WorldWideScience

Sample records for greenhouse environmental conditions

  1. Control of Greenhouse Environmental Conditions with IOT Based Monitoring and Analysis System

    Directory of Open Access Journals (Sweden)

    Ali Çaylı

    2017-10-01

    Full Text Available Wireless sensor networks applications and inter-machine communication (M2M, called the Internet of Things, help decision-makers to control complex systems thanks to the low data-rate and cost-effective data collection and analysis. These technologies offer new possibilities to monitor environmental management and agricultural policies, and to improve agricultural production, especially in low-income rural areas. In this study, IoT is proposed with a low cost, flexible and scalable data collection and analysis system. For this purpose, open source hardware microprocessor cards and sensors are stored in the greenhouse computer database using the IEEE 802.15.4 Zigbee wireless communication protocol. The data can be analyzed by greenhouse computer analysis software, which is developed with the PHP programming language. It is possible to monitor the real time data from the greenhouse computer. Also alert rules definitions can be made and the system was tested in greenhouse conditions. It has been observed that it performs operations steadily such as data transfer, sensor measurements and data processing. The proposed system may be useful for monitoring indoor climate and controlling ventilation, irrigation and heating systems, especially for small enterprises due to the modular structure.

  2. Heterogeneous Multi-Robot System for Mapping Environmental Variables of Greenhouses.

    Science.gov (United States)

    Roldán, Juan Jesús; Garcia-Aunon, Pablo; Garzón, Mario; de León, Jorge; Del Cerro, Jaime; Barrientos, Antonio

    2016-07-01

    The productivity of greenhouses highly depends on the environmental conditions of crops, such as temperature and humidity. The control and monitoring might need large sensor networks, and as a consequence, mobile sensory systems might be a more suitable solution. This paper describes the application of a heterogeneous robot team to monitor environmental variables of greenhouses. The multi-robot system includes both ground and aerial vehicles, looking to provide flexibility and improve performance. The multi-robot sensory system measures the temperature, humidity, luminosity and carbon dioxide concentration in the ground and at different heights. Nevertheless, these measurements can be complemented with other ones (e.g., the concentration of various gases or images of crops) without a considerable effort. Additionally, this work addresses some relevant challenges of multi-robot sensory systems, such as the mission planning and task allocation, the guidance, navigation and control of robots in greenhouses and the coordination among ground and aerial vehicles. This work has an eminently practical approach, and therefore, the system has been extensively tested both in simulations and field experiments.

  3. Heterogeneous Multi-Robot System for Mapping Environmental Variables of Greenhouses

    Directory of Open Access Journals (Sweden)

    Juan Jesús Roldán

    2016-07-01

    Full Text Available The productivity of greenhouses highly depends on the environmental conditions of crops, such as temperature and humidity. The control and monitoring might need large sensor networks, and as a consequence, mobile sensory systems might be a more suitable solution. This paper describes the application of a heterogeneous robot team to monitor environmental variables of greenhouses. The multi-robot system includes both ground and aerial vehicles, looking to provide flexibility and improve performance. The multi-robot sensory system measures the temperature, humidity, luminosity and carbon dioxide concentration in the ground and at different heights. Nevertheless, these measurements can be complemented with other ones (e.g., the concentration of various gases or images of crops without a considerable effort. Additionally, this work addresses some relevant challenges of multi-robot sensory systems, such as the mission planning and task allocation, the guidance, navigation and control of robots in greenhouses and the coordination among ground and aerial vehicles. This work has an eminently practical approach, and therefore, the system has been extensively tested both in simulations and field experiments.

  4. Pot plant production, environmental conditions and energy consumption in insulated greenhouses

    Energy Technology Data Exchange (ETDEWEB)

    Bjerre, H.; Amsen, M.G. (Statens Planteavlsforsoeg, Havebrugscentret, Institut for Vaeksthuskulturer, Aarslev, Denmark)

    1984-01-01

    An energy experiment with 4 different types of greenhouses was carried out in the winter 1980-81 and 1981-82. Three of these greenhouses were insulated. The reference house was a single layer glasshouse with a mobile shading curtain, which was drawn at night. A comparison with the reference house showed the following energy savings for the insulated houses: Double glass 29-32%, double acryllic 39%, and thermal screens 22-24%. On average the air humidity was 80-86% RH in the double acryllic greenhouse and in the double glass house, whereas the levels was 5-10% lower in the 2 greenhouses with single glass. In spite of the high air humidity in the permanently insulated houses, no plant diseases occurred. The dry matter production of seven plant species was recorded in all greenhouses on the same date. Compared with the reference house 3 of the plant species showed a 5-10% higher production in the double acryllic greenhouse as well as the house with thermal screens. The remaining 4 plant species did not show any differences, between the 3 greenhouses. In the double glass house the production was considerably lower. To study the growth in detail, Tagetes plants were grown for 3-week periods during the winter in all houses. The aim of this study was to investigate whether the ratio between the growth in the 4 greenhouses was the same when periods of high light intensity were compared to periods with low light intensity. No characteristic changes with increasing light intensities could be observed between the different greenhouses. The differences between the greenhouses in time of production for the pot plants were generally small. The most remarkable difference in plant quality between the houses could be seen with Chrysanthemum and Kalanchoe. These 2 plant species were considerably less compact in the double acryllic greenhouse. Chrysanthemum was also less compact in the double glass house.

  5. Greenhouse Environmental Control Using Optimized MIMO PID Technique

    Directory of Open Access Journals (Sweden)

    Fateh BOUNAAMA

    2011-10-01

    Full Text Available Climate control for protected crops brings the added dimension of a biological system into a physical system control situation. The thermally dynamic nature of a greenhouse suggests that disturbance attenuation (load control of external temperature, humidity, and sunlight is far more important than is the case for controlling other types of buildings. This paper investigates the application of multi-inputs multi-outputs (MIMO PID controller to a MIMO greenhouse environmental model with actuation constraints. This method is based on decoupling the system at low frequency point. The optimal tuning values are determined using genetic algorithms optimization (GA. The inside outsides climate model of the environmental greenhouse, and the automatically collected data sets of Avignon, France are used to simulate and test this technique. The control objective is to maintain a highly coupled inside air temperature and relative humidity of strongly perturbed greenhouse, at specified set-points, by the ventilation/cooling and moisturizing operations.

  6. The Research for the Greenhouse Water Evaporation Based on the Environmental Factors

    OpenAIRE

    Lili Ma; Chaoxing He; Zhixin Wang

    2013-01-01

    To guide the greenhouse precision irrigation, influenced by the environmental factors, based on the definite plant, the greenhouse water evaporation characteristics are studied. The qualitative and the quantitative relationships between the environmental factors and the greenhouse water evaporation are probed into which will provide the theoretical basis for the water management of the facilities horticulture. Establishing the quantitative relations between the environmental factors and the w...

  7. Design and Development a Control and Monitoring System for Greenhouse Conditions Based-On Multi Agent System

    Directory of Open Access Journals (Sweden)

    Seyed Hamidreza Kasaei

    2011-12-01

    Full Text Available The design of a multi-agent system for integrated management of greenhouse production is described. The model supports the integrated greenhouse production, with targets set to quality and quantity of produce with the minimum possible cost in resources and environmental consequences.
    In this paper, we propose a real time and robust system for monitoring and control of the greenhouse condition which can automatically control of greenhouse temperature, lights, humidity, CO2 concentration, sunshine, pH, salinity, water available, soil temperature and soil nutrient for efficient production. We will propose a multi-agent methodology for integrated management systems in greenhouses. In this regards wireless sensor networks play a vital role to monitor
    greenhouse and environment parameters. Each control process of the greenhouse environment is modeled as an autonomous agent with its own inputs, outputs and its own interactions with the other agents. Each agent acts autonomously, as it knows a priori the desired environmental setpoints. Many researchers have been making attempts to develop the greenhouse environment management system. The existing environment management systems are bulky, very costly and difficult to maintain. In the last years, Multi Agent Systems and Wireless Sensor Networks are becoming important solutions to this problem. This paper describes the implementation and
    configuration of the wireless sensor network to monitor and control various parameter of greenhouse. The developed system is simple, cost effective, and easily installable.

  8. Automatically Maintain Climatic Conditions inside Agricultural Greenhouses

    Directory of Open Access Journals (Sweden)

    Ali Jasim Ramadhan

    2016-11-01

    Full Text Available In this work, a novel system is designed to remote monitor / automatic control of the temperature, humidity and soil moisture of the agricultural greenhouses. In the proposed system, the author used the mentioned sensors for monitoring the climatic conditions of the agricultural greenhouses; and the system makes a controlling process to fix the required parameters for plant growth by running / stopping the fan, air exchanger and irrigation devices when any changes happened in these parameters. The presented system is based on XBee protocol in the implemented wireless sensor star topology network (WSN to monitor the agricultural greenhouses in real time, and used the GSM and Internet technologies to monitor the agricultural greenhouses from anywhere.

  9. Using a Novel Wireless-Networked Decentralized Control Scheme under Unpredictable Environmental Conditions.

    Science.gov (United States)

    Chang, Chung-Liang; Huang, Yi-Ming; Hong, Guo-Fong

    2015-11-12

    The direction of sunshine or the installation sites of environmental control facilities in the greenhouse result in different temperature and humidity levels in the various zones of the greenhouse, and thus, the production quality of crop is inconsistent. This study proposed a wireless-networked decentralized fuzzy control scheme to regulate the environmental parameters of various culture zones within a greenhouse. The proposed scheme can create different environmental conditions for cultivating different crops in various zones and achieve diversification or standardization of crop production. A star-type wireless sensor network is utilized to communicate with each sensing node, actuator node, and control node in various zones within the greenhouse. The fuzzy rule-based inference system is used to regulate the environmental parameters for temperature and humidity based on real-time data of plant growth response provided by a growth stage selector. The growth stage selector defines the control ranges of temperature and humidity of the various culture zones according to the leaf area of the plant, the number of leaves, and the cumulative amount of light. The experimental results show that the proposed scheme is stable and robust and provides basis for future greenhouse applications.

  10. Using a Novel Wireless-Networked Decentralized Control Scheme under Unpredictable Environmental Conditions

    Directory of Open Access Journals (Sweden)

    Chung-Liang Chang

    2015-11-01

    Full Text Available The direction of sunshine or the installation sites of environmental control facilities in the greenhouse result in different temperature and humidity levels in the various zones of the greenhouse, and thus, the production quality of crop is inconsistent. This study proposed a wireless-networked decentralized fuzzy control scheme to regulate the environmental parameters of various culture zones within a greenhouse. The proposed scheme can create different environmental conditions for cultivating different crops in various zones and achieve diversification or standardization of crop production. A star-type wireless sensor network is utilized to communicate with each sensing node, actuator node, and control node in various zones within the greenhouse. The fuzzy rule-based inference system is used to regulate the environmental parameters for temperature and humidity based on real-time data of plant growth response provided by a growth stage selector. The growth stage selector defines the control ranges of temperature and humidity of the various culture zones according to the leaf area of the plant, the number of leaves, and the cumulative amount of light. The experimental results show that the proposed scheme is stable and robust and provides basis for future greenhouse applications.

  11. Environmental policy and the greenhouse effect

    International Nuclear Information System (INIS)

    Weenink, J.B.

    1993-01-01

    Emissions, resulting from human activity, are substantially increasing the atmospheric concentration of greenhouse gases. This is causing an additional average warming of the Earth's surface. This article presents an overview of recent developments in the international discussion on climate change, taking into account the work of other organizations such as the Intergovernmental Panel on Climate Change (IPCC). The long term and global character of the climate change problem requires an international long term strategy based on internationally agreed principles such as sustainable development and the precautionary principle. Research is needed to further develop risk assessment and environmental quality standards, from which emission targets can be derived. As a first step, governments of many industrialized countries have already set provisional national CO 2 emission targets, aimed at stabilization at present levels by the year 2000 and in some cases, reductions thereafter. Under the auspices of United Nations, negotiations have begun on an international framework climate convention and associated agreements, on, for example, greenhouse gas emissions, forestry and funding mechanisms. Obligations imposed on individual nations may be expected to reflect their responsibility for greenhouse warming; this paper presents some views on the equity of burden sharing. 17 refs., 5 tabs

  12. Sustainability assessment of greenhouse vegetable farming practices from environmental, economic, and socio-institutional perspectives in China.

    Science.gov (United States)

    Yang, Lanqin; Huang, Biao; Mao, Mingcui; Yao, Lipeng; Niedermann, Silvana; Hu, Wenyou; Chen, Yong

    2016-09-01

    To provide growing population with sufficient food, greenhouse vegetable production has expanded rapidly in recent years in China and sustainability of its farming practices is a major concern. Therefore, this study assessed the sustainability of greenhouse vegetable farming practices from environmental, economic, and socio-institutional perspectives in China based on selected indicators. The empirical data were collected through a survey of 91 farm households from six typical greenhouse vegetable production bases and analysis of environmental material samples. The results showed that heavy fertilization in greenhouse vegetable bases of China resulted in an accumulation of N, P, Cd, Cu, Pb, and Zn in soil, nutrient eutrophication in irrigation water, and high Cd in some leaf vegetables cultivated in acidic soil. Economic factors including decreased crop yield in conventional farming bases, limited and site-dependent farmers' income, and lack of complete implementation of subsidy policies contributed a lot to adoption of heavy fertilization by farmers. Also, socio-institutional factors such as lack of unified management of agricultural supplies in the bases operated in cooperative and small family business models and low agricultural extension service efficiency intensified the unreasonable fertilization. The selection of cultivated vegetables was mainly based on farmers' own experience rather than site-dependent soil conditions. Thus, for sustainable development of greenhouse vegetable production systems in China, there are two key aspects. First, it is imperative to reduce environmental pollution and subsequent health risks through integrated nutrient management and the planting strategy of selected low metal accumulation vegetable species especially in acidic soil. Second, a conversion of cooperative and small family business models of greenhouse vegetable bases to enterprises should be extensively advocated in future for the unified agricultural supplies

  13. Adaptation of a leaf wetness duration model for tomato under Colombian greenhouse conditions

    Directory of Open Access Journals (Sweden)

    Rodrigo Gil

    2015-04-01

    Full Text Available Greenhouse tomato production uses structures that protect crops from extreme environmental conditions; however, the climate inside Colombian greenhouses is often not optimal and crops are susceptible to attack by fungal diseases. The use of simulation models for early warnings of attack by diseases have helped to rationalize the use of chemical pesticides by increasing their efficiency when sprayed at critical times of disease onset. The aim of this study was to calibrate the surface wetness energy balance (SWEB model to estimate the leaf wetness duration (LWD for greenhouse tomatoes in the Alto Ricaurte province (Boyaca. For the validation, the performances of the SWEB model were evaluated by comparing a simulated LWD with records from dielectric leaf wetness sensors. The model adequately represented the phenomenon of free water on the leaves for plants in two greenhouses of Santa Sofia and Sutamarchan. The model simulated an average LWD of 9.9 and 12.1 hours day-1 in Santa Sofia and Sutamarchan, respectively. However, the simulations for the two greenhouses indicated different behaviors, with average differences between the observed and simulated daily number of hours with free water of 0.8 hours for Santa Sofia, while, for Sutamarchan, the difference reached 4 hours. The fraction of correct estimates index indicated the model had the ability to correctly predict 92 and 72% of the hours with a presence or absence of LWD in Santa Sofia and Sutamarchan, respectively. The SWEB model is a useful tool for early warnings for the attack of fungal diseases in greenhouse tomatoes. However, due to the shortcomings of the greenhouse structures used for production, the crops are highly susceptible to attack from these pathogens.

  14. Policy and Environmental Implications of Photovoltaic Systems in Farming in Southeast Spain: Can Greenhouses Reduce the Greenhouse Effect?

    Directory of Open Access Journals (Sweden)

    Angel Carreño-Ortega

    2017-05-01

    Full Text Available Solar photovoltaic (PV systems have grown in popularity in the farming sector, primarily because land area and farm structures themselves, such as greenhouses, can be exploited for this purpose, and, moreover, because farms tend to be located in rural areas far from energy production plants. In Spain, despite being a country with enormous potential for this renewable energy source, little is being done to exploit it, and policies of recent years have even restricted its implementation. These factors constitute an obstacle, both for achieving environmental commitments and for socioeconomic development. This study proposes the installation of PV systems on greenhouses in southeast Spain, the location with the highest concentration of greenhouses in Europe. Following a sensitivity analysis, it is estimated that the utilization of this technology in the self-consumption scenario at farm level produces increased profitability for farms, which can range from 0.88% (worst scenario to 52.78% (most favorable scenario. Regarding the Spanish environmental policy, the results obtained demonstrate that the impact of applying this technology mounted on greenhouses would bring the country 38% closer to reaching the 2030 greenhouse gas (GHG target. Furthermore, it would make it possible to nearly achieve the official commitment of 20% renewable energies by 2020. Additionally, it would have considerable effects on the regional socioeconomy, with increases in job creation and contribution to gross domestic product (GDP/R&D (Research and Development, allowing greater profitability in agrifood activities throughout the entire region.

  15. Energy and Greenhouse Gas Emission Assessment of Conventional and Solar Assisted Air Conditioning Systems

    Directory of Open Access Journals (Sweden)

    Xiaofeng Li

    2015-11-01

    Full Text Available Energy consumption in the buildings is responsible for 26% of Australia’s greenhouse gas emissions where cooling typically accounts for over 50% of the total building energy use. The aim of this study was to investigate the potential for reducing the cooling systems’ environmental footprint with applications of alternative renewable energy source. Three types of cooling systems, water cooled, air cooled and a hybrid solar-based air-conditioning system, with a total of six scenarios were designed in this work. The scenarios accounted for the types of power supply to the air-conditioning systems with electricity from the grid and with a solar power from highly integrated building photovoltaics (BIPV. Within and between these scenarios, systems’ energy performances were compared based on energy modelling while the harvesting potential of the renewable energy source was further predicted based on building’s detailed geometrical model. The results showed that renewable energy obtained via BIPV scenario could cover building’s annual electricity consumption for cooling and reduce 140 tonnes of greenhouse gas emissions each year. The hybrid solar air-conditioning system has higher energy efficiency than the air cooled chiller system but lower than the water cooled system.

  16. Extraction of Greenhouse Areas with Image Processing Methods in Karabuk Province

    Science.gov (United States)

    Yildirima, M. Z.; Ozcan, C.

    2017-11-01

    Greenhouses provide the environmental conditions to be controlled and regulated as desired while allowing agricultural products to be produced without being affected by external environmental conditions. High quality and a wide variety of agricultural products can be produced throughout the year. In addition, mapping and detection of these areas has great importance in terms of factors such as yield analysis, natural resource management and environmental impact. Various remote sensing techniques are currently available for extraction of greenhouse areas. These techniques are based on the automatic detection and interpretation of objects on remotely sensed images. In this study, greenhouse areas were determined from optical images obtained from Landsat. The study was carried out in the greenhouse areas in Karabuk province. The obtained results are presented with figures and tables.

  17. Greenhouse climate : from physical processes to a dynamic model

    OpenAIRE

    Bot, G.P.A.

    1983-01-01

    In this thesis greenhouse climate has been studied as the set of environmental conditions in a greenhouse in so far as they affect crop growth and development. In chapter 2 this set has been defined in terms of temperatures and vapour pressures. Moreover we have indicated which physical processes co-operate in the greenhouse. So the dependency of the greenhouse climate on the outside weather, the physical properties of the greenhouse construction and the way ventilation and heating is perform...

  18. Manipulating Sensory and Phytochemical Profiles of Greenhouse Tomatoes Using Environmentally Relevant Doses of Ultraviolet Radiation.

    Science.gov (United States)

    Dzakovich, Michael P; Ferruzzi, Mario G; Mitchell, Cary A

    2016-09-14

    Fruits harvested from off-season, greenhouse-grown tomato plants have a poor reputation compared to their in-season, garden-grown counterparts. Presently, there is a gap in knowledge with regard to the role of UV-B radiation (280-315 nm) in determining greenhouse tomato quality. Knowing that UV-B is a powerful elicitor of secondary metabolism and not transmitted through greenhouse glass and some greenhouse plastics, we tested the hypothesis that supplemental UV-B radiation in the greenhouse will impart quality attributes typically associated with garden-grown tomatoes. Environmentally relevant doses of supplemental UV-B radiation did not strongly affect antioxidant compounds of fruits, although the flavonol quercetin-3-O-rutinoside (rutin) significantly increased in response to UV-B. Physicochemical metrics of fruit quality attributes and consumer sensory panels were used to determine if any such differences altered consumer perception of tomato quality. Supplemental UV-A radiation (315-400 nm) pre-harvest treatments enhanced sensory perception of aroma, acidity, and overall approval, suggesting a compelling opportunity to environmentally enhance the flavor of greenhouse-grown tomatoes. The expression of the genes COP1 and HY5 were indicative of adaptation to UV radiation, which explains the lack of marked effects reported in these studies. To our knowledge, these studies represent the first reported use of environmentally relevant doses of UV radiation throughout the reproductive portion of the tomato plant life cycle to positively enhance the sensory and chemical properties of fruits.

  19. An Innovative Adaptive Control System to Regulate Microclimatic Conditions in a Greenhouse

    Directory of Open Access Journals (Sweden)

    Giuseppina Nicolosi

    2017-05-01

    Full Text Available In the recent past home automation has been expanding its objectives towards new solutions both inside the smart home and in its outdoor spaces, where several new technologies are available. This work has developed an approach to integrate intelligent microclimatic greenhouse control into integrated home automation. Microclimatic control of greenhouses is a critical issue in agricultural practices, due to often common sudden daily variation of climatic conditions, and to its potentially detrimental effect on plant growth. A greenhouse is a complex thermodynamic system where indoor temperature and relative humidity have to be closely monitored to facilitate plant growth and production. This work shows an adaptive control system tailored to regulate microclimatic conditions in a greenhouse, by using an innovative combination of soft computing applications. In particular, a neural network solution has been proposed in order to forecast the climatic behavior of greenhouse, while a parallel fuzzy scheme approach is carried out in order to adjust the air speed of fan-coil and its temperature. The proposed combined approach provides a better control of greenhouse climatic conditions due to the system’s capability to base instantaneous solutions both on real measured variables and on forecasted climatic change. Several simulation campaigns were carried out to perform accurate neural network and fuzzy schemes, aimed at obtaining respectively a minimum forecasted error value and a more appropriate fuzzification and de-fuzzification process. A Matlab/Simulink solution implemented with a combined approach and its relevant obtained performance is also shown in present study, demonstrating that through controlled parameters it will be possible to maintain a better level of indoor climatic conditions. In the present work we prove how with a forecast of outside temperature at the next time-instant and rule-based controller monitoring of cooling or heating air

  20. Greenhouse climate : from physical processes to a dynamic model

    NARCIS (Netherlands)

    Bot, G.P.A.

    1983-01-01

    In this thesis greenhouse climate has been studied as the set of environmental conditions in a greenhouse in so far as they affect crop growth and development. In chapter 2 this set has been defined in terms of temperatures and vapour pressures. Moreover we have indicated which physical processes

  1. A validated physical model of greenhouse climate.

    NARCIS (Netherlands)

    Bot, G.P.A.

    1989-01-01

    In the greenhouse model the momentaneous environmental crop growth factors are calculated as output, together with the physical behaviour of the crop. The boundary conditions for this model are the outside weather conditions; other inputs are the physical characteristics of the crop, of the

  2. Environmental impacts of food trade via resource use and greenhouse gas emissions

    International Nuclear Information System (INIS)

    Dalin, Carole; Rodríguez-Iturbe, Ignacio

    2016-01-01

    Agriculture will need to significantly intensify in the next decades to continue providing essential nutritive food to a growing global population. However, it can have harmful environmental impacts, due to the use of natural and synthetic resources and the emission of greenhouse gases, which alter the water, carbon and nitrogen cycles, and threaten the fertility, health and biodiversity of landscapes. Because of the spatial heterogeneity of resource productivity, farming practices, climate, and land and water availability, the environmental impact of producing food is highly dependent on its origin. For this reason, food trade can either increase or reduce the overall environmental impacts of agriculture, depending on whether or not the impact is greater in the exporting region. Here, we review current scientific understanding of the environmental impacts of food trade, focusing on water and land use, pollution and greenhouse gas emissions. In the case of water, these impacts are mainly beneficial. However, in the cases of pollution and greenhouse gas emissions, this conclusion is not as clear. Overall, there is an urgent need for a more comprehensive, integrated approach to estimate the global impacts of food trade on the environment. Second, research is needed to improve the evaluation of some key aspects of the relative value of each resource depending on the local and regional biophysical and socio–economic context. Finally, to enhance the impact of such evaluations and their applicability in decision-making, scenario analyses and accounting of key issues like deforestation and groundwater exhaustion will be required. (letter)

  3. Environmental impacts of food trade via resource use and greenhouse gas emissions

    Science.gov (United States)

    Dalin, Carole; Rodríguez-Iturbe, Ignacio

    2016-03-01

    Agriculture will need to significantly intensify in the next decades to continue providing essential nutritive food to a growing global population. However, it can have harmful environmental impacts, due to the use of natural and synthetic resources and the emission of greenhouse gases, which alter the water, carbon and nitrogen cycles, and threaten the fertility, health and biodiversity of landscapes. Because of the spatial heterogeneity of resource productivity, farming practices, climate, and land and water availability, the environmental impact of producing food is highly dependent on its origin. For this reason, food trade can either increase or reduce the overall environmental impacts of agriculture, depending on whether or not the impact is greater in the exporting region. Here, we review current scientific understanding of the environmental impacts of food trade, focusing on water and land use, pollution and greenhouse gas emissions. In the case of water, these impacts are mainly beneficial. However, in the cases of pollution and greenhouse gas emissions, this conclusion is not as clear. Overall, there is an urgent need for a more comprehensive, integrated approach to estimate the global impacts of food trade on the environment. Second, research is needed to improve the evaluation of some key aspects of the relative value of each resource depending on the local and regional biophysical and socio-economic context. Finally, to enhance the impact of such evaluations and their applicability in decision-making, scenario analyses and accounting of key issues like deforestation and groundwater exhaustion will be required.

  4. System for monitoring microclimate conditions in greenhouse

    Directory of Open Access Journals (Sweden)

    Marković Dušan B.

    2014-01-01

    Full Text Available Monitoring microclimate parameters in different kind of environments has significant contribution to many areas of human activity and production processes. One of them is vegetable production in greenhouses where measurement of its microclimate parameters may influence the decision on taking appropriate action and protect crops. It is also important to preserve optimal condition in greenhouses to facilitate the process of transpiration, plant mineral nutrition and prevent of a variety physiological damage caused by a deficit of some specific nutrients. Systems for monitoring have wide application in the last years thanks to development of modern computer technology. In this paper model of the monitoring system based on smart transducer concept was introduced. Within the system components are based on MSP430 ultra low power micro controllers. They are using wireless communication to exchange data within the system that was structured according to smart transducer concept. User applications from the network could access to system interface using HTTP protocol where web server could be running on the computer or it could be an embedded web server running on micro controller based device.

  5. A validated physical model of greenhouse climate

    International Nuclear Information System (INIS)

    Bot, G.P.A.

    1989-01-01

    In the greenhouse model the momentaneous environmental crop growth factors are calculated as output, together with the physical behaviour of the crop. The boundary conditions for this model are the outside weather conditions; other inputs are the physical characteristics of the crop, of the greenhouse and of the control system. The greenhouse model is based on the energy, water vapour and CO 2 balances of the crop-greenhouse system. While the emphasis is on the dynamic behaviour of the greenhouse for implementation in continuous optimization, the state variables temperature, water vapour pressure and carbondioxide concentration in the relevant greenhouse parts crop, air, soil and cover are calculated from the balances over these parts. To do this in a proper way, the physical exchange processes between the system parts have to be quantified first. Therefore the greenhouse model is constructed from submodels describing these processes: a. Radiation transmission model for the modification of the outside to the inside global radiation. b. Ventilation model to describe the ventilation exchange between greenhouse and outside air. c. The description of the exchange of energy and mass between the crop and the greenhouse air. d. Calculation of the thermal radiation exchange between the various greenhouse parts. e. Quantification of the convective exchange processes between the greenhouse air and respectively the cover, the heating pipes and the soil surface and between the cover and the outside air. f. Determination of the heat conduction in the soil. The various submodels are validated first and then the complete greenhouse model is verified

  6. Effect of greenhouse conditions on the leaf apoplastic proteome of Coffea arabica plants.

    Science.gov (United States)

    Guerra-Guimarães, Leonor; Vieira, Ana; Chaves, Inês; Pinheiro, Carla; Queiroz, Vagner; Renaut, Jenny; Ricardo, Cândido P

    2014-06-02

    This work describes the coffee leaf apoplastic proteome and its modulation by the greenhouse conditions. The apoplastic fluid (APF) was obtained by leaf vacuum infiltration, and the recovered proteins were separated by 2-DE and subsequently identified by matrix assisted laser desorption/ionization time of flight-mass spectrometry, followed by homology search in EST coffee databases. Prediction tools revealed that the majority of the 195 identified proteins are involved in cell wall metabolism and in stress/defense responses. Although most of the proteins follow the classical secretory mechanism, a low percentage of them seem to result from unconventional secretion (leaderless secreted proteins). Principal components analysis revealed that the APF samples formed two distinct groups, with the temperature amplitude mostly contributing for this separation (higher or lower than 10°C, respectively). Sixty one polypeptide spots allowed defining these two groups and 28 proteins were identified, belonging to carbohydrate metabolism, cell wall modification and proteolysis. Interestingly stress/defense proteins appeared as more abundant in Group I which is associated with a higher temperature amplitude. It seems that the proteins in the coffee leaf APF might be implicated in structural modifications in the extracellular space that are crucial for plant development/adaptation to the conditions of the prevailing environment. This is the first detailed proteomic study of the coffee leaf apoplastic fluid (APF) and of its modulation by the greenhouse conditions. The comprehensive overview of the most abundant proteins present in the extra-cellular compartment is particularly important for the understanding of coffee responses to abiotic/biotic stress. This article is part of a Special Issue entitled: Environmental and structural proteomics. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Environmental Accounts of the Netherlands. Greenhouse gas emissions by Dutch economic activities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-08-15

    Climate change is one of the major global challenges of our time. There is abundant scientific evidence that the emission of greenhouse gases caused by economic activities contributes to climate change. Accelerating emissions of carbon dioxide, methane, and other greenhouse gases since the beginning of the 20th century have increased the average global temperature by about 0.8C and altered global precipitation patterns. Combustion of fossil fuels, deforestation, but also specific agricultural activities and industrial processes are the main drivers of the increased emission of greenhouse gasses. Enhanced concentrations of greenhouse gasses in the atmosphere will increase global temperatures by radiative forcing. Likewise, climate change has a direct impact on all kinds of economic processes. These impacts may be positive or negative, but it is expected that the overall impact will be primarily negative. In order to design effective mitigation policies, one must have a good conception of the economic driving forces of climate change. The air emission accounts can be used to analyse the environmental implications in terms of greenhouse gas emissions, of production and consumption patterns. Because of their compatibility with the national accounts, greenhouse gas data can be directly linked to the economic drivers of global warming. There are several frameworks for estimating the greenhouse gas emissions for a country, yielding different results. Well-known are the emissions reported to the UNFCCC (United National Framework Convention on Climate Change) in particular under the Kyoto Protocol, but also environment statistics as well as the air emission accounts provide independent greenhouse gas estimates. The differences are not the result of disputes about the accuracy of the estimates themselves, but arise from different interpretations of what has to be counted. The inclusion or exclusion of certain elements depends on the concepts and definitions that underlie

  8. Improvement of greenhouse design and climate control in mediterranean conditions

    NARCIS (Netherlands)

    Tuzel, Yuksel; Zwart, de Feije; Sapounas, A.; Hemming, Silke; Stanghellini, Cecilia

    2017-01-01

    The Mediterranean Region is one of the most important areas of the world in terms of protected cultivation. Turkey, with its increasing greenhouse area, is one of the representative countries of the region. Thanks to the mild winter climatic conditions, cultivation of vegetables under simple

  9. Subjective Well-Being Approach to Environmental Valuation: Evidence for Greenhouse Gas Emissions

    Science.gov (United States)

    Beja, Edsel L., Jr.

    2012-01-01

    The subjective well-being approach to environmental valuation is applied to analyze the valuation of greenhouse gas emissions with a fairness-adjustment in the valuation exercise. Results indicate that industrialized countries have high willingness-to-pay to reduce emissions. Developing countries differ in their valuations. Results indicate that…

  10. National Greenhouse Gas Emission Inventory

    Data.gov (United States)

    U.S. Environmental Protection Agency — The National Greenhouse Gas Emission Inventory contains information on direct emissions of greenhouse gases as well as indirect or potential emissions of greenhouse...

  11. Greenhouse production systems for people

    NARCIS (Netherlands)

    Giacomelli, G.A.; Sase, S.; Cramer, R.; Hoogeboom, J.; McKenzie, A.; Parbst, K.; Sacrascia-Mugnozza, G.; Selina, P.; Sharp, D.A.; Voogt, J.O.; Weel, van P.A.; Mears, D.

    2012-01-01

    Environmentally sound greenhouse production requires that: demand for market products is understood; greenhouse design addresses the climate circum-stances; input resources are available and consumed efficiently, and; there must be a reasonable balance of production products to the environmental

  12. Metabolite changes in nine different soybean varieties grown under field and greenhouse conditions.

    Science.gov (United States)

    Maria John, K M; Natarajan, Savithiry; Luthria, Devanand L

    2016-11-15

    Global food security remains a worldwide concern due to changing climate, increasing population, and reduced agriculture acreages. Greenhouse cultivation increases productivity by extending growing seasons, reducing pest infestations and providing protection against short term drastic weather fluctuations like frost, heat, rain, and wind. In the present study, we examined and compared the metabolic responses of nine soybean varieties grown under field and greenhouse conditions. Extracts were assayed by GC-FID, GC-MS, and LC-MS for the identification of 10 primary (amino acids, organic acids, and sugars) and 10 secondary (isoflavones, fatty acid methyl esters) metabolites. Sugar molecules (glucose, sucrose, and pinitol) and isoflavone aglycons were increased but the isoflavones glucoside content decreased in the greenhouse cultivated soybeans. The amino acids and organic acids varied between the varieties. The results show that clustering (PCA and PLS-DA) patterns of soybean metabolites were significantly influenced by the genetic variation and growing conditions. Published by Elsevier Ltd.

  13. Greenhouse and Energy

    International Nuclear Information System (INIS)

    Swaine, D.J.

    1990-01-01

    The book is based on papers at the conference held at Macquarie University, Australia, in December 1989. The topics include energy aspects of the greenhouse effect, effects of reduction of carbon dioxide, methane emissions, sources of energy production, various aspects of electricity, liquid building, new technology, energy management and environmental and sociological aspects. Whilist the emphasis is on Australian conditions, the approaches are of relevance to other countries. Contains lists of referees and participants. Twenty-three papers have been separately indexed

  14. Agriculture: Nurseries and Greenhouses

    Science.gov (United States)

    Nurseries and Greenhouses. Information about environmental requirements specifically relating to the production of many types of agricultural crops grown in nurseries and greenhouses, such as ornamental plants and specialty fruits and vegetables.

  15. Simulation of thermal environment in a three-layer vinyl greenhouse by natural ventilation control

    Science.gov (United States)

    Jin, Tea-Hwan; Shin, Ki-Yeol; Yoon, Si-Won; Im, Yong-Hoon; Chang, Ki-Chang

    2017-11-01

    A high energy, efficient, harmonious, ecological greenhouse has been highlighted by advanced future agricultural technology recently. This greenhouse is essential for expanding the production cycle toward growth conditions through combined thermal environmental control. However, it has a negative effect on farming income via huge energy supply expenses. Because not only production income, but operating costs related to thermal load for thermal environment control is important in farming income, it needs studies such as a harmonious ecological greenhouse using natural ventilation control. This study is simulated for energy consumption and thermal environmental conditions in a three-layered greenhouse by natural ventilation using window opening. A virtual 3D model of a three-layered greenhouse was designed based on the real one in the Gangneung area. This 3D model was used to calculate a thermal environment state such as indoor temperature, relative humidity, and thermal load in the case of a window opening rate from 0 to 100%. There was also a heat exchange operated for heating or cooling controlled by various setting temperatures. The results show that the cooling load can be reduced by natural ventilation control in the summer season, and the heat exchange capacity for heating can also be simulated for growth conditions in the winter season.

  16. Simulation of thermal environment in a three-layer vinyl greenhouse by natural ventilation control

    Directory of Open Access Journals (Sweden)

    Jin Tea-Hwan

    2017-01-01

    Full Text Available A high energy, efficient, harmonious, ecological greenhouse has been highlighted by advanced future agricultural technology recently. This greenhouse is essential for expanding the production cycle toward growth conditions through combined thermal environmental control. However, it has a negative effect on farming income via huge energy supply expenses. Because not only production income, but operating costs related to thermal load for thermal environment control is important in farming income, it needs studies such as a harmonious ecological greenhouse using natural ventilation control. This study is simulated for energy consumption and thermal environmental conditions in a three-layered greenhouse by natural ventilation using window opening. A virtual 3D model of a three-layered greenhouse was designed based on the real one in the Gangneung area. This 3D model was used to calculate a thermal environment state such as indoor temperature, relative humidity, and thermal load in the case of a window opening rate from 0 to 100%. There was also a heat exchange operated for heating or cooling controlled by various setting temperatures. The results show that the cooling load can be reduced by natural ventilation control in the summer season, and the heat exchange capacity for heating can also be simulated for growth conditions in the winter season.

  17. 75 FR 66433 - Mandatory Reporting of Greenhouse Gases

    Science.gov (United States)

    2010-10-28

    ... Part II Environmental Protection Agency 40 CFR Parts 86 and 98 Mandatory Reporting of Greenhouse...; FRL-9213-5] RIN 2060-A079 Mandatory Reporting of Greenhouse Gases AGENCY: Environmental Protection... Mandatory Greenhouse Gas Reporting rule to correct certain technical and editorial errors that have been...

  18. 75 FR 33949 - Mandatory Reporting of Greenhouse Gases

    Science.gov (United States)

    2010-06-15

    ... Part III Environmental Protection Agency 40 CFR Parts 86 and 98 Mandatory Reporting of Greenhouse...; FRL-9158-6] RIN 2060-A079 Mandatory Reporting of Greenhouse Gases AGENCY: Environmental Protection... Final Mandatory Greenhouse Gas Reporting rule (2009 Final MRR) to correct certain technical and...

  19. 75 FR 48743 - Mandatory Reporting of Greenhouse Gases

    Science.gov (United States)

    2010-08-11

    ... Part II Environmental Protection Agency 40 CFR Part 98 Mandatory Reporting of Greenhouse Gases...-AQ33 Mandatory Reporting of Greenhouse Gases AGENCY: Environmental Protection Agency (EPA). ACTION... Greenhouse Gas Reporting Rule Hotline at telephone number: (877) 444-1188; or e-mail: [email protected] . To...

  20. Environmental optimal control strategies based on plant canopy photosynthesis responses and greenhouse climate model

    Science.gov (United States)

    Deng, Lujuan; Xie, Songhe; Cui, Jiantao; Liu, Tao

    2006-11-01

    It is the essential goal of intelligent greenhouse environment optimal control to enhance income of cropper and energy save. There were some characteristics such as uncertainty, imprecision, nonlinear, strong coupling, bigger inertia and different time scale in greenhouse environment control system. So greenhouse environment optimal control was not easy and especially model-based optimal control method was more difficult. So the optimal control problem of plant environment in intelligent greenhouse was researched. Hierarchical greenhouse environment control system was constructed. In the first level data measuring was carried out and executive machine was controlled. Optimal setting points of climate controlled variable in greenhouse was calculated and chosen in the second level. Market analysis and planning were completed in third level. The problem of the optimal setting point was discussed in this paper. Firstly the model of plant canopy photosynthesis responses and the model of greenhouse climate model were constructed. Afterwards according to experience of the planting expert, in daytime the optimal goals were decided according to the most maximal photosynthesis rate principle. In nighttime on plant better growth conditions the optimal goals were decided by energy saving principle. Whereafter environment optimal control setting points were computed by GA. Compared the optimal result and recording data in real system, the method is reasonable and can achieve energy saving and the maximal photosynthesis rate in intelligent greenhouse

  1. Geothermal source heat pump performance for a greenhouse heating system: an experimental study

    Directory of Open Access Journals (Sweden)

    Alexandros Sotirios Anifantis

    2016-09-01

    Full Text Available Greenhouses play a significant function in the modern agriculture economy even if require great amount of energy for heating systems. An interesting solution to alleviate the energy costs and environmental problems may be represented by the use of geothermal energy. The aim of this paper, based on measured experimental data, such as the inside greenhouse temperature and the heat pump performance (input and output temperatures of the working fluid, electric consumption, was the evaluation of the suitability of low enthalpy geothermal heat sources for agricultural needs such as greenhouses heating. The study was carried out at the experimental farm of the University of Bari, where a greenhouse was arranged with a heating system connected to a ground-source heat pump (GSHP, which had to cover the thermal energy request. The experimental results of this survey highlight the capability of the geothermal heat source to ensue thermal conditions suitable for cultivation in greenhouses even if the compressor inside the heat pump have operated continuously in a fluctuating state without ever reaching the steady condition. Probably, to increase the performance of the heat pump and then its coefficient of performance within GSHP systems for heating greenhouses, it is important to analyse and maximise the power conductivity of the greenhouse heating system, before to design an expensive borehole ground exchanger. Nevertheless, according to the experimental data obtained, the GSHP systems are effective, efficient and environmental friendly and may be useful to supply the heating energy demand of greenhouses.

  2. Greenhouse Gas Data Publication Tool

    Data.gov (United States)

    U.S. Environmental Protection Agency — This tool to gives you access to greenhouse gas data reported to EPA by large facilities and suppliers in the United States through EPA's Greenhouse Gas Reporting...

  3. Prospective Turkish elementary science teachers’ knowledge level about the greenhouse effect and their views on environmental education in university

    Directory of Open Access Journals (Sweden)

    Mustafa KIŞOĞLU

    2010-03-01

    Full Text Available The fundamental factor of environmental education is teachers who are well-informed about environmental issues. This research aimed to determine prospective Turkish elementary science teachers’ knowledge level about causes, consequences and reducing of the greenhouse effect and to investigate the effect of gender, information source and membership in the environmental foundations on their knowledge. We also aimed to learn their views on environmental education given in university. Twenty-six Likert-scale items developed by Cin (2006 were used for data collection. The scale was applied to 215prospective teachers from two universities in eastern Turkey. Results indicated that the majority of prospective teachers had misunderstandings about causes, consequences and reducing of the greenhouse effect. According to the analysis of demographic variables, there were significant differences in participants’ mean scores based on gender and information sources. Additionally, prospective teachers found environmental education inadequate fordifferent reasons.

  4. Prospective Turkish elementary science teachers’ knowledge level about the greenhouse effect and their views on environmental education in university

    Directory of Open Access Journals (Sweden)

    Mustafa Kışoğlu

    2010-03-01

    Full Text Available The fundamental factor of environmental education is teachers who are well-informed about environmental issues. This research aimed to determine prospective Turkish elementary science teachers’ knowledge level about causes, consequences and reducing of the greenhouse effect and to investigate the effect of gender, information source and membership in the environmental foundations on their knowledge. We also aimed to learn their views on environmental education given in university. Twenty-six Likert-scale items developed by Cin (2006 were used for data collection. The scale was applied to 215 prospective teachers from two universities in eastern Turkey. Results indicated that the majority of prospective teachers had misunderstandings about causes, consequences and reducing of the greenhouse effect. According to the analysis of demographic variables, there were significant differences in participants’ mean scores based on gender and information sources. Additionally, prospective teachers found environmental education inadequate for different reasons.

  5. Emissions from animal husbandry. Greenhouse gases, environmental assessment, state of the art; Emissionen der Tierhaltung. Treibhausgase, Umweltbewertung, Stand der Technik

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    Within the KTBL conference (KTBL = Board of trustees for technology and construction science in the field of agriculture, Darmstadt, Federal Republic of Germany) from 6th to 8th December, 2011, in the monastery Banz, Bad Staffelstein (Federal Republic of Germany), the following lectures were held: (1) Development and environmental impacts of livestock production worldwide (Harald Menzl); (2) Methods to assess environmental aspects of livestock (Hayo van der Werf); (3) Methological aspects of environmental assessment of livestock production by Life Cycle Assessment (Lorie Hamelin); (4) Life Cycle Assessment of milk production systems (Gerard Gaillard); (5) Environmental impact assessment of beef production systems demonstrated for greenhouse gases (Monika Ziehetmeier); (6) Environmental impact assessment of pig production systems in Europe - From land use to feed efficiency (Ingrid Strid); (7) Envionmental impact assessment of egg production systems in Europe as seen from the United Kingdom (Adrian Willias); (8) Environmental impacts and improvement options of chicken meat production (Juha-Matti Katajajuuri); (9) Greenhouse gas emissions from livestock farming (Annette Freibauer); (10) Methane and nitrous oxide emissions from livestock manure: The scientific basis (Soeren O. Petersen); (11) Strategic measures to influence methane emissions from livestock (Michael Kreuzer); (12) Enteric methane production - Results from respiration chambers (Michael Derno); (13) Greenhouse gas emissions from cattle housing systems (Inga Schiefler); (14) Towards reduced methane from grass-based Irish milk production systems (Eva Lewis); (15) Greenhouse gas emissions from pig housing (Knut-Haakan Jeppsson); (16) Greenhouse gas emissions from poultry housings and manure management: inventory and update of emission factors (Peter Groot Koerkamp); (17) Greenhouse gas emissions from the storage of liquid and solid manure and abatement strategies (Lena Rodhe); (18) Nitrous oxide emissions

  6. 75 FR 57669 - Mandatory Reporting of Greenhouse Gases

    Science.gov (United States)

    2010-09-22

    ... Mandatory Reporting of Greenhouse Gases AGENCY: Environmental Protection Agency (EPA). ACTION: Final rule. SUMMARY: This action amends the Final Mandatory Reporting of Greenhouse Gases Rule to require reporters... Numbers GHG greenhouse gas GHGRP Greenhouse Gas Reporting Program HCFC hydrochlorofluorocarbon HFC...

  7. Developing strategies for automated remote plant production systems: Environmental control and monitoring of the Arthur Clarke Mars Greenhouse in the Canadian High Arctic

    Science.gov (United States)

    Bamsey, M.; Berinstain, A.; Graham, T.; Neron, P.; Giroux, R.; Braham, S.; Ferl, R.; Paul, A.-L.; Dixon, M.

    2009-12-01

    The Arthur Clarke Mars Greenhouse is a unique research facility dedicated to the study of greenhouse engineering and autonomous functionality under extreme operational conditions, in preparation for extraterrestrial biologically-based life support systems. The Arthur Clarke Mars Greenhouse is located at the Haughton Mars Project Research Station on Devon Island in the Canadian High Arctic. The greenhouse has been operational since 2002. Over recent years the greenhouse has served as a controlled environment facility for conducting scientific and operationally relevant plant growth investigations in an extreme environment. Since 2005 the greenhouse has seen the deployment of a refined nutrient control system, an improved imaging system capable of remote assessment of basic plant health parameters, more robust communication and power systems as well as the implementation of a distributed data acquisition system. Though several other Arctic greenhouses exist, the Arthur Clarke Mars Greenhouse is distinct in that the focus is on autonomous operation as opposed to strictly plant production. Remote control and autonomous operational experience has applications both terrestrially in production greenhouses and extraterrestrially where future long duration Moon/Mars missions will utilize biological life support systems to close the air, food and water loops. Minimizing crew time is an important goal for any space-based system. The experience gained through the remote operation of the Arthur Clarke Mars Greenhouse is providing the experience necessary to optimize future plant production systems and minimize crew time requirements. Internal greenhouse environmental data shows that the fall growth season (July-September) provides an average photosynthetic photon flux of 161.09 μmol m -2 s -1 (August) and 76.76 μmol m -2 s -1 (September) with approximately a 24 h photoperiod. The spring growth season provides an average of 327.51 μmol m -2 s -1 (May) and 339.32 μmol m -2 s

  8. Mini-UAV based sensory system for measuring environmental variables in greenhouses.

    Science.gov (United States)

    Roldán, Juan Jesús; Joossen, Guillaume; Sanz, David; del Cerro, Jaime; Barrientos, Antonio

    2015-02-02

    This paper describes the design, construction and validation of a mobile sensory platform for greenhouse monitoring. The complete system consists of a sensory system on board a small quadrotor (i.e., a four rotor mini-UAV). The goals of this system include taking measures of temperature, humidity, luminosity and CO2 concentration and plotting maps of these variables. These features could potentially allow for climate control, crop monitoring or failure detection (e.g., a break in a plastic cover). The sensors have been selected by considering the climate and plant growth models and the requirements for their integration onboard the quadrotor. The sensors layout and placement have been determined through a study of quadrotor aerodynamics and the influence of the airflows from its rotors. All components of the system have been developed, integrated and tested through a set of field experiments in a real greenhouse. The primary contributions of this paper are the validation of the quadrotor as a platform for measuring environmental variables and the determination of the optimal location of sensors on a quadrotor.

  9. Mini-UAV Based Sensory System for Measuring Environmental Variables in Greenhouses

    Directory of Open Access Journals (Sweden)

    Juan Jesús Roldán

    2015-02-01

    Full Text Available This paper describes the design, construction and validation of a mobile sensory platform for greenhouse monitoring. The complete system consists of a sensory system on board a small quadrotor (i.e., a four rotor mini-UAV. The goals of this system include taking measures of temperature, humidity, luminosity and CO2 concentration and plotting maps of these variables. These features could potentially allow for climate control, crop monitoring or failure detection (e.g., a break in a plastic cover. The sensors have been selected by considering the climate and plant growth models and the requirements for their integration onboard the quadrotor. The sensors layout and placement have been determined through a study of quadrotor aerodynamics and the influence of the airflows from its rotors. All components of the system have been developed, integrated and tested through a set of field experiments in a real greenhouse. The primary contributions of this paper are the validation of the quadrotor as a platform for measuring environmental variables and the determination of the optimal location of sensors on a quadrotor.

  10. Prospective Turkish elementary science teachers’ knowledge level about the greenhouse effect and their views on environmental education in university

    OpenAIRE

    Mustafa Kışoğlu; Hasan Gürbüz; Mehmet Erkol; Muhammed Said Akar; Mustafa Akıllı

    2010-01-01

    The fundamental factor of environmental education is teachers who are well-informed about environmental issues. This research aimed to determine prospective Turkish elementary science teachers’ knowledge level about causes, consequences and reducing of the greenhouse effect and to investigate the effect of gender, information source and membership in the environmental foundations on their knowledge. We also aimed to learn their views on environmental education given in universi...

  11. Estimating the non-environmental consequences of greenhouse gas reductions is harder than you think

    International Nuclear Information System (INIS)

    DeCanio, S.J.

    1999-01-01

    Top-down and bottom-up models of the non-environmental consequences of policies to reduce greenhouse gas emissions embody different implicit theories of economic organizations. Yet neither approach is explicit in showing the detailed computations that must be traced if the activities of firms are to be described realistically. Specifications of firms' computational processes leads inevitably to a consideration of potential computational limits on the behaviour of organizations. It is known that solutions of some standard economic problems are not effectively computable, and that the solutions to others are computationally intractable. These fundamental computational limits have strong implications for the theory of the firm, and recognizing their existence and importance suggests new policy approaches for reducing greenhouse gas emissions. (author)

  12. Effect of the Evaporative Cooling on the Human Thermal Comfort and Heat Stress in a Greenhouse under Arid Conditions

    Directory of Open Access Journals (Sweden)

    A. M. Abdel-Ghany

    2013-01-01

    Full Text Available Thermal sensation and heat stress were evaluated in a plastic greenhouse, with and without evaporative cooling, under arid climatic conditions in Riyadh, Saudi Arabia. Suitable thermal comfort and heat stress scales were selected for the evaluation. Experiments were conducted in hot sunny days to measure the required parameters (i.e., the dry and wet bulb temperatures, globe temperature, natural wet bulb temperature, and solar radiation flux in the greenhouse. The results showed that in the uncooled greenhouse, workers are exposed to strong heat stress and would feel very hot most of the day time; they are safe from heat stress risk and would feel comfortable during night. An efficient evaporative cooling is necessary during the day to reduce heat stress and to improve the comfort conditions and is not necessary at night. In the cooled greenhouse, workers can do any activity: except at around noon they should follow a proposed working schedule, in which the different types of work were scheduled along the daytimes based on the heat stress value. To avoid heat stress and to provide comfort conditions in the greenhouses, the optimum ranges of relative humidity and air temperature are 48–55% and 24–28°C, respectively.

  13. Prospective Turkish Elementary Science Teachers' Knowledge Level about the Greenhouse Effect and Their Views on Environmental Education in University

    Science.gov (United States)

    Kisoglu, Mustafa; Gürbüz, Hasan; Erkol, Mehmet; Akar, Muhammed Said; Akilli, Mustafa

    2010-01-01

    The fundamental factor of environmental education is teachers who are well-informed about environmental issues. This research aimed to determine prospective Turkish elementary science teachers' knowledge level about causes, consequences and reducing of the greenhouse effect and to investigate the effect of gender, information source and membership…

  14. Economic growth and greenhouse gas emissions

    Energy Technology Data Exchange (ETDEWEB)

    Ansuategi, Alberto [Environment Department, University of York, York (United Kingdom); Escapa, Marta [Foundations of Economic Analysis Department, University of the Basque Country, Bilbao (Spain)

    2002-01-01

    Recent empirical research has examined the relationship between certain indicators of environmental degradation and income, concluding that in some cases an inverted U-shaped relationship, which has been called an environmental Kuznets curve (EKC), exists between these variables. Unfortunately, this inverted U-shaped relationship does not hold for greenhouse gas emissions. One explanation of the absence of EKC-like behavior in greenhouse gas emissions is that greenhouse gases are special pollutants that create global, not local, disutility. But the international nature of global warming is not the only reason that prevents de-linking greenhouse gas emissions from economic growth. The intergenerational nature of the negative impact of greenhouse gas emissions may have also been an important factor preventing the implementation of greenhouse gas abatement measures in the past. In this paper we explore the effect that the presence of intergenerational spillovers has on the emissions-income relationship. We use a numerically calibrated overlapping generations model of climate-economy interactions. We conclude that: (1) the intertemporal responsibility of the regulatory agency, (2) the institutional capacity to make intergenerational transfers and (3) the presence of intergenerationally lagged impact of emissions constitute important determinants of the relationship between economic growth and greenhouse gas emissions.

  15. Lay perceptions of the greenhouse effect

    International Nuclear Information System (INIS)

    Peretti-Watel, P.; Hammer, B.

    2006-01-01

    Using the data from the French Environment Barometer EDF-RD 2004 (national representative sample of French citizens aged over 15) and surveys by ADEME between 2000 and 2005, the paper investigates lay perceptions of the causes and consequences of the greenhouse effect, which may be considered as archetypical of contemporary environmental risks. Beyond lay lack of knowledge, the greenhouse effect gives rise to coherent and meaningful cognitions, including causal explanations, shaped by the pre-existing cognitive framework. This cognitive work, based on analogic rather than scientific thought, strings together the greenhouse effect, ozone depletion, air pollution and even nuclear power. The cognitive process is also fed by the individuals' general conceptions of Nature and of the rights and duties of humankind towards Nature. People are not greatly worried about the unseen and controversial consequences of the greenhouse effect: such worry could be one of those 'elite fears' mentioned by Beck. Finally, while the efficiency of public policies to counter the greenhouse effect requires extensive societal involvement, low confidence towards both political and scientific authorities may prevent the population from becoming aware of the environmental stakes tied to the greenhouse effect. (authors)

  16. Greenhouse cooling and heat recovery using fine wire heat exchangers in a closed pot plant greenhouse: design of an energy producing greenhouse

    NARCIS (Netherlands)

    Bakker, J.C.; Zwart, de H.F.; Campen, J.B.

    2006-01-01

    A greenhouse cooling system with heat storage for completely closed greenhouses has been designed, based on the use of a fine wire heat exchanger. The performance of the fine wire heat exchangers was tested under laboratory conditions and in a small greenhouse compartment. The effects of the system

  17. Experimental study of an air conditioning system to control a greenhouse microclimate

    International Nuclear Information System (INIS)

    Attar, I.; Naili, N.; Khalifa, N.; Hazami, M.; Lazaar, M.; Farhat, A.

    2014-01-01

    Highlights: • Contribution in the control of the greenhouse microclimate for pepper cultivation. • The energy storing in the ground and in the water ensure the greenhouse heating. • The circulation of the cold water in the exchangers ensures the greenhouse cooling. • The system makes the greenhouse appropriate for the pepper cultivation whole year. - Abstract: In this papper, a thermal model is developed to investigate the possibility to use the ground thermal energy for the greenhouse heating or cooling. A control system of the ground heat storing is integrated in a chapel greenhouse located in the premises of the Technology and Research Energy Center, Tunis, Tunisia. Polypropylene capillary heat exchangers, suspended in the air and buried into the ground of the greenhouse, are used to store or destore solar energy excess. During the day, the air-suspended exchangers recuperate the solar energy in excess. This recuperated energy is then stored into the ground through the buried exchangers. At night the stored thermal energy is brought back by the suspended exchangers to heat the greenhouse air. The purpose of this study is to contribute in the greenhouse microclimate control. In order to maintain the greenhouse air temperature at 20 °C, suitable for a defined agriculture, the solar energy and the cold water are respectively used for heating and cooling the greenhouse inside air. The design and construction of a chapel greenhouse equipped with the control system is carried out. The studied system is used, at the same time for; heating, cooling the greenhouse air and storing the solar energy in excess. Experiments were conducted during the years 2012–2013, to evaluate the effectiveness of the control system achieved. The measured values of the greenhouse air temperatures with and without the control system are discussed

  18. Analysis and design of greenhouse temperature control using adaptive neuro-fuzzy inference system

    Directory of Open Access Journals (Sweden)

    Doaa M. Atia

    2017-05-01

    Full Text Available The greenhouse is a complicated nonlinear system, which provides the plants with appropriate environmental conditions for growing. This paper presents a design of a control system for a greenhouse using geothermal energy as a power source for heating system. The greenhouse climate control problem is to create a favourable environment for the crop in order to reach predetermined results for high yield, high quality and low costs. Four controller techniques; PI control, fuzzy logic control, artificial neural network control and adaptive neuro-fuzzy control are used to adjust the greenhouse indoor temperature at the required value. MATLAB/SIMULINK is used to simulate the different types of controller techniques. Finally a comparative study between different control strategies is carried out.

  19. Development of concepts for a zero-fossil-energy greenhouse

    NARCIS (Netherlands)

    Ooster, A. van 't; Henten, E.J. van; Janssen, E.G.O.N.; Bot, G.P.A.; Dekker, E.

    2008-01-01

    Dutch government and greenhouse horticultural practice aim for strongly reduced fossil energy use and of environmental loads in 2010 and energy neutral greenhouses in 2020. This research aims to design a greenhouse concept with minimal use of fossil energy and independent of nearby greenhouses. The

  20. 75 FR 18455 - Mandatory Reporting of Greenhouse Gases

    Science.gov (United States)

    2010-04-12

    ... Mandatory Reporting of Greenhouse Gases AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule amendment. SUMMARY: EPA is proposing to amend the Mandatory Greenhouse Gas (GHG) Reporting Rule, to require.... The Mandatory GHG Reporting Rule requires greenhouse gas emitting facilities and suppliers of fuels...

  1. Climate, greenhouse effect, energy

    International Nuclear Information System (INIS)

    Henriksen, Thormod; Kanestroem, Ingolf

    2001-01-01

    The book has sections on the sun as energy source, the earth climate and it's changes and factors influencing this, the greenhouse effect on earth and other planets, greenhouse gases and aerosols and their properties and importance, historic climate and paleoclimate, climatic models and their uses and limitations, future climate, consequences of climatic changes, uncertainties regarding the climate and measures for reducing the greenhouse effect. Finally there are sections on energy and energy resources, the use, sources such as fossil fuels, nuclear power, renewable resources, heat pumps, energy storage and environmental aspects and the earth magnetic field is briefly surveyed

  2. Applied research and implementation of microbial control agents for pest control: greenhouse crops

    Science.gov (United States)

    Greenhouse crop production has experienced strong growth in recent decades, reaching nearly 4 million hectare in 2010. Due to favorable environmental conditions and constant availability of host plants, arthropod pests are a major production constraint that has elicited parallel increases in pestici...

  3. Building-integrated rooftop greenhouses: An energy and environmental assessment in the mediterranean context

    International Nuclear Information System (INIS)

    Nadal, Ana; Llorach-Massana, Pere; Cuerva, Eva; López-Capel, Elisa; Montero, Juan Ignacio; Josa, Alejandro

    2017-01-01

    Highlights: • iRTG incorporates urban agriculture into and improves energy efficiency in buildings. • iRTG concept recycles low-grade, waste thermal energy for growing vegetables. • iRTG is an adaptable concept to promotes food security through urban agriculture. • Indoor building climate affects iRTG more than outdoor climatic conditions. • iRTG achieved annual CO_2 and cost savings of 113.8 kg CO_2 (eq)/m"2/yr and 19.63 €/m"2/yr. - Abstract: A sustainable and secure food supply within a low-carbon and resilient infrastructure is encapsulated in several of The United Nations’ 17 sustainable development goals. The integration of urban agriculture in buildings can offer improved efficiencies; in recognition of this, the first south European example of a fully integrated rooftop greenhouse (iRTG) was designed and incorporated into the ICTA-ICP building by the Autonomous University of Barcelona. This design seeks to interchange heat, CO_2 and rainwater between the building and its rooftop greenhouse. Average air temperatures for 2015 in the iRTG were 16.5 °C (winter) and 25.79 °C (summer), making the iRTG an ideal growing environment. Using detailed thermophysical fabric properties, 2015 site-specific weather data, exact control strategies and dynamic soil temperatures, the iRTG was modelled in EnergyPlus to assess the performance of an equivalent ‘freestanding’ greenhouse. The validated result shows that the thermal interchange between the iRTG and the ICTA-ICP building has considerable moderating effects on the iRTG’s indoor climate; since average hourly temperatures in an equivalent freestanding greenhouse would have been 4.1 °C colder in winter and 4.4 °C warmer in summer under the 2015 climatic conditions. The simulation results demonstrate that the iRTG case study recycled 43.78 MWh of thermal energy (or 341.93 kWh/m"2/yr) from the main building in 2015. Assuming 100% energy conversion efficiency, compared to freestanding greenhouses

  4. Dissipation and enantioselective degradation of plant growth retardants paclobutrazol and uniconazole in open field, greenhouse, and laboratory soils.

    Science.gov (United States)

    Wu, Chengwang; Sun, Jianqiang; Zhang, Anping; Liu, Weiping

    2013-01-15

    Greenhouses are increasingly important in human food supply. Pesticides used in greenhouses play important roles in horticulture; however, little is known about their behavior in greenhouse environments. This work investigates the dissipation and enantioselctive degradation of plant growth retardants including paclobutrazol and uniconazole in soils under three conditions (i.e., open field, greenhouse, and laboratory). The dissipation and enantioselective degradation of paclobutrazol and uniconazole in greenhouse were different from those in open field; they were more persistent in greenhouse than in open field soil. Leaching produced by rainfall is responsible for the difference in dissipation. Thus, local environmental impacts may occur more easily inside greenhouses, while groundwater may be more contaminated in open field. Spike concentrations of 5, 10, and 20 times the concentrations of native residues were tested for the enantioselective dissipation of the two pesticides; the most potent enantioselective degradation of paclobutrazol and uniconazole occurred at the 10 times that of the native residues in the greenhouse environments and at 20 times native residues in open field environments. The higher soil activity in greenhouses than in open fields was thought to be responsible for such a difference. The environmental risk and regulation of paclobutrazol and uniconazole should be considered at the enantiomeric level.

  5. Nitrogen utilization of vegetables grown under plastic greenhouse conditions in Ankara using 15N technique

    International Nuclear Information System (INIS)

    Halitligil, M.B.; Kislal, H.; Sirin, H.; Sirin, C.; Kilicaslan, A.

    2004-01-01

    In order to find suitable varieties of tomato, pepper and cucumber for plastic greenhouse conditions in Ankara and eventually to identify the best N fertilizer rate greenhouse experiments were conducted for two years. Yazgi F 1 variety for tomato, Hizir F 1 variety for cucumber and Serademre 8 variety for pepper were chosen to be the suitable varieties to grow in the plastic greenhouse conditions in Ankara. Five N treatments [N 0 =0, N 1 =150, N 2 =300, and N 3 =450 kg/ha; also, soil N application treatment (N soil ) equivalent to the fertigation treatment of 300 kg/ha was included for tomato and pepper, however N rates for cucumber was 131, 266 and 339 kg N/ha; N soil being 266 kg N/ha] were investigated using 15 N labeled urea fertilizer. Significantly higher marketable fresh fruit and total dry matter yields and N uptakes values were obtained from N 3 treatments for tomato and cucumber, but from N 2 treatment for pepper. Also, significantly higher yields, N uptakes and % NUE values were obtained when the same amount of N fertilizer is applied through fertigation compared to the treatment where N fertilizer applied to the soil then drip irrigated. (author)

  6. Hydropower developments in Canada: greenhouse gas emissions, energy outputs and review of environmental impacts

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Peter G.; Cheng, Ryan; Scheelar, Catherine [Global Forest Watch Canada (Canada)

    2011-11-15

    Hydropower is an important source of energy for Canada, accounting for 60% of the electricity generation mix. It is therefore important to understand the environmental performance of such developments in terms of greenhouse gas emissions and environmental impacts. From study of the Eastmain-1 reservoir, it has been extrapolated that hydropower facilities emit between 20 and 36 kilograms of CO2 per megawatt-hour. Hydropower facilities emissions are thus significantly lower than those of fossil fuel facilities, which can emit up to 1,000 kg of CO2 per MW/h. However, hydro projects have several other environmental impacts, such as habitat degradation, bio-accumulation of methyl mercury, and important sediment flow changes. The 271 large hydropower facilities affect 130,000 km of rivers and tens of thousands square kilometres of adjacent habitat. This study pointed out that despite being a low emitter of carbon dioxide, the hydropower sector has significant environmental impacts which require further assessment.

  7. Paternal inheritance of plastid-encoded transgenes in Petunia hybrida in the greenhouse and under field conditions

    Directory of Open Access Journals (Sweden)

    Patricia Horn

    2017-12-01

    Full Text Available As already demonstrated in greenhouse trials, outcrossing of transgenic plants can be drastically reduced via transgene integration into the plastid. We verified this result in the field with Petunia, for which the highest paternal leakage has been observed. The variety white 115 (W115 served as recipient and Pink Wave (PW and the transplastomic variant PW T16, encoding the uidA reporter gene, as pollen donor. While manual pollination in the greenhouse led to over 90% hybrids for both crossings, the transgenic donor resulted only in 2% hybrids in the field. Nevertheless paternal leakage was detected in one case which proves that paternal inheritance of plastid-located transgenes is possible under artificial conditions. In the greenhouse, paternal leakage occurred in a frequency comparable to published results. As expected natural pollination reduced the hybrid formation in the field from 90 to 7.6% and the transgenic donor did not result in any hybrid. Keywords: Paternal plastid inheritance, Transgene confinement, Greenhouse, Field trial, Pollen mediated gene flow

  8. Household scale of greenhouse design in Merauke

    Science.gov (United States)

    Alahudin, Muchlis; Widarnati, Indah; Luh Sri Suryaningsih, Ni

    2018-05-01

    Merauke is one of the areas that still use conventional methods in agriculture, The agricultural business does not run the maximum during the year because agricultural products quite difficult to obtain in the market. In the rainy season, the intensity of rain is very high, the water condition is abundant and hard to be channeled due to topography/soil contour conditions average, otherwise in the dry season the water is quite difficult to obtain. The purpose of this research is to compare the thermal conditions between greenhouse with auvplastic and plastic bottle roof.This research is experimental, measurement of thermal conditions in Greenhouse using measuring weather station.Greenhouse design with Quonset type with area of 24 m2The result of this research are greenhouse with paranet + UV plastic roof has an average temperature of 28.7 °C, 70.4% humidity and 0.5 m/s wind speed, while the greenhouse with paranet + plastic bottle roof has an average temperature of 26, 2 °C, humidity 66.4% and wind speed 0.9 m/s. Conclusion is Greenhouse with paranet + plastic bottle roof more thermally comfortable than greenhouse with paranet + UV plastic roof.

  9. Exergy outcomes associated with the greenhouse effects

    International Nuclear Information System (INIS)

    Valero, A.; Arauzo, I.

    1991-01-01

    In this paper the effect on the exergy of the Earth's fossil fuels if natural environmental conditions are changed due to the greenhouse effect is studied. The change considered here is a temperature rise produced as a result of increased CO 2 concentration. The temperature change due to the increase in CO 2 concentration is modeled in accordance with the most recent studies on the greenhouse effect. The result is that the ''average fossil fuel'', based on estimates of proven reserves, will lose 0.3% of its exergy if the atmospheric concentration of CO 2 doubles. Assuming that CO 2 concentration will double over the next hundred years, this 0.3% exergy loss of proven reserves means that we will lose as much capacity to produce work as primary energy was consumed in USA and Canada during 1988

  10. Greenhouse gas measurements from aircraft during CARVE

    Science.gov (United States)

    Chang, R. Y.; Miller, C. E.; Dinardo, S. J.; Karion, A.; Sweeney, C.; Daube, B.; Pittman, J. V.; Miller, J. B.; Budney, J. W.; Gottlieb, E. W.; Santoni, G. W.; Kort, E. A.; Wofsy, S. C.

    2012-12-01

    Permafrost in the Arctic contain large carbon pools that are currently non-labile. As the polar regions warm, these carbon reserves can be released into the atmosphere and impact the greenhouse gas budget. In order to predict future climate scenarios, we need to understand the emissions of these greenhouse gases under varying environmental conditions. This study presents aircraft measurements made as a part of the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) which flew over Alaska from May to September 2012 and captured seasonal and spatial variations. Results from in situ cavity ring down spectroscopy measurements of CO2, CH4 and CO will be discussed and compared with aircraft measurements made during the summer of 1988 as a part of the Arctic Boundary Layer Expedition as well as relevant measurements from the HIAPER Pole-to-Pole Observations experiments (2009-2011).

  11. Does the Swedish consumer's choice of food influence greenhouse gas emissions?

    International Nuclear Information System (INIS)

    Wallen, Anna; Brandt, Nils; Wennersten, Ronald

    2004-01-01

    Consumer's choice of food can influence the environment. In Sweden, in common with many other countries, consumers need to be given information so they can make environmentally informed shopping choices. However, what is the most advantageous dietary choice to lower greenhouse emissions? This study investigates the greenhouse gas emissions associated with food production for food consumed in Sweden annually. Specifically, this study compares greenhouse gas emissions associated with a nutritionally and environmentally sustainable diet with the average consumption of food in Sweden 1999. The study concludes that the change in energy use and greenhouse gas emission associated with this change of diet is negligible. Lowering greenhouse gas emissions by changing food production processes results in more profound changes than teaching consumers to make environmentally correct choices. There is a basic need for a reduction or a replacement of the use of fossil fuels to produce and distribute our food in order to reach any significant reduction in the emission of greenhouse gases. Swedish agricultural policy does not provide ways to reduce greenhouse gas emissions. In Sweden therefore there is an immediate need to design policy instruments with the primary aim of reducing the greenhouse effect

  12. Increased nutrient concentrations in Lake Erie tributaries influenced by greenhouse agriculture.

    Science.gov (United States)

    Maguire, Timothy J; Wellen, Christopher; Stammler, Katie L; Mundle, Scott O C

    2018-08-15

    Greenhouse production of vegetables is a growing global trade. While greenhouses are typically captured under regulations aimed at farmland, they may also function as a point source of effluent. In this study, the cumulative impacts greenhouse effluents have on riverine macronutrient and trace metal concentrations were examined. Water samples were collected Bi-weekly for five years from 14 rivers in agriculturally dominated watersheds in southwestern Ontario. Nine of the watersheds contained greenhouses with their boundaries. Greenhouse influenced rivers had significantly higher concentrations of macronutrients (nitrogen, phosphorus, and potassium) and trace metals (copper, molybdenum, and zinc). Concentrations within greenhouse influenced rivers appeared to decrease over the 5-year study while concentrations within non-greenhouse influenced river remained constant. The different temporal pattern between river types was attributed to increased precipitation during the study period. Increases in precipitation diluted concentrations in greenhouse influenced rivers; however, non-influenced river runoff proportionally increased nutrient mobility and flow, stabilizing the observed concentrations of non-point sources. Understanding the dynamic nature of environmental releases of point and non-point sources of nutrients and trace metals in mixed agricultural systems using riverine water chemistry is complicated by changes in climatic conditions, highlighting the need for long-term monitoring of nutrients, river flows and weather data in assessing these agricultural sectors. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Greenhouse gas emission trading schemes: a new tool for the environmental regulator's kit

    International Nuclear Information System (INIS)

    Soleille, Sebastien

    2006-01-01

    As the European Union greenhouse gas emission trading scheme (ETS) is emerging, it seems interesting to look back on previous experiments and to bring together a few elements of reflection about the pertinence of ETS as a new policy tool to regulate industrial pollution. So far, several regulatory tools have been used to decrease pollution. This article focuses on two of them, command-and-control (CAC) and ETS. There is no simple answer to which one is more efficient. It depends strongly on the context. Given a few elements outlined in this paper, the choice of an ETS to abate industrial emissions of greenhouse gases in the European Union (EU) can be considered pertinent. But, ultimately, what makes a scheme environmentally efficient is not the tool in itself (ETS or CAC) but the ambition of the target. Hence the design of the National Allocation Plans setting the emission caps are of paramount importance. They will make the EU ETS either a useless mess or an effective climate change mitigation policy tool

  14. Environmental assessment of bioenergy technologies application in Russia, including their impact on the balance of greenhouse gases

    Science.gov (United States)

    Andreeva, Irina; Vasenev, Ivan

    2017-04-01

    In recent years, Russia adopted a policy towards increasing of the share of renewable energy in total amount of used energy, albeit with some delay comparing to the EU countries and the USA. It was expected that the use of biofuels over time will reduce significantly the dependency of Russian economy on fossil fuels, increase its competitiveness, and increase Russian contribution to the prevention of global climate changes. Russia has significant bio-energy potential and resources which are characterized by great diversity due to the large extent of the territory, which require systematic studies and environmental assessment of used bio-energy technologies. Results of research carried at the Laboratory of agroecological monitoring, modeling and prediction of ecosystems RSAU-MTAA demonstrated significant differences in the assessment of the environmental, economic and social effects of biofuel production and use, depending on the species of bio-energy crops, regional soil-ecological and agro-climatic characteristics, applied farming systems and production processes. The total area of temporarily unused and fallow land, which could be allocated to the active agricultural use in Russia, according to various estimates, ranges from 20 to 33 million hectares, which removes the problem, typical of most European countries, of adverse agro-ecological changes in land use connected with the expansion of bio-energy crops cultivation. However, the expansion of biofuel production through the use of fallow land and conversion of natural lands has as a consequence the problem of greenhouse gas emissions due to land use changes, which, according to FAO, could be even higher than CO2 emission from fossil fuels for some of bio-energy raw materials and production systems. Assessment of the total impacts of biofuels on greenhouse gas emissions in the Russian conditions should be based on regionally adapted calculations of flows throughout the entire life cycle of production, taking

  15. Effect of torrefaction conditions on greenhouse crop residue: Optimization of conditions to upgrade solid characteristics.

    Science.gov (United States)

    Iáñez-Rodríguez, Irene; Martín-Lara, María Ángeles; Blázquez, Gabriel; Pérez, Antonio; Calero, Mónica

    2017-11-01

    This work investigated the possibility of using a greenhouse crop waste as a fuel, since it is an abundant residue in the Mediterranean area of Spain. The residue is mainly composed by biomass with a little quantity of plastic. The physical and chemical characteristics of the biomass were determined by elemental analysis, proximate analysis, FT-IR, FE-SEM and thermogravimetry. Additionally, a torrefaction process was carried out as a pre-treatment to improve the energy properties of the biomass material. The optimal conditions (time and temperature) of torrefaction were found to be 263°C and 15min using the gain and loss method. Further studies were carried out with the sample prepared with the nearest conditions to the optimal in order to determine the effect of the plastic fraction in the characteristics and torrefaction process of the waste studied. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Greenhouse gas emissions considered responsible for climate change: Environmental indicators

    International Nuclear Information System (INIS)

    Vialetto, G.; Venanzi, M.; Gaudioso, D.

    1993-09-01

    This paper concerns the more significant environmental indicators related to the emissions of radiatively and chemically/photochemically active trace gases. Reference is made to the preliminary work of the Intergovernmental Panel on Climate Change (IPCC) and to the proposals made in the framework of the international negotiation on climate change. Aiming to contribute to the definition of a national strategy for the reduction of greenhouse gases emissions, this paper proposes a possible application of the indicators. The calculation of the indicators is based on the emission estimate performed by ENEA (Italian National Agency for Energy, New Technologies and the Environment) for the Report on the State of the Environment edited by the Italian Ministry of the Environment. Finally, the paper suggests an application of such indicators for the international negotiation, in the framework of the Italian proposal for the Convention on climate change

  17. Relations between radiation fluxes of a greenhouse in semi-arid conditions

    International Nuclear Information System (INIS)

    Al-Riahi, M.; Al-Karaghouli, A.; Hasson, A.M.; Al-Kayssi, A.W.

    1989-01-01

    Measurements of global radiation, reflected radiation and net total radiation inside and outside the greenhouse were conducted in Fudhiliyah Agrometeorological Research Station during the period from 1 January to 30 April, 1987. From these measurements, several relationships were established. Linear regressions of hourly values of global radiation inside the greenhouse on hourly global radiation outside the greenhouse were fitted for each month of the recording period. The degree of fit was generally good (r > 0.95). Net short-wave radiation inside the greenhouse showed strong dependence on the global inside radiation (r = 0.998), also the net total radiation and global radiation inside the greenhouse correlate very strongly. From the above-mentioned relationships, it was found that the global, net short-wave and net total radiation could be successfully predicted when only global outside radiation is available. Using the linear regression equations correlating the above radiation parameters, albedo and heating coefficient were derived. Albedo showed strong dependence on solar altitude angle and period of day (forenoon and afternoon). Heating coefficients were consistently positive and their values varied between 0.10 and 0.393. Monthly average values of mean hourly night-time net long-wave radiation inside the greenhouse were −31, −32, −38 and −42 W m −2 for the months of January, February, March and April, respectively

  18. Effects of Biochar on the Net Greenhouse Gas Emissions under Continuous Flooding and Water-Saving Irrigation Conditions in Paddy Soils

    Directory of Open Access Journals (Sweden)

    Le Qi

    2018-05-01

    Full Text Available In this study, we investigated the greenhouse gas emission under different application of biochar in the conditions of continuous flooding and water-saving irrigation in paddy fields, whereas, plant and soil carbon sequestration were considered in the calculation of net greenhouse gas emissions. The emission rates of methane (CH4, carbon dioxide (CO2, and nitrous oxide (N2O gases were simultaneously monitored once every 7–10 days using the closed-chamber method. As a whole, the net greenhouse gas emission in the water-saving irrigation was more than that of the continuous flooding irrigation conditions. Compared with the water-saving irrigation, the continuous flooding irrigation significantly increased the CH4 in the control (CK and chemical fertilizer treatments (NPK. The CO2 emissions increased in each treatment of the water-saving irrigation condition, especially in the chemical fertilizer treatments (NPKFW. Similarly, the soil N2O emission was very sensitive to the water-saving irrigation condition. An interesting finding is that the biochar application in soils cut down the soil N2O emission more significantly than NPKFW in the water-saving irrigation condition while the effect of biochar increased under the continuous flooding irrigation condition.

  19. The isolating effect of greenhouses on arthropod pests [and its significance for integrated pest management] : a case-study on Clepsis spectrana (Lepidoptera: Tortricidae)

    NARCIS (Netherlands)

    Bos, van den J.

    1983-01-01

    Chapter 1: the environmental conditions in greenhouses differ in many respects from those in the open field. Both the climate and the crops are different. A free exchange between the fauna of the greenhouses and the open air is hampered by the glass walls and roofs. The isolating effect of

  20. The use of artificial wetlands to treat greenhouse effluents

    OpenAIRE

    Lévesque, Vicky; Dorais, Martine; Gravel, Valérie; Ménard, Claudine; Antoun, Hani; Rochette, Philippe; Roy, Stéphane

    2011-01-01

    Untreated greenhouse effluents or leak solution constitute a major environmental burden because their nitrate and phosphate concentrations may induce eutrophication. Artificial wetlands may offer a low cost alternative treatment of greenhouse effluents and consequently improve the sustainability of greenhouse growing systems. The objectives of this study were to 1) characterize the efficiency of different types of wetland to reduce ion content of greenhouse tomato effluent, and 2) improve the...

  1. An experimental study of soil temperature regimes associated with solar disinfestation techniques under greenhouse conditions in Greece.

    Science.gov (United States)

    Garofalakis, I; Tsiros, I; Frangoudakis, A; Chronopoulos, K; Flouri, F

    2006-01-01

    This paper deals with an experimental study of various techniques that have been applied for soil disinfestation purposes under greenhouse conditions. Various meteorological parameters and soil temperatures were measured for four different experimental soil segments (three associated with different disinfestation techniques and one as a reference) at depths varying between 0-1 m and with a time interval of 5 min in a greenhouse located in the Agricultural University of Athens Campus, Greece. Results showed that plastic polyethylene films such as covers, metallic conductors or a combination of both were able to enhance heat transfer and temperature increase in greenhouse soil. For typical disinfestation conditions, the depth-averaged temperature values for plastic covers, metallic conductors, and the combination of both were found to be higher than those for the reference of about 5 degrees C, 12 degrees C and 15 micro C, respectively. Moreover, the remained population percentages 50 days after the initiation of the experiment were found to be 19.3%, 25.3%, 37.3% Kcat 94% of the initial population, for the combination of metallic conductors and plastic covers, metallic conductors, plastic cover, and for the reference, respectively.

  2. Predicting plant performance under simultaneously changing environmental conditions – the interplay between temperature, light and internode growth

    Directory of Open Access Journals (Sweden)

    Katrin eKahlen

    2015-12-01

    Full Text Available Plant performance is significantly influenced by prevailing light and temperature conditions during plant growth and development. For plants exposed to natural fluctuations in abiotic environmental conditions it is however laborious and cumbersome to experimentally assign any contribution of individual environmental factors to plant responses. This study aimed at analyzing the interplay between light, temperature and internode growth based on model approaches. We extended the light-sensitive virtual plant model L-Cucumber by implementing a common Arrhenius function for appearance rates, growth rates and growth durations. For two greenhouse experiments, the temperature-sensitive model approach resulted in a precise prediction of cucumber mean internode lengths and number of internodes, as well as in accurately predicted patterns of individual internode lengths along the main stem. In addition, a system’s analysis revealed that environmental data averaged over the experimental period were not necessarily related to internode performance. Finally, the need for a species-specific parameterization of the temperature response function and related aspects in modelling temperature effects on plant development and growth is discussed.

  3. Measurement and Modeling of Cucumber Evapotranspiration Under Greenhouse Condition

    Directory of Open Access Journals (Sweden)

    R. Moazenzadeh

    2017-01-01

    Full Text Available Introduction: In two last decades, greenhouse cultivation of different plants has developed among Iranian farmers, approximately 45 percent of national greenhouse cultures consisting of cucumber, tomato and pepper. As huge amounts of agricultural water in Iran are extracted from groundwater resources and a large number of Iranian plains are in critical conditions, and because irrigation is the major consumer of water (95 percent, it must be performed in a scientific manner. One approach to this is to obtain the knowledge of the consumptive use of major crops which is named evapotranspiration (ETc. Materials and Methods: This research was carried out in a north-south greenhouse belonging to Plant Protection Research Institute, located on northern Tehran, Iran, for estimating greenhouse cucumber evapotranspiration. Trickle irrigation method was used, and meteorological data such as temperature, humidity and solar radiation were measured daily. Physical and chemical measurements were conducted and electric conductivity (EC and pH values of 3.42 dsm-1 and 7.19, respectively, were recorded. Soil texture and bulk density were measured as to be sandy loam and 1.4 gr cm-3, respectively. In order to measure the actual evapotranspiration, cucumber seeds were also cultured in six similar microlysimeters and irrigation of each microlysimeter was based on FC moisture. If any drained water was available, it was measured. Finally, with measured meteorological characteristics in greenhouse which are suggested to have an effect on ET and were measurable, the best multiple linear regression and artificial neural network were established. The average data from three microlysimeters were used for calibration and that from three other microlysimeters were used for validation set. Results and Discussion: In the former case, when we used one multiple linear regression with measurable meteorological variables inside the greenhouse to predict cucumber ET for the entire

  4. Greenhouse effect: an issue for the refrigeration and air conditioning sector; Effet de serre: quelle problematique pour le froid et le conditionnement de l`air?

    Energy Technology Data Exchange (ETDEWEB)

    Billiard, F. [Institut International du Froid, 75 - Paris (France)

    1997-12-31

    The principles of greenhouse effect and the greenhouse gas main direct and indirect emission sources due to refrigeration and air conditioning systems are first reviewed. Evolution scenarios from 1992 to 2020 and 2100 for the emissions of CFC, HCFC and HFC are presented and related to the Kyoto protocol project limitations; technical improvements in refrigerating and air conditioning systems (lower refrigerant utilization, fluid confinement, alternative technologies, natural refrigerant utilization, etc.) could lead to substantial diminutions of these greenhouse gases

  5. Paternal inheritance of plastid-encoded transgenes in Petunia hybrida in the greenhouse and under field conditions.

    Science.gov (United States)

    Horn, Patricia; Nausch, Henrik; Baars, Susanne; Schmidtke, Jörg; Schmidt, Kerstin; Schneider, Anja; Leister, Dario; Broer, Inge

    2017-12-01

    As already demonstrated in greenhouse trials, outcrossing of transgenic plants can be drastically reduced via transgene integration into the plastid. We verified this result in the field with Petunia , for which the highest paternal leakage has been observed. The variety white 115 (W115) served as recipient and Pink Wave (PW) and the transplastomic variant PW T16, encoding the uid A reporter gene, as pollen donor. While manual pollination in the greenhouse led to over 90% hybrids for both crossings, the transgenic donor resulted only in 2% hybrids in the field. Nevertheless paternal leakage was detected in one case which proves that paternal inheritance of plastid-located transgenes is possible under artificial conditions. In the greenhouse, paternal leakage occurred in a frequency comparable to published results. As expected natural pollination reduced the hybrid formation in the field from 90 to 7.6% and the transgenic donor did not result in any hybrid.

  6. The greenhouse effect. Drivhuseffekten; Jordens atmosfaere og magnetfelt

    Energy Technology Data Exchange (ETDEWEB)

    Egeland, A; Henriksen, T [Oslo Univ., Fysisk Inst. (Norway); Kanestroem, I [Oslo Univ., Inst. for Geofysikk (Norway)

    1990-01-01

    This book deals with what is popularly called ''the greenhouse effect''. The starting point is the sun, and it is considered how the atmosphere and magnetic field of the earth protect us against the radiation from the outer space. The atmosphere contains gases in a quantity and a mixture that make conditions suitable for the life on the earth. We are dependent on the existing greenhouse effect, but are anxious that the emitted gases caused by human activities, will increase the temperature in an alarming degree. The book is addressed to all who have an interest in the nature and the environment. It may be used in colleges and in courses for environmental studies. It gives information to politicians and other people who have to make decisions in the management of the nature and the resources of the earth. 70 figs., 15 tabs.

  7. Reproductive characteristics of citrus rootstocks grown under greenhouse and field environments

    Directory of Open Access Journals (Sweden)

    Divanilde Guerra

    2013-01-01

    Full Text Available The aim of the present study was to evaluate the possible effect of environmental factors on meiosis, meiotic index, pollenviability and in vitro germination of pollen from stock plants of the rootstocks Trifoliate, ‘Swingle’, ‘Troyer’, ‘Fepagro C13’, ‘FepagroC37’ and ‘Fepagro C41’ grown in a protected environment in comparison with stock plants grown in the field. The results showed thatvalues for the characteristics analyzed in 2008, 2009 and 2010 were always higher in the field than in the greenhouse conditions. Inthe field, the average of normal meiotic cells was 60.05%, 44.44% and 60.12%, respectively, and in the greenhouse, 52.75%, 30.95%and 52.82%, respectively. Mean pollen viability in the field was 90.28%, 56.23% and 74.74%, and, in the greenhouse, 64.25%, 41.41%and 66.71%, respectively. As temperature oscillations were higher in the greenhouse than in the field, we suggest that this negativelyaffects the reproductive characteristics analyzed.

  8. 75 FR 63823 - Final Guidance, “Federal Greenhouse Gas Accounting and Reporting”

    Science.gov (United States)

    2010-10-18

    ... COUNCIL ON ENVIRONMENTAL QUALITY Final Guidance, ``Federal Greenhouse Gas Accounting and Reporting...''), entitled ``Federal Leadership in Environmental, Energy, and Economic Performance.'' 74 FR 52117, Oct. 8... emissions associated with agency operations. This Final Guidance, ``Federal Greenhouse Gas Accounting and...

  9. Dissipation and Residues of Pyrethrins in Leaf Lettuce under Greenhouse and Open Field Conditions.

    Science.gov (United States)

    Pan, Lixiang; Feng, Xiaoxiao; Zhang, Hongyan

    2017-07-21

    Pyrethrins are nowadays widely used for prevention and control of insects in leaf lettuce. However, there is a concern about the pesticide residue in leaf lettuce. A reliable analytical method for determination of pyrethrins (pyrethrin-and П, cinerin І and П, and jasmolin І and П) in leaf lettuce was developed by using gas chromatography-mass spectrometry (GC-MS). Recoveries of pyrethrins in leaf lettuce at three spiking levels were 99.4-104.0% with relative standard deviations of 0.9-3.1% ( n = 5). Evaluation of dissipation and final residues of pyrethrins in leaf lettuce were determined at six different locations, including the open field, as well as under greenhouse conditions. The initial concentration of pyrethrins in greenhouse (0.57 mg/kg) was higher than in open field (0.25 mg/kg) and the half-life for pyrethrins disappearance in field lettuce (0.7 days) was less than that greenhouse lettuce (1.1 days). Factors such as rainfall, solar radiation, wind speed, and crop growth rate are likely to have caused these results. The final residue in leaf lettuce was far below the maximum residue limits (MRLs) (1 mg/kg established by the European Union (EU), Australia, Korea, Japan).

  10. 75 FR 41452 - Draft Guidance, “Federal Greenhouse Gas Accounting and Reporting”

    Science.gov (United States)

    2010-07-16

    ... COUNCIL ON ENVIRONMENTAL QUALITY Draft Guidance, ``Federal Greenhouse Gas Accounting and Reporting... Greenhouse Gas Accounting and Reporting.'' SUMMARY: On October 5, 2009, President Obama signed Executive Order (E.O.) 13514--Federal Leadership in Environmental, Energy, and Economic Performance (74 FR 52117...

  11. Sourcebook on the greenhouse effect

    International Nuclear Information System (INIS)

    Ellis, E.; Devine, J.

    1990-01-01

    The Greenhouse Effect Sourcebook contains information for anyone interested in the environment and the present changes which are taking place. It can be used to trace organisations, technical literature or reports. Much of the information relates to the environment in general. The sourcebook contains:- A list of Greenhouse Effect Information useful sources of information under a variety of headings:-Abstracts and indexes, books, conferences, directories, journals, official publications, online databases, (produces and hosts) and organisations, -The Greenhouse Effect References contains over 250 abstracts and details of recently published material, on a variety of environmental subjects from acid rain and aerosols to weather forecasting and wildlife. There is an author index for the references and a keyword index. (author)

  12. Fluorescent and high intensity discharge lamp use in chambers and greenhouses

    Energy Technology Data Exchange (ETDEWEB)

    Langhans, R.W. [Cornell Univ., Ithaca, NY (United States)

    1994-12-31

    Fluorescent and High Intensity Discharge lamps have opened up great opportunities for researchers to study plant growth under controlled environment conditions and for commercial growers to increase plant production during low/light periods. This report describes the advantages and disadvantages of using each lamp in growth chambers, growth rooms and greenhouses. Growth Chambers are small (3m x 4/m and smaller) walk-in or reach-in enclosures with programmable, accurate temperature, relative humidity (RH) and irradiance control over wide ranges. The intent of growth chambers was to replicate sunlight conditions and transfer research results directly to the greenhouse or outside. It was realized that sunlight and outside conditions could not be mimicked. Growth chambers are also used to study irradiance and spectral fluxes. Growth Rooms are usually large rooms (larger than 3m x 4m) with only lamp irradiance, but providing relatively limited ranges of environmental control (i.e., 10 to 30 C temperature, 50 to 90% RH and ambient to 1000 ppm CO{sub 2}), and commonly independent of outside conditions. Irradiance requirements for growth rooms are similar to those of growth chambers. Growth rooms are also used for growing a large number of plants in a uniform standard environment condition and in commercial horticulture for tissue culture, seed germination (plugs) and seedling growth. Greenhouses are designed to allow maximum sunlight penetration through the structure. Initially greenhouses were used to extend the growing season. Then as heating systems, and cooling systems improved, they were used year round. Low light during the winter months reduced plant growth, but with the advent of efficient lamps (HID and fluorescent) it became possible to increase growth to rates close to that in summer months. Supplementary lighting is used during low light periods of the year and anytime to ensure consistent total daily irradiance for research plants.

  13. The sterile insect technique in the integrated pest management of whitefly species in greenhouses

    International Nuclear Information System (INIS)

    Calvitti, M.; Remotti, P.C.; Cirio, U.

    2000-01-01

    Insect pests commonly known as whiteflies are Hemiptera belonging to the family of Aleyrodidae Trialeurodes vaporariorum Westwood (greenhouse whitefly) and the B-biotype of Bemisia tabaci Gennadius (=Bemisia argentifolii Bellows and Perring) are pests whose economic importance is constantly increasing within the European agriculture. The B-biotype of B. tabaci, in particular, has become more problematic by causing damage over a wide range, from the temperate climates of Californian squash fields to European greenhouses and field crops. In the absence of valid alternatives, many growers have resorted to intensive application of insecticides to control these pests, creating a severe environmental and health hazard. Several new environmentally safe technologies are currently available and have opened up new opportunities in the integrated pest management (IPM) of whiteflies under greenhouse conditions. In particular, biological or biologically-based control means, including a number of fungi, insects, and compounds have been recently developed. However, the limitation of whitefly population outbreaks in greenhouses is a problem that needs to be solved. The idea to extend the use of sterile insect technique (SIT) to a confined environment against whitefly species is novel, and especially when we consider that the target species undergo arrhenotoky (unfertilised females generate only male progenies). The possibility to join this approach to the Integrated Pest Management (IPM) of the whitefly species in the greenhouse may open new perspectives in the safe application of nuclear technology for pest control. The present work reviews recent advances in research and practice related to the development of SIT for the control of whiteflies in greenhouses. Explanations on whitefly radiation biology, with data on Bemisia spp. radio-sterilisation, methods for whitefly mass rearing and collection, and the definition of a complete SIT procedure tested against the greenhouse

  14. Effects of nitrogen fertilizer application on greenhouse gas emissions and economics of corn production.

    Science.gov (United States)

    Kim, Seungdo; Dale, Bruce E

    2008-08-15

    Nitrogen fertilizer plays an important role in corn cultivation in terms of both economic and environmental aspects. Nitrogen fertilizer positively affects corn yield and the soil organic carbon level, but it also has negative environmental effects through nitrogen-related emissions from soil (e.g., N20, NOx, NO3(-) leaching, etc.). Effects of nitrogen fertilizer on greenhouse gas emissions associated with corn grain are investigated via life cycle assessment. Ecoefficiency analysis is also used to determine an economically and environmentally optimal nitrogen application rate (NAR). The ecoefficiency index in this study is defined as the ratio of economic return due to nitrogen fertilizer to the greenhouse gas emissions of corn cultivation. Greenhouse gas emissions associated with corn grain decrease as NAR increases at a lower NAR until a minimum greenhouse gas emission level is reached because corn yield and soil organic carbon level increase with NAR. Further increasing NAR after a minimum greenhouse gas emission level raises greenhouse gas emissions associated with corn grain. Increased greenhouse gas emissions of corn grain due to nitrous oxide emissions from soil are much higher than reductions of greenhouse gas emissions of corn grain due to corn yield and changes in soil organic carbon levels at a higher NAR. Thus, there exists an environmentally optimal NAR in terms of greenhouse gas emissions. The trends of the ecoefficiency index are similar to those of economic return to nitrogen and greenhouse gas emissions associated with corn grain. Therefore, an appropriate NAR could enhance profitability as well as reduce greenhouse gas emissions associated with corn grain.

  15. Economically and environmentally informed policy for road resurfacing: tradeoffs between costs and greenhouse gas emissions

    International Nuclear Information System (INIS)

    Reger, Darren; Madanat, Samer; Horvath, Arpad

    2014-01-01

    As road conditions worsen, users experience an increase in fuel consumption and vehicle wear and tear. This increases the costs incurred by the drivers, and also increases the amount of greenhouse gases (GHGs) that vehicles emit. Pavement condition can be improved through rehabilitation activities (resurfacing) to reduce the effects on users, but these activities also have significant cost and GHG emission impacts. The objective of pavement management is to minimize total societal (user and agency) costs. However, the environmental impacts associated with the cost-minimizing policy are not currently accounted for. We show that there exists a range of potentially optimal decisions, known as the Pareto frontier, in which it is not possible to decrease total emissions without increasing total costs and vice versa. This research explores these tradeoffs for a system of pavement segments. For a case study, a network was created from a subset of California’s highways using available traffic data. It was shown that the current resurfacing strategy used by the state’s transportation agency, Caltrans, does not fall on the Pareto frontier, meaning that significant savings in both total costs and total emissions can be achieved by switching to one of the optimal policies. The methods presented in this paper also allow the decision maker to evaluate the impact of other policies, such as reduced vehicle kilometers traveled or better construction standards. (letter)

  16. Economically and environmentally informed policy for road resurfacing: tradeoffs between costs and greenhouse gas emissions

    Science.gov (United States)

    Reger, Darren; Madanat, Samer; Horvath, Arpad

    2014-10-01

    As road conditions worsen, users experience an increase in fuel consumption and vehicle wear and tear. This increases the costs incurred by the drivers, and also increases the amount of greenhouse gases (GHGs) that vehicles emit. Pavement condition can be improved through rehabilitation activities (resurfacing) to reduce the effects on users, but these activities also have significant cost and GHG emission impacts. The objective of pavement management is to minimize total societal (user and agency) costs. However, the environmental impacts associated with the cost-minimizing policy are not currently accounted for. We show that there exists a range of potentially optimal decisions, known as the Pareto frontier, in which it is not possible to decrease total emissions without increasing total costs and vice versa. This research explores these tradeoffs for a system of pavement segments. For a case study, a network was created from a subset of California’s highways using available traffic data. It was shown that the current resurfacing strategy used by the state’s transportation agency, Caltrans, does not fall on the Pareto frontier, meaning that significant savings in both total costs and total emissions can be achieved by switching to one of the optimal policies. The methods presented in this paper also allow the decision maker to evaluate the impact of other policies, such as reduced vehicle kilometers traveled or better construction standards.

  17. Improving material management to reduce greenhouse gas emissions

    NARCIS (Netherlands)

    Hekkert, Marko Peter

    2000-01-01

    Climate change due to greenhouse gas emissions caused by human actions is probably one of the major global environmental problems that we face today. In order to reduce the risk of climate change and the potential effects thereof, the emission of greenhouse gases like carbon dioxide (CO2) and

  18. Position in the World-System and National Emissions of Greenhouse Gases

    Directory of Open Access Journals (Sweden)

    Thomas J. Burns

    2015-08-01

    Full Text Available Despite the apparent importance of these dynamics, there is relatively little social science theorization and cross-national research on such global environmental issues. There is especially a paucity of cross-national, quantitative research in sociology that focuses on the social antecedents to environmental outcomes (for exceptions, see Burns et al. 1994, 1995; Kick et al. 1996; Grimes and Roberts 1995. We find this condition surprising given the substantial initial work of environmental sociologists (Dunlap and Catton 1978, 1979; Buttel 1987 and the key role social scientists might in principle play in addressing such worldwide problems (Laska 1993. As a consequence, we propose and assess a perspective on the global and national social causes of one environmental dynamic, the greenhouse effect.

  19. The Greenhouse and Anti-Greenhouse Effects on Titan

    Science.gov (United States)

    McKay, C. P.; Cuzzi, Jeffrey N. (Technical Monitor)

    1994-01-01

    Titan is the largest moon of Saturn and is the only moon in the solar system with a substantial atmosphere. Its atmosphere is mostly made of nitrogen, with a few percent CH4, 0.1% H2 and an uncertain level of Ar (less than 10%). The surface pressure is 1.5 atms and the surface temperature is 95 K, decreasing to 71 at the tropopause before rising to stratospheric temperatures of 180 K. In pressure and composition Titan's atmosphere is the closest twin to Earth's. The surface of Titan remains unknown, hidden by the thick smog layer, but it may be an ocean of liquid methane and ethane. Titan's atmosphere has a greenhouse effect which is much stronger than the Earth's - 92% of the surface warming is due to greenhouse radiation. However an organic smog layer in the upper atmosphere produces an anti-greenhouse effect that cuts the greenhouse warming in half - removing 35% of the incoming solar radiation. Models suggest that during its formation Titan's atmosphere was heated to high temperatures due to accretional energy. This was followed by a cold Triton-like period which gradually warmed to the present conditions. The coupled greenhouse and haze anti-greenhouse may be relevant to recent suggestions for haze shielding of a CH4 - NH3 early atmosphere on Earth or Mars. When the NASA/ESA mission to the Saturn System, Cassini, launches in a few years it will carry a probe that will be sent to the surface of Titan and show us this world that is strange and yet in many ways similar to our own.

  20. Nuclear energy and the greenhouse effect

    International Nuclear Information System (INIS)

    Weinberg, A.M.

    1990-01-01

    The extent and nature of the greenhouse effect are examined and placed in an environmental and historical context. The effect of energy policies on the greenhouse effect are discussed and the offending countries are identified. What energy policies would mitigate the greenhouse effect, and yet make good sense whether or not the effect proves to be real? Conservation is a desirable though not completely understood strategy. Conservation may not be a better bet in every instance than is increase in supply. If the greenhouse effect turns out to be real, nuclear energy can be one of the supply options that we turn to. If the greenhouse effect turns out to be false, and acceptable, economic nuclear option is surely better than one that does nothing but create strife and dissension. Let us remember that nuclear energy is the only large-scale non-fossil source other than hydropower that has been demonstrated to be practical. (author)

  1. Temperature Field-Wind Velocity Field Optimum Control of Greenhouse Environment Based on CFD Model

    Directory of Open Access Journals (Sweden)

    Yongbo Li

    2014-01-01

    Full Text Available The computational fluid dynamics technology is applied as the environmental control model, which can include the greenhouse space. Basic environmental factors are set to be the control objects, the field information is achieved via the division of layers by height, and numerical characteristics of each layer are used to describe the field information. Under the natural ventilation condition, real-time requirements, energy consumption, and distribution difference are selected as index functions. The optimization algorithm of adaptive simulated annealing is used to obtain optimal control outputs. A comparison with full-open ventilation shows that the whole index can be reduced at 44.21% and found that a certain mutual exclusiveness exists between the temperature and velocity field in the optimal course. All the results indicate that the application of CFD model has great advantages to improve the control accuracy of greenhouse.

  2. 76 FR 22825 - Mandatory Reporting of Greenhouse Gases: Petroleum and Natural Gas Systems

    Science.gov (United States)

    2011-04-25

    ... Reporting of Greenhouse Gases: Petroleum and Natural Gas Systems AGENCY: Environmental Protection Agency... Subpart W: Petroleum and Natural Gas Systems of the Greenhouse Gas Reporting Rule. As part of the... greenhouse gas emissions for the petroleum and natural gas systems source category of the greenhouse gas...

  3. 75 FR 70254 - PSD and Title V Permitting Guidance for Greenhouse Gases

    Science.gov (United States)

    2010-11-17

    ... Guidance for Greenhouse Gases AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of availability..., ``PSD and Title V Permitting Guidance for Greenhouse Gases'' on its significant guidance Internet Web... guidance titled, ``PSD and Title V Permitting Guidance for Greenhouse Gases.'' This document has been...

  4. Water utilization of vegetables grown under plastic greenhouse conditions in Ankara using neutron probe technique

    International Nuclear Information System (INIS)

    Halitligil, M.B.; Kislal, H.; Sirin, H.; Sirin, C.; Kilicaslan, A.

    2004-01-01

    In order to find suitable varieties of tomato, pepper and cucumber for plastic greenhouse conditions in Ankara and ensure both higher yields and lower NO 3 leaching greenhouse experiments were conducted for three years. In the first year (2001) of the experiment four different varieties from each vegetable, namely, Tomato (Ecem F 1 , 9920 F 1 , 2116 F 1 and Yazg1 F 1 ), Cucumber (Hizir F 1 , Rapido, Hana, and Luna) and Pepper (1245 F 1 , 730 F 1 , Serademre 8 and 710 F 1 ) had been grown in the plastic greenhouse using drip irrigation-fertilization system. Yazg1 F 1 variety for tomato, Hizir F 1 variety for cucumber and Serademre 8 variety for pepper were chosen to be suitable varieties to grow in the plastic greenhouse conditions in Ankara. One access tube in each N 3 and N 0 treatment plots of tomato, cucumber and pepper in 2002 and 2003 experiments were installed for the soil moisture determinations at 30, 60 and 90 cm depths. Readings with the neutron probe were taken before planting and after harvest for the water consumption calculations using the water balance approach and the WUE was calculated on the basis of the ratio of dry matter weight to the amount of water consumed. Tensiometer and suction cups were installed at 15, 30, 45 and 60 cm depths only to N 1 , N 2 and N 3 treatments plots of each vegetable in 2002 and 2003. Tensiometer readings were taken just before irrigation. Also, soil solution samples from suction cups were taken at final harvest and NO 3 determinations were done with RQFLEX nitrate test strips. Significantly higher yields and WUE values were obtained when the same amount of N fertilizer is applied through fertigation compared to the treatment where N fertilizer applied to the soil then drip irrigated. The nitrate concentrations of the soil solution increased as the N rates increased and no NO 3 had been found in the soil solution taken from 75 cm soil depth, indicating that no leaching of N fertilizer occurred beyond 75 cm soil depth

  5. Water utilization of vegetables grown under plastic greenhouse conditions in Ankara using neutron probe technique

    International Nuclear Information System (INIS)

    Halitligil, M.B.; Kislal, H.; Sirin, H.; Sirin, C.; Kilicaslan, A.

    2004-01-01

    Full text: In order to find suitable varieties of tomato, pepper and cucumber for plastic greenhouse conditions in Ankara and ensure both higher yields and lower NO 3 leaching greenhouse experiments were conducted for three years. In the first year (2001) of the experiment four different varieties from each vegetable, namely, Tomato (Ecem F 1 , 9920 F 1 , 2116 F 1 and Yazg1 F 1 ), Cucumber (Hizir F 1 , Rapido, Hana, and Luna) and Pepper (1245 F 1 , 730 F 1 , Serademre 8 and 710 F 1 ) had been grown in the plastic greenhouse using drip irrigation-fertiligation system. Yazg1 F 1 variety for tomato, Hizir F 1 variety for cucumber and Serademre 8 variety for pepper were chosen to be suitable varieties to grow in the plastic greenhouse conditions in Ankara. One access tube in each N 3 and N 0 treatment plots of tomato, cucumber and pepper in 2002 and 2003 experiments were installed for the soil moisture determinations at 30, 60 and 90 cm depths. Readings with the neutron probe were taken before planting and after harvest for the water consumption calculations using the water balance approach and the WUE was calculated on the basis of the ratio of dry matter weight to the amount of water consumed. Tensiometer and suction cups were installed at 15, 30, 45 and 60 cm depths only to N 1 , N 2 and N 3 treatments plots of each vegetable in 2002 and 2003. Tensiometer readings were taken just before irrigation. Also, soil solution samples from suction cups were taken at final harvest and NO 3 determinations were done with RQFLEX nitrate test strips. Significantly higher yields and WUE values were obtained when the same amount of N fertilizer is applied through fertigation compared to the treatment where N fertilizer applied to the soil then drip irrigated. The nitrate concentrations of the soil solution increased as the N rates increased and no NO 3 had been found in the soil solution taken from 75 cm soil depth, indicating that no leaching of N fertilizer occurred beyond 75 cm

  6. Beyond Vienna and Montreal: A global framework convention on greenhouse gases

    International Nuclear Information System (INIS)

    Wirth, D.A.; Lashof, D.A.

    1993-01-01

    This chapter discusses the need for a framework treaty analogous to the Vienna Convention and to the Montreal Protocol for greenhouse gases. Discussed are the following topics: (1) the immediate need for multilateral greenhouse gas controls, including policy implications of scientific uncertainties; (2) recent steps toward a greenhouse gas convention; (3) an environmentally meaningful plan for a greenhouse gase conventions, including the ozone precident, CO 2 targets, resource transfers, trading emissions allocations, institutional issues

  7. Offsets : An innovative approach to reducing greenhouse gases

    International Nuclear Information System (INIS)

    Steward, B.

    1998-01-01

    One of the most innovative ways to address climate change is the use of offsets, which refers to actions taken outside of a company's operations, domestically and internationally, to reduce greenhouse gas emissions. This paper is devoted to a discussion of Suncor Energy's action plan for greenhouse gases which include offsets, and to an explanation of the reasons why offsets are fundamental to successful greenhouse gas management. Suncor Energy Inc., has developed a plan with seven elements to meet their target of stabilizing their greenhouse gas emissions at 1990 levels by year 2000. The seven elements include: (1) energy efficiency and process improvements at their oil sands facility, (2) the development of alternative and renewable sources of energy, such as ethanol blended gasolines and the use of wind turbines to generate electricity, (3) promoting environmental and economic research to develop more advanced oil and gas technology to reduce greenhouse gas emissions, (4) implementing a constructive public policy input in support of sustainable development, (5) educating employees, customers and communities on global climate change, (6) measuring and reporting the company's environmental progress, and (7) pursuing domestic and international offset opportunities such as transfer of technology to developing countries, cogeneration of energy using natural gas, energy efficiency, renewable energy sources, emission reduction purchases and forest conservation. Of these proposed measures, offsets are the critical element which could spell the difference between success and failure in managing greenhouse gas emissions and the difference between economic hardship and economic opportunity

  8. Heat and mass transfer of a low-pressure Mars greenhouse: Simulation and experimental analysis

    Science.gov (United States)

    Hublitz, Inka

    Biological life support systems based on plant growth offer the advantage of producing fresh food for the crew during a long surface stay on Mars. Greenhouses on Mars are also used for air and water regeneration and waste treatment. A major challenge in developing a Mars greenhouse is its interaction with the thin and cold Mars environment. Operating a Mars greenhouse at low interior pressure reduces the pressure differential across the structure and therefore saves structural mass as well as reduces leakage. Experiments were conducted to analyze the heating requirements as well as the temperature and humidity distribution within a small-scale greenhouse that was placed in a chamber simulating the temperatures, pressure and light conditions on Mars. Lettuce plants were successfully grown inside of the Mars greenhouse for up to seven days. The greenhouse atmosphere parameters, including temperature, total pressure, oxygen and carbon dioxide concentration were controlled tightly; radiation level, relative humidity and plant evapo-transpiration rates were measured. A vertical stratification of temperature and humidity across the greenhouse atmosphere was observed. Condensation formed on the inside of the greenhouse when the shell temperature dropped below the dew-point. During the night cycles frost built up on the greenhouse base plate and the lower part of the shell. Heat loss increased significantly during the night cycle. Due to the placement of the heating system and the fan blowing warm air directly on the upper greenhouse shell, condensation above the plants was avoided and therefore the photosynthetically active radiation at plant level was kept constant. Plant growth was not affected by the temperature stratification due to the tight temperature control of the warmer upper section of the greenhouse, where the lettuce plants were placed. A steady state and a transient heat transfer model of the low pressure greenhouse were developed for the day and the night

  9. Application of Endophytic Pseudomonas fluorescens and a Bacterial Consortium to Brassica napus Can Increase Plant Height and Biomass under Greenhouse and Field Conditions

    Directory of Open Access Journals (Sweden)

    Richard D. Lally

    2017-12-01

    Full Text Available Plant associated bacteria with plant growth promotion (PGP properties have been proposed for use as environmentally friendly biofertilizers for sustainable agriculture; however, analysis of their efficacy in the field is often limited. In this study, greenhouse and field trials were carried out using individual endophytic Pseudomonas fluorescens strains, the well characterized rhizospheric P. fluorescens F113 and an endophytic microbial consortium of 10 different strains. These bacteria had been previously characterized with respect to their PGP properties in vitro and had been shown to harbor a range of traits associated with PGP including siderophore production, 1-aminocyclopropane-1-carboxylic acid (ACC deaminase activity, and inorganic phosphate solubilization. In greenhouse experiments individual strains tagged with gfp and Kmr were applied to Brassica napus as a seed coat and were shown to effectively colonize the rhizosphere and root of B. napus and in addition they demonstrated a significant increase in plant biomass compared with the non-inoculated control. In the field experiment, the bacteria (individual and consortium were spray inoculated to winter oilseed rape B. napus var. Compass which was grown under standard North Western European agronomic conditions. Analysis of the data provides evidence that the application of the live bacterial biofertilizers can enhance aspects of crop development in B. napus at field scale. The field data demonstrated statistically significant increases in crop height, stem/leaf, and pod biomass, particularly, in the case of the consortium inoculated treatment. However, although seed and oil yield were increased in the field in response to inoculation, these data were not statistically significant under the experimental conditions tested. Future field trials will investigate the effectiveness of the inoculants under different agronomic conditions.

  10. Assessing the risks of trace elements in environmental materials under selected greenhouse vegetable production systems of China

    International Nuclear Information System (INIS)

    Chen, Yong; Huang, Biao; Hu, Wenyou; Weindorf, David C.; Liu, Xiaoxiao; Niedermann, Silvana

    2014-01-01

    The risk assessment of trace elements of different environmental media in conventional and organic greenhouse vegetable production systems (CGVPS and OGVPS) can reveal the influence of different farming philosophy on the trace element accumulations and their effects on human health. These provide important basic data for the environmental protection and human health. This paper presents trace element accumulation characteristics of different land uses; reveals the difference of soil trace element accumulation both with and without consideration of background levels; compares the trace element uptake by main vegetables; and assesses the trace element risks of soils, vegetables, waters and agricultural inputs, using two selected greenhouse vegetable systems in Nanjing, China as examples. Results showed that greenhouse vegetable fields contained significant accumulations of Zn in CGVPS relative to rice–wheat rotation fields, open vegetable fields, and geochemical background levels, and this was the case for organic matter in OGVPS. The comparative analysis of the soil medium in two systems with consideration of geochemical background levels and evaluation of the geo-accumulation pollution index achieved a more reasonable comparison and accurate assessment relative to the direct comparison analysis and the evaluation of the Nemerow pollution index, respectively. According to the Chinese food safety standards and the value of the target hazard quotient or hazard index, trace element contents of vegetables were safe for local residents in both systems. However, the spatial distribution of the estimated hazard index for producers still presented certain specific hotspots which may cause potential risk for human health in CGVPS. The water was mainly influenced by nitrogen, especially for CGVPS, while the potential risk of Cd and Cu pollution came from sediments in OGVPS. The main inputs for trace elements were fertilizers which were relatively safe based on relevant

  11. Assessing the risks of trace elements in environmental materials under selected greenhouse vegetable production systems of China

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yong [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Huang, Biao, E-mail: bhuang@issas.ac.cn [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Hu, Wenyou [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Weindorf, David C.; Liu, Xiaoxiao [Department of Plant and Soil Science, Texas Tech University, Lubbock, TX (United States); Niedermann, Silvana [Department of Environmental Systems Science, Institute of Agricultural Science, ETH Zurich, 8092 Zurich (Switzerland)

    2014-02-01

    The risk assessment of trace elements of different environmental media in conventional and organic greenhouse vegetable production systems (CGVPS and OGVPS) can reveal the influence of different farming philosophy on the trace element accumulations and their effects on human health. These provide important basic data for the environmental protection and human health. This paper presents trace element accumulation characteristics of different land uses; reveals the difference of soil trace element accumulation both with and without consideration of background levels; compares the trace element uptake by main vegetables; and assesses the trace element risks of soils, vegetables, waters and agricultural inputs, using two selected greenhouse vegetable systems in Nanjing, China as examples. Results showed that greenhouse vegetable fields contained significant accumulations of Zn in CGVPS relative to rice–wheat rotation fields, open vegetable fields, and geochemical background levels, and this was the case for organic matter in OGVPS. The comparative analysis of the soil medium in two systems with consideration of geochemical background levels and evaluation of the geo-accumulation pollution index achieved a more reasonable comparison and accurate assessment relative to the direct comparison analysis and the evaluation of the Nemerow pollution index, respectively. According to the Chinese food safety standards and the value of the target hazard quotient or hazard index, trace element contents of vegetables were safe for local residents in both systems. However, the spatial distribution of the estimated hazard index for producers still presented certain specific hotspots which may cause potential risk for human health in CGVPS. The water was mainly influenced by nitrogen, especially for CGVPS, while the potential risk of Cd and Cu pollution came from sediments in OGVPS. The main inputs for trace elements were fertilizers which were relatively safe based on relevant

  12. Affluence and objective environmental conditions: Evidence of differences in environmental concern in metropolitan Brazil.

    Science.gov (United States)

    Nawrotzki, Raphael J; Guedes, Gilvan; do Carmo, Roberto Luiz

    2014-04-01

    In an age of climate change, researchers need to form a deepened understanding of the determinants of environmental concern, particularly in countries of emerging economies. This paper provides a region-specific investigation of the impact of socio-economic status (SES) and objective environmental conditions on environmental concern in urban Brazil. We make use of data that were collected from personal interviews of individuals living in the metropolitan areas of Baixada Santista and Campinas, in the larger São Paulo area. Results from multilevel regression models indicate that wealthier households are more environmentally concerned, as suggested by affluence and post-materialist hypotheses. However, we also observe that increasing environmental concern correlates with a decline in objective environmental conditions. Interactions between objective environmental conditions and SES reveal some intriguing relationships: Among poorer individuals, a decline in environmental conditions increases environmental concern as suggested by the objective problems hypothesis, while for the wealthy, a decline in environmental conditions is associated with lower levels of environmental concern.

  13. Degradation of three fungicides following application on strawberry and a risk assessment of their toxicity under greenhouse conditions.

    Science.gov (United States)

    Sun, Caixia; Cang, Tao; Wang, Zhiwei; Wang, Xinquan; Yu, Ruixian; Wang, Qiang; Zhao, Xueping

    2015-05-01

    The health risk to humans of pesticide application on minor crops, such as strawberry, requires quantification. Here, the dissipation and residual levels of three fungicides (pyraclostrobin, myclobutanil, and difenoconazole) were studied for strawberry under greenhouse conditions using high-performance liquid chromatography (HPLC)-tandem mass spectrometry after Quick, Easy, Cheap, Effective, Rugged, and Safe extraction. This method was validated using blank samples, with all mean recoveries of these three fungicides exceeding 80%. The residues of all three fungicides dissipated following first-order kinetics. The half-lives of pyraclostrobin, myclobutanil, and difenoconazole were 1.69, 3.30, and 3.65 days following one time application and 1.73, 5.78, and 6.30 days following two times applications, respectively. Fungicide residue was determined by comparing the estimated daily intake of the three fungicides against the acceptable daily intake. The results indicate that the potential health risk of the three fungicides was not significant in strawberry when following good agricultural practices (GAP) under greenhouse conditions.

  14. Elementary Pre-Service Teacher Perceptions of the Greenhouse Effect.

    Science.gov (United States)

    Groves, Fred H.; Pugh, Ava F.

    1999-01-01

    Expands on earlier work to examine pre-service teachers' views on environmental issues, especially global warming and the related term "greenhouse effect." Suggests that pre-service elementary teachers hold many misconceptions about environmental issues. (DDR)

  15. Assessment of energy consumption in organic tomato greenhouse production - a case study

    NARCIS (Netherlands)

    Baptista, F.J.; Murcho, D.; Silva, L.; Stanghellini, C.; Montero, J.I.; Kempkes, F.; Munoz, P.; Gilli, Celine; Giuffrida, F.; Stepowska, Agnieszka

    2017-01-01

    Greenhouse production has increased over the last decades in the Mediterranean region. Greenhouses allow protecting crops from adverse climate conditions, creating microclimate conditions appropriate for obtaining high production with high quality all over the year. However, greenhouse production is

  16. Greenhouse gas mitigation options for Washington State

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, N.

    1996-04-01

    President Clinton, in 1993, established a goal for the United States to return emissions of greenhouse gases to 1990 levels by the year 2000. One effort established to help meet this goal was a three part Environmental Protection Agency state grant program. Washington State completed part one of this program with the release of the 1990 greenhouse gas emissions inventory and 2010 projected inventory. This document completes part two by detailing alternative greenhouse gas mitigation options. In part three of the program EPA, working in partnership with the States, may help fund innovative greenhouse gas reduction strategies. The greenhouse gas control options analyzed in this report have a wide range of greenhouse gas reductions, costs, and implementation requirements. In order to select and implement a prudent mix of control strategies, policy makers need to have some notion of the potential change in climate, the consequences of that change and the uncertainties contained therein. By understanding the risks of climate change, policy makers can better balance the use of scarce public resources for concerns that are immediate and present against those that affect future generations. Therefore, prior to analyzing alternative greenhouse gas control measures, this report briefly describes the phenomenon and uncertainties of global climate change, and then projects the likely consequences for Washington state.

  17. Controlled Landfill Project in Yolo County, California for Environmental Benefits of Waste Stabilization and Minimization of Greenhouse Gas Emissions

    Science.gov (United States)

    Yazdani, R.; Augenstein, D.; Kieffer, J.; Cohen, K.

    2003-12-01

    The Department of Public Works of Yolo County, California, USA has been testing an advanced approach to landfill bioreactors, controlled (or "enhanced") landfilling, at its Yolo County Central Landfill site near Davis, CA, since 1994. Overall objectives have been the management of waste landfilling for: (1) rapid completion of total gas generation; (2) maximum, high-efficiency gas capture; (3) waste volume reduction; and (4) maximum greenhouse gas and carbon sequestration benefits. Methane generation is controlled and enhanced through carefully managed moisture additions, and by taking advantage of landfill temperature elevation. The generated landfill methane, an important greenhouse gas, is recovered with high efficiency through extraction from a porous recovery layer beneath a surface geomembrane cover. Instrumentation included a total of 56 moisture and 15 temperature sensors in the two cells, gas flow monitoring by positive displacement gas meters, and accurate quantification of liquid inputs and outputs. Gas composition, waste volume reduction, base hydrostatic head, and a range of environmental compliance parameters has been monitored since 1995. Partitioning gas tracer tests using the injection of two gases at dilute concentrations in the landfill have also been initiated to compute the fraction of pore space occupied by water between the points of tracer injection and tracer measurement. There has been rapid waste volume reduction in the enhanced cell that corresponds to the solids' reduction to gas. Monitoring is planned for the next several years, until stabilization parameters are determined complete. Encouraging performance is indicated by: (1) sensor data; (2) gas generation results; (3) data from landfill cores; and (4) decomposition-related indicators including rapid volume reduction. When data are synthesized, project results have attractive implications for new approaches to landfill management. Over seven-years, methane recoveries have averaged

  18. Greenhouse gas neutral Germany in 2050

    International Nuclear Information System (INIS)

    Benndorf, Rosemarie; Bernicke, Maja; Bertram, Andreas

    2014-01-01

    In order to answer the question how a greenhouse gas neutral Germany would look like an interdisciplinary process was started by the Federal Environmental Agency. It was clear from the beginning of this work that a sustainable regenerative energy supply could not be sufficient. Therefore all relevant emission sources were included into the studies: traffic, industry, waste and waste water, agriculture, land usage, land usage changes and forestry. The necessary transformation paths to reach the aim of a greenhouse gas neutral Germany in 2050, economic considerations and political instruments were not part of this study.

  19. The greenhouse challenge

    International Nuclear Information System (INIS)

    Harrington, Ph.

    1999-01-01

    At Kyoto, Australia was successful in gaining acceptance for a differentiated response to climate change which takes account of our special circumstances and allows for an 8% rise in emissions above 1990 levels by 2008 - 2012. This outcome is both environmentally effective but also responsible from the perspective of Australia's economic and trade interests. While our target is achievable it will require significant efforts on the part of industry, all levels of government and the wider community to move towards best practice in managing our greenhouse gas emissions. At the same time, it will provide an incentive for industry and businesses to further improve their efficiency and perhaps even to capture new opportunities that may present themselves. An outline of the National Greenhouse Strategy is given and some of the many implications for the minerals and energy sector are discussed

  20. Agriculture and greenhouse effect: economic regulation of cross impacts and combination of agricultural and environmental policies - analysis for the France and extension to the european union. Economic analysis of the interactions agriculture- greenhouse effect

    International Nuclear Information System (INIS)

    Jayet, P.A.

    2002-09-01

    The objectives of the research program are: the impacts evaluation of a double relation climate - agriculture on the agricultural production and the greenhouse gases emission; the compatibility of agricultural policies and environmental policies of the sector. Simulations are realized at a regional scale with a coupling of economical and biophysical models (manure spreading, cultivation yield). (A.L.B.)

  1. Plant response-based sensing for control starategies in sustainable greenhouse production

    International Nuclear Information System (INIS)

    Kacira, M.; Sase, S.; Okushima, L.; Ling, P.P.

    2005-01-01

    The effect of environmental variability is one of the major concerns in experimental design for both research in plant systems and greenhouse plant production. Microclimates surrounding plants are not usually uniform. Therefore, many samples and sensors are required to obtain a true representation of the plant population. A plant monitoring system capable of reducing the required number of samples by reducing environmental variability would be more advantageous. To better understand plant-environment interaction, it is essential to study plants, microclimate surrounding the plants and the growth media. To achieve this, the monitoring system must be equipped with proper instrumentation. To achieve proper management practices and sustainable greenhouse production, it is essential first to understand plants and their interactions with their surroundings and then establish plant response-based sensing and control strategies for greenhouse processes. Therefore, an effort was conducted to review and discuss current sensing and control strategies in greenhouse research and plant production and provide recommendations on plant response-based sensing and control strategies for sustainable greenhouse production

  2. Greenhouse gaseous emission and energy analysis in rice ...

    African Journals Online (AJOL)

    Agriculture in Africa is associated with low food production. The attempt to increase food productivity has the potential to generate some environmental concerns such as greenhouse emissions and energy impacts. The environmental impact of the rice production in the tropics, especially Africa, has not received much ...

  3. Failure of supplementary ultraviolet radiation to enhance flower color under greenhouse conditions

    Energy Technology Data Exchange (ETDEWEB)

    Klein, R. M. [University of Vermont, Burlington, VT (United States)

    1990-03-15

    In order to determine whether the concentration of floral petal anthocyanin pigments could be increased, ultraviolet radiations in the UV-A and UV-B wavelength bands were presented to a variety of flowering plants to partly restore those wavelengths filtered out by greenhouse glass. In no tested plant did the supplementary ultraviolet radiation enhance floral anthocyanin content. Supplementary UV radiation has no economic value in greenhouse production of flowering plants. (author)

  4. Optimum Returns from Greenhouse Vegetables under Water Quality and Risk Constraints in the United Arab Emirates

    Directory of Open Access Journals (Sweden)

    Eihab Fathelrahman

    2017-04-01

    Full Text Available Greenhouses have been used in the United Arab Emirates (UAE to produce vegetables that contribute toward UAE food security, including offering fresh vegetable produce in the off-season. However, to manage such greenhouses, farmers face both technical and environmental limitations (i.e., high water scarcity, as well as vegetable market price instability. The objective of this study is to explore tradeoffs between returns (i.e., gross margin of selected vegetables (tomato, pepper, and cucumber, risk (deviation from gross margin means, and an environmental constraint (water salinity using a unique target MOTAD (minimization of total absolute deviations approach to support UAE farmer decision-making processes. The optimal target MOTAD solution included all three vegetables and no corner solution. The results showed tradeoffs between returns and risks, and confirmed that product diversification reduces overall risk. The analysis was consistent with farmer perceptions based on a survey of 78 producers in the region. The search for the optimal mix of vegetable production under UAE greenhouse conditions revealed that reduction in tomato production should be offset by an increase in cucumber production while maintaining a constant level of pepper production. In other words, risk is reduced as cucumber production increases due to the high level of tomato and lettuce price volatility as the alternative to cucumber. The results also demonstrated the importance of the water salinity environmental constraint, as it was found to have a positive marginal value in the optimal vegetable mix solution (i.e., important factor. Thus the optimal solution was highly sensitive to changes in the crop water salinity constraint. The study results also demonstrate that the target MOTAD approach is a suitable optimization methodology. As a practical approach, a decision-maker in the UAE can consider gross margin (total revenue-variable costs maximization with risk and water

  5. Morphophysiological and productive indicators of the pepper planted in the greenhouse and in the open field in the conditions of the Ecuadorian Amazon

    Directory of Open Access Journals (Sweden)

    Reinaldo Demesio Alemán Pérez

    2018-01-01

    Full Text Available The Ecuadorian Amazon is the poorest region of Ecuador, particularly the province of Pastaza. The production of vegetables in the region is very limited and only established in the greenhouse. The pepper (Capsicum annuum L. is a horticultural product very demanded, however, there is a criterion that cannot be grown in the area. Therefore, since 2014, the Center for Research, Posgraduate and Conservation of Amazonian Biodiversity (CIPCA, belonging to Universidad Estatal Amazonica initiated a research program to evaluate the adaptation of different horticultural species plants to conditions in the region, in order to contribute to food sustainability. The study consisted of determining the behavior of the Nathalie hybrid pepper crop, planted in greenhouse and open field conditions, for which a randomized block design was used. Productions, physiological and morphological indicators of the crop were evaluated and the results obtained were made a statistical comparison of means. The results suggest that better morphophysiological indicators are obtained when it was sown in the greenhouse, with height of 136 cm and a foliar area of 0.95 m2. However, the best productive and agricultural performance indicators were obtained outside the greenhouse, with 9 fruits per plant, with an average fruit weight of 975.80 g and an average yield of 6.42 kg m-2. This indicates the convenience of establishing this crop in the Ecuadorian Amazon without sow in the greenhouse.

  6. Buying greenhouse insurance

    International Nuclear Information System (INIS)

    Manne, A.S.; Richels, R.G.

    1992-01-01

    A growing concern that the increasing accumulation of greenhouse gases will lead to undesirable changes in global climate has resulted in proposals, both in the United States and internationally, to set physical targets for reducing greenhouse gas emissions. But what will these proposals cost? This book outlines a way to think about greenhouse-effect decisions under uncertainty. It describes an insightful model for determining the economic costs of limiting CO 2 emissions produced by burning fossil fuels and provides a solid analytical base for rethinking public policy on the far-reaching issue of global warming. It presents region-by-region estimates of the costs that would underlie an international agreement. Using a computer model known as Global 2100, they analyze the economic impacts of limiting CO 2 emissions under alternative supply and conservation scenarios. The results clearly indicate that a reduction in emissions is not the sole policy response to potential climate change. Following a summary of the greenhouse effect, its likely causes, and possible consequences, this book takes up issues that concern the public at large. They provide an overview of Global 2100, look at how the U.S. energy sector is likely to evolve under business-as-usual conditions and under carbon constraints, and describe the concept of greenhouse insurance. They consider possible global agreements, including an estimate of benefits that might result from trading in an international market in emission rights. They conclude with a technical description directed toward modeling specialists

  7. 75 FR 17331 - Public Hearings for the Mandatory Reporting Rule for Greenhouse Gases

    Science.gov (United States)

    2010-04-06

    ... for Greenhouse Gases AGENCY: Environmental Protection Agency (EPA). ACTION: Announcement of public... mandatory reporting of greenhouse gases, which will be published separately in the Federal Register. These proposed rules would [[Page 17332

  8. Research on Intelligent Agriculture Greenhouses Based on Internet of Things Technology

    Directory of Open Access Journals (Sweden)

    Shang Ying

    2017-01-01

    Full Text Available Internet of things is a hot topic in the field of research, get a lot of attention, On behalf of the future development trend of the network, Internet of Things has a wide range of applications, because of the efficient and reliable information transmission in modern agriculture. In the greenhouse, the conditions of the Greenhouse determine the quality of crops, high yield and many other aspects. Research on Intelligent Agriculture Greenhouses based on Internet of Things, mainly Research on how to control the conditions of the greenhouses, So that the indoor conditions suitable for crop growth. In the pater, we study of Zigbee technology, Designed the solar power supply module, greenhouse hardware and software part, And the system was tested by experiment, The analysis of the experimental data shows that the system can provide good conditions for the growth of crops to achieve the high yield and high quality of crops.

  9. Automobile air-conditioning its energy and environmental impact; La climatisation automobile impact energetique et environnemental

    Energy Technology Data Exchange (ETDEWEB)

    Barbusse, St.; Gagnepain, L.

    2003-05-01

    Over the last three decades, automobile manufacturers have made a lot of progress in specific fuel consumption and engine emissions of pollutants. Yet the impact of these improvements on vehicle consumption has been limited by increased dynamic performances (maxi-mum speed, torque), increased safety (power steering and power brakes) and increased comfort (noise and vibration reduction, electric windows and thermal comfort). Because of this, the real CO{sub 2}-emission levels in vehicles is still high in a context where road transport is a major factor in the balance sheet of greenhouse gas emissions, thus in complying with the inter-national climate convention. Although European, Japanese and Korean manufacturers signed an important agreement with the European Commission for voluntarily reducing CO{sub 2} emissions from their vehicles, with a weighted average emission goal by sales of 140 grams per km on the MVEG approval cycle by 2008, it has to be noted that the European procedures for measuring fuel consumption and CO{sub 2} emissions do not take accessories into account, especially air-condition ng (A/C). The big dissemination of this equipment recognized as a big energy consumer and as using a refrigerant with a high global warming potential ed ADEME to implement a set of assessments of A/C's energy and environmental impact. In particular these assessments include studies of vehicle equipment rates, analyses of impact on fuel consumption as well as regulated pollutant emissions in the exhaust, a characterization of the refrigerant leakage levels and an estimate of greenhouse gas emissions for all air-conditioned vehicles. This leaflet summarizes the results of these actions. All of these studies and additional data are presented in greater detail in the document,-'Automobile Air-conditioning' (ADEME reference no. 4985). (author)

  10. Computational fluid dynamics in greenhouses: A review

    African Journals Online (AJOL)

    use

    2011-12-05

    Dec 5, 2011 ... reduce environmental impact while enhancing crop qua- lity and yields .... within a mild climate, appropriate design and control of ventilation are required .... crucial parameter in the pattern of internal greenhouse temperatures ...

  11. Energy demand hourly simulations and energy saving strategies in greenhouses for the Mediterranean climate

    Science.gov (United States)

    Priarone, A.; Fossa, M.; Paietta, E.; Rolando, D.

    2017-01-01

    This research has been devoted to the selection of the most favourable plant solutions for ventilation, heating and cooling, thermo-hygrometric control of a greenhouse, in the framework of the energy saving and the environmental protection. The identified plant solutions include shading of glazing surfaces, natural ventilation by means of controlled opening windows, forced convection of external air and forced convection of air treated by the HVAC system for both heating and cooling. The selected solution combines HVAC system to a Ground Coupled Heat Pump (GCHP), which is an innovative renewable technology applied to greenhouse buildings. The energy demand and thermal loads of the greenhouse to fulfil the requested internal design conditions have been evaluated through an hourly numerical simulation, using the Energy Plus (E-plus) software. The overall heat balance of the greenhouse also includes the latent heat exchange due to crop evapotranspiration, accounted through an original iterative calculation procedure that combines the E-plus dynamic simulations and the FAO Penman-Monteith method. The obtained hourly thermal loads have been used to size the borehole field for the geothermal heat pump by using a dedicated GCHP hourly simulation tool.

  12. 77 FR 69585 - Greenhouse Gas Reporting Program: Proposed Amendments and Confidentiality Determinations for...

    Science.gov (United States)

    2012-11-20

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 98 [EPA-HQ-OAR-2011-0028; FRL-9753-2] Greenhouse Gas... announcing an extension of the public comment period for the proposed rule titled ``Greenhouse Gas Reporting... [[Page 69586

  13. The greenhouse effect of planetary atmospheres

    International Nuclear Information System (INIS)

    Kondratyev, K.Ya.; Moskalenko, N.I.

    1980-01-01

    The greenhouse effect of the atmosphere is the main factor of possible climate changes of anthropogenic origin. The growing pollution of the atmosphere leads to an increase of the concentration of various gaseous components. Of great importance is also the consideration of the aerosols. All the gaseous components, as well as aerosols, have the absorption bands in the IR spectral range. The traditional attention to the problem of the CO 2 contribution to the greenhouse effect has somewhat overshadowed the significance of the different components. The data characterizing the significance of the different components of the greenhouse effect are considered. The results of studying the absorption spectra of methane, nitrous oxides, sulphuric gas, ammonia, nitric-acid vapours and other components are discussed. The assessments of their contribution to the greenhouse effect are given. The important role of the small-size fraction of the atmospheric aerosols as a factor of the greenhouse effect is discussed. Both the analysis of the causes of the Earth's climate variability and the relevant investigation of the atmospheric greenhouse effect determine the expediency of analysing the conditions of the greenhouse effect formation on other planets. Laboratory studies of the IR absorption spectra of synthetic CO 2 atmospheres were carried out. Some results from these studies are discussed. (author)

  14. Modeling GHG emission and energy consumption in selected greenhouses in Iran

    Energy Technology Data Exchange (ETDEWEB)

    Yousefi, M.; Omid, M.; Rafiee, SH.; Khoshnevisan, B. [Department of Agricultural Machinery Engineering, Faculty of Agricultural Engineering and Technology, University of Tehran, Karaj (Iran, Islamic Republic of)

    2013-07-01

    It is crucial to determine energy efficiency and environmental effects of greenhouse productions. Such study can be a viable solution in probing challenges and existing defects. The aims of this study were to analyze energy consumption and greenhouse gas (GHG) emissions for pepper production using biological method inside greenhouses which used natural gas (NG) heating system in Esfahan province. Data were collected from 22 greenhouse holders using a face to face questionnaire method, in 2010-2011. Also, functional area was selected 1000 m2. Total energy input, total energy output, energy ratio, energy productivity, specific energy, net energy gain and total GHG emissions were calculated as 297799.9 MJ area-1, 3851.84 MJ area-1, 0.013, 0.016 kg MJ-1, 61.85 MJ kg-1, -293948 MJ area-1 and 14390.85 kg CO2 equivalent area-1, respectively. Result revealed that replacing diesel fuel with NG will not be an effective way of reducing energy consumption for greenhouse production. However, it is crucial to focus on energy management in order to enhance the energy and environmental indices. One way to supply adequate input energy and a reduction in GHG emissions is the utilization of renewable and clean energy sources instead of NG and diesel fuel. Also, it is suggested to adopt solar greenhouses in the region and to supply electricity from non-fossil sources seriously.

  15. Calculation of NIR effect on greenhouse climate in various conditions

    NARCIS (Netherlands)

    Kempkes, F.L.K.; Hemming, S.

    2012-01-01

    In Northern regions of Europe glass is mainly used as greenhouse covering material whereas in Southern regions plastic films are commonly used. The develop-ment of covering material optical properties focuses on high light transmission, reduction of heating energy losses (higher latitudes) and

  16. Design, implementation and evalution of a central unit for controlling climatic conditions in the greenhouse

    OpenAIRE

    Gh. Zarei; A. Azizi

    2016-01-01

    In greenhouse culture, in addition to increasing the quantity and quality of crop production in comparison with traditional methods, the agricultural inputs are saved, too. Recently, using new methods, designs and materials, and higher automation in greenhouses, better management has become possible for enhancing yield and improving the quality of greenhouse crops. The constructed and evaluated central controller unit (CCU) is a central controller system and computerized monitoring unit for g...

  17. Micropropagation, Acclimatization, and Greenhouse Culture of Veratrum californicum.

    Science.gov (United States)

    White, Sarah A; Adelberg, Jeffrey; Naylor-Adelberg, Jacqueline; Mann, David A; Song, Ju Yeon; Sun, Youping

    2016-01-01

    Micropropagation and production of Veratrum californicum is most successful when using a premixed Murishage and Skoog basal medium with vitamins and a 5-week subculture cycle at 16 °C for multiplication. These culture conditions provide the best percent survival after acclimatization in the greenhouse. However, clone response to temperature and light quality within culture conditions varies. Micropropagated plants have mass and morphology similar to 2- or 3-year-old seedlings. Acclimatized plantlets can then be grown in the greenhouse using sub-irrigation (ebb and flood) to maintain substrate volumetric water content > 44 %. Growth cycle in the greenhouse must be about 100 days, followed by dormancy for 5 months at 5 °C.

  18. Children's Models of Understanding of Two Major Global Environmental Issues (Ozone Layer and Greenhouse Effect).

    Science.gov (United States)

    Boyes, Edward; Stanisstreet, Martin

    1997-01-01

    Aims to quantify the models that 13- and 14 year-old students hold about the causes of the greenhouse effect and ozone layer depletion. Assesses the prevalence of those ideas that link the two phenomena. Twice as many students think that holes in the ozone layer cause the greenhouse effect than think the greenhouse effect causes ozone depletion.…

  19. Productivity of a building-integrated roof top greenhouse in a Mediterranean climate

    NARCIS (Netherlands)

    Montero, J.I.; Baeza Romero, Esteban; Heuvelink, E.; Rieradevall, J.; Muñoz, P.; Ercilla, M.; Stanghellini, C.

    2017-01-01

    Urban Agriculture (UA) is an emerging field of agricultural production aimed to improve food security and the resilience of cities and to improve the environmental, social, and economic sustainability of urban areas. One of the options of UA are roof top greenhouses (RTGs), which are greenhouses

  20. Uptake of plutonium, americium, curium, and neptunium in plants cultivated under greenhouse conditions

    International Nuclear Information System (INIS)

    Pimpl, M.; Schmidt, W.

    1984-01-01

    The root-uptake of Np, Pu, Am, and Cm from three different artificially contaminated soils in grass, maize, spring wheat, and potatoes was investigated under greenhouse conditions in pots filled with 9 kg contaminated soil and in lysimeters with a surface area of 0,5 m 2 containing the soils in undisturbed profils up to a depth of 80 cm. Only the plough layer of 30 cm was contaminated with Np, Pu, Am, and Cm. Crop cultivation was done corresponding to usual practice in agriculture. Results of the 1st vegetation period are represented. Transfer factors obtained deviate considerably from those which are recommended for the estimation of long-term exposure of man in the Federal Republic of Germany. (orig.)

  1. Simple greenhouse climate model as a design tool for greenhouses in tropical lowland

    NARCIS (Netherlands)

    Impron, I.; Hemming-Hoffmann, S.; Bot, G.P.A.

    2007-01-01

    Six prototypes plastic greenhouses were built in the tropical lowlands of Indonesia. The geometrical dimensions were designed using computational fluid dynamics (CFD) by taking local climate parameters as static reference boundary conditions. It is necessary to evaluate the climate dynamics inside

  2. 77 FR 14507 - Revision to Guidance, “Federal Greenhouse Gas Accounting and Reporting”

    Science.gov (United States)

    2012-03-12

    ... accounting procedures. CEQ provides this draft revision of the guidance for public review and comment to... COUNCIL ON ENVIRONMENTAL QUALITY Revision to Guidance, ``Federal Greenhouse Gas Accounting and..., ``Federal Greenhouse Gas Accounting and Reporting''. SUMMARY: On October 5, 2009, President Obama signed...

  3. Energy and greenhouse gas profiles of polyhydroxybutyrates derived from corn grain: a life cycle perspective.

    Science.gov (United States)

    Kim, Seungdo; Dale, Bruce E

    2008-10-15

    Polyhydroxybutyrates (PHB) are well-known biopolymers derived from sugars orvegetable oils. Cradle-to-gate environmental performance of PHB derived from corn grain is evaluated through life cycle assessment (LCA), particularly nonrenewable energy consumption and greenhouse gas emissions. Site-specific process information on the corn wet milling and PHB fermentation and recovery processes was obtained from Telles. Most of energy used in the corn wet milling and PHB fermentation and recovery processes is generated in a cogeneration power plant in which corn stover, assumed to be representative of a variety of biomass sources that could be used, is burned to generate electricity and steam. County level agricultural information is used in estimating the environmental burdens associated with both corn grain and corn stover production. Results show that PHB derived from corn grain offers environmental advantages over petroleum-derived polymers in terms of nonrenewable energy consumption and greenhouse gas emissions. Furthermore, PHB provides greenhouse gas credits, and thus PHB use reduces greenhouse gas emissions compared to petroleum-derived polymers. Corn cultivation is one of the environmentally sensitive areas in the PHB production system. More sustainable practices in corn cultivation (e.g., using no-tillage and winter cover crops) could reduce the environmental impacts of PHB by up to 72%.

  4. Greenhouses and their humanizing synergies

    Science.gov (United States)

    Haeuplik-Meusburger, Sandra; Paterson, Carrie; Schubert, Daniel; Zabel, Paul

    2014-03-01

    Greenhouses in space will require advanced technical systems of automatic watering, soil-less cultivation, artificial lighting, and computerized observation of plants. Functions discussed for plants in space habitats include physical/health requirements and human psychology, social cohesion, as well as the complex sensorial benefits of plants for humans. The authors consider the role of plants in long-term space missions historically since 1971 (Salyut 1) and propose a set of priorities to be considered within the design requirements for greenhouses and constructed environments given a range of benefits associated with plant-human relationships. They cite recent research into the use of greenhouses in extreme environments to reveal the relative importance of greenhouses for people living in isolated locations. Additionally, they put forward hypotheses about where greenhouses might factor into several strata of human health. In a recent design-in-use study of astronauts' experiences in space habitats discussed in Architecture for Astronauts (Springer Press 2011) it was found that besides the basic advantages for life support there are clearly additional "side benefits" for habitability and physical wellbeing, and thus long-term mission success. The authors have composed several key theses regarding the need to promote plant-human relationships in space, including areas where synergy and symbiosis occur. They cite new comprehensive research into the early US Space Program to reveal where programmatic requirements could be added to space architecture to increase the less quantifiable benefits to astronauts of art, recreation, and poetic engagement with their existential condition of estrangement from the planet. Specifically in terms of the technological requirements, the authors propose the integration of a new greenhouse subsystem component into space greenhouses—the Mobile Plant Cultivation Subsystem—a portable, personal greenhouse that can be integrated

  5. Greenhouse gas emissions from Swiss agriculture since 1990: implications for environmental policies to mitigate global warming

    Energy Technology Data Exchange (ETDEWEB)

    Leifeld, Jens [AGROSCOPE, Swiss Federal Research Station for Agroecology and Agriculture, Air Pollution/Climate Group, Reckenholzstrasse 191, 8046 Zurich (Switzerland)]. E-mail: jens.leifeld@fal.admin.ch; Fuhrer, Juerg [AGROSCOPE, Swiss Federal Research Station for Agroecology and Agriculture, Air Pollution/Climate Group, Reckenholzstrasse 191, 8046 Zurich (Switzerland)

    2005-08-01

    Agricultural greenhouse gas (GHG) emissions contribute significantly to global warming, and environmental protection strategies have thus to integrate emission reduction measures from this source. In Switzerland, legislation together with monetary incentives has forced primarily integrated, and to a lesser extend organic farming, both covering nowadays more than 95% of the agriculturally useful area. Though reducing greenhouse gas emissions was not a primary intention of this reorganisation, the measures were successful in reducing the overall emissions of nitrous oxide and methane by 10% relative to 1990. A reduction of the animal herd, namely of dairy cattle, non-dairy cattle and swine, and decreasing inputs of mineral N are the main contributors to the achieved emission reduction. Crop productivity was not negatively affected and milk productivity even increased, referring to the ecological potential of agricultural reorganisation that has been tapped. Total meat production declined proportional to the animal herd. Stabilised animal numbers and fertiliser use during the last 4 years refer to an exhaustion of future reduction potentials without further legislative action because this stabilisation is most likely due to the adaptation to the production guidelines. A comparison of emission trends and carbon sequestration potentials in the broader context of the EU15 reveals that nitrous oxide (N{sub 2}O) and methane (CH{sub 4}) have been reduced more efficiently most probably due to the measures taken, but that sequestration potentials are smaller than in the EU15 mainly because of differences in the agricultural structure. The change from an intensified towards a more environmental sound integrated production has a significant reduction potential, but in any case, agriculture will remain a net GHG source in spite of emission mitigation and carbon sequestration.

  6. 76 FR 52659 - Access by EPA Contractors to Confidential Business Information (CBI) Related to the Greenhouse...

    Science.gov (United States)

    2011-08-23

    ... Confidential Business Information (CBI) Related to the Greenhouse Gas Reporting Program AGENCY: Environmental... contractors named in this notice to access information that will be submitted to EPA under the Greenhouse Gas...), EPA created the Greenhouse Gas Reporting Program (GHGRP), 40 CFR part 98 (part 98), which requires...

  7. Energy policies and the greenhouse effect. V. 1

    International Nuclear Information System (INIS)

    Grubb, Michael.

    1991-01-01

    This study represents the culmination of two years of research on the Greenhouse Effect by the Energy and Environmental Programme. It is the fourth study which we have published on the policy aspects of this subject, following Issues for Policymakers, Negotiating Targets, and our report of October 1990 Formulating a Convention. The first volume of the study concentrates on the policy issues arising from attempts to reduce greenhouse gas emissions from the energy sector. The second volume on 'country studies and technical options' provides the detailed analysis on which the conclusions of this book have been based, and will be published in early 1991. Although it was not our intention to produce such a large work at the outset, the upsurge of interest in the subject has expanded the framework of measures being considered to address environmental issues in general and the greenhouse effect in particular. These developments have had a major impact on the size and content. In this book, as in our previous publications, the Programme's work is aimed at moving the policy debate forward as quickly as possible into areas which seem to offer the best prospects for effective policy action. (Author)

  8. Sonic anemometry to measure natural ventilation in greenhouses.

    Science.gov (United States)

    López, Alejandro; Valera, Diego Luis; Molina-Aiz, Francisco

    2011-01-01

    The present work has developed a methodology for studying natural ventilation in Mediterranean greenhouses by means of sonic anemometry. In addition, specific calculation programmes have been designed to enable processing and analysis of the data recorded during the experiments. Sonic anemometry allows us to study the direction of the airflow at all the greenhouse vents. Knowing through which vents the air enters and leaves the greenhouse enables us to establish the airflow pattern of the greenhouse under natural ventilation conditions. In the greenhouse analysed in this work for Poniente wind (from the southwest), a roof vent designed to open towards the North (leeward) could allow a positive interaction between the wind and stack effects, improving the ventilation capacity of the greenhouse. The cooling effect produced by the mass of turbulent air oscillating between inside and outside the greenhouse at the side vents was limited to 2% (for high wind speed, u(o) ≥ 4 m s(-1)) reaching 36.3% when wind speed was lower (u(o) = 2 m s(-1)).

  9. Structural analysis of Gossypium hirsutum fibers grown under greenhouse and hydroponic conditions.

    Science.gov (United States)

    Natalio, Filipe; Tahir, Muhammad Nawaz; Friedrich, Norman; Köck, Margret; Fritz-Popovski, Gerhard; Paris, Oskar; Paschke, Reinhard

    2016-06-01

    Cotton is the one of the world's most important crops. Like any other crop, cotton growth/development and fiber quality is highly dependent on environmental factors. Increasing global weather instability has been negatively impacting its economy. Cotton is a crop that exerts an intensive pressure over natural resources (land and water) and demands an overuse of pesticides. Thus, the search for alternative cotton culture methods that are pesticide-free (biocotton) and enable customized standard fiber quality should be encouraged. Here we describe a culture of Gossypium hirsutum ("Upland" Cotton) utilizing a greenhouse and hydroponics in which the fibers are morphological similar to conventional cultures and structurally fit into the classical two-phase cellulose I model with 4.19nm crystalline domains surrounded by amorphous regions. These fibers exhibit a single crystalline form of cellulose I-Iß, monoclinic unit cell. Fiber quality bulk analysis shows an improved length, strength, whiteness when compared with soil-based cultures. Finally, we show that our fibers can be spun, used for production of non-woven fabrics and indigo-vat stained demonstrating its potential in industrial and commercial applications. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. A New Strategy in Observer Modeling for Greenhouse Cucumber Seedling Growth

    Science.gov (United States)

    Qiu, Quan; Zheng, Chenfei; Wang, Wenping; Qiao, Xiaojun; Bai, He; Yu, Jingquan; Shi, Kai

    2017-01-01

    State observer is an essential component in computerized control loops for greenhouse-crop systems. However, the current accomplishments of observer modeling for greenhouse-crop systems mainly focus on mass/energy balance, ignoring physiological responses of crops. As a result, state observers for crop physiological responses are rarely developed, and control operations are typically made based on experience rather than actual crop requirements. In addition, existing observer models require a large number of parameters, leading to heavy computational load and poor application feasibility. To address these problems, we present a new state observer modeling strategy that takes both environmental information and crop physiological responses into consideration during the observer modeling process. Using greenhouse cucumber seedlings as an instance, we sample 10 physiological parameters of cucumber seedlings at different time point during the exponential growth stage, and employ them to build growth state observers together with 8 environmental parameters. Support vector machine (SVM) acts as the mathematical tool for observer modeling. Canonical correlation analysis (CCA) is used to select the dominant environmental and physiological parameters in the modeling process. With the dominant parameters, simplified observer models are built and tested. We conduct contrast experiments with different input parameter combinations on simplified and un-simplified observers. Experimental results indicate that physiological information can improve the prediction accuracies of the growth state observers. Furthermore, the simplified observer models can give equivalent or even better performance than the un-simplified ones, which verifies the feasibility of CCA. The current study can enable state observers to reflect crop requirements and make them feasible for applications with simplified shapes, which is significant for developing intelligent greenhouse control systems for modern

  11. A New Strategy in Observer Modeling for Greenhouse Cucumber Seedling Growth

    Directory of Open Access Journals (Sweden)

    Quan Qiu

    2017-08-01

    Full Text Available State observer is an essential component in computerized control loops for greenhouse-crop systems. However, the current accomplishments of observer modeling for greenhouse-crop systems mainly focus on mass/energy balance, ignoring physiological responses of crops. As a result, state observers for crop physiological responses are rarely developed, and control operations are typically made based on experience rather than actual crop requirements. In addition, existing observer models require a large number of parameters, leading to heavy computational load and poor application feasibility. To address these problems, we present a new state observer modeling strategy that takes both environmental information and crop physiological responses into consideration during the observer modeling process. Using greenhouse cucumber seedlings as an instance, we sample 10 physiological parameters of cucumber seedlings at different time point during the exponential growth stage, and employ them to build growth state observers together with 8 environmental parameters. Support vector machine (SVM acts as the mathematical tool for observer modeling. Canonical correlation analysis (CCA is used to select the dominant environmental and physiological parameters in the modeling process. With the dominant parameters, simplified observer models are built and tested. We conduct contrast experiments with different input parameter combinations on simplified and un-simplified observers. Experimental results indicate that physiological information can improve the prediction accuracies of the growth state observers. Furthermore, the simplified observer models can give equivalent or even better performance than the un-simplified ones, which verifies the feasibility of CCA. The current study can enable state observers to reflect crop requirements and make them feasible for applications with simplified shapes, which is significant for developing intelligent greenhouse control

  12. A New Strategy in Observer Modeling for Greenhouse Cucumber Seedling Growth.

    Science.gov (United States)

    Qiu, Quan; Zheng, Chenfei; Wang, Wenping; Qiao, Xiaojun; Bai, He; Yu, Jingquan; Shi, Kai

    2017-01-01

    State observer is an essential component in computerized control loops for greenhouse-crop systems. However, the current accomplishments of observer modeling for greenhouse-crop systems mainly focus on mass/energy balance, ignoring physiological responses of crops. As a result, state observers for crop physiological responses are rarely developed, and control operations are typically made based on experience rather than actual crop requirements. In addition, existing observer models require a large number of parameters, leading to heavy computational load and poor application feasibility. To address these problems, we present a new state observer modeling strategy that takes both environmental information and crop physiological responses into consideration during the observer modeling process. Using greenhouse cucumber seedlings as an instance, we sample 10 physiological parameters of cucumber seedlings at different time point during the exponential growth stage, and employ them to build growth state observers together with 8 environmental parameters. Support vector machine (SVM) acts as the mathematical tool for observer modeling. Canonical correlation analysis (CCA) is used to select the dominant environmental and physiological parameters in the modeling process. With the dominant parameters, simplified observer models are built and tested. We conduct contrast experiments with different input parameter combinations on simplified and un-simplified observers. Experimental results indicate that physiological information can improve the prediction accuracies of the growth state observers. Furthermore, the simplified observer models can give equivalent or even better performance than the un-simplified ones, which verifies the feasibility of CCA. The current study can enable state observers to reflect crop requirements and make them feasible for applications with simplified shapes, which is significant for developing intelligent greenhouse control systems for modern

  13. EFECT OF THE INOCULATION OF Rhodococcus fascians AND Azospirillum halopraeferens IN GERMINATION OF PALO FIERRO (Olneya tesota A. Gray UNDER GREENHOUSE CONDITIONS

    Directory of Open Access Journals (Sweden)

    Edgar Omar Rueda Puente

    2017-05-01

    Full Text Available The growth-promoting bacteria in plants (BGPB are a group of different species of bacteria can increase plant growth and productivity. Which can benefit plants through their own bacterial metabolism (phosphate solubilizing, producing hormones or fixing nitrogen. At present, desertification is a growing phenomenon worldwide, afforestation is one of the common solutions to combat this problem. Trees for reforestation are initially grown in greenhouses or nurseries. Among numerous reforestation practices, there is an alternative that inoculation with PGPB. Is a forest species that is endemic Olneya tesota Sonoran Desert, which is in danger of extinction. The objective was to evaluate the effect of bacteria growth promoter in plants with Rhodococcuis fascians and Azospirillum halopraeferens on germination and emergence of Ironwood under four salt concentrations (0, 0.25, 0.5 and 0.75 M NaCl under greenhouse conditions. Were obtained ironwood seeds in the region of Santa Ana, Sonora. Under greenhouse conditions was evaluated emergence percentage, germination rate, height, plant root length, fresh and dry weight of plant, number of bacterial cells attached to the root system, fresh and dry weight of the root. The results indicate that the germination percentage and other variables evaluated decreased as salinity increases. However, these changed positively to inoculation with bacteria R. fascians and A. halopraeferens.

  14. FY2010 Federal Government Greenhouse Gas Inventory by Agency

    Data.gov (United States)

    Council on Environmental Quality, Executive Office of the President — The comprehensive Greenhouse Gas (GHG) Emissions Inventory for the Federal Government accounts for emissions associated with Federal operations in FY 2010. Attached...

  15. Greenhouse Gases

    Science.gov (United States)

    ... Production of Hydrogen Use of Hydrogen Greenhouse Gases Basics | | Did you know? Without naturally occurring greenhouse gases, the earth would be too cold to support life as we know it. Without the greenhouse effect, ...

  16. Energy, environment and economics: greenhouse policy in the balance

    International Nuclear Information System (INIS)

    Wilkenfeld, G.L.

    1990-01-01

    Taking New South Wales as a case study, this paper reviews the government's major economic and environmental concerns, and analyses how they bear on energy and greenhouse policy options. The government's economic strategy emphasises the continuing importance of primary resources, minerals processing and energy-intensive manufacturing, where the State is perceived to have a competitive advantage because of its extensive coal resources. The implications of these trends for the energy utilities and for greenhouse energy policy are analysed. 22 refs., 1 tab

  17. Selection of appropriate greenhouse gas mitigation options

    Energy Technology Data Exchange (ETDEWEB)

    Ramanathan, R. [Indira Ghandi Institute of Development Research, Mumbai (India)

    1999-10-01

    Greenhouse gas mitigation options help in reducing greenhouse gas emissions so as to avoid the adverse environmental impacts due to global warming/climate change. They have different characteristics when evaluated using different criteria. For example, some options may be very cost effective, while some may have an additional advantage of reducing local pollution. Hence, selection of these options, for consideration by a national government or by a funding agency, has to incorporate multiple criteria. In this paper, some important criteria relevant to the selection are discussed, and a multi-criteria methodology is suggested for making appropriate selection. The methodology, called the Analytic Hierarchy Process, is described using two illustrations. (author)

  18. Joint implementation: Biodiversity and greenhouse gas offsets

    Science.gov (United States)

    Cutright, Noel J.

    1996-11-01

    One of the most pressing environmental issues today is the possibility that projected increases in global emissions of greenhouse gases from increased deforestation, development, and fossil-fuel combustion could significantly alter global climate patterns. Under the terms of the United Nations Framework Convention on Climate Change, signed in Rio de Janeiro during the June 1992 Earth Summit, the United States and other industrialized countries committed to balancing greenhouse gas emissions at 1990 levels in the year 2000. Included in the treaty is a provision titled “Joint Implementation,” whereby industrialized countries assist developing countries in jointly modifying long-term emission trends, either through emission reductions or by protecting and enhancing greenhouse gas sinks (carbon sequestration). The US Climate Action Plan, signed by President Clinton in 1993, calls for voluntary climate change mitigation measures by various sectors, and the action plan included a new program, the US Initiative on Joint Implementation. Wisconsin Electric decided to invest in a Jl project because its concept encourages creative, cost-effective solutions to environmental problems through partnering, international cooperation, and innovation. The project chosen, a forest preservation and management effort in Belize, will sequester more than five million tons of carbon dioxide over a 40-year period, will become economically selfsustaining after ten years, and will have substantial biodiversity benefits.

  19. Residential greenhouse

    Energy Technology Data Exchange (ETDEWEB)

    1985-02-01

    The following report examines the technical and economic viability of residential greenhouse additions in Whitehorse, Yukon. The greenhouse was constructed using the south facing wall of an existing residence as a common wall. Total construction costs were $18,000, including labour. Annual fuel demand for the residence has been reduced by about 10 per cent for an annual saving of $425. In addition, produce to the value of $1,000 is grown annually in the greenhouse for domestic consumption and commercial resale. Typically the greenhouse operates for nine months each year. There is a net thermal loss during the months of November, December and January as a result of the large area of glazing. As well as supplementing the heating supply solar greenhouses can provide additional cash crops which can be used to offset the cost of construction. Humidity problems are minimal and can be dealt with by exhausting high humidity air. One system which has been considered for the greenhouse is to use a standard residential heat pump to remove excess moisture and to pump heat into the house. This would have a secondary benefit of excluding the need to circulate greenhouse air through the house. Thus any allergenic reactions to the greenhouse air would be prevented. 8 refs., 3 figs, 2 tabs.

  20. A Greenhouse Assay on the Effect of Applied Urea Amount on the Rhizospheric Soil Bacterial Communities.

    Science.gov (United States)

    Shang, Shuanghua; Yi, Yanli

    2015-12-01

    The rhizospheric bacteria play key role in plant nutrition and growth promotion. The effects of increased nitrogen inputs on plant rhizospheric soils also have impacted on whole soil microbial communities. In this study, we analyzed the effects of applied nitrogen (urea) on rhizospheric bacterial composition and diversity in a greenhouse assay using the high-throughput sequencing technique. To explore the environmental factors driving the abundance, diversity and composition of soil bacterial communities, the relationship between soil variables and the bacterial communities were also analyzed using the mantel test as well as the redundancy analysis. The results revealed significant bacterial diversity changes at different amounts of applied urea, especially between the control treatment and the N fertilized treatments. Mantel tests showed that the bacterial communities were significantly correlated with the soil nitrate nitrogen, available nitrogen, soil pH, ammonium nitrogen and total organic carbon. The present study deepened the understanding about the rhizospheric soil microbial communities under different amounts of applied urea in greenhouse conditions, and our work revealed the environmental factors affecting the abundance, diversity and composition of rhizospheric bacterial communities.

  1. Temperature Simulation of Greenhouse with CFD Methods and Optimal Sensor Placement

    Directory of Open Access Journals (Sweden)

    Yanzheng Liu

    2014-03-01

    Full Text Available The accuracy of information monitoring is significant to increase the effect of Greenhouse Environment Control. In this paper, by taking simulation for the temperature field in the greenhouse as an example, the CFD (Computational Fluid Dynamics simulation model for measuring the microclimate environment of greenhouse with the principle of thermal environment formation was established, and the temperature distributions under the condition of mechanical ventilation was also simulated. The results showed that the CFD model and its solution simulated for greenhouse thermal environment could describe the changing process of temperature environment within the greenhouse; the most suitable turbulent simulation model was the standard k?? model. Under the condition of mechanical ventilation, the average deviation between the simulated value and the measured value was 0.6, which was 4.5 percent of the measured value. The distribution of temperature filed had obvious layering structures, and the temperature in the greenhouse model decreased gradually from the periphery to the center. Based on these results, the sensor number and the optimal sensor placement were determined with CFD simulation method.

  2. ARBUSCULAR MYCORRHIZAL FUNGI INCREASED EARLY GROWTH OF GAHARU WOOD OF Aquilaria malaccencsis and A. crasna UNDER GREENHOUSE CONDITIONS

    Directory of Open Access Journals (Sweden)

    Maman Turjaman

    2006-07-01

    Full Text Available Gaharu wood stand has an important source of profits to the forest community in South and Southeast Asia tropical forest countries, but Aquilaria species have reduced in number and turn out to be endangered due to overexploitation.   Today,   the planting stocks of   Aquilaria species are not sufficient to sustain the yield of gaharu wood and promote forest conservation.  The objective of this study was to determine   the effect of   five arbuscular mycorrhizal (AM fungi: Entrophospora sp., Gigaspora decipiens, Glomus clarum, Glomus sp. ZEA, and Glomus sp. ACA, on the early growth of  Aquilaria malaccensis and A. crasna under greenhouse conditions. The seedlings of  Aquilaria spp. were inoculated with Entrophospora sp., Gi. decipiens, Glomus clarum, Glomus sp. ZEA, Glomus sp. ACA and uninoculated (control under greenhouse conditions. Then, percentage AM colonization, plant growth, survival rate and nitrogen (N and phosphorus (P content and mycorrhizal dependence (MD were measured. The percentage AM colonization of A. malaccensis and A. crasna ranged from 83 to 97% and from 63 to 78%, respectively. Colonization by five AM fungi increased plant height, diameter, and shoot and root dry weights. N and P content of  the seedlings were also increased by AM colonization. Survival rates were higher in the AM-colonized seedlings at 180 days after transplantation than those in the control seedlings. The MD of Aquilaria species was higher than 55 %. The results suggested that AM fungi can be inoculated`to Aquilaria species under nursery conditions to obtain vigorous seedlings, and the field experiment is underway to clarify the role of AM fungi under field conditions.

  3. Dynamic photosynthesis in different environmental conditions.

    Science.gov (United States)

    Kaiser, Elias; Morales, Alejandro; Harbinson, Jeremy; Kromdijk, Johannes; Heuvelink, Ep; Marcelis, Leo F M

    2015-05-01

    Incident irradiance on plant leaves often fluctuates, causing dynamic photosynthesis. Whereas steady-state photosynthetic responses to environmental factors have been extensively studied, knowledge of dynamic modulation of photosynthesis remains scarce and scattered. This review addresses this discrepancy by summarizing available data and identifying the research questions necessary to advance our understanding of interactions between environmental factors and dynamic behaviour of photosynthesis using a mechanistic framework. Firstly, dynamic photosynthesis is separated into sub-processes related to proton and electron transport, non-photochemical quenching, control of metabolite flux through the Calvin cycle (activation states of Rubisco and RuBP regeneration, and post-illumination metabolite turnover), and control of CO₂ supply to Rubisco (stomatal and mesophyll conductance changes). Secondly, the modulation of dynamic photosynthesis and its sub-processes by environmental factors is described. Increases in ambient CO₂ concentration and temperature (up to ~35°C) enhance rates of photosynthetic induction and decrease its loss, facilitating more efficient dynamic photosynthesis. Depending on the sensitivity of stomatal conductance, dynamic photosynthesis may additionally be modulated by air humidity. Major knowledge gaps exist regarding environmental modulation of loss of photosynthetic induction, dynamic changes in mesophyll conductance, and the extent of limitations imposed by stomatal conductance for different species and environmental conditions. The study of mutants or genetic transformants for specific processes under various environmental conditions could provide significant progress in understanding the control of dynamic photosynthesis. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  4. Occurrence, characterization and management of fruit rot of immature cucumber fruits under arid greenhouse conditions

    Directory of Open Access Journals (Sweden)

    ABDULLAH M AL-SADI

    2012-01-01

    Full Text Available A study was undertaken to characterize and manage pathogens associated with fruit rot of immature cucumber fruits in greenhouses in Oman. A survey over 5 growing seasons from 2008 to 2010 in 99 different greenhouses in Oman showed that the disease is prevalent in 91 (92% greenhouses and results in losses of 10 to 60% (avg. 33% of immature fruits per plant. Incidence of the disease was not found to be affected by growing seasons, which could be attributed to the limited fluctuations in ambient temperatures in greenhouses. Isolations from diseased cucumber fruits yielded Alternaria alternata (isolation frequency = 52%, Fusarium equiseti (40%, Cladosporium tenuissium (27%, Botrytis cinerea (6%, Fusarium solani (6%, Corynespora cassiicola (3%, Aspergillus spp. (2%, Curvularia sp. (1% and Bipolaris sp. (1%. With the exception of Curvularia and Bipolaris species, all other fungi were pathogenic on cucumber fruits, with Fusarium equiseti being the most aggressive, followed by Corynespora cassiicola, Botrytis cinerea and Alternaria alternata. Cladosporium and Aspergillus spp. were found to be weakly pathogenic. Comparing the efficacy of foliar and soil applications of carbendazim fungicide on fruit rot of cucumber showed that foliar applications significantly reduced fruit rot and increased cucumber yield when compared to soil application or to control (P < 0.01. This appears to be the first report of the association of Corynespora cassiicola and Fusarium equiseti with fruit rot of immature greenhouse cucumbers. This is also the first report in Oman for the association of Cladosporium tenuissimum with fruit rot of immature cucumbers. Findings are discussed in terms of factors affecting disease control in greenhouses using carbendazim.

  5. Lay perceptions of the greenhouse effect; Les representations profanes de l'effet de serre

    Energy Technology Data Exchange (ETDEWEB)

    Peretti-Watel, P. [Institut National de la Sante et de la Recherche Medicale (INSERM), UMR 379, Epidemiologie et Sciences Sociales Appliquees a l' Innovation Medicale / ORS PACA, 13 - Marseille (France); Hammer, B. [Electricite de France (EDF-GRETS), 92 - Clamart (France)

    2006-10-15

    Using the data from the French Environment Barometer EDF-RD 2004 (national representative sample of French citizens aged over 15) and surveys by ADEME between 2000 and 2005, the paper investigates lay perceptions of the causes and consequences of the greenhouse effect, which may be considered as archetypical of contemporary environmental risks. Beyond lay lack of knowledge, the greenhouse effect gives rise to coherent and meaningful cognitions, including causal explanations, shaped by the pre-existing cognitive framework. This cognitive work, based on analogic rather than scientific thought, strings together the greenhouse effect, ozone depletion, air pollution and even nuclear power. The cognitive process is also fed by the individuals' general conceptions of Nature and of the rights and duties of humankind towards Nature. People are not greatly worried about the unseen and controversial consequences of the greenhouse effect: such worry could be one of those 'elite fears' mentioned by Beck. Finally, while the efficiency of public policies to counter the greenhouse effect requires extensive societal involvement, low confidence towards both political and scientific authorities may prevent the population from becoming aware of the environmental stakes tied to the greenhouse effect. (authors)

  6. Comparison on the heat requirements of a four-span greenhouse with a melting snow system and a single-span greenhouse

    International Nuclear Information System (INIS)

    Furuno, S.; Sase, S.; Ishii, M.

    2004-01-01

    The heat requirements were measured and compared between a four-span greenhouse with a melting snow system and a typical single-span greenhouse with no melting snow system. Generally, single-span greenhouses require no melting snow system because snow drops off naturally from the roofs by gravity. The results for the four-span greenhouse showed that the provided heat by a heater for melting snow increased with an increase in snowfall, and there was a high correlation between them. The heat requirement per unit floor area of the four-span greenhouse was slightly less than that of the single-span greenhouse. This suggests that the decrease in heat requirement for internal air because of the larger floor/surface area ratio of the four-span greenhouse was more than the increase in heat requirement for melting snow. The measured heat requirement of the four-span greenhouse with the melting snow system was equal to the estimated heat load based on a common calculation procedure. On the other hand, that of the single-span greenhouse was slightly smaller than the estimated heat load. These suggest that the estimated heat load based on the common calculation procedure was slightly overestimated and larger than the actual heat requirement excluding the heat for the melting snow in snowy area. This is likely due to the fact that the parameters in the common calculation procedure were determined under the condition of larger net radiation than that in snowy area

  7. Greenhouse Gases and Animal Agriculture

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, J. (ed.) [Department of Animal Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido (Japan); Young, B.A. (ed.) [The University of Queensland, Gatton, Queensland 4343 (Australia)

    2002-07-01

    Reports from interdisciplinary areas including microbiology, biochemistry, animal nutrition, agricultural engineering and economics are integrated in this proceedings. The major theme of this book is environmental preservation by controlling release of undesirable greenhouse gases to realize the sustainable development of animal agriculture. Technology exists for the effective collection of methane generated from anaerobic fermentation of animal effluent and its use as a biomass energy source. Fossil fuel consumption can be reduced and there can be increased use of locally available energy sources. In addition, promoting environmentally-conscious agriculture which does not rely on the chemical fertilizer can be realized by effective use of animal manure and compost products.

  8. International policies to address the greenhouse effect. Encouraging developing country participation in global greenhouse control strategies

    International Nuclear Information System (INIS)

    Gupta, J.; Hischenmoller, M.; Vellinga, P.; Van der Wurff, R.; Junne, G.

    1995-01-01

    The conditions under which developing country governments are likely to feel motivated to take real action in addressing the greenhouse gas problem and the international mechanisms that are likely to succeed are briefly outlined

  9. Stabilising the global greenhouse. A simulation model

    International Nuclear Information System (INIS)

    Michaelis, P.

    1993-01-01

    This paper investigates the economic implications of a comprehensive approach to greenhouse policies that strives to stabilise the atmospheric concentration of greenhouse gases at an ecolocially determined threshold level. In a theoretical optimisation model conditions for an efficient allocation of abatement effort among pollutants and over time are derived. The model is empirically specified and adapted to a dynamic Gams-algorithm. By various simulation runs for the period of 1990 to 2110, the economics of greenhouse gas accumulation are explored. In particular, the long-run cost associated with the above stabilisation target are evaluated for three different policy scenarios: i) A comprehensive approach that covers all major greenhouse gases simultaneously, ii) a piecemeal approach that is limited to reducing CO 2 emissions, and iii) a ten-year moratorium that postpones abatement effort until new scientific evidence on the greenhouse effect will become available. Comparing the simulation results suggests that a piecemeal approach would considerably increase total cost, whereas a ten-year moratorium might be reasonable even if the probability of 'good news' is comparatively small. (orig.)

  10. Development and testing of an assessment to measure spatial thinking about enhanced greenhouse effect

    Science.gov (United States)

    Skaza, Heather Jean

    Americans, in general, do not behave in environmentally sustainable ways. We drive cars and fly in planes that emit planet-warming carbon. We purchase food in nearly indestructible packaging that is not recycled or repurposed. We do not consider the environmental impact of the "stuff" stuffed into our grocery and department stores, most of which is made of materials that had to be dug out of the ground, leaving rivers and skies full of pollution in its place. Citizens have a responsibility to understand complex global and local environmental problems. A person's ability to think about the way that an environmental problem they are tasked with understanding changes over time and space can better prepare them to make sustainable decisions in the face of this complexity. Spatial thinking serves the learner's ability to understand the impact of environmental actions and should be given a consistent place in environmental education. Teaching practices and pedagogies that focus on spatial thinking are necessary to learners' success. In order to know if these strategies are successful, educators need an assessment tool that targets the spatial thinking skills necessary to understanding environmental problems. This dissertation project used a models and modeling theoretical framework to develop and test an assessment of students' spatial thinking abilities related to the environmental problem of enhanced greenhouse effect. This assessment was developed from a review of existing spatial thinking literature, research on existing assessments of spatial thinking abilities, and existing assessment of enhanced greenhouse effect. In addition, I interviewed and surveyed experts in science, math, and environmental education to elicit their perspectives on the spatial thinking skills necessary for learners to understand enhanced greenhouse effect. All of this information was synthesized into 14 Central Concepts of spatial thinking for enhanced greenhouse effect. The assessment was

  11. Ceramic production during changing environmental/climatic conditions

    Science.gov (United States)

    Oestreich, Daniela B.; Glasmacher, Ulrich A.

    2015-04-01

    Ceramics, with regard to their status as largely everlasting everyday object as well as on the basis of their chronological sensitivity, reflect despite their simplicity the technological level of a culture and therefore also, directly or indirectly, the adaptability of a culture with respect to environmental and/or climatic changes. For that reason the question arises, if it is possible to identify changes in production techniques and raw material sources for ceramic production, as a response to environmental change, e.g. climate change. This paper will present results of a research about Paracas Culture (800 - 200 BC), southern Peru. Through several investigations (e.g. Schittek et al., 2014; Eitel and Mächtle, 2009) it is well known that during Paracas period changes in climate and environmental conditions take place. As a consequence, settlement patterns shifted several times through the various stages of Paracas time. Ceramics from three different sites (Jauranga, Cutamalla, Collanco) and temporal phases of the Paracas period are detailed archaeometric, geochemical and mineralogical characterized, e.g. Raman spectroscopy, XRD, and ICP-MS analyses. The aim of this research is to resolve potential differences in the chemical composition of the Paracas ceramics in space and time and to compare the data with the data sets of pre-Columbian environmental conditions. Thus influences of changing environmental conditions on human societies and their cultural conditions will be discussed. References Eitel, B. and Mächtle, B. 2009. Man and Environment in the eastern Atacama Desert (Southern Peru): Holocene climate changes and their impact on pre-Columbian cultures. In: Reindel, M. & Wagner, G. A. (eds.) New Technologies for Archaeology. Berlin Heidelberg: Springer-Verlag. Schittek, K., Mächtle, B., Schäbitz, F., Forbriger, M., Wennrich, V., Reindel, M., and Eitel, B.. Holocene environmental changes in the highlands of the southern Peruvian Andes (14° S) and their

  12. NF ISO 14064-2. Greenhouse gases. Part 2: specifications and guidance at the project level for quantification, monitoring and reporting of greenhouse gas emission reductions or removal enhancements

    International Nuclear Information System (INIS)

    2005-01-01

    This document describes methodology for quantification, monitoring and reporting of activities intended to cause greenhouse gas emissions and reductions at projects level (activity modifying the conditions identified in a baseline scenario, intended to reduce emissions or to increase the removal of greenhouse gases). Thus it suggests a method for the declarations of inventory of projects greenhouse gases and provides support for the monitoring and the management of emissions. It provides terms and definitions, principles, the introduction to greenhouse gases projects and the requirements for greenhouse gas projects. (A.L.B.)

  13. Nuclear power and the greenhouse effect

    International Nuclear Information System (INIS)

    Donaldson, D.M.; Tolland, H.G.

    1989-05-01

    Global levels of the ''Greenhouse'' gases - carbon dioxide, the chlorofluorocarbons (CFCs), methane, nitrous oxide and tropospheric ozone are increasing as a result of man's activities. This increase is widely expected to bring about a rise in global temperature with concomitant environmental impacts. Global warming has been observed over the last century, and the last decade has seen seven of the warmest years on record. There has also been increased variability in the weather (an expected consequence of global warming). However, these possible manifestations of the Greenhouse Effect are within natural variations and proof must await more definitive indications. A brief outline of current views on the Greenhouse Effect is given. This report addresses the energy sector using CO 2 emissions as a measure of its ''Greenhouse'' contribution. This approach understates the energy sector contribution. However, the difference is within the error band. It seems likely that the warming effect of non-energy related emissions will remain the same and there will be more pressure to reduce the emissions from the energy sector. To assess policy options the pattern of future energy demand is estimated. Two scenarios have been adopted to provide alternative frameworks. Both assume low energy growth projections based on increased energy efficiency. The role of nuclear power in reducing carbon dioxide emissions is considered. (author)

  14. The impact of environmental conditions on human performance: A handbood of environmental exposures. Volume 1

    International Nuclear Information System (INIS)

    Echeverria, D.; Barnes, V.; Bittner, A.

    1994-09-01

    A comprehensive review of the technical literature was conducted regarding the impact of environmental conditions on hyman performance applicable to nuclear power plant workers. The environmental conditions considered were vibration, noise, heat, cold, and light. Research staff identified potential human performance deficits (e.g., decreased dexterity, impaired vision, hearing loss, memory deficiency) along a continuum of increasing occupational exposure, ranging from exposures that result in no deficit to exposures that resulted in significant performance problems. Specific deficits were included in the report if there was sound scientific evidence that environmental exposure resulted in those performance deficits. The levels associated with each deficit were then compared to the protection afforded by existing occupational exposure standards. Volume 1 is a handbook for use by NRC inspectors to help them determine the impact of specific environmental conditions on licensee personnel performance. it discusses the units used to measure each condition, discusses the effects of the condition on task performance, presents an example of the assessment of each condition in a nuclear power plant, and discusses potential methods for reducing the effects of

  15. Quantifying costs and benefits of integrated environmental strategies of air quality management and greenhouse gas reduction in the Seoul Metropolitan Area

    Energy Technology Data Exchange (ETDEWEB)

    Chae, Yeora, E-mail: yrchae@kei.re.kr [Korea Environment Institute, 290 Jinheungno, Eunpyeong-Gu, Seoul 122-706 (Korea, Republic of); Park, Jeongim [Department of Environmental Health Science, Soonchunhyang University, Asan, Chungnam 336-745 (Korea, Republic of)

    2011-09-15

    This study quantifies the costs and benefits of Integrated Environmental Strategies (IES) of reducing air pollutants and greenhouse gas (GHG) emissions at a minimal cost in the Seoul Metropolitan Area (SMPA) for the year 2014 and compares with current air quality management plans and greenhouse gas (GHG) mitigation plans. The results estimated health benefits from prevention of premature mortality under the IES scenario as 14 trillion Korean won (won) and associated cost as -3.6 trillion won, yielding total benefit, difference of benefits and costs, of 18 trillion won. With the inclusion of benefits from GHG reductions, the total benefits result in 147 trillion won. The difference of human health benefits and costs of air quality management plan and GHG reduction strategies result in 14 trillion won and 8 trillion won, respectively. The research shows that benefits of integrating air quality management and GHG reduction measures are greater than those obtained by air quality management and GHG reduction measures individually. - Highlights: > The costs and benefits of Integrated Environmental Strategies (IES) are quantified.> Benefit under IES is 14 trillion Korean won and cost is -3.6 trillion won.> Benefit of air quality management is 14 trillion won and cost is -0.3 trillion won.> Benefit under GHG reduction is 1.5 trillion won and cost is -6.4 trillion won.> Benefits of IES are greater than those obtained by each measure individually.

  16. Greenhouse cooling using a rainwater basin under the greenhouse

    NARCIS (Netherlands)

    Campen, J.B.

    2006-01-01

    The objective of the study was to determine the technical and economical aspects of additional applications for a rainwater basin installed under a greenhouse. The installation for cooling the greenhouse can be placed under the greenhouse. Part of the installation consists of a short-term heat store

  17. Greenhouse Gas Emissions from Educational Facilities and the EPA Greenhouse Gas Reporting Rule: Actions You Need to Take Now

    Science.gov (United States)

    Wurmbrand, Mitchell M.; Klotz, Thomas C.

    2010-01-01

    On September 22, 2009, The United States Environmental Protection Agency (EPA) issued its final rule on greenhouse gas (GHG) emission reporting. The informational literature that EPA has published to support the rule clearly states that EPA believes the vast majority of smaller GHG-emitting facilities, such as educational facilities, will not be…

  18. Global Mitigation of Non-CO2 Greenhouse Gases - Data Annexes

    Data.gov (United States)

    U.S. Environmental Protection Agency — Marginal abatement curves (MAC) can be downloaded as data annexes to the Global Mitigation of Non-CO2 Greenhouse Gases report. This data allows for improved...

  19. Soil fertility management in organic greenhouses in Europe

    NARCIS (Netherlands)

    Tittatelli, Fabio; Bath, Brigitta; Ceglie, Francesco Giovanni; Garcia, M.C.; Moller, K.; Reents, H.J.; Vedie, Helene; Voogt, W.

    2016-01-01

    The management of soil fertility in organic greenhouse systems differs quite widely across Europe. The challenge is to identify and implement strategies which comply with the organic principles set out in (EC) Reg. 834/2007 and (EC) Reg. 889/2008 as well as supporting environmentally, socially and

  20. Gardening with Greenhouses

    Science.gov (United States)

    Keeler, Rusty

    2010-01-01

    Greenhouses come in all shapes, sizes, and price ranges: from simple hand-built plastic-covered frames to dazzling geodesic domes. Some child care centers install greenhouses as a part of their outdoor garden space. Other centers have incorporated a greenhouse into the building itself. Greenhouses provide a great opportunity for children to grow…

  1. Solar/Geothermal Saves Energy in Heating and Cooling of Greenhouses

    Science.gov (United States)

    Sanders, Matthew; Thompson, Mark; Sikorski, Yuri

    2010-04-01

    The steady increase in world population and problems associated with conventional agricultural practices demand changes in food production methods and capabilities. Locally grown food minimizes the transportation costs and gas emissions responsible for Global Warming. Greenhouses have the potential to be extremely ecologically friendly by greatly increasing yields per year and facilitating reduced pesticide use. Globally, there are 2.5 million acres of greenhouse cover, including 30,640 acres in North America. In Europe, greenhouses consume 10% of the total energy in agriculture. Most of that energy is utilized for heating. Heating and cooling amount to 35% of greenhouse production costs. This high percentage value can be partially attributed to currently poor insulation values. In moderate-to-cold climate zones, it can take up to 2,500 gallons of propane, currently costing around 5,000, to keep a 2,000 sq. ft. greenhouse producing all winter. Around 350 tons of CO2 per acre per year are released from these structures, contributing to global climate change. Reducing the energy needs of a greenhouse is the first step in saving money and the environment. Therefore, an efficient and environmentally friendly heating and cooling system selection is also crucial. After selecting appropriate energy sources, the next major concern in a greenhouse would be heat loss. Consequently, it is critically important to understand factors contributing to heat loss.

  2. Greener greenhouses

    Energy Technology Data Exchange (ETDEWEB)

    Paksoy, Halime; Turgut, Bekir; Beyhan, Beyza; Dasgan, H. Yildiz; Evliya, Hunay; Abak, Kazim; Bozdag, Saziye

    2010-09-15

    Agricultural greenhouses are solution to the increased demand for higher production yields, facilitating off season cultivation and allowing the growth of certain varieties in areas where it was not possible earlier. Heating and/or cooling system, required to maintain the inside micro-climate in greenhouses mostly rely on fossil fuels and/or electricity. This paper aims to discuss the 'greener' solutions for heating and cooling systems of greenhouses based on different thermal energy storage concepts. Results from a greenhouse Aquifer Thermal Energy Storage (ATES) application in Turkey producing tomatoes with zero fossil fuels and up to 40% higher yield are presented.

  3. Biofuels, land use change, and greenhouse gas emissions: some unexplored variables.

    Science.gov (United States)

    Kim, Hyungtae; Kim, Seungdo; Dale, Bruce E

    2009-02-01

    Greenhouse gas release from land use change (the so-called "carbon debt") has been identified as a potentially significant contributor to the environmental profile of biofuels. The time required for biofuels to overcome this carbon debt due to land use change and begin providing cumulative greenhouse gas benefits is referred to as the "payback period" and has been estimated to be 100-1000 years depending on the specific ecosystem involved in the land use change event. Two mechanisms for land use change exist: "direct" land use change, in which the land use change occurs as part of a specific supply chain for a specific biofuel production facility, and "indirect" land use change, in which market forces act to produce land use change in land that is not part of a specific biofuel supply chain, including, for example, hypothetical land use change on another continent. Existing land use change studies did not consider many of the potentially important variables that might affect the greenhouse gas emissions of biofuels. We examine here several variables that have not yet been addressed in land use change studies. Our analysis shows that cropping management is a key factor in estimating greenhouse gas emissions associated with land use change. Sustainable cropping management practices (no-till and no-till plus cover crops) reduce the payback period to 3 years for the grassland conversion case and to 14 years for the forest conversion case. It is significant that no-till and cover crop practices also yield higher soil organic carbon (SOC) levels in corn fields derived from former grasslands or forests than the SOC levels that result if these grasslands or forests are allowed to continue undisturbed. The United States currently does not hold any of its domestic industries responsible for its greenhouse gas emissions. Thus the greenhouse gas standards established for renewable fuels such as corn ethanol in the Energy Independence and Security Act (EISA) of 2007 set a

  4. Solar radiation inside greenhouses covered with semitransparent photovoltaic film: first experimental results

    Directory of Open Access Journals (Sweden)

    Alvaro Marucci

    2013-09-01

    Full Text Available The southern Italian regions are characterized by climatic conditions with high values of solar radiation and air temperature. This has allowed the spread of protected structures both as a defense against critical winter conditions both for growing off-season. The major energy source for these greenhouses is given by solar energy and artificial energy is used rarely. So the problem in the use of greenhouses in these areas, if anything, is opposite to that of the northern areas. In these places you must try to mitigate often the solar radiation inside the greenhouses with suitable measures or abandon for a few months the cultivation inside these structures. The solar radiation intercepted by passive means can be used for other purposes through the uptake and transformation by the photovoltaic panels whose use however is problematic due to complete opacity of the cells. New photosensitive materials partially transparent to solar radiation onto flexible media, allow to glimpse the possibility of using them to greenhouses cover, getting the dual effect of partially screen the greenhouse and use the surplus to generate electricity. The research was carried out to evaluate the possibility of using a flexible photovoltaic film realized by the University of Rome Tor Vergata (research group of ECOFLECS project coordinated by prof. Andrea Reale for covering greenhouses. Two greenhouses in small scale were built: one covered with photovoltaic film and one covered with EVA film for test. In both greenhouses during the first research period it was grown a variety of dwarf tomato. The research was carried out comparing the solar radiation that enters into greenhouse in the summer (August 2012 and in winter conditions (December 2012 in both greenhouses. The result show that the average ratio between the daily global solar radiation under the photovoltaic film and outside radiation is about 37%, while between the radiation under EVA film and outside radiation

  5. Greenhouse effect gases: reduction challenges and accounting methods

    International Nuclear Information System (INIS)

    Dumergues, Laurent

    2012-01-01

    In this article, the author first proposes an overview of strategic challenges related to the reduction of greenhouse gas emissions. He indicates and discusses the various economic consequences of climate change. These consequences can be environmental (issues ranging from a loss of biodiversity to agriculture), social (from climate refugees to tourism), and economic (from climate disasters to insurance). He focuses on the issue of energy (oil at the base of our economy, carbon contents) and discusses competition issues (an always more demanding regulation, and unavoidable practices). In the second part, he proposes an overview of methods of accounting of greenhouse effect gases, and discusses how to perform an emission inventory

  6. Quality manual for the Danish greenhouse gas inventory

    DEFF Research Database (Denmark)

    Nielsen, Ole-Kenneth; Plejdrup, Marlene Schmidt; Winther, Morten

    The report outlines the quality work undertaken by the emission inventory group at the Department of Environmental Science, Aarhus University in connection with the preparation and reporting of the Danish greenhouse gas inventory. The report updates and expands on the first version of the quality...... manual published in 2005. The report fulfils the mandatory requirements for a quality assurance/quality control (QA/QC) plan as lined out in the UNFCCC reporting guidelines and the specifications related to reporting under the Kyoto Protocol. The report describes all elements of the internal QC...... procedures as well as the QA and verification activities carried out in connection with the Danish greenhouse gas inventory....

  7. Deployment of a Fully-Automated Green Fluorescent Protein Imaging System in a High Arctic Autonomous Greenhouse

    Directory of Open Access Journals (Sweden)

    Alain Berinstain

    2013-03-01

    Full Text Available Higher plants are an integral part of strategies for sustained human presence in space. Space-based greenhouses have the potential to provide closed-loop recycling of oxygen, water and food. Plant monitoring systems with the capacity to remotely observe the condition of crops in real-time within these systems would permit operators to take immediate action to ensure optimum system yield and reliability. One such plant health monitoring technique involves the use of reporter genes driving fluorescent proteins as biological sensors of plant stress. In 2006 an initial prototype green fluorescent protein imager system was deployed at the Arthur Clarke Mars Greenhouse located in the Canadian High Arctic. This prototype demonstrated the advantageous of this biosensor technology and underscored the challenges in collecting and managing telemetric data from exigent environments. We present here the design and deployment of a second prototype imaging system deployed within and connected to the infrastructure of the Arthur Clarke Mars Greenhouse. This is the first imager to run autonomously for one year in the un-crewed greenhouse with command and control conducted through the greenhouse satellite control system. Images were saved locally in high resolution and sent telemetrically in low resolution. Imager hardware is described, including the custom designed LED growth light and fluorescent excitation light boards, filters, data acquisition and control system, and basic sensing and environmental control. Several critical lessons learned related to the hardware of small plant growth payloads are also elaborated.

  8. Deployment of a Fully-Automated Green Fluorescent Protein Imaging System in a High Arctic Autonomous Greenhouse

    Science.gov (United States)

    Abboud, Talal; Bamsey, Matthew; Paul, Anna-Lisa; Graham, Thomas; Braham, Stephen; Noumeir, Rita; Berinstain, Alain; Ferl, Robert

    2013-01-01

    Higher plants are an integral part of strategies for sustained human presence in space. Space-based greenhouses have the potential to provide closed-loop recycling of oxygen, water and food. Plant monitoring systems with the capacity to remotely observe the condition of crops in real-time within these systems would permit operators to take immediate action to ensure optimum system yield and reliability. One such plant health monitoring technique involves the use of reporter genes driving fluorescent proteins as biological sensors of plant stress. In 2006 an initial prototype green fluorescent protein imager system was deployed at the Arthur Clarke Mars Greenhouse located in the Canadian High Arctic. This prototype demonstrated the advantageous of this biosensor technology and underscored the challenges in collecting and managing telemetric data from exigent environments. We present here the design and deployment of a second prototype imaging system deployed within and connected to the infrastructure of the Arthur Clarke Mars Greenhouse. This is the first imager to run autonomously for one year in the un-crewed greenhouse with command and control conducted through the greenhouse satellite control system. Images were saved locally in high resolution and sent telemetrically in low resolution. Imager hardware is described, including the custom designed LED growth light and fluorescent excitation light boards, filters, data acquisition and control system, and basic sensing and environmental control. Several critical lessons learned related to the hardware of small plant growth payloads are also elaborated. PMID:23486220

  9. Economic Sustainability of Italian Greenhouse Cherry Tomato

    Directory of Open Access Journals (Sweden)

    Riccardo Testa

    2014-11-01

    Full Text Available Greenhouse tomato cultivation plays an important role in Sicily, being the primary production area in Italy, due to its favorable pedo-climatic conditions that permit extra-seasonal productions. In Sicily, more than half of greenhouse tomato production is derived from the Province of Ragusa on the southeastern coast, where especially cherry tomato typologies are cultivated. Over the last decade, the Ragusa Province has registered a decrease both in terms of greenhouse tomato area and harvested production due to several structural problems that would require restructuring of the tomato supply chain. Thus, since recognition of real costs and profitability of tomato growing is a vital issue, both from the perspective of the farm, as well as from that of the entrepreneur, the aim of this paper was to analyze the economic sustainability of Sicilian greenhouse cherry tomato cultivated in the Ragusa Province. In particular, an economic analysis on 30 representative farms was conducted in order to estimate production costs and profits of greenhouse cherry tomato. According to our results, the lack of commercial organization, which characterizes the small farms we surveyed, determines low contractual power for farmers and, consequently, low profitability.

  10. Potential Greenhouse Gas Emissions Reductions from Optimizing Urban Transit Networks

    Science.gov (United States)

    2016-05-01

    Public transit systems with efficient designs and operating plans can reduce greenhouse gas (GHG) emissions relative to low-occupancy transportation modes, but many current transit systems have not been designed to reduce environmental impacts. This ...

  11. Evaluation of Antagonistic of the some Fungal isolates on Golden Potato Cyst Nematode (Globoderarostochiensis in vitro and Greenhouse Conditions in Hamedan Province

    Directory of Open Access Journals (Sweden)

    Kh. Abbasi

    2017-12-01

    Full Text Available Introduction:Potato (Solanumtuberosum is one of the most important crops used as a source of human food. Iran is the third-largest producer of potato in Asia, where the production rate in 2015 was estimated to be about 5 million tonnes. Potato producers inHamedan province produce 21.3% oftotal potato harvestedinIran. Golden potato cyst nematode, Globoderarostochiensis is the most destructive potato pathogen. As the chitin is a dominant composition in middle layer of the eggshell, using the chitinases produced as chitin-degrading enzymes in a wide range of fungiis a good strategy for biological control of the golden potato cyst nematode. We assessedthe ability of various antagonistic fungi to control Globoderarostochiensisunder in vitro and greenhouse conditions. Materials and Methods: Thirty four fungal isolates obtained from infected eggs of the potato cyst nematode, Globoderarostochiensisin potato fieldsofHamedan were evaluated in two chitin-agar and water-agar mediums under in vitro and greenhouse conditions.The ability of thechitinase enzyme production was assessedin chitin-agar medium with colloidal chitin as substrate, so the chitin was used as exclusive source of carbon.Colloidal chitin was prepared based onthe procedure of Seyedasliet al. (2004 with 10 g of powder chitin from practical-grade crab shell chitin (Sigma in 100 ml of 85% H3PO4. Water was added to the above mixtureand was filtered with cheese cloth. To completely remove acid, water addition and filtrationrepeated for several times. The produced unguent materialwas dried and powdered and then used as carbon source in the medium. 0.5 percent of colloidal chitin was added to the medium. Afterwards, a 5 mm disk from the edges of 5days old was placed in the center of Petridish and all of them were kept for 5 days at 25º C. Chitinase detection medium (chitin-agar was directly supplemented with colloidal chitin (5 g/l and bromocresol purple (0.15 g/l. The ability of antagonistic

  12. Temperature Simulation of Greenhouse with CFD Methods and Optimal Sensor Placement

    OpenAIRE

    Yanzheng Liu; Jing Chen; Yazhou Lv; Xiaojie Li

    2014-01-01

    The accuracy of information monitoring is significant to increase the effect of Greenhouse Environment Control. In this paper, by taking simulation for the temperature field in the greenhouse as an example, the CFD (Computational Fluid Dynamics) simulation model for measuring the microclimate environment of greenhouse with the principle of thermal environment formation was established, and the temperature distributions under the condition of mechanical ventilation was also simulated. The resu...

  13. A Monitoring System for Vegetable Greenhouses based on a Wireless Sensor Network

    Science.gov (United States)

    Li, Xiu-hong; Cheng, Xiao; Yan, Ke; Gong, Peng

    2010-01-01

    A wireless sensor network-based automatic monitoring system is designed for monitoring the life conditions of greenhouse vegetatables. The complete system architecture includes a group of sensor nodes, a base station, and an internet data center. For the design of wireless sensor node, the JN5139 micro-processor is adopted as the core component and the Zigbee protocol is used for wireless communication between nodes. With an ARM7 microprocessor and embedded ZKOS operating system, a proprietary gateway node is developed to achieve data influx, screen display, system configuration and GPRS based remote data forwarding. Through a Client/Server mode the management software for remote data center achieves real-time data distribution and time-series analysis. Besides, a GSM-short-message-based interface is developed for sending real-time environmental measurements, and for alarming when a measurement is beyond some pre-defined threshold. The whole system has been tested for over one year and satisfactory results have been observed, which indicate that this system is very useful for greenhouse environment monitoring. PMID:22163391

  14. Greenhouse effect: effects on refrigerating and air conditioning industries; Effet de serre: impacts sur les professions du froid et de la climatisation

    Energy Technology Data Exchange (ETDEWEB)

    Le Boru, B. [Association Francaise de Froid, Alliance Froid Climatisation Environnement, 75 - Paris (France)

    1997-12-31

    The various factors (refrigerant characteristics, design and operating performance, insulation type, etc.) involved in greenhouse gas emission from refrigerating and air conditioning equipment are listed with the potential actions that may be taken at the different stages of equipment design, engineering, installation, operation, maintenance and dismantling, in order to reduce pollutant emissions

  15. Evaluation of a hybrid system for a nearly zero energy greenhouse

    International Nuclear Information System (INIS)

    Yildirim, Nurdan; Bilir, Levent

    2017-01-01

    Highlights: • A nearly zero energy greenhouse concept was foreseen for three products. • A hybrid system with photovoltaics and a ground source heat pump was evaluated. • Annual photovoltaics electricity generation was found as 21510.4 kWh. • Yearly coverage ratio values were determined between 86.8% and 104.5%. • Economic and environmental analyses were also conducted. - Abstract: Greenhouses are widely used in the World, especially in the Mediterranean climate, to provide suitable environment in cultivation of different agricultural crops. Significant amount of energy is necessary to produce, process and distribute these crops. Various systems, including steam or hot water radiation system and hot air heater system, are being used in greenhouse heating. A ground source heat pump system, generally seen as a favorable option since it can provide both heating and cooling energy, is considered for a greenhouse in this study. The aim of this study is to evaluate a renewable energy option for the required total energy need of a greenhouse. Grid connected solar photovoltaic panels are selected to assist a ground source heat pump, and generate sufficient electrical energy for lighting. In this way, a nearly zero energy greenhouse concept is foreseen for three different agricultural products. Monthly and annual heating, cooling and lighting energy load of the greenhouse for these agricultural products were computed. The monthly average electricity generation of 66 photovoltaic panels, which cover 50% of the southern face part of the asymmetric roof, was calculated. Annual photovoltaic electricity generation was found as 21510.4 kWh. It was observed that photovoltaic electricity generation can meet 33.2–67.2% of greenhouse demand in summer operation months. Nevertheless, the coverage ratio, calculated by dividing the photovoltaic panels electricity generation to the electricity demand of the greenhouse (heating, cooling and lighting) for each crop, were very

  16. Global climate: Methane contribution to greenhouse effect

    International Nuclear Information System (INIS)

    Metalli, P.

    1992-01-01

    The global atmospheric concentration of methane greatly contributes to the severity of the greenhouse effect. It has been estimated that this concentration, due mainly to human activities, is growing at the rate of roughly 1.1% per year. Environmental scientists suggest that a reduction, even as small as 10%, in global methane emissions would be enough to curtail the hypothetical global warning scenarios forecasted for the up-coming century. Through the recovery of methane from municipal and farm wastes, as well as, through the control of methane leaks and dispersions in coal mining and petrochemical processes, substantial progress towards the abatement of greenhouse gas effects could be achieved without having to resort to economically detrimental limitations on the use of fossil fuels

  17. Is the greenhouse effect proving a pitfall in France?

    International Nuclear Information System (INIS)

    Godard, O.

    1998-01-01

    After Rio and Kyoto, the Buenos-Aires environmental summit comes nearer. The agreements to reduce the production of greenhouse effect gases have failed. The next step might be negotiable and transferable licences with the setting of a quota system. The discussions are expected to be difficult. This new compelling regulation could force some industrial countries to introduce green fiscal reforms. France with its 75% energy coming from nuclear plants has a reduced margin to manage. France cannot accept to be deprived of its right to abandon nuclear energy because of the imposed no-rising of greenhouse effect gases production. (A.C.)

  18. Strategies to Reduce Greenhouse Gas Emissions from Laparoscopic Surgery.

    Science.gov (United States)

    Thiel, Cassandra L; Woods, Noe C; Bilec, Melissa M

    2018-04-01

    To determine the carbon footprint of various sustainability interventions used for laparoscopic hysterectomy. We designed interventions for laparoscopic hysterectomy from approaches that sustainable health care organizations advocate. We used a hybrid environmental life cycle assessment framework to estimate greenhouse gas emissions from the proposed interventions. We conducted the study from September 2015 to December 2016 at the University of Pittsburgh (Pittsburgh, Pennsylvania). The largest carbon footprint savings came from selecting specific anesthetic gases and minimizing the materials used in surgery. Energy-related interventions resulted in a 10% reduction in carbon footprint per case but would result in larger savings for the whole facility. Commonly implemented approaches, such as recycling surgical waste, resulted in less than a 5% reduction in greenhouse gases. To reduce the environmental emissions of surgeries, health care providers need to implement a combination of approaches, including minimizing materials, moving away from certain heat-trapping anesthetic gases, maximizing instrument reuse or single-use device reprocessing, and reducing off-hour energy use in the operating room. These strategies can reduce the carbon footprint of an average laparoscopic hysterectomy by up to 80%. Recycling alone does very little to reduce environmental footprint. Public Health Implications. Health care services are a major source of environmental emissions and reducing their carbon footprint would improve environmental and human health. Facilities seeking to reduce environmental footprint should take a comprehensive systems approach to find safe and effective interventions and should identify and address policy barriers to implementing more sustainable practices.

  19. Seedling growth in greenhouse conditions of the forest species Dialium guianense (Aubl. Sandwith

    Directory of Open Access Journals (Sweden)

    Georgina Vargas Simon

    2018-01-01

    Full Text Available Dialium guianense is used for its wood and fruit production, and is a tropical tree species native to evergreen forests. Given the threat these forests face, the purpose of this work was to evaluate the initial growth of the plant under greenhouse conditions, for aiming in the development of propagation programs. Seedlings of the species were transplanted to nursery bags under a completely randomized design and grown for 10 months with an initial population of 200 plants. At the end of the experiment, the shoot and root reached lengths of 32.8 and 28.9 cm, respectively. The average number of composite leaves was 12.3 each with seven leaflets. The average biomass was 2.5 g for the shoot, 1.6 g for roots, and 3.7 g for leaves, with a shoot/root around four. The average relative growth rate (RGR was 15 mg g-1 day-. These characteristics indicate that D. guianense is a late successional species.

  20. Global Anthropogenic Emissions of Non-CO2 Greenhouse Gases 1990-2020

    Data.gov (United States)

    U.S. Environmental Protection Agency — The data in these Appendices to the Global Anthropogenic Emissions of Non-CO2 Greenhouse Gases (1990-2020) report provide historical and projected estimates of...

  1. The climatic warming up (the greenhouse effect); Le rechauffement climatique (l'effet de serre)

    Energy Technology Data Exchange (ETDEWEB)

    Jancovici, J M; Jouzel, J [CEA Saclay, Lab. des Sciences du Climat et de l' Environnement, 91 - Gif-sur-Yvette (France); Lorius, C [Centre National de la Recherche Scientifique (CNRS), Lab. de Glaciologie et Geophysique de l' Environnement, 38 - Grenoble (France); and others

    2000-05-01

    Facing the environmental and biological impacts of the climatic warming up, scientists and economists organized a debate on the subject. After a theoretical presentation of the greenhouse effect and the greenhouse gases, the climatic changes are discussed and simulation of the effects are presented. The today effects and tomorrow impacts on the agriculture and the public health are also presented. A synthesis is proposed to discuss the contribution of the energy policy and of the technological progress in measures of greenhouse effect control. (A.L.B.)

  2. Optimum returns from greenhouse vegetables under water quality and risk constraints in the United Arab Emirates

    Science.gov (United States)

    Greenhouses have been used in the United Arab Emirates (UAE) to produce vegetables that contribute toward UAE food security, including offering fresh vegetable produce in the off-season. However, to manage such greenhouses farmers face both technical and environmental limitations (i.e., high water s...

  3. 75 FR 25323 - Light-Duty Vehicle Greenhouse Gas Emission Standards and Corporate Average Fuel Economy Standards...

    Science.gov (United States)

    2010-05-07

    ... Greenhouse Gas Emission Standards and Corporate Average Fuel Economy Standards; Final Rule #0;#0;Federal... Fuel Economy Standards; Final Rule AGENCY: Environmental Protection Agency (EPA) and National Highway... reduce greenhouse gas emissions and improve fuel economy. This joint Final Rule is consistent with the...

  4. Quantifying costs and benefits of integrated environmental strategies of air quality management and greenhouse gas reduction in the Seoul Metropolitan Area

    International Nuclear Information System (INIS)

    Chae, Yeora; Park, Jeongim

    2011-01-01

    This study quantifies the costs and benefits of Integrated Environmental Strategies (IES) of reducing air pollutants and greenhouse gas (GHG) emissions at a minimal cost in the Seoul Metropolitan Area (SMPA) for the year 2014 and compares with current air quality management plans and greenhouse gas (GHG) mitigation plans. The results estimated health benefits from prevention of premature mortality under the IES scenario as 14 trillion Korean won (won) and associated cost as -3.6 trillion won, yielding total benefit, difference of benefits and costs, of 18 trillion won. With the inclusion of benefits from GHG reductions, the total benefits result in 147 trillion won. The difference of human health benefits and costs of air quality management plan and GHG reduction strategies result in 14 trillion won and 8 trillion won, respectively. The research shows that benefits of integrating air quality management and GHG reduction measures are greater than those obtained by air quality management and GHG reduction measures individually. - Highlights: → The costs and benefits of Integrated Environmental Strategies (IES) are quantified.→ Benefit under IES is 14 trillion Korean won and cost is -3.6 trillion won.→ Benefit of air quality management is 14 trillion won and cost is -0.3 trillion won.→ Benefit under GHG reduction is 1.5 trillion won and cost is -6.4 trillion won.→ Benefits of IES are greater than those obtained by each measure individually.

  5. 75 FR 18575 - Mandatory Reporting of Greenhouse Gases: Injection and Geologic Sequestration of Carbon Dioxide

    Science.gov (United States)

    2010-04-12

    ... suppliers, industrial gas suppliers, and direct emitters of GHGs. The rule does not require the control of... Part II Environmental Protection Agency 40 CFR Part 98 Mandatory Reporting of Greenhouse Gases... CFR Part 98 [EPA-HQ-OAR-2009-0926; FRL-9131-2] RIN 2060-AP88 Mandatory Reporting of Greenhouse Gases...

  6. Will malaria return to Europe under the greenhouse effect?

    NARCIS (Netherlands)

    Takken, W.; Wege, van de J.; Jetten, T.H.

    1995-01-01

    Malaria risk is determined by environmental and socio-economic factors. The predicted climate change under the greenhouse effect is likely to affect the epidemic potential of malaria due to a change in vector mosquito phenology and distribution. This effect was simulated using a computer model

  7. Irrigation water consumption modelling of a soilless cucumber crop under specific greenhouse conditions in a humid tropical climate

    Directory of Open Access Journals (Sweden)

    Galo Alberto Salcedo

    Full Text Available ABSTRACT: The irrigation water consumption of a soilless cucumber crop under greenhouse conditions in a humid tropical climate has been evaluated in this paper in order to improve the irrigation water and fertilizers management in these specific conditions. For this purpose, a field experiment was conducted. Two trials were carried out during the years 2011 and 2014 in an experimental farm located in Vinces (Ecuador. In each trial, the complete growing cycle of a cucumber crop grown under a greenhouse was evaluated. Crop development was monitored and a good fit to a sigmoidal Gompertz type growth function was reported. The daily water uptake of the crop was measured and related to the most relevant indoor climate variables. Two different combination methods, namely the Penman-Monteith equation and the Baille equation, were applied. However, the results obtained with these combination methods were not satisfactory due to the poor correlation between the climatic variables, especially the incoming radiation, and the crop's water uptake (WU. On contrary, a good correlation was reported between the crop's water uptake and the leaf area index (LAI, especially in the initial crop stages. However, when the crop is fully developed, the WU stabilizes and becomes independent from the LAI. A preliminary model to simulate the water uptake of the crop was adjusted using the data obtained in the first experiment and then validated with the data of the second experiment.

  8. Applied machine learning in greenhouse simulation; new application and analysis

    Directory of Open Access Journals (Sweden)

    Morteza Taki

    2018-06-01

    Full Text Available Prediction the inside environment variables in greenhouses is very important because they play a vital role in greenhouse cultivation and energy lost especially in cold and hot regions. The greenhouse environment is an uncertain nonlinear system which classical modeling methods have some problems to solve it. So the main goal of this study is to select the best method between Artificial Neural Network (ANN and Support Vector Machine (SVM to estimate three different variables include inside air, soil and plant temperatures (Ta, Ts, Tp and also energy exchange in a polyethylene greenhouse in Shahreza city, Isfahan province, Iran. The environmental factors which influencing all the inside temperatures such as outside air temperature, wind speed and outside solar radiation were collected as data samples. In this research, 13 different training algorithms were used for ANN models (MLP-RBF. Based on K-fold cross validation and Randomized Complete Block (RCB methodology, the best model was selected. The results showed that the type of training algorithm and kernel function are very important factors in ANN (RBF and MLP and SVM models performance, respectively. Comparing RBF, MLP and SVM models showed that the performance of RBF to predict Ta, Tp and Ts variables is better according to small values of RMSE and MAPE and large value of R2 indices. The range of RMSE and MAPE factors for RBF model to predict Ta, Tp and Ts were between 0.07 and 0.12 °C and 0.28–0.50%, respectively. Generalizability and stability of the RBF model with 5-fold cross validation analysis showed that this method can use with small size of data groups. The performance of best model (RBF to estimate the energy lost and exchange in the greenhouse with heat transfer models showed that this method can estimate the real data in greenhouse and then predict the energy lost and exchange with high accuracy. Keywords: Black box method, Energy lost, Environmental situation, Energy

  9. Nonlinear adaptive PID control for greenhouse environment based on RBF network.

    Science.gov (United States)

    Zeng, Songwei; Hu, Haigen; Xu, Lihong; Li, Guanghui

    2012-01-01

    This paper presents a hybrid control strategy, combining Radial Basis Function (RBF) network with conventional proportional, integral, and derivative (PID) controllers, for the greenhouse climate control. A model of nonlinear conservation laws of enthalpy and matter between numerous system variables affecting the greenhouse climate is formulated. RBF network is used to tune and identify all PID gain parameters online and adaptively. The presented Neuro-PID control scheme is validated through simulations of set-point tracking and disturbance rejection. We compare the proposed adaptive online tuning method with the offline tuning scheme that employs Genetic Algorithm (GA) to search the optimal gain parameters. The results show that the proposed strategy has good adaptability, strong robustness and real-time performance while achieving satisfactory control performance for the complex and nonlinear greenhouse climate control system, and it may provide a valuable reference to formulate environmental control strategies for actual application in greenhouse production.

  10. Environmental, health and economic conditions perceived by 50 rural communities in Bangladesh.

    Science.gov (United States)

    Ohtsuka, Ryutaro; Inaoka, Tsukasa; Moji, Kazuhiko; Karim, Enamul; Yoshinaga, Mari

    2002-12-01

    For randomly selected 50 villages in Bangladesh, an interview survey with a structured questionnaire was conducted to reveal their perception on the environmental, health and economic conditions at present and for the past 10-year change. The eight following items were analyzed in this paper: air pollution and water pollution, which represent environmental conditions with close relation to health conditions, soil degradation and deforestation, which represent environmental conditions with close relation to economic conditions, epidemic diseases and malnutrition, which represent health conditions, and poverty and jobless, which represent economic conditions. Among the 50 villages, deforestation was most frequently perceived serious at present and worsened in the past 10 years. Of the remaining seven items, those related to economic conditions were more seriously perceived than those related to health and environmental conditions. As revealed by the cluster analysis for the inter-item relations, epidemic diseases, which formed the same cluster with the environmental items, were recognized less serious whereas malnutrition, which formed the same cluster with the economic items, was recognized more serious. These findings are useful not only for rural development programs but also for mitigation programs toward health and environmental hazards in Bangladesh.

  11. REDUCING GREENHOUSE GAS EMISSIONS AND THE INFLUENCES ON ECONOMIC DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    ANGHELUȚĂ PETRICĂ SORIN

    2016-06-01

    Full Text Available In the recent years, there has been observed a degradation of the environment. This has negative effects on human activities. Besides the influence of the environment on people, also the economic crisis had a negative contribution. The imbalances manifested in the environment influence the economic systems. This article presents an analysis of the greenhouse gas emissions. Also, there is a link between the greenhouse gas emissions and the economic development. In the situation in which the environmental pollution is increasingly affecting humanity, the transition to an economy with reduced greenhouse gas emissions appears to be a viable solution. This transition provides a number of opportunities, as well. Therefore, one of these opportunities is the one related to the employment. In this regard, retraining people working in polluting industries is very important

  12. A study of indoor radon in greenhouses in Mexico City, Mexico

    International Nuclear Information System (INIS)

    Guillermo Espinosa; Allan Chavarria; Jose-Ignacio Golzarri

    2013-01-01

    Enclosed spaces in contact with soil, the main source of radon, like greenhouses have potentially high radon ( 222 Rn) concentrations. Greenhouses are frequented by visitors and also are workplaces. The study of radon concentrations in greenhouses is, thus, a relevant concern for public health and environmental radiation authorities. For this study, the radon concentrations in 12 greenhouses in different locations within Mexico City were measured using nuclear track methodology. The detectors used for the study consisted of the well-known closed-end cup device, with CR-39 Lantrack R as detector material. The measurements were carried out over a period of one year, divided into four three-month sub-periods. The lowest and highest annual mean radon concentrations found in individual greenhouses were 17.0 and 45.1 Bq/m 3 , respectively. The annual mean averaged over all 12 greenhouses was 27.3 Bq/m 3 . No significant seasonal variation was observed. Using the highest annual mean radon concentration found in an individual greenhouse, and an equilibrium factor of 0.4, the effective dose from 222 Rn and its progenies was calculated to be 339.9 nSv/h. This corresponds to an annual dose rate of 679.8 μSv/y (0.057 WLM/y) for a worker spending 4 h a day, 5 days a week, 50 weeks a year, inside the greenhouse. For a visitor spending 12 h a year inside the greenhouse the annual dose is 2.469 μSv/y. The study of indoor radon concentrations in closed buildings such as greenhouses, which are both workplaces and open to visitors, is an important public health consideration. (author)

  13. Environmental policy: Meeting the challenge of global warming

    International Nuclear Information System (INIS)

    Gotzaman, P.

    1990-01-01

    The Canadian government's overall approach to resolving the environmental problems due to global warming is discussed, with reference to how this approach is related to actions taken by other countries. Canada's environmental strategy is based the need to correct the failure to take into account the environmental consequences of daily actions. One element seen necessary for such correction, better environmental decisionmaking, is underlain by such key factors as the need to provide a strong scientific base on which to make decisions, resolving uncertainties regarding the greenhouse effect, and an environmentally educated population. Direct governmental measures can be taken to factor environmental considerations into decisions, such as regulatory instruments regarding the environment and economic incentives to encourage taking the environment into account. With respect to global warming, Canada has signed the Hague Declaration on international cooperation to reduce greenhouse gas emissions. About half the annual world emissions of greenhouse gases come from fossil fuel combustion. Canada is the fourth largest producer per capita of the single most important greenhouse gas, carbon dioxide. The transport and industrial sectors each account for ca 25% of Canada's CO 2 emissions, and energy conservation is seen as a first step in reducing these emissions. The greatest scope for reducing greenhouse gas emissions in the transport sector appears to lie in the development of convenient and economic alternate fuels

  14. Optimal CO2 Enrichment Considering Emission from Soil for Cucumber Greenhouses

    International Nuclear Information System (INIS)

    Lee, D.H.; Lee, K.S.; Cho, Y.J.; Kim, H.J.; Choi, J.M.; Chung, S.O.

    2012-01-01

    Reducing carbon dioxide (CO2) exhaust has become a major issue for society in the last few years, especially since the initial release of the Kyoto Protocol in 1997 that strictly limited the emissions of greenhouse gas for each country. One of the primary sectors affecting the levels of atmospheric greenhouse gases is agriculture where CO2 is not only consumed by plants but also produced from various types of soil and agricultural ecosystems including greenhouses. In greenhouse cultivation, CO2 concentration plays an essential role in the photosynthesis process of crops. Optimum control of greenhouse CO2 enrichment based on accurate monitoring of the added CO2 can improve profitability through efficient crop production and reduce environmental impact, compared to traditional management practices. In this study, a sensor-based control system that could estimate the required CO2 concentration considering emission from soil for cucumber greenhouses was developed and evaluated. The relative profitability index (RPI) was defined by the ratio of growth rate to supplied CO2. RPI for a greenhouse controlled at lower set point of CO2 concentration (500 μmol * mol -1 ) was greater than that of greenhouse at higher set point (800 μmol * mol -1 ). Evaluation tests to optimize CO2 enrichment concluded that the developed control system would be applicable not only to minimize over-exhaust of CO2 but also to maintain the crop profitability

  15. Environmental Learning in Online Social Networks: Adopting Environmentally Responsible Behaviors

    Science.gov (United States)

    Robelia, Beth A.; Greenhow, Christine; Burton, Lisa

    2011-01-01

    Online social networks are increasingly important information and communication tools for young people and for the environmental movement. Networks may provide the motivation for young adults to increase environmental behaviors by increasing their knowledge of environmental issues and of the specific actions they can take to reduce greenhouse gas…

  16. Full Scale Bioreactor Landfill for Carbon Sequestration and Greenhouse Emission Control

    Energy Technology Data Exchange (ETDEWEB)

    Ramin Yazdani; Jeff Kieffer; Kathy Sananikone; Don Augenstein

    2005-03-30

    The Yolo County Department of Planning and Public Works constructed a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective was to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon sequestration and greenhouse emission control. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes of air. The first phase of the project entailed the construction of a 12-acre module that contained a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells were highly instrumented to monitor bioreactor performance. Liquid addition commenced in the 3.5-acre anaerobic cell and the 6-acre anaerobic cell. Construction of the 2.5-acre aerobic cell and biofilter has been completed. The current project status and preliminary monitoring results are summarized in this report.

  17. Limiting net greenhouse gas emissions in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, R A; Watts, E C; Williams, E R [eds.

    1991-09-01

    In 2988 the Congress requested DOE produce a study on carbon dioxide inventory and policy to provide an inventory of emissions sources and to analyze policies to achieve a 20% reduction in carbon dioxide emissions in 5 to 10 years and a 50% reduction in 15 to 20 years. This report presents the results of that study. Energy and environmental technology data were analyzed using computational analysis models. This information was then evaluated, drawing on current scientific understanding of global climate change, the possible consequences of anthropogenic climate change (change caused by human activity), and the relationship between energy production and use and the emission of radiactively important gases. Topics discussed include: energy and environmental technology to reduce greenhouse gas emissions, fossil energy production and electricity generation technologies, nuclear energy technology, renewable energy technologies, energy storage, transmission, and distribution technology, transportation, technology, industrial technology, residential and commercial building technology, greenhouse gas removal technology, approaches to restructuring the demand for energy.

  18. Introduction of a Greenhouse as an Alternative Housing System to a Conventional House and Its Impact on Broiler Performance and Blood and Carcass Variables

    Directory of Open Access Journals (Sweden)

    Khajali F

    2013-01-01

    Full Text Available A study was conducted to compare the growth performance as well as blood and carcass variables of two broiler strains reared in a conventional broiler house and a modified greenhouse equipped with cooling pads and tunnel ventilation system. Eight hundred day-old chickens of two commercial strains (Ross  308 and Lohmann were selected and placed in  8 floor pens (4 pens of  50 broilers for each strain in each housing system. The pens were located randomly throughout the modified greenhouse or the conventional broiler house (two-way ANOVA design. The broilers were provided a standard starter and grower diets  ad libitum. The environmental conditions (i.e.  temperature, relative humidity, lighting program and ventilation rate were kept  similar between the two houses. The results showed that the birds in the greenhouse consumed significantly (P

  19. Factors Affecting Pathogen Survival in Finished Dairy Compost with Different Particle Sizes Under Greenhouse Conditions.

    Science.gov (United States)

    Diao, Junshu; Chen, Zhao; Gong, Chao; Jiang, Xiuping

    2015-09-01

    This study investigated the survival of Escherichia coli O157:H7 and Salmonella Typhimurium in finished dairy compost with different particle sizes during storage as affected by moisture content and temperature under greenhouse conditions. The mixture of E. coli O157:H7 and S. Typhimurium strains was inoculated into the finished composts with moisture contents of 20, 30, and 40%, separately. The finished compost samples were then sieved into 3 different particle sizes (>1000, 500-1000, and 500 μm) and stored under greenhouse conditions. For compost samples with moisture contents of 20 and 30%, the average Salmonella reductions in compost samples with particle sizes of >1000, 500-1000, and 500 μm were 2.15, 2.27, and 2.47 log colony-forming units (CFU) g(-1) within 5 days of storage in summer, respectively, as compared with 1.60, 2.03, and 2.26 log CFU g(-1) in late fall, respectively, and 2.61, 3.33, and 3.67 log CFU g(-1) in winter, respectively. The average E. coli O157:H7 reductions in compost samples with particle sizes of >1000, 500-1000, and 500 μm were 1.98, 2.30, and 2.54 log CFU g(-1) within 5 days of storage in summer, respectively, as compared with 1.70, 2.56, and 2.90 log CFU g(-1) in winter, respectively. Our results revealed that both Salmonella and E. coli O157:H7 in compost samples with larger particle size survived better than those with smaller particle sizes, and the initial rapid moisture loss in compost may contribute to the fast inactivation of pathogens in the finished compost. For the same season, the pathogens in the compost samples with the same particle size survived much better at the initial moisture content of 20% compared to 40%.

  20. The greenhouse effect, v. 15(59)

    International Nuclear Information System (INIS)

    Tsitsonkov, Risto

    2007-01-01

    An explanation for the greenhouse effect, i.e. global warning and reasons which contribute to this effect. Greenhouse gases (GHG) and GWP (Global Warning Potential) as a factor for estimating their contributing on the greenhouse effect. Indicators of the climate change in the previous period and projecting of likely scenarios for the future. Consequences on the environment and human activities: industry, energy, agriculture, water resource. The main lines of the Kyoto Protocols and problems in its realization. Suggestions to the country strategy concerning to the acts of the Kyoto Protocol. A special attention is pointed out on the energy, its recourse, the structure of energy consumption and energy efficiency. Main sectors of the energy efficiency: buildings, industry and transport. Buildings: importance of heat insulation. District heating, suggestions for space heating. Heat pumps and CHP. Air conditioning and refrigeration. Industry: process heating, and integrated energy system, heat recovery, refrigeration, compressed air. Need of quality maintenance and servicing. Monitoring and automatic control. Education for energy and its saving. (Author)

  1. The greenhouse effect, v. 15(58)

    International Nuclear Information System (INIS)

    Tsitsonkov, Risto

    2007-01-01

    An explanation for the greenhouse effect, i.e. global warning and reasons which contribute to this effect. Greenhouse gases (GHG) and GWP (Global Warning Potential) as a factor for estimating their contributing on the greenhouse effect. Indicators of the climate change in the previous period and projecting of likely scenarios for the future. Consequences on the environment and human activities: industry, energy, agriculture, water resource. The main lines of the Kyoto Protocols and problems in its realization. Suggestions to the country strategy concerning to the acts of the Kyoto Protocol. A special attention is pointed out on the energy, its recourse, the structure of energy consumption and energy efficiency. Main sectors of the energy efficiency: buildings, industry and transport. Buildings: importance of heat insulation. District heating, suggestions for space heating. Heat pumps and CHP. Air conditioning and refrigeration. Industry: process heating, and integrated energy system, heat recovery, refrigeration, compressed air. Need of quality maintenance and servicing. Monitoring and automatic control. Education for energy and its saving. (Author)

  2. Harmful potential toxic elements in greenhouse soils under long-term cultivation in Almería (Spain)

    Science.gov (United States)

    Joaquin Ramos-Miras, Jose; Rodríguez Martín, Jose Antonio; Boluda, Rafael; Bech, Jaume; Gil, Carlos

    2014-05-01

    Heavy metals (HM) are considered highly significant environmental contaminants and are the object of many scientific research works into the soil environment. Activities like agriculture or industry can increase the concentration of these contaminants in soils and waters, which can affect the food chain. Intensification of certain agricultural practices, constant and excessive use of fertilizers and phytosanitary products, and using machinery, increase the HM content in agricultural soils. Many studies have dealt with HM accumulation over time. Despite these works, the influence of long periods of time on these contents, the dynamics and evolution of these elements in agricultural soils, especially soils used for intensive farming purposes under greenhouse conditions, remain unknown to a certain extent. The western Almería region (Spain) is a very important area from both the socio-economic and agricultural viewpoints. A common practice in greenhouse agriculture is the addition of agrochemicals to soils and crops to improve nutrient supply or crop protection and disease control. Such intense agricultural activity has a strong impact, which may have negative repercussions on both these greenhouse soils and the environment. A research has been carried out to determine the total and available levels of six harmful potentially toxic elements (Cd, Cu, Pb, Ni, Zn and Co), and to assess long-term variations in the greenhouse soils of western Almeria. The results indicate that managing soils in the greenhouse preparation stage determines major changes in total and available HM contents. Furthermore, Cd, Cu and Pb enrichment in soil was observed depending on the element and years of growth.

  3. Greenhouse gas emission controls : differentiated vs. flat rate targets : impacts and concerts

    International Nuclear Information System (INIS)

    Heydanek, D.

    1997-01-01

    Continuing the discussion on differentiation in greenhouse gas emission targets and timetables for all nations, the different implications of differentiation vs. flat rate controls were examined. A scenario of how different targets for different countries based on national circumstances might be implemented, was presented. Implications of differentiation for the Dow Chemical Company were also reviewed. For more than 20 years, Dow has practiced leading edge energy efficiency in environmental management systems and has committed to a series of environmental, health and safety goals. The company believes that at the international level, fully differentiated targets and timetables need to be negotiated, party by party, by the 150 nations who agreed to stabilize greenhouse gas emissions at 1990 levels by year 2000. It was suggested that a strong disincentive exists to delivering energy efficiency beyond compliance. It was predicted that despite efficiency, the energy intensive assets in place today in Annex I countries will be disadvantaged and prematurely retired as the costs of greenhouse gas emission controls grow and exert pressure to move productive capacity offshore

  4. The evolution of conditional dispersal and reproductive isolation along environmental gradients.

    Science.gov (United States)

    Payne, Joshua L; Mazzucco, Rupert; Dieckmann, Ulf

    2011-03-21

    Dispersal modulates gene flow throughout a population's spatial range. Gene flow affects adaptation at local spatial scales, and consequently impacts the evolution of reproductive isolation. A recent theoretical investigation has demonstrated that local adaptation along an environmental gradient, facilitated by the evolution of limited dispersal, can lead to parapatric speciation even in the absence of assortative mating. This and other studies assumed unconditional dispersal, so individuals start dispersing without regard to local environmental conditions. However, many species disperse conditionally; their propensity to disperse is contingent upon environmental cues, such as the degree of local crowding or the availability of suitable mates. Here, we use an individual-based model in continuous space to investigate by numerical simulation the relationship between the evolution of threshold-based conditional dispersal and parapatric speciation driven by frequency-dependent competition along environmental gradients. We find that, as with unconditional dispersal, parapatric speciation occurs under a broad range of conditions when reproduction is asexual, and under a more restricted range of conditions when reproduction is sexual. In both the asexual and sexual cases, the evolution of conditional dispersal is strongly influenced by the slope of the environmental gradient: shallow environmental gradients result in low dispersal thresholds and high dispersal distances, while steep environmental gradients result in high dispersal thresholds and low dispersal distances. The latter, however, remain higher than under unconditional dispersal, thus undermining isolation by distance, and hindering speciation in sexual populations. Consequently, the speciation of sexual populations under conditional dispersal is triggered by a steeper gradient than under unconditional dispersal. Enhancing the disruptiveness of frequency-dependent selection, more box-shaped competition kernels

  5. Organic vs. organic - soil arthropods as bioindicators of ecological sustainability in greenhouse system experiment under Mediterranean conditions.

    Science.gov (United States)

    Madzaric, Suzana; Ceglie, F G; Depalo, L; Al Bitar, L; Mimiola, G; Tittarelli, F; Burgio, G

    2017-11-23

    Organic greenhouse (OGH) production is characterized by different systems and agricultural practices with diverse environmental impact. Soil arthropods are widely used as bioindicators of ecological sustainability in open field studies, while there is a lack of research on organic production for protected systems. This study assessed the soil arthropod abundance and diversity over a 2-year crop rotation in three systems of OGH production in the Mediterranean. The systems under assessment differed in soil fertility management: SUBST - a simplified system of organic production, based on an input substitution approach (use of guano and organic liquid fertilizers), AGROCOM - soil fertility mainly based on compost application and agroecological services crops (ASC) cultivation (tailored use of cover crops) as part of crop rotation, and AGROMAN - animal manure and ASC cultivation as part of crop rotation. Monitoring of soil fauna was performed by using pitfall traps and seven taxa were considered: Carabidae, Staphylinidae, Araneae, Opiliones, Isopoda, Myriapoda, and Collembola. Results demonstrated high potential of ASC cultivation as a technique for beneficial soil arthropod conservation in OGH conditions. SUBST system was dominated by Collembola in all crops, while AGROMAN and AGROCOM had more balanced relative abundance of Isopoda, Staphylinidae, and Aranea. Opiliones and Myriapoda were more affected by season, while Carabidae were poorly represented in the whole monitoring period. Despite the fact that all three production systems are in accordance with the European Union regulation on organic farming, findings of this study displayed significant differences among them and confirmed the suitability of soil arthropods as bioindicators in protected systems of organic farming.

  6. (ajst) effects of ground insulation and greenhouse

    African Journals Online (AJOL)

    NORBERT OPIYO AKECH

    and quality of biogas generation from dairy cattle dung. The effects ... Therefore ground insulation of plastic biogas digester under greenhouse conditions significantly enhances ..... The low values obtained did not suggest failure of the system ...

  7. A Compatible Control Algorithm for Greenhouse Environment Control Based on MOCC Strategy

    Directory of Open Access Journals (Sweden)

    Bingkun Zhu

    2011-03-01

    Full Text Available Conventional methods used for solving greenhouse environment multi-objective conflict control problems lay excessive emphasis on control performance and have inadequate consideration for both energy consumption and special requirements for plant growth. The resulting solution will cause higher energy cost. However, during the long period of work and practice, we find that it may be more reasonable to adopt interval or region control objectives instead of point control objectives. In this paper, we propose a modified compatible control algorithm, and employ Multi-Objective Compatible Control (MOCC strategy and an extant greenhouse model to achieve greenhouse climate control based on feedback control architecture. A series of simulation experiments through various comparative studies are presented to validate the feasibility of the proposed algorithm. The results are encouraging and suggest the energy-saving application to real-world engineering problems in greenhouse production. It may be valuable and helpful to formulate environmental control strategies, and to achieve high control precision and low energy cost for real-world engineering application in greenhouse production. Moreover, the proposed approach has also potential to be useful for other practical control optimization problems with the features like the greenhouse environment control system.

  8. A compatible control algorithm for greenhouse environment control based on MOCC strategy.

    Science.gov (United States)

    Hu, Haigen; Xu, Lihong; Zhu, Bingkun; Wei, Ruihua

    2011-01-01

    Conventional methods used for solving greenhouse environment multi-objective conflict control problems lay excessive emphasis on control performance and have inadequate consideration for both energy consumption and special requirements for plant growth. The resulting solution will cause higher energy cost. However, during the long period of work and practice, we find that it may be more reasonable to adopt interval or region control objectives instead of point control objectives. In this paper, we propose a modified compatible control algorithm, and employ Multi-Objective Compatible Control (MOCC) strategy and an extant greenhouse model to achieve greenhouse climate control based on feedback control architecture. A series of simulation experiments through various comparative studies are presented to validate the feasibility of the proposed algorithm. The results are encouraging and suggest the energy-saving application to real-world engineering problems in greenhouse production. It may be valuable and helpful to formulate environmental control strategies, and to achieve high control precision and low energy cost for real-world engineering application in greenhouse production. Moreover, the proposed approach has also potential to be useful for other practical control optimization problems with the features like the greenhouse environment control system.

  9. Improving Students' Conceptual Understanding of the Greenhouse Effect Using Theory-Based Learning Materials that Promote Deep Learning

    Science.gov (United States)

    Reinfried, Sibylle; Aeschbacher, Urs; Rottermann, Benno

    2012-01-01

    Students' everyday ideas of the greenhouse effect are difficult to change. Environmental education faces the challenge of developing instructional settings that foster students' conceptual understanding concept of the greenhouse effect in order to understand global warming. To facilitate students' conceptual development with regard to the…

  10. The role of nuclear energy in mitigating greenhouse warming

    International Nuclear Information System (INIS)

    Krakowski, R.A.

    1997-01-01

    A behavioral, top-down, forced-equilibrium market model of long-term (∼ 2,100) global energy-economics interactions has been modified with a bottom-up nuclear energy model and used to construct consistent scenarios describing future impacts of civil nuclear materials flows in an expanding, multi-regional (13) world economy. The relative measures and tradeoffs between economic (GNP, tax impacts, productivity, etc.), environmental (greenhouse gas accumulations, waste accumulation, proliferation risk), and energy (resources, energy mixes, supply-side versus demand-side attributes) interactions that emerge from these analyses are focused herein on advancing understanding of the role that nuclear energy (and other non-carbon energy sources) might play in mitigating greenhouse warming. Two ostensibly opposing scenario drivers are investigated: (a) demand-side improvements in (non-price-induced) autonomous energy efficiency improvements; and (b) supply-side carbon-tax inducements to shift energy mixes towards reduced- or non-carbon forms. In terms of stemming greenhouse warming for minimal cost of greenhouse-gas abatement, and with the limitations of the simplified taxing schedule used, a symbiotic combination of these two approaches may offer advantages not found if each is applied separately

  11. The climatic warming up (the greenhouse effect); Le rechauffement climatique (l'effet de serre)

    Energy Technology Data Exchange (ETDEWEB)

    Jancovici, J.M.; Jouzel, J. [CEA Saclay, Lab. des Sciences du Climat et de l' Environnement, 91 - Gif-sur-Yvette (France); Lorius, C. [Centre National de la Recherche Scientifique (CNRS), Lab. de Glaciologie et Geophysique de l' Environnement, 38 - Grenoble (France)] [and others

    2000-05-01

    Facing the environmental and biological impacts of the climatic warming up, scientists and economists organized a debate on the subject. After a theoretical presentation of the greenhouse effect and the greenhouse gases, the climatic changes are discussed and simulation of the effects are presented. The today effects and tomorrow impacts on the agriculture and the public health are also presented. A synthesis is proposed to discuss the contribution of the energy policy and of the technological progress in measures of greenhouse effect control. (A.L.B.)

  12. Research on Intelligent Agriculture Greenhouses Based on Internet of Things Technology

    OpenAIRE

    Shang Ying; Fu An-Ying

    2017-01-01

    Internet of things is a hot topic in the field of research, get a lot of attention, On behalf of the future development trend of the network, Internet of Things has a wide range of applications, because of the efficient and reliable information transmission in modern agriculture. In the greenhouse, the conditions of the Greenhouse determine the quality of crops, high yield and many other aspects. Research on Intelligent Agriculture Greenhouses based on Internet of Things, mainly Research on h...

  13. Grappling with greenhouse

    International Nuclear Information System (INIS)

    Mitchell, C.D.

    1992-01-01

    A natural greenhouse effect keeps the Earth at a temperature suitable for life. Some of the gases responsible for the greenhouse effect are increasing at an unprecedented rate because of human activity. These increased levels of greenhouse gases in the atmosphere will strengthen the natural greenhouse effect, leading to an overall warming of the Earth's surface. Global warming resulting from the enhanced greenhouse effect is likely to be obscured by normal climatic fluctuations for another ten years or more. The extent of human-caused climate change will depend largely on future concentrations of greenhouse gases in the atmosphere. In turn, the composition of the atmosphere depends on the release of greenhouse gases. Releases are hard to predict, because they require an understanding of future human activity. The composition of the atmosphere also depends on the processes which remove greenhouse gases from it. This booklet is summarizing the latest research results in the form of climate change scenarios. The present scenarios of change are based on climate models, together with an understanding of how present-day climate, with its inherent natural variability, affects human activities. These scenarios present a coherent range of future possibilities for climate; they are not predictions but they serve as a useful starting point. It is estimated that human-caused climate change will affect all aspects of life in Australia, including our cities, agriculture, pests and diseases, fisheries and natural ecosystems. 15 figs., ills

  14. Greenhouse gases and solid waste management systems: Understanding the relationships

    Energy Technology Data Exchange (ETDEWEB)

    Harrington, K.; Smith, P.A.

    1999-07-01

    In one of the first applications of life cycle analysis at the state level, the Minnesota Office of Environmental Assistance has assessed the resource conservation benefits and greenhouse gas impacts of the state's municipal solid waste (MSW) system. Using a life cycle inventory, the Phase 1 work estimated the resource conservation benefits of Minnesota's 1996 MSW reduction and management strategies. It compared the production processes used to obtain useful products from MSW with alternative production processes using virgin materials. The Phase 2 work, conducted under a grant from the US Environmental Protection Agency (USEPA), focused specifically on measuring the greenhouse gas implications of reduction, recycling, and management from 1991--1996. This phase expanded the analysis to included life cycle assessment and improvement. The work will be used in Minnesota's MSW policy and program development efforts, as well as in climate change mitigation planning.

  15. Primary Student-Teachers' Conceptual Understanding of the Greenhouse Effect: A mixed method study

    Science.gov (United States)

    Ratinen, Ilkka Johannes

    2013-04-01

    The greenhouse effect is a reasonably complex scientific phenomenon which can be used as a model to examine students' conceptual understanding in science. Primary student-teachers' understanding of global environmental problems, such as climate change and ozone depletion, indicates that they have many misconceptions. The present mixed method study examines Finnish primary student-teachers' understanding of the greenhouse effect based on the results obtained via open-ended and closed-form questionnaires. The open-ended questionnaire considers primary student-teachers' spontaneous ideas about the greenhouse effect depicted by concept maps. The present study also uses statistical analysis to reveal respondents' conceptualization of the greenhouse effect. The concept maps and statistical analysis reveal that the primary student-teachers' factual knowledge and their conceptual understanding of the greenhouse effect are incomplete and even misleading. In the light of the results of the present study, proposals for modifying the instruction of climate change in science, especially in geography, are presented.

  16. International markets for greenhouse gas emission reduction policies - possibilities for integrating developing countries

    DEFF Research Database (Denmark)

    Halsnæs, K.; Olhoff, A.

    2005-01-01

    Greenhouse gas (GHG) emissions are affecting a global common: the climate, and as a global environmental problem with a public good character it provides attractive opportunities for minimising control costs through the use of emission trading markets. This paper introduces cost and benefit princ...... principles that can be applied to the assessment of global markets for GHG emission reduction options and evaluates the scope for and the potential economic gains of such markets.......Greenhouse gas (GHG) emissions are affecting a global common: the climate, and as a global environmental problem with a public good character it provides attractive opportunities for minimising control costs through the use of emission trading markets. This paper introduces cost and benefit...

  17. Simple model to study the effect of temperature on the greenhouse ...

    African Journals Online (AJOL)

    Jane

    2011-06-08

    Jun 8, 2011 ... Accepted 16 February, 2011. Due to high solar intensity, the internal temperature of greenhouses in subtropical regions is so high ... useful technology for environmental control of a sub- ... transparent materials. This kind of ...

  18. Fuel consumption and greenhouse gas calculator for diesel and biodiesel-powered vehicles

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    Factors that influence fuel consumption include environmental conditions, maintenance, poor driving techniques, and driving speed. Developed by Natural Resources Canada, the SmartDriver training programs were designed to help fleet managers, drivers, and instructors to learn methods of improving fuel economy. This fuel consumption and greenhouse gas (GHG) calculator for diesel and biodiesel-powered vehicles provides drivers with a method of calculating fuel consumption rates when driving. It includes a log-book in which to record odometer readings and a slide-rule in which to determine the litres of fuel used during a trip. The scale showed the number of kg of GHGs produced by burning a particular amount of fuel for both biodiesel and diesel fuels. 1 fig.

  19. The behavior of Kevlar fibers under environmental-stress conditions

    Science.gov (United States)

    Perry, Mark Charles

    There are a myriad of mechanisms by which polymers can degrade and fail. It is therefore important to understand the physical mechanics, chemistry, their interactions, and kinetics. This pursuit becomes more than just "academic" because these mechanisms might just change with service conditions (i.e. environment and loading). If one does not understand these processes from the molecular to macroscopic scale it would be exceedingly difficult to gain information from accelerated testing because the mechanisms just might change from one condition to another. The purpose of this study was to probe these processes on scales ranging from molecular to macroscopic in environmental stress conditions. This study reports the results of environmental-stress degradation of Kevlar 49 fibers. The environmental agent of focus was the ubiquitous air pollutant complex NOsb{x}. Other materials and environments were investigated to a lesser extent for purposes of comparison. Mechanical property (i.e., short-term strength, modulus, and creep lifetime) degradation was examined using single fiber, yarn, and epoxy coated yarn (composite) specimens under environmental-stress conditions. Optical and scanning electron microscopes were employed to examine and compare the appearance of fracture features resulting from the various testing conditions. Atomic force microscopy augmented these studies with detailed topographical mappings and measures of the fracture surface frictional and modulus properties. Molecular processes (i.e., chain scission and other mechanical-chemical reactions) were probed by measures of changes in viscosity average molecular weight and the infrared spectra. It was demonstrated that environmental-stress degradation effects do occur in the Kevlar-NOsb{x} gas system. Strength decay in environmentally exposed unloaded fibers was demonstrated and a synergistic response in creep reduced fiber lifetimes by three orders of magnitude at moderate loadings. That is to say, the

  20. Soil environmental quality in greenhouse vegetable production systems in eastern China: Current status and management strategies.

    Science.gov (United States)

    Hu, Wenyou; Zhang, Yanxia; Huang, Biao; Teng, Ying

    2017-03-01

    Greenhouse vegetable production (GVP) has become an important source of public vegetable consumption and farmers' income in China. However, various pollutants can be accumulated in GVP soils due to the high cropping index, large agricultural input, and closed environment. Ecological toxicity caused by excessive pollutants' accumulation can then lead to serious health risks. This paper was aimed to systematically review the current status of soil environmental quality, analyze their impact factors, and consequently to propose integrated management strategies for GVP systems. Results indicated a decrease in soil pH, soil salinization, and nutrients imbalance in GVP soils. Fungicides, remaining nutrients, antibiotics, heavy metals, and phthalate esters were main pollutants accumulating in GVP soils comparing to surrounding open field soils. Degradation of soil ecological function, accumulation of major pollutants in vegetables, deterioration of neighboring water bodies, and potential human health risks has occurred due to the changes of soil properties and accumulation of pollutants such as heavy metals and fungicides in soils. Four dominant factors were identified leading to the above-mentioned issues including heavy application of agricultural inputs, outmoded planting styles with poor environmental protection awareness, old-fashion regulations, unreasonable standards, and ineffective supervisory management. To guarantee a sustainable GVP development, several strategies were suggested to protect and improve soil environmental quality. Implementation of various strategies not only requires the concerted efforts among different stakeholders, but also the whole lifecycle assessment throughout the GVP processes as well as effective enforcement of policies, laws, and regulations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Greenhouse gas and livestock emissions and climate change

    DEFF Research Database (Denmark)

    Caro, Dario

    2018-01-01

    The paper summarizes the current knowledge about the impact of livestock sector on climate change. The main sources of greenhouse gas (GHG) emissions from livestock are described and the contribution of livestock sector to the global GHG emissions is presented on the basis of the latest results...... obtained from the scientific research. The most recent mitigation strategies for reducing greenhouse gas emissions from livestock sector are also discussed. The paper aims to provide a general overview of an emergent environmental issue such as the impact of livestock sector on climate change. While...... the paper is easy to understand for non-expert readers, it may also be a relevant reference point for academic researchers and for policy makers aimed at achieving the sustainability of livestock/food sector....

  2. Honeybees as an aid in improving labour conditions in sweet bell pepper greenhouses: reduction of pollen allergy

    NARCIS (Netherlands)

    Steen, van der J.J.M.; Blacquière, T.; Jong, de N.W.; Groot, de H.

    2004-01-01

    Sweet bell pepper is the most important greenhouse vegetable crop in the Netherlands. It is grown on an area of 10,000 hectares, and about 8000 people are working in these greenhouses. One third of these workers sooner or later develop an occupational allergy to the sweet bell pepper pollen. The

  3. Possibilities of using ISO 1406X standards in the management of greenhouse gas emissions

    International Nuclear Information System (INIS)

    Fabian, G.; Priesol, J.

    2009-01-01

    Aim of this paper is to define and describe using of ISO 1406X standards for organization, which production of greenhouse gas emissions represents an important environmental aspect especially in terms of financial benefits accruing from trading with saved / reduced emissions. Following the main aim of this paper, we have set the following sub-objectives and tasks: - Define and describe the algorithm of implementation of program on greenhouse gas emissions according to the requirements and guidelines of the ISO 1406X in the organization; - Create a model of comprehensive management of greenhouse gas emissions standards as described.

  4. Greenhouse designs for Mexico. Aguascalientes, Querétaro and Sinaloa

    NARCIS (Netherlands)

    Elings, A.; Speetjens, S.L.; Garcia Victoria, N.

    2014-01-01

    This study reports on the environmental and economic impacts of greenhouses with different technological levels in the states of Aguascalientes, Querétaro and Sinaloa in Mexico. Seven technology levels were evaluated, varying in the type of substrate, covering material, heating, CO2 enrichment,

  5. Economic approaches to greenhouse warming

    International Nuclear Information System (INIS)

    Nordhaus, W.D.

    1991-01-01

    Global environmental problems raise a host of major policy questions. They are all scientifically complex and controversial, and no scientific consensus is likely to emerge until irreversible decisions have been made. The costs and benefits of these changes transcend national boundaries, and nations, which cannot appropriate the global costs and benefits of such changes, are unlikely to be able or willing to make efficient decisions on how to combat these global externalities. In addition, these concerns sometimes have impacts over hundreds of years and thereby strain political decision making, which often functions effectively only when the crisis is at hand. This chapter considers some of the economic issues involved in deciding how to react to the threat of global warming. The author first reviews the theory and evidence on the greenhouse effect. He then presents evidence on the impacts of greenhouse warming, the costs of stabilizing climate, and the kinds of adaptations that might be available. In the final section, he reviews the policy initiatives that nations might follow in the near term

  6. Age-dependent associations between telomere length and environmental conditions in roe deer.

    Science.gov (United States)

    Wilbourn, Rachael V; Froy, Hannah; McManus, Marie-Christina; Cheynel, Louise; Gaillard, Jean-Michel; Gilot-Fromont, Emmanuelle; Regis, Corinne; Rey, Benjamin; Pellerin, Maryline; Lemaître, Jean-François; Nussey, Daniel H

    2017-09-01

    Telomere length (TL) represents a promising biomarker of overall physiological state and of past environmental experiences, which could help us understand the drivers of life-history variation in natural populations. A growing number of studies in birds suggest that environmental stress or poor environmental conditions are associated with shortened TL, but studies of such relationships in wild mammals are lacking. Here, we compare leucocyte TL from cross-sectional samples collected from two French populations of roe deer which experience different environmental conditions. We found that, as predicted, TL was shorter in the population experiencing poor environmental conditions but that this difference was only significant in older individuals and was independent of sex and body mass. Unexpectedly, the difference was underpinned by a significant increase in TL with age in the population experiencing good environmental conditions, while there was no detectable relationship with age in poor conditions. These results demonstrate both the environmental sensitivity and complexity of telomere dynamics in natural mammal populations, and highlight the importance of longitudinal data to disentangle the within- and among-individual processes that generate them. © 2017 The Authors.

  7. Experimental and economic study of a greenhouse thermal control system using aquifer water

    Energy Technology Data Exchange (ETDEWEB)

    Sethi, V.P. [Department of Mechanical Engineering, Punjab Agricultural University, Ludhiana 141 008, Punjab (India)]. E-mail: vpsethi68@yahoo.co.in; Sharma, S.K. [Energy Research Centre, Punjab University, Chandigarh 160 017, Punjab (India)

    2007-01-15

    Underground aquifer water is used for thermal control (heating as well as cooling) of a greenhouse in which chilli and capsicum are grown. Year round performance of the designed system is experimentally evaluated and presented. The designed system utilizes the constant temperature aquifer water available on the ground surface at around 24 deg. C (year round) in the agricultural field through deep tubewell used for irrigation purposes for heating a greenhouse in winter nights and cooling in summer days. Experimental performance of the designed system is tested during a full winter as well as for summer conditions. To enhance the efficiency of the system and to improve relative humidity during extreme summer conditions, a simple evaporative cooling process is also added within the same designed system. The experimental results show that the average greenhouse room air temperature is maintained 7-9 deg. C above ambient during winter nights and 6-7 deg. C below ambient in summer days besides decreasing the daily temperature fluctuations inside the greenhouse. Improvement in the average relative humidity during extreme summer conditions is also observed. Technoeconomic analysis of the greenhouse integrated to the designed aquifer coupled cavity flow heat exchanger system (ACCFHES) is also conducted based on the yield of capsicum and chilli crops and compared with those of the greenhouse without any thermal control system and the open field condition yields. An economic comparison of the ACCFHES has also been made with other existing thermal control technologies such as the earth air heat exchanger system, ground air collector, evaporative cooling using foggers and a fan and pad system.

  8. Increased SBPase activity improves photosynthesis and grain yield in wheat grown in greenhouse conditions.

    Science.gov (United States)

    Driever, Steven M; Simkin, Andrew J; Alotaibi, Saqer; Fisk, Stuart J; Madgwick, Pippa J; Sparks, Caroline A; Jones, Huw D; Lawson, Tracy; Parry, Martin A J; Raines, Christine A

    2017-09-26

    To meet the growing demand for food, substantial improvements in yields are needed. This is particularly the case for wheat, where global yield has stagnated in recent years. Increasing photosynthesis has been identified as a primary target to achieve yield improvements. To increase leaf photosynthesis in wheat, the level of the Calvin-Benson cycle enzyme sedoheptulose-1,7-biphosphatase (SBPase) has been increased through transformation and expression of a Brachypodium distachyon SBPase gene construct. Transgenic lines with increased SBPase protein levels and activity were grown under greenhouse conditions and showed enhanced leaf photosynthesis and increased total biomass and dry seed yield. This showed the potential of improving yield potential by increasing leaf photosynthesis in a crop species such as wheat. The results are discussed with regard to future strategies for further improvement of photosynthesis in wheat.This article is part of the themed issue 'Enhancing photosynthesis in crop plants: targets for improvement'. © 2017 The Authors.

  9. Pathogenicity of Two Species of Entomopathogenic Nematodes Against the Greenhouse Whitefly, Trialeurodes vaporariorum (Hemiptera: Aleyrodidae), in Laboratory and Greenhouse Experiments.

    Science.gov (United States)

    Rezaei, Nastaran; Karimi, Javad; Hosseini, Mojtaba; Goldani, Morteza; Campos-Herrera, Raquel

    2015-03-01

    The greenhouse whitefly Trialeurodes vaporariorum (Hemiptera: Aleyrodidae) is a polyphagous pest in greenhouse crops. The efficacy of two entomopathogenic nematodes (EPN), Steinernema feltiae and Heterorhabditis bacteriophora, as biological control agents against T. vaporariorum was evaluated using two model crops typical of vegetable greenhouse productions: cucumber and pepper. Laboratory tests evaluated adults and second nymphal instars for pest susceptibility to different EPN species at different concentrations of infective juveniles (IJ; 0, 25, 50, 100, 150, 200, and 250 IJ per cm(2)); subsequent greenhouse trials against second nymphal instars on cucumber and pepper plants evaluated more natural conditions. Concentrations were applied in combination with Triton X-100 (0.1% v/v), an adjuvant for increasing nematode activity. In laboratory studies, both life stages were susceptible to infection by the two nematode species, but S. feltiae recorded a lower LC50 than H. bacteriophora for both insect stages. Similarly, in greenhouse experiments, S. feltiae required lower concentrations of IJ than H. bacteriophora to reach the same mortality in nymphs. In greenhouse trials, a significant difference was observed in the triple interaction among nematode species × concentration × plant. Furthermore, the highest mortality rate of the second nymphal instars of the T. vaporariorum was obtained from the application of S. feltiae concentrated to 250 IJ/cm(2) on cucumber (49 ± 1.23%). The general mortality caused by nematodes was significantly higher in cucumber than in pepper. These promising results support further investigation for the optimization of the best EPN species/concentration in combination with insecticides or adjuvants to reach a profitable control of this greenhouse pest.

  10. Review. Advantages and disadvantages of control theories applied in greenhouse climate control systems

    Energy Technology Data Exchange (ETDEWEB)

    Duarte-Galvan, C.; Torres-Pacheco, I.; Guevara-Gonzalez, R. G.; Romero-Troncoso, R. J.; Contreras-Medina, L. M.; Rios-Alcaraz, M. A.; Millan-Almaraz, J. R.

    2012-07-01

    Today agriculture is changing in response to the requirements of modern society, where ensuring food supply through practices such as water conservation, reduction of agrochemicals and the required planted surface, which guarantees high quality crops are in demand. Greenhouses have proven to be a reliable solution to achieve these goals; however, a greenhouse as a means for protected agriculture has the potential to lead to serious problems. The most of these are related to the inside greenhouse climate conditions where controlling the temperature and relative humidity (RH) are the main objectives of engineering. Achieving appropriate climate conditions to ensure high yield and quality crops reducing energy consumption have been the objective of investigations for some time. Different schemes in control theories have been applied in this field to solve the aforementioned problems. Therefore, the objective of this paper is to present a review of different control techniques applied in protected agriculture to manage greenhouse climate conditions, presenting advantages and disadvantages of developed control platforms in order to suggest a design methodology according to results obtained from different investigations. (Author) 64 refs.

  11. Conditional Probability Analysis: A Statistical Tool for Environmental Analysis.

    Science.gov (United States)

    The use and application of environmental conditional probability analysis (CPA) is relatively recent. The first presentation using CPA was made in 2002 at the New England Association of Environmental Biologists Annual Meeting in Newport. Rhode Island. CPA has been used since the...

  12. The potential for nuclear energy and its impact on the greenhouse situation

    International Nuclear Information System (INIS)

    Stevens, G.

    1992-01-01

    In this address, the author maintains that the nuclear industry has the ability to provide economic, safe electric generating capacity with minimum environmental impacts. Even with an increased nuclear capacity, there will still be problems in stabilizing greenhouse gas emissions; however, without this growth stabilization will be more difficult. Pressure from developing countries to acquire electricity will result in the use of more fossil fuels. As a result, it may be desirable for OECD countries to make even stronger commitments to technologies that emit no greenhouse gases

  13. Chapter 14. Greenhouses

    Energy Technology Data Exchange (ETDEWEB)

    Rafferty, Kevin D.

    1998-01-01

    Greenhouse heating is one of the most common uses of geothermal resources. Because of the significant heating requirements of greenhouses and their ability to use very low- temperature fluids, they are a natural application. The evaluation of a particular greenhouse project involves consideration of the structure heating requirements, and the system to meet those requirements. This chapter is intended to provide information on each of these areas.

  14. Affluence and objective environmental conditions: Evidence of differences in environmental concern in metropolitan Brazil

    OpenAIRE

    Nawrotzki, Raphael J.; Guedes, Gilvan; do Carmo, Roberto Luiz

    2014-01-01

    In an age of climate change, researchers need to form a deepened understanding of the determinants of environmental concern, particularly in countries of emerging economies. This paper provides a region-specific investigation of the impact of socio-economic status (SES) and objective environmental conditions on environmental concern in urban Brazil. We make use of data that were collected from personal interviews of individuals living in the metropolitan areas of Baixada Santista and Campinas...

  15. Greenhouse Gas Emissions from Excavation on Residential Construction Sites

    Directory of Open Access Journals (Sweden)

    Perry Forsythe

    2014-12-01

    Full Text Available Despite considerable research concerning the manifestation of greenhouse gases in the usage of buildings, little has been done concerning emissions arising from the construction process itself. This paper specifically examines emissions arising from cut and fill excavation on residential construction sites. Even though such excavation is often seen as being economical in terms of providing a flat base for concrete raft slab construction, the environmental consequences of this approach need to be considered more fully in terms of impact on the environment. This is particularly important when steeply sloping sites are involved and for different soil types. The paper undertakes a study that quantitatively assesses the cumulative greenhouse gas emissions caused by cut and fill excavation on 52 residential projects in Australia for a range of slope and soil types. The paper presents results from the study and concludes that greenhouse gas emissions increase as site slope increases; the building footprint area (as distinct from Gross Floor Area, exposes the need to reduce the area of the building to reduce greenhouse gas emissions; excavation of rock soils creates higher emissions than other soil types; and cut and fill excavation on steeply slope sites increase emissions. Potential alternative construction includes suspended floor construction systems which involve less excavation.

  16. Greenhouse Gas Emissions from Excavation on Residential Construction Sites

    Directory of Open Access Journals (Sweden)

    Perry Forsythe

    2014-12-01

    Full Text Available Despite considerable research concerning the manifestation of greenhouse gases in the usage of buildings, little has been done concerning emissions arising from the construction process itself. This paper specifically examines emissions arising from cut and fill excavation on residential construction sites. Even though such excavation is often seen as being economical in terms of providing a flat base for concrete raft slab construction, the environmental consequences of this approach need to be considered more fully in terms of impact on the environment. This is particularly important when steeply sloping sites are involved and for different soil types. The paper undertakes a study that quantitatively assesses the cumulative greenhouse gas emissions caused by cut and fill excavation on 52 residential projects in Australia for a range of slope and soil types. The paper presents results from the study and concludes that greenhouse gas emissions increase as site slope increases; the building footprint area (as distinct from Gross Floor Area, exposes the need to reduce the area of the building to reduce greenhouse gas emissions; excavation of rock soils creates higher emissions than other soil types; and cut and fill excavation on steeply slope sites increase emissions. Potential alternative construction includes suspended floor construction systems which involve less excavation. 

  17. Iterest grows for Dutch mid-tech and low-tech greenhouse technology : A greenhouse to suit all tropical conditions (interview with Anne Elings)

    NARCIS (Netherlands)

    Kierkels, T.; Elings, A.

    2014-01-01

    The Netherlands sets the standard for high-tech greenhouses worldwide. But increasingly suppliers are looking too at possibilities within the mid-tech and even the low-tech market segments. The Dutch government is supporting demonstration projects, for example in Mexico, East Africa and Malaysia.

  18. Quality manual for the Danish greenhouse gas inventory. Version 2

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, O.-K.; Plejdrup, M.S.; Winther, M. [and others

    2013-02-15

    This report outlines the quality work undertaken by the emission inventory group at the Department of Environmental Science, Aarhus University in connection with the preparation and reporting of the Danish greenhouse gas inventory. This report updates and expands on the first version of the quality manual published in 2005. The report fulfils the mandatory requirements for a quality assurance/quality control (QA/QC) plan as lined out in the UNFCCC reporting guidelines and the specifications related to reporting under the Kyoto Protocol. The report describes all elements of the internal QC procedures as well as the QA and verification activities carried out in connection with the Danish greenhouse gas inventory. (Author)

  19. Preface: Towards a full greenhouse gas balance of the biosphere

    DEFF Research Database (Denmark)

    Merbold, L.; Wohlfahrt, G.; Butterbach-Bahl, K.

    2015-01-01

    Ecosystem greenhouse gas (GHG) emissions (CO2, CH4, and N2O) represent a major driver of global environmental change (IPCC, 2014). While there exists an emerging understanding on the net exchange of CO2 across terrestrial and aquatic ecosystems due in part to the existence of large measurement...... and modeling networks (Baldocchi et al., 2001; Friend et al., 2007; Raymond et al., 2013; Tranvik et al., 2009), similar information on the biosphere–atmosphere exchange of non-CO2 greenhouse gases (i.e., CH4 and N2O) is sparsely available in comparison. To date, a strong focus has been given to so-called high...

  20. Comparing effects of low levels of herbicides on greenhouse- and field-grown potatoes (Solanum tuberosum L.), soybeans (Glycine max L.), and peas (Pisum sativum L.).

    Science.gov (United States)

    Pfleeger, Thomas; Olszyk, David; Lee, E Henry; Plocher, Milton

    2011-02-01

    Although laboratory toxicology tests are generally easy to perform, cost effective, and readily interpreted, they have been questioned for their environmental relevance. In contrast, field tests are considered realistic while producing results that are difficult to interpret and expensive to obtain. Toxicology tests were conducted on potatoes, peas, and soybeans grown in a native soil in pots in the greenhouse and were compared to plants grown outside under natural environmental conditions to determine toxicological differences between environments, whether different plant developmental stages were more sensitive to herbicides, and whether these species were good candidates for plant reproductive tests. The reproductive and vegetative endpoints of the greenhouse plants and field-grown plants were also compared. The herbicides bromoxynil, glyphosate, MCPA ([4-chloro-2-methylphenoxy] acetic acid), and sulfometuron-methyl were applied at below field application rates to potato plants at two developmental stages. Peas and soybeans were exposed to sulfometuron-methyl at similar rates at three developmental stages. The effective herbicide concentrations producing a 25% reduction in a given measure differed between experimental conditions but were generally within a single order of magnitude within a species, even though there were differences in plant morphology. This study demonstrated that potatoes, peas, and soybeans grown in pots in a greenhouse produce phytotoxicity results similar to those grown outside in pots; that reproductive endpoints in many cases were more sensitive than vegetative ones; and that potato and pea plants are reasonable candidates for asexual and sexual reproductive phytotoxicity tests, respectively. Plants grown in pots in a greenhouse and outside varied little in toxicity. However, extrapolating those toxicity results to native plant communities in the field is basically unknown and in need of research. © 2010 SETAC.

  1. Greenhouse effects of aircraft emissions

    International Nuclear Information System (INIS)

    Fortuin, J.P.F.; Wauben, W.M.F.; Dorland, R. van; Kelder, H.

    1996-01-01

    Ranges for direct and indirect greenhouse effects due to present day aircraft emissions are quantified for northern midlatitudes, using the concept of fixed temperature (FT) radiative forcing as calculated with a radiative transfer model. The direct greenhouse effects considered here are from emissions of carbon dioxide, water vapor, and nitrogen dioxide. To calculate the concentration increases of carbon dioxide and stratospheric water vapor, an analytical expression is developed based on a linear approximation of global fuel burn versus time. Unlike the expressions currently used in the literature, the authors' expression does not account for emission rates only, but also for a loss term--hence making it more suitable for shorter lived emittants. For midlatitude summer conditions, a total radiative forcing ranging from 0.04 to 0.09 Wm -2 is calculated for the direct greenhouse effects, whereas for midlatitude winter the range is 0.07 to 0.26 Wm -2 . The indirect greenhouse effects considered here are sulfate aerosol formation from sulfur dioxide emissions, contrail formation from emitted water vapor and condensation nuclei, and ozone formation from NO x emissions. The total radiative forcing coming from these indirect effects range from -0.67 to 0.25 Wm -2 in summer a/nd from -0.36 to 0.21 Wm -2 in winter. Further, the global distribution of NO x and ozone increases from aircraft emissions world-wide are simulated with a three-dimensional chemistry transport model for January and July. The geographical distribution of the radiative forcing associated with the simulated ozone increases is also calculated for these months

  2. 'Home made' model to study the greenhouse effect and global warming

    Science.gov (United States)

    Onorato, P.; Mascheretti, P.; DeAmbrosis, A.

    2011-03-01

    In this paper a simplified two-parameter model of the greenhouse effect on the Earth is developed, starting from the well known two-layer model. It allows both the analysis of the temperatures of the inner planets, by focusing on the role of the greenhouse effect, and a comparison between the temperatures the planets should have in the absence of greenhouse effect and their actual ones. It may also be used to predict the average temperature of the Earth surface in the future, depending on the variations of the concentration of greenhouse gases in the atmosphere due to human activities. This model can promote an elementary understanding of global warming since it allows a simple formalization of the energy balance for the Earth in the stationary condition, in the presence of greenhouse gases. For these reasons it can be introduced in courses for undergraduate physics students and for teacher preparation.

  3. 'Home made' model to study the greenhouse effect and global warming

    International Nuclear Information System (INIS)

    Onorato, P; Mascheretti, P; DeAmbrosis, A

    2011-01-01

    In this paper a simplified two-parameter model of the greenhouse effect on the Earth is developed, starting from the well known two-layer model. It allows both the analysis of the temperatures of the inner planets, by focusing on the role of the greenhouse effect, and a comparison between the temperatures the planets should have in the absence of greenhouse effect and their actual ones. It may also be used to predict the average temperature of the Earth surface in the future, depending on the variations of the concentration of greenhouse gases in the atmosphere due to human activities. This model can promote an elementary understanding of global warming since it allows a simple formalization of the energy balance for the Earth in the stationary condition, in the presence of greenhouse gases. For these reasons it can be introduced in courses for undergraduate physics students and for teacher preparation.

  4. Economic, energy and greenhouse emissions impacts of some consumer choice, technology and government outlay options

    International Nuclear Information System (INIS)

    Lenzen, Manfred; Dey, Christopher J.

    2002-01-01

    The impacts of selected spending options in the Australian economy are determined in terms of energy consumption, greenhouse gas emissions and a range of economic parameters. Six case studies of one current-practice and one alternative, environmentally motivated spending option are carried out, describing consumer choices, technologies and government outlays. The assessment method is based on input-output theory and, as such, enables both the direct and indirect effects of spending to be quantified. In general, the results indicate that pro-environmental objectives, such as reductions in energy consumption and greenhouse gas emissions, are compatible with broad socio-economic benefits, such as increases in employment and income, and reductions in imports

  5. Why nuclear energy is essential to reduce anthropogenic greenhouse gas emission rates

    International Nuclear Information System (INIS)

    Alonso, A.; Brook, B.W.; Meneley, D.A.; Misak, J.; Blees, T.; Van Erp, J.B.

    2015-01-01

    Reduction of anthropogenic greenhouse gas emissions is advocated by the Intergovernmental Panel on Climate Change. To achieve this target, countries have opted for renewable energy sources, primarily wind and solar. These renewables will be unable to supply the needed large quantities of energy to run industrial societies sustainably, economically and reliably because they are inherently intermittent, depending on flexible backup power or on energy storage for delivery of base-load quantities of electrical energy. The backup power is derived in most cases from combustion of natural gas. Intermittent energy sources, if used in this way, do not meet the requirements of sustainability, nor are they economically viable because they require redundant, under- utilized investment in capacity both for generation and for transmission. Because methane is a potent greenhouse gas, the equivalent carbon dioxide value of methane may cause gas-fired stations to emit more greenhouse gas than coal-fired plants of the same power for currently reported leakage rates of the natural gas. Likewise, intermittent wind/solar photovoltaic systems backed up by gas-fu:ed power plants also release substantial amounts of carbon-dioxide- equivalent greenhouse gas to make such a combination environmentally unacceptable. In the long term, nuclear fission technology is the only known energy source that is capable of delivering the needed large quantities of energy safely, economically, reliably and in a sustainable way, both environmentally and as regards the available resource-base. (author)

  6. Why nuclear energy is essential to reduce anthropogenic greenhouse gas emission rates

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, A. [Univ. Politecnica de Madrid, Madrid (Spain); Brook, B.W. [Univ. of Tasmania, Hobart TAS (Australia); Meneley, D.A. [Candu Energy Inc., Mississauga, Ontario (Canada); Misak, J. [UJV-Rez, Prague (Czech Republic); Blees, T. [Science Council for Global Initiatives, Chicago, Illinois (United States); Van Erp, J.B. [Illinois Commission on Atomic Energy, Chicago, Illinois (United States)

    2015-12-15

    Reduction of anthropogenic greenhouse gas emissions is advocated by the Intergovernmental Panel on Climate Change. To achieve this target, countries have opted for renewable energy sources, primarily wind and solar. These renewables will be unable to supply the needed large quantities of energy to run industrial societies sustainably, economically and reliably because they are inherently intermittent, depending on flexible backup power or on energy storage for delivery of base-load quantities of electrical energy. The backup power is derived in most cases from combustion of natural gas. Intermittent energy sources, if used in this way, do not meet the requirements of sustainability, nor are they economically viable because they require redundant, under- utilized investment in capacity both for generation and for transmission. Because methane is a potent greenhouse gas, the equivalent carbon dioxide value of methane may cause gas-fired stations to emit more greenhouse gas than coal-fired plants of the same power for currently reported leakage rates of the natural gas. Likewise, intermittent wind/solar photovoltaic systems backed up by gas-fu:ed power plants also release substantial amounts of carbon-dioxide- equivalent greenhouse gas to make such a combination environmentally unacceptable. In the long term, nuclear fission technology is the only known energy source that is capable of delivering the needed large quantities of energy safely, economically, reliably and in a sustainable way, both environmentally and as regards the available resource-base. (author)

  7. Applying Time Series Analysis Model to Temperature Data in Greenhouses

    Directory of Open Access Journals (Sweden)

    Abdelhafid Hasni

    2011-03-01

    Full Text Available The objective of the research is to find an appropriate Seasonal Auto-Regressive Integrated Moving Average (SARIMA Model for fitting the inside air temperature (Tin of a naturally ventilated greenhouse under Mediterranean conditions by considering the minimum of Akaike Information Criterion (AIC. The results of fitting were as follows: the best SARIMA Model for fitting air temperature of greenhouse is SARIMA (1,0,0 (1,0,224.

  8. Asian monsoons in a late Eocene greenhouse world.

    Science.gov (United States)

    Licht, A; van Cappelle, M; Abels, H A; Ladant, J-B; Trabucho-Alexandre, J; France-Lanord, C; Donnadieu, Y; Vandenberghe, J; Rigaudier, T; Lécuyer, C; Terry, D; Adriaens, R; Boura, A; Guo, Z; Soe, Aung Naing; Quade, J; Dupont-Nivet, G; Jaeger, J-J

    2014-09-25

    The strong present-day Asian monsoons are thought to have originated between 25 and 22 million years (Myr) ago, driven by Tibetan-Himalayan uplift. However, the existence of older Asian monsoons and their response to enhanced greenhouse conditions such as those in the Eocene period (55-34 Myr ago) are unknown because of the paucity of well-dated records. Here we show late Eocene climate records revealing marked monsoon-like patterns in rainfall and wind south and north of the Tibetan-Himalayan orogen. This is indicated by low oxygen isotope values with strong seasonality in gastropod shells and mammal teeth from Myanmar, and by aeolian dust deposition in northwest China. Our climate simulations support modern-like Eocene monsoonal rainfall and show that a reinforced hydrological cycle responding to enhanced greenhouse conditions counterbalanced the negative effect of lower Tibetan relief on precipitation. These strong monsoons later weakened with the global shift to icehouse conditions 34 Myr ago.

  9. Global initiatives to mitigate greenhouse gas emissions

    International Nuclear Information System (INIS)

    Helme, N.; Gille, J.A.

    1994-01-01

    Joint implementation (JI) is a provision, included in the Framework Convention on Climate Change, that allows for two or more nations to jointly plan and implement a greenhouse gas or offsetting project. Joint implementation is important environmentally for two principal reasons: (1) it provides an opportunity to select projects on a global basis that maximize both greenhouse gas reduction benefits and other environmental benefits such as air pollution reduction while minimizing cost, and (2) it creates incentives for developing countries as well as multinational companies to begin to evaluate potential investments through a climate-friendly lens. While the debate on how to establish the criteria and institutional capacity necessary to encourage joint implementation projects continues in the international community, the US government is creating new incentives for US companies to develop joint implementation pilot projects now. While delegates to the United Nations' International Negotiating Committee (INC) debate whether to permit all Parties to the convention to participate in JI, opportunities in Eastern and Central Europe and the former Soviet states abound. The US has taken a leadership role in joint implementation, establishing two complementary domestic programs that allow US companies to measure, track and score their net greenhouse gas reduction achievements now. With a financial investment by three US utilities, the Center for Clean Air Policy is developing a fuel-switching and energy efficiency project in the city of Decin in the Czech Republic which offers a concrete example of what a real-world JI project could look like. The Decin project provides an ideal test case for assessing the adequacy and potential impact of the draft criteria for the US Initiative on Joint Implementation, as well as for the draft criteria prepared by the INC Secretariat

  10. Humidification - Fogging and other evaporative cooling in greenhouses

    NARCIS (Netherlands)

    Nederhoff, E.M.; Weel, van P.A.

    2011-01-01

    Fogging, misting, roof sprinklers, pad-and-fan and other techniques based on water evaporation are effective tools for improving the growing conditions in a greenhouse when humidity is low. They should be used wisely though.

  11. Transcriptional Profiling of Chromera velia Under Diverse Environmental Conditions

    KAUST Repository

    Tayyrov, Annageldi

    2014-05-01

    Since its description in 2008, Chromera velia has drawn profound interest as the closest free-­‐living photosynthetic relative of apicomplexan parasites that are significant pathogens, causing enormous health and economic problems. There-­‐ fore, this newly described species holds a great potential to understand evolu-­‐ tionary basis of how photosynthetic algae evolved into the fully pathogenic Apicomplexa and how their common ancestors may have lived before they evolved into obligate parasites. Hence, the aim of this work is to understand how C. velia function and respond to different environmental conditions. This study aims to reveal how C. velia is able to respond to environmental perturbations that are applied individually and simultaneously since, studying stress factors in separation fails to elucidate complex responses to multi stress factors and un-­‐ derstanding the systemic regulation of involved genes. To extract biologically significant information and to identify genes involved in various physiological processes under variety of environmental conditions (i.e. a combination of vary-­‐ ing temperatures, iron availability, and salinity in the growth medium) we pre-­‐ pared strand specific RNA-­‐seq libraries for 83 samples in diverse environmental conditions. Here, we report the set of significantly differentially expressed genes as a re-­‐ sponse to the each condition and their combinations. Several interesting up-­‐ regulated and down-­‐regulated genes were found and their functions and in-­‐ volved pathways were studied. We showed that the profound regulation of HSP20 proteins is significant under stress conditions and hypothesized that the-­‐ se proteins might be involved in their movements.

  12. Uranium Immobilization in an Iron-Rich Rhizosphere of a Native Wetland Plant from the Savannah River Site under Reducing Conditions

    Science.gov (United States)

    The hypothesis of this study was that iron plaque formed on the roots of wetland plants and their rhizospheres create environmental conditions favorable for iron reducing bacteria that promote the in situ immobilization of uranium. Greenhouse microcosm studies were conducted usin...

  13. Stable pelagic vertebrate community structure through extreme Paleogene greenhouse conditions

    Science.gov (United States)

    Sibert, E. C.; Friedman, M.; Hull, P. M.; Hunt, G.; Norris, R. D.

    2016-02-01

    The species composition (structure) and energy transfer (function) of an ecosystem is reflected by the presence and type of consumers that it supports. Here we use ichthyoliths, microfossil fish teeth and shark denticles, to assess the ecological variability of the pelagic fish community structure and composition from the Late Cretaceous to the middle Eocene from a drill core in the South Pacific gyre (DSDP Site 596). We find that the overall vertebrate community structure, as measured by the relative abundance of sharks to ray-finned fishes, has a punctuated change at the Cretaceous/Paleogene mass extinction. The vertebrate community structure remained stable throughout the Paleogene despite a five-fold increase in overall abundance of ichthyoliths during the extreme greenhouse of the Early Eocene. Further, we use a novel system to quantify the morphological variation in fish teeth. We find that the morphospace occupied by the tooth assemblage is conserved throughout the interval, with a slight expansion following the Cretaceous-Paleogene mass extinction, and the evolution of a distinct morphotype-group around the Paleocene-Eocene boundary. While there are elevated rates of morphotype origination and extinction following the Cretaceous-Paleogene mass extinction, the extreme greenhouse warming of the Early Eocene and associated increase in fish production produce near-zero origination and extinction rates. The relative stability in composition of the pelagic vertebrate community during intervals of extreme climate change and across large ranges of total fish accumulation, suggests that pelagic ecosystem structure is robust to climate events, and that the overall structure of the pelagic fish community may be decoupled from both climate and ecosystem function.

  14. Assessing the environmental consequences of global climate and economic changes in Venezuela: Impacts of the greenhouse effect and of free trade agreements

    International Nuclear Information System (INIS)

    Acevedo, M.F.; Harwell, M.A.

    1993-01-01

    The ecological resources of most Latin American countries are subject to intense pressures for economic and industrial development which need to be balanced with local and global concerns about the long term sustainability of that resource base. Global issues and their potential long term effects should not be ignored when environmental policy strategies at the national level are elaborated. In this paper, the potential environmental consequences of two important global changes are examined, by taking Venezuela as a country case study: changes in climate, temperature, precipitation and radiation, generated by the greenhouse effect and changes in environmental stresses originating from shifts in local economic activity due to changing global trade, specifically free trade agreements. Both assessments are conducted using scenario-consequence approaches and expert judgment. The first analysis reported here is an example of the application of simulation models of global climate and local ecosystems, whereas the second analysis demonstrates the application of screening methodology which relies on processing of qualitative information. The approaches illustrated here are generic and can be applied to other Latin American countries

  15. Are greenhouse gas emissions from international shipping a type of marine pollution?

    Science.gov (United States)

    Shi, Yubing

    2016-12-15

    Whether greenhouse gas emissions from international shipping are a type of marine pollution is a controversial issue and is currently open to debate. This article examines the current treaty definitions of marine pollution, and applies them to greenhouse gas emissions from ships. Based on the legal analysis of treaty definitions and relevant international and national regulation on this issue, this article asserts that greenhouse gas emissions from international shipping are a type of 'conditional' marine pollution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Greenhouse gas emissions, energy consumption and economic growth: A panel cointegration analysis from Canadian industrial sector perspective

    International Nuclear Information System (INIS)

    Hamit-Haggar, Mahamat

    2012-01-01

    This paper investigates the long-run and the causal relationship between greenhouse gas emissions, energy consumption and economic growth for Canadian industrial sectors over the period 1990–2007. The empirical findings suggest that in the long-run equilibrium, energy consumption has a positive and statistically significant impact on greenhouse gas emissions whereas a non-linear relationship is found between greenhouse gas emissions and economic growth, consistent with the environmental Kuznets curve. The short-run dynamics conveys that there is a unidirectional Granger causality running from energy consumption to greenhouse gas emissions; from economic growth to greenhouse gas emissions and a weak unidirectional causality running from greenhouse gas emissions to energy consumption; from economic growth to energy consumption. In the long-run however, there seems to be a weak one way causality flowing from energy consumption and economic growth to greenhouse gas emissions. - Highlights: ► A long-run and a causal relationship between greenhouse gas emissions, energy consumption and economic growth is investigated. ► Energy consumption has a positive impact on greenhouse gas emissions in the long run. ► Unidirectional causality runs from energy consumption and economic growth to greenhouse gas emissions. ► A weak unidirectional causality runs from greenhouse gas emissions and economic growth to energy consumption.

  17. Nuclear power: An overview in the context of alleviating greenhouse gas emissions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    The document gives a brief overview of the current development of nuclear power worldwide, covering essentially technical, economic and environmental aspects. Policy issues related to implementation instruments and potential barriers to nuclear power deployment are also touched upon. Views are given on the possible medium and long term development of nuclear power, as a means for alleviating greenhouse gas emissions from the electricity sector. Advanced technologies for the reactors and their associated fuel cycles are described, including advanced fission reactors and fusion energy. Direct cost and externalities are given for the present generation of nuclear power plants as well as for power plants to be commissioned in the coming decades. Environmental burdens and risks are analysed with emphasis on potential risks of accident, radioactive waste, and atmospheric emission in routine operation, focusing on greenhouse gases. 77 refs, 1 fig., 4 tabs.

  18. Nuclear power: An overview in the context of alleviating greenhouse gas emissions

    International Nuclear Information System (INIS)

    1995-04-01

    The document gives a brief overview of the current development of nuclear power worldwide, covering essentially technical, economic and environmental aspects. Policy issues related to implementation instruments and potential barriers to nuclear power deployment are also touched upon. Views are given on the possible medium and long term development of nuclear power, as a means for alleviating greenhouse gas emissions from the electricity sector. Advanced technologies for the reactors and their associated fuel cycles are described, including advanced fission reactors and fusion energy. Direct cost and externalities are given for the present generation of nuclear power plants as well as for power plants to be commissioned in the coming decades. Environmental burdens and risks are analysed with emphasis on potential risks of accident, radioactive waste, and atmospheric emission in routine operation, focusing on greenhouse gases. 77 refs, 1 fig., 4 tabs

  19. Changes on sewage sludge stability after greenhouse drying

    Science.gov (United States)

    Soriano-Disla, J. M.; Houot, S.; Imhoff, M.; Valentin, N.; Gómez, I.; Navarro-Pedreño, J.

    2009-04-01

    The progressive implementation of the Urban Waste Water Treatment Directive 91/271/EEC in all the European member states is increasing the quantities of sewage sludge requiring disposal. Sludge application onto cultivated soils as organic fertilizers allows the recycling of nutrients. The application of only dehydrated sludges has generated many problems including unpleasant odours and difficult management (regarding transport and application) related to their high water content. One way to overcome these problems, in a cheap and clean way, is the drying of sludges using the energy of the sun under greenhouse conditions. This drying may affect sludge chemical characteristics including organic matter stability and nitrogen availability, parameters which have to be controlled for the proper management of dry sludge application onto soils. For this reason, the main aim of this work was to study the impact of greenhouse drying of different sewage sludges on their organic matter stability and nitrogen availability, assessed by biochemical fractionation and mineralization assays. Three sewage sludges were sampled before (dehydrated sludges) and after greenhouse drying (dried sludges). The analyses consisted of: humidity, organic matter, mineral and organic N contents, N and C mineralization during 91-day laboratory incubations in controlled conditions, and biochemical fractionation using the Van Soest procedure. Greenhouse drying decreased the water content from 70-80% to 10% and also the odours, both of which will improve the management of the final product from the perspective of application and transport. We also found that drying reduced the organic matter content of the sludges but not the biodegradability of the remaining carbon. Organic N mineralization occurred during greenhouse drying, explaining why mineral N content tended to increase and the potential mineralization of organic nitrogen decreased after greenhouse drying. The biochemical stability did not

  20. An experimental evaluation of the greenhouse effect in the substitution of R134a with CO2

    International Nuclear Information System (INIS)

    Aprea, C.; Greco, A.; Maiorino, A.

    2012-01-01

    This paper addresses the problem of R314a substitution with a natural refrigerant fluid. Attention is devoted to the evaluation of the environmental impact, in terms of greenhouse effect. R134a and R744 (CO 2 ) are compared to one another. The hydrofluorocarbon R134a has a large direct warming impact (GWP), whereas the R744 contribution is negligible. The greenhouse effect is determined by the experimental evaluation of the TEWI index (Total Equivalent Warming Impact) that takes into account both direct and indirect contributions to global warming. This paper compares a commercial R134a refrigeration plant and a prototype R744 system working in a trans-critical cycle. The experimental results clearly show that the latter has a larger TEWI than the system operating with R134a. The indirect contribution to global warming provided by R744 is always greater than that of R134a. This contribution prevails in most cases. Only few operating conditions corresponding to a refrigerating plant working as a classical split system benefits, in terms of greenhouse effect, of the substitution of R134a with R744. -- Highlights: ► A comparison between a classical vapour compression plant and a trans-critical cycle. ► Evaluation of the greenhouse effect in R134a substitution with R744. ► Evaluation of direct and indirect contribution to global warming. ► Minimization of the global warming impact of a R744 transcritical cycle.

  1. Environmental implications of alternative-fueled automobiles: Air quality and greenhouse gas tradeoffs

    International Nuclear Information System (INIS)

    MaClean, H.L.; Lave, L.B.

    2000-01-01

    The authors analyze alternative fuel-powerstrain options for internal combustion engine automobiles. Fuel/engine efficiency, energy use, pollutant discharges, and greenhouse gas emissions are estimated for spark and compression ignited, direct injected (DI), and indirect injected (II) engines fueled by conventional and reformulated gasoline, reformulated diesel, compressed natural gas (CNG), and alcohols. Since comparisons of fuels and technologies in dissimilar vehicles are misleading, the authors hold emissions level, range, vehicle size class, and style constant. At present, CNG vehicles have the best exhaust emissions performance while DI diesels have the worst. Compared to a conventional gasoline fueled II automobile, greenhouse gases could be reduced by 40% by a DI CNG automobile and by 25% by a DI diesel. Gasoline- and diesel-fueled automobiles are able to attain long ranges with little weight or fuel economy penalty. CNG vehicles have the highest penalty for increasing range, due to their heavy fuel storage systems, but are the most attractive for a 160-km range. DI engines, particularly diesels, may not be able to meet strict emissions standards, at least not without lowering efficiency

  2. Occupational safety and health practices among flower greenhouses workers from Alto Tietê region (Brazil)

    International Nuclear Information System (INIS)

    Ribeiro, Marcela G.; Colasso, Camilla G.; Monteiro, Paula P.; Filho, Walter R. Pedreira; Yonamine, Maurício

    2012-01-01

    In this preliminary study the occupational safety and health practices among flower greenhouses workers were evaluated. The study was carried out in the alto Tietê region, located at the Sao Paulo State, Brazil. Inadequate welfare facilities; poor pesticide storage, use and disposal conditions; use of highly toxic pesticides; lack of adequate data regarding pesticide use; and incorrect use and maintenance of PPE were observed in most of the visited greenhouses. These results suggest that, in greenhouses, workers may be at higher risk of pesticide exposure, due to many factors that can intensify the exposure such as the lack of control on reentry intervals after pesticide application. Specific regulations are needed to ensure better OSH practices on pesticide use and to improve working conditions in greenhouses, in order to deal with the peculiarities of greenhouse working environment. Some of the special requirements for greenhouses workers' protection are the establishment of ventilation criteria for restricted entry interval; clear reentry restrictions; and EPI for workers other than applicators that need to enter the greenhouse before expiring REI interval. Another important way to improve OSH practices among workers includes the distribution of simple guidelines on the dos and don'ts regarding OSH practices in greenhouses and extensively training interventions to change the perception of hazards and the behavior towards risk. - Highlights: ► Occupational safety and health practices among flower greenhouses workers were evaluated. ► Lack of clear reentry restrictions can intensify the exposure in greenhouses. ► Specific regulations dealing with the peculiarities of greenhouse working environment are needed. ► Distribution of simple guidelines relying on greenhouse working can improve OSH practices. ► Training interventions are important to change the workers' perception of hazards and behavior towards risk.

  3. 78 FR 11619 - Greenhouse Gas Reporting Rule: Revision to Best Available Monitoring Method Request Submission...

    Science.gov (United States)

    2013-02-19

    ... protection, Administrative practice and procedures, Air pollution control, Greenhouse gases, Monitoring... Atmospheric Programs (MC-6207J), Environmental Protection Agency, 1200 Pennsylvania Ave. NW., Washington, DC...

  4. Modeling shoot-tip temperature in the greenhouse environment

    International Nuclear Information System (INIS)

    Faust, J.E.; Heins, R.D.

    1998-01-01

    An energy-balance model is described that predicts vinca (Catharanthus roseus L.) shoot-tip temperature using four environmental measurements: solar radiation and dry bulb, wet bulb, and glazing material temperature. The time and magnitude of the differences between shoot-tip and air temperature were determined in greenhouses maintained at air temperatures of 15, 20, 25, 30, or 35 °C. At night, shoot-tip temperature was always below air temperature. Shoot-tip temperature decreased from 0.5 to 5 °C below air temperature as greenhouse glass temperature decreased from 2 to 15 °C below air temperature. During the photoperiod under low vapor-pressure deficit (VPD) and low air temperature, shoot-tip temperature increased ≈4 °C as solar radiation increased from 0 to 600 W·m -2 . Under high VPD and high air temperature, shoot-tip temperature initially decreased 1 to 2 °C at sunrise, then increased later in the morning as solar radiation increased. The model predicted shoot-tip temperatures within ±1 °C of 81% of the observed 1-hour average shoot-tip temperatures. The model was used to simulate shoot-tip temperatures under different VPD, solar radiation, and air temperatures. Since the rate of leaf and flower development are influenced by the temperature of the meristematic tissues, a model of shoot-tip temperature will be a valuable tool to predict plant development in greenhouses and to control the greenhouse environment based on a plant temperature setpoint. (author)

  5. Danish greenhouse gas reduction scenarios for 2020 and 2050

    Energy Technology Data Exchange (ETDEWEB)

    Karlsson, K; Joergensen, Kaj [Risoe DTU, Roskilde (DK); Werling, J; OErsted Pedersen, H; Kofoed-Wiuff, A [Ea energy Analysis, Copenhagen (DK)

    2008-02-15

    The aim of the project presented in this report was to develop scenarios for reducing Danish greenhouse gas emissions in 2020 and 2050. The scenarius provide a basis for estimating which technologies should be combined in order to obtain future reductions in greenhouse gas emissions in a cost-effective way. The scenarios include all emissions of greenhouse gases from agriculture, industry and oil extraction activities in the North Sea as well as the transport and energy sectors. Foreign air and sea carriage is not included because emissions related to such activities are not yet subject to international climate change agreements. The scenarios focus particularly on the technological possibilities and the necessary system changes in the Danish energy system and transport sector. Parallel to this, COWI has carried out analyses for the Danish Environmental Protection Agency focussing primarily on the reduction potentials in the transport sector and other emissions. COWI's results regarding agriculture and other emissions have been included in this analysis. Two timeframes are applied in the scenarios: the medium term, 2020, and the long term, 2050. For each timeframe, we have set up indicative targets that the scenarios must reach: 1) 2020: 30 and 40 % reduction in greenhouse gas emissions compared to 1990 2) 2050: 60 and 80 % reduction in greenhouse gas emissions compared to 1990. The scenarios for 2020 focus primarily on technologies that are already commercially available, whereas the scenarios for 2050 also examine technological options at the experimental or developmental stage. This includes hydrogen technologies and fuel cells as well as CO{sub 2} capture and sequestration (CCS) technologies. The scenarios should be seen in connection with the EU objectives of a 20-30 % reduction in greenhouse gas emissions in 2020 and 60-80 % in 2050 compared to 1990. The EU's 30 % objective is contingent upon global efforts to reduce the world's greenhouse gas emissions

  6. What to do about greenhouse warming: Look before you leap

    International Nuclear Information System (INIS)

    Singer, S.F.; Revelle, R.; Starr, C.

    1993-01-01

    Greenhouse warming has emerged as one of the most complex and controversial environmental foreign-policy issues of the 1990s. Carbon dioxide (CO 2 ), generated from the burning of oil, gas, and coal, is thought to enhance the natural greenhouse effect that has kept the planet warm for billions of years. Some scientists predict drastic climatic changes in the 21st Century. It is a foreign-policy issue because the US has taken a more cautious approach to dealing with CO 2 emissions than have many industrialized nations. Wide acceptance of the Montreal Protocol, which limits and rolls back the manufacture of chlorofluorocarbons (CFCs) to protect the ozone layer, has encouraged environmental activists at international conferences the past three years to call for similar controls on CO 2 from fossil-fuel burning. These activists are disappointed with the White House for not supporting immediate action. But should the US assume leadership in a hastily-conceived campaign that could cripple the global economy, or would it be more prudent to assure first, through scientific research, that the problem is both real and urgent? The authors sum up their conclusions in a simple message: The scientific base for a greenhouse warming is too uncertain to justify drastic action at this time. There is little risk in delaying policy responses to this century-old problem since there is every expectation that scientific understanding will be substantially improved within the next decade. Instead of premature and likely ineffective controls on fuel use that would only slow down CO 2 , the same resources could be used to increase our economic and technological resilience so that we can apply specific remedies as necessary to reduce climate change or to adapt to it. Prudent steps now include energy conservation and efficiency increases and make economic sense even without the threat of greenhouse warming

  7. Effectiveness of horizontal air flow fans supporting natural ventilation in a Mediterranean multi-span greenhouse

    OpenAIRE

    López, Alejandro; Valera, Diego Luis; Molina-Aiz, Francisco Domingo; Peña, Araceli

    2013-01-01

    Natural ventilation is the most important method of climate control in Mediterranean greenhouses. In this study, the microclimate and air flow inside a Mediterranean greenhouse were evaluated by means of sonic anemometry. Experiments were carried out in conditions of moderate wind (≈ 4.0 m s-1), and at low wind speed (≈ 1.8 m s-1) the natural ventilation of the greenhouse was supplemented by two horizontal air flow fans. The greenhouse is equipped with a single roof vent opening t...

  8. Greenhouse gas accounting and waste management

    DEFF Research Database (Denmark)

    Gentil, Emmanuel; Christensen, Thomas Højlund; Aoustin, E.

    2009-01-01

    Accounting of emissions of greenhouse gas (GHG) is a major focus within waste management. This paper analyses and compares the four main types of GHG accounting in waste management including their special features and approaches: the national accounting, with reference to the Intergovernmental...... specifically, the clean development mechanism (CDM) methodology, introduced to support cost-effective reduction in GHG emissions. These types of GHG accounting, in principle, have a common starting point in technical data on GHG emissions from specific waste technologies and plants, but the limited...... Panel on Climate Change (IPCC), the corporate level, as part of the annual reporting on environmental issues and social responsibility, life-cycle assessment (LCA), as an environmental basis for assessing waste management systems and technologies, and finally, the carbon trading methodology, and more...

  9. An environmental systems analysis of greenhouse horticulture in the Netherlands : the tomato case

    NARCIS (Netherlands)

    Pluimers, J.

    2001-01-01

    Objective of the thesis

    The greenhouse horticulture sector in the Netherlands covers about 10,000 hectares and produces vegetables, cut flowers and pot plants. This agricultural sector is of social and economic importance because of its annual

  10. Strategic planning and greenhouse effect

    International Nuclear Information System (INIS)

    Corderoy, B.C.

    1990-01-01

    During former years of high load growth in New South Wales and elsewhere, the challenge for generation planners was to develop power station sites and associated transmission infrasture at a rage rapid enough to meet escalating community requirements for electricity. This challenge was met. The planners of today face a situation of far less certainty - load growth is fragile and at a lower level while the community expects that measures adopted will maintain accepted standards of reliability, be at a minimum level of financial risk and increasingly be environmentally benign. One particular environmental challenge is that posed by the greenhouse effect for which there is a further need to develop a much wider range of strategies. This involves better performance for existing plant, looking at different types of generating systems but also looking to the other side of the energy equation, demand site energy efficiency programs. These issues are briefly discussed

  11. The greenhouse effect negotiation; La negociation sur l`effet de serre

    Energy Technology Data Exchange (ETDEWEB)

    Brodhag, Ch. [Commission Francaise du Developpement Durable (France)

    1997-11-01

    France feels awkward during the international discussions about the Kyoto agreements. The environmental strategies are mixed up with economical strategies. By wondering about the economical tools, this paper gives the foreign policy and an economic analysis of a world strategy concerning the greenhouse project. (A.L.B.)

  12. Discussing the Greenhouse Effect: Children's Collaborative Discourse Reasoning and Conceptual Change.

    Science.gov (United States)

    Mason, Lucia; Santi, Marina

    1998-01-01

    Investigates fifth-grade students' conceptual changes toward the greenhouse effect and global warming due to sociocognitive interaction developed in small and large group discussion in an authentic classroom context during an environmental education unit. Classroom discussions led the children to integrate new scientific knowledge into their…

  13. Transformation of environmental conditions in large former Soviet countries: regional analysis

    Science.gov (United States)

    Bityukova, V. R.; Borovikov, M. S.

    2018-01-01

    The article studies changes in the structure of environmental conditions of regions in the large former Soviet countries (case study of Russia and Kazakhstan) that have formed considerable contrasts in the placement of industrial complex and population settlement during the previous development stages. The changes related to the transition to market economy have led to essential transformation of environmental conditions. A complex index allowing to assess changes at the regional level in Kazakhstan and Russia and to reveal main similarities and differences between those changes is applied to studying the transformation of regional and industry structure. The article examines both industry-specific and spatial patterns forming environmental conditions at the regional level.

  14. Local environmental conditions and the stability of protective layers on steel surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, J P [Technical Univ. of Denmark, Lyngby (Denmark); Bursik, A

    1996-12-01

    Local environmental conditions determine whether the protective layers on steel surfaces are stable. With unfavorable local environmental conditions, the protective layers may be subject to damage. Taking the cation conductivity of all plant cycle streams <0.2 {mu}S/cm for granted, an adequate feed-water and - if applicable - boiler water conditioning is required to prevent such damage. Even if the mentioned conditions are met in a bulk, the local environmental conditions may be inadequate. The reasons for this may be the disregarding of interactions among material, design, and chemistry. The paper presents many possible mechanisms of protective layer damage that are directly influenced or exacerbated by plant cycle chemistry. Two items are discussed in more detail: First, the application of all volatile treatment for boiler water conditioning of drum boiler systems operating at low pressures and, second, the chemistry in the transition zone water/steam in the low pressure turbine. The latter is of major interest for the understanding and prevention of corrosion due to high concentration of impurities in the aqueous liquid phases. This is a typical example showing that local environmental conditions may fundamentally differ from the overall bulk chemistry. (au) 19 refs.

  15. Establishing a greenhouse gas inventory and reduction goal: case study

    International Nuclear Information System (INIS)

    Carli, G.A.; Richardson, S.L.

    2009-01-01

    'Full text:' Since 1976, Conestoga-Rovers & Associates (CRA) has grown from a small, regional engineering company, to one of the world's most sought-after, multi-disciplinary engineering and consulting firms with over 90 offices and more than 2,700 people working on projects worldwide. CRA is committed to helping its clients meet or exceed their environmental performance goals while achieving its own sustainability objectives. CRA is continuously striving to implement social and environmental performance improvements in each and every work place where CRA conducts business. CRA's Corporate Sustainability, Social Responsibility, and Environmental Policy reflects this commitment. CRA is working to reduce its environmental footprint and invest in the communities in which we live and conduct business. CRA undertook a corporate-wide greenhouse gas (GHG) inventory and set aggressive GHG reduction goals. This presentation provides an overview of the steps CRA has taken to quantify corporate GHG emissions, including establishing boundary conditions, data collection activities, calculation of GHG emissions, and development of and inventory management plant consistent with the U.S. EPA Climate Leaders program. The presentation discusses the primary challenges addressed in developing a GHG inventory for multiple facilities located throughout North America, including obtaining verifiable data, addressing corporate travel, and communicating climate change goals within the organization. The presentation concludes with an overview of the key considerations necessary to establish a credible reduction goal. (author)

  16. Greening the greenhouse grower

    DEFF Research Database (Denmark)

    Staats, Henk; Jansen, Lilian; Thøgersen, John

    2011-01-01

    Growing plants and flowers in greenhouses is a commercial activity that imposes a burden on the environment. Recently a system of registration, control, and licensing has been developed by the sector of greenhouse growers in the Netherlands, acknowledged by the state. The current study was executed...... to understand the achievements of the greenhouse growers within this system. We applied a social-cognitive model to understand intentions to reduce emissions and predict actual pesticide use. The social-cognitive concepts from the model were measured in a questionnaire that was completed by 743 greenhouse...

  17. The Dynamic Greenhouse Challenge

    Science.gov (United States)

    Roman, Harry T.

    2010-01-01

    Greenhouses are marvelous devices, allowing one to enjoy the flower spectacle of summer all year round. At night, greenhouses use supplemental heat to keep the fragile plants warm. Over the last 30 years, greenhouse technology has undergone many changes, with the structures being automated and monitored and low-cost plastic structures emerging as…

  18. MEMS climate sensor for crops in greenhouses

    DEFF Research Database (Denmark)

    Birkelund, Karen; Jensen, Kim Degn; Højlund-Nielsen, Emil

    2010-01-01

    We have developed and fabricated a multi-sensor chip for greenhouse applications and demonstrated the functionality under controlled conditions. The sensor consists of a humidity sensor, temperature sensor and three photodiodes sensitive to blue, red and white light, respectively. The humidity...... sensor responds linearly with humidity with a full scale change of 5.6 pF. The best performing design measures a relative change of 48%. The temperature sensor responds linearly with temperature with a temperature coefficient of resistance of 3.95 x 10(-3) K-1 and a sensitivity of 26.5 Omega degrees C-1...... and humidity sensors have further been tested on plants in a greenhouse, demonstrating that individual plant behavior can be monitored....

  19. Cogeneration, renewables and reducing greenhouse gas emissions

    International Nuclear Information System (INIS)

    Naughten, B.; Dlugosz, J.

    1996-01-01

    The MENSA model is used to assess the potential role of cogeneration and selected new renewable energy technologies in cost-effectively reducing Greenhouse gas emissions. The model framework for analyzing these issues is introduced, together with an account of relevant aspects of its application. In the discussion of selected new renewable energy technologies, it is shown how microeconomic reform may encourage these technologies and fuels, and thereby reduce sector wide carbon dioxide emissions. Policy scenarios modelled are described and the simulation results are presented. Certain interventions in microeconomic reform may result in economic benefits while also reducing emissions: no regrets' opportunities. Some renewable energy technologies are also shown to be cost-effective in the event that targets and timetables for reducing Greenhouse gas emissions are imposed. However, ad hoc interventions in support of particular renewables options are unlikely to be consistent with a least cost approach to achieving environmental objectives. (author). 5 tabs., 5 figs., 21 refs

  20. Human Q fever incidence is associated to spatiotemporal environmental conditions

    NARCIS (Netherlands)

    Van Leuken, J. P G; Swart, A. N.; Brandsma, J.; Terink, W.; Van de Kassteele, J.; Droogers, P.; Sauter, F.; Havelaar, A. H.|info:eu-repo/dai/nl/072306122; Van der Hoek, W.

    2016-01-01

    Airborne pathogenic transmission from sources to humans is characterised by atmospheric dispersion and influence of environmental conditions on deposition and reaerosolisation. We applied a One Health approach using human, veterinary and environmental data regarding the 2009 epidemic in The

  1. Veracruz State Preliminary Greenhouse Gases Emissions Inventory

    Science.gov (United States)

    Welsh Rodriguez, C.; Rodriquez Viqueira, L.; Guzman Rojas, S.

    2007-05-01

    on the press the year 2000, both published by the National Institute of Ecology of the SEMARNAT. There is not an emissions inventory of Veracruz, the few measurements campaigns that have been done in urban centers, it has not been possible to have access data, neither it has been designed a public politic that suggests the necessity of counting on information on the matter. In spite of it, because of the geographic conditions of Veracruz, the potential impact will transform Veracruz in a short period of time, that’s why the Veracruz University must leadership studies around it, where the social distribution of the obtained results will make possible the creation of politics, strategies directed to a sustainable development, economically viable, socially fair and environmentally respectful.

  2. Characteristics of nitrogen balance in open-air and greenhouse vegetable cropping systems of China.

    Science.gov (United States)

    Ti, Chaopu; Luo, Yongxia; Yan, Xiaoyuan

    2015-12-01

    Nitrogen (N) loss from vegetable cropping systems has become a significant environmental issue in China. In this study, estimation of N balances in both open-air and greenhouse vegetable cropping systems in China was established. Results showed that the total N input in open-air and greenhouse vegetable cropping systems in 2010 was 5.44 and 2.60 Tg, respectively. Chemical fertilizer N input in the two cropping systems was 201 kg N ha(-1) per season (open-air) and 478 kg N ha(-1) per season (greenhouse). The N use efficiency (NUE) was 25.9 ± 13.3 and 19.7 ± 9.4% for open-air and greenhouse vegetable cropping systems, respectively, significantly lower than that of maize, wheat, and rice. Approximately 30.6% of total N input was accumulated in soils and 0.8% was lost by ammonia volatilization in greenhouse vegetable system, while N accumulation and ammonia volatilization accounted for 19.1 and 11.1%, respectively, of total N input in open-air vegetable systems.

  3. 75 FR 49913 - Draft Guidance, “Federal Greenhouse Gas Accounting and Reporting”

    Science.gov (United States)

    2010-08-16

    ... provides this draft guidance for public review and comment to ensure accessibility of Federal accounting... COUNCIL ON ENVIRONMENTAL QUALITY Draft Guidance, ``Federal Greenhouse Gas Accounting and Reporting... recommended Federal GHG reporting and accounting procedures. On April 5, 2010, DOE-FEMP submitted the final...

  4. Regional greenhouse climate effects

    International Nuclear Information System (INIS)

    Hansen, J.; Rind, D.; Delgenio, A.; Lacis, A.; Lebedeff, S.; Prather, M.; Ruedy, R.; Karl, T.

    1990-01-01

    The authors discuss the impact of an increasing greenhouse effect on three aspects of regional climate: droughts, storms and temperature. A continuous of current growth rates of greenhouse gases causes an increase in the frequency and severity of droughts in their climate model simulations, with the greatest impacts in broad regions of the subtropics and middle latitudes. But the greenhouse effect enhances both ends of the hydrologic cycle in the model, that is, there is an increased frequency of extreme wet situations, as well as increased drought. Model results are shown to imply that increased greenhouse warming will lead to more intense thunderstorms, that is, deeper thunderstorms with greater rainfall. Emanual has shown that the model results also imply that the greenhouse warming leads to more destructive tropical cyclones. The authors present updated records of observed temperatures and show that the observations and model results, averaged over the globe and over the US, are generally consistent. The impacts of simulated climate changes on droughts, storms and temperature provide no evidence that there will be regional winners if greenhouse gases continue to increase rapidly

  5. Spatial Patterns and Driving Forces of Greenhouse Land Change in Shouguang City, China

    Directory of Open Access Journals (Sweden)

    Bohua Yu

    2017-03-01

    Full Text Available As an important facet of modern agricultural development, greenhouses satisfy ever-increasing demands for agricultural production and, therefore, constitute a growing proportion of global agriculture. However, just a handful of countries regularly collect statistics on the land cover of greenhouse infrastructure. Even when collected, these data cannot provide the detailed spatial information required for environmental risk assessment. It is, therefore, important to map spatial changes in greenhouse land cover using remote sensing (RS approaches to determine the underlying factors driving these changes. In this paper, we apply a support vector machine (SVM algorithm to identify greenhouse land cover in Shouguang City, China. Enhanced thematic mapper (ETM images were selected as the data source for land use classification in this study as they can be freely acquired and offer the necessary spatial resolution. We then used a binary logistic regression model to quantitatively discern the mechanisms underlying changes in greenhouse land cover. The results of this study show that greenhouse land cover in Shouguang increased by 50.51% between 2000 and 2015, and that 90.39% of this expansion took place between 2010 and 2015. Elevation, slope, precipitation, and the distance to the nearest rural settlements and coastline are all significant factors driving expansion in greenhouse land cover, while distance to the nearest urban areas, rivers, roads, railways, and coastline have contributed to contractions in this land use type. Our research provided a practical approach to allow the detection of changes in greenhouse land cover in the countries with using free or low-cost satellite images.

  6. Effects of Different Ectomycorrhizal Fungal Inoculates on the Growth of Pinus tabulaeformis Seedlings under Greenhouse Conditions

    Directory of Open Access Journals (Sweden)

    Nan Lu

    2016-12-01

    Full Text Available The tree species Pinus tabulaeformis Carr. (P. tabulaeformis is commonly planted in China due to its economic and ecological value. In order to identify one or more ectomycorrhizal (ECM fungal species for future P. tabulaeformis afforestation, we investigated the effects of five ECM fungal species: Laccaria laccata, Boletus edulis, Gomphidius viscidus, Suillus grevillei, and Suillus luteus on the growth of P. tabulaeformis seedlings under greenhouse conditions. The growth parameters of P. tabulaeformis seedlings were evaluated 90 days following fungal colonisation. The majority of seedlings were significantly affected by ECM inoculation. Mycorrhizal inoculated seedlings were taller, had more lateral roots, and a greater biomass compared with the non-mycorrhizal (CK seedlings. With the exception of G. viscidus, inoculated seedlings exhibited higher phosphorus, potassium, and nitrogen content compared with the CK seedlings. In addition, ECM colonisation increased the enzymatic activity of catalase, acidic phosphatase, protease, and the urease content in the rhizosphere soil. Our study showed that Laccaria laccata, Suillus grevillei, and Suillus luteus may be useful for improving the growth and cultivation of P. tabulaeformis seedlings. Furthermore, we observed that S. luteus inoculation increased the gas exchange parameters of P. tabulaeformis seedlings under field conditions.

  7. CADDIS Volume 4. Data Analysis: Predicting Environmental Conditions from Biological Observations (PECBO Appendix)

    Science.gov (United States)

    Overview of PECBO Module, using scripts to infer environmental conditions from biological observations, statistically estimating species-environment relationships, methods for inferring environmental conditions, statistical scripts in module.

  8. The greenhouse effect

    International Nuclear Information System (INIS)

    Berger, A.

    1991-01-01

    The greenhouse effect on earth can be defined as the long wave energy trapped in the atmosphere. Climate forcing and climate system response within which climate feedback mechanisms are contained are determined. Quantitative examples illustrate what could happen if the greenhouse effect is perturbed by human activities, in particular if CO2 atmospheric concentration would double in the future. Recent satellite measurements of the greenhouse effect are given. The net cooling effect of clouds and whether or not there will be less cooling by clouds as the planet warms are also discussed

  9. Energy Efficiency of a Greenhouse for the Conservation of Forestry Biodiversity

    Directory of Open Access Journals (Sweden)

    Alvaro Marucci

    2013-01-01

    Full Text Available Forest biodiversity conservation is one of the most interesting and crucial problems in forestry world. Currently, the conservation methods are based on two phases: the conservation of seeds at low temperatures and the multiplication of vegetable material. This latter operation can be successfully developed in properly designed greenhouses. The aim of this paper is to define a type of greenhouse which is particularly suitable for plant material propagation in order to preserve forest biodiversity in the area of the Central Italy. Some general parameters were first defined for a correct planning of the structure, such as: the shape of the section, volume, cover material, systems for heating and cooling, and those for the control of the internal microclimate parameters (light, air temperature, and relative humidity. Considering the construction characteristics and the climatic conditions of the place, the internal microclimatic conditions have been later determined by the useful implementation in TRNSYS in order to analyse the energy efficiency of the greenhouse.

  10. The greenhouse effect and extreme weather

    International Nuclear Information System (INIS)

    Groenaas, Sigbjoern; Kvamstoe, Nils Gunnar

    2002-01-01

    The article asserts that an anthropogenic global warming is occurring. This greenhouse effect is expected to cause more occurrences of extreme weather. It is extremely difficult, however, to relate specific weather catastrophes to global warming with certainty, since such extreme weather conditions are rare historically. The subject is controversial. The article also discusses the public debate and the risk of floods

  11. Theory and validation of a liquid radiation filter greenhouse simulation for performance prediction

    International Nuclear Information System (INIS)

    Feuermann, D.; Kopel, R.; Zeroni, M.; Levi, S.; Gale, J.

    1997-01-01

    A greenhouse is described which has a selectively absorbing liquid radiation filter (LRF) circulating in double layered cladding. The filter removes much of the near infrared wave band of solar radiation (700 nm) while transmitting most of the photosynthetic radiation (400-700 nm). This greatly reduces the heat input to the greenhouse and, by transferring heat from day to night, facilitates better temperature control. This is particularly important for CO2 fertilization, which requires that the greenhouse should remain closed during daylight hours. A computer simulation model was developed to study the relationship between design parameters of such a LRF greenhouse and its thermal performance under different climatic conditions. The model was based on a small number of governing equations describing the major physical phenomena responsible for the greenhouse climate. Validation of the simulation was performed with data from a 330 m2 LRF greenhouse, operating in the Negev (Israel) desert highlands. The predicted greenhouse temperatures were found to agree with measured values to within one to two degrees Celsius. Performances of a LRF and a conventional greenhouse were compared using the simulation and hourly meteorological data for central Israel. For the summer season of May to October, the number of daylight hours during which the LRF greenhouse could remain closed was larger by about two-thirds than that of the conventional greenhouse

  12. Unintended possible consequences of fuel input taxes for individual investments in greenhouse gas mitigation technologies and the resulting emissions

    Directory of Open Access Journals (Sweden)

    Heinz E. Klingelhöfer

    2017-03-01

    Full Text Available Background: South Africa is planning to introduce a carbon tax as a Pigouvian measure for the reduction of greenhouse gas emissions, one of the tax bases designed as a fuel input tax. In this form, it is supposed to incentivise users to reduce and/or substitute fossil fuels, leading to a reduction of CO2 emissions. Aim: This article examines how such a carbon tax regime may affect the individual willingness to invest in greenhouse gas mitigation technologies. Setting: Mathematical derivation, using methods of linear programming, duality theory and sensitivity analysis. Methods: By employing a two-step evaluation approach, it allows to identify the factors determining the maximum price an individual investor would pay for such an investment, given the conditions of imperfect markets. Results: This price ceiling depends on the (corrected net present values of the payments and on the interdependencies arising from changes in the optimal investment and production programmes. Although the well-established results of environmental economics usually can be confirmed for a single investment, increasing carbon taxes may entail sometimes contradictory and unexpected consequences for individual investments in greenhouse gas mitigation technologies and the resulting emissions. Under certain circumstances, they may discourage such investments and, when still undertaken, even lead to higher emissions. However, these results can be interpreted in an economically comprehensible manner. Conclusion: Under the usually given conditions of imperfect markets, the impact of a carbon tax regime on individual investment decisions to mitigate greenhouse gas emissions is not as straight forward as under the usually assumed, but unrealistically simplifying perfect market conditions. To avoid undesired and discouraging effects, policy makers cannot make solitary decisions, but have to take interdependencies on the addressee´s side into account. The individual investor

  13. Uses of geothermal energy in Jordan for heating greenhouses; project proposal

    International Nuclear Information System (INIS)

    Al-Dabbas, Moh'd A. F.; Masarwah, Rober; Elkarmi, Fawwaz

    1993-08-01

    A proposal for the exploration of geothermal energy in Jordan for heating greenhouses. The report gives some background information on geothermal anomalies in Jordan, and outlines some on-going uses of geothermal energy in various parts of Jordan. The proposal is modelled on the 2664 square meter Filclair Super 9 Multispan greenhouse from France. The overall cost of the project involves three variables, the cost of the borehole, the cost of the greenhouse, and the cost of engineering services. The total cost ranges between three to four million dollars depending on the quantity and quality of information to be collected from the borehole. The advantages of geothermal heating compared with oil heating are emphasized. The project will enable geothermal heating and horticultural production to be monitored throughout the year, will produce data enabling rational and reliable water resources management, and will produce environmentally clean and efficient energy. (A.M.H.). 1 tab. 1 map

  14. Effects of Greenhouse Gas Emissions on World Agriculture, Food Consumption, and Economic Welfare

    International Nuclear Information System (INIS)

    Darwin, R.

    2004-01-01

    Because of many uncertainties, quantitative estimates of agriculturally related economic impacts of greenhouse gas emissions are often given low confidence. A major source of uncertainty is our inability to accurately project future changes in economic activity, emissions, and climate. This paper focuses on two issues. First, to what extent do variable projections of climate generate uncertainty in agriculturally related economic impacts? Second, to what extent do agriculturally related economic impacts of greenhouse gas emissions depend on economic conditions at the time of impacts? Results indicate that uncertainty due to variable projections of climate is fairly large for most of the economic effects evaluated in this analysis. Results also indicate that economic conditions at the time of impact influence the direction and size of as well as the confidence in the economic effects of identical projections of greenhouse gas impacts. The economic variable that behaves most consistently in this analysis is world crop production. Increases in mean global temperature, for example, cause world crop production to decrease on average under both 1990 and improved economic conditions and in both instances the confidence with respect to variable projections of climate is medium (e.g., 67%) or greater. In addition and as expected, CO2 fertilization causes world crop production to increase on average under 1990 and improved economic conditions. These results suggest that crop production may be a fairly robust indicator of the potential impacts of greenhouse gas emissions. A somewhat unexpected finding is that improved economic conditions are not necessarily a panacea to potential greenhouse-gas-induced damages, particularly at the region level. In fact, in some regions, impacts of climate change or CO2 fertilization that are beneficial under current economic conditions may be detrimental under improved economic conditions (relative to the new economic base). Australia plus

  15. A new index to assess chemicals increasing the greenhouse effect based on their toxicity to algae.

    Science.gov (United States)

    Wang, Ting; Zhang, Xiaoxian; Tian, Dayong; Gao, Ya; Lin, Zhifen; Liu, Ying; Kong, Lingyun

    2015-11-01

    CO2, as the typical greenhouse gas causing the greenhouse effect, is a major global environmental problem and has attracted increasing attention from governments. Using algae to eliminate CO2, which has been proposed as an effective way to reduce the greenhouse effect in the past decades, can be disturbed by a growing number of artificial chemicals. Thus, seven types of chemicals and Selenastrum capricornutum (algae) were examined in this study, and the good consistency between the toxicity of artificial chemicals to algae and the disturbance of carbon fixation by the chemicals was revealed. This consistency showed that the disturbance of an increasing number of artificial chemicals to the carbon fixation of algae might be a "malware" worsening the global greenhouse effect. Therefore, this study proposes an original, promising index to assess the risk of deepening the greenhouse effect by artificial chemicals before they are produced and marketed. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Effects of 17β-estradiol on emissions of greenhouse gases in simulative natural water body.

    Science.gov (United States)

    Ruan, Aidong; Zhao, Ying; Liu, Chenxiao; Zong, Fengjiao; Yu, Zhongbo

    2015-05-01

    Environmental estrogens are widely spread across the world and are increasingly thought of as serious contaminators. The present study looks at the influence of different concentrations of 17β-estradiol on greenhouse gas emissions (CO2 , CH4 , and N2 O) in simulated systems to explore the relationship between environmental estrogen-pollution and greenhouse gas emissions in natural water bodies. The present study finds that 17β-estradiol pollution in simulated systems has significant promoting effects on the emissions of CH4 and CO2 , although no significant effects on N2 O emissions. The present study indicates that 17β-estradiol has different effects on the different elements cycles; the mechanism of microbial ecology is under review. © 2015 SETAC.

  17. Effectiveness of horizontal air flow fans supporting natural ventilation in a Mediterranean multi-span greenhouse

    Directory of Open Access Journals (Sweden)

    Alejandro López

    2013-08-01

    Full Text Available Natural ventilation is the most important method of climate control in Mediterranean greenhouses. In this study, the microclimate and air flow inside a Mediterranean greenhouse were evaluated by means of sonic anemometry. Experiments were carried out in conditions of moderate wind (≈ 4.0 m s-1, and at low wind speed (≈ 1.8 m s-1 the natural ventilation of the greenhouse was supplemented by two horizontal air flow fans. The greenhouse is equipped with a single roof vent opening to the windward side and two side vents, the windward one being blocked by another greenhouse close to it, while the leeward one is free of obstacles. When no fans are used, air enters through the roof vent and exits through both side vents, thus flowing contrary to the thermal effect which causes hot air to rise and impairing the natural ventilation of the greenhouse. Using fans inside the greenhouse helps the air to circulate and mix, giving rise to a more homogeneous inside temperature and increasing the average value of normalized air velocity by 365 %. These fans also increase the average values of kinetic turbulence energy inside the greenhouse by 550 % compared to conditions of natural ventilation. As the fans are placed 4 m away from the side vents, their effect on the entrance of outside air is insufficient and they do not help to reduce the inside temperature on hot days with little wind. It is therefore recommended to place the fans closer to the side vents to allow an additional increase of the air exchange rate of greenhouses.

  18. Molecular detection of Erwinia psidii in guava plants under greenhouse and field conditions

    Directory of Open Access Journals (Sweden)

    Claudênia Ferreira da Silva

    2016-09-01

    Full Text Available ABSTRACT: Erwinia psidii causes bacterial blight of guava ( Psidium guajava , an important disease of this crop in Brazil. The pathogen affects branches and twigs of guava trees, reducing yield significantly. Bacterial dissemination often occurs through contaminated but asymptomatic propagating plant material. The objectives of this research were to evaluate the use of BIO-PCR and conventional PCR to detect E. psidii in inoculated guava plants grown in a greenhouse and in symptomatic and asymptomatic trees from guava orchards. Erwinia psidii strain IBSBF 1576 was inoculated (107CFU mL-1 into young guava shoots and plant tissue was analysed at 0, 5, 10, and 15 days after inoculation. Symptoms were observed after 5 days and all inoculated shoots were PCR positive at all times, by both BIO-PCR and conventional PCR. Under natural infection conditions, 40 samples were tested by BIO-PCR from each of three guava orchards, 20 showing symptoms and 20 asymptomatic. PCR was positive for 58 out of 60 symptomatic samples (96.7% and for 6.7% of asymptomatic samples, showing that the method can be used to detect the pathogen at early stages of infection. This PCR method may be used as a diagnostic tool to assess bacterial survival, dissemination and disease outbreaks.

  19. Ozone: The secret greenhouse gas

    International Nuclear Information System (INIS)

    Berntsen, Terje; Tjernshaugen, Andreas

    2001-01-01

    The atmospheric ozone not only protects against harmful ultraviolet radiation; it also contributes to the greenhouse effect. Ozone is one of the jokers to make it difficult to calculate the climatic effect of anthropogenic emissions. The greenhouse effect and the ozone layer should not be confused. The greenhouse effect creates problems when it becomes enhanced, so that the earth becomes warmer. The problem with the ozone layer, on the contrary, is that it becomes thinner and so more of the harmful ultraviolet radiation gets through to the earth. However, ozone is also a greenhouse gas and so the greenhouse effect and the ozone layer are connected

  20. Effects of mode of inoculation on efficacy of wettable powder and oil dispersion formulations of Beauveria bassiana applied against Colorado potato beetle larvae under low-humidity greenhouse conditions

    Science.gov (United States)

    The effects of inoculation method on efficacy of two formulations of Beauveria bassiana strain GHA against Colorado potato beetle larvae were investigated. Under low-humidity greenhouse conditions, 57% mortality was observed among groups of second-instar larvae exposed directly to sprays of B. bass...

  1. Yield, nitrogen uptake and nitrogen use efficiency by tomato, pepper, cucumber, melon and eggplant as affected by nitrogen rates applied with drip-irrigation under greenhouse conditions

    International Nuclear Information System (INIS)

    Halitligil, M.B.; Akin, A.I.; Kislal, H.; Ozturk, A.; Deviren, A.

    2002-01-01

    A number of experiments were conducted to investigate the influence of different N rates applied through drip irrigation on the growth and N uptake by tomato, pepper, cucumber, melon and eggplant under greenhouse conditions. It was found that, for tomato, the % NUE was significantly increased by applying the N fertilizer through fertigation (53.9%) as compared to the soil application (34.0%) at 100 mg N/L. In general, any further increase of N fertilizer did not have an improving effect on the tomato yield. With pepper, the % NUE was significantly increased by applying the N fertilizer in the irrigation water (49.2%) as compared to the soil application (33.9%) at the same N level (140 mg N/L), being the optimum N rate under our greenhouse conditions. At a fertilization level of 100 mg N/L with fertigation, the % NUE was significantly increased as compared to the soil application. With respectively cucumber, melon and eggplant; the % NUE with fertigation was 63.4, 21.4 and 50.8%, while with soil application it was 34,0 11.0 and 18.8%. (author)

  2. Local authorities and greenhouse effect. Analysis and proposals for a mobilization of representatives about the greenhouse effect; Autorites locales et effet de serre. Analyse et propositions pour une mobilisation des elus sur l'effet de serre

    Energy Technology Data Exchange (ETDEWEB)

    Ged, A. [Agora Analyses et Systemes, 13 - Ventabren (France)

    2003-01-01

    The local authorities are essential intermediates for the implementation of environmental policies (Kyoto protocol and European policy) and in particular the fight against the greenhouse effect. This report aims at finding arguments to sensibilize and mobilize the representatives of local authorities about the climatic change and the greenhouse effect problem. The main problem concerns the introduction of the greenhouse effect concern in the decision process of local authorities. Several steps are necessary to carry out this reflection. The analysis must take into consideration the new dimensions of the urban policies and the preoccupations of the representatives. A diagnosis and concrete proposals are deduced from this analysis. (J.S.)

  3. Greenhouse gases and emissions trading

    International Nuclear Information System (INIS)

    LeBlanc, A.; Dudek, D.J.

    1993-01-01

    Global cooperation is essential in cutting greenhouse-gas emissions, say Alice LeBlanc and Daniel J. Dudek of the Environmental Defense in New York City. The first step, they continue, is agreement among nations on an overall global limit for all greenhouse gases, followed by an allocation of the global limit among nations. The agreements must contain effective reporting and monitoring systems and enforcement provisions, they add. The Framework Convention on Climate Change, signed by most nations of the world in Brazil in 1992, provides the foundation for such an agreement, LeBlanc and Dudek note. open-quotes International emissions trading is a way to lower costs and expand reduction options for the benefit of all,close quotes they contend. Under such an arrangement, an international agency would assign allowances, stated in tons of carbon dioxide. Countries would be free to buy and sell allowances, but no country could exceed, in a given year, the total allowances it holds. By emitting less than its allowed amount, a country would accumulate more allowances, which it could sell. The authors claim such a system would offer benefits to the world economy by saving billions of dollars in pollution-reduction costs while still achieving emission limits established in an international agreement

  4. Danish greenhouse gas reduction scenarios for 2020 and 2050

    Energy Technology Data Exchange (ETDEWEB)

    Karlsson, K.; Joergensen, Kaj. (Risoe DTU, Roskilde (DK)); Werling, J.; OErsted Pedersen, H.; Kofoed-Wiuff, A. (Ea energy Analysis, Copenhagen (DK))

    2008-02-15

    The aim of the project presented in this report was to develop scenarios for reducing Danish greenhouse gas emissions in 2020 and 2050. The scenarius provide a basis for estimating which technologies should be combined in order to obtain future reductions in greenhouse gas emissions in a cost-effective way. The scenarios include all emissions of greenhouse gases from agriculture, industry and oil extraction activities in the North Sea as well as the transport and energy sectors. Foreign air and sea carriage is not included because emissions related to such activities are not yet subject to international climate change agreements. The scenarios focus particularly on the technological possibilities and the necessary system changes in the Danish energy system and transport sector. Parallel to this, COWI has carried out analyses for the Danish Environmental Protection Agency focussing primarily on the reduction potentials in the transport sector and other emissions. COWI's results regarding agriculture and other emissions have been included in this analysis. Two timeframes are applied in the scenarios: the medium term, 2020, and the long term, 2050. For each timeframe, we have set up indicative targets that the scenarios must reach: 1) 2020: 30 and 40 % reduction in greenhouse gas emissions compared to 1990 2) 2050: 60 and 80 % reduction in greenhouse gas emissions compared to 1990. The scenarios for 2020 focus primarily on technologies that are already commercially available, whereas the scenarios for 2050 also examine technological options at the experimental or developmental stage. This includes hydrogen technologies and fuel cells as well as CO{sub 2} capture and sequestration (CCS) technologies. The scenarios should be seen in connection with the EU objectives of a 20-30 % reduction in greenhouse gas emissions in 2020 and 60-80 % in 2050 compared to 1990. The EU's 30 % objective is contingent upon global efforts to reduce the world's greenhouse gas

  5. Analysis of the environmental conditions at Gale Crater from MSL/REMS measurements

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, G.; Torre-Juarez, M. de la; Vicente-Retortillo, A.; Kemppinen, O.; Renno, N.; Lemmon, M.

    2016-07-01

    The environmental conditions at Gale Crater during the first 1160 sols of the Mars Science Laboratory (MSL) mission are assessed using measurements taken by the Rover Environmental Monitoring Station (REMS) on-board the MSL Curiosity rover. REMS is a suite of sensors developed to assess the environmental conditions along the rover traverse. In particular, REMS has been measuring atmospheric pressure, atmospheric and ground temperature, relative humidity, UV radiation flux and wind speed. Here we analyze processed data with the highest confidence possible of atmospheric pressure, atmospheric and ground temperature and relative humidity. In addition, we estimate the daily UV irradiation at the surface of Gale Crater using dust opacity values derived from the Mastcam instrument. REMS is still in operation, but it has already provided the most comprehensive coverage of surface environmental conditions recorded by a spacecraft landed on Mars. (Author)

  6. Localized climate control in greenhouses

    NARCIS (Netherlands)

    Booij, P.S.; Sijs, J.; Fransman, J.E.

    2012-01-01

    Strategies for controlling the indoor climate in greenhouses are based on a few sensors and actuators in combination with an assumption that climate variables, such as temperature, are uniform throughout the greenhouse. While this is already an improper assumption for conventional greenhouses, it

  7. THE USE OF SOLAR ENERGY IN THE DESALINATION SEA WATER IN AGRICULTURAL GREENHOUSE

    Directory of Open Access Journals (Sweden)

    T. Tahri

    2015-08-01

    Full Text Available The limited resources of fresh water in arid areas like the Middle East and North Africa MENA have led to the use of poor quality water in irrigation agriculture. These can reduce crop yield and environmental damage. Agriculture accounts for 70% of overall consumption in freshwater. Given the evaporation phenomena that occur in arid regions, this figure rises to 90%. This study focuses on the concept of combining the greenhouse with the desalination of seawater This concept is intended for small scale applications in remote areas where only saline water and solar energy are available.  The main objective of this research work is to analyze the production of fresh water using solar energy in the desalination of sea water in the greenhouse. This operating system is in need of thorough study of evaporators, condensers and design of the greenhouse. Desalination, combining the greenhouse to the use of sea water while exploiting the phenomenon of condensation of water vapor in the air, seems to respond positively to the needs of agricultural irrigation.

  8. Environmental aspects of ethanol derived from no-tilled corn grain: nonrenewable energy consumption and greenhouse gas emissions

    International Nuclear Information System (INIS)

    Kim, Seungdo; Dale, Bruce E.

    2005-01-01

    Nonrenewable energy consumption and greenhouse gas (GHG) emissions associated with ethanol (a liquid fuel) derived from corn grain produced in selected counties in Illinois, Indiana, Iowa, Michigan, Minnesota, Ohio, and Wisconsin are presented. Corn is cultivated under no-tillage practice (without plowing). The system boundaries include corn production, ethanol production, and the end use of ethanol as a fuel in a midsize passenger car. The environmental burdens in multi-output biorefinery processes (e.g., corn dry milling and wet milling) are allocated to the ethanol product and its various coproducts by the system expansion allocation approach. The nonrenewable energy requirement for producing 1 kg of ethanol is approximately 13.4-21.5 MJ (based on lower heating value), depending on corn milling technologies employed. Thus, the net energy value of ethanol is positive; the energy consumed in ethanol production is less than the energy content of the ethanol (26.8 MJ kg -1 ). In the GHG emissions analysis, nitrous oxide (N 2 O) emissions from soil and soil organic carbon levels under corn cultivation in each county are estimated by the DAYCENT model. Carbon sequestration rates range from 377 to 681 kg C ha -1 year -1 and N 2 O emissions from soil are 0.5-2.8 kg N ha -1 year -1 under no-till conditions. The GHG emissions assigned to 1 kg of ethanol are 260-922 g CO 2 eq. under no-tillage. Using ethanol (E85) fuel in a midsize passenger vehicle can reduce GHG emissions by 41-61% km -1 driven, compared to gasoline-fueled vehicles. Using ethanol as a vehicle fuel, therefore, has the potential to reduce nonrenewable energy consumption and GHG emissions

  9. Modelling and Simulation for Energy Production Parametric Dependence in Greenhouses

    Directory of Open Access Journals (Sweden)

    Maurizio Carlini

    2010-01-01

    Full Text Available Greenhouses crops in Italy are made by using prefabricated structures, leaving out the preliminary study of optical and thermal exchanges between the external environment and the greenhouse, dealing with heating and cooling and the effects of air conditioning needed for plant growth. This involves rather significant costs that directs the interest of designers, builders, and farmers in order to seek constructive solutions to optimize the system of such emissions. This work was done by building a model of gases using TRNSYS software, and these gases then have been checked for compliance. The model was constructed considering an example of a prefabricated greenhouse, located in central of Italy. Aspects of the structural components, and thermal and optical properties are analyzed in order to achieve a representation of reality.

  10. Can environmental conditions experienced in early life influence future generations?

    Science.gov (United States)

    Burton, Tim; Metcalfe, Neil B

    2014-06-22

    The consequences of early developmental conditions for performance in later life are now subjected to convergent interest from many different biological sub-disciplines. However, striking data, largely from the biomedical literature, show that environmental effects experienced even before conception can be transmissible to subsequent generations. Here, we review the growing evidence from natural systems for these cross-generational effects of early life conditions, showing that they can be generated by diverse environmental stressors, affect offspring in many ways and can be transmitted directly or indirectly by both parental lines for several generations. In doing so, we emphasize why early life might be so sensitive to the transmission of environmentally induced effects across generations. We also summarize recent theoretical advancements within the field of developmental plasticity, and discuss how parents might assemble different 'internal' and 'external' cues, even from the earliest stages of life, to instruct their investment decisions in offspring. In doing so, we provide a preliminary framework within the context of adaptive plasticity for understanding inter-generational phenomena that arise from early life conditions.

  11. 'Home made' model to study the greenhouse effect and global warming

    Energy Technology Data Exchange (ETDEWEB)

    Onorato, P; Mascheretti, P; DeAmbrosis, A, E-mail: pasquale.onorato@unipv.it, E-mail: anna.deambrosisvigna@unipv.it [Department of Physics ' A. Volta' , University of Pavia, Via Bassi 6, I-27100 Pavia (Italy)

    2011-03-15

    In this paper a simplified two-parameter model of the greenhouse effect on the Earth is developed, starting from the well known two-layer model. It allows both the analysis of the temperatures of the inner planets, by focusing on the role of the greenhouse effect, and a comparison between the temperatures the planets should have in the absence of greenhouse effect and their actual ones. It may also be used to predict the average temperature of the Earth surface in the future, depending on the variations of the concentration of greenhouse gases in the atmosphere due to human activities. This model can promote an elementary understanding of global warming since it allows a simple formalization of the energy balance for the Earth in the stationary condition, in the presence of greenhouse gases. For these reasons it can be introduced in courses for undergraduate physics students and for teacher preparation.

  12. Irrigation and nitrogen level affect lettuce yield in greenhouse ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-12-17

    Dec 17, 2008 ... and it achieves very high irrigation efficiency and uses. *Corresponding ... serious harmful effect on lettuce growing (Table 1). During the ... Seeds were sown in a seed bed under greenhouse conditions on. October 20th in ...

  13. Effect of environmental conditions on the fatty acid fingerprint of microbial communities

    Science.gov (United States)

    Biryukov, Mikhail; Dippold, Michaela; Kuzyakov, Yakov

    2014-05-01

    Lipid biomarkers, especially phospholipids, are routinely used to characterize microbial community structure in environmental samples. Interpretations of these fingerprints mainly depend on rare results of pure cultures which were cultivated under standardized batch conditions. However, membrane lipids (e.g. phopholipid biomarker) build up the interface between microorganisms and their environment and consequently are prone to be adapted according to the environmental conditions. We cultivated several bacteria, isolated from soil (gram-positive and gram-negative) under various conditions e.g. C supply and temperature regimes. Effect of growth conditions on phospholipids fatty acid (PLFA) as well as neutral lipid fatty acids (NLFA) and glycolipid fatty acids (GLFA) was investigated by conventional method of extraction and derivatization, followed by assessments with gas chromatography mass spectrometry (GC-MS). In addition, phospholipids were measured as intact molecules by ultra high performance liquid chromatography - quadrupole - time of flight mass spectrometer (UHPLC-Q-ToF) to further assess the composition of headgroups with fatty acids residues and their response on changing environmental conditions. PLFA fingerprints revealed a strong effect of growth stage, C supply and temperature e.g. decrease of temperature increased the amount of branched and/or unsaturated fatty acids to maintain the membrane fluidity. This strongly changes the ratio of specific to unspecific fatty acids depending on environmental conditions. Therefore, amounts of specific fatty acids cannot be used to assess biomass of a functional microbial group in soil. Intracellular neutral lipids depended less on environmental conditions reflecting a more stable biomarker group but also showed less specific fatty acids then PLFA. Therefore, combination of several lipid classes is suggested as more powerful tool to assess amounts and functionality of environmental microbial communities. Further

  14. Assessing the greenhouse gas emissions from poultry fat biodiesel

    DEFF Research Database (Denmark)

    Jørgensen, Andreas; Bikker, Paul; Herrmann, Ivan Tengbjerg

    2012-01-01

    This article attempts to answer the question: What will most likely happen in terms of emitted greenhouse gases if the use of poultry fat for making biodiesel used in transportation is increased? Through a well-to-wheel assessment, several different possible scenarios are assessed, showing...... that under average conditions, the use of poultry fat biodiesel instead of diesel leads to a slight reduction (6%) in greenhouse gas emissions. The analysis shows that poultry fat is already used for different purposes and using poultry fat for biodiesel will therefore remove the poultry fat from its...... original use. This implies that even though the use of biodiesel is assumed to displace petrochemical diesel, the ‘original user’ of the poultry fat will have to find a substitute, whose production leads to a greenhouse gas emissions comparable to what is saved through driving on poultry fat biodiesel...

  15. A 2nd generation static model for predicting greenhouse energy inputs, as an aid for production planning

    CERN Document Server

    Jolliet, O; Munday, G L

    1985-01-01

    A model which allows accurate prediction of energy consumption of a greenhouse is a useful tool for production planning and optimisation of greenhouse components. To date two types of model have been developed; some very simple models of low precision, others, precise dynamic models unsuitable for employment over long periods and too complex for use in practice. A theoretical study and measurements at the CERN trial greenhouse have allowed development of a new static model named "HORTICERN", easy to use and as precise as more complex dynamic models. This paper demonstrates the potential of this model for long-term production planning. The model gives precise predictions of energy consumption when given greenhouse conditions of use (inside temperatures, dehumidification by ventilation, …) and takes into account local climatic conditions (wind radiative losses to the sky and solar gains), type of greenhouse (cladding, thermal screen …). The HORTICERN method has been developed for PC use and requires less...

  16. Effects of substrata and environmental conditions on ecological succession on historic shipwrecks

    Science.gov (United States)

    González-Duarte, Manuel M.; Fernández-Montblanc, Tomás; Bethencourt, Manuel; Izquierdo, Alfredo

    2018-01-01

    An understanding of the interactions between biological, chemical and physical dynamics is especially important for the adequate conservation of the Underwater Cultural Heritage. However, while physical and chemical processes are relatively well-investigated, the biological communities associated with these habitats are poorly studied. We compared the sessile community developed on panels of different materials placed on two historical shipwrecks, the Fougueux and the Bucentaure, from the Battle of Trafalgar (October 1805). Six materials used at the construction of vessels at the 18th and 19th centuries were selected: copper, brass, cast iron, carbon steel, pine and oak. The sessile community developed on the panels was studied two and 15 months after their immersion at the water to determine the effects of materials and environmental conditions (sediments, waves, hydrodynamic conditions, temperature and salinity) on ecological succession and the possible implications at the conservation of historical shipwrecks. On the Fougueux, the environmental conditions more strongly influenced the biological succession than the material type, with pioneer colonisers dominating the communities in both sampling periods. On the Bucentaure, exposed to more stable environmental conditions, the sessile community showed differences between sampling periods and among materials at the end of the experiment. Under these more stable environmental conditions, the material type showed a higher influence on the sessile community. Species that produce calcareous concretions developed on metallic panels, but were absent on wood panels, where the shipworm Teredo navalis was more abundant. The relationship between environmental conditions, sessile organisms and material type can influence the conservation status of the archaeological sites.

  17. Life-Cycle Energy Use and Greenhouse Gas Emissions Analysis for Bio-Liquid Jet Fuel from Open Pond-Based Micro-Algae under China Conditions

    OpenAIRE

    Xunmin Ou; Xiaoyu Yan; Xu Zhang; Xiliang Zhang

    2013-01-01

    A life-cycle analysis (LCA) of greenhouse gas (GHG) emissions and energy use was performed to study bio-jet fuel (BJF) production from micro-algae grown in open ponds under Chinese conditions using the Tsinghua University LCA Model (TLCAM). Attention was paid to energy recovery through biogas production and cogeneration of heat and power (CHP) from the residual biomass after oil extraction, including fugitive methane (CH 4 ) emissions during the production of biogas and nitrous oxide (N 2 O) ...

  18. Calculations of environmental benefits from using geothermal energy must include the rebound effect

    DEFF Research Database (Denmark)

    Atlason, Reynir Smari; Unnthorsson, Runar

    2017-01-01

    and energy production patterns are simulated using data from countries with similar environmental conditions but do not use geothermal or hydropower to the same extent as Iceland. Because of the rapid shift towards renewable energy and exclusion of external energy provision, the country is considered......When considering the environmental benefits from converting to renewable energy sources, the rebound effect is often omitted. In this study, the aim is to investigate greenhouse gas emission reduction inclusive of the rebound effect. We use Iceland as a case study where alternative consumption...

  19. Business Council's position paper on domestic greenhouse policy

    International Nuclear Information System (INIS)

    1995-01-01

    The views of business on government policy issues relating to greenhouse gas abatement are outlined in this paper. While recognizing the need for Australia to make an effective and equitable contribution to global greenhouse gas abatement, it does not believe that acceptance of the targets and timetables implied in the Climate Change Convention will necessarily lead to Australia making an equitable contribution. The feeling is that Australia should adopt a 'no-regrets' approach in line with other OECD countries. This approach includes micro economic reform policies such as emission reduction in energy transport, land management and sink enhancement. Programs fostering relevant research and development in these areas should be adopted. Business is opposed to any form of carbon tax or environmental levy, or any reduction in the diesel fuel rebate. It is believed that the potential of no-regrets measures will be most effectively achieved through a policy package involving mutually supportive government and industry actions. 1 photo

  20. GEOTHERMAL GREENHOUSING IN TURKEY

    Directory of Open Access Journals (Sweden)

    Sedat Karaman

    2016-07-01

    Full Text Available Use of renewable energy resources should be brought forward to reduce heating costs of greenhouses and to minimize the use of ever-depleting fossil fuels. Geothermal energy not only provides the heat required throughout plant growth, but also allow a year-long production. Geothermal resources with several other benefits therefore play significant role in agricultural activities. With regard to geothermal potential and implementation, Turkey has the 7th place in the world and the 1st place in Europe. Majority of country geothermal resources is used in greenhouse heating. The size of geothermal greenhouses increased 5 folds during the last decade and reached to 2500 decare. In this study, current status of geothermal greenhousing of Turkey was presented; problems and possible solutions were discussed.

  1. Seeking coherence among environmental directives

    NARCIS (Netherlands)

    Beijen, Barbara

    2014-01-01

    European environmental law consists of a large number of directives and regulations dealing with environmental domains such as air, water, or waste, or with issues such as greenhouse gases, chemicals or industrial emissions. These directives and regulations do not form a comprehensive system of

  2. The lipid response of aerobic marine methanotroph communities under changing environmental conditions.

    Science.gov (United States)

    Rush, D.; Villanueva, L.; van der Meer, M.; S Sinninghe Damsté, J.

    2017-12-01

    Methane (CH4) originating from marine environments accounts for a significant amount of atmospheric greenhouse gas. Aerobic methanotrophs, which convert CH4 to CO­2, are responsible for quenching a part of this methane before its release. Modern-day climate projections show a rapid shift towards a warmer, more acidic ocean. How do these important methanotrophic communities respond to such changes to their environment? Here, we present the results of microcosm experiments from three marine regions influenced by CH4. Particulate organic matter and sediment were collected from the Black Sea, the Baltic Sea, and the North Sea, at depths ideal for aerobic methanotroph communities at the time of sampling (e.g. oxic, in area of active CH4 release). These were incubated under different temperatures, pHs, and labelled 13CH4 concentrations. We monitored methane concentration in these microcosms as an indication of 13CH4 consumption by methanotrophs. Once the methane concentration was lipids of the organisms oxidising methane in order to elucidate which organisms are performing methane oxidation and whether they synthesize specific biomarker lipids. Particular attention will be paid to the abundances and diversity of bacteriohopanepolyol lipids, known methanotroph biomarkers. The ultimate goal of our investigation is to determine the effect changes in these environmental parameters have on aerobic methanotroph community structures and their lipid fingerprints. By establishing reliable biomarker lipids for aerobic methanotrophy at certain conditions, we will then be able to investigate the contribution of aerobic methanotrophy throughout Earth's history, especially at times when CH4 concentrations were higher than they are at present.

  3. A CO{sub 2} air conditioning system to fight against greenhouse effect; Une climatisation a CO{sub 2} pour lutter contre l'effet de serre

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2005-10-05

    Automotive air-conditioning systems, with the induced additional fuel consumption and with the type of refrigerants used, contribute to the global warming. Several car fitters, like Delphi, have developed prototypes of CO{sub 2} air conditioners. CO{sub 2} is a greenhouse gas but is less harmful for the environment than other classical refrigerants. The use of CO{sub 2} needs a complete re-design of air-conditioning systems which have to stand pressures of 130 bars and temperatures of 165 deg. C. Short paper. (J.S.)

  4. Greenhouse technology for sustainable production in mild winter climate areas: Trends and needs

    NARCIS (Netherlands)

    Montero, J.I.; Stanghellini, C.; Castilla, N.

    2009-01-01

    Greenhouse production in the near future will need to reduce significantly its environmental impact. For this purpose, elements such as the structure, glazing materials, climate equipments and controls have to be developed and wisely managed to reduce the dependence on fossil fuels, achieve maximum

  5. An environmental and economic evaluation of pyrolysis for energy generation in Taiwan with endogenous land greenhouse gases emissions.

    Science.gov (United States)

    Kung, Chih-Chun; McCarl, Bruce A; Chen, Chi-Chung

    2014-03-11

    Taiwan suffers from energy insecurity and the threat of potential damage from global climate changes. Finding ways to alleviate these forces is the key to Taiwan's future social and economic development. This study examines the economic and environmental impacts when ethanol, conventional electricity and pyrolysis-based electricity are available alternatives. Biochar, as one of the most important by-product from pyrolysis, has the potential to provide significant environmental benefits. Therefore, alternative uses of biochar are also examined in this study. In addition, because planting energy crops would change the current land use pattern, resulting in significant land greenhouse gases (GHG) emissions, this important factor is also incorporated. Results show that bioenergy production can satisfy part of Taiwan's energy demand, but net GHG emissions offset declines if ethanol is chosen. Moreover, at high GHG price conventional electricity and ethanol will be driven out and pyrolysis will be a dominant technology. Fast pyrolysis dominates when ethanol and GHG prices are low, but slow pyrolysis is dominant at high GHG price, especially when land GHG emissions are endogenously incorporated. The results indicate that when land GHG emission is incorporated, up to 3.8 billion kWh electricity can be produced from fast pyrolysis, while up to 2.2 million tons of CO2 equivalent can be offset if slow pyrolysis is applied.

  6. Further decrease of the emission of greenhouse gases in the Netherlands

    International Nuclear Information System (INIS)

    Olsthoorn, K.

    2007-01-01

    Calculations of the CBS (Statistics Netherlands) and the Netherlands Environmental Assessment Agency (MNP) show that in 2006, for the second year in a row, the emission of greenhouse gases in the Netherlands have decreased. At 208 billion kg CO2-equivalents it was 3% below the level of 1990, the base year of the Kyoto protocol.(mk) [nl

  7. Towards a standard methodology for greenhouse gas balances of bioenergy systems in comparison with fossil energy systems

    International Nuclear Information System (INIS)

    Schlamadinger, B.; Jungmeier, G.; Apps, M.; Bohlin, F.; Gustavsson, L.; Marland, G.; Pingoud, K.; Savolainen, I.

    1997-01-01

    In this paper, which was prepared as part of IEA Bioenergy Task XV (''Greenhouse Gas Balances of Bioenergy Systems''), we outline a standard methodology for comparing the greenhouse gas balances of bioenergy systems with those of fossil energy systems. Emphasis is on a careful definition of system boundaries. The following issues are dealt with in detail: time interval analysed and changes of carbon stocks; reference energy systems; energy inputs required to produce, process and transport fuels; mass and energy losses along the entire fuel chain; energy embodied in facility infrastructure; distribution systems; cogeneration systems; by-products; waste wood and other biomass waste for energy; reference land use; and other environmental issues. For each of these areas recommendations are given on how analyses of greenhouse gas balances should be performed. In some cases we also point out alternative ways of doing the greenhouse gas accounting. Finally, the paper gives some recommendations on how bioenergy systems should be optimized from a greenhouse-gas emissions point of view. (author)

  8. Greenhouse gases and global warming

    International Nuclear Information System (INIS)

    1995-01-01

    From previous articles we have learned about the complexities of our environment, its atmosphere and its climate system. we have also learned that climate change and, therefore global warm and cool periods are naturally occurring phenomena. Moreover, all scientific evidence suggests that global warming, are likely to occur again naturally in the future. However, we have not yet considered the role of the rates of climate change in affecting the biosphere. It appears that how quickly the climate changes may be more important than the change itself. In light of this concern, let us now consider the possibility that, is due to human activity. We may over the next century experience global warming at rates and magnitudes unparalleled in recent geologic history. The following questions are answered; What can we learn from past climates? What do we know about global climates over the past 100 years? What causes temperature change? What are the greenhouse gases? How much have concentration of greenhouse gases increased in recent years? Why are increases in concentrations of greenhouse of concern? What is the e nhanced greenhouse effect ? How can human activity impact the global climate? What are some reasons for increased concentrations of greenhouse gases? What are fossil fuel and how do they transform into greenhouse gases? Who are the biggest emitters of greenhouse gases? Why are canada per capita emissions of greenhouse gases relatively high? (Author)

  9. Resistance of Microorganisms to Extreme Environmental Conditions and Its Contribution to Astrobiology

    Directory of Open Access Journals (Sweden)

    Pabulo Henrique Rampelotto

    2010-06-01

    Full Text Available In the last decades, substantial changes have occurred regarding what scientists consider the limits of habitable environmental conditions. For every extreme environmental condition investigated, a variety of microorganisms have shown that not only can they tolerate these conditions, but that they also often require these extreme conditions for survival. Microbes can return to life even after hundreds of millions of years. Furthermore, a variety of studies demonstrate that microorganisms can survive under extreme conditions, such as ultracentrifugation, hypervelocity, shock pressure, high temperature variations, vacuums, and different ultraviolet and ionizing radiation intensities, which simulate the conditions that microbes could experience during the ejection from one planet, the journey through space, as well as the impact in another planet. With these discoveries, our knowledge about the biosphere has grown and the putative boundaries of life have expanded. The present work examines the recent discoveries and the principal advances concerning the resistance of microorganisms to extreme environmental conditions, and analyzes its contributions to the development of the main themes of astrobiology: the origins of life, the search for extraterrestrial life, and the dispersion of life in the Universe.

  10. The Peculiar Negative Greenhouse Effect Over Antarctica

    Science.gov (United States)

    Sejas, S.; Taylor, P. C.; Cai, M.

    2017-12-01

    Greenhouse gases warm the climate system by reducing the energy loss to space through the greenhouse effect. Thus, a common way to measure the strength of the greenhouse effect is by taking the difference between the surface longwave (LW) emission and the outgoing LW radiation. Based on this definition, a paradoxical negative greenhouse effect is found over the Antarctic Plateau, which suprisingly indicates that greenhouse gases enhance energy loss to space. Using 13 years of NASA satellite observations, we verify the existence of the negative greenhouse effect and find that the magnitude and sign of the greenhouse effect varies seasonally and spectrally. A previous explanation attributes the negative greenhouse effect solely to stratospheric CO2 and warmer than surface stratospheric temperatures. However, we surprisingly find that the negative greenhouse effect is predominantly caused by tropospheric water vapor. A novel principle-based explanation provides the first complete account of the Antarctic Plateau's negative greenhouse effect indicating that it is controlled by the vertical variation of temperature and greenhouse gas absorption strength. Our findings indicate that the strong surface-based temperature inversion and scarcity of free tropospheric water vapor over the Antarctic Plateau cause the negative greenhouse effect. These are climatological features uniquely found in the Antarctic Plateau region, explaining why the greenhouse effect is positive everywhere else.

  11. Fluorescent and high intensity discharge lamp use in chambers and greenhouses

    Science.gov (United States)

    Langhans, Robert W.

    1994-01-01

    Fluorescent and High Intensity Discharge lamps have opened up great opportunities for researchers to study plant growth under controlled environment conditions and for commercial growers to increase plant production during low/light periods. Specific technical qualities of fluorescent and HID lamps have been critically reviewed. I will direct my remarks to fluorescent and high intensity discharge (HID) lamps in growth chambers, growth rooms, and greenhouses. I will discuss the advantages and disadvantages of using each lamp in growth chambers, growth rooms and greenhouses.

  12. The use of 32p labelled fertilizer in field and greenhouse

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1983-12-31

    This training film deals with the use of 32p-labelled materials in field and greenhouse experimentation in soil-plant relationship studies. All technical aspects, including safe handling and radiation protection procedures to be considered in the layout and harvesting of field experiments are documented in detail. Procedures followed in the evaluation of P fertilizers (such as rock phosphates) under greenhouse conditions are described. Several soil injection techniques available for the determination of the root activity pattern of trees are shown

  13. Through the greenhouse window

    International Nuclear Information System (INIS)

    Townsley, M.

    1989-01-01

    Nuclear power is being promoted as the only answer to the greenhouse effect. However, power station emissions (from fossil-fuel powered stations) account for only a fraction of the total carbon dioxide emissions. And carbon dioxide accounts for only about a half of the global warming effect -the other gases which create the greenhouse effect must also be limited. Nuclear energy is neither a practical nor economic alternative. Energy efficiency and conservation is a far better answer to the greenhouse effect. (U.K.)

  14. Greenhouse effect: Myth or reality

    International Nuclear Information System (INIS)

    Martin, J.L.

    1992-01-01

    This paper debates on greenhouse effect controversy. Natural greenhouse effect is beneficent but additional greenhouse effect, in relation with human activities, can present a major risk for humanity. However an international agreement is difficult owing to the enormous costs which could not be endured by South economies. A tax on carbon dioxide emissions would have for consequence a wave of industrial delocalizations without precedent with important unemployment in Europe and no impact on additional greenhouse effect because it is a radiative effect and it is not a classic local chemical pollution. 11 refs., 10 figs

  15. Analysis of materials used for Greenhouse roof covering - structure using CFD

    Science.gov (United States)

    Subin, M. C.; Savio Lourence, Jason; Karthikeyan, Ram; Periasamy, C.

    2018-04-01

    Greenhouse is widely used to create a suitable environment for the growth of plant. During summer, high temperatures cause harm to the plant. This work calculates characteristics required to optimize the above-mentioned parameters using different roof structure covering materials for the greenhouse. Moreover, this work also presents a simulation of the cooling and heating system. In addition, a computer model based on Ansys Fluent has been using to predict the temperature profiles inside the greenhouse. Greenhouse roof structure shading may have a time-dependent effect the production, water and nutrient uptake in plants. An experiment was conducted in the emirate of Dubai in United Arab Emirates to discover the impact of different materials in order to have an optimal plant growth zone and yield production. These structures were poly ethylene and poly carbonate sheets of 2 different configurations. Results showed that poly carbonate sheets configuration of optimal thickness has given a high result in terms of yield production. Therefore, there is a need for appropriate material selection of greenhouse roof structure in this area of UAE. Major parameters and properties need to be considered while selecting a greenhouse roof structure are the resistance to solar radiation, weathering, thermal as well as mechanical properties and good abrasion resistance. In the present study, an experiment has been conducted to find out the material suitability of the greenhouse roof structure in terms of developing proper ambient conditions especially to minimize the energy lose by reducing the HVAC and lighting expenses. The configuration verified using the CFD, so it has been concluded that polycarbonate can be safely used in the greenhouse than other roof structure material having white or green colour.

  16. 75 FR 39735 - Mandatory Reporting of Greenhouse Gases From Magnesium Production, Underground Coal Mines...

    Science.gov (United States)

    2010-07-12

    ... sectors of the economy, including fossil fuel suppliers, industrial gas suppliers, and direct emitters of... Part II Environmental Protection Agency 40 CFR Part 98 Mandatory Reporting of Greenhouse Gases From Magnesium Production, Underground Coal Mines, Industrial Wastewater Treatment, and Industrial...

  17. Bayesian Learning and the Regulation of Greenhouse Gas Emissions

    OpenAIRE

    Karp, Larry; Zhang, Jiangfeng

    2001-01-01

    We study the importance of anticipated learning - about both environmental damages and abatement costs - in determining the level and the method of controlling greenhouse gas emissions. We also compare active learning, passive learning, and parameter uncertainty without learning. Current beliefs about damages and abatement costs have an important effect on the optimal level of emissions, However, the optimal level of emissions is not sensitive either to the possibility of learning about damag...

  18. Environmental condition assessment of US military installations using GIS based spatial multi-criteria decision analysis.

    Science.gov (United States)

    Singer, Steve; Wang, Guangxing; Howard, Heidi; Anderson, Alan

    2012-08-01

    Environment functions in various aspects including soil and water conservation, biodiversity and habitats, and landscape aesthetics. Comprehensive assessment of environmental condition is thus a great challenge. The issues include how to assess individual environmental components such as landscape aesthetics and integrate them into an indicator that can comprehensively quantify environmental condition. In this study, a geographic information systems based spatial multi-criteria decision analysis was used to integrate environmental variables and create the indicator. This approach was applied to Fort Riley Military installation in which land condition and its dynamics due to military training activities were assessed. The indicator was derived by integrating soil erosion, water quality, landscape fragmentation, landscape aesthetics, and noise based on the weights from the experts by assessing and ranking the environmental variables in terms of their importance. The results showed that landscape level indicator well quantified the overall environmental condition and its dynamics, while the indicator at level of patch that is defined as a homogeneous area that is different from its surroundings detailed the spatiotemporal variability of environmental condition. The environmental condition was mostly determined by soil erosion, then landscape fragmentation, water quality, landscape aesthetics, and noise. Overall, environmental condition at both landscape and patch levels greatly varied depending on the degree of ground and canopy disturbance and their spatial patterns due to military training activities and being related to slope. It was also determined the environment itself could be recovered quickly once military training was halt or reduced. Thus, this study provided an effective tool for the army land managers to monitor environmental dynamics and plan military training activities. Its limitation lies at that the obtained values of the indicator vary and are

  19. Indoor Environmental Conditions and Sanitary Practices in Selected ...

    African Journals Online (AJOL)

    Rapidly urbanizing cities are witnessing an increase in Day care centres (DCCs) whose environmental conditions are substandard. This scenario has negative consequences on the health of the DCC attendees and yet information on some of the indicators such as the level of sanitary practices is not adequately ...

  20. Investigating the environmental costs of deteriorating road conditions in South Africa

    CSIR Research Space (South Africa)

    Mashoko, L

    2014-07-01

    Full Text Available the Environmental Costs of Deteriorating Road Conditions in South Africa L Mashoko, W L Bean*, W JvdM STEYN* CSIR, Built Environment, P O Box 395, Pretoria, 0001 Tel: 012 841-4466; Email: lmashoko@csir.co.za *University of Pretoria, Lynnwood Road, Hatfield..., Pretoria, 0002 Email: wilna.bean@up.ac.za and wynand.steyn@up.ac.za Corresponding Author: L Mashoko ABSTRACT The potential environmental impacts of deteriorating road conditions on logistics systems and the national economy have not received...

  1. Greenhouse

    Data.gov (United States)

    Federal Laboratory Consortium — PurposeThe greenhouse at ERDC’s Cold Regions Research and Engineering Laboratory (CRREL) is used for germination and root-growth studies to support basic and field...

  2. Examination of the conditions of a broadening of the general tax for polluting activities to the intermediate energy consumptions. Incentive mechanisms for the abatement of greenhouse gas emissions

    International Nuclear Information System (INIS)

    Bureau, D.

    2000-05-01

    Among the various existing incentive mechanisms for the abatement of greenhouse gas emissions, like the pollution regulations and the financial help for energy mastery, this document analyzes the conditions of efficiency of the negotiated voluntary agreements and of the tradable emission quotas and their articulation with the fiscality. (J.S.)

  3. Greenhouse Gas Emissions, Energy Consumption and Economic Growth: A Panel Cointegration Analysis for 16 Asian Countries.

    Science.gov (United States)

    Lu, Wen-Cheng

    2017-11-22

    This research investigates the co-movement and causality relationships between greenhouse gas emissions, energy consumption and economic growth for 16 Asian countries over the period 1990-2012. The empirical findings suggest that in the long run, bidirectional Granger causality between energy consumption, GDP and greenhouse gas emissions and between GDP, greenhouse gas emissions and energy consumption is established. A non-linear, quadratic relationship is revealed between greenhouse gas emissions, energy consumption and economic growth, consistent with the environmental Kuznets curve for these 16 Asian countries and a subsample of the Asian new industrial economy. Short-run relationships are regionally specific across the Asian continent. From the viewpoint of energy policy in Asia, various governments support low-carbon or renewable energy use and are reducing fossil fuel combustion to sustain economic growth, but in some countries, evidence suggests that energy conservation might only be marginal.

  4. Greenhouse Gas Emissions, Energy Consumption and Economic Growth: A Panel Cointegration Analysis for 16 Asian Countries

    Science.gov (United States)

    2017-01-01

    This research investigates the co-movement and causality relationships between greenhouse gas emissions, energy consumption and economic growth for 16 Asian countries over the period 1990–2012. The empirical findings suggest that in the long run, bidirectional Granger causality between energy consumption, GDP and greenhouse gas emissions and between GDP, greenhouse gas emissions and energy consumption is established. A non-linear, quadratic relationship is revealed between greenhouse gas emissions, energy consumption and economic growth, consistent with the environmental Kuznets curve for these 16 Asian countries and a subsample of the Asian new industrial economy. Short-run relationships are regionally specific across the Asian continent. From the viewpoint of energy policy in Asia, various governments support low-carbon or renewable energy use and are reducing fossil fuel combustion to sustain economic growth, but in some countries, evidence suggests that energy conservation might only be marginal. PMID:29165399

  5. Greenhouse Gas Emissions, Energy Consumption and Economic Growth: A Panel Cointegration Analysis for 16 Asian Countries

    Directory of Open Access Journals (Sweden)

    Wen-Cheng Lu

    2017-11-01

    Full Text Available This research investigates the co-movement and causality relationships between greenhouse gas emissions, energy consumption and economic growth for 16 Asian countries over the period 1990–2012. The empirical findings suggest that in the long run, bidirectional Granger causality between energy consumption, GDP and greenhouse gas emissions and between GDP, greenhouse gas emissions and energy consumption is established. A non-linear, quadratic relationship is revealed between greenhouse gas emissions, energy consumption and economic growth, consistent with the environmental Kuznets curve for these 16 Asian countries and a subsample of the Asian new industrial economy. Short-run relationships are regionally specific across the Asian continent. From the viewpoint of energy policy in Asia, various governments support low-carbon or renewable energy use and are reducing fossil fuel combustion to sustain economic growth, but in some countries, evidence suggests that energy conservation might only be marginal.

  6. The greenhouse effect

    International Nuclear Information System (INIS)

    2004-01-01

    In the framework of the sustainable development, this paper presents the greenhouse effect and its impact on the climatic change, the world interest from Rio to Buenos Aires, the human activities producing the carbon dioxide and responsible of the greenhouse effect, the carbon dioxide emission decrease possibilities and shows the necessity of the electric power producers contribution. (A.L.B.)

  7. Greenhouse effect

    International Nuclear Information System (INIS)

    Lepetit, J.P.

    1992-01-01

    This book speaks about the growth of greenhouse gases content in the atmosphere and try to forecast the different scenarios which may happen. But, in spite of international cooperation and coordinated research programs, nobody owns the answer. So possible future climatic changes depend on the behavior of the concerned actors. A review of energy policy driven by USA, Japan, Sweden, United Kingdom and Federal Republic of Germany is given. Political management of this file and public opinion in front of greenhouse effect are also described. 7 refs., 3 figs., 6 tabs

  8. Modelling and simulation of a hybrid solar heating system for greenhouse applications using Matlab/Simulink

    International Nuclear Information System (INIS)

    Kıyan, Metin; Bingöl, Ekin; Melikoğlu, Mehmet; Albostan, Ayhan

    2013-01-01

    Highlights: • Matlab/Simulink modelling of a solar hybrid greenhouse. • Estimation of greenhouse gas emission reductions. • Feasibility and cost analysis of the system. - Abstract: Solar energy is a major renewable energy source and hybrid solar systems are gaining increased academic and industrial attention due to the unique advantages they offer. In this paper, a mathematical model has been developed to investigate the thermal behavior of a greenhouse heated by a hybrid solar collector system. This hybrid system contains an evacuated tube solar heat collector unit, an auxiliary fossil fuel heating unit, a hot water storage unit, control and piping units. A Matlab/Simulink based model and software has been developed to predict the storage water temperature, greenhouse indoor temperature and the amount of auxiliary fuel, as a function of various design parameters of the greenhouse such as location, dimensions, and meteorological data of the region. As a case study, a greenhouse located in Şanlıurfa/Turkey has been simulated based on recent meteorological data and aforementioned hybrid system. The results of simulations performed on an annual basis indicate that revising the existing fossil fuel system with the proposed hybrid system, is economically feasible for most cases, however it requires a slightly longer payback period than expected. On the other hand, by reducing the greenhouse gas emissions significantly, it has a considerable positive environmental impact. The developed dynamic simulation method can be further used for designing heating systems for various solar greenhouses and optimizing the solar collector and thermal storage sizes

  9. Water deficit effects on maize yields modeled under current and greenhouse climates

    International Nuclear Information System (INIS)

    Muchow, R.C.; Sinclair, T.R.

    1991-01-01

    The availability of water imposes one of the major limits on rainfed maize (Zea mays L.) productivity. This analysis was undertaken in an attempt to quantify the effects of limited water on maize growth and yield by extending a simple, mechanistic model in which temperature regulates crop development and intercepted solar radiation is used to calculate crop biomass accumulation. A soil water budget was incorporated into the model by accounting for inputs from rainfall and irrigation, and water use by soil evaporation and crop transpiration. The response functions of leaf area development and crop gas exchange to the soil water budget were developed from experimental studies. The model was used to interpret a range of field experiments using observed daily values of temperature, solar radiation, and rainfall or irrigation, where water deficits of varying durations developed at different stages of growth. The relative simplicity of the model and its robustness in simulating maize yields under a range of water-availability conditions allows the model to be readily used for studies of crop performance under alternate conditions. One such study, presented here, was a yield assessment for rainfed maize under possible greenhouse climates where temperature and atmospheric CO 2 concentration were increased. An increase in temperature combined with decreased rainfall lowered grain yield, although the increase in crop water use efficiency associated with elevated CO 2 concentration ameliorated the response to the greenhouse climate. Grain yields for the greenhouse climates as compared to current conditions increased, or decreased only slightly, except when the greenhouse climate was assumed to result in severly decreased rainfall

  10. Energy consumption estimation for greenhouse gas separation processes by clathrate hydrate formation

    International Nuclear Information System (INIS)

    Tajima, Hideo; Yamasaki, Akihiro; Kiyono, Fumio

    2004-01-01

    The process energy consumption was estimated for gas separation processes by the formation of clathrate hydrates. The separation process is based on the equilibrium partition of the components between the gaseous phase and the hydrate phase. The separation and capturing processes of greenhouse gases were examined in this study. The target components were hydrofluorocarbon (HFC-134a) from air, sulfur hexafluoride (SF 6 ) from nitrogen, and CO 2 from flue gas. Since these greenhouse gases would form hydrates under much lower pressure and higher temperature conditions than the accompanying components, the effective capturing of the greenhouse gases could be achieved by using hydrate formation. A model separation process for each gaseous mixture was designed from the basis of thermodynamics, and the process energy consumption was estimated. The obtained results were then compared with those for conventional separation processes such as liquefaction separation processes. For the recovery of SF 6 , the hydrate process is preferable to liquefaction process in terms of energy consumption. On the other hand, the liquefaction process consumes less energy than the hydrate process for the recovery of HFC-134a. The capturing of CO 2 by the hydrate process from a flue gas will consume a considerable amount of energy; mainly due to the extremely high pressure conditions required for hydrate formation. The influences of the operation conditions on the heat of hydrate formation were elucidated by sensitivity analysis. The hydrate processes for separating these greenhouse gases were evaluated in terms of reduction of global warming potential (GWP)

  11. Students' Understanding of the Greenhouse Effect, the Societal Consequences of Reducing CO2 Emissions and the Problem of Ozone Layer Depletion.

    Science.gov (United States)

    Andersson, Bjorn; Wallin, Anita

    2000-01-01

    Contributes to the growing body of knowledge about students' conceptions and views of environmental and natural resource issues. Questions 9th and 12th grade Swedish students' understandings of the greenhouse effect, reduction of CO2 emissions, and the depletion of the ozone layer. Observes five models of the greenhouse effect that appear among…

  12. An inexact two-stage stochastic energy systems planning model for managing greenhouse gas emission at a municipal level

    International Nuclear Information System (INIS)

    Lin, Q.G.; Huang, G.H.

    2010-01-01

    Energy management systems are highly complicated with greenhouse-gas emission reduction issues and a variety of social, economic, political, environmental and technical factors. To address such complexities, municipal energy systems planning models are desired as they can take account of these factors and their interactions within municipal energy management systems. This research is to develop an interval-parameter two-stage stochastic municipal energy systems planning model (ITS-MEM) for supporting decisions of energy systems planning and GHG (greenhouse gases) emission management at a municipal level. ITS-MEM is then applied to a case study. The results indicated that the developed model was capable of supporting municipal energy systems planning and environmental management under uncertainty. Solutions of ITS-MEM would provide an effective linkage between the pre-regulated environmental policies (GHG-emission reduction targets) and the associated economic implications (GHG-emission credit trading).

  13. Turkish tomato greenhouse gets geothermal heating

    NARCIS (Netherlands)

    Sikkema, A.; Maaswinkel, R.H.M.

    2011-01-01

    Wageningen UR Greenhouse Horticulture will set up an ultramodern greenhouse in Turkey, together with Dutch greenhouse builders and contractors. Geothermal energy will be used there to provide heat and carbon dioxide for tomato cultivation.

  14. Effect of Miscanthus cultivation on metal fractionation and human bioaccessibility in metal-contaminated soils: comparison between greenhouse and field experiments.

    Science.gov (United States)

    Pelfrêne, Aurélie; Kleckerová, Andrea; Pourrut, Bertrand; Nsanganwimana, Florien; Douay, Francis; Waterlot, Christophe

    2015-02-01

    The in situ stabilization of metals in soils using plants with great biomass value is a promising, cost-effective, and ecologically friendly alternative to manage metal-polluted sites. The goal of phytostabilization is to reduce the bioavailable concentrations of metals in polluted soil and thus reduce the risk to the environment and human health. In this context, this study aimed at evaluating Miscanthus × giganteus efficiency in phytostabilizing metals on three contaminated agricultural sites after short-term exposure under greenhouse conditions and after long-term exposure under field conditions. Particular attention was paid to the influence of Miscanthus cultivation on (i) Cd, Pb, and Zn fractionation using sequential extractions and (ii) metal bioaccessibility using an in vitro gastrointestinal digestion test. Data gave evidence of (i) different behaviors between the greenhouse and the field; (ii) metal redistribution in soils induced by Miscanthus culture, more specifically under field conditions; (iii) higher environmental availability for Cd than for Pb and Zn was found in both conditions; and (iv) overall, a higher bioaccessible fraction for Pb (about 80 %) and Cd (65-77 %) than for Zn (36-52 %) was recorded in the gastric phase, with a sharp decrease in the intestinal phase (18-35 % for Cd, 5-30 % for Pb, and 36-52 % for Zn). Compared to soils without culture, the results showed that phytostabilization using Miscanthus culture provided evidence for substantial effects on oral bioaccessibility of Cd, Pb, and Zn.

  15. Should we plant trees to offset greenhouse gas emissions in semi-arid environments?

    Science.gov (United States)

    Pataki, D. E.; Pincetl, S.; Gillespie, T. W.; Li, W.; McCarthy, H. R.; Saatchi, S.; Saphores, J.

    2008-12-01

    Urban tree planting programs have been gaining popularity in the United States. Urban trees have been associated with a variety of environmental benefits, including improvements in air quality, mitigation of urban heat island effects, reductions in stormwater runoff, and more recently, carbon sequestration. There are also other potential aesthetic and economic benefits of urban forests, which have been shown to affect real estate values. However, there may also be significant economic and environmental costs of planting and maintaining trees in urban areas, particularly in semi-arid environments where trees are not native and require irrigation and fertilization. We are conducting an analysis of the Million Tree Initiative in the city of Los Angeles, which has committed to a major tree planting program. Los Angeles currently has a low tree canopy cover relative to other cities, particularly in its low income neighborhoods. We are evaluating the decision-making processes associated with the new tree planting program, its perceived benefits, and its actual benefits based on measurements of plant and ecosystem processes such as transpiration, photosynthesis, and water use efficiency; remote sensing analyses of tree cover and surface temperature; and economic analyses. We have found great variability in the interpretation of the program by its various participants, but also significant institutional learning as the program has evolved. Our datasets have challenged some of the common assumptions of the program, for example, the assumption that native species use less water than imported species and are therefore more environmentally beneficial in terms of water resources. We have also found significant impacts of the urban forest on air temperature, which may reduce energy use during the summer due to reductions in air conditioning. This is likely to be a larger effect of urban trees on greenhouse gas emissions than direct carbon sequestration alone, which is a very

  16. Towards European organisation for integrated greenhouse gas observation system

    Science.gov (United States)

    Kaukolehto, Marjut; Vesala, Timo; Sorvari, Sanna; Juurola, Eija; Paris, Jean-Daniel

    2013-04-01

    Climate change is one the most challenging problems that humanity will have to cope with in the coming decades. The perturbed global biogeochemical cycles of the greenhouse gases (carbon dioxide, methane and nitrous oxide) are a major driving force of current and future climate change. Deeper understanding of the driving forces of climate change requires full quantification of the greenhouse gas emissions and sinks and their evolution. Regional greenhouse gas budgets, tipping-points, vulnerabilities and the controlling mechanisms can be assessed by long term, high precision observations in the atmosphere and at the ocean and land surface. ICOS RI is a distributed infrastructure for on-line, in-situ monitoring of greenhouse gases (GHG) necessary to understand their present-state and future sinks and sources. ICOS RI provides the long-term observations required to understand the present state and predict future behaviour of the global carbon cycle and greenhouse gas emissions. Linking research, education and innovation promotes technological development and demonstrations related to greenhouse gases. The first objective of ICOS RI is to provide effective access to coherent and precise data and to provide assessments of GHG inventories with high temporal and spatial resolution. The second objective is to provide profound information for research and understanding of regional budgets of greenhouse gas sources and sinks, their human and natural drivers, and the controlling mechanisms. ICOS is one of several ESFRI initiatives in the environmental science domain. There is significant potential for structural and synergetic interaction with several other ESFRI initiatives. ICOS RI is relevant for Joint Programming by providing the data access for the researchers and acting as a contact point for developing joint strategic research agendas among European member states. The preparatory phase ends in March 2013 and there will be an interim period before the legal entity will

  17. Control of Pathogenicity Root-Knot Nematode (Meloidogyne Javanica by Earthworm Eisenia Feoetida-Based Products in Greenhouse

    Directory of Open Access Journals (Sweden)

    M. Rostami

    2016-06-01

    Full Text Available Introduction: Biocontrol of nematode agents in order to decrease the hazardous impacts of chemical pesticide application including problems of public health and environmental pollution is apriority. In this study, solid (Vermicompost and liquid products (Liquid Vermicompost, Vermiwash and Coelomic fluidof the earthworm species Eisenia fetida were tested against root-knot nematode, Meloidogyne javanica in greenhouse conditions. Materials and Methods: In this study, Solid (Vermicompost and Liquid products(Wormtea, Vermiwash, Coelomic fluid erthworms (Eisenia foetida were tested against Meloidogyne javanica and also the effect of Vermicompost was evaluated on Pathogenicity of various nematode initial inoculum in two stage greenhouse conditions. Earthworm-based products (Vermicompost, Wormtea, Vermiwash and Coelomic fluid were added to tomato pots. Various treatments of liquid as well as solid products and their combination were used in the greenhouse trial. The first Stage greenhouse experiment- Tomato seeds grown in 2 kg sterilized soil. In the treatments having Vermicompost, pots incorporated with 200 gr of this compost homogeneously mixed with soil. After plants reached at two leaf stage, to study the effects of liquid products (Wormtea, Vermiwash, and Coelomic fluid they added to the pots (500cc along with the irrigation water every week and after of 4 leaf stage, 5000 nematode eggs and larva inoculated to the tomato host plants. 90 days after nematode inoculation, plant and nematode growth indices separately measured and compared. The experiment conducted based on completely randomized design having four replicates. The second stage greenhouse experiment- Tomato seeds grown in 2 kg sterilized soil. In the treatments, pots incorporated with 200 gr of this compost homogeneously mixed with soil. After of 4 leaf stage, 0,1000,2000,4000 and 10000 nematode eggs and larva inoculated to the tomato host plants. 90 days after nematode inoculation, plant

  18. Effects of repository conditions on environmental impact reduction by recycling

    International Nuclear Information System (INIS)

    Ahn, Joonhong

    2010-01-01

    The environmental impacts (EI) of high-level wastes (HLW) disposed of in a water-saturated repository (WSR) and in the Yucca Mountain Repository (YMR) for various fuel cycle cases have been evaluated and compared to observe the difference in the recycling effects for differing repository conditions. With the impacts of direct spent fuel disposal in each repository as the reference level, separation of actinides by Urex+ and borosilicate vitrification clearly reduces the environmental impacts of YMR, while separation by Purex and borosilicate vitrification would not necessarily reduce the environmental impact of WSR. (authors)

  19. Greenhouse Earth: A Traveling Exhibition

    International Nuclear Information System (INIS)

    Booth, W.H.; Caesar, S.

    1992-09-01

    The Franklin Institute Science Museum provided an exhibit entitled the Greenhouse Earth: A Traveling Exhibition. This 3500 square-foot exhibit on global climate change was developed in collaboration with the Association of Science-Technology Centers. The exhibit opened at The Franklin Institute on February 14, 1992, welcoming 291,000 visitors over its three-month stay. During its three-year tour, Greenhouse Earth will travel to ten US cities, reaching two million visitors. Greenhouse Earth aims to deepen public understanding of the scientific issues of global warming and the conservation measures that can be taken to slow its effects. The exhibit features hands-on exhibitry, interactive computer programs and videos, a theater production, a ''demonstration cart,'' guided tours, and lectures. supplemental educational programs at the Institute included a teachers preview, a symposium on climate change, and a ''satellite field trip.'' The development of Greenhouse Earth included front-end and formative evaluation procedures. Evaluation includes interviews with visitors, prototypes, and summative surveys for participating museums. During its stay in Philadelphia, Greenhouse Earth was covered by the local and national press, with reviews in print and broadcast media. Greenhouse Earth is the first large-scale museum exhibit to address global climate change

  20. Environmental impacts on the diversity of methane-cycling microbes and their resultant function

    OpenAIRE

    Emma eAronson; Emma eAronson; Steven eAllison; Steven eAllison; Brent R Helliker

    2013-01-01

    Methane is an important anthropogenic greenhouse gas that is produced and consumed in soils by microorganisms responding to micro-environmental conditions. Current estimates show that soil consumption accounts for 5-15% of methane removed from the atmosphere on an annual basis. Recent variability in atmospheric methane concentrations has called into question the reliability of estimates of methane consumption and call for novel approaches in order to predict future atmospheric methane trends....

  1. Environmental impacts on the diversity of methane-cycling microbes and their resultant function

    OpenAIRE

    Aronson, Emma L; Allison, Steven D; Helliker, Brent R

    2013-01-01

    Methane is an important anthropogenic greenhouse gas that is produced and consumed in soils by microorganisms responding to micro-environmental conditions. Current estimates show that soil consumption accounts for 5?15% of methane removed from the atmosphere on an annual basis. Recent variability in atmospheric methane concentrations has called into question the reliability of estimates of methane consumption and calls for novel approaches in order to predict future atmospheric methane trends...

  2. Study of greenhouse gases reduction alternatives for the exploitation of non conventional oil sands in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Bouchonneau, Deborah [Institut Francais du Petrole (IFP), Paris (France)

    2008-07-01

    High energy prices and greenhouse gases reduction represent the main challenges the current worldwide energetic situation has to face. As a consequence, paradox strategies can be highlighted: oil prices are sufficiently high to exploit non conventional oil resources, like extra heavy oils and oil sands. But the production of these resources emits larger GHG than the conventional oil path and implies other major environmental issues (water management, risks of soil pollution, destruction of the boreal forest), incompatible with the rules validated by the protocol of Kyoto. At the light of the new greenhouse gases reduction regulation framework announced by the Canadian Federal government, this work focuses on the study of greenhouse gases reduction alternatives applied to the non conventional oil sands exploitation in Canada. (author)

  3. Energy consumption for different greenhouse constructions

    Energy Technology Data Exchange (ETDEWEB)

    Djevic, M.; Dimitrijevic, A. [Department for Agricultural Engineering, University of Belgrade, Faculty of Agriculture, Nemanjina 6, 11080 Belgrade (RS)

    2009-09-15

    In this paper the influence of greenhouse construction on energy efficiency in winter lettuce production was estimated for four different double plastic covered greenhouses in Serbia region. Plastic coverings were introduced in this region as a mean of making the plant production more energy efficient. Additionally, as a means of lowering energy consumption, tunnel structures were proposed. In order to see whether the greenhouse structure influences energy consumption, four different double plastic covered greenhouses. Two tunnel types, 9 x 58 m and 8 x 25 m, one gutter-connected structure and multi-span plastic covered greenhouse. The gutter-connected structure was 2 x 7 m wide and 39 m long while the multi-span structure was 20 x 6.4 m wide and 42 m long. On the basis of lettuce production output and the energy input, specific energy input, energy output-input ratio and energy productivity were estimated. Results show that the lowest energy consumption was obtained for multi-span greenhouse, 9.76 MJ/m{sup 2}. The highest energy consumption was obtained in tunnel, 9 x 58 m, 13.93 MJ/m{sup 2}. The highest value for output-input ratio was calculated for multi-span greenhouse (0.29), followed by gutter-connected greenhouse (0.21), tunnel 9 x 58 m (0.17) and tunnel, 8 x 25 m (0.15). Results also show that energy productivity can be higher if multi-span greenhouse structures are used. (author)

  4. Greenhouse Gases Emission and Global Warming Potential as Affected by Chemical Inputs for Main Cultivated Crops in Kerman Province: - Horticultural Crops

    OpenAIRE

    Nasibe Pourghasemian; Rooholla Moradi

    2017-01-01

    Introduction The latest report of the IPCC states that future emissions of greenhouse gases (GHGs) will continue to increase and will be the main cause of global climatic changes, as well as Iran. The three greenhouse gases associated with agriculture are CO2, CH4, and N2O. Chemical inputs consumption in agriculture has increased annually, while more intensive use of energy led to some important human health and environmental problems such as greenhouse gas emissions and global warming. Th...

  5. Estimating the Impact of US Agriculture Subsidies on Greenhouse Gas Emissions

    Science.gov (United States)

    Eshel, G.; Martin, P. A.

    2006-12-01

    It has been proposed in the popular media that US agricultural subsidies contribute deleteriously to both the American diet and environment. In this view, subsidies render mostly corn-based, animal products and sweeteners artificically cheap, leading to enhanced consumption. Problems accompanying this structure mentioned include enhanced meat, fat and sugar consumption and the associated enhancement of obesity, cardiovascular diseases, type II diabetes and possible various types of cancer, as well as air, soil and water pollution. Often overlooked in these discussions is the potential enhancement of greenhouse gas emissions accompanying this policy-based steering of food consumption toward certain products at the expense of others, possibly more nutritionally and environmentally benign. If such enhancements are in fact borne out by data, the policies that give rise to them will prove to constitute government-sponsored enhancement of greenhouse gas emissions, in contrast to any climate change mitigation efforts. If so, they represent low- hanging fruits in the national effort to reduce greenhouse gas emissions which may one day be launched. Agriculture subsidies impact the emissions of CO2 (by direct energy consumption), nitrous oxide (by land use alteration and manure management), and methane (by ruminant digestion and manure treatment). Quantifying the impacts of agricultural subsidies is complicated by many compounding and conflicting effects (many related to human behavior rather than the natural sciences) and the relatively short data timeseries. For example, subsidy policies change over time, certain subsidy types are introduced or eliminated, food preferences change as nutritional understanding (or propaganda) shift, etc. Despite the difficulties, such quantification is crucial to better estimate the overall effect and variability of dietary choices on greenhouse gas emissions, and ultimately minimize environmental impacts. In this study, we take preliminary

  6. Modeling and simulation of fuzzy logic controller for optimization of the greenhouse microclimate management

    Directory of Open Access Journals (Sweden)

    Didi Faouzi

    2017-06-01

    Full Text Available Abstract. Agricultural greenhouse is largely answered in the agricultural sphere, despite the shortcomings it has, including overheating during the day and night cooling which sometimes results in the thermal inversion mainly due to its low inertia. The glasshouse dressed chapel is relatively more efficient than the conventional tunnel greenhouse. Its proliferation on the ground is more or less timid because of its relatively high cost. Agricultural greenhouse aims to create a favorable microclimate to the requirements of growth and development of culture, from the surrounding weather conditions, produce according to the cropping calendars fruits, vegetables and flower species out of season and widely available along the year. It is defined by its structural and functional architecture, the quality thermal, mechanical and optical of its wall, with its sealing level and the technical and technological accompanying. The greenhouse is a very confined environment, where multiple components are exchanged between key stakeholders and the factors are light, temperature and relative humidity. This state of thermal evolution is the level sealing of the cover of its physical characteristics to be transparent to solar, absorbent and reflective of infrared radiation emitted by the enclosure where the solar radiation trapping effect otherwise called "greenhouse effect" and its technical and technological means of air that accompany. The socio-economic analysis of populations in the world leaves appear especially the last two decades of rapid and profound transformations These changes are accompanied by changes in eating habits, mainly characterized by rising consumption spread along the year. To effectively meet this demand, greenhousesystems have evolved, particularly towards greater control of production conditions (climate, irrigation, ventilation techniques, CO supply, etc.. Technological 2 progress has allowed the development of greenhouses so that they

  7. Empirical links between the local runaway greenhouse, super-greenhouse, and deep convection in Earth's tropics

    Science.gov (United States)

    Dewey, M. C.; Goldblatt, C.

    2017-12-01

    Energy balance requires that energy absorbed and emitted at the top of the atmosphere equal; this is maintained via the Planck feedback whereby outgoing longwave radiation (OLR) increases as surface temperature increases. There are two cases where this breaks down: the runaway greenhouse (known from planetary sciences theory) characterized by an asymptotic limit on OLR from moist atmospheres, and the super-greenhouse (known from tropical meteorology observations) where OLR decreases with surface temperature when the atmosphere is moist aloft. Here we show that the runaway greenhouse limit can be empirically observed and constrained in Earth's tropics, that the runaway and super-greenhouse occur as part of the same physical phenomenon, and that the transition through the super-greenhouse to a local runaway greenhouse is intimately linked to the onset of deep convection. A runaway greenhouse occurs when water vapour causes the troposphere to become optically thick to thermal radiation from the surface and a limit on OLR emerges as thermal emission is from a constant temperature level aloft. This limit is modelled as 282 W/m/m [Goldblatt et al, 2013]. Using satellite data from Earth's tropics, we find an empirical value of this limit of 280 W/m/m, in excellent agreement with the model.A column transitioning to a runaway greenhouse typically overshoots the runaway limit and then OLR decreases with increasing surface temperature until the runaway limit is reached after which OLR remains constant. The term super-greenhouse effect (SGE) has been used to describe OLR decreasing with surface warming, observed in these satellite measurements. We show the SGE is one and the same as the transition to a local runaway greenhouse, and represents a fundamental shift in the radiation response of the earth system, rather than simply an extension of water vapour feedback. This transition via SGE from an optically thin to optically thick troposphere is facilitated by enhanced

  8. Plant Physiology in Greenhouses

    NARCIS (Netherlands)

    Heuvelink, E.; Kierkels, T.

    2015-01-01

    Since 2004 Ep Heuvelink and Tijs Kierkels have been writing a continuing series of plant physiology articles for the Dutch horticultural journal Onder Glas and the international edition In Greenhouses. The book Plant Physiology in Greenhouses consists of 50 of their plant physiology articles. The

  9. Greenhouse effect: there are solutions

    International Nuclear Information System (INIS)

    Anon.

    1997-01-01

    A review of solutions that may be undertaken in order to reduce the greenhouse effect gas emissions is presented: clean energy generation through municipal, agricultural and industrial waste processing, reducing energy consumption through public transportation promotion, clean fuel buses and vehicles, or using energy efficient boilers, reduction of carbon dioxide emission from industry through process optimization, waste recycling, energy substitution and conservation, diminution of CO 2 emissions in commercial and residential sectors through space heating and air conditioning retrofitting, lighting substitution. Pollution abatement potentials are evaluated in each case, notably in France

  10. Hydropower may produce more greenhouse gases

    International Nuclear Information System (INIS)

    Kolshus, Hans H.; Folkestad, Tonje

    2002-01-01

    According to this article, dam projects in hydropower development may lead to increased emission of greenhouse gases and may create great inconveniences for the local community. Hence it is not without problems to sponsor such projects through the Clean Development Mechanism (CDM) of the Kyoto Protocol. In many countries the great era of hydroelectric development is over and the potential is now in the developing countries. The aim of the CDM is two-fold: sustainable development in the developing countries, and cheap reduction of greenhouse gas emission from developed nations. It has been agreed upon in the climate negotiations that it is the developing country receiving the investments that shall document that the projects conform to the goal of sustainable development of that country. The concept of sustain ability is a vague one, and it is a great challenge to make it more precise so that requirements may be posed on CDM projects. This is important as projects that are suitable from a climate point of view may have undesirable environmental or social effects, which may be in conflict with the goal of sustainable development. This also pertains to hydropower. It also appears that water reservoirs are not always as clean as has been assumed

  11. Solar greenhouse aquaculture

    Energy Technology Data Exchange (ETDEWEB)

    Toever, W V

    1979-01-01

    Rainbow and Speckled Trout have been successfully hatched and reared in a recirculating aquaculture system. The system is integrated into the Ark greenhouse providing thermal mass for temperature regulation and supplying nutrient-rich water for plants. The system incorporates bacterial, algal and hydroponic water filtration. Various vegetable crops have been raised in the hydroponic troughs. A scaled-down system suitable for domestic solar greenhouse application is also under development.

  12. From producer to consumer: greenhouse tomato quality as affected by variety, maturity stage at harvest, transport conditions, and supermarket storage.

    Science.gov (United States)

    Verheul, Michèl J; Slimestad, Rune; Tjøstheim, Irene Holta

    2015-05-27

    Possible causes for differences in quality traits at the time of buying were studied in two widely different red tomato types. Three maturity stages were harvested from commercial greenhouses and transferred immediately to controlled environments simulating different storage, transport, and supermarket conditions. Results show significant differences in development of color, fruit firmness, contents of soluble solids (SSC), titratable acids (TTA), phenolics, and carotenoids from harvest to sale, as related to postharvest conditions. Fruit firmness, SSC, and TTA of vine-ripened red cherry tomatoes was 30, 55 and 11% higher than for those harvested at breakers and ripened to red. Temperature, light, UVC radiation, or ethylene during 4 days transport affected tomato quality traits, and differences persisted during 3 weeks of supermarket storage. Ethylene exposure gave a 3.7-fold increase in lycopene content in cherry tomatoes, whereas UVC hormesis revealed a 6-fold increase compared with the control. Results can be used to update recommendations concerning optimal handling.

  13. A Note on Fourier and the Greenhouse Effect

    OpenAIRE

    Postma, Joseph E.

    2015-01-01

    Joseph Fourier's discovery of the greenhouse effect is discussed and is compared to the modern conception of the greenhouse effect. It is confirmed that what Fourier discovered is analogous to the modern concept of the greenhouse effect. However, the modern concept of the greenhouse effect is found to be based on a paradoxical analogy to Fourier's greenhouse work and so either Fourier's greenhouse work, the modern conception of the greenhouse effect, or the modern definition of heat is incorr...

  14. The greenhouse gas emissions performance of cellulosic ethanol supply chains in Europe

    Directory of Open Access Journals (Sweden)

    Bauen Ausilio

    2009-08-01

    Full Text Available Abstract Background Calculating the greenhouse gas savings that may be attributed to biofuels is problematic because production systems are inherently complex and methods used to quantify savings are subjective. Differing approaches and interpretations have fuelled a debate about the environmental merit of biofuels, and consequently about the level of policy support that can be justified. This paper estimates and compares emissions from plausible supply chains for lignocellulosic ethanol production, exemplified using data specific to the UK and Sweden. The common elements that give rise to the greatest greenhouse gas emissions are identified and the sensitivity of total emissions to variations in these elements is estimated. The implications of including consequential impacts including indirect land-use change, and the effects of selecting alternative allocation methods on the interpretation of results are discussed. Results We find that the most important factors affecting supply chain emissions are the emissions embodied in biomass production, the use of electricity in the conversion process and potentially consequential impacts: indirect land-use change and fertiliser replacement. The large quantity of electricity consumed during enzyme manufacture suggests that enzymatic conversion processes may give rise to greater greenhouse gas emissions than the dilute acid conversion process, even though the dilute acid process has a somewhat lower ethanol yield. Conclusion The lignocellulosic ethanol supply chains considered here all lead to greenhouse gas savings relative to gasoline An important caveat to this is that if lignocellulosic ethanol production uses feedstocks that lead to indirect land-use change, or other significant consequential impacts, the benefit may be greatly reduced. Co-locating ethanol, electricity generation and enzyme production in a single facility may improve performance, particularly if this allows the number of energy

  15. Separate effects of flooding and anaerobiosis on soil greenhouse gas emissions and redox sensitive biogeochemistry

    Science.gov (United States)

    Gavin McNicol; Whendee L. Silver

    2014-01-01

    Soils are large sources of atmospheric greenhouse gases, and both the magnitude and composition of soil gas emissions are strongly controlled by redox conditions. Though the effect of redox dynamics on greenhouse gas emissions has been well studied in flooded soils, less research has focused on redox dynamics without total soil inundation. For the latter, all that is...

  16. Application of Whole Genome Expression Analysis to Assess Bacterial Responses to Environmental Conditions

    Science.gov (United States)

    Vukanti, R. V.; Mintz, E. M.; Leff, L. G.

    2005-05-01

    Bacterial responses to environmental signals are multifactorial and are coupled to changes in gene expression. An understanding of bacterial responses to environmental conditions is possible using microarray expression analysis. In this study, the utility of microarrays for examining changes in gene expression in Escherichia coli under different environmental conditions was assessed. RNA was isolated, hybridized to Affymetrix E. coli Genome 2.0 chips and analyzed using Affymetrix GCOS and Genespring software. Major limiting factors were obtaining enough quality RNA (107-108 cells to get 10μg RNA)and accounting for differences in growth rates under different conditions. Stabilization of RNA prior to isolation and taking extreme precautions while handling RNA were crucial. In addition, use of this method in ecological studies is limited by availability and cost of commercial arrays; choice of primers for cDNA synthesis, reproducibility, complexity of results generated and need to validate findings. This method may be more widely applicable with the development of better approaches for RNA recovery from environmental samples and increased number of available strain-specific arrays. Diligent experimental design and verification of results with real-time PCR or northern blots is needed. Overall, there is a great potential for use of this technology to discover mechanisms underlying organisms' responses to environmental conditions.

  17. Greenhouse effect reduction and energy recovery from waste landfill

    Energy Technology Data Exchange (ETDEWEB)

    Lombardi, Lidia [Dipartimento di Energetica ' Sergio Stecco' , Universita degli Studi di Firenze, Via Santa Marta 3, 50139 Florence (Italy)]. E-mail: lidia.lombardi@pin.unifi.it; Carnevale, Ennio [Dipartimento di Energetica ' Sergio Stecco' , Universita degli Studi di Firenze, Via Santa Marta 3, 50139 Florence (Italy); Corti, Andrea [Dipartimento di Ingegneria dell' Informazione, Universita degli Studi di Siena, Via Roma 56, 53100 Siena (Italy)

    2006-12-15

    Waste management systems are a non-negligible source of greenhouse gases. In particular, methane and carbon dioxide emissions occur in landfills due to the breakdown of biodegradable carbon compounds operated on by anaerobic bacteria. The conventional possibilities of reducing the greenhouse effect (GHE) from waste landfilling consists in landfill gas (LFG) flaring or combustion with energy recovery in reciprocating engines. These conventional treatments are compared with three innovative possibilities: the direct LFG feeding to a fuel cell (FC); the production of a hydrogen-rich gas, by means of steam reforming and CO{sub 2} capture, to feed a stationary FC; the production of a hydrogen-rich gas, by means of steam reforming and CO{sub 2} capture, to feed a vehicle FC. The comparison is carried out from an environmental point of view, calculating the specific production of GHE per unit mass of waste disposed in landfill equipped with the different considered technologies.

  18. Greenhouse gas emissions increase global warming

    OpenAIRE

    Mohajan, Haradhan

    2011-01-01

    This paper discusses the greenhouse gas emissions which cause the global warming in the atmosphere. In the 20th century global climate change becomes more sever which is due to greenhouse gas emissions. According to International Energy Agency data, the USA and China are approximately tied and leading global emitters of greenhouse gas emissions. Together they emit approximately 40% of global CO2 emissions, and about 35% of total greenhouse gases. The developed and developing industrialized co...

  19. Towards the semiclosed greenhouse

    NARCIS (Netherlands)

    Hemming, S.

    2009-01-01

    What can we do right now to reduce the consumption of fossil fuels in the greenhouse sector? What technologies should we concentrate on in the future? Researchers, consultants and technology enterprises working with the greenhouse sector have tried to answer these questions in collaboration with the

  20. DESEMPENHO DE CULTURAS DE ALFACE (LACTUCA SATIVA L NO PERIODO DE VERAO EM CASAS DE VEGETAÇÃO COM DIFERENTES COBERTURAS PERFORMANCE OF THE LETTUCE (LACTUCA SATIVA L ON SUMMER CONDITIONS IN GREENHOUSES WITH DIFFERENT COVERINGS

    Directory of Open Access Journals (Sweden)

    Fernando da Costa Baêta

    2011-06-01

    Full Text Available O presente estudo teve como objetivo avaliar as condições térmicas ambientais no interior de quatro protótipos, iguais em concepção e geometria arquitetônicas e diferentes nas soluções dos componentes de fechamento da cobertura, e avaliar o desempenho deles na produção de alface em períodos de verão. Para fins de avaliação de desempenho ambiental, foram considerados quatro tratamentos de cobertura: (T testemunha, somente com lona plástica; (L lona plástica e componente de ventilação (lanternim; (LS lona plástica sob tela de sombreamento, associado a componente de ventilação (lanternim; e, (S lona plástica sob tela de sombreamento. Como pressupostamente esperado, pode-se afirmar que as casas de vegetação sombreadas apresentaram melhor desempenho ambiental, comparativamente às não-sombreadas, e proporcionaram um ambiente mais confortável ao desenvolvimento da cultura da alface no verão.The aim of this work had concentrated in the study of solutions for the closing of the covering for greenhouses under summer conditions, experimented with the lettuce. Four covering treatments were considerate for the evaluation of the environmental performance: (T testifier, with only plastic canvas; (C plastic canvas and ventilation compound (an overture on the roof; (CS plastic canvas under shading screen, with a ventilation compound(an overture on the roof associated; and (S plastic canvas under shading screen. It can be declared, as expected, that shaded greenhouses presented a best environment performance than the unshaded greenhouses, and provided a more comfortable environment for the growth of lettuce culture on Summer.

  1. Effects of manure storage additivies on manure composition and greenhouse gas and ammonia emissions

    Science.gov (United States)

    Abstract: Storage of dairy manure slurry allows for flexibility in the timing of land application of manure to reduce environmental impacts related to water quality. Yet, manure storage can increase greenhouse gas (GHG) and ammonia emissions and cause operational issues due to the buildup of slurry ...

  2. A Hiatus of the Greenhouse Effect

    Science.gov (United States)

    Song, Jinjie; Wang, Yuan; Tang, Jianping

    2016-01-01

    The rate at which the global average surface temperature is increasing has slowed down since the end of the last century. This study investigates whether this warming hiatus results from a change in the well-known greenhouse effect. Using long-term, reliable, and consistent observational data from the Earth’s surface and the top of the atmosphere (TOA), two monthly gridded atmospheric and surface greenhouse effect parameters (Ga and Gs) are estimated to represent the radiative warming effects of the atmosphere and the surface in the infrared range from 1979 to 2014. The atmospheric and surface greenhouse effect over the tropical monsoon-prone regions is found to contribute substantially to the global total. Furthermore, the downward tendency of cloud activity leads to a greenhouse effect hiatus after the early 1990 s, prior to the warming pause. Additionally, this pause in the greenhouse effect is mostly caused by the high number of La Niña events between 1991 and 2014. A strong La Niña indicates suppressed convection in the tropical central Pacific that reduces atmospheric water vapor content and cloud volume. This significantly weakened regional greenhouse effect offsets the enhanced warming influence in other places and decelerates the rising global greenhouse effect. This work suggests that the greenhouse effect hiatus can be served as an additional factor to cause the recent global warming slowdown. PMID:27616203

  3. A Hiatus of the Greenhouse Effect.

    Science.gov (United States)

    Song, Jinjie; Wang, Yuan; Tang, Jianping

    2016-09-12

    The rate at which the global average surface temperature is increasing has slowed down since the end of the last century. This study investigates whether this warming hiatus results from a change in the well-known greenhouse effect. Using long-term, reliable, and consistent observational data from the Earth's surface and the top of the atmosphere (TOA), two monthly gridded atmospheric and surface greenhouse effect parameters (Ga and Gs) are estimated to represent the radiative warming effects of the atmosphere and the surface in the infrared range from 1979 to 2014. The atmospheric and surface greenhouse effect over the tropical monsoon-prone regions is found to contribute substantially to the global total. Furthermore, the downward tendency of cloud activity leads to a greenhouse effect hiatus after the early 1990 s, prior to the warming pause. Additionally, this pause in the greenhouse effect is mostly caused by the high number of La Niña events between 1991 and 2014. A strong La Niña indicates suppressed convection in the tropical central Pacific that reduces atmospheric water vapor content and cloud volume. This significantly weakened regional greenhouse effect offsets the enhanced warming influence in other places and decelerates the rising global greenhouse effect. This work suggests that the greenhouse effect hiatus can be served as an additional factor to cause the recent global warming slowdown.

  4. A Hiatus of the Greenhouse Effect

    Science.gov (United States)

    Song, Jinjie; Wang, Yuan; Tang, Jianping

    2016-09-01

    The rate at which the global average surface temperature is increasing has slowed down since the end of the last century. This study investigates whether this warming hiatus results from a change in the well-known greenhouse effect. Using long-term, reliable, and consistent observational data from the Earth’s surface and the top of the atmosphere (TOA), two monthly gridded atmospheric and surface greenhouse effect parameters (Ga and Gs) are estimated to represent the radiative warming effects of the atmosphere and the surface in the infrared range from 1979 to 2014. The atmospheric and surface greenhouse effect over the tropical monsoon-prone regions is found to contribute substantially to the global total. Furthermore, the downward tendency of cloud activity leads to a greenhouse effect hiatus after the early 1990 s, prior to the warming pause. Additionally, this pause in the greenhouse effect is mostly caused by the high number of La Niña events between 1991 and 2014. A strong La Niña indicates suppressed convection in the tropical central Pacific that reduces atmospheric water vapor content and cloud volume. This significantly weakened regional greenhouse effect offsets the enhanced warming influence in other places and decelerates the rising global greenhouse effect. This work suggests that the greenhouse effect hiatus can be served as an additional factor to cause the recent global warming slowdown.

  5. The growth response of plants to elevated CO2 under non-optimal environmental conditions

    NARCIS (Netherlands)

    Poorter, H.; Pérez-Soba, M.

    2001-01-01

    Under benign environmental conditions, plant growth is generally stimulated by elevated atmospheric CO2 concentrations. When environmental conditions become sub- or supra-optimal for growth, changes in the biomass enhancement ratio (BER; total plant biomass at elevated CO2 divided by plant biomass

  6. Ebola Virus Stability Under Hospital and Environmental Conditions.

    Science.gov (United States)

    Westhoff Smith, Danielle; Hill-Batorski, Lindsay; N'jai, Alhaji; Eisfeld, Amie J; Neumann, Gabriele; Halfmann, Peter; Kawaoka, Yoshihiro

    2016-10-15

    The West African outbreak of Ebola virus (EBOV) is largely contained, but sporadic new cases continue to emerge. To assess the potential contribution of fomites to human infections with EBOV, we tested EBOV stability in human blood spotted onto Sierra Leonean banknotes and in syringe needles under hospital and environmental conditions. Under some of these conditions, EBOV remained infectious for >30 days, indicating that EBOV-contaminated items may pose a serious risk to humans. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  7. Geothermal Greenhouse Information Package

    Energy Technology Data Exchange (ETDEWEB)

    Rafferty, K. [P.E.; Boyd, T. [ed.

    1997-01-01

    This package of information is intended to provide a foundation of background information for developers of geothermal greenhouses. The material is divided into seven sections covering such issues as crop culture and prices, operating costs for greenhouses, heating system design, vendors and a list of other sources of information.

  8. Agricultural sources of greenhouse gas emissions

    International Nuclear Information System (INIS)

    Rochette, P.

    2003-01-01

    The author described different sources of greenhouse gas emissions resulting from agricultural activities and the process by which carbon dioxide, nitrous oxide, and methane are generated on Canadian farms. The author also proposed some practices that would contribute to the reduction of greenhouse gas emissions. A brief description of the greenhouse effect was also provided with special emphasis on the agricultural sector. In 1996, the Canadian agricultural sector was responsible for approximately 10 per cent of greenhouse gas emissions in the country. Given the increase in farm animals and more intensive agricultural activities, it is estimated that greenhouse gas emissions generated by the agricultural sector will increase by 20 per cent by 2010 if current practices remain in effect. The most optimistic scenarios indicate that the agricultural sector could achieve or even exceed Canada's Kyoto Protocol commitments mainly through organic material sequestration in soils. The possibility for farmers to sell greenhouse gas credits could motivate farmers into adopting various practices that reduce emissions of greenhouse gases. However, the author indicated that the best motivation for farmers is the fact that adopting such practices would also lead to more efficient agricultural production. 5 refs., 4 figs

  9. Some considerations on the utilization of thermal drainage for greenhouse heating by means of indirect heat exchange system

    International Nuclear Information System (INIS)

    Yamamoto, Yujiro; Aoki, Kiyoshi; Okano, Toshiaki

    1976-01-01

    The cost of maintaining the desirable temperature in winter is the principal element in the production of vegetables by greenhouse culture. Therefore very low heating cost and profitable operation are possible if the warm water from a condenser in a power plant is available as the heat source for greenhouse heating. In order to investigate the possibility of utilizing warm water discharge as the heat source for greenhouse heating, experiment was carried out with a miniature greenhouse equipped with the indirect heat exchanger with PVC pipes. The results obtained are summarized as follows. Under the conditions of the warm water discharge of 25 deg C and outside air temperature of -5 deg C, the average temperature and relative humidity in the greenhouse were about 10 deg C and 80%, respectively. From the experimentally obtained relationship between the heat transfer coefficient on the PVC pipe surfaces and the velocity of air passing through the pipes, the heat transfer coefficient at 8 m/sec air velocity was three times as much as that at 2 m/sec. From the theoretically obtained formula for calculating the number of pipes required for a greenhouse, it was determined that 72 PVC pipes of 10 cm diameter and 23 m long were required for a 23 x 25 m greenhouse to maintain 12 deg C inside under the before-described conditions. (Kako, I.)

  10. Carbon footprint calculation of Finnish greenhouse products; Kasvihuonetuotteiden ilmastovaikutuslaskenta. Loppuraportti

    Energy Technology Data Exchange (ETDEWEB)

    Yrjaenaeinen, H.; Silvenius, F.; Kaukoranta, T.; Naekkilae, J.; Saerkkae, L.; Tuhkanen, E.-M.

    2013-02-01

    This report presents the results of climate impact calculations for five products produced in Finnish greenhouses: tomatoes, cucumbers, salad crops, tulips and Elatior begonias. The study employed 16 greenhouses for the investigation; two greenhouses each for the tulips and the begonias and four each for the tomatoes, cucumbers and salad crops. Based on these calculations a greenhouse gas calculator was developed for greenhouse cultivators. The calculator is available at internet in www.kauppapuutarhaliitto.fi {yields} hiilijalanjaelki. In terms of environmental impacts this study concentrated on the climate impacts of the investigated products, and the calculations were made for the most significant greenhouse gases: carbon dioxide, methane and nitrous oxide. The following processes were included in the system boundaries: plant growing, manufacturing of lime, fertilizers and pesticides, manufacturing and disposal of pots, carbon dioxide production, irrigation, lighting, thermal curtains and cooling systems, the production and use of electricity and heat energy, distribution of products by the growers, other transportation, end-of-life and recycling. Processes excluded from the study were: distribution by other actors, retail functions, the consumer stage, and maintenance and manufacturing of infrastructure. The study used MTT's calculation model for the climate impact of food products excluding distribution and retail processes. The greenhouses selected for the study had some variation in their energy profiles and growing seasons. In addition, scenarios were created for different energy sources by using the average figures from this study. Monthly energy consumption values were also obtained from a number of the greenhouses and these were used to assess the variations in climate impact for different seasons. According to the results of the study the use of energy is the most significant source of climate impact of greenhouse products. In the tomato farms the

  11. ON THE STUDY OF GHG (GREENHOUSE GAS EMISSIONS IN RICE PRODUCTION SYSTEMS IN DARGAZ, IRAN

    Directory of Open Access Journals (Sweden)

    Ghorbanali RASSAM

    2015-12-01

    Full Text Available The most important issue which has attracted the attention of many scientists is the climate change and global warming due to greenhouse gas emission which has caused the world faced with a great human and environmental disaster. In this study, the amount of greenhouse gas (GHG emissions was estimated in the semi-traditional and semi-mechanized rice production systems in Dargaz region, Iran. All the agricultural and consuming inputs procedures responsible for greenhouse gas emissions were collected and recorded in both systems. The amount of GHG emission in semi-traditional and semi-mechanized was 813.17 and 968.31 kg CO2-eq ha-1, respectively. The fuel consumption with the share of 38.22% in semi-traditional method and 43.32% in semi-mechanized system had the largest share in GHG emission and using Nitrogen fertilizer on farms with the share of 31.97% in semi-traditional method and 26.91% in semi-mechanized system is in the second place of GHG emission. The semi-traditional system had greater GHG emissions in the unit of tone of harvested grain and unit of energy output. The use of alternative methods such as conservation tillage and organic fertilizers can be effective in improving the environmental status of the production area.

  12. Energy metrics of photovoltaic/thermal and earth air heat exchanger integrated greenhouse for different climatic conditions of India

    Energy Technology Data Exchange (ETDEWEB)

    Nayak, Sujata; Tiwari, G.N. [Centre for Energy Studies, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016 (India)

    2010-10-15

    In this paper, a study is carried out to evaluate the annual thermal and exergy performance of a photovoltaic/thermal (PV/T) and earth air heat exchanger (EAHE) system, integrated with a greenhouse, located at IIT Delhi, India, for different climatic conditions of Srinagar, Mumbai, Jodhpur, New Delhi and Bangalore. A comparison is made of various energy metrics, such as energy payback time (EPBT), electricity production factor (EPF) and life cycle conversion efficiency (LCCE) of the system by considering four weather conditions (a-d type) for five climatic zones. The embodied energy and annual energy outputs have been used for evaluation of the energy metrics. The annual overall thermal energy, annual electrical energy savings and annual exergy was found to be best for the climatic condition of Jodhpur at 29,156.8 kWh, 1185 kWh and 1366.4 kWh, respectively when compared with other weather stations covered in the study, due to higher solar intensity I and sunshine hours, and is lowest for Srinagar station. The results also showed that energy payback time for Jodhpur station is lowest at 16.7 years and highest for Srinagar station at 21.6 years. Electricity production factor (EPF) is highest for Jodhpur, i.e. 2.04 and Life cycle conversion efficiency (LCCE) is highest for Srinagar station. It is also observed that LCCE increases with increase in life cycle. (author)

  13. Are optimal CO2 emissions really optimal? Four critical issues for economists in the greenhouse

    International Nuclear Information System (INIS)

    Azar, C.

    1998-01-01

    Although the greenhouse effect is by many considered as one of the most serious environmental problems, several economic studies of the greenhouse effect, most notably Nordhaus's DICE model, suggest that it is optimal to allow the emissions of greenhouse gases (GHG) to increase by a factor of three over the next century. Other studies have found that substantial reductions can be justified on economic grounds. This paper explores into the reasons for these differences and identifies four (partly overlapping) crucial issues that have to be dealt with when analysing the economics of the greenhouse effect low-probability but catastrophic events; cost evaluation methods; the choice of discount rate; the choice of decision criterion. The paper shows that (1) these aspects are crucial for the policy conclusions drawn from models of the economics of climate change, and that (2) ethical choices have to be made for each of these issues. This fact needs wider recognition since economics is very often perceived as a value neutral tool that can be used to provide policy makers with 'optimal' policies. 62 refs

  14. Climate - Greenhouse effect - Energy

    International Nuclear Information System (INIS)

    Henriksen, Thormod; Kanestroem, Ingolf

    2001-01-01

    This book explains what is understood by climate systems and the concept of greenhouse effect. It also gives a survey of the world's energy consumption, energy reserves and renewable energy sources. Today, 75 - 80 per cent of the world's energy consumption involves fossil fuel. These are the sources that cause the CO 2 emissions. What are the possibilities of reducing the emissions? The world's population is increasing, and to provide food and a worthy life for everybody we have to use more energy. Where do we get this energy from without causing great climate changes and environmental changes? Should gas power plants be built in Norway? Should Swedish nuclear power plants be shut down, or is it advisable to concentrate on nuclear power, worldwide, this century, to reduce the CO 2 emissions until the renewable energy sources have been developed and can take over once the petroleum sources have been depleted? The book also discusses the global magnetic field, which protects against particle radiation from space and which gives rise to the aurora borealis. The book is aimed at students taking environmental courses in universities and colleges, but is also of interest for anybody concerned about climate questions, energy sources and living standard

  15. Key issues in estimating energy and greenhouse gas savings of biofuels: challenges and perspectives

    Directory of Open Access Journals (Sweden)

    Dheeraj Rathore

    2016-06-01

    Full Text Available The increasing demand for biofuels has encouraged the researchers and policy makers worldwide to find sustainable biofuel production systems in accordance with the regional conditions and needs. The sustainability of a biofuel production system includes energy and greenhouse gas (GHG saving along with environmental and social acceptability. Life cycle assessment (LCA is an internationally recognized tool for determining the sustainability of biofuels. LCA includes goal and scope, life cycle inventory, life cycle impact assessment, and interpretation as major steps. LCA results vary significantly, if there are any variations in performing these steps. For instance, biofuel producing feedstocks have different environmental values that lead to different GHG emission savings and energy balances. Similarly, land-use and land-use changes may overestimate biofuel sustainability. This study aims to examine various biofuel production systems for their GHG savings and energy balances, relative to conventional fossil fuels with an ambition to address the challenges and to offer future directions for LCA based biofuel studies. Environmental and social acceptability of biofuel production is the key factor in developing biofuel support policies. Higher GHG emission saving and energy balance of biofuel can be achieved, if biomass yield is high, and ecologically sustainable biomass or non-food biomass is converted into biofuel and used efficiently.

  16. Greenhouse effect: A first estimation of the emissions in Italy

    International Nuclear Information System (INIS)

    Gaudioso, D.; Onufrio, G.

    1991-03-01

    The estimate of the anthropogenic emissions of greenhouse gases and the selection of the relevant emission factors represents a preliminary condition to define policies aiming at curbing these emissions. In the first part of this paper there is an analysis of C0 2 emission factors, referred to the various fuels and energy technologies. The values at issue take into account the physico-chemical composition of the different fossil fuels, as well as the overall efficiency of energy production cycles and end uses patterns. As concerns the other greenhouse gases, the available information is summarized at a much more integrate level. The second part presents some estimates of carbon dioxide emissions in Italy, by sector and by fuel; some characteristic levels of specific emissions are also identified. A comparative estimate for CH 4 , N 2 O, CO and CFC's is also made, in order to set up a first reference table of the emissions of greenhouse gases in our country. (author)

  17. Environmental Programs: National Renewable Energy Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    2001-05-01

    Major NREL environmental programs and initiatives include: integrated energy and environmental strategies; implementation of air pollution programs and climate change programs; Green Power Network; environmental and economic impacts and benefits of energy efficiency and renewable energy (EERE) technologies; technology transfer between developed and developing countries; greenhouse gas emission reduction projects; climate change action plans with developing countries and development of life cycle assessments.

  18. Observational determination of the greenhouse effect

    Science.gov (United States)

    Raval, A.; Ramanathan, V.

    1989-01-01

    Satellite measurements are used to quantify the atmospheric greenhouse effect, defined here as the infrared radiation energy trapped by atmospheric gases and clouds. The greenhouse effect is found to increase significantly with sea surface temperature. The rate of increase gives compelling evidence for the positive feedback between surface temperature, water vapor and the greenhouse effect; the magnitude of the feedback is consistent with that predicted by climate models. This study demonstrates an effective method for directly monitoring, from space, future changes in the greenhouse effect.

  19. Potential contribution of the Clean Coal Program to reducing global emissions of greenhouse gases

    International Nuclear Information System (INIS)

    Blasing, T.J.

    1992-01-01

    Environmental considerations of Clean Coal Program (CCP) initially focused on reducing emissions of sulfur dioxide (SO 2 ) and nitrogen oxides (NO x ) to the atmosphere. However, it has also become apparent that some Clean Coal Technologies (CCTs) may contribute appreciably to reducing emissions of carbon dioxide (CO 2 ), thereby diminishing the rate of any global warming that may result from greenhouse effects. This is particularly true for CCTs involving replacement of a major portion of an existing facility and/or providing the option of using a different fuel form (the repowering CCTs). Because the subject of global-scale climate warming is receiving increased attention, the effect of CCTs on Co 2 emissions has become a topic of increasing interest. The Final Programmatic Environmental Impact Statement for the Clean Coal Technology Demonstration Program projected that with full implementation of those repowering CCTs that would be most effective at reducing CO 2 emissions (Pressurized Fluidized Bed and Coal Gasification Fuel Cell technologies), the national fossil-fuel Co 2 emissions by the year 2010 would be roughly 90% of the emissions that would occur with no implementation of any CCTs by the same date. It is the purpose of this paper to examine the global effect of such a reduction in greenhouse gas emissions, and to compare that effect with effects of other strategies for reducing global greenhouse gas emissions

  20. FY 1998 survey report. Survey on reduction in environmental effect of greenhouse effect gas by the transfer of environmental technology in the Asian region; 1998 nendo chosa hokokusho. Asia chiiki ni okeru kankyo gijutsu iten ni yoru onshitsu koka gas no kankyo eikyo keigen ni kansuru chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Effects of the transfer of environmental technology were studied as an important policy for control of greenhouse effect gas in the Asian region. As schemes, those that were drew up by NEDO, JICA, etc. now exist and are used also in Japan. However, for the control of greenhouse effect gas emission which is expected to rapidly increase in future, it is indispensable to construct a new powerful and effective scheme in which technology transfer and fund to be given are organically connected. Especially, in the U.S., etc., the assistance of developing countries of a huge amount of money such as Japan's ODA is not extended. However, they position the environmental technology as an important strategy and is developing the assistance of developing countries by technology transfer and eco-business of private companies. Also in the eco-business field, the environment-related technology of Japanese companies is used in Asian developing countries, with expectations of its being a new business with international competitive strength. This is the subject for the whole global environment, and an important subject also for Japan which requires the creation of a new business field with international competitive strength. (NEDO)

  1. Holistic greenhouse gas management

    Energy Technology Data Exchange (ETDEWEB)

    Read, P. [Dept. of Applied and International Economics, Massey Univ. (New Zealand); Parshotam, A. [Inst. of Fundamental Sciences, Massey Univ. (New Zealand)

    2005-07-01

    A holistic greenhouse gas management strategy is described. The first stage is the growth of a large-scale global bio-energy market with world trade in bio-fuels and with a strategic stock of biomass raw material in new plantation forests. Later stages, more costly - as needs may be in response to possible future precursors of abrupt climate change - would involve linking CO2 capture and sequestration to bio-energy, yielding a negative emissions energy system. Illustrative calculations point to the feasibility of a return to pre-industrial CO{sub 2} levels before mid-century. This result is subject to significant caveats, but, prima facie, the first stage can provide several environmental and socio-economic side-benefits while yielding a positive financial return if oil prices remain above 35$/bbl. The vision is that the polluter pays principle can be turned to a greening of the earth. (orig.)

  2. Nuclear energy and greenhouse effect

    International Nuclear Information System (INIS)

    Strub, R.A.

    1991-01-01

    The contribution of nuclear power plants against the greenhouse effects is evaluated, not only nuclear energy is unable to fight greenhouse effect increase but long life wastes endanger environment. 8 refs

  3. Assessment of relevant factors and relationships concerning human dermal exposure to pesticides in greenhouse applications.

    Science.gov (United States)

    Martínez Vidal, Jose L; Egea González, Francisco J; Garrido Frenich, Antonia; Martínez Galera, María; Aguilera, Pedro A; López Carrique, Enrique

    2002-08-01

    Principal component analysis (PCA) was applied to the gas chromatographic data obtained from 23 different greenhouse trials. This was used to establish which factors, including application technique (very small, small, medium and large drop-size), crop characteristics (short/tall, thin/dense) and pattern application of the operator (walking towards or away from the treated area) are relevant to the dermal exposure levels of greenhouse applicators. The results showed that the highest exposure by pesticides during field applications in greenhouses, in the climatic conditions and in the crop conditions typical of a southern European country, occurs on the lower legs and front thighs of the applicators. Similar results were obtained by hierarchical cluster analysis (HCA). Drop-size seems to be very important in determining total exposure, while height and density of crops have little influence on total exposure under the conditions of the present study. No pesticide type is a major factor in total exposure. The application of multiple regression analysis (MRA) allowed assessment of the relationships between the pesticide exposure of the less affected parts of the body with the most affected parts.

  4. Evaluation of the Environmental Health Conditions of Qom Hotels & Inns

    Directory of Open Access Journals (Sweden)

    B. Farzinnia

    2009-02-01

    Full Text Available Background and ObjectivesTourism is one of the three major global industries with 4 percent annual economic growth. Qom with roughly 17 million tourists in 2005 was the second religious tourism center in Iran. This study was designed to determine the environmental health criteria of Qom hotels and inns in 2007.MethodsThis descriptive - cross sectional study was carried out based on a standard check list of substance of edible, drinkable, cosmetic and hygienic products law from ministry of health and medical sciences. The checklist included 73 questions which were completed by face to face interviews and sanitary inspections. After analyzing the results of each residential center, the questionnaires were classified into three categories: hygienic (over 80 score, sanitary (40-79 and unacceptable centers (less than 40. The data were presented and analyzed by descriptive and analytical statistical methods such as X 2 and Fisher exact test.ResultsThe percentages of hygienic, sanitary and unacceptable conditions of hotels and inns were 35.5, 54.8 and 9.7, respectively. There was a direct relationship between academic degree of residential managers and the validity of employees health card (P=0.042 ConclusionBased on this the research, the environmental status of Qom hotels and inns was in relatively desirable conditions. Residential places with unacceptable condition were almost located in the old region of the city (e.g. around the Holly Shrine. Due to the structural failures, architectural problems and tremendous cost for repairs, it’s better that their activities be stopped and banned by government. With regard to the high percentage of hotels with sanitary conditions, at least improvements in health conditions accompanied by training and supervision are recommended. Keywords: Environmental Health; Environment and Public Health; Hotel; Inn; Qom, Iran.

  5. Tolerances of microorganisms to extreme environmental conditions

    International Nuclear Information System (INIS)

    West, J.M.; Arme, S.C.

    1985-03-01

    Microbial isolates from sites relevant to the disposal of radioactive wastes have been subjected to extreme environmental conditions in order to ascertain their tolerance ability. Two groups were chosen, sulphate reducing bacteria and sulphur oxidising bacteria, because of their potential effects on waste containment. They have been subjected to high temperatures, pressures and radiation (delta-emissions) in optimal media conditions and their ability to tolerate the conditions has been ascertained by epifluorescence microscopy and adenosine tri-phosphate (ATP) analysis followed by 'culture-on' to assess post experimental viability. Results indicate that the sulphate reducers in general, are more tolerant to these conditions than the sulphur oxidisers, some proving to be thermophilic. The sulphate reducer showed increased growth rates, as determined by population numbers, at 50 0 C and survived at 80 0 C, 4,500 psig (310 bar) with no subsequent loss in viability. Gamma irradiation of this group and an isolate of 10 5 rad over 4 hours had no effect on population numbers or viability. Such resistances are not apparent with the sulphur oxidisers whose numbers decreased with increasing radiation dose and are destroyed with pressure. (author)

  6. Product environmental footprint of strawberries: Case studies in Estonia and Germany.

    Science.gov (United States)

    Soode-Schimonsky, Eveli; Richter, Klaus; Weber-Blaschke, Gabriele

    2017-12-01

    The environmental impacts of strawberries have been assessed in several studies. However, these studies either present dissimilar results or only focus on single impact categories without offering a comprehensive overview of environmental impacts. We applied the product environmental footprint (PEF) methodology to broadly indicate the environmental impacts of various strawberry production systems in Germany and Estonia by 15 impact categories. Data for the 7 case studies were gathered from two farms with organic and two farms with conventional open field production systems in Estonia and from one farm with conventional open field and one farm with a polytunnel and greenhouse production system in Germany. The greenhouse production system had the highest environmental impact with a PEF of 0.0040. In the field organic production systems, the PEF was 0.0029 and 0.0028. The field conventional production systems resulted in a PEF of 0.0008, 0.0009 and 0.0002. Polytunnel PEF was 0.0006. Human toxicity cancer effects, particulate matter and human toxicity non-cancer effects resulted in the highest impact across all analysed production systems. The main contributors were electricity for cooling, heating the greenhouse and the use of agricultural machinery including fuel burning. While production stage contributed 85% of the total impact in the greenhouse, also other life cycle stages were important contributors: pre-chain resulted in 71% and 90% of impact in conventional and polytunnels, respectively, and cooling was 47% in one organic system. Environmental impact from strawberry cooling can be reduced by more efficient use of the cooling room, increasing the strawberry yield or switching from oil shale electricity to other energy sources. Greenhouse heating is the overall impact hotspot even if it based on renewable resources. A ranking of production systems based on the environmental impact is possible only if all relevant impacts are included. Future studies should aim

  7. Environmental conditions influence tissue regeneration rates in scleractinian corals.

    Science.gov (United States)

    Sabine, Alexis M; Smith, Tyler B; Williams, Dana E; Brandt, Marilyn E

    2015-06-15

    Natural and anthropogenic factors may influence corals' ability to recover from partial mortality. To examine how environmental conditions affect lesion healing, we assessed several water quality parameters and tissue regeneration rates in corals at six reefs around St. Thomas, US Virgin Islands. We hypothesized that sites closer to developed areas would have poor water quality due to proximity to anthropogenic stresses, which would impede tissue regeneration. We found that water flow and turbidity most strongly influenced lesion recovery rates. The most impacted site, with high turbidity and low flow, recovered almost three times slower than the least impacted site, with low turbidity, high flow, and low levels of anthropogenic disturbance. Our results illustrate that in addition to lesion-specific factors known to affect tissue regeneration, environmental conditions can also control corals' healing rates. Resource managers can use this information to protect low-flow, turbid nearshore reefs by minimizing sources of anthropogenic stress. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. The greenhouse effect gases

    International Nuclear Information System (INIS)

    2006-06-01

    This road-map proposes by the Group Total aims to inform the public on the greenhouse effect gases. It presents the greenhouses effect as a key component of the climate system, the impacts of the human activity, the foreseeable consequences of global warming, the Kyoto protocol and Total commitment in the domain. (A.L.B.)

  9. Monitoring and energetic performance of two similar semi-closed greenhouse ventilation systems

    International Nuclear Information System (INIS)

    Coomans, Mathias; Allaerts, Koen; Wittemans, Lieve; Pinxteren, Dave

    2013-01-01

    Highlights: • Measurements on two semi-closed greenhouses and two traditional open greenhouses. • Mechanical and natural ventilation for dehumidification and cooling. • Analyses and comparison of installation controls, indoor climate and energy flows. • Examination of air-to-air heat recuperation efficiency in ventilation unit. • Using the semi-closed systems amounted to energy savings of 13% and 28%. - Abstract: Horticulture is an energy intensive industry when dealing with cold climates such as Western Europe. High energy prices and on-going pressure from international competition are raising demand for energy efficient solutions. In search of reducing greenhouse energy consumption, this study investigates semi-closed systems combining controlled mechanical and natural ventilation with thermal screens. Ventilated greenhouse systems (semi-closed) have been implemented in the greenhouse compartments of two Belgian horticulture research facilities: the Research Station for Vegetable Production Sint-Katelijne-Waver (PSKW) and the Research Center Hoogstraten (PCH). Additionally, two reference compartments were included for comparison of the results. The greenhouses were part of a long-term monitoring campaign in which detailed measurements with a high time resolution were gathered by a central monitoring system. A large amount of data was processed and analysed, including outdoor and indoor climatic parameters, system controls and installation measurements. The ventilated greenhouses obtained energy savings of 13% and 28% for PSKW and PCH respectively, without substantial impact on crop production or indoor climate conditions when compared to the reference compartments. A considerable amount of heat was recovered by the heat recuperation stage in the ventilation unit of PCH, accounting for 12% of the total heat demand. In general, it was demonstrated that the greenhouse heat demand can be reduced significantly by controlled dehumidification with mechanical

  10. The Spacelab-Mir-1 "Greenhouse-2" experiment

    Science.gov (United States)

    Bingham, G. E.; Salisbury, F. B.; Campbell, W. F.; Carman, J. G.; Bubenheim, D. L.; Yendler, B.; Sytchev, V. N.; Levinskikh, M. A.; Podolsky, I. G.

    1996-01-01

    The Spacelab-Mir-1 (SLM-1) mission is the first docking of the Space Shuttle Atlantis (STS-71) with the Orbital Station Mir in June 1995. The SLM-1 "Greenhouse-2" experiment will utilize the Russian-Bulgarian-developed plant growth unit (Svet). "Greenhouse-2" will include two plantings (1) designed to test the capability of Svet to grow a crop of Superdwarf wheat from seed to seed, and (2) to provide green plant material for post-flight analysis. Protocols, procedures, and equipment for the experiment have been developed by the US-Russian science team. "Greenhouse-2" will also provide the first orbital test of a new Svet Instrumentation System (SIS) developed by Utah State University to provide near real time data on plant environmental parameters and gas-exchange rates. SIS supplements the Svet control and monitoring system with additional sensors for substrate moisture, air temperature, IR leaf temperature, light, oxygen, pressure, humidity, and carbon-dioxide. SIS provides the capability to monitor canopy transpiration and net assimilation of the plants growing in each vegetation unit (root zone) by enclosing the canopy in separate, retractable, ventilated leaf chambers. Six times during the seed-to-seed experiment, plant samples will be collected, leaf area measured, and plant parts fixed and/or dried for ground analysis. A second planting initiated 30 days before the arrival of a U.S. Shuttle [originally planned to be STS-71] is designed to provide green material at the vegetative development stage for ground analysis. [As this paper is being edited, the experiment has been delayed until after the arrival of STS-71.].

  11. UNEP greenhouse gas abatement costing studies

    International Nuclear Information System (INIS)

    Maya, R.S.; Nziramasanga, N.; Muguti, E.; Fenhann, J.

    1993-10-01

    The aim was to assess options and cost of reducing emissions of greenhouse gases (with emphasis on carbon dioxide) from human activity in Zimbabwe. A brief description of the country's economy and energy sector, policy and pricing and regulations is given and substantial data related to the country's economy, technology, energy consumption, emission and fuel prices are presented. The energy demand in households and for other sectors in Zimbabwe are assessed, and documented in the case of the former. The reference scenarios on energy demand and supply assess greenhouse gas emissions under conditions whereby the present economic growth trends predominate. Energy efficiency improvements are discussed. Abatement technology options are stated as afforestation for carbon sequestration, more efficient coal-fired industrial boilers, extended use of hydroelectricity, prepayment electric meters, minimum tillage, optimization of coal-fired tobacco barns, industrial power factor correction equipment, domestic biogas digesters, solar water heating systems, time switches in electric geysers, optimization of industrial furnaces, photovoltaic water pumps, production of ammonia from coal for fertilizing purposes, and recovery of coke oven gases for use in thermal power generation. (AB)

  12. Ethylene emission and PR protein synthesis in ACC deaminase producing Methylobacterium spp. inoculated tomato plants (Lycopersicon esculentum Mill.) challenged with Ralstonia solanacearum under greenhouse conditions.

    Science.gov (United States)

    Yim, Woojong; Seshadri, Sundaram; Kim, Kiyoon; Lee, Gillseung; Sa, Tongmin

    2013-06-01

    Bacteria of genus Methylobacterium have been found to promote plant growth and regulate the level of ethylene in crop plants. This work is aimed to test the induction of defense responses in tomato against bacterial wilt by stress ethylene level reduction mediated by the ACC deaminase activity of Methylobacterium strains. Under greenhouse conditions, the disease index value in Methylobacterium sp. inoculated tomato plants was lower than control plants. Plants treated with Methylobacterium sp. challenge inoculated with Ralstonia solanacearum (RS) showed significantly reduced disease symptoms and lowered ethylene emission under greenhouse condition. The ACC and ACO (1-aminocyclopropane-1-carboxylate oxidase) accumulation in tomato leaves were significantly reduced with Methylobacterium strains inoculation. While ACC oxidase gene expression was found higher in plants treated with R. solanacearum than Methylobacterium sp. treatment, PR proteins related to induced systemic resistance like β-1,3-glucanase, PAL, PO and PPO were increased in Methylobacterium sp. inoculated plants. A significant increase in β-1,3-glucanase and PAL gene expression was found in all the Methylobacterium spp. treatments compared to the R. solanacearum treatment. This study confirms the activity of Methylobacterium sp. in increasing the defense enzymes by modulating the ethylene biosynthesis pathway and suggests the use of methylotrophic bacteria as potential biocontrol agents in tomato cultivation. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  13. A wireless telecommunications network for real-time monitoring of greenhouse microclimate

    OpenAIRE

    Giuliano Vox; Pierfrancesco Losito; Fabio Valente; Rinaldo Consoletti; Giacomo Scarascia-Mugnozza; Evelia Schettini; Cristoforo Marzocca; Francesco Corsi

    2014-01-01

    An innovative wireless monitoring system for measuring greenhouse climatic parameters was developed to overcome the problems related to wires cabling such as presence of a dense net of wires hampering the cultivation practices, wires subjected to high temperature and relative humidity, rodents that can damage wires. The system exploits battery-powered environmental sensors, such as air temperature and relative humidity sensors, wind speed and direction, and solar radiation sensors, integrated...

  14. Influence of environmental variables on diffusive greenhouse gas fluxes at hydroelectric reservoirs in Brazil.

    Science.gov (United States)

    Rogério, J P; Santos, M A; Santos, E O

    2013-11-01

    For almost two decades, studies have been under way in Brazil, showing how hydroelectric reservoirs produce biogenic gases, mainly methane (CH4) and carbon dioxide (CO2), through the organic decomposition of flooded biomass. This somewhat complex phenomenon is due to a set of variables with differing levels of interdependence that directly or indirectly affect greenhouse gas (GHG) emissions. The purpose of this paper is to determine, through a statistical data analysis, the relation between CO2, CH4 diffusive fluxes and environmental variables at the Furnas, Itumbiara and Serra da Mesa hydroelectric reservoirs, located in the Cerrado biome on Brazil's high central plateau. The choice of this region was prompted by its importance in the national context, covering an area of some two million square kilometers, encompassing two major river basins (Paraná and Tocantins-Araguaia), with the largest installed power generation capacity in Brazil, together accounting for around 23% of Brazilian territory. This study shows that CH4 presented a moderate negative correlation between CO2 and depth. Additionally, a moderate positive correlation was noted for pH, water temperature and wind. The CO2 presented a moderate negative correlation for pH, wind speed, water temperature and air temperature. Additionally, a moderate positive correlation was noted for CO2 and water temperature. The complexity of the emission phenomenon is unlikely to occur through a simultaneous understanding of all the factors, due to difficulties in accessing and analyzing all the variables that have real, direct effects on GHG production and emission.

  15. Influence of environmental variables on diffusive greenhouse gas fluxes at hydroelectric reservoirs in Brazil

    Directory of Open Access Journals (Sweden)

    JP. Rogério

    Full Text Available For almost two decades, studies have been under way in Brazil, showing how hydroelectric reservoirs produce biogenic gases, mainly methane (CH4 and carbon dioxide (CO2, through the organic decomposition of flooded biomass. This somewhat complex phenomenon is due to a set of variables with differing levels of interdependence that directly or indirectly affect greenhouse gas (GHG emissions. The purpose of this paper is to determine, through a statistical data analysis, the relation between CO2, CH4 diffusive fluxes and environmental variables at the Furnas, Itumbiara and Serra da Mesa hydroelectric reservoirs, located in the Cerrado biome on Brazil's high central plateau. The choice of this region was prompted by its importance in the national context, covering an area of some two million square kilometers, encompassing two major river basins (Paraná and Tocantins-Araguaia, with the largest installed power generation capacity in Brazil, together accounting for around 23% of Brazilian territory. This study shows that CH4 presented a moderate negative correlation between CO2 and depth. Additionally, a moderate positive correlation was noted for pH, water temperature and wind. The CO2 presented a moderate negative correlation for pH, wind speed, water temperature and air temperature. Additionally, a moderate positive correlation was noted for CO2 and water temperature. The complexity of the emission phenomenon is unlikely to occur through a simultaneous understanding of all the factors, due to difficulties in accessing and analyzing all the variables that have real, direct effects on GHG production and emission.

  16. Design and Concept of an Energy System Based on Renewable Sources for Greenhouse Sustainable Agriculture

    Directory of Open Access Journals (Sweden)

    Ioan Aschilean

    2018-05-01

    Full Text Available Bio-organic greenhouses that are based on alternative resources for producing heat and electricity stand out as an efficient option for the sustainable development of agriculture, thus ensuring good growth and development of plants in all seasons, especially during the cold season. Greenhouses can be used with maximum efficiency in various agricultural lands, providing ideal conditions of temperature and humidity for short-term plant growing, thereby increasing the local production of fruit and vegetables. This paper presents the development of a durable greenhouse concept that is based on complex energy system integrating fuel cells and solar panels. Approaching this innovative concept encountered a major problem in terms of local implementation of this type of greenhouses because of the difficulty in providing electrical and thermal energy from conventional sources to ensure an optimal climate for plant growing. The project result consists in the design and implementation of a sustainable greenhouse energy system that is based on fuel cells and solar panels.

  17. Middle-School Understanding of the Greenhouse Effect using a NetLogo Computer Model

    Science.gov (United States)

    Schultz, L.; Koons, P. O.; Schauffler, M.

    2009-12-01

    We investigated the effectiveness of a freely available agent based, modeling program as a learning tool for seventh and eighth grade students to explore the greenhouse effect without added curriculum. The investigation was conducted at two Maine middle-schools with 136 seventh-grade students and 11 eighth-grade students in eight classes. Students were given a pre-test that consisted of a concept map, a free-response question, and multiple-choice questions about how the greenhouse effect influences the Earth's temperature. The computer model simulates the greenhouse effect and allows students to manipulate atmospheric and surface conditions to observe the effects on the Earth’s temperature. Students explored the Greenhouse Effect model for approximately twenty minutes with only two focus questions for guidance. After the exploration period, students were given a post-test that was identical to the pre-test. Parametric post-test analysis of the assessments indicated middle-school students gained in their understanding about how the greenhouse effect influences the Earth's temperature after exploring the computer model for approximately twenty minutes. The magnitude of the changes in pre- and post-test concept map and free-response scores were small (average free-response post-test score of 7.0) compared to an expert's score (48), indicating that students understood only a few of the system relationships. While students gained in their understanding about the greenhouse effect, there was evidence that students held onto their misconceptions that (1) carbon dioxide in the atmosphere deteriorates the ozone layer, (2) the greenhouse effect is a result of humans burning fossil fuels, and (3) infrared and visible light have similar behaviors with greenhouse gases. We recommend using the Greenhouse Effect computer model with guided inquiry to focus students’ investigations on the system relationships in the model.

  18. The Semitransparent Photovoltaic Films for Mediterranean Greenhouse: A New Sustainable Technology

    Directory of Open Access Journals (Sweden)

    Alvaro Marucci

    2012-01-01

    Full Text Available Mediterranean countries offer very favorable climatic conditions for growing plants in a protected environment: as a matter of fact, the high solar radiation allows the use of greenhouses with simple structures, covered with plastic film and without fixed installations for winter heating. They are called “Mediterranean greenhouses” and are totally different from those in Central and Northern Europe. In the photovoltaic greenhouses, the cover on the pitch facing south is usually replaced by very opaque panels. However, this solution compromises the possibility to grow plants in covered and protected environments since solar radiation availability is limited and strongly nonuniform. In order to overcome this problem, semitransparent photovoltaic materials can be used to let the solar energy, necessary for plant growth, pass into the green house. The aim of this research is to analyze the radiometric properties of innovative semitransparent flexible photovoltaic materials in order to evaluate their performances in comparison with materials commonly used in the coverage of the greenhouses. Particular attention is paid to the transmittance of these materials in the visible range and in the long wave infrared for the achievement of greenhouse effect.

  19. Greenhouse Module for Space System: A Lunar Greenhouse Design

    Directory of Open Access Journals (Sweden)

    Zeidler Conrad

    2017-02-01

    Full Text Available In the next 10 to 20 years humankind will return to the Moon and/or travel to Mars. It is likely that astronauts will eventually build permanent settlements there, as a base for long-term crew tended research tasks. It is obvious that the crew of such settlements will need food to survive. With current mission architectures the provision of food for longduration missions away from Earth requires a significant number of resupply flights. Furthermore, it would be infeasible to provide the crew with continuous access to fresh produce, specifically crops with high water content such as tomatoes and peppers, on account of their limited shelf life. A greenhouse as an integrated part of a planetary surface base would be one solution to solve this challenge for long-duration missions. Astronauts could grow their own fresh fruit and vegetables in-situ to be more independent from supply from Earth. This paper presents the results of the design project for such a greenhouse, which was carried out by DLR and its partners within the framework of the Micro-Ecological Life Support System Alternative (MELiSSA program. The consortium performed an extensive system analysis followed by a definition of system and subsystem requirements for greenhouse modules. Over 270 requirements were defined in this process. Afterwards the consortium performed an in-depth analysis of illumination strategies, potential growth accommodations and shapes for the external structure. Five different options for the outer shape were investigated, each of them with a set of possible internal configurations. Using the Analytical Hierarchy Process, the different concept options were evaluated and ranked against each other. The design option with the highest ranking was an inflatable outer structure with a rigid inner core, in which the subsystems are mounted. The inflatable shell is wrapped around the core during launch and transit to the lunar surface. The paper provides an overview of the

  20. Preliminary design of a low-cost greenhouse for salt production in Indonesia

    Science.gov (United States)

    Jaziri, A. A.; Guntur; Setiawan, W.; Prihanto, A. A.; Kurniawan, A.

    2018-04-01

    Salt is an assential material of industry, not only in food industry point of view but also in various industries such as chemical, oil drilling, and animal feed industries, even less than half of salt needs used to household consumption. It is crucial to ensure salt production in Indonesia reaches the national target (3.7 million tons) due to relatively low technology and production level. Thus salt production technology is developed to facilitate farmers consisted of geomembrane and filtering-threaded technology. However, the use of those technologies in producing salt was proved less effective due to unpredictable weather conditions. Therefore, greenhouse technology is proposed to be used for salt production for several good reasons. This paper describes the preliminary design of a low-cost greenhouse designed as a pyramid model that uses bamboo, mono-layer and high density polyethylene plastics. The results confirmed that the yield of salt produced by greenhouse significantly incresed compared with prior technology and the NaCl content increased as well. The cost of greenhouse was IDR 5,688,000 and easy to assembly.

  1. Development of bioengineering processes to transform greenhouse waste into energy, fertilizer and tomato

    Energy Technology Data Exchange (ETDEWEB)

    Brisson, D.; Masse, D.I. [Agriculture and Agri-Food Canada, Lennoxville, PQ (Canada). Dairy and Swine Research and Development Centre; Juteau, P. [Quebec Univ., Laval, PQ (Canada). INRS-Institut Armand Frappier; Saint-Laurent CEGEP, Montreal, PQ (Canada). Centre des technologies de l' eau; Dorais, M. [Agriculture and Agri-Food Canada, Quebec City, PQ (Canada). Horticultural Research Centre

    2010-07-01

    Methods to promote sustainable production systems in greenhouses were discussed with particular reference to anaerobic digestion (AD) and nitrification processes for waste and nutrient management and energy consumption. The high cost of organic soluble fertilizers and the difficulty in obtaining a quality product are strong limitations for converting conventional greenhouses to organic practices. AD has been shown to be a promising solution for disposal of tomato leaves pruned during greenhouse operations. Studies have shown that AD generates end-products, notably supernatant sludge that have agronomic benefits of land application for forage and cereal crops. However, little has been done for horticultural crops. Unlike field crops, nitrification of digester effluents is a key step for using AD effluents as fertilizers for vegetable greenhouse plants. Greenhouse vegetables need nitrogen mainly under the nitrate form for an adequate growth because the other forms of nitrogen are detrimental to plant and fruit quality. However, nitrification of AD supernatant can be challenging because of its high ammonia content and its inhibition potential of nitrifying micro-organisms. This study examined the few nitrification processes that have the potential to operate under these conditions.

  2. Review of optimum temperature, humidity, and vapour pressure deficit for microclimate evaluation and control in greenhouse cultivation of tomato: a review

    Science.gov (United States)

    Shamshiri, Redmond Ramin; Jones, James W.; Thorp, Kelly R.; Ahmad, Desa; Man, Hasfalina Che; Taheri, Sima

    2018-04-01

    Greenhouse technology is a flexible solution for sustainable year-round cultivation of Tomato (Lycopersicon esculentum Mill), particularly in regions with adverse climate conditions or limited land and resources. Accurate knowledge about plant requirements at different growth stages, and under various light conditions, can contribute to the design of adaptive control strategies for a more cost-effective and competitive production. In this context, different scientific publications have recommended different values of microclimate parameters at different tomato growth stages. This paper provides a detailed summary of optimal, marginal and failure air and root-zone temperatures, relative humidity and vapour pressure deficit for successful greenhouse cultivation of tomato. Graphical representations of the membership function model to define the optimality degrees of these three parameters are included with a view to determining how close the greenhouse microclimate is to the optimal condition. Several production constraints have also been discussed to highlight the short and long-term effects of adverse microclimate conditions on the quality and yield of tomato, which are associated with interactions between suboptimal parameters, greenhouse environment and growth responses.

  3. Study of soil-plant transfer of 226Ra under greenhouse conditions

    International Nuclear Information System (INIS)

    Soudek, Petr; Petrova, Sarka; Benesova, Dagmar; Kotyza, Jan; Vagner, Martin; Vankova, Radomira; Vanek, Tomas

    2010-01-01

    A soil-plant transfer study was performed using soil from a former uranium ore processing factory in South Bohemia. We present the results from greenhouse experiments which include estimates of the time required for phytoremediation. The accumulation of 226 Ra by different plant species from a mixture of garden soil and contaminated substrate was extremely variable, ranging from 0.03 to 2.20 Bq 226 Ra/g DW. We found differences in accumulation of 226 Ra between plants from the same genus and between cultivars of the same plant species. The results of 226 Ra accumulation showed a linear relation between concentration of 226 Ra in plants and concentration of 226 Ra in soil mixtures. On the basis of these results we estimated the time required for phytoremediation, but this appears to be too long for practical purposes.

  4. Environmental analysis report : Becancour cogeneration power station by TransCanada Energy Ltd

    International Nuclear Information System (INIS)

    Gagnon, D.; Theberge, M.C.

    2004-01-01

    This report presents an environmental analysis of TransCanada Energy's proposed project to construct the Becancour cogeneration power station fuelled by natural gas. The realization of this project requires the delivery of a certificate of authorization by the Quebec government. One requirement to obtain this certificate is the completion of an environmental impact study. This report first presents the purpose and general description of the project. It includes an environmental analysis of the issues and impacts associated with the project including environmental problems associated with greenhouse gas emissions. The conclusion and the recommendations for the conditions of the project are presented thereafter. The report concludes that the environmental impacts resulting from the realization of the power station are very few and include atmospheric emissions, vapors, noise, rejections liquid and technological risks. Suitable abatement measures and selected technology make it possible to control these impacts. 8 refs., 2 figs., 3 appendices

  5. Regional greenhouse gas emissions from cultivation of winter wheat and winter rapeseed for biofuels in Denmark

    DEFF Research Database (Denmark)

    Elsgaard, Lars; Olesen, Jørgen E; Hermansen, John Erik

    2013-01-01

    Biofuels from bioenergy crops may substitute a significant part of fossil fuels in the transport sector where, e.g., the European Union has set a target of using 10% renewable energy by 2020. Savings of greenhouse gas emissions by biofuels vary according to cropping systems and are influenced...... by such regional factors as soil conditions, climate and input of agrochemicals. Here we analysed at a regional scale the greenhouse gas (GHG) emissions associated with cultivation of winter wheat for bioethanol and winter rapeseed for rapeseed methyl ester (RME) under Danish conditions. Emitted CO2 equivalents...

  6. The Runaway Greenhouse Effect on Earth and other Planets

    Science.gov (United States)

    Rabbette, Maura; Pilewskie, Peter; McKay, Christopher; Young, Robert

    2001-01-01

    Water vapor is an efficient absorber of outgoing longwave infrared radiation on Earth and is the primary greenhouse gas. Since evaporation increases with increasing sea surface temperature, and the increase in water vapor further increases greenhouse warming, there is a positive feedback. The runaway greenhouse effect occurs if this feedback continues unchecked until all the water has left the surface and enters the atmosphere. For Mars and the Earth the runaway greenhouse was halted when water vapor became saturated with respect to ice or liquid water respectively. However, Venus is considered to be an example of a planet where the runaway greenhouse effect did occur, and it has been speculated that if the solar luminosity were to increase above a certain limit, it would also occur on the Earth. Satellite data acquired during the Earth Radiation Budget Experiment (ERBE) under clear sky conditions shows that as the sea surface temperature (SST) increases, the rate of outgoing infrared radiation at the top of the atmosphere also increases, as expected. Over the pacific warm pool where the SST exceeds 300 K the outgoing radiation emitted to space actually decreases with increasing SST, leading to a potentially unstable system. This behavior is a signature of the runaway greenhouse effect on Earth. However, the SST never exceeds 303K, thus the system has a natural cap which stops the runaway. According to Stefan-Boltzmann's law the amount of heat energy radiated by the Earth's surface is proportional to (T(sup 4)). However, if the planet has a substantial atmosphere, it can absorb all infrared radiation from the lower surface before the radiation penetrates into outer space. Thus, an instrument in space looking at the planet does not detect radiation from the surface. The radiation it sees comes from some level higher up. For the earth#s atmosphere the effective temperature (T(sub e)) has a value of 255 K corresponding to the middle troposphere, above most of the

  7. Impact of a possible environmental externalities internalisation on energy prices: The case of the greenhouse gases from the Greek electricity sector

    International Nuclear Information System (INIS)

    Georgakellos, Dimitrios A.

    2010-01-01

    The present paper is concerned with the impact of the internalisation of environmental externalities on energy prices. In this context, its aim is to quantify the external cost of greenhouse gases (specifically carbon dioxide) generated during electricity production in the thermal power plants in Greece and to estimate the impact on the electricity production cost and on the electricity prices of a possible internalisation of this external cost by the producers. For this purpose, this paper applies the EcoSenseLE online tool to quantify the examined externalities. This research finds that the calculated external cost is significantly high (compared to the corresponding production cost) mainly in lignite-fired power plants. Specifically, a possible internalisation of this external cost would increase the production cost by more than 52% (on average), which, in turn, would affect similarly the electricity prices. This finding could be important for decision makers in the electricity sector to develop strategies for emission reduction and to develop environmental and energy policies. The general limitation of the external cost methodology applies to this work as it uses the standard method developed for the Externe project. Similarly, the data limitations as well as assumptions related to the costs and exclusions/ omissions of cost elements affect the results.

  8. Phasing out of environmentally harmful subsidies. Consequences of the 2003 CAP reform

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, Erwin; Hofreither, Markus F. [Institute for Sustainable Economic Development, Department of Economics and Social Sciences, University of Natural Resources and Applied Life Sciences Vienna (BOKU), Feistmantelstrasse 4, 1180 Vienna (Austria); Sinabell, Franz [Austrian Institute of Economic Research Vienna (WIFO), PO Box 91, 1103 Vienna (Austria)

    2007-01-15

    Subsidies linked to production have been classified as environmentally harmful by the OECD. A core element of the EU 2003 Common Agricultural Policy (CAP) reform is to decouple income support from production. This paper estimates the environmental consequences of this policy reform. An agricultural sector model using a modified version of the positive mathematical programming method depicts the complex natural, structural, and political relationships of Austrian farming. Changes in management measures can be analyzed with respect to their environmental effects by using appropriate indicators. Simulation results show that the 2003 CAP reform will reduce the average cost of production, and may improve environmental conditions regarding soil, water, and greenhouse gases when compared to a scenario without reform. Thus, the new CAP is likely to bring about outcomes which the previous reform (Agenda 2000) promised but did not deliver. (author)

  9. Greenhouse effect of NO{sub x}

    Energy Technology Data Exchange (ETDEWEB)

    Lammel, G; Grassl, H [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany)

    1995-07-01

    Through various processes the nitrogen oxides (NO{sub x}) interact with trace gases in the troposphere and stratosphere which do absorb in the spectral range relevant to the greenhouse effect (infrared wavelengths). The net effect is an enhancement of the greenhouse effect. The catalytic role of NO{sub x} in the production of tropospheric ozone provides the most prominent contribution. The global waming potential is estimated as GWP (NO{sub x}) = 30-33 and 7-10 for the respective time horizons of 20 and 100 years, and is thereby comparable to that of methane. NO{sub x} emissions in rural areas of anthropogenically influenced regions, or those in the vicinity of the tropopause caused by air traffic, cause the greenhouse effectivity to be substantially more intense. We estimate an additional 5-23% for Germany`s contribution to the anthropogenic greenhouse effect as a result of the indirect greenhouse effects stemming from NO{sub x}. Furthermore, a small and still inaccurately defined amount of the deposited NO{sub x} which has primarily been converted into nitrates is again released from the soil into the atmosphere in the form of the long-lived greenhouse gas nitrous oxide (N{sub i}O). Thus, anthropogenically induced NO{sub x} emissions contribute to enhanced greenhouse effect and to stratospheric ozone depletion in the time scale of more than a century. (orig.)

  10. Harnessing greenhouse effect

    International Nuclear Information System (INIS)

    Meunier, F.; Rivet, P.; Terrier, M.F.

    2005-01-01

    This book considers the energy and greenhouse effect questions in a global way. It presents the different methods of fight against the increase of the greenhouse effect (energy saving, carbon sinks, cogeneration,..), describes the main alternative energy sources to fossil fuels (biomass, wind power, solar, nuclear,..), and shows that, even worrying, the future is not so dark as it seems to be and that technical solutions exist which will allow to answer the worldwide growing up energy needs and to slow down the climatic drift. (J.S.)

  11. Monitoring fate and behaviour of Nanoceria under relevant environmental conditions

    CSIR Research Space (South Africa)

    Tancu, Y

    2014-11-01

    Full Text Available ). The results revealed significant tendency of nCeO¬2 to undergo aggregation, agglomeration and certain degree of deagglomeration processes under different environmental conditions. Moreover, the findings suggested that both electrostatic and steric interactions...

  12. The effect of plant growth-promoting rhizobacteria on asparagus seedlings and germinating seeds subjected to water stress under greenhouse conditions.

    Science.gov (United States)

    Liddycoat, Scott M; Greenberg, Bruce M; Wolyn, David J

    2009-04-01

    Plant growth-promoting rhizobacteria (PGPR) can have positive effects on vigour and productivity, especially under stress conditions. In asparagus (Asparagus officinalis L.) field culture, seeds are planted in high-density nurseries, and 1-year-old crowns are transplanted to production fields. Performance can be negatively affected by water stress, transplant shock, and disease pressure on wounded roots. PGPR inoculation has the potential to alleviate some of the stresses incurred in the production system. In this study, the effects of PGPR (Pseudomonas spp.) treatment were determined on 3-week-old greenhouse-grown seedlings and germinating seeds of 2 asparagus cultivars. The pots were irrigated to a predetermined level that resulted in optimum growth or the plants were subjected to drought or flooding stress for 8 weeks. The cultivars responded differently to PGPR: single inoculations of seedlings enhanced growth of 'Guelph Millennium' under optimum conditions and 'Jersey Giant' seedlings under drought stress. Seed inoculations with PGPR resulted in a positive response only for 'Guelph Millennium', for which both single or multiple inoculations enhanced plant growth under drought stress.

  13. Liquid desiccant dehumidification and regeneration process to meet cooling and freshwater needs of desert greenhouses

    KAUST Repository

    Lefers, Ryan

    2016-04-19

    Agriculture accounts for ~70% of freshwater usage worldwide. Seawater desalination alone cannot meet the growing needs for irrigation and food production, particularly in hot, desert environments. Greenhouse cultivation of high-value crops uses just a fraction of freshwater per unit of food produced when compared with open field cultivation. However, desert greenhouse producers face three main challenges: freshwater supply, plant nutrient supply, and cooling of the greenhouse. The common practice of evaporative cooling for greenhouses consumes large amounts of fresh water. In Saudi Arabia, the most common greenhouse cooling schemes are fresh water-based evaporative cooling, often using fossil groundwater or energy-intensive desalinated water, and traditional refrigeration-based direct expansion cooling, largely powered by the burning of fossil fuels. The coastal deserts have ambient conditions that are seasonally too humid to support adequate evaporative cooling, necessitating additional energy consumption in the dehumidification process of refrigeration-based cooling. This project evaluates the use of a combined-system liquid desiccant dehumidifier and membrane distillation unit that can meet the dual needs of cooling and freshwater supply for a greenhouse in a hot and humid environment. © 2016 Balaban Desalination Publications. All rights reserved.

  14. Competition Between Fusarium pseudograminearum and Cochliobolus sativus Observed in Field and Greenhouse Studies.

    Science.gov (United States)

    Troth, Erin E Gunnink; Johnston, Jeffrey A; Dyer, Alan T

    2018-02-01

    Among root pathogens, one of the most documented antagonisms is the suppression of Cochliobolus sativus by Fusarium (roseum) species. Unfortunately, previous studies involved single isolates of each pathogen and thus, provided no indication of the spectrum of responses that occur across the respective species. To investigate the variability in interactions between Cochliobolus sativus and Fusarium pseudograminearum, field and greenhouse trials were conducted that included monitoring of spring wheat plant health and monitoring of pathogen populations via quantitative real-time polymerase chain reaction. The interactions between two isolates of C. sativus and four isolates of F. pseudograminearum were explored in three geographically distinct wheat fields. To complement field trials and to limit potentially confounding environmental variables that are often associated with field studies, greenhouse trials were performed that investigated the interactions among and between three isolates of C. sativus and four isolates of F. pseudograminearum. Across field locations, C. sativus isolate Cs2344 consistently and significantly reduced Fusarium populations by an average of 20.1%. Similarly, F. pseudograminearum isolate Fp2228 consistently and significantly reduced C. sativus field populations by an average of 30.9%. No interaction was detected in the field between pathogen species with regards to disease or crop losses. Greenhouse results confirmed a powerful (>99%), broadly effective suppression of Fusarium populations by isolate Cs2344. Among greenhouse trials, additional isolate-isolate interactions were observed affecting Fusarium populations. Due to lower C. sativus population sizes in greenhouse trials, significant Fusarium suppression of C. sativus was only detected in one isolate-isolate interaction. This study is the first to demonstrate suppression of Fusarium spp. by C. sativus in field and greenhouse settings. These findings also reveal a complex competitive

  15. Greenhouse Warming Research

    DEFF Research Database (Denmark)

    Sørensen, Bent Erik

    2016-01-01

    The changing greenhouse effect caused by natural and anthropogenic causes is explained and efforts to model the behavior of the near-surface constituents of the Earth's land, ocean and atmosphere are discussed. Emissions of various substances and other aspects of human activity influence...... the greenhouse warming, and the impacts of the warming may again impact the wellbeing of human societies. Thus physical modeling of the near-surface ocean-soil-atmosphere system cannot be carried out without an idea of the development of human activities, which is done by scenario analysis. The interactive...

  16. Mitigation activities in the forest sector to reduce emissions and enhance sinks of greenhouse gases

    Science.gov (United States)

    Richard Birdsey; Ralph Alig; Darius Adams

    2000-01-01

    In June 1992, representatives from 172 countries gathered at the "Earth Summit" in Rio de Janeiro to discuss environmental issues. The United Nations Framework Convention on Climate Change (FCCC) was adopted to achieve ". . . stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic...

  17. Potential of greenhouse gas emission reductions in soybean farming

    DEFF Research Database (Denmark)

    Mohammadi, Ali; Dalgaard, Tommy; Knudsen, Marie Trydeman

    2013-01-01

    Joint implementation of Life Cycle Assessment (LCA) and Data Envelopment Analysis (DEA) has recently showed to be a suitable tool for measuring efficiency in agri-food systems. In the present study, LCA + DEA methodologies were applied for a total of 94 soybean farms in Iran to benchmark the leve...... residue in the field generate significantly more greenhouse gas emissions than other farms. The raising of operational input efficiency and limiting of crop residue burning in the field are recommended options to ensure more environmental friendly soybean farming systems in the region....

  18. Crossing the chasm in Dutch greenhouse horticulture

    NARCIS (Netherlands)

    Buurma, J.S.; Smit, P.X.

    2016-01-01

    Dutch greenhouse horticulture has an innovation and development programme called 'Kas als Energiebron' (Greenhouse as Energy Producer). The objective of this programme is reducing the carbon footprint and improving the energy efficiency of greenhouse horticulture, and developing a climate neutral

  19. Greenhouse effect

    International Nuclear Information System (INIS)

    1992-01-01

    This special issue is devoted to the greenhouse effect and reviews the possible climate change by mankind, paleoclimates, climate models, measurement of terrestrial temperature, CO 2 concentration and energy policy

  20. Comparative analysis of greenhouse gas emissions of various residential heating systems in the Canadian provinces

    International Nuclear Information System (INIS)

    Pare, D.

    2010-04-01

    The Kyoto Protocol compels signatory countries to reduce their greenhouse gas emissions by at least 5 percent by 2010 as compared to 1990 levels. In Canada, however, questions remain regarding the effects of greenhouse gases as they relate to the adoption of geoexchange systems in certain provinces because of the sources of electricity. This report presented a comprehensive analysis of the specific and strategic role of geoexchange technology, and ground source heat pumps in particular. The purpose was to compare, on a common basis, the greenhouse gas emissions of different residential heating systems utilized in the Canadian provinces. Comparisons were conducted from an environmental standpoint, and excluded the exergy and economic aspect, or other related issues. The report discussed the methodology and hypotheses of the study and presented the results for Canada, and for each province. It was concluded that according to the hypotheses employed for the purposes of this study, geoexchange systems offer a solution for greenhouse gas reduction and climatic change in all of the analyzed scenarios, with few exceptions and for a specific scenario. 32 refs., 37 tabs., 12 figs., 4 appendices.

  1. “Walczak’s Pipes” in the Greenhouse Heating System

    Directory of Open Access Journals (Sweden)

    Kazimierz Rutkowski

    2016-01-01

    Full Text Available Diversified heating circuits inertia is particularly important by high variability of external conditions were the greenhouse is often overheated or large heat losses are noted. To meet these needs a new generation of heating pipes were used. They are hexagram-shaped pipes called “Walczak’s pipe”. Tubes of such shape have several times smaller volume in comparison with traditional heating pipes of the same outer diameter and higher stiffness. The preliminary assessment of the “Walczak’s pipe” installed in the greenhouse is highly positive. Compared with the traditional system it enables better heat management. In the first research stage, the thermal efficiency was defined in different ambient conditions at selected flow parameters and various water temperatures. With regard to the accepted flow values, it is notable that “Walczak’s pipe” has greater thermal efficiency per unit of power comparing with traditional tube. During the study, there was also a thermographic analysis of pipes’ surface performed and the heat flow distribution was determined. Analyzing the temperature distribution on the “Walczak’s pipe” remarkable are the areas with higher values ​​comparing with standard tube. It can be concluded that in the heating system with “Walczak’s pipe” energy transferred by radiation increases. This is particularly advantageous solution to use in greenhouses. It allows to obtain a higher leafs temperature with respect to the ambient temperature (vegetation heating. This parameter has a beneficial effect on the vegetative growth of cultivated plants.

  2. Control and game models of the Greenhouse effect. Economics essays on the comedy and tragedy of the commons

    International Nuclear Information System (INIS)

    Cesar, H.S.J.

    1994-01-01

    Following chapter 1 (introduction and conclusions) in Chapter 2, the groundwork is laid for the analysis later on. First, the most relevant aspects of the Greenhouse Effect are discussed. The causes, trends, impacts and especially the policy options are highlighted. This elaboration will justify the choice of carbon dioxide emissions (CO 2 ) as the primary Greenhouse gas in later chapters. Next, the literature on environmental resource economics using optimal control models is critically surveyed. In Chapter 3, one-country models of the Greenhouse Effect are developed and four elements, often neglected in the literature are elaborated in particular. In Chapter 4, the issue of the 'tragedy of the commons' is highlighted by looking at the transboundary aspect of the Greenhouse Effect. To clarify this, assume the following prisoner's dilemma gamme of a world consisting of two countries. In Chapter 5, it is shown that (in-kind) technology transfers can overcome some of the incentive problems that render cash transfers prone to strategic behviour. (orig./UA)

  3. Environmental efficiency among corn ethanol plants

    International Nuclear Information System (INIS)

    Sesmero, Juan P.; Perrin, Richard K.; Fulginiti, Lilyan E.

    2012-01-01

    Economic viability of the US corn ethanol industry depends on prices, technical and economic efficiency of plants and the extent of policy support. Public policy support is tied to the environmental efficiency of plants measured as their impact on emissions of greenhouse gases. This study evaluates the environmental efficiency of seven recently constructed ethanol plants in the North Central region of the US, using nonparametric data envelopment analysis (DEA). The minimum feasible level of GHG emissions per unit of ethanol is calculated for each plant and this level is decomposed into its technical and allocative sources. Results show that, on average, plants in our sample may be able to reduce GHG emissions by a maximum of 6% or by 2.94 Gg per quarter. Input and output allocations that maximize returns over operating costs (ROOC) are also found based on observed prices. The environmentally efficient allocation, the ROOC-maximizing allocation, and the observed allocation for each plant are combined to calculate economic (shadow) cost of reducing greenhouse gas emissions. These shadow costs gauge the extent to which there is a trade off or a complementarity between environmental and economic targets. Results reveal that, at current activity levels, plants may have room for simultaneous improvement of environmental efficiency and economic profitability. -- Highlights: ► Environmental efficiency of ethanol plants in the North Central US is evaluated. ► Economic (shadow) cost of reducing greenhouse gas emissions is calculated. ► Feasible changes in the mix of inputs and byproducts can reduce GHG emissions. ► On average plants may be able to reduce GHG emissions by 2.94 Gg per quarter. ► GHG reductions may be achieved at a moderate or zero operating cost.

  4. Limiting net greenhouse gas emissions in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, R A; Watts, E C; Williams, E R [eds.

    1991-09-01

    In 1988, Congress requested that DOE produce a study on carbon dioxide inventory and policy to provide an inventory of emissions sources and to analyze policies to achieve a 20% reduction in carbon dioxide emissions in 5 to 10 years and a 50% reduction in 15 to 20 years. Energy and environmental technology data were analyzed using computational analysis models. This information was then evaluated, drawing on current scientific understanding of global climate change, the possible consequences of anthropogenic climate change (change caused by human activity) and the relationship between energy production and use and the emission of radiatively important gases. Topics discussed include: state of the science in estimating atmosphere/climate change relationships, the potential consequences of atmosphere/climate change, us greenhouse emissions past and present, an approach to analyzing the technical potential and cost of reducing US energy-related greenhouse gas emissions, current policy base and National Energy Strategy actions, fiscal instruments, regulatory instruments, combined strategies and instruments, macroeconomic impacts, carbon taxation and international trade, a comparison to other studies.

  5. The greenhouse effect and natural fluctuations of the climate

    International Nuclear Information System (INIS)

    Schoenwiese, C.D.

    1993-01-01

    There is a straight line connecting the first estimate in 1896 of worldwide climate changes due to the increasing use of fossil sources of energy with the Climate Convention of the United Nations at the 1992 Environmental Summit. Extensive model calculations exist of the 'greenhouse effect', in which the lower atmosphere is heated by manmade emissions of trace gases affecting the climate. However, the anticipated changes are not restricted to the temperature of the air; they affect the climate as a whole worldwide. As a consequence, the German Federal Government, in addition to its ban on CFCs, plans to reduce manmade carbon dioxide emissions by 25 or 30% by 2005. Natural fluctuations of the climate compete with the greenhouse effect: Volcanic and solar effects, but also random variations within the complicated interactions in the climatic system (atmosphere - oceans - ice regions - biosphere - land surface). Mathematical and statistical analyses of the superposition of such climatic mechanisms, which are based on data from observations, result in a risk analysis at a high level of probability. (orig.) [de

  6. Energy conserving dehumidification of greenhouses

    NARCIS (Netherlands)

    Zwart, de H.F.

    2014-01-01

    As greenhouses become better insulated and increasingly airtight, the humidity of the inside air rises easily and may become unfavourably high. Therefore, most greenhouses frequently open their vents to remove the moisture excess. When heated, opening the vents will increase the energy consumption.

  7. Durum Wheat (Triticum Durum Desf. Lines Show Different Abilities to Form Masked Mycotoxins under Greenhouse Conditions

    Directory of Open Access Journals (Sweden)

    Martina Cirlini

    2013-12-01

    Full Text Available Deoxynivalenol (DON is the most prevalent trichothecene in Europe and its occurrence is associated with infections of Fusarium graminearum and F. culmorum, causal agents of Fusarium head blight (FHB on wheat. Resistance to FHB is a complex character and high variability occurs in the relationship between DON content and FHB incidence. DON conjugation to glucose (DON-3-glucoside, D3G is the primary plant mechanism for resistance towards DON accumulation. Although this mechanism has been already described in bread wheat and barley, no data are reported so far about durum wheat, a key cereal in the pasta production chain. To address this issue, the ability of durum wheat to detoxify and convert deoxynivalenol into D3G was studied under greenhouse controlled conditions. Four durum wheat varieties (Svevo, Claudio, Kofa and Neodur were assessed for DON-D3G conversion; Sumai 3, a bread wheat variety carrying a major QTL for FHB resistance (QFhs.ndsu-3B, was used as a positive control. Data reported hereby clearly demonstrate the ability of durum wheat to convert deoxynivalenol into its conjugated form, D3G.

  8. Colonization with Arbuscular Mycorrhizal Fungi Promotes the Growth of Morus alba L. Seedlings under Greenhouse Conditions

    Directory of Open Access Journals (Sweden)

    Nan Lu

    2015-03-01

    Full Text Available Morus alba L. is an important tree species planted widely in China because of its economic value. In this report, we investigated the influence of two arbuscular mycorrhizal fungal (AMF species, Glomus mosseae and Glomus intraradices, alone and together, on the growth of M. alba L. seedlings under greenhouse conditions. The growth parameters and physiological performance of M. alba L. seedlings were evaluated 90 days after colonization with the fungi. The growth and physiological performance of M. alba L. seedlings were significantly affected by the AMF species. The mycorrhizal seedlings were taller, had longer roots, more leaves and a greater biomass than the non-mycorrhizae-treated seedlings. In addition, the AMF species-inoculated seedlings had increased root activity and a higher chlorophyll content compared to non-inoculated seedlings. Furthermore, AMF species colonization increased the phosphorus and nitrogen contents of the seedlings. In addition, simultaneous root colonization by the two AMF species did not improve the growth of M. alba L. seedlings compared with inoculation with either species alone. Based on these results, these AMF species may be applicable to mulberry seedling cultivation.

  9. [Cytoembryologic studies of super dwarf wheat grown in "Svet" greenhouse in the ground-based experiments

    Science.gov (United States)

    Levinskikh, M. A.; Veselova, T. D.; Il'ina, G. M.; Dzhalilova, Kh Kh; Sychev, V. N.; Derendiaeva, T. A.; Salisbury, F.; Cambell, W.; Bubenheim, D.; Campbell, W. (Principal Investigator)

    1998-01-01

    The Project of scientific programs MIR/SHUTTLE and MIR/NASA was allowed for studying the productional, cytoembryological, morphological, biomechanical and other characteristics of superclub wheat on cultivation in the Svet greenhouse on-board orbital complex. This work was aimed at studying the duration of the complete cycle of ontogenesis of wheat and its individual stages, the peculiarities of forming the reproductive organs, processes, fertilization and formation of the seed production while cultivating in the Svet greenhouse under terrestrial conditions. Superclub wheat has been the object of experimentation. On cultivation of superclub wheat in the Svet greenhouse at designated conditions it was found that the cycle duration "from seed to seed" was 90-97 days. The number of granules in the wheat-ears studied was quite low and ranged from 15 to 30%. Performed studies with applying the light microscopy have indicated that in superclub wheat the embryological processes occur in compliance with those regularities which are described for the other forms of soft wheat.

  10. Harmattan Haze and Environmental Health

    African Journals Online (AJOL)

    Administrator

    desert has global environmental effects, as documented by NASA's satellite ... influence of Sahara dust on global climate and the impacts of greenhouse gases on the warming ... Locally, the effects of harmattan dust on human health and.

  11. Limiting the emission of green-house gases: objectives and results in EU and non-EU countries

    Directory of Open Access Journals (Sweden)

    Hellrigl B

    2008-06-01

    Full Text Available Based on UNFCCC and EEA (European Environmental Agency data, changes in the emissions (no LULUCF considered of green-house gases in the period 1990-2004 either in the Annex 1 as well in the UE-27 countries are summarized and commented.

  12. Environmental analysis of the logistics of agricultural products from roof top greenhouses in Mediterranean urban areas.

    Science.gov (United States)

    Sanyé-Mengual, Esther; Cerón-Palma, Ileana; Oliver-Solà, Jordi; Montero, Juan Ignacio; Rieradevall, Joan

    2013-01-15

    As urban populations increase so does the amount of food transported to cities worldwide, and innovative agro-urban systems are being developed to integrate agricultural production into buildings; for example, by using roof top greenhouses (RTGs). This paper aims to quantify and compare, through a life cycle assessment, the environmental impact of the current linear supply system with a RTG system by using a case study for the production of tomatoes. The main results indicate that a change from the current linear system to the RTG system could result in a reduction, per kilogram of tomatoes (the functional unit), in the range of 44.4-75.5% for the different impact categories analysed, and savings of up to 73.5% in energy requirements. These savings are associated with re-utilisation of packaging systems (55.4-85.2%), minimisation of transport requirements (7.6-15.6%) and reduction of the loss of product during transportation and retail stages (7.3-37%). The RTG may become a strategic factor in the design of low-carbon cities in Mediterranean areas. Short-term implementation in the city of Barcelona could result in savings of 66.1 tonnes of CO₂ eq. ha(-1) when considering the global warming potential, and of 71.03 t ha(-1) when considering that the transformation from woodland to agricultural land is avoided. Copyright © 2012 Society of Chemical Industry.

  13. Assessment of the greenhouse effect impact of technologies used for energy recovery from municipal waste: a case for England.

    Science.gov (United States)

    Papageorgiou, A; Barton, J R; Karagiannidis, A

    2009-07-01

    Waste management activities contribute to global greenhouse gas emissions approximately by 4%. In particular the disposal of waste in landfills generates methane that has high global warming potential. Effective mitigation of greenhouse gas emissions is important and could provide environmental benefits and sustainable development, as well as reduce adverse impacts on public health. The European and UK waste policy force sustainable waste management and especially diversion from landfill, through reduction, reuse, recycling and composting, and recovery of value from waste. Energy from waste is a waste management option that could provide diversion from landfill and at the same time save a significant amount of greenhouse gas emissions, since it recovers energy from waste which usually replaces an equivalent amount of energy generated from fossil fuels. Energy from waste is a wide definition and includes technologies such as incineration of waste with energy recovery, or combustion of waste-derived fuels for energy production or advanced thermal treatment of waste with technologies such as gasification and pyrolysis, with energy recovery. The present study assessed the greenhouse gas emission impacts of three technologies that could be used for the treatment of Municipal Solid Waste in order to recover energy from it. These technologies are Mass Burn Incineration with energy recovery, Mechanical Biological Treatment via bio-drying and Mechanical Heat Treatment, which is a relatively new and uninvestigated method, compared to the other two. Mechanical Biological Treatment and Mechanical Heat Treatment can turn Municipal Solid Waste into Solid Recovered Fuel that could be combusted for energy production or replace other fuels in various industrial processes. The analysis showed that performance of these two technologies depends strongly on the final use of the produced fuel and they could produce GHG emissions savings only when there is end market for the fuel. On the

  14. Effective integration of environmental leadership and environmental management systems within Cameco's Mining Division

    International Nuclear Information System (INIS)

    Nagy, K.; Borchardt, S.

    2010-01-01

    To support the implementation of its integrated Safety, Health, Environment & Quality (SHEQ) Policy, Cameco has undertaken an environmental leadership initiative with the goal of moving beyond regulatory compliance and significantly reducing environmental impacts in five key areas: air emissions, treated water quality and quantity, energy use and greenhouse gas emissions, and waste generation. To ensure environmental leadership becomes routine business practice, it was necessary to integrate the initiative into Cameco's programs and management systems at the corporate and operational levels. Operations-based environmental leadership strategies and action plans have since been developed, as well as a corporate reporting system to monitor Cameco's environmental performance. (author)

  15. Environmental and economic assessment of protected crops in four European scenarios

    NARCIS (Netherlands)

    Torrellas, M.; Antón, A.; Ruijs, M.N.A.; Garcia Victoria, N.; Stanghellini, C.; Montero, J.I.

    2012-01-01

    In this study we analysed the environmental and economic profile of current agricultural practices for greenhouse crops, in cold and warm climates in Europe, using four scenarios as reference systems: tomato crop in a plastic greenhouse in Spain, and in glasshouses in Hungary and the Netherlands,

  16. Pollution prevention through energy efficiency: methodology for evaluating greenhouse gas reductions

    International Nuclear Information System (INIS)

    Widge, V.; Arnold, F.; Karmali, A.

    1992-01-01

    This paper outlines an analytical framework for evaluating the potential for greenhouse gas emission reductions through investments in energy efficiency. In particular, it will describe a model called the Energy and Technology Switching (ETS) model which has been developed at ICF Incorporated. The ETS model has several useful capabilities - it can assess the implications of changing the energy efficiency of new shipments and existing stock of equipment and appliances, or even changes in patterns of fuel use. The ETS model predicts energy use, emissions of related carbon dioxide and other greenhouse gases, and private and social costs (such as energy costs, avoided capital and fuel costs). It also tracks changes in fuel and technology use over time for a user specified end-use application. The paper is organized into three parts: - The first part of the paper describes the methodology used in estimating the reduction in greenhouse gas emissions and the associated net costs of policies that could affect energy use. - In order to demonstrate the model's capabilities, in the second part of the paper, a sample analysis is presented. ICF incorporated has used the ETS model to estimate for the Global Change Division of the U.S. Environmental Protection Agency the costs of reducing greenhouse gas emissions in the residential and commercial sectors of the U.S. economy, encompassing a wide range of technologies and fuel-types. The assumptions and results of this analysis are presented. - Finally, the paper outlines some of the potential uses of this model in assessing pollution prevention opportunities through energy efficient measures. 11 figs

  17. A wireless telecommunications network for real-time monitoring of greenhouse microclimate

    Directory of Open Access Journals (Sweden)

    Giuliano Vox

    2014-10-01

    Full Text Available An innovative wireless monitoring system for measuring greenhouse climatic parameters was developed to overcome the problems related to wires cabling such as presence of a dense net of wires hampering the cultivation practices, wires subjected to high temperature and relative humidity, rodents that can damage wires. The system exploits battery-powered environmental sensors, such as air temperature and relative humidity sensors, wind speed and direction, and solar radiation sensors, integrated in the contest of an 802.15.4-based wireless sensors network. Besides, a fruit diameter measurement sensor was integrated into the system. This approach guarantees flexibility, ease of deployment and low power consumption. Data collected from the greenhouse are then sent to a remote server via a general packet radio service link. The proposed solution has been implemented in a real environment. The test of the communication system showed that 0.3% of the sent data packed were lost; the climatic parameters measured with the wireless system were compared with data collected by the wired system showing a mean value of the absolute difference equal to 0.6°C for the value of the greenhouse air temperature. The wireless climate monitoring system showed a good reliability, while the sensor node batteries showed a lifetime of 530 days.

  18. GREENHOUSE GASES AND MEANS OF PREVENTION

    Directory of Open Access Journals (Sweden)

    Dušica Stojanović

    2013-09-01

    Full Text Available The greenhouse effect can be defined as the consequence of increased heating of the Earth's surface, as well as the lower atmosphere by carbon dioxide, water vapor, and other trace amounts gases. It is well-known that human industrial activities have released large amounts of greenhouse gases in the atmosphere, about 900 billion tons of carbon dioxide, and it is estimated that up to 450 billion are still in the atmosphere. In comparison to greenhouse gases water vapor is one of the greatest contributors to the greenhouse effect on Earth. Many projects, as does the PURGE project, have tendences to build on the already conducted research and to quantify the positive and negative impacts on health and wellbeing of the population with greenhouse gas reduction strategies that are curently being implemented and should be increasingly applied in various sectors and urban areas, having offices in Europe, China and India.

  19. Modeling of greenhouse with PCM energy storage

    International Nuclear Information System (INIS)

    Najjar, Atyah; Hasan, Afif

    2008-01-01

    Greenhouses provide a controlled environment that is suitable for plants growth and cultivation. In this paper the maximum temperature change inside the greenhouse is to be reduced by the use of energy storage in a phase change material PCM. A mathematical model is developed for the storage material and for the greenhouse. The coupled models are solved using numerical methods and Java code program. The effect of different parameters on the inside greenhouse temperature is investigated. The temperature swing between maximum and minimum values during 24 h can be reduced by 3-5 deg. C using the PCM storage. This can be improved further by enhancing the heat transfer between the PCM storage and the air inside the greenhouse

  20. Modeling of greenhouse with PCM energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Najjar, Atyah [Computation Science, Birzeit University, Birzeit (PS); Hasan, Afif [Mechanical Engineering Department, Birzeit University, Birzeit (PS)

    2008-11-15

    Greenhouses provide a controlled environment that is suitable for plants growth and cultivation. In this paper the maximum temperature change inside the greenhouse is to be reduced by the use of energy storage in a phase change material PCM. A mathematical model is developed for the storage material and for the greenhouse. The coupled models are solved using numerical methods and Java code program. The effect of different parameters on the inside greenhouse temperature is investigated. The temperature swing between maximum and minimum values during 24 h can be reduced by 3-5 C using the PCM storage. This can be improved further by enhancing the heat transfer between the PCM storage and the air inside the greenhouse. (author)

  1. Emission and Sink of Greenhouse Gases in Soils of Moscow

    Science.gov (United States)

    Mozharova, N. V.; Kulachkova, S. A.; Lebed'-Sharlevich, Ya. I.

    2018-03-01

    The first inventory and zoning of the emission and sink of methane and carbon dioxide in the urban structure of greenhouse gases from soils and surface technogenic formations (STFs) (Technosols) on technogenic, recrementogenic, and natural sediments have been performed with consideration for the global warming potential under conditions of different formation rate of these gases, underflooding, and sealing. From gas geochemical criteria and anthropogenic pedogenesis features, the main sources of greenhouse gases, their intensity, and mass emission were revealed. The mass fractions of emissions from the sectors of waste and land use in the inventories of greenhouse gas emissions have been determined. New sources of gas emission have been revealed in the first sector, the emissions from which add tens of percent to the literature and state reports. In the second sector, emissions exceed the available data in 70 times. Estimation criteria based on the degree of manifestation and chemical composition of soil-geochemical anomalies and barrier capacities have been proposed. The sink of greenhouse gases from the atmosphere and the internal (latent) sink of methane in soils and STFs have been determined. Ecological functions of soils and STFs have been shown, and the share of latent methane sink has been calculated. The bacterial oxidation of methane in soils and STFs exceeds its emission to the atmosphere in almost hundred times.

  2. Optimal Control Design for a Solar Greenhouse

    NARCIS (Netherlands)

    Ooteghem, van R.J.C.

    2010-01-01

    Abstract: An optimal climate control has been designed for a solar greenhouse to achieve optimal crop production with sustainable instead of fossil energy. The solar greenhouse extends a conventional greenhouse with an improved roof cover, ventilation with heat recovery, a heat pump, a heat

  3. Greenhouse gas trading starts up

    Science.gov (United States)

    Showstack, Randy

    While nations decide on whether to sign on to the Kyoto Protocol on climate change, some countries and private companies are moving forward with greenhouse gas emissions trading.A 19 March report, "The Emerging International Greenhouse Gas Market," by the Pew Center on Global Climate Change, reports that about 65 greenhouse gas emissions trades for quantities above 1,000 metric tons of carbon dioxideequivalent already have occurred worldwide since 1996. Many of these trades have taken place under a voluntary, ad hoc framework, though the United Kingdom and Denmark have established their own domestic emissions trading programs.

  4. Improving radiation use efficiency in greenhouse production systems

    OpenAIRE

    Li, Tao

    2015-01-01

    SUMMARY A large increase in agricultural production is needed to feed the increasing world population with their increasing demand per capita. However, growing competition for arable land, water, energy, and the degradation of the environment impose challenges to improve crop production. Hence agricultural production efficiency needs to increase. Greenhouses provide the possibility to create optimal growth conditions for crops, thereby improving production and product quality. Light is the dr...

  5. Optimal control design for a solar greenhouse

    NARCIS (Netherlands)

    Ooteghem, van R.J.C.

    2007-01-01

    The research of this thesis was part of a larger project aiming at the design of a greenhouse and an associated climate control that achieves optimal crop production with sustainable instead of fossil energy. This so called solar greenhouse design extends a conventional greenhouse with an improved

  6. The Role of Sustainability Resources of Large Greenhouse Gas Emitters: The Case of Corporations in Alberta, Canada

    OpenAIRE

    Hannouf, Marwa; Assefa, Getachew

    2017-01-01

    With the global challenge of climate change, it becomes crucial to understand the factors that can guide carbon intensive companies to comply with environmental regulations through significant reductions in greenhouse gas (GHG) emissions. Using the natural-resource-based view, the argument in this paper is that focusing on sustainability-driven resources by companies is a way to meet environmental compliance and reduce GHG emissions while gaining differential competitive benefits. A specific ...

  7. Has your greenhouse gone virtual?

    Science.gov (United States)

    Virtual Grower is a free decision-support software program available from USDA-ARS that allows growers to build a virtual greenhouse. It was initially designed to help greenhouse growers estimate heating costs and conduct simple simulations to figure out where heat savings could be achieved. Featu...

  8. Greenhouse gas strategy

    International Nuclear Information System (INIS)

    2001-03-01

    Because the overall effects of climate change will likely be more pronounced in the North than in other parts of the country, the Government of the Northwest Territories considers it imperative to support global and local actions to reduce greenhouse gas emissions. Government support is manifested through a coordinating role played by senior government representatives in the development of the NWT Greenhouse Gas Strategy, and by participation on a multi-party working committee to identify and coordinate northern actions and to contribute a northern perspective to Canada's National Climate Change Implementation Strategy. This document outlines the NWT Government's goals and objectives regarding greenhouse gas emission reduction actions. These will include efforts to enhance awareness and understanding; demonstrate leadership by putting the Government's own house in order; encouraging action across sectors; promote technology development and innovation; invest in knowledge and building the foundation for informed future decisions. The strategy also outlines the challenges peculiar to the NWT, such as the high per person carbon dioxide emissions compared to the national average (30 tonnes per person per year as opposed to the national average of 21 tonnes per person per year) and the increasing economic activity in the Territories, most of which are resource-based and therefore energy-intensive. Appendices which form part of the greenhouse gas strategy document, provide details of the potential climate change impact in the NWT, a detailed explanation of the proposed measures, an emission forecast to 2004 from industrial processes, fuel combustion and incineration, and a statement of the official position of the Government of the NWT on climate change

  9. Simulation of Greenhouse Climate Monitoring and Control with Wireless Sensor Network and Event-Based Control

    Science.gov (United States)

    Pawlowski, Andrzej; Guzman, Jose Luis; Rodríguez, Francisco; Berenguel, Manuel; Sánchez, José; Dormido, Sebastián

    2009-01-01

    Monitoring and control of the greenhouse environment play a decisive role in greenhouse production processes. Assurance of optimal climate conditions has a direct influence on crop growth performance, but it usually increases the required equipment cost. Traditionally, greenhouse installations have required a great effort to connect and distribute all the sensors and data acquisition systems. These installations need many data and power wires to be distributed along the greenhouses, making the system complex and expensive. For this reason, and others such as unavailability of distributed actuators, only individual sensors are usually located in a fixed point that is selected as representative of the overall greenhouse dynamics. On the other hand, the actuation system in greenhouses is usually composed by mechanical devices controlled by relays, being desirable to reduce the number of commutations of the control signals from security and economical point of views. Therefore, and in order to face these drawbacks, this paper describes how the greenhouse climate control can be represented as an event-based system in combination with wireless sensor networks, where low-frequency dynamics variables have to be controlled and control actions are mainly calculated against events produced by external disturbances. The proposed control system allows saving costs related with wear minimization and prolonging the actuator life, but keeping promising performance results. Analysis and conclusions are given by means of simulation results. PMID:22389597

  10. Simulation of Greenhouse Climate Monitoring and Control with Wireless Sensor Network and Event-Based Control

    Directory of Open Access Journals (Sweden)

    Andrzej Pawlowski

    2009-01-01

    Full Text Available Monitoring and control of the greenhouse environment play a decisive role in greenhouse production processes. Assurance of optimal climate conditions has a direct influence on crop growth performance, but it usually increases the required equipment cost. Traditionally, greenhouse installations have required a great effort to connect and distribute all the sensors and data acquisition systems. These installations need many data and power wires to be distributed along the greenhouses, making the system complex and expensive. For this reason, and others such as unavailability of distributed actuators, only individual sensors are usually located in a fixed point that is selected as representative of the overall greenhouse dynamics. On the other hand, the actuation system in greenhouses is usually composed by mechanical devices controlled by relays, being desirable to reduce the number of commutations of the control signals from security and economical point of views. Therefore, and in order to face these drawbacks, this paper describes how the greenhouse climate control can be represented as an event-based system in combination with wireless sensor networks, where low-frequency dynamics variables have to be controlled and control actions are mainly calculated against events produced by external disturbances. The proposed control system allows saving costs related with wear minimization and prolonging the actuator life, but keeping promising performance results. Analysis and conclusions are given by means of simulation results.

  11. Environmental conditions and Puumala virus transmission in Belgium

    DEFF Research Database (Denmark)

    Linard, Catherine; Tersago, Katrien; Leirs, Herwig

    2007-01-01

    of this study is to better understand the causal link between environmental features and PUUV prevalence in bank vole population in Belgium, and hence with transmission risk to humans. Our hypothesis was that environmental conditions controlling the direct and indirect transmission paths differ....... Based on logistic regressions, we show that PUUV prevalence among bank voles is more linked to variables favouring the survival of the virus in the environment, and thus the indirect transmission: low winter temperatures are strongly linked to prevalence among bank voles, and high soil moisture...... is linked to the number of NE cases among humans. The transmission risk to humans therefore depends on the efficiency of the indirect transmission path. Human risk behaviours, such as the propensity for people to go in forest areas that best support the virus, also influence the number of human cases...

  12. Irrigation and nitrogen level affect lettuce yield in greenhouse ...

    African Journals Online (AJOL)

    This study was conducted to investigate the effect of different irrigation and nitrogen levels on lettuce yield characteristics in greenhouse condition from December 2006 to March 2007. Irrigation levels of 100% of total class A pan (S1), 80% of total class A pan (S2), 60% of total class A pan (S3) and nitrogen levels of 0 kg ...

  13. Jatropha curcasand Ricinus communisdisplay contrasting photosynthetic mechanisms in response to environmental conditions

    Directory of Open Access Journals (Sweden)

    Milton Costa Lima Neto

    2015-06-01

    Full Text Available Higher plants display different adaptive strategies in photosynthesis to cope with abiotic stress. In this study, photosynthetic mechanisms and water relationships displayed byJatropha curcasL. (physic nuts andRicinus communisL. (castor bean, in response to variations in environmental conditions, were assessed.R. communis showed higher CO2 assimilation, stomatal and mesophyll conductance thanJ. curcas as light intensity and intercellular CO2 pressure increased. On the other hand,R. communis was less effective in stomatal control in response to adverse environmental factors such as high temperature, water deficit and vapor pressure deficit, indicating lower water use efficiency. Conversely,J. curcas exhibited higher photosynthetic efficiency (gas exchange and photochemistry and water use efficiency under these adverse environmental conditions.R. communisdisplayed higher potential photosynthesis, but exhibited a lowerin vivo Rubisco carboxylation rate (Vcmax and maximum electron transport rate (Jmax. During the course of a typical day, in a semiarid environment, with high irradiation, high temperature and high vapor pressure deficit, but exposed to well-watered conditions, the two studied species presented similar photosynthesis. Losing potential photosynthesis, but maintaining favorable water status and increasing non-photochemical quenching to avoid photoinhibition, are important acclimation mechanisms developed byJ. curcas to cope with dry and hot conditions. We suggest thatJ. curcas is more tolerant to hot and dry environments thanR. communis but the latter species displays higher photosynthetic efficiency under well-watered and non-stressful conditions.

  14. [Is there a connection between biodiversity and the greenhouse effect].

    Science.gov (United States)

    Rozanov, S I

    1998-01-01

    It was discussed the role of biodiversity in ecosystems capacity to control CO2 in atmosphere as the main reason not only of "greenhouse effect" but "greenhouse catastrophe". The necessity to perfect the preventive measures has been defined by time factor. This time may be so little for completing the evolution theory and models of biosphere management. The temps of contemporaneous species extinction exceed two orders as minimum ones how it has been known from planet history. It doesn't permit to discharge that evolutional process will be successful to create organisms which have been capable to stabilize biosphere in conditions of its changing status. It's possible that such change may be provocated with the crisis in civilization-biosphere interrelations.

  15. Evaluation of environmental impacts during chemical mechanical polishing (CMP) for sustainable manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyun Seop; Park, Sun Joon; Jeong, Hae Do [Pusan National University, Busan (Korea, Republic of)

    2013-02-15

    Reducing energy consumption has become a critical issue in manufacturing. The semiconductor industry in particular is confronted with environmental regulations on pollution associated with electric energy, chemical, and ultrapure water (UPW) consumptions. This paper presents the results of an evaluation of the environmental impacts during chemical mechanical polishing (CMP), a key process for planarization of dielectrics and metal films in ultra-large-scale integrated circuits. The steps in the CMP process are idling, conditioning, wetting, wafer loading/unloading, head dropping, polishing, and rinsing. The electric energy, CMP slurry, and UPW consumptions associated with the process and their impacts on global warming are evaluated from an environmental standpoint. The estimates of electric energy, slurry, and UPW consumptions as well as the associated greenhouse gas emissions presented in this paper will provide a technical aid for reducing the environmental burden associated with electricity consumption during the CMP process.

  16. Simulation of the plant uptake of organophosphates and other emerging pollutants for greenhouse experiments and field conditions

    DEFF Research Database (Denmark)

    Trapp, Stefan; Eggen, Trine

    2013-01-01

    The uptake of the organophosphates tris(2-chloroethyl) phosphate (TCEP), tris(1-chloro-2-propyl) phosphate (TCPP), tributyl phosphate (TBP), the insect repellant N,N-diethyl toluamide (DEET), and the plasticizer n-butyl benzenesulfonamide (NBBS) into plants was studied in greenhouse experiments...

  17. Voluntary reporting of greenhouse gases, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    The Voluntary Reporting Program for greenhouse gases is part of an attempt by the U.S. Government to develop innovative, low-cost, and nonregulatory approaches to limit emissions of greenhouse gases. It is one element in an array of such programs introduced in recent years as part of the effort being made by the United States to comply with its national commitment to stabilize emissions of greenhouse gases under the Framework Convention on Climate Change. The Voluntary Reporting Program, developed pursuant to Section 1605(b) of the Energy Policy Act of 1992, permits corporations, government agencies, households, and voluntary organizations to report to the Energy Information Administration (EIA) on actions taken that have reduced or avoided emissions of greenhouse gases.

  18. Environmental conditions for SMME development in a South African province

    Directory of Open Access Journals (Sweden)

    Darma Mahadea

    2011-08-01

    Full Text Available The development of entrepreneurship is the focus of considerable policy interest in South Africa and many other countries.  This is particularly in recognition of its contribution to economic growth, poverty alleviation and employment creation. In South Africa, various new strategies and institutions have recently been created with a view to empowering formerly disadvantaged members to enter the mainstream economy as entrepreneurs rather than job seekers. While the government directs considerable efforts to advancing Small, Medium and Micro Enterprises (SMMEs, certain environmental factors can favour or hinder the optimal development of these firms. According to the Global Entrepreneurship Monitor (GEM reports, the level of entrepreneurial activity in South Africa is rather low in relation to that in other countries at a similar level of development.  This paper uses factor analysis to examine the internal and external environmental conditions influencing the development of small ventures on the basis of a survey conducted in Pietermaritzburg, the capital of the KZN province.  The results indicate that three clusters constrain SMME development in Pietermaritzburg:  management, finance and external environmental conditions. In the external set, rising crime levels, laws and regulations, and taxation are found to be significant constraints to the development of business firms.

  19. Environmental Radon Gas and Degenerative Conditions An Overview

    International Nuclear Information System (INIS)

    Groves-Kirkby, C.J.; Denman, A.R.; Woolridge, A.C.; Phillips, P.S.; Phillips, C.

    2006-01-01

    Radon, a naturally occurring radioactive gas, has variable distribution in the environment as a decay product of uranium occurring in a wide range of rocks, soils and building materials. Although radon dissipates rapidly in outdoor air, it concentrates in the built environment, and inhalation of 222 Rn and its progeny 218 Po and 214 Po is believed to provide the majority of the radioactive dose to the respiratory system. While the connection between radon and lung cancer has long been recognised and investigated, recent studies have highlighted potential links between radon and other conditions, among them Multiple Sclerosis, Alzheimer and Parkinson Diseases, and Paget Disease of Bone. A strong case exists for clarifying the relationship between radon and these other conditions, not least since radon remediation to reduce lung cancer may conceivably have additional benefits hitherto unrecognized. The present status of the postulated links between environmental radon gas and degenerative conditions is reviewed, and recommendations for further research into levering current anti-radon campaigns are made. (authors)

  20. Greenhouse governance: An Australian iconoclast`s view

    Energy Technology Data Exchange (ETDEWEB)

    O`Brien, B.J. [Brian J O`Brien Associates Pty Ltd, Floreat Park, WA (Australia)

    1996-10-01

    The `No Regrets` policy was an imported stop-gap measure taken over five years ago when greenhouse fears were large and knowledge small. This paper suggests that this policy by 1995 is actually a `Three Regrets Policy` for Australia. Regret 1 is that El Nino effects which greatly affect Australia are given lower priority than greenhouse. Regret 2 is the deteriorating image and role of Science and Engineering in Australian society. Regret 3 is the growing domination of the energy debate by greenhouse. It is suggested that greenhouse fears should be put into an updated Australian perspective. The issues of sea level rise, and increasing temperatures are updated. It is believed that recognition of the importance of natural climate variation is increasing, this is not yet being used to put greenhouse into popular perspective. The paper concludes with five suggested actions to turn the `Three Regrets for Australia` into one that truly is `no regrets` for Australia. Putting greenhouse in perspective means a vigorous program of investigating and gradually understanding the whole suite of influences on the climate, natural as well as greenhouse. It includes making a competitive advantage out of the climate variabilities in Australia, from more accurate seasonal forecasts. (author). 3 tabs., 4 figs., refs.