WorldWideScience

Sample records for greenhouse effect sea

  1. Greenhouse effect, sea level rise, and coastal drainage systems

    Energy Technology Data Exchange (ETDEWEB)

    Titus, J G; Kuo, C Y; Gibbs, M J; LaRoche, T B; Webb, M K; Waddell, J O

    1987-01-01

    Increasing concentrations of carbon dioxide and other gases are expected to warm the earth several degrees in the next century, which would raise sea level a few feet and alter precipitation patterns. Both of these changes would have major impacts on the operation of coastal drainage systems. However, because sea level rise and climate change resulting from the greenhouse effect are still uncertain, most planners and engineers are ignoring the potential implications. Case studies of the potential impact on watersheds in Charleston, South Carolina, and Fort Walton Beach, Florida, suggest that the cost of designing a new system to accommodate a rise in sea level will sometimes be small compared with the retrofit cost that may ultimately be necessary if new systems are not designed for a rise. Rather than ignore the greenhouse effect until its consequences are firmly established, engineers and planners should evaluate whether it would be worthwhile to insure that new systems are not vulnerable to the risks of climate change and sea level rise.

  2. The clear-sky greenhouse effect sensitivity to a sea surface temperature change

    Science.gov (United States)

    Duvel, J. PH.; Breon, F. M.

    1991-01-01

    The clear-sky greenhouse effect response to a sea surface temperature (SST or Ts) change is studied using outgoing clear-sky longwave radiation measurements from the Earth Radiation Budget Experiment. Considering geographical distributions for July 1987, the relation between the SST, the greenhouse effect (defined as the outgoing infrared flux trapped by atmospheric gases), and the precipitable water vapor content (W), estimated by the Special Sensor Microwave Imager, is analyzed first. A fairly linear relation between W and the normalized greenhouse effect g, is found. On the contrary, the SST dependence of both W and g exhibits nonlinearities with, especially, a large increase for SST above 25 C. This enhanced sensitivity of g and W can be interpreted in part by a corresponding large increase of atmospheric water vapor content related to the transition from subtropical dry regions to equatorial moist regions. Using two years of data (1985 and 1986), the normalized greenhouse effect sensitivity to the sea surface temperature is computed from the interannual variation of monthly mean values.

  3. Greenhouse warming and changes in sea level

    NARCIS (Netherlands)

    Oerlemans, J.

    1989-01-01

    It is likely that the anticipated warming due to the effect of increasing concentration of carbon dioxide and other greenhouse gases will lead to a further and faster rise in world mean sea level. There are many processes in the climate system controlling sea level, but the most important

  4. Observational determination of the greenhouse effect

    Science.gov (United States)

    Raval, A.; Ramanathan, V.

    1989-01-01

    Satellite measurements are used to quantify the atmospheric greenhouse effect, defined here as the infrared radiation energy trapped by atmospheric gases and clouds. The greenhouse effect is found to increase significantly with sea surface temperature. The rate of increase gives compelling evidence for the positive feedback between surface temperature, water vapor and the greenhouse effect; the magnitude of the feedback is consistent with that predicted by climate models. This study demonstrates an effective method for directly monitoring, from space, future changes in the greenhouse effect.

  5. Enhanced wintertime greenhouse effect reinforcing Arctic amplification and initial sea-ice melting.

    Science.gov (United States)

    Cao, Yunfeng; Liang, Shunlin; Chen, Xiaona; He, Tao; Wang, Dongdong; Cheng, Xiao

    2017-08-16

    The speeds of both Arctic surface warming and sea-ice shrinking have accelerated over recent decades. However, the causes of this unprecedented phenomenon remain unclear and are subjects of considerable debate. In this study, we report strong observational evidence, for the first time from long-term (1984-2014) spatially complete satellite records, that increased cloudiness and atmospheric water vapor in winter and spring have caused an extraordinary downward longwave radiative flux to the ice surface, which may then amplify the Arctic wintertime ice-surface warming. In addition, we also provide observed evidence that it is quite likely the enhancement of the wintertime greenhouse effect caused by water vapor and cloudiness has advanced the time of onset of ice melting in mid-May through inhibiting sea-ice refreezing in the winter and accelerating the pre-melting process in the spring, and in turn triggered the positive sea-ice albedo feedback process and accelerated the sea ice melting in the summer.

  6. Greenhouse gas mitigation can reduce sea-ice loss and increase polar bear persistence

    Science.gov (United States)

    Amstrup, Steven C.; Deweaver, E.T.; Douglas, David C.; Marcot, B.G.; Durner, George M.; Bitz, C.M.; Bailey, D.A.

    2010-01-01

    On the basis of projected losses of their essential sea-ice habitats, a United States Geological Survey research team concluded in 2007 that two-thirds of the worlds polar bears (Ursus maritimus) could disappear by mid-century if business-as-usual greenhouse gas emissions continue. That projection, however, did not consider the possible benefits of greenhouse gas mitigation. A key question is whether temperature increases lead to proportional losses of sea-ice habitat, or whether sea-ice cover crosses a tipping point and irreversibly collapses when temperature reaches a critical threshold. Such a tipping point would mean future greenhouse gas mitigation would confer no conservation benefits to polar bears. Here we show, using a general circulation model, that substantially more sea-ice habitat would be retained if greenhouse gas rise is mitigated. We also show, with Bayesian network model outcomes, that increased habitat retention under greenhouse gas mitigation means that polar bears could persist throughout the century in greater numbers and more areas than in the business-as-usual case. Our general circulation model outcomes did not reveal thresholds leading to irreversible loss of ice; instead, a linear relationship between global mean surface air temperature and sea-ice habitat substantiated the hypothesis that sea-ice thermodynamics can overcome albedo feedbacks proposed to cause sea-ice tipping points. Our outcomes indicate that rapid summer ice losses in models and observations represent increased volatility of a thinning sea-ice cover, rather than tipping-point behaviour. Mitigation-driven Bayesian network outcomes show that previously predicted declines in polar bear distribution and numbers are not unavoidable. Because polar bears are sentinels of the Arctic marine ecosystem and trends in their sea-ice habitats foreshadow future global changes, mitigating greenhouse gas emissions to improve polar bear status would have conservation benefits throughout

  7. Greenhouse gas mitigation can reduce sea-ice loss and increase polar bear persistence.

    Science.gov (United States)

    Amstrup, Steven C; Deweaver, Eric T; Douglas, David C; Marcot, Bruce G; Durner, George M; Bitz, Cecilia M; Bailey, David A

    2010-12-16

    On the basis of projected losses of their essential sea-ice habitats, a United States Geological Survey research team concluded in 2007 that two-thirds of the world's polar bears (Ursus maritimus) could disappear by mid-century if business-as-usual greenhouse gas emissions continue. That projection, however, did not consider the possible benefits of greenhouse gas mitigation. A key question is whether temperature increases lead to proportional losses of sea-ice habitat, or whether sea-ice cover crosses a tipping point and irreversibly collapses when temperature reaches a critical threshold. Such a tipping point would mean future greenhouse gas mitigation would confer no conservation benefits to polar bears. Here we show, using a general circulation model, that substantially more sea-ice habitat would be retained if greenhouse gas rise is mitigated. We also show, with Bayesian network model outcomes, that increased habitat retention under greenhouse gas mitigation means that polar bears could persist throughout the century in greater numbers and more areas than in the business-as-usual case. Our general circulation model outcomes did not reveal thresholds leading to irreversible loss of ice; instead, a linear relationship between global mean surface air temperature and sea-ice habitat substantiated the hypothesis that sea-ice thermodynamics can overcome albedo feedbacks proposed to cause sea-ice tipping points. Our outcomes indicate that rapid summer ice losses in models and observations represent increased volatility of a thinning sea-ice cover, rather than tipping-point behaviour. Mitigation-driven Bayesian network outcomes show that previously predicted declines in polar bear distribution and numbers are not unavoidable. Because polar bears are sentinels of the Arctic marine ecosystem and trends in their sea-ice habitats foreshadow future global changes, mitigating greenhouse gas emissions to improve polar bear status would have conservation benefits throughout

  8. Observational Evidence for Enhanced Greenhouse Effect Reinforcing Wintertime Arctic Amplification and Sea Ice Melting Onset

    Science.gov (United States)

    Cao, Y.; Liang, S.

    2017-12-01

    Despite an apparent hiatus in global warming, the Arctic climate continues to experience unprecedented changes. Summer sea ice is retreating at an accelerated rate, and surface temperatures in this region are rising at a rate double that of the global average, a phenomenon known as Arctic amplification. Although a lot of efforts have been made, the causes this unprecedented phenomenon remain unclear and are subjects of considerable debate. In this study, we report strong observational evidence, for the first time from long-term (1984-2014) spatially complete satellite records, that increased cloudiness and atmospheric water vapor in winter and spring have caused an extraordinary downward longwave radiative flux to the ice surface, which may then amplify the Arctic wintertime ice-surface warming. In addition, we also provide observed evidence that it is quite likely the enhancement of the wintertime greenhouse effect caused by water vapor and cloudiness has advanced the time of onset of ice melting in mid-May through inhibiting sea-ice refreezing in the winter and accelerating the pre-melting process in the spring, and in turn triggered the positive sea-ice albedo feedback process and accelerated the sea ice melting in the summer.

  9. Remarkable separability of the circulation response to Arctic sea ice loss and greenhouse gas forcing

    Science.gov (United States)

    McCusker, K. E.; Kushner, P. J.; Fyfe, J. C.; Sigmond, M.; Kharin, V. V.; Bitz, C. M.

    2017-12-01

    Arctic sea ice loss has an important effect on local climate through increases in ocean to atmosphere heat flux and associated feedbacks, and may influence midlatitude climate by changing large-scale circulation that can enhance or counter changes that are due to greenhouse gases. The extent to which climate change in a warming world can be understood as greenhouse gas-induced changes that are modulated by Arctic sea ice loss depends on how additive the responses to the separate influences are. Here we use a novel sea ice nudging methodology in the Canadian Earth System Model, which has a fully coupled ocean, to isolate the effects of Arctic sea ice loss and doubled atmospheric carbon dioxide (CO2) to determine their additivity and sensitivity to mean state. We find that the separate effects of Arctic sea ice loss and doubled CO2 are remarkably additive and relatively insensitive to mean climate state. This separability is evident in several thermodynamic and dynamic fields throughout most of the year, from hemispheric to synoptic scales. The extent to which the regional response to sea ice loss sometimes agrees with and sometimes cancels the response to CO2 is quantified. In this model, Arctic sea ice loss enhances the CO2-induced surface air temperature changes nearly everywhere and zonal wind changes over the Pacific sector, whereas sea ice loss counters CO2-induced sea level pressure changes nearly everywhere over land and zonal wind changes over the Atlantic sector. This separability of the response to Arctic sea ice loss from the response to CO2 doubling gives credence to the body of work in which Arctic sea ice loss is isolated from the forcing that modified it, and might provide a means to better interpret the diverse array of modeling and observational studies of Arctic change and influence.

  10. THE USE OF SOLAR ENERGY IN THE DESALINATION SEA WATER IN AGRICULTURAL GREENHOUSE

    Directory of Open Access Journals (Sweden)

    T. Tahri

    2015-08-01

    Full Text Available The limited resources of fresh water in arid areas like the Middle East and North Africa MENA have led to the use of poor quality water in irrigation agriculture. These can reduce crop yield and environmental damage. Agriculture accounts for 70% of overall consumption in freshwater. Given the evaporation phenomena that occur in arid regions, this figure rises to 90%. This study focuses on the concept of combining the greenhouse with the desalination of seawater This concept is intended for small scale applications in remote areas where only saline water and solar energy are available.  The main objective of this research work is to analyze the production of fresh water using solar energy in the desalination of sea water in the greenhouse. This operating system is in need of thorough study of evaporators, condensers and design of the greenhouse. Desalination, combining the greenhouse to the use of sea water while exploiting the phenomenon of condensation of water vapor in the air, seems to respond positively to the needs of agricultural irrigation.

  11. Greenhouse effect and climatic consequences: a scientific evaluation

    International Nuclear Information System (INIS)

    1991-01-01

    The greenhouse effect and its causes and mechanisms are first recalled; anthropogenic contribution (CO2, CFC, ...) is evaluated and related to the biosphere temperature variation, without neglecting natural climatic variations. Based on climate models and energy scenarios, anthropogenic contribution effects on climatic variation, sea-level rise, etc. are evaluated and compared. Recommendations for improving precision of climate models are proposed [fr

  12. The Runaway Greenhouse Effect on Earth and other Planets

    Science.gov (United States)

    Rabbette, Maura; Pilewskie, Peter; McKay, Christopher; Young, Robert

    2001-01-01

    Water vapor is an efficient absorber of outgoing longwave infrared radiation on Earth and is the primary greenhouse gas. Since evaporation increases with increasing sea surface temperature, and the increase in water vapor further increases greenhouse warming, there is a positive feedback. The runaway greenhouse effect occurs if this feedback continues unchecked until all the water has left the surface and enters the atmosphere. For Mars and the Earth the runaway greenhouse was halted when water vapor became saturated with respect to ice or liquid water respectively. However, Venus is considered to be an example of a planet where the runaway greenhouse effect did occur, and it has been speculated that if the solar luminosity were to increase above a certain limit, it would also occur on the Earth. Satellite data acquired during the Earth Radiation Budget Experiment (ERBE) under clear sky conditions shows that as the sea surface temperature (SST) increases, the rate of outgoing infrared radiation at the top of the atmosphere also increases, as expected. Over the pacific warm pool where the SST exceeds 300 K the outgoing radiation emitted to space actually decreases with increasing SST, leading to a potentially unstable system. This behavior is a signature of the runaway greenhouse effect on Earth. However, the SST never exceeds 303K, thus the system has a natural cap which stops the runaway. According to Stefan-Boltzmann's law the amount of heat energy radiated by the Earth's surface is proportional to (T(sup 4)). However, if the planet has a substantial atmosphere, it can absorb all infrared radiation from the lower surface before the radiation penetrates into outer space. Thus, an instrument in space looking at the planet does not detect radiation from the surface. The radiation it sees comes from some level higher up. For the earth#s atmosphere the effective temperature (T(sub e)) has a value of 255 K corresponding to the middle troposphere, above most of the

  13. Remarkable separability of circulation response to Arctic sea ice loss and greenhouse gas forcing

    Science.gov (United States)

    McCusker, K. E.; Kushner, P. J.; Fyfe, J. C.; Sigmond, M.; Kharin, V. V.; Bitz, C. M.

    2017-08-01

    Arctic sea ice loss may influence midlatitude climate by changing large-scale circulation. The extent to which climate change can be understood as greenhouse gas-induced changes that are modulated by this loss depends on how additive the responses to the separate influences are. A novel sea ice nudging methodology in a fully coupled climate model reveals that the separate effects of doubled atmospheric carbon dioxide (CO2) concentrations and associated Arctic sea ice loss are remarkably additive and insensitive to the mean climate state. This separability is evident in several fields throughout most of the year, from hemispheric to synoptic scales. The extent to which the regional response to sea ice loss sometimes agrees with and sometimes cancels the response to CO2 is quantified. The separability of the responses might provide a means to better interpret the diverse array of modeling and observational studies of Arctic change and influence.

  14. Physics of greenhouse effect and convection in warm oceans

    Science.gov (United States)

    Inamdar, A. K.; Ramanathan, V.

    1994-01-01

    Sea surface temperature (SST) in roughly 50% of the tropical Pacific Ocean is warm enough (SST greater than 300 K) to permit deep convection. This paper examines the effects of deep convection on the climatological mean vertical distributions of water vapor and its greenhouse effect over such warm oceans. The study, which uses a combination of satellite radiation budget observations, atmospheric soundings deployed from ships, and radiation model calculations, also examines the link between SST, vertical distribution of water vapor, and its greenhouse effect in the tropical oceans. Since the focus of the study is on the radiative effects of water vapor, the radiation model calculations do not include the effects of clouds. The data are grouped into nonconvective and convective categories using SST as an index for convective activity. On average, convective regions are more humid, trap significantly more longwave radiation, and emit more radiation to the sea surface. The greenhouse effect in regions of convection operates as per classical ideas, that is, as the SST increases, the atmosphere traps the excess longwave energy emitted by the surface and reradiates it locally back to the ocean surface. The important departure from the classical picture is that the net (up minus down) fluxes at the surface and at the top of the atmosphere decrease with an increase in SST; that is, the surface and the surface-troposphere column lose the ability to radiate the excess energy to space. The cause of this super greenhouse effect at the surface is the rapid increase in the lower-troposphere humidity with SST; that of the column is due to a combination of increase in humidity in the entire column and increase in the lapse rate within the lower troposphere. The increase in the vertical distribution of humidity far exceeds that which can be attributed to the temperature dependence of saturation vapor pressure; that is, the tropospheric relative humidity is larger in convective

  15. Greenhouse effect gases and climatic change: quantification and tools to fight against the emissions

    International Nuclear Information System (INIS)

    Bizec, R.F.

    2006-01-01

    The greenhouse effect gases are considered responsible of the climatic change. Their consequences are numerous: increase of the sea level, displacement of the climatic areas, modification of the forests ecosystems, rarefaction of water, progressively decrease of glaciers... This fast modification of the climate would lead to the increase of natural hazards as hurricanes, storms, hails and so on. It is then a necessity to reduce as fast as possible the greenhouse effect gases. The author describes in a first part the methods of the greenhouse effect gases quantification and in the second part the tools to fight these gases, regulations, standards, economic tools, national tools and the projects. (A.L.B.)

  16. Link between bird survival and water temperature: the greenhouse effect is a factor in sea-bird killing; Sammenheng mellom fuglenes overlevelse og vanntemperaturen: drivhuseffekten er med paa aa drepe sjoefugl

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    In a joint project between NINA and the University of Tromsoe it has been established that a few degrees warmer sea water may mean win or vanish for Norwegian oceanic birds of the Atlantic Ocean. It is not the warm sea water as such that kills the birds, but rather the lack of food. When capellin and sand eel do not tolerate that the water is getting warmer, food scarcity occurs for the seabirds. Sea temperature has already risen during the last few decades and is predicted by climatologists to rise further in the coming years. A rise in water temperature of just 1 {sup o}C in the winter habitat of the white-breasted guillemot has been shown to reduce its survival by four per cent. In the long term this corresponds to a reduction of the life span by more than 50 per cent, from 25 to 11 years. Similar but less clear trends have been found in some of the other species, notably atlantic puffin and razorbill. The exact cause of the temperature effect is still not completely understood, but the direct effect is probably the impact of climatic change on the chain of food. In 2004, British seabird colonies of the North Sea suffered almost complete breeding collapse when the sand eel came close to disappearing from the sea. British scientists explained this as caused by North Sea water being warmed by the greenhouse effect. Reducing the greenhouse effect by curtailing the emission of carbon dioxide would probably alleviate the situation for the affected seabirds. Urgent steps are not easily taken since the critical phase for survival of the seabirds is the winter, when the birds are distributed all over an enormous sea area.

  17. The greenhouse effect

    International Nuclear Information System (INIS)

    Berger, A.

    1991-01-01

    The greenhouse effect on earth can be defined as the long wave energy trapped in the atmosphere. Climate forcing and climate system response within which climate feedback mechanisms are contained are determined. Quantitative examples illustrate what could happen if the greenhouse effect is perturbed by human activities, in particular if CO2 atmospheric concentration would double in the future. Recent satellite measurements of the greenhouse effect are given. The net cooling effect of clouds and whether or not there will be less cooling by clouds as the planet warms are also discussed

  18. Greenhouse gas mitigation can reduce sea-ice loss and increase polar bear persistence

    Science.gov (United States)

    Steven C. Amstrup; Eric T. DeWeaver; David C. Douglas; Bruce G. Marcot; George M. Durner; Cecilia M. Bitz; David A. Bailey

    2010-01-01

    On the basis of projected losses of their essential sea-ice habitats, a United States Geological Survey research team concluded in 2007 that two-thirds of the world's polar bears (Ursus maritimus) could disappear by mid-century if business-as-usual greenhouse gas emissions continue. That projection, however, did not consider the possible...

  19. Greenhouse effect: Myth or reality

    International Nuclear Information System (INIS)

    Martin, J.L.

    1992-01-01

    This paper debates on greenhouse effect controversy. Natural greenhouse effect is beneficent but additional greenhouse effect, in relation with human activities, can present a major risk for humanity. However an international agreement is difficult owing to the enormous costs which could not be endured by South economies. A tax on carbon dioxide emissions would have for consequence a wave of industrial delocalizations without precedent with important unemployment in Europe and no impact on additional greenhouse effect because it is a radiative effect and it is not a classic local chemical pollution. 11 refs., 10 figs

  20. The greenhouse effect

    International Nuclear Information System (INIS)

    2004-01-01

    In the framework of the sustainable development, this paper presents the greenhouse effect and its impact on the climatic change, the world interest from Rio to Buenos Aires, the human activities producing the carbon dioxide and responsible of the greenhouse effect, the carbon dioxide emission decrease possibilities and shows the necessity of the electric power producers contribution. (A.L.B.)

  1. The Peculiar Negative Greenhouse Effect Over Antarctica

    Science.gov (United States)

    Sejas, S.; Taylor, P. C.; Cai, M.

    2017-12-01

    Greenhouse gases warm the climate system by reducing the energy loss to space through the greenhouse effect. Thus, a common way to measure the strength of the greenhouse effect is by taking the difference between the surface longwave (LW) emission and the outgoing LW radiation. Based on this definition, a paradoxical negative greenhouse effect is found over the Antarctic Plateau, which suprisingly indicates that greenhouse gases enhance energy loss to space. Using 13 years of NASA satellite observations, we verify the existence of the negative greenhouse effect and find that the magnitude and sign of the greenhouse effect varies seasonally and spectrally. A previous explanation attributes the negative greenhouse effect solely to stratospheric CO2 and warmer than surface stratospheric temperatures. However, we surprisingly find that the negative greenhouse effect is predominantly caused by tropospheric water vapor. A novel principle-based explanation provides the first complete account of the Antarctic Plateau's negative greenhouse effect indicating that it is controlled by the vertical variation of temperature and greenhouse gas absorption strength. Our findings indicate that the strong surface-based temperature inversion and scarcity of free tropospheric water vapor over the Antarctic Plateau cause the negative greenhouse effect. These are climatological features uniquely found in the Antarctic Plateau region, explaining why the greenhouse effect is positive everywhere else.

  2. Regional greenhouse climate effects

    International Nuclear Information System (INIS)

    Hansen, J.; Rind, D.; Delgenio, A.; Lacis, A.; Lebedeff, S.; Prather, M.; Ruedy, R.; Karl, T.

    1990-01-01

    The authors discuss the impact of an increasing greenhouse effect on three aspects of regional climate: droughts, storms and temperature. A continuous of current growth rates of greenhouse gases causes an increase in the frequency and severity of droughts in their climate model simulations, with the greatest impacts in broad regions of the subtropics and middle latitudes. But the greenhouse effect enhances both ends of the hydrologic cycle in the model, that is, there is an increased frequency of extreme wet situations, as well as increased drought. Model results are shown to imply that increased greenhouse warming will lead to more intense thunderstorms, that is, deeper thunderstorms with greater rainfall. Emanual has shown that the model results also imply that the greenhouse warming leads to more destructive tropical cyclones. The authors present updated records of observed temperatures and show that the observations and model results, averaged over the globe and over the US, are generally consistent. The impacts of simulated climate changes on droughts, storms and temperature provide no evidence that there will be regional winners if greenhouse gases continue to increase rapidly

  3. A Hiatus of the Greenhouse Effect

    Science.gov (United States)

    Song, Jinjie; Wang, Yuan; Tang, Jianping

    2016-01-01

    The rate at which the global average surface temperature is increasing has slowed down since the end of the last century. This study investigates whether this warming hiatus results from a change in the well-known greenhouse effect. Using long-term, reliable, and consistent observational data from the Earth’s surface and the top of the atmosphere (TOA), two monthly gridded atmospheric and surface greenhouse effect parameters (Ga and Gs) are estimated to represent the radiative warming effects of the atmosphere and the surface in the infrared range from 1979 to 2014. The atmospheric and surface greenhouse effect over the tropical monsoon-prone regions is found to contribute substantially to the global total. Furthermore, the downward tendency of cloud activity leads to a greenhouse effect hiatus after the early 1990 s, prior to the warming pause. Additionally, this pause in the greenhouse effect is mostly caused by the high number of La Niña events between 1991 and 2014. A strong La Niña indicates suppressed convection in the tropical central Pacific that reduces atmospheric water vapor content and cloud volume. This significantly weakened regional greenhouse effect offsets the enhanced warming influence in other places and decelerates the rising global greenhouse effect. This work suggests that the greenhouse effect hiatus can be served as an additional factor to cause the recent global warming slowdown. PMID:27616203

  4. A Hiatus of the Greenhouse Effect.

    Science.gov (United States)

    Song, Jinjie; Wang, Yuan; Tang, Jianping

    2016-09-12

    The rate at which the global average surface temperature is increasing has slowed down since the end of the last century. This study investigates whether this warming hiatus results from a change in the well-known greenhouse effect. Using long-term, reliable, and consistent observational data from the Earth's surface and the top of the atmosphere (TOA), two monthly gridded atmospheric and surface greenhouse effect parameters (Ga and Gs) are estimated to represent the radiative warming effects of the atmosphere and the surface in the infrared range from 1979 to 2014. The atmospheric and surface greenhouse effect over the tropical monsoon-prone regions is found to contribute substantially to the global total. Furthermore, the downward tendency of cloud activity leads to a greenhouse effect hiatus after the early 1990 s, prior to the warming pause. Additionally, this pause in the greenhouse effect is mostly caused by the high number of La Niña events between 1991 and 2014. A strong La Niña indicates suppressed convection in the tropical central Pacific that reduces atmospheric water vapor content and cloud volume. This significantly weakened regional greenhouse effect offsets the enhanced warming influence in other places and decelerates the rising global greenhouse effect. This work suggests that the greenhouse effect hiatus can be served as an additional factor to cause the recent global warming slowdown.

  5. A Hiatus of the Greenhouse Effect

    Science.gov (United States)

    Song, Jinjie; Wang, Yuan; Tang, Jianping

    2016-09-01

    The rate at which the global average surface temperature is increasing has slowed down since the end of the last century. This study investigates whether this warming hiatus results from a change in the well-known greenhouse effect. Using long-term, reliable, and consistent observational data from the Earth’s surface and the top of the atmosphere (TOA), two monthly gridded atmospheric and surface greenhouse effect parameters (Ga and Gs) are estimated to represent the radiative warming effects of the atmosphere and the surface in the infrared range from 1979 to 2014. The atmospheric and surface greenhouse effect over the tropical monsoon-prone regions is found to contribute substantially to the global total. Furthermore, the downward tendency of cloud activity leads to a greenhouse effect hiatus after the early 1990 s, prior to the warming pause. Additionally, this pause in the greenhouse effect is mostly caused by the high number of La Niña events between 1991 and 2014. A strong La Niña indicates suppressed convection in the tropical central Pacific that reduces atmospheric water vapor content and cloud volume. This significantly weakened regional greenhouse effect offsets the enhanced warming influence in other places and decelerates the rising global greenhouse effect. This work suggests that the greenhouse effect hiatus can be served as an additional factor to cause the recent global warming slowdown.

  6. Policy implications of greenhouse warming: Mitigation, adaptation, and the science base

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This book discusses the policy implications of greenhouse warming by examining three major areas: general summary of information about the greenhouse effect leading to a framework for policy; the science basis for the greenhouse effect; mitigation of greenhouse warming. Each section contains 9-13 chapters on specific subjects including the following: overview of greenhouse gases; policy implications; internations considerations; climate records and models; sea levels; temperature rise estimation; energy management at several levels; nonenergy emission reduction; human populations; deforestation. Conclusions are summarized at the end of each section

  7. Nuclear energy and greenhouse effect

    International Nuclear Information System (INIS)

    Strub, R.A.

    1991-01-01

    The contribution of nuclear power plants against the greenhouse effects is evaluated, not only nuclear energy is unable to fight greenhouse effect increase but long life wastes endanger environment. 8 refs

  8. The greenhouse effect gases

    International Nuclear Information System (INIS)

    2006-06-01

    This road-map proposes by the Group Total aims to inform the public on the greenhouse effect gases. It presents the greenhouses effect as a key component of the climate system, the impacts of the human activity, the foreseeable consequences of global warming, the Kyoto protocol and Total commitment in the domain. (A.L.B.)

  9. Greenhouse effect

    International Nuclear Information System (INIS)

    Lepetit, J.P.

    1992-01-01

    This book speaks about the growth of greenhouse gases content in the atmosphere and try to forecast the different scenarios which may happen. But, in spite of international cooperation and coordinated research programs, nobody owns the answer. So possible future climatic changes depend on the behavior of the concerned actors. A review of energy policy driven by USA, Japan, Sweden, United Kingdom and Federal Republic of Germany is given. Political management of this file and public opinion in front of greenhouse effect are also described. 7 refs., 3 figs., 6 tabs

  10. Climate, greenhouse effect, energy

    International Nuclear Information System (INIS)

    Henriksen, Thormod; Kanestroem, Ingolf

    2001-01-01

    The book has sections on the sun as energy source, the earth climate and it's changes and factors influencing this, the greenhouse effect on earth and other planets, greenhouse gases and aerosols and their properties and importance, historic climate and paleoclimate, climatic models and their uses and limitations, future climate, consequences of climatic changes, uncertainties regarding the climate and measures for reducing the greenhouse effect. Finally there are sections on energy and energy resources, the use, sources such as fossil fuels, nuclear power, renewable resources, heat pumps, energy storage and environmental aspects and the earth magnetic field is briefly surveyed

  11. Harnessing greenhouse effect

    International Nuclear Information System (INIS)

    Meunier, F.; Rivet, P.; Terrier, M.F.

    2005-01-01

    This book considers the energy and greenhouse effect questions in a global way. It presents the different methods of fight against the increase of the greenhouse effect (energy saving, carbon sinks, cogeneration,..), describes the main alternative energy sources to fossil fuels (biomass, wind power, solar, nuclear,..), and shows that, even worrying, the future is not so dark as it seems to be and that technical solutions exist which will allow to answer the worldwide growing up energy needs and to slow down the climatic drift. (J.S.)

  12. A Note on Fourier and the Greenhouse Effect

    OpenAIRE

    Postma, Joseph E.

    2015-01-01

    Joseph Fourier's discovery of the greenhouse effect is discussed and is compared to the modern conception of the greenhouse effect. It is confirmed that what Fourier discovered is analogous to the modern concept of the greenhouse effect. However, the modern concept of the greenhouse effect is found to be based on a paradoxical analogy to Fourier's greenhouse work and so either Fourier's greenhouse work, the modern conception of the greenhouse effect, or the modern definition of heat is incorr...

  13. Greenhouse effect

    International Nuclear Information System (INIS)

    1992-01-01

    This special issue is devoted to the greenhouse effect and reviews the possible climate change by mankind, paleoclimates, climate models, measurement of terrestrial temperature, CO 2 concentration and energy policy

  14. The greenhouse effect of planetary atmospheres

    International Nuclear Information System (INIS)

    Kondratyev, K.Ya.; Moskalenko, N.I.

    1980-01-01

    The greenhouse effect of the atmosphere is the main factor of possible climate changes of anthropogenic origin. The growing pollution of the atmosphere leads to an increase of the concentration of various gaseous components. Of great importance is also the consideration of the aerosols. All the gaseous components, as well as aerosols, have the absorption bands in the IR spectral range. The traditional attention to the problem of the CO 2 contribution to the greenhouse effect has somewhat overshadowed the significance of the different components. The data characterizing the significance of the different components of the greenhouse effect are considered. The results of studying the absorption spectra of methane, nitrous oxides, sulphuric gas, ammonia, nitric-acid vapours and other components are discussed. The assessments of their contribution to the greenhouse effect are given. The important role of the small-size fraction of the atmospheric aerosols as a factor of the greenhouse effect is discussed. Both the analysis of the causes of the Earth's climate variability and the relevant investigation of the atmospheric greenhouse effect determine the expediency of analysing the conditions of the greenhouse effect formation on other planets. Laboratory studies of the IR absorption spectra of synthetic CO 2 atmospheres were carried out. Some results from these studies are discussed. (author)

  15. The Greenhouse and Anti-Greenhouse Effects on Titan

    Science.gov (United States)

    McKay, C. P.; Cuzzi, Jeffrey N. (Technical Monitor)

    1994-01-01

    Titan is the largest moon of Saturn and is the only moon in the solar system with a substantial atmosphere. Its atmosphere is mostly made of nitrogen, with a few percent CH4, 0.1% H2 and an uncertain level of Ar (less than 10%). The surface pressure is 1.5 atms and the surface temperature is 95 K, decreasing to 71 at the tropopause before rising to stratospheric temperatures of 180 K. In pressure and composition Titan's atmosphere is the closest twin to Earth's. The surface of Titan remains unknown, hidden by the thick smog layer, but it may be an ocean of liquid methane and ethane. Titan's atmosphere has a greenhouse effect which is much stronger than the Earth's - 92% of the surface warming is due to greenhouse radiation. However an organic smog layer in the upper atmosphere produces an anti-greenhouse effect that cuts the greenhouse warming in half - removing 35% of the incoming solar radiation. Models suggest that during its formation Titan's atmosphere was heated to high temperatures due to accretional energy. This was followed by a cold Triton-like period which gradually warmed to the present conditions. The coupled greenhouse and haze anti-greenhouse may be relevant to recent suggestions for haze shielding of a CH4 - NH3 early atmosphere on Earth or Mars. When the NASA/ESA mission to the Saturn System, Cassini, launches in a few years it will carry a probe that will be sent to the surface of Titan and show us this world that is strange and yet in many ways similar to our own.

  16. Greenhouse effect of NO{sub x}

    Energy Technology Data Exchange (ETDEWEB)

    Lammel, G; Grassl, H [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany)

    1995-07-01

    Through various processes the nitrogen oxides (NO{sub x}) interact with trace gases in the troposphere and stratosphere which do absorb in the spectral range relevant to the greenhouse effect (infrared wavelengths). The net effect is an enhancement of the greenhouse effect. The catalytic role of NO{sub x} in the production of tropospheric ozone provides the most prominent contribution. The global waming potential is estimated as GWP (NO{sub x}) = 30-33 and 7-10 for the respective time horizons of 20 and 100 years, and is thereby comparable to that of methane. NO{sub x} emissions in rural areas of anthropogenically influenced regions, or those in the vicinity of the tropopause caused by air traffic, cause the greenhouse effectivity to be substantially more intense. We estimate an additional 5-23% for Germany`s contribution to the anthropogenic greenhouse effect as a result of the indirect greenhouse effects stemming from NO{sub x}. Furthermore, a small and still inaccurately defined amount of the deposited NO{sub x} which has primarily been converted into nitrates is again released from the soil into the atmosphere in the form of the long-lived greenhouse gas nitrous oxide (N{sub i}O). Thus, anthropogenically induced NO{sub x} emissions contribute to enhanced greenhouse effect and to stratospheric ozone depletion in the time scale of more than a century. (orig.)

  17. Nuclear energy and the greenhouse effect

    International Nuclear Information System (INIS)

    Weinberg, A.M.

    1990-01-01

    The extent and nature of the greenhouse effect are examined and placed in an environmental and historical context. The effect of energy policies on the greenhouse effect are discussed and the offending countries are identified. What energy policies would mitigate the greenhouse effect, and yet make good sense whether or not the effect proves to be real? Conservation is a desirable though not completely understood strategy. Conservation may not be a better bet in every instance than is increase in supply. If the greenhouse effect turns out to be real, nuclear energy can be one of the supply options that we turn to. If the greenhouse effect turns out to be false, and acceptable, economic nuclear option is surely better than one that does nothing but create strife and dissension. Let us remember that nuclear energy is the only large-scale non-fossil source other than hydropower that has been demonstrated to be practical. (author)

  18. Lay perceptions of the greenhouse effect

    International Nuclear Information System (INIS)

    Peretti-Watel, P.; Hammer, B.

    2006-01-01

    Using the data from the French Environment Barometer EDF-RD 2004 (national representative sample of French citizens aged over 15) and surveys by ADEME between 2000 and 2005, the paper investigates lay perceptions of the causes and consequences of the greenhouse effect, which may be considered as archetypical of contemporary environmental risks. Beyond lay lack of knowledge, the greenhouse effect gives rise to coherent and meaningful cognitions, including causal explanations, shaped by the pre-existing cognitive framework. This cognitive work, based on analogic rather than scientific thought, strings together the greenhouse effect, ozone depletion, air pollution and even nuclear power. The cognitive process is also fed by the individuals' general conceptions of Nature and of the rights and duties of humankind towards Nature. People are not greatly worried about the unseen and controversial consequences of the greenhouse effect: such worry could be one of those 'elite fears' mentioned by Beck. Finally, while the efficiency of public policies to counter the greenhouse effect requires extensive societal involvement, low confidence towards both political and scientific authorities may prevent the population from becoming aware of the environmental stakes tied to the greenhouse effect. (authors)

  19. Sourcebook on the greenhouse effect

    International Nuclear Information System (INIS)

    Ellis, E.; Devine, J.

    1990-01-01

    The Greenhouse Effect Sourcebook contains information for anyone interested in the environment and the present changes which are taking place. It can be used to trace organisations, technical literature or reports. Much of the information relates to the environment in general. The sourcebook contains:- A list of Greenhouse Effect Information useful sources of information under a variety of headings:-Abstracts and indexes, books, conferences, directories, journals, official publications, online databases, (produces and hosts) and organisations, -The Greenhouse Effect References contains over 250 abstracts and details of recently published material, on a variety of environmental subjects from acid rain and aerosols to weather forecasting and wildlife. There is an author index for the references and a keyword index. (author)

  20. West Antarctic ice sheet and CO/sub 2/ greenhouse effect: a threat of disaster

    Energy Technology Data Exchange (ETDEWEB)

    Mercer, J H

    1978-01-26

    If the global consumption of fossil fuels continues to grow at its present rate, atmospheric CO/sub 2/ content will double in about 50 years. Climatic models suggest that the resultant greenhouse-warming effect will be greatly magnified in high latitudes. The computed temperature rise at lat 80/sup 0/S could start rapid deglaciation of West Antarctica, leading to a 5 m rise in sea level.

  1. Centuries of thermal sea-level rise due to anthropogenic emissions of short-lived greenhouse gases.

    Science.gov (United States)

    Zickfeld, Kirsten; Solomon, Susan; Gilford, Daniel M

    2017-01-24

    Mitigation of anthropogenic greenhouse gases with short lifetimes (order of a year to decades) can contribute to limiting warming, but less attention has been paid to their impacts on longer-term sea-level rise. We show that short-lived greenhouse gases contribute to sea-level rise through thermal expansion (TSLR) over much longer time scales than their atmospheric lifetimes. For example, at least half of the TSLR due to increases in methane is expected to remain present for more than 200 y, even if anthropogenic emissions cease altogether, despite the 10-y atmospheric lifetime of this gas. Chlorofluorocarbons and hydrochlorofluorocarbons have already been phased out under the Montreal Protocol due to concerns about ozone depletion and provide an illustration of how emission reductions avoid multiple centuries of future TSLR. We examine the "world avoided" by the Montreal Protocol by showing that if these gases had instead been eliminated in 2050, additional TSLR of up to about 14 cm would be expected in the 21st century, with continuing contributions lasting more than 500 y. Emissions of the hydrofluorocarbon substitutes in the next half-century would also contribute to centuries of future TSLR. Consideration of the time scales of reversibility of TSLR due to short-lived substances provides insights into physical processes: sea-level rise is often assumed to follow air temperature, but this assumption holds only for TSLR when temperatures are increasing. We present a more complete formulation that is accurate even when atmospheric temperatures are stable or decreasing due to reductions in short-lived gases or net radiative forcing.

  2. Greenhouse effects on Venus

    Science.gov (United States)

    Bell, Peter M.

    Calculations that used Pioneer-Venus measurements of atmosphere composition, temperature profiles, and radiative heating predicted Venus' surface temperature ‘very precisely,’ says the Ames Research Center. The calculations predict not only Venus' surface temperature but agree with temperatures measured at various altitudes above the surface by the four Pioneer Venus atmosphere probe craft.Using Pioneer-Venus spacecraft data, a research team has virtually proved that the searing 482° C surface temperature of Venus is due to an atmospheric greenhouse effect. Until now the Venus greenhouse effect has been largely a theory.

  3. The Greenhouse Effect and Built Environment Education.

    Science.gov (United States)

    Greenall Gough, Annette; Gough, Noel

    The greenhouse effect has always existed. Without the greenhouse effect, Earth could well have the oven-like environment of Venus or the deep-freeze environment of Mars. There is some debate about how much the Earth's surface temperature will rise given a certain amount of increase in the amount of greenhouse gases such as carbon dioxide, nitrous…

  4. Climate change due to the greenhouse effect and its implications for China

    Energy Technology Data Exchange (ETDEWEB)

    Hulme, M.; Wigley, T.; Jiang, T.; Zhao, Z.; Wang, F.; Ding, Y.; Leemans, R.; Markham, A.

    1992-01-01

    The report describes the greenhouse effect, past climate changes, and forecasts. The implications for China, and for policies are discussed. Over China, warming has been greater (nearly 1.0[degree]C since the last century) than over the rest of the planet. It is also more pronounced in winter. Climatic change would have a substantial impact on natural vegetation in China. By 2050, large changes in cropping systems would occur. Sea level rise is likely to affect some densely populated areas. 14 refs., 24 figs., 8 tabs.

  5. The Greenhouse Effect Does Exist!

    OpenAIRE

    Ebel, Jochen

    2009-01-01

    In particular, without the greenhouse effect, essential features of the atmospheric temperature profile as a function of height cannot be described, i.e., the existence of the tropopause above which we see an almost isothermal temperature curve, whereas beneath it the temperature curve is nearly adiabatic. The relationship between the greenhouse effect and observed temperature curve is explained and the paper by Gerlich and Tscheuschner [arXiv:0707.1161] critically analyzed. Gerlich and Tsche...

  6. Greenhouse effect: analysis, incertitudes, consequences

    International Nuclear Information System (INIS)

    Perrier, A.

    1991-01-01

    A general presentation of climatic changes due to greenhouse effect with their consequences is analysed. After a schematic description of this effect a simplified atmospheric model (box model) is proposed. This model integrates the main feedback effects and quantifies them. The effects of astronomic and atmospheric factors on climatic changes are analyzed and compared with classical paleoclimatic results. This study shows the need of good global modelization to evaluate long term quantification of climatic greenhouse effects according to the main time lag of the several biospheric boxes. An overview of biologic and agronomic consequences is given to promote new research subjects and to orientate protecting and conservative biospheric actions [fr

  7. Scientists' internal models of the greenhouse effect

    Science.gov (United States)

    Libarkin, J. C.; Miller, H.; Thomas, S. R.

    2013-12-01

    A prior study utilized exploratory factor analysis to identify models underlying drawings of the greenhouse effect made by entering university freshmen. This analysis identified four archetype models of the greenhouse effect that appear within the college enrolling population. The current study collected drawings made by 144 geoscientists, from undergraduate geoscience majors through professionals. These participants scored highly on a standardized assessment of climate change understanding and expressed confidence in their understanding; many also indicated that they teach climate change in their courses. Although geoscientists held slightly more sophisticated greenhouse effect models than entering freshmen, very few held complete, explanatory models. As with freshmen, many scientists (44%) depict greenhouse gases in a layer in the atmosphere; 52% of participants depicted this or another layer as a physical barrier to escaping energy. In addition, 32% of participants indicated that incoming light from the Sun remains unchanged at Earth's surface, in alignment with a common model held by students. Finally, 3-20% of scientists depicted physical greenhouses, ozone, or holes in the atmosphere, all of which correspond to non-explanatory models commonly seen within students and represented in popular literature. For many scientists, incomplete models of the greenhouse effect are clearly enough to allow for reasoning about climate change. These data suggest that: 1) better representations about interdisciplinary concepts, such as the greenhouse effect, are needed for both scientist and public understanding; and 2) the scientific community needs to carefully consider how much understanding of a model is needed before necessary reasoning can occur.

  8. The Greenhouse Effect: Science and Policy.

    Science.gov (United States)

    Schneider, Stephen H.

    1989-01-01

    Discusses many of the scientific questions surrounding the greenhouse effect debate and the issue of plausible responses. Discussion includes topics concerning projecting emissions and greenhouse gas concentrations, estimating global climatic response, economic, social, and political impacts, and policy responses. (RT)

  9. Greenhouse effect: doubts and unknowns

    International Nuclear Information System (INIS)

    Tabarelli, D.

    1992-01-01

    There are few doubts today in the scientific world that atmospheric carbon dioxide traps in heat and therefore contributes to global warming; however, it is yet uncertain as to whether the presence of this gas in the upper atmosphere is the only cause of the greenhouse effect, and the scientific theories defining the effect and its causes present a few obvious and significant gaps. This paper cites the fact that most greenhouse effect models only marginally, if at all, consider the mechanisms governing the formation and absorption of carbon dioxide by the earth's oceans; yet oceanic CO 2 concentration levels are about 60 times greater than those found in the atmosphere, and they depend on complex interactions, in seawater, among such factors as currents, carbon oxygenation, and vegetative activity. Another area of weakness in greenhouse effect modelling stems from the complexity and uncertainty introduced by the fact that, in addition to trapping heat, clouds reflect it, thus giving rise to an opposite cooling effect. In addition, it is pointed out that the current models are limited to predicting global and not regional or local effects

  10. Analysis of politics about greenhouse effect

    International Nuclear Information System (INIS)

    Chetouani, L.; Tournier, M.

    1992-01-01

    This report deals with the greenhouse effect which brings about increasing temperatures. It is based upon documents such as interviews, conferences, political speeches, newspaper articles and so on. After the problem of the greenhouse effect has been exposed, a lexicometric study is carried out. The analysis of all the texts that have been studied finally leads to semiologic interpretations. (TEC). 2 tabs

  11. Future extreme sea level seesaws in the tropical Pacific.

    Science.gov (United States)

    Widlansky, Matthew J; Timmermann, Axel; Cai, Wenju

    2015-09-01

    Global mean sea levels are projected to gradually rise in response to greenhouse warming. However, on shorter time scales, modes of natural climate variability in the Pacific, such as the El Niño-Southern Oscillation (ENSO), can affect regional sea level variability and extremes, with considerable impacts on coastal ecosystems and island nations. How these shorter-term sea level fluctuations will change in association with a projected increase in extreme El Niño and its atmospheric variability remains unknown. Using present-generation coupled climate models forced with increasing greenhouse gas concentrations and subtracting the effect of global mean sea level rise, we find that climate change will enhance El Niño-related sea level extremes, especially in the tropical southwestern Pacific, where very low sea level events, locally known as Taimasa, are projected to double in occurrence. Additionally, and throughout the tropical Pacific, prolonged interannual sea level inundations are also found to become more likely with greenhouse warming and increased frequency of extreme La Niña events, thus exacerbating the coastal impacts of the projected global mean sea level rise.

  12. Greenhouse effects of aircraft emissions

    International Nuclear Information System (INIS)

    Fortuin, J.P.F.; Wauben, W.M.F.; Dorland, R. van; Kelder, H.

    1996-01-01

    Ranges for direct and indirect greenhouse effects due to present day aircraft emissions are quantified for northern midlatitudes, using the concept of fixed temperature (FT) radiative forcing as calculated with a radiative transfer model. The direct greenhouse effects considered here are from emissions of carbon dioxide, water vapor, and nitrogen dioxide. To calculate the concentration increases of carbon dioxide and stratospheric water vapor, an analytical expression is developed based on a linear approximation of global fuel burn versus time. Unlike the expressions currently used in the literature, the authors' expression does not account for emission rates only, but also for a loss term--hence making it more suitable for shorter lived emittants. For midlatitude summer conditions, a total radiative forcing ranging from 0.04 to 0.09 Wm -2 is calculated for the direct greenhouse effects, whereas for midlatitude winter the range is 0.07 to 0.26 Wm -2 . The indirect greenhouse effects considered here are sulfate aerosol formation from sulfur dioxide emissions, contrail formation from emitted water vapor and condensation nuclei, and ozone formation from NO x emissions. The total radiative forcing coming from these indirect effects range from -0.67 to 0.25 Wm -2 in summer a/nd from -0.36 to 0.21 Wm -2 in winter. Further, the global distribution of NO x and ozone increases from aircraft emissions world-wide are simulated with a three-dimensional chemistry transport model for January and July. The geographical distribution of the radiative forcing associated with the simulated ozone increases is also calculated for these months

  13. The greenhouse and antigreenhouse effects on Titan

    Science.gov (United States)

    Mckay, Christopher P.; Pollack, James B.; Courtin, Regis

    1991-01-01

    The parallels between the atmospheric thermal structure of the Saturnian satellite Titan and the hypothesized terrestrial greenhouse effect can serve as bases for the evaluation of competing greenhouse theories. Attention is presently drawn to the similarity between the roles of H2 and CH4 on Titan and CO2 and H2O on earth. Titan also has an antigreenhouse effect due to a high-altitude haze layer which absorbs at solar wavelengths, while remaining transparent in the thermal IR; if this haze layer were removed, the antigreenhouse effect would be greatly reduced, exacerbating the greenhouse effect and raising surface temperature by over 20 K.

  14. Nuclear power and the greenhouse effect

    International Nuclear Information System (INIS)

    1989-01-01

    Carbon dioxide from fossil fuel combustion accounts for about 40% of the global warming due to the 'greenhouse effect'. Thus national energy policies of the fuels used to generate electricity can have a significant effect on the levels of gas emissions which contribute to the 'greenhouse effect'. The more efficient use of energy is the first way of controlling the increase in gas emissions. The use of natural gas instead of coal or oil would also be beneficial but the reserves of natural gas are limited. The use of nuclear-generated electricity has already reduced the level of global warming by 3% but could have a greater effect in the future. Ways in which the government could reduce 'greenhouse' gas emissions are listed. These include the more extensive use of nuclear power for generating electricity not only for domestic but industrial uses. (U.K.)

  15. The greenhouse effect: A new source of energy

    International Nuclear Information System (INIS)

    Meunier, Francis

    2007-01-01

    Climate change induced by global warming is a result of an excess of energy at the earth's surface due to the greenhouse effect. But a new energy management can reverse the situation taking advantage of the greenhouse effect to produce renewable energy. In fact, both the renewable energy and the energy consumed which are not dissipated into heat are subtracted from the excess of energy produced by the greenhouse effect and contribute to mitigate climate change. This opens perspectives to harness the greenhouse effect [F. Meunier, Domestiquer l'effet de serre, Dunod, 2005]. Should all the primary energy be renewable energy and should part of the energy production not dissipated into heat, the present earth's energy imbalance should be beneficial and should serve to produce renewable energy

  16. Greenhouse governance: An Australian iconoclast`s view

    Energy Technology Data Exchange (ETDEWEB)

    O`Brien, B.J. [Brian J O`Brien Associates Pty Ltd, Floreat Park, WA (Australia)

    1996-10-01

    The `No Regrets` policy was an imported stop-gap measure taken over five years ago when greenhouse fears were large and knowledge small. This paper suggests that this policy by 1995 is actually a `Three Regrets Policy` for Australia. Regret 1 is that El Nino effects which greatly affect Australia are given lower priority than greenhouse. Regret 2 is the deteriorating image and role of Science and Engineering in Australian society. Regret 3 is the growing domination of the energy debate by greenhouse. It is suggested that greenhouse fears should be put into an updated Australian perspective. The issues of sea level rise, and increasing temperatures are updated. It is believed that recognition of the importance of natural climate variation is increasing, this is not yet being used to put greenhouse into popular perspective. The paper concludes with five suggested actions to turn the `Three Regrets for Australia` into one that truly is `no regrets` for Australia. Putting greenhouse in perspective means a vigorous program of investigating and gradually understanding the whole suite of influences on the climate, natural as well as greenhouse. It includes making a competitive advantage out of the climate variabilities in Australia, from more accurate seasonal forecasts. (author). 3 tabs., 4 figs., refs.

  17. Intergenerational modelling of the greenhouse effect

    OpenAIRE

    Spash, Clive L.

    1994-01-01

    A major implication of global climate change is that future generations will suffer severe damages while the current generation benefits. In this paper a model is developed to analyze the potential need for mitigating the adverse impacts of the greenhouse effect on efficiency grounds. The model characterises basic transfers, investigate the effect of greenhouse emissions, and analyze exogenous and endogenous uncertainty. The first (or current) generation faces the problem of dividing availabl...

  18. The greenhouse effect: A new source of energy

    Energy Technology Data Exchange (ETDEWEB)

    Meunier, Francis [CNAM-IFFI (EA 21), 292 rue Saint Martin, 75141 Paris (France)]. E-mail: meunierf@cnam.fr

    2007-02-15

    Climate change induced by global warming is a result of an excess of energy at the earth's surface due to the greenhouse effect. But a new energy management can reverse the situation taking advantage of the greenhouse effect to produce renewable energy. In fact, both the renewable energy and the energy consumed which are not dissipated into heat are subtracted from the excess of energy produced by the greenhouse effect and contribute to mitigate climate change. This opens perspectives to harness the greenhouse effect [F. Meunier, Domestiquer l'effet de serre, Dunod, 2005]. Should all the primary energy be renewable energy and should part of the energy production not dissipated into heat, the present earth's energy imbalance should be beneficial and should serve to produce renewable energy.

  19. Nuclear power and the greenhouse effect

    International Nuclear Information System (INIS)

    Donaldson, D; Tolland, H.; Grimston, M.

    1990-01-01

    The greenhouse effect is first explained. The evidence is shown in global warming and changing weather patterns which are generally believed to be due to the emission of greenhouse gases, including carbon dioxide. Serious consequences are predicted if emission of the greenhouse gases is not reduced. Sources of these gases are identified - agriculture, carbon fluorocarbons, coal-fired power stations, vehicle exhausts. The need is to use energy more efficiently but such measures as combined heat and power stations, more fuel efficient cars and better thermal insulation in homes is advocated. The expansion of renewable energy sources such as wind and water power is also suggested. Nuclear power is promoted as it reduces the carbon dioxide emissions and in both the short and long-term will reduce the emission of greenhouse gases. (author)

  20. Effects of ground insulation and greenhouse microenvironment on ...

    African Journals Online (AJOL)

    A study was conducted at Egerton University, Njoro, Kenya to establish the potential of plastic digester to produce biogas under natural and greenhouse microenvironment. The specific objectives were to evaluate the effects of greenhouse and ground insulation on the rate and quality of biogas generation. A greenhouse ...

  1. A Hiatus of the Greenhouse Effect

    OpenAIRE

    Jinjie Song; Yuan Wang; Jianping Tang

    2016-01-01

    The rate at which the global average surface temperature is increasing has slowed down since the end of the last century. This study investigates whether this warming hiatus results from a change in the well-known greenhouse effect. Using long-term, reliable, and consistent observational data from the Earth?s surface and the top of the atmosphere (TOA), two monthly gridded atmospheric and surface greenhouse effect parameters (G a and G s) are estimated to represent the radiative warming effec...

  2. Energy and the greenhouse effect. Answers to 60 questions

    International Nuclear Information System (INIS)

    Visser, H.; De Wolff, J.J.; Folkert, R.J.M.; Hoekstra, J.; Ruijgrok, W.; Stortelder, B.J.M.; Vosbeek, M.E.J.P.; Ruiter, J.P.

    1997-11-01

    The aim of this report is to clarify the complex interaction between the greenhouse effect and the energy sector in the Netherlands, focusing on the future of the energy supply and how changes in policies with respect to energy consumption can influence climatic change. The relation between energy sector and greenhouse effect is dealt with on the basis of 60 questions on the greenhouse effect, emission of greenhouse gases and energy scenarios, and concise answers. Calculations of consequences of future scenarios for the climate are executed by means of the KEMA-developed integrated scenario model for climatic change DIALOOG. 27 refs

  3. The greenhouse effect, v. 15(59)

    International Nuclear Information System (INIS)

    Tsitsonkov, Risto

    2007-01-01

    An explanation for the greenhouse effect, i.e. global warning and reasons which contribute to this effect. Greenhouse gases (GHG) and GWP (Global Warning Potential) as a factor for estimating their contributing on the greenhouse effect. Indicators of the climate change in the previous period and projecting of likely scenarios for the future. Consequences on the environment and human activities: industry, energy, agriculture, water resource. The main lines of the Kyoto Protocols and problems in its realization. Suggestions to the country strategy concerning to the acts of the Kyoto Protocol. A special attention is pointed out on the energy, its recourse, the structure of energy consumption and energy efficiency. Main sectors of the energy efficiency: buildings, industry and transport. Buildings: importance of heat insulation. District heating, suggestions for space heating. Heat pumps and CHP. Air conditioning and refrigeration. Industry: process heating, and integrated energy system, heat recovery, refrigeration, compressed air. Need of quality maintenance and servicing. Monitoring and automatic control. Education for energy and its saving. (Author)

  4. The greenhouse effect, v. 15(58)

    International Nuclear Information System (INIS)

    Tsitsonkov, Risto

    2007-01-01

    An explanation for the greenhouse effect, i.e. global warning and reasons which contribute to this effect. Greenhouse gases (GHG) and GWP (Global Warning Potential) as a factor for estimating their contributing on the greenhouse effect. Indicators of the climate change in the previous period and projecting of likely scenarios for the future. Consequences on the environment and human activities: industry, energy, agriculture, water resource. The main lines of the Kyoto Protocols and problems in its realization. Suggestions to the country strategy concerning to the acts of the Kyoto Protocol. A special attention is pointed out on the energy, its recourse, the structure of energy consumption and energy efficiency. Main sectors of the energy efficiency: buildings, industry and transport. Buildings: importance of heat insulation. District heating, suggestions for space heating. Heat pumps and CHP. Air conditioning and refrigeration. Industry: process heating, and integrated energy system, heat recovery, refrigeration, compressed air. Need of quality maintenance and servicing. Monitoring and automatic control. Education for energy and its saving. (Author)

  5. Greenhouse effect in double-skin facade

    Energy Technology Data Exchange (ETDEWEB)

    Gratia, E.; Herde, A. de [Universite Catholique de Louvain, Architecture et Climat, Louvain-La-Neuve (Belgium)

    2007-02-15

    In these last years, a great deal of interest has been devoted to double-skin facades due to the advantages claimed by this technology (in terms of energy saving in the cold season, high-tech image, protection from external noise and wind loads). One of the great characteristics of the double-skin facade is the greenhouse effect. We identify the factors that influence the greenhouse effect. The identified parameters are solar radiation level, orientation and shading devices use, opaque wall/window proportion of the interior facade, wind speed, colour of shading devices and of interior facade, depth of the cavity of the double-skin, glazing type in the interior facade and openings in the double-skin. We analyze the impact of these parameters on the mean air temperature evolution in the cavity. After that analyse, the article answers the question: is greenhouse effect favourable? The answer is moderate according to the double-skin orientation. (author)

  6. An innovation in the teaching of greenhouse effect in chemistry ...

    African Journals Online (AJOL)

    The teaching of greenhouse effect is difficult and is done in abstraction. This paper suggests a new instrument, called Improvised Greenhouse Effect Apparatus (IGHA) for the teaching of Greenhouse effect. 100 students were randomly selected from the Department of Chemistry, Cross River State College of Education, ...

  7. Nuclear power and the greenhouse effect

    International Nuclear Information System (INIS)

    Donaldson, D.M.; Tolland, H.G.

    1989-05-01

    Global levels of the ''Greenhouse'' gases - carbon dioxide, the chlorofluorocarbons (CFCs), methane, nitrous oxide and tropospheric ozone are increasing as a result of man's activities. This increase is widely expected to bring about a rise in global temperature with concomitant environmental impacts. Global warming has been observed over the last century, and the last decade has seen seven of the warmest years on record. There has also been increased variability in the weather (an expected consequence of global warming). However, these possible manifestations of the Greenhouse Effect are within natural variations and proof must await more definitive indications. A brief outline of current views on the Greenhouse Effect is given. This report addresses the energy sector using CO 2 emissions as a measure of its ''Greenhouse'' contribution. This approach understates the energy sector contribution. However, the difference is within the error band. It seems likely that the warming effect of non-energy related emissions will remain the same and there will be more pressure to reduce the emissions from the energy sector. To assess policy options the pattern of future energy demand is estimated. Two scenarios have been adopted to provide alternative frameworks. Both assume low energy growth projections based on increased energy efficiency. The role of nuclear power in reducing carbon dioxide emissions is considered. (author)

  8. Wood and combating the greenhouse effect

    International Nuclear Information System (INIS)

    Lochu, Serge

    2004-01-01

    The article begins by recalling a number of definitions connected with the greenhouse effect and the involvement of trees and forests. Timber's direct role in carbon storage and the reduction of atmospheric carbon dioxide is then described. The results of modelling studies and the indirect effects of timber as a means for economising fossil energy are discussed. While the direct and indirect effects of timber products on the greenhouse phenomenon are clearly positive, actually increasing the share of timber in the market and thereby intensifying its contribution is another matter that relies on consumer behaviour. In this area, large-scale campaigns must continue. (authors)

  9. Greenhouse effect gases and climatic change: quantification and tools to fight against the emissions; Gaz a effet de serre et changement climatique: quantification et instruments de lutte contre des emissions

    Energy Technology Data Exchange (ETDEWEB)

    Bizec, R.F

    2006-07-01

    The greenhouse effect gases are considered responsible of the climatic change. Their consequences are numerous: increase of the sea level, displacement of the climatic areas, modification of the forests ecosystems, rarefaction of water, progressively decrease of glaciers... This fast modification of the climate would lead to the increase of natural hazards as hurricanes, storms, hails and so on. It is then a necessity to reduce as fast as possible the greenhouse effect gases. The author describes in a first part the methods of the greenhouse effect gases quantification and in the second part the tools to fight these gases, regulations, standards, economic tools, national tools and the projects. (A.L.B.)

  10. Atmospheric greenhouse effect - simple model; Atmosfaerens drivhuseffekt - enkel modell

    Energy Technology Data Exchange (ETDEWEB)

    Kanestroem, Ingolf; Henriksen, Thormod

    2011-07-01

    The article shows a simple model for the atmospheric greenhouse effect based on consideration of both the sun and earth as 'black bodies', so that the physical laws that apply to them, may be used. Furthermore, explained why some gases are greenhouse gases, but other gases in the atmosphere has no greenhouse effect. But first, some important concepts and physical laws encountered in the article, are repeated. (AG)

  11. The nuclear energy and the greenhouse effect

    International Nuclear Information System (INIS)

    Marignac, Y.; Legrand, V.

    2003-01-01

    This article tackles the problem of greenhouse effect and asks the question to know if the development of nuclear energy constitutes the answer to this problem. It appears that the nuclear energy cannot solve in itself the problem of greenhouse effect. Others actions on energy demand, on transport ( that is a big consumer of petroleum and that represents 25% of world emissions) have to studied and need a real policy will. (N.C.)

  12. The Greenhouse Effect and Climate Feedbacks

    Science.gov (United States)

    Covey, C.; Haberle, R. M.; McKay, C. P.; Titov, D. V.

    This chapter reviews the theory of the greenhouse effect and climate feedback. It also compares the theory with observations, using examples taken from all four known terrestrial worlds with substantial atmospheres: Venus, Earth, Mars, and Titan. The greenhouse effect traps infrared radiation in the atmosphere, thereby increasing surface temperature. It is one of many factors that affect a world's climate. (Others include solar luminosity and the atmospheric scattering and absorption of solar radiation.) A change in these factors — defined as climate forcing — may change the climate in a way that brings other processes — defined as feedbacks — into play. For example, when Earth's atmospheric carbon dioxide increases, warming the surface, the water vapor content of the atmosphere increases. This is a positive feedback on global warming because water vapor is itself a potent greenhouse gas. Many positive and negative feedback processes are significant in determining Earth's climate, and probably the climates of our terrestrial neighbors.

  13. INFLUENCE OF AGRICULTURAL POLLUTANTS ON THE GREENHOUSE EFFECT

    Directory of Open Access Journals (Sweden)

    B. LIXANDRU

    2007-05-01

    Full Text Available The general heating of our planet has become a proved fact today, and its consequences are observed in more climatic disturbances which affect almost the whole Earth. At the base of this climatic process there is the excessive development of the greenhouse effect. The greenhouse effect is a natural physical phenomenon which has gradually developed with the geophysical and biological evolution of the Earth, and its consequence is the thermical constancy of +150C as medium global temperature. The main physical factories which contribute at the realization of greenhouse effect are CO2, watery vapors, NOx and CH4. Naturally, the greenhouse gases have the perfectly global self-regulation cycles. This capacity of self-regulation seems to be troubled by the huge amounts of polluted gaseous thrown in the air by different and usual human activities. In this sense, the agriculture has an important role and the main pollution sources are the rice plantations, inorganic fertilizations and animal farms.

  14. Recent data concerning contribution of various greenhouse effect gas sources

    International Nuclear Information System (INIS)

    Lambert, G.

    1991-01-01

    The greenhouse effect contributes to a +33 degrees C warming of the earth atmosphere (mean temperature of +15 deg C instead of -18 deg C without any greenhouse effect). The roles of water vapour, carbon dioxide and methane in greenhouse effect are discussed; the CH 4 raise seems to be due to rice cultivation and cattle farming; the CO 2 raise is mainly due oil, coal and natural gas burning. Greenhouse gas increase will cause a 2 to 4 deg C increase of the earth mean temperature but the anthropogenous causes will be obviously seen only during the next century

  15. Changes in Arctic vegetation amplify high-latitude warming through the greenhouse effect.

    Science.gov (United States)

    Swann, Abigail L; Fung, Inez Y; Levis, Samuel; Bonan, Gordon B; Doney, Scott C

    2010-01-26

    Arctic climate is projected to change dramatically in the next 100 years and increases in temperature will likely lead to changes in the distribution and makeup of the Arctic biosphere. A largely deciduous ecosystem has been suggested as a possible landscape for future Arctic vegetation and is seen in paleo-records of warm times in the past. Here we use a global climate model with an interactive terrestrial biosphere to investigate the effects of adding deciduous trees on bare ground at high northern latitudes. We find that the top-of-atmosphere radiative imbalance from enhanced transpiration (associated with the expanded forest cover) is up to 1.5 times larger than the forcing due to albedo change from the forest. Furthermore, the greenhouse warming by additional water vapor melts sea-ice and triggers a positive feedback through changes in ocean albedo and evaporation. Land surface albedo change is considered to be the dominant mechanism by which trees directly modify climate at high-latitudes, but our findings suggest an additional mechanism through transpiration of water vapor and feedbacks from the ocean and sea-ice.

  16. Greenhouse effect increase and its consequences

    International Nuclear Information System (INIS)

    Royer, J.F.; Mahfouf, J.F.

    1992-01-01

    Observations on the evolution of the atmospheric composition concerning trace gases (CO 2 , CH 4 , NO 2 , CFC) are first described. Then the fundamental role played by these gases in the radiative equilibrium of the earth through the greenhouse effect is examined. Numerical models have been developed to forecast the consequences of an increase of the greenhouse effect. The importance of the feedback mechanism, where the oceans and the clouds have the central part, but not well estimated by the models, is explained. Climatic changes generally accepted are reviewed. In conclusion the need to improve our knowledge of the global climatic system to forecast future modifications is underlined

  17. The greenhouse effect; L'effet de serre

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    In the framework of the sustainable development, this paper presents the greenhouse effect and its impact on the climatic change, the world interest from Rio to Buenos Aires, the human activities producing the carbon dioxide and responsible of the greenhouse effect, the carbon dioxide emission decrease possibilities and shows the necessity of the electric power producers contribution. (A.L.B.)

  18. Greenhouse effect economic simulation and public decision

    International Nuclear Information System (INIS)

    Giraud, P.N.

    2002-03-01

    As the other countries, engaged in the greenhouse effect fight, the France has to evaluate the greenhouse gases emissions and the corrective actions. Meanwhile the today models are not enough impressive. The economic tools authorize today a better evaluation. The technical working Group, presided by Pierre-Noel Giraud, proposes to use them largely and provides four main recommendations. (A.L.B.)

  19. Black shale deposition during Toarcian super-greenhouse driven by sea level

    Science.gov (United States)

    Hermoso, M.; Minoletti, F.; Pellenard, P.

    2013-12-01

    One of the most elusive aspects of the Toarcian oceanic anoxic event (T-OAE) is the paradox between carbon isotopes that indicate intense global primary productivity and organic carbon burial at a global scale, and the delayed expression of anoxia in Europe. During the earliest Toarcian, no black shales were deposited in the European epicontinental seaways, and most organic carbon enrichment of the sediments postdated the end of the overarching positive trend in the carbon isotopes that characterises the T-OAE. In the present study, we have attempted to establish a sequence stratigraphic framework for Early Toarcian deposits recovered from a core drilled in the Paris Basin using a combination of mineralogical (quartz and clay relative abundance) and geochemical (Si, Zr, Ti and Al) measurements. Combined with the evolution in redox sensitive elements (Fe, V and Mo), the data suggest that expression of anoxia was hampered in European epicontinental seas during most of the T-OAE (defined by the positive carbon isotope trend) due to insufficient water depth that prevented stratification of the water column. Only the first stratigraphic occurrence of black shales in Europe corresponds to the "global" event. This interval is characterised by >10% Total Organic Carbon (TOC) content that contains relatively low concentration of molybdenum compared to subsequent black shale horizons. Additionally, this first black shale occurrence is coeval with the record of the major negative Carbon Isotope Excursion (CIE), likely corresponding to a period of transient greenhouse intensification likely due to massive injection of carbon into the atmosphere-ocean system. As a response to enhanced weathering and riverine run-off, increased fresh water supply to the basin may have promoted the development of full anoxic conditions through haline stratification of the water column. In contrast, post T-OAE black shales during the serpentinum and bifrons Zones were restricted to epicontinental

  20. Greenhouse effect and its climatic consequences: scientific evaluation

    International Nuclear Information System (INIS)

    1994-11-01

    The greenhouse effect plays a major role in climate evolution and the increase observed at present in the concentration of the main gases causing the greenhouse effect (carbon dioxide, chlorofluorocarbons, methane) stems very definitely from human activities. The global warming potential by the various greenhouse effect gases is calculated through restrictive hypotheses. An essential element in the importance given to the growth of the greenhouse effect phenomena was the regular rise in the concentration of carbon dioxide in the atmosphere. The overall carbon cycle balance still needs to be worked out. The aerosols caused by sulfurous releases have grown. The decrease in the amount of ozone in the stratosphere brings on a slight cooling of the surface of the Earth. The local increase of tropospheric ozone brings on a slight local warming with a comparable order of magnitude. Despite all the progress that has been achieved in modelling the phenomena, we cannot affirm today that these predictions are accurate. Recent work involving analyses of the polar ice-caps along with other indications of past climates have given a better understanding of the North Atlantic climate over the past 200,000 years. 119 refs., 10 figs., 6 tabs

  1. Coal and the greenhouse effect: strategies for the future

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, K M [Australian Coal Association, Sydney, NSW (Australia)

    1991-07-01

    A number of gases, including carbon dioxide, methane, water vapour, nitrous oxide, ozone and chlorofluorocarbons are transparent to incoming short-wave radiation, but are relatively opaque to outgoing longwave radiation. Variations in the concentration of these gases in the troposphere can alter the thermal balance of the earth's atmosphere. Outgoing terrestrial radiation which would otherwise escape to space, is trapped within the inner layer of the atmosphere, resulting in a potential warming and the greenhouse effect. It is estimated that at present greenhouse gases other than carbon dioxide, contribute about 50% to the greenhouse effect. However, in the future, the contribution made by gases other than CO{sub 2} will be become greater. Greenhouse gases arise from a wide range of sources and their escalating increase is largely related to an increase in the world's population, and the standard of living of many areas as well as changes in lifestyle. The effect of increasing man-made greenhouse gases in the troposphere is unknown, but it is proposed that it may increase temperature and may modify climate, agricultural response and land use. The facts and uncertainties relating to potential greenhouse warming are examined. Man-generated emissions are quantified and their source identified. Coal's contribution worldwide is examined in detail and is shown to be small, being about 10% of man-made greenhouse gases. Strategies for minimising emissions, having maximum potential for reduction, with minimum impact on man are suggested. 16 refs., 1 fig., 3 tabs.

  2. Danish greenhouse gas reduction scenarios for 2020 and 2050

    Energy Technology Data Exchange (ETDEWEB)

    Karlsson, K; Joergensen, Kaj [Risoe DTU, Roskilde (DK); Werling, J; OErsted Pedersen, H; Kofoed-Wiuff, A [Ea energy Analysis, Copenhagen (DK)

    2008-02-15

    The aim of the project presented in this report was to develop scenarios for reducing Danish greenhouse gas emissions in 2020 and 2050. The scenarius provide a basis for estimating which technologies should be combined in order to obtain future reductions in greenhouse gas emissions in a cost-effective way. The scenarios include all emissions of greenhouse gases from agriculture, industry and oil extraction activities in the North Sea as well as the transport and energy sectors. Foreign air and sea carriage is not included because emissions related to such activities are not yet subject to international climate change agreements. The scenarios focus particularly on the technological possibilities and the necessary system changes in the Danish energy system and transport sector. Parallel to this, COWI has carried out analyses for the Danish Environmental Protection Agency focussing primarily on the reduction potentials in the transport sector and other emissions. COWI's results regarding agriculture and other emissions have been included in this analysis. Two timeframes are applied in the scenarios: the medium term, 2020, and the long term, 2050. For each timeframe, we have set up indicative targets that the scenarios must reach: 1) 2020: 30 and 40 % reduction in greenhouse gas emissions compared to 1990 2) 2050: 60 and 80 % reduction in greenhouse gas emissions compared to 1990. The scenarios for 2020 focus primarily on technologies that are already commercially available, whereas the scenarios for 2050 also examine technological options at the experimental or developmental stage. This includes hydrogen technologies and fuel cells as well as CO{sub 2} capture and sequestration (CCS) technologies. The scenarios should be seen in connection with the EU objectives of a 20-30 % reduction in greenhouse gas emissions in 2020 and 60-80 % in 2050 compared to 1990. The EU's 30 % objective is contingent upon global efforts to reduce the world's greenhouse gas emissions

  3. Short-term climatic fluctuations and the interpretation of recent observations in terms of greenhouse effect

    International Nuclear Information System (INIS)

    Andre, J.C.; Royer, J.F.

    1999-01-01

    Simulations of future climate made with coupled general circulation models of the atmosphere and ocean predict that the increase of the concentration of greenhouse gases released in the atmosphere by man's activities will have a large influence on the climate of the next century. The identification of the climatic impact produced by the rapid increase in carbon dioxide concentration in the last decades is made difficult by strong inter-annual climate variability, and requires the application of statistical techniques combining several climatic indicators (method of climatic 'fingerprints') so as to improve the detection of a possible anthropogenic perturbation. In this paper we review the evolution through the last decades of several climate indicators showing global warming, its geographical distribution, sea level, the hydrological cycle and the response of vegetation, and we compare them to the model results predicted in climate scenarios. The coherence between model results and observed climatic trends shows that the additional greenhouse effect is starting to become detectable in recent climatic data. (authors)

  4. The greenhouse effect - little strokes fell great oaks

    International Nuclear Information System (INIS)

    Kanestroem, Ingolf

    2003-01-01

    It is a common assumption that carbon dioxide and other greenhouse gases constitute only a very small fraction of the atmosphere and thus cannot be as important as the climate researchers maintain. However, the adage of the title is appropriate for the impact of the greenhouse gases on the atmosphere. During the last 25 years, the global temperature has risen 0,5 o C, and during the last century by 0,75 o C. Thus according to the UN Climate Panel, there is evidence of a noticeable anthropogenic impact on the global climate. The article discusses the concept of greenhouse effect, the composition of the atmosphere, greenhouse gases and their importance, emission of carbon dioxide and natural climate changes

  5. Atmospheric greenhouse effect: more subtle than it looks like

    International Nuclear Information System (INIS)

    Dufresne, J.L.; Treiner, J.

    2011-01-01

    State-of-the-art radiative models can be used to calculate in a rigorous and accurate manner the atmospheric greenhouse effect, as well as its variation with concentration in water vapour or carbon dioxide. A simple explanation of this effect uses an analogy with the greenhouse effect produced by a glass window. While this analogy has pedagogical virtues and provides a first order explanation of the mean temperature of the Earth, it has an important drawback; it is not able to explain why the greenhouse effect increases with increasing carbon dioxide concentration. Indeed, absorption of infrared radiation by carbon dioxide is, under this scheme, almost at its maximum and depends very weakly on CO 2 concentration. It is said to be saturated. In this paper, we explore this question and propose an alternative model which, while remaining simple, correctly takes into account the various mechanisms and provides an understanding of the increasing greenhouse effect with CO 2 concentration, together with the corresponding climate warming. The role of the atmospheric temperature gradient is particularly stressed. (authors)

  6. Heavy metals in intensive greenhouse vegetable production systems along Yellow Sea of China: Levels, transfer and health risk.

    Science.gov (United States)

    Hu, Wenyou; Huang, Biao; Tian, Kang; Holm, Peter E; Zhang, Yanxia

    2017-01-01

    Recently, greenhouse vegetable production (GVP) has grown rapidly and counts a large proportion of vegetable production in China. In this study, the accumulation, health risk and threshold values of selected heavy metals were evaluated systematically. A total of 120 paired soil and vegetable samples were collected from three typical intensive GVP systems along the Yellow Sea of China. Mean concentrations of Cd, As, Hg, Pb, Cu and Zn in greenhouse soils were 0.21, 7.12, 0.05, 19.81, 24.95 and 94.11 mg kg -1 , respectively. Compared to rootstalk and fruit vegetables, leafy vegetables had relatively high concentrations and transfer factors of heavy metals. The accumulation of heavy metals in soils was affected by soil pH and soil organic matter. The calculated hazard quotients (HQ) of the heavy metals by vegetable consumption decreased in the order of leafy > rootstalk > fruit vegetables with hazard index (HI) values of 0.61, 0.33 and 0.26, respectively. The HI values were all below 1, which indicates that there is a low risk of greenhouse vegetable consumption. Soil threshold values (STVs) of heavy metals in GVP system were established according to the health risk assessment. The relatively lower transfer factors of rootstalk and fruit vegetables and higher STVs suggest that these types of vegetables are more suitable for cultivation in greenhouse soils. This study will provide an useful reference for controlling heavy metals and developing sustainable GVP. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Climate and greenhouse effect gas: glaciated archives data

    International Nuclear Information System (INIS)

    Lorius, C.

    1991-01-01

    Ice caps in Antarctica or Greenland have recorded the anthropogenic effect on atmospheric composition and especially on greenhouse effect gases such as carbon dioxide and methane. 2000 meter depth drilling samples allowed to study the climates for 150 000 years ago; hot and cold climates are ruled by periodic movement of the Earth around the sun and by more or less elevated concentration of greenhouse effect gases in the atmosphere. Prospects for to morrow climates and anthropogenic contribution are then possible [fr

  8. Ideas of Elementary Students about Reducing the "Greenhouse Effect."

    Science.gov (United States)

    Francis, Claire; And Others

    1993-01-01

    Presents the results of a questionnaire given to 563 elementary students to study their ideas of actions that would reduce the greenhouse effect. Most of the children (87%) appreciated that planting trees would help reduce global warming. During interviews it was discovered that children were confused between the greenhouse effect and ozone layer…

  9. The role of forestry development in China in alleviating greenhouse effects

    Energy Technology Data Exchange (ETDEWEB)

    Liu Hong

    1996-12-31

    Forestry development in China has gained great achievements and made great progress in realizing sustainable forest management and alleviating global climate change. The main measures to mitigate greenhouse effects through the means of forestry development include afforestation to increase the forested area, fuel wood forest development, management improvement, wise utilization, international cooperation, investment increase, forest related scientific research, strengthening the forest law enforcement system. Climate change as well as how to alleviate the greenhouse effects is a hot topic at present. This paper describes the achievements of China`s forestry development and its role to alleviate the greenhouse effects, and puts forward the measures to mitigate greenhouse effects through the means of forestry development.

  10. Global Warming: Understanding and Teaching the Forecast. Part A The Greenhouse Effect.

    Science.gov (United States)

    Andrews, Bill

    1993-01-01

    Provides information necessary for an interdisciplinary analysis of the greenhouse effect, enhanced greenhouse effect, global warming, global climate change, greenhouse gases, carbon dioxide, and scientific study of global warming for students grades 4-12. Several activity ideas accompany the information. (LZ)

  11. Committed sea-level rise under the Paris Agreement and the legacy of delayed mitigation action.

    Science.gov (United States)

    Mengel, Matthias; Nauels, Alexander; Rogelj, Joeri; Schleussner, Carl-Friedrich

    2018-02-20

    Sea-level rise is a major consequence of climate change that will continue long after emissions of greenhouse gases have stopped. The 2015 Paris Agreement aims at reducing climate-related risks by reducing greenhouse gas emissions to net zero and limiting global-mean temperature increase. Here we quantify the effect of these constraints on global sea-level rise until 2300, including Antarctic ice-sheet instabilities. We estimate median sea-level rise between 0.7 and 1.2 m, if net-zero greenhouse gas emissions are sustained until 2300, varying with the pathway of emissions during this century. Temperature stabilization below 2 °C is insufficient to hold median sea-level rise until 2300 below 1.5 m. We find that each 5-year delay in near-term peaking of CO 2 emissions increases median year 2300 sea-level rise estimates by ca. 0.2 m, and extreme sea-level rise estimates at the 95th percentile by up to 1 m. Our results underline the importance of near-term mitigation action for limiting long-term sea-level rise risks.

  12. Increased greenhouse effect substantiated through measurements

    International Nuclear Information System (INIS)

    Skartveit, Arvid

    2001-01-01

    The article presents studies on the greenhouse effect which substantiates the results from satellite measurements during the period 1970 - 1997. These show an increased effect due to increase in the concentration of the climatic gases CO 2 , methane, CFC-11 and CFC-12 in the atmosphere

  13. Greenhouse Effect Detection Experiment (GEDEX). Selected data sets

    Science.gov (United States)

    Olsen, Lola M.; Warnock, Archibald, III

    1992-01-01

    This CD-ROM contains selected data sets compiled by the participants of the Greenhouse Effect Detection Experiment (GEDEX) workshop on atmospheric temperature. The data sets include surface, upper air, and/or satellite-derived measurements of temperature, solar irradiance, clouds, greenhouse gases, fluxes, albedo, aerosols, ozone, and water vapor, along with Southern Oscillation Indices and Quasi-Biennial Oscillation statistics.

  14. Influence of Sea Surface Temperature, Tropospheric Humidity and Lapse Rate on the Annual Cycle of the Clear-Sky Greenhouse Effect

    Science.gov (United States)

    Hu, H.; Liu, W.

    2000-01-01

    The implication of this work will provide modeling study a surrogate of annual cycle of the greenhouse effect. For example, the model should be able to simulate the annual cycle before it can be used for global change study.

  15. Air pollution, greenhouse gases and climate change : global and regional perspectives

    Science.gov (United States)

    2009-01-01

    Greenhouse gases (GHGs) warm the surface and the atmosphere with significant implications for rainfall, retreat of glaciers and sea ice, sea level, among other factors. What is less recognized than problems with GHGs, however, is a comparably major g...

  16. Greenhouse Gases

    Science.gov (United States)

    ... Production of Hydrogen Use of Hydrogen Greenhouse Gases Basics | | Did you know? Without naturally occurring greenhouse gases, the earth would be too cold to support life as we know it. Without the greenhouse effect, ...

  17. Stopping the greenhouse effect - recommendations submitted by the Bundestag Enquete Commission

    International Nuclear Information System (INIS)

    Bach, W.

    1991-01-01

    Details are given about the factors which influence the greenhouse effect and about the impact of the greenhouse effect on the climate. The strategy developed by the enquete commission for the Federal Republic of Germany is essentially based on the international and the EC recommendations for stopping the additional greenhouse effect and for reducing the emission of power-generation trace gases which affect the climate. Different scenarios are analyzed to evaluate the recommended measures. (DG) [de

  18. Effect of greenhouse micro-climate on the selected summer vegetables

    International Nuclear Information System (INIS)

    Sethi, V.P.; Lal, T.; Gupta, Y.P.; Hans, V.S.

    2003-01-01

    The study deals with creating suitable environment for the germination and subsequent growth of plants in the greenhouse of size 7 m x 3 m x 2 m for raising early summer vegetable nursery. It was observed that the average air temperature inside the greenhouse was 10–12°C higher than the ambient air temperature. Inside average soil temperature was also 5–7°C higher than the corresponding temperature outside the greenhouse. Greenhouse night micro-climate was modified by covering its roof with a polyester sheet to cut down the effect of night sky radiation thereby raising the inside minimum temperature. The effect of elevated temperature was monitored on the germination and subsequent growth of “muskmelon” seedlings up to two true leaf stage. It was observed that the germination of seeds, sown inside the greenhouse occurred one week earlier as compared to the seeds sown in the open field. The rate of growth of the seedlings inside the greenhouse took only three weeks to attain two-leaf stage, whereas seedlings sown in the open field took five weeks to reach up to two-leaf stage. Thus, there was a clear saving of 15 days in raising the nursery under the greenhouse. (author)

  19. Danish greenhouse gas reduction scenarios for 2020 and 2050

    Energy Technology Data Exchange (ETDEWEB)

    Karlsson, K.; Joergensen, Kaj. (Risoe DTU, Roskilde (DK)); Werling, J.; OErsted Pedersen, H.; Kofoed-Wiuff, A. (Ea energy Analysis, Copenhagen (DK))

    2008-02-15

    The aim of the project presented in this report was to develop scenarios for reducing Danish greenhouse gas emissions in 2020 and 2050. The scenarius provide a basis for estimating which technologies should be combined in order to obtain future reductions in greenhouse gas emissions in a cost-effective way. The scenarios include all emissions of greenhouse gases from agriculture, industry and oil extraction activities in the North Sea as well as the transport and energy sectors. Foreign air and sea carriage is not included because emissions related to such activities are not yet subject to international climate change agreements. The scenarios focus particularly on the technological possibilities and the necessary system changes in the Danish energy system and transport sector. Parallel to this, COWI has carried out analyses for the Danish Environmental Protection Agency focussing primarily on the reduction potentials in the transport sector and other emissions. COWI's results regarding agriculture and other emissions have been included in this analysis. Two timeframes are applied in the scenarios: the medium term, 2020, and the long term, 2050. For each timeframe, we have set up indicative targets that the scenarios must reach: 1) 2020: 30 and 40 % reduction in greenhouse gas emissions compared to 1990 2) 2050: 60 and 80 % reduction in greenhouse gas emissions compared to 1990. The scenarios for 2020 focus primarily on technologies that are already commercially available, whereas the scenarios for 2050 also examine technological options at the experimental or developmental stage. This includes hydrogen technologies and fuel cells as well as CO{sub 2} capture and sequestration (CCS) technologies. The scenarios should be seen in connection with the EU objectives of a 20-30 % reduction in greenhouse gas emissions in 2020 and 60-80 % in 2050 compared to 1990. The EU's 30 % objective is contingent upon global efforts to reduce the world's greenhouse gas

  20. Greenhouse effect and climate; Effet de serre et climat

    Energy Technology Data Exchange (ETDEWEB)

    Poitou, J

    2008-04-15

    In the framework of the climatic change, the author aims to explain the phenomena of greenhouse effect. He details the historical aspects of the scientific knowledge in the domain, the gases produced, some characteristic of the greenhouse effect, the other actors which contribute to the climate, the climate simulation, the different factors of climate change since 1750 and the signs of the global heating. (A.L.B.)

  1. 'Home made' model to study the greenhouse effect and global warming

    Science.gov (United States)

    Onorato, P.; Mascheretti, P.; DeAmbrosis, A.

    2011-03-01

    In this paper a simplified two-parameter model of the greenhouse effect on the Earth is developed, starting from the well known two-layer model. It allows both the analysis of the temperatures of the inner planets, by focusing on the role of the greenhouse effect, and a comparison between the temperatures the planets should have in the absence of greenhouse effect and their actual ones. It may also be used to predict the average temperature of the Earth surface in the future, depending on the variations of the concentration of greenhouse gases in the atmosphere due to human activities. This model can promote an elementary understanding of global warming since it allows a simple formalization of the energy balance for the Earth in the stationary condition, in the presence of greenhouse gases. For these reasons it can be introduced in courses for undergraduate physics students and for teacher preparation.

  2. 'Home made' model to study the greenhouse effect and global warming

    International Nuclear Information System (INIS)

    Onorato, P; Mascheretti, P; DeAmbrosis, A

    2011-01-01

    In this paper a simplified two-parameter model of the greenhouse effect on the Earth is developed, starting from the well known two-layer model. It allows both the analysis of the temperatures of the inner planets, by focusing on the role of the greenhouse effect, and a comparison between the temperatures the planets should have in the absence of greenhouse effect and their actual ones. It may also be used to predict the average temperature of the Earth surface in the future, depending on the variations of the concentration of greenhouse gases in the atmosphere due to human activities. This model can promote an elementary understanding of global warming since it allows a simple formalization of the energy balance for the Earth in the stationary condition, in the presence of greenhouse gases. For these reasons it can be introduced in courses for undergraduate physics students and for teacher preparation.

  3. The social representations of the greenhouse effect (6. wave of questions)

    International Nuclear Information System (INIS)

    2005-01-01

    Six waves of questions concerning the public opinion of the greenhouse effect, were realized by the ISL in May 2000, March 2001, July 2002, June 2003 and May 2004. This sixth wave was realized between June 14 and 25 2005. The report presents the questions asked and analyzes the answers. The concerned domains are the greenhouse effect, the causes, the consequences, the greenhouse effect remediation (technical and political choices), the climatic change, the confidence on the actors and the institutions. (A.L.B.)

  4. Simple model of photo acoustic system for greenhouse effect

    OpenAIRE

    Fukuhara, Akiko; Kaneko, Fumitoshi; Ogawa, Naohisa

    2010-01-01

    The green house effect is caused by the gases which absorb infrared ray (IR) emitted by the earth. It is worthwhile if we can adjudicate on which gas causes the greenhouse effect in our class. For this purpose, one of our authors, Kaneko has designed an educational tool for testing greenhouse effect \\cite{Kaneko}. This system (hereafter abbreviated PAS) is constructed based on photo acoustic effect. Without difficulty and high cost, we can build PAS and check the IR absorption of gas. In this...

  5. A paleoclimatic simulation of the Late Permian greenhouse world and its consequences

    Energy Technology Data Exchange (ETDEWEB)

    Moore, G.T.; Jacobson, S.R.; Hayashida, D.N. (Chevron Oil Field Research Co., La Habra, CA (United States))

    1991-03-01

    Sea-floor spreading assembled all the major cratonic blocks into a single supercontinent once in the Phanerozoic Eon. This unique Late Permian crustal tectonic event produced Pangaea and an enormous oceanic basin volume that dropped sea level to a global lowstand unrivaled in the Phanerozoic. Two paleoclimatic simulations using a numerical three-dimensional general circulation model tested changes in the greenhouse effect. The authors conclude that for a simulation to fit the Late Permian geologic record, the paleoatmosphere must contain an enhanced greenhouse gas effect. A third simulation tested changes of paleogeography in southern Pangaea (Gondwana) that did not appreciably alter the harsh continental paleoclimate. The simulated paleoclimatic changes provide extraordinarily warm ocean and atmosphere, and a significant reduction in continental rainfall and runoff. These conditions inevitably lead to more aridity and less vegetation on land, gradually reduce the delivery of vital nutrients from continental sources to marine margins, systematically liberate CO{sub 2} dissolved in ocean water, and incrementally increase stress on marine and terrestrial biotas. These consequences severely disrupted rates of oxygen and carbon cycling. Their quantitative paleoclimatic simulation is consistent with distributions of red beds, evaporites, coals, marine shelf areas, seawater isotope trends, and paleontologic originations and extinctions. Thus, the Pangaean plate assembly probably triggered an inexorable sequence of geophysical, geochemical, and biological events that forced an elevated greenhouse effect in the Late Permian, nearly annihilating the Phanerozoic biota.

  6. The Greenhouse Effect in a Vial.

    Science.gov (United States)

    Golden, Richard; Sneider, Cary

    1989-01-01

    Presents an example of a greenhouse-effect experiment from the Climate Protection Institute. Analyzes the amount of carbon dioxide in ambient air, human exhalation, automobile exhaust, and nearly pure carbon dioxide by titrating with ammonia and bromthymol blue. (MVL)

  7. Greenhouse effect: a much debate question

    International Nuclear Information System (INIS)

    Lenoir, Y.

    1992-01-01

    After a two year inquiry, a french research worker has denounced the official thesis of a growth of greenhouse effect. This paper gives the point of view of the author on climatic change and opens the debate with two another experts

  8. The detection of climate change due to the enhanced greenhouse effect

    Science.gov (United States)

    Schiffer, Robert A.; Unninayar, Sushel

    1991-01-01

    The greenhouse effect is accepted as an undisputed fact from both theoretical and observational considerations. In Earth's atmosphere, the primary greenhouse gas is water vapor. The specific concern today is that increasing concentrations of anthropogenically introduced greenhouse gases will, sooner or later, irreversibly alter the climate of Earth. Detecting climate change has been complicated by uncertainties in historical observations and measurements. Thus, the primary concern for the GEDEX project is how can climate change and enhanced greenhouse effects be unambiguously detected and quantified. Specifically examined are the areas of: Earth surface temperature; the free atmosphere (850 millibars and above); space-based measurements; measurement uncertainties; and modeling the observed temperature record.

  9. The detection of climate change due to the enhanced greenhouse effect

    International Nuclear Information System (INIS)

    Schiffer, R.A.; Unninayar, S.

    1991-01-01

    The greenhouse effect is accepted as an undisputed fact from both theoretical and observational considerations. In Earth's atmosphere, the primary greenhouse gas is water vapor. The specific concern today is that increasing concentrations of anthropogenically introduced greenhouse gases will, sooner or later, irreversibly alter the climate of Earth. Detecting climate change has been complicated by uncertainties in historical observations and measurements. Thus, the primary concern for the GEDEX project is how can climate change and enhanced greenhouse effects be unambiguously detected and quantified. Specifically examined are the areas of: Earth surface temperature; the free atmosphere (850 millibars and above); space-based measurements; measurement uncertainties; and modeling the observed temperature record

  10. The earth's radiation budget and its relation to atmospheric hydrology. I - Observations of the clear sky greenhouse effect. II - Observations of cloud effects

    Science.gov (United States)

    Stephens, Graeme L.; Greenwald, Thomas J.

    1991-01-01

    The clear-sky components of the earth's radiation budget (ERB), the relationship of these components to the sea surface temperature (SST), and microwave-derived water-vapor amount are analyzed in an observational study along with the relationship between the cloudy-sky components of ERB and space/time coincident observations of SST, microwave-derived cloud liquid water, and cloud cover. The purpose of the study is to use these observations for establishing an understanding of the couplings between radiation and the atmosphere that are important to understanding climate feedback. A strategy for studying the greenhouse effect of earth by analyzing the emitted clear-sky longwave flux over the ocean is proposed. It is concluded that the largest observed influence of clouds on ERB is more consistent with macrophysical properties of clouds as opposed to microphysical properties. The analysis for clouds and the greenhouse effect of clouds is compared quantitatively with the clear sky results. Land-ocean differences and tropical-midlatitude differences are shown and explained in terms of the cloud macrostructure.

  11. The greenhouse effect gases; Les gaz a effet de serre

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-06-15

    This road-map proposes by the Group Total aims to inform the public on the greenhouse effect gases. It presents the greenhouses effect as a key component of the climate system, the impacts of the human activity, the foreseeable consequences of global warming, the Kyoto protocol and Total commitment in the domain. (A.L.B.)

  12. Greenhouse effect: science or religion of the 21. century

    International Nuclear Information System (INIS)

    Ploye, F.

    2000-01-01

    This book is a study about the natural phenomenon of the greenhouse effect, about its importance for the development of life on the Earth's surface and about the effect of human activities on its enhancement and on the future climatic changes. In particular, the increase of the greenhouse gases content of the atmosphere due to the combustion of fossil fuels is analyzed and some possible solutions to oppose this evolution are evoked. (J.S.)

  13. Middle-School Understanding of the Greenhouse Effect using a NetLogo Computer Model

    Science.gov (United States)

    Schultz, L.; Koons, P. O.; Schauffler, M.

    2009-12-01

    We investigated the effectiveness of a freely available agent based, modeling program as a learning tool for seventh and eighth grade students to explore the greenhouse effect without added curriculum. The investigation was conducted at two Maine middle-schools with 136 seventh-grade students and 11 eighth-grade students in eight classes. Students were given a pre-test that consisted of a concept map, a free-response question, and multiple-choice questions about how the greenhouse effect influences the Earth's temperature. The computer model simulates the greenhouse effect and allows students to manipulate atmospheric and surface conditions to observe the effects on the Earth’s temperature. Students explored the Greenhouse Effect model for approximately twenty minutes with only two focus questions for guidance. After the exploration period, students were given a post-test that was identical to the pre-test. Parametric post-test analysis of the assessments indicated middle-school students gained in their understanding about how the greenhouse effect influences the Earth's temperature after exploring the computer model for approximately twenty minutes. The magnitude of the changes in pre- and post-test concept map and free-response scores were small (average free-response post-test score of 7.0) compared to an expert's score (48), indicating that students understood only a few of the system relationships. While students gained in their understanding about the greenhouse effect, there was evidence that students held onto their misconceptions that (1) carbon dioxide in the atmosphere deteriorates the ozone layer, (2) the greenhouse effect is a result of humans burning fossil fuels, and (3) infrared and visible light have similar behaviors with greenhouse gases. We recommend using the Greenhouse Effect computer model with guided inquiry to focus students’ investigations on the system relationships in the model.

  14. Emission of carbon. A most important component for greenhouse effect in the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Milaev, V.B.; Kopp, I.Z.; Yasenski, A.N. [Scientific Research Inst. of Atmospheric Air Protection, St. Petersburg (Russian Federation)

    1995-12-31

    Greenhouse effect is most often defined as the probabilities of atmospheric air quasiequilibrium temperature increase as a result of air pollution due to emission of anthropogenic gaseous substances which are usually called `greenhouse gases`. Among greenhouse gases are primarily considered several gaseous substances which contain carbon atoms: carbon oxide, carbon dioxide and methane (CO, CO{sub 2} and CH{sub 4}), and chlorinated and fluorinated hydrocarbons (freons) spectra of which are transparent to solar radiation, but absorb and reradiate longwave radiation causing disturbance of quasistationary thermal regieme of the atmosphere. Qualitative estimates of the income and relative roles of different substances in occurrence of greenhouse effect differ considerable. At the modern state of knowledge the problem of greenhouse effect and greenhouse gases is considered in several aspects. The most widespread and investigated is climatic or meteorological aspect, it is discussed in a number of international works. Rather pressing is thermal physics aspect of the problem of estimating greenhouse effect, which consists in correct construction of a calculation model and usage of the most representative experimental data, since analytical methods require many assumptions, introduction of which may lead to results which differ very much. Bearing these uncertainties in mind the UNEP/WMO/ICSU conference has included into the number of the most urgent tasks in the study of greenhouse effect, the problem of determining the priority of factors which cause greenhouse effect, which in its turn predetermines the necessity to substantiate the methods of selection and criterion of comparative evaluation of such factors. (author)

  15. Emission of carbon. A most important component for greenhouse effect in the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Milaev, V B; Kopp, I Z; Yasenski, A N [Scientific Research Inst. of Atmospheric Air Protection, St. Petersburg (Russian Federation)

    1996-12-31

    Greenhouse effect is most often defined as the probabilities of atmospheric air quasiequilibrium temperature increase as a result of air pollution due to emission of anthropogenic gaseous substances which are usually called `greenhouse gases`. Among greenhouse gases are primarily considered several gaseous substances which contain carbon atoms: carbon oxide, carbon dioxide and methane (CO, CO{sub 2} and CH{sub 4}), and chlorinated and fluorinated hydrocarbons (freons) spectra of which are transparent to solar radiation, but absorb and reradiate longwave radiation causing disturbance of quasistationary thermal regieme of the atmosphere. Qualitative estimates of the income and relative roles of different substances in occurrence of greenhouse effect differ considerable. At the modern state of knowledge the problem of greenhouse effect and greenhouse gases is considered in several aspects. The most widespread and investigated is climatic or meteorological aspect, it is discussed in a number of international works. Rather pressing is thermal physics aspect of the problem of estimating greenhouse effect, which consists in correct construction of a calculation model and usage of the most representative experimental data, since analytical methods require many assumptions, introduction of which may lead to results which differ very much. Bearing these uncertainties in mind the UNEP/WMO/ICSU conference has included into the number of the most urgent tasks in the study of greenhouse effect, the problem of determining the priority of factors which cause greenhouse effect, which in its turn predetermines the necessity to substantiate the methods of selection and criterion of comparative evaluation of such factors. (author)

  16. Greenhouse effect gases inventory in France during the years 1990-1999

    International Nuclear Information System (INIS)

    2000-12-01

    The present report supplies emission data, for France and for the period 1990-1999, concerning all the substances involved in the increase in the greenhouse effect and covered under the United Nations' Framework Convention on Climate Change (UNFCCC). The substances are the six direct greenhouse gases covered by the Kyoto protocol: carbon dioxide (CO 2 ), methane (CH 4 ), nitrous oxide (N 2 O), the two species of halogenous substances - hydro-fluorocarbons (HFCs) and per-fluorocarbons (PFCs), and sulphur hexafluoride (SF 6 ). Emissions of sulphur dioxide (SO 2 ), nitrogen oxides (NO x ), non methane volatile organic compounds (NMVOCs), and carbon monoxide (CO), gases which indirectly make a significant contribution to the greenhouse effect, are reported under the Convention. The emissions of the six gases that directly contribute to the greenhouse effect are expressed in terms of Global Warming Potential (GWP) which decreased by 2.1 % in 1999 compared to 1990. The emissions of the four gases that indirectly contribute to the greenhouse effect are moving towards decrease: this is by 17% for NO x , 23% as regards NMVOCs, 33% for CO and by 44% regarding SO 2 . Out of the six greenhouse gases covered by the Kyoto Protocol, CO 2 accounts for the largest share in total GWP emissions (70 %), followed by N 2 O (16 %), CH 4 (12 %), HFCs (0.99 %), SF 6 (0.5 %), and PFCs (0.39 %). (author)

  17. Effects of the 2014 major Baltic inflow on methane and nitrous oxide dynamics in the water column of the central Baltic Sea

    DEFF Research Database (Denmark)

    Myllykangas, Jukka-Pekka; Jilbert, Tom; Jakobs, Gunnar

    2017-01-01

    In late 2014, a large, oxygen-rich salt water inflow entered the Baltic Sea and caused considerable changes in deep water oxygen concentrations. We studied the effects of the inflow on the concentration patterns of two greenhouse gases, methane and nitrous oxide, during the following year (2015...

  18. A mental picture of the greenhouse effect. A pedagogic explanation

    Science.gov (United States)

    Benestad, Rasmus E.

    2017-05-01

    The popular picture of the greenhouse effect emphasises the radiation transfer but fails to explain the observed climate change. An old conceptual model for the greenhouse effect is revisited and presented as a useful resource in climate change communication. It is validated against state-of-the-art data, and nontraditional diagnostics show a physically consistent picture. The earth's climate is constrained by well-known and elementary physical principles, such as energy balance, flow, and conservation. Greenhouse gases affect the atmospheric optical depth for infrared radiation, and increased opacity implies higher altitude from which earth's equivalent bulk heat loss takes place. Such an increase is seen in the reanalyses, and the outgoing long-wave radiation has become more diffuse over time, consistent with an increased influence of greenhouse gases on the vertical energy flow from the surface to the top of the atmosphere. The reanalyses further imply increases in the overturning in the troposphere, consistent with a constant and continuous vertical energy flow. The increased overturning can explain a slowdown in the global warming, and the association between these aspects can be interpreted as an entanglement between the greenhouse effect and the hydrological cycle, where reduced energy transfer associated with increased opacity is compensated by tropospheric overturning activity.

  19. Do human beings contribute to the greenhouse effect

    International Nuclear Information System (INIS)

    Stordal, Frode

    1999-01-01

    The various sources to and aspects of the greenhouse gas effect were discussed. The gas and pollutant contributions were estimated and the added amounts of methane, nitrogen dioxide and chlorofluorocarbons emissions were approximately equal to that of carbon dioxide. Problems connected to sulphur dioxide emissions were mentioned. The problems of UV and IR radiation were discussed. The sun shine intensity fluctuation was also considered as well as other factors that have influenced the climate before the industrial era. It was concluded that human activities have contributed to the alterations in the greenhouse effect in last century

  20. Tropical sea surface temperatures and the earth's orbital eccentricity cycles

    Digital Repository Service at National Institute of Oceanography (India)

    Gupta, S.M.; Fernandes, A.A.; Mohan, R.

    The tropical oceanic warm pools are climatologically important regions because their sea surface temperatures (SSTs) are positively related to atmospheric greenhouse effect and the cumulonimbus-cirrus cloud anvil. Such a warm pool is also present...

  1. Global climate: Methane contribution to greenhouse effect

    International Nuclear Information System (INIS)

    Metalli, P.

    1992-01-01

    The global atmospheric concentration of methane greatly contributes to the severity of the greenhouse effect. It has been estimated that this concentration, due mainly to human activities, is growing at the rate of roughly 1.1% per year. Environmental scientists suggest that a reduction, even as small as 10%, in global methane emissions would be enough to curtail the hypothetical global warning scenarios forecasted for the up-coming century. Through the recovery of methane from municipal and farm wastes, as well as, through the control of methane leaks and dispersions in coal mining and petrochemical processes, substantial progress towards the abatement of greenhouse gas effects could be achieved without having to resort to economically detrimental limitations on the use of fossil fuels

  2. Exergy outcomes associated with the greenhouse effects

    International Nuclear Information System (INIS)

    Valero, A.; Arauzo, I.

    1991-01-01

    In this paper the effect on the exergy of the Earth's fossil fuels if natural environmental conditions are changed due to the greenhouse effect is studied. The change considered here is a temperature rise produced as a result of increased CO 2 concentration. The temperature change due to the increase in CO 2 concentration is modeled in accordance with the most recent studies on the greenhouse effect. The result is that the ''average fossil fuel'', based on estimates of proven reserves, will lose 0.3% of its exergy if the atmospheric concentration of CO 2 doubles. Assuming that CO 2 concentration will double over the next hundred years, this 0.3% exergy loss of proven reserves means that we will lose as much capacity to produce work as primary energy was consumed in USA and Canada during 1988

  3. Greenhouse effect and the fuel fossil burning in Brazil

    International Nuclear Information System (INIS)

    Rosa, L.P.; Cecchi, J.C.

    1994-01-01

    In Brazil, the global energy consumption per inhabitant is low and the fraction of renewable energy is high, which represents an advantage in terms of gas released. On the other hand the burning in the Amazon Region releases more greenhouse gases than fossil fuel combustion. This article, considering trends in the energy consumption by different economic sectors, discusses the greenhouse effect and its repercussion in energy planning. As known the energy generation process is in great part responsible for the emission of CO 2 , the main anthropogenic gas which causes the greenhouse effect. A comparison of the brazilian case with other studies from developed countries was made to show the advantages and disadvantages of the adopted energetic solution. Carbon emissions were calculated in different scenarios leading to same interesting conclusions. (B.C.A.)

  4. Mitigation of greenhouse gases in the energy sector: an overview

    International Nuclear Information System (INIS)

    Romani, M.N.

    1998-01-01

    It is fairly well recognised that greenhouse gases (GHG) have an impact on the global climate as they trap heat in the atmosphere. With the result earth is warmed in manner similar to the glass panels of a greenhouse increase. Hence the name 'green house effect' during the last two centuries in CO/sub 2/ in the atmosphere has been reckoned at 25%, with corresponding values for CH/sub 4/ and N/sub 2/O as 100% and 10% during 1950-80. CFC concentration increased by 10%. It is estimated that the earth has warmed by 0.5 deg. C and sea level has increased by 15 cm over the last 100 years or so. The major cause has been attributed to the process of industrialization. (author)

  5. Energy policies and the greenhouse effect. V. 1

    International Nuclear Information System (INIS)

    Grubb, Michael.

    1991-01-01

    This study represents the culmination of two years of research on the Greenhouse Effect by the Energy and Environmental Programme. It is the fourth study which we have published on the policy aspects of this subject, following Issues for Policymakers, Negotiating Targets, and our report of October 1990 Formulating a Convention. The first volume of the study concentrates on the policy issues arising from attempts to reduce greenhouse gas emissions from the energy sector. The second volume on 'country studies and technical options' provides the detailed analysis on which the conclusions of this book have been based, and will be published in early 1991. Although it was not our intention to produce such a large work at the outset, the upsurge of interest in the subject has expanded the framework of measures being considered to address environmental issues in general and the greenhouse effect in particular. These developments have had a major impact on the size and content. In this book, as in our previous publications, the Programme's work is aimed at moving the policy debate forward as quickly as possible into areas which seem to offer the best prospects for effective policy action. (Author)

  6. Harnessing greenhouse effect; Domestiquer l'effet de serre

    Energy Technology Data Exchange (ETDEWEB)

    Meunier, F.; Rivet, P.; Terrier, M.F

    2005-07-01

    This book considers the energy and greenhouse effect questions in a global way. It presents the different methods of fight against the increase of the greenhouse effect (energy saving, carbon sinks, cogeneration,..), describes the main alternative energy sources to fossil fuels (biomass, wind power, solar, nuclear,..), and shows that, even worrying, the future is not so dark as it seems to be and that technical solutions exist which will allow to answer the worldwide growing up energy needs and to slow down the climatic drift. (J.S.)

  7. (ajst) effects of ground insulation and greenhouse

    African Journals Online (AJOL)

    NORBERT OPIYO AKECH

    and quality of biogas generation from dairy cattle dung. The effects ... Therefore ground insulation of plastic biogas digester under greenhouse conditions significantly enhances ..... The low values obtained did not suggest failure of the system ...

  8. Grappling with greenhouse

    International Nuclear Information System (INIS)

    Mitchell, C.D.

    1992-01-01

    A natural greenhouse effect keeps the Earth at a temperature suitable for life. Some of the gases responsible for the greenhouse effect are increasing at an unprecedented rate because of human activity. These increased levels of greenhouse gases in the atmosphere will strengthen the natural greenhouse effect, leading to an overall warming of the Earth's surface. Global warming resulting from the enhanced greenhouse effect is likely to be obscured by normal climatic fluctuations for another ten years or more. The extent of human-caused climate change will depend largely on future concentrations of greenhouse gases in the atmosphere. In turn, the composition of the atmosphere depends on the release of greenhouse gases. Releases are hard to predict, because they require an understanding of future human activity. The composition of the atmosphere also depends on the processes which remove greenhouse gases from it. This booklet is summarizing the latest research results in the form of climate change scenarios. The present scenarios of change are based on climate models, together with an understanding of how present-day climate, with its inherent natural variability, affects human activities. These scenarios present a coherent range of future possibilities for climate; they are not predictions but they serve as a useful starting point. It is estimated that human-caused climate change will affect all aspects of life in Australia, including our cities, agriculture, pests and diseases, fisheries and natural ecosystems. 15 figs., ills

  9. Primary Student-Teachers' Conceptual Understanding of the Greenhouse Effect: A mixed method study

    Science.gov (United States)

    Ratinen, Ilkka Johannes

    2013-04-01

    The greenhouse effect is a reasonably complex scientific phenomenon which can be used as a model to examine students' conceptual understanding in science. Primary student-teachers' understanding of global environmental problems, such as climate change and ozone depletion, indicates that they have many misconceptions. The present mixed method study examines Finnish primary student-teachers' understanding of the greenhouse effect based on the results obtained via open-ended and closed-form questionnaires. The open-ended questionnaire considers primary student-teachers' spontaneous ideas about the greenhouse effect depicted by concept maps. The present study also uses statistical analysis to reveal respondents' conceptualization of the greenhouse effect. The concept maps and statistical analysis reveal that the primary student-teachers' factual knowledge and their conceptual understanding of the greenhouse effect are incomplete and even misleading. In the light of the results of the present study, proposals for modifying the instruction of climate change in science, especially in geography, are presented.

  10. Peat and the greenhouse effect - Comparison of peat with coal, oil, natural gas and wood

    International Nuclear Information System (INIS)

    Hillebrand, K.

    1993-01-01

    The earth's climate is effected both by natural factors and human activities. So called greenhouse gas emissions increase the increment of the temperature of the air nearby the earth's surface, due to which the social changes can be large. The increment of greenhouse gas concentration in the atmosphere is due to increasing energy consumption. About 50 % of the climatic changes are caused by increase of the CO 2 concentration in the atmosphere. Other gases, formed in the energy production, intensifying the greenhouse effect are methane and nitrous oxide. The effect of greenhouse gases is based on their ability to absorb infrared radiation coming from the earth. This presentation discusses some of the greenhouse effect caused by some peat production and utilization chains in comparison with corresponding effects of coal, oil, natural gas and wood. The instantaneous greenhouse effects and the cumulative effects of the emissions of the gases (CO 2 , CH 4 and N 2 O) during a time period has been reviewed. The greenhouse effect has been calculated as CO 2 - equivalents. (5 figs.)

  11. Studying the Greenhouse Effect: A Simple Demonstration.

    Science.gov (United States)

    Papageorgiou, G.; Ouzounis, K.

    2000-01-01

    Studies the parameters involved in a presentation of the greenhouse effect and describes a simple demonstration of this effect. Required equipment includes a 100-120 watt lamp, a 250mL beaker, and a thermometer capable of recording 0-750 degrees Celsius together with a small amount of chloroform. (Author/SAH)

  12. Greenhouse effect: the right questions

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    This paper gives the point of view of the National Council of French engineers and scientists (CNSIF) after the recent publication of a report about the greenhouse effect by the French Academy of Sciences. The CNSIF agrees with the conclusions of this report and gives to non-specialists additional informations about the definition, causes, divergences of opinions about long-term consequences of this effect, and also about the remedial solutions proposed, their delay of efficiency and the socio-economical and political difficulties encountered for their application. (J.S.)

  13. Status of greenhouses in Eastern Mediterranean coastal areas of ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-04-20

    Apr 20, 2009 ... climate control of greenhouses owned by villagers, having only small holdings barely adequate for supporting ... Mediterranean Sea cost line in Turkey and has rather ..... stove and combination of wood burning and gas tube.

  14. The greenhouse effect and energy efficiency: some facts and figures

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    Human activities are changing the composition of the atmosphere. In particular the burning of fossil fuels emits carbon dioxide, one of the so-called ''greenhouse gases'' that help maintain the Earth's surface at a temperature suitable for life. They transmit incoming sunlight but trap outgoing radiated heat. Levels of greenhouse gases are increasing, giving rise to concern that the world may warm further, leading to climate change. Energy efficiency can make an important contribution to controlling the greenhouse effect, and brings further benefits for industry and commerce through cost savings. 17 figs

  15. Detection of human influence on sea-level pressure.

    Science.gov (United States)

    Gillett, Nathan P; Zwiers, Francis W; Weaver, Andrew J; Stott, Peter A

    2003-03-20

    Greenhouse gases and tropospheric sulphate aerosols--the main human influences on climate--have been shown to have had a detectable effect on surface air temperature, the temperature of the free troposphere and stratosphere and ocean temperature. Nevertheless, the question remains as to whether human influence is detectable in any variable other than temperature. Here we detect an influence of anthropogenic greenhouse gases and sulphate aerosols in observations of winter sea-level pressure (December to February), using combined simulations from four climate models. We find increases in sea-level pressure over the subtropical North Atlantic Ocean, southern Europe and North Africa, and decreases in the polar regions and the North Pacific Ocean, in response to human influence. Our analysis also indicates that the climate models substantially underestimate the magnitude of the sea-level pressure response. This discrepancy suggests that the upward trend in the North Atlantic Oscillation index (corresponding to strengthened westerlies in the North Atlantic region), as simulated in a number of global warming scenarios, may be too small, leading to an underestimation of the impacts of anthropogenic climate change on European climate.

  16. Literature review on the greenhouse effect and global warming

    International Nuclear Information System (INIS)

    English, M.; Petri, H.; Wong, R.K.W.; Kochtubajda, B.

    1990-08-01

    A literature review of recent (1988-1990) publications on global warming and climate change was carried out by the Alberta Research Council. The objectives of the project were to develop a listing of relevant citations, review the publications, prepare a short summary of the contents of each, and develop statistics with respect to the degree to which scientific consensus exists on the various topics of interest. The bibliography contains 1,557 citations, and a total of 501 publications were reviewed. Topics of interest include computer modelling of world climate, potential impacts of climate change, potential strategies for responding to climate change, and technological solutions. Statistical results are presented of numbers of papers reviewed addressing types of emission, time of effective doubling of greenhouse gases, global temperature increase predicted for effective doubling of greenhouse gases, temperature increase in northern lattitudes for an effective doubling of greenhouse gases, components of atmosphere that are changing, potential impacts on agriculture, forestry, and health, suggested emission limitations, and suggested technological solutions. 4 refs., 11 figs., 3 tabs

  17. The social representations of the greenhouse effect; Les representations sociales de l'effet de serre

    Energy Technology Data Exchange (ETDEWEB)

    Boy, D.

    2000-07-01

    This document presents the results analysis to the inquiry realized during may and june 2000 on the greenhouse effect perception by the public. The following questions have been asked and analyzed: what is the greenhouse effect, who is responsible of the greenhouse effect, what will be the consequences of the greenhouse effect, how to meet with this effect, information and perception. (A.L.B.)

  18. Water quality management and climate change mitigation: cost-effectiveness of joint implementation in the Baltic Sea region

    DEFF Research Database (Denmark)

    Nainggolan, Doan; Hasler, Berit; Andersen, Hans Estrup

    2018-01-01

    of contrasting strategies: single environmental objective management versus joint implementation strategy. The results show that implementing land-based measures with a sole focus on water quality (to meet the HELCOM's 2013 Baltic Sea Action Plan nutrient abatement targets) can produce climate change mitigation......This paper explores the scope for simultaneously managing nutrient abatement and climate change mitigation in the Baltic Sea (BS) region through the implementation of a selection of measures. The analysis is undertaken using a cost-minimisation model for the entire BS region, the BALTCOST model....... In the present research, the model has been extended to include greenhouse gas (GHG) emissions effects, enabling us to analyse the tradeoffs between cost-effective GHG and nutrient load reductions. We run the model for four different scenarios in order to compare the environmental and economic consequences...

  19. "Home Made" Model to Study the Greenhouse Effect and Global Warming

    Science.gov (United States)

    Onorato, P.; Mascheretti, P.; DeAmbrosis, A.

    2011-01-01

    In this paper a simplified two-parameter model of the greenhouse effect on the Earth is developed, starting from the well known two-layer model. It allows both the analysis of the temperatures of the inner planets, by focusing on the role of the greenhouse effect, and a comparison between the temperatures the planets should have in the absence of…

  20. Address to the international workshop on greenhouse gas mitigation, technologies and measures

    Energy Technology Data Exchange (ETDEWEB)

    Kant, A.

    1996-12-31

    The Netherlands has a long history in combatting natural forces for it`s mere survival and even creation. Around half of the country was not Yet existent around 2000 years ago: it was still below sea level that time. Building dikes and the discovery of eolic energy applied in windmills, allowing to pump water from one side of the dike to the other, are technologies that gradually shaped the country into its current form, a process that continues to materialize till the present day. Water has not always been an enemy of the country. In the Hundred Year War with Spain, during which the country was occupied territory for most of the time, the water was used to drive the Spanish armies from the country. As large parts are well below sea level breaking the dikes resulted in flooding the country which made the armoury of the Spanish army useless. In this way they had to give up the siege of several major Dutch cities that time. These events marked the gradual liberation of the Dutch territory. Consequently, in the discussion on adaption and prevention of the greenhouse effect the Netherlands has a clear stand. The greenhouse effect will occur anyway, even if countries deploy all possible counter measures at once. So their aim is to prevent the occurrence of the greenhouse effect to the highest extent possible, and to protect the most vulnerable areas meanwhile, especially the coastal zones. In order to reach these goals the Dutch government has established a Joint Implementation Experimental Programme in accordance with the provisions made by the Conference of Parties in Berlin (1995).

  1. 'Home made' model to study the greenhouse effect and global warming

    Energy Technology Data Exchange (ETDEWEB)

    Onorato, P; Mascheretti, P; DeAmbrosis, A, E-mail: pasquale.onorato@unipv.it, E-mail: anna.deambrosisvigna@unipv.it [Department of Physics ' A. Volta' , University of Pavia, Via Bassi 6, I-27100 Pavia (Italy)

    2011-03-15

    In this paper a simplified two-parameter model of the greenhouse effect on the Earth is developed, starting from the well known two-layer model. It allows both the analysis of the temperatures of the inner planets, by focusing on the role of the greenhouse effect, and a comparison between the temperatures the planets should have in the absence of greenhouse effect and their actual ones. It may also be used to predict the average temperature of the Earth surface in the future, depending on the variations of the concentration of greenhouse gases in the atmosphere due to human activities. This model can promote an elementary understanding of global warming since it allows a simple formalization of the energy balance for the Earth in the stationary condition, in the presence of greenhouse gases. For these reasons it can be introduced in courses for undergraduate physics students and for teacher preparation.

  2. Is the greenhouse effect proving a pitfall in France?

    International Nuclear Information System (INIS)

    Godard, O.

    1998-01-01

    After Rio and Kyoto, the Buenos-Aires environmental summit comes nearer. The agreements to reduce the production of greenhouse effect gases have failed. The next step might be negotiable and transferable licences with the setting of a quota system. The discussions are expected to be difficult. This new compelling regulation could force some industrial countries to introduce green fiscal reforms. France with its 75% energy coming from nuclear plants has a reduced margin to manage. France cannot accept to be deprived of its right to abandon nuclear energy because of the imposed no-rising of greenhouse effect gases production. (A.C.)

  3. Greenhouse effect due to chlorofluorocarbons - Climatic implications

    Science.gov (United States)

    Ramanathan, V.

    1975-01-01

    The infrared bands of chlorofluorocarbons and chlorocarbons enhance the atmospheric greenhouse effect. This enhancement may lead to an appreciable increase in the global surface temperature if the atmospheric concentrations of these compounds reach values of the order of 2 parts per billion.

  4. Ozone: The secret greenhouse gas

    International Nuclear Information System (INIS)

    Berntsen, Terje; Tjernshaugen, Andreas

    2001-01-01

    The atmospheric ozone not only protects against harmful ultraviolet radiation; it also contributes to the greenhouse effect. Ozone is one of the jokers to make it difficult to calculate the climatic effect of anthropogenic emissions. The greenhouse effect and the ozone layer should not be confused. The greenhouse effect creates problems when it becomes enhanced, so that the earth becomes warmer. The problem with the ozone layer, on the contrary, is that it becomes thinner and so more of the harmful ultraviolet radiation gets through to the earth. However, ozone is also a greenhouse gas and so the greenhouse effect and the ozone layer are connected

  5. Impact on the greenhouse effect of peat mining and combustion

    International Nuclear Information System (INIS)

    Rodhe, H.; Svensson, Bo

    1995-01-01

    Combustion of peat leads to emission of carbon dioxide (CO 2 ) in the atmosphere. In addition, mining of the peat alters the environment such that the natural fluxes of CO 2 and other greenhouse gases are modified. Of particular interest is a reduction in the emission of methane (CH 4 ) in the drained parts of the mires. We estimate the total impact on the greenhouse effect of these processes. The results indicate that the decreased emission of methane from the drained mires compensates for about 15% of the CO 2 emission during the combustion of the peat. It follows that, in a time perspective of less than several hundred years, peat is comparable to a fossil fuel, as far as the contribution to the greenhouse effect is concerned. 39 refs, 1 fig, 4 tabs

  6. Greenhouse effects. Attempts of two sciences academy reports synthesis

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    This work deals with the greenhouse effect. It is divided into three parts. In the first one, are given the main questions which are raised by the greenhouse effect: what will be the global increase of the earth if the developed countries continue to release gases as carbon oxides or chlorofluorocarbons? What will it be with the increase of the population and with the development of the countries less industrialized nowadays (80% of the earth's population)? What will be the effect on the global climate and on the regional climates? What will be the consequences for the nature, the men and the living species? The possible consequences are explained and some solutions are proposed. (O.L.)

  7. Effect of changes in seafloor temperature and sea-level on gas hydrate stability

    Energy Technology Data Exchange (ETDEWEB)

    Garg, S.K.; Pritchett, W. [Science Applications International Corp., San Diego, CA (United States)

    2008-07-01

    Natural gas hydrates occur in oceanic sediments and in permafrost regions around the world. As a greenhouse gas, large amounts of methane released from the global hydrate reservoir would have a significant impact on Earth's climate. The role of methane released by hydrate dissociation in climate change is uncertain. However, changes in global climate such as glaciation and warming can destabilize the hydrates. During the last glacial maximum, the sea level dropped about 100 meters. It has been suggested that the sea-level fall was associated with gas hydrate instability and seafloor slumping. This paper investigated the effect of changes in seafloor temperature and sea level on gas hydrate stability and on gas venting at the seafloor. A one-dimensional numerical computer model (simulator) was developed to describe methane hydrate formation, decomposition, reformation, and distribution with depth below the seafloor in the marine environment. The simulator was utilized to model hydrate distributions at two sites, notably Blake Ridge, located offshore South Carolina and Hydrate Ridge, located off the coast of Oregon. The numerical models for the two sites were conditioned by matching the sulfate, chlorinity, and hydrate distribution measurements. The effect of changes in seafloor temperature and sea-level on gas hydrate stability were then investigated. It was concluded that for Blake Ridge, changes in hydrate concentration were small. Both the changes in seafloor temperature and sea-level led to a substantial increase in gas venting at the seafloor for Hydrate Ridge. 17 refs., 8 figs.

  8. Understanding the Asian summer monsoon response to greenhouse warming: the relative roles of direct radiative forcing and sea surface temperature change

    Science.gov (United States)

    Li, Xiaoqiong; Ting, Mingfang

    2017-10-01

    Future hydroclimate projections from state-of-the-art climate models show large uncertainty and model spread, particularly in the tropics and over the monsoon regions. The precipitation and circulation responses to rising greenhouse gases involve a fast component associated with direct radiative forcing and a slow component associated with sea surface temperature (SST) warming; the relative importance of the two may contribute to model discrepancies. In this study, regional hydroclimate responses to greenhouse warming are assessed using output from coupled general circulation models in the Coupled Model Intercomparison Project-Phase 5 (CMIP5) and idealized atmospheric general circulation model experiments from the Atmosphere Model Intercomparison Project. The thermodynamic and dynamic mechanisms causing the rainfall changes are examined using moisture budget analysis. Results show that direct radiative forcing and SST change exert significantly different responses both over land and ocean. For most part of the Asian monsoon region, the summertime rainfall changes are dominated by the direct CO2 radiative effect through enhanced monsoon circulation. The response to SST warming shows a larger model spread compared to direct radiative forcing, possibly due to the cancellation between the thermodynamical and dynamical components. While the thermodynamical response of the Asian monsoon is robust across the models, there is a lack of consensus for the dynamical response among the models and weak multi-model mean responses in the CMIP5 ensemble, which may be related to the multiple physical processes evolving on different time scales.

  9. Impact of equatorial and continental airflow on primary greenhouse gases in the northern South China Sea

    International Nuclear Information System (INIS)

    Ou-Yang, Chang-Feng; Yen, Ming-Cheng; Lin, Neng-Huei; Lin, Tang-Huang; Wang, Jia-Lin; Schnell, Russell C; Lang, Patricia M; Chantara, Somporn

    2015-01-01

    Four-year ground-level measurements of the two primary greenhouse gases (carbon dioxide (CO 2 ) and methane (CH 4 )) were conducted at Dongsha Island (DSI), situated in the northern South China Sea (SCS), from March 2010 to February 2014. Their mean mixing ratios are calculated to be 396.3 ± 5.4 ppm and 1863.6 ± 50.5 ppb, with an annual growth rate of +2.19 ± 0.5 ppm yr –1 and +4.70 ± 4.4 ppb yr –1 for CO 2 and CH 4 , respectively, over the study period. Our results suggest that the Asian continental outflow driven by the winter northeast monsoon could have brought air pollutants into the northern SCS, as denoted by significantly elevated levels of 6.5 ppm for CO 2 and 59.6 ppb for CH 4 , which are greater than the marine boundary layer references at Cape Kumukahi (KUM) in the tropical northern Pacific in January. By contrast, the summertime CH 4 at DSI is shown to be lower than that at KUM by 19.7 ppb, whereas CO 2 is shown to have no differences (<0.42 ppm in July) during the same period. Positive biases of the Greenhouse Gases Observing Satellite (GOSAT) L4B data against the surface measurements are estimated to be 2.4 ± 3.4 ppm for CO 2 and 43.2 ± 36.8 ppb for CH 4 . The satellite products retrieved from the GOSAT showed the effects of anthropogenic emissions and vegetative sinks on land on a vertical profiling basis. The prevailing southeasterly winds originating from as far south as the equator or Southern Hemisphere pass through the lower troposphere in the northern SCS, forming a tunnel of relatively clean air masses as indicated by the low CH 4 mixing ratios observed on the DSI in summer. (letter)

  10. Greenhouse effect due to atmospheric nitrous oxide

    Science.gov (United States)

    Yung, Y. L.; Wang, W. C.; Lacis, A. A.

    1976-01-01

    The greenhouse effect due to nitrous oxide in the present atmosphere is about 0.8 K. Increase in atmospheric N2O due to perturbation of the nitrogen cycle by man may lead to an increase in surface temperature as large as 0.5 K by 2025, or 1.0 K by 2100. Other climatic effects of N2O are briefly discussed.

  11. The greenhouse effect and extreme weather

    International Nuclear Information System (INIS)

    Groenaas, Sigbjoern; Kvamstoe, Nils Gunnar

    2002-01-01

    The article asserts that an anthropogenic global warming is occurring. This greenhouse effect is expected to cause more occurrences of extreme weather. It is extremely difficult, however, to relate specific weather catastrophes to global warming with certainty, since such extreme weather conditions are rare historically. The subject is controversial. The article also discusses the public debate and the risk of floods

  12. The french forest and the increasing greenhouse effect

    International Nuclear Information System (INIS)

    Bossy, Anne; Bouhot, Laurence; Barthod, Ch.; Delduc, P.; Pelissie, D.

    1994-01-01

    As a follow up to the Global Convention on Climatic Change, submitted for signature to the Heads of State and Government during the United Nations Conference on Environment and Development in Rio de Janeiro in dune 1992, the French Government, on March 24, 1993, adopted the first parts of a national plan to control the greenhouse effect, which gave considerable emphasis to forests and timber. The proposals that were adopted seek to increase attention to the adaptation of species in forest research stations, increase work on afforestation of agricultural lands and increase the use of timber as a source of energy and construction. These proposals recognised that an investment of 500 francs sufficed to avoid the emission of, or to store, a ton of carbon. This is the threshold adopted by the Commission of European Communities in its study on the possible levy of an 'eco-tax'. Further, when devising strategies on controlling the greenhouse effect, it may be possible to adopt the Anglo-saxon concept set out in the 'no regrets policy'. Thus despite the uncertainties concerning the consequences of increasing the level of gases with a greenhouse effect, in the atmosphere, uncertainties that could change the scientific vantage point, the justification for the measures being advocated should not be challenged. (authors)

  13. Greenhouse effect and climate

    International Nuclear Information System (INIS)

    Flohn, H.

    1987-01-01

    Model calculations with different marginal conditions and different physical processes do, on the basis of realistic assumptions, result in a temperature rise of 3 ± 1.5degC at doubling carbon dioxide concentrations. Temperatures are increasing even more due to the presence of trace gases contributing to the greenhouse effect. They are assumed to be having a share of 100% in the carbon dioxide effect (additive) in 30-40 years from now. According to the model calculations the CO 2 increase from about 280 ppm around 1850 to 345 ppm (1985) is equal to a globally averaged temperature rise of 0.5-0.7degC. As the data obtained before 1900 were incomplete and little representative climatic analyses cannot be considered to have been effective but after that time. However, considering the additional influence of other climatic effects such as vulcanism the temperature rise satisfactorily corresponds to the values obtained since 1900. (orig./HP) [de

  14. Greenhouse effect contributions of US landfill methane

    International Nuclear Information System (INIS)

    Augenstein, D.

    1991-01-01

    The greenhouse effect has recently been receiving a great deal of scientific and popular attention. The term refers to a cause-and-effect relationship in which ''heat blanketing'' of the earth, due to trace gas increases in the atmosphere, is expected to result in global warming. The trace gases are increasing as the result of human activities. Carbon dioxide (CO 2 ) is the trace gas contributing most importantly to the ''heat blanketing'' and currently receives the most attention. Less widely recognized has been the high importance of methane (CH 4 ). Methane's contribution to the increased heat blanketing occurring since 1980 is estimated to be over a third as much as that of carbon dioxide. Gas from landfills has in turn been recognized to be a source of methane to the atmospheric buildup. However the magnitude of the landfill methane contribution, and the overall significance of landfill methane to the greenhouse phenomenon has been uncertain and the subject of some debate. (Author)

  15. Children's Models of Understanding of Two Major Global Environmental Issues (Ozone Layer and Greenhouse Effect).

    Science.gov (United States)

    Boyes, Edward; Stanisstreet, Martin

    1997-01-01

    Aims to quantify the models that 13- and 14 year-old students hold about the causes of the greenhouse effect and ozone layer depletion. Assesses the prevalence of those ideas that link the two phenomena. Twice as many students think that holes in the ozone layer cause the greenhouse effect than think the greenhouse effect causes ozone depletion.…

  16. Trace Gases, CO2, Climate, and the Greenhouse Effect.

    Science.gov (United States)

    Aubrecht, Gordon J., II

    1988-01-01

    Reports carbon dioxide and other trace gases can be the cause of the Greenhouse Effect. Discusses some effects of the temperature change and suggests some solutions. Included are several diagrams, graphs, and a table. (YP)

  17. Carbon dioxide emissions from Deccan volcanism and a K/T boundary greenhouse effect

    Science.gov (United States)

    Caldeira, Ken; Rampino, Michael R.

    1990-01-01

    A greenhouse warming caused by increased emissions of carbon dioxide from the Deccan Traps volcanism has been suggested as the cause of the terminal Cretaceous extinctions on land and in the sea. Total eruptive and noneruptive CO2 output by the Deccan eruptions (from 6 to 20 x 10 to the 16th moles) over a period of several hundred thousand years is estimated based on best estimates of the CO2 weight fraction of the original basalts and basaltic melts, the fraction of CO2 degassed, and the volume of the Deccan Traps eruptions. Results of a model designed to estimate the effects of increased CO2 on climate and ocean chemistry suggest that increases in atmospheric pCO2 due to Deccan Traps CO2 emissions would have been less than 75 ppm, leading to a predicted global warming of less than 1 C over several hundred thousand years. It is concluded that the direct climate effects of CO2 emissions from the Deccan eruptions would have been too weak to be an important factor in the end-Cretaceous mass extinctions.

  18. Ozone depletion, greenhouse effect and atomic energy

    International Nuclear Information System (INIS)

    Adzersen, K.H.

    1991-01-01

    After describing the causes and effects of ozone depletion and the greenhouse effect, the author discusses the alternative offered by the nuclear industry. In his opinion, a worldwide energy strategy of risk minimisation will not be possible unless efficient energy use is introduced immediately, efficiently and on a reliable basis. Atomic energy is not viewed as an acceptable means of preventing the threatening climate change. (DG) [de

  19. Air pollution, greenhouse gases and climate change: Global and regional perspectives

    Science.gov (United States)

    Ramanathan, V.; Feng, Y.

    Greenhouse gases (GHGs) warm the surface and the atmosphere with significant implications for rainfall, retreat of glaciers and sea ice, sea level, among other factors. About 30 years ago, it was recognized that the increase in tropospheric ozone from air pollution (NO x, CO and others) is an important greenhouse forcing term. In addition, the recognition of chlorofluorocarbons (CFCs) on stratospheric ozone and its climate effects linked chemistry and climate strongly. What is less recognized, however, is a comparably major global problem dealing with air pollution. Until about ten years ago, air pollution was thought to be just an urban or a local problem. But new data have revealed that air pollution is transported across continents and ocean basins due to fast long-range transport, resulting in trans-oceanic and trans-continental plumes of atmospheric brown clouds (ABCs) containing sub micron size particles, i.e., aerosols. ABCs intercept sunlight by absorbing as well as reflecting it, both of which lead to a large surface dimming. The dimming effect is enhanced further because aerosols may nucleate more cloud droplets, which makes the clouds reflect more solar radiation. The dimming has a surface cooling effect and decreases evaporation of moisture from the surface, thus slows down the hydrological cycle. On the other hand, absorption of solar radiation by black carbon and some organics increase atmospheric heating and tend to amplify greenhouse warming of the atmosphere. ABCs are concentrated in regional and mega-city hot spots. Long-range transport from these hot spots causes widespread plumes over the adjacent oceans. Such a pattern of regionally concentrated surface dimming and atmospheric solar heating, accompanied by widespread dimming over the oceans, gives rise to large regional effects. Only during the last decade, we have begun to comprehend the surprisingly large regional impacts. In S. Asia and N. Africa, the large north-south gradient in the ABC

  20. Through the greenhouse window

    International Nuclear Information System (INIS)

    Townsley, M.

    1989-01-01

    Nuclear power is being promoted as the only answer to the greenhouse effect. However, power station emissions (from fossil-fuel powered stations) account for only a fraction of the total carbon dioxide emissions. And carbon dioxide accounts for only about a half of the global warming effect -the other gases which create the greenhouse effect must also be limited. Nuclear energy is neither a practical nor economic alternative. Energy efficiency and conservation is a far better answer to the greenhouse effect. (U.K.)

  1. The Impact of Upper Tropospheric Humidity from Microwave Limb Sounder on the Midlatitude Greenhouse Effect

    Science.gov (United States)

    Hu, Hua; Liu, W. Timothy

    1998-01-01

    This paper presents an analysis of upper tropospheric humidity, as measured by the Microwave Limb Sounder, and the impact of the humidity on the greenhouse effect in the midlatitudes. Enhanced upper tropospheric humidity and an enhanced greenhouse effect occur over the storm tracks in the North Pacific and North Atlantic. In these areas, strong baroclinic activity and the large number of deep convective clouds transport more water vapor to the upper troposphere, and hence increase greenhouse trapping. The greenhouse effect increases with upper tropospheric humidity in areas with a moist upper troposphere (such as areas over storm tracks), but it is not sensitive to changes in upper tropospheric humidity in regions with a dry upper troposphere, clearly demonstrating that there are different mechanisms controlling the geographical distribution of the greenhouse effect in the midlatitudes.

  2. The climatic warming up (the greenhouse effect); Le rechauffement climatique (l'effet de serre)

    Energy Technology Data Exchange (ETDEWEB)

    Jancovici, J M; Jouzel, J [CEA Saclay, Lab. des Sciences du Climat et de l' Environnement, 91 - Gif-sur-Yvette (France); Lorius, C [Centre National de la Recherche Scientifique (CNRS), Lab. de Glaciologie et Geophysique de l' Environnement, 38 - Grenoble (France); and others

    2000-05-01

    Facing the environmental and biological impacts of the climatic warming up, scientists and economists organized a debate on the subject. After a theoretical presentation of the greenhouse effect and the greenhouse gases, the climatic changes are discussed and simulation of the effects are presented. The today effects and tomorrow impacts on the agriculture and the public health are also presented. A synthesis is proposed to discuss the contribution of the energy policy and of the technological progress in measures of greenhouse effect control. (A.L.B.)

  3. Fight against the greenhouse effect. From the local to the international action

    International Nuclear Information System (INIS)

    Mousel, M.

    2002-01-01

    In the fight against the greenhouse gases emissions, the local government are directly concerned. This sheet aims to explain the greenhouse effect, the kyoto protocol, the french national policy and to orientate the local actions. (A.L.B.)

  4. Effect of reflective surfaces on a greenhouse lettuce crop

    Energy Technology Data Exchange (ETDEWEB)

    Warman, P.R.; Mayhew, W.J.

    1979-01-01

    The Canadian greenhouse industry is an important segment of horticultural production, providing employment for thousands of people. Continuing increases in the costs of conventional fuel supplies, however, has placed the industry in some jeopardy since the cost of heating during the winter months is also escalating. In response to this problem the Brace Research Institute has developed a single roofed greenhouse designed to capture and store the sun's energy, and to increase the amount of downward solar radiation inside the greenhouse through the use of specularly-reflecting back and side walls. The research investigated the effect of a reflective surface on plant growth, development, and nutritional uptake during fall and the early months of winter. The inside walls of the greenhouse were lined with aluminized polyester to act as a reflective surface and flat black roofing felt paper to provide a non-reflecting surface. Grand Rapids Forcing lettuce was planted from seed into a peat-vermiculite bed and total solar radiation was monitored on the horizontal. Over the duration of the experiment, the reflective side of the greenhouse received more than twice as much solar radiation as the non-reflective side leading to significantly larger plant yields on the reflective side. There were no significant differences in the uptake of the plant macronutrients, N, P, K, Ca, and Mg.

  5. Addressing Air Pollution and Greenhouse Gas Emissions in the Pan-Japan Sea Region. An Overview of Economic Instruments

    International Nuclear Information System (INIS)

    Boyle, G.; Kambu, A.

    2005-11-01

    The health and environmental impacts of fossil fuel consumption are of increasing concern to countries in the Pan-Japan Sea region, where economic growth has led to increased energy consumption in recent years. Economic instruments like green taxes and emissions-trading schemes represent important tools to help reduce air pollution and greenhouse gas (GHG) emissions in China, Japan, South Korea and Russia. Over the past several years, OECD countries have made progress in the use of economic instruments to reduce atmospheric air pollution. In Europe, new environmental taxes have been used most extensively, while in the United States market creation and emissions-trading schemes are more common. In the Pan-Japan Sea region, there has been considerable experience with pollution charge and levy systems, including the longstanding Japanese sulfur levy and the Russian and Chinese pollution charge systems. Generally, tax and emissions-trading systems are only beginning to emerge in the region although China has been experimenting with SOx emissions-trading schemes for several years now and South Korea and Japan have already begun experimenting with CO2 emissions-trading schemes. Only Japan has seriously looked at a carbon tax to curb GHG emissions among the four countries while direct subsidies for cleaner technologies have been adopted in the different Pan-Japan Sea countries. The costs and benefits of different economic instruments like taxes, charges, emissions-trading schemes and subsidies vary from case to case because they all have to be financially feasible, rest on informed and competent public institutions and perform effectively in local market and economic conditions. On top of all these is the fact that their overall success depends on their political acceptability. Given the experience of Pan-Japan Sea countries with economic instruments so far vis-a-vis the lessons learned in OECD countries and the nature of current and emerging pollution problems in Pan

  6. Greenhouse effect gases: reduction challenges and accounting methods

    International Nuclear Information System (INIS)

    Dumergues, Laurent

    2012-01-01

    In this article, the author first proposes an overview of strategic challenges related to the reduction of greenhouse gas emissions. He indicates and discusses the various economic consequences of climate change. These consequences can be environmental (issues ranging from a loss of biodiversity to agriculture), social (from climate refugees to tourism), and economic (from climate disasters to insurance). He focuses on the issue of energy (oil at the base of our economy, carbon contents) and discusses competition issues (an always more demanding regulation, and unavoidable practices). In the second part, he proposes an overview of methods of accounting of greenhouse effect gases, and discusses how to perform an emission inventory

  7. Lay perceptions of the greenhouse effect; Les representations profanes de l'effet de serre

    Energy Technology Data Exchange (ETDEWEB)

    Peretti-Watel, P. [Institut National de la Sante et de la Recherche Medicale (INSERM), UMR 379, Epidemiologie et Sciences Sociales Appliquees a l' Innovation Medicale / ORS PACA, 13 - Marseille (France); Hammer, B. [Electricite de France (EDF-GRETS), 92 - Clamart (France)

    2006-10-15

    Using the data from the French Environment Barometer EDF-RD 2004 (national representative sample of French citizens aged over 15) and surveys by ADEME between 2000 and 2005, the paper investigates lay perceptions of the causes and consequences of the greenhouse effect, which may be considered as archetypical of contemporary environmental risks. Beyond lay lack of knowledge, the greenhouse effect gives rise to coherent and meaningful cognitions, including causal explanations, shaped by the pre-existing cognitive framework. This cognitive work, based on analogic rather than scientific thought, strings together the greenhouse effect, ozone depletion, air pollution and even nuclear power. The cognitive process is also fed by the individuals' general conceptions of Nature and of the rights and duties of humankind towards Nature. People are not greatly worried about the unseen and controversial consequences of the greenhouse effect: such worry could be one of those 'elite fears' mentioned by Beck. Finally, while the efficiency of public policies to counter the greenhouse effect requires extensive societal involvement, low confidence towards both political and scientific authorities may prevent the population from becoming aware of the environmental stakes tied to the greenhouse effect. (authors)

  8. Pollution of Coastal Seas

    Indian Academy of Sciences (India)

    These are the things ideally required for locating industries also. The mega-cities .... waste water released into coastal seas raises the ambient temperature causing .... Problems of ozone holes and greenhouse gases were, perhaps, beyond ...

  9. The greenhouse effect. Drivhuseffekten; Jordens atmosfaere og magnetfelt

    Energy Technology Data Exchange (ETDEWEB)

    Egeland, A; Henriksen, T [Oslo Univ., Fysisk Inst. (Norway); Kanestroem, I [Oslo Univ., Inst. for Geofysikk (Norway)

    1990-01-01

    This book deals with what is popularly called ''the greenhouse effect''. The starting point is the sun, and it is considered how the atmosphere and magnetic field of the earth protect us against the radiation from the outer space. The atmosphere contains gases in a quantity and a mixture that make conditions suitable for the life on the earth. We are dependent on the existing greenhouse effect, but are anxious that the emitted gases caused by human activities, will increase the temperature in an alarming degree. The book is addressed to all who have an interest in the nature and the environment. It may be used in colleges and in courses for environmental studies. It gives information to politicians and other people who have to make decisions in the management of the nature and the resources of the earth. 70 figs., 15 tabs.

  10. The greenhouse effect: will we change the climate?

    International Nuclear Information System (INIS)

    Le Treut, H.

    2004-01-01

    This book presents the great climate factors, the changes resulting from the greenhouse effect and the corresponding human factors part, the atmosphere chemical composition and the biological and geo-political risks bound to the climatic changes. (A.L.B.)

  11. Greenhouse effect: there are solutions

    International Nuclear Information System (INIS)

    Anon.

    1997-01-01

    A review of solutions that may be undertaken in order to reduce the greenhouse effect gas emissions is presented: clean energy generation through municipal, agricultural and industrial waste processing, reducing energy consumption through public transportation promotion, clean fuel buses and vehicles, or using energy efficient boilers, reduction of carbon dioxide emission from industry through process optimization, waste recycling, energy substitution and conservation, diminution of CO 2 emissions in commercial and residential sectors through space heating and air conditioning retrofitting, lighting substitution. Pollution abatement potentials are evaluated in each case, notably in France

  12. Effects of nitrogen fertilizer application on greenhouse gas emissions and economics of corn production.

    Science.gov (United States)

    Kim, Seungdo; Dale, Bruce E

    2008-08-15

    Nitrogen fertilizer plays an important role in corn cultivation in terms of both economic and environmental aspects. Nitrogen fertilizer positively affects corn yield and the soil organic carbon level, but it also has negative environmental effects through nitrogen-related emissions from soil (e.g., N20, NOx, NO3(-) leaching, etc.). Effects of nitrogen fertilizer on greenhouse gas emissions associated with corn grain are investigated via life cycle assessment. Ecoefficiency analysis is also used to determine an economically and environmentally optimal nitrogen application rate (NAR). The ecoefficiency index in this study is defined as the ratio of economic return due to nitrogen fertilizer to the greenhouse gas emissions of corn cultivation. Greenhouse gas emissions associated with corn grain decrease as NAR increases at a lower NAR until a minimum greenhouse gas emission level is reached because corn yield and soil organic carbon level increase with NAR. Further increasing NAR after a minimum greenhouse gas emission level raises greenhouse gas emissions associated with corn grain. Increased greenhouse gas emissions of corn grain due to nitrous oxide emissions from soil are much higher than reductions of greenhouse gas emissions of corn grain due to corn yield and changes in soil organic carbon levels at a higher NAR. Thus, there exists an environmentally optimal NAR in terms of greenhouse gas emissions. The trends of the ecoefficiency index are similar to those of economic return to nitrogen and greenhouse gas emissions associated with corn grain. Therefore, an appropriate NAR could enhance profitability as well as reduce greenhouse gas emissions associated with corn grain.

  13. Computer Study of Cluster Mechanism of Anti-greenhouse Effect

    OpenAIRE

    A. Galashev

    2009-01-01

    Absorption spectra of infra-red (IR) radiation of the disperse water medium absorbing the most important greenhouse gases: CO2 , N2O , CH4 , C2H2 , C2H6 have been calculated by the molecular dynamics method. Loss of the absorbing ability at the formation of clusters due to a reduction of the number of centers interacting with IR radiation, results in an anti-greenhouse effect. Absorption of O3 molecules by the (H2O)50 cluster is investigated at its interaction with Cl- io...

  14. SF6 and the greenhouse effect

    International Nuclear Information System (INIS)

    Gjaerde, Anne Cathrine; Rein, Asgaut; Hegerberg, Rolf; Kulsetaas, John

    1997-01-01

    The gas SF 6 (sulfur hexafluoride) is much used as an insulation medium in electric switchgear and breakers. However, there has been some recent concern about the possible contribution of SF 6 to the global greenhouse effect. This report presents some collected facts about SF 6 emission. The concentration of SF 6 in the atmosphere is very low and will probably remain so until the end of the next century. Hence the contribution of SF 6 to the greenhouse effect is negligible. Most of the SF 6 emission comes from the magnesium and aluminium industries. In 1993, SF 6 emission from switchgear in the Norwegian distribution grid corresponded to only 0.2 per million of the CO 2 emission in Norway. But the quantity of SF 6 accumulated in electric switchgear is considerable. However, losing it to the atmosphere can be avoided by using recirculation or destruction systems for SF 6 in connection with maintenance and replacement of components. Norwegian climate policy aims at taking measures against SF 6 and other climate gases on a par with CO 2 . Taxation measures have been suggested for SF 6 . Atmospheric SF 6 does not influence the ozone layer. 3 refs., 8 figs

  15. Greenhouse effect: Evolution of scientific message and its transfer

    International Nuclear Information System (INIS)

    Braicovich, L.; Amman, F.; Pavia Univ.

    1991-01-01

    The greenhouse effect, not anymore confined to scientific journals, is becoming a policy issue and, possibly, a nightmare in public opinion. In this analysis of the evolution of the scientific message and its transfer to policy makers and public opinion, the paper first considers, in general terms, the more recent trends in related research activity and in the transfer processes of the results. Then, a more detailed examination is made of the progress achieved in the years 1989-1990 through scientific research in various aspects of the greenhouse effect. It is confirmed that, for the time being, the scientific results leave many important points unresolved; policy decisions on the matter cannot therefore rely on present scientific knowledge as if it were firmly established

  16. Will malaria return to Europe under the greenhouse effect?

    NARCIS (Netherlands)

    Takken, W.; Wege, van de J.; Jetten, T.H.

    1995-01-01

    Malaria risk is determined by environmental and socio-economic factors. The predicted climate change under the greenhouse effect is likely to affect the epidemic potential of malaria due to a change in vector mosquito phenology and distribution. This effect was simulated using a computer model

  17. Policy and Environmental Implications of Photovoltaic Systems in Farming in Southeast Spain: Can Greenhouses Reduce the Greenhouse Effect?

    Directory of Open Access Journals (Sweden)

    Angel Carreño-Ortega

    2017-05-01

    Full Text Available Solar photovoltaic (PV systems have grown in popularity in the farming sector, primarily because land area and farm structures themselves, such as greenhouses, can be exploited for this purpose, and, moreover, because farms tend to be located in rural areas far from energy production plants. In Spain, despite being a country with enormous potential for this renewable energy source, little is being done to exploit it, and policies of recent years have even restricted its implementation. These factors constitute an obstacle, both for achieving environmental commitments and for socioeconomic development. This study proposes the installation of PV systems on greenhouses in southeast Spain, the location with the highest concentration of greenhouses in Europe. Following a sensitivity analysis, it is estimated that the utilization of this technology in the self-consumption scenario at farm level produces increased profitability for farms, which can range from 0.88% (worst scenario to 52.78% (most favorable scenario. Regarding the Spanish environmental policy, the results obtained demonstrate that the impact of applying this technology mounted on greenhouses would bring the country 38% closer to reaching the 2030 greenhouse gas (GHG target. Furthermore, it would make it possible to nearly achieve the official commitment of 20% renewable energies by 2020. Additionally, it would have considerable effects on the regional socioeconomy, with increases in job creation and contribution to gross domestic product (GDP/R&D (Research and Development, allowing greater profitability in agrifood activities throughout the entire region.

  18. The climatic warming up (the greenhouse effect); Le rechauffement climatique (l'effet de serre)

    Energy Technology Data Exchange (ETDEWEB)

    Jancovici, J.M.; Jouzel, J. [CEA Saclay, Lab. des Sciences du Climat et de l' Environnement, 91 - Gif-sur-Yvette (France); Lorius, C. [Centre National de la Recherche Scientifique (CNRS), Lab. de Glaciologie et Geophysique de l' Environnement, 38 - Grenoble (France)] [and others

    2000-05-01

    Facing the environmental and biological impacts of the climatic warming up, scientists and economists organized a debate on the subject. After a theoretical presentation of the greenhouse effect and the greenhouse gases, the climatic changes are discussed and simulation of the effects are presented. The today effects and tomorrow impacts on the agriculture and the public health are also presented. A synthesis is proposed to discuss the contribution of the energy policy and of the technological progress in measures of greenhouse effect control. (A.L.B.)

  19. Maximum weight of greenhouse effect to global temperature variation

    International Nuclear Information System (INIS)

    Sun, Xian; Jiang, Chuangye

    2007-01-01

    Full text: The global average temperature has risen by 0.74 0 C since the late 19th century. Many studies have concluded that the observed warming in the last 50 years may be attributed to increasing concentrations of anthropogenic greenhouse gases. But some scientists have a different point of view. Global climate change is affected not only by anthropogenic activities, but also constraints in climate system natural factors. How much is the influencing weight of C02's greenhouse effects to the global temperature variation? Does global climate continue warming or decreasing in the next 20 years? They are two hot spots in global climate change. The multi-timescales analysis method - Empirical mode decomposition (EMD) is used to diagnose global annual mean air temperature dataset for land surface provided by IPCC and atmospheric content of C02 provided by the Carbon Dioxide Information Analysis Center (CDIAC) during 1881-2002. The results show that: Global temperature variation contains quasi-periodic oscillations on four timescales (3 yr, 6 yr, 20 yr and 60 yr, respectively) and a century-scale warming trend. The variance contribution of IMF1-IMF4 and trend is 17.55%, 11.34%, 6.77%, 24.15% and 40.19%, respectively. The trend and quasi-60 yr oscillation of temperature variation are the most prominent; C02's greenhouse effect on global temperature variation is mainly century-scale trend. The contribution of C02 concentration to global temperature variability is not more than 40.19%, whereas 59.81% contribution to global temperature variation is non-greenhouse effect. Therefore, it is necessary to re-study the dominant factors that induce the global climate change; It has been noticed that on the periods of 20 yr and 60 yr oscillation, the global temperature is beginning to decreased in the next 20 years. If the present C02 concentration is maintained, the greenhouse effect will be too small to countercheck the natural variation in global climate cooling in the next 20

  20. Greenhouse cooling and heat recovery using fine wire heat exchangers in a closed pot plant greenhouse: design of an energy producing greenhouse

    NARCIS (Netherlands)

    Bakker, J.C.; Zwart, de H.F.; Campen, J.B.

    2006-01-01

    A greenhouse cooling system with heat storage for completely closed greenhouses has been designed, based on the use of a fine wire heat exchanger. The performance of the fine wire heat exchangers was tested under laboratory conditions and in a small greenhouse compartment. The effects of the system

  1. The greenhouse effect: Its causes, possible impacts, and associated uncertainties

    International Nuclear Information System (INIS)

    Schneider, S.H.; Rosenberg, N.J.

    1991-01-01

    The Earth's climate changes. The climatic effects of having polluted the atmosphere with gases such as carbon dioxide (CO2) may already be felt. There is no doubt that the concentration of CO2 in the atmosphere has been rising. CO2 tends to trap heat near the Earth's surface. This is known as the greenhouse effect, and its existence and basic mechanisms are not questioned by atmospheric scientists. What is questioned is the precise amount of warming and the regional pattern of climatic change that can be expected on the Earth from the anthropogenic increase in the atmospheric concentration of CO2 and other greenhouse gases. It is the regional patterns of changes in temperature, precipitation, and soil moisture that will determine what impact the greenhouse effect will have on natural ecosystems, agriculture, and water supplies. These possible effects are discussed in detail. It is concluded, however, that a detailed assessment of the climatic, biological, and societal changes that are evolving and should continue to occur into the next century cannot reliably be made with available scientific capabilities. Nevertheless, enough is known to suggest a range of plausible futures with attendant impacts, both positive and negative, on natural resources and human well being

  2. Direct Demonstration of the Greenhouse Effect

    Science.gov (United States)

    Jaffe, D. A.; Malashanka, S.; Call, K.; Bernays, N.

    2012-12-01

    Consider these three "theories:" climate change, evolution, and gravity. Why are two of them hotly debated by non-scientists, but not gravity? In part, the answer is that climate change and evolution are more complex processes and not readily observable over short time scales to most people. In contrast, the "theory of gravity" is tested every day by billions of people world-wide and is therefore not challenged. While there are numerous "demonstrations" of the greenhouse effect available online, unfortunately, many of them are based on poor understanding of the physical principles involved. For this reason, we sought to develop simple and direct experiments that would demonstrate aspects of the greenhouse effect that would be suitable for museums, K-12, and/or college classrooms. We will describe two experiments. In the first, we use a simple plexiglass tube, approximately 12 cm long, with IR transparent windows. The tube is first filled with dry nitrogen and exposed to an IR heat lamp. Following this, the tube is filled with pure, dry CO2. Both tubes warm up, but the tube filled with CO2 ends up about 0.7 degrees C warmer. It is useful to compare this 12 cm column of CO2 to the column in the earth's atmosphere, which is equivalent to approximately 2.7 meters of pure CO2. This demonstration would be suitable for museum exhibits to demonstrate the physical basis of CO2 heating in the atmosphere. In the second experiment, we use FTIR spectroscopy to quantify the CO2 content of ambient air and indoor/classroom air. For this experiment, we use a commercial standard of 350 ppm CO2 to calibrate the absorption features. Once the CO2 content of ambient air is found, it is useful for students to compare their observed value to background data (e.g. NOAA site in Hawaii) and/or the "Keeling Curve". This leads into a discussion on causes for local variations and the long-term trends. This experiment is currently used in our general chemistry class but could be used in many

  3. Combating the greenhouse effect: no role for nuclear power

    International Nuclear Information System (INIS)

    Leggett, J.K.; Kelly, P.M.

    1990-01-01

    Many governments, including the United Kingdom government, now recognise the need for an immediate policy response to the dangerous build up of carbon dioxide and other greenhouse gases in the atmosphere. One immediate goal must be to cut substantially the amount of energy we use. British Nuclear Fuels have recently begun an advertising campaign to promote the expansion of nuclear power as a solution to the greenhouse effect, and government ministers have also advanced this concept in recent statements. In this report we argue that governments must not seek to involve nuclear power in combating global warming for the following reasons: seeking to replace all (or a part) of coal-fired power output with nuclear addresses only 10% (or less) of the greenhouse problem, it is many times cheaper to save a unit of energy than to generate an additional unit, to throw funds at enlarging the nuclear programme at the expense of investment in energy efficiency measures would in fact be to add to the greenhouse threat, the scope for the introduction of energy efficiency is enormous, nuclear power is not a viable option for third World countries, energy-efficiency measures can be introduced far more quickly than can nuclear power stations and energy efficiency technology is proven technology. (author)

  4. The greenhouse effect and climate warming up

    International Nuclear Information System (INIS)

    Leygonie, R.

    1992-01-01

    The present article is a follow-up to a previous article, under the same title, which describes the scientific bases of the greenhouse effect and the prospect, based on climatic global models, of a potential climate warming up. The conclusions of the Intergovernmental Panel on Climate Change (IPCC, August 1990) were summarized, predicting a mean global temperature increase between 2.4 and 5.1 deg C in 2070, among other changes. The recent IPCC work confirms 1990 conclusions but states that the decline of ozone in the lower stratosphere could neutralize the radiative forcing of chlorofluorocarbons. At least ten more years of investigation are needed to ascertain an increase of the greenhouse effect. Information is given on recent events which may be connected with the global climate problem, in particular the spectacular eruption of the Pinatubo volcano, in mid 1991, cause of a probable cooling of the atmosphere and a potential decrease of radiative forcing due to anthropogenic dioxide emissions. The most important recent events in the political field is a directive proposal by the European Commission aimed at a taxation of both energy in general and of carbon dioxide emissions by fossil fuels. Another event is the United Nations Convention on climate change, signed by 155 countries at the Rio de Janeiro Conference on Environment and Development, which pledges signatories to decrease their greenhouse gas - emissions but no figures are given on percentages and calendar of reduction. At last, a short chapter is devoted to the French ECLAT programme on climate change which consists both in participating in world programmes and in performing original investigations by French Scientists

  5. Titan's greenhouse and antigreenhouse effects

    Science.gov (United States)

    Mckay, Christopher P.; Pollack, James B.; Courtin, Regis

    1992-01-01

    Thermal mechanisms active in Titan's atmosphere are discussed in a brief review of data obtained during the Voyager I flyby in 1980. Particular attention is given to the greenhouse effect (GHE) produced by atmospheric H2, N2, and CH4; this GHE is stronger than that on earth, with CH4 and H2 playing roles similar to those of H2O and CO2 on earth. Also active on Titan is an antigreenhouse effect, in which dark-brown and orange organic aerosols block incoming solar light while allowing IR radiation from the Titan surface to escape. The combination of GHE and anti-GHE leads to a surface temperature about 12 C higher than it would be if Titan had no atmosphere.

  6. The greenhouse effect and nuclear energy

    International Nuclear Information System (INIS)

    Coulter, J.

    1988-01-01

    The author argues that nuclear power will do little to mitigate the problem of the greenhouse effect and is likely to exacerbate it. Changes since the mid 1970s illustrate the close linking of nuclear and economic growth with the associated growth of fossil fill consumption, the inability of nuclear power to substitute for fossil either technically or economically, and the greater contribution that can be made to energy availability and to reduction of carbon dioxide release by conservation

  7. Forest fires prevention and limitation of the greenhouse effect

    Directory of Open Access Journals (Sweden)

    2005-01-01

    Full Text Available The contribution of forest fires to the carbon budget and greenhouse effect is examined at global and national (Italian scale and forest management options directed to preventing fires are briefly outlined.

  8. Quantification of the greenhouse effect gases at the territorial scale. Final report

    International Nuclear Information System (INIS)

    Magnin, G.; Lacassagne, S.

    2003-07-01

    An efficient action against the greenhouse effect needs the implication of the local collectivities. To implement appropriate energy policies, deciders need information and tools to quantify the greenhouse gases and evaluate the obtained results of their greenhouse gases reduction policies. This study is a feasibility study of the tools realization, adapted to the french context. It was done in three steps: analysis of the existing tools, application to the french context and elaboration of the requirements of appropriate tools. This report presents the study methodology, the information analysis and the conclusions. (A.L.B.)

  9. Elementary Pre-Service Teacher Perceptions of the Greenhouse Effect.

    Science.gov (United States)

    Groves, Fred H.; Pugh, Ava F.

    1999-01-01

    Expands on earlier work to examine pre-service teachers' views on environmental issues, especially global warming and the related term "greenhouse effect." Suggests that pre-service elementary teachers hold many misconceptions about environmental issues. (DDR)

  10. Energy and greenhouse-gas emissions in irrigated agriculture of SE (southeast) Spain. Effects of alternative water supply scenarios

    International Nuclear Information System (INIS)

    Martin-Gorriz, B.; Soto-García, M.; Martínez-Alvarez, V.

    2014-01-01

    Global warming is leading to a water resources decrease in the Mediterranean basin, where future farming resilience depends on incorporating alternative water sources and improving water-energy use efficiency. This paper assesses water and energy consumption when natural water sources are partially replaced by desalinated sea water. Initially, energy consumption, water supply and GHG (greenhouse gas) emissions were recorded for the current farming practices in SE (southeast) Spain. The results of our study indicate that citrus orchards have the lowest energy consumption and GHG emissions. Annual vegetables were the least energy efficient crops. Subsequently, two alternative water supply scenarios were analysed, in which the reduction of natural water resources associated to climate change was compensated with desalinated sea water. The use of 16.8% of desalinated seawater would increase energy consumption by 32.4% and GHG emissions by 19.6%, whereas for the use of 26.5% of desalinated seawater such increases would amount to 50.0% and 30.3%, respectively. Therefore maintaining irrigated agriculture in water-stressed regions by incorporating high energy demanding non-traditional water sources could negatively contribute to combat global warming. - Highlights: • Water supply, energy consumption and GHG (greenhouse gas) emissions in irrigated agriculture are very connected. • The use of desalinated sea water will increase the energy consumption, and GHG emissions will rise. • The use of non-traditional water resources enhances global warming processes. • Citrus orchards are the less sensitive crop to alternative water supplied scenarios. • Artichoke is the most sensitive crop to alternative water supplied scenarios

  11. A new index to assess chemicals increasing the greenhouse effect based on their toxicity to algae.

    Science.gov (United States)

    Wang, Ting; Zhang, Xiaoxian; Tian, Dayong; Gao, Ya; Lin, Zhifen; Liu, Ying; Kong, Lingyun

    2015-11-01

    CO2, as the typical greenhouse gas causing the greenhouse effect, is a major global environmental problem and has attracted increasing attention from governments. Using algae to eliminate CO2, which has been proposed as an effective way to reduce the greenhouse effect in the past decades, can be disturbed by a growing number of artificial chemicals. Thus, seven types of chemicals and Selenastrum capricornutum (algae) were examined in this study, and the good consistency between the toxicity of artificial chemicals to algae and the disturbance of carbon fixation by the chemicals was revealed. This consistency showed that the disturbance of an increasing number of artificial chemicals to the carbon fixation of algae might be a "malware" worsening the global greenhouse effect. Therefore, this study proposes an original, promising index to assess the risk of deepening the greenhouse effect by artificial chemicals before they are produced and marketed. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Student Mental Models of the Greenhouse Effect: Retention Months After Interventions

    Science.gov (United States)

    Harris, S. E.; Gold, A. U.

    2013-12-01

    Individual understanding of climate science, and the greenhouse effect in particular, is one factor important for societal decision-making. Ideally, learning opportunities about the greenhouse effect will not only move people toward expert-like ideas but will also have long-lasting effects for those individuals. We assessed university students' mental models of the greenhouse effect before and after specific learning experiences, on a final exam, then again a few months later. Our aim was to measure retention after students had not necessarily been thinking about, nor studying, the greenhouse effect recently. How sticky were the ideas learned? 164 students in an introductory science course participated in a sequence of two learning activities and assessments regarding the greenhouse effect. The first lesson involved the full class, then, for the second lesson, half the students completed a simulation-based activity and the other half completed a data-driven activity. We assessed student thinking through concept sketches, multiple choice and short answer questions. All students generated concept sketches four times, and completed a set of multiple choice (MCQs) and short answer questions twice. Later, 3-4 months after the course ended, 27 students ('retention students') completed an additional concept sketch and answered the questions again, as a retention assessment. These 27 students were nearly evenly split between the two contrasting second lessons in the sequence and included both high and low-achieving students. We then compared student sketches and scores to 'expert' answers. The general pattern over time showed a significant increase in student scores from before the lesson sequence to after, both on concept sketches and MCQs, then an additional increase in concept sketch score on the final exam (MCQs were not asked on the final exam). The scores for the retention students were not significantly different from the full class. Within the retention group

  13. Using Interactive Technology to Support Students' Understanding of the Greenhouse Effect and Global Warming

    Science.gov (United States)

    Varma, Keisha; Linn, Marcia C.

    2012-01-01

    In this work, we examine middle school students' understanding of the greenhouse effect and global warming. We designed and refined a technology-enhanced curriculum module called "Global Warming: Virtual Earth". In the module activities, students conduct virtual experiments with a visualization of the greenhouse effect. They analyze data and draw…

  14. REVISITING THE SCATTERING GREENHOUSE EFFECT OF CO2 ICE CLOUDS

    International Nuclear Information System (INIS)

    Kitzmann, D.

    2016-01-01

    Carbon dioxide ice clouds are thought to play an important role for cold terrestrial planets with thick CO 2 dominated atmospheres. Various previous studies showed that a scattering greenhouse effect by carbon dioxide ice clouds could result in a massive warming of the planetary surface. However, all of these studies only employed simplified two-stream radiative transfer schemes to describe the anisotropic scattering. Using accurate radiative transfer models with a general discrete ordinate method, this study revisits this important effect and shows that the positive climatic impact of carbon dioxide clouds was strongly overestimated in the past. The revised scattering greenhouse effect can have important implications for the early Mars, but also for planets like the early Earth or the position of the outer boundary of the habitable zone

  15. A meteorologist's view of the greenhouse effect

    International Nuclear Information System (INIS)

    Zillman, J.W.

    2001-01-01

    The greenhouse effect is a natural process in the atmosphere which keeps the earth's surface warm enough for human life There are theoretical and observational reasons for believing that increasing atmospheric concentrations of the trace gases responsible for this surface warmth are leading to enhanced warming and other changes of global and regional climate By modifying the meteorological models used for routine numerical weather prediction to incorporate the influences that are believed to be of most importance on decade to century and longer time scales, the climate research community are able to explore the possible impacts on global and regional climate of a range of possible future greenhouse gas emissions and concentrations. Despite many uncertainties, these provide the principal scientific basis for intergovernmental negotiation on the development of global strategies for averting or minimising adverse human impacts on climate and assisting national communities in planning to live with natural climate variability and possible future human-induced change

  16. Assessment of US, Indian and Chinese Middle School Students' Outlook on the Greenhouse Effect

    Science.gov (United States)

    Niyogi, D.; Ganesh, N.; Singh, D.; Liu, X.; Shepardson, D. P.; Roychoudhury, A.; Hirsch, A.; Halversen, C.

    2012-12-01

    When you think of the greenhouse effect and climate change what images and concepts come to mind? Answers to these questions are important to educators and policy makers as they wrestle with the issue of educating and conveying these concepts in class rooms and to the general public. The greenhouse effect (GHE) sustains life on the earth through regulating the temperatures on the planet. Well-mixed greenhouse gases (GHGs) such as water vapor, carbon dioxide, methane, and nitrous oxide absorb outgoing (long wave) radiation from the Earth's surface while allowing passage without absorption of the incoming solar (shortwave) radiation. Increasing the GHG concentration in the atmosphere increases the absorption of long wavelength radiation thereby increasing global temperatures that result in changes in the atmospheric states consistently over multiple decades.The concept of the greenhouse effect is critical to the discussions underway pertaining to climate change and the controls on greenhouse emissions being proposed in different forums. This study sought to (1) investigate students' conceptions about the greenhouse effect, global warming and climate change; (2) determine if there are differences between perceptions for students in US, India and China (Asia)- where there are known differences in the political and scientific approaches; and (3) determine if there any differences, contextual or otherwise, in the way the greenhouse effect is taught in these countries. This study was conducted in select schools in the Midwest US, India and China that volunteered to work with this project. -For US, data from 51 secondary students from three different schools were analyzed, for India the number was 71 from 3 schools, while for China the number is over 100 (and being analyzed) from different classes within a school. Study Hypotheses: 1.Middle school students have a good scientific understanding of greenhouse gases. 2.The U.S and Asian students have the same outlook. Teachers

  17. A simple demonstration of the greenhouse effect

    International Nuclear Information System (INIS)

    Adelhelm, M.; Hoehn, E.G.

    1993-01-01

    One of the greatest threats humankind may face in the future is the expected warming of the atmosphere within the next decades, caused by the release of infrared-absorbing gases especially carbon dioxide, into the atmosphere. For an increase of atmospheric CO 2 concentration to twice its present value, model calculations predict an increase in temperature of the lower atmosphere of 1.5 to 4.5 C, with concomitant dramatic effects on vegetation, climate, and ocean levels. Much has been published about causes, effects, and possible strategies for abatement of this 'greenhouse effect', and this important topic in science curricula

  18. Application of dynamic model to predict some inside environment variables in a semi-solar greenhouse

    Directory of Open Access Journals (Sweden)

    Behzad Mohammadi

    2018-06-01

    Full Text Available Greenhouses are one of the most effective cultivation methods with a yield per cultivated area up to 10 times more than free land cultivation but the use of fossil fuels in this production field is very high. The greenhouse environment is an uncertain nonlinear system which classical modeling methods have some problems to solve it. There are many control methods, such as adaptive, feedback and intelligent control and they require a precise model. Therefore, many modeling methods have been proposed for this purpose; including physical, transfer function and black-box modeling. The objective of this paper is to modeling and experimental validation of some inside environment variables in an innovative greenhouse structure (semi-solar greenhouse. For this propose, a semi-solar greenhouse was designed and constructed at the North-West of Iran in Azerbaijan Province (38°10′N and 46°18′E with elevation of 1364 m above the sea level. The main inside environment factors include inside air temperature (Ta and inside soil temperature (Ts were collected as the experimental data samples. The dynamic heat transfer model used to estimate the temperature in two different points of semi-solar greenhouse with initial values. The results showed that dynamic model can predict the inside temperatures in two different points (Ta and Ts with RMSE, MAPE and EF about 5.3 °C, 10.2% and 0.78% and 3.45 °C, 7.7% and 0.86%, respectively. Keywords: Semi-solar greenhouse, Dynamic model, Commercial greenhouse

  19. The greenhouse effect: A summary of KEMA research

    International Nuclear Information System (INIS)

    Ruijgrok, W.

    1994-01-01

    An overview of current research at KEMA in the field of the greenhouse effect and climatic change is presented. Project information regarding motivation, aim, planning and results is given. The projects are carried out within the framework of the so-called 'Collectieve Opdracht' (joint assignment) of the Dutch electric power generating utilities

  20. Knowledge about the 'Greenhouse Effect': Have College Students Improved?

    Science.gov (United States)

    Jeffries, Helen; Stanisstreet, Martin; Boyes, Edward

    2001-01-01

    The ideas of Year I undergraduate biology students about the consequences, causes, and cures of the 'greenhouse effect' was determined using a closed-form questionnaire, and results were compared with a parallel study undertaken nearly 10 years ago. Many of the students in the present survey were unaware of the potential effect of global warming…

  1. Exploring the Greenhouse Effect through Physics-Oriented Activities

    Science.gov (United States)

    Browne, Kerry P.; Laws, Priscilla W.

    2003-01-01

    We are developing a new activity-based unit on global warming and the environment as part of the "Explorations in Physics Curriculum." We describe the current status of this unit, which focuses on helping students understand the greenhouse effect and its relationship to global warming. We outline several problems encountered in testing the unit…

  2. R W Wood's Experiment Done Right - A Laboratory Demonstration of the Greenhouse Effect

    Science.gov (United States)

    Halpern, J. B.

    2016-12-01

    It would not be exaggerating to say that R. W. Wood was the most respected experimental optical physicist of his time. Thus the null result of his attempt to demonstrate the greenhouse effect by comparing temperature rise in illuminated cylinders with glass or rock salt windows has echoed down through the years in climate science discussions both on the professional and public levels1. Today the web is full of videos purporting to demonstrate the greenhouse effect, but careful examination shows that they simply demonstrate heating via absorption of IR or NIR light by CO2. These experiments miss that the greenhouse effect is a result of the temperature difference between the surface and the upper troposphere as a result of which radiation from greenhouse molecules slows as the level rises. The average distance a photon emitted from a vibrationally excited CO2 molecule is about 10 m at the surface, increasing with altitude until at about 8 km the mean free path allows for radiation to space. Increasing CO2 concentrations raises this level to a higher one, which is colder, and at which the rate of radiation to space decreases. Emitting the same amount of radiation to space as before requires heating the entire system including the surface. To model the greenhouse effect we have used a 22 L bulb with a capsule heater in the center. The temperature near the heater (the surface) or above it can be monitored using a thermocouple and the CO2 mixing ratio determined using a NDIR sensor. By controlling the CO2 concentration in the bulb, the mean free path of re-radiated photons from CO2 can be controlled so that it much smaller than the bulb's diameter. We have measure rises in temperature both near the heater and at a distance from it as CO2is introduced, demonstrating the greenhouse effect. 1. R.W. Wood, London, Edinborough and Dublin Philosophical Magazine , 1909, 17, p319-320 also http://www.wmconnolley.org.uk/sci/wood_rw.1909.html

  3. Photovoltaic greenhouses: evaluation of shading effect and its influence on agricultural performances

    Directory of Open Access Journals (Sweden)

    Sergio Castellano

    2014-12-01

    Full Text Available During the last years, European government remuneration polices promoted the realisation of photovoltaic systems integrated with the structures instead of on ground photovoltaic (PV plants. In this context, in rural areas, greenhouses covered with PV modules have been developed. In order to interdict the building of greenhouses with an amount of opaque panels on covering not coherent with the plant production, local laws assigned a threshold value, usually between 25% and 50%, of the projection on the soil of the roof. These ranges seem not to be based on scientific evaluation about the agricultural performances required to the building but only on empirical assessments. Purpose of this paper is to contribute to better understand the effect of different configurations of PV panels on the covering of a monospan duo-pitched roof greenhouse in terms of shading effect and energy efficiency during different periods of the year. At this aim, daylighting and insolation analysis were performed by means of the software Autodesk® Ecotect® Analysis (Autodesk, Inc., San Rafael, CA, USA on greenhouse model with different covering ratio of polycrystalline photovoltaic panels on the roof.

  4. A time dependent zonally averaged energy balance model to be incorporated into IMAGE (Integrated Model to Assess the Greenhouse Effect). Collaborative Paper

    International Nuclear Information System (INIS)

    Jonas, M.; Olendrzynski, K.; Elzen, M. den

    1991-10-01

    The Intergovernmental Panel on Climate Change (IPCC) is placing increasing emphasis on the use of time-dependent impact models that are linked with energy-emission accounting frameworks and models that predict in a time-dependent fashion important variables such as atmospheric concentrations of greenhouse gases, surface temperature and precipitation. Integrating these tools (greenhouse gas emission strategies, atmospheric processes, ecological impacts) into what is called an integrated assessment model will assist policymakers in the IPCC and elsewhere to assess the impacts of a wide variety of emission strategies. The Integrated Model to Assess the Greenhouse Effect (IMAGE; developed at RIVM) represents such an integrated assessment model which already calculates historical and future effects of greenhouse gas emissions on global surface temperature, sea level rise and other ecological and socioeconomic impacts. However, to be linked to environmental impact models such as the Global Vegetation Model and the Timber Assessment Model, both of which are under development at RIVM and IIASA, IMAGE needs to be regionalized in terms of temperature and precipitation output. These key parameters will then enable the above environmental impact models to be run in a time-dependent mode. In this paper we lay the scientific and numerical basis for a two-dimensional Energy Balance Model (EBM) to be integrated into the climate module of IMAGE which will ultimately provide scenarios of surface temperature and precipitation, resolved with respect to latitude and height. This paper will deal specifically with temperature; following papers will deal with precipitation. So far, the relatively simple EBM set up in this paper resolves mean annual surface temperatures on a regional scale defined by 10 deg latitude bands. In addition, we can concentrate on the implementation of the EBM into IMAGE, i.e., on the steering mechanism itself. Both reasons justify the time and effort put into

  5. The Greenhouse effect: from research to political action

    International Nuclear Information System (INIS)

    Bernard, A.; Charmant, A.; Ladoux, N.; Vielle, M.

    1992-01-01

    What would be the ecological and socio-economic consequences of the warming of the planet Earth. The greenhouse effect is better defined today, but evaluating the dangers is still a risky business which demands extreme caution. The study recapitulates the current state of knowledge, and the preventive measures under consideration, so as to encourage the examination of the question

  6. The super greenhouse effect in a warming world: the role of dynamics and thermodynamics

    Science.gov (United States)

    Kashinath, Karthik; O'Brien, Travis; Collins, William

    2016-04-01

    Over warm tropical oceans the increase in greenhouse trapping with increasing SST can be faster than that of the surface emission, resulting in a decrease in clear sky outgoing longwave radiation at the top of the atmosphere (OLR) when SST increases, also known as the super greenhouse effect (SGE). If the SGE is directly linked to SST changes, there are profound implications for positive climate feedbacks in the tropics. We show that CMIP5 models perform well in simulating the observed clear-sky greenhouse effect in the present day. Using global warming experiments we show that the onset and shutdown SST of the SGE, as well as the magnitude of the SGE, increase as the convective threshold SST increases. To account for an increasing convective threshold SST we use an invariant coordinate for convection proposed in a recent study [Williams et al., GRL (2009)]. However, even after accounting for the increase in tropical SST (by normalizing the SGE by surface emission) and accounting for the increase in the threshold temperature for convection (by using the invariant coordinate) we find that the models predict a distinct increase in the clear-sky greenhouse effect in a warmed world. This suggests that thermodynamics (i.e. SST) plays a crucial role in regulating the increasing clear sky greenhouse effect in a warming world. We use theoretical arguments to estimate this increase in SGE and derive its dependence on SST. Finally, as shown in previous studies, we confirm that the increase in the clear-sky greenhouse effect is primarily due to upper tropospheric moistening. Although the absolute increase in upper tropospheric water vapor is small compared to that of the lower troposphere, since the absorptivity scales with fractional changes in water vapor, the contribution of the upper troposphere is more significant, as shown by Chung et al., PNAS (2014).

  7. The Greenhouse effect within an analytic model of the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Dehnen, Heinz [Konstanz Univ. (Germany). Fachbereich Physik

    2009-01-15

    Within a simplified atmospheric model the greenhouse effect is treated by analytical methods starting from physical first principles. The influence of solar radiation, absorption cross sections of the greenhouse molecules, and cloud formation on the earth's temperature is shown and discussed explicitly by mathematical formulae in contrast to the climate simulations. The application of our analytical results on the production of 20 .10{sup 9} t of CO{sub 2} per year yields an enlargement of the earth's surface temperature of 2.3 .10{sup -2} C per year in agreement with other estimations. (orig.)

  8. The greenhouse effect

    International Nuclear Information System (INIS)

    Choudhury, A.M.

    1990-10-01

    In this paper, the effect of the increase of the temperature of the earth's atmosphere as a consequence of the increase in the CO 2 and other trace gas content has been reviewed. The results of various model studies have been included. There is the frightening prediction that global mean temperature will rise by several degrees with the consequent rise of mean sea level. Model computations also show that in the tropics rainfall will increase whereas in the subtropics and southern mid latitude, rainfall will decrease. If this happens, mankind will be faced with a major disaster in history. Agreement between theory and observations has been discussed. (author). 16 refs, 8 tabs

  9. HFCs contribution to the greenhouse effect. Present and projected estimations

    Energy Technology Data Exchange (ETDEWEB)

    Libre, J.M.; Elf-Atochem, S.A. [Central Research & Development, Paris (France)

    1997-12-31

    This paper reviews data that can be used to calculate hydrofluorocarbon (HFC) contribution to the greenhouse effect and compare it to other trace gas contributions. Projections are made for 2010 and 2100 on the basis of available emission scenarios. Industrial judgement on the likelihood of those scenarios is also developed. Calculations can be made in two different ways: from Global Warming Potential weighted emissions of species or by direct calculation of radiative forcing based on measured and projected atmospheric concentrations of compounds. Results show that HFCs corresponding to commercial uses have a negligible contribution to the greenhouse effect in comparison with other trace gases. The projected contributions are also very small even if very high emission scenarios are maintained for decades. In 2010 this contribution remains below 1%. Longer term emissions projections are difficult. However, based on the IPCC scenario IS92a, in spite of huge emissions projected for the year 2100, the HFC contribution remains below 3%. Actually many factors indicate that the real UFC contribution to the greenhouse effect will be even smaller than presented here. Low emissive systems and small charges will likely improve sharply in the future and have drastically improved in the recent past. HFC technology implementation is likely to grow in the future, reach a maximum before the middle of the next century; the market will stabilise driven by recycling, closing of systems and competitive technologies. This hypothesis is supported by previous analysis of the demand for HTCs type applications which can be represented by {open_quotes}S{close_quotes} type curves and by recent analysis indicating that the level of substitution of old products by HFCs is growing slowly. On the basis of those data and best industrial judgement, the contribution of HFCs to the greenhouse effect is highly likely to remain below 1% during the next century. 11 refs., 2 figs., 5 tabs.

  10. The greenhouse effect and natural fluctuations of the climate

    International Nuclear Information System (INIS)

    Schoenwiese, C.D.

    1993-01-01

    There is a straight line connecting the first estimate in 1896 of worldwide climate changes due to the increasing use of fossil sources of energy with the Climate Convention of the United Nations at the 1992 Environmental Summit. Extensive model calculations exist of the 'greenhouse effect', in which the lower atmosphere is heated by manmade emissions of trace gases affecting the climate. However, the anticipated changes are not restricted to the temperature of the air; they affect the climate as a whole worldwide. As a consequence, the German Federal Government, in addition to its ban on CFCs, plans to reduce manmade carbon dioxide emissions by 25 or 30% by 2005. Natural fluctuations of the climate compete with the greenhouse effect: Volcanic and solar effects, but also random variations within the complicated interactions in the climatic system (atmosphere - oceans - ice regions - biosphere - land surface). Mathematical and statistical analyses of the superposition of such climatic mechanisms, which are based on data from observations, result in a risk analysis at a high level of probability. (orig.) [de

  11. Effect of greenhouse vegetable farming duration on Zinc accumulation in Northeast China

    Science.gov (United States)

    Wang, Jun; Yu, Peiying; Cui, Shuang; Chen, Xin; Shi, Yi

    2018-02-01

    Greenhouse vegetable production (GVP) has rapidly expanded, and reqiures more attention due to its heavy metal contamination. In this study, different cultivation greenhouses of 1, 2, 3, 5 and 13 years were selected to investigate the effects of GVP duration on Zn accumulation. The results revealed high Zn (total Zn and available Zn) accumulation in GVP surface layers (0-20 cm), and Zn contents in 0-20 cm soil layers were positively correlated with GVP duration (P<0.01). Zn accumulation was mainly attributed to manure fertilizer application due to higher concentrations of Zn in manures. For greenhouse sustainability, reduction of manure application and reasonable use of passivation materials may alleviate metal phytoavailability and the health risk.

  12. Effectiveness of horizontal air flow fans supporting natural ventilation in a Mediterranean multi-span greenhouse

    Directory of Open Access Journals (Sweden)

    Alejandro López

    2013-08-01

    Full Text Available Natural ventilation is the most important method of climate control in Mediterranean greenhouses. In this study, the microclimate and air flow inside a Mediterranean greenhouse were evaluated by means of sonic anemometry. Experiments were carried out in conditions of moderate wind (≈ 4.0 m s-1, and at low wind speed (≈ 1.8 m s-1 the natural ventilation of the greenhouse was supplemented by two horizontal air flow fans. The greenhouse is equipped with a single roof vent opening to the windward side and two side vents, the windward one being blocked by another greenhouse close to it, while the leeward one is free of obstacles. When no fans are used, air enters through the roof vent and exits through both side vents, thus flowing contrary to the thermal effect which causes hot air to rise and impairing the natural ventilation of the greenhouse. Using fans inside the greenhouse helps the air to circulate and mix, giving rise to a more homogeneous inside temperature and increasing the average value of normalized air velocity by 365 %. These fans also increase the average values of kinetic turbulence energy inside the greenhouse by 550 % compared to conditions of natural ventilation. As the fans are placed 4 m away from the side vents, their effect on the entrance of outside air is insufficient and they do not help to reduce the inside temperature on hot days with little wind. It is therefore recommended to place the fans closer to the side vents to allow an additional increase of the air exchange rate of greenhouses.

  13. Our changing atmosphere: Trace gases and the greenhouse effect

    International Nuclear Information System (INIS)

    Rowland, F.S.

    1991-01-01

    A very important factor in the scientific evaluation of greenhouse warming during the last decade has been the realization that this is not just a problem of increasing CO 2 but is rather a more general problem of increasing concentrations of many trace gases. CFCs are increasing at 5% per year with CFC-113 going up at a more rapid rate; methane approximately 1% per year; CO 2 by 0.5% per year; N 2 O about 0.2% per year. These rates of increase have been fed into detailed models of the infrared absorbing characteristics of the atmosphere, and have provided the estimated relative contributions from the various trace gases. Carbon dioxide is still the major contributor to the greenhouse effect, and its yearly contribution appears to be increasing. An important question for dealing with the greenhouse effect will be the full understanding of these CO 2 concentration changes. The total amount of carbon from the burning of fossil fuel that is going into the atmosphere is considerably larger than the carbon dioxide increase registered in the atmosphere. Appreciable CO 2 contributions are also being received from the burning of the tropical forests. The procedures necessary to solve the chlorofluorocarbon problem have been put into place on an international scale and have begun to be implemented. We still have left for the future, however, efforts to reduce emissions of carbon dioxide, methane, and nitrous oxide

  14. Theme 10: greenhouse effect transport policies and urban organization

    International Nuclear Information System (INIS)

    2002-07-01

    This document describes the reference framework of the theme 10 ''greenhouse effect, transport policies and urban organization'' which is a part of the urban transports interface. It presents the specific actions realized by the theme 10 for a future integration in theme 1, 5 and 8. (A.L.B.)

  15. A model for policy analysis of the greenhouse effect

    International Nuclear Information System (INIS)

    Hope, C.

    1992-01-01

    This paper describes the PAGE model (for Policy Analysis of the Greenhouse Effect), developed by Cambridge Decision Analysts for the Directorate general for Environment, Nuclear Safety and Civil Protection of the Commission of the European Communities. The rest of this section describes the motivation for developing PAGE; it is followed by sections outlining the features of PAGE, explaining its structure in more detail, and reporting some of the uses to which it is being put. The current consensus is that unchecked emissions of greenhouse gases will lead to a rise in global mean temperature. The causal chain from emissions to temperature is complex, and current estimates give a range of 2 - 5 deg C for the temperature rise by the year 2100 if no specific actions are taken to control emissions. The damage that a global temperature rise of a few degrees over a century would cause is also not well known. Some influential groups are sufficiently alarmed to have called for global agreements to stabilize or reduce the emissions of greenhouse gases. Others claim that the costs of doing so would not be justified, and that adapting to a changed climate would be the best policy. Negotiations are further complicated by the global nature of the problem; if a country, or even a major trading block such as the European Community, decided to control emissions of a greenhouse gas, some of the benefit would be gained in other parts of the world that have not shared in the cost of control. 12 refs., 6 figs

  16. REVISITING THE SCATTERING GREENHOUSE EFFECT OF CO{sub 2} ICE CLOUDS

    Energy Technology Data Exchange (ETDEWEB)

    Kitzmann, D., E-mail: daniel.kitzmann@csh.unibe.ch [Center for Space and Habitability, University of Bern, Sidlerstr. 5, 3012 Bern (Switzerland)

    2016-02-01

    Carbon dioxide ice clouds are thought to play an important role for cold terrestrial planets with thick CO{sub 2} dominated atmospheres. Various previous studies showed that a scattering greenhouse effect by carbon dioxide ice clouds could result in a massive warming of the planetary surface. However, all of these studies only employed simplified two-stream radiative transfer schemes to describe the anisotropic scattering. Using accurate radiative transfer models with a general discrete ordinate method, this study revisits this important effect and shows that the positive climatic impact of carbon dioxide clouds was strongly overestimated in the past. The revised scattering greenhouse effect can have important implications for the early Mars, but also for planets like the early Earth or the position of the outer boundary of the habitable zone.

  17. What Light through Yonder Window Breaks?--The Greenhouse Effect Revisited.

    Science.gov (United States)

    Bohren, Craig F.

    1992-01-01

    Presents three experiments exploring aspects of the greenhouse effect. Topics and discussion includes radiation in energy transfer, emissivity and absorptivity, the irrelevance of reflectivity, a digression on insulators and convection, climate change, and radiative energy balance. (MCO)

  18. Can regional climate engineering save the summer Arctic sea ice?

    Science.gov (United States)

    Tilmes, S.; Jahn, Alexandra; Kay, Jennifer E.; Holland, Marika; Lamarque, Jean-Francois

    2014-02-01

    Rapid declines in summer Arctic sea ice extent are projected under high-forcing future climate scenarios. Regional Arctic climate engineering has been suggested as an emergency strategy to save the sea ice. Model simulations of idealized regional dimming experiments compared to a business-as-usual greenhouse gas emission simulation demonstrate the importance of both local and remote feedback mechanisms to the surface energy budget in high latitudes. With increasing artificial reduction in incoming shortwave radiation, the positive surface albedo feedback from Arctic sea ice loss is reduced. However, changes in Arctic clouds and the strongly increasing northward heat transport both counteract the direct dimming effects. A 4 times stronger local reduction in solar radiation compared to a global experiment is required to preserve summer Arctic sea ice area. Even with regional Arctic dimming, a reduction in the strength of the oceanic meridional overturning circulation and a shut down of Labrador Sea deep convection are possible.

  19. Effects of treated poultry litter on potential Greenhouse Gas ...

    African Journals Online (AJOL)

    This study examined the effects of different treatments of poultry faecal matter on potential greenhouse gas emission and its field application. Poultry litters were randomly assigned to four treatments viz; salt solution, alum, air exclusion and the control (untreated). Alum treated faeces had higher (p<0.05) percentage nitrogen ...

  20. Greenhouse effect: temperature of a metal sphere surrounded by a glass shell and heated by sunlight

    International Nuclear Information System (INIS)

    Nguyen, Phuc H; Matzner, Richard A

    2012-01-01

    We study the greenhouse effect on a model satellite consisting of a tungsten sphere surrounded by a thin spherical, concentric glass shell, with a small gap between the sphere and the shell. The system sits in vacuum and is heated by sunlight incident along the z-axis. This development is a generalization of the simple treatment of the greenhouse effect given by Kittel and Kroemer (1980 Thermal Physics (San Francisco: Freeman)) and can serve as a very simple model demonstrating the much more complex Earth greenhouse effect. Solution of the model problem provides an excellent pedagogical tool at the Junior/Senior undergraduate level.

  1. [Effects of superphosphate addition on NH3 and greenhouse gas emissions during vegetable waste composting].

    Science.gov (United States)

    Yang, Yan; Sun, Qin-ping; Li, Ni; Liu, Chun-sheng; Li, Ji-jin; Liu, Ben-sheng; Zou, Guo-yuan

    2015-01-01

    To study the effects of superphosphate (SP) on the NH, and greenhouse gas emissions, vegetable waste composting was performed for 27 days using 6 different treatments. In addition to the controls, five vegetable waste mixtures (0.77 m3 each) were treated with different amounts of the SP additive, namely, 5%, 10%, 15%, 20% and 25%. The ammonia volatilization loss and greenhouse gas emissions were measured during composting. Results indicated that the SP additive significantly decreased the ammonia volatilization and greenhouse gas emissions during vegetable waste composting. The additive reduced the total NH3 emission by 4.0% to 16.7%. The total greenhouse gas emissions (CO2-eq) of all treatments with SP additives were decreased by 10.2% to 20.8%, as compared with the controls. The NH3 emission during vegetable waste composting had the highest contribution to the greenhouse effect caused by the four different gases. The amount of NH3 (CO2-eq) from each treatment ranged from 59.90 kg . t-1 to 81.58 kg . t-1; NH3(CO2-eq) accounted for 69% to 77% of the total emissions from the four gases. Therefore, SP is a cost-effective phosphorus-based fertilizer that can be used as an additive during vegetable waste composting to reduce the NH3 and greenhouse gas emissions as well as to improve the value of compost as a fertilizer.

  2. Contrasting Arctic and Antarctic atmospheric responses to future sea-ice loss

    Science.gov (United States)

    England, M.; Polvani, L. M.; Sun, L.

    2017-12-01

    By the end of this century, the annual mean Antarctic sea ice area is projected to decline by over a third, an amount similar to that in the Arctic, but the effect of Antarctic sea ice loss on the atmosphere remains largely unexplored. Using the Community Earth Systems Model (CESM) Whole Atmosphere Coupled Climate Model (WACCM), we investigate the effect of future Antarctic sea ice loss, and contrast it with its Arctic counterpart. This is accomplished by analyzing integrations of the model with historic and future sea ice levels, using the RCP8.5 scenario. This allows us to disentangle the effect of future sea ice loss on the atmosphere from other aspects of the coupled system. We find that both Antarctic and Arctic sea ice loss act to shift the tropospheric jet equatorwards, counteracting the poleward shift due to increases in greenhouse gases. Although the total forcing to the atmosphere is similar in both hemispheres, the response to Arctic sea ice loss is larger in amplitude and but more seasonally varying, while the response in the Antarctic persists throughout the year but with a smaller amplitude. Furthermore, the atmospheric temperature response over the Antarctic is trapped closer to the surface than in the Arctic, and perhaps surprisingly, we find that the surface temperature response to Antarctic sea ice loss is unable to penetrate the Antarctic continent.

  3. Buying greenhouse insurance

    International Nuclear Information System (INIS)

    Manne, A.S.; Richels, R.G.

    1992-01-01

    A growing concern that the increasing accumulation of greenhouse gases will lead to undesirable changes in global climate has resulted in proposals, both in the United States and internationally, to set physical targets for reducing greenhouse gas emissions. But what will these proposals cost? This book outlines a way to think about greenhouse-effect decisions under uncertainty. It describes an insightful model for determining the economic costs of limiting CO 2 emissions produced by burning fossil fuels and provides a solid analytical base for rethinking public policy on the far-reaching issue of global warming. It presents region-by-region estimates of the costs that would underlie an international agreement. Using a computer model known as Global 2100, they analyze the economic impacts of limiting CO 2 emissions under alternative supply and conservation scenarios. The results clearly indicate that a reduction in emissions is not the sole policy response to potential climate change. Following a summary of the greenhouse effect, its likely causes, and possible consequences, this book takes up issues that concern the public at large. They provide an overview of Global 2100, look at how the U.S. energy sector is likely to evolve under business-as-usual conditions and under carbon constraints, and describe the concept of greenhouse insurance. They consider possible global agreements, including an estimate of benefits that might result from trading in an international market in emission rights. They conclude with a technical description directed toward modeling specialists

  4. About greenhouse effect origins

    International Nuclear Information System (INIS)

    Arrhenius, S.; Chamberlin, Th.; Croll, J.; Fourier, J.; Pouillet, C.; Tyndall, J.

    2009-01-01

    In order to understand and decipher the ecological crisis in progress, an historical prospect of its origins and evolution at the worldwide scale is necessary. This book gathers seven founder articles (including 4 original translations), harbingers of the present day climate change. Written during the 19. century by famous scientists like Joseph Fourier, Claude Pouillet, James Croll, John Tyndall, Svante Arrhenius and Thomas Chamberlin, they relate a century of major progress in the domain of Earth's sciences in praise of these scientists. This book allows to (re)discover these texts: discovery of the greenhouse effect principle (Fourier), determination of solar radiation absorption by the atmosphere (Pouillet), rivalry between the astronomical theory of glacial cycles (Croll) and the carbon dioxide climatic theory (Tyndall), influence of the CO 2 concentration in the atmosphere on the global warming (Arrhenius), and confirmation of the major role of CO 2 in the Earth's temperature regulation (Chamberlin). (J.S.)

  5. Future sea level rise constrained by observations and long-term commitment

    Science.gov (United States)

    Mengel, Matthias; Levermann, Anders; Frieler, Katja; Robinson, Alexander; Marzeion, Ben; Winkelmann, Ricarda

    2016-01-01

    Sea level has been steadily rising over the past century, predominantly due to anthropogenic climate change. The rate of sea level rise will keep increasing with continued global warming, and, even if temperatures are stabilized through the phasing out of greenhouse gas emissions, sea level is still expected to rise for centuries. This will affect coastal areas worldwide, and robust projections are needed to assess mitigation options and guide adaptation measures. Here we combine the equilibrium response of the main sea level rise contributions with their last century's observed contribution to constrain projections of future sea level rise. Our model is calibrated to a set of observations for each contribution, and the observational and climate uncertainties are combined to produce uncertainty ranges for 21st century sea level rise. We project anthropogenic sea level rise of 28–56 cm, 37–77 cm, and 57–131 cm in 2100 for the greenhouse gas concentration scenarios RCP26, RCP45, and RCP85, respectively. Our uncertainty ranges for total sea level rise overlap with the process-based estimates of the Intergovernmental Panel on Climate Change. The “constrained extrapolation” approach generalizes earlier global semiempirical models and may therefore lead to a better understanding of the discrepancies with process-based projections. PMID:26903648

  6. Future sea level rise constrained by observations and long-term commitment.

    Science.gov (United States)

    Mengel, Matthias; Levermann, Anders; Frieler, Katja; Robinson, Alexander; Marzeion, Ben; Winkelmann, Ricarda

    2016-03-08

    Sea level has been steadily rising over the past century, predominantly due to anthropogenic climate change. The rate of sea level rise will keep increasing with continued global warming, and, even if temperatures are stabilized through the phasing out of greenhouse gas emissions, sea level is still expected to rise for centuries. This will affect coastal areas worldwide, and robust projections are needed to assess mitigation options and guide adaptation measures. Here we combine the equilibrium response of the main sea level rise contributions with their last century's observed contribution to constrain projections of future sea level rise. Our model is calibrated to a set of observations for each contribution, and the observational and climate uncertainties are combined to produce uncertainty ranges for 21st century sea level rise. We project anthropogenic sea level rise of 28-56 cm, 37-77 cm, and 57-131 cm in 2100 for the greenhouse gas concentration scenarios RCP26, RCP45, and RCP85, respectively. Our uncertainty ranges for total sea level rise overlap with the process-based estimates of the Intergovernmental Panel on Climate Change. The "constrained extrapolation" approach generalizes earlier global semiempirical models and may therefore lead to a better understanding of the discrepancies with process-based projections.

  7. Environmental policy and the greenhouse effect

    International Nuclear Information System (INIS)

    Weenink, J.B.

    1993-01-01

    Emissions, resulting from human activity, are substantially increasing the atmospheric concentration of greenhouse gases. This is causing an additional average warming of the Earth's surface. This article presents an overview of recent developments in the international discussion on climate change, taking into account the work of other organizations such as the Intergovernmental Panel on Climate Change (IPCC). The long term and global character of the climate change problem requires an international long term strategy based on internationally agreed principles such as sustainable development and the precautionary principle. Research is needed to further develop risk assessment and environmental quality standards, from which emission targets can be derived. As a first step, governments of many industrialized countries have already set provisional national CO 2 emission targets, aimed at stabilization at present levels by the year 2000 and in some cases, reductions thereafter. Under the auspices of United Nations, negotiations have begun on an international framework climate convention and associated agreements, on, for example, greenhouse gas emissions, forestry and funding mechanisms. Obligations imposed on individual nations may be expected to reflect their responsibility for greenhouse warming; this paper presents some views on the equity of burden sharing. 17 refs., 5 tabs

  8. Seventh Grade Students' Mental Models of the Greenhouse Effect

    Science.gov (United States)

    Shepardson, Daniel P.; Choi, Soyoung; Niyogi, Dev; Charusombat, Umarporn

    2011-01-01

    This constructivist study investigates 225 student drawings and explanations from three different schools in the midwest in the US, to identify seventh grade students' mental models of the greenhouse effect. Five distinct mental models were derived from an inductive analysis of the content of the students' drawings and explanations: Model 1, a…

  9. Anthropogenic forcing dominates sea level rise since 1850

    DEFF Research Database (Denmark)

    Jevrejeva, Svetlana; Grinsted, Aslak; Moore, John

    2009-01-01

    The rate of sea level rise and its causes are topics of active debate. Here we use a delayed response statistical model to attribute the past 1000 years of sea level variability to various natural (volcanic and solar radiative) and anthropogenic (greenhouse gases and aerosols) forcings. We show...... that until 1800 the main drivers of sea level change are volcanic and solar radiative forcings. For the past 200 years sea level rise is mostly associated with anthropogenic factors. Only 4 ± 1.5 cm (25% of total sea level rise) during the 20th century is attributed to natural forcings, the remaining 14 ± 1...

  10. Quantifying the effect of sea level rise and flood defence - a point process perspective on coastal flood damage

    Science.gov (United States)

    Boettle, M.; Rybski, D.; Kropp, J. P.

    2016-02-01

    In contrast to recent advances in projecting sea levels, estimations about the economic impact of sea level rise are vague. Nonetheless, they are of great importance for policy making with regard to adaptation and greenhouse-gas mitigation. Since the damage is mainly caused by extreme events, we propose a stochastic framework to estimate the monetary losses from coastal floods in a confined region. For this purpose, we follow a Peak-over-Threshold approach employing a Poisson point process and the Generalised Pareto Distribution. By considering the effect of sea level rise as well as potential adaptation scenarios on the involved parameters, we are able to study the development of the annual damage. An application to the city of Copenhagen shows that a doubling of losses can be expected from a mean sea level increase of only 11 cm. In general, we find that for varying parameters the expected losses can be well approximated by one of three analytical expressions depending on the extreme value parameters. These findings reveal the complex interplay of the involved parameters and allow conclusions of fundamental relevance. For instance, we show that the damage typically increases faster than the sea level rise itself. This in turn can be of great importance for the assessment of sea level rise impacts on the global scale. Our results are accompanied by an assessment of uncertainty, which reflects the stochastic nature of extreme events. While the absolute value of uncertainty about the flood damage increases with rising mean sea levels, we find that it decreases in relation to the expected damage.

  11. The multimillennial sea-level commitment of global warming.

    Science.gov (United States)

    Levermann, Anders; Clark, Peter U; Marzeion, Ben; Milne, Glenn A; Pollard, David; Radic, Valentina; Robinson, Alexander

    2013-08-20

    Global mean sea level has been steadily rising over the last century, is projected to increase by the end of this century, and will continue to rise beyond the year 2100 unless the current global mean temperature trend is reversed. Inertia in the climate and global carbon system, however, causes the global mean temperature to decline slowly even after greenhouse gas emissions have ceased, raising the question of how much sea-level commitment is expected for different levels of global mean temperature increase above preindustrial levels. Although sea-level rise over the last century has been dominated by ocean warming and loss of glaciers, the sensitivity suggested from records of past sea levels indicates important contributions should also be expected from the Greenland and Antarctic Ice Sheets. Uncertainties in the paleo-reconstructions, however, necessitate additional strategies to better constrain the sea-level commitment. Here we combine paleo-evidence with simulations from physical models to estimate the future sea-level commitment on a multimillennial time scale and compute associated regional sea-level patterns. Oceanic thermal expansion and the Antarctic Ice Sheet contribute quasi-linearly, with 0.4 m °C(-1) and 1.2 m °C(-1) of warming, respectively. The saturation of the contribution from glaciers is overcompensated by the nonlinear response of the Greenland Ice Sheet. As a consequence we are committed to a sea-level rise of approximately 2.3 m °C(-1) within the next 2,000 y. Considering the lifetime of anthropogenic greenhouse gases, this imposes the need for fundamental adaptation strategies on multicentennial time scales.

  12. Effective media reporting of sea level rise projections: 1989-2009

    International Nuclear Information System (INIS)

    Rick, U K; Boykoff, M T; Pielke, R A Jr

    2011-01-01

    In the mass media, sea level rise is commonly associated with the impacts of climate change due to increasing atmospheric greenhouse gases. As this issue garners ongoing international policy attention, segments of the scientific community have expressed unease about how this has been covered by mass media. Therefore, this study examines how sea level rise projections-in IPCC Assessment Reports and a sample of the scientific literature-have been represented in seven prominent United States (US) and United Kingdom (UK) newspapers over the past two decades. The research found that-with few exceptions-journalists have accurately portrayed scientific research on sea level rise projections to 2100. Moreover, while coverage has predictably increased in the past 20 years, journalists have paid particular attention to the issue in years when an IPCC report is released or when major international negotiations take place, rather than when direct research is completed and specific projections are published. We reason that the combination of these factors has contributed to a perceived problem in the sea level rise reporting by the scientific community, although systematic empirical research shows none. In this contemporary high-stakes, high-profile and highly politicized arena of climate science and policy interactions, such results mark a particular bright spot in media representations of climate change. These findings can also contribute to more measured considerations of climate impacts and policy action at a critical juncture of international negotiations and everyday decision-making associated with the causes and consequences of climate change.

  13. Elevated CO2 stimulates marsh elevation gain, counterbalancing sea-level rise.

    Science.gov (United States)

    Langley, J Adam; McKee, Karen L; Cahoon, Donald R; Cherry, Julia A; Megonigal, J Patrick

    2009-04-14

    Tidal wetlands experiencing increased rates of sea-level rise (SLR) must increase rates of soil elevation gain to avoid permanent conversion to open water. The maximal rate of SLR that these ecosystems can tolerate depends partly on mineral sediment deposition, but the accumulation of organic matter is equally important for many wetlands. Plant productivity drives organic matter dynamics and is sensitive to global change factors, such as rising atmospheric CO(2) concentration. It remains unknown how global change will influence organic mechanisms that determine future tidal wetland viability. Here, we present experimental evidence that plant response to elevated atmospheric [CO(2)] stimulates biogenic mechanisms of elevation gain in a brackish marsh. Elevated CO(2) (ambient + 340 ppm) accelerated soil elevation gain by 3.9 mm yr(-1) in this 2-year field study, an effect mediated by stimulation of below-ground plant productivity. Further, a companion greenhouse experiment revealed that the CO(2) effect was enhanced under salinity and flooding conditions likely to accompany future SLR. Our results indicate that by stimulating biogenic contributions to marsh elevation, increases in the greenhouse gas, CO(2), may paradoxically aid some coastal wetlands in counterbalancing rising seas.

  14. Elevated CO2 stimulates marsh elevation gain, counterbalancing sea-level rise

    Science.gov (United States)

    Langley, J. Adam; McKee, Karen L.; Cahoon, Donald R.; Cherry, Julia A.; Megonigal, J. Patrick

    2009-01-01

    Tidal wetlands experiencing increased rates of sea-level rise (SLR) must increase rates of soil elevation gain to avoid permanent conversion to open water. The maximal rate of SLR that these ecosystems can tolerate depends partly on mineral sediment deposition, but the accumulation of organic matter is equally important for many wetlands. Plant productivity drives organic matter dynamics and is sensitive to global change factors, such as rising atmospheric CO2 concentration. It remains unknown how global change will influence organic mechanisms that determine future tidal wetland viability. Here, we present experimental evidence that plant response to elevated atmospheric [CO2] stimulates biogenic mechanisms of elevation gain in a brackish marsh. Elevated CO2 (ambient + 340 ppm) accelerated soil elevation gain by 3.9 mm yr−1 in this 2-year field study, an effect mediated by stimulation of below-ground plant productivity. Further, a companion greenhouse experiment revealed that the CO2 effect was enhanced under salinity and flooding conditions likely to accompany future SLR. Our results indicate that by stimulating biogenic contributions to marsh elevation, increases in the greenhouse gas, CO2, may paradoxically aid some coastal wetlands in counterbalancing rising seas. PMID:19325121

  15. Greenhouse effects of the peat production and use as compared to coal, oil, natural gas and wood

    International Nuclear Information System (INIS)

    Hillebrand, K.; Wihersaari, M.

    1993-01-01

    This report examines the greenhouse effects of greenhouse gas emissions (carbon dioxide, methane and nitrous oxide) arising from certain production and utilization chains of peat and compares them with the corresponding effects associated with the production and utilization chains of coal, oil, natural gas and wood. In order to estimate the greenhouse effects of the peat production and utilization chains, the initial state of the peat bog together with the instantaneous and cumulative greenhouse effects associated with the production and burning of peat as well as subsequent use of the production area were taken into account. The initial state of the peat bog was taken to be either a bog in its natural sale, a forest-drained bog or a cultivated peatland. As regards alternatives for subsequent use of the peat production area, afforestation, paludification and lake formation were all examined

  16. The greenhouse effect and the amount of CO2 emissions in Romania

    International Nuclear Information System (INIS)

    Manea, Gh.

    1992-01-01

    In order to reduce the CO 2 emissions, responsible by the greenhouse effect on Terra, an international control for monitoring them is to be instated. The development of methods for reducing the CO 2 emissions, implies the identification and evaluation of the CO 2 sources, the forecasting of probable evolution of the CO 2 emissions, and also the assessment of the economic impact. This paper tries to accomplish such an evaluation and to draft several scenarios for reduction of the CO 2 emissions. Also considerations about the suitability of the Romanian adhesion to the international treaties regarding the greenhouse effect monitoring are presented. (author). 7 tabs

  17. A tax against the greenhouse effect

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    The objectives, principles, practical problems, and contradictory economic policy options with respect to a tax against greenhouse gases are reviewed. An overview of the strategy of the European Union for the stabilization of CO 2 -emissions is given. One particular aspect of this strategy, the proposal for an energy/CO 2 -tax, is addressed more in detail. In addition, the main principles of two proposals for guidelines by the European Commission are summarized. The position of the employers and workers organisation (UNICE and EVV) is given. The results of a model calculation on the economic effects of an energy/CO 2 -tax in Belgium are summarized. (A.S.)

  18. Agricultural sources of greenhouse gas emissions

    International Nuclear Information System (INIS)

    Rochette, P.

    2003-01-01

    The author described different sources of greenhouse gas emissions resulting from agricultural activities and the process by which carbon dioxide, nitrous oxide, and methane are generated on Canadian farms. The author also proposed some practices that would contribute to the reduction of greenhouse gas emissions. A brief description of the greenhouse effect was also provided with special emphasis on the agricultural sector. In 1996, the Canadian agricultural sector was responsible for approximately 10 per cent of greenhouse gas emissions in the country. Given the increase in farm animals and more intensive agricultural activities, it is estimated that greenhouse gas emissions generated by the agricultural sector will increase by 20 per cent by 2010 if current practices remain in effect. The most optimistic scenarios indicate that the agricultural sector could achieve or even exceed Canada's Kyoto Protocol commitments mainly through organic material sequestration in soils. The possibility for farmers to sell greenhouse gas credits could motivate farmers into adopting various practices that reduce emissions of greenhouse gases. However, the author indicated that the best motivation for farmers is the fact that adopting such practices would also lead to more efficient agricultural production. 5 refs., 4 figs

  19. Local authorities and greenhouse effect. Analysis and proposals for a mobilization of representatives about the greenhouse effect; Autorites locales et effet de serre. Analyse et propositions pour une mobilisation des elus sur l'effet de serre

    Energy Technology Data Exchange (ETDEWEB)

    Ged, A. [Agora Analyses et Systemes, 13 - Ventabren (France)

    2003-01-01

    The local authorities are essential intermediates for the implementation of environmental policies (Kyoto protocol and European policy) and in particular the fight against the greenhouse effect. This report aims at finding arguments to sensibilize and mobilize the representatives of local authorities about the climatic change and the greenhouse effect problem. The main problem concerns the introduction of the greenhouse effect concern in the decision process of local authorities. Several steps are necessary to carry out this reflection. The analysis must take into consideration the new dimensions of the urban policies and the preoccupations of the representatives. A diagnosis and concrete proposals are deduced from this analysis. (J.S.)

  20. Effect of solid and aqueous extract of vermicompost on growth characteristics of tomato and greenhouse whitefly (Trialeurodes vaporariorum)

    OpenAIRE

    A. Peimani Foroushani; N. Poorjavad; M. Haghigh; J. Khajehali

    2016-01-01

    Considering the increase of using vermicompost fertilizers in greenhouse cultivation, effect of vermicompost application on growth characteristics of tomato and one of its major pests [greenhouse whitefly, Trialeurodes vaporariorum (Hem:Aleyrodidae)] was investigated. The experiment consisted of five treatments: control (without vermicompost), 30% and 60% solid vermicompost fertilizer, and 40% and 20% aqueous extracts of vermicompost. Effect of vermicompost on greenhouse whitefly was tested f...

  1. Cooling performance assessment of horizontal earth tube system and effect on planting in tropical greenhouse

    International Nuclear Information System (INIS)

    Mongkon, S.; Thepa, S.; Namprakai, P.; Pratinthong, N.

    2014-01-01

    Graphical abstract: - Highlights: • The cooling ability of HETS is studied for planting in tropical greenhouse. • The effective of system was moderate with COP more than 2.0. • Increasing diameter and air velocity increase COP more than other parameters. • The plant growth with HETS was significantly better than no-HETS plant. - Abstract: The benefit of geothermal energy is used by the horizontal earth tube system (HETS); which is not prevalent in tropical climate. This study evaluated geothermal cooling ability and parameters studied in Thailand by mathematical model. The measurement of the effect on plant cultivation was carried out in two identical greenhouses with 30 m 2 of greenhouse volume. The HETS supplied cooled air to the model greenhouse (MGH), and the plant growth results were compared to the growth results of a conventional greenhouse (CGH). The prediction demonstrated that the coefficient of performance (COP) in clear sky day would be more than 2.0 while in the experiment it was found to be moderately lower. The parameters study could be useful for implementation of a system for maximum performance. Two plants Dahlias and head lettuce were grown satisfactory. The qualities of the plants with the HETS were better than the non-cooled plants. In addition, the quality of production was affected by variations of microclimate in the greenhouses and solar intensity throughout the cultivation period

  2. The Effects of Concept Cartoons on Eliminating Students’ Misconceptions: Greenhouse Effect and Global Warming

    Directory of Open Access Journals (Sweden)

    Lale Cerrah Ozsevgeç

    2012-10-01

    Full Text Available The aim of the study is to examine the effects of concept cartoons on eliminating students’ misconceptions about the global warming and greenhouse effect. The sample of the study is consisted of 17 students from the 7 grade of Rize Çay Primary School. Simple experimental study design was used in the study. Test and semi-structured interview were used to collect the data. The results of the study showed that the students had misconceptions about global warming and greenhouse effect. The teaching process comprising concept cartoons treated most of these misconceptions. Students indicated that the teaching process was enjoyable and it eased the students’ remembering of the given knowledge. Based on the results, it was suggested that the teachers should be informed about the usage of concept cartoon in the classroom and combination of different teaching methods which is supported by concept cartoon may be more useful for different science subjects.

  3. Improving Students' Conceptual Understanding of the Greenhouse Effect Using Theory-Based Learning Materials that Promote Deep Learning

    Science.gov (United States)

    Reinfried, Sibylle; Aeschbacher, Urs; Rottermann, Benno

    2012-01-01

    Students' everyday ideas of the greenhouse effect are difficult to change. Environmental education faces the challenge of developing instructional settings that foster students' conceptual understanding concept of the greenhouse effect in order to understand global warming. To facilitate students' conceptual development with regard to the…

  4. [Is there a connection between biodiversity and the greenhouse effect].

    Science.gov (United States)

    Rozanov, S I

    1998-01-01

    It was discussed the role of biodiversity in ecosystems capacity to control CO2 in atmosphere as the main reason not only of "greenhouse effect" but "greenhouse catastrophe". The necessity to perfect the preventive measures has been defined by time factor. This time may be so little for completing the evolution theory and models of biosphere management. The temps of contemporaneous species extinction exceed two orders as minimum ones how it has been known from planet history. It doesn't permit to discharge that evolutional process will be successful to create organisms which have been capable to stabilize biosphere in conditions of its changing status. It's possible that such change may be provocated with the crisis in civilization-biosphere interrelations.

  5. Effect of the plastic cover properties on the thermal efficiency of a greenhouse

    Energy Technology Data Exchange (ETDEWEB)

    Bernaud, P. [Faculte des Sciences et Techniques, Monastir (Tunisia); Champagne, J. Y.; Palec, G. Le; Bournot, P.; Muynck, B. de; Vandevelde, R.

    1984-07-01

    The greenhouse effect is due to the dependency of the transmission factor upon the wavelength of the incident radiation. Experiments have been done that confirm the theoretically admitted results on the thermal behaviour of greenhouses. It is also pointed out that the internal global solar irradiance is characteristic of the plastic cover. A model based on a static description of the system is proposed. A few results are given concerning this model. (author)

  6. How student teachers’ understanding of the greenhouse effect develops during a teacher education programme

    Directory of Open Access Journals (Sweden)

    Margareta Ekborg

    2012-10-01

    Full Text Available This paper reports on a longitudinal study on how student teachers’ understanding of the greenhouse effect developed through a teacher education programme in mathematics and science for pupils aged 7-13. All student teachers, who were accepted to the programme one year, were followed trough 2.5 years of the programme. The student teachers took science courses in which they were taught about the greenhouse effect.Data was collected by questionnaires three times. The results show that a majority of the student teachers developed an adequate understanding of the greenhouse effect during the teaching programme. Several of the students developed further in the second science course. However a rather big group of students with poor understanding did not develop any further in the second science course and no one demonstrated full understanding. Different ways of collecting data and categorising responses affected how the students’ understanding was interpreted.

  7. Health effects of predatory beneficial mites and wasps in greenhouses

    DEFF Research Database (Denmark)

    Bælum, Jesper; Enkegaard, Annie; Doekes, Gert

    A three-year study of 579 greenhouse workers in 31 firms investigated the effect of four different beneficial arthropods. It was shown that the thrips mite Amblyseeius cucumeris and the spider mite predator Phytoseiulus persimilis may cause allergy measured by blood tests as well as eye and nose...... symptoms. No effect was seen by the predator wasp Aphidius colemani nor the predator mite Hypoaspis miles and no effect on lung diseases were seen....

  8. Modeling of the climate system and of its response to a greenhouse effect increase

    International Nuclear Information System (INIS)

    Li, L.

    2005-01-01

    The anthropic disturbance of the Earth's greenhouse effect is already visible and will enhance in the coming years or decades. In front of the rapidity and importance of the global warming effect, the socio-economical management of this change will rise problems and must be studied by the scientific community. At the modeling level, finding a direct strategy for the validation of climate models is not easy: many uncertainties exist because energy transformations take place at a low level and several processes take place at the same time. The variability observed at the seasonal, inter-annual or paleo- scales allows to validate the models at the process level but not the evolution of the whole system. The management of these uncertainties is an integral part of the global warming problem. Thus, several scenarios can be proposed and their risk of occurrence must be estimated. This paper presents first the greenhouse effect, the climatic changes during geologic times, the anthropic disturbance of the greenhouse effect, the modeling of climate and the forecasting of its evolution. (J.S.)

  9. Studying the physical basis of global warming: thermal effects of the interaction between radiation and matter and greenhouse effect

    Energy Technology Data Exchange (ETDEWEB)

    Besson, Ugo; De Ambrosis, Anna; Mascheretti, Paolo [Department of Physics ' A Volta' , University of Pavia, Via A Bassi 6, 27100 Pavia (Italy)], E-mail: ugo.besson@unipv.it, E-mail: anna.deambrosisvigna@unipv.it

    2010-03-15

    We present a teaching module dealing with the thermal effects of interaction between radiation and matter, the infrared emission of bodies and the greenhouse effect devoted to university level and teacher education. The module stresses the dependence of the optical properties of materials (transparency, absorptivity and emissivity) on radiation frequency, as a result of interaction between matter and radiation. Multiple experiences are suggested to favour a progressive construction of knowledge on the physical aspects necessary to understand the greenhouse effect and global warming. Some results obtained with university students are briefly reported.

  10. Studying the physical basis of global warming: thermal effects of the interaction between radiation and matter and greenhouse effect

    International Nuclear Information System (INIS)

    Besson, Ugo; De Ambrosis, Anna; Mascheretti, Paolo

    2010-01-01

    We present a teaching module dealing with the thermal effects of interaction between radiation and matter, the infrared emission of bodies and the greenhouse effect devoted to university level and teacher education. The module stresses the dependence of the optical properties of materials (transparency, absorptivity and emissivity) on radiation frequency, as a result of interaction between matter and radiation. Multiple experiences are suggested to favour a progressive construction of knowledge on the physical aspects necessary to understand the greenhouse effect and global warming. Some results obtained with university students are briefly reported.

  11. Models of Students' Thinking Concerning the Greenhouse Effect and Teaching Implications.

    Science.gov (United States)

    Koulaidis, Vasilis; Christidou, Vasilia

    1999-01-01

    Primary school students (n=40) ages 11 and 12 years were interviewed concerning their conceptions of the greenhouse effect. Analysis of the data led to the formation of seven distinct models of thinking regarding this phenomenon. (Author/CCM)

  12. Evaluating the substantive effectiveness of SEA: Towards a better understanding

    International Nuclear Information System (INIS)

    Doren, D. van; Driessen, P.P.J.; Schijf, B.; Runhaar, H.A.C.

    2013-01-01

    Evaluating the substantive effectiveness of strategic environmental assessment (SEA) is vital in order to know to what extent the tool fulfills its purposes and produces expected results. However, the studies that have evaluated the substantive effectiveness of SEA produce varying outcomes as regards the tool's contribution to decision-making and have used a variety of approaches to appraise its effectiveness. The aim of this article is to discuss the theoretical concept of SEA substantive effectiveness and to present a new approach that can be applied for evaluation studies. The SEA effectiveness evaluation framework that will be presented is composed of concepts of, and approaches to, SEA effectiveness derived from SEA literature and planning theory. Lessons for evaluation can be learned from planning theory in particular, given its long history of analyzing and understanding how sources of information and decisions affect (subsequent) decision-making. Key concepts of this new approach are ‘conformance’ and ‘performance’. In addition, this article presents a systematic overview of process and context factors that can explain SEA effectiveness, derived from SEA literature. To illustrate the practical value of our framework for the assessment and understanding of substantive effectiveness of SEA, three Dutch SEA case studies are examined. The case studies have confirmed the usefulness of the SEA effectiveness assessment framework. The framework proved helpful in order to describe the cumulative influence of the three SEAs on decision-making and the ultimate plan. - Highlights: ► A new framework to evaluate the substantive effectiveness of SEA is presented. ► The framework is based on two key concepts: ‘conformance’ and ‘performance.’ ► The practical applicability of the framework is demonstrated by three Dutch cases. ► The framework allows for a more systematic understanding of SEA effectiveness. ► Finally, this paper presents explanations

  13. GREENHOUSE GASES AND MEANS OF PREVENTION

    Directory of Open Access Journals (Sweden)

    Dušica Stojanović

    2013-09-01

    Full Text Available The greenhouse effect can be defined as the consequence of increased heating of the Earth's surface, as well as the lower atmosphere by carbon dioxide, water vapor, and other trace amounts gases. It is well-known that human industrial activities have released large amounts of greenhouse gases in the atmosphere, about 900 billion tons of carbon dioxide, and it is estimated that up to 450 billion are still in the atmosphere. In comparison to greenhouse gases water vapor is one of the greatest contributors to the greenhouse effect on Earth. Many projects, as does the PURGE project, have tendences to build on the already conducted research and to quantify the positive and negative impacts on health and wellbeing of the population with greenhouse gas reduction strategies that are curently being implemented and should be increasingly applied in various sectors and urban areas, having offices in Europe, China and India.

  14. Global warming and sea level rise. Chikyu Ondanka to kaimen josho

    Energy Technology Data Exchange (ETDEWEB)

    Mimura, N [Ibaraki University, Ibaraki (Japan). Faculty of Engineering

    1993-10-15

    This paper describes the following matters on the problems of global warming and sea level rise. The first evaluation report published by the inter-government panel on climate change (IPCC) in 1990 estimates that, if emission of greenhouse effect gas keeps increasing at the present rate, the air temperature and the average sea level would rise by 3[degree]C and 65 centimeters, respectively by 2100. Global warming would not only result in rise of the sea level, but also accompany changes in strengths and routes of tropical low pressure areas, and precipitation patterns. Downstream areas of large rivers and island countries on coral reefs may have a risk of getting submerged. Countries having coasts developed to high densities (Japan, for example) would be subjected to a high potential effect. An 'East Hemisphere International Conference on Sea Level Rising Problem' was held in Japan in August 1993 as part of the works to prepare the second evaluation report of the IPCC (publication scheduled for 1995). The conference was attended by 24 countries, and 43 study results were reported. 4 figs.

  15. The greenhouse effect - little strokes fell great oaks; Drivhuseffekten - liten tue kan velte stort lass

    Energy Technology Data Exchange (ETDEWEB)

    Kanestroem, Ingolf

    2003-07-01

    It is a common assumption that carbon dioxide and other greenhouse gases constitute only a very small fraction of the atmosphere and thus cannot be as important as the climate researchers maintain. However, the adage of the title is appropriate for the impact of the greenhouse gases on the atmosphere. During the last 25 years, the global temperature has risen 0,5 {sup o}C, and during the last century by 0,75 {sup o}C. Thus according to the UN Climate Panel, there is evidence of a noticeable anthropogenic impact on the global climate. The article discusses the concept of greenhouse effect, the composition of the atmosphere, greenhouse gases and their importance, emission of carbon dioxide and natural climate changes.

  16. Short Lived Climate Pollutants cause a Long Lived Effect on Sea-level Rise: Analyzing climate metrics for sea-level rise

    Science.gov (United States)

    Sterner, E.; Johansson, D. J.

    2013-12-01

    Climate change depends on the increase of several different atmospheric pollutants. While long term global warming will be determined mainly by carbon dioxide, warming in the next few decades will depend to a large extent on short lived climate pollutants (SLCP). Reducing emissions of SLCPs could contribute to lower the global mean surface temperature by 0.5 °C already by 2050 (Shindell et al. 2012). Furthermore, the warming effect of one of the most potent SLCPs, black carbon (BC), may have been underestimated in the past. Bond et al. (2013) presents a new best estimate of the total BC radiative forcing (RF) of 1.1 W/m2 (90 % uncertainty bounds of 0.17 to 2.1 W/m2) since the beginning of the industrial era. BC is however never emitted alone and cooling aerosols from the same sources offset a majority of this RF. In the wake of calls for mitigation of SLCPs it is important to study other aspects of the climate effect of SLCPs. One key impact of climate change is sea-level rise (SLR). In a recent study, the effect of SLCP mitigation scenarios on SLR is examined. Hu et al (2013) find a substantial effect on SLR from mitigating SLCPs sharply, reducing SLR by 22-42% by 2100. We choose a different approach focusing on emission pulses and analyse a metric based on sea level rise so as to further enlighten the SLR consequences of SLCPs. We want in particular to understand the time dynamics of SLR impacts caused by SLCPs compared to other greenhouse gases. The most commonly used physical based metrics are GWP and GTP. We propose and evaluate an additional metric: The global sea-level rise potential (GSP). The GSP is defined as the sea level rise after a time horizon caused by an emissions pulse of a forcer to the sea level rise after a time horizon caused by an emissions pulse of a CO2. GSP is evaluated and compared to GWP and GTP using a set of climate forcers chosen to cover the whole scale of atmospheric perturbation life times (BC, CH4, N2O, CO2 and SF6). The study

  17. The nuclear energy and the greenhouse effect; Le nucleaire et l'effet de serre

    Energy Technology Data Exchange (ETDEWEB)

    Marignac, Y.; Legrand, V. [Wise, 75 - Paris (France)

    2003-10-15

    This article tackles the problem of greenhouse effect and asks the question to know if the development of nuclear energy constitutes the answer to this problem. It appears that the nuclear energy cannot solve in itself the problem of greenhouse effect. Others actions on energy demand, on transport ( that is a big consumer of petroleum and that represents 25% of world emissions) have to studied and need a real policy will. (N.C.)

  18. International economy. 82, controlling greenhouse effect: the stake of the international public policy

    International Nuclear Information System (INIS)

    Godard, O.; Oliveira-Martins, J.; Sgard, J.

    2000-01-01

    The greenhouse effect is one of the first stake of public policy which needs to be considered at the worldwide level. The climate changes shade doubts on the economic growth strategies adopted by all countries, and, if no major effort is made in the mastery of energy demand, worldwide greenhouse gas emissions will rapidly reach dangerous thresholds. This book gives a status of the research carried out on the economical impact of these policies. (J.S.)

  19. Effects of treated poultry litter on potential greenhouse gas emission ...

    African Journals Online (AJOL)

    A study was conducted to evaluate the effects of different treatments of poultry faecal waste on potential greenhouse gas emission and inherent agronomic potentials. Sugar solution at 100g/l salt solution at 350g/l and oven-drying were the various faecal treatments examined using a completely randomized design.

  20. Understanding the Greenhouse Effect by Embodiment - Analysing and Using Students' and Scientists' Conceptual Resources

    Science.gov (United States)

    Niebert, Kai; Gropengießer, Harald

    2014-01-01

    Over the last 20 years, science education studies have reported that there are very different understandings among students of science regarding the key aspects of climate change. We used the cognitive linguistic framework of experientialism to shed new light on this valuable pool of studies to identify the conceptual resources of understanding climate change. In our study, we interviewed 35 secondary school students on their understanding of the greenhouse effect and analysed the conceptions of climate scientists as drawn from textbooks and research reports. We analysed all data by metaphor analysis and qualitative content analysis to gain insight into students' and scientists' resources for understanding. In our analysis, we found that students and scientists refer to the same schemata to understand the greenhouse effect. We categorised their conceptions into three different principles the conceptions are based on: warming by more input, warming by less output, and warming by a new equilibrium. By interrelating students' and scientists' conceptions, we identified the students' learning demand: First, our students were afforded with experiences regarding the interactions of electromagnetic radiation and CO2. Second, our students reflected about the experience-based schemata they use as source domains for metaphorical understanding of the greenhouse effect. By uncovering the-mostly unconscious-deployed schemata, we gave students access to their source domains. We implemented these teaching guidelines in interventions and evaluated them in teaching experiments to develop evidence-based and theory-guided learning activities on the greenhouse effect.

  1. The effect of millennial-scale changes in Arabian Sea denitrification on atmospheric CO2

    International Nuclear Information System (INIS)

    Altabet, M.A.; Higginson, M.J.; Murray, D.W.

    2002-01-01

    Most global biogeochemical processes are known to respond to climate change, some of which have the capacity to produce feedbacks through the regulation of atmospheric greenhouse gases. Marine denitrification - the reduction of nitrate to gaseous nitrogen - is an important process in this regard, affecting greenhouse gas concentrations directly through the incidental production of nitrous oxide, and indirectly through modification of the marine nitrogen inventory and hence the biological pump for C0 2 . Although denitrification has been shown to vary with glacial-interglacial cycles, its response to more rapid climate change has not yet been well characterized. Here we present nitrogen isotope ratio, nitrogen content and chlorin abundance data from sediment cores with high accumulation rates on the Oman continental margin that reveal substantial millennial-scale variability in Arabian Sea denitrification and productivity during the last glacial period. The detailed correspondence of these changes with Dansgaard-Oeschger events recorded in Greenland ice cores indicates rapid, century-scale reorganization of the Arabian Sea ecosystem in response to climate excursions, mediated through the intensity of summer monsoonal upwelling. Considering the several-thousand-year residence time of fixed nitrogen in the ocean, the response of global marine productivity to changes in denitrification would have occurred at lower frequency and appears to be related to climatic and atmospheric C0 2 oscillations observed in Antarctic ice cores between 20 and A kyr ago. (author)

  2. Causes and consequences of short-term sea-level changes in the Cretaceous green- and "hothouse": Topics and context of IGCP Project 609

    Science.gov (United States)

    Sames, Benjamin; Wagreich, Michael

    2015-04-01

    In contrast to the well-understood process of glacial eustasy, controlled mainly by waxing and waning of continental ice sheets, significant short-term, i.e. 10s kyr to a few myr (3rd to 4th order cycles) sea-level changes during the Cretaceous major greenhouse episode remain enigmatic. Such cyclic changes are often explained by the presence of ephemeral ice sheets even during the hottest greenhouse phases ("hothouse periods"), such as the mid-Cretaceous. Though Cretaceous global eustasy involves processes like brief glacial episodes (glacio-eustasy) for which evidence was given - at least for the Early Cretaceous and the late Late Cretaceous - other mechanisms have to be taken into consideration for the "hothouse periods" during which continental ice shields are highly improbable, like the storage and release of groundwater (termed "limno-eustasy" or "aquifer-eustasy"), the possible effect and magnitude of which might have been highly underestimated. Investigation of the timing, the causes, and the consequences of significant short-term (i.e. mainly kyr to 100s of kyr) sea-level changes during the last major greenhouse episode of Earth history, the Cretaceous, is the ultimate goal of the UNESCO IGCP (International Geoscience Programme) project number 609 "Climate-environmental deteriorations during greenhouse phases: Causes and consequences of short-term Cretaceous sea-level changes" (2013-2017; http://www.univie.ac.at/igcp609/). This also comprises the global versus regional correlation and extent of the sequences, their cyclicities, as well as the processes and triggering mechanisms for these, and marine to non-marine correlations. Recent refinements of the geological time scale have made major advances for the Cretaceous to yield a resolution comparable to that of younger Earth history. It is now for the first time possible to correlate and date short-term Cretaceous sea-level records with a resolution appropriate for their detailed analysis. Recognized

  3. Investigating the Water Vapor Component of the Greenhouse Effect from the Atmospheric InfraRed Sounder (AIRS)

    Science.gov (United States)

    Gambacorta, A.; Barnet, C.; Sun, F.; Goldberg, M.

    2009-12-01

    We investigate the water vapor component of the greenhouse effect in the tropical region using data from the Atmospheric InfraRed Sounder (AIRS). Differently from previous studies who have relayed on the assumption of constant lapse rate and performed coarse layer or total column sensitivity analysis, we resort to AIRS high vertical resolution to measure the greenhouse effect sensitivity to water vapor along the vertical column. We employ a "partial radiative perturbation" methodology and discriminate between two different dynamic regimes, convective and non-convective. This analysis provides useful insights on the occurrence and strength of the water vapor greenhouse effect and its sensitivity to spatial variations of surface temperature. By comparison with the clear-sky computation conducted in previous works, we attempt to confine an estimate for the cloud contribution to the greenhouse effect. Our results compare well with the current literature, falling in the upper range of the existing global circulation model estimates. We value the results of this analysis as a useful reference to help discriminate among model simulations and improve our capability to make predictions about the future of our climate.

  4. Elements for a policy of greenhouse effect gases reduction

    International Nuclear Information System (INIS)

    2007-01-01

    In the framework of the ''Grenelle de l'environnement'' on the fight against the greenhouse effect gases, the authors aim to offer propositions and recommendations for the future energy policy. They explain the possible confusions. They discuss the economic efficiency of propositions of CO 2 emissions reduction, the actions propositions in the different sectors and the axis of research and development. (A.L.B.)

  5. Accounting for time-dependent effects in biofuel life cycle greenhouse gas emissions calculations.

    Science.gov (United States)

    Kendall, Alissa; Chang, Brenda; Sharpe, Benjamin

    2009-09-15

    This paper proposes a time correction factor (TCF) to properly account for the timing of land use change-derived greenhouse gas emissions in the biofuels life cycle. Land use change emissions occur at the outset of biofuel feedstock production, and are typically amortized over an assumed time horizon to assign the burdens of land use change to multiple generations of feedstock crops. Greenhouse gas intensity calculations amortize emissions by dividing them equally over a time horizon, overlooking the fact that the effect of a greenhouse gas increases with the time it remains in the atmosphere. The TCF is calculated based on the relative climate change effect of an emission occurring at the outset of biofuel feedstock cultivation versus one amortized over a time horizon. For time horizons between 10 and 50 years, the TCF varies between 1.7 and 1.8 for carbon dioxide emissions, indicating that the actual climate change effect of an emission is 70-80% higher than the effect of its amortized values. The TCF has broad relevance for correcting the treatment of emissions timing in other life cycle assessment applications, such as emissions from capital investments for production systems or manufacturing emissions for renewable energy technologies.

  6. Early Eocene deep-sea benthic foraminiferal faunas: Recovery from the Paleocene Eocene Thermal Maximum extinction in a greenhouse world

    Science.gov (United States)

    Thomas, Ellen; D’haenens, Simon; Speijer, Robert P.; Alegret, Laia

    2018-01-01

    The early Eocene greenhouse world was marked by multiple transient hyperthermal events. The most extreme was the Paleocene-Eocene Thermal Maximum (PETM, ~56 Ma), linked to the extinction of the globally recognised deep-sea benthic foraminiferal Velasco fauna, which led to the development of early Eocene assemblages. This turnover has been studied at high resolution, but faunal development into the later early Eocene is poorly documented. There is no widely accepted early Eocene equivalent of the Late Cretaceous-Paleocene Velasco fauna, mainly due to the use of different taxonomic concepts. We compiled Ypresian benthic foraminiferal data from 17 middle bathyal-lower abyssal ocean drilling sites in the Pacific, Atlantic and Indian Oceans, in order to characterise early Eocene deep-sea faunas by comparing assemblages across space, paleodepth and time. Nuttallides truempyi, Oridorsalis umbonatus, Bulimina trinitatensis, the Bulimina simplex group, the Anomalinoides spissiformis group, pleurostomellids, uniserial lagenids, stilostomellids and lenticulinids were ubiquitous during the early Eocene (lower-middle Ypresian). Aragonia aragonensis, the Globocassidulina subglobosa group, the Cibicidoides eocaenus group and polymorphinids became ubiquitous during the middle Ypresian. The most abundant early Ypresian taxa were tolerant to stressed or disturbed environments, either by opportunistic behavior (Quadrimorphina profunda, Tappanina selmensis, Siphogenerinoides brevispinosa) and/or the ability to calcify in carbonate-corrosive waters (N. truempyi). Nuttallides truempyi, T. selmensis and other buliminids (Bolivinoides cf. decoratus group, Bulimina virginiana) were markedly abundant during the middle Ypresian. Contrary to the long-lived, highly diverse and equitable Velasco fauna, common and abundant taxa reflect highly perturbed assemblages through the earliest Ypresian, with lower diversity and equitability following the PETM extinction. In contrast, the middle Ypresian

  7. Early Eocene deep-sea benthic foraminiferal faunas: Recovery from the Paleocene Eocene Thermal Maximum extinction in a greenhouse world.

    Directory of Open Access Journals (Sweden)

    Gabriela J Arreguín-Rodríguez

    Full Text Available The early Eocene greenhouse world was marked by multiple transient hyperthermal events. The most extreme was the Paleocene-Eocene Thermal Maximum (PETM, ~56 Ma, linked to the extinction of the globally recognised deep-sea benthic foraminiferal Velasco fauna, which led to the development of early Eocene assemblages. This turnover has been studied at high resolution, but faunal development into the later early Eocene is poorly documented. There is no widely accepted early Eocene equivalent of the Late Cretaceous-Paleocene Velasco fauna, mainly due to the use of different taxonomic concepts. We compiled Ypresian benthic foraminiferal data from 17 middle bathyal-lower abyssal ocean drilling sites in the Pacific, Atlantic and Indian Oceans, in order to characterise early Eocene deep-sea faunas by comparing assemblages across space, paleodepth and time. Nuttallides truempyi, Oridorsalis umbonatus, Bulimina trinitatensis, the Bulimina simplex group, the Anomalinoides spissiformis group, pleurostomellids, uniserial lagenids, stilostomellids and lenticulinids were ubiquitous during the early Eocene (lower-middle Ypresian. Aragonia aragonensis, the Globocassidulina subglobosa group, the Cibicidoides eocaenus group and polymorphinids became ubiquitous during the middle Ypresian. The most abundant early Ypresian taxa were tolerant to stressed or disturbed environments, either by opportunistic behavior (Quadrimorphina profunda, Tappanina selmensis, Siphogenerinoides brevispinosa and/or the ability to calcify in carbonate-corrosive waters (N. truempyi. Nuttallides truempyi, T. selmensis and other buliminids (Bolivinoides cf. decoratus group, Bulimina virginiana were markedly abundant during the middle Ypresian. Contrary to the long-lived, highly diverse and equitable Velasco fauna, common and abundant taxa reflect highly perturbed assemblages through the earliest Ypresian, with lower diversity and equitability following the PETM extinction. In contrast, the

  8. Early Eocene deep-sea benthic foraminiferal faunas: Recovery from the Paleocene Eocene Thermal Maximum extinction in a greenhouse world.

    Science.gov (United States)

    Arreguín-Rodríguez, Gabriela J; Thomas, Ellen; D'haenens, Simon; Speijer, Robert P; Alegret, Laia

    2018-01-01

    The early Eocene greenhouse world was marked by multiple transient hyperthermal events. The most extreme was the Paleocene-Eocene Thermal Maximum (PETM, ~56 Ma), linked to the extinction of the globally recognised deep-sea benthic foraminiferal Velasco fauna, which led to the development of early Eocene assemblages. This turnover has been studied at high resolution, but faunal development into the later early Eocene is poorly documented. There is no widely accepted early Eocene equivalent of the Late Cretaceous-Paleocene Velasco fauna, mainly due to the use of different taxonomic concepts. We compiled Ypresian benthic foraminiferal data from 17 middle bathyal-lower abyssal ocean drilling sites in the Pacific, Atlantic and Indian Oceans, in order to characterise early Eocene deep-sea faunas by comparing assemblages across space, paleodepth and time. Nuttallides truempyi, Oridorsalis umbonatus, Bulimina trinitatensis, the Bulimina simplex group, the Anomalinoides spissiformis group, pleurostomellids, uniserial lagenids, stilostomellids and lenticulinids were ubiquitous during the early Eocene (lower-middle Ypresian). Aragonia aragonensis, the Globocassidulina subglobosa group, the Cibicidoides eocaenus group and polymorphinids became ubiquitous during the middle Ypresian. The most abundant early Ypresian taxa were tolerant to stressed or disturbed environments, either by opportunistic behavior (Quadrimorphina profunda, Tappanina selmensis, Siphogenerinoides brevispinosa) and/or the ability to calcify in carbonate-corrosive waters (N. truempyi). Nuttallides truempyi, T. selmensis and other buliminids (Bolivinoides cf. decoratus group, Bulimina virginiana) were markedly abundant during the middle Ypresian. Contrary to the long-lived, highly diverse and equitable Velasco fauna, common and abundant taxa reflect highly perturbed assemblages through the earliest Ypresian, with lower diversity and equitability following the PETM extinction. In contrast, the middle Ypresian

  9. Strategic planning and greenhouse effect

    International Nuclear Information System (INIS)

    Corderoy, B.C.

    1990-01-01

    During former years of high load growth in New South Wales and elsewhere, the challenge for generation planners was to develop power station sites and associated transmission infrasture at a rage rapid enough to meet escalating community requirements for electricity. This challenge was met. The planners of today face a situation of far less certainty - load growth is fragile and at a lower level while the community expects that measures adopted will maintain accepted standards of reliability, be at a minimum level of financial risk and increasingly be environmentally benign. One particular environmental challenge is that posed by the greenhouse effect for which there is a further need to develop a much wider range of strategies. This involves better performance for existing plant, looking at different types of generating systems but also looking to the other side of the energy equation, demand site energy efficiency programs. These issues are briefly discussed

  10. Greenhouse effect reduction and energy recovery from waste landfill

    Energy Technology Data Exchange (ETDEWEB)

    Lombardi, Lidia [Dipartimento di Energetica ' Sergio Stecco' , Universita degli Studi di Firenze, Via Santa Marta 3, 50139 Florence (Italy)]. E-mail: lidia.lombardi@pin.unifi.it; Carnevale, Ennio [Dipartimento di Energetica ' Sergio Stecco' , Universita degli Studi di Firenze, Via Santa Marta 3, 50139 Florence (Italy); Corti, Andrea [Dipartimento di Ingegneria dell' Informazione, Universita degli Studi di Siena, Via Roma 56, 53100 Siena (Italy)

    2006-12-15

    Waste management systems are a non-negligible source of greenhouse gases. In particular, methane and carbon dioxide emissions occur in landfills due to the breakdown of biodegradable carbon compounds operated on by anaerobic bacteria. The conventional possibilities of reducing the greenhouse effect (GHE) from waste landfilling consists in landfill gas (LFG) flaring or combustion with energy recovery in reciprocating engines. These conventional treatments are compared with three innovative possibilities: the direct LFG feeding to a fuel cell (FC); the production of a hydrogen-rich gas, by means of steam reforming and CO{sub 2} capture, to feed a stationary FC; the production of a hydrogen-rich gas, by means of steam reforming and CO{sub 2} capture, to feed a vehicle FC. The comparison is carried out from an environmental point of view, calculating the specific production of GHE per unit mass of waste disposed in landfill equipped with the different considered technologies.

  11. Transport, preservation and accumulation of organic carbon in the North Sea

    NARCIS (Netherlands)

    Haas, H. de

    1997-01-01

    This thesis contains the results of the research on the burial of organic carbon in the North Sea as it was carried out at the Netherlands Institute for Sea Research in the period 1993-1997. Carbon in the form of carbon dioxide (C02 ) is one of the major contributors to the natural greenhouse

  12. Transport, preservation and accumulation of organic carbon in the North Sea

    NARCIS (Netherlands)

    de Haas, H.

    1997-01-01

    This thesis contains the results of the research on the burial of organic carbon in the North Sea as it was carried out at the Netherlands Institute for Sea Research in the period 1993-1997. Carbon in the form of carbon dioxide (CO2 ) is one of the major contributors to the natural greenhouse

  13. Evaluating the substantive effectiveness of SEA: Towards a better understanding

    Energy Technology Data Exchange (ETDEWEB)

    Doren, D. van [Copernicus Institute of Sustainable Development, Faculty of Geosciences, Utrecht University, P.O. Box 80115, 3508 TC Utrecht (Netherlands); Driessen, P.P.J., E-mail: p.driessen@uu.nl [Copernicus Institute of Sustainable Development, Faculty of Geosciences, Utrecht University, P.O. Box 80115, 3508 TC Utrecht (Netherlands); Schijf, B. [Netherlands Commission for Environmental Assessment, P.O. Box 2345, 3500 GH Utrecht (Netherlands); Runhaar, H.A.C. [Copernicus Institute of Sustainable Development, Faculty of Geosciences, Utrecht University, P.O. Box 80115, 3508 TC Utrecht (Netherlands)

    2013-01-15

    Evaluating the substantive effectiveness of strategic environmental assessment (SEA) is vital in order to know to what extent the tool fulfills its purposes and produces expected results. However, the studies that have evaluated the substantive effectiveness of SEA produce varying outcomes as regards the tool's contribution to decision-making and have used a variety of approaches to appraise its effectiveness. The aim of this article is to discuss the theoretical concept of SEA substantive effectiveness and to present a new approach that can be applied for evaluation studies. The SEA effectiveness evaluation framework that will be presented is composed of concepts of, and approaches to, SEA effectiveness derived from SEA literature and planning theory. Lessons for evaluation can be learned from planning theory in particular, given its long history of analyzing and understanding how sources of information and decisions affect (subsequent) decision-making. Key concepts of this new approach are 'conformance' and 'performance'. In addition, this article presents a systematic overview of process and context factors that can explain SEA effectiveness, derived from SEA literature. To illustrate the practical value of our framework for the assessment and understanding of substantive effectiveness of SEA, three Dutch SEA case studies are examined. The case studies have confirmed the usefulness of the SEA effectiveness assessment framework. The framework proved helpful in order to describe the cumulative influence of the three SEAs on decision-making and the ultimate plan. - Highlights: Black-Right-Pointing-Pointer A new framework to evaluate the substantive effectiveness of SEA is presented. Black-Right-Pointing-Pointer The framework is based on two key concepts: 'conformance' and 'performance.' Black-Right-Pointing-Pointer The practical applicability of the framework is demonstrated by three Dutch cases. Black

  14. Residential greenhouse

    Energy Technology Data Exchange (ETDEWEB)

    1985-02-01

    The following report examines the technical and economic viability of residential greenhouse additions in Whitehorse, Yukon. The greenhouse was constructed using the south facing wall of an existing residence as a common wall. Total construction costs were $18,000, including labour. Annual fuel demand for the residence has been reduced by about 10 per cent for an annual saving of $425. In addition, produce to the value of $1,000 is grown annually in the greenhouse for domestic consumption and commercial resale. Typically the greenhouse operates for nine months each year. There is a net thermal loss during the months of November, December and January as a result of the large area of glazing. As well as supplementing the heating supply solar greenhouses can provide additional cash crops which can be used to offset the cost of construction. Humidity problems are minimal and can be dealt with by exhausting high humidity air. One system which has been considered for the greenhouse is to use a standard residential heat pump to remove excess moisture and to pump heat into the house. This would have a secondary benefit of excluding the need to circulate greenhouse air through the house. Thus any allergenic reactions to the greenhouse air would be prevented. 8 refs., 3 figs, 2 tabs.

  15. Arctic sea ice decline: Projected changes in timing and extent of sea ice in the Bering and Chukchi Seas

    Science.gov (United States)

    Douglas, David C.

    2010-01-01

    The Arctic region is warming faster than most regions of the world due in part to increasing greenhouse gases and positive feedbacks associated with the loss of snow and ice cover. One consequence has been a rapid decline in Arctic sea ice over the past 3 decades?a decline that is projected to continue by state-of-the-art models. Many stakeholders are therefore interested in how global warming may change the timing and extent of sea ice Arctic-wide, and for specific regions. To inform the public and decision makers of anticipated environmental changes, scientists are striving to better understand how sea ice influences ecosystem structure, local weather, and global climate. Here, projected changes in the Bering and Chukchi Seas are examined because sea ice influences the presence of, or accessibility to, a variety of local resources of commercial and cultural value. In this study, 21st century sea ice conditions in the Bering and Chukchi Seas are based on projections by 18 general circulation models (GCMs) prepared for the fourth reporting period by the Intergovernmental Panel on Climate Change (IPCC) in 2007. Sea ice projections are analyzed for each of two IPCC greenhouse gas forcing scenarios: the A1B `business as usual? scenario and the A2 scenario that is somewhat more aggressive in its CO2 emissions during the second half of the century. A large spread of uncertainty among projections by all 18 models was constrained by creating model subsets that excluded GCMs that poorly simulated the 1979-2008 satellite record of ice extent and seasonality. At the end of the 21st century (2090-2099), median sea ice projections among all combinations of model ensemble and forcing scenario were qualitatively similar. June is projected to experience the least amount of sea ice loss among all months. For the Chukchi Sea, projections show extensive ice melt during July and ice-free conditions during August, September, and October by the end of the century, with high agreement

  16. You can’t change what you can’t measure: Understanding greenhouse gas emissions in Costa Rica

    International Nuclear Information System (INIS)

    Madsen, Michael Amdi

    2015-01-01

    In Costa Rica climate change is a real concern. Sea level rise, climatic variability, and climate-induced disease outbreaks are likely to affect the availability of drinking water and threaten local amphibians and marine life. The country is committed to reducing its greenhouse gas emissions, and is now taking steps to learn how much greenhouse gases the dairy and agricultural sectors emit in order to determine what actions it can take to reduce the impact of climate change. “A lack of training, equipment and national laboratory mean that Cost Rica relies on international emission factors to estimate the emissions of greenhouse gases from agriculture,” said Ana Gabriela Pérez, a researcher at the University of Costa Rica, who is working to develop a national reference laboratory for the measurement of greenhouse gases in the country.

  17. IMAGE: An Integrated Model for the Assessment of the Greenhouse Effect

    NARCIS (Netherlands)

    Rotmans J; Boois H de; Swart RJ

    1989-01-01

    In dit rapport wordt beschreven hoe het RIVM-simulatiemodel IMAGE (an Integrated Model for the Assessment of the Greenhouse Effect) is opgebouwd. Het model beoogt een geintegreerd overzicht te geven van de broeikasproblematiek alsmede inzicht te verschaffen in de wezenlijke drijfveren van het

  18. Australian Students' Appreciation of the Greenhouse Effect and the Ozone Hole.

    Science.gov (United States)

    Fisher, Brian

    1998-01-01

    Examines students' explanations of the greenhouse effect and the hole in the ozone layer, using a life-world and scientific dichotomy. Illuminates ideas often expressed in classrooms and sheds light on the progression in students' developing powers of explanation. Contains 17 references. (DDR)

  19. Separate effects of flooding and anaerobiosis on soil greenhouse gas emissions and redox sensitive biogeochemistry

    Science.gov (United States)

    Gavin McNicol; Whendee L. Silver

    2014-01-01

    Soils are large sources of atmospheric greenhouse gases, and both the magnitude and composition of soil gas emissions are strongly controlled by redox conditions. Though the effect of redox dynamics on greenhouse gas emissions has been well studied in flooded soils, less research has focused on redox dynamics without total soil inundation. For the latter, all that is...

  20. Managing soil organic carbon in agriculture: the net effect on greenhouse gas emissions

    International Nuclear Information System (INIS)

    Marland, Gregg; West, Tristram O.; Schlamadinger, Bernhard; Canella, Lorenza

    2003-01-01

    A change in agricultural practice can increase carbon sequestration in agricultural soils. To know the net effect on greenhouse gas emissions to the atmosphere, however, we consider associated changes in CO 2 emissions resulting from the consumption of fossil fuels, emissions of other greenhouse gases and effects on land productivity and crop yield. We also consider how these factors will evolve over time. A change from conventional tillage to no-till agriculture, based on data for average practice in the U.S.; will result in net carbon sequestration in the soil that averages 337 kg C/ha/yr for the initial 20 yr with a decline to near zero in the following 20 yr, and continuing savings in CO 2 emissions because of reduced use of fossil fuels. The long-term results, considering all factors, can generally be expected to show decreased net greenhouse gas emissions. The quantitative details, however, depend on the site-specific impact of the conversion from conventional to no-till agriculture on agricultural yield and N 2 O emissions from nitrogen fertilizer

  1. an innovation in the teaching of greenhouse effect in chemistry ...

    African Journals Online (AJOL)

    PROF EKWUEME

    2010-10-22

    Oct 22, 2010 ... The teaching of greenhouse effect is difficult and is done in abstraction. This paper suggests a ... atmosphere by the action of man through burning of fossil, fuel, coal, natural gas, deforestation and so on is ... form of visible light from the sun easily penetrate .... production of C02 and from chemical reactions.

  2. The Physics behind a Simple Demonstration of the Greenhouse Effect

    Science.gov (United States)

    Buxton, Gavin A.

    2014-01-01

    A simple, and popular, demonstration of the greenhouse effect involves a higher temperature being observed in a container with an elevated concentration of CO[subscript 2] inside than in a container with just air enclosed, when subject to direct light. The CO[subscript 2] absorbs outgoing thermal radiation and causes the air inside the container…

  3. An empirical determination of the heating of the earth by the carbon dioxide greenhouse effect

    Energy Technology Data Exchange (ETDEWEB)

    Hoyt, D V

    1979-11-22

    Models that were developed to describe global warming trends caused by increased concentrations of atmospheric carbon dioxide are reviewed. Described is a new model that permits empirical determination of temperature increases caused by the greenhouse effect. The model is used to evaluate atmospheric CO2 data for 1880-1970. According to the new technique, the global temperature increase caused by the greenhouse effect was /sup 1/m gr /sup 1/x0.40..cap alpha..C during that period. (3 graphs, 33 references)

  4. Greenhouse Warming Research

    DEFF Research Database (Denmark)

    Sørensen, Bent Erik

    2016-01-01

    The changing greenhouse effect caused by natural and anthropogenic causes is explained and efforts to model the behavior of the near-surface constituents of the Earth's land, ocean and atmosphere are discussed. Emissions of various substances and other aspects of human activity influence...... the greenhouse warming, and the impacts of the warming may again impact the wellbeing of human societies. Thus physical modeling of the near-surface ocean-soil-atmosphere system cannot be carried out without an idea of the development of human activities, which is done by scenario analysis. The interactive...

  5. Greenhouse gases and global warming

    International Nuclear Information System (INIS)

    1995-01-01

    From previous articles we have learned about the complexities of our environment, its atmosphere and its climate system. we have also learned that climate change and, therefore global warm and cool periods are naturally occurring phenomena. Moreover, all scientific evidence suggests that global warming, are likely to occur again naturally in the future. However, we have not yet considered the role of the rates of climate change in affecting the biosphere. It appears that how quickly the climate changes may be more important than the change itself. In light of this concern, let us now consider the possibility that, is due to human activity. We may over the next century experience global warming at rates and magnitudes unparalleled in recent geologic history. The following questions are answered; What can we learn from past climates? What do we know about global climates over the past 100 years? What causes temperature change? What are the greenhouse gases? How much have concentration of greenhouse gases increased in recent years? Why are increases in concentrations of greenhouse of concern? What is the e nhanced greenhouse effect ? How can human activity impact the global climate? What are some reasons for increased concentrations of greenhouse gases? What are fossil fuel and how do they transform into greenhouse gases? Who are the biggest emitters of greenhouse gases? Why are canada per capita emissions of greenhouse gases relatively high? (Author)

  6. Heavy metals in intensive greenhouse vegetable production systems along Yellow Sea of China

    DEFF Research Database (Denmark)

    Hu, Wenyou; Huang, Biao; Tian, Kang

    2017-01-01

    Recently, greenhouse vegetable production (GVP) has grown rapidly and counts a large proportion of vegetable production in China. In this study, the accumulation, health risk and threshold values of selected heavy metals were evaluated systematically. A total of 120 paired soil and vegetable...... relatively high concentrations and transfer factors of heavy metals. The accumulation of heavy metals in soils was affected by soil pH and soil organic matter. The calculated hazard quotients (HQ) of the heavy metals by vegetable consumption decreased in the order of leafy > rootstalk > fruit vegetables...... with hazard index (HI) values of 0.61, 0.33 and 0.26, respectively. The HI values were all below 1, which indicates that there is a low risk of greenhouse vegetable consumption. Soil threshold values (STVs) of heavy metals in GVP system were established according to the health risk assessment. The relatively...

  7. Effects of US biofuel policies on US and world petroleum product markets with consequences for greenhouse gas emissions

    International Nuclear Information System (INIS)

    Thompson, Wyatt; Whistance, Jarrett; Meyer, Seth

    2011-01-01

    US biofuel policy includes greenhouse gas reduction targets. Regulators do not address the potential that biofuel policy can have indirect impacts on greenhouse gases through its impacts on petroleum product markets, and scientific research only partially addresses this question. We use economic models of US biofuel and agricultural markets and US and world petroleum and petroleum product markets to show that discontinuing biofuel tax credits and ethanol tariff lower biofuel use could lead to increased US petroleum product use, and a reduction in petroleum product use in other parts of the world. The net effect is lower greenhouse gas emissions. Under certain assumptions, we show that biofuel use mandate elimination can have positive or negative impacts on greenhouse gas emissions. The magnitude and the direction of effects depend on how US biofuel trade affects biofuel in other countries with different emissions, context that determines how important use mandates are in the first place, who pays mandate costs, and the price responsiveness of global petroleum supplies and uses. However, our results show that counter-intuitive effects are possible and discourage broad conclusions about the greenhouse gas impacts of removing these elements of US biofuel policy. - Highlights: → Biofuel policy has counter-intuitive greenhouse gas effects under certain conditions. → US biofuel policies affect global petroleum markets, with implications for GHGs. → US biofuel use mandate GHG effects depend on whether they are binding and who pays. → US biofuel GHGs are sensitive to policy, petroleum market responses, and biofuel trade.

  8. Scientific perspectives on greenhouse problem. Part 2

    International Nuclear Information System (INIS)

    Jastrow, R.; Nierenberg, W.; Seitz, F.

    1992-01-01

    The spectre of major climate change caused by the greenhouse effect has generated intensive research, heated scientific debate and a concerted international effort to draft agreements for the reduction of greenhouse gas emissions. This report of Scientific Perspectives on the greenhouse problem explains the technical issues in the debate in language readily understandable to the non-specialist. The inherent complexities of attempts to simulate the earth's climate are explained, particularly with regard to the effects of clouds and the circulation of the oceans, which together represent the largest factors of uncertainty in current global warming forecasts. Results of the search for the 'greenhouse signal' in existing climate records aredescribed in chapter 3 (part two). Chapter 5 (part two) develops a projection of 21st-century warming based on relatively firm evidence of the earth's actual response to known increases in greenhouse gas emissions during the last 100 years

  9. Greenhouse Earth: A Traveling Exhibition

    International Nuclear Information System (INIS)

    Booth, W.H.; Caesar, S.

    1992-09-01

    The Franklin Institute Science Museum provided an exhibit entitled the Greenhouse Earth: A Traveling Exhibition. This 3500 square-foot exhibit on global climate change was developed in collaboration with the Association of Science-Technology Centers. The exhibit opened at The Franklin Institute on February 14, 1992, welcoming 291,000 visitors over its three-month stay. During its three-year tour, Greenhouse Earth will travel to ten US cities, reaching two million visitors. Greenhouse Earth aims to deepen public understanding of the scientific issues of global warming and the conservation measures that can be taken to slow its effects. The exhibit features hands-on exhibitry, interactive computer programs and videos, a theater production, a ''demonstration cart,'' guided tours, and lectures. supplemental educational programs at the Institute included a teachers preview, a symposium on climate change, and a ''satellite field trip.'' The development of Greenhouse Earth included front-end and formative evaluation procedures. Evaluation includes interviews with visitors, prototypes, and summative surveys for participating museums. During its stay in Philadelphia, Greenhouse Earth was covered by the local and national press, with reviews in print and broadcast media. Greenhouse Earth is the first large-scale museum exhibit to address global climate change

  10. Greenhouse effect of chlorofluorocarbons and other trace gases

    Science.gov (United States)

    Hansen, James; Lacis, Andrew; Prather, Michael

    1989-01-01

    A comparison is made of the radiative (greenhouse) forcing of the climate system due to changes of atmospheric chlorofluorocarbons and other trace gases. It is found that CFCs, defined to include chlorofluorocarbons, chlorocarbons, and fluorocarbons, now provide about one-quater of current annual increases in anthropogenic greenhouse climate forcing. If the growth rates of CFC production in the early 1970s had continued to the present, current annual growth of climate forcing due to CFCs would exceed that due to CO2.

  11. The greenhouse effect evaluation for the french people; Les representations de l'effet de serre dans la population francaise

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    For the third consecutive years, the ADEME realized an inquiry towards a representative sample of the french people in order to evaluate the social perception of the greenhouse effect, in july 2002. French attitudes and opinions show a bad information on the greenhouse effect increase. The French present as the greenhouse effect causes the industrial activities, the transports and the forests destruction and precise the consequences. Propositions of attitudes and their efficiency are also provided. (A.L.B.)

  12. Discussing the Greenhouse Effect: Children's Collaborative Discourse Reasoning and Conceptual Change.

    Science.gov (United States)

    Mason, Lucia; Santi, Marina

    1998-01-01

    Investigates fifth-grade students' conceptual changes toward the greenhouse effect and global warming due to sociocognitive interaction developed in small and large group discussion in an authentic classroom context during an environmental education unit. Classroom discussions led the children to integrate new scientific knowledge into their…

  13. Exploring French Adolescents' and Adults' Comprehension of the Greenhouse Effect

    Science.gov (United States)

    Frappart, Sören; Moine, Mylène; Jmel, Saïd; Megalakaki, Olga

    2018-01-01

    The aim of the present study was to gain an insight into French young people's conceptual development regarding the greenhouse effect. Because this effect cannot be directly manipulated, we can assume that its conceptualization is mainly shaped through the sharing of information. Eighty French students from Grade Seven through to adulthood…

  14. Investigating the Effect of a North Wall on Energy Consumption of an East–West Oriented Single Span Greenhouse

    Directory of Open Access Journals (Sweden)

    H Ghasemi Mobtaker

    2017-10-01

    Full Text Available Introduction Greenhouse is a structure which provides the best condition for the maximum plants growth during the cold seasons. In cold climate zones such as Tabriz province, Iran, the greenhouse heating is one of the most energy consumers. It has been estimated that the greenhouse heating cost is attributed up to 30% of the total operational costs of the greenhouses. Renewable energy resources are clean alternatives that can be used in greenhouse heating. Among the renewable energy resources, solar energy has the highest potential around the world. In this regard, application of solar energy in greenhouse heating during the cold months of a year could be considerable. The rate of thermal energy required inside the greenhouse depends on the solar radiation received inside the greenhouse. Using a north brick wall in an east-west oriented greenhouse can increase the absorption of solar radiation and consequently reduces the thermal and radiation losses. Therefore, the main objective of the present study is to investigate the effect of implementing of a north wall on the solar radiation absorption and energy consumption of an east-west oriented single span greenhouse in Tabriz. Materials and Methods This study was carried out in Tabriz and a steady state analysis was used to predict the energy consumption of a single span greenhouse. For this purpose, thermal energy balance equations for different components of the greenhouse including the soil layer, internal air and plants were presented. For investigating the effect of the north wall on the energy consumption, the Ft and Fn parameters were used to calculate the radiation loss from the walls of the greenhouses. These factors were determined using a 3D–shadow analysis by Auto–CAD software. An east-west oriented single span greenhouse which has a north brick wall and is covered with a single glass sheet with 4 mm thickness was applied to validate the developed models. The measurements were

  15. Sonic anemometry to measure natural ventilation in greenhouses.

    Science.gov (United States)

    López, Alejandro; Valera, Diego Luis; Molina-Aiz, Francisco

    2011-01-01

    The present work has developed a methodology for studying natural ventilation in Mediterranean greenhouses by means of sonic anemometry. In addition, specific calculation programmes have been designed to enable processing and analysis of the data recorded during the experiments. Sonic anemometry allows us to study the direction of the airflow at all the greenhouse vents. Knowing through which vents the air enters and leaves the greenhouse enables us to establish the airflow pattern of the greenhouse under natural ventilation conditions. In the greenhouse analysed in this work for Poniente wind (from the southwest), a roof vent designed to open towards the North (leeward) could allow a positive interaction between the wind and stack effects, improving the ventilation capacity of the greenhouse. The cooling effect produced by the mass of turbulent air oscillating between inside and outside the greenhouse at the side vents was limited to 2% (for high wind speed, u(o) ≥ 4 m s(-1)) reaching 36.3% when wind speed was lower (u(o) = 2 m s(-1)).

  16. Greenhouse cooling using a rainwater basin under the greenhouse

    NARCIS (Netherlands)

    Campen, J.B.

    2006-01-01

    The objective of the study was to determine the technical and economical aspects of additional applications for a rainwater basin installed under a greenhouse. The installation for cooling the greenhouse can be placed under the greenhouse. Part of the installation consists of a short-term heat store

  17. Greenhouse gas emissions from hydroelectric reservoirs

    International Nuclear Information System (INIS)

    Rosa, L.P.; Schaeffer, R.

    1994-01-01

    In a recent paper, Rudd et al. have suggested that, per unit of electrical energy produced, greenhouse-gas emissions from some hydroelectric reservoirs in northern Canada may be comparable to emissions from fossil-fuelled power plants. The purpose of this comment is to elaborate these issues further so as to understand the potential contribution of hydroelectric reservoirs to the greenhouse effect. More than focusing on the total budget of carbon emissions (be they in the form of CH 4 or be they in the form of CO 2 ), this requires an evaluation of the accumulated greenhouse effect of gas emissions from hydroelectric reservoirs and fossil-fuelled power plants. Two issues will be considered: (a) global warming potential (GWP) for CH 4 ; and (b) how greenhouse-gas emissions from hydroelectric power plants stand against emissions from fossil-fuelled power plants with respect to global warming

  18. Quantification and Controls of Wetland Greenhouse Gas Emissions

    Energy Technology Data Exchange (ETDEWEB)

    McNicol, Gavin [Univ. of California, Berkeley, CA (United States)

    2016-05-10

    Wetlands cover only a small fraction of the Earth’s land surface, but have a disproportionately large influence on global climate. Low oxygen conditions in wetland soils slows down decomposition, leading to net carbon dioxide sequestration over long timescales, while also favoring the production of redox sensitive gases such as nitrous oxide and methane. Freshwater marshes in particular sustain large exchanges of greenhouse gases under temperate or tropical climates and favorable nutrient regimes, yet have rarely been studied, leading to poor constraints on the magnitude of marsh gas sources, and the biogeochemical drivers of flux variability. The Sacramento-San Joaquin Delta in California was once a great expanse of tidal and freshwater marshes but underwent drainage for agriculture during the last two centuries. The resulting landscape is unsustainable with extreme rates of land subsidence and oxidation of peat soils lowering the surface elevation of much of the Delta below sea level. Wetland restoration has been proposed as a means to slow further subsidence and rebuild peat however the balance of greenhouse gas exchange in these novel ecosystems is still poorly described. In this dissertation I first explore oxygen availability as a control on the composition and magnitude of greenhouse gas emissions from drained wetland soils. In two separate experiments I quantify both the temporal dynamics of greenhouse gas emission and the kinetic sensitivity of gas production to a wide range of oxygen concentrations. This work demonstrated the very high sensitivity of carbon dioxide, methane, and nitrous oxide production to oxygen availability, in carbon rich wetland soils. I also found the temporal dynamics of gas production to follow a sequence predicted by thermodynamics and observed spatially in other soil or sediment systems. In the latter part of my dissertation I conduct two field studies to quantify greenhouse gas exchange and understand the carbon sources for

  19. Potential effects of anthropogenic greenhouse gases on avian habitats and populations in the northern Great Plains

    Science.gov (United States)

    Larson, Diane L.

    1994-01-01

    Biotic response to the buildup of greenhouse gases in Earth's atmosphere is considerably more complex than an adjustment to changing temperature and precipitation. The fertilization effect carbon dioxide has on some plants, the impact UVB radiation has on health and productivity of organisms, and the resulting changes in competitive balance and trophic structure must also be considered. The intent of this paper is to review direct and indirect effects of anthropogenic greenhouse gases on wildlife, and to explore possible effects on populations of birds and their habitats in the northern Great Plains.Many of the potential effects of increasing greenhouse gases, such as declining plant nutritional value, changes in timing of insect emergence, and fewer and saltier wetlands, foreshadow a decline in avian populations on the Great Plains. However, other possible effects such as increased drought resistance and water use efficiency of vegetation, longer growing seasons, and greater overall plant biomass promise at least some mitigation. Effects of multiple simultaneous perturbations such as can be expected under doubled carbon dioxide scenarios will require substantial basic research to clarify.

  20. Technological substitution options for controlling greenhouse gas emissions

    International Nuclear Information System (INIS)

    Barbier, E.B.; Burgess, J.C.; Pearce, D.W.

    1991-01-01

    This chapter is concerned with technological options for greenhouse gas substitution. The authors interpret the term substitution to exclude energy conservation/efficiency measures, investments in afforestation (sinks), and greenhouse gas removal or abatement technologies. Their working definition of greenhouse gas substitution includes (1) replacement technologies, for example, substituting a greenhouse gas technology with a nongreenhouse gas technology; and (2) reduction technologies, for example, substituting a greenhouse gas technology with an alternative technology that reduces greenhouse gas emissions. Essentially, replacement technologies involve 100 percent reduction in CO 2 ; reduction technologies involve a partial reduction in CO 2 . Of the man-made sources of greenhouse gases, energy is the most important and is expected to contribute to at least half of the global warming effect in the near future. The majority of this impact is from fossil fuel combustion as a source of carbon dioxide (CO 2 ), although fossil fuels also contribute significantly to methane (CH 4 ), to nitrous oxide (N 2 O), and to low-level ozone (O 3 ) through production of various nitrogen gases (NO x ) and carbon monoxide (CO). This study analyzes the available greenhouse gas substitutions and their costs. The authors concentrate particularly on substitutions for fossil-fuel combustion and CFC production and consumption. They conclude by summarizing the potential for greenhouse gas substitution, the cost-effectiveness of the various options and the design of incentives for substitution

  1. Control and game models of the Greenhouse effect. Economics essays on the comedy and tragedy of the commons

    International Nuclear Information System (INIS)

    Cesar, H.S.J.

    1994-01-01

    Following chapter 1 (introduction and conclusions) in Chapter 2, the groundwork is laid for the analysis later on. First, the most relevant aspects of the Greenhouse Effect are discussed. The causes, trends, impacts and especially the policy options are highlighted. This elaboration will justify the choice of carbon dioxide emissions (CO 2 ) as the primary Greenhouse gas in later chapters. Next, the literature on environmental resource economics using optimal control models is critically surveyed. In Chapter 3, one-country models of the Greenhouse Effect are developed and four elements, often neglected in the literature are elaborated in particular. In Chapter 4, the issue of the 'tragedy of the commons' is highlighted by looking at the transboundary aspect of the Greenhouse Effect. To clarify this, assume the following prisoner's dilemma gamme of a world consisting of two countries. In Chapter 5, it is shown that (in-kind) technology transfers can overcome some of the incentive problems that render cash transfers prone to strategic behviour. (orig./UA)

  2. Gardening with Greenhouses

    Science.gov (United States)

    Keeler, Rusty

    2010-01-01

    Greenhouses come in all shapes, sizes, and price ranges: from simple hand-built plastic-covered frames to dazzling geodesic domes. Some child care centers install greenhouses as a part of their outdoor garden space. Other centers have incorporated a greenhouse into the building itself. Greenhouses provide a great opportunity for children to grow…

  3. Modeling of greenhouse with PCM energy storage

    International Nuclear Information System (INIS)

    Najjar, Atyah; Hasan, Afif

    2008-01-01

    Greenhouses provide a controlled environment that is suitable for plants growth and cultivation. In this paper the maximum temperature change inside the greenhouse is to be reduced by the use of energy storage in a phase change material PCM. A mathematical model is developed for the storage material and for the greenhouse. The coupled models are solved using numerical methods and Java code program. The effect of different parameters on the inside greenhouse temperature is investigated. The temperature swing between maximum and minimum values during 24 h can be reduced by 3-5 deg. C using the PCM storage. This can be improved further by enhancing the heat transfer between the PCM storage and the air inside the greenhouse

  4. Modeling of greenhouse with PCM energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Najjar, Atyah [Computation Science, Birzeit University, Birzeit (PS); Hasan, Afif [Mechanical Engineering Department, Birzeit University, Birzeit (PS)

    2008-11-15

    Greenhouses provide a controlled environment that is suitable for plants growth and cultivation. In this paper the maximum temperature change inside the greenhouse is to be reduced by the use of energy storage in a phase change material PCM. A mathematical model is developed for the storage material and for the greenhouse. The coupled models are solved using numerical methods and Java code program. The effect of different parameters on the inside greenhouse temperature is investigated. The temperature swing between maximum and minimum values during 24 h can be reduced by 3-5 C using the PCM storage. This can be improved further by enhancing the heat transfer between the PCM storage and the air inside the greenhouse. (author)

  5. Greener greenhouses

    Energy Technology Data Exchange (ETDEWEB)

    Paksoy, Halime; Turgut, Bekir; Beyhan, Beyza; Dasgan, H. Yildiz; Evliya, Hunay; Abak, Kazim; Bozdag, Saziye

    2010-09-15

    Agricultural greenhouses are solution to the increased demand for higher production yields, facilitating off season cultivation and allowing the growth of certain varieties in areas where it was not possible earlier. Heating and/or cooling system, required to maintain the inside micro-climate in greenhouses mostly rely on fossil fuels and/or electricity. This paper aims to discuss the 'greener' solutions for heating and cooling systems of greenhouses based on different thermal energy storage concepts. Results from a greenhouse Aquifer Thermal Energy Storage (ATES) application in Turkey producing tomatoes with zero fossil fuels and up to 40% higher yield are presented.

  6. Knowledge about the Greenhouse Effect and the Effects of the Ozone Layer among Norwegian Pupils Finishing Compulsory Education in 1989, 1993, and 2005—What Now?

    Science.gov (United States)

    Kirkeby Hansen, Pål J.

    2010-02-01

    The greenhouse effect and the effects of the ozone layer have been in the media and public focus for more than two decades. During the same period, Norwegian compulsory schools have had four national curricula. The two last-mentioned prescribe explicitly the two topics. Media and public discourse might have been sources of information causing informal learning among pupils. The point of departure for this questionnaire-based examination of the development of pupils' knowledge about the greenhouse effect and the effects of the ozone layer from 1989 to 2005 is the changing curricula and formal and informal learning. In 2005 the trends seem to be that more pupils confuse the greenhouse effect with the effects of the ozone layer. At the same time, specific knowledge about the greenhouse effect is improving. This article will discuss some possible causes for these trends, and give some recommendations for teaching the topics in accordance with the last national curriculum implemented in 2006.

  7. Technologies for a greenhouse-constrained society

    International Nuclear Information System (INIS)

    Kuliasha, M.A.; Zucker, A.; Ballew, K.J.

    1992-01-01

    This conference explored how three technologies might help society adjust to life in a greenhouse-constrained environment. Technology experts and policy makers from around the world met June 11--13, 1991, in Oak Ridge, Tennessee, to address questions about how energy efficiency, biomass, and nuclear technologies can mitigate the greenhouse effect and to explore energy production and use in countries in various stages of development. The conference was organized by Oak Ridge National Laboratory and sponsored by the US Department of Energy. Energy efficiency biomass, and nuclear energy are potential substitutes for fossil fuels that might help slow or even reverse the global warming changes that may result from mankind's thirst for energy. Many other conferences have questioned whether the greenhouse effect is real and what reductions in greenhouse gas emissions might be necessary to avoid serious ecological consequences; this conference studied how these reductions might actually be achieved. For these conference proceedings, individuals papers are processed separately for the Energy Data Base

  8. The Contribution of Electricity Generation to Greenhouse Effect

    International Nuclear Information System (INIS)

    Lubis, Erwansyah

    2008-01-01

    The development activities has successfully increasing the human kind, but also has increasing trend the planet changes radically, because of the greenhouse effect (GHE), decreasing ozone layer and acid rain, that all could treat the living of the species-species and including man inside. The electricity generation and transportation are the main contribution of greenhouse gas (GHG), reaching 1/3 of global emission. Base on the Kyoto protocol in 1997, that all countries, alone or together agree to reduce the emission of GG of 5.2 % under the emission of the 1990. The decreasing of GHG could be reached by implementing the technology generation that contain low carbon, such a natural gas, hydro power, wind, solar and nuclear power. Diversification of electricity generation has to take into a count of environmental capacity, so the supply stability and sustainable development could be reached. The IAEA results studies indicated that the emission factor of fossil fuel 2 times greater compare to the natural gas. The emission factor of wind and biomass lie between solar and nuclear power. In the electricity generation chain, nuclear power emit the 25 g of CO 2 /kWh compare to fossil fuel emit 250 - 1250 g CO 2 /kWh. (author)

  9. Management of gas releases with greenhouse effect: which economical tools?; Maitriser les emissions de gaz a effet de serre: quels instruments economiques?

    Energy Technology Data Exchange (ETDEWEB)

    Lepeltier, Serge [Senat, Paris (France)

    2000-06-09

    The climatic change represents the most severe danger to the durable world development, public health and future prosperity. This document concerning the gas releases with greenhouse effect is a report of the Senate Planning delegation regarding the economic and fiscal tools envisaging abatement of releases of gases with greenhouse effect. These issues are presented in four chapters titled as follows: 1. Since the scientific evidencing, requirement of managing the releases of gas with greenhouse effect has been unanimously recognized at the summits of Rio (1992) and Kyoto (1997); 2. The economic theory suggests instruments for reducing the gas releases with greenhouse effect at a minimum cost; 3. Challenges and ways of international cooperation in the field of climatic change; 4. Joining the political will with the pragmatic use of the economic instruments at national scale. The document contains a synthesis of proposals directed towards the following goals: international negotiations relating to climatic change; creating the community framework of managing the gas releases resulting in greenhouse effect; establishing national measures for managing the gas releases leading to greenhouse effect; actions to be undertaken by the territorial collectivities.

  10. Structural analysis and functional characteristics of greenhouses in ...

    African Journals Online (AJOL)

    ... resulting from loads acting on beams of each greenhouse, were analyzed by SAP2000 program. Also, the stretch ratios as per whether greenhouse types and covering materials have a statistically significant effect were examined. According to the obtained data, it was found that all of the selected greenhouses could not

  11. Estimating the effective nitrogen import: An example for the North Sea-Baltic Sea boundary

    Science.gov (United States)

    Radtke, H.; Maar, M.

    2016-10-01

    Semienclosed water bodies such as the Baltic Sea are prone to eutrophication problems. If local nutrient abatement measures are taken to tackle these problems, their success may be limited if a strong nutrient exchange with the adjacent waters exists. The quantification of this exchange is therefore essential to estimate its impact on the ecosystem status. At the example of the Baltic Sea and the North Sea, we illustrate that neither gross transports nor net transports of nutrients have a strong informative value in this context. Instead, we define an "effective import" as the import of nutrients which have not been inside the Baltic Sea before and estimate it in an ecological model with a nutrient-tagging technique. This effective import of bioreactive nitrogen from the Skagerrak to the Kattegat amounts to 103 kt/yr; from Kattegat to Belt Sea it is 54 kt/yr. The nitrogen exchange is therefore 30% stronger than other estimates, e.g., based on import in the deep water, suggest. An isolated view on the Baltic Sea and the North Sea in terms of eutrophication, as it is practiced in management today, is therefore questionable. Nitrogen imported from the North Sea typically spreads eastward up to the Bornholm Basin but can be transported into the deep waters of the Gotland Basin during Major Baltic Inflows in a significant amount.

  12. Development and testing of an assessment to measure spatial thinking about enhanced greenhouse effect

    Science.gov (United States)

    Skaza, Heather Jean

    Americans, in general, do not behave in environmentally sustainable ways. We drive cars and fly in planes that emit planet-warming carbon. We purchase food in nearly indestructible packaging that is not recycled or repurposed. We do not consider the environmental impact of the "stuff" stuffed into our grocery and department stores, most of which is made of materials that had to be dug out of the ground, leaving rivers and skies full of pollution in its place. Citizens have a responsibility to understand complex global and local environmental problems. A person's ability to think about the way that an environmental problem they are tasked with understanding changes over time and space can better prepare them to make sustainable decisions in the face of this complexity. Spatial thinking serves the learner's ability to understand the impact of environmental actions and should be given a consistent place in environmental education. Teaching practices and pedagogies that focus on spatial thinking are necessary to learners' success. In order to know if these strategies are successful, educators need an assessment tool that targets the spatial thinking skills necessary to understanding environmental problems. This dissertation project used a models and modeling theoretical framework to develop and test an assessment of students' spatial thinking abilities related to the environmental problem of enhanced greenhouse effect. This assessment was developed from a review of existing spatial thinking literature, research on existing assessments of spatial thinking abilities, and existing assessment of enhanced greenhouse effect. In addition, I interviewed and surveyed experts in science, math, and environmental education to elicit their perspectives on the spatial thinking skills necessary for learners to understand enhanced greenhouse effect. All of this information was synthesized into 14 Central Concepts of spatial thinking for enhanced greenhouse effect. The assessment was

  13. Climate - Greenhouse effect - Energy

    International Nuclear Information System (INIS)

    Henriksen, Thormod; Kanestroem, Ingolf

    2001-01-01

    This book explains what is understood by climate systems and the concept of greenhouse effect. It also gives a survey of the world's energy consumption, energy reserves and renewable energy sources. Today, 75 - 80 per cent of the world's energy consumption involves fossil fuel. These are the sources that cause the CO 2 emissions. What are the possibilities of reducing the emissions? The world's population is increasing, and to provide food and a worthy life for everybody we have to use more energy. Where do we get this energy from without causing great climate changes and environmental changes? Should gas power plants be built in Norway? Should Swedish nuclear power plants be shut down, or is it advisable to concentrate on nuclear power, worldwide, this century, to reduce the CO 2 emissions until the renewable energy sources have been developed and can take over once the petroleum sources have been depleted? The book also discusses the global magnetic field, which protects against particle radiation from space and which gives rise to the aurora borealis. The book is aimed at students taking environmental courses in universities and colleges, but is also of interest for anybody concerned about climate questions, energy sources and living standard

  14. (Limiting the greenhouse effect)

    Energy Technology Data Exchange (ETDEWEB)

    Rayner, S.

    1991-01-07

    Traveler attended the Dahlem Research Conference organized by the Freien Universitat, Berlin. The subject of the conference was Limiting the Greenhouse Effect: Options for Controlling Atmospheric CO{sub 2} Accumulation. Like all Dahlem workshops, this was a meeting of scientific experts, although the disciplines represented were broader than usual, ranging across anthropology, economics, international relations, forestry, engineering, and atmospheric chemistry. Participation by scientists from developing countries was limited. The conference was divided into four multidisciplinary working groups. Traveler acted as moderator for Group 3 which examined the question What knowledge is required to tackle the principal social and institutional barriers to reducing CO{sub 2} emissions'' The working rapporteur was Jesse Ausubel of Rockefeller University. Other working groups examined the economic costs, benefits, and technical feasibility of options to reduce emissions per unit of energy service; the options for reducing energy use per unit of GNP; and the significant of linkage between strategies to reduce CO{sub 2} emissions and other goals. Draft reports of the working groups are appended. Overall, the conference identified a number of important research needs in all four areas. It may prove particularly important in bringing the social and institutional research needs relevant to climate change closer to the forefront of the scientific and policy communities than hitherto.

  15. Greenhouse Effect in the Classroom: A Project- and Laboratory-Based Curriculum.

    Science.gov (United States)

    Lueddecke, Susann B.; Pinter, Nicholas; McManus, Scott A.

    2001-01-01

    Tests a multifaceted curriculum for use in introductory earth science classes from the secondary school to the introductory undergraduate level. Simulates the greenhouse effect with two fish tanks, heat lamps, and thermometers. Uses a hands-on science approach to develop a deeper understanding of the climate system among students. (Contains 28…

  16. Effects of Greenhouse Gas Emissions on World Agriculture, Food Consumption, and Economic Welfare

    International Nuclear Information System (INIS)

    Darwin, R.

    2004-01-01

    Because of many uncertainties, quantitative estimates of agriculturally related economic impacts of greenhouse gas emissions are often given low confidence. A major source of uncertainty is our inability to accurately project future changes in economic activity, emissions, and climate. This paper focuses on two issues. First, to what extent do variable projections of climate generate uncertainty in agriculturally related economic impacts? Second, to what extent do agriculturally related economic impacts of greenhouse gas emissions depend on economic conditions at the time of impacts? Results indicate that uncertainty due to variable projections of climate is fairly large for most of the economic effects evaluated in this analysis. Results also indicate that economic conditions at the time of impact influence the direction and size of as well as the confidence in the economic effects of identical projections of greenhouse gas impacts. The economic variable that behaves most consistently in this analysis is world crop production. Increases in mean global temperature, for example, cause world crop production to decrease on average under both 1990 and improved economic conditions and in both instances the confidence with respect to variable projections of climate is medium (e.g., 67%) or greater. In addition and as expected, CO2 fertilization causes world crop production to increase on average under 1990 and improved economic conditions. These results suggest that crop production may be a fairly robust indicator of the potential impacts of greenhouse gas emissions. A somewhat unexpected finding is that improved economic conditions are not necessarily a panacea to potential greenhouse-gas-induced damages, particularly at the region level. In fact, in some regions, impacts of climate change or CO2 fertilization that are beneficial under current economic conditions may be detrimental under improved economic conditions (relative to the new economic base). Australia plus

  17. General review on climate change problems: causes, potential effects

    International Nuclear Information System (INIS)

    Martellet, J.

    1991-01-01

    Greenhouse gases and greenhouse effect principles are reviewed and climate changes due to the human activities are discussed: identification of gases, human or natural causes, composition evolution in the atmosphere and relative roles of greenhouse gases. The various tools and calculations methods for evaluating the climate change due to greenhouse effect are presented. Several problems are stated: evolution of the climate structure in 2030, variations of the climatic extremes and the extreme phenomena, augmentation or diminution of the storms on a warmed planet, long term evolution of the climate. Some consequences of a climate change are reviewed: sea level raising, climate change effects on ecosystems. Precision and validity of these predictions are discussed; recommendations for diminishing the uncertainties are proposed

  18. The coal industry and its greenhouse challenge

    International Nuclear Information System (INIS)

    Armstrong, A.

    1998-01-01

    The Australian coal industry is actively involved in greenhouse gas emission management and abatement issues. An Australian Coal Association (ACA) position paper on greenhouse in November 1989, recommended a number of strategies to minimise the greenhouse effect, including the enhancement of energy utilisation efficiency, improved energy conversion efficiency at coal-fired power stations, expanded use of solar heating, and improved recycling. All of the strategies have been implemented to various degrees. The management and abatement of greenhouse gas emissions within the coal industry has been approached from an individual operational level, and a 'higher' industry level

  19. The climate controversy demands substantive discussion. 'Climatic change sceptics' opposite 'greenhouse effect believers'

    International Nuclear Information System (INIS)

    Thoenes, D.; Labohm, H.

    2006-01-01

    With the aim to inform policymakers an overview is given of the arguments that are used by climatic change sceptics and greenhouse effect believers, and on which arguments do they agree or disagree [nl

  20. Economic growth and greenhouse gas emissions

    Energy Technology Data Exchange (ETDEWEB)

    Ansuategi, Alberto [Environment Department, University of York, York (United Kingdom); Escapa, Marta [Foundations of Economic Analysis Department, University of the Basque Country, Bilbao (Spain)

    2002-01-01

    Recent empirical research has examined the relationship between certain indicators of environmental degradation and income, concluding that in some cases an inverted U-shaped relationship, which has been called an environmental Kuznets curve (EKC), exists between these variables. Unfortunately, this inverted U-shaped relationship does not hold for greenhouse gas emissions. One explanation of the absence of EKC-like behavior in greenhouse gas emissions is that greenhouse gases are special pollutants that create global, not local, disutility. But the international nature of global warming is not the only reason that prevents de-linking greenhouse gas emissions from economic growth. The intergenerational nature of the negative impact of greenhouse gas emissions may have also been an important factor preventing the implementation of greenhouse gas abatement measures in the past. In this paper we explore the effect that the presence of intergenerational spillovers has on the emissions-income relationship. We use a numerically calibrated overlapping generations model of climate-economy interactions. We conclude that: (1) the intertemporal responsibility of the regulatory agency, (2) the institutional capacity to make intergenerational transfers and (3) the presence of intergenerationally lagged impact of emissions constitute important determinants of the relationship between economic growth and greenhouse gas emissions.

  1. The effects of light-emitting diode lighting on greenhouse plant growth and quality

    Directory of Open Access Journals (Sweden)

    Margit Olle

    2013-06-01

    Full Text Available The aim of this study is to present the light emitting diode (LED technology for greenhouse plant lighting and to give an overview about LED light effects on photosynthetic indices, growth, yield and nutritional value in green vegetables and tomato, cucumber, sweet pepper transplants. The sole LED lighting, applied in closed growth chambers, as well as combinations of LED wavelengths with conventional light sources, fluorescent and high pressure sodium lamp light, and natural illumination in greenhouses are overviewed. Red and blue light are basal in the lighting spectra for green vegetables and tomato, cucumber, and pepper transplants; far red light, important for photomorphogenetic processes in plants also results in growth promotion. However, theoretically unprofitable spectral parts as green or yellow also have significant physiological effects on investigated plants. Presented results disclose the variability of light spectral effects on different plant species and different physiological indices.

  2. Literature overview for greenhouse effect part VI

    International Nuclear Information System (INIS)

    Orthofer, R.; Nevyjel, A.

    1997-10-01

    On behalf of the Austrian Federal Ministry of Environment, Youth and Family Affairs the current scientific and technical literature in the subject area of greenhouse effect and global climatic change is investigated by performing quarterly on-line retrieval searches in the databases Compendex, Enviroline, NTIS and ULIT. This report contains the research results of the period of September to December 1996. From the observed 199 citations the most significant 50 citations were selected, evaluated and summarised in a literature review. Relevant topics are (1) research on causes, effects and modelling, (2) possible agricultural, technical, economic and political control measures, (3) strategies and actions taken in various countries, and (4) international co-ordination. The review is based on the abstracts from the databases and for the most interesting publications - from the original literature. Five similar reports have been published previously which cover the literature since January 1994. (author)

  3. Radioactivity in the sea. Scientific publications of the IAEA Marine Environment Laboratory (1991-1996)

    International Nuclear Information System (INIS)

    1998-01-01

    This document provides list of scientific publications of the IAEA Marine Environmental Laboratory (IAEA-MEL). The studies cover a broad spectrum of environmental issues of behaviour of radioactive substances as well as fate of non-nuclear pollutants in the marine environment. Studies of the Gulf war aftermath, the carbon cycle and the Greenhouse Effect, Chernobyl radioactivity in the oceans, the consequences of nuclear testing on the South Pacific and of nuclear dumping in the Arctic Seas and in the East Sea (Sea of Japan) and of pesticide tun-off and toxicity to coastal fisheries are just a few areas in which the IAEA-MEL has recently been active. Increasingly, the emphasis is placed on the use of nuclear and isotopic techniques to improve understanding of the marine environment and of pollutant behaviour

  4. Learning Molecular Behaviour May Improve Student Explanatory Models of the Greenhouse Effect

    Science.gov (United States)

    Harris, Sara E.; Gold, Anne U.

    2018-01-01

    We assessed undergraduates' representations of the greenhouse effect, based on student-generated concept sketches, before and after a 30-min constructivist lesson. Principal component analysis of features in student sketches revealed seven distinct and coherent explanatory models including a new "Molecular Details" model. After the…

  5. Effect on energy use and greenhouse micro climate through fan motor control by variable frequency drives

    International Nuclear Information System (INIS)

    Teitel, Meir; Zhao Yun; Barak, Moti; Bar-lev, Eli; Shmuel, David

    2004-01-01

    A comparison was conducted between ON-OFF and variable frequency drive (VFD) systems to control greenhouse ventilation fans. The study aimed to determine the effect of each system on the energy consumption and resulting greenhouse micro climate. The experiments were conducted in a commercial size greenhouse in which pepper was grown. To check the performance of the fan that was controlled by a VFD system, it was installed in a test facility and operated under several rotation speeds. At each speed of rotation, the static pressure on the fan was changed and parameters, such as electricity consumption and air flow rate, were measured. Reducing the fan speed with the VFD system resulted in reductions in the air flow rate through the greenhouse and energy consumption, the latter being much more significant. The study showed that VFD control can reduce electricity consumption compared with ON-OFF operation by an amount that depends on the weather. In the present study, the average energy consumption with the VFD control system over a period of one month, was about 0.64 of that with an ON-OFF system. The average greenhouse daily air temperatures and humidity ratios obtained with each control system between 0700 and 1800 were nearly equal during that month. The results obtained in the greenhouse further show that the VFD system has a greater potential than the ON-OFF to reduce the range of amplitude variations in the air temperature and humidity ratio within the greenhouse

  6. Taxation of multiple greenhouse gases and the effects on income distribution : A case study of the Netherlands

    NARCIS (Netherlands)

    Kerkhof, Annemarie C.; Moll, Henri C.; Drissen, Eric; Wilting, Harry C.

    2008-01-01

    Current economic instruments aimed at climate change mitigation focus on CO2 emissions only, but the Kyoto Protocol refers to other greenhouse gases (GHG) as well as CO2. These are CH4, N2O, HFCs, PFCs and SF6. Taxation of multiple greenhouse gases improves the cost-effectiveness of climate change

  7. [Effects of understory removal on soil greenhouse gas emissions in Carya cathayensis stands].

    Science.gov (United States)

    Liu, Juan; Chen, Xue-shuang; Wu, Jia-sen; Jiang, Pei-kun; Zhou, Guo-mo; Li, Yong-fu

    2015-03-01

    CO2, N2O and CH4 are important greenhouse gases, and soils in forest ecosystems are their important sources. Carya cathayensis is a unique tree species with seeds used for high-grade dry fruit and oil production. Understory vegetation management plays an important role in soil greenhouse gases emission of Carya cathayensis stands. A one-year in situ experiment was conducted to study the effects of understory removal on soil CO2, N2O and CH4 emissions in C. cathayensis plantation by closed static chamber technique and gas chromatography method. Soil CO2 flux had a similar seasonal trend in the understory removal and preservation treatments, which was high in summer and autumn, and low in winter and spring. N2O emission occurred mainly in summer, while CH4 emission showed no seasonal trend. Understory removal significantly decreased soil CO, emission, increased N2O emission and CH4 uptake, but had no significant effect on soil water soluble organic carbon and microbial biomass carbon. The global warming potential of soil greenhouse gases emitted in the understory removal. treatment was 15.12 t CO2-e . hm-2 a-1, which was significantly lower than that in understory preservation treatment (17.04 t CO2-e . hm-2 . a-1).

  8. The effect of millennial-scale changes in Arabian Sea denitrification on atmospheric CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Altabet, M.A.; Higginson, M.J. [University of Massachusetts, New Bedford, MA (United States). School for Marine Science and Technology; Murray, D.W. [Brown University, Providence, RI (United States). Center for Environmental Studies

    2002-07-01

    Most global biogeochemical processes are known to respond to climate change, some of which have the capacity to produce feedbacks through the regulation of atmospheric greenhouse gases. Marine denitrification - the reduction of nitrate to gaseous nitrogen - is an important process in this regard, affecting greenhouse gas concentrations directly through the incidental production of nitrous oxide, and indirectly through modification of the marine nitrogen inventory and hence the biological pump for C0{sub 2}. Although denitrification has been shown to vary with glacial-interglacial cycles, its response to more rapid climate change has not yet been well characterized. Here we present nitrogen isotope ratio, nitrogen content and chlorin abundance data from sediment cores with high accumulation rates on the Oman continental margin that reveal substantial millennial-scale variability in Arabian Sea denitrification and productivity during the last glacial period. The detailed correspondence of these changes with Dansgaard-Oeschger events recorded in Greenland ice cores indicates rapid, century-scale reorganization of the Arabian Sea ecosystem in response to climate excursions, mediated through the intensity of summer monsoonal upwelling. Considering the several-thousand-year residence time of fixed nitrogen in the ocean, the response of global marine productivity to changes in denitrification would have occurred at lower frequency and appears to be related to climatic and atmospheric C0{sub 2} oscillations observed in Antarctic ice cores between 20 and A kyr ago. (author)

  9. Effects of Sea-Surface Waves and Ocean Spray on Air-Sea Momentum Fluxes

    Science.gov (United States)

    Zhang, Ting; Song, Jinbao

    2018-04-01

    The effects of sea-surface waves and ocean spray on the marine atmospheric boundary layer (MABL) at different wind speeds and wave ages were investigated. An MABL model was developed that introduces a wave-induced component and spray force to the total surface stress. The theoretical model solution was determined assuming the eddy viscosity coefficient varied linearly with height above the sea surface. The wave-induced component was evaluated using a directional wave spectrum and growth rate. Spray force was described using interactions between ocean-spray droplets and wind-velocity shear. Wind profiles and sea-surface drag coefficients were calculated for low to high wind speeds for wind-generated sea at different wave ages to examine surface-wave and ocean-spray effects on MABL momentum distribution. The theoretical solutions were compared with model solutions neglecting wave-induced stress and/or spray stress. Surface waves strongly affected near-surface wind profiles and sea-surface drag coefficients at low to moderate wind speeds. Drag coefficients and near-surface wind speeds were lower for young than for old waves. At high wind speeds, ocean-spray droplets produced by wind-tearing breaking-wave crests affected the MABL strongly in comparison with surface waves, implying that wave age affects the MABL only negligibly. Low drag coefficients at high wind caused by ocean-spray production increased turbulent stress in the sea-spray generation layer, accelerating near-sea-surface wind. Comparing the analytical drag coefficient values with laboratory measurements and field observations indicated that surface waves and ocean spray significantly affect the MABL at different wind speeds and wave ages.

  10. A Simple Experiment to Demonstrate the Effects of Greenhouse Gases

    Science.gov (United States)

    Keating, C. F.

    2007-01-01

    The role of greenhouse gases in our atmosphere is the subject of considerable discussion and debate. Global warming is well-documented, as is the continually increasing amount of greenhouse gases that human activity puts in the air. Is there a relationship between the two? The simple experiment described in this paper provides a good demonstration…

  11. Predicting sublethal effects of herbicides on terrestrial non-crop plant species in the field from greenhouse data

    International Nuclear Information System (INIS)

    Riemens, Marleen M.; Dueck, Thom; Kempenaar, Corne

    2008-01-01

    Guidelines provided by OECD and EPPO allow the use of data obtained in greenhouse experiments in the risk assessment for pesticides to non-target terrestrial plants in the field. The present study was undertaken to investigate the predictability of effects on field-grown plants using greenhouse data. In addition, the influence of plant development stage on plant sensitivity and herbicide efficacy, the influence of the surrounding vegetation on individual plant sensitivity and of sublethal herbicide doses on the biomass, recovery and reproduction of non-crop plants was studied. Results show that in the future, it might well be possible to translate results from greenhouse experiments to field situations, given sufficient experimental data. The results also suggest consequences at the population level. Even when only marginal effects on the biomass of non-target plants are expected, their seed production and thereby survival at the population level may be negatively affected. - The response of greenhouse-grown wild plant species to herbicide exposure could be related to the response of the same species when grown in the field

  12. Effect of noble gases on an atmospheric greenhouse /Titan/.

    Science.gov (United States)

    Cess, R.; Owen, T.

    1973-01-01

    Several models for the atmosphere of Titan have been investigated, taking into account various combinations of neon and argon. The investigation shows that the addition of large amounts of Ne and/or Ar will substantially reduce the hydrogen abundance required for a given greenhouse effect. The fact that a large amount of neon should be present if the atmosphere is a relic of the solar nebula is an especially attractive feature of the models, because it is hard to justify appropriate abundances of other enhancing agents.

  13. Intensified Arctic warming under greenhouse warming by vegetation–atmosphere–sea ice interaction

    International Nuclear Information System (INIS)

    Jeong, Jee-Hoon; Kug, Jong-Seong; Linderholm, Hans W; Chen, Deliang; Kim, Baek-Min; Jun, Sang-Yoon

    2014-01-01

    Observations and modeling studies indicate that enhanced vegetation activities over high latitudes under an elevated CO 2 concentration accelerate surface warming by reducing the surface albedo. In this study, we suggest that vegetation-atmosphere-sea ice interactions over high latitudes can induce an additional amplification of Arctic warming. Our hypothesis is tested by a series of coupled vegetation-climate model simulations under 2xCO 2 environments. The increased vegetation activities over high latitudes under a 2xCO 2 condition induce additional surface warming and turbulent heat fluxes to the atmosphere, which are transported to the Arctic through the atmosphere. This causes additional sea-ice melting and upper-ocean warming during the warm season. As a consequence, the Arctic and high-latitude warming is greatly amplified in the following winter and spring, which further promotes vegetation activities the following year. We conclude that the vegetation-atmosphere-sea ice interaction gives rise to additional positive feedback of the Arctic amplification. (letter)

  14. Reservoir Greenhouse Gas Emissions at Russian HPP

    Energy Technology Data Exchange (ETDEWEB)

    Fedorov, M. P.; Elistratov, V. V.; Maslikov, V. I.; Sidorenko, G. I.; Chusov, A. N.; Atrashenok, V. P.; Molodtsov, D. V. [St. Petersburg State Polytechnic University (Russian Federation); Savvichev, A. S. [Russian Academy of Sciences, S. N. Vinogradskii Institute of Microbiology (Russian Federation); Zinchenko, A. V. [A. I. Voeikov Main Geophysical Observatory (Russian Federation)

    2015-05-15

    Studies of greenhouse-gas emissions from the surfaces of the world’s reservoirs, which has demonstrated ambiguity of assessments of the effect of reservoirs on greenhouse-gas emissions to the atmosphere, is analyzed. It is recommended that greenhouse- gas emissions from various reservoirs be assessed by the procedure “GHG Measurement Guidelines for Fresh Water Reservoirs” (2010) for the purpose of creating a data base with results of standardized measurements. Aprogram for research into greenhouse-gas emissions is being developed at the St. Petersburg Polytechnic University in conformity with the IHA procedure at the reservoirs impounded by the Sayano-Shushenskaya and Mainskaya HPP operated by the RusHydro Co.

  15. Gelationous Organism (Macrozooplankton in the Black Sea and Effects

    Directory of Open Access Journals (Sweden)

    Zekiye BİRİNCİ ÖZDEMİR

    2017-06-01

    Full Text Available It is important problem as ecological, invasion of the marine systems by the gelatinous organism that distributed natural balance. Black Sea ecosystem has been changed critical level by the some causes such as marine pollution, eutrophication, climate change, overfishing, invasive gelatinous organisms. Effect in the ecosystem of gelatinous organisms occurred especially with collapsed of Black Sea anchovy (Engraulis encrasicolus stock and fishery production. In the study, gelatinous organism species, important for Black sea, and its effects in the Black sea ecosystem were presented.

  16. Seasonal variation of heat consumption in greenhouses

    DEFF Research Database (Denmark)

    Nielsen, O.F.; Amsen, M.G.; Strøm, J.S.

    The concept of dynamic variation is introduced as a method to visualize the dynamic fluctuations of heat consumption and thermal climate in greenhouses. The feasibility of the concept is illustrated by describing effects of different greenhouse designs. Engineering data on design heat consumption...

  17. 15 years after Chernobyl. Nuclear plus greenhouse effect?

    International Nuclear Information System (INIS)

    Schneider, M.; Rosen, M.

    2001-04-01

    Today, the argument in favour of nuclear energy is not an economical one nor linked to energy resources but is at the level of climatic change. Nuclear energy is seen as the only energy source without carbon dioxide emissions. A more detailed analysis of greenhouse gases on the life cycle shows that nuclear energy gives as greenhouse gases as big hydroelectric power plants or wind power plants, these emissions are more important than for biogas installations with cogeneration. The strategy of energy efficiency is certainly more competitive than the new reactors in other terms it is more efficiency to reduce the consumption than to increase the nuclear production. (N.C.)

  18. Air passenger transport and the greenhouse effect

    International Nuclear Information System (INIS)

    Hubert, M.

    2004-11-01

    The commercial aviation sector accounts for 2.5 % of total worldwide anthropogenic carbon dioxide (CO 2 ) emissions. Water vapour (H 2 O) and NO x emissions, the formation of condensation trails and increased formation of cirrus clouds due to altitude (indirect effects) also accentuate the greenhouse effect. The Intergovernmental Panel on Climate Change (IPCC) estimates that the effects apart from CO 2 emissions are relatively higher for aviation than for other human activities. For one tonne of CO 2 emissions, the radiative forcing of aviation is twice as important as other activities. On this basis, a Paris-New York return trip for one passenger on a charter flight corresponds to a quarter of the total climate impact caused by the annual consumption of a French person. Increased mobility and a rise in international tourism suggest that past trends in the growth of air passenger transport will continue. The improvements in energy efficiency achieved are seemingly not sufficient to prevent a significant increase in the impact of air transport on climate change. (author)

  19. Multivariate statistical assessments of greenhouse-gas-induced climatic change and comparison with results from general circulation models

    International Nuclear Information System (INIS)

    Schoenwiese, C.D.

    1990-01-01

    Based on univariate correction and coherence analyses, including techniques moving in time, and taking account of the physical basis of the relationships, a simple multivariate concept is presented which correlates observational climatic time series simultaneously with solar, volcanic, ENSO (El Nino/Souther Oscillation) and anthropogenic greenhouse-gas forcing. The climatic elements considered are air temperature (near the ground and stratosphere), sea surface temperature, sea level and precipitation, and cover at least the period 1881-1980 (stratospheric temperature only since 1960). The climate signal assessments which may be hypothetically attributed to the observed CO 2 or equivalent CO 2 (implying additional greenhouse gases) increase are compared with those resulting from GCM experiments. In case of the Northern hemisphere air temperature these comparisons are performed not only in respect to hemispheric and global means, but also in respect to the regional and seasonal patterns. Autocorrelations and phase shifts of the climate response to natural and anthropogenic forcing complicate the statistical assessments

  20. Assessment of the impact of the greenhouse gas emission and sink scenarios in Finland on radiative forcing and greenhouse effect

    Energy Technology Data Exchange (ETDEWEB)

    Savolainen, I; Sinisalo, J; Pipatti, R [Technical Research Centre of Finland, Espoo (Finland)

    1997-12-31

    The objective of this work is to study greenhouse gas emissions and sinks and their greenhouse impact as a function of time. The greenhouse impact is expressed in terms of global average radiative forcing, which measures the perturbation in the Earth`s radiation budget. Radiative forcing is calculated on the basis of the concentration changes of the greenhouse gases and the radiation absorption properties of the gases. It takes into account the relatively slow changes in the concentrations due to natural removal and transformation processes and also allows a comparison of the impact of various greenhouse gases and their possible control options as a function of time. In addition to the applications mentioned above, the anthropogenic greenhouse gas emission histories of Nordic countries have been estimated, and the radiative forcing caused by them has been calculated with REFUGE. The dynamic impact of aerosol emissions both from the global point of view and in the context of different energy sources (coal, oil and natural gas) have also been studied. In some instances the caused radiative forcing has been examined on a per capita basis. The radiative forcing calculations contain considerable uncertainty due to inaccurately known factors at several stages of the calculation (emission estimation, concentration calculation and radiative forcing calculation). The total uncertainty of the results is typically on the order of +- 40 %, when absolute values are used. If the results are used in a relative way, e.g. to compare the impacts of different scenarios, the final uncertainty is considerably less (typically + 10 %), due to correlations in almost all stages of the calculation process

  1. Assessment of the impact of the greenhouse gas emission and sink scenarios in Finland on radiative forcing and greenhouse effect

    Energy Technology Data Exchange (ETDEWEB)

    Savolainen, I.; Sinisalo, J.; Pipatti, R. [Technical Research Centre of Finland, Espoo (Finland)

    1996-12-31

    The objective of this work is to study greenhouse gas emissions and sinks and their greenhouse impact as a function of time. The greenhouse impact is expressed in terms of global average radiative forcing, which measures the perturbation in the Earth`s radiation budget. Radiative forcing is calculated on the basis of the concentration changes of the greenhouse gases and the radiation absorption properties of the gases. It takes into account the relatively slow changes in the concentrations due to natural removal and transformation processes and also allows a comparison of the impact of various greenhouse gases and their possible control options as a function of time. In addition to the applications mentioned above, the anthropogenic greenhouse gas emission histories of Nordic countries have been estimated, and the radiative forcing caused by them has been calculated with REFUGE. The dynamic impact of aerosol emissions both from the global point of view and in the context of different energy sources (coal, oil and natural gas) have also been studied. In some instances the caused radiative forcing has been examined on a per capita basis. The radiative forcing calculations contain considerable uncertainty due to inaccurately known factors at several stages of the calculation (emission estimation, concentration calculation and radiative forcing calculation). The total uncertainty of the results is typically on the order of +- 40 %, when absolute values are used. If the results are used in a relative way, e.g. to compare the impacts of different scenarios, the final uncertainty is considerably less (typically + 10 %), due to correlations in almost all stages of the calculation process

  2. Swedish contribution to the greenhouse effect and required reductions to meet the 550 ppmv target

    International Nuclear Information System (INIS)

    Lindell, Lina; Nilsson, Kristina

    2002-11-01

    According to the Swedish Parliament, the Swedish international climate strategy should focus on a stabilisation of the concentration of greenhouse gases in the atmosphere. An equilibrium concentration lower than 550 ppmv CO 2 -equivalents should be achieved by the end of this century. As an interim target, the yearly emissions should not exceed 4.5 tonnes CO 2 -equivalents per capita by 2050. In this study an inventory of Swedish emissions from 1834 until 2000, for the six greenhouse gases regulated by the Kyoto Protocol, is carried out. Future emission scenarios for carbon dioxide during the time period 2000-2050 are also defined. This data is used for estimating the contribution to the greenhouse effect both today and in the future. Further it is investigated if the 2050-target is sufficient for not exceeding an atmospheric concentration of 550 ppmv. The required reduction for 2100 to reach an equilibrium concentration below this level is also estimated. The Swedish contribution to the greenhouse effect today is about 30 % larger than it should be according to the fairness factor used in this study. The Swedish emission target set for 2050 is sufficient for not exceeding 550 ppmv by that year. However, to reach a stabilisation of the concentration below this level the emissions have to be reduced to 1.0-1.5 tonnes CO 2 -equivalents per capita by 2100

  3. Swedish contribution to the greenhouse effect and required reductions to meet the 550 ppmv target

    Energy Technology Data Exchange (ETDEWEB)

    Lindell, Lina; Nilsson, Kristina [Uppsala Univ. (Sweden). School of Engineering

    2002-11-01

    According to the Swedish Parliament, the Swedish international climate strategy should focus on a stabilisation of the concentration of greenhouse gases in the atmosphere. An equilibrium concentration lower than 550 ppmv CO{sub 2}-equivalents should be achieved by the end of this century. As an interim target, the yearly emissions should not exceed 4.5 tonnes CO{sub 2}-equivalents per capita by 2050. In this study an inventory of Swedish emissions from 1834 until 2000, for the six greenhouse gases regulated by the Kyoto Protocol, is carried out. Future emission scenarios for carbon dioxide during the time period 2000-2050 are also defined. This data is used for estimating the contribution to the greenhouse effect both today and in the future. Further it is investigated if the 2050-target is sufficient for not exceeding an atmospheric concentration of 550 ppmv. The required reduction for 2100 to reach an equilibrium concentration below this level is also estimated. The Swedish contribution to the greenhouse effect today is about 30 % larger than it should be according to the fairness factor used in this study. The Swedish emission target set for 2050 is sufficient for not exceeding 550 ppmv by that year. However, to reach a stabilisation of the concentration below this level the emissions have to be reduced to 1.0-1.5 tonnes CO{sub 2}-equivalents per capita by 2100.

  4. An Investigation of the Radiative Effects and Climate Feedbacks of Sea Ice Sources of Sea Salt Aerosol

    Science.gov (United States)

    Horowitz, H. M.; Alexander, B.; Bitz, C. M.; Jaegle, L.; Burrows, S. M.

    2017-12-01

    In polar regions, sea ice is a major source of sea salt aerosol through lofting of saline frost flowers or blowing saline snow from the sea ice surface. Under continued climate warming, an ice-free Arctic in summer with only first-year, more saline sea ice in winter is likely. Previous work has focused on climate impacts in summer from increasing open ocean sea salt aerosol emissions following complete sea ice loss in the Arctic, with conflicting results suggesting no net radiative effect or a negative climate feedback resulting from a strong first aerosol indirect effect. However, the radiative forcing from changes to the sea ice sources of sea salt aerosol in a future, warmer climate has not previously been explored. Understanding how sea ice loss affects the Arctic climate system requires investigating both open-ocean and sea ice sources of sea-salt aerosol and their potential interactions. Here, we implement a blowing snow source of sea salt aerosol into the Community Earth System Model (CESM) dynamically coupled to the latest version of the Los Alamos sea ice model (CICE5). Snow salinity is a key parameter affecting blowing snow sea salt emissions and previous work has assumed constant regional snow salinity over sea ice. We develop a parameterization for dynamic snow salinity in the sea ice model and examine how its spatial and temporal variability impacts the production of sea salt from blowing snow. We evaluate and constrain the snow salinity parameterization using available observations. Present-day coupled CESM-CICE5 simulations of sea salt aerosol concentrations including sea ice sources are evaluated against in situ and satellite (CALIOP) observations in polar regions. We then quantify the present-day radiative forcing from the addition of blowing snow sea salt aerosol with respect to aerosol-radiation and aerosol-cloud interactions. The relative contributions of sea ice vs. open ocean sources of sea salt aerosol to radiative forcing in polar regions is

  5. Water deficit effects on maize yields modeled under current and greenhouse climates

    International Nuclear Information System (INIS)

    Muchow, R.C.; Sinclair, T.R.

    1991-01-01

    The availability of water imposes one of the major limits on rainfed maize (Zea mays L.) productivity. This analysis was undertaken in an attempt to quantify the effects of limited water on maize growth and yield by extending a simple, mechanistic model in which temperature regulates crop development and intercepted solar radiation is used to calculate crop biomass accumulation. A soil water budget was incorporated into the model by accounting for inputs from rainfall and irrigation, and water use by soil evaporation and crop transpiration. The response functions of leaf area development and crop gas exchange to the soil water budget were developed from experimental studies. The model was used to interpret a range of field experiments using observed daily values of temperature, solar radiation, and rainfall or irrigation, where water deficits of varying durations developed at different stages of growth. The relative simplicity of the model and its robustness in simulating maize yields under a range of water-availability conditions allows the model to be readily used for studies of crop performance under alternate conditions. One such study, presented here, was a yield assessment for rainfed maize under possible greenhouse climates where temperature and atmospheric CO 2 concentration were increased. An increase in temperature combined with decreased rainfall lowered grain yield, although the increase in crop water use efficiency associated with elevated CO 2 concentration ameliorated the response to the greenhouse climate. Grain yields for the greenhouse climates as compared to current conditions increased, or decreased only slightly, except when the greenhouse climate was assumed to result in severly decreased rainfall

  6. Greenhouse Gases Concentrations in the Atmosphere Along ...

    African Journals Online (AJOL)

    This study investigated effect of vehicular emission on greenhouse gases concentrations along selected roads of different traffic densities in Abeokuta, Ogun State, Nigeria. Nine roads comprised highway, commercial and residential were selected. Greenhouse Gases (GHGs) were determined from both sides of the roads by ...

  7. Empirical links between the local runaway greenhouse, super-greenhouse, and deep convection in Earth's tropics

    Science.gov (United States)

    Dewey, M. C.; Goldblatt, C.

    2017-12-01

    Energy balance requires that energy absorbed and emitted at the top of the atmosphere equal; this is maintained via the Planck feedback whereby outgoing longwave radiation (OLR) increases as surface temperature increases. There are two cases where this breaks down: the runaway greenhouse (known from planetary sciences theory) characterized by an asymptotic limit on OLR from moist atmospheres, and the super-greenhouse (known from tropical meteorology observations) where OLR decreases with surface temperature when the atmosphere is moist aloft. Here we show that the runaway greenhouse limit can be empirically observed and constrained in Earth's tropics, that the runaway and super-greenhouse occur as part of the same physical phenomenon, and that the transition through the super-greenhouse to a local runaway greenhouse is intimately linked to the onset of deep convection. A runaway greenhouse occurs when water vapour causes the troposphere to become optically thick to thermal radiation from the surface and a limit on OLR emerges as thermal emission is from a constant temperature level aloft. This limit is modelled as 282 W/m/m [Goldblatt et al, 2013]. Using satellite data from Earth's tropics, we find an empirical value of this limit of 280 W/m/m, in excellent agreement with the model.A column transitioning to a runaway greenhouse typically overshoots the runaway limit and then OLR decreases with increasing surface temperature until the runaway limit is reached after which OLR remains constant. The term super-greenhouse effect (SGE) has been used to describe OLR decreasing with surface warming, observed in these satellite measurements. We show the SGE is one and the same as the transition to a local runaway greenhouse, and represents a fundamental shift in the radiation response of the earth system, rather than simply an extension of water vapour feedback. This transition via SGE from an optically thin to optically thick troposphere is facilitated by enhanced

  8. The 'greenhouse effect' as a function of atmospheric mass

    Energy Technology Data Exchange (ETDEWEB)

    Jelbring, Hans

    2003-07-01

    The main reason for claiming a scientific basis for 'Anthropogenic Greenhouse Warming (AGW)' is related to the use of 'radiative energy flux models' as a major tool for describing vertical energy fluxes within the atmosphere. Such models prescribe that the temperature difference between a planetary surface and the planetary average black body radiation temperature (commonly called the Greenhouse Effect, GE) is caused almost exclusively by the so called greenhouse gases. Here, using a different approach, it is shown that GE can be explained as mainly being a consequence of known physical laws describing the behaviour of ideal gases in a gravity field. A simplified model of Earth, along with a formal proof concerning the model atmosphere and evidence from real planetary atmospheres will help in reaching conclusions. The distinguishing premise is that the bulk part of a planetary GE depends on its atmospheric surface mass density. Thus the GE can be exactly calculated for an ideal planetary model atmosphere. In a real atmosphere some important restrictions have to be met if the gravity induced GE is to be well developed. It will always be partially developed on atmosphere bearing planets. A noteworthy implication is that the calculated values of AGW, accepted by many contemporary climate scientists, are thus irrelevant and probably quite insignificant (not detectable) in relation to natural processes causing climate change. (Author)

  9. Effects of 17β-estradiol on emissions of greenhouse gases in simulative natural water body.

    Science.gov (United States)

    Ruan, Aidong; Zhao, Ying; Liu, Chenxiao; Zong, Fengjiao; Yu, Zhongbo

    2015-05-01

    Environmental estrogens are widely spread across the world and are increasingly thought of as serious contaminators. The present study looks at the influence of different concentrations of 17β-estradiol on greenhouse gas emissions (CO2 , CH4 , and N2 O) in simulated systems to explore the relationship between environmental estrogen-pollution and greenhouse gas emissions in natural water bodies. The present study finds that 17β-estradiol pollution in simulated systems has significant promoting effects on the emissions of CH4 and CO2 , although no significant effects on N2 O emissions. The present study indicates that 17β-estradiol has different effects on the different elements cycles; the mechanism of microbial ecology is under review. © 2015 SETAC.

  10. Cost-effectiveness of feeding strategies to reduce greenhouse gas emissions from dairy farming

    NARCIS (Netherlands)

    Middelaar, van C.E.; Dijkstra, J.; Berentsen, P.B.M.; Boer, de I.J.M.

    2014-01-01

    The objective of this paper was to evaluate the cost-effectiveness of 3 feeding strategies to reduce enteric CH4 production in dairy cows by calculating the effect on labor income at the farm level and on greenhouse gas (GHG) emissions at the chain level (i.e., from production of farm inputs to the

  11. Man -made greenhouse gases trigger unified force to start global warming impacts referred to as climate change

    International Nuclear Information System (INIS)

    Karishnan, K.J.; Kalam, A.

    2011-01-01

    Global warming problems due to man-made greenhouse gases (GHGs), appear to be a serious concern and threat to the globe. CO/sub 2/, O/sub 3, NOx and HFC's are the main greenhouse gases and CO/sub 2/ is one of the main cause of global warming. CO/sub 2/ is emitted from burning fossil fuels to produce electricity from power plants and burning of gasoline in vehicles and airplanes. Global greenhouse gases and its sources in regions are discussed in this paper. This paper initially discusses the CO/sub 2/ emissions and the recycle of CO/sub 2/ in biodiesel. This paper mainly focuses on 'Unified Force'. The increase of H/sub 2/O in the sea due to warming of the globe triggers the 'Unified Force' or 'Self-Compressive Surrounding Pressure Force' which is proportional to the H/sub 2/O level in the sea to start global warming impacts referred to as climate change. This paper also points out the climate change and the ten surprising results of global warming. Finally, this paper suggests switching from fossil fuel technology to green energy technologies like biodiesel which recycles CO/sub 2/ emissions and also Hydrogen Energy and Fuel Cell Technologies which eradicates global warming impacts. The benefits of switching from fossil fuel to biodiesel and Hydrogen Energy utilization includes reduction of greenhouse gas emissions and pollution, economic independence by having distributed production and burning of biodiesel does not add extra CO/sub 2/ to the air that contributes global warming impacts. (author)

  12. Evaluation of the greenhouse effect gases (CO2, CH4, N2O) in grass land and in the grass breeding. Greenhouse effect gases prairies. report of the first part of the project December 2002

    International Nuclear Information System (INIS)

    Soussana, J.F.

    2002-12-01

    In the framework of the Kyoto protocol on the greenhouse effect gases reduction, many ecosystems as the prairies can play a main role for the carbon sequestration in soils. The conservation of french prairies and their management adaptation could allow the possibility of carbon sequestration in the soils but also could generate emissions of CO 2 and CH 4 (by the breeding animals on grass) and N 2 O (by the soils). This project aims to establish a detailed evaluation of the contribution of the french prairies to the the greenhouse effect gases flux and evaluate the possibilities of reduction of the emissions by adaptation of breeding systems. (A.L.B.)

  13. Millennial total sea-level commitments projected with the Earth system model of intermediate complexity LOVECLIM

    International Nuclear Information System (INIS)

    Goelzer, H; Huybrechts, P; Raper, S C B; Loutre, M-F; Goosse, H; Fichefet, T

    2012-01-01

    Sea-level is expected to rise for a long time to come, even after stabilization of human-induced climatic warming. Here we use simulations with the Earth system model of intermediate complexity LOVECLIM to project sea-level changes over the third millennium forced with atmospheric greenhouse gas concentrations that stabilize by either 2000 or 2100 AD. The model includes 3D thermomechanical models of the Greenland and Antarctic ice sheets coupled to an atmosphere and an ocean model, a global glacier melt algorithm to account for the response of mountain glaciers and ice caps, and a procedure for assessing oceanic thermal expansion from oceanic heat uptake. Four climate change scenarios are considered to determine sea-level commitments. These assume a 21st century increase in greenhouse gases according to SRES scenarios B1, A1B and A2 with a stabilization of the atmospheric composition after the year 2100. One additional scenario assumes 1000 years of constant atmospheric composition from the year 2000 onwards. For our preferred model version, we find an already committed total sea-level rise of 1.1 m by 3000 AD. In experiments with greenhouse gas concentration stabilization at 2100 AD, the total sea-level rise ranges between 2.1 m (B1), 4.1 m (A1B) and 6.8 m (A2). In all scenarios, more than half of this amount arises from the Greenland ice sheet, thermal expansion is the second largest contributor, and the contribution of glaciers and ice caps is small as it is limited by the available ice volume of maximally 25 cm of sea-level equivalent. Additionally, we analysed the sensitivity of the sea-level contributions from an ensemble of nine different model versions that cover a large range of climate sensitivity realized by model parameter variations of the atmosphere–ocean model. Selected temperature indices are found to be good predictors for sea-level contributions from the different components of land ice and oceanic thermal expansion after 1000 years. (letter)

  14. Natural ventilation of large multi-span greenhouses

    NARCIS (Netherlands)

    Jong, de T.

    1990-01-01

    In this thesis the ventilation of large multi-span greenhouses caused by wind and temperature effects is studied. Quantification of the ventilation is important to improve the control of the greenhouse climate.

    Knowledge of the flow characteristics of the one-side-mounted windows of

  15. Perceptions and attitudes of the French about the greenhouse effect; Les francais et l'effet de serre: perceptions et attitudes

    Energy Technology Data Exchange (ETDEWEB)

    Moisan, F. [Agence de l' Environnement et de la Maitrise de l' Energie, ADEME, 75 - Paris (France)

    2003-01-01

    ADEME conducts a yearly survey of a representative sample of the French population in order to assess perceptions of the greenhouse effect and to gauge people's willingness to change everyday activities so as to limit the emission of greenhouse gases. A first series of questions tries to identify how the French perceive and understand phenomena related to the greenhouse effect. Their opinions are collected about the means to fight against this effect and, in particular, about the actions they would be able to undertake personally. The 2002 survey, its major results presented herein, tried to assess the degree of acceptability of definite measures for fighting against the greenhouse effect. This sort of opinion poll should bring to light certain presuppositions underlying people's expectations and perhaps lead us to bear in mind the long term while imagining more ambitious changes in our life-styles. (author)

  16. Biological methanogenesis and the CO2 greenhouse effect

    Science.gov (United States)

    Guthrie, P. D.

    1986-01-01

    It is well established that plants tend to increase net photosynthesis under increased carbon dioxide. It is also well established that a large fraction of atmospheric methane is produced by microbial metabolism of organic sediments in paddies and freshwater wetlands, where a major source of organic debris is local plant growth. As CO2 increases, it may lead to increased methane production and a resulting enhancement of the expected greenhouse warming. A rough estimate of the present rate of this biologically mediated feedback on the climate system indicates that it might account for as much as 30 percent of the observed methane increase and speed up the greenhouse forcing by as much as 15 percent.

  17. The greenhouse effect in a gray planetary atmosphere.

    Science.gov (United States)

    Wildt, R.

    1966-01-01

    Hopf analytical solution for values of ratio of gray absorption coefficients for insolating and escaping radiation /greenhouse parameter/ assumed constant at all depths, presenting temperature distribution graphs

  18. Greenhouse effect may not be all bad

    International Nuclear Information System (INIS)

    Senft, D.

    1990-01-01

    Evidence is presented that indicates US temperatures decreased by a fraction of a degree during the past 70 years contrary to the estimates of some researchers concerned with the greenhouse effect. There is general agreement that the carbon dioxide concentrations in the atmosphere will double by the late or mid 21st century. Experiments on cotton growth under increased temperature and carbon dioxide concentrations indicate sizeable gains in yield. This increased yield is exhibited by citrus trees and is projected for other crops. There is a concomitant need for more water and fertilizer. Increased populations of parasitic mites and insects also occur. Climatic changes are seen as being more gradual than previously thought. The possible increases in food production under these changes in climate are one positive element in the emerging scenario

  19. Greenhouse effects due to man-made perturbations of trace gases

    Science.gov (United States)

    Wang, W. C.; Yung, Y. L.; Lacis, A. A.; Mo, T.; Hansen, J. E.

    1976-01-01

    Nitrous oxide, methane, ammonia, and a number of other trace constituents of the earth's atmosphere have infrared absorption bands in the spectral range from 7 to 14 microns. Despite their small amounts, these gases can have a significant effect on the thermal structure of the atmosphere by transmitting most of the thermal radiation from the earth's surface to the lower atmosphere. In the present paper, this greenhouse effect is computed for a number of trace gases. The nature and climatic implications of possible changes in the concentrations of N2O, CH4, NH3, and HNO3 are discussed.

  20. The social representations of the greenhouse effect. Synthesis (second inquiry); Les representations sociales de l'effet de serre. Note de synthese (2. vague d'enquete)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-06-01

    This document presents the results analysis to the inquiry realized during february and march 2001 on the greenhouse effect perception by the public. This inquiry follows the first inquiry of spring 2000. The following questions have been asked and analyzed: what is the greenhouse effect, who is responsible of the greenhouse effect, what will be the consequences of the greenhouse effect, how to meet with this effect, information and perception. (A.L.B.)

  1. The greenhouse effect: reality, consequences and solutions; L'effet de serre: realite, consequences et solutions

    Energy Technology Data Exchange (ETDEWEB)

    Ducroux, R.; Philippe, J.B.

    2004-09-01

    Devoted to the public, this synthesis on the greenhouse effect takes stock on the main questions of the context: what is the accuracy degree of simulations? From where are coming the greenhouse gases? What are their consequences in France and in the world, in particular in developing countries? What about some solutions? What are the main today research axis in national and international plans, that are likely to control this phenomena? (A.L.B.)

  2. GREENHOUSE-GROWN CAPE GOOSEBERRY

    African Journals Online (AJOL)

    /2006 S 4,00. Printed in Uganda. All rights reserved O2006, African Crop Science Society. SHORT COMMINICATION. EFFECT OF GIBBERRELLIC ACID ON GROWTH AND FRUIT YIELD OF. GREENHOUSE-GROWN CAPE GOOSEBERRY.

  3. Accounting for carbon cycle feedbacks in a comparison of the global warming effects of greenhouse gases

    Energy Technology Data Exchange (ETDEWEB)

    Gillett, Nathan P [Canadian Centre for Climate Modelling and Analysis, Environment Canada, University of Victoria, PO Box 1700, STN CSC, Victoria, BC, V8W 3V6 (Canada); Matthews, H Damon, E-mail: nathan.gillett@ec.gc.ca [Department of Geography, Planning and Environment, Concordia University, 1455 de Maisonneuve West, H 1255-26, Montreal, QC, H3G 1M8 (Canada)

    2010-07-15

    Greenhouse gases other than CO{sub 2} make a significant contribution to human-induced climate change, and multi-gas mitigation strategies are cheaper to implement than those which limit CO{sub 2} emissions alone. Most practical multi-gas mitigation strategies require metrics to relate the climate warming effects of CO{sub 2} and other greenhouse gases. Global warming potential (GWP), defined as the ratio of time-integrated radiative forcing of a particular gas to that of CO{sub 2} following a unit mass emission, is the metric used in the Kyoto Protocol, and we define mean global temperature change potential (MGTP) as an equivalent metric of the temperature response. Here we show that carbon-climate feedbacks inflate the GWPs and MGTPs of methane and nitrous oxide by {approx} 20% in coupled carbon-climate model simulations of the response to a pulse of 50 x 1990 emissions, due to a warming-induced release of CO{sub 2} from the land biosphere and ocean. The magnitude of this effect is expected to be dependent on the model, but it is not captured at all by the analytical models usually used to calculate metrics such as GWP. We argue that the omission of carbon cycle dynamics has led to a low bias of uncertain but potentially substantial magnitude in metrics of the global warming effect of other greenhouse gases, and we suggest that the carbon-climate feedback should be considered when greenhouse gas metrics are calculated and applied.

  4. Accounting for carbon cycle feedbacks in a comparison of the global warming effects of greenhouse gases

    International Nuclear Information System (INIS)

    Gillett, Nathan P; Matthews, H Damon

    2010-01-01

    Greenhouse gases other than CO 2 make a significant contribution to human-induced climate change, and multi-gas mitigation strategies are cheaper to implement than those which limit CO 2 emissions alone. Most practical multi-gas mitigation strategies require metrics to relate the climate warming effects of CO 2 and other greenhouse gases. Global warming potential (GWP), defined as the ratio of time-integrated radiative forcing of a particular gas to that of CO 2 following a unit mass emission, is the metric used in the Kyoto Protocol, and we define mean global temperature change potential (MGTP) as an equivalent metric of the temperature response. Here we show that carbon-climate feedbacks inflate the GWPs and MGTPs of methane and nitrous oxide by ∼ 20% in coupled carbon-climate model simulations of the response to a pulse of 50 x 1990 emissions, due to a warming-induced release of CO 2 from the land biosphere and ocean. The magnitude of this effect is expected to be dependent on the model, but it is not captured at all by the analytical models usually used to calculate metrics such as GWP. We argue that the omission of carbon cycle dynamics has led to a low bias of uncertain but potentially substantial magnitude in metrics of the global warming effect of other greenhouse gases, and we suggest that the carbon-climate feedback should be considered when greenhouse gas metrics are calculated and applied.

  5. Determination of Pesticides Residues in Cucumbers Grown in Greenhouse and the Effect of Some Procedures on Their Residues.

    Science.gov (United States)

    Leili, Mostafa; Pirmoghani, Amin; Samadi, Mohammad Taghi; Shokoohi, Reza; Roshanaei, Ghodratollah; Poormohammadi, Ali

    2016-11-01

    The objective of this study was to determine the residual concentrations of ethion and imidacloprid in cucumbers grown in greenhouse. The effect of some simple processing procedures on both ethion and imidacloprid residues were also studied. Ten active greenhouses that produce cucumber were randomly selected. Ethion and imidacloprid as the most widely used pesticides were measured in cucumber samples of studied greenhouses. Moreover, the effect of storing, washing, and peeling as simple processing procedures on both ethion and imidacloprid residues were investigated. One hour after pesticide application; the maximum residue levels (MRLs) of ethion and imidacloprid were higher than that of Codex standard level. One day after pesticide application, the levels of pesticides were decreased about 35 and 31% for ethion and imidacloprid, respectively, which still were higher than the MRL. Washing procedure led to about 51 and 42.5% loss in ethion and imidacloprid residues, respectively. Peeling procedure also led to highest loss of 93.4 and 63.7% in ethion and imidacloprid residues, respectively. The recovery for both target analytes was in the range between 88 and 102%. The residue values in collected samples one hour after pesticides application were higher than standard value. The storing, washing, and peeling procedures lead to the decrease of pesticide residues in greenhouse cucumbers. Among them, the peeling procedure has the greatest impact on residual reduction. Therefore, these procedures can be used as simple and effective processing techniques for reducing and removing pesticides from greenhouse products before their consumption.

  6. Changing circulation structure and precipitation characteristics in Asian monsoon regions: greenhouse warming vs. aerosol effects

    Science.gov (United States)

    Lau, William K. M.; Kim, Kyu-Myong; Ruby Leung, L.

    2017-12-01

    Using model outputs from CMIP5 historical integrations, we have investigated the relative roles of anthropogenic emissions of greenhouse gases (GHG) and aerosols in changing the characteristics of the large-scale circulation and rainfall in Asian summer monsoon (ASM) regions. Under GHG warming, a strong positive trend in low-level moist static energy (MSE) is found over ASM regions, associated with increasing large-scale land-sea thermal contrast from 1870s to present. During the same period, a mid-tropospheric convective barrier (MCB) due to widespread reduction in relative humidity in the mid- and lower troposphere is strengthening over the ASM regions, in conjunction with expanding areas of anomalous subsidence associated with the Deep Tropical Squeeze (Lau and Kim in Proc Natl Acad Sci 12:3630-3635, 2015). The opposing effects of MSE and MCB lead to enhanced total ASM rainfall, but only a partial strengthening of the southern portion of the monsoon meridional circulation, coupled to anomalous multi-cellular overturning motions over ASM land. Including anthropogenic aerosol emissions strongly masks MSE but enhances MCB via increased stability in the lower troposphere, resulting in an overall weakened ASM circulation with suppressed rainfall. Analyses of rainfall characteristics indicate that under GHG, overall precipitation efficiency over the ASM region is reduced, manifesting in less moderate but more extreme heavy rain events. Under combined effects of GHG and aerosols, precipitation efficiency is unchanged, with more moderate, but less extreme rainfall.

  7. Surplus thermal energy model of greenhouses and coefficient analysis for effective utilization

    Directory of Open Access Journals (Sweden)

    Seung-Hwan Yang

    2016-03-01

    Full Text Available If a greenhouse in the temperate and subtropical regions is maintained in a closed condition, the indoor temperature commonly exceeds that required for optimal plant growth, even in the cold season. This study considered this excess energy as surplus thermal energy (STE, which can be recovered, stored and used when heating is necessary. To use the STE economically and effectively, the amount of STE must be estimated before designing a utilization system. Therefore, this study proposed an STE model using energy balance equations for the three steps of the STE generation process. The coefficients in the model were determined by the results of previous research and experiments using the test greenhouse. The proposed STE model produced monthly errors of 17.9%, 10.4% and 7.4% for December, January and February, respectively. Furthermore, the effects of the coefficients on the model accuracy were revealed by the estimation error assessment and linear regression analysis through fixing dynamic coefficients. A sensitivity analysis of the model coefficients indicated that the coefficients have to be determined carefully. This study also provides effective ways to increase the amount of STE.

  8. Surplus thermal energy model of greenhouses and coefficient analysis for effective utilization

    Energy Technology Data Exchange (ETDEWEB)

    Yang, S.H.; Son, J.E.; Lee, S.D.; Cho, S.I.; Ashtiani-Araghi, A.; Rhee, J.Y.

    2016-11-01

    If a greenhouse in the temperate and subtropical regions is maintained in a closed condition, the indoor temperature commonly exceeds that required for optimal plant growth, even in the cold season. This study considered this excess energy as surplus thermal energy (STE), which can be recovered, stored and used when heating is necessary. To use the STE economically and effectively, the amount of STE must be estimated before designing a utilization system. Therefore, this study proposed an STE model using energy balance equations for the three steps of the STE generation process. The coefficients in the model were determined by the results of previous research and experiments using the test greenhouse. The proposed STE model produced monthly errors of 17.9%, 10.4% and 7.4% for December, January and February, respectively. Furthermore, the effects of the coefficients on the model accuracy were revealed by the estimation error assessment and linear regression analysis through fixing dynamic coefficients. A sensitivity analysis of the model coefficients indicated that the coefficients have to be determined carefully. This study also provides effective ways to increase the amount of STE. (Author)

  9. Steps toward a cooler greenhouse

    International Nuclear Information System (INIS)

    Kerr, R.A.

    1991-01-01

    In April a committee of the National Academies of Science and Engineering and the Institute of Medicine urged the Bush Administration and Congress to begin cutting emissions of greenhouse gases immediately. The risk of delay is great, and the cost of insurance against disastrous climate warming is cheap. Now the committee's panel on mitigation has issued a 500-page report describing just how cheap that hedge against a climate calamity could be. The panel found that it would not be unreasonable to expect that a 25% reduction in US greenhouse gas emissions might be achieved at a cost of less than $10 per ton of carbon dioxide or its equivalent in other greenhouse gases. In more familiar terms, that considerable reduction in greenhouse emissions would cost about $4.75 for each barrel of oil burned or $0.11 per gallon of gasoline. The most cost-effective measures for reducing emissions, are increasing the energy efficiency of residential and commercial buildings and activities, vehicles, and industrial processes that use electricity

  10. The great terror of the year 2005: carbon dioxide - Another approach of the Greenhouse Effect

    International Nuclear Information System (INIS)

    Pierre Lutgen

    1997-01-01

    The report speaks of a new vision about the greenhouse effect and its possible consequences in the planet. An increase of the CO2 in the atmosphere doesn't have disastrous effects, the study made in 475 varieties of plants shows that its speed of growth would increase in 50% if the CO2 passed from 350 ppm to 650 ppm; the CO2 not only feeds the plants but rather it assures the daily bread to many scientists. The apocalyptic reports of the IPCC on those which the pathetic call of justice et Pa will be made are refuted every time but for scientific. The scientific bases of the greenhouse effect due to the dioxide of carbon are questionable and they don't justify precipitate and drastic actions

  11. Dynamical response of Mediterranean precipitation to greenhouse gases and aerosols

    Directory of Open Access Journals (Sweden)

    T. Tang

    2018-06-01

    Full Text Available Atmospheric aerosols and greenhouse gases affect cloud properties, radiative balance and, thus, the hydrological cycle. Observations show that precipitation has decreased in the Mediterranean since the beginning of the 20th century, and many studies have investigated possible mechanisms. So far, however, the effects of aerosol forcing on Mediterranean precipitation remain largely unknown. Here we compare the modeled dynamical response of Mediterranean precipitation to individual forcing agents in a set of global climate models (GCMs. Our analyses show that both greenhouse gases and aerosols can cause drying in the Mediterranean and that precipitation is more sensitive to black carbon (BC forcing than to well-mixed greenhouse gases (WMGHGs or sulfate aerosol. In addition to local heating, BC appears to reduce precipitation by causing an enhanced positive sea level pressure (SLP pattern similar to the North Atlantic Oscillation–Arctic Oscillation, characterized by higher SLP at midlatitudes and lower SLP at high latitudes. WMGHGs cause a similar SLP change, and both are associated with a northward diversion of the jet stream and storm tracks, reducing precipitation in the Mediterranean while increasing precipitation in northern Europe. Though the applied forcings were much larger, if forcings are scaled to those of the historical period of 1901–2010, roughly one-third (31±17 % of the precipitation decrease would be attributable to global BC forcing with the remainder largely attributable to WMGHGs, whereas global scattering sulfate aerosols would have negligible impacts. Aerosol–cloud interactions appear to have minimal impacts on Mediterranean precipitation in these models, at least in part because many simulations did not fully include such processes; these merit further study. The findings from this study suggest that future BC and WMGHG emissions may significantly affect regional water resources, agricultural practices, ecosystems and

  12. An experimental evaluation of the greenhouse effect in the substitution of R134a with CO2

    International Nuclear Information System (INIS)

    Aprea, C.; Greco, A.; Maiorino, A.

    2012-01-01

    This paper addresses the problem of R314a substitution with a natural refrigerant fluid. Attention is devoted to the evaluation of the environmental impact, in terms of greenhouse effect. R134a and R744 (CO 2 ) are compared to one another. The hydrofluorocarbon R134a has a large direct warming impact (GWP), whereas the R744 contribution is negligible. The greenhouse effect is determined by the experimental evaluation of the TEWI index (Total Equivalent Warming Impact) that takes into account both direct and indirect contributions to global warming. This paper compares a commercial R134a refrigeration plant and a prototype R744 system working in a trans-critical cycle. The experimental results clearly show that the latter has a larger TEWI than the system operating with R134a. The indirect contribution to global warming provided by R744 is always greater than that of R134a. This contribution prevails in most cases. Only few operating conditions corresponding to a refrigerating plant working as a classical split system benefits, in terms of greenhouse effect, of the substitution of R134a with R744. -- Highlights: ► A comparison between a classical vapour compression plant and a trans-critical cycle. ► Evaluation of the greenhouse effect in R134a substitution with R744. ► Evaluation of direct and indirect contribution to global warming. ► Minimization of the global warming impact of a R744 transcritical cycle.

  13. The effect on climate change impacts for building products when including the timing of greenhouse gas emissions

    Science.gov (United States)

    Richard D Bergman

    2012-01-01

    Greenhouse gases (GHGs) trap infrared radiation emitting from the Earth’s surface to generate the “greenhouse effect” thus keeping the planet warm. Many natural activities including rotting vegetation emit GHGs such as carbon dioxide to produce this natural affect. However, in the last 200 years or so, human activity has increased the atmospheric concentrations of GHGs...

  14. Student Teacher Understanding of the Greenhouse Effect, Ozone Layer Depletion, and Acid Rain.

    Science.gov (United States)

    Dove, Jane

    1996-01-01

    Describes the results of a survey designed to ascertain details of student teachers' knowledge and misconceptions about the greenhouse effect, acid rain, and ozone layer depletion. Results indicate familiarity with the issues but little understanding of the concepts involved and many commonly held misconceptions. (JRH)

  15. Future rise of the sea level: consequences and strategies on the shoreline

    International Nuclear Information System (INIS)

    Teisson, C.

    1991-11-01

    The Mean Sea Level may rise in a near future due to the warming of the atmosphere associated with the 'greenhouse effect'. The alarming estimations issued in the 1980's (several meters of surelevation in the next centuries) are now lowered: the ice sheets, the melting of which could induce such a rise, do not present signs of instability. A rise from 30 to 50 cm is likely to occur in the middle of the next century; there is a probability of 25% that the rise of sea level relative to the year 1980 stands beyond 1 meter by 2100. The consequences of such a rise on the shoreline and the maritime works are reviewed, and planning strategies are discussed. This study has been performed in the framework of a convention between EDF-LNH and the Sea State Secretary (Service Technique des Ports Maritimes et Voies Navigables) 41 refs., 31 figs., 6 tabs

  16. Greenhouse effect: science or religion of the 21. century; Effet de serre: science ou religion du 21. siecle

    Energy Technology Data Exchange (ETDEWEB)

    Ploye, F

    2000-07-01

    This book is a study about the natural phenomenon of the greenhouse effect, about its importance for the development of life on the Earth's surface and about the effect of human activities on its enhancement and on the future climatic changes. In particular, the increase of the greenhouse gases content of the atmosphere due to the combustion of fossil fuels is analyzed and some possible solutions to oppose this evolution are evoked. (J.S.)

  17. Global greenhouse and energy situation and outlook

    International Nuclear Information System (INIS)

    Allen, R.W.; Clively, S.R.; Tilley, J.W.

    1990-01-01

    Fossil fuels provide the basis for world energy usage and, in the absence of fundamental policy changes, are expected to continue to do so for the next few decades. However, the prospect of global warming due to the greenhouse effect will have profound implications for the use of energy. This paper outlines the current situation and trends in world energy use, with a focus on energy requirements by region and fuel. Implications for greenhouse gas emissions and greenhouse policy challenges are also discussed. 8 refs., 1 tab., 2 figs

  18. How do Greenhouse Gases Warm the Ocean? Investigation of the Response of the Ocean Thermal Skin Layer to Air-Sea Surface Heat Fluxes.

    Science.gov (United States)

    Wong, E.; Minnett, P. J.

    2016-12-01

    There is much evidence that the ocean is heating due to an increase in concentrations of greenhouse gases (GHG) in the atmosphere from human activities. GHGs absorbs infrared (IR) radiation and re-emits the radiation back to the ocean's surface which is subsequently absorbed resulting in a rise in the ocean heat content. However, the incoming longwave radiation, LWin, is absorbed within the top micrometers of the ocean's surface, where the thermal skin layer (TSL) exists and does not directly heat the upper few meters of the ocean. We are therefore motivated to investigate the physical mechanism between the absorption of IR radiation and its effect on heat transfer at the air-sea boundary. The hypothesis is that since heat lost through the air-sea interface is controlled by the TSL, which is directly influenced by the absorption and emission of IR radiation, the heat flow through the TSL adjusts to maintain the surface heat loss, and thus modulates the upper ocean heat content. This hypothesis is investigated through utilizing clouds to represent an increase in LWin and analyzing retrieved TSL vertical profiles from a shipboard IR spectrometer from two research cruises. The data is limited to night-time, no precipitation and low winds of heat from the absorption of the cloud infrared irradiance back into the atmosphere through processes such as evaporation. Instead, we observe the surplus energy, from absorbing increasing levels of LWin, adjusts the curvature of the TSL such that there is a lower gradient at the interface between the TSL and the mixed layer. The release of heat stored within the mixed layer is therefore hindered while the additional energy within the TSL is cycled back into the atmosphere. This results in heat beneath the TSL, which is a product of the absorption of solar radiation during the day, to be retained and cause an increase in upper ocean heat content.

  19. Rising sea levels and small island states

    International Nuclear Information System (INIS)

    Leatherman, S.P.

    1994-01-01

    A review is given of the problems small island nations face with respect to sea level rise caused by global warming. Many small island nations are very vulnerable to sea level rise. Particularly at risk are coral reef atolls, which are generally quite small, lie within three metres of current sea levels, and have no land at higher elevations to relocate populations and economic activity. Volcanic islands in the Pacific have high ground, but it is largely rugged, high relief and soil-poor. The most vulnerable islands are those that consist entirely of atolls and reef islands, such as Kirabai, Maldives, Tokelau and Tuvalu. Small island states, which by themselves have little power or influence in world affairs, have banded together to form the Strategic Alliance of Small Island States (AOSIS). This alliance had grown to include 42 states by the time of the 1992 U.N. Earth Summit. Although the greenhouse effect is mainly caused by industrial nations, developing countries will suffer the most from it. Choices of response strategy will depend on environmental, economic and social factors. Most small island nations do not have the resources to fight sea level rise in the way that the Dutch have. Retreat can occur as a gradual process or as catastrophic abandonment. Prohibiting construction close to the water's edge is a good approach. Sea level histories for each island state should be compiled and updated, island geomorphology and settlement patterns should be surveyed to determine risk areas, storm regimes should be determined, and information on coastal impacts of sea level rise should be disseminated to the public

  20. Effect Of Gamma Rays And Growth Regulators On Explants Excised From In Vitro Shoots And Greenhouse Seedlings, Of Pepper (Capsicum Annum L.)

    International Nuclear Information System (INIS)

    Maarouf, A. A.; Kassem, M.

    2004-01-01

    This experiment was conducted on pepper (Capsicum annum L.) to compare the ability of the in vitro explants with those of greenhouse grown seedlings on shoot proliferation and callus formation and their ability to form plantlets and the effect of gamma irradiation and growth regulators on the shoot tip, hypocotyls and leaf tissue was used as laboratory explants, leaf tissue nodes and internodes were taken from greenhouse seedlings. 6- benzyla-minopurine (BAP) in different concentrations was combined with Indoleacertic acid (IAA) to know their effect on shoot proliferation, 2,4 - Dichlorophenoxy acetic acid (2,4- D) was used for callus formation, and use stimulation effect of gamma irradiation, potassium nitrat (KNO 3 ), Thidaiazurom (TDZ) and casine hydrolysate (CH) for plantlet formation. The results showed that the highest percentage of callus was obtained by in vitro hypocotyls and greenhouse grown nodes followed by in vitro leaf tissue thereafter greenhouse leaf tissue. The shoot tips were the lowest efficient explants in producing callus in both in vitro and greenhouse ones. The highest percentage of shooting resulted from shoot tip, hypocotyls and leaf tissue of in vitro explants, followed by shoot tip, nodes and internodes of greenhouse grown explants and the lowest percentage was recorded by leaf tissue. Highest percentage of shoot number was obtained form greenhouse grown shoot tip followed by in vitro shoot tip, hypocotyls and leaf tissue of greenhouse grown seedlings the internodes were the lowest efficient in producing shoots. The highest success in plantlet formation was caused by TDZ followed by gamma irradiation and the other treatments were equaled. (Authors)

  1. Greenhouse gas strategy

    International Nuclear Information System (INIS)

    2001-03-01

    Because the overall effects of climate change will likely be more pronounced in the North than in other parts of the country, the Government of the Northwest Territories considers it imperative to support global and local actions to reduce greenhouse gas emissions. Government support is manifested through a coordinating role played by senior government representatives in the development of the NWT Greenhouse Gas Strategy, and by participation on a multi-party working committee to identify and coordinate northern actions and to contribute a northern perspective to Canada's National Climate Change Implementation Strategy. This document outlines the NWT Government's goals and objectives regarding greenhouse gas emission reduction actions. These will include efforts to enhance awareness and understanding; demonstrate leadership by putting the Government's own house in order; encouraging action across sectors; promote technology development and innovation; invest in knowledge and building the foundation for informed future decisions. The strategy also outlines the challenges peculiar to the NWT, such as the high per person carbon dioxide emissions compared to the national average (30 tonnes per person per year as opposed to the national average of 21 tonnes per person per year) and the increasing economic activity in the Territories, most of which are resource-based and therefore energy-intensive. Appendices which form part of the greenhouse gas strategy document, provide details of the potential climate change impact in the NWT, a detailed explanation of the proposed measures, an emission forecast to 2004 from industrial processes, fuel combustion and incineration, and a statement of the official position of the Government of the NWT on climate change

  2. The Effect of Greenhouse Gas Mitigation on Drought Impacts in the U.S.

    Science.gov (United States)

    In this paper, we present a methodology for analyzing the economic benefits in the U.S. of changes in drought frequency and severity due to global greenhouse gas (GHG) mitigation. We construct reduced-form models of the effect of drought on agriculture and reservoir recreation i...

  3. Sludge thermal oxidation processes: mineral recycling, energy impact, and greenhouse effect gases release

    Energy Technology Data Exchange (ETDEWEB)

    Guibelin, Eric

    2003-07-01

    Different treatment routes have been studied for a mixed sludge: the conventional agricultural use is compared with the thermal oxidation processes, including incineration (in gaseous phase) and wet air oxidation (in liquid phase). The interest of a sludge digestion prior to the final treatment has been also considered according to the two major criteria, which are the fossil energy utilisation and the greenhouse effect gases (CO{sub 2}, CH{sub 4}, N{sub 2}O) release. Thermal energy has to be recovered on thermal processes to make these processes environmentally friendly, otherwise their main interest is to extract or destroy micropollutants and pathogens from the carbon cycle. In case of continuous energy recovery, incineration can produce more energy than it consumes. Digestion is especially interesting for agriculture: according to these two schemes, the energy final balance can also be in excess. As to wet air oxidation, it is probably one of the best way to minimize greenhouse effect gases emission. (author)

  4. Can rubber help against the greenhouse effect?

    NARCIS (Netherlands)

    Blume, Anke

    2015-01-01

    Car traffic has a significant share in worldwide greenhouse gas emissions. ­Despite many improvements in the past there is still a big potential for further reductions of the CO2 emissions. Many parts of a car can be replaced by thermoplastics or elastomers in order to reduce weight. In addition,

  5. Chapter 14. Greenhouses

    Energy Technology Data Exchange (ETDEWEB)

    Rafferty, Kevin D.

    1998-01-01

    Greenhouse heating is one of the most common uses of geothermal resources. Because of the significant heating requirements of greenhouses and their ability to use very low- temperature fluids, they are a natural application. The evaluation of a particular greenhouse project involves consideration of the structure heating requirements, and the system to meet those requirements. This chapter is intended to provide information on each of these areas.

  6. Optimization of ventilation and its effect on the microclimate of a colombian multispan greenhouse

    Directory of Open Access Journals (Sweden)

    Edwin Andrés Villagrán

    2012-08-01

    Full Text Available In Colombia, greenhouse design optimization has not been a relevant topic and, as a consequence, the ventilation systems of current structures are not optimal, generating inadequate microclimates for the development of horticultural species. At the production level, management of the greenhouse climate is deficient, and this factor is not taken into account as a function of characteristics dependent on greenhouse design that cannot be modified during its lifespan. The aim of the present work was to study the efficiency of modifications applied to the ventilation system of a commercial greenhouse available on the Colombian market. This was accomplished by using numerical simulations through the application of the computational fluid dynamics method. Based on the commercial greenhouse design, two modified models were designed by applying structural modifications and changing the orientation of the fixed open ridges. Simulations with the three greenhouse models were carried out in order to maximize the air renovation rates and improve air movement within the entire greenhouse, striving for the highest degree of climate homogenization. The best greenhouse design was the one with the highest air renovation index, high enough to ensure adequate control of temperature and humidity extremes through natural ventilation. Additionally, this design generated the most homogenous microclimate within the cultivation zone

  7. Study of greenhouse gases emission factor for nuclear power chain of China

    International Nuclear Information System (INIS)

    Ma Zhonghai; Pan Ziqiang; Xie Jianlun; Xiu Binglin

    2001-01-01

    The Greenhouse Gases Emission Factor (GGEF) for nuclear power chain of China is calculated based on Life Cycle Analysis method and the definition of full energy chain. There is no greenhouse gases released directly from nuclear power plant. The greenhouse gases emission from nuclear power plant is mainly from coal-fired electricity supply to nuclear power plant for its normal operation and the production of construction materials those are used in the nuclear power plant. The total GGEF of nuclear power chain in China is 13.71 g-co 2 /kWh. It is necessary to regulate un-rational power source mix and to use the energy sources in rational way for reducing the greenhouse gas effect. Nuclear power for electricity generation is one of effective ways to reduce greenhouse gases emission and retard the greenhouse effect

  8. International policies to address the greenhouse effect. Encouraging developing country participation in global greenhouse control strategies

    International Nuclear Information System (INIS)

    Gupta, J.; Hischenmoller, M.; Vellinga, P.; Van der Wurff, R.; Junne, G.

    1995-01-01

    The conditions under which developing country governments are likely to feel motivated to take real action in addressing the greenhouse gas problem and the international mechanisms that are likely to succeed are briefly outlined

  9. Second Greenhouse Gas Information System Workshop

    Science.gov (United States)

    Boland, S. W.; Duren, R. M.; Mitchiner, J.; Rotman, D.; Sheffner, E.; Ebinger, M. H.; Miller, C. E.; Butler, J. H.; Dimotakis, P.; Jonietz, K.

    2009-12-01

    The second Greenhouse Gas Information System (GHGIS) workshop was held May 20-22, 2009 at the Sandia National Laboratories in Albuquerque, New Mexico. The workshop brought together 74 representatives from 28 organizations including U.S. government agencies, national laboratories, and members of the academic community to address issues related to the understanding, operational monitoring, and tracking of greenhouse gas emissions and carbon offsets. The workshop was organized by an interagency collaboration between NASA centers, DOE laboratories, and NOAA. It was motivated by the perceived need for an integrated interagency, community-wide initiative to provide information about greenhouse gas sources and sinks at policy-relevant temporal and spatial scales in order to significantly enhance the ability of national and regional governments, industry, and private citizens to implement and evaluate effective climate change mitigation policies. This talk provides an overview of the second Greenhouse Gas Information System workshop, presents its key findings, and discusses current status and next steps in this interagency collaborative effort.

  10. Studying the Physical Basis of Global Warming: Thermal Effects of the Interaction between Radiation and Matter and Greenhouse Effect

    Science.gov (United States)

    Besson, Ugo; De Ambrosis, Anna; Mascheretti, Paolo

    2010-01-01

    We present a teaching module dealing with the thermal effects of interaction between radiation and matter, the infrared emission of bodies and the greenhouse effect devoted to university level and teacher education. The module stresses the dependence of the optical properties of materials (transparency, absorptivity and emissivity) on radiation…

  11. Inventory of gases of greenhouse effect and mitigation options for Colombia

    International Nuclear Information System (INIS)

    Academia colombiana de ciencias exactas fisicas y naturales

    1998-01-01

    In the last years, the possibility of a global heating due to the emissions of greenhouse gases has become a true concern for the international scientific community. As a result of it created the IPCC (Intergovernmental Panel on Climate Change) and the agreement mark was approved about the climatic change of the United Nations (UNFCCC) that was subscribed by the countries in 1992 in Rio de Janeiro city in Brazil. The objective of the agreement is the stabilization of the concentrations of the gases of GEI effect in the atmosphere at a level that allows avoiding interferences anthropogenic dangerous for the climatic system. It is sought to reach this level inside a sufficiently long term to allow the natural adaptation from the ecosystems to the climatic change, guaranteeing this way the production of foods and the sustainable development. The government from Colombia subscribed the agreement mark about the climatic change of the United Nations (UNFCCC) in 1992 and the congress of the republic ratified it in 1995. The signatory countries of the agreement commit to elaborate and to publish national inventories of anthropogenic emissions of gases of greenhouse effect as well as to develop plans to reduce or to control the emissions

  12. A space parasol as a countermeasure against the greenhouse effect

    Science.gov (United States)

    Hudson, H. S.

    1991-01-01

    It is suggested that the deployment of a 'space parasol' at the L1 Langrangian point of the earth-sun system would serve to intercept some desired fraction of the solar radiant energy, thereby lessening the impact of the greenhouse effect. The parasol satellites are described and possible orbit configurations are discussed. Orbital possibilities include Low Earth Orbit, Geosynchronous orbit, and L1 which appears to be the best option. Structural strength, control, and use of extraterrestrial material in the construction of the parasol are discussed.

  13. Land Use Effects on Net Greenhouse Gas Fluxes in the US Great Plains: Historical Trends and Model Projections

    Science.gov (United States)

    Del Grosso, S. J.; Parton, W. J.; Ojima, D. S.; Mosier, A. R.; Mosier, A. R.; Paustian, K.; Peterson, G. A.

    2001-12-01

    We present maps showing regional patterns of land use change and soil C levels in the US Great Plains during the 20th century and time series of net greenhouse gas fluxes associated with different land uses. Net greenhouse gas fluxes were calculated by accounting for soil CO2 fluxes, the CO2 equivalents of N2O emissions and CH4 uptake, and the CO2 costs of N fertilizer production. Both historical and modern agriculture in this region have been net sources of greenhouse gases. The primary reason for this, prior to 1950, is that agriculture mined soil C and resulted in net CO2 emissions. When chemical N fertilizer became widely used in the 1950's agricultural soils began to sequester CO2-C but these soils were still net greenhouse gas sources if the effects of increased N2O emissions and decreased CH4 uptake are included. The sensitivity of net greenhouse gas fluxes to conventional and alternative land uses was explored using the DAYCENT ecosystem model. Model projections suggest that conversion to no-till, reduction of the fallow period, and use of nitrification inhibitors can significantly decrease net greenhouse gas emissions in dryland and irrigated systems, while maintaining or increasing crop yields.

  14. Students' Understanding of the Greenhouse Effect, the Societal Consequences of Reducing CO2 Emissions and the Problem of Ozone Layer Depletion.

    Science.gov (United States)

    Andersson, Bjorn; Wallin, Anita

    2000-01-01

    Contributes to the growing body of knowledge about students' conceptions and views of environmental and natural resource issues. Questions 9th and 12th grade Swedish students' understandings of the greenhouse effect, reduction of CO2 emissions, and the depletion of the ozone layer. Observes five models of the greenhouse effect that appear among…

  15. Effects of air-sea coupling over the North Sea and the Baltic Sea on simulated summer precipitation over Central Europe

    Science.gov (United States)

    Ho-Hagemann, Ha Thi Minh; Gröger, Matthias; Rockel, Burkhardt; Zahn, Matthias; Geyer, Beate; Meier, H. E. Markus

    2017-12-01

    This study introduces a new approach to investigate the potential effects of air-sea coupling on simulated precipitation inland over Central Europe. We present an inter-comparison of two regional climate models (RCMs), namely, the COSMO-CLM (hereafter CCLM) and RCA4 models, which are configured for the EURO-CORDEX domain in the coupled and atmosphere-only modes. Two versions of the CCLM model, namely, 4.8 and 5.0, join the inter-comparison being almost two different models while providing pronouncedly different summer precipitation simulations because of many changes in the dynamics and physics of CCLM in version 5.0. The coupling effect on the prominent summer dry bias over Central Europe is analysed using seasonal (JJA) mean statistics for the 30-year period from 1979 to 2009, with a focus on extreme precipitation under specific weather regimes. The weather regimes are compared between the coupled and uncoupled simulations to better understand the mechanism of the coupling effects. The comparisons of the coupled systems with the atmosphere-only models show that coupling clearly reduces the dry bias over Central Europe for CCLM 4.8, which has a large dry summer bias, but not for CCLM 5.0 and RCA4, which have smaller dry biases. This result implies that if the atmosphere-only model already yields reasonable summer precipitation over Central Europe, not much room for improvement exists that can be caused by the air-sea coupling over the North Sea and the Baltic Sea. However, if the atmosphere-only model shows a pronounced summer dry bias because of a lack of moisture transport from the seas into the region, the considered coupling may create an improved simulation of summer precipitation over Central Europe, such as for CCLM 4.8. For the latter, the benefit of coupling varies over the considered timescales. The precipitation simulations that are generated by the coupled system COSTRICE 4.8 and the atmosphere-only CCLM 4.8 are mostly identical for the summer mean

  16. Reducing the greenhouse gas footprint of shale gas

    International Nuclear Information System (INIS)

    Wang Jinsheng; Ryan, David; Anthony, Edward J.

    2011-01-01

    Shale gas is viewed by many as a global energy game-changer. However, serious concerns exist that shale gas generates more greenhouse gas emissions than does coal. In this work the related published data are reviewed and a reassessment is made. It is shown that the greenhouse gas effect of shale gas is less than that of coal over long term if the higher power generation efficiency of shale gas is taken into account. In short term, the greenhouse gas effect of shale gas can be lowered to the level of that of coal if methane emissions are kept low using existing technologies. Further reducing the greenhouse gas effect of shale gas by storing CO 2 in depleted shale gas reservoirs is also discussed, with the conclusion that more CO 2 than the equivalent CO 2 emitted by the extracted shale gas could be stored in the reservoirs at significantly reduced cost. - Highlights: ► The long-term greenhouse gas footprint of shale gas is smaller than that of coal. ► Carbon capture and storage should be considered for fossil fuels including shale gas. ► Depleted shale gas fields could store more CO 2 than the equivalent emissions. ► Linking shale gas development with CO 2 storage could largely reduce the total cost.

  17. Misperception and mismanagement of the greenhouse effect?

    International Nuclear Information System (INIS)

    Hatlebakk, M.; Moxnes, E.

    1992-12-01

    We present a stochastic simulation model of the world economy, useful for the analysis of climate policy. The model will also be used in an experiment to investigate the ability of policy makers to tackle the greenhouse problem. Preliminary simulations are conducted to find an optimal stationary tax rate. 30 refs., 6 figs., 10 tabs

  18. Factor Analysis of Drawings: Application to College Student Models of the Greenhouse Effect

    Science.gov (United States)

    Libarkin, Julie C.; Thomas, Stephen R.; Ording, Gabriel

    2015-01-01

    Exploratory factor analysis was used to identify models underlying drawings of the greenhouse effect made by over 200 entering university freshmen. Initial content analysis allowed deconstruction of drawings into salient features, with grouping of these features via factor analysis. A resulting 4-factor solution explains 62% of the data variance,…

  19. Greenhouse statistics: A different look at climate research

    International Nuclear Information System (INIS)

    Tol, R.S.J.; Vos, A.F. de

    1994-01-01

    The debate on the enhanced greenhouse effect continues, confusing the climate change impact analysis and the decision makers. This article attempts to quantify the uncertainties surrounding the temperature's response to increasing atmospheric concentrations of greenhouse gases, and attempts to weigh the hypothesis that the observed warming is due to the long-term natural variability against the hypothesis that it is due to human influence. Information from the distant past on the size of natural variability plays a key role in this. On the basis of this information, the authors conclude that the hypothesis that the observed temperature rise is not related to the enhanced greenhouse effect is rejected at the 1% significance level

  20. The social representations of the greenhouse effect. Progress report (third inquiry); Les representations sociales de l'effet de serre. Rapport d'etude (3. vague d'enquete)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-10-01

    This document presents the results analysis to the inquiry realized during july 2002 on the greenhouse effect perception by the public. This inquiry follows the inquiries realized in spring 2000 and winter 2001. The following questions have been asked and analyzed: what is the greenhouse effect, who is responsible of the greenhouse effect, what will be the consequences of the greenhouse effect, how to meet with this effect, information and perception. (A.L.B.)

  1. The effect of sea ice loss on sea salt aerosol concentrations and the radiative balance in the Arctic

    Directory of Open Access Journals (Sweden)

    H. Struthers

    2011-04-01

    Full Text Available Understanding Arctic climate change requires knowledge of both the external and the local drivers of Arctic climate as well as local feedbacks within the system. An Arctic feedback mechanism relating changes in sea ice extent to an alteration of the emission of sea salt aerosol and the consequent change in radiative balance is examined. A set of idealized climate model simulations were performed to quantify the radiative effects of changes in sea salt aerosol emissions induced by prescribed changes in sea ice extent. The model was forced using sea ice concentrations consistent with present day conditions and projections of sea ice extent for 2100. Sea salt aerosol emissions increase in response to a decrease in sea ice, the model results showing an annual average increase in number emission over the polar cap (70–90° N of 86 × 106 m−2 s−1 (mass emission increase of 23 μg m−2 s−1. This in turn leads to an increase in the natural aerosol optical depth of approximately 23%. In response to changes in aerosol optical depth, the natural component of the aerosol direct forcing over the Arctic polar cap is estimated to be between −0.2 and −0.4 W m−2 for the summer months, which results in a negative feedback on the system. The model predicts that the change in first indirect aerosol effect (cloud albedo effect is approximately a factor of ten greater than the change in direct aerosol forcing although this result is highly uncertain due to the crude representation of Arctic clouds and aerosol-cloud interactions in the model. This study shows that both the natural aerosol direct and first indirect effects are strongly dependent on the surface albedo, highlighting the strong coupling between sea ice, aerosols, Arctic clouds and their radiative effects.

  2. Greenhouse effect: A first estimation of the emissions in Italy

    International Nuclear Information System (INIS)

    Gaudioso, D.; Onufrio, G.

    1991-03-01

    The estimate of the anthropogenic emissions of greenhouse gases and the selection of the relevant emission factors represents a preliminary condition to define policies aiming at curbing these emissions. In the first part of this paper there is an analysis of C0 2 emission factors, referred to the various fuels and energy technologies. The values at issue take into account the physico-chemical composition of the different fossil fuels, as well as the overall efficiency of energy production cycles and end uses patterns. As concerns the other greenhouse gases, the available information is summarized at a much more integrate level. The second part presents some estimates of carbon dioxide emissions in Italy, by sector and by fuel; some characteristic levels of specific emissions are also identified. A comparative estimate for CH 4 , N 2 O, CO and CFC's is also made, in order to set up a first reference table of the emissions of greenhouse gases in our country. (author)

  3. Stabilising the global greenhouse. A simulation model

    International Nuclear Information System (INIS)

    Michaelis, P.

    1993-01-01

    This paper investigates the economic implications of a comprehensive approach to greenhouse policies that strives to stabilise the atmospheric concentration of greenhouse gases at an ecolocially determined threshold level. In a theoretical optimisation model conditions for an efficient allocation of abatement effort among pollutants and over time are derived. The model is empirically specified and adapted to a dynamic Gams-algorithm. By various simulation runs for the period of 1990 to 2110, the economics of greenhouse gas accumulation are explored. In particular, the long-run cost associated with the above stabilisation target are evaluated for three different policy scenarios: i) A comprehensive approach that covers all major greenhouse gases simultaneously, ii) a piecemeal approach that is limited to reducing CO 2 emissions, and iii) a ten-year moratorium that postpones abatement effort until new scientific evidence on the greenhouse effect will become available. Comparing the simulation results suggests that a piecemeal approach would considerably increase total cost, whereas a ten-year moratorium might be reasonable even if the probability of 'good news' is comparatively small. (orig.)

  4. Improving material management to reduce greenhouse gas emissions

    NARCIS (Netherlands)

    Hekkert, Marko Peter

    2000-01-01

    Climate change due to greenhouse gas emissions caused by human actions is probably one of the major global environmental problems that we face today. In order to reduce the risk of climate change and the potential effects thereof, the emission of greenhouse gases like carbon dioxide (CO2) and

  5. Antarctic specific features of the greenhouse effect. A radiative analysis using measurements and models

    International Nuclear Information System (INIS)

    Schmithuesen, Holger

    2014-01-01

    CO 2 is the strongest anthropogenic forcing agent for climate change since pre-industrial times. Like other greenhouse gases, CO 2 absorbs terrestrial surface radiation and causes emission from the atmosphere to space. As the surface is generally warmer than the atmosphere, the total long-wave emission to space is commonly less than the surface emission. However, this does not hold true for the high elevated areas of central Antarctica. For this region, it is shown that the greenhouse effect of CO 2 is around zero or even negative. Moreover, for central Antarctica an increase in CO 2 concentration leads to an increased long-wave energy loss to space, which cools the earth-atmosphere system. These unique findings for central Antarctica are in contrast to the well known general warming effect of increasing CO 2 . The work contributes to explain the non-warming of central Antarctica since 1957.

  6. The greenhouse challenge

    International Nuclear Information System (INIS)

    Harrington, Ph.

    1999-01-01

    At Kyoto, Australia was successful in gaining acceptance for a differentiated response to climate change which takes account of our special circumstances and allows for an 8% rise in emissions above 1990 levels by 2008 - 2012. This outcome is both environmentally effective but also responsible from the perspective of Australia's economic and trade interests. While our target is achievable it will require significant efforts on the part of industry, all levels of government and the wider community to move towards best practice in managing our greenhouse gas emissions. At the same time, it will provide an incentive for industry and businesses to further improve their efficiency and perhaps even to capture new opportunities that may present themselves. An outline of the National Greenhouse Strategy is given and some of the many implications for the minerals and energy sector are discussed

  7. Accounting for variation in designing greenhouse experiments with special reference to greenhouses containing plants on conveyor systems

    Science.gov (United States)

    2013-01-01

    Background There are a number of unresolved issues in the design of experiments in greenhouses. They include whether statistical designs should be used and, if so, which designs should be used. Also, are there thigmomorphogenic or other effects arising from the movement of plants on conveyor belts within a greenhouse? A two-phase, single-line wheat experiment involving four tactics was conducted in a conventional greenhouse and a fully-automated phenotyping greenhouse (Smarthouse) to investigate these issues. Results and discussion Analyses of our experiment show that there was a small east–west trend in total area of the plants in the Smarthouse. Analyses of the data from three multiline experiments reveal a large north–south trend. In the single-line experiment, there was no evidence of differences between trios of lanes, nor of movement effects. Swapping plant positions during the trial was found to decrease the east–west trend, but at the cost of increased error variance. The movement of plants in a north–south direction, through a shaded area for an equal amount of time, nullified the north–south trend. An investigation of alternative experimental designs for equally-replicated experiments revealed that generally designs with smaller blocks performed best, but that (nearly) trend-free designs can be effective when blocks are larger. Conclusions To account for variation in microclimate in a greenhouse, using statistical design and analysis is better than rearranging the position of plants during the experiment. For the relocation of plants to be successful requires that plants spend an equal amount of time in each microclimate, preferably during comparable growth stages. Even then, there is no evidence that this will be any more precise than statistical design and analysis of the experiment, and the risk is that it will not be successful at all. As for statistical design and analysis, it is best to use either (i) smaller blocks, (ii) (nearly) trend

  8. Demonstration of the greenhouse effect for elementary school students

    Science.gov (United States)

    Radovanovic, Jelena

    2014-05-01

    The school where I work is part of the "Step by step towards the sustainable development school" project. Project activities are partly directed towards the popularization of science. As a physics teacher, I have had the opportunity to engage in designing interactive workshops, aiming to introduce younger students to simple experiments which illustrate different natural phenomena, and also in organization, preparation and implementation of school and city science festival (in 2012 and 2013). Numerous displays, workshops and experiments served to introduce a large number of visitors to different topics in the area of science and technology. One of the subjects of forthcoming science festival, planned for May of 2014, is the climate change. To that effect, eight grade students will hold a demonstration and explanation of the greenhouse effect. Although the terms greenhouse effect and global warming are widely used in media, most of the elementary school students in Serbia have poor understanding of the underlying scientific concepts. The experiment with analysis and discussion will first be implemented in one eight-grade class (14 years of age). After that, a group of students from this class will present their newly-acquired knowledge to their peers and younger students at the science fair. Activity objectives: • Explain how atmosphere affects the surface temperature of Earth • Conduct an experiment to demonstrate the greenhouse effect • Analyze the consequences of climate changes Experiment description: Take two empty, transparent containers and add a layer of garden soil. Use cardboard or similar material to make housings for the thermometers. Hang them in the containers, so that they don't touch the soil. Cover one container with a glass panel, and leave the other one open. Place identical incandescent light bulbs at the same distance above each container. Turn the light bulbs on. The students should mark the thermometer readings every 2 minutes, for 20

  9. Greenhouse gas emissions from solid waste in Beijing: The rising trend and the mitigation effects by management improvements.

    Science.gov (United States)

    Yu, Yongqiang; Zhang, Wen

    2016-04-01

    Disposal of solid waste poses great challenges to city managements. Changes in solid waste composition and disposal methods, along with urbanisation, can certainly affect greenhouse gas emissions from municipal solid waste. In this study, we analysed the changes in the generation, composition and management of municipal solid waste in Beijing. The changes of greenhouse gas emissions from municipal solid waste management were thereafter calculated. The impacts of municipal solid waste management improvements on greenhouse gas emissions and the mitigation effects of treatment techniques of greenhouse gas were also analysed. Municipal solid waste generation in Beijing has increased, and food waste has constituted the most substantial component of municipal solid waste over the past decade. Since the first half of 1950s, greenhouse gas emission has increased from 6 CO2-eq Gg y(-1)to approximately 200 CO2-eq Gg y(-1)in the early 1990s and 2145 CO2-eq Gg y(-1)in 2013. Landfill gas flaring, landfill gas utilisation and energy recovery in incineration are three techniques of the after-emission treatments in municipal solid waste management. The scenario analysis showed that three techniques might reduce greenhouse gas emissions by 22.7%, 4.5% and 9.8%, respectively. In the future, if waste disposal can achieve a ratio of 4:3:3 by landfill, composting and incineration with the proposed after-emission treatments, as stipulated by the Beijing Municipal Waste Management Act, greenhouse gas emissions from municipal solid waste will decrease by 41%. © The Author(s) 2016.

  10. Greenhouse statistics - a different look at climate research

    International Nuclear Information System (INIS)

    Tol, R.; Vos, A. de

    1993-01-01

    The greenhouse effect is a hot topic. There are still major uncertainties about the effects on the climate of the increasing concentrations of greenhouse gases. Politicians and socioeconomic scientists thus sometimes have the feeling that they are building on quicksand, and this hampers the advancement of an adequate policy. It is therefore necessary to map out the uncertainties, and to reduce them. A method is presented for doing this. 5 refs., 5 figs

  11. Solar radiation distribution inside a greenhouse with south-oriented photovoltaic roofs and effects on crop productivity

    International Nuclear Information System (INIS)

    Cossu, Marco; Murgia, Lelia; Ledda, Luigi; Deligios, Paola A.; Sirigu, Antonella; Chessa, Francesco; Pazzona, Antonio

    2014-01-01

    Highlights: • The solar radiation distribution inside photovoltaic greenhouses has been studied. • A greenhouse with 50% of the roof area covered with solar panels was considered. • The yearly solar light reduction was 64%, with a transversal north–south gradient. • The reduction was 82% under the solar panels and 46% under the plastic cover. • We provided suggestions for a better agronomic sustainability of PV greenhouses. - Abstract: This study assessed the climate conditions inside a greenhouse in which 50% of the roof area was replaced with photovoltaic (PV) modules, describing the solar radiation distribution and the variability of temperature and humidity. The effects of shading from the PV array on crop productivity were described on tomato, also integrating the natural radiation with supplementary lighting powered by PV energy. Experiments were performed inside an east–west oriented greenhouse (total area of 960 m 2 ), where the south-oriented roofs were completely covered with multi-crystalline silicon PV modules, with a total rated power of 68 kWp. The PV system reduced the availability of solar radiation inside the greenhouse by 64%, compared to the situation without PV system (2684 MJ m −2 on yearly basis). The solar radiation distribution followed a north–south gradient, with more solar energy on the sidewalls and decreasing towards the center of the span, except in winter, where it was similar in all plant rows. The reduction under the plastic and PV covers was respectively 46% and 82% on yearly basis. Only a 18% reduction was observed on the plant rows farthest from the PV cover of the span. The supplementary lighting, powered without exceeding the energy produced by the PV array, was not enough to affect the crop production, whose revenue was lower than the cost for heating and lighting. The distribution of the solar radiation observed is useful for choosing the most suitable crops and for designing PV greenhouses with the attitude

  12. Conceptual and methodological challenges to integrating SEA and cumulative effects assessment

    International Nuclear Information System (INIS)

    Gunn, Jill; Noble, Bram F.

    2011-01-01

    The constraints to assessing and managing cumulative environmental effects in the context of project-based environmental assessment are well documented, and the potential benefits of a more strategic approach to cumulative effects assessment (CEA) are well argued; however, such benefits have yet to be clearly demonstrated in practice. While it is widely assumed that cumulative effects are best addressed in a strategic context, there has been little investigation as to whether CEA and strategic environmental assessment (SEA) are a 'good fit' - conceptually or methodologically. This paper identifies a number of conceptual and methodological challenges to the integration of CEA and SEA. Based on results of interviews with international experts and practitioners, this paper demonstrates that: definitions and conceptualizations of CEA are typically weak in practice; approaches to effects aggregation vary widely; a systems perspective lacks in both SEA and CEA; the multifarious nature of SEA complicates CEA; tiering arrangements between SEA and project-based assessment are limited to non-existing; and the relationship of SEA to regional planning remains unclear.

  13. Greening the greenhouse grower

    DEFF Research Database (Denmark)

    Staats, Henk; Jansen, Lilian; Thøgersen, John

    2011-01-01

    Growing plants and flowers in greenhouses is a commercial activity that imposes a burden on the environment. Recently a system of registration, control, and licensing has been developed by the sector of greenhouse growers in the Netherlands, acknowledged by the state. The current study was executed...... to understand the achievements of the greenhouse growers within this system. We applied a social-cognitive model to understand intentions to reduce emissions and predict actual pesticide use. The social-cognitive concepts from the model were measured in a questionnaire that was completed by 743 greenhouse...

  14. Detection of greenhouse-gas-induced climatic change

    International Nuclear Information System (INIS)

    Wigley, T.M.L.; Jones, P.D.

    1992-01-01

    The aims of the US Department of Energy's Carbon Dioxide Research Program are to improve assessments of greenhouse-gas-induced climatic change and to define and reduce uncertainties through selected research. This project will address: The regional and seasonal details of the expected climatic changes; how rapidly will these changes occur; how and when will the climatic effects of CO 2 and other greenhouse gases be first detected; and the relationships between greenhouse-gas-induced climatic change and changes caused by other external and internal factors. The present project addresses all of these questions. Many of the diverse facets of greenhouse-gas-related climate research can be grouped under three interlinked subject areas: modeling, first detection and supporting data. This project will include the analysis of climate forcing factors, the development and refinement of transient response climate models, and the use of instrumental data in validating General Circulation Models (GCMs)

  15. Multiagency Initiative to Provide Greenhouse Gas Information

    Science.gov (United States)

    Boland, Stacey W.; Duren, Riley M.

    2009-11-01

    Global Greenhouse Gas Information System Workshop; Albuquerque, New Mexico, 20-22 May 2009; The second Greenhouse Gas Information System (GHGIS) workshop brought together 74 representatives from 28 organizations including U.S. government agencies, national laboratories, and members of the academic community to address issues related to the understanding, operational monitoring, and tracking of greenhouse gas emissions and carbon offsets. The workshop was held at Sandia National Laboratories and organized by an interagency collaboration among NASA centers, Department of Energy laboratories, and the U.S. National Oceanic and Atmospheric Administration. It was motivated by the perceived need for an integrated interagency, community-wide initiative to provide information about greenhouse gas sources and sinks at policy-relevant temporal and spatial scales. Such an initiative could significantly enhance the ability of national and regional governments, industry, and private citizens to implement and evaluate effective climate change mitigation policies.

  16. Off-season cultivation of capsicums in a solar greenhouse

    Energy Technology Data Exchange (ETDEWEB)

    Ghosal, M.K.; Tiwari, G.N. [Indian Inst. of Technology, New Delhi (India). Centre for Energy Studies

    2001-10-01

    The use of solar energy for growing capsicums in pots and in the ground has been studied both under a controlled environment in a solar greenhouse (IIT model) and in an open field during August 2000 to March 2001. Cooling arrangements (natural, forced convection, shading, evaporative cooling) and heating methods (ground air collector, movable insulation during the night) have been employed during the pre-winter and winter periods respectively to maintain the protected environment in the greenhouse. The effects of a north brick wall and the use of movable insulation during the night in the winter months to reduce heat loss from the greenhouse have been incorporated to study the efficacy of the greenhouse. The average height, weight and yield per plant of the greenhouse crop were higher than those of the open field. (author)

  17. The Dynamic Greenhouse Challenge

    Science.gov (United States)

    Roman, Harry T.

    2010-01-01

    Greenhouses are marvelous devices, allowing one to enjoy the flower spectacle of summer all year round. At night, greenhouses use supplemental heat to keep the fragile plants warm. Over the last 30 years, greenhouse technology has undergone many changes, with the structures being automated and monitored and low-cost plastic structures emerging as…

  18. Air-sea exchange of carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Bakker, D C.E.; De Baar, H J.W.; De Jong, E; Koning, F A [Netherlands Institute for Sea Research NIOZ, Den Burg Texel (Netherlands)

    1996-12-31

    The greenhouse gas carbon dioxide is emitted by anthropogenic activities. The oceans presumably serve as a net sink for 17 to 39% of these emissions. The objective of this project is to quantify more accurately the locality, seasonality and magnitude of the net air-sea flux of CO2 with emphasis on the South Atlantic Ocean. In situ measurements of the fugacity of CO2 in surface water and marine air, of total dissolved inorganic carbon, alkalinity and of air-sea exchange of CO2 have been made at four Atlantic crossings, in the Southern Ocean, in a Norwegian fjord and in the Dutch coastal zone. Skin temperature was detected during several of the cruises. The data collected in the course of the project support and refine previous findings. Variability of dissolved CO2 in surface water is related in a complex way to biological and physical factors. The carbonate equilibria cause dissolved gaseous CO2 to react in an intricate manner to disturbances. Dissolved gaseous CO2 hardly ever attains equilibrium with the atmospheric CO2 content by means of air-sea exchange, before a new disturbance occurs. Surface water fCO2 changes could be separated in those caused by seasonal warming and those by biological uptake in a Southern Ocean spring. Incorporation of a thermal skin effect and a change of the wind speed interval strongly increased the small net oceanic uptake for the area. The Atlantic crossings point to a relationship between water mass history and surface water CO2 characteristics. In particular, current flow and related heat fluxes leave their imprint on the concentration dissolved gaseous CO2 and on air-sea exchange. In the Dutch coastal zone hydrography and inorganic carbon characteristics of the water were heterogeneous, which yielded variable air-sea exchange of CO2. figs., tabs., refs.

  19. The Anthropogenic "Greenhouse Effect": Greek Prospective Primary Teachers' Ideas about Causes, Consequences and Cures

    Science.gov (United States)

    Ikonomidis, Simos; Papanastasiou, Dimitris; Melas, Dimitris; Avgoloupis, Stavros

    2012-01-01

    This study explores the ideas of Greek prospective primary teachers about the anthropogenic greenhouse effect, particularly about its causes, consequences and cures. For this purpose, a survey was conducted: 265 prospective teachers completed a closed-form questionnaire. The results showed serious misconceptions in all areas (causes, consequences…

  20. The contribution to the greenhouse effect by passenger cars and heating is increasing

    International Nuclear Information System (INIS)

    Bouchereau, J.M.

    2000-12-01

    Between 1990 and 1998, the domestic sector contribution to the greenhouse effect increased from 25 % to 27 %. During this period, there was a 20 % rise in greenhouse gas emissions from passenger cars. These emissions amounted to 20 million tonnes of carbon equivalent out of a total of 175 million tonnes in 1998 (all sectors taken together). Carbon dioxide emissions from the tertiary sector increased by 2,3 % annually between 1980 and 1998, particularly as a result of increased road freight transport. Although technological progress has been made on fuel consumption of vehicles, greater use of passenger cars combined with decreasing running costs has led to gross emissions in France being 2 % more in 1998 than in 1990. In 1998, the transport sector (passenger cars and freight transport) was responsible for three-quarters of this increase. (author)

  1. The effects of additional black carbon on Arctic sea ice surface albedo: variation with sea ice type and snow cover

    OpenAIRE

    A. A. Marks; M. D. King

    2013-01-01

    Black carbon in sea ice will decrease sea ice surface albedo through increased absorption of incident solar radiation, exacerbating sea ice melting. Previous literature has reported different albedo responses to additions of black carbon in sea ice and has not considered how a snow cover may mitigate the effect of black carbon in sea ice. Sea ice is predominately snow covered. Visible light absorption and light scattering coefficients are calculated for a typical first year and multi-y...

  2. Cosmopolitan egalitarianism and greenhouse effect

    International Nuclear Information System (INIS)

    Gosseries, A.

    2006-01-01

    In this paper, I look at the way in which a maximin egalitarian theory of justice should deal with the greenhouse effect and its consequences. I adopt both a cosmopolitan and a 'local' approach (in Elster's sense). The paper concentrates on three dimensions of a Kyoto-type international regime raising issues of justice: the determination of a global cap on emissions for a given period, the way in which emission quotas should be distributed among countries for each period, and the questions arising from the tradability of such quotas. Regarding the cap issue, it is subject to both inter-generational and intra-generational constraints of justice. I show that a weak intra-generational principle of compensation is likely to lead to radically demanding implications. As to the initial allocation issue, I look at five possible reasons why egalitarians may want to depart from a population-based allocation among countries. Special attention is devoted to three of them: grand-fathering, the disadvantageous geographical specificities of some countries and historical emissions. I specify the extent to which such a departure from a population-based mode of allocation can be justified on egalitarian grounds. Finally, I look at possible objections to the tradability of such quotas, concluding that they are not sufficient to shift toward non-tradable quotas. (author)

  3. Respective roles of direct GHG radiative forcing and induced Arctic sea ice loss on the Northern Hemisphere atmospheric circulation

    Science.gov (United States)

    Oudar, Thomas; Sanchez-Gomez, Emilia; Chauvin, Fabrice; Cattiaux, Julien; Terray, Laurent; Cassou, Christophe

    2017-12-01

    The large-scale and synoptic-scale Northern Hemisphere atmospheric circulation responses to projected late twenty-first century Arctic sea ice decline induced by increasing Greenhouse Gases (GHGs) concentrations are investigated using the CNRM-CM5 coupled model. An original protocol, based on a flux correction technique, allows isolating the respective roles of GHG direct radiative effect and induced Arctic sea ice loss under RCP8.5 scenario. In winter, the surface atmospheric response clearly exhibits opposing effects between GHGs increase and Arctic sea ice loss, leading to no significant pattern in the total response (particularly in the North Atlantic region). An analysis based on Eady growth rate shows that Arctic sea ice loss drives the weakening in the low-level meridional temperature gradient, causing a general decrease of the baroclinicity in the mid and high latitudes, whereas the direct impact of GHGs increase is more located in the mid-to-high troposphere. Changes in the flow waviness, evaluated from sinuosity and blocking frequency metrics, are found to be small relative to inter-annual variability.

  4. Antarctic specific features of the greenhouse effect. A radiative analysis using measurements and models

    Energy Technology Data Exchange (ETDEWEB)

    Schmithuesen, Holger

    2014-12-10

    CO{sub 2} is the strongest anthropogenic forcing agent for climate change since pre-industrial times. Like other greenhouse gases, CO{sub 2} absorbs terrestrial surface radiation and causes emission from the atmosphere to space. As the surface is generally warmer than the atmosphere, the total long-wave emission to space is commonly less than the surface emission. However, this does not hold true for the high elevated areas of central Antarctica. For this region, it is shown that the greenhouse effect of CO{sub 2} is around zero or even negative. Moreover, for central Antarctica an increase in CO{sub 2} concentration leads to an increased long-wave energy loss to space, which cools the earth-atmosphere system. These unique findings for central Antarctica are in contrast to the well known general warming effect of increasing CO{sub 2}. The work contributes to explain the non-warming of central Antarctica since 1957.

  5. The carbon balance and greenhouse effects of the Finnish forest sector at present, in the past and future

    Energy Technology Data Exchange (ETDEWEB)

    Pingoud, K [Technical Research Centre of Finland, Espoo (Finland)

    1997-12-31

    In this study the greenhouse impact of the total Finnish forest sector was considered, which means that the estimated emissions and sink effects from exported forest products were also included. The forest biomass is and seems to be in the next decades the most important factor in the carbon balance of the total forest sector. The development alternatives of forest industries and waste management practices has still a remarkable influence on the greenhouse impact of the Finnish forest sector. The waste management practices in the future has an important influence on the emissions but the exact net greenhouse impact of the landfills is still uncertain. However, the methane emissions from existing landfills can be reduced essentially by gas recovery. Increased incineration and energy recovery of wood waste (and replacing fossil fuel use by it) is also a future alternative for reducing the greenhouse effects in the forest sector. The sequestration of carbon by increasing the storages of long-lived wood products in use meets difficulties in practice because of all the material losses in wood using chain and the natural removal of old wood products. An important advantage of mechanical wood processing and the succeeding refinement chain is still their relative low use of energy

  6. The carbon balance and greenhouse effects of the Finnish forest sector at present, in the past and future

    Energy Technology Data Exchange (ETDEWEB)

    Pingoud, K. [Technical Research Centre of Finland, Espoo (Finland)

    1996-12-31

    In this study the greenhouse impact of the total Finnish forest sector was considered, which means that the estimated emissions and sink effects from exported forest products were also included. The forest biomass is and seems to be in the next decades the most important factor in the carbon balance of the total forest sector. The development alternatives of forest industries and waste management practices has still a remarkable influence on the greenhouse impact of the Finnish forest sector. The waste management practices in the future has an important influence on the emissions but the exact net greenhouse impact of the landfills is still uncertain. However, the methane emissions from existing landfills can be reduced essentially by gas recovery. Increased incineration and energy recovery of wood waste (and replacing fossil fuel use by it) is also a future alternative for reducing the greenhouse effects in the forest sector. The sequestration of carbon by increasing the storages of long-lived wood products in use meets difficulties in practice because of all the material losses in wood using chain and the natural removal of old wood products. An important advantage of mechanical wood processing and the succeeding refinement chain is still their relative low use of energy

  7. Effect of Ocean Interannual Variability on Acoustic Propagation in the Philippine Sea and South China Sea

    Science.gov (United States)

    2017-06-01

    depth in order to analyze the Deep Water (Figure 12). The maximum values are found in the Philippine Sea, eastern part of the Mindanao Island in May...the water column stability. The seasonal variability is modulated by interannual and decadal modes of variability. The same effects were found ...ABSTRACT (maximum 200 words ) Effect of interannual variability of temperature and salinity on acoustic propagation in the Philippine Sea and South

  8. Transit Greenhouse Gas Management Compendium

    Science.gov (United States)

    2011-01-12

    This Compendium provides a framework for identifying greenhouse gas (GHG) reduction opportunities while highlighting specific examples of effective GHG reduction practices. The GHG savings benefits of public transit are first described. GHG saving op...

  9. National Greenhouse Gas Emission Inventory

    Data.gov (United States)

    U.S. Environmental Protection Agency — The National Greenhouse Gas Emission Inventory contains information on direct emissions of greenhouse gases as well as indirect or potential emissions of greenhouse...

  10. Smarter greenhouse climate control

    NARCIS (Netherlands)

    Nederhoff, E.M.; Houter, G.

    2011-01-01

    Greenhouse operators strive to be as economic as possible with energy. However, investing in fancy energy-saving equipment is often not cost-effective for smaller operations and in climate zones with mild winters. It is possible, though, for many growers to save energy without buying special

  11. The social representations of the greenhouse effect (6. wave of questions); Les representations sociales de l'effet de serre (6. vague d'enquete)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    Six waves of questions concerning the public opinion of the greenhouse effect, were realized by the ISL in May 2000, March 2001, July 2002, June 2003 and May 2004. This sixth wave was realized between June 14 and 25 2005. The report presents the questions asked and analyzes the answers. The concerned domains are the greenhouse effect, the causes, the consequences, the greenhouse effect remediation (technical and political choices), the climatic change, the confidence on the actors and the institutions. (A.L.B.)

  12. [Treatment effect of biological filtration and vegetable floating-bed combined system on greenhouse turtle breeding wastewater].

    Science.gov (United States)

    Chen, Chong-Jun; Zhang, Rui; Xiang, Kun; Wu, Wei-Xiang

    2014-08-01

    Unorganized discharge of greenhouse turtle breeding wastewater has brought several negative influences on the ecological environment in the rural area of Yangtze River Delta. Biological filtration and vegetable floating-bed combined system is a potential ecological method for greenhouse turtle breeding wastewater treatment. In order to explore the feasibility of this system and evaluate the contribution of vegetable uptake of nitrogen (N) and phosphorus (P) in treating greenhouse turtle breeding wastewater, three types of vegetables, including Ipomoea aquatica, lettuce and celery were selected in this study. Results showed the combined system had a high capacity in simultaneous removal of organic matter, N and P. The removal efficiencies of COD, NH4(+)-N, TN and TP from the wastewater reached up to 93.2%-95.6%, 97.2%-99.6%, 73.9%-93.1% and 74.9%-90.0%, respectively. System with I. aquatica had the highest efficiencies in N and P removal, followed by lettuce and celery. However, plant uptake was not the primary pathway for TN arid TP removal in the combined system. The vegetable uptake of N and P accounted for only 9.1%-25.0% of TN and TP removal from the wastewater while the effect of microorganisms would be dominant for N and P removal. In addition, the highest amounts of N and P uptake in I. aquatica were closely related with the biomass of plant. Results from the study indicated that the biological filtration and vegetable floating-bed combined system was an effective approach to treating greenhouse turtle breeding wastewater in China.

  13. Adaptation to Impacts of Greenhouse Gases on the Ocean (Invited)

    Science.gov (United States)

    Caldeira, K.

    2010-12-01

    Greenhouse gases are producing changes in ocean temperature and circulation, and these changes are already adversely affecting marine biota. Furthermore, carbon dioxide is absorbed by the oceans from the atmosphere, and this too is already adversely affecting some marine ecosystems. And, of course, sea-level rise affects both what is above and below the waterline. Clearly, the most effective approach to limit the negative impacts of climate change and acidification on the marine environment is to greatly diminish the rate of greenhouse gas emissions. However, there are other measures that can be taken to limit some of the negative effects of these stresses in the marine environment. Marine ecosystems are subject to multiple stresses, including overfishing, pollution, and loss of coastal wetlands that often serve as nurseries for the open ocean. The adaptive capacity of marine environments can be improved by limiting these other stresses. If current carbon dioxide emission trends continue, for some cases (e.g., coral reefs), it is possible that no amount of reduction in other stresses can offset the increase in stresses posed by warming and acidification. For other cases (e.g., blue-water top-predator fisheries), better fisheries management might yield improved population health despite continued warming and acidification. In addition to reducing stresses so as to improve the adaptive capacity of marine ecosystems, there is also the issue of adaptation in human communities that depend on this changing marine environment. For example, communities that depend on services provided by coral reefs may need to locate alternative foundations for their economies. The fishery industry will need to adapt to changes in fish abundance, timing and location. Most of the things we would like to do to increase the adaptive capacity of marine ecosystems (e.g., reduce fishing pressure, reduce coastal pollution, preserve coastal wetlands) are things that would make sense to do even in

  14. Energy and environment - greenhouse effect. The international, european and national actions to control the greenhouse gases emissions: which accounting and which perspectives?

    International Nuclear Information System (INIS)

    2001-12-01

    The scientific knowledge concerning the climatic change justifies today immediate fight actions against the greenhouse reinforcement. This fight is based on an ambitious international device which must take into account more global challenges. At the european and national scale, the exploitation of the potential of greenhouse gases reduction must be reinforced and more specially the evolution of the life style. (A.L.B.)

  15. Atmospheric greenhouse effect: more subtle than it looks like; L'effet de serre atmospherique: plus subtil qu'on ne le croit

    Energy Technology Data Exchange (ETDEWEB)

    Dufresne, J.L. [Laboratoire de Meteorologie Dynamique (LMD), Institut Pierre-Simon Laplace (IPSL), CNRS, Universite Pierre et Marie Curie, 75 - Paris (France); Treiner, J. [Paris-6, UPMC et Espace des sciences Pierre-Gilles de Gennes, 75 - Paris (France)

    2011-02-15

    State-of-the-art radiative models can be used to calculate in a rigorous and accurate manner the atmospheric greenhouse effect, as well as its variation with concentration in water vapour or carbon dioxide. A simple explanation of this effect uses an analogy with the greenhouse effect produced by a glass window. While this analogy has pedagogical virtues and provides a first order explanation of the mean temperature of the Earth, it has an important drawback; it is not able to explain why the greenhouse effect increases with increasing carbon dioxide concentration. Indeed, absorption of infrared radiation by carbon dioxide is, under this scheme, almost at its maximum and depends very weakly on CO{sub 2} concentration. It is said to be saturated. In this paper, we explore this question and propose an alternative model which, while remaining simple, correctly takes into account the various mechanisms and provides an understanding of the increasing greenhouse effect with CO{sub 2} concentration, together with the corresponding climate warming. The role of the atmospheric temperature gradient is particularly stressed. (authors)

  16. Sonic anemometry measurements to determine airflow patterns in multi-tunnel greenhouse

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, A.; Valera, D. L.; Molina-aiz, F. D.; Pena, A.

    2012-11-01

    The present work describes a methodology for studying natural ventilation in Mediterranean greenhouses using sonic anemometry. The experimental work took place in the three-span greenhouse located at the agricultural research farm belonging to the University of Almeria. This methodology has allowed us to obtain patterns of natural ventilation of the experimental greenhouse under the most common wind regimes for this region. It has also enabled us to describe how the wind and thermal effects interact in the natural ventilation of the greenhouse, as well as to detect deficiencies in the ventilation of the greenhouse, caused by the barrier effect of the adjacent greenhouse (imply a mean reduction in air velocity close to the greenhouse when facing windward of 98% for u, 63% for u, and more importantly 88% for ux, the component of air velocity that is perpendicular to the side vent). Their knowledge allows us to improve the current control algorithms that manage the movement of the vents. In this work we make a series of proposals that could substantially improve the natural ventilation of the experimental greenhouse. For instance, install vents equipped with ailerons which guide the air inside, or with vents in which the screen is not placed directly over the side surface of the greenhouse. A different proposal is to prolong the opening of the side vents down to the soil, thus fomenting the entrance of air at crop level. (Author) 34 refs.

  17. A dynamic model of the greenhouse effect and its control

    International Nuclear Information System (INIS)

    Perman, R.; Nisbet, R.; Ma, Y.

    1991-01-01

    A dynamic model is developed for the analysis of programmes to control the greenhouse effect. The model uses simplified representations of physical processes determining climate change, linked to an economic model of emissions and emissions abatement. Feedbacks between physical and economic processes are incorporated, and the costs of emissions reduction are compared with the benefits through averted damage. Simulation analyses explore the relative merits of several intervention scenarios, each of which is compared with non intervention. Throughout the paper, emphasis is placed upon the long term consequences of behaviour, and the patterns of dynamic adjustment over time. (author)

  18. Kyoto: nuclear power against greenhouse effect

    International Nuclear Information System (INIS)

    Anon.

    1997-01-01

    Among the different possibilities to slow down the increase of greenhouse gas emissions, several participants of the Kyoto conference (December 11, 1997) held the nuclear power resort in a good position. This short paper reports on some extracts of talks given during the conference by participants who take a definite position in favour of the development of nuclear power: FORATOM (European Atomic Forum), Nuclear Energy Institute (US), Japan Atomic Industrial Forum, the Uranium Institute, WONUC (World Council of Nuclear Workers) and SFEN (French Society of Nuclear Energy). (J.S.)

  19. The multi-millennial Antarctic commitment to future sea-level rise.

    Science.gov (United States)

    Golledge, N R; Kowalewski, D E; Naish, T R; Levy, R H; Fogwill, C J; Gasson, E G W

    2015-10-15

    Atmospheric warming is projected to increase global mean surface temperatures by 0.3 to 4.8 degrees Celsius above pre-industrial values by the end of this century. If anthropogenic emissions continue unchecked, the warming increase may reach 8-10 degrees Celsius by 2300 (ref. 2). The contribution that large ice sheets will make to sea-level rise under such warming scenarios is difficult to quantify because the equilibrium-response timescale of ice sheets is longer than those of the atmosphere or ocean. Here we use a coupled ice-sheet/ice-shelf model to show that if atmospheric warming exceeds 1.5 to 2 degrees Celsius above present, collapse of the major Antarctic ice shelves triggers a centennial- to millennial-scale response of the Antarctic ice sheet in which enhanced viscous flow produces a long-term commitment (an unstoppable contribution) to sea-level rise. Our simulations represent the response of the present-day Antarctic ice-sheet system to the oceanic and climatic changes of four representative concentration pathways (RCPs) from the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. We find that substantial Antarctic ice loss can be prevented only by limiting greenhouse gas emissions to RCP 2.6 levels. Higher-emissions scenarios lead to ice loss from Antarctic that will raise sea level by 0.6-3 metres by the year 2300. Our results imply that greenhouse gas emissions in the next few decades will strongly influence the long-term contribution of the Antarctic ice sheet to global sea level.

  20. Expanding Antarctic Sea Ice: Anthropogenic or Natural Variability?

    Science.gov (United States)

    Bitz, C. M.

    2016-12-01

    Antarctic sea ice extent has increased over the last 36 years according to the satellite record. Concurrent with Antarctic sea-ice expansion has been broad cooling of the Southern Ocean sea-surface temperature. Not only are Southern Ocean sea ice and SST trends at odds with expectations from greenhouse gas-induced warming, the trend patterns are not reproduced in historical simulations with comprehensive global climate models. While a variety of different factors may have contributed to the observed trends in recent decades, we propose that it is atmospheric circulation changes - and the changes in ocean circulation they induce - that have emerged as the most likely cause of the observed Southern Ocean sea ice and SST trends. I will discuss deficiencies in models that could explain their incorrect response. In addition, I will present results from a series of experiments where the Antarctic sea ice and ocean are forced by atmospheric perturbations imposed within a coupled climate model. Figure caption: Linear trends of annual-mean SST (left) and annual-mean sea-ice concentration (right) over 1980-2014. SST is from NOAA's Optimum Interpolation SST dataset (version 2; Reynolds et al. 2002). Sea-ice concentration is from passive microwave observations using the NASA Team algorithm. Only the annual means are shown here for brevity and because the signal to noise is greater than in the seasonal means. Figure from Armour and Bitz (2015).

  1. CF3SF5 : a ‘super’ greenhouse gas

    OpenAIRE

    Tuckett, R. P.

    2008-01-01

    One molecule of the anthropogenic pollutant trifluoromethyl sulphur pentafluoride (CF\\(_3\\)SF\\(_5\\)), an adduct of the CF\\(_3\\) and SF\\(_5\\) free radicals, causes more global warming than one molecule of any other greenhouse gas yet detected in the Earth’s atmosphere. That is, it has the highest per molecule radiative forcing of any greenhouse pollutant, and the value of its global warming potential is only exceeded by that of SF\\(_6\\). First, the greenhouse effect is described, the propertie...

  2. Impact of prescribed Arctic sea ice thickness in simulations of the present and future climate

    Energy Technology Data Exchange (ETDEWEB)

    Krinner, Gerhard [Alfred Wegener Institute for Polar and Marine Research, Potsdam (Germany); INSU-CNRS and UJF Grenoble, Laboratoire de Glaciologie et Geophysique de l' Environnement (LGGE), 54 rue Moliere, BP 96, Saint Martin d' Heres Cedex (France); Rinke, Annette; Dethloff, Klaus [Alfred Wegener Institute for Polar and Marine Research, Potsdam (Germany); Gorodetskaya, Irina V. [INSU-CNRS and UJF Grenoble, Laboratoire de Glaciologie et Geophysique de l' Environnement (LGGE), 54 rue Moliere, BP 96, Saint Martin d' Heres Cedex (France)

    2010-09-15

    This paper describes atmospheric general circulation model climate change experiments in which the Arctic sea-ice thickness is either fixed to 3 m or somewhat more realistically parameterized in order to take into account essentially the spatial variability of Arctic sea-ice thickness, which is, to a first approximation, a function of ice type (perennial or seasonal). It is shown that, both at present and at the end of the twenty-first century (under the SRES-A1B greenhouse gas scenario), the impact of a variable sea-ice thickness compared to a uniform value is essentially limited to the cold seasons and the lower troposphere. However, because first-year ice is scarce in the Central Arctic today, but not under SRES-A1B conditions at the end of the twenty-first century, and because the impact of a sea-ice thickness reduction can be masked by changes of the open water fraction, the spatial and temporal patterns of the effect of sea-ice thinning on the atmosphere differ between the two periods considered. As a consequence, not only the climate simulated at a given period, but also the simulated Arctic climate change over the twenty-first century is affected by the way sea-ice thickness is prescribed. (orig.)

  3. Greenhouse and Energy

    International Nuclear Information System (INIS)

    Swaine, D.J.

    1990-01-01

    The book is based on papers at the conference held at Macquarie University, Australia, in December 1989. The topics include energy aspects of the greenhouse effect, effects of reduction of carbon dioxide, methane emissions, sources of energy production, various aspects of electricity, liquid building, new technology, energy management and environmental and sociological aspects. Whilist the emphasis is on Australian conditions, the approaches are of relevance to other countries. Contains lists of referees and participants. Twenty-three papers have been separately indexed

  4. Measuring University students' understanding of the greenhouse effect - a comparison of multiple-choice, short answer and concept sketch assessment tools with respect to students' mental models

    Science.gov (United States)

    Gold, A. U.; Harris, S. E.

    2013-12-01

    The greenhouse effect comes up in most discussions about climate and is a key concept related to climate change. Existing studies have shown that students and adults alike lack a detailed understanding of this important concept or might hold misconceptions. We studied the effectiveness of different interventions on University-level students' understanding of the greenhouse effect. Introductory level science students were tested for their pre-knowledge of the greenhouse effect using validated multiple-choice questions, short answers and concept sketches. All students participated in a common lesson about the greenhouse effect and were then randomly assigned to one of two lab groups. One group explored an existing simulation about the greenhouse effect (PhET-lesson) and the other group worked with absorption spectra of different greenhouse gases (Data-lesson) to deepen the understanding of the greenhouse effect. All students completed the same assessment including multiple choice, short answers and concept sketches after participation in their lab lesson. 164 students completed all the assessments, 76 completed the PhET lesson and 77 completed the data lesson. 11 students missed the contrasting lesson. In this presentation we show the comparison between the multiple-choice questions, short answer questions and the concept sketches of students. We explore how well each of these assessment types represents student's knowledge. We also identify items that are indicators of the level of understanding of the greenhouse effect as measured in correspondence of student answers to an expert mental model and expert responses. Preliminary data analysis shows that student who produce concept sketch drawings that come close to expert drawings also choose correct multiple-choice answers. However, correct multiple-choice answers are not necessarily an indicator that a student produces an expert-like correlating concept sketch items. Multiple-choice questions that require detailed

  5. Comparing greenhouse gases for policy purposes

    International Nuclear Information System (INIS)

    Schmalensee, R.

    1993-01-01

    In order to derive optimal policies for greenhouse gas emissions control, the discounted marginal damages of emissions from different gases must be compared. The greenhouse warming potential (GWP) index, which is most often used to compare greenhouse gases, is not based on such a damage comparison. This essay presents assumptions under which ratios of gas-specific discounted marginal damages reduce to ratios of discounted marginal contributions to radiative forcing, where the discount rate is the difference between the discount rate relevant to climate-related damages and the rate of growth of marginal climate-related damages over time. If there are important gas-specific costs or benefits not tied to radiative forcing, however, such as direct effects of carbon dioxide on plant growth, there is in general no shortcut around explicit comparison of discounted net marginal damages. 16 refs

  6. Effectiveness of horizontal air flow fans supporting natural ventilation in a Mediterranean multi-span greenhouse

    OpenAIRE

    López, Alejandro; Valera, Diego Luis; Molina-Aiz, Francisco Domingo; Peña, Araceli

    2013-01-01

    Natural ventilation is the most important method of climate control in Mediterranean greenhouses. In this study, the microclimate and air flow inside a Mediterranean greenhouse were evaluated by means of sonic anemometry. Experiments were carried out in conditions of moderate wind (≈ 4.0 m s-1), and at low wind speed (≈ 1.8 m s-1) the natural ventilation of the greenhouse was supplemented by two horizontal air flow fans. The greenhouse is equipped with a single roof vent opening t...

  7. The effects of additional black carbon on the albedo of Arctic sea ice: variation with sea ice type and snow cover

    Directory of Open Access Journals (Sweden)

    A. A. Marks

    2013-07-01

    Full Text Available The response of the albedo of bare sea ice and snow-covered sea ice to the addition of black carbon is calculated. Visible light absorption and light-scattering cross-sections are derived for a typical first-year and multi-year sea ice with both "dry" and "wet" snow types. The cross-sections are derived using data from a 1970s field study that recorded both reflectivity and light penetration in Arctic sea ice and snow overlying sea ice. The variation of absorption cross-section over the visible wavelengths suggests black carbon is the dominating light-absorbing impurity. The response of first-year and multi-year sea ice albedo to increasing black carbon, from 1 to 1024 ng g−1, in a top 5 cm layer of a 155 cm-thick sea ice was calculated using a radiative-transfer model. The albedo of the first-year sea ice is more sensitive to additional loadings of black carbon than the multi-year sea ice. An addition of 8 ng g−1 of black carbon causes a decrease to 98.7% of the original albedo for first-year sea ice compared to a decrease to 99.7% for the albedo of multi-year sea ice, at a wavelength of 500 nm. The albedo of sea ice is surprisingly unresponsive to additional black carbon up to 100 ng g−1 . Snow layers on sea ice may mitigate the effects of black carbon in sea ice. Wet and dry snow layers of 0.5, 1, 2, 5 and 10 cm depth were added onto the sea ice surface. The albedo of the snow surface was calculated whilst the black carbon in the underlying sea ice was increased. A layer of snow 0.5 cm thick greatly diminishes the effect of black carbon in sea ice on the surface albedo. The albedo of a 2–5 cm snow layer (less than the e-folding depth of snow is still influenced by the underlying sea ice, but the effect of additional black carbon in the sea ice is masked.

  8. Effect of condensation on light transmission and energy budget of seven greenhouse cover materials

    NARCIS (Netherlands)

    Stanghellini, C.; Bruins, M.A.; Mohammadkhani, V.; Swinkels, G.L.A.M.; Sonneveld, P.J.

    2012-01-01

    Model calculations and the few data that are available show that over 100 L water condense yearly on each square meter of a greenhouse cover. It is known that the presence of condensate reduces light transmission. This effect is suppressed to some extent by adding film-forming (anti-drop) additives

  9. Effect of condensation on light transmission and energy budget of seven greenhouse cover materials

    NARCIS (Netherlands)

    V. Mohammadkhani; Gert-Jan Swinkels; C. Stanghellini; Piet Sonneveld; M.A. Bruins

    2011-01-01

    Model calculations and the few data that are available show that over 100 L water condense yearly on each square meter of a greenhouse cover. It is known that the presence of condensate reduces light transmission. This effect is suppressed to some extent by adding film-forming (anti-drop) additives

  10. London mobilizes against greenhouse effect; Londres se mobilise contre l'effet de serre

    Energy Technology Data Exchange (ETDEWEB)

    Quiret, M.

    2005-01-15

    Great Britain has taken up the bet of new technologies to fight against the greenhouse effect: a national energy research center will coordinate the research on fuel cells, carbon sequestration, wave power, solar energy, hydrogen storage, lithium batteries etc.. A study has been examined by the government. Short paper. (J.S.)

  11. Effects of Bioinsecticides in Control of Greenhouse Whitefly (Trialeurodes vaporariorum Westwood on Tomato

    Directory of Open Access Journals (Sweden)

    Dejan Marčić

    2011-01-01

    Full Text Available The effects of commercial products of entomopathogenic fungus Beauveria bassiana(Naturalis; 0.1%, 0.2% and 0.3%, azadirachtin (NeemAzal T/S; 1% and 2% and oxymatrin(KingBo; 0.1% and 0.2% in the control of greenhouse whitefly (Trialeurodes vaporariorumWestwood on tomato were tested in plastic covered greenhouse. The effects of the bioinsecticides,applied twice at five-day interval, were compared to effects of abamectin (AbastateEW; 0.075% and thiamethoxam (Actara 25-WG; 0.05%. Tested bioinsecticides reducedthe number of larvae by 82-97% (Naturalis, 90-99% (NeemAzal T/S and 90-96% (KingBo,with the efficacy of >96% according to Henderson-Tilton, in the assessment 16 days aftertreatment. In the same assessment, achieved percentages in adults reduction and efficacyamounted 24-89% and 67-95% (Naturalis, 85-93% and 93-97% (NeemAzal T/S, 86-96%and 94-98% (KingBo. Percentages of abundance reduction and efficacy after treatment withAbastate EW were 31% and 88% (larvae and 64% and 84% (adults, while after treatmentwith Actara 25-WG they amounted 96% and 99% (larvae and 83% and 92% (adults. The resultsobtained show that NeemAzal T/S, Naturalis and KingBo can be an efficient alternativeto current insecticides in control of T. vaporariorum populations.

  12. Greenhouse impact of Finnish peatlands 1900-2100

    Energy Technology Data Exchange (ETDEWEB)

    Laine, J; Minkkinen, K [Helsinki Univ. (Finland). Dept. of Ecology; Tolonen, K; Turunen, J [Joensuu Univ. (Finland). Dept. of Biology; Martikainen, P; Nykaenen, H [National Public Health Inst. Kuopio (Finland). Dept. of Environmental Microbiology; Sinisalo, J; Savolainen, I [VTT Energy, Espoo (Finland)

    1997-12-31

    Northern peatlands are significant in regulating the global climate. While sequestering carbon dioxide (CO{sub 2}, ca. 100 Tg C a{sup -} {sup 1}), these peatlands release cat 24-39 Tg methane (CH{sub 4}) annually to the atmosphere. This is 5-15 % of the annual anthropogenic and 10-35 % of the annual natural CH4 emissions to the atmosphere. The greenhouse gas balance of peatlands may change as a consequence of water level drawdown after land use change, or if summers become warmer and drier, as has been predicted for high latitudes after climatic warming. Currently, some 15 million hectares of northern peatlands and other wetlands have been drained for forestry. More than 90 % of this area is found in Scandinavia and the former Soviet Union. The area drained annually has, however, been declining during the last two decades and, in Finland for instance the annual drained area of nearly 300 000 hectares in the late 1960`s has decreased to cat 35 000 hectares in the early 1990`s. Radiative forcing is the change in the radiative energy balance at the tropopause and it is the driving force behind the greenhouse effect. It is a common quantity for most greenhouse gases and takes into account the dynamics of the greenhouse impact. Radiative forcing model was used to compute the greenhouse impact of the drainage of the peatlands, combining the effects of CO{sub 2} and CH4 balances; N{sub 2}O was not included in the calculations because its contribution is minor. (14 refs.)

  13. Greenhouse impact of Finnish peatlands 1900-2100

    Energy Technology Data Exchange (ETDEWEB)

    Laine, J.; Minkkinen, K. [Helsinki Univ. (Finland). Dept. of Ecology; Tolonen, K.; Turunen, J. [Joensuu Univ. (Finland). Dept. of Biology; Martikainen, P.; Nykaenen, H. [National Public Health Inst. Kuopio (Finland). Dept. of Environmental Microbiology; Sinisalo, J.; Savolainen, I. [VTT Energy, Espoo (Finland)

    1996-12-31

    Northern peatlands are significant in regulating the global climate. While sequestering carbon dioxide (CO{sub 2}, ca. 100 Tg C a{sup -} {sup 1}), these peatlands release cat 24-39 Tg methane (CH{sub 4}) annually to the atmosphere. This is 5-15 % of the annual anthropogenic and 10-35 % of the annual natural CH4 emissions to the atmosphere. The greenhouse gas balance of peatlands may change as a consequence of water level drawdown after land use change, or if summers become warmer and drier, as has been predicted for high latitudes after climatic warming. Currently, some 15 million hectares of northern peatlands and other wetlands have been drained for forestry. More than 90 % of this area is found in Scandinavia and the former Soviet Union. The area drained annually has, however, been declining during the last two decades and, in Finland for instance the annual drained area of nearly 300 000 hectares in the late 1960`s has decreased to cat 35 000 hectares in the early 1990`s. Radiative forcing is the change in the radiative energy balance at the tropopause and it is the driving force behind the greenhouse effect. It is a common quantity for most greenhouse gases and takes into account the dynamics of the greenhouse impact. Radiative forcing model was used to compute the greenhouse impact of the drainage of the peatlands, combining the effects of CO{sub 2} and CH4 balances; N{sub 2}O was not included in the calculations because its contribution is minor. (14 refs.)

  14. Monitoring soil greenhouse gas emissions from managed grasslands

    Science.gov (United States)

    Díaz-Pinés, Eugenio; Lu, Haiyan; Butterbach-Bahl, Klaus; Kiese, Ralf

    2014-05-01

    Grasslands in Central Europe are of enormous social, ecological and economical importance. They are intensively managed, but the influence of different common practices (i.e. fertilization, harvesting) on the total greenhouse gas budget of grasslands is not fully understood, yet. In addition, it is unknown how these ecosystems will react due to climate change. Increasing temperatures and changing precipitation will likely have an effect on productivity of grasslands and on bio-geo-chemical processes responsible for emissions of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). In the frame of the TERENO Project (www.tereno.net), a long-term observatory has been implemented in the Ammer catchment, southern Germany. Acting as an in situ global change experiment, 36 big lysimeters (1 m2 section, 150 cm height) have been translocated along an altitudinal gradient, including three sites ranging from 600 to 860 meters above sea level. In addition, two treatments have been considered, corresponding to different management intensities. The overall aim of the pre-alpine TERENO observatory is improving our understanding of the consequences of climate change and management on productivity, greenhouse gas balance, soil nutritional status, nutrient leaching and hydrology of grasslands. Two of the sites are equipped with a fully automated measurement system in order to continuously and accurately monitor the soil-atmosphere greenhouse gas exchange. Thus, a stainless steel chamber (1 m2 section, 80 cm height) is controlled by a robotized system. The chamber is hanging on a metal structure which can move both vertically and horizontally, so that the chamber is able to be set onto each of the lysimeters placed on the field. Furthermore, the headspace of the chamber is connected with a gas tube to a Quantum Cascade Laser, which continuously measures CO2, CH4, N2O and H2O mixing ratios. The chamber acts as a static chamber and sets for 15 minutes onto each lysimeter

  15. Potato (Solanum tuberosum) greenhouse tuber production as an assay for asexual reproduction effects from herbicides

    Science.gov (United States)

    The present study determined whether young potato plants can be used as an assay to indicate potential effects of pesticides on asexual reproduction. Solanum tuberosum (Russet Burbank) plants were grown from seed pieces in a mineral soil in pots under greenhouse conditions. Plant...

  16. Climate change due to greenhouse effects in China as simulated by a regional climate model

    Energy Technology Data Exchange (ETDEWEB)

    Gao, X.J.; Zhao, Z.C.; Ding, Y.H.; Huang, R.H.; Giorgi, F. [National Climate Centre, Beijing (China)

    2001-07-01

    Impacts of greenhouse effects (2 x CO{sub 2}) upon climate change over China as simulated by a regional climate model over China (RegCM / China) have been investigated. The model was based on RegCM2 and was nested to a global coupled ocean-atmosphere model (CSIRO R21L9 AOGCM model). Results of the control run (1 x CO{sub 2}) indicated that simulations of surface air temperature and precipitation in China by RegCM are much better than that by the global coupled model because of a higher resolution. Results of sensitive experiment by RegCM with 2 x CO{sub 2} showed that the surface air temperature over China might increase remarkably due to greenhouse effect, especially in winter season and in North China. Precipitation might also increase in most parts of China due to the CO{sub 2} doubling.

  17. Effect of near-infrared-radiation reflective screen materials on ventilation requirement, crop transpiration and water use efficiency of a greenhouse rose crop

    NARCIS (Netherlands)

    Stanghellini, C.; Jianfeng, D.; Kempkes, F.L.K.

    2011-01-01

    The effect of Near Infrared (NIR)-reflective screen material on ventilation requirement, crop transpiration and water use efficiency of a greenhouse rose crop was investigated in an experiment whereby identical climate was ensured in greenhouse compartments installed with either NIR-reflective or

  18. Isolating the atmospheric circulation response to Arctic sea-ice loss in the coupled climate system

    Science.gov (United States)

    Kushner, Paul; Blackport, Russell

    2017-04-01

    In the coupled climate system, projected global warming drives extensive sea-ice loss, but sea-ice loss drives warming that amplifies and can be confounded with the global warming process. This makes it challenging to cleanly attribute the atmospheric circulation response to sea-ice loss within coupled earth-system model (ESM) simulations of greenhouse warming. In this study, many centuries of output from coupled ocean/atmosphere/land/sea-ice ESM simulations driven separately by sea-ice albedo reduction and by projected greenhouse-dominated radiative forcing are combined to cleanly isolate the hemispheric scale response of the circulation to sea-ice loss. To isolate the sea-ice loss signal, a pattern scaling approach is proposed in which the local multidecadal mean atmospheric response is assumed to be separately proportional to the total sea-ice loss and to the total low latitude ocean surface warming. The proposed approach estimates the response to Arctic sea-ice loss with low latitude ocean temperatures fixed and vice versa. The sea-ice response includes a high northern latitude easterly zonal wind response, an equatorward shift of the eddy driven jet, a weakening of the stratospheric polar vortex, an anticyclonic sea level pressure anomaly over coastal Eurasia, a cyclonic sea level pressure anomaly over the North Pacific, and increased wintertime precipitation over the west coast of North America. Many of these responses are opposed by the response to low-latitude surface warming with sea ice fixed. However, both sea-ice loss and low latitude surface warming act in concert to reduce storm track strength throughout the mid and high latitudes. The responses are similar in two related versions of the National Center for Atmospheric Research earth system models, apart from the stratospheric polar vortex response. Evidence is presented that internal variability can easily contaminate the estimates if not enough independent climate states are used to construct them

  19. Determination of greenhouse gasses in al-Nahrawan suburban by geomatics technique

    Directory of Open Access Journals (Sweden)

    Ziboon Abdul-Razzak

    2018-01-01

    Full Text Available Climate change is now more important than before, based on many evidence, humans were affecting on changing Earth’s climate. The atmosphere and oceans have warmed, by sea-level rise, a strong decline in Arctic ice sea, and other climate-related changes. The aim of this study was to calculate some important greenhousse gasses concentration such as CO2, CH4, N2O in AL-Nahrawan suburban -Baghdad city -Iraq. Geographic Information System (GIS was utilized to map greenhouse gasses dispersion in AL-Nahrawan bricks factory. From GIS distribution maps for CO2, CH4, N2O, it was found that the value of these gasses were changed from one location to another according to the quantity of fuel used in bricks factory, Where the value of emitted CO2 ranged from (695 -854 tones, value of N2O ranged from (1.905 - 2.318 tones, and finally value of CH4 ranged from (0.286 - 0.347 tones.

  20. The fight against the greenhouse effect. Equity and efficiency

    International Nuclear Information System (INIS)

    Vallee, A.

    2003-01-01

    The author discusses the definition of an equitable division rule of the global effort of greenhouse gases emissions decrease, the research of the economic efficiency, the flexibility mechanisms and the emissions trading. (A.L.B.)

  1. A Study on Primary and Secondary School Students' Misconceptions about Greenhouse Effect (Erzurum Sampling)

    Science.gov (United States)

    Gul, Seyda; Yesilyurt, Selami

    2011-01-01

    The aim of this study is to determine what level of primary and secondary school students' misconceptions related to greenhouse effect is. Study group consists of totally 280 students attended to totally 8 primary and secondary schools (4 primary school, 4 secondary school) which were determined with convenient sampling method from center of…

  2. The effect of floating vegetation on denitrification and greenhouse gas production in wetland mesocosms

    Science.gov (United States)

    Jacobs, A. E.; Harrison, J. A.

    2012-12-01

    compared to inflow water, and calculated denitrification was statistically higher in the floating vegetation treatments compared to the other treatments. Greenhouse gas production, measured in CO2 equivalents for N2O and CH4, was highly variable and not statistically different between the treatments. Denitrification in the tarp covered mesocosms was similar to the no-cover treatment, indicating that biotic effects in the floating vegetation treatment may be important in lowering water column oxygen levels and increasing denitrification. Understanding how floating vegetation affects total nitrogen loss, denitrification, and greenhouse gas production can be used to weigh ecological costs and benefits of different vegetation types, especially in constructed and managed wetlands.

  3. Factor Analysis of Drawings: Application to college student models of the greenhouse effect

    Science.gov (United States)

    Libarkin, Julie C.; Thomas, Stephen R.; Ording, Gabriel

    2015-09-01

    Exploratory factor analysis was used to identify models underlying drawings of the greenhouse effect made by over 200 entering university freshmen. Initial content analysis allowed deconstruction of drawings into salient features, with grouping of these features via factor analysis. A resulting 4-factor solution explains 62% of the data variance, suggesting that 4 archetype models of the greenhouse effect dominate thinking within this population. Factor scores, indicating the extent to which each student's drawing aligned with representative models, were compared to performance on conceptual understanding and attitudes measures, demographics, and non-cognitive features of drawings. Student drawings were also compared to drawings made by scientists to ascertain the extent to which models reflect more sophisticated and accurate models. Results indicate that student and scientist drawings share some similarities, most notably the presence of some features of the most sophisticated non-scientific model held among the study population. Prior knowledge, prior attitudes, gender, and non-cognitive components are also predictive of an individual student's model. This work presents a new technique for analyzing drawings, with general implications for the use of drawings in investigating student conceptions.

  4. Localized climate control in greenhouses

    NARCIS (Netherlands)

    Booij, P.S.; Sijs, J.; Fransman, J.E.

    2012-01-01

    Strategies for controlling the indoor climate in greenhouses are based on a few sensors and actuators in combination with an assumption that climate variables, such as temperature, are uniform throughout the greenhouse. While this is already an improper assumption for conventional greenhouses, it

  5. Greenhouse effect and CO2 emissions. 3. rev. and enlarged ed.

    International Nuclear Information System (INIS)

    Kuehr, W.

    1990-01-01

    The brochure is to prove that nuclear energy does not present a technology which would avoid the greenhouse effect. It is true that nuclear power plants do not produce CO 2 , but the production cycle includes ore mines, uranium enrichement, etc. where energy reguirements are met by fossil fuels, and this is where nuclear power plants pruduce CO 2 indirectly. Environmental and climate hazards can be influenced by economic and political decisions. It is important to reduce consumption, to promote renewable energy sources, and to replace nuclear as well as fossil fuels. (orig./HSCH) [de

  6. Aerosol-driven increase in Arctic sea ice over the middle of the twentieth century

    Science.gov (United States)

    Gagné, Marie-Ève; Fyfe, John C.; Gillett, Nathan P.; Polyakov, Igor V.; Flato, Gregory M.

    2017-07-01

    Updated observational data sets without climatological infilling show that there was an increase in sea ice concentration in the eastern Arctic between 1950 and 1975, contrary to earlier climatology infilled observational data sets that show weak interannual variations during that time period. We here present climate model simulations showing that this observed sea ice concentration increase was primarily a consequence of cooling induced by increasing anthropogenic aerosols and natural forcing. Indeed, sulphur dioxide emissions, which lead to the formation of sulphate aerosols, peaked around 1980 causing a sharp increase in the burden of sulphate between the 1950s and 1970s; but since 1980, the burden has dropped. Our climate model simulations show that the cooling contribution of aerosols offset the warming effect of increasing greenhouse gases over the midtwentieth century resulting in the expansion of the Arctic sea ice cover. These results challenge the perception that Arctic sea ice extent was unperturbed by human influence until the 1970s, suggesting instead that it exhibited earlier forced multidecadal variations, with implications for our understanding of impacts and adaptation in human and natural Arctic systems.

  7. The Measurement of Technical Efficiency and Effective Factors in Cucumber Greenhouse (Case Study: Eastern Azarbayjan Province

    Directory of Open Access Journals (Sweden)

    B. Abdollahi

    2010-10-01

    Full Text Available The purpose of this study was to estimate technical efficiency of cucumber greenhouses in Eastern Azarbayjan. In economic literature, it means the ratio of maximum output to the inputs. The objective of this research was to determinate the effective factors influencing it's inefficiency. The method of determination of deterministic and stochastic technical efficiency is corrected ordinary least squares (COLS and maximum likelihood (ML respectively. The average of technical efficiency in province’s cucumber greenhouse is approximately about 57 and 93 percent for deterministic and stochastic frontier method respectively. Production types had positive influence on technical inefficiency whereas experience of manager have negative influence on technical inefficiency.

  8. The land-ice contribution to 21st-century dynamic sea level rise

    Science.gov (United States)

    Howard, T.; Ridley, J.; Pardaens, A. K.; Hurkmans, R. T. W. L.; Payne, A. J.; Giesen, R. H.; Lowe, J. A.; Bamber, J. L.; Edwards, T. L.; Oerlemans, J.

    2014-06-01

    Climate change has the potential to influence global mean sea level through a number of processes including (but not limited to) thermal expansion of the oceans and enhanced land ice melt. In addition to their contribution to global mean sea level change, these two processes (among others) lead to local departures from the global mean sea level change, through a number of mechanisms including the effect on spatial variations in the change of water density and transport, usually termed dynamic sea level changes. In this study, we focus on the component of dynamic sea level change that might be given by additional freshwater inflow to the ocean under scenarios of 21st-century land-based ice melt. We present regional patterns of dynamic sea level change given by a global-coupled atmosphere-ocean climate model forced by spatially and temporally varying projected ice-melt fluxes from three sources: the Antarctic ice sheet, the Greenland Ice Sheet and small glaciers and ice caps. The largest ice melt flux we consider is equivalent to almost 0.7 m of global mean sea level rise over the 21st century. The temporal evolution of the dynamic sea level changes, in the presence of considerable variations in the ice melt flux, is also analysed. We find that the dynamic sea level change associated with the ice melt is small, with the largest changes occurring in the North Atlantic amounting to 3 cm above the global mean rise. Furthermore, the dynamic sea level change associated with the ice melt is similar regardless of whether the simulated ice fluxes are applied to a simulation with fixed CO2 or under a business-as-usual greenhouse gas warming scenario of increasing CO2.

  9. Carbon dioxide seasonal cycle in the sea euphotic zone - a study in the Sargasso Sea

    International Nuclear Information System (INIS)

    Marchal, O.

    1996-01-01

    Between 1750 and 1990, the human activities (mainly fossil carbon combustion and deforestation) have lead to an increase of the CO 2 concentration in the atmosphere. Nevertheless, the carbon dioxide actively takes part to the greenhouse effect and then to the energetic balance of the climatic system. The study which is carried out consists of the forecasting of the CO 2 future concentrations in the atmosphere (from 10, 100 years). The chosen site (BATS: Bermuda Atlantic Time-series Study) is located in the Sargasso Sea. The factors leading to seasonal variations have been determined. Several bio-geochemical models have been developed in order to on the one hand simulate the seasonal dynamics of the mixture layer observed in the Bats site and on the other hand explain the main characteristics of the observed phytoplankton seasonal cycle, of its nutriments and of the dissolved oxygen. (O.M.)

  10. Building more effective sea level rise models for coastal management

    Science.gov (United States)

    Kidwell, D.; Buckel, C.; Collini, R.; Meckley, T.

    2017-12-01

    For over a decade, increased attention on coastal resilience and adaptation to sea level rise has resulted in a proliferation of predictive models and tools. This proliferation has enhanced our understanding of our vulnerability to sea level rise, but has also led to stakeholder fatigue in trying to realize the value of each advancement. These models vary in type and complexity ranging from GIS-based bathtub viewers to modeling systems that dynamically couple complex biophysical and geomorphic processes. These approaches and capabilities typically have the common purpose using scenarios of global and regional sea level change to inform adaptation and mitigation. In addition, stakeholders are often presented a plethora of options to address sea level rise issues from a variety of agencies, academics, and consulting firms. All of this can result in confusion, misapplication of a specific model/tool, and stakeholder feedback of "no more new science or tools, just help me understand which one to use". Concerns from stakeholders have led to the question; how do we move forward with sea level rise modeling? This presentation will provide a synthesis of the experiences and feedback derived from NOAA's Ecological Effects of Sea level Rise (EESLR) program to discuss the future of predictive sea level rise impact modeling. EESLR is an applied research program focused on the advancement of dynamic modeling capabilities in collaboration with local and regional stakeholders. Key concerns from stakeholder engagement include questions about model uncertainty, approaches for model validation, and a lack of cross-model comparisons. Effective communication of model/tool products, capabilities, and results is paramount to address these concerns. Looking forward, the most effective predictions of sea level rise impacts on our coast will be attained through a focus on coupled modeling systems, particularly those that connect natural processes and human response.

  11. The effect of greenhouse covering materials on phytochemical composition and antioxidant capacity of tomato cultivars.

    Science.gov (United States)

    Ahmadi, Latifeh; Hao, Xiuming; Tsao, Rong

    2018-02-13

    The effect of light transmission (direct and diffuse) on the phenolic compounds of five tomato cultivars was investigated under controlled conditions in greenhouses covered with different covering materials. The type of covering material and type of diffusion of light simultaneously affected the reducing power of cultivars. Two-way analysis of variance showed statistically significant differences in total phenolic content for the different cultivars (P  0.05). This study showed that the use of solar energy transmission could positively affect the reducing power of cultivars and alter the biosynthesis of certain phytochemicals that are health-beneficial. Further study could lead to applications for producing greenhouse vegetables with greater health attributes. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  12. Cover materials excluding near infrared radiation: effect on greenhouse climate and plant processes

    NARCIS (Netherlands)

    Kempkes, F.L.K.; Stanghellini, C.; Hemming, S.; Dai, J.

    2008-01-01

    Only about half of the energy that enters a greenhouse as sun radiation is in the wavelength range that is useful for photosynthesis (PAR, Photosynthetically Active Radiation). Nearly all the remaining energy fraction is in the Near InfraRed range (NIR) and warms the greenhouse and crop and does

  13. [Preliminary assessment of the potential of biochar technology in mitigating the greenhouse effect in China].

    Science.gov (United States)

    Jiang, Zhi-Xiang; Zheng, Hao; Li, Feng-Min; Wang, Zhen-Yu

    2013-06-01

    The production of biochar by pyrolysis and its application to soil can sequester the CO2 which was absorbed by plants from atmosphere into soil, in addition it can also bring multiple benefits for agriculture production. On the basis of the available potential survey of the biomass residues from agriculture and forestry section, life cycle assessment was employed to quantify the potential of biochar technology in mitigation of greenhouse gases in our country. The results showed: In China, the amount of available biomass resource was 6.04 x 10(8) t every year and its net greenhouse effect potential was 5.32 x 10(8) t CO(2e) (CO(2e): CO2 equivalent), which was equivalent to 0.88 t CO(2e) for every ton biomass. The greatest of contributor to the total potential was plant carbon sequestration in soil as the form of biochar which accounts for 73.94%, followed by production of renewable energy and its percentage was 23.85%. In summary, production of biochar from agriculture and forestry biomass residues had a significant potential for our country to struggle with the pressure of greenhouse gas emission.

  14. Climate variations and the greenhouse effect

    International Nuclear Information System (INIS)

    Michaels, P.J.; Knappenberger, P.C.; Gay, D.A.

    1994-01-01

    A number of recent publications have established the scientific paradigm that anthropogenerated sulfate aerosols are a sufficient explanation for the lack of observed greenhouse warming that has been predicted by transient general circulation climate models. This paper tests that hypothesis by examining the observed and modeled behavior of eigenvectors of the observed temperature field at three levels: hemispheric, polar, and over the regions where sulfate aerosol is most concentrated. Without sulfates in the transient model, there is no significant difference in explanatory power between the three test regions. In all three cases, the model creates much more spurious climatic change than it is able to capture. Most damaging to the sulfate hypothesis is that the GCM most accurately represents the behavior of the first eigenvector in summer in the high sulfate regions. This is where the difference between the model and observed temperatures is supposed to be greatest. Thus while the addition of sulfate aerosol to a transient general circulation model may improve its performance over some regions, this effect is insufficient to explain the overall lack of observed warming. This failure of the aerosol hypothesis is particularly evident in polar regions that are relatively aerosol-free, but also devoid of any significant warming

  15. GEOTHERMAL GREENHOUSING IN TURKEY

    Directory of Open Access Journals (Sweden)

    Sedat Karaman

    2016-07-01

    Full Text Available Use of renewable energy resources should be brought forward to reduce heating costs of greenhouses and to minimize the use of ever-depleting fossil fuels. Geothermal energy not only provides the heat required throughout plant growth, but also allow a year-long production. Geothermal resources with several other benefits therefore play significant role in agricultural activities. With regard to geothermal potential and implementation, Turkey has the 7th place in the world and the 1st place in Europe. Majority of country geothermal resources is used in greenhouse heating. The size of geothermal greenhouses increased 5 folds during the last decade and reached to 2500 decare. In this study, current status of geothermal greenhousing of Turkey was presented; problems and possible solutions were discussed.

  16. Geoengineering by cloud seeding: influence on sea ice and climate system

    International Nuclear Information System (INIS)

    Rasch, Philip J; Latham, John; Chen, Chih-Chieh

    2009-01-01

    General circulation model computations using a fully coupled ocean-atmosphere model indicate that increasing cloud reflectivity by seeding maritime boundary layer clouds with particles made from seawater may compensate for some of the effects on climate of increasing greenhouse gas concentrations. The chosen seeding strategy (one of many possible scenarios) can restore global averages of temperature, precipitation and sea ice to present day values, but not simultaneously. The response varies nonlinearly with the extent of seeding, and geoengineering generates local changes to important climatic features. The global tradeoffs of restoring ice cover, and cooling the planet, must be assessed alongside the local changes to climate features.

  17. A Simple, Student-Built Spectrometer to Explore Infrared Radiation and Greenhouse Gases

    Science.gov (United States)

    Bruce, Mitchell R. M.; Wilson, Tiffany A.; Bruce, Alice E.; Bessey, S. Max; Flood, Virginia J.

    2016-01-01

    In this experiment, students build a spectrometer to explore infrared radiation and greenhouse gases in an inquiry-based investigation to introduce climate science in a general chemistry lab course. The lab is based on the exploration of the thermal effects of molecular absorption of infrared radiation by greenhouse and non-greenhouse gases. A…

  18. Effect of sea salt irrigation on plant growth, yield potential and some biochemical attributes of carissa carandas

    International Nuclear Information System (INIS)

    Tayyab, A.

    2016-01-01

    Carissa carandas (varn. Karonda) is an edible and medicinal plant having ability to grow in saline and water deficit conditions, however, little is known about its salinity tolerance. Therefore, the effect of salinity on vegetative (height and volume), reproductive (number of flowers and number, size and weight of fruits) and some biochemical parameters (leaf pigments, ions, soluble sugars, proteins, and phenols) of C. carandas were studied. Plants were grown in drum pot culture and irrigated with non-saline or saline water of 0.6% and 0.8% sea salt concentrations, for a period of 30 months. Results showed that, plant height, and canopy volume decreased with increasing salinity. The chlorophyll contents and chlorophyll a/b ratio followed the similar trend as for growth, however, carotenoids increased at 0.6% sea salt and subsequently decreased in higher salinity. Unchanged soluble sugar and protein content at 0.6% sea salt, as compared to control, could be attributed to leaf osmotic adjustments which decreased with further increase in salinity. Linear increase in soluble phenols and carotenoid/chlorophyll ratio indicating a protective strategy of C. carandas to minimize photo-damage. Besides increasing Na+ and decreasing K+ contents, plant seemed to maintain K+/Na+ ratio (above 1), especially at 0.6 sea salt, which disturbed at higher salinity. Salinity adversely affected reproductive growth of C. carandas where, production of flowers, and fruits were significantly reduced. In addition, fresh and dry weights of fruits decreased with increasing salinity, but salinity did not affect fruit length and diameter. Present study provides basic information related to plant growth, fruit yield and some biochemical attributes, which suggest that C. carandas is moderately salt tolerant plant. This plant showed potential to grow on saline marginal lands using brackish water irrigation and provide biomass for edible and medicinal purposes. However, in-depth analysis of field and

  19. Effect of cultivation ages on Cu accumulation in Greenhouse Soils in North China

    Science.gov (United States)

    Wang, Jun; Guo, Wenmiao; Chen, Xin; Shi, Yi

    2017-11-01

    In this study, we determined the influence of cultivation age on Cu accumulation in greenhouse soils. The concentration of plant available Cu (A-Cu) decreased with depth, and the contents of top soils (0-40 cm) in greenhouses were higher than those of the open field. There was a positive correlation between A-Cu concentrations in soils and cultivation ages (R2=0.572). The contents of total Cu (T-Cu) decreased with depth, and positively correlated with cultivation ages in top soils (0-20cm) (R2=0.446). The long-term usage of manures can cause Cu increase and accumulation in greenhouse soils in comparison to the open field.

  20. FETC Programs for Reducing Greenhouse Gas Emissions

    International Nuclear Information System (INIS)

    Ruether, J.A.

    1998-02-01

    Mark Twain once quipped that everyone talks about the weather but no one does anything about it. With interest in global climate change on the rise, researchers in the fossil-energy sector are feeling the heat to provide new technology to permit continued use of fossil fuels but with reduced emissions of so-called 'greenhouse gases.' Three important greenhouse gases, carbon dioxide, methane, and nitrous oxide, are released to the atmosphere in the course of recovering and combusting fossil fuels. Their importance for trapping radiation, called forcing, is in the order given. In this report, we briefly review how greenhouse gases cause forcing and why this has a warming effect on the Earth's atmosphere. Then we discuss programs underway at FETC that are aimed at reducing emissions of methane and carbon dioxide

  1. Equity effects of economic instruments for greenhouse gas abatement

    International Nuclear Information System (INIS)

    Harrison, D. Jr.

    1994-01-01

    This paper discusses the equity effects of using economic instruments--such as a carbon tax or carbon emissions trading program--to regulate greenhouse gas emissions. Determining these equity effects is more complicated than assessing overall costs and benefits, although some of the same issues arise. Among the key issues are the following: (1) benchmark for evaluating impacts of economic instruments (status quo or regulatory program that achieves the same emission reductions); (2) use of any government revenues collected, which are transfers overall but affect gains and losses; (3) time period (long-term or transitional impacts); and (4) groupings (income groups, sectors or regions). Empirical studies suggest that a national tax is regressive in the US but may be less so in other countries. The equity impacts of an international carbon tax or emissions trading program differ greatly depending upon the specific elements. The paper considers options to compensate or mitigate adverse effects to income groups, sectors, or regions of the world. Although impossible to avoid all losses to every group, it would be possible to avoid major equity effects if carbon taxes or carbon trading programs were used to control global warming

  2. Agriculture: Nurseries and Greenhouses

    Science.gov (United States)

    Nurseries and Greenhouses. Information about environmental requirements specifically relating to the production of many types of agricultural crops grown in nurseries and greenhouses, such as ornamental plants and specialty fruits and vegetables.

  3. The story of the greenhouse effect, from Carnot to Gaia. De Carnot a Gaia: histoire de l'effet de serre

    Energy Technology Data Exchange (ETDEWEB)

    Grinevald, J

    1992-05-01

    The theory of the greenhouse effect did not just appear in 1985. It has had a long and interesting birth dating back to the beginning of the 19th century. Here, Jacques Grinevald presents some of its decisive stages such as the thermodynamic revolution and Carnot's transformation of the image of the world into a machine, the hothouse theory advanced by John Tyndall, Vladimir Vernadsky's 'biosphere' ideas or James Lovelock's Gaia hypothesis. In spite of the controversy which surrounds it, the theory of the greenhouse effect is one of science's best established atmospheric theories.

  4. Salt marsh persistence is threatened by predicted sea-level rise

    Science.gov (United States)

    Crosby, Sarah C.; Sax, Dov F.; Palmer, Megan E.; Booth, Harriet S.; Deegan, Linda A.; Bertness, Mark D.; Leslie, Heather M.

    2016-11-01

    Salt marshes buffer coastlines and provide critical ecosystem services from storm protection to food provision. Worldwide, these ecosystems are in danger of disappearing if they cannot increase elevation at rates that match sea-level rise. However, the magnitude of loss to be expected is not known. A synthesis of existing records of salt marsh elevation change was conducted in order to consider the likelihood of their future persistence. This analysis indicates that many salt marshes did not keep pace with sea-level rise in the past century and kept pace even less well over the past two decades. Salt marshes experiencing higher local sea-level rise rates were less likely to be keeping pace. These results suggest that sea-level rise will overwhelm most salt marshes' capacity to maintain elevation. Under the most optimistic IPCC emissions pathway, 60% of the salt marshes studied will be gaining elevation at a rate insufficient to keep pace with sea-level rise by 2100. Without mitigation of greenhouse gas emissions this potential loss could exceed 90%, which will have substantial ecological, economic, and human health consequences.

  5. Temperature Simulation of Greenhouse with CFD Methods and Optimal Sensor Placement

    OpenAIRE

    Yanzheng Liu; Jing Chen; Yazhou Lv; Xiaojie Li

    2014-01-01

    The accuracy of information monitoring is significant to increase the effect of Greenhouse Environment Control. In this paper, by taking simulation for the temperature field in the greenhouse as an example, the CFD (Computational Fluid Dynamics) simulation model for measuring the microclimate environment of greenhouse with the principle of thermal environment formation was established, and the temperature distributions under the condition of mechanical ventilation was also simulated. The resu...

  6. Greenhouse

    Data.gov (United States)

    Federal Laboratory Consortium — PurposeThe greenhouse at ERDC’s Cold Regions Research and Engineering Laboratory (CRREL) is used for germination and root-growth studies to support basic and field...

  7. Effect of Greenhouse Gases Dissolved in Seawater.

    Science.gov (United States)

    Matsunaga, Shigeki

    2015-12-30

    A molecular dynamics simulation has been performed on the greenhouse gases carbon dioxide and methane dissolved in a sodium chloride aqueous solution, as a simple model of seawater. A carbon dioxide molecule is also treated as a hydrogen carbonate ion. The structure, coordination number, diffusion coefficient, shear viscosity, specific heat, and thermal conductivity of the solutions have been discussed. The anomalous behaviors of these properties, especially the negative pressure dependence of thermal conductivity, have been observed in the higher-pressure region.

  8. Measuring the greenhouse effect and radiative forcing through the atmosphere

    Science.gov (United States)

    Philipona, Rolf; Kräuchi, Andreas; Brocard, Emmanuel

    2013-04-01

    In spite of a large body of existing measurements of incoming shortwave solar radiation and outgoing longwave terrestrial radiation at the Earth's surface and at the top of the atmosphere, there are few observations documenting how radiation profiles change through the atmosphere - information that is necessary to fully quantify the greenhouse effect of the Earth's atmosphere. Using weather balloons and specific radiometer equipped radiosondes, we continuously measured shortwave and longwave radiation fluxes from the surface of the Earth up to altitudes of 35 kilometers in the upper stratosphere. Comparing radiation profiles from night measurements with different amounts of water vapor, we show evidence of large greenhouse forcing. We show, that under cloud free conditions, water vapor increases with Clausius-Clapeyron ( 7% / K), and longwave downward radiation at the surface increases by 8 Watts per square meter per Kelvin. The longwave net radiation however, shows a positive increase (downward) of 2.4 Watts per square meter and Kelvin at the surface, which decreases with height and shows a similar but negative increase (upward) at the tropopause. Hence, increased tropospheric water vapor increases longwave net radiation towards the ground and towards space, and produces a heating of 0.42 Kelvin per Watt per square meter at the surface. References: Philipona et al., 2012: Solar and thermal radiation profiles and radiative forcing measured through the atmosphere. Geophys. Res. Lett., 39, L13806, doi: 10.1029/2012GL052087.

  9. Does the Swedish consumer's choice of food influence greenhouse gas emissions?

    International Nuclear Information System (INIS)

    Wallen, Anna; Brandt, Nils; Wennersten, Ronald

    2004-01-01

    Consumer's choice of food can influence the environment. In Sweden, in common with many other countries, consumers need to be given information so they can make environmentally informed shopping choices. However, what is the most advantageous dietary choice to lower greenhouse emissions? This study investigates the greenhouse gas emissions associated with food production for food consumed in Sweden annually. Specifically, this study compares greenhouse gas emissions associated with a nutritionally and environmentally sustainable diet with the average consumption of food in Sweden 1999. The study concludes that the change in energy use and greenhouse gas emission associated with this change of diet is negligible. Lowering greenhouse gas emissions by changing food production processes results in more profound changes than teaching consumers to make environmentally correct choices. There is a basic need for a reduction or a replacement of the use of fossil fuels to produce and distribute our food in order to reach any significant reduction in the emission of greenhouse gases. Swedish agricultural policy does not provide ways to reduce greenhouse gas emissions. In Sweden therefore there is an immediate need to design policy instruments with the primary aim of reducing the greenhouse effect

  10. Effect of increasing greenhouse gases on Indian monsoon rainfall as downscaled from the ECHAM coupled model

    International Nuclear Information System (INIS)

    Singh, S.V.; Storch, H.V.

    1994-01-01

    It is more or less accepted that the increasing anthropogenic gases will result in global warming through the greenhouse effect. The major influence of this will be felt in the form of ice melts and rising sea levels. The influence on regional climates like monsoons is not very clear. Since the monsoons arise due to surface heating, one would expect that global warming will lead to more vigorous monsoons. The expected change in a climate parameter can be studied by analyzing the historical data and then extrapolating in time. Alternatively, one can use the state-of-the-art coupled GCMs which are able to simulate the earth's climate with reasonable accuracy. Both methods have some limitations. The first method cannot adequately consider the nonlinearity, and the second method may not be efficient for regional scales. So that the projections can be trusted, the regional features should be well simulated. None of the current models are able to simulate the Indian monsoon satisfactorily. Therefore it is desirable to infer the expected change in monsoons from other large and near global scale features which are better simulated. This approach, which depends on the concurrent association between a large-scale modeled feature and a regional scale, is known as downscaling, after Storch et al., and is adopted here to project the Indian monsoon rainfall for the next 100 years from the ECHAM T21 coupled model

  11. Effect of greenhouse gas emissions on stratospheric ozone depletion

    NARCIS (Netherlands)

    Velders GJM; LLO

    1997-01-01

    The depletion of the ozone layer is caused mainly by the increase in emissions of chlorine- and bromine-containing compounds like CFCs, halons, carbon tetrachloride, methyl chloroform and methyl bromide. Emissions of greenhouse gases can affect the depletion of the ozone layer through atmospheric

  12. Greenhouse-gas emissions from biomass energy use: Comparison with other energy technologies

    International Nuclear Information System (INIS)

    Morris, G.P.; Norman, N.A.; Gleick, P.H.

    1991-01-01

    Recently a major new concern has arisen: the accumulation of greenhouse gases in the atmosphere. It is now generally believed that continued emissions of these gases are current or increasing levels will lead to significant climatic changes with the potential for dramatic, adverse impacts. Since the major anthropogenic source of greenhouse gas emissions is energy production and use, it is essential to future energy policy to understand how energy sources differ with respect to greenhouse gas emissions. Characterizing the greenhouse gas emissions associated with biomass energy use is extremely complicated. It is necessary to consider both the source and alternative use of the biomass material and its alternative disposal (if any), as well as the biomass energy application itself. It is desirable also to consider not just CO 2 emissions, but also CH 4 and N 2 O, both potent greenhouse gases. The authors' analysis shows that in many cases biomass energy use can actually help to ameliorate the greenhouse effect by converting emissions that would have been CH 4 into the less potent greenhouse gas CO 2 . In many cases the beneficial effect is very dramatic. This major new research result should help increase public support for biomass research and development, and for further development of waste conversion technology and installations

  13. Australian public perception of the greenhouse issue

    Energy Technology Data Exchange (ETDEWEB)

    Henderson-Sellers, A [Macquarie Univ., North Ryde (Australia)

    1990-08-01

    During 1987 and 1988 in Australia there have been two national meetings on the greenhouse effect and a campaign designed to increase public awareness. A study of the backgrounds, level of comprehension and attitudes of attendees at two state Greenhouse-88 meetings has been undertaken by means of a questionnaire survey and a set of personal interviews. Two crucial caveats pertain: some of the questions reflect the prejudices of the author who is an atmospheric scientist, and the respondents comprise a small, self-selected group. All the ensuing results should be viewed in the context of these caveats. Over 97% of the respondents believe that action should be taken now to alleviate the effects of increased greenhouse gases. Despite the fact that the majority of the 321 respondents are professional people (73%) and that over 53% have tertiary level educational qualifications, there was a failure to grasp some fundamental issues. On the other hand, the respondents generally demanded a relatively low level of confidence (50-70%) about the greenhouse issue from scientists before action is taken. Sixty-four percent believe that life will be worse for them and/or their children in Australia in 'Greenhouse 2025' with the youngest age range being the second most pessimistic group about the future. Relatively little interest was shown in the possibility of obtaining more information on topics that interest climatic scientists but more information was desired on the social and economic implication and on the scientific background to the issues. Overall, teachers are perceived as trying to increase understanding; whereas politicians, multinational corporations, the media and some extreme environmentalists are perceived as often attempting to deceive intentionally. Scientists are seen as neither especially malevolent nor benign. 15 figs., 39 refs.

  14. Conceptual approaches to innovative energy saving technologies and reducing greenhouse effect

    Energy Technology Data Exchange (ETDEWEB)

    Buyadgie, Dmytro; Sechenyh, Vitaliy; Buyadgie, Olexiy; Nichenko, Sergii; Vasil' ev, Igor

    2010-09-15

    The study attempts a comprehensive overview of the effects of human activities and proposes technical solutions for compensation of human anthropogenic intervention. Attention is focused on energy consumption optimization and reduction of harmful emissions at current stage of civilization development. Natural sources of energy and their associated greenhouse gases (GHG) emissions are considered in the paper along with the existed approaches to energy utilization, its merits and demerits. The role of heat-utilizing thermotransformers in reduction of thermal release and GHG emissions is specified. The examples of energy efficient technologies, based on application of jet devices, are presented in the study.

  15. Carbon exchange in Western Siberian watershed mires and implication for the greenhouse effect. A spatial temporal modeling approach

    Energy Technology Data Exchange (ETDEWEB)

    Borren, W.

    2007-01-19

    wetter climatic conditions the mire growth could continue much longer, whereas under dryer conditions an earlier termination will occur. Mire drainage leads to aerobic decay of peat and thus to CO2 emission instead of uptake. In a modeling study in a mire catchment containing both drained and undrained parts, the effect of drainage was quantified. The results show that the water table drawdown not only affected the drained mire part, but also influenced the undrained part over a zone of 1-1.5 km. In this zone peat growth and carbon accumulation were decreased. The contribution of a mire system to the greenhouse effect is depending on the exchange of the greenhouse gases CO2 and CH4. CH4 is a much stronger greenhouse gas than CO2, but has a much shorter atmospheric lifetime. With a stocks-and-flows approach the radiative forcing of both gases could be calculated. This approach has been applied in two cases: (1) the northward shift of bioclimatic zones in Western Siberia under 21st century warming and (2) the carbon exchange in a Western Siberian mire resulting from the 3-D dynamic model. The results show that Western Siberian mires form a sink of greenhouse gases at present and have therefore a negative contribution to the greenhouse effect. Under 21st century warming or drainage conditions the mires will turn into a source of greenhouse gases, thus enhancing the greenhouse effect. However, in the case of warming the increase in CH4 emission will be overruled by the increase in CO2 uptake on the long term, thus leading to a negative contribution again.

  16. Carbon exchange in Western Siberian watershed mires and implication for the greenhouse effect. A spatial temporal modeling approach

    International Nuclear Information System (INIS)

    Borren, W.

    2007-01-01

    wetter climatic conditions the mire growth could continue much longer, whereas under dryer conditions an earlier termination will occur. Mire drainage leads to aerobic decay of peat and thus to CO2 emission instead of uptake. In a modeling study in a mire catchment containing both drained and undrained parts, the effect of drainage was quantified. The results show that the water table drawdown not only affected the drained mire part, but also influenced the undrained part over a zone of 1-1.5 km. In this zone peat growth and carbon accumulation were decreased. The contribution of a mire system to the greenhouse effect is depending on the exchange of the greenhouse gases CO2 and CH4. CH4 is a much stronger greenhouse gas than CO2, but has a much shorter atmospheric lifetime. With a stocks-and-flows approach the radiative forcing of both gases could be calculated. This approach has been applied in two cases: (1) the northward shift of bioclimatic zones in Western Siberia under 21st century warming and (2) the carbon exchange in a Western Siberian mire resulting from the 3-D dynamic model. The results show that Western Siberian mires form a sink of greenhouse gases at present and have therefore a negative contribution to the greenhouse effect. Under 21st century warming or drainage conditions the mires will turn into a source of greenhouse gases, thus enhancing the greenhouse effect. However, in the case of warming the increase in CH4 emission will be overruled by the increase in CO2 uptake on the long term, thus leading to a negative contribution again

  17. The greenhouse effect - conclusions for agricultural-, energy- and tax policies

    International Nuclear Information System (INIS)

    Hultkrantz, L.

    1992-01-01

    The possibility to use forests as carbon sinks to reduce the greenhouse effect is discussed in this report. In the medium time perspective (30-50 years), reforestation in order to create new carbon sinks will give extra time for the transition from fossil fuels. Furthermore, the reforestation may be valuable as future fuel. Sweden has good possibilities for assisting developing countries in a reforestation effort. Swedish wood reserves will probably have to be used extensively for heat and power production during the same period, due to the planned phasing out of nuclear power. Economic and climatic arguments for subsidizing short rotation energy crops on agricultural land are discussed and, largely, refuted. 51 refs

  18. Reflections on greenhouse gas life cycle assessment

    International Nuclear Information System (INIS)

    Jarrell, J.; Phillips, B.; Pendergast, D.

    1999-01-01

    The amount of carbon dioxide equivalent greenhouse gas emitted per unit of electricity produced is an important consideration in the planning of future greenhouse gas reduced electricity supply systems. Useful estimates of emissions must also take into account the entire cradle to grave life cycle emissions of alternative systems. Thus emissions of greenhouse gases take into account all of the components of building operating, and decommissioning facilities. This requires an accounting of emissions from production of all materials used to build the plants, transportation of materials to the site as well as fuels used for their construction, operation, and decommissioning. The construction of facilities may also have effects which tend to affect greenhouse gas emissions through modification of the local environment. A notable example, often cited, is the evolution of methane from the decay of organic matter submerged by dams built to serve hydro power facilities. In the long term, we anticipate that some kind of cost will be associated with the release of greenhouse gases. In that event it may be argued that the modified economic system established by inclusion of this cost will naturally control the emission of greenhouse gases from competing means of electricity production. Greenhouse gas emissions from all stages involved in the birth and retirement of electricity producing plant could be suitably constrained as the least cost method of production is sought. Such an ideal system is far from in place. At this point in time the results of life cycle accounting of greenhouse gas emissions are a needed means of comparing emissions from alternative sources of electricity. Many life cycle studies have been undertaken in the past. Many of the estimates are based on past practice which does not take into account any possible need to limit the production of greenhouse gas during the design of the plant and operational processes. Sources of energy used to produce materials

  19. Persistence of climate changes due to a range of greenhouse gases.

    Science.gov (United States)

    Solomon, Susan; Daniel, John S; Sanford, Todd J; Murphy, Daniel M; Plattner, Gian-Kasper; Knutti, Reto; Friedlingstein, Pierre

    2010-10-26

    Emissions of a broad range of greenhouse gases of varying lifetimes contribute to global climate change. Carbon dioxide displays exceptional persistence that renders its warming nearly irreversible for more than 1,000 y. Here we show that the warming due to non-CO(2) greenhouse gases, although not irreversible, persists notably longer than the anthropogenic changes in the greenhouse gas concentrations themselves. We explore why the persistence of warming depends not just on the decay of a given greenhouse gas concentration but also on climate system behavior, particularly the timescales of heat transfer linked to the ocean. For carbon dioxide and methane, nonlinear optical absorption effects also play a smaller but significant role in prolonging the warming. In effect, dampening factors that slow temperature increase during periods of increasing concentration also slow the loss of energy from the Earth's climate system if radiative forcing is reduced. Approaches to climate change mitigation options through reduction of greenhouse gas or aerosol emissions therefore should not be expected to decrease climate change impacts as rapidly as the gas or aerosol lifetime, even for short-lived species; such actions can have their greatest effect if undertaken soon enough to avoid transfer of heat to the deep ocean.

  20. Trees against the greenhouse effect. Reforestation for climate protection

    International Nuclear Information System (INIS)

    Sauer, H.D.

    1994-01-01

    Climate experts have voiced their warnings: If we continue to accumulate greenhouse gases in the Earth atmosphere, it must be expected that the global average temperature will increase by 1.5 degrees centigrade to 4.5 degrees centigrade, and significant climte changes will occur. (orig.) [de