WorldWideScience

Sample records for greenbug schizaphis graminum

  1. The impact of transgenic wheat expressing GNA (snowdrop lectin) on the aphids Sitobion avenae, Schizaphis graminum, and Rhopalosiphum padi.

    Science.gov (United States)

    Miao, Jin; Wu, Yuqing; Xu, Weigang; Hu, Lin; Yu, Zhenxing; Xu, Qiongfang

    2011-06-01

    This study investigated the impact of transgenic wheat expressing Galanthus nivalis agglutinin (GNA), commonly known as snowdrop lectin, on three wheat aphids: Sitobion avenae (F.), Schizaphis graminum (Rondani), and Rhopalosiphum padi (L.). We compared the feeding behavior and the life-table parameters of aphids reared on GNA transgenic wheat (test group) and those aphids reared on untransformed wheat (control group). The results showed that the feeding behaviors of S. avenae and S. graminum on GNA transgenic wheat were affected. Compared with the control group, they had shorter initial probing period, longer total nonprobing period, shorter initial and total phloem sap ingestion phase (waveform E2), shorter duration of sustained ingestion (E (pd) > 10 min), and lower percentage of phloem phase of the total observation time. Moreover, S. graminum made more probes and had a longer total duration of extracellular stylet pathway (waveform C). The fecundity and intrinsic rate of natural increase (r(m)) of S. avenae and S. graminum on the transgenic wheat were lowered in the first and second generations, however, the survival and lifespan were not affected. The effects of the GNA expressing wheat on S. graminum and S. avenae were not significant in the third generation, suggesting rapid adaptation by the two aphid species. Despite the impact we found on S. avenae and S. graminum, transgenic GNA expressing wheat did not have any effects on R. padi.

  2. Elevated CO2 changes interspecific competition among three species of wheat aphids: Sitobion avenae, Rhopalosiphum padi, and Schizaphis graminum.

    Science.gov (United States)

    Sun, Yu Cheng; Chen, Fa Jun; Ge, Feng

    2009-02-01

    Effects of elevated CO2 (twice ambient) on the interspecific competition among three species of wheat aphids (Sitobion avenae, Rhopalosiphum padi, and Schizaphis graminum) and on wheat-aphid interactions were studied. Wheat plants had higher biomass and yield and lower water and nitrogen content of grain when grown under elevated CO2 than under ambient CO2; levels of condensed tannins, total phenols, and total nonstructural carbohydrates were also higher in wheat ears under elevated CO2. Compared with ambient CO2, elevated CO2 increased the abundance of R. padi when introduced solely but reduced its abundance when S. avenae was also present. The spatial distribution of wheat aphids was apparently influenced by CO2 levels, with significantly more S. avenae on ears and a more even distribution of R. padi on wheat plants under elevated CO2 versus ambient CO2. Elevated CO2 did not affect the abundance and spatial distribution of S. graminus when inoculated solely. Moreover, when S. avenae was present with either R. padi or S. graminum, spatial niche overlap was significantly decreased with elevated CO2. When three species co-occurred, elevated CO2 reduced spatial niche overlap between S. avenae and S. graminum and between R. padi and S. graminum. Our results suggest that increases in atmospheric CO2 would alleviate interspecific competition for these cases, which would accentuate the abundance of and the damage caused by these wheat aphids.

  3. Detection of greenbug infestation on wheat using ground-based radiometry

    Science.gov (United States)

    Yang, Zhiming

    Scope of methods of study. The purpose of this greenhouse study was to characterize stress in wheat caused by greenbugs using ground-based radiometry. Experiments were conducted to (a) identify spectral bands and vegetation indices sensitive to greenbug infestation; (b) differentiate stress caused due to greenbugs from water stress; (c) examine the impacts of plant growth stage on detection of greenbug infestation; and (d) compare infestations due to greenbug and Russian wheat aphid. Wheat (variety-TAM 107) was planted (seed spacing 1 in. x 3 in.) in plastic flats with dimension 24 in. x 16 in. x 8.75 in. Fifteen days after sowing, wheat seedlings were infested with greenbugs (biotype-E). Nadir measurement of canopy reflectance started the day after infestation and lasted until most infested plants were dead. Using a 16-band Cropscan radiometer, spectral reflectance data were collected daily (between 13:00--14:00 hours) and 128 vegetation indices were derived in addition to greenbug counts per tiller. Using SAS PROC MIXED, sensitivity of band and vegetation indices was identified based on Threshold Day. Subsequent to Threshold Day there was a consistent significant spectral difference between control and infested plants. Sensitivity of band and vegetation indices was further examined using correlation and relative sensitivity analyses. Findings and conclusions. Results show that it is possible to detect greenbug-induced stress on wheat using hand-held radiometers, such as Cropscan. Band 694 nm and the ratio-based vegetation index (RVI) derived from the band 694 nm and 800 nm were identified as most sensitive to greenbug infestation. Landsat TM bands and their derived vegetation indices also show potential for detecting wheat stress caused by greenbug infestation. Also, RVIs particularly derived using spectral band 694 nm and 800 nm were found useful in differentiating greenbug infestation from water stress. Furthermore, vegetation indices such as Normalized total

  4. ORF Alignment: NC_004061 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available NC_004061 gi|21672661 >1etoB 1 98 1 99 3e-23 ... ref|NP_660728.1| factor-for-inversion... stimulation protein [Buchnera aphidicola ... str. Sg (Schizaphis graminum)] gb|AAM67939.1| ... factor-for-inversion

  5. Genomic and proteomic analysis of Schizaphis graminum reveals cyclophilin proteins are involved in the transmission of cereal yellow dwarf virus.

    Directory of Open Access Journals (Sweden)

    Cecilia Tamborindeguy

    Full Text Available Yellow dwarf viruses cause the most economically important virus diseases of cereal crops worldwide and are transmitted by aphid vectors. The identification of aphid genes and proteins mediating virus transmission is critical to develop agriculturally sustainable virus management practices and to understand viral strategies for circulative movement in all insect vectors. Two cyclophilin B proteins, S28 and S29, were identified previously in populations of Schizaphisgraminum that differed in their ability to transmit the RPV strain of Cereal yellow dwarf virus (CYDV-RPV. The presence of S29 was correlated with F2 genotypes that were efficient virus transmitters. The present study revealed the two proteins were isoforms, and a single amino acid change distinguished S28 and S29. The distribution of the two alleles was determined in 12 F2 genotypes segregating for CYDV-RPV transmission capacity and in 11 genetically independent, field-collected S. graminum biotypes. Transmission efficiency for CYDV-RPV was determined in all genotypes and biotypes. The S29 isoform was present in all genotypes or biotypes that efficiently transmit CYDV-RPV and more specifically in genotypes that efficiently transport virus across the hindgut. We confirmed a direct interaction between CYDV-RPV and both S28 and S29 using purified virus and bacterially expressed, his-tagged S28 and S29 proteins. Importantly, S29 failed to interact with a closely related virus that is transported across the aphid midgut. We tested for in vivo interactions using an aphid-virus co-immunoprecipitation strategy coupled with a bottom-up LC-MS/MS analysis using a Q Exactive mass spectrometer. This analysis enabled us to identify a third cyclophilin protein, cyclophilin A, interacting directly or in complex with purified CYDV-RPV. Taken together, these data provide evidence that both cyclophilin A and B interact with CYDV-RPV, and these interactions may be important but not sufficient to mediate

  6. Interacción genotipo-ambiente en avena sativa l: utilizando los modelos AMMI y factorial de correspondencias Genotype-environment interaction in avena sativa l: employing AMMI and factorial correspondence models

    Directory of Open Access Journals (Sweden)

    Horacio Abel Acciaresi

    1999-10-01

    Full Text Available El objetivo fue (i determinar la presencia de interacción genotipo-ambiente (IGA en la producción forrajera de avena (Avena sativa L. de genotipos tolerantes y no tolerantes a Schizaphis graminum empleando un número bajo de ambientes en la provincia de Buenos Aires (Argentina mediante los modelos de efectos principales aditivos e interacción multiplicativa (AMMI y análisis factorial de correspondencias (AFC y (ii comparar los resultados obtenidos por ambos métodos. Los ensayos se condujeron en La Dulce (Argentina y La Plata (Argentina (1993, 1994 y 1995. Se evaluaron 12 genotipos (comerciales y líneas avanzadas en 12 ambientes (combinación de localidad, años y cortes. Los factores ambiente, genotipo e interacción explicaron un 41,15% (pThe objective of this study was (i to determine the presence of genotype-environment interaction (GXE in Avena sativa l. for above dry matter yield of Schizaphis graminun tolerant and non-tolerant genotypes according to two different models: additive main effects and multiplicative interaction (AMMI and factorial correspondence analysis; and (ii to study and compare the results obtained with these models. Twelve genotypes and 12 environments were conducted at La Dulce and La Plata (Argentina during three years (1993, 1994 and 1995. The environment (E, genotype (G and GxE factors explained a 41.15%, 7.88% and 36.36% of the total sum of square, respectively. The first three axes of principal component analysis of AMMI were highly significant (p<0.001, explaining a 57.99%, 29.03% and 6.27% of interaction sum of square. The first three factorial correspondence coordinates accounted for 58.98%, 29.58% and 5.60% of the interaction sum of square. The relationships between tolerant genotypes-first clipping environments and non-tolerant genotypes-second clipping environments were reflected in the biplots of both models. The simultaneous use of AMMI and factorial correspondence analysis appeared as a useful

  7. Coupling genetics and proteomics to identify aphid proteins associated with vector-specific transmission of polerovirus (luteoviridae).

    Science.gov (United States)

    Yang, Xiaolong; Thannhauser, T W; Burrows, Mary; Cox-Foster, Diana; Gildow, Fred E; Gray, Stewart M

    2008-01-01

    Cereal yellow dwarf virus-RPV (CYDV-RPV) is transmitted specifically by the aphids Rhopalosiphum padi and Schizaphis graminum in a circulative nonpropagative manner. The high level of vector specificity results from the vector aphids having the functional components of the receptor-mediated endocytotic pathways to allow virus to transverse the gut and salivary tissues. Studies of F(2) progeny from crosses of vector and nonvector genotypes of S. graminum showed that virus transmission efficiency is a heritable trait regulated by multiple genes acting in an additive fashion and that gut- and salivary gland-associated factors are not genetically linked. Utilizing two-dimensional difference gel electrophoresis to compare the proteomes of vector and nonvector parental and F(2) genotypes, four aphid proteins (S4, S8, S29, and S405) were specifically associated with the ability of S. graminum to transmit CYDV-RPV. The four proteins were coimmunoprecipitated with purified RPV, indicating that the aphid proteins are capable of binding to virus. Analysis by mass spectrometry identified S4 as a luciferase and S29 as a cyclophilin, both of which have been implicated in macromolecular transport. Proteins S8 and S405 were not identified from available databases. Study of this unique genetic system coupled with proteomic analysis indicated that these four virus-binding aphid proteins were specifically inherited and conserved in different generations of vector genotypes and suggests that they play a major role in regulating polerovirus transmission.

  8. Coupling Genetics and Proteomics To Identify Aphid Proteins Associated with Vector-Specific Transmission of Polerovirus (Luteoviridae)▿

    Science.gov (United States)

    Yang, Xiaolong; Thannhauser, T. W.; Burrows, Mary; Cox-Foster, Diana; Gildow, Fred E.; Gray, Stewart M.

    2008-01-01

    Cereal yellow dwarf virus-RPV (CYDV-RPV) is transmitted specifically by the aphids Rhopalosiphum padi and Schizaphis graminum in a circulative nonpropagative manner. The high level of vector specificity results from the vector aphids having the functional components of the receptor-mediated endocytotic pathways to allow virus to transverse the gut and salivary tissues. Studies of F2 progeny from crosses of vector and nonvector genotypes of S. graminum showed that virus transmission efficiency is a heritable trait regulated by multiple genes acting in an additive fashion and that gut- and salivary gland-associated factors are not genetically linked. Utilizing two-dimensional difference gel electrophoresis to compare the proteomes of vector and nonvector parental and F2 genotypes, four aphid proteins (S4, S8, S29, and S405) were specifically associated with the ability of S. graminum to transmit CYDV-RPV. The four proteins were coimmunoprecipitated with purified RPV, indicating that the aphid proteins are capable of binding to virus. Analysis by mass spectrometry identified S4 as a luciferase and S29 as a cyclophilin, both of which have been implicated in macromolecular transport. Proteins S8 and S405 were not identified from available databases. Study of this unique genetic system coupled with proteomic analysis indicated that these four virus-binding aphid proteins were specifically inherited and conserved in different generations of vector genotypes and suggests that they play a major role in regulating polerovirus transmission. PMID:17959668

  9. Studying, the Insecticidal Effects of Melia azedarach and Citrus limonum Extracts on Two Aphid Species

    Directory of Open Access Journals (Sweden)

    maryam Pahlavan Yali

    2018-01-01

    Full Text Available Introduction: Wheat (Triticum aestivum L. is the most principal plant food for 35 percent of the world's population, and canola (Brassica napus L. is one of the most important brassicaceous crops that play a major role in the development of edible oil. The greenbug, Schizaphis graminum (Rondani and cabbage aphid, Brevicoryne brassicae (L. are the main pests of wheat and canola, respectively, which can considerably limit profitable production of these crops either through direct feeding or via transmission of plant pathogenic viruses. Although chemical control is the most effective and easiest way to control aphids, but this method causes problems such as pesticide residues in food and environment, and development of resistance to insecticides. The utilization of plant extracts is an environmentally safe method that can be used in control of these aphids. Among these, the products of the Melia seed (Melia azedarach Linnaeus and lemon peel (Citrus limonum Risso can be noted. Negative associations between phenolic compounds present in plant species and aphid’s invasion have been recorded for some aphid species. In this study, our goal was to determine the amount of phenol in plant extracts of Melia seed and lemon peel and evaluate the toxicity of these compounds on the wheat aphid and cabbage aphid in various doses after different time periods. Materials and methods: This research was conducted in a growth chamber (temperature 25 ± 1˚C, 65± 5% RH and a photoperiod of 16L: 8D. S. graminum and B. brassicae were bred on wheat (Pishtaz cultivar and canola (Hyola401 cultivar, respectively. The extraction of Melia seed and lemon peel was carried out and then contact toxicity bioassay was done to evaluate the insecticidal effects of these extracts on nymphs of wheat and cabbage aphids using a completely randomized design. The leaves of wheat and canola plants, impregnated with three different concentrations of each extract (10, 50 and 80 g/ml and

  10. Biological aspects of Eriopis connexa (Germar (Coleoptera: Coccinellidae fed on different insect pests of maize (Zea mays L. and sorghum [Sorghum bicolor L. (Moench.

    Directory of Open Access Journals (Sweden)

    RB Silva

    Full Text Available Eriopis connexa (Germar (Coleoptera: Coccinellidae occurs in several countries of South America and its mass rearing is important for biological control programmes. This work evaluated biological aspects of E. connexa larva fed on eggs of Anagasta kuehniella (Zeller (Lepidoptera: Pyralidae and Spodoptera frugiperda (J. E. Smith (Lepidoptera: Noctuidae frozen for one day, fresh eggs of Diatraea saccharalis (Fabricius (Lepidoptera: Pyralidae, S. frugiperda newly-hatched caterpillars, nymphs of Rhopalosiphum maidis (Fitch and Schizaphis graminum (Rondani (Hemiptera: Aphididae. Duration of larva, pupa and larva to adult stages differed among prey offered, whereas the prepupa stage was similar. Larva, pupa, prepupa and larva to adult viabilities were equal or major of 87.5% in all prey, except for larva fed on newly-hatched larvae of S. frugiperda. Eriopis connexa has good adaptation to different prey corroborating its polyphagous feeding habit, which evidences the potential of this natural enemy for controlling corn and sorghum pests.

  11. Genetics Coupled to Quantitative Intact Proteomics Links Heritable Aphid and Endosymbiont Protein Expression to Circulative Polerovirus Transmission▿ †

    Science.gov (United States)

    Cilia, M.; Tamborindeguy, C.; Fish, T.; Howe, K.; Thannhauser, T. W.; Gray, S.

    2011-01-01

    Yellow dwarf viruses in the family Luteoviridae, which are the causal agents of yellow dwarf disease in cereal crops, are each transmitted most efficiently by different species of aphids in a circulative manner that requires the virus to interact with a multitude of aphid proteins. Aphid proteins differentially expressed in F2 Schizaphis graminum genotypes segregating for the ability to transmit Cereal yellow dwarf virus-RPV (CYDV-RPV) were identified using two-dimensional difference gel electrophoresis (DIGE) coupled to either matrix-assisted laser desorption ionization-tandem mass spectrometry or online nanoscale liquid chromatography coupled to electrospray tandem mass spectrometry. A total of 50 protein spots, containing aphid proteins and proteins from the aphid's obligate and maternally inherited bacterial endosymbiont, Buchnera, were identified as differentially expressed between transmission-competent and refractive aphids. Surprisingly, in virus transmission-competent F2 genotypes, the isoelectric points of the Buchnera proteins did not match those in the maternal Buchnera proteome as expected, but instead they aligned with the Buchnera proteome of the transmission-competent paternal parent. Among the aphid proteins identified, many were involved in energy metabolism, membrane trafficking, lipid signaling, and the cytoskeleton. At least eight aphid proteins were expressed as heritable, isoelectric point isoform pairs, one derived from each parental lineage. In the F2 genotypes, the expression of aphid protein isoforms derived from the competent parental lineage aligned with the virus transmission phenotype with high precision. Thus, these isoforms are candidate biomarkers for CYDV-RPV transmission in S. graminum. Our combined genetic and DIGE approach also made it possible to predict where several of the proteins may be expressed in refractive aphids with different barriers to transmission. Twelve proteins were predicted to act in the hindgut of the aphid

  12. Genetics coupled to quantitative intact proteomics links heritable aphid and endosymbiont protein expression to circulative polerovirus transmission.

    Science.gov (United States)

    Cilia, M; Tamborindeguy, C; Fish, T; Howe, K; Thannhauser, T W; Gray, S

    2011-03-01

    Yellow dwarf viruses in the family Luteoviridae, which are the causal agents of yellow dwarf disease in cereal crops, are each transmitted most efficiently by different species of aphids in a circulative manner that requires the virus to interact with a multitude of aphid proteins. Aphid proteins differentially expressed in F2 Schizaphis graminum genotypes segregating for the ability to transmit Cereal yellow dwarf virus-RPV (CYDV-RPV) were identified using two-dimensional difference gel electrophoresis (DIGE) coupled to either matrix-assisted laser desorption ionization-tandem mass spectrometry or online nanoscale liquid chromatography coupled to electrospray tandem mass spectrometry. A total of 50 protein spots, containing aphid proteins and proteins from the aphid's obligate and maternally inherited bacterial endosymbiont, Buchnera, were identified as differentially expressed between transmission-competent and refractive aphids. Surprisingly, in virus transmission-competent F2 genotypes, the isoelectric points of the Buchnera proteins did not match those in the maternal Buchnera proteome as expected, but instead they aligned with the Buchnera proteome of the transmission-competent paternal parent. Among the aphid proteins identified, many were involved in energy metabolism, membrane trafficking, lipid signaling, and the cytoskeleton. At least eight aphid proteins were expressed as heritable, isoelectric point isoform pairs, one derived from each parental lineage. In the F2 genotypes, the expression of aphid protein isoforms derived from the competent parental lineage aligned with the virus transmission phenotype with high precision. Thus, these isoforms are candidate biomarkers for CYDV-RPV transmission in S. graminum. Our combined genetic and DIGE approach also made it possible to predict where several of the proteins may be expressed in refractive aphids with different barriers to transmission. Twelve proteins were predicted to act in the hindgut of the aphid

  13. Quality of different aphids as hosts of the parasitoid Lysiphlebus testaceipes (Cresson) (Hymenoptera: Braconidae, Aphidiinae); Qualidade de diferentes especies de pulgoes como hospedeiros do parasitoide Lysiphlebus testaceipes (Cresson) (Hymenoptera: Braconidae, Aphidiinae)

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Robson J.; Bueno, Vanda H.P. [Universidade Federal de Lavras, MG (Brazil). Dept. de Entomologia]. E-mail: vhpbueno@ufla.br; Sampaio, Marcus V.[Universidade Federal de Uberlandia (UFU), MG (Brazil). Inst. de Ciencias Agrarias]. E-mail: mvsampaio@iciag.ufu.br

    2008-03-15

    Lysiphlebus testaceipes (Cresson) has a broad aphid host range; however the quality of these preys may interfere in its biological feature. This study aimed to evaluate the quality of three Macrosiphini, Brevicoryne brassicae (L.), Lipaphis erysimi (Kaltenbach) and Myzus persicae (Sulzer), and three Aphidini Schizaphis graminum (Rondani) Rhopalosiphum maidis (Fitch) and Aphis gossypii Glover as hosts to L. testaceipes and to determine the relation possible of host preference, of size and quality of the host. The tests were carried out in climatic chamber at 25 {+-} 1 deg C, RH 70 {+-} 10% and 12h photophase. The parasitoid did not oviposite in B. brassicae and L. erysimi, while the other species were nutritionally suitable to the parasitoid. L. testaceipes showed preference for aphids from tribe Aphidini and these hosts presented better quality to the parasitoid when compared to Macrosiphini. Interactions among size, preference and quality between the Aphidini were found. L. testaceipes showed preference (parasitism rate 76.7%) for R. maidis, the bigger host (hind tibia with 0.281 mm). This host provided bigger size (hind tibia with 0.49 mm) and higher emergence rate (95.6%) to the parasitoid when compared to A. gossypii (parasitism rate of 55.7%). Also the smaller host A. gossypii (0.266 mm) provided smaller size hind tibia (0.45 mm) and higher mortality of the parasitoid (emergence rate 72.1%). However, the development time was shorter and the longevity was higher in A. gossypii (6.3 and 5.4 days, respectively) when compared to the host R. maidis (6.7 and 3.8 days, respectively), and not been related to host size. (author)

  14. Comparative role of neem seed extract, moringa leaf extract and imidacloprid in the management of wheat aphids in relation to yield losses in Pakistan.

    Science.gov (United States)

    Shah, Farhan Mahmood; Razaq, Muhammad; Ali, Abid; Han, Peng; Chen, Julian

    2017-01-01

    Wheat being staple food of Pakistan is constantly attacked by major wheat aphid species, Schizaphis graminum (R.), Rhopalosiphum padi (L.) and Sitobion avenae (F.). Due to concern on synthetic chemical use in wheat, it is imperative to search for alternative environment- and human- friendly control measures such as botanical pesticides. In the present study, we evaluated the comparative role of neem seed extract (NSE), moringa leaf extract (MLE) and imidacloprid (I) in the management of the aphid as well as the yield losses parameters in late planted wheat fields. Imidacloprid reduced significantly aphids infestation compared to the other treatments, hence resulting in higher yield, particularly when applied with MLE. The percentages of yield increase in I+MLE treated plots over the control were 19.15-81.89% for grains per spike, 5.33-37.62% for thousand grain weight and 27.59-61.12% for yield kg/ha. NSE was the second most effective control measure in suppressing aphid population, but the yield protected by NSE treatment over the control was comparable to that by imidacloprid. Population densities of coccinellids and syrphids in the plots treated with NSE-2 were higher than those treated with imidacloprid in two out of three experiments during 2013-14. Low predator density in imidacloprid-treated plots was attributed to the lower availability of prey aphids. The efficacy of NSE against aphids varied depending on degree of synchronization among the application timing, the activity of aphids, crop variety and environmental conditions. Despite that, we suggested NSE to be a promising alternative botanical insecticide compared to the most commonly recommended imidiacloprid. Further studies should consider the side effects of biopesticides on non-target organisms in order to provide better management practices in the field.

  15. Organophosphate insecticide poisoning of Canada geese in the Texas panhandle

    Science.gov (United States)

    White, D.H.; Mitchell, C.A.; Wynn, L.D.; Flickinger, Edward L.; Kolbe, E.J.

    1982-01-01

    Sixteen hundred waterfowl, mostly Canada Geese, died near Etter, Texas, in late January 1981 from anticholinesterase poisoning. Winter wheat in the area of the die-off had been treated with organophosphate insecticides to control greenbugs. Cholinesterase (ChE) levels in brains of a sample of geese found dead were 75% below normal, enough to account for death (Ludke et al. 1975). The gastrointestinal (G I) tracts of geese found dead were packed with winter wheat; gas chromatography techniques identified parathion and methyl parathion in the GI tract contents. Residues of both chemicals were confirmed by mass spectrometry. We recommend that less toxic materials, such as malathion, be used on grain crops when waterfowl are in the vicinity of treatment.

  16. Novel acetylcholinesterase target site for malaria mosquito control.

    Directory of Open Access Journals (Sweden)

    Yuan-Ping Pang

    2006-12-01

    Full Text Available Current anticholinesterase pesticides were developed during World War II and are toxic to mammals because they target a catalytic serine residue of acetylcholinesterases (AChEs in insects and in mammals. A sequence analysis of AChEs from 73 species and a three-dimensional model of a malaria-carrying mosquito (Anopheles gambiae AChE (AgAChE reported here show that C286 and R339 of AgAChE are conserved at the opening of the active site of AChEs in 17 invertebrate and four insect species, respectively. Both residues are absent in the active site of AChEs of human, monkey, dog, cat, cattle, rabbit, rat, and mouse. The 17 invertebrates include house mosquito, Japanese encephalitis mosquito, African malaria mosquito, German cockroach, Florida lancelet, rice leaf beetle, African bollworm, beet armyworm, codling moth, diamondback moth, domestic silkworm, honey bee, oat or wheat aphid, the greenbug, melon or cotton aphid, green peach aphid, and English grain aphid. The four insects are house mosquito, Japanese encephalitis mosquito, African malaria mosquito, and German cockroach. The discovery of the two invertebrate-specific residues enables the development of effective and safer pesticides that target the residues present only in mosquito AChEs rather than the ubiquitous serine residue, thus potentially offering an effective control of mosquito-borne malaria. Anti-AgAChE pesticides can be designed to interact with R339 and subsequently covalently bond to C286. Such pesticides would be toxic to mosquitoes but not to mammals.