the Kyoto Protocol is to serve as an effective means for combating global climate change, it will depend upon reliable estimates of greenhouse gas benefits. This paper sketches the theoretical basis for estimating the greenhouse gas benefits of forestry projects and suggests lessons learned based on a case study of Costa Rica's Protected Areas Project, which is a 500,000 hectare effort to reduce deforestation and enhance reforestation. The Protected Areas Project in many senses advances the state of the art for Clean Development Mechanism-type forestry projects, as does the third-party verification work of SGS International Certification Services on the project. Nonetheless, sensitivity analysis shows that carbon benefit estimates for the project vary widely based on the imputed deforestation rate in the baseline scenario, e.g. the deforestation rate expected if the project were not implemented. This, along with a newly available national dataset that confirms other research showing a slower rate of deforestation in Costa Rica, suggests that the use of the 1979--1992 forest cover data originally as the basis for estimating carbon savings should be reconsidered. When the newly available data is substituted, carbon savings amount to 8.9 Mt (million tones) of carbon, down from the original estimate of 15.7 Mt. The primary general conclusion is that project developers should give more attention to the forecasting land use and land cover change scenarios underlying estimates of greenhouse gas benefits.

  16. An energy balance and greenhouse gas profile for county Wexford, Ireland in 2006

    International Nuclear Information System (INIS)

    Curtin, Richard

    2011-01-01

    Highlights: → Residential sector emits 38% of total CO 2 emissions. → Transport and industry/commerce sectors emit 28% each. → Oil composes 91% of total primary energy requirement (TPER). → Methane accounts for 25% of total greenhouse gas emissions. → Agriculture accounts for 36% of total greenhouse gas emissions. -- Abstract: In this paper an energy balance and a greenhouse gas profile has been formulated for the county of Wexford, situated in the south east of Ireland. The energy balance aims to aggregate all energy consumption in the county for the year 2006 across the following sectors; residential, agriculture, commerce and industry, and transport. The results of the energy balance are compared with the previous energy balance of 2001 where it is found that the residential sector is the biggest emitter of CO 2 with 38% of total emissions with the transport and industry/commerce sectors sharing second place on 28%. Consumption of oil is seen to have increased significantly in nearly all sectors, accounting for over 70% of the total final energy consumed (TFC) while the total primary energy requirement (TPER) sees oil consumption accounting for 91% of all fuels consumed. To take into account the contribution of agriculture in total GHG emissions the gases CH 4 and N 2 O will be estimated from the agricultural and waste sectors. The results show that methane contributes 25% of total GHG emissions with agriculture being the primary contributor accounting for 36% of total emissions.

  17. Policy and tecnological constraints to implementation of greenhouse gas mitigation options in agriculture

    CSIR Research Space (South Africa)

    Smith, P

    2007-01-01

    Full Text Available A recent assessment of agricultural greenhouse gas (GHG) emissions has demonstrated significant potential for mitigation, but suggests that the full mitigation will not be realized due to significant barriers to implementation. In this paper, we...

  18. Reduction of greenhouse gas emission on a medium-pressure boiler using hydrogen-rich fuel control

    International Nuclear Information System (INIS)

    Hsieh, S.-C.; Jou, Chih-Ju G.

    2007-01-01

    The increasing emission of greenhouse gases from the combustion of fossil fuel is believed to be responsible for global warming. A study was carried out to probe the influence of replacing fuel gas with hydrogen-rich refinery gas (R.G.) on the reduction of gas emission (CO 2 and NO x ) and energy saving. Test results show that the emission of CO 2 can be reduced by 16.4% annually (or 21,500 tons per year). The NO x emission can be 8.2% lower, or 75 tons less per year. Furthermore, the use of refinery gas leads to a saving of NT$57 million (approximately US$1.73 million) on fuel costs each year. There are no CO 2 , CO, SO x , unburned hydrocarbon, or particles generated from the combustion of added hydrogen. The hydrogen content in R.G. employed in this study was between 50 and 80 mol%, so the C/H ratio of the feeding fuel was reduced. Therefore, the use of hydrogen-rich fuel has practical benefits for both energy saving and the reduction of greenhouse gas emission

  19. Greenhouse gas accounting of the proposed landfill extension and advanced incineration facility for municipal solid waste management in Hong Kong.

    Science.gov (United States)

    Woon, K S; Lo, Irene M C

    2013-08-01

    The burgeoning of municipal solid waste (MSW) disposal issue and climate change have drawn massive attention from people. On the one hand, Hong Kong is facing a controversial debate over the implementation of proposed landfill extension (LFE) and advanced incineration facility (AIF) to curb the MSW disposal issue. On the other hand, the Hong Kong Special Administrative Region Government is taking concerted efforts to reduce the carbon intensity in this region. This paper discusses the greenhouse gas (GHG) emissions from four proposed waste disposal scenarios, covering the proposed LFE and AIF within a defined system boundary. On the basis of the data collected, assumptions made, and system boundary defined in this study, the results indicate that AIF releases less GHG emissions than LFE. The GHG emissions from LFE are highly contributed by the landfill methane (CH4) emissions but offset by biogenic carbon storage, while the GHG emissions from AIF are mostly due to the stack discharge system but offset by the energy recovery system. Furthermore, parametric sensitivity analyses show that GHG emissions are strongly dependent on the landfill CH4 recovery rate, types of electricity displaced by energy recovery systems, and the heating value of MSW, altering the order of preferred waste disposal scenarios. This evaluation provides valuable insights into the applicability of a policy framework for MSW management practices in reducing GHG emissions. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Estimating the non-environmental consequences of greenhouse gas reductions is harder than you think

    International Nuclear Information System (INIS)

    DeCanio, S.J.

    1999-01-01

    Top-down and bottom-up models of the non-environmental consequences of policies to reduce greenhouse gas emissions embody different implicit theories of economic organizations. Yet neither approach is explicit in showing the detailed computations that must be traced if the activities of firms are to be described realistically. Specifications of firms' computational processes leads inevitably to a consideration of potential computational limits on the behaviour of organizations. It is known that solutions of some standard economic problems are not effectively computable, and that the solutions to others are computationally intractable. These fundamental computational limits have strong implications for the theory of the firm, and recognizing their existence and importance suggests new policy approaches for reducing greenhouse gas emissions. (author)

  1. Risk Evaluation of the Use of Green Gas in Dutch greenhouses; Risico-evaluatie toepassing Groen Gas in de Nederlandse Glastuinbouw

    Energy Technology Data Exchange (ETDEWEB)

    Van Dijk, C.J. [Plant Research International PRI, Wageningen (Netherlands); Dueck, Th.A. [Wageningen UR Glastuinbouw, Wageningen (Netherlands); Burgers, W. [Infomil, Den Haag (Netherlands)

    2009-01-15

    Green gas, or biogas originating from fermentation installations can contribute to the energy supply by replacing fossil fuels, and aims to replace natural gas by 50% in 2050. Currently, combined heat power engines (CHPs) in Dutch horticulture primarily burn natural gas. These engines supply electricity for artificial lighting and for the national electricity network, heat in greenhouses and flue gas for carbon dioxide (CO2) in order to stimulate crop growth and production. Dutch horticulture is viewed as an important partner for the utilization of biogas. In the event that biogas can indeed be utilized for CHPs in horticulture, directly or after being mixed into the natural gas network, then the resulting flue gas may also be used for supplemental CO2 in the greenhouses. The possible risks of using biogas in horticulture are illustrated in this study. Based on the composition requirements in the Dutch 'Aansluit- en Transportvoorwaarden Gas RNB' and the results of biogas analyses from various fermentation projects, a number of potentially phytotoxic gaseous components in biogas were identified. Their worst case concentrations in the greenhouse at the crop level was then estimated. The potential risks of these components for greenhouse crops were then determined on the basis of the relationship between their phytotoxicity and estimated concentration in the greenhouse. From an energy point of view, large-scale production of biogas can be used as fuel for combined heat power engines and furnaces in Dutch horticulture. If the resulting flue gases are also used as an extra CO2 source, the following components will form a potential risk to greenhouse crops: hydrogen fluoride, sulphur dioxide, nitrogen oxides and benzene. According to present insights, the components hydrogen sulphide, ammonia, methane, ethylene, toluene, xylene, trichloroethylene, tetrachloroethylene and formaldehyde do not represent a potential risk to greenhouse crops. Insufficient

  2. Photovoltaic and Hydrogen Plant Integrated with a Gas Heat Pump for Greenhouse Heating: A Mathematical Study

    Directory of Open Access Journals (Sweden)

    Alexandros Sotirios Anifantis

    2018-02-01

    Full Text Available Nowadays, the traditional energy sources used for greenhouse heating are fossil fuels such as LPG, diesel and natural gas. The global energy demand will continue to grow and alternative technologies need to be developed in order to improve the sustainability of crop production in protected environments. Innovative solutions are represented by renewable energy plants such as photovoltaic, wind and geothermal integrated systems, however, these technologies need to be connected to the power grid in order to store the energy produced. On agricultural land, power grids are not widespread and stand-alone renewable energy systems should be investigated especially for greenhouse applications. The aim of this research is to analyze, by means of a mathematical model, the energy efficiency of a photovoltaic (8.2 kW, hydrogen (2.5 kW and ground source gas heat pump (2.2 kW integrated in a stand-alone system used for heating an experimental greenhouse tunnel (48 m2 during the winter season. A yearlong energy performance analysis was conducted for three different types of greenhouse cover materials, a single layer polyethylene film, an air inflated-double layer polyethylene film, and a double acrylic or polycarbonate. The results of one year showed that the integrated system had a total energy efficiency of 14.6%. Starting from the electric energy supplied by the photovoltaic array, the total efficiency of the hydrogen and ground source gas heat pump system was 112% if the coefficient of the performance of the heat pump is equal to 5. The heating system increased the greenhouse air temperatures by 3–9 °C with respect to the external air temperatures, depending on the greenhouse cover material used.

  3. Subjective Well-Being Approach to Environmental Valuation: Evidence for Greenhouse Gas Emissions

    Science.gov (United States)

    Beja, Edsel L., Jr.

    2012-01-01

    The subjective well-being approach to environmental valuation is applied to analyze the valuation of greenhouse gas emissions with a fairness-adjustment in the valuation exercise. Results indicate that industrialized countries have high willingness-to-pay to reduce emissions. Developing countries differ in their valuations. Results indicate that…

  4. An evaluation of the effect of greenhouse gas accounting methods on a marginal abatement cost curve for Irish agricultural greenhouse gas emissions

    International Nuclear Information System (INIS)

    O’Brien, Donal; Shalloo, Laurence; Crosson, Paul; Donnellan, Trevor; Farrelly, Niall; Finnan, John; Hanrahan, Kevin; Lalor, Stan; Lanigan, Gary; Thorne, Fiona; Schulte, Rogier

    2014-01-01

    Highlights: • Improving productivity was the most effective strategy to reduce emissions and costs. • The accounting methods disagreed on the total abatement potential of mitigation measures. • Thus, it may be difficult to convince farmers to adopt certain abatement measures. • Domestic offsetting and consumption based accounting are options to overcome current methodological issues. - Abstract: Marginal abatement cost curve (MACC) analysis allows the evaluation of strategies to reduce agricultural greenhouse gas (GHG) emissions relative to some reference scenario and encompasses their costs or benefits. A popular approach to quantify the potential to abate national agricultural emissions is the Intergovernmental Panel on Climate Change guidelines for national GHG inventories (IPCC-NI method). This methodology is the standard for assessing compliance with binding national GHG reduction targets and uses a sector based framework to attribute emissions. There is however an alternative to the IPCC-NI method, known as life cycle assessment (LCA), which is the preferred method to assess the GHG intensity of food production (kg of GHG/unit of food). The purpose of this study was to compare the effect of using the IPCC-NI and LCA methodologies when completing a MACC analysis of national agricultural GHG emissions. The MACC was applied to the Irish agricultural sector and mitigation measures were only constrained by the biophysical environment. The reference scenario chosen assumed that the 2020 growth targets set by the Irish agricultural industry would be achieved. The comparison of methodologies showed that only 1.1 Mt of the annual GHG abatement potential that can be achieved at zero or negative cost could be attributed to agricultural sector using the IPCC-NI method, which was only 44% of the zero or negative cost abatement potential attributed to the sector using the LCA method. The difference between methodologies was because the IPCC-NI method attributes the

  5. Greenhouse gas balance over thaw-freeze cycles in discontinuous zone permafrost

    Science.gov (United States)

    Wilson, R. M.; Fitzhugh, L.; Whiting, G. J.; Frolking, S.; Harrison, M. D.; Dimova, N.; Burnett, W. C.; Chanton, J. P.

    2017-02-01

    Peat in the discontinuous permafrost zone contains a globally significant reservoir of carbon that has undergone multiple permafrost-thaw cycles since the end of the mid-Holocene ( 3700 years before present). Periods of thaw increase C decomposition rates which leads to the release of CO2 and CH4 to the atmosphere creating potential climate feedback. To determine the magnitude and direction of such feedback, we measured CO2 and CH4 emissions and modeled C accumulation rates and radiative fluxes from measurements of two radioactive tracers with differing lifetimes to describe the C balance of the peatland over multiple permafrost-thaw cycles since the initiation of permafrost at the site. At thaw features, the balance between increased primary production and higher CH4 emission stimulated by warmer temperatures and wetter conditions favors C sequestration and enhanced peat accumulation. Flux measurements suggest that frozen plateaus may intermittently (order of years to decades) act as CO2 sources depending on temperature and net ecosystem respiration rates, but modeling results suggest that—despite brief periods of net C loss to the atmosphere at the initiation of thaw—integrated over millennia, these sites have acted as net C sinks via peat accumulation. In greenhouse gas terms, the transition from frozen permafrost to thawed wetland is accompanied by increasing CO2 uptake that is partially offset by increasing CH4 emissions. In the short-term (decadal time scale) the net effect of this transition is likely enhanced warming via increased radiative C emissions, while in the long-term (centuries) net C deposition provides a negative feedback to climate warming.

  6. Per capita emissions of greenhouse gases and international trade

    International Nuclear Information System (INIS)

    Karman, D.; Baptiste, S.

    1994-01-01

    The role played by international trade in Canada's emissions of greenhouse gases is investigated. Data used in the study include Environment Canada greenhouse gas emission estimates for 1990, a Statistics Canada input-output model linking greenhouse gas emissions to economic activity in different sectors, and monetary statistics on imports and exports. Subject to some simplifying assumptions, it is estimated that nearly 20% of Canada's greenhouse gas emissions can be attributed to the production of commodities destined for export to other countries. If the same greenhouse gas emission intensities are assumed for Canada's imports, the greenhouse gas emissions due to Canada's net trade is nearly 7% of the 660 megatonnes of CO 2 equivalent emissions for 1990. Commodities from natural resource exploitation head the list of greenhouse gas emissions attributed to international trade, as expected from their large export volumes and large greenhouse gas emission intensities. 4 refs., 1 fig

  7. Deep greenhouse gas emission reductions in Europe: Exploring different options

    International Nuclear Information System (INIS)

    Deetman, Sebastiaan; Hof, Andries F.; Pfluger, Benjamin; Vuuren, Detlef P. van; Girod, Bastien; Ruijven, Bas J. van

    2013-01-01

    Most modelling studies that explore emission mitigation scenarios only look into least-cost emission pathways, induced by a carbon tax. This means that European policies targeting specific – sometimes relatively costly – technologies, such as electric cars and advanced insulation measures, are usually not evaluated as part of cost-optimal scenarios. This study explores an emission mitigation scenario for Europe up to 2050, taking as a starting point specific emission reduction options instead of a carbon tax. The purpose is to identify the potential of each of these policies and identify trade-offs between sectoral policies in achieving emission reduction targets. The reduction options evaluated in this paper together lead to a reduction of 65% of 1990 CO 2 -equivalent emissions by 2050. More bottom-up modelling exercises, like the one presented here, provide a promising starting point to evaluate policy options that are currently considered by policy makers. - Highlights: ► We model the effects of 15 climate change mitigation measures in Europe. ► We assess the greenhouse gas emission reduction potential in different sectors. ► The measures could reduce greenhouse gas emissions by 60% below 1990 levels in 2050. ► The approach allows to explore arguably more relevant climate policy scenarios

  8. Technology Opportunities to Reduce U.S. Greenhouse Gas Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Pena, Federico [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    1997-10-01

    This report serves as the technology basis of a needed national climate change technology strategy, with the confidence that a strong technology R&D program will deliver a portfolio of technologies with the potential to provide very substantial greenhouse gas emission reductions along with continued economic growth. Much more is needed to define such a strategy, including identification of complementary deployment policies and analysis to support the seeping and prioritization of R&D programs. A national strategy must be based upon governmental, industrial, and academic partnerships.

  9. Net greenhouse gas emissions from manure management using anaerobic digestion technology in a beef cattle feedlot in Brazil.

    Science.gov (United States)

    Costa Junior, Ciniro; Cerri, Carlos E P; Pires, Alexandre V; Cerri, Carlos C

    2015-02-01

    As part of an agreement during the COP15, the Brazilian government is fostering several activities intended to mitigate greenhouse gas (GHG) emissions. One of them is the adoption of anaerobic digester (AD) for treating animal manure. Due to a lack of information, we developed a case study in order to evaluate the effect of such initiative for beef cattle feedlots. We considered the net GHG emissions (CH4 and N2O) from the manure generated from 140 beef heifers confined for 90 days in the scope "housing to field application" by including field measurements, literature values, and the offset generated by the AD system through the replacement of conventional sources of nitrogen (N) fertilizer and electricity, respectively. Results showed that direct GHG emissions accounted for 0.14 ± 0.06 kg of carbon dioxide equivalent (CO₂eq) per kg of animal live weight gain (lwg), with ~80% originating from field application, suggesting that this emission does not differ from the conventional manure management (without AD) typically done in Brazil (0.19 ± 0.07 kg of CO₂eq per kg lwg(-1)). However, 2.4 MWh and 658.0 kg of N-manure were estimated to be generated as a consequence of the AD utilization, potentially offsetting 0.13 ± 0.01 kg of CO₂eq kg lwg(-1) or 95% (±45%) of total direct emissions from the manure management. Although, by replacing fossil fuel sources, i.e. diesel oil, this offset could be increased to 169% (±47%). In summary, the AD has the potential to significantly mitigate GHG emissions from manure management in beef cattle feedlots, but the effect is indirect and highly dependent on the source to be replaced. In spite of the promising results, more and continuous field measurements for decreasing uncertainties and improving assumptions are required. Identifying shortcomings would be useful not only for the effectiveness of the Brazilian government, but also for worldwide plans in mitigating GHG emissions from beef production systems. Copyright

  10. Net greenhouse gas emissions from manure management using anaerobic digestion technology in a beef cattle feedlot in Brazil

    International Nuclear Information System (INIS)

    Costa Junior, Ciniro; Cerri, Carlos E.P.; Pires, Alexandre V.; Cerri, Carlos C.

    2015-01-01

    As part of an agreement during the COP15, the Brazilian government is fostering several activities intended to mitigate greenhouse gas (GHG) emissions. One of them is the adoption of anaerobic digester (AD) for treating animal manure. Due to a lack of information, we developed a case study in order to evaluate the effect of such initiative for beef cattle feedlots. We considered the net GHG emissions (CH 4 and N 2 O) from the manure generated from 140 beef heifers confined for 90 days in the scope “housing to field application” by including field measurements, literature values, and the offset generated by the AD system through the replacement of conventional sources of nitrogen (N) fertilizer and electricity, respectively. Results showed that direct GHG emissions accounted for 0.14 ± 0.06 kg of carbon dioxide equivalent (CO 2 eq) per kg of animal live weight gain (lwg), with ∼ 80% originating from field application, suggesting that this emission does not differ from the conventional manure management (without AD) typically done in Brazil (0.19 ± 0.07 kg of CO 2 eq per kg lwg −1 ). However, 2.4 MWh and 658.0 kg of N-manure were estimated to be generated as a consequence of the AD utilization, potentially offsetting 0.13 ± 0.01 kg of CO 2 eq kg lwg −1 or 95% (± 45%) of total direct emissions from the manure management. Although, by replacing fossil fuel sources, i.e. diesel oil, this offset could be increased to 169% (± 47%). In summary, the AD has the potential to significantly mitigate GHG emissions from manure management in beef cattle feedlots, but the effect is indirect and highly dependent on the source to be replaced. In spite of the promising results, more and continuous field measurements for decreasing uncertainties and improving assumptions are required. Identifying shortcomings would be useful not only for the effectiveness of the Brazilian government, but also for worldwide plans in mitigating GHG emissions from beef production systems

  11. Greenhouse Gas reduction for scenarios of power sources development of the Republic of Moldova

    Directory of Open Access Journals (Sweden)

    Comendant I.

    2010-04-01

    Full Text Available For the new power market conditions, Moldova power sources development options up to 2033 are evaluated, and for the six scenarios selected the greenhouse gas reduction impact is determined.

  12. Possibilities of Reducing Greenhouse Gas Emissions in Hotels and Camps Along the Adriatic Coast

    International Nuclear Information System (INIS)

    Kurek, J.

    1998-01-01

    The article presents a possibility of reducing greenhouse gas emissions in hotels and camps along the Adriatic Coast, through equipment modernisation, efficient use of various energy forms (electric energy, oil, gas) including solar energy. An elaborate quantitative analysis the greenhouse gas emissions and possible ways of reducing them have been carried out in 180 hotels with their own boiler rooms and 70 camps with solar hot water system. The representatives of the two specified groups were chosen in order to perform the quantitative analysis. Considering that the reduction of the carbon emission is the basic condition for the prevention of climate changes, the assumptions were made in line with their reducing. The starting point is that the combustion of a litre of fuel causes 2,5 kg CO 2 , while the generation of 1 kWh of electric energy and use of 1 m 3 of water emit 0,5 kg of CO 2 respectively. Thereby it is necessary to bear in mind that the reduction of emissions can be achieved directly in hotel boiler rooms and, in a wider perspective, in plants through the reduction of the electric energy and water consumption, i.e. solar energy consumption The article ends with a review of possible emission reductions which are to be carried out. According to the calculation presented, the share of the reduction of greenhouse gas emission in hotels and camps along the Adriatic Coast principate with 1% in the obligatory 5% emission reduction of the Republic of Croatia till the year 2012 related to the Kyoto Protocol. (author)

  13. The causes of the municipal solid waste and the greenhouse gas emissions from the waste sector in the United States.

    Science.gov (United States)

    Lee, Seungtaek; Kim, Jonghoon; Chong, Wai K O

    2016-10-01

    The United States generated approximately 730kg of waste per capita in 2013, which is the highest amount of waste among OECD countries. The waste has adverse effects to human health and the environment. One of the most serious adverse effects is greenhouse gas emissions, especially methane (CH4), which causes global warming. However, the United States' amount of waste generation is not decreasing, and the recycling rate is only 26%, which is lower than other OECD countries. In order to decrease waste generation and greenhouse gas emissions, identifying the causality of the waste generation and greenhouse gas emissions from waste sector should be made a priority. The research objective is to verify whether the Environmental Kuznets Curve relationship is supported for waste generation and GDP across the U.S. Moreover, it also confirmed that total waste generation and recycling of waste influences carbon dioxide emissions from the waste sector. Based on the results, critical insight and suggestions were offered to policymakers, which is the potential way to lower the solid waste and greenhouse gas emissions from the waste sector. This research used annually based U.S. data from 1990 to 2012, and these data were collected from various data sources. To verify the causal relationship, the Granger causality test was applied. The results showed that there is no causality between GDP and waste generation, but total waste and recycling generate significantly increasing and decreasing greenhouse gas emissions from the waste sector, respectively. This implies that waste generation will not decrease even if GDP increases. And, if waste generation decreases or the recycling rate increases, greenhouse gas emission will decrease. Based on these results, increasing the recycling rate is first suggested. The second suggestion is to break the causal relationship between MSW and greenhouse gas emission from the waste sector. The third is that the U.S. government should benchmark a

  14. Inventory of greenhouse gas(GH G) emission and sinks in Kenya

    International Nuclear Information System (INIS)

    Mbuthi, P.N.; King'uyu, S.M.; Moenga, O.O.

    1998-01-01

    The Government of Kenya carried out studies on impacts of climate change in 1995, within the framework of Kenya Country Study on Climate Change Project. An inventory of greenhouse gas emission from various activities such as energy, industry, agriculture, urban waste, landuse and forestry was compiled. Each of the five sectoral chapters includes methods used in analysis, data sources, results and recommendations

  15. Different scenarios to reduce greenhouse gas emissions of thermal power stations in Canada

    International Nuclear Information System (INIS)

    Zabihian, F.; Fung, A.S.

    2009-01-01

    The purpose of this paper is to examine greenhouse gas (GHG) emission reduction potentials in the Canadian electricity generation sector through fuel switching and the adoption of advanced power generation systems. To achieve this purpose, six different scenarios were introduced. In the first scenario existing power stations' fuel was switched to natural gas. Existing power plants were replaced by natural gas combined cycle (NGCC), integrated gasification combined cycle (IGCC), solid oxide fuel cell (SOFC), hybrid SOFC, and SOFC-IGCC hybrid power stations in scenarios number 2 to 6, respectively. (author)

  16. The relative greenhouse gas impacts of realistic dietary choices

    International Nuclear Information System (INIS)

    Berners-Lee, M.; Hoolohan, C.; Cammack, H.; Hewitt, C.N.

    2012-01-01

    The greenhouse gas (GHG) emissions embodied in 61 different categories of food are used, with information on the diet of different groups of the population (omnivorous, vegetarian and vegan), to calculate the embodied GHG emissions in different dietary scenarios. We calculate that the embodied GHG content of the current UK food supply is 7.4 kg CO 2 e person −1 day −1 , or 2.7 t CO 2 e person −1 y −1 . This gives total food-related GHG emissions of 167 Mt CO 2 e (1 Mt=10 6 metric tonnes; CO 2 e being the mass of CO 2 that would have the same global warming potential, when measured over 100 years, as a given mixture of greenhouse gases) for the entire UK population in 2009. This is 27% of total direct GHG emissions in the UK, or 19% of total GHG emissions from the UK, including those embodied in goods produced abroad. We calculate that potential GHG savings of 22% and 26% can be made by changing from the current UK-average diet to a vegetarian or vegan diet, respectively. Taking the average GHG saving from six vegetarian or vegan dietary scenarios compared with the current UK-average diet gives a potential national GHG saving of 40 Mt CO 2 e y −1 . This is equivalent to a 50% reduction in current exhaust pipe emissions from the entire UK passenger car fleet. Hence realistic choices about diet can make substantial differences to embodied GHG emissions. - Highlights: ► We calculate the greenhouse gas emissions embodied in different diets. ► The embodied GHG content of the current UK food supply is 7.4 kg CO 2 e person −1 day −1 . ► Changing to a vegetarian or vegan diet reduces GHG emissions by 22–26%. ► Changing to a vegetarian or vegan diet would reduce UK GHG emissions by 40 Mt CO 2 e y −1 .

  17. The design and implementation of an international trading scheme for greenhouse gas emissions

    NARCIS (Netherlands)

    Zhang, ZX

    The inclusion of emissions trading in the Kyoto Protocol reflects an important decision to address climate-change issues through flexible market mechanisms. The author addresses a number of policy issues that must be considered in designing and implementing an international greenhouse gas (GHG)

  18. Uncertainty in greenhouse-gas emission scenario projections: Experiences from Mexico and South Africa

    DEFF Research Database (Denmark)

    Puig, Daniel

    This report outlines approaches to quantify the uncertainty associated with national greenhouse-gas emission scenario projections. It does so by describing practical applications of those approaches in two countries – Mexico and South Africa. The goal of the report is to promote uncertainty...

  19. A generic model for estimating biomass accumulation and greenhouse gas emissions from perennial crops

    Science.gov (United States)

    Ledo, Alicia; Heathcote, Richard; Hastings, Astley; Smith, Pete; Hillier, Jonathan

    2017-04-01

    Agriculture is essential to maintain humankind but is, at the same time, a substantial emitter of greenhouse gas (GHG) emissions. With a rising global population, the need for agriculture to provide secure food and energy supply is one of the main human challenges. At the same time, it is the only sector which has significant potential for negative emissions through the sequestration of carbon and offsetting via supply of feedstock for energy production. Perennial crops accumulate carbon during their lifetime and enhance organic soil carbon increase via root senescence and decomposition. However, inconsistency in accounting for this stored biomass undermines efforts to assess the benefits of such cropping systems when applied at scale. A consequence of this exclusion is that efforts to manage this important carbon stock are neglected. Detailed information on carbon balance is crucial to identify the main processes responsible for greenhouse gas emissions in order to develop strategic mitigation programs. Perennial crops systems represent 30% in area of total global crop systems, a considerable amount to be ignored. Furthermore, they have a major standing both in the bioenergy and global food industries. In this study, we first present a generic model to calculate the carbon balance and GHGs emissions from perennial crops, covering both food and bioenergy crops. The model is composed of two simple process-based sub-models, to cover perennial grasses and other perennial woody plants. The first is a generic individual based sub-model (IBM) covering crops in which the yield is the fruit and the plant biomass is an unharvested residue. Trees, shrubs and climbers fall into this category. The second model is a generic area based sub-model (ABM) covering perennial grasses, in which the harvested part includes some of the plant parts in which the carbon storage is accounted. Most second generation perennial bioenergy crops fall into this category. Both generic sub

  20. Moisture effects on greenhouse gases generation in nitrifying gas-phase compost biofilters.

    Science.gov (United States)

    Maia, Guilherme D N; Day, George B; Gates, Richard S; Taraba, Joseph L; Coyne, Mark S

    2012-06-01

    Gas-phase compost biofilters are extensively used in concentrated animal feeding operations to remove odors and, in some cases, ammonia from air sources. The expected biochemical pathway for these predominantly aerobic systems is nitrification. However, non-uniform media with low oxygen levels can shift biofilter microbial pathways to denitrification, a source of greenhouse gases. Several factors contribute to the formation of anoxic/anaerobic zones: media aging, media and particle structure, air velocity distribution, compaction, biofilm thickness, and moisture content (MC) distribution. The present work studies the effects of media moisture conditions on ammonia (NH(3)) removal and greenhouse gas generation (nitrous oxide, N(2)O and methane, CH(4)) for gas-phase compost biofilters subject to a 100-day controlled drying process. Continuous recordings were made for the three gases and water vapor (2.21-h sampling cycle, each cycle consisted of three gas species, and water vapor, for a total of 10,050 data points). Media moisture conditions were classified into three corresponding media drying rate (DR) stages: Constant DR (wetter media), falling DR, and stable-dry system. The first-half of the constant DR period (0-750 h; MC=65-52%, w.b.) facilitated high NH(3) removal rates, but higher N(2)O generation and no CH(4) generation. At the drier stages of the constant DR (750-950 h; MC=52-48%, w.b.) NH(3) removal remained high but N(2)O net generation decreased to near zero. In the falling DR stage (1200-1480 h; MC=44-13%) N(2)O generation decreased, CH(4) increased, and NH(3) was no longer removed. No ammonia removal or greenhouse gas generation was observed in the stable-dry system (1500-2500 h; MC=13%). These results indicate that media should remain toward the drier region of the constant DR (in close proximity to the falling DR stage; MC=50%, approx.), to maintain high levels of NH(3) removal, reduced levels of N(2)O generation, and nullify levels of CH(4

  1. Contribution of sugarcane bioenergy to the Country's greenhouse gas emission reduction

    Energy Technology Data Exchange (ETDEWEB)

    Leal, Manoel Regis Lima Verde; Seabra, Joaquim Eugenio A.; Cortez, Luis Augusto B.

    2012-07-01

    Throughout this book several alternatives to improve the sustainability of Brazilian sugarcane bioethanol have been grouped into four themes, as follows: agricultural-industrial technology paths; production systems, environment and land use; certification, indicators and impacts; energy and greenhouse gas balances. The main international legislation covering the qualification of bio fuels (Renewal Fuel Standard - Sfs in USA, Low Carbon Fuel Standard - LCFS in California and the Renewable Energy Directives in the EU) and the most important bio fuel certification programs are unanimous to indicate the greenhouse gas (GHG) abatement potential of bio fuels as a key parameter and the first step in the qualification system. This is easy to understand since bio fuels are considered as ona of the mitigation alternative for GHG emissions from the transport sector, responsible today for the 14% of global emissions, and from the energy source that accounts for 25% of global GHG emissions (WRI, 2009)

  2. ON THE STUDY OF GHG (GREENHOUSE GAS EMISSIONS IN RICE PRODUCTION SYSTEMS IN DARGAZ, IRAN

    Directory of Open Access Journals (Sweden)

    Ghorbanali RASSAM

    2015-12-01

    Full Text Available The most important issue which has attracted the attention of many scientists is the climate change and global warming due to greenhouse gas emission which has caused the world faced with a great human and environmental disaster. In this study, the amount of greenhouse gas (GHG emissions was estimated in the semi-traditional and semi-mechanized rice production systems in Dargaz region, Iran. All the agricultural and consuming inputs procedures responsible for greenhouse gas emissions were collected and recorded in both systems. The amount of GHG emission in semi-traditional and semi-mechanized was 813.17 and 968.31 kg CO2-eq ha-1, respectively. The fuel consumption with the share of 38.22% in semi-traditional method and 43.32% in semi-mechanized system had the largest share in GHG emission and using Nitrogen fertilizer on farms with the share of 31.97% in semi-traditional method and 26.91% in semi-mechanized system is in the second place of GHG emission. The semi-traditional system had greater GHG emissions in the unit of tone of harvested grain and unit of energy output. The use of alternative methods such as conservation tillage and organic fertilizers can be effective in improving the environmental status of the production area.

  3. Greenhouse gas emissions from tropical forest degradation: an underestimated source

    Directory of Open Access Journals (Sweden)

    Timothy R. H. Pearson

    2017-02-01

    Full Text Available Abstract Background The degradation of forests in developing countries, particularly those within tropical and subtropical latitudes, is perceived to be an important contributor to global greenhouse gas emissions. However, the impacts of forest degradation are understudied and poorly understood, largely because international emission reduction programs have focused on deforestation, which is easier to detect and thus more readily monitored. To better understand and seize opportunities for addressing climate change it will be essential to improve knowledge of greenhouse gas emissions from forest degradation. Results Here we provide a consistent estimation of forest degradation emissions between 2005 and 2010 across 74 developing countries covering 2.2 billion hectares of forests. We estimated annual emissions of 2.1 billion tons of carbon dioxide, of which 53% were derived from timber harvest, 30% from woodfuel harvest and 17% from forest fire. These percentages differed by region: timber harvest was as high as 69% in South and Central America and just 31% in Africa; woodfuel harvest was 35% in Asia, and just 10% in South and Central America; and fire ranged from 33% in Africa to only 5% in Asia. Of the total emissions from deforestation and forest degradation, forest degradation accounted for 25%. In 28 of the 74 countries, emissions from forest degradation exceeded those from deforestation. Conclusions The results of this study clearly demonstrate the importance of accounting greenhouse gases from forest degradation by human activities. The scale of emissions presented indicates that the exclusion of forest degradation from national and international GHG accounting is distorting. This work helps identify where emissions are likely significant, but policy developments are needed to guide when and how accounting should be undertaken. Furthermore, ongoing research is needed to create and enhance cost-effective accounting approaches.

  4. Potential of greenhouse gas emission reductions in soybean farming

    DEFF Research Database (Denmark)

    Mohammadi, Ali; Dalgaard, Tommy; Knudsen, Marie Trydeman

    2013-01-01

    Joint implementation of Life Cycle Assessment (LCA) and Data Envelopment Analysis (DEA) has recently showed to be a suitable tool for measuring efficiency in agri-food systems. In the present study, LCA + DEA methodologies were applied for a total of 94 soybean farms in Iran to benchmark the leve...... residue in the field generate significantly more greenhouse gas emissions than other farms. The raising of operational input efficiency and limiting of crop residue burning in the field are recommended options to ensure more environmental friendly soybean farming systems in the region....

  5. Climate change. The first national inventory of greenhouse gas emissions by sources and removals by sinks. Final report

    International Nuclear Information System (INIS)

    1994-01-01

    The structure of the present greenhouse gas inventory report follows the order established in the R evised 1996 IPCC Guidelines-Greenhouse Gas Inventory Workbook, volume 2 , which has identified six major economic sectors, as follows: Energy, industrial processes, solvent and other product use, agriculture, land use change and forestry and waste. These guidelines have considered the following greenhouse gases: carbon dioxide, carbon monoxide, nitrogen oxides, nitrous oxide, sulfur dioxide, methane, non methane volatile organic compounds, hydrofluorocarbons, perfluorocarbons and sulfur hexafluoride. It should be noted that the protocol developed for the United Nations framework convention on climate change in the conference of parties 3, held in Kyoto on December 10, 1997 has determined six greenhouse gases to be controlled: CH 4 , CO 2 , N 2 O, HF C, PFC, S F 6 . This report summaries pictures of all important results obtained by the National Inventory team:The emitted amount of each greenhouse in all sectors in Lebanon. Tables and charts have been developed to show the contributions of various sectors to total emissions of gases in Lebanon

  6. Intelligent Bioreactor Management Information System (IBM-IS) for Mitigation of Greenhouse Gas Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Paul Imhoff; Ramin Yazdani; Don Augenstein; Harold Bentley; Pei Chiu

    2010-04-30

    Methane is an important contributor to global warming with a total climate forcing estimated to be close to 20% that of carbon dioxide (CO2) over the past two decades. The largest anthropogenic source of methane in the US is 'conventional' landfills, which account for over 30% of anthropogenic emissions. While controlling greenhouse gas emissions must necessarily focus on large CO2 sources, attention to reducing CH4 emissions from landfills can result in significant reductions in greenhouse gas emissions at low cost. For example, the use of 'controlled' or bioreactor landfilling has been estimated to reduce annual US greenhouse emissions by about 15-30 million tons of CO2 carbon (equivalent) at costs between $3-13/ton carbon. In this project we developed or advanced new management approaches, landfill designs, and landfill operating procedures for bioreactor landfills. These advances are needed to address lingering concerns about bioreactor landfills (e.g., efficient collection of increased CH4 generation) in the waste management industry, concerns that hamper bioreactor implementation and the consequent reductions in CH4 emissions. Collectively, the advances described in this report should result in better control of bioreactor landfills and reductions in CH4 emissions. Several advances are important components of an Intelligent Bioreactor Management Information System (IBM-IS).

  7. Microsimulation of household and firm behaviors: anticipation of greenhouse gas emissions for Austin, Texas.

    Science.gov (United States)

    2009-05-01

    Anthropogenic greenhouse gas (GHG) emissions can be attributed to household and firm travel and : building decisions. This study demonstrates the development and application of a microsimulation model : for household and firm evolution and location c...

  8. Description and application of the EAP computer program for calculating life-cycle energy use and greenhouse gas emissions of household consumption items

    NARCIS (Netherlands)

    Benders, R.M.J.; Wilting, H.C.; Kramer, K.J.; Moll, H.C.

    2001-01-01

    Focusing on reduction in energy use and greenhouse gas emissions, a life-cycle-based analysis tool has been developed. The energy analysis program (EAP) is a computer program for determining energy use and greenhouse gas emissions related to household consumption items, using a hybrid calculation

  9. Greenhouse gas emissions in salt marshes and their response to nitrogen loading

    Science.gov (United States)

    Tang, J.; Moseman-Valtierra, S.; Kroeger, K. D.; Morkeski, K.; Carey, J.

    2015-12-01

    Salt marshes play an important role in global and regional carbon and nitrogen cycling. Anthropogenic nitrogen loading may alter greenhouse gas (GHG, including CO2, CH4, and N2O) emissions and carbon sequestration in salt marshes. We measured GHG emissions biweekly for two growing seasons across a nitrogen-loading gradient of four Spartina salt marshes in Waquoit Bay, Massachusetts. In addition, we conducted nitrogen addition experiments in a pristine marsh by adding low and high nitrate bi-weekly during the summer. The GHG flux measurements were made in situ with a state-of-the-art mobile gas measurement system using the cavity ring down technology that consists of a CO2/CH4 analyzer (Picarro) and an N2O/CO analyzer (Los Gatos). We observed strong seasonal variations in greenhouse gas emissions. The differences in gas emissions across the nitrogen gradient (between 1 and 10 gN m-2y-1) were not significant, but strong pulse emissions of N2O were observed after nitrogen was artificially added to the marsh. We found that the studied salt marsh was a significant carbon sink (NEP ~ 380 gC m-2y-1). CH4 fluxes are 3 orders of magnitude less than CO2 fluxes in the salt marsh. Carbon fluxes are driven by light, salinity, tide, and temperature. We conclude that restoration or conservation of this carbon sink has a significant social benefit for carbon credit.

  10. Greenhouse gas emissions and management practices that impact them in US rice systems

    Science.gov (United States)

    Previous reviews have quantified factors affecting greenhouse gas (GHG) emissions from Asian rice (Oryza sativa L.) systems, but not from rice systems typical for the United States, which often vary considerably particularly in practices (i.e., water and carbon management) that affect emissions. Usi...

  11. The role of peat in finnish greenhouse gas balances

    International Nuclear Information System (INIS)

    Crill, P.; Hargreaves, K.; Korhola, A.

    2000-06-01

    Over the past, total annual greenhouse gas (GHG) emissions from Finland, not considering land use change, forestry or peatlands, have remained between 70 000 and 80 000 Gg of CO 2 equivalents. A large portion of which (84% in 1998) is from energy and energy related sources. Signatory members to the 1997 Kyoto protocol of the United Nation's Framework Convention on Climate Change convention, which includes Finland, are compelled to assess their emissions at the national level. This study was undertaken to examine the issues of the role of Finnish peatlands in the national greenhouse gas inventory specifically within the context of the utilization of peatlands for energy production. Our analysis is essentially a literature review and assessment of what has been measured from Finnish peatlands. We are particularly fortunate that there have been a series of recent Ph.D. theses published at the Universities of Helsinki and Joensuu and graduate work at the University of Kuopio on carbon dynamics and greenhouse gas exchange in Finnish peatlands that have both expanded our database and our understanding of peatland processes. Chapter 1 provides a background of the role of peatlands in carbon cycling within the context of changing climate and land use. In Finland about 56 x 103 ha of peatland area were being harvested in 1997, 94% for energy. Even though this is a relatively small area, the implications, on a national scale, for GHG fluxes and carbon balance can be significant The magnitude of GHG fluxes and a qualitative assessment of extant data quality and quantity under different Finnish land use forms and activities is considered in chapter 2. CO 2 fluxes derived from long term C accumulation rates indicate that 3 010 Gg CON and 9 400 Gg CO 2 are sequestered annually from the atmosphere into undrained and peatlands drained for forestry, respectively. Peatlands drained for agriculture emit CO 2 at a rate of 3 200-7 800 Gg annually. Peat harvesting activities and

  12. Greenhouse gas scenario sensitivity and uncertainties in precipitation projections for central Belgium

    Science.gov (United States)

    Van Uytven, E.; Willems, P.

    2018-03-01

    Climate change impact assessment on meteorological variables involves large uncertainties as a result of incomplete knowledge on the future greenhouse gas concentrations and climate model physics, next to the inherent internal variability of the climate system. Given that the alteration in greenhouse gas concentrations is the driver for the change, one expects the impacts to be highly dependent on the considered greenhouse gas scenario (GHS). In this study, we denote this behavior as GHS sensitivity. Due to the climate model related uncertainties, this sensitivity is, at local scale, not always that strong as expected. This paper aims to study the GHS sensitivity and its contributing role to climate scenarios for a case study in Belgium. An ensemble of 160 CMIP5 climate model runs is considered and climate change signals are studied for precipitation accumulation, daily precipitation intensities and wet day frequencies. This was done for the different seasons of the year and the scenario periods 2011-2040, 2031-2060, 2051-2081 and 2071-2100. By means of variance decomposition, the total variance in the climate change signals was separated in the contribution of the differences in GHSs and the other model-related uncertainty sources. These contributions were found dependent on the variable and season. Following the time of emergence concept, the GHS uncertainty contribution is found dependent on the time horizon and increases over time. For the most distinct time horizon (2071-2100), the climate model uncertainty accounts for the largest uncertainty contribution. The GHS differences explain up to 18% of the total variance in the climate change signals. The results point further at the importance of the climate model ensemble design, specifically the ensemble size and the combination of climate models, whereupon climate scenarios are based. The numerical noise, introduced at scales smaller than the skillful scale, e.g. at local scale, was not considered in this study.

  13. Greenhouse Gas Emissions in the Netherlands 1990-2006. National Inventory Report 2008

    International Nuclear Information System (INIS)

    Van der Maas, C.W.M.; Ruyssenaars, P.G.; Van den Born, G.J.; Brandes, L.J.; Hoen, A.; Te Molder, R.; Nijdam, D.S.; Olivier, J.G.J.; Peek, C.J.; Coenen, P.W.H.G.; Vreuls, H.H.J.; Van den Berghe, G.; Baas, K.; Guis, B.

    2008-01-01

    This report represents the 2008 Netherlands' annual inventory submission under the Kyoto Protocol and the United Nations Framework Convention on Climate Change (UNFCCC), as well as the European Union's Greenhouse Gas Monitoring Mechanism. It has been prepared following the relevant guidelines, which also refer to Revised 1996 IPCC Guidelines and IPCC Good Practice guidance and Uncertainty Management reports, provide a format for the definition of source categories and for calculation, documentation and reporting of emissions. The guidelines aim at facilitating verification, technical assessment and expert review of the inventory information by independent Expert Review Teams of the UNFCCC. Therefore, the inventories should be transparent, consistent, comparable, complete and accurate as elaborated in the UNFCCC Guidelines for reporting and be prepared using good practice as described in the IPCC Good Practice Guidance. This National Inventory Report (NIR) 2008 therefore provides explanations of the trends in greenhouse gas emissions, activity data and (implied) emission factors for the period 1990-2006. It also summarises descriptions of methods and data sources of Tier 1 assessments of the uncertainty in annual emissions and in emission trends; it presents an assessment of key sources following the Tier 1 and Tier 2 approaches of the IPCC Good Practice Guidance; and describes Quality Assurance and Quality Control activities. This report provides no specific information on the effectiveness of government policies for reducing greenhouse gas emissions. This information can be found in the annual Environmental Balance (in Dutch: 'Milieubalans') prepared by the Netherlands' Environmental Assessment Agency (MNP) and the 4th National Communication (NC4) prepared by the government of the Netherlands. So-called Common Reporting Format (CRF) spreadsheet files, containing data on emissions, activity data and implied emission factors, accompany this report. The complete set

  14. A global meta-analysis on the impact of management practices on net global warming potential and greenhouse gas intensity from cropland soils

    Science.gov (United States)

    Agricultural practices contribute significant amount of greenhouse gas (GHG) emissions, but little is known about their effects on net global warming potential (GWP) and greenhouse gas intensity (GHGI) that account for all sources and sinks of carbon dioxide emissions per unit area or crop yield. Se...

  15. Greenhouse gas production and efficiency of planted and artificially aerated constructed wetlands

    Energy Technology Data Exchange (ETDEWEB)

    Maltais-Landry, Gabriel [Departement des sciences biologiques, Universite de Montreal 90, rue Vincent-D' Indy, Montreal (Ciheam), H2V 2S9 (Canada); Institut de recherche en biologie vegetale, Universite de Montreal 4101, rue Sherbrooke Est, Montreal (Ciheam), H1X 2B2 (Canada)], E-mail: gabriel.maltais-landry@umontreal.ca; Maranger, Roxane [Departement des sciences biologiques, Universite de Montreal 90, rue Vincent-D' Indy, Montreal (Ciheam), H2V 2S9 (Canada)], E-mail: r.maranger@umontreal.ca; Brisson, Jacques [Departement des sciences biologiques, Universite de Montreal 90, rue Vincent-D' Indy, Montreal (Ciheam), H2V 2S9 (Canada); Institut de recherche en biologie vegetale, Universite de Montreal 4101, rue Sherbrooke Est, Montreal (Ciheam), H1X 2B2 (Canada)], E-mail: jacques.brisson@umontreal.ca; Chazarenc, Florent [Institut de recherche en biologie vegetale, Universite de Montreal 4101, rue Sherbrooke Est, Montreal (Ciheam), H1X 2B2 (Canada)

    2009-03-15

    Greenhouse gas (GHG) emissions by constructed wetlands (CWs) could mitigate the environmental benefits of nutrient removal in these man-made ecosystems. We studied the effect of 3 different macrophyte species and artificial aeration on the rates of nitrous oxide (N{sub 2}O), carbon dioxide (CO{sub 2}) and methane (CH{sub 4}) production in CW mesocosms over three seasons. CW emitted 2-10 times more GHG than natural wetlands. Overall, CH{sub 4} was the most important GHG emitted in unplanted treatments. Oxygen availability through artificial aeration reduced CH{sub 4} fluxes. Plant presence also decreased CH{sub 4} fluxes but favoured CO{sub 2} production. Nitrous oxide had a minor contribution to global warming potential (GWP < 15%). The introduction of oxygen through artificial aeration combined with plant presence, particularly Typha angustifolia, had the overall best performance among the treatments tested in this study, including lowest GWP, greatest nutrient removal, and best hydraulic properties. - Methane is the main greenhouse gas produced in constructed wetlands and oxygen availability is the main factor controlling fluxes.

  16. Environmental implications of alternative-fueled automobiles: Air quality and greenhouse gas tradeoffs

    International Nuclear Information System (INIS)

    MaClean, H.L.; Lave, L.B.

    2000-01-01

    The authors analyze alternative fuel-powerstrain options for internal combustion engine automobiles. Fuel/engine efficiency, energy use, pollutant discharges, and greenhouse gas emissions are estimated for spark and compression ignited, direct injected (DI), and indirect injected (II) engines fueled by conventional and reformulated gasoline, reformulated diesel, compressed natural gas (CNG), and alcohols. Since comparisons of fuels and technologies in dissimilar vehicles are misleading, the authors hold emissions level, range, vehicle size class, and style constant. At present, CNG vehicles have the best exhaust emissions performance while DI diesels have the worst. Compared to a conventional gasoline fueled II automobile, greenhouse gases could be reduced by 40% by a DI CNG automobile and by 25% by a DI diesel. Gasoline- and diesel-fueled automobiles are able to attain long ranges with little weight or fuel economy penalty. CNG vehicles have the highest penalty for increasing range, due to their heavy fuel storage systems, but are the most attractive for a 160-km range. DI engines, particularly diesels, may not be able to meet strict emissions standards, at least not without lowering efficiency

  17. Life cycle greenhouse gas emissions estimation for small hydropower schemes in India

    International Nuclear Information System (INIS)

    Varun; Prakash, Ravi; Bhat, I.K.

    2012-01-01

    This paper presents for the first time correlations for greenhouse gas (GHG) emissions from small hydropower schemes in India. In this paper an attempt has been made to develop life cycle GHG emissions correlations for three different types of small hydropower schemes (run-of river, canal based and dam-toe) in India. It has been found out that GHG emissions depend on the head and capacity of the small hydropower project. The results obtained from correlations show good agreement with the estimated results using EIO-LCA (Economic Input–Output-Life Cycle Assessment) technique. These correlations may be useful for the development of new small hydropower (SHP) schemes, as they can be used to predict life cycle GHG emissions based on capacity, head and type of SHP schemes. -- Highlights: ► A study has been carried out for the Life Cycle Greenhouse gas emissions estimation for SHP schemes in India. ► Around 145 SHP schemes have been studied and their GHG emissions have been estimated. ► Based upon these results correlations have been developed for three different types of SHP schemes.

  18. Open-source LCA tool for estimating greenhouse gas emissions from crude oil production using field characteristics.

    Science.gov (United States)

    El-Houjeiri, Hassan M; Brandt, Adam R; Duffy, James E

    2013-06-04

    Existing transportation fuel cycle emissions models are either general and calculate nonspecific values of greenhouse gas (GHG) emissions from crude oil production, or are not available for public review and auditing. We have developed the Oil Production Greenhouse Gas Emissions Estimator (OPGEE) to provide open-source, transparent, rigorous GHG assessments for use in scientific assessment, regulatory processes, and analysis of GHG mitigation options by producers. OPGEE uses petroleum engineering fundamentals to model emissions from oil and gas production operations. We introduce OPGEE and explain the methods and assumptions used in its construction. We run OPGEE on a small set of fictional oil fields and explore model sensitivity to selected input parameters. Results show that upstream emissions from petroleum production operations can vary from 3 gCO2/MJ to over 30 gCO2/MJ using realistic ranges of input parameters. Significant drivers of emissions variation are steam injection rates, water handling requirements, and rates of flaring of associated gas.

  19. 0-6696 : incorporating greenhouse gas (GHG) emissions in long-range transportation planning : [project summary].

    Science.gov (United States)

    2013-08-01

    Greenhouse gas (GHG) emissions continue to be : an important focus area for state, local, and : federal agencies. The transportation sector is the : second biggest contributor to GHG emissions in : the United States, and Texas contributes the : highe...

  20. 75 FR 57669 - Mandatory Reporting of Greenhouse Gases

    Science.gov (United States)

    2010-09-22

    ... Mandatory Reporting of Greenhouse Gases AGENCY: Environmental Protection Agency (EPA). ACTION: Final rule. SUMMARY: This action amends the Final Mandatory Reporting of Greenhouse Gases Rule to require reporters... Numbers GHG greenhouse gas GHGRP Greenhouse Gas Reporting Program HCFC hydrochlorofluorocarbon HFC...

  1. To cool a sweltering earth: Does energy efficiency improvement offset the climate impacts of lifestyle?

    Energy Technology Data Exchange (ETDEWEB)

    Adua, Lazarus, E-mail: adua.1@buckeyemail.osu.ed [Rural Sociology Graduate Program, School of Environment and Natural Resources, Ohio State University, Columbus (United States)

    2010-10-15

    As technical efficiency improvement in energy use remains a touchstone measure to curb greenhouse gas (GHG) emissions, there is substantial concern about whether this approach can offset the large and expanding impacts of human actions. Critics contend that without adjustments to the prevailing consumptive lifestyle, energy efficiency improvement will generate only token reductions in GHG emissions. I address this concern by examining the extent to which technical efficiency improvement in energy use offsets the impacts of housing-related lifestyle on GHG emissions. I build from two perspectives, the physical-technical-economic models that consider energy efficiency improvement as a potent strategy to curb residential energy consumption, and the lifestyle and social-behavioral approach, which questions this view. The analyses reveal consistent positive relationship between lifestyle and energy consumption. The results also indicate that energy efficiency improvement has mixed effects on energy consumption. In fact, model-based figures show that technical efficiency improvement in energy use leads to slightly higher energy consumption if it is not accompanied by adjustments to lifestyle.

  2. To cool a sweltering earth. Does energy efficiency improvement offset the climate impacts of lifestyle?

    Energy Technology Data Exchange (ETDEWEB)

    Adua, Lazarus [Rural Sociology Graduate Program, School of Environment and Natural Resources, The Ohio State University, Columbus (United States)

    2010-10-15

    As technical efficiency improvement in energy use remains a touchstone measure to curb greenhouse gas (GHG) emissions, there is substantial concern about whether this approach can offset the large and expanding impacts of human actions. Critics contend that without adjustments to the prevailing consumptive lifestyle, energy efficiency improvement will generate only token reductions in GHG emissions. I address this concern by examining the extent to which technical efficiency improvement in energy use offsets the impacts of housing-related lifestyle on GHG emissions. I build from two perspectives, the physical-technical-economic models that consider energy efficiency improvement as a potent strategy to curb residential energy consumption, and the lifestyle and social-behavioral approach, which questions this view. The analyses reveal consistent positive relationship between lifestyle and energy consumption. The results also indicate that energy efficiency improvement has mixed effects on energy consumption. In fact, model-based figures show that technical efficiency improvement in energy use leads to slightly higher energy consumption if it is not accompanied by adjustments to lifestyle. (author)

  3. Limiting net greenhouse gas emissions in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, R A; Watts, E C; Williams, E R [eds.

    1991-09-01

    In 1988, Congress requested that DOE produce a study on carbon dioxide inventory and policy to provide an inventory of emissions sources and to analyze policies to achieve a 20% reduction in carbon dioxide emissions in 5 to 10 years and a 50% reduction in 15 to 20 years. Energy and environmental technology data were analyzed using computational analysis models. This information was then evaluated, drawing on current scientific understanding of global climate change, the possible consequences of anthropogenic climate change (change caused by human activity) and the relationship between energy production and use and the emission of radiatively important gases. Topics discussed include: state of the science in estimating atmosphere/climate change relationships, the potential consequences of atmosphere/climate change, us greenhouse emissions past and present, an approach to analyzing the technical potential and cost of reducing US energy-related greenhouse gas emissions, current policy base and National Energy Strategy actions, fiscal instruments, regulatory instruments, combined strategies and instruments, macroeconomic impacts, carbon taxation and international trade, a comparison to other studies.

  4. Controlled Landfill Project in Yolo County, California for Environmental Benefits of Waste Stabilization and Minimization of Greenhouse Gas Emissions

    Science.gov (United States)

    Yazdani, R.; Augenstein, D.; Kieffer, J.; Cohen, K.

    2003-12-01

    The Department of Public Works of Yolo County, California, USA has been testing an advanced approach to landfill bioreactors, controlled (or "enhanced") landfilling, at its Yolo County Central Landfill site near Davis, CA, since 1994. Overall objectives have been the management of waste landfilling for: (1) rapid completion of total gas generation; (2) maximum, high-efficiency gas capture; (3) waste volume reduction; and (4) maximum greenhouse gas and carbon sequestration benefits. Methane generation is controlled and enhanced through carefully managed moisture additions, and by taking advantage of landfill temperature elevation. The generated landfill methane, an important greenhouse gas, is recovered with high efficiency through extraction from a porous recovery layer beneath a surface geomembrane cover. Instrumentation included a total of 56 moisture and 15 temperature sensors in the two cells, gas flow monitoring by positive displacement gas meters, and accurate quantification of liquid inputs and outputs. Gas composition, waste volume reduction, base hydrostatic head, and a range of environmental compliance parameters has been monitored since 1995. Partitioning gas tracer tests using the injection of two gases at dilute concentrations in the landfill have also been initiated to compute the fraction of pore space occupied by water between the points of tracer injection and tracer measurement. There has been rapid waste volume reduction in the enhanced cell that corresponds to the solids' reduction to gas. Monitoring is planned for the next several years, until stabilization parameters are determined complete. Encouraging performance is indicated by: (1) sensor data; (2) gas generation results; (3) data from landfill cores; and (4) decomposition-related indicators including rapid volume reduction. When data are synthesized, project results have attractive implications for new approaches to landfill management. Over seven-years, methane recoveries have averaged

  5. The Effect of Greenhouse Gas Mitigation on Drought Impacts in the U.S.

    Science.gov (United States)

    In this paper, we present a methodology for analyzing the economic benefits in the U.S. of changes in drought frequency and severity due to global greenhouse gas (GHG) mitigation. We construct reduced-form models of the effect of drought on agriculture and reservoir recreation i...

  6. Influence of altered precipitation pattern on greenhouse gas emissions and soil enzyme activities in Pannonian soils

    Science.gov (United States)

    Forstner, Stefan Johannes; Michel, Kerstin; Berthold, Helene; Baumgarten, Andreas; Wanek, Wolfgang; Zechmeister-Boltenstern, Sophie; Kitzler, Barbara

    2013-04-01

    Precipitation patterns are likely to be altered due to climate change. Recent models predict a reduction of mean precipitation during summer accompanied by a change in short-term precipitation variability for central Europe. Correspondingly, the risk for summer drought is likely to increase. This may especially be valid for regions which already have the potential for rare, but strong precipitation events like eastern Austria. Given that these projections hold true, soils in this area will receive water irregularly in few, heavy rainfall events and be subjected to long-lasting dry periods in between. This pattern of drying/rewetting can alter soil greenhouse gas fluxes, creating a potential feedback mechanism for climate change. Microorganisms are the key players in most soil carbon (C) and nitrogen (N) transformation processes including greenhouse gas exchange. A conceptual model proposed by Schimel and colleagues (2007) links microbial stress-response physiology to ecosystem-scale biogeochemical processes: In order to cope with decreasing soil water potential, microbes modify resource allocation patterns from growth to survival. However, it remains unclear how microbial resource acquisition via extracellular enzymes and microbial-controlled greenhouse gas fluxes respond to water stress induced by soil drying/rewetting. We designed a laboratory experiment to test for effects of multiple drying/rewetting cycles on soil greenhouse gas fluxes (CO2, CH4, N2O, NO), microbial biomass and extracellular enzyme activity. Three soils representing the main soil types of eastern Austria were collected in June 2012 at the Lysimeter Research Station of the Austrian Agency for Health and Food Safety (AGES) in Vienna. Soils were sieved to 2mm, filled in steel cylinders and equilibrated for one week at 50% water holding capacity (WHC) for each soil. Then soils were separated into two groups: One group received water several times per week (C=control), the other group received

  7. Chapter 6: quantifying greenhouse gas sources and sinks in managed forest systems

    Science.gov (United States)

    Coeli Hoover; Richard Birdsey; Bruce Goines; Peter Lahm; Yongming Fan; David Nowak; Stephen Prisley; Elizabeth Reinhardt; Ken Skog; David Skole; James Smith; Carl Trettin; Christopher. Woodall

    2014-01-01

    This chapter provides guidance for reporting greenhouse gas (GHG) emissions associated with entity-level fluxes from the forestry sector. In particular, it focuses on methods for estimating carbon stocks and stock change from managed forest systems. Section 6.1 provides an overview of the sector. Section 6.2 describes the methods for forest carbon stock accounting....

  8. Incorporating climate into belowground carbon estimates in the national greenhouse gas inventory

    Science.gov (United States)

    Matthew B. Russell; Grant M. Domke; Christopher W. Woodall; Anthony W. D’Amato

    2015-01-01

    Refined estimation of carbon (C) stocks within forest ecosystems is a critical component of efforts to reduce greenhouse gas emissions and mitigate the effects of projected climate change through forest C management. Recent evidence has pointed to the importance of climate as a driver of belowground C stocks. This study describes an approach for adjusting allometric...

  9. Corporate actions for the climate - Greenhouse gas reduction practices at EpE member companies

    International Nuclear Information System (INIS)

    Chalendar, Pierre-Andre de

    2012-11-01

    Corporate awareness of the reality of climate change and the impact of human activity on global warming goes back some twenty years. It was at this time that EpE members decided to take voluntary action towards lowering greenhouse gas emissions. EpE member companies started out by measuring their emissions (see EpE publication entitled 'Measuring and Controlling Greenhouse Gas Emissions'), then worked to identify initiatives easiest to implement and those that would have the best reduction potential. This booklet is prepared to contribute to other businesses improving their knowledge and understanding of the best practices identified and implemented by EpE members, in order to speed up the reduction of global emissions, without hampering their competitiveness. The practices showcased here have intentionally been detailed so that they can be easier to adopt. (authors)

  10. Pollutant swapping: greenhouse gas emissions from wetland systems constructed to mitigate agricultural pollution

    Science.gov (United States)

    Freer, Adam; Quinton, John; Surridge, Ben; McNamara, Niall

    2014-05-01

    Diffuse (non-point) water pollution from agricultural land continues to challenge water quality management, requiring the adoption of new land management practices. The use of constructed agricultural wetlands is one such practice, designed to trap multiple pollutants mobilised by rainfall prior to them reaching receiving water. Through capturing and storing pollutants in bottom sediments, it could be hypothesised that the abundance of nutrients stored in the anoxic conditions commonly found in these zones may lead to pollutant swapping. Under these circumstances, trapped material may undergo biogeochemical cycling to change chemical or physical form and thereby become more problematic or mobile within the environment. Thus, constructed agricultural wetlands designed to mitigate against one form of pollution may in fact offset the created benefits by 'swapping' this pollution into other forms and pathways, such as through release to the atmosphere. Pollutant swapping to the atmosphere has been noted in analogous wetland systems designed to treat municipal and industrial wastewaters, with significant fluxes of CO2, CH4 and N2O being recorded in some cases. However the small size, low level of engineering and variable nutrient/sediment inputs which are features of constructed agricultural wetlands, means that this knowledge is not directly transferable. Therefore, more information is required when assessing whether a wetland's potential to act as hotspot for pollution swapping outweighs its potential to act as a mitigation tool for surface water pollution. Here we present results from an on-going monitoring study at a trial agricultural wetland located in small a mixed-use catchment in Cumbria, UK. Estimates were made of CH4, CO2 and N2O flux from the wetland surface using adapted floating static chambers, which were then directly compared with fluxes from an undisturbed riparian zone. Results indicate that while greenhouse gas flux from the wetland may be

  11. Accounting of greenhouse gas emissions of a biogas plant. Results from the practice; Bilanzierung der Treibhausgasemissionen einer Biogasanlage. Ergebnisse aus der Praxis

    Energy Technology Data Exchange (ETDEWEB)

    Reckmann, Karoline [Union Agricole Holding AG, Pinneberg (Germany); Fritz, Thomas; Lasar, Ansgar

    2014-08-01

    The assessment of greenhouse gas emissions for biogas plants aims at providing valuable data in order to identify set screws for improvements. Most measurements potentially reducing CO{sub 2}-emissions also help improving the profitability of the biogas plant. The current study therefore aimed at quantifying the environmental impacts of biogas plants. To that end, greenhouse gas emissions were assessed using data of a company-owned 776 kW biogas plant located in Wahlstedt, Schleswig-Holstein, Germany. Fermentation substrates are maize, grass and cattle manure. Specific greenhouse gas emissions of 282 g CO{sub 2}-eq per kWh{sub el} have been calculated.

  12. Greenhouse gas emission analysis of an Egyptian rice straw biomass-to-energy chain

    NARCIS (Netherlands)

    Poppens, R.P.; Bakker, R.

    2012-01-01

    A common practice in Egypt has been the burning of rice straw, as a measure to prepare agricultural land for follow-up crops. This practice has caused significant greenhouse gas emissions, in addition to aerial pollution. By using straw residue for the production of pellets and shipping these

  13. Protocol for the quantification of greenhouse gas emissions from waste management activities

    International Nuclear Information System (INIS)

    2013-10-01

    The Waste Sector GHG Protocol is intended to provide guidelines for calculating and reporting greenhouse gas (GHG) emissions associated with a waste management service, over a specific time period (usually one year) and based on simple operational data. The Protocol itself has evolved with time, going through 4 version updates. The different versions correspond to evolutions initiated by the original Entreprises pour l'Environnement Working Group (Seche Environnement, Suez Environnement and Veolia Environnement) but also to the suggestions and feedback provided by several waste associations that have reviewed and commented on the Protocol. As a result, several worldwide associations have validated and used the Protocol for their own greenhouse gas inventories. The version 5 of the Waste Sector GHG Protocol has received the 'Built on the GHG Protocol' label. With such label, the Waste Sector Protocol reinforces its desire to be the reference tool for the waste sector by ensuring its users of a total and transparent coherence and conformity with the GHG Protocol Corporate Standard's requirements. The Protocol is also available on the following web page: http://www.ghgprotocol.org/Tools-Built-on-GHG-Protocol. The Waste Sector GHG Protocol aims at: Providing a consistent and transparent approach to quantify, report and verify GHG direct (scope 1), indirect (scope 2) and avoided emissions of waste management actors; Establishing best practice across the waste sector for the implementation of coherent and homogeneous GHG emissions inventories; Explaining waste sector's particularities in terms of GHG emissions (diffuse emission from landfills, GHG avoided emissions, carbon sequestration); Helping companies to take proper commitments and stakeholders to understand and verify those commitments. The Protocol consists of a manual with two additional documents: A 'Frequently Asked Questions' document; A 'Follow-up of modifications

  14. THE NATURE OF ACTIVE GALACTIC NUCLEI WITH VELOCITY OFFSET EMISSION LINES

    Energy Technology Data Exchange (ETDEWEB)

    Müller-Sánchez, F.; Comerford, J. [Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, CO 80309 (United States); Stern, D. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Harrison, F. A. [California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States)

    2016-10-10

    We obtained Keck/OSIRIS near-IR adaptive optics-assisted integral-field spectroscopy to probe the morphology and kinematics of the ionized gas in four velocity-offset active galactic nuclei (AGNs) from the Sloan Digital Sky Survey. These objects possess optical emission lines that are offset in velocity from systemic as measured from stellar absorption features. At a resolution of ∼0.″18, OSIRIS allows us to distinguish which velocity offset emission lines are produced by the motion of an AGN in a dual supermassive black hole system, and which are produced by outflows or other kinematic structures. In three galaxies, J1018+2941, J1055+1520, and J1346+5228, the spectral offset of the emission lines is caused by AGN-driven outflows. In the remaining galaxy, J1117+6140, a counterrotating nuclear disk is observed that contains the peak of Pa α emission 0.″2 from the center of the galaxy. The most plausible explanation for the origin of this spatially and kinematically offset peak is that it is a region of enhanced Pa α emission located at the intersection zone between the nuclear disk and the bar of the galaxy. In all four objects, the peak of ionized gas emission is not spatially coincident with the center of the galaxy as traced by the peak of the near-IR continuum emission. The peaks of ionized gas emission are spatially offset from the galaxy centers by 0.″1–0.″4 (0.1–0.7 kpc). We find that the velocity offset originates at the location of this peak of emission, and the value of the offset can be directly measured in the velocity maps. The emission-line ratios of these four velocity-offset AGNs can be reproduced only with a mixture of shocks and AGN photoionization. Shocks provide a natural explanation for the origin of the spatially and spectrally offset peaks of ionized gas emission in these galaxies.

  15. Agriculture and greenhouse gas effect: status and perspectives

    International Nuclear Information System (INIS)

    2010-01-01

    In a first part, this report analyses the interactions between climate and agriculture: understanding of climate changes and their global impacts, understanding of carbon and nitrogen life cycles and their relationship with anthropic greenhouse gas emissions, emissions by agriculture and impacts of climate change on agriculture, N 2 O, CH 4 and CO 2 emissions by agriculture. The authors address how to reduce emissions and increase carbon storage by crop management and N 2 O emission reduction, by breeding management and CH 4 and CO 2 emission reduction, and by energy CO 2 emission reduction. They discuss emission reduction policies in agriculture within the international political, European and French frameworks. They also identify possible economic tools

  16. Worldwide Life Cycle Analysis (LCA) of Greenhouse Gas (GHG) Emissions from Petroleum Jet Fuel

    Science.gov (United States)

    2017-11-09

    The main objective of this project was to calculate greenhouse gas emissions estimates for petroleum jet fuels for the recent past and for future scenarios in the coming decades. Results were reported globally and broken out by world regions, and the...

  17. Greenhouse gas emissions profiles of neighbourhoods in Durban, South Africa – an initial investigation

    CSIR Research Space (South Africa)

    Jagarnath, M

    2017-08-01

    Full Text Available Because current emissions accounting approaches focus on an entire city, cities are often considered to be large emitters of greenhouse gas (GHG) emissions, with no attention to the variation within them. This makes it more difficult to identify...

  18. Bringing a needle to a laser fight: comparing greenhouse gas sampling methods with gas chromatography and fourier transform infrared spectroscopy

    Science.gov (United States)

    As scientists, producers, policymakers, and the general public become more concerned about impacts of climate change, there is an increasing need to understand and quantify greenhouse gas emissions from agricultural practices, which often feed into global, multi-institution databases. Current best p...

  19. Greenhouse gas emissions from nitrogen fertilizer use in China

    International Nuclear Information System (INIS)

    Kahrl, Fredrich; Li, Yunju; Su, Yufang; Tennigkeit, Timm; Wilkes, Andreas; Xu, Jianchu

    2010-01-01

    The use of synthetic nitrogen (N) fertilizers is an important driver of energy use and greenhouse gas (GHG) emissions in China. This paper develops a GHG emission factor for synthetic N fertilizer application in China. Using this emission factor, we estimate the scale of GHG emissions from synthetic nitrogen fertilizer use in Chinese agriculture and explore the potential for GHG emission reductions from efficiency improvements in N fertilizer production and use. The paper concludes with a discussion on costs and financing for a large-scale fertilizer efficiency improvement program in China, and how a GHG mitigation framework might contribute to program design.

  20. Combustion efficiency: Greenhouse gas emission reductions from the power generation sector

    Energy Technology Data Exchange (ETDEWEB)

    Kane, R.; South, D.W.; Fish, A.L. [Argonne National Laboratory, Upton, IL (United States)

    1993-12-31

    Concern for the possibility of an enhanced greenhouse effect and global climate change (GCC) has often been associated with energy use in general, and fossil fuel combustion in particular, because of associated emissions of CO{sub 2} and other greenhouse gases (GHG). Therefore, energy policies play a significant role in determining greenhouse gas emissions. The generation of electricity and power from more efficient fossil energy technologies provides an opportunity to significantly lower GHG emissions, together with other pollutants. The U.S. government oversees a broad-based program to facilitate the development, demonstration, and deployment of these technologies. Advanced fossil technologies offer other benefits as well, in that they permit continued use of widely available fuels such as coal. An international perspective is critical for assessing the role of these fuels, since countries differ in terms of their ability to maximize these benefits. Often, new technologies are considered the domain of industrialized countries. Yet more efficient technologies may have their greatest potential - to concurrently permit the utilization of indigenous fuels and to lower global GHG emissions in developing countries, especially those in the Asia-Pacific region.