WorldWideScience

Sample records for green unicellular alga

  1. Homogentisate phytyltransferase from the unicellular green alga Chlamydomonas reinhardtii.

    Science.gov (United States)

    Gálvez-Valdivieso, Gregorio; Cardeñosa, Rosa; Pineda, Manuel; Aguilar, Miguel

    2015-09-01

    Homogentisate phytyltransferase (HPT) (EC 2.5.1.-) catalyzes the first committed step of tocopherol biosynthesis in all photosynthetic organisms. This paper presents the molecular characterization and expression analysis of HPT1 gene, and a study on the accumulation of tocopherols under different environmental conditions in the unicellular green alga Chlamydomonas reinhardtii. The Chlamydomonas HPT1 protein conserves all the prenylphosphate- and divalent cation-binding sites that are found in polyprenyltransferases and all the amino acids that are essential for its catalytic activity. Its hydrophobicity profile confirms that HPT is a membrane-bound protein. Chlamydomonas genomic DNA analysis suggests that HPT is encoded by a single gene, HPT1, whose promoter region contains multiple motifs related to regulation by jasmonate, abscisic acid, low temperature and light, and an ATCTA motif presents in genes involved in tocopherol biosynthesis and some photosynthesis-related genes. Expression analysis revealed that HPT1 is strongly regulated by dark and low-temperature. Under the same treatments, α-tocopherol increased in cultures exposed to darkness or heat, whereas γ-tocopherol did it in low temperature. The regulatory expression pattern of HPT1 and the changes of tocopherol abundance support the idea that different tocopherols play specific functions, and suggest a role for γ-tocopherol in the adaptation to growth under low-temperature. Copyright © 2015 Elsevier GmbH. All rights reserved.

  2. Variation in growth rate in a natural assemblage of unicellular green soil algae

    NARCIS (Netherlands)

    Koelewijn, H.P.; De la Guerie, P.; Bell, G.

    2001-01-01

    Unicellular, motile, phototropic green algae were extracted from soil samples taken at metre intervals along a 25-m transect in a wheat field. The vegetative growth of 61 randomly selected isolates (henceforth called spores) was measured in dark and light conditions, and at high and low nutrient

  3. Adaptation of light-harvesting functions of unicellular green algae to different light qualities.

    Science.gov (United States)

    Ueno, Yoshifumi; Aikawa, Shimpei; Kondo, Akihiko; Akimoto, Seiji

    2018-05-28

    Oxygenic photosynthetic organisms perform photosynthesis efficiently by distributing captured light energy to photosystems (PSs) at an appropriate balance. Maintaining photosynthetic efficiency under changing light conditions requires modification of light-harvesting and energy-transfer processes. In the current study, we examined how green algae regulate their light-harvesting functions in response to different light qualities. We measured low-temperature time-resolved fluorescence spectra of unicellular green algae Chlamydomonas reinhardtii and Chlorella variabilis cells grown under different light qualities. By observing the delayed fluorescence spectra, we demonstrated that both types of green algae primarily modified the associations between light-harvesting chlorophyll protein complexes (LHCs) and PSs (PSII and PSI). Under blue light, Chlamydomonas transferred more energy from LHC to chlorophyll (Chl) located far from the PSII reaction center, while energy was transferred from LHC to PSI via different energy-transfer pathways in Chlorella. Under green light, both green algae exhibited enhanced energy transfer from LHCs to both PSs. Red light induced fluorescence quenching within PSs in Chlamydomonas and LHCs in Chlorella. In Chlorella, energy transfer from PSII to PSI appears to play an important role in balancing excitation between PSII and PSI.

  4. Radio photosynthesis of some 14 C-labelled sugars using the unicellular green alga scenedesmus ACUTUS

    International Nuclear Information System (INIS)

    Barakat, M.F.; Farag, A.N.; Ragab, M.T.; El-Fouly, M.M.; El-Baz, F.K.

    1993-01-01

    Radiosynthesis has been carried out using the unicellular green alga scenedesmus acutus together with Na H 14 CO 3 solution as a carbon-14 source, in an ordinary photosynthesis chamber. The process is more easier and less laborious than the techniques involving the use of gaseous 14 CO 2 in a tight photosynthesis chamber. Uniformly labelled 14 C-glucose, 14 C-fructose and 14 C-sucrose have been prepared with specific activities of several micro curies per milli mole. The specific activity of the products was found to increase on increasing the photosynthesis time or the initial activity of the Na H 14 CO 3 solution used. 3 tabs

  5. Direct determination of cadmium in unicellular green algae by flameless atomic absorption

    International Nuclear Information System (INIS)

    Meisch, H.U.; Reinle, W.

    1977-01-01

    Cadmium is detectable without any disturbance by direct injection of Cd-containing microorganisms (unicellular green algae) into the graphite furnace of an atomic absorption instrument, if the decomposition temperature is increased to 700 0 C. This has been done without loss of the trace method by charging the input suspension with a 10 7 fold molar excess of (NH 4 ) 2 SO 4 . The precision of the uncomplicated method is compared to the results of Cd-analysis after HNO 3 -decomposition. (author)

  6. Repair in unicellular green algae under the chronic action of mutagenic factors

    International Nuclear Information System (INIS)

    Sergeeva, S.A.; Ptitsina, S.N.; Shevchenko, V.A.

    1986-01-01

    Repair of single-standed DNA breaks in different strains of unicellular green Chlamidomonas reinhardii algae under the chronic action of mutagenic factors after γ-radiation was studied. It is shown, that the highest DNA break repair efficiency is observed in M γ mt++ strain, resistant to radiation. Strains, sensitive to UV-rays, possess the same repair efficiency as a wild type strain. UVS-1 strain demonstrated a higher repair efficiency, than a wild type strain. All that gives evidence of the difference in Chlamidomonas reinhardii of repair ways, leading to repair of damages, induced by γ-radiation and UV-rays

  7. Cell death in the unicellular green alga Micrasterias upon H2O2 induction

    Science.gov (United States)

    Darehshouri, Anza; Affenzeller, Matthias; Lütz-Meindl, Ursula

    2010-01-01

    In the present study we investigate whether the unicellular green alga Micrasterias denticulata is capable of executing programmed cell death (PCD) upon experimental induction and by which morphological, molecular and physiological hallmarks it is characterized. This is particularly interesting as unicellular fresh water green algae growing in shallow bog ponds are exposed to extreme environmental conditions and the capability to perform PCD may provide an important strategy to guarantee survival of the population. The theoretically “immortal” alga Micrasterias is an ideal object for such investigations as it has served as a cell biological model system since many years and details on its growth properties, physiology and ultrastructure throughout the cell cycle are well known. Treatment with low concentrations of H2O2 known to induce PCD in other organisms resulted in severe ultrastructural changes of organelles as observed in TEM. These include deformation and partly disintegration of mitochondria, abnormal dilatation of cisternal rims of dictyosomes, the occurrence of multivesicular bodies, an increase in the number of ER compartments and slight condensation of chromatin. Additionally, a statistically significant increase in caspase-3-like activity could be detected which was abrogated by a caspase-3 inhibitor. Photosynthetic activity measured by fast chlorophyll fluorescence decreased as a consequence of H2O2 exposure whereas pigment composition, except of a reduction in carotenoids, was the same as in untreated controls. TUNEL positive staining and ladder-like degradation of DNA, both frequently regarded as PCD hallmark in higher plants could only be detected in dead Micrasterias cells. PMID:18950431

  8. The TOR Signaling Network in the Model Unicellular Green Alga Chlamydomonas reinhardtii

    Directory of Open Access Journals (Sweden)

    María Esther Pérez-Pérez

    2017-07-01

    Full Text Available Cell growth is tightly coupled to nutrient availability. The target of rapamycin (TOR kinase transmits nutritional and environmental cues to the cellular growth machinery. TOR functions in two distinct multiprotein complexes, termed TOR complex 1 (TORC1 and TOR complex 2 (TORC2. While the structure and functions of TORC1 are highly conserved in all eukaryotes, including algae and plants, TORC2 core proteins seem to be missing in photosynthetic organisms. TORC1 controls cell growth by promoting anabolic processes, including protein synthesis and ribosome biogenesis, and inhibiting catabolic processes such as autophagy. Recent studies identified rapamycin-sensitive TORC1 signaling regulating cell growth, autophagy, lipid metabolism, and central metabolic pathways in the model unicellular green alga Chlamydomonas reinhardtii. The central role that microalgae play in global biomass production, together with the high biotechnological potential of these organisms in biofuel production, has drawn attention to the study of proteins that regulate cell growth such as the TOR kinase. In this review we discuss the recent progress on TOR signaling in algae.

  9. The TOR Signaling Network in the Model Unicellular Green Alga Chlamydomonas reinhardtii.

    Science.gov (United States)

    Pérez-Pérez, María Esther; Couso, Inmaculada; Crespo, José L

    2017-07-12

    Cell growth is tightly coupled to nutrient availability. The target of rapamycin (TOR) kinase transmits nutritional and environmental cues to the cellular growth machinery. TOR functions in two distinct multiprotein complexes, termed TOR complex 1 (TORC1) and TOR complex 2 (TORC2). While the structure and functions of TORC1 are highly conserved in all eukaryotes, including algae and plants, TORC2 core proteins seem to be missing in photosynthetic organisms. TORC1 controls cell growth by promoting anabolic processes, including protein synthesis and ribosome biogenesis, and inhibiting catabolic processes such as autophagy. Recent studies identified rapamycin-sensitive TORC1 signaling regulating cell growth, autophagy, lipid metabolism, and central metabolic pathways in the model unicellular green alga Chlamydomonas reinhardtii . The central role that microalgae play in global biomass production, together with the high biotechnological potential of these organisms in biofuel production, has drawn attention to the study of proteins that regulate cell growth such as the TOR kinase. In this review we discuss the recent progress on TOR signaling in algae.

  10. Bioenergetic Strategy for the Biodegradation of p-Cresol by the Unicellular Green Alga Scenedesmus obliquus

    Science.gov (United States)

    Papazi, Aikaterini; Assimakopoulos, Konstantinos; Kotzabasis, Kiriakos

    2012-01-01

    Cultures from the unicellular green alga Scenedesmus obliquus biodegrade the toxic p-cresol (4-methylphenol) and use it as alternative carbon/energy source. The biodegradation procedure of p-cresol seems to be a two-step process. HPLC analyses indicate that the split of the methyl group (first step) that is possibly converted to methanol (increased methanol concentration in the growth medium), leading, according to our previous work, to changes in the molecular structure and function of the photosynthetic apparatus and therefore to microalgal biomass increase. The second step is the fission of the intermediately produced phenol. A higher p-cresol concentration results in a higher p-cresol biodegradation rate and a lower total p-cresol biodegradability. The first biodegradation step seems to be the most decisive for the effectiveness of the process, because methanol offers energy for the further biodegradation reactions. The absence of LHCII from the Scenedesmus mutant wt-lhc stopped the methanol effect and significantly reduced the p-cresol biodegradation (only 9%). The present contribution deals with an energy distribution between microalgal growth and p-cresol biodegradation, activated by p-cresol concentration. The simultaneous biomass increase with the detoxification of a toxic phenolic compound (p-cresol) could be a significant biotechnological aspect for further applications. PMID:23251641

  11. Respiratory-deficient mutants of the unicellular green alga Chlamydomonas: a review.

    Science.gov (United States)

    Salinas, Thalia; Larosa, Véronique; Cardol, Pierre; Maréchal-Drouard, Laurence; Remacle, Claire

    2014-05-01

    Genetic manipulation of the unicellular green alga Chlamydomonas reinhardtii is straightforward. Nuclear genes can be interrupted by insertional mutagenesis or targeted by RNA interference whereas random or site-directed mutagenesis allows the introduction of mutations in the mitochondrial genome. This, combined with a screen that easily allows discriminating respiratory-deficient mutants, makes Chlamydomonas a model system of choice to study mitochondria biology in photosynthetic organisms. Since the first description of Chlamydomonas respiratory-deficient mutants in 1977 by random mutagenesis, many other mutants affected in mitochondrial components have been characterized. These respiratory-deficient mutants increased our knowledge on function and assembly of the respiratory enzyme complexes. More recently some of these mutants allowed the study of mitochondrial gene expression processes poorly understood in Chlamydomonas. In this review, we update the data concerning the respiratory components with a special focus on the assembly factors identified on other organisms. In addition, we make an inventory of different mitochondrial respiratory mutants that are inactivated either on mitochondrial or nuclear genes. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  12. Construction of a self-cloning system in the unicellular green alga Pseudochoricystis ellipsoidea.

    Science.gov (United States)

    Kasai, Yuki; Oshima, Kohei; Ikeda, Fukiko; Abe, Jun; Yoshimitsu, Yuya; Harayama, Shigeaki

    2015-01-01

    Microalgae have received considerable interest as a source of biofuel production. The unicellular green alga Pseudochoricystis ellipsoidea (non-validated scientific name) strain Obi appears to be suitable for large-scale cultivation in outdoor open ponds for biodiesel production because it accumulates lipids to more than 30 % of dry cell weight under nitrogen-depleted conditions. It also grows rapidly under acidic conditions at which most protozoan grazers of microalgae may not be tolerant. The lipid productivity of this alga could be improved using genetic engineering techniques; however, genetically modified organisms are the subject of regulation by specific laws. Therefore, the aim of this study was to develop a self-cloning-based positive selection system for the breeding of P. ellipsoidea. In this study, uracil auxotrophic mutants were isolated after the mutagenesis of P. ellipsoidea using either ultraviolet light or a transcription activator-like effector nuclease (TALEN) system. The cDNA of the uridine monophosphate synthase gene (PeUMPS) of P. ellipsoidea was cloned downstream of the promoter of either a beta-tubulin gene (PeTUBULIN1) or the gene for the small subunit of ribulose 1,5-bisphosphate carboxylase/oxygenase (PeRBCS) to construct the pUT1 or pUT2 plasmid, respectively. These constructs were introduced into uracil auxotroph strains, and genetically complementary transformants were isolated successfully on minimal agar plates. Use of Noble agar as the solidifying agent was essential to avoid the development of false-positive colonies. It took more than 6 weeks for the formation of colonies of pUT1 transformants, whereas pUT2 transformants formed colonies in 2 weeks. Real-time PCR revealed that there were more PeUMPS transcripts in pUT2 transformants than in pUT1 transformants. Uracil synthesis (Ura(+)) transformants were also obtained using a gene cassette consisting solely of PeUMPS flanked by the PeRBCS promoter and terminator. A self

  13. Uptake of selenium by the unicellular green alga Chlamydomonas reinhardtii - effects induced by chronic exposure

    International Nuclear Information System (INIS)

    Morlon, H.; Fortin, C.; Pradines, C.; Floriani, M.; Grasset, G.; Adam, C.; Garnier-Laplace, J.

    2004-01-01

    79 Se is a long-lived radionuclide present in radioactive waste storages. The stable isotope selenium is an essential micro-nutrient that can act against oxidative damage. It is however well known for its bio-magnification potential and chemical toxicity to aquatic life. One of its particularity is to form oxyanions in freshwater ecosystems, which leads to specific behaviours towards biological membranes. Our study deals with the interactions between selenite -Se(IV)- and Chlamydomonas reinhardtii, a unicellular green alga representative of the freshwater phytoplankton community. Cells were exposed to selenite marked with Se 75 in well-known simple inorganic media. Short-term experiments (about one hour of exposure) were performed to better understand selenite transport (uptake kinetics and levels) and identify main factors influencing absorption (nutrients concentrations, pH). Long-term experiments (4 days of exposure) were performed (1) to evaluate the bioaccumulation considering environmentally relevant time scales, (2) to localize the intracellular selenium using EDAX-TEM and (3) to assess the toxicity of selenium as measured by growth impairment, ultrastructural changes, starch accumulation, and loss of pigment. Short-term experiments revealed a time-dependent linear absorption with an estimated absorbed flux of about 0.25 nmol.m -2 .nM -1 .h -1 . The absorption was proportional to ambient levels, except at very low concentrations (ca. 0.5 nM), were it was proportionally higher, suggesting that a specific but rapidly saturated transport could be used at those low concentrations. Selenite uptake was not dependent on phosphate nor carbonate concentrations. It was nevertheless inhibited by sulphate and nitrate, indicating that selenite could share common transporters with those nutrients. The accumulation was found to be maximum for intermediate pH around 7. EDAX-TEM analysis after long-term experiments revealed the presence of selenium in electron-dense granules

  14. Static allometry of unicellular green algae: scaling of cellular surface area and volume in the genus Micrasterias (Desmidiales).

    Science.gov (United States)

    Neustupa, J

    2016-02-01

    The surface area-to-volume ratio of cells is one of the key factors affecting fundamental biological processes and, thus, fitness of unicellular organisms. One of the general models for allometric increase in surface-to-volume scaling involves fractal-like elaboration of cellular surfaces. However, specific data illustrating this pattern in natural populations of the unicellular organisms have not previously been available. This study shows that unicellular green algae of the genus Micrasterias (Desmidiales) have positive allometric surface-to-volume scaling caused by changes in morphology of individual species, especially in the degree of cell lobulation. This allometric pattern was also detected within most of the cultured and natural populations analysed. Values of the allometric S:V scaling within individual populations were closely correlated to the phylogenetic structure of the clade. In addition, they were related to species-specific cellular morphology. Individual populations differed in their allometric patterns, and their position in the allometric space was strongly correlated with the degree of allometric S:V scaling. This result illustrates that allometric shape patterns are an important correlate of the capacity of individual populations to compensate for increases in their cell volumes by increasing the surface area. However, variation in allometric patterns was not associated with phylogenetic structure. This indicates that the position of the populations in the allometric space was not evolutionarily conserved and might be influenced by environmental factors. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.

  15. Radiophotosynthesis of some 14C-labelled amino acids using the unicellular green alga Scenedesmus acutus

    International Nuclear Information System (INIS)

    Barakat, M.F.; Farag, A.N.; Ragab, M.T.; El-Fouly, M.M.; El-Baz, F.K.

    1990-01-01

    Radiophotosynthesis has been carried out using the unicellular green algea Scenedesmus acutus grown, as a substrate for preparing some carbon-14 labelled amino acids. Gaseous 14 CO 2 , in an air tight photosynthesis chamber or NaH 14 CO 3 solution, in an ordinary phtosynthesis chamber, were used as radioactive carbon sources. The yields, radiochemical yields and specific activities of the formed radioactive products are reported in both cases. The results obtained clearly showed the advantages of usingthe NaH 14 CO 3 method. In that case the process was by far less tedious. Moreover, the chemical and radiochemical yields of the formed amino acids were relatively much more higher than the values obtained on using 14 CO 2 in the tight photosynthesis chamber. (orig.) [de

  16. Dielectrophoresis of Tetraselmis sp., a unicellular green alga, in travelling electric fields analyzed using the RC model for a spheroid

    Directory of Open Access Journals (Sweden)

    Sakshin Bunthawin

    2011-10-01

    Full Text Available Dielectrophoresis of a unicellular green alga, Tetraselmis sp., in a travelling electric field was analyzed using an RC(resistor-capacitor-model, instead of the Laplace approach reported in our previous work. The model consists of resistorcapacitorpairs in series to represent the conductive and the capacitive properties of the shell and the inner part of the spheroid.The model is mathematically simpler than the Laplace model and the RC approach is experimentally superior because only thelower critical frequency [LCF] and cell translational speed are required to be measured experimentally. The effective compleximpedance of the spheroid was mathematically modeled to obtain the Clausius-Mossotti factor ([CMF] as a function of celldielectric properties. Spectra of dielectrophoretic velocity and the lower critical frequency of the marine green alga, Tetraselmissp. were investigated to determine cell dielectric properties using a manual curve-fitting method. Effects of arsenic at differentconcentrations on the cell were examined to verify the model. Arsenic severely decreases cytoplasmic conductance (cwhereas it increases membrane conductance (m. Effects were easily observable even at the lowest concentration of arsenicused experimentally (1 ppm. The method offers a practical means of manipulating small plant cells and for rapid screeningfor effects on the dielectric properties of cells of various applied experimental treatments.

  17. Selenium Accumulation in Unicellular Green Alga Chlorella vulgaris and Its Effects on Antioxidant Enzymes and Content of Photosynthetic Pigments

    Science.gov (United States)

    Sun, Xian; Zhong, Yu; Huang, Zhi; Yang, Yufeng

    2014-01-01

    The aim of the present study was to investigate selenite effects in the unicellular green algae Chlorella vulgaris as a primary producer and the relationship with intracellular bioaccumulation. The effects of selenite were evaluated by measuring the effect of different selenite concentrations on algal growth during a 144 h exposure period. It was found that lower Se concentrations (≤75 mg L−1) positively promoted C. vulgaris growth and acted as antioxidant by inhibiting lipid peroxidation (LPO) and intracellular reactive oxygen species (ROS). The antioxidative effect was associated with an increase in guaiacol peroxidase (GPX), catalase (CAT), superoxide dismutase (SOD) and photosynthetic pigments. Meanwhile, significant increase in the cell growth rate and organic Se content was also detected in the algae. In contrast, these changes were opposite in C. vulgaris exposed to Se higher than 100 mg L−1. The antioxidation and toxicity appeared to be correlated to Se bioaccumulation, which suggests the appropriate concentration of Se in the media accumulation of C. vulgaris should be 75 mg L−1. Taken together, C. vulgaris possesses tolerance to Se, and Se-Chlorella could be developed as antioxidative food for aquaculture and human health. PMID:25375113

  18. Evidence and analysis of radioresistance induced by protracted gamma irradiation of Chlorella pyrenoidosa chick, green unicellular alga

    International Nuclear Information System (INIS)

    Santier-Riviere, S.

    1984-06-01

    Chlorella cells, unicellular green algae, are a suitable living material to study radiosensitivity of eucaryotic cells after acute or protracted gamma irradiations. Cell survival and survival curves are taken as end-points. Methods of irradiation were defined taking in account interferences of the different factors which can intervene during the experimentation. Survival curves after protracted irradiation of Chlorella cell cultures in plateau-phase have a shape that can be explained by radioresistance. The population of surviving cells becomes radioresistant in front of protracted and acute irradiations, acute irradiation allowing us to analyze radioresistance. Radioresistance increases with the total dose of protracted irradiation. The decrease of radiosensitivity with aging of cells is not able to explain the phenomenon. It is not due to selection of radioresistance cells by protracted irradiation. All the cells get radioresistance. Radioresistance decreases with the time when protracted irradiation is suppressed. It is not found in offspring. It is not a mutation but perhaps the effect of a stimulation of repair processes, but not potentially lethal damage repair [fr

  19. Selenite -Se(4)- uptake mechanisms in the unicellular green alga Chlamydomonas reinhardtii: bioaccumulation and effects induced on growth and ultrastructure

    International Nuclear Information System (INIS)

    Morlon, H.

    2005-03-01

    Selenium is an essential element, but becomes very toxic at higher concentrations. It occurs in the environment at concentrations ranging from nM to μM and selenium pollution is a worldwide phenomenon. This works aims at improving the knowledge on the interactions between selenite - Se(IV) - and a freshwater phyto-planktonic organism: the unicellular green algae Chlamydomonas reinhardtii. The aim of the performed experiments were: i) to investigate selenite -Se(IV)- uptake mechanisms in C. reinhardtii, using Se 75 as a tracer in short term exposures ( -2 .nM -1 .h -1 . The uptake was proportional to ambient levels in a broad range of intermediate concentrations (from nM to μM). However, fluxes were higher at very low concentrations ( μM), suggesting that a high affinity but rapidly saturated transport mechanism could be used at low concentrations, in parallel with a low affinity mechanism that would only saturate at high concentrations (∼mM). The latter could involve transporters used by sulphate and nitrates, as suggested by the inhibition of selenite uptake by those element. Se(IV) speciation changes with pH did not induce significant effect on bioavailability. On the basis of the relationship between Se concentration and maximal cell density achieved, an EC50 of 80 μM ([64; 98]) was derived. No adaptation mechanism were observed as the same the same toxicity was quantified for Se-pre-exposed algae. Observations by TEM suggested chloroplasts as the first target of selenite cytotoxicity, with effects on the stroma, thylakoids and pyrenoids. At higher concentrations, we could observe an increase in the number and volume of starch grains. For the cell collected at 96 h, electron-dense granules were observed. Energy-dispersive X-ray microanalysis revealed that they contained selenium and were also rich in calcium and phosphorus. Finally, growth inhibition was highly correlated to the bioaccumulation of selenite. The latter was inhibited by increasing

  20. Transcriptional analysis of cell growth and morphogenesis in the unicellular green alga Micrasterias (Streptophyta, with emphasis on the role of expansin

    Directory of Open Access Journals (Sweden)

    Leliaert Frederik

    2011-09-01

    Full Text Available Abstract Background Streptophyte green algae share several characteristics of cell growth and cell wall formation with their relatives, the embryophytic land plants. The multilobed cell wall of Micrasterias denticulata that rebuilds symmetrically after cell division and consists of pectin and cellulose, makes this unicellular streptophyte alga an interesting model system to study the molecular controls on cell shape and cell wall formation in green plants. Results Genome-wide transcript expression profiling of synchronously growing cells identified 107 genes of which the expression correlated with the growth phase. Four transcripts showed high similarity to expansins that had not been examined previously in green algae. Phylogenetic analysis suggests that these genes are most closely related to the plant EXPANSIN A family, although their domain organization is very divergent. A GFP-tagged version of the expansin-resembling protein MdEXP2 localized to the cell wall and in Golgi-derived vesicles. Overexpression phenotypes ranged from lobe elongation to loss of growth polarity and planarity. These results indicate that MdEXP2 can alter the cell wall structure and, thus, might have a function related to that of land plant expansins during cell morphogenesis. Conclusions Our study demonstrates the potential of M. denticulata as a unicellular model system, in which cell growth mechanisms have been discovered similar to those in land plants. Additionally, evidence is provided that the evolutionary origins of many cell wall components and regulatory genes in embryophytes precede the colonization of land.

  1. Dephosphorylation Pathway of D-myo-Inositol 1,4,5-trisphosphate in the Unicellular Green Alga Chlamydomonas eugametos

    NARCIS (Netherlands)

    Klerk, Hans; Himbergen, John A.J. van; Musgrave, Alan; Haastert, Peter J.M. van; Ende, Herman van den

    In vitro dephosphorylation of D-myo-inositol 1,4,5-trisphosphate [Ins(l,4,5)P-3] by vegetative cells, gametes and zygotes of the green alga Chlamydomonas eugametos was studied using a soluble cell fraction as enzyme source and labelled Ins(1,4,5)P-3 as substrate. This compound was dephosphorylated

  2. Radiophotosynthesis of some sup 14 C-labelled amino acids using the unicellular green alga Scenedesmus acutus

    Energy Technology Data Exchange (ETDEWEB)

    Barakat, M.F.; Farag, A.N.; Ragab, M.T. (Atomic Energy Establishment, Cairo (Egypt). Nuclear Chemistry Dept.); El-Fouly, M.M.; El-Baz, F.K. (National Research Centre, Cairo (Egypt). Botany Lab.)

    1990-01-01

    Radiophotosynthesis has been carried out using the unicellular green algea Scenedesmus acutus grown, as a substrate for preparing some carbon-14 labelled amino acids. Gaseous {sup 14}CO{sub 2}, in an air tight photosynthesis chamber or NaH{sup 14}CO{sub 3} solution, in an ordinary phtosynthesis chamber, were used as radioactive carbon sources. The yields, radiochemical yields and specific activities of the formed radioactive products are reported in both cases. The results obtained clearly showed the advantages of usingthe NaH{sup 14}CO{sub 3} method. In that case the process was by far less tedious. Moreover, the chemical and radiochemical yields of the formed amino acids were relatively much more higher than the values obtained on using {sup 14}CO{sub 2} in the tight photosynthesis chamber. (orig.).

  3. Azoxystrobin-induced excessive reactive oxygen species (ROS) production and inhibition of photosynthesis in the unicellular green algae Chlorella vulgaris.

    Science.gov (United States)

    Liu, Lei; Zhu, Bin; Wang, Gao-Xue

    2015-05-01

    This study investigated the short-term toxicity of azoxystrobin (AZ), one of strobilurins used as an effective fungicidal agent to control the Asian soybean rust, on aquatic unicellular algae Chlorella vulgaris. The median percentile inhibition concentration (IC₅₀) of AZ for C. vulgaris was found to be 510 μg L(-1). We showed that the algal cells were obviously depressed or shrunk in 300 and 600 μg L(-1) AZ treatments by using the electron microscopy. Furthermore, 19, 75, and 300 μg L(-1) AZ treatments decreased the soluble protein content and chlorophyll concentrations in C. vulgaris and altered the energy-photosynthesis-related mRNA expression levels in 48- and 96-h exposure periods. Simultaneously, our results showed that AZ could increase the total antioxidant capacity (T-AOC) level and compromise superoxide dismutase (SOD), peroxidase (POD), glutathione S transferase (GST), glutathione peroxidase (GPx) activities, and glutathione (GSH) content. These situations might render C. vulgaris more vulnerable to oxidative damage. Overall, the present study indicated that AZ might be toxic to the growth of C. vulgaris, affect energy-photosynthesis-related mRNA expressions, and induce reactive oxygen species (ROS) overproduction in C. vulgaris.

  4. Effects of glufosinate on antioxidant enzymes, subcellular structure, and gene expression in the unicellular green alga Chlorella vulgaris.

    Science.gov (United States)

    Qian, Haifeng; Chen, Wei; Sheng, G Daniel; Xu, Xiaoyan; Liu, Weiping; Fu, Zhengwei

    2008-07-30

    Greater exposure to herbicide increases the likelihood of harmful effects in humans and the environment. Glufosinate, a non-selective herbicide, inhibits glutamine synthetase (GS) and thus blocks ammonium assimilation in plants. In the present study, the aquatic unicellular alga Chlorella vulgaris was chosen to assess the effects of acute glufosinate toxicity. We observed physiological changes during 12-96 h of exposure, and gene transcription during 6-48 h of exposure. Exposure to glufosinate increased malondialdehyde content by up to 2.73 times compared with the control, suggesting that there was some oxidative damage. Electron microscopy also showed that there were some chloroplast abnormalities in response to glufosinate. The activities of the antioxidant enzymes superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) also increased markedly in the presence of glufosinate. Maximum activities of SOD, POD, and CAT were 2.90, 2.91, and 2.48 times that of the control, respectively. These elevated activities may help alleviate oxidative damage. A real-time polymerase chain reaction (PCR) assay showed changes in transcript abundances of three photosynthetic genes, psaB, psbC, and rbcL. The results showed that glufosinate reduced the transcript abundances of the three genes after 12h exposure. The lowest abundances of psaB, psbC and rbcL transcripts in response to glufosinate exposure were 38%, 16% and 43% of those of the control, respectively. Our results demonstrate that glufosinate affects the activities of antioxidant enzymes, disrupts chloroplast ultrastructure, and reduces transcription of photosynthesis-related genes in C. vulgaris.

  5. Effects of glufosinate on antioxidant enzymes, subcellular structure, and gene expression in the unicellular green alga Chlorella vulgaris

    International Nuclear Information System (INIS)

    Qian Haifeng; Chen Wei; Sheng, G. Daniel; Xu Xiaoyan; Liu Weiping; Fu Zhengwei

    2008-01-01

    Greater exposure to herbicide increases the likelihood of harmful effects in humans and the environment. Glufosinate, a non-selective herbicide, inhibits glutamine synthetase (GS) and thus blocks ammonium assimilation in plants. In the present study, the aquatic unicellular alga Chlorella vulgaris was chosen to assess the effects of acute glufosinate toxicity. We observed physiological changes during 12-96 h of exposure, and gene transcription during 6-48 h of exposure. Exposure to glufosinate increased malondialdehyde content by up to 2.73 times compared with the control, suggesting that there was some oxidative damage. Electron microscopy also showed that there were some chloroplast abnormalities in response to glufosinate. The activities of the antioxidant enzymes superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) also increased markedly in the presence of glufosinate. Maximum activities of SOD, POD, and CAT were 2.90, 2.91, and 2.48 times that of the control, respectively. These elevated activities may help alleviate oxidative damage. A real-time polymerase chain reaction (PCR) assay showed changes in transcript abundances of three photosynthetic genes, psaB, psbC, and rbcL. The results showed that glufosinate reduced the transcript abundances of the three genes after 12 h exposure. The lowest abundances of psaB, psbC and rbcL transcripts in response to glufosinate exposure were 38%, 16% and 43% of those of the control, respectively. Our results demonstrate that glufosinate affects the activities of antioxidant enzymes, disrupts chloroplast ultrastructure, and reduces transcription of photosynthesis-related genes in C. vulgaris

  6. Effects of glufosinate on antioxidant enzymes, subcellular structure, and gene expression in the unicellular green alga Chlorella vulgaris

    Energy Technology Data Exchange (ETDEWEB)

    Qian Haifeng; Chen Wei; Sheng, G. Daniel; Xu Xiaoyan; Liu Weiping [College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); Fu Zhengwei [College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032 (China)], E-mail: azwfu2003@yahoo.com.cn

    2008-07-30

    Greater exposure to herbicide increases the likelihood of harmful effects in humans and the environment. Glufosinate, a non-selective herbicide, inhibits glutamine synthetase (GS) and thus blocks ammonium assimilation in plants. In the present study, the aquatic unicellular alga Chlorella vulgaris was chosen to assess the effects of acute glufosinate toxicity. We observed physiological changes during 12-96 h of exposure, and gene transcription during 6-48 h of exposure. Exposure to glufosinate increased malondialdehyde content by up to 2.73 times compared with the control, suggesting that there was some oxidative damage. Electron microscopy also showed that there were some chloroplast abnormalities in response to glufosinate. The activities of the antioxidant enzymes superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) also increased markedly in the presence of glufosinate. Maximum activities of SOD, POD, and CAT were 2.90, 2.91, and 2.48 times that of the control, respectively. These elevated activities may help alleviate oxidative damage. A real-time polymerase chain reaction (PCR) assay showed changes in transcript abundances of three photosynthetic genes, psaB, psbC, and rbcL. The results showed that glufosinate reduced the transcript abundances of the three genes after 12 h exposure. The lowest abundances of psaB, psbC and rbcL transcripts in response to glufosinate exposure were 38%, 16% and 43% of those of the control, respectively. Our results demonstrate that glufosinate affects the activities of antioxidant enzymes, disrupts chloroplast ultrastructure, and reduces transcription of photosynthesis-related genes in C. vulgaris.

  7. Proteomic analysis of a model unicellular green alga, Chlamydomonas reinhardtii, during short-term exposure to irradiance stress reveals significant down regulation of several heat-shock proteins.

    Science.gov (United States)

    Mahong, Bancha; Roytrakul, Suttiruk; Phaonaklop, Narumon; Wongratana, Janewit; Yokthongwattana, Kittisak

    2012-03-01

    Oxygenic photosynthetic organisms often suffer from excessive irradiance, which cause harmful effects to the chloroplast proteins and lipids. Photoprotection and the photosystem II repair processes are the mechanisms that plants deploy to counteract the drastic effects from irradiance stress. Although the protective and repair mechanisms seemed to be similar in most plants, many species do confer different level of tolerance toward high light. Such diversity may originate from differences at the molecular level, i.e., perception of the light stress, signal transduction and expression of stress responsive genes. Comprehensive analysis of overall changes in the total pool of proteins in an organism can be performed using a proteomic approach. In this study, we employed 2-DE/LC-MS/MS-based comparative proteomic approach to analyze total proteins of the light sensitive model unicellular green alga Chlamydomonas reinhardtii in response to excessive irradiance. Results showed that among all the differentially expressed proteins, several heat-shock proteins and molecular chaperones were surprisingly down-regulated after 3-6 h of high light exposure. Discussions were made on the possible involvement of such down regulation and the light sensitive nature of this model alga.

  8. Effects of γ-rays on the survival of several unicellular green algae and the relation to saprobity

    International Nuclear Information System (INIS)

    Hamada, Jin; Saito, Masahiro; Bando, Tadashi; Ishida, M.R.

    1990-01-01

    The lethal effects of 60 Co-γ-rays on the cells of Chlamydomonas reinhardi Dangeard (Chlorophyceae) and four species of desmids (Charophyceae) such as Closterium acerosum Ehrenberg, Netrium digitus Ehrenberg, Closterium ehrenbergii Meneghini, and Pleurotaenium ehrenbergii de Bary were studied at their plateau phase. Wide variation in their response to γ-rays was observed. Among these algae. Cl.acerosum, which is the most tolerant against saprobity, showed the highest resistance to γ-rays. The values of D 37 for Cl.acerosum, N. digitus, Cl.ehrenbergii, Ch.reihardi and Pl.ehrenbergii were about 210Gy, 155Gy, 60Gy and 30Gy, respectively. Some relationship between the resistance to radiation and tolerance to saprobity existed among closely related species. (author)

  9. Effects of sonication and advanced chemical oxidants on the unicellular green alga Dunaliella tertiolecta and cysts, larvae and adults of the brine shrimp Artemia salina: a prospective treatment to eradicate invasive organisms from ballast water.

    Science.gov (United States)

    Gavand, Meghana R; McClintock, James B; Amsler, Charles D; Peters, Robert W; Angus, Robert A

    2007-11-01

    Uptake and release of ship-borne ballast water is a major factor contributing to introductions of aquatic phytoplankton and invasive macroinvertebrates. Some invasive unicellular algae can cause harmful algal blooms and produce toxins that build up in food chains. Moreover, to date, few studies have compared the efficacy of ballast water treatments against different life history phases of aquatic macroinvertebrates. In the present study, the unicellular green alga Dunaliella tertiolecta, and three discrete life history phases of the brine shrimp Artemia salina, were independently used as model organisms to study the efficacy of sonication as well as the advanced oxidants, hydrogen peroxide and ozone, as potential ballast water treatments. Algal cells and brine shrimp cysts, nauplii, and adults were subjected to individual and combined treatments of sonication and advanced oxidants. Combined rather than individual treatments consistently yielded the highest levels of mortality in algal cells (100% over a 2 min exposure) and in brine shrimp (100% and 95% for larvae and adults, respectively, over a 2 min exposure). In contrast, mortality levels in brine shrimp cysts (66% over 2 min; increased to 92% over a 20 min exposure) were moderately high but consistently lower than that detected for larval or adult shrimp. Our results indicate that a combination of sonication and advanced chemical oxidants may be a promising method to eradicate aquatic unicellular algae and macroinvertebrates in ballast water.

  10. Metabolic responses and β-carotene production by the unicellular green alga Dunaliella salina exposed to leaf extracts

    Directory of Open Access Journals (Sweden)

    Alireza Einali

    Full Text Available ABSTRACT The present work investigated the effects of aqueous extracts of eucalyptus ( Eucalyptus globulus and elderberry ( Sambucus ebulus leaves on β-carotene productivity in Dunaliella salina, a green microalga. Leaf extracts from eucalyptus have greater amounts of phenolics and flavonoids, as well as greater ferric reducing antioxidant potential than elderberry. The extracts of both species greatly inhibited growth of algal suspensions. However, chlorophyll and β-carotene concentration increased in cells treated with leaf extracts, and the highest values were detected in 1 % eucalyptus and 2 % elderberry extracts. Fresh weight, total sugar, and protein content significantly increased following exposure of cells to different doses of leaf extracts. However, in doses containing more than 2 % eucalyptus, the upward trend for total sugar and protein ceased and remained statistically unchanged. These results suggest that metabolic modifications enable D. salina cells to tolerate the stress induced by the leaf extracts through allocating carbon flux to the synthesis of osmolytes and putative antioxidant molecules (e.g. sugars and β-carotene. Therefore, the use of leaf extracts holds potential to be a promising and effective way to improve D. salina cultivation for β-carotene production and other biotechnological and industrial applications.

  11. Blue-Green Algae

    Science.gov (United States)

    ... that taking a specific blue-green algae product (Super Blue-Green Algae, Cell Tech, Klamath Falls, OR) ... system. Premenstrual syndrome (PMS). Depression. Digestion. Heart disease. Memory. Wound healing. Other conditions. More evidence is needed ...

  12. Photobiological hydrogen production with the unicellular green alga Chlamydomonas reinhardtii under process engineering aspects; Photobiologische Wasserstoffproduktion mit der einzelligen Gruenalge Chlamydomonas reinhardtii unter verfahrenstechnischen Aspekten

    Energy Technology Data Exchange (ETDEWEB)

    Geier, Stephanie

    2011-07-01

    Hydrogen is of high interest as a clean and environmentally friendly energy source as its combustion only emits water and energy. However, currently hydrogen is produced in energy demanding processes by the consumption of fossil fuels. An alternative way of sustainable and non-polluting hydrogen production could be provided by use of photosynthetic active microalgae. Within this work, the photobiological hydrogen production with the unicellular green algae Chlamydomonas reinhardtii is investigated under the aspects of bioprocess-engineering and economics. Objectives are, besides the increase of the photochemical efficiency, the cultivation of the algae and subsequent hydrogen production under cost-free sunlight. It could be demonstrated that outdoor cultivation of C. reinhardtii is possible in Central Europe throughout the year by using e.g. waste heat. Similar cell numbers in the range from 1,2.10{sup 7} cells ml{sup -1} to 1,7.10{sup 7} cells ml{sup -1} could be achieved in closed photobioreactors of the type Photobioreactor Screening Module under controlled laboratory conditions and both continuous illumination (200 {mu}mol.m{sup -2}.s{sup -1}) and simulated outdoor conditions according to the light intensity of idealized summer day as well as in outdoor experiments (up to 2000 {mu}mol.m{sup -2}.s{sup -1}).The use of 10 % CO{sub 2} corresponding to the CO{sub 2} content in flue gas led to a doubling of cell numbers under continuous illumination to 4,2.10{sup 7} cells ml{sup -1}, compared to the reference culture bubbled with 3 % CO{sub 2}. A significant increase of cell numbers under the light profiles of an idealized summer day could not be achieved. The cultivation under the light profile of a winter day at 25 C reduced cell growth to 54 %, compared to the summer simulation. In open 30 L outdoor ponds, only 0,26.10{sup 7} cells ml{sup -1} could be achieved under photoheterotrophic conditions during the summer months, which corresponds to 20 % of the cell

  13. Using the marine unicellular algae in biological monitoring

    OpenAIRE

    Kapkov V. I.; Shoshina E. V.; Belenikina O. A.

    2017-01-01

    The possibility of using marine unicellular algae from natural plankton community in biomonitoring of pollution by heavy metals has been investigated. Algae of different taxa from the Mediterranean Sea have been allocated to culture. In the laboratory the culture conditions – i. e. growth medium, temperature, photoperiod, level of artificial light and initial density – have been selected for every species. The impact of heavy metals (Hg, Cd, Cu, Pb) in the form of chloride salts on the growth...

  14. Does the cell radioresistance acquired by low dose-rate gamma irradiation depend on genetic factors or physiological changes. Study carried out on inactive cells of the unicellular green alga Chlorella pyrenoidosa CHICK

    International Nuclear Information System (INIS)

    Dettwiller, Pascale.

    1982-09-01

    Inactive cells of the unicellular green alga Chlorella pyrenoidosa CHICK were used to test the following hypothesis: the radioresistance acquired by these cells after irradiation at low dose rate (0.06 Gy/mn) is due to the selection or induction of radioresistant clones. Clone cultures were grown mainly from colonies exhibiting defects (high cell loss, slowed growth, pigment deficiency). Of thirty clones studied, three only of second and third separations possessed the radioresistance of their original population. On the basis of these results, backed up by a first experiment which shows the loss of cell radioresistance when continuous irradiation is stopped, the initial hypothesis may be dismissed and research directed towards changes relative to cell restoration processes by irradiation at low dose rates [fr

  15. Reparation in unicellular green algae during chronic exposure to the action of mutagenic factors. II. Restoration of single-stranded DNA breaks following exposure of Chlamydomonas reinchardii to gamma-irradiation

    International Nuclear Information System (INIS)

    Sergeeva, S.A.; Ptitsina, S.N.; Shevchenko, V.A.

    1986-01-01

    The restoration of single-stranded breaks in the DNA in different strains of unicellular green algae (chlamydomonads) during chronic exposure to the action of mutagenic factors following γ-irradiation was investigated. It was shown that the restoration of DNA breaks was most effective in the case of strain M γ/sup mt + /, which is resistant to radiation. Strains, that were sensitive to UV irradiation showed a similar order of DNA break restoration as the wild-type strain. Strain UVS-1 showed a higher level of restoration than the wild-type strain. The data indicated that chlamydomonads have different pathways of reparation, which lead to the restoration of breaks induced by γ-irradiation and UV-rays

  16. Using the marine unicellular algae in biological monitoring

    Directory of Open Access Journals (Sweden)

    Kapkov V. I.

    2017-06-01

    Full Text Available The possibility of using marine unicellular algae from natural plankton community in biomonitoring of pollution by heavy metals has been investigated. Algae of different taxa from the Mediterranean Sea have been allocated to culture. In the laboratory the culture conditions – i. e. growth medium, temperature, photoperiod, level of artificial light and initial density – have been selected for every species. The impact of heavy metals (Hg, Cd, Cu, Pb in the form of chloride salts on the growth of axenic algae culture has been studied in the modelling experiments. The unicellular marine algae have a very short life cycle, therefore it is possible to use them in the experiments of studying the effect of anthropogenic factors at cellular and population levels on the test-object. With biomonitoring pollution of marine environment by heavy metals and others dangerous toxicants, the major indicators of algae community condition are the cellular cycle and the condition of the photosynthetic apparatus of the cell. The subsequent lysis of cells under the influence of heavy metals leads to the excretion of secondary metabolites which can essentially affect the metal toxicity. The established scales of threshold and lethal concentration of heavy metals for algae of different taxon make it possible to use the ratio of sensitive and resistant species to heavy metals as biological markers when forecasting ecological consequences of pollution of the marine environment by heavy metals. Distinctions in the resistance of different taxon to heavy metals can result in implementing the strategy of selection of test-objects depending on the purposes of the research.

  17. Contribution of arsenic species in unicellular algae to the cycling of arsenic in marine ecosystems.

    Science.gov (United States)

    Duncan, Elliott G; Maher, William A; Foster, Simon D

    2015-01-06

    This review investigates the arsenic species produced by and found in marine unicellular algae to determine if unicellular algae contribute to the formation of arsenobetaine (AB) in higher marine organisms. A wide variety of arsenic species have been found in marine unicellular algae including inorganic species (mainly arsenate--As(V)), methylated species (mainly dimethylarsenate (DMA)), arsenoribosides (glycerol, phosphate, and sulfate) and metabolites (dimethylarsenoethanol (DMAE)). Subtle differences in arsenic species distributions exist between chlorophyte and heterokontophyte species with As(V) commonly found in water-soluble cell fractions of chlorophyte species, while DMA is more common in heterokontophyte species. Additionally, different arsenoriboside species are found in each phyla with glycerol and phosphate arsenoribosides produced by chlorophytes, whereas glycerol, phosphate, and sulfate arsenoribosides are produced by heterokontophytes, which is similar to existing data for marine macro-algae. Although arsenoribosides are the major arsenic species in many marine unicellular algal species, AB has not been detected in unicellular algae which supports the hypothesis that AB is formed in marine animals via the ingestion and further metabolism of arsenoribosides. The observation of significant DMAE concentrations in some unicellular algal cultures suggests that unicellular algae-based detritus contains arsenic species that can be further metabolized to form AB in higher marine organisms. Future research establishing how environmental variability influences the production of arsenic species by marine unicellular algae and what effect this has on arsenic cycling within marine food webs is essential to clarify the role of these organisms in marine arsenic cycling.

  18. Toxicity of selenite in the unicellular green alga Chlamydomonas reinhardtii: Comparison between effects at the population and sub-cellular level

    International Nuclear Information System (INIS)

    Morlon, Helene; Fortin, Claude; Floriani, Magali; Adam, Christelle; Garnier-Laplace, Jacqueline; Boudou, Alain

    2005-01-01

    The toxicity of selenium in aquatic ecosystems is mainly linked to its uptake and biotransformation by micro-organisms, and its subsequent transfer upwards into the food chain. Thus, organisms at low trophic level, such as algae, play a crucial role. The aim of our study was to investigate the biological effects of selenite on Chlamydomonas reinhardtii, both at the sub-cellular level (effect on ultrastructure) and at the population level (effect on growth). The cells were grown under batch culture conditions in well-defined media and exposed to waterborne selenite at concentrations up to 500 μM; i.e. up to lethal conditions. Based on the relationship between Se concentration and cell density achieved after a 96 h exposure period, an EC 50 of 80 μM with a 95% confidence interval ranging between 64 and 98 μM was derived. No adaptation mechanisms were observed: the same toxicity was quantified for algae pre-contaminated with Se. The inhibition of growth was linked to impairments observed at the sub-cellular level. The intensity of the ultrastructural damages caused by selenite exposure depended on the level and duration of exposure. Observations by TEM suggested chloroplasts as the first target of selenite cytotoxicity, with effects on the stroma, thylakoids and pyrenoids. At higher concentrations, we could observe an increase in the number and volume of starch grains. For cells collected at 96 h, electron-dense granules were observed. Energy-dispersive X-ray microanalysis revealed that these granules contained selenium and were also rich in calcium and phosphorus. This study confirms that the direct toxicity of selenite on the phytoplankton biomass is not likely to take place at concentrations found in the environment. At higher concentrations, the link between effects at the sub-cellular and population levels, the over-accumulation of starch, and the formation of dense granules containing selenium are reported for the first time in the literature for a

  19. Life-cycle and genome of OtV5, a large DNA virus of the pelagic marine unicellular green alga Ostreococcus tauri.

    Directory of Open Access Journals (Sweden)

    Evelyne Derelle

    Full Text Available Large DNA viruses are ubiquitous, infecting diverse organisms ranging from algae to man, and have probably evolved from an ancient common ancestor. In aquatic environments, such algal viruses control blooms and shape the evolution of biodiversity in phytoplankton, but little is known about their biological functions. We show that Ostreococcus tauri, the smallest known marine photosynthetic eukaryote, whose genome is completely characterized, is a host for large DNA viruses, and present an analysis of the life-cycle and 186,234 bp long linear genome of OtV5. OtV5 is a lytic phycodnavirus which unexpectedly does not degrade its host chromosomes before the host cell bursts. Analysis of its complete genome sequence confirmed that it lacks expected site-specific endonucleases, and revealed the presence of 16 genes whose predicted functions are novel to this group of viruses. OtV5 carries at least one predicted gene whose protein closely resembles its host counterpart and several other host-like sequences, suggesting that horizontal gene transfers between host and viral genomes may occur frequently on an evolutionary scale. Fifty seven percent of the 268 predicted proteins present no similarities with any known protein in Genbank, underlining the wealth of undiscovered biological diversity present in oceanic viruses, which are estimated to harbour 200Mt of carbon.

  20. Salicylhydroxamic acid (SHAM) inhibition of the DIC-pump in unicellular algae

    International Nuclear Information System (INIS)

    Goyal, A.; Tolbert, N.E.

    1989-01-01

    SHAM at 1 or 2 mM inhibits dissolved inorganic carbon (DIC) concentrating mechanisms in unicellular green algae as measured by photosynthetic oxygen evolution or by 14 C-inorganic carbon uptake (using silicone oil centrifugation techniques). This inhibition was reversed by high levels of DIC whereby the cells do not require the concentrating mechanism. SHAM inhibited the DIC-pump, which uses external CO 2 , in three species of algae, Dunaliella tertiolecta, Chlamydomonas reinhardtii, and Scenedesmus obliquus when adapted to low CO 2 and assayed around neutral pH. Scenedesmus adapted to air at pH 9.0 to use external HCO 3 - were not affected by SHAM. It is important to establish low optimum concentrations of SHAM, which varied with the algal species. The mechanism of SHAM inhibition of the CO 2 concentrating process is unknown. SHAM inhibits alternative respiration in these algae, but SHAM may also inhibit other reactions involving H + gradients or transporters associated with the DIC-pump

  1. Comparison of Protein Extracts from Various Unicellular Green Sources

    NARCIS (Netherlands)

    Teuling, Emma; Wierenga, Peter A.; Schrama, Johan W.; Gruppen, Harry

    2017-01-01

    Photosynthetic unicellular organisms are considered as promising alternative protein sources. The aim of this study is to understand the extent to which these green sources differ with respect to their gross composition and how these differences affect the final protein isolate. Using mild isolation

  2. Persistence and proliferation of some unicellular algae in drinking ...

    African Journals Online (AJOL)

    Drinking water systems have a complex structure and are characterised by the absence of light, the presence of disinfectants and by low levels of nutrients. Several kinds of bacteria, protozoa, algae and fungi can be found in tap water. Little is known about the ecology of algae in drinking water systems, although their ...

  3. Light adaptation of the unicellular red alga, Cyanidioschyzon merolae, probed by time-resolved fluorescence spectroscopy.

    Science.gov (United States)

    Ueno, Yoshifumi; Aikawa, Shimpei; Kondo, Akihiko; Akimoto, Seiji

    2015-08-01

    Photosynthetic organisms change the quantity and/or quality of their pigment-protein complexes and the interactions among these complexes in response to light conditions. In the present study, we analyzed light adaptation of the unicellular red alga Cyanidioschyzon merolae, whose pigment composition is similar to that of cyanobacteria because its phycobilisomes (PBS) lack phycoerythrin. C. merolae were grown under different light qualities, and their responses were measured by steady-state absorption, steady-state fluorescence, and picosecond time-resolved fluorescence spectroscopies. Cells were cultivated under four monochromatic light-emitting diodes (blue, green, yellow, and red), and changes in pigment composition and energy transfer were observed. Cells grown under blue and green light increased their relative phycocyanin levels compared with cells cultured under white light. Energy-transfer processes to photosystem I (PSI) were sensitive to yellow and red light. The contribution of direct energy transfer from PBS to PSI increased only under yellow light, while red light induced a reduction in energy transfer from photosystem II to PSI and an increase in energy transfer from light-harvesting chlorophyll protein complex I to PSI. Differences in pigment composition, growth, and energy transfer under different light qualities are discussed.

  4. Use of Unicellular Algae for Evaluation of Potential Aquatic Contaminants

    Science.gov (United States)

    1981-05-01

    well as long term effects on specific water bodies such as lakes and groundwater basins. Both the hydrazine propellants and the alternative jet fuels... freshwater bioassays was S. capricornutum. Initial investigations of marine waters used Dunaliella tertiolecta as the test organism but the differences in...AFAMRL-TR-80-85 USE OF UNICELLUAR ALGAE FOR EVALUATION OF POTENTIAL AQUATIC CONTAMINANTS JAN SCHERFIG PETER S. DIXON CAROL A. JUSTICE ALBERTO ACEVEDO

  5. Development of Green Fuels From Algae - The University of Tulsa

    Energy Technology Data Exchange (ETDEWEB)

    Crunkleton, Daniel; Price, Geoffrey; Johannes, Tyler; Cremaschi, Selen

    2012-12-03

    The general public has become increasingly aware of the pitfalls encountered with the continued reliance on fossil fuels in the industrialized world. In response, the scientific community is in the process of developing non-fossil fuel technologies that can supply adequate energy while also being environmentally friendly. In this project, we concentrate on green fuels which we define as those capable of being produced from renewable and sustainable resources in a way that is compatible with the current transportation fuel infrastructure. One route to green fuels that has received relatively little attention begins with algae as a feedstock. Algae are a diverse group of aquatic, photosynthetic organisms, generally categorized as either macroalgae (i.e. seaweed) or microalgae. Microalgae constitute a spectacularly diverse group of prokaryotic and eukaryotic unicellular organisms and account for approximately 50% of global organic carbon fixation. The PI's have subdivided the proposed research program into three main research areas, all of which are essential to the development of commercially viable algae fuels compatible with current energy infrastructure. In the fuel development focus, catalytic cracking reactions of algae oils is optimized. In the species development project, genetic engineering is used to create microalgae strains that are capable of high-level hydrocarbon production. For the modeling effort, the construction of multi-scaled models of algae production was prioritized, including integrating small-scale hydrodynamic models of algae production and reactor design and large-scale design optimization models.

  6. Green Algae as Model Organisms for Biological Fluid Dynamics

    Science.gov (United States)

    Goldstein, Raymond E.

    2015-01-01

    In the past decade, the volvocine green algae, spanning from the unicellular Chlamydomonas to multicellular Volvox, have emerged as model organisms for a number of problems in biological fluid dynamics. These include flagellar propulsion, nutrient uptake by swimming organisms, hydrodynamic interactions mediated by walls, collective dynamics and transport within suspensions of microswimmers, the mechanism of phototaxis, and the stochastic dynamics of flagellar synchronization. Green algae are well suited to the study of such problems because of their range of sizes (from 10 μm to several millimeters), their geometric regularity, the ease with which they can be cultured, and the availability of many mutants that allow for connections between molecular details and organism-level behavior. This review summarizes these recent developments and highlights promising future directions in the study of biological fluid dynamics, especially in the context of evolutionary biology, that can take advantage of these remarkable organisms.

  7. Comparison of Protein Extracts from Various Unicellular Green Sources.

    Science.gov (United States)

    Teuling, Emma; Wierenga, Peter A; Schrama, Johan W; Gruppen, Harry

    2017-09-13

    Photosynthetic unicellular organisms are considered as promising alternative protein sources. The aim of this study is to understand the extent to which these green sources differ with respect to their gross composition and how these differences affect the final protein isolate. Using mild isolation techniques, proteins were extracted and isolated from four different unicellular sources (Arthrospira (spirulina) maxima, Nannochloropsis gaditana, Tetraselmis impellucida, and Scenedesmus dimorphus). Despite differences in protein contents of the sources (27-62% w/w) and in protein extractability (17-74% w/w), final protein isolates were obtained that had similar protein contents (62-77% w/w) and protein yields (3-9% w/w). Protein solubility as a function of pH was different between the sources and in ionic strength dependency, especially at pH < 4.0. Overall, the characterization and extraction protocol used allows a relatively fast and well-described isolation of purified proteins from novel protein sources.

  8. Green Algae and the Origins of Multicellularity in the Plant Kingdom

    Science.gov (United States)

    Umen, James G.

    2014-01-01

    The green lineage of chlorophyte algae and streptophytes form a large and diverse clade with multiple independent transitions to produce multicellular and/or macroscopically complex organization. In this review, I focus on two of the best-studied multicellular groups of green algae: charophytes and volvocines. Charophyte algae are the closest relatives of land plants and encompass the transition from unicellularity to simple multicellularity. Many of the innovations present in land plants have their roots in the cell and developmental biology of charophyte algae. Volvocine algae evolved an independent route to multicellularity that is captured by a graded series of increasing cell-type specialization and developmental complexity. The study of volvocine algae has provided unprecedented insights into the innovations required to achieve multicellularity. PMID:25324214

  9. Newly-fixed carbon preferentially flows through starch in the unicellular alga Rhodella

    International Nuclear Information System (INIS)

    Kroen, W.K.; Ramus, J.S.

    1989-01-01

    Cells of the unicellular red alga Rhodella reticulata produce copious amounts of anionic extracellular polysaccharides. Previous experiments, comparing growing and non-growing cells, showed little difference in the pattern of initial 14 C partitioning, with a high percentage of label in starch. Short labelling periods, followed by chasing in unlabelled medium, showed rapid movement of carbon through the starch pool within the first 6 hrs, with an accompanying increase in both the protein and mucilage fractions. The overall pattern of carbon metabolism appears fixed throughout growth of the cells, with total carbon input changing with changing growth phase. As starch is extrachloroplastic in the red algae, input of fixed carbon directly into the starch pool may serve as a routing mechanism to direct subsequent carbon metabolism within the cell

  10. Evaluation of filamentous green algae as feedstocks for biofuel production.

    Science.gov (United States)

    Zhang, Wei; Zhao, Yonggang; Cui, Binjie; Wang, Hui; Liu, Tianzhong

    2016-11-01

    Compared with unicellular microalgae, filamentous algae have high resistance to grazer-predation and low-cost recovery in large-scale production. Green algae, as the most diverse group of algae, included numerous filamentous genera and species. In this study, records of filamentous genera and species in green algae were firstly censused and classified. Then, seven filamentous strains subordinated in different genera were cultivated in bubbled-column to investigate their growth rate and energy molecular (lipid and starch) capacity. Four strains including Stigeoclonium sp., Oedogonium nodulosum, Hormidium sp. and Zygnema extenue were screened out due to their robust growth. And they all could accumulate triacylglycerols and starch in their biomass, but with different capacity. After nitrogen starvation, Hormidium sp. and Oedogonium nodulosum respectively exhibited high capacity of lipid (45.38% in dry weight) and starch (46.19% in dry weight) accumulation, which could be of high potential as feedstocks for biodiesel and bioethanol production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Intracellular chromium localization and cell physiological response in the unicellular alga Micrasterias

    Science.gov (United States)

    Volland, Stefanie; Lütz, Cornelius; Michalke, Bernhard; Lütz-Meindl, Ursula

    2012-01-01

    Various contaminants like metals and heavy metals are constantly released into the environment by anthropogenic activities. The heavy metal chromium has a wide industrial use and exists in two stable oxidation states: trivalent and hexavalent. Chromium can cause harm to cell metabolism and development, when it is taken up by plants instead of necessary micronutrients such as for example iron. The uptake of Cr VI into plant cells has been reported to be an active process via carriers of essential anions, while the cation Cr III seems to be taken up inactively. Micrasterias denticulata, an unicellular green alga of the family Desmidiaceae is a well-studied cell biological model organism. Cr III and VI had inhibiting effects on its cell development, while cell division rates were only impaired by Cr VI. Transmission electron microscopy (TEM) revealed ultrastructural changes such as increased vacuolization, condensed cytoplasm and dark precipitations in the cell wall after 3 weeks of Cr VI treatment. Electron energy loss spectroscopy (EELS) and electron spectroscopic imaging (ESI) were applied to measure intracellular chromium distribution. Chromium was only detected after 3 weeks of 10 μM Cr VI treatment in electron dense precipitations found in bag-like structures along the inner side of the cell walls together with iron and elevated levels of oxygen, pointing toward an accumulation respectively extrusion of chromium in form of an iron–oxygen compound. Atomic emission spectroscopy (EMS) revealed that Micrasterias cells are able to accumulate considerable amounts of chromium and iron. During chromium treatment the Cr:Fe ratio shifted in favor of chromium, which implied that chromium may be taken up instead of iron. Significant and rapid increase of ROS production within the first 5 min of treatment confirms an active Cr VI uptake. SOD and CAT activity after Cr VI treatment did not show a response, while the glutathione pool determined by immuno-TEM decreased

  12. Intracellular chromium localization and cell physiological response in the unicellular alga Micrasterias

    Energy Technology Data Exchange (ETDEWEB)

    Volland, Stefanie, E-mail: Stefanie.Volland@stud.sbg.ac.at [Plant Physiology Division, Cell Biology Department, University of Salzburg, Hellbrunnerstr 34, 5020 Salzburg (Austria); Luetz, Cornelius, E-mail: cornelius.luetz@uibk.ac.at [Institute of Botany, University of Innsbruck, Sternwartestrasse 15, 6020 Innsbruck (Austria); Michalke, Bernhard, E-mail: bernhard.michalke@helmholtz-muenchen.de [Helmholtz Zentrum Muenchen, German Research Centre for Environmental Health, Institute of Ecological Chemistry, Ingolstaedter Landstrasse 1, 85764 Neuherberg (Germany); Luetz-Meindl, Ursula, E-mail: ursula.luetz-meindl@sbg.ac.at [Plant Physiology Division, Cell Biology Department, University of Salzburg, Hellbrunnerstr 34, 5020 Salzburg (Austria)

    2012-03-15

    Various contaminants like metals and heavy metals are constantly released into the environment by anthropogenic activities. The heavy metal chromium has a wide industrial use and exists in two stable oxidation states: trivalent and hexavalent. Chromium can cause harm to cell metabolism and development, when it is taken up by plants instead of necessary micronutrients such as for example iron. The uptake of Cr VI into plant cells has been reported to be an active process via carriers of essential anions, while the cation Cr III seems to be taken up inactively. Micrasterias denticulata, an unicellular green alga of the family Desmidiaceae is a well-studied cell biological model organism. Cr III and VI had inhibiting effects on its cell development, while cell division rates were only impaired by Cr VI. Transmission electron microscopy (TEM) revealed ultrastructural changes such as increased vacuolization, condensed cytoplasm and dark precipitations in the cell wall after 3 weeks of Cr VI treatment. Electron energy loss spectroscopy (EELS) and electron spectroscopic imaging (ESI) were applied to measure intracellular chromium distribution. Chromium was only detected after 3 weeks of 10 {mu}M Cr VI treatment in electron dense precipitations found in bag-like structures along the inner side of the cell walls together with iron and elevated levels of oxygen, pointing toward an accumulation respectively extrusion of chromium in form of an iron-oxygen compound. Atomic emission spectroscopy (EMS) revealed that Micrasterias cells are able to accumulate considerable amounts of chromium and iron. During chromium treatment the Cr:Fe ratio shifted in favor of chromium, which implied that chromium may be taken up instead of iron. Significant and rapid increase of ROS production within the first 5 min of treatment confirms an active Cr VI uptake. SOD and CAT activity after Cr VI treatment did not show a response, while the glutathione pool determined by immuno-TEM decreased

  13. Intracellular chromium localization and cell physiological response in the unicellular alga Micrasterias

    International Nuclear Information System (INIS)

    Volland, Stefanie; Lütz, Cornelius; Michalke, Bernhard; Lütz-Meindl, Ursula

    2012-01-01

    Various contaminants like metals and heavy metals are constantly released into the environment by anthropogenic activities. The heavy metal chromium has a wide industrial use and exists in two stable oxidation states: trivalent and hexavalent. Chromium can cause harm to cell metabolism and development, when it is taken up by plants instead of necessary micronutrients such as for example iron. The uptake of Cr VI into plant cells has been reported to be an active process via carriers of essential anions, while the cation Cr III seems to be taken up inactively. Micrasterias denticulata, an unicellular green alga of the family Desmidiaceae is a well-studied cell biological model organism. Cr III and VI had inhibiting effects on its cell development, while cell division rates were only impaired by Cr VI. Transmission electron microscopy (TEM) revealed ultrastructural changes such as increased vacuolization, condensed cytoplasm and dark precipitations in the cell wall after 3 weeks of Cr VI treatment. Electron energy loss spectroscopy (EELS) and electron spectroscopic imaging (ESI) were applied to measure intracellular chromium distribution. Chromium was only detected after 3 weeks of 10 μM Cr VI treatment in electron dense precipitations found in bag-like structures along the inner side of the cell walls together with iron and elevated levels of oxygen, pointing toward an accumulation respectively extrusion of chromium in form of an iron–oxygen compound. Atomic emission spectroscopy (EMS) revealed that Micrasterias cells are able to accumulate considerable amounts of chromium and iron. During chromium treatment the Cr:Fe ratio shifted in favor of chromium, which implied that chromium may be taken up instead of iron. Significant and rapid increase of ROS production within the first 5 min of treatment confirms an active Cr VI uptake. SOD and CAT activity after Cr VI treatment did not show a response, while the glutathione pool determined by immuno-TEM decreased

  14. Testing nanomaterial toxicity in unicellular eukaryotic algae and fish cell lines.

    Science.gov (United States)

    Kroll, Alexandra; Kühnel, Dana; Schirmer, Kristin

    2013-01-01

    Nanoecotoxicology as a sub-discipline of ecotoxicology aims to identify and predict effects elicited on ecosystems by nano-sized materials (NM). Two key groups of model organisms in this context are algae and fish. In this chapter, we present considerations for testing NM with respect to their impact on unicellular algae and cell lines derived from various organs of fish.Based on currently available literature on NM effects in unicellular algae and fish cell lines, and our own experience, we provide guidance on test design, including principle test considerations, materials, NM presentation to cells, exposure, bioavailability, and effect assessment. Assessment needs to be based on a meaningful choice of exposure scenario(s) related to the research question. As a first step, one needs to address whether effects of NMs are to be investigated under environmentally relevant or probable conditions, which may include processes such as agglomeration, or whether NM effects from mono-dispersed particles are of interest, which may require special steps to ensure stable NM suspension. Moreover, whether effects on cells are to be studied in the short- or long-term is important with regard to experimental design. Preparation of NM suspensions, which can be done in aqueous media different from the exposure medium, is addressed with regard to energy input, sterility (as required for algae and fish cell exposure) and particle purity.Specified for the two model systems, algae and fish cell lines, availability and choice of culture media are presented and discussed with regard to impact on NM behavior. Light, temperature, and agitation, which are variables during exposure, are discussed. We further provide guidance on the characterization of the NM in the chosen aqueous exposure media regarding size, zeta potential and electrophoretic mobility. The state of NM in exposure media is decisive for their bioavailability and therefore for potential particle effects. Therefore, we present

  15. Chromatin structure in the unicellular algae Olisthodiscus luteus, Crypthecodinium cohnii and Peridiniun balticum.

    Science.gov (United States)

    Rizzo, P J; Burghardt, R C

    1980-01-01

    Isolated nuclei of the unicellular alga Olisthodiscus luteus, the uninucleate dinoflagellate Crypthecodinium cohnii and the binucleate dinoflagellate Peridinium balticum were lysed and deposited on grids by the microcentrifugation technique. The ultrastructure of the released chromatin fibers was compared to that of mouse liver nuclei. Chromatin from nuclei of Olisthodiscus luteus and the "eukaryotic" nuclei of Peridinium balticum, appeared as linear arrays of regularly repeating subunits which were identical in size and morphology to mouse nucleosomes. In contrast, the chromatin fibers from Crypthecodinium cohnii nuclei appeared as smoothe threads with a diameter of about 6.5 nm. Nuclear preparations containing mixtures of "dinokaryotic" and "eukaryotic" nuclei of Peridinium balticum also contained smooth fibers which most likely originated from the dinokaryotic nuclei. These and other results demonstrating the presence of nucleosomes in lower eukaryotes suggest that the subunit structure of chromatin arose very early in the evolution of the eukaryotic cell.

  16. Selenite -Se(4)- uptake mechanisms in the unicellular green alga Chlamydomonas reinhardtii: bioaccumulation and effects induced on growth and ultrastructure; Mecanismes de prise en charge du selenite - Se(4)-chez l'algue verte unicellulaire Chlamydomonas reinhardtii. Bioaccumulation et effets induits sur la croissance et l'ultrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Morlon, H

    2005-03-15

    Selenium is an essential element, but becomes very toxic at higher concentrations. It occurs in the environment at concentrations ranging from nM to {mu}M and selenium pollution is a worldwide phenomenon. This works aims at improving the knowledge on the interactions between selenite - Se(IV) - and a freshwater phyto-planktonic organism: the unicellular green algae Chlamydomonas reinhardtii. The aim of the performed experiments were: i) to investigate selenite -Se(IV)- uptake mechanisms in C. reinhardtii, using Se{sup 75} as a tracer in short term exposures (<1 h); ii) to assess selenite toxicity as measured with growth impairment and ultrastructural damage (with EDAX-TEM analysis), using long term exposures (96 h) to stable selenite; iii) to evaluate the bioaccumulation capacity of selenite and its potential links with toxicity. Short-term experiments revealed a negligible adsorption and a time-dependent linear absorption with an estimated absorbed flux of about 0.2 nmol.m{sup -2}.nM{sup -1}.h{sup -1}. The uptake was proportional to ambient levels in a broad range of intermediate concentrations (from nM to {mu}M). However, fluxes were higher at very low concentrations (< nM), and decrease with increasing high concentrations ( > {mu}M), suggesting that a high affinity but rapidly saturated transport mechanism could be used at low concentrations, in parallel with a low affinity mechanism that would only saturate at high concentrations ({approx}mM). The latter could involve transporters used by sulphate and nitrates, as suggested by the inhibition of selenite uptake by those element. Se(IV) speciation changes with pH did not induce significant effect on bioavailability. On the basis of the relationship between Se concentration and maximal cell density achieved, an EC50 of 80 {mu}M ([64; 98]) was derived. No adaptation mechanism were observed as the same the same toxicity was quantified for Se-pre-exposed algae. Observations by TEM suggested chloroplasts as the first

  17. Radiobiological and radioecological studies with the unicellular marine algae Acetabularia, Batophora and Dunaliella

    International Nuclear Information System (INIS)

    Bonotto, S.; Luttke, A.; Strack, S.; Kirchmann, R.; Hoursiangou, D.; Puiseux-Dao, S.

    1980-01-01

    The biological effects of X-rays on the unicellular marine algae Acetabularia mediterranea, Acetabularia peniculus and Batophora oerstedii were studied. Increasing doses of X-rays (0 to 150 kr) were shown to interfere with the main morphogenetic processes of these algae. Labelling experiments with 3 H-thymidine, 3 H-uridine and 3 H-leucine showed that X-rays (50 kr) provoked a strong reduction of DNA, RNA and protein synthesis in the chloroplasts of A. mediterranea. Radioecological studies were also performed showing that Acetabularia cells, grown in the presence of HTO, incorporate a significant amount of 3 H in the total nucleic acid and protein fraction. However, 3 H supplied to Acetabularia in the form of tritiated water was not accumulated. When organically bound 3 H was supplied to Acetabularia or to Dunaliella, a selective accumulation of some substances was observed. Thus the results of this study illustrate the impact of radiation on living organisms and the biological behaviour of 3 H in the aquatic system. (UK)

  18. Selective accumulation of organically bound tritium in the marine unicellular algae Dunaliella bioculata and Acetabularia mediterranea

    International Nuclear Information System (INIS)

    Strack, S.; Kirchmann, R.; Luettke, A.; Bonotto, S.

    1983-01-01

    The marine unicellular algae Dunaliella bioculata and Acetabularia mediterranea have been used to assess the importance of the radioactive contamination by 3 H bound to different organic molecules. We have studied the uptake of 10 different tritiated substances, which are precursors for the cells' main macromolecules: thymidine-methyl- 3 H, adenine-2- 3 H, uridine-5- 3 H, L-leucine-4- 3 H, glycine-2- 3 H, L-arginine-3.4- 3 H, L-aspartic acid-2.3- 3 H, L-phenylalanine-2.3- 3 H, D-glucose-2- 3 H and D-glucose-6- 3 H. Under our experimental conditions, all the tritiated organic molecules are taken up by both algal species. Their intracellular concentration may reach that of the external medium. However, some molecules are selectively accumulated: adenine and leucine in Dunaliella, adenine, arginine and glucose in Acetabularia. Increasing concentrations of adenine and leucine, supplied to the cultures of Dunaliella seem to be without effect on the growth of the algae. (author)

  19. An update on the microRNAs and their targets in unicellular red alga porphyridium cruentum

    International Nuclear Information System (INIS)

    Barozai, M.Y.K.

    2018-01-01

    MicroRNAs (miRNAs) are small, non-coding and regulatory RNAs about approx 21 nucleotides in length. The miRNAs are reported in large number of higher eukaryotic plant species. But very little data of miRNAs in algae is available. Porphyridium cruentum is unicellular red alga famous as a source for polyunsaturated fatty acids, proteins and polysaccharide contents. The present study is aimed to update the microRNAs and their targets in this important algal species. A comparative genomics approach was applied to update the miRNAs in P. cruentum. This effort resulted in a total of 49 miRNAs belonging to 46 families in P. cruentum. Their precursor-miRNAs were observed with a range of 40 to 351 nucleotides (nt). The mature miRNA sequences showed a range of 17-24 nts. The minimum free energies by stem loop structures of these miRNAs are found with an average of -32 Kcalmol-1. A total of 13 targets, including important proteins like; Ribulose-1,5-bisphosphate carboxylase oxygenase, Light-harvesting complex I, Oxygen-evolving enhancer protein, Phycobiliproteins, Granule-bound starch synthase and Carbonic anhydrase were also predicted for these miRNAs. (author)

  20. Development of CO2 fixation system at a sludge incinerator by a unicellular green alga chlorella; Gesui odei shokyaku shisetsu ni okeru kurorera wo mochiita CO2 kotei system no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Misonou, T. [Yamanashi Univ., Yamanashi (Japan). Faculty of Pedagogy; Morimoto, K. [Yamanashi Univ., Yamanashi (Japan). Graduate School; Suzuki, Y. [Yamanashi Univ., Yamanashi (Japan). Faculty of Engineering

    1997-03-05

    Among many environmental problems now the world is facing with, the increase of CO2 concentration in the atmosphere is considered to give rise to many phenomena causing such serious effects as abnormal weather, water shortage, food shortage, etc., hence predictions by climate models are being tried at many places in the world, and any of them predicts a temperature rise due to the increase of gases such as CO2 causing the green house effect. In this article, an experiment has been carried out which cultures chlorella capable of fixing CO2 by using the exhaust gas actually emit from the sludge incinerator inside the South Sewage Purification Center of Kofu City, Yamanashi Prefecture. As a result, it has been theoretically concluded that a CO2 fixation system can be constructed inside the above center, but it is necessary to consider the balance between working electric energy during the system operation and the amount of CO2 fixation by the above system. In case when the electric power from a commercial power plant is used for the operation of the system, such usage becomes meaningless unless the system fixes CO2 more than the CO2 discharge by this power generation. 11 refs., 5 figs., 4 tabs.

  1. Serpins in plants and green algae

    DEFF Research Database (Denmark)

    Roberts, Thomas Hugh; Hejgaard, Jørn

    2008-01-01

    . Serpins have been found in diverse species of the plant kingdom and represent a distinct clade among serpins in multicellular organisms. Serpins are also found in green algae, but the evolutionary relationship between these serpins and those of plants remains unknown. Plant serpins are potent inhibitors...... of mammalian serine proteinases of the chymotrypsin family in vitro but, intriguingly, plants and green algae lack endogenous members of this proteinase family, the most common targets for animal serpins. An Arabidopsis serpin with a conserved reactive centre is now known to be capable of inhibiting...

  2. Heterotrophic bacteria associated with the green alga

    NARCIS (Netherlands)

    Ismail, A.; Ktari, L.; Ahmed, M.; Bolhuis, H.; Bouhaouala-Zahar, B.; Stal, L.J.; Boudabbous, A.; El Bour, M.

    2018-01-01

    Heterotrophic bacteria associated with the green alga Ulva rigida, collected from the coast of Tunisia, were isolated andsubsequently identified by their 16S rRNA gene sequences and by phylogenetic analysis. The 71 isolates belong to four phyla:Proteobacteria (Alpha-and Gamma- subclasses),

  3. Effect of ferrate on green algae removal.

    Science.gov (United States)

    Kubiňáková, Emília; Híveš, Ján; Gál, Miroslav; Fašková, Andrea

    2017-09-01

    Green algae Cladophora aegagropila, present in cooling water of thermal power plants, causes many problems and complications, especially during summer. However, algae and its metabolites are rarely eliminated by common removal methods. In this work, the elimination efficiency of electrochemically prepared potassium ferrate(VI) on algae from cooling water was investigated. The influence of experimental parameters, such as Fe(VI) dosage, application time, pH of the system, temperature and hydrodynamics of the solution on removal efficiency, was optimized. This study demonstrates that algae C. aegagropila can be effectively removed from cooling water by ferrate. Application of ferrate(VI) at the optimized dosage and under the suitable conditions (temperature, pH) leads to 100% removal of green algae Cladophora from the system. Environmentally friendly reduction products (Fe(III)) and coagulation properties favour the application of ferrate for the treatment of water contaminated with studied microorganisms compared to other methods such as chlorination and use of permanganate, where harmful products are produced.

  4. The effect of ionizing radiation with different ionizing density on the uni-cellular Alga Micrasterias denticulate Breb

    International Nuclear Information System (INIS)

    Reubel, B.

    1982-01-01

    The uni-cellular green alga Micrasterias denticulata Breb is very suitable for cytological, ultrastructural investigations as well as for growth studies of cell populations because of its size and its specific cellular pattern. Therefore these cells were investigated for their cell-cycle-dependent reaction to different types of radiation, dose-rates and cumulated doses and compared with results from the literature on radiobiological effects on single cells. Different types of ionizing radiation were used such as gamma rays ( 60 Co, 241 Am), alpha rays ( 241 Am) neutrons ( 252 Cf and 14 MeV-neutrons from a particle-accelerator) and protons (20-MeV-protons from a particle-accelerator). Irradiation with low doses (gamma-, neutron irradiation) did not show any statistically significant results. No effects could be observed after alpha irradiation because of the alpha particles could not penetrate the mucus cover. Irradiation with gamma rays and protons showed statistically significant reversible and irreversible effects. The reversible effect appeared in a dose-dependent division-delay of the populations. The results from literature, cell-cycle observations and ultra-structural investigations point to a block in the G 2 -phase and prolongation of the S-phase. Irreversible irradiation damage is caused by neutron- and proton irradiation. In the first case the length of division delay shows no dose-dependence. In the second case the following cell-cycles are retarded. The dose-effect-curves of proton-irradiations with different dose-rates show a plateau at high doses, which seems to be effected by the turn-on of an additional repair-mechanism. (Author)

  5. Abscisic Acid Participates in the Control of Cell Cycle Initiation Through Heme Homeostasis in the Unicellular Red Alga Cyanidioschyzon merolae.

    Science.gov (United States)

    Kobayashi, Yuki; Ando, Hiroyuki; Hanaoka, Mitsumasa; Tanaka, Kan

    2016-05-01

    ABA is a phytohormone that is synthesized in response to abiotic stresses and other environmental changes, inducing various physiological responses. While ABA has been found in unicellular photosynthetic organisms, such as cyanobacteria and eukaryotic algae, its function in these organisms is poorly understood. Here, we found that ABA accumulated in the unicellular red alga Cyanidioschyzon merolae under conditions of salt stress and that the cell cycle G1/S transition was inhibited when ABA was added to the culture medium. A gene encoding heme-scavenging tryptophan-rich sensory protein-related protein (CmTSPO; CMS231C) was positively regulated by ABA, as in Arabidopsis, and CmTSPO bound heme in vitro. The intracellular content of total heme was increased by addition of ABA, but unfettered heme decreased, presumably due to scavenging by CmTSPO. The inhibition of DNA replication by ABA was negated by addition of heme to the culture medium. Thus, we propose a regulatory role for ABA and heme in algal cell cycle initiation. Finally, we found that a C. merolae mutant that is defective in ABA production was more susceptible to salt stress, indicating the importance of ABA to stress resistance in red algae. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  6. Efficiency of using green algae as biological controllers against toxic ...

    African Journals Online (AJOL)

    Efficiency of using green algae as biological controllers against toxic algal taxa in cultured ... of two green algal species as biological control of the growth of toxic blue-green algae. ... African Journal of Aquatic Science 2014, 39(4): 443–450 ...

  7. Influence of ultraviolet irradiation on nutrient-gleaning capacity of two unicellular algae. [Anacystis nidulans and Chlorella vulgaris

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, H D; Sharma, V; Bisaria, G P

    1975-01-01

    Two unicellular algae, viz., Anacystis nidulans and Chlorella vulgaris, growing in polluted effluents, were isolated in unialgal and bacteria free culture. They were mutagenically exposed to ultraviolet radiation and variant strains endowed with differing capacities for growth and nutrient-gleaning were successfully isolated as distinct clones on agar plates. One such clone each of the two species was tested further and found stable. While these variant strains grew more slowly than untreated controls, statistically significant differences with respect to phosphate and nitrate uptake were found between treated and control strains of the two species.

  8. Neutron activation analysis of several elements in the unicellular alga Cyanidium caldarium irradiated by α particles from neutron captured boron

    International Nuclear Information System (INIS)

    Yamaguchi, Shuho; Oota, Tadachika; Otani, Mayumi; Aso, Sueo

    1984-01-01

    The TRIGA MARK 2 atomic reactor was used not only for instrumental neutron activation analysis (INAA) but also as the irradiation source of α particles derived from the 10 B(n, α) 7 Li reaction for biological samples. The acidophilic and thermophilic unicellular alga (Cyanidium caldarium Geitler) was incubated for 20 hours after irradiation and then its elemental concentrations were analysed by INAA. An increase in the quantities of 56 Mn, 28 Al and 38 Cl, and a decrease of 27 Mg and 42 K were detected in the irradiated cells in contrast to non-irradiated cells. (author)

  9. Origin of the polycomb repressive complex 2 and gene silencing by an E(z) homolog in the unicellular alga Chlamydomonas.

    Science.gov (United States)

    Shaver, Scott; Casas-Mollano, J Armando; Cerny, Ronald L; Cerutti, Heriberto

    2010-05-16

    Polycomb group proteins play an essential role in the maintenance of cell identity and the regulation of development in both animals and plants. The Polycomb Repressive Complex 2 (PRC2) is involved in the establishment of transcriptionally silent chromatin states, in part through its ability to methylate lysine 27 of histone H3 by the Enhancer of zeste [E(z)] subunit. The absence of PRC2 in unicellular model fungi and its function in the repression of genes vital for the development of higher eukaryotes led to the proposal that this complex may have evolved together with the emergence of multicellularity. However, we report here on the widespread presence of PRC2 core subunits in unicellular eukaryotes from the Opisthokonta, Chromalveolata and Archaeplastida supergroups. To gain insight on the role of PRC2 in single celled organisms, we characterized an E(z) homolog, EZH, in the green alga Chlamydomonas reinhardtii. RNAi-mediated suppression of EZH led to defects in the silencing of transgenes and retrotransposons as well as to a global increase in histone post-translational modifications associated with transcriptional activity, such as trimethylation of histone H3 lysine 4 and acetylation of histone H4. On the basis of the parsimony principle, our findings suggest that PRC2 appeared early in eukaryotic evolution, even perhaps in the last unicellular common ancestor of eukaryotes. One of the ancestral roles of PCR2 may have been in defense responses against intragenomic parasites such as transposable elements, prior to being co-opted for lineage specific functions like developmental regulation in multicellular eukaryotes.

  10. Genomic analysis of organismal complexity in the multicellular green alga Volvox carteri

    Energy Technology Data Exchange (ETDEWEB)

    Prochnik, Simon E.; Umen, James; Nedelcu, Aurora; Hallmann, Armin; Miller, Stephen M.; Nishii, Ichiro; Ferris, Patrick; Kuo, Alan; Mitros, Therese; Fritz-Laylin, Lillian K.; Hellsten, Uffe; Chapman, Jarrod; Simakov, Oleg; Rensing, Stefan A.; Terry, Astrid; Pangilinan, Jasmyn; Kapitonov, Vladimir; Jurka, Jerzy; Salamov, Asaf; Shapiro, Harris; Schmutz, Jeremy; Grimwood, Jane; Lindquist, Erika; Lucas, Susan; Grigoriev, Igor V.; Schmitt, Rudiger; Kirk, David; Rokhsar, Daniel S.

    2010-07-01

    Analysis of the Volvox carteri genome reveals that this green alga's increased organismal complexity and multicellularity are associated with modifications in protein families shared with its unicellular ancestor, and not with large-scale innovations in protein coding capacity. The multicellular green alga Volvox carteri and its morphologically diverse close relatives (the volvocine algae) are uniquely suited for investigating the evolution of multicellularity and development. We sequenced the 138 Mb genome of V. carteri and compared its {approx}14,500 predicted proteins to those of its unicellular relative, Chlamydomonas reinhardtii. Despite fundamental differences in organismal complexity and life history, the two species have similar protein-coding potentials, and few species-specific protein-coding gene predictions. Interestingly, volvocine algal-specific proteins are enriched in Volvox, including those associated with an expanded and highly compartmentalized extracellular matrix. Our analysis shows that increases in organismal complexity can be associated with modifications of lineage-specific proteins rather than large-scale invention of protein-coding capacity.

  11. Antibody Production in Plants and Green Algae.

    Science.gov (United States)

    Yusibov, Vidadi; Kushnir, Natasha; Streatfield, Stephen J

    2016-04-29

    Monoclonal antibodies (mAbs) have a wide range of modern applications, including research, diagnostic, therapeutic, and industrial uses. Market demand for mAbs is high and continues to grow. Although mammalian systems, which currently dominate the biomanufacturing industry, produce effective and safe recombinant mAbs, they have a limited manufacturing capacity and high costs. Bacteria, yeast, and insect cell systems are highly scalable and cost effective but vary in their ability to produce appropriate posttranslationally modified mAbs. Plants and green algae are emerging as promising production platforms because of their time and cost efficiencies, scalability, lack of mammalian pathogens, and eukaryotic posttranslational protein modification machinery. So far, plant- and algae-derived mAbs have been produced predominantly as candidate therapeutics for infectious diseases and cancer. These candidates have been extensively evaluated in animal models, and some have shown efficacy in clinical trials. Here, we review ongoing efforts to advance the production of mAbs in plants and algae.

  12. Isolation and Characterization of Blue Green Algae from Egyptian ...

    African Journals Online (AJOL)

    meldemellawy

    2014-02-20

    Feb 20, 2014 ... aminotransferase (AMT) domains of the mycE and ndaF genes (Jungblut et al., 2006) allowing detection of microcystin and nodularin-producing cyanobacteria. MATERIALS AND METHODS. Isolation and cultivation of blue green algae. Blue green algae had been isolated from soil of Rice field in river.

  13. Effects of Selenite on Unicellular Green Microalga Chlorella pyrenoidosa: Bioaccumulation of Selenium, Enhancement of Photosynthetic Pigments, and Amino Acid Production.

    Science.gov (United States)

    Zhong, Yu; Cheng, Jay J

    2017-12-20

    Microalgae were studied as function bioaccumulators of selenium (Se) for food and feed supplement. To investigate the bioaccumulation of Se and its effects on the unicellular green alga Chlorella pyrenoidosa, the algal growth curve, fluorescence parameters, antioxidant enzyme activity, and fatty acid and amino acid profiles were examined. We found that Se at low concentrations (≤40 mg L -1 ) positively promoted algal growth and inhibited lipid peroxidation and intracellular reactive oxygen species. The antioxidative effect was associated with an increase in the levels of glutathione peroxidase, catalase, linolenic acid, and photosynthetic pigments. Meanwhile, a significant increase in amino acid and organic Se content was also detected in the microalgae. In contrast, we found opposite effects in C. pyrenoidosa exposed to >60 mg L -1 Se. The antioxidation and toxicity appeared to be correlated with the bioaccumulation of excess Se. These results provide a better understanding of the effect of Se on green microalgae, which may help in the development of new technological applications for the production of Se-enriched biomass from microalgae.

  14. Origin of land plants: Do conjugating green algae hold the key?

    Directory of Open Access Journals (Sweden)

    Melkonian Michael

    2011-04-01

    Full Text Available Abstract Background The terrestrial habitat was colonized by the ancestors of modern land plants about 500 to 470 million years ago. Today it is widely accepted that land plants (embryophytes evolved from streptophyte algae, also referred to as charophycean algae. The streptophyte algae are a paraphyletic group of green algae, ranging from unicellular flagellates to morphologically complex forms such as the stoneworts (Charales. For a better understanding of the evolution of land plants, it is of prime importance to identify the streptophyte algae that are the sister-group to the embryophytes. The Charales, the Coleochaetales or more recently the Zygnematales have been considered to be the sister group of the embryophytes However, despite many years of phylogenetic studies, this question has not been resolved and remains controversial. Results Here, we use a large data set of nuclear-encoded genes (129 proteins from 40 green plant taxa (Viridiplantae including 21 embryophytes and six streptophyte algae, representing all major streptophyte algal lineages, to investigate the phylogenetic relationships of streptophyte algae and embryophytes. Our phylogenetic analyses indicate that either the Zygnematales or a clade consisting of the Zygnematales and the Coleochaetales are the sister group to embryophytes. Conclusions Our analyses support the notion that the Charales are not the closest living relatives of embryophytes. Instead, the Zygnematales or a clade consisting of Zygnematales and Coleochaetales are most likely the sister group of embryophytes. Although this result is in agreement with a previously published phylogenetic study of chloroplast genomes, additional data are needed to confirm this conclusion. A Zygnematales/embryophyte sister group relationship has important implications for early land plant evolution. If substantiated, it should allow us to address important questions regarding the primary adaptations of viridiplants during the

  15. Dinitrogen fixation by blue-green algae from paddy fields

    International Nuclear Information System (INIS)

    Thomas, Joseph

    1977-01-01

    Recent work using radioactive nitrogen on the blue-green algae of paddy fields has been reviewed. These algae fix dinitrogen and photoassimilate carbon evolving oxygen, thereby augmenting nitrogen and carbon status of the soil and also providing oxygen to the water-logged rice paddies. Further studies using radioactive isotopes 13 N, 24 Na and 22 Na on their nitrogen fixation, nitrogen assimilation pathways; regulation of nitrogenase, heterocysts production and sporulation and sodium transport and metabolism have been carried out and reported. The field application of blue green algae for N 2 fixation was found to increase the status of soil nitrogen and yield of paddy. (M.G.B.)

  16. Phycobiliproteins: A Novel Green Tool from Marine Origin Blue-Green Algae and Red Algae.

    Science.gov (United States)

    Chandra, Rashmi; Parra, Roberto; Iqbal, Hafiz M N

    2017-01-01

    Marine species are comprising about a half of the whole global biodiversity; the sea offers an enormous resource for novel bioactive compounds. Several of the marine origin species show multifunctional bioactivities and characteristics that are useful for a discovery and/or reinvention of biologically active compounds. For millennia, marine species that includes cyanobacteria (blue-green algae) and red algae have been targeted to explore their enormous potential candidature status along with a wider spectrum of novel applications in bio- and non-bio sectors of the modern world. Among them, cyanobacteria are photosynthetic prokaryotes, phylogenetically a primitive group of Gramnegative prokaryotes, ranging from Arctic to Antarctic regions, capable of carrying out photosynthesis and nitrogen fixation. In the recent decade, a great deal of research attention has been paid on the pronouncement of bio-functional proteins along with novel peptides, vitamins, fine chemicals, renewable fuel and bioactive compounds, e.g., phycobiliproteins from marine species, cyanobacteria and red algae. Interestingly, they are extensively commercialized for natural colorants in food and cosmetics, antimicrobial, antioxidant, anti-inflammatory, neuroprotective, hepatoprotective agents and fluorescent neo-glycoproteins as probes for single particle fluorescence imaging fluorescent applications in clinical and immunological analysis. However, a comprehensive knowledge and technological base for augmenting their commercial utilities are lacking. Therefore, this paper will provide an overview of the phycobiliproteins-based research literature from marine cyanobacteria and red algae. This review is also focused towards analyzing global and commercial activities with application oriented-based research. Towards the end, the information is also given on the potential biotechnological and biomedical applications of phycobiliproteins. Copyright© Bentham Science Publishers; For any queries, please

  17. The Effect of DNA and Sodium Cholate Dispersed Single-Walled Carbon Nano tubes on the Green Algae Chlamydomonas reinhardtii

    International Nuclear Information System (INIS)

    Williams, R.M.; Cox, Z.; Dolash, B.D.; Sooter, L.J.; Williams, R.M.; Taylor, H.K.; Thomas, J.

    2014-01-01

    Increasing use of single-walled carbon nano tubes (SWCNTs) will lead to their increased release into the environment. Previous work has shown negative effects of SWCNT on growth and survival of model organisms. The aim of the current study was to determine the effect of SWCNT well-dispersed by either DNA or sodium cholate (SC) on the unicellular green algae Chlamydomonas reinhardtii in stagnant water conditions. Growth measurements were taken up to ten days for algae treated with varied levels of DNA:SWCNT or SC:SWCNT or controls, and chlorophyll content after 10 days was determined. Results show no effect on either growth or chlorophyll content of algae at any concentration or duration. This is in contradiction to prior work showing toxicity of SWCNT to environmental model organisms.

  18. Hyperspectral imaging of snow algae and green algae from aeroterrestrial habitats.

    Science.gov (United States)

    Holzinger, Andreas; Allen, Michael C; Deheyn, Dimitri D

    2016-09-01

    Snow algae and green algae living in aeroterrestrial habitats are ideal objects to study adaptation to high light irradiation. Here, we used a detailed description of the spectral properties as a proxy for photo-acclimation/protection in snow algae (Chlamydomonas nivalis, Chlainomonas sp. and Chloromonas sp.) and charophyte green algae (Zygnema sp., Zygogonium ericetorum and Klebsormidium crenulatum). The hyperspectral microscopic mapping and imaging technique allowed us to acquire total absorption spectra of these microalgae in the waveband of 400-900nm. Particularly in Chlamydomonas nivalis and Chlainomonas sp., a high absorbance between 400-550nm was observed, due to naturally occurring secondary carotenoids; in Chloromonas sp. and in the charopyhte algae this high absorbance was missing, the latter being close relatives to land plants. To investigate if cellular water loss has an influence on the spectral properties, the cells were plasmolysed in sorbitol or desiccated at ambient air. While in snow algae, these treatments did hardly change the spectral properties, in the charopyhte algae the condensation of the cytoplasm and plastids increased the absorbance in the lower waveband of 400-500nm. These changes might be ecologically relevant and photoprotective, as aeroterrestrial algae are naturally exposed to occasional water limitation, leading to desiccation, which are conditions usually occurring together with higher irradiation. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Screening for unicellular algae as possible bioassay organisms for monitoring marine water samples.

    Science.gov (United States)

    Millán de Kuhn, Rosmary; Streb, Christine; Breiter, Roman; Richter, Peter; Neesse, Thomas; Häder, Donat-Peter

    2006-08-01

    ECOTOX is an automatic early warning system to monitor potential pollution of freshwater, municipal or industrial waste waters or aquatic ecosystems. It is based on a real time image analysis of the motility and orientation parameters of the unicellular, photosynthetic flagellate Euglena gracilis. In order to widen the use of the device to marine habitats and saline waters nine marine flagellates were evaluated as putative bioassay organisms, viz. Dunaliella salina, Dunaliella viridis, Dunaliella bardawil, Prorocentrum minimum Kattegat, P. minimum Lissabon, Tetraselmis suecica, Heterocapsa triquetra, Gyrodinium dorsum and Cryptomonas maculata. Because of their slow growth the last three strains were excluded from further evaluation. Selection criteria were ease of culture, density of cell suspension, stability of motility and gravitactic orientation. The sensitivity toward toxins was tested using copper(II) ions. The instrument allows the user to automatically determine effect-concentration (EC) curves from which the EC(50) values can be calculated. For the interpretation of the EC curves a sigmoid logistic model was proposed which proved to be satisfactory for all tested strains. The inhibition of the motility was considered as the most appropriate movement parameter as an endpoint. The Dunaliella species had the lowest sensitivity to copper with EC(50) values of 220, 198 and 176 mg/L for D. salina, D. bardawil and D. viridis, respectively, followed by T. suecica with an EC(50) value of 40 mg/L. The Prorocentrum species were found to be the most sensitive with an EC(50) value of 13.5 mg/L for P. minimum Lissabon and 7.5 mg/L for P. minimum Kattegat.

  20. The Biology of blue-green algae

    National Research Council Canada - National Science Library

    Carr, Nicholas G; Whitton, B. A

    1973-01-01

    .... Their important environmental roles, their part in nitrogen fixation and the biochemistry of phototrophic metabolism are some of the attractions of blue-geen algae to an increasing number of biologists...

  1. Evolution of Individuality: A Case Study in the Volvocine Green Algae

    Directory of Open Access Journals (Sweden)

    Erik R. Hanschen

    2017-01-01

    Full Text Available While numerous criteria have been proposed in definitions of biological individuality, it is not clear whether these criteria reflect the evolutionary processes that underlie transitions in individuality. We consider the evolution of individuality during the transition from unicellular to multicellular life. We assume that “individuality” (however it is defined has changed in the volvocine green algae lineage during the transition from single cells, to simple multicellular colonies with four to one hundred cells, to more complex multicellular organisms with thousands of differentiated cells. We map traits associated with the various proposed individuality criteria onto volvocine algae species thought to be similar to ancestral forms arising during this transition in individuality. We find that the fulfillment of some criteria, such as genetic homogeneity and genetic uniqueness, do not change across species, while traits underpinning other aspects of individuality, including degrees of integration, group-level fitness and adaptation, and group indivisibility, change dramatically. We observe that different kinds of individuals likely exist at different levels of organization (cell and group in the same species of algae. Future research should focus on the causes and consequences of variation in individuality.

  2. Carbon Partitioning in Green Algae (Chlorophyta and the Enolase Enzyme

    Directory of Open Access Journals (Sweden)

    Jürgen E. W. Polle

    2014-08-01

    Full Text Available The exact mechanisms underlying the distribution of fixed carbon within photoautotrophic cells, also referred to as carbon partitioning, and the subcellular localization of many enzymes involved in carbon metabolism are still unknown. In contrast to the majority of investigated green algae, higher plants have multiple isoforms of the glycolytic enolase enzyme, which are differentially regulated in higher plants. Here we report on the number of gene copies coding for the enolase in several genomes of species spanning the major classes of green algae. Our genomic analysis of several green algae revealed the presence of only one gene coding for a glycolytic enolase [EC 4.2.1.11]. Our predicted cytosolic localization would require export of organic carbon from the plastid to provide substrate for the enolase and subsequent re-import of organic carbon back into the plastids. Further, our comparative sequence study of the enolase and its 3D-structure prediction may suggest that the N-terminal extension found in green algal enolases could be involved in regulation of the enolase activity. In summary, we propose that the enolase represents one of the crucial regulatory bottlenecks in carbon partitioning in green algae.

  3. EFFECT OF BLUE GREEN ALGAE ON SOIL NITROGEN

    African Journals Online (AJOL)

    Yagya Prasad Paudel

    2012-07-31

    Jul 31, 2012 ... associated with soil dessication at the end of the cultivation cycle and algal growth ... blue-green algae (BGA) on soil nitrogen was carried out from June to December 2005. .... Nitrogen fixation by free living Micro-organisms.

  4. Fatty acid amides from freshwater green alga Rhizoclonium hieroglyphicum.

    Science.gov (United States)

    Dembitsky, V M; Shkrob, I; Rozentsvet, O A

    2000-08-01

    Freshwater green algae Rhizoclonium hieroglyphicum growing in the Ural Mountains were examined for their fatty acid amides using capillary gas chromatography-mass spectrometry (GC-MS). Eight fatty acid amides were identified by GC-MS. (Z)-9-octadecenamide was found to be the major component (2.26%).

  5. Deletion of CGLD1 Impairs PSII and Increases Singlet Oxygen Tolerance of Green Alga Chlamydomonas reinhardtii

    Directory of Open Access Journals (Sweden)

    Jiale Xing

    2017-12-01

    Full Text Available The green alga Chlamydomonas reinhardtii is a key model organism for studying photosynthesis and oxidative stress in unicellular eukaryotes. Using a forward genetics approach, we have identified and characterized a mutant x32, which lacks a predicted protein named CGLD1 (Conserved in Green Lineage and Diatom 1 in GreenCut2, under normal and stress conditions. We show that loss of CGLD1 resulted in minimal photoautotrophic growth and PSII activity in the organism. We observed reduced amount of PSII complex and core subunits in the x32 mutant based on blue-native (BN/PAGE and immunoblot analysis. Moreover, x32 exhibited increased sensitivity to high-light stress and altered tolerance to different reactive oxygenic species (ROS stress treatments, i.e., decreased resistance to H2O2/or tert-Butyl hydroperoxide (t-BOOH and increased tolerance to neutral red (NR and rose bengal (RB that induce the formation of singlet oxygen, respectively. Further analysis via quantitative real-time PCR (qRT-PCR indicated that the increased singlet-oxygen tolerance of x32 was largely correlated with up-regulated gene expression of glutathione-S-transferases (GST. The phenotypical and physiological implications revealed from our experiments highlight the important roles of CGLD1 in maintaining structure and function of PSII as well as in protection of Chlamydomonas under photo-oxidative stress conditions.

  6. Alternative photosynthetic electron transport pathways during anaerobiosis in the green alga Chlamydomonas reinhardtii.

    Science.gov (United States)

    Hemschemeier, Anja; Happe, Thomas

    2011-08-01

    Oxygenic photosynthesis uses light as energy source to generate an oxidant powerful enough to oxidize water into oxygen, electrons and protons. Upon linear electron transport, electrons extracted from water are used to reduce NADP(+) to NADPH. The oxygen molecule has been integrated into the cellular metabolism, both as the most efficient electron acceptor during respiratory electron transport and as oxidant and/or "substrate" in a number of biosynthetic pathways. Though photosynthesis of higher plants, algae and cyanobacteria produces oxygen, there are conditions under which this type of photosynthesis operates under hypoxic or anaerobic conditions. In the unicellular green alga Chlamydomonas reinhardtii, this condition is induced by sulfur deficiency, and it results in the production of molecular hydrogen. Research on this biotechnologically relevant phenomenon has contributed largely to new insights into additional pathways of photosynthetic electron transport, which extend the former concept of linear electron flow by far. This review summarizes the recent knowledge about various electron sources and sinks of oxygenic photosynthesis besides water and NADP(+) in the context of their contribution to hydrogen photoproduction by C. reinhardtii. This article is part of a Special Issue entitled: Regulation of Electron Transport in Chloroplasts. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Cycloartane triterpenes from marine green alga Cladophora fascicularis

    Science.gov (United States)

    Huang, Xinping; Zhu, Xiaobin; Deng, Liping; Deng, Zhiwei; Lin, Wenhan

    2006-12-01

    Six cycloartanes were isolated from ethanol extract of marine green alga Cladophora fascicularis by column chromatography. Procedure of isolation and description of these compounds are given in this paper. The structures were elucidated as (1). 24-hydroperoxycycloart-25- en-3β-ol; (2). cycloart-25-en-3β 24-diol; (3). 25-hydroperoxycycloart-23-en-3β-ol; (4). cycloart-23-en-3β, 25-diol; (5). cycloart-23, 25-dien-3β-ol; and (6). cycloart-24-en-3β-ol by spectroscopic (MS, ID and 2D NMR) data analysis. Cycloartane derivatives are widely distributed in terrestrial plants, but only few were obtained in the alga. All these compounds that have been isolated from terrestrial plants, were found in the marine alga for the first time.

  8. The Green Berry Consortia of the Sippewissett Salt Marsh: Millimeter-Sized Aggregates of Diazotrophic Unicellular Cyanobacteria.

    Science.gov (United States)

    Wilbanks, Elizabeth G; Salman-Carvalho, Verena; Jaekel, Ulrike; Humphrey, Parris T; Eisen, Jonathan A; Buckley, Daniel H; Zinder, Stephen H

    2017-01-01

    Microbial interactions driving key biogeochemical fluxes often occur within multispecies consortia that form spatially heterogeneous microenvironments. Here, we describe the "green berry" consortia of the Sippewissett salt marsh (Falmouth, MA, United States): millimeter-sized aggregates dominated by an uncultured, diazotrophic unicellular cyanobacterium of the order Chroococcales (termed GB-CYN1). We show that GB-CYN1 is closely related to Crocosphaera watsonii (UCYN-B) and " Candidatus Atelocyanobacterium thalassa" (UCYN-A), two groups of unicellular diazotrophic cyanobacteria that play an important role in marine primary production. Other green berry consortium members include pennate diatoms and putative heterotrophic bacteria from the Alphaproteobacteria and Bacteroidetes . Tight coupling was observed between photosynthetic oxygen production and heterotrophic respiration. When illuminated, the green berries became supersaturated with oxygen. From the metagenome, we observed that GB-CYN1 encodes photosystem II genes and thus has the metabolic potential for oxygen production unlike UCYN-A. In darkness, respiratory activity rapidly depleted oxygen creating anoxia within the aggregates. Metagenomic data revealed a suite of nitrogen fixation genes encoded by GB-CYN1, and nitrogenase activity was confirmed at the whole-aggregate level by acetylene reduction assays. Metagenome reads homologous to marker genes for denitrification were observed and suggest that heterotrophic denitrifiers might co-occur in the green berries, although the physiology and activity of facultative anaerobes in these aggregates remains uncharacterized. Nitrogen fixation in the surface ocean was long thought to be driven by filamentous cyanobacterial aggregates, though recent work has demonstrated the importance of unicellular diazotrophic cyanobacteria (UCYN) from the order Chroococcales. The green berries serve as a useful contrast to studies of open ocean UCYN and may provide a tractable

  9. Green Algae from Coal Bed Methane Ponds as a Source of Fertilizer for Economically Important Plants of Montana

    Science.gov (United States)

    Ogunsakin, O. R.; Apple, M. E.; Zhou, X.; Peyton, B.

    2016-12-01

    The Tongue River Basin of northeastern Wyoming and southeastern Montana is the location of natural gas reserves and coal bed methane (CBM) acreage. Although the water that emanates from CBM extraction varies with site, it is generally of higher quality than the waters produced by conventional oil and gas wells, in part because it is low in volatile organic compounds. However, since CBM water contains dissolved solids, including sodium (Na), bicarbonate (HCO3) and chloride (Cl) ions, the water must be treated before it can be discharged into the river or wetlands, or used for stock ponds or irrigation. Several ponds have been constructed to serve as a holding facility for CBM water. Algae from the CBM ponds of the Tongue River Basin have the potential to be utilized as fertilizer on economically important plants of Montana. Two very important crop plants of Montana are wheat, Triticum aestivum, and potatoes, Solanum tuberosum. To explore this potential, isolates of unicellular green algae (Chlorella sp.) from the CBM ponds were cultured in aerated vessels with Bold's Basic Growth Medium and natural and/or supplemental light. Algal biomass was condensed in and collected from a valved funnel, after which cell density was determined via light microscopy and a hemacytometer. Algal/water slurries with known nutrient contents were added to seedlings of hard winter wheat, T.aestivum, grown in a greenhouse for three months before harves. When compared to wheat provided with just water, or with water and a commercially available fertilizer, the wheat fertilized with algae had a higher chlorophyll content, more tillers (side shoots), and a higher ratio of influorescences (groups of flowers) per stem. In a related experiment, Ranger Russet seed potatoes, S. tuberosum were given just water, water and Hoagland's nutrient solution, or water with algae in order to compare aboveground growth and potato production among the treatments. The results of this study suggest that

  10. Phytotoxicity, bioaccumulation and degradation of isoproturon in green algae.

    Science.gov (United States)

    Bi, Yan Fang; Miao, Shan Shan; Lu, Yi Chen; Qiu, Chong Bin; Zhou, You; Yang, Hong

    2012-12-01

    Isoproturon (IPU) is a pesticide used for protection of land crops from weed or pathogen attack. Recent survey shows that IPU has been detected as a contaminant in aquatic systems and may have negative impact on aquatic organisms. To understand the phytotoxicity and potential accumulation and degradation of IPU in algae, a comprehensive study was performed with the green alga Chlamydomonas reinhardtii. Algae exposed to 5-50 μg L(-1) IPU for 3d displayed progressive inhibition of cell growth and reduced chlorophyll fluorescence. Time-course experiments with 25 μg L(-1) IPU for 6d showed similar growth responses. The 72 h EC50 value for IPU was 43.25 μg L(-1), NOEC was 5 μg L(-1) and LOEC was 15 μg L(-1). Treatment with IPU induced oxidative stress. This was validated by a group of antioxidant enzymes, whose activities were promoted by IPU exposure. The up-regulation of several genes coding for the enzymes confirmed the observation. IPU was shown to be readily accumulated by C. reinhardtii. However, the alga showed a weak ability to degrade IPU accumulated in its cells, which was best presented at the lower concentration (5 μg L(-1)) of IPU in the medium. The imbalance of accumulation and degradation of IPU may be the cause that resulted in the detrimental growth and cellular damage. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. In the presence of fluoride, free Sc³⁺ is not a good predictor of Sc bioaccumulation by two unicellular algae: possible role of fluoro-complexes.

    Science.gov (United States)

    Crémazy, Anne; Campbell, Peter G C; Fortin, Claude

    2014-08-19

    We investigated the effect of fluoride complexation on scandium accumulation by two unicellular algae, Chlamydomonas reinhardtii and Pseudokirchneriella subcapitata. This trivalent metal was selected for its chemical similarities with aluminum and for its convenient radioisotope (Sc-46), which can be used as a tracer in short-term bioaccumulation studies. Scandium surface-bound concentrations (Sc(ads)) and uptake fluxes (J(int)) were estimated in the two algae over short-term (organisms.

  12. Robust Transgene Expression from Bicistronic mRNA in the Green Alga Chlamydomonas reinhardtii

    Directory of Open Access Journals (Sweden)

    Masayuki Onishi

    2016-12-01

    Full Text Available The unicellular green alga Chlamydomonas reinhardtii is a model organism that provides an opportunity to understand the evolution and functional biology of the lineage that includes the land plants, as well as aspects of the fundamental core biology conserved throughout the eukaryotic phylogeny. Although many tools are available to facilitate genetic, molecular biological, biochemical, and cell biological studies in Chlamydomonas, expression of unselected transgenes of interest (GOIs has been challenging. In most methods used previously, the GOI and a selectable marker are expressed from two separate mRNAs, so that their concomitant expression is not guaranteed. In this study, we developed constructs that allow expression of an upstream GOI and downstream selectable marker from a single bicistronic mRNA. Although this approach in other systems has typically required a translation-enhancing element such as an internal ribosome entry site for the downstream marker, we found that a short stretch of unstructured junction sequence was sufficient to obtain adequate expression of the downstream gene, presumably through post-termination reinitiation. With this system, we obtained robust expression of both endogenous and heterologous GOIs, including fluorescent proteins and tagged fusion proteins, in the vast majority of transformants, thus eliminating the need for tedious secondary screening for GOI-expressing transformants. This improved efficiency should greatly facilitate a variety of genetic and cell-biological studies in Chlamydomonas and also enable new applications such as expression-based screens and large-scale production of foreign proteins.

  13. Evidence for dark repair of far ultraviolet light damage in the blue-green alga, Gloeocapsa alpicola

    International Nuclear Information System (INIS)

    Williams, E.; Lambert, J.; O'Brien, P.; Houghton, J.A.

    1979-01-01

    The inactivating effect of far UV light on the unicellular blue-green alga Gloeocapsa alpicola could be totally reversed by exposure to blue light immediately after irradiation. However, if the irradiated cells were held in the dark before exposure to blue light, reversal became progressively less efficient, and almost disappeared after 60-80 h holding. Caffeine and acriflavine inhibited loss of photoreversibility, suggesting an involvement of excision functions. Chloramphenicol and rifampicin slightly increased the rate of loss of photoreversibility, indicating that inducible functions play only a minor role. Split UV dose experiments indicated that light-dependent repair remained operational during dark liquid holding. These results provide preliminary evidence for dark repair in G. alpicola. (author)

  14. Dinitrogen fixation by blue-green algae from paddy fields

    International Nuclear Information System (INIS)

    Thomas, J.

    1978-01-01

    Fluorescence emission spectra at 77K of isolated heterocysts of Anabaena L-31 do not show F685-695 but rather F715-730, thus confirming the absence of photosystem II and the presence of photosystem I. Recent work using radioactive nitrogen has been collated and a tentative scheme is outlined indicating the location of the enzymes and the pathways involved in the initial assimilation of nitrogen in blue-green algae. Glutamine synthetase extracted from heterocysts of Anabaena L-31 does not exhibit the adenylylation/deadenylylation phenomenon characteristic of the enzyme from bacteria. Our recent experiments suggest that nitrogenase in Anabaena is under dual control by glutamic acid and aspartic acid, the former inhibiting the enzyme synthesis and the latter relieving the inhibition. Two extracellular polypeptides have been obtained from this alga, one of which inhibits heterocyst formation whereas the other enhances heterocyst formation and partially relieves the inhibitory effect of the former. An extracellular substance, possibly a glycopeptide, has been obtained from A. torulosa, which stimulates sporulation. Studies with 24 Na and 22 Na indicate that A. torulosa, an alga from saline habitats, has an active photosynthesis-linked mechanism for the extrusion of sodium. Sodium is essential for optimum nitrogenase activity and growth. In field experiments inoculation with Nostoc 4 resulted in substantial increase in soil nitrogen. Paddy yield was comparable to those plots where 80kg N/ha of urea was used. (author)

  15. Sensitivity of the green algae Chlamydomonas reinhardtii to gamma radiation: Photosynthetic performance and ROS formation

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Tânia, E-mail: tania.gomes@niva.no [Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Gaustadalléen 21, N-0349, Oslo (Norway); Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Post Box 5003, N-1432 Ås (Norway); Xie, Li [Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Gaustadalléen 21, N-0349, Oslo (Norway); Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Post Box 5003, N-1432 Ås (Norway); Brede, Dag; Lind, Ole-Christian [Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Post Box 5003, N-1432 Ås (Norway); Department for Environmental Sciences, Faculty of Environmental Science & Technology, Norwegian University of Life Sciences (NMBU), Post Box 5003, N-1432, Ås (Norway); Solhaug, Knut Asbjørn [Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Post Box 5003, N-1432 Ås (Norway); Department of Ecology and Natural Resource Management, Norwegian University of Life Sciences (NMBU), Postbox 5003, N-1432, Ås (Norway); Salbu, Brit [Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Post Box 5003, N-1432 Ås (Norway); Department for Environmental Sciences, Faculty of Environmental Science & Technology, Norwegian University of Life Sciences (NMBU), Post Box 5003, N-1432, Ås (Norway); and others

    2017-02-15

    Highlights: • Chlorophyll fluorescence parameters affected at higher dose rates. • Changes in PSII associated with electron transport and energy dissipation pathways. • Dose-dependent ROS production in algae exposed to gamma radiation. • Decrease in photosynthetic efficiency connected to ROS formation. - Abstract: The aquatic environment is continuously exposed to ionizing radiation from both natural and anthropogenic sources, making the characterization of ecological and health risks associated with radiation of large importance. Microalgae represent the main source of biomass production in the aquatic ecosystem, thus becoming a highly relevant biological model to assess the impacts of gamma radiation. However, little information is available on the effects of gamma radiation on microalgal species, making environmental radioprotection of this group of species challenging. In this context, the present study aimed to improve the understanding of the effects and toxic mechanisms of gamma radiation in the unicellular green algae Chlamydomonas reinhardtii focusing on the activity of the photosynthetic apparatus and ROS formation. Algal cells were exposed to gamma radiation (0.49–1677 mGy/h) for 6 h and chlorophyll fluorescence parameters obtained by PAM fluorometry, while two fluorescent probes carboxy-H{sub 2}DFFDA and DHR 123 were used for the quantification of ROS. The alterations seen in functional parameters of C. reinhardtii PSII after 6 h of exposure to gamma radiation showed modifications of PSII energy transfer associated with electron transport and energy dissipation pathways, especially at the higher dose rates used. Results also showed that gamma radiation induced ROS in a dose-dependent manner under both light and dark conditions. The observed decrease in photosynthetic efficiency seems to be connected to the formation of ROS and can potentially lead to oxidative stress and cellular damage in chloroplasts. To our knowledge, this is the first

  16. Sensitivity of the green algae Chlamydomonas reinhardtii to gamma radiation: Photosynthetic performance and ROS formation

    International Nuclear Information System (INIS)

    Gomes, Tânia; Xie, Li; Brede, Dag; Lind, Ole-Christian; Solhaug, Knut Asbjørn; Salbu, Brit

    2017-01-01

    Highlights: • Chlorophyll fluorescence parameters affected at higher dose rates. • Changes in PSII associated with electron transport and energy dissipation pathways. • Dose-dependent ROS production in algae exposed to gamma radiation. • Decrease in photosynthetic efficiency connected to ROS formation. - Abstract: The aquatic environment is continuously exposed to ionizing radiation from both natural and anthropogenic sources, making the characterization of ecological and health risks associated with radiation of large importance. Microalgae represent the main source of biomass production in the aquatic ecosystem, thus becoming a highly relevant biological model to assess the impacts of gamma radiation. However, little information is available on the effects of gamma radiation on microalgal species, making environmental radioprotection of this group of species challenging. In this context, the present study aimed to improve the understanding of the effects and toxic mechanisms of gamma radiation in the unicellular green algae Chlamydomonas reinhardtii focusing on the activity of the photosynthetic apparatus and ROS formation. Algal cells were exposed to gamma radiation (0.49–1677 mGy/h) for 6 h and chlorophyll fluorescence parameters obtained by PAM fluorometry, while two fluorescent probes carboxy-H 2 DFFDA and DHR 123 were used for the quantification of ROS. The alterations seen in functional parameters of C. reinhardtii PSII after 6 h of exposure to gamma radiation showed modifications of PSII energy transfer associated with electron transport and energy dissipation pathways, especially at the higher dose rates used. Results also showed that gamma radiation induced ROS in a dose-dependent manner under both light and dark conditions. The observed decrease in photosynthetic efficiency seems to be connected to the formation of ROS and can potentially lead to oxidative stress and cellular damage in chloroplasts. To our knowledge, this is the first report

  17. Methane production from marine, green macro-algae

    Energy Technology Data Exchange (ETDEWEB)

    Hansson, G.

    1983-01-01

    Fermentation studies have been carried out to produce methane from green algae native to Scandinavian water and suitable for large scale cultivation. Long term semi-continuous fermentations during mesophilic and thermophilic conditions were performed as well as batch fermentations in flasks and syringes. A mixed inoculum was prepared from sediments, rotting seaweed, sewage sludge and rumen contents. Methane production from the seaweed substrate, consisting of ground green algae without any nutrient additions, started immediately in this culture, mesophilicly as well as thermophilicly. Fermentations were carried out with retention times from 27 to 11 days and loading rates from 1.1 to 2.6 g volatile solids (VS added) per litre per day. In the mesophilic fermentation, gas yields were 250-350 ml CH/sub 4//g VS added and the VS-reduction was around 50-55% at all tested retention times and loading rates. The level of volatile fatty acids was very low in this system. In the thermophilic digestor, gas yields were somewhat lower although the VS-reduction was around 50% also in this systems. The VFA-levels were higher and the culture more sensitive to disturbances. Thus no advantages were found with the thermophilic fermentation. In mesophilic batch fermentations the gas production was rather rapid and almost completed after 12-15 days, in agreement with the continuous fermentations. The gas yields in batch experiments were high, 350-480 ml CH/sub 4//g VS added. (Refs. 20).

  18. Anaerobic energy metabolism in unicellular photosynthetic eukaryotes.

    Science.gov (United States)

    Atteia, Ariane; van Lis, Robert; Tielens, Aloysius G M; Martin, William F

    2013-02-01

    Anaerobic metabolic pathways allow unicellular organisms to tolerate or colonize anoxic environments. Over the past ten years, genome sequencing projects have brought a new light on the extent of anaerobic metabolism in eukaryotes. A surprising development has been that free-living unicellular algae capable of photoautotrophic lifestyle are, in terms of their enzymatic repertoire, among the best equipped eukaryotes known when it comes to anaerobic energy metabolism. Some of these algae are marine organisms, common in the oceans, others are more typically soil inhabitants. All these species are important from the ecological (O(2)/CO(2) budget), biotechnological, and evolutionary perspectives. In the unicellular algae surveyed here, mixed-acid type fermentations are widespread while anaerobic respiration, which is more typical of eukaryotic heterotrophs, appears to be rare. The presence of a core anaerobic metabolism among the algae provides insights into its evolutionary origin, which traces to the eukaryote common ancestor. The predicted fermentative enzymes often exhibit an amino acid extension at the N-terminus, suggesting that these proteins might be compartmentalized in the cell, likely in the chloroplast or the mitochondrion. The green algae Chlamydomonas reinhardtii and Chlorella NC64 have the most extended set of fermentative enzymes reported so far. Among the eukaryotes with secondary plastids, the diatom Thalassiosira pseudonana has the most pronounced anaerobic capabilities as yet. From the standpoints of genomic, transcriptomic, and biochemical studies, anaerobic energy metabolism in C. reinhardtii remains the best characterized among photosynthetic protists. This article is part of a Special Issue entitled: The evolutionary aspects of bioenergetic systems. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Gain and loss of polyadenylation signals during evolution of green algae

    OpenAIRE

    Wodniok, Sabina; Simon, Andreas; Glöckner, Gernot; Becker, Burkhard

    2007-01-01

    Abstract Background The Viridiplantae (green algae and land plants) consist of two monophyletic lineages: the Chlorophyta and the Streptophyta. Most green algae belong to the Chlorophyta, while the Streptophyta include all land plants and a small group of freshwater algae known as Charophyceae. Eukaryotes attach a poly-A tail to the 3' ends of most nuclear-encoded mRNAs. In embryophytes, animals and fungi, the signal for polyadenylation contains an A-rich sequence (often AAUAAA or related seq...

  20. [Experimental assessment of combined effect of nitrates and acute gamma-irradiation on green algae Scenedesmus quadricauda growth].

    Science.gov (United States)

    Triapitsyna, G A; Tarasova, S P; Atamaniuk, N I; Osipov, D I; Priakhin, E A

    2012-01-01

    The combined effect of acute gamma-irradiation at doses of 0, 50, 100, 150 and 200 Gy and nitrates in concentrations of 0.04 g/dm3 (that corresponds to maximum permissible concentrations for fishery waters), 0.1, 0.25, 0.5, 1.0, 2.5 g/dm3 (that is close to NO3(-) level in water of a reservoir R-17 used as radioactive waste storage of the "Mayak" Production Association) and 5.0 g/dm3 (that is close to NO3(-) level in the water of radioactive waste storage reservoir R-9) on the unicellular green algae Scenedesmus quadricauda growth has been studied in laboratory conditions. It was shown that the joint effects of nitrates and y-radiation had an antagonistic character. Thus, it may be concluded that chemical pollution is the factor limiting the development of green algae in reservoir R-17; probably, both factors, chemical and radiating, are essential to the algocenosis degradation in reservoir R-9.

  1. Comparative Energetics of Carbon Storage Molecules in Green Algae

    Energy Technology Data Exchange (ETDEWEB)

    Laurens, Lieve M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); McKie-Krisberg, Zaid M. [City University of New York; Huang, Andy [City University of New York; Polle, Jurgen E. W. [City University of New York

    2018-02-28

    Several members of the green algae possess the ability to produce lipids and/or high value compounds in significant quantities. While for several of these green algal species induction of increased lipid production has been shown, and cultivation of species for high value molecules occurs at production scale, the molecular mechanisms governing over-accumulation of molecules synthesized from isoprenoid precursors, carotenoids, for example, have received far less attention. Here, we present a calculation of the required ATP equivalencies per carbon atom and reducing power equivalencies as NADH/NADPH (NAD(P)H) per carbon atom for the isoprenoid molecules ..beta..-carotene (C40), astaxanthin (C40), and squalene (C30). We compared energetic requirements of carbohydrates, triacylglycerol, and isoprenoid molecules under a gradient of conditions of cellular stress. Our calculations revealed slightly less ATP and NAD(P)H equivalency per carbon atom between triacylglycerol and the three isoprenoid molecules. Based on our results, we propose that the driving force for differences in accumulation patterns of carotenoids vs. triacylglycerols in algal cells under stress is largely dependent on the presence and regulation of bypass mechanisms at metabolic junction bottlenecks, like pyruvate dehydrogenase (PDH), within particular species. We provide a discussion of several molecular mechanisms that may influence carbon partitioning within different groups of green algae, including metabolic inhibition through accumulation of specific substrates related to ATP and reducing equivalent production (NAD(P)H) as well as cellular compartmentalization. This work contributes to the ongoing discussion of cellular homeostatic regulation during stress, as well as the potential mechanisms driving long-term carbon storage as it relates to energy and redox states within the algal cell.

  2. Factors Affecting the Mating Competence in the Unicellular Green Alga Chlamydomonas eugametos (Volvocales)

    Czech Academy of Sciences Publication Activity Database

    Zachleder, Vilém; Hendrychová, Jana; Bišová, Kateřina; Kubín, Štěpán

    2002-01-01

    Roč. 47, č. 1 (2002), s. 69-72 ISSN 0015-5632 R&D Projects: GA ČR GA204/97/0576; GA AV ČR IAC5020012 Institutional research plan: CEZ:AV0Z5020903 Keywords : routineli * prepared * gametes Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.979, year: 2002

  3. Bioenergetic reprogramming plasticity under nitrogen depletion by the unicellular green alga Scenedesmus obliquus.

    Science.gov (United States)

    Papazi, Aikaterini; Korelidou, Anna; Andronis, Efthimios; Parasyri, Athina; Stamatis, Nikolaos; Kotzabasis, Kiriakos

    2018-03-01

    Simultaneous nitrogen depletion and 3,4-dichlorophenol addition induce a bioenergetic microalgal reprogramming, through strong Cyt b 6 f synthesis, that quench excess electrons from dichlorophenol's biodegradation to an overactivated photosynthetic electron flow and H 2 -productivity. Cellular energy management includes "rational" planning and operation of energy production and energy consumption units. Microalgae seem to have the ability to calculate their energy reserves and select the most profitable bioenergetic pathways. Under oxygenic mixotrophic conditions, microalgae invest the exogenously supplied carbon source (glucose) to biomass increase. If 3,4-dichlorophenol is added in the culture medium, then glucose is invested more to biodegradation rather than to growth. The biodegradation yield is enhanced in nitrogen-depleted conditions, because of an increase in the starch accumulation and a delay in the establishment of oxygen-depleted conditions in a closed system. In nitrogen-depleted conditions, starch cannot be invested in PSII-dependent and PSII-independent pathways for H 2 -production, mainly because of a strong decrease of the cytochrome b 6 f complex of the photosynthetic electron flow. For this reason, it seems more profitable for the microalga under these conditions to direct the metabolism to the synthesis of lipids as cellular energy reserves. Nitrogen-depleted conditions with exogenously supplied 3,4-dichlorophenol induce reprogramming of the microalgal bioenergetic strategy. Cytochrome b 6 f is strongly synthesized (mainly through catabolism of polyamines) to manage the electron bypass from the dichlorophenol biodegradation procedure to the photosynthetic electron flow (at the level of PQ pool) and consequently through cytochrome b 6 f and PSI to hydrogenase and H 2 -production. All the above showed that the selection of the appropriate cultivation conditions is the key for the manipulation of microalgal bioenergetic strategy that leads to different metabolic products and paves the way for a future microalgal "smart" biotechnology.

  4. Cell growth and protein synthesis of unicellular green alga Chlamydomonas in heavy water

    International Nuclear Information System (INIS)

    Ishida, M.R.

    1983-01-01

    The effects of heavy water on the cell growth and protein synthesis of the photoautotrophically growing Chlamydomonas cells were studied. The growth rate of the cells is inversely proportional to the concentrations of heavy water. The cells can barely live in 90% heavy water, but they die in 99.85% heavy water within a few days. Incorporation of 14 Cleucine into cells is markedly stimulated by heavy water of various concentrations between 30 and 99.85% in the case of the short time incubation. Contrary to this, in the long time incubation as several days, heavy water inhibits the protein synthesis. Such two modes of the protein synthetic activities are dependent upon the incubation time of the cells grown photoautotrophically in the heavy water media. (author)

  5. Energy transfer from carotenoids to chlorophyll in blue-green, red and green algae and greening bean leaves

    NARCIS (Netherlands)

    Goedheer, J.C.

    1969-01-01

    From fluorescence action spectra, fluorescence spectra and absorption spectra measured at room temperature and at 77 °K of light petroleum (b.p. 40–60°)-treated and normal chloroplasts, it is concluded that: 1. 1. In blue-green and red algae energy transfer from β-carotene to chlorophyll occurs

  6. How 5000 independent rowers coordinate their strokes in order to row into the sunlight: Phototaxis in the multicellular green alga Volvox

    Directory of Open Access Journals (Sweden)

    Matsunaga Shigeru

    2010-07-01

    Full Text Available Abstract Background The evolution of multicellular motile organisms from unicellular ancestors required the utilization of previously evolved tactic behavior in a multicellular context. Volvocine green algae are uniquely suited for studying tactic responses during the transition to multicellularity because they range in complexity from unicellular to multicellular genera. Phototactic responses are essential for these flagellates because they need to orientate themselves to receive sufficient light for photosynthesis, but how does a multicellular organism accomplish phototaxis without any known direct communication among cells? Several aspects of the photoresponse have previously been analyzed in volvocine algae, particularly in the unicellular alga Chlamydomonas. Results In this study, the phototactic behavior in the spheroidal, multicellular volvocine green alga Volvox rousseletii (Volvocales, Chlorophyta was analyzed. In response to light stimuli, not only did the flagella waveform and beat frequency change, but the effective stroke was reversed. Moreover, there was a photoresponse gradient from the anterior to the posterior pole of the spheroid, and only cells of the anterior hemisphere showed an effective response. The latter caused a reverse of the fluid flow that was confined to the anterior hemisphere. The responsiveness to light is consistent with an anterior-to-posterior size gradient of eyespots. At the posterior pole, the eyespots are tiny or absent, making the corresponding cells appear to be blind. Pulsed light stimulation of an immobilized spheroid was used to simulate the light fluctuation experienced by a rotating spheroid during phototaxis. The results demonstrated that in free-swimming spheroids, only those cells of the anterior hemisphere that face toward the light source reverse the beating direction in the presence of illumination; this behavior results in phototactic turning. Moreover, positive phototaxis is facilitated by

  7. Identifying Aspects of the Post-Transcriptional Program Governing the Proteome of the Green Alga Micromonas pusilla

    Energy Technology Data Exchange (ETDEWEB)

    Waltman, Peter H.; Guo, Jian; Reistetter, Emily Nahas; Purvine, Samuel; Ansong, Charles K.; van Baren, Marijke J.; Wong, Chee-Hong; Wei, Chia-Lin; Smith, Richard D.; Callister, Stephen J.; Stuart, Joshua M.; Worden, Alexandra Z.; Mills, Ken

    2016-07-19

    Micromonas is a unicellular green alga that belongs to the prasinophytes, a sister lineage to land plants. This picoeukaryotic (<2 μm diameter) alga is widespread in the marine environment but still not understood at the cellular level. Here, we examine the mRNA and protein level changes that take place over the course of the day-night cycle using mid-exponential nutrient replete cultures of Micromonas pusilla CCMP1545 grown and analyzed in biological triplicate. During the experiment, samples were collected at key transition points during the diel for evaluation using high-throughput LC-MS proteomics. We also sequenced matched mRNA samples from the same time points, using pair-ended directional Illumina RNA-Seq to investigate the dynamics and relationship between the mRNA and protein expression programs of M. pusilla. Similar to a prior study of the marine cyanobacterium Prochlorococcus, we found significant divergence in the mRNA and proteomics expression dynamics in response to the light:dark cycle. Additionally, expressional responses of genes and the proteins they encoded could also be variable within the same metabolic pathway, such as the oxygenic photosynthesis pathway. A regression framework was used to predict protein levels using both mRNA expression and gene-specific sequence-based features. Several features in the genome sequence were found to influence protein abundance including the codon usage and the length of the 3’ UTR. Collectively, our studies provide insights into the regulation of the proteome over a diel as relationships between the transcriptional and translational programs in the widespread marine green alga Micromonas.

  8. Sensitivity of the green algae Chlamydomonas reinhardtii to gamma radiation: Photosynthetic performance and ROS formation.

    Science.gov (United States)

    Gomes, Tânia; Xie, Li; Brede, Dag; Lind, Ole-Christian; Solhaug, Knut Asbjørn; Salbu, Brit; Tollefsen, Knut Erik

    2017-02-01

    The aquatic environment is continuously exposed to ionizing radiation from both natural and anthropogenic sources, making the characterization of ecological and health risks associated with radiation of large importance. Microalgae represent the main source of biomass production in the aquatic ecosystem, thus becoming a highly relevant biological model to assess the impacts of gamma radiation. However, little information is available on the effects of gamma radiation on microalgal species, making environmental radioprotection of this group of species challenging. In this context, the present study aimed to improve the understanding of the effects and toxic mechanisms of gamma radiation in the unicellular green algae Chlamydomonas reinhardtii focusing on the activity of the photosynthetic apparatus and ROS formation. Algal cells were exposed to gamma radiation (0.49-1677mGy/h) for 6h and chlorophyll fluorescence parameters obtained by PAM fluorometry, while two fluorescent probes carboxy-H 2 DFFDA and DHR 123 were used for the quantification of ROS. The alterations seen in functional parameters of C. reinhardtii PSII after 6h of exposure to gamma radiation showed modifications of PSII energy transfer associated with electron transport and energy dissipation pathways, especially at the higher dose rates used. Results also showed that gamma radiation induced ROS in a dose-dependent manner under both light and dark conditions. The observed decrease in photosynthetic efficiency seems to be connected to the formation of ROS and can potentially lead to oxidative stress and cellular damage in chloroplasts. To our knowledge, this is the first report on changes in several chlorophyll fluorescence parameters associated with photosynthetic performance and ROS formation in microalgae after exposure to gamma radiation. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. The involvement of carbohydrate reserves in hydrogen photoproduction by the green alga Chlamydomonas reinhardtii

    International Nuclear Information System (INIS)

    Chochois, V.

    2009-09-01

    The unicellular green alga Chlamydomonas reinhardtii is able to produce hydrogen, using water as an electron donor, and sunlight as an energy source. Although this property offers interesting biotechnological perspectives, a major limitation is related to the sensitivity of hydrogenase to oxygen which is produced by photosynthesis. It had been previously shown that in conditions of sulfur deprivation, C. reinhardtii is able to produce hydrogen during several days (Melis et an. 2000). During this process, two pathways, one direct depending on photosystem II (PSII) activity and the other involving only the PSI, are involved, starch reserves being supposed to play a role in both of these pathways. The purpose of this phD thesis was to elucidate the mechanisms linking starch catabolism to the hydrogen photoproduction process. Firstly, the analysis of mutants affected in starch biosynthesis (sta6 and sta7) showed that if starch reserves are essential to the functioning of the indirect pathway, they are not involved in the direct one. Secondly, in order to identify metabolic steps and regulatory processes involved in starch breakdown, we developed a genetic approach based on the search of mutants affected in starch reserves mobilization. Eight mutant (std1 to std8) diversely affected in their ability to degrade starch after an accumulation phase have been isolated from an insertional mutant library of 15,000 clones. One of these mutants, std1, is affected in a kinase related to the DYRK family (dual-specificity tyrosine regulated serine threonine kinase). Although the targets of this putative kinase remain to be identified, the analysis of the granule bound proteome displayed profound alterations in the expression profile of starch phosphorylases, potentially involved in starch breakdown. STD1 represents the first starch catabolism regulator identified to date in plants. (author)

  10. Asymmetric cell division and its role in cell fate determination in the green alga Tetraselmis indica

    Digital Repository Service at National Institute of Oceanography (India)

    Arora, M.; Anil, A.C.; Burgess, K.; Delany, J.E.; Mesbahi, E.

    is a mechanism to ensure survival upon exposure to stress. Int. J. Food Microbiol. 78 19-30 De Smet I and Beeckman T 2011 Asymmetric cell division in land plants and algae: the driving force for differentiation. Nature Rev. Mol. Cell Biol. 12 177... of Prasinophytes, but are as evolved as any other green alga or land plant. These organisms share several ultrastructural features with the other core Chlorophytes (Trebouxiophyceae, Ulvophyceae and Chlorophyceae). However, the role of Chlorodendrophycean algae...

  11. Bioaccumulation of gasoline in brackish green algae and popular clams

    Directory of Open Access Journals (Sweden)

    Gihan A. El-Shoubaky

    2016-03-01

    Full Text Available The green algae (Ulva lactuca and Enteromorpha clathrata and the clams (Tapes decussates and Venerupis aurea grow together in Timsah Lake, Suez Canal, Egypt. Our ultimate goal is to validate the bioaccumulation of gasoline in the marine organisms and their behavior after exposure to the pollutant, experimentally. These species were treated with a serial treatment of gasoline (1000, 4000, 16,000 and 64,000 μl in aquaria with brackish sea-water for 72 h. The tested green algae and clams were taken for an analysis of total hydrocarbon accumulation daily. The statistical analysis showed significant differences between the four species and also between the duration of exposure. The accumulation of gasoline in U. lactuca and E. clathrata reached their maximum after 48 h at 1000 and 4000 μl. The highest absorption was registered after 24 h only at 16,000 and at 64,000 μl. U. lactuca recorded complete mortality in 64,000 μl at 72 h whereas E. clathrata registered death at 48 h and 72 h in the same treatment. V. aurea was more sensitive than T. decussates. The accumulation of gasoline reached its maximum in V. aurea after only 24 h in the first treatment while it retarded to 48 h in T. decussates with a lesser accumulation. However, both clam species accumulated the highest amount of petroleum hydrocarbons during the first hour of exposure at the first treatment. In the third and fourth treatments, clams did not accumulate gasoline but began to dispose it from their tissues till it became less than that in the control. Mortality gradually increased with time in each treatment except the last one (64,000 μl in which 100% death of the specimens was observed. In general, the bioaccumulation of gasoline level was in a descending order as follows: U. lactuca > E. clathrata > V. aurea > T. decussates. Their behavior changed from accumulation to detoxification with time and with the increase in pollutant concentration. Generally, these

  12. Toxicity of Silver Nanoparticles to Green Algae – Towards a Biotic Ligand Understanding

    DEFF Research Database (Denmark)

    Laruelle, Sacha; Sørensen, Sara Nørgaard; Cupi, Denisa

    with the freshwater green algae Pseudokirschneriella subcapitata were carried out to falsify the hypothesis: “The toxicity of silver nanoparticles towards algae is solely caused by the monovalent silver ion”. These experiments were based on PHREEQC modeling of silver ion behavior (added as AgNO3) in 72h OECD algal...

  13. In situ evaluation of cadmium biomarkers in green algae

    Energy Technology Data Exchange (ETDEWEB)

    Simon, Dana F.; Davis, Thomas A. [Department of Chemistry, University of Montreal, P.O. Box 6128, Succursale Centre-ville, Montreal, Quebec H3C 3J7 (Canada); Tercier-Waeber, Mary-Lou [Analytical and Biophysical Environmental Chemistry, University of Geneva, Sciences II, 30 Quai Ernest-Ansermet, 1211 Geneva 4 (Switzerland); England, Roxane [Department of Chemistry, University of Montreal, P.O. Box 6128, Succursale Centre-ville, Montreal, Quebec H3C 3J7 (Canada); Wilkinson, Kevin J., E-mail: kj.wilkinson@umontreal.ca [Department of Chemistry, University of Montreal, P.O. Box 6128, Succursale Centre-ville, Montreal, Quebec H3C 3J7 (Canada)

    2011-10-15

    In situ measurements provide data that are the highly representative of the natural environment. In this paper, laboratory-determined biomarkers of Cd stress that were previously identified for the green alga Chlamydomonas reinhardtii, were tested in two French rivers: a contaminated site on the Riou Mort River and an 'uncontaminated' reference site on the Lot River. Transcript abundance levels were determined by real time qPCR for biomarkers thought to be Cd sensitive. Transcript levels were significantly higher (>5 fold) for organisms exposed to the contaminated site as compared to those exposed at the uncontaminated site. Biomarker mRNA levels were best correlated to free Cd (Cd{sup 2+}) rather than intracellular Cd, suggesting that they may be useful indicators of in situ stress. The paper shows that biomarker expression levels increased with time, were sensitive to metal levels and metal speciation and were higher in the 'contaminated' as opposed to the 'reference' site. - Highlights: > Biomarkers of Cd stress were tested in a contaminated and a reference site. > The organism was viable under exposure conditions and metal accumulation occurred. > Biomarker levels were correlated to Cd{sup 2+} and were higher in the contaminated site. - Algal transcription levels of several biomarkers were studied in two natural waters in situ.

  14. Recruitment potential of a green alga Ulva flexuosa Wolfen dark preserved zoospore and its development

    Digital Repository Service at National Institute of Oceanography (India)

    Imchen, T.

    Green Alga Ulva flexuosa Wulfen Dark Preserved Zoospore and Its Development Temjensangba Imchen* National Institute of Oceanography (Council of Scientific and Industrial Research), Goa, India Abstract The recruitment potential and the ability of Ulva... factors play a role in the process of recruitment. Citation: Imchen T (2012) Recruitment Potential of a Green Alga Ulva flexuosa Wulfen Dark Preserved Zoospore and Its Development. PLoS ONE 7(3): e32651. doi:10.1371/journal.pone.0032651 Editor: Ross...

  15. Toxicity and mode of action of tritium alone and mixed with copper on the green algae Chlamydomonas reinhardtii

    International Nuclear Information System (INIS)

    Rety, Celine

    2010-01-01

    Liquid releases by Nuclear Power Plants (NPP) are composed of a mixture of radioactive and non-radioactive substances. When organisms are exposed to mixtures of contaminants the resultant toxicity can be enhanced, or reduced, due to interactions. In order to identify potential interactions between substances released by NPP, two substances representative of such effluents (in term of toxicity and of quantity) were selected for studies: Tritiated water (HTO) and copper (Cu). Effects of this binary mixture were studied on the unicellular green algae Chlamydomonas reinhardtii. HTO, when examined along, was not very toxic to C. reinhardtii. The most sensitive and early effect of HTO was an increase in oxidative stress at concentrations of 40 kBq mL -1 (0.13 μGy h -1 ). Algae exposure to the binary mixture HTO/Cu induced interactive effects on oxidative stress. Reactive Oxygen Species production was higher from exposure to the mixture of contaminants than the addition of the effect from each substance individually. This interaction was explained by an enhanced copper uptake by the algae when in the presence of HTO. The observed supra-additive effect could also be due to direct toxic interactions, especially on the antioxidant system. To conclude, this study showed that the effects of a mixture of radioactive and nonradioactive substances can be greater than what would be predicted based on mere addition of individual effects. Even thought this binary mixture is just a small part of NPP effluents, the study showed that potential interactions should be considered when determining ecological risks to aquatic ecosystems from NPP effluents. (author)

  16. Accumulation of uranium by filamentous green algae under natural environmental conditions

    International Nuclear Information System (INIS)

    Aleissa, K.A.; Shabana, El-Said K.; Al-Masoud, F.L.S.

    2004-01-01

    The capacity of algae to concentrate uranium under natural environmental conditions is measured by a-spectrometry. Spirogyra, a filamentous green fresh-water alga, has concentrated uranium from a surface concrete ponds with elevated uranium levels (140-1140 ppb). The concentration factors (CFs) ranged from 8.9-67 with an average value of 22. Cladophora spp, a filamentous green marine alga has concentrated uranium from the marine water with a concentration factor ranged from 220-280. The average concentration factor was 250. The factors affecting the sorption process are discussed in detail. (author)

  17. Identifying Aspects of the Post-Transcriptional Program Governing the Proteome of the Green Alga Micromonas pusilla.

    Directory of Open Access Journals (Sweden)

    Peter H Waltman

    Full Text Available Micromonas is a unicellular motile alga within the Prasinophyceae, a green algal group that is related to land plants. This picoeukaryote (<2 μm diameter is widespread in the marine environment but is not well understood at the cellular level. Here, we examine shifts in mRNA and protein expression over the course of the day-night cycle using triplicated mid-exponential, nutrient replete cultures of Micromonas pusilla CCMP1545. Samples were collected at key transition points during the diel cycle for evaluation using high-throughput LC-MS proteomics. In conjunction, matched mRNA samples from the same time points were sequenced using pair-ended directional Illumina RNA-Seq to investigate the dynamics and relationship between the mRNA and protein expression programs of M. pusilla. Similar to a prior study of the marine cyanobacterium Prochlorococcus, we found significant divergence in the mRNA and proteomics expression dynamics in response to the light:dark cycle. Additionally, expressional responses of genes and the proteins they encoded could also be variable within the same metabolic pathway, such as we observed in the oxygenic photosynthesis pathway. A regression framework was used to predict protein levels from both mRNA expression and gene-specific sequence-based features. Several features in the genome sequence were found to influence protein abundance including codon usage as well as 3' UTR length and structure. Collectively, our studies provide insights into the regulation of the proteome over a diel cycle as well as the relationships between transcriptional and translational programs in the widespread marine green alga Micromonas.

  18. Multilayer gyroid cubic membrane organization in green alga Zygnema.

    Science.gov (United States)

    Zhan, Ting; Lv, Wenhua; Deng, Yuru

    2017-09-01

    Biological cubic membranes (CM), which are fluid membranes draped onto the 3D periodic parallel surface geometries with cubic symmetry, have been observed within subcellular organelles, including mitochondria, endoplasmic reticulum, and thylakoids. CM transition tends to occur under various stress conditions; however, multilayer CM organizations often appear associated with light stress conditions. This report is about the characterization of a projected gyroid CM in a transmission electron microscopy study of the chloroplast membranes within green alga Zygnema (LB923) whose lamellar form of thylakoid membrane started to fold into multilayer gyroid CM in the culture at the end of log phase of cell growth. Using the techniques of computer simulation of transmission electron microscopy (TEM) and a direct template matching method, we show that these CM are based on the gyroid parallel surfaces. The single, double, and multilayer gyroid CM morphologies are observed in which space is continuously divided into two, three, and more subvolumes by either one, two, or several parallel membranes. The gyroid CM are continuous with varying amount of pseudo-grana with lamellar-like morphology. The relative amount and order of these two membrane morphologies seem to vary with the age of cell culture and are insensitive to ambient light condition. In addition, thylakoid gyroid CM continuously interpenetrates the pyrenoid body through stalk, bundle-like, morphologies. Inside the pyrenoid body, the membranes re-folded into gyroid CM. The appearance of these CM rearrangements due to the consequence of Zygnema cell response to various types of environmental stresses will be discussed. These stresses include nutrient limitation, temperature fluctuation, and ultraviolet (UV) exposure.

  19. The mitochondrial genome of the entomoparasitic green alga helicosporidium.

    Directory of Open Access Journals (Sweden)

    Jean-François Pombert

    Full Text Available BACKGROUND: Helicosporidia are achlorophyllous, non-photosynthetic protists that are obligate parasites of invertebrates. Highly specialized, these pathogens feature an unusual cyst stage that dehisces inside the infected organism and releases a filamentous cell displaying surface projections, which will penetrate the host gut wall and eventually reproduce in the hemolymph. Long classified as incertae sedis or as relatives of other parasites such as Apicomplexa or Microsporidia, the Helicosporidia were surprisingly identified through molecular phylogeny as belonging to the Chlorophyta, a phylum of green algae. Most phylogenetic analyses involving Helicosporidia have placed them within the subgroup Trebouxiophyceae and further suggested a close affiliation between the Helicosporidia and the genus Prototheca. Prototheca species are also achlorophyllous and pathogenic, but they infect vertebrate hosts, inducing protothecosis in humans. The complete plastid genome of an Helicosporidium species was recently described and is a model of compaction and reduction. Here we describe the complete mitochondrial genome sequence of the same strain, Helicosporidium sp. ATCC 50920 isolated from the black fly Simulium jonesi. METHODOLOGY/PRINCIPAL FINDINGS: The circular mapping 49343 bp mitochondrial genome of Helicosporidium closely resembles that of the vertebrate parasite Prototheca wickerhamii. The two genomes share an almost identical gene complement and display a level of synteny that is higher than any other sequenced chlorophyte mitochondrial DNAs. Interestingly, the Helicosporidium mtDNA feature a trans-spliced group I intron, and a second group I intron that contains two open reading frames that appear to be degenerate maturase/endonuclease genes, both rare characteristics for this type of intron. CONCLUSIONS/SIGNIFICANCE: The architecture, genome content, and phylogeny of the Helicosporidium mitochondrial genome are all congruent with its close

  20. Influences of marine sediment on the accumulation of radionuclides by green alga (Ulva pertusa)

    International Nuclear Information System (INIS)

    Nakamura, Ryoichi; Suzuki, Yuzuru; Ueda, Taiji

    1975-01-01

    Distribution of radionuclides ( 60 Co, 137 Cs, 95 Zr- 95 Nb and 106 Ru- 106 Rh) among green alga (Ulva pertusa), sea water and marine sediment were examined by radioisotope tracer experiment in order to estimate the influence of sediment on the accumulation of radionuclides by the alga. By the application of the compartment model to the experimental results, exponential formulas of distributions were obtained. Through comparison of the transfer coefficients of radionuclides calculated from the exponential formulas, the influence of the sediment on the accumulation of the radionuclides by the green alga was determined to be the largest for 60 Co, followed by 95 Zr- 95 Nb, 106 Ru- 106 Rh and 137 Cs in this order. The activity ratios of 95 Zr- 95 Nb and 106 Ru- 106 Rh calculated from the transfer coefficients are larger for the alga than for the sediment, inversely those of 60 Co and 137 Cs show higher values for the sediment than for the alga. Especially, in the case of 60 Co, the activity ratio for the sediment is approximately 20 times greater than that for the alga. Biological half lives in green alga estimated from the transfer coefficients were 10 days for 60 Co, 7 days for 137 Cs, 26 days for 95 Zr- 95 Nb and 24 days for 106 Ru- 106 Rh. (auth.)

  1. Distributions of radionuclides among green alga (Ulva pertusa), sea water and marine sediment

    International Nuclear Information System (INIS)

    Nakamura, Ryoichi; Suzuki, Yuzuru; Ueda, Taishi

    1976-01-01

    Distributions of radionuclides ( 60 Co, 137 Cs, 95 Zr- 95 Nb and 106 Ru- 106 Rh) among green alga (Ulva pertusa), sea water and marine sediment were examined by radioisotope tracer experiment in order to estimate the influence of sediment on the accumulation of radionuclides by the alga. By the application of the compartment model to the experimental results, exponential formulas of distributions were obtained. Through comparison of the transfer coefficients of radionuclides calculated from the exponential formulas, the influence of the sediment on the accumulation of the radionuclides by the green alga was determined to be the largest for 60 Co, followed by 95 Zr,- 95 Nb, 106 Ru- 106 Rh and 137 Cs in this order. The activity ratios of 95 Zr- 95 Nb and 106 Ru- 106 Rh calculated from the transfer coefficients are larger for the alga than for the sediment, inversely those of 60 Co and 137 Cs show higher values for the sediment than for the alga. Especially, in the case of 60 Co, the activity ratio for the sediment is approximately 20 times greater than that for the alga. Biological half lives in green alga estimated from the transfer coefficients were 10 days for 60 Co, 7 days for 137 Cs, 26 days for 95 Zr- 95 Nb and 24 days for 95 Zr- 95 Nb and 24 days for 106 Ru- 106 Rh. (auth.)

  2. A clade uniting the green algae Mesostigma viride and Chlorokybus atmophyticus represents the deepest branch of the Streptophyta in chloroplast genome-based phylogenies

    Directory of Open Access Journals (Sweden)

    Turmel Monique

    2007-01-01

    Full Text Available Abstract Background The Viridiplantae comprise two major phyla: the Streptophyta, containing the charophycean green algae and all land plants, and the Chlorophyta, containing the remaining green algae. Despite recent progress in unravelling phylogenetic relationships among major green plant lineages, problematic nodes still remain in the green tree of life. One of the major issues concerns the scaly biflagellate Mesostigma viride, which is either regarded as representing the earliest divergence of the Streptophyta or a separate lineage that diverged before the Chlorophyta and Streptophyta. Phylogenies based on chloroplast and mitochondrial genomes support the latter view. Because some green plant lineages are not represented in these phylogenies, sparse taxon sampling has been suspected to yield misleading topologies. Here, we describe the complete chloroplast DNA (cpDNA sequence of the early-diverging charophycean alga Chlorokybus atmophyticus and present chloroplast genome-based phylogenies with an expanded taxon sampling. Results The 152,254 bp Chlorokybus cpDNA closely resembles its Mesostigma homologue at the gene content and gene order levels. Using various methods of phylogenetic inference, we analyzed amino acid and nucleotide data sets that were derived from 45 protein-coding genes common to the cpDNAs of 37 green algal/land plant taxa and eight non-green algae. Unexpectedly, all best trees recovered a robust clade uniting Chlorokybus and Mesostigma. In protein trees, this clade was sister to all streptophytes and chlorophytes and this placement received moderate support. In contrast, gene trees provided unequivocal support to the notion that the Mesostigma + Chlorokybus clade represents the earliest-diverging branch of the Streptophyta. Independent analyses of structural data (gene content and/or gene order and of subsets of amino acid data progressively enriched in slow-evolving sites led us to conclude that the latter topology

  3. Development of Singlet Oxygen Luminescence Kinetics during the Photodynamic Inactivation of Green Algae

    Directory of Open Access Journals (Sweden)

    Tobias Bornhütter

    2016-04-01

    Full Text Available Recent studies show the feasibility of photodynamic inactivation of green algae as a vital step towards an effective photodynamic suppression of biofilms by using functionalized surfaces. The investigation of the intrinsic mechanisms of photodynamic inactivation in green algae represents the next step in order to determine optimization parameters. The observation of singlet oxygen luminescence kinetics proved to be a very effective approach towards understanding mechanisms on a cellular level. In this study, the first two-dimensional measurement of singlet oxygen kinetics in phototrophic microorganisms on surfaces during photodynamic inactivation is presented. We established a system of reproducible algae samples on surfaces, incubated with two different cationic, antimicrobial potent photosensitizers. Fluorescence microscopy images indicate that one photosensitizer localizes inside the green algae while the other accumulates along the outer algae cell wall. A newly developed setup allows for the measurement of singlet oxygen luminescence on the green algae sample surfaces over several days. The kinetics of the singlet oxygen luminescence of both photosensitizers show different developments and a distinct change over time, corresponding with the differences in their localization as well as their photosensitization potential. While the complexity of the signal reveals a challenge for the future, this study incontrovertibly marks a crucial, inevitable step in the investigation of photodynamic inactivation of biofilms: it shows the feasibility of using the singlet oxygen luminescence kinetics to investigate photodynamic effects on surfaces and thus opens a field for numerous investigations.

  4. FRESH-WATER GREEN ALGAE (CHLOROPHYTA AS A NATURAL PIGMENT FOR MOJOSARI DUCKS

    Directory of Open Access Journals (Sweden)

    B. Indarsih

    2015-09-01

    Full Text Available An experiment in a completely randomize design was undertaken to study the use of fresh-watergreen algae as a yolk coloring agent in Mojosari ducks during a laying period on productiveperformance and egg quality from 36 to 44 wk of age. A total of 80 thirty-six wk–old laying ducks weredivided into four dietary treatments and each of four replicates with 5 birds. Diets were formulated witha commercial concentrate, rice bran and yellow corn (2:4:4 according to a commercial standard diet asa control, and three other dietary treatments with 2, 4 or 8% of green algae were included. Fresh watergreen algae had a significant effect on the feed uptake, egg production, and feed conversion ratio (FCR(p<0.05. Egg production and FCR improved at added 2 and 4% green algae. No differences wereobserved in egg yolk index, albumen index, Haugh Unit, and egg shell thickness (P>0.05 except eggyolk color. The yolk color increased within 7 days after feeding with the test diets. The present studyindicated that fresh-water green algae could be used as a natural coloring agent in laying ducks and at8% of green algae showed the highest score of (Roche Yellow Color-15.

  5. Radioactive contamination of filamentous green algae in the Hungarian reach of the river Danube

    International Nuclear Information System (INIS)

    Holland, E.; Sztanyik, L.B.; Vanicsek, L.

    1982-01-01

    In accordance with the Hungarian nuclear power program, river water monitoring techniques should be developed. From among algae of various species of river Danube the localized and well-propagating filamentous green algae (Cladophora sp.; Vaucheria sp.) were investigated. The activity concentration of gamma-radiating nuclides absorbed by algae was determined with a Canberra 8100 type Ge(Li)-spectrometer. This apparatus facilitated radioactivity measurements on wet samples or samples subjected to simple physical preparation. The metabolic character and accumulative abilities of filamentous green algae showed that they are suitable indicators of radionuclide contamination of the water ecosystem. 131 I nuclide at min. 72.5 mBq/g to max. 5440.0 mBq/g, and other fission products from 55 mBq/g to 929 mBq/g were observed. (author)

  6. Radioactive contamination of filamentous green algae in the Hungarian reach of the river Danube

    Energy Technology Data Exchange (ETDEWEB)

    Holland, E.; Sztanyik, L.B.; Vanicsek, L. (Orszagos Frederic Joliot-Curie Sugarbiologiai es Sugaregeszseguegyi Kutato Intezet, Budapest (Hungary))

    1982-01-01

    In accordance with the Hungarian nuclear power program, river water monitoring techniques should be developed. From among algae of various species of river Danube the localized and well-propagating filamentous green algae (Cladophora sp.; Vaucheria sp.) were investigated. The activity concentration of gamma-radiating nuclides absorbed by algae was determined with a Canberra 8100 type Ge(Li)-spectrometer. This apparatus facilitated radioactivity measurements on wet samples or samples subjected to simple physical preparation. The metabolic character and accumulative abilities of filamentous green algae showed that they are suitable indicators of radionuclide contamination of the water ecosystem. /sup 131/I nuclide at min. 72.5 mBq/g to max. 5440.0 mBq/g, and other fission products from 55 mBq/g to 929 mBq/g were observed.

  7. Evolution of the Phosphatidylcholine Biosynthesis Pathways in Green Algae: Combinatorial Diversity of Methyltransferases.

    Science.gov (United States)

    Hirashima, Takashi; Toyoshima, Masakazu; Moriyama, Takashi; Sato, Naoki

    2018-01-01

    Phosphatidylcholine (PC) is one of the most common phospholipids in eukaryotes, although some green algae such as Chlamydomonas reinhardtii are known to lack PC. Recently, we detected PC in four species in the genus Chlamydomonas: C. applanata NIES-2202, C. asymmetrica NIES-2207, C. debaryana NIES-2212, and C. sphaeroides NIES-2242. To reveal the PC biosynthesis pathways in green algae and the evolutionary scenario involved in their diversity, we analyzed the PC biosynthesis genes in these four algae using draft genome sequences. Homology searches suggested that PC in these species is synthesized by phosphoethanolamine-N-methyltransferase (PEAMT) and/or phosphatidylethanolamine-N-methyltransferase (PEMT), both of which are absent in C. reinhardtii. Recombinant PEAMTs from these algae showed methyltransferase activity for phosphoethanolamine but not for monomethyl phosphoethanolamine in vitro, in contrast to land plant PEAMT, which catalyzes the three methylations from phosphoethanolamine to phosphocholine. This suggested an involvement of other methyltransferases in PC biosynthesis. Here, we characterized the putative phospholipid-N-methyltransferase (PLMT) genes of these species by genetic and phylogenetic analysis. Complementation assays using a PC biosynthesis-deficient yeast suggested that the PLMTs of these algae can synthesize PC from phosphatidylethanolamine. These results indicated that the PC biosynthesis pathways in green algae differ from those of land plants, although the enzymes involved are homologous. Phylogenetic analysis suggested that the PEAMTs and PLMTs in these algae were inherited from the common ancestor of green algae. The absence of PC biosynthesis in many Chlamydomonas species is likely a result of parallel losses of PEAMT and PLMT in this genus.

  8. Effect of ultraviolet radiation on laboratory cultures of green algae and cyanobacteria

    International Nuclear Information System (INIS)

    Palffy, K.; Ordog, V.; Voros, L.

    2004-01-01

    Since the discovery of the ozone hole, an increasing amount of work has been devoted to measuring the impact of the UV-radiation on living organisms. In this point of view, algae as the primer producers of aquatic ecosystems, get to the central part of the interest. The aim of the study was to study the effect of ultraviolet radiation on laboratory cultures of green algae and cyanobacteria

  9. Acclimation of green algae to sulfur deficiency: underlying mechanisms and application for hydrogen production.

    Science.gov (United States)

    Antal, Taras K; Krendeleva, Tatyana E; Rubin, Andrew B

    2011-01-01

    Hydrogen is definitely one of the most acceptable fuels in the future. Some photosynthetic microorganisms, such as green algae and cyanobacteria, can produce hydrogen gas from water by using solar energy. In green algae, hydrogen evolution is coupled to the photosynthetic electron transport in thylakoid membranes via reaction catalyzed by the specific enzyme, (FeFe)-hydrogenase. However, this enzyme is highly sensitive to oxygen and can be quickly inhibited when water splitting is active. A problem of incompatibility between the water splitting and hydrogenase reaction can be overcome by depletion of algal cells of sulfur which is essential element for life. In this review the mechanisms underlying sustained hydrogen photoproduction in sulfur deprived C. reinhardtii and the recent achievements in studying of this process are discussed. The attention is focused on the biophysical and physiological aspects of photosynthetic response to sulfur deficiency in green algae.

  10. Bioelectricity generation and microcystins removal in a blue-green algae powered microbial fuel cell

    International Nuclear Information System (INIS)

    Yuan Yong; Chen Qing; Zhou Shungui; Zhuang Li; Hu Pei

    2011-01-01

    Bioelectricity production from blue-green algae was examined in a single chamber tubular microbial fuel cell (MFC). The blue-green algae powered MFC produced a maximum power density of 114 mW/m 2 at a current density of 0.55 mA/m 2 . Coupled with the bioenergy generation, high removal efficiencies of chemical oxygen demand (COD) and nitrogen were also achieved in MFCs. Over 78.9% of total chemical oxygen demand (TCOD), 80.0% of soluble chemical oxygen demand (SCOD), 91.0% of total nitrogen (total-N) and 96.8% ammonium-nitrogen (NH 3 -N) were removed under closed circuit conditions in 12 days, which were much more effective than those under open circuit and anaerobic reactor conditions. Most importantly, the MFC showed great ability to remove microcystins released from blue-green algae. Over 90.7% of MC-RR and 91.1% of MC-LR were removed under closed circuit conditions (500 Ω). This study showed that the MFC could provide a potential means for electricity production from blue-green algae coupling algae toxins removal.

  11. Can algae-based technologies be an affordable green process for biofuel production and wastewater remediation?

    Science.gov (United States)

    Vo Hoang Nhat, P; Ngo, H H; Guo, W S; Chang, S W; Nguyen, D D; Nguyen, P D; Bui, X T; Zhang, X B; Guo, J B

    2018-05-01

    Algae is a well-known organism that its characteristic is prominent for biofuel production and wastewater remediation. This critical review aims to present the applicability of algae with in-depth discussion regarding three key aspects: (i) characterization of algae for its applications; (ii) the technical approaches and their strengths and drawbacks; and (iii) future perspectives of algae-based technologies. The process optimization and combinations with other chemical and biological processes have generated efficiency, in which bio-oil yield is up to 41.1%. Through life cycle assessment, algae bio-energy achieves high energy return than fossil fuel. Thus, the algae-based technologies can reasonably be considered as green approaches. Although selling price of algae bio-oil is still high (about $2 L -1 ) compared to fossil fuel's price of $1 L -1 , it is expected that the algae bio-oil's price will become acceptable in the next coming decades and potentially dominate 75% of the market. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Rapid mass movement of chloroplasts during segment formation of the calcifying siphonalean green alga, Halimeda macroloba

    DEFF Research Database (Denmark)

    Larkum, Anthony W D; Salih, Anya; Kühl, Michael

    2011-01-01

    The calcifying siphonalean green alga, Halimeda macroloba is abundant on coral reefs and is important in the production of calcium carbonate sediments. The process by which new green segments are formed over-night is revealed here for the first time.......The calcifying siphonalean green alga, Halimeda macroloba is abundant on coral reefs and is important in the production of calcium carbonate sediments. The process by which new green segments are formed over-night is revealed here for the first time....

  13. Algae façade as green building method: application of algae as a method to meet the green building regulation

    Science.gov (United States)

    Poerbo, Heru W.; Martokusumo, Widjaja; Donny Koerniawan, M.; Aulia Ardiani, Nissa; Krisanti, Susan

    2017-12-01

    The Local Government of Bandung city has stipulated a Green Building regulation through the Peraturan Walikota Number 1023/2016. Signed by the mayor in October 2016, Bandung became the first city in Indonesia that put green building as mandatory requirement in the building permit (IMB) process. Green Building regulation is intended to have more efficient consumption of energy and water, improved indoor air quality, management of liquid and solid waste etc. This objective is attained through various design method in building envelope, ventilation and air conditioning system, lighting, indoor transportation system, and electrical system. To minimize energy consumption of buildings that have large openings, sun shading device is often utilized together with low-E glass panes. For buildings in hot humid tropical climate, this method reduces indoor air temperature and thus requires less energy for air conditioning. Indoor air quality is often done by monitoring the carbon dioxide levels. Application of algae as part of building system façade has recently been introduced as replacement of large glass surface in the building façade. Algae are not yet included in the green building regulation because it is relatively new. The research will investigate, with the help of the modelling process and extensive literature, how effective is the implementation of algae in building façade to reduce energy consumption and improve its indoor air quality. This paper is written based on the design of ITB Innovation Park as an ongoing architectural design-based research how the algae-integrated building façade affects the energy consumption.

  14. Modeling the Role of Zebra Mussels in the Proliferation of Blue-green Algae in Saginaw Bay, Lake Huron

    Science.gov (United States)

    Under model assumptions from Saginaw Bay 1991, selective rejection of blue-green algae by zebra mussels appears to be a necessary factor in the enhancement of blue-green algae production in the presence of zebra mussels. Enhancement also appears to depend on the increased sedime...

  15. CHANGES IN CHLOROPHYLL A FLOURESCENCE AND PIGMENT RATIOS DURING DIFFERENT GROWTH PHASES OF A UNICELLULAR MARINE CHAETOCEROS (BACILLAROPHYCEAE) IN BATCH CULTURE

    Science.gov (United States)

    Interpretations of chlorophyll a fluorescence data are based largely on application with green algae and higher plants. This study evaluated the interpretation of fluorescence data for a unicellular marine diatom. Chaetoceros sp. was grown in 4-liter batch cultures on a 16:8, L:D...

  16. Desiccation stress and tolerance in green algae: consequences for ultrastructure, physiological and molecular mechanisms

    Science.gov (United States)

    Holzinger, Andreas; Karsten, Ulf

    2013-01-01

    Although most green algae typically occur in aquatic ecosystems, many species also live partly or permanently under aeroterrestrial conditions, where the cells are exposed to the atmosphere and hence regularly experience dehydration. The ability of algal cells to survive in an air-dried state is termed desiccation tolerance. The mechanisms involved in desiccation tolerance of green algae are still poorly understood, and hence the aim of this review is to summarize recent findings on the effects of desiccation and osmotic water loss. Starting from structural changes, physiological, and biochemical consequences of desiccation will be addressed in different green-algal lineages. The available data clearly indicate a range of strategies, which are rather different in streptophycean and non-streptophycean green algae. While members of the Trebouxiophyceae exhibit effective water loss-prevention mechanisms based on the biosynthesis and accumulation of particular organic osmolytes such as polyols, these compounds are so far not reported in representatives of the Streptophyta. In members of the Streptophyta such as Klebsormidium, the most striking observation is the appearance of cross-walls in desiccated samples, which are strongly undulating, suggesting a high degree of mechanical flexibility. This aids in maintaining structural integrity in the dried state and allows the cell to maintain turgor pressure for a prolonged period of time during the dehydration process. Physiological strategies in aeroterrestrial green algae generally include a rapid reduction of photosynthesis during desiccation, but also a rather quick recovery after rewetting, whereas aquatic species are sensitive to drying. The underlying mechanisms such as the affected molecular components of the photosynthetic machinery are poorly understood in green algae. Therefore, modern approaches based on transcriptomics, proteomics, and/or metabolomics are urgently needed to better understand the molecular

  17. Desiccation stress and tolerance in green algae: Consequences for ultrastructure, physiological and molecular mechanisms

    Directory of Open Access Journals (Sweden)

    Andreas eHolzinger

    2013-08-01

    Full Text Available Although most green algae typically occur in aquatic ecosystems, many species also live partly or permanently under aeroterrestrial conditions, where the cells are exposed to the atmosphere and hence regularly experience dehydration. The ability of algal cells to survive in an air-dried state is termed desiccation tolerance. The mechanisms involved in desiccation tolerance of green algae are still poorly understood, and hence the aim of this review is to summarize recent findings on the effects of desiccation and osmotic water loss. Starting from structural changes, physiological and biochemical consequences of desiccation will be addressed in different green-algal lineages. The available data clearly indicate a range of strategies, which are rather different in streptophycean and non-streptophycean green algae. For example, Trebouxiophyceae exhibit effective water loss-prevention mechanisms based on the biosynthesis and accumulation of particular organic osmolytes such as polyols, these compounds are so far not reported in representatives of the Streptophyta. In members of the Streptophyta such as Klebsormidium, the most striking observation is the appearance of cross-walls in desiccated samples, which are strongly undulating, suggesting a high degree of mechanical flexibility. This allows the cell to maintain turgor pressure for a prolonged period of time during the dehydration process. Physiological strategies in aeroterrestrial green algae generally include a rapid reduction of photosynthesis during desiccation, but also a rather quick recovery after rewetting, whereas aquatic species are sensitive to drying. The underlying mechanisms such as the affected molecular components of the photosynthetic machinery are poorly understood in green algae. Therefore, modern approaches based on transcriptomics, proteomics and/or metabolomics are urgently needed to better understand the molecular mechanisms involved in desiccation-stress physiology of

  18. Evaluation of sample extraction methods for proteomics analysis of green algae Chlorella vulgaris.

    Science.gov (United States)

    Gao, Yan; Lim, Teck Kwang; Lin, Qingsong; Li, Sam Fong Yau

    2016-05-01

    Many protein extraction methods have been developed for plant proteome analysis but information is limited on the optimal protein extraction method from algae species. This study evaluated four protein extraction methods, i.e. direct lysis buffer method, TCA-acetone method, phenol method, and phenol/TCA-acetone method, using green algae Chlorella vulgaris for proteome analysis. The data presented showed that phenol/TCA-acetone method was superior to the other three tested methods with regards to shotgun proteomics. Proteins identified using shotgun proteomics were validated using sequential window acquisition of all theoretical fragment-ion spectra (SWATH) technique. Additionally, SWATH provides protein quantitation information from different methods and protein abundance using different protein extraction methods was evaluated. These results highlight the importance of green algae protein extraction method for subsequent MS analysis and identification. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Algae

    Czech Academy of Sciences Publication Activity Database

    Raven, John A.; Giordano, Mario

    2014-01-01

    Roč. 24, č. 13 (2014), s. 590-595 ISSN 0960-9822 Institutional support: RVO:61388971 Keywords : algae * life cycle * evolution Subject RIV: EE - Microbiology, Virology Impact factor: 9.571, year: 2014

  20. Effect of blue-green algae on soil nitrogen | Paudel | African Journal ...

    African Journals Online (AJOL)

    Effect of blue-green algae on soil nitrogen. ... African Journal of Biotechnology ... In paddy fields, the death of algal biomass is most frequently associated with soil dessication at the end of the cultivation cycle and algal growth has frequently resulted in a gradual build up of soil fertility with a residual effect on succeeding crop ...

  1. Quantitative structure-activity relationships for green algae growth inhibition by polymer particles.

    NARCIS (Netherlands)

    Nolte, Tom M; Peijnenburg, Willie J G M; Hendriks, A Jan; van de Meent, Dik

    After use and disposal of chemical products, many types of polymer particles end up in the aquatic environment with potential toxic effects to primary producers like green algae. In this study, we have developed Quantitative Structure-Activity Relationships (QSARs) for a set of highly structural

  2. The effect of lanthanides on photosynthesis, growth, and chlorophyll profile of the green alga Desmodesmus quadricauda

    Czech Academy of Sciences Publication Activity Database

    Řezanka, Tomáš; Kaineder, K.; Mezricky, D.; Řezanka, M.; Bišová, Kateřina; Zachleder, Vilém; Vítová, Milada

    2016-01-01

    Roč. 130, 1-3 SI (2016), s. 335-346 ISSN 0166-8595 R&D Projects: GA MŠk(CZ) LO1416; GA ČR GA14-00227S Institutional support: RVO:61388971 Keywords : Chlorophyll * Green algae * High-resolution electrospray mass spectrometry Subject RIV: EE - Microbiology, Virology Impact factor: 3.864, year: 2016

  3. Influence of PbS nanoparticle polymer coating on their aggregation behavior and toxicity to the green algae Dunaliella salina

    International Nuclear Information System (INIS)

    Zamani, Hajar; Moradshahi, Ali; Jahromi, Hamed Dehdashti; Sheikhi, Mohammad Hosein

    2014-01-01

    Highlights: • Lead sulfide nanoparticles (PbS NPs) are toxic to D. salina. • Gum-Arabic coating alters the toxicity of PbS NPs. • Cell-NPs agglomerates and lipid peroxidation could explain the toxicity of PbS NPs. • Shading effect and dissolution do not seem to contribute to the toxicity of PbS NPs. • Particle–particle interaction was reduced by coating; therefore, PbS NPs were stabilized in the culture media. - Abstract: The potential hazards of nanoparticles (NPs) to the environment and to living organisms need to be considered for a safe development of nanotechnology. In the present study, the potential toxic effects of uncoated and gum Arabic-coated lead sulfide nanoparticles (GA-coated PbS NPs) on the growth, lipid peroxidation, reducing capacity and total carotenoid content of the hypersaline unicellular green algae Dunaliella salina were investigated. Coatings of PbS NPs with GA, as confirmed by Fourier transform infrared spectroscopy, reduced the toxicity of PbS NPs. Uncoated PbS NP toxicity to D. salina was attributed to higher algal cell-NP agglomerate formation, higher lipid peroxidation, lower content of total reducing substances and lower total carotenoid content. Low levels of Pb 2+ in the growth culture media indicate that PbS NP dissolution does not occur in the culture. Also, the addition of 100 μM Pb 2+ to the culture media had no significant (P > 0.05) effect on algal growth. The shading of light (shading effect) by PbS NPs, when simulated using activated charcoal, did not contribute to the overall toxic effect of PbS NPs which was evident by insignificant (P > 0.05) reduction in the growth and antioxidant capacity of the algae. When PbS NP aggregation in culture media (without algal cells) was followed for 60 min, uncoated form aggregated rapidly reaching aggregate sizes with hydrodynamic diameter of over 2500 nm within 60 min. Effective particle–particle interaction was reduced in the GA-coated NPs. Aggregates of about 440 nm

  4. Influence of PbS nanoparticle polymer coating on their aggregation behavior and toxicity to the green algae Dunaliella salina

    Energy Technology Data Exchange (ETDEWEB)

    Zamani, Hajar [Department of Biology, Faculty of Sciences, Shiraz University, Shiraz 71454 (Iran, Islamic Republic of); Moradshahi, Ali, E-mail: moradshahi@susc.ac.ir [Department of Biology, Faculty of Sciences, Shiraz University, Shiraz 71454 (Iran, Islamic Republic of); Jahromi, Hamed Dehdashti; Sheikhi, Mohammad Hosein [Nanotechnology Research Institute, Shiraz University, Shiraz 71454 (Iran, Islamic Republic of)

    2014-09-15

    Highlights: • Lead sulfide nanoparticles (PbS NPs) are toxic to D. salina. • Gum-Arabic coating alters the toxicity of PbS NPs. • Cell-NPs agglomerates and lipid peroxidation could explain the toxicity of PbS NPs. • Shading effect and dissolution do not seem to contribute to the toxicity of PbS NPs. • Particle–particle interaction was reduced by coating; therefore, PbS NPs were stabilized in the culture media. - Abstract: The potential hazards of nanoparticles (NPs) to the environment and to living organisms need to be considered for a safe development of nanotechnology. In the present study, the potential toxic effects of uncoated and gum Arabic-coated lead sulfide nanoparticles (GA-coated PbS NPs) on the growth, lipid peroxidation, reducing capacity and total carotenoid content of the hypersaline unicellular green algae Dunaliella salina were investigated. Coatings of PbS NPs with GA, as confirmed by Fourier transform infrared spectroscopy, reduced the toxicity of PbS NPs. Uncoated PbS NP toxicity to D. salina was attributed to higher algal cell-NP agglomerate formation, higher lipid peroxidation, lower content of total reducing substances and lower total carotenoid content. Low levels of Pb{sup 2+} in the growth culture media indicate that PbS NP dissolution does not occur in the culture. Also, the addition of 100 μM Pb{sup 2+} to the culture media had no significant (P > 0.05) effect on algal growth. The shading of light (shading effect) by PbS NPs, when simulated using activated charcoal, did not contribute to the overall toxic effect of PbS NPs which was evident by insignificant (P > 0.05) reduction in the growth and antioxidant capacity of the algae. When PbS NP aggregation in culture media (without algal cells) was followed for 60 min, uncoated form aggregated rapidly reaching aggregate sizes with hydrodynamic diameter of over 2500 nm within 60 min. Effective particle–particle interaction was reduced in the GA-coated NPs. Aggregates of about

  5. Gain and loss of polyadenylation signals during evolution of green algae

    Directory of Open Access Journals (Sweden)

    Glöckner Gernot

    2007-04-01

    Full Text Available Abstract Background The Viridiplantae (green algae and land plants consist of two monophyletic lineages: the Chlorophyta and the Streptophyta. Most green algae belong to the Chlorophyta, while the Streptophyta include all land plants and a small group of freshwater algae known as Charophyceae. Eukaryotes attach a poly-A tail to the 3' ends of most nuclear-encoded mRNAs. In embryophytes, animals and fungi, the signal for polyadenylation contains an A-rich sequence (often AAUAAA or related sequence 13 to 30 nucleotides upstream from the cleavage site, which is commonly referred to as the near upstream element (NUE. However, it has been reported that the pentanucleotide UGUAA is used as polyadenylation signal for some genes in volvocalean algae. Results We set out to investigate polyadenylation signal differences between streptophytes and chlorophytes that may have emerged shortly after the evolutionary split between Streptophyta and Chlorophyta. We therefore analyzed expressed genes (ESTs from three streptophyte algae, Mesostigma viride, Klebsormidium subtile and Coleochaete scutata, and from two early-branching chlorophytes, Pyramimonas parkeae and Scherffelia dubia. In addition, to extend the database, our analyses included ESTs from six other chlorophytes (Acetabularia acetabulum, Chlamydomonas reinhardtii, Helicosporidium sp. ex Simulium jonesii, Prototheca wickerhamii, Scenedesmus obliquus and Ulva linza and one streptophyte (Closterium peracerosum. Our results indicate that polyadenylation signals in green algae vary widely. The UGUAA motif is confined to late-branching Chlorophyta. Most streptophyte algae do not have an A-rich sequence motif like that in embryophytes, animals and fungi. We observed polyadenylation signals similar to those of Arabidopsis and other land plants only in Mesostigma. Conclusion Polyadenylation signals in green algae show considerable variation. A new NUE (UGUAA was invented in derived chlorophytes and replaced

  6. Gain and loss of polyadenylation signals during evolution of green algae.

    Science.gov (United States)

    Wodniok, Sabina; Simon, Andreas; Glöckner, Gernot; Becker, Burkhard

    2007-04-18

    The Viridiplantae (green algae and land plants) consist of two monophyletic lineages: the Chlorophyta and the Streptophyta. Most green algae belong to the Chlorophyta, while the Streptophyta include all land plants and a small group of freshwater algae known as Charophyceae. Eukaryotes attach a poly-A tail to the 3' ends of most nuclear-encoded mRNAs. In embryophytes, animals and fungi, the signal for polyadenylation contains an A-rich sequence (often AAUAAA or related sequence) 13 to 30 nucleotides upstream from the cleavage site, which is commonly referred to as the near upstream element (NUE). However, it has been reported that the pentanucleotide UGUAA is used as polyadenylation signal for some genes in volvocalean algae. We set out to investigate polyadenylation signal differences between streptophytes and chlorophytes that may have emerged shortly after the evolutionary split between Streptophyta and Chlorophyta. We therefore analyzed expressed genes (ESTs) from three streptophyte algae, Mesostigma viride, Klebsormidium subtile and Coleochaete scutata, and from two early-branching chlorophytes, Pyramimonas parkeae and Scherffelia dubia. In addition, to extend the database, our analyses included ESTs from six other chlorophytes (Acetabularia acetabulum, Chlamydomonas reinhardtii, Helicosporidium sp. ex Simulium jonesii, Prototheca wickerhamii, Scenedesmus obliquus and Ulva linza) and one streptophyte (Closterium peracerosum). Our results indicate that polyadenylation signals in green algae vary widely. The UGUAA motif is confined to late-branching Chlorophyta. Most streptophyte algae do not have an A-rich sequence motif like that in embryophytes, animals and fungi. We observed polyadenylation signals similar to those of Arabidopsis and other land plants only in Mesostigma. Polyadenylation signals in green algae show considerable variation. A new NUE (UGUAA) was invented in derived chlorophytes and replaced not only the A-rich NUE but the complete poly

  7. Plutonium sorption by the green algae Scenedesmus obliquus (Tuerp) Kuetz

    International Nuclear Information System (INIS)

    Tkacik, M.F.; Giesy, J.P.; Corey, J.C.

    1978-01-01

    As part of the continuing study of the possible impact of released radioisotopes to the Savannah River Plant (SRP) environment, the interaction between a biological system and plutonium was investigated. Specifically, an algal culture, Scenedesmus obliquus, was exposed to the +4 and +6 oxidation states of 238 Pu and 239-240 Pu at three plutonium concentration levels. There was no significant different (p 3) 0.05) between 238 Pu and 239-240 Pu accumulation by the algae at equivalent concentrations or at different oxidation states

  8. Biodegradation of phenanthrene by the green alga scenedesmus obliquus ES-55

    Energy Technology Data Exchange (ETDEWEB)

    Safonova, E.; Kvitko, K. [Biological Institute of St. Petersburg State University, Oranienbaum Chaussee 2, Old Peterhof, 198504 St. Petersburg (Russian Federation); Kuschk, P.; Moeder, M. [UFZ-Umweltforschungszentrum Leipzig-Halle GmbH, Permoserstrasse 15, Leipzig (Germany); Reisser, W. [Universitaet Leipzig, Botanisches Institut, Johannisallee 21-23, D-04103 Leipzig (Germany)

    2005-06-01

    While the degradation of polycyclic aromatic hydrocarbons by bacteria and fungi has been broadly investigated, less is known about the metabolism of these compounds by algae. The goal of the experiments was to test the degradability of phenanthrene by the green alga Scenedesmus obliquus ES-55 (Chlorophyceae) and to identify the metabolites. It was shown that S. obliquus ES-55 metabolized phenanthrene. Under light conditions, phenanthrene (14 mg/L) inhibits cell division by more than twice. However, the metabolic processes in the cells affected by phenanthrene continued because the content of chlorophyll increased. In the exponential phase under phototrophic conditions the alga degraded phenanthrene. Phenanthrene was removed by algae up to 42 % in BBM medium and up to 24 % in Kuhl medium. Dihydroxy-dihydro-phenanthrene, a degradation metabolite in fungi, bacteria and cyanobacteria, could also be detected as a transformation product of S. obliquus ES-55. Further detected common metabolites foster the assumption that both phototrophic and non-photothrophic organisms metabolize phenanthrene via a similar pathway. The present study is the first evidence of the ability of an axenic culture of the green alga S. obliquus to biotransform phenanthrene into other metabolites. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  9. Identification of cypermethrin induced protein changes in green algae by iTRAQ quantitative proteomics.

    Science.gov (United States)

    Gao, Yan; Lim, Teck Kwang; Lin, Qingsong; Li, Sam Fong Yau

    2016-04-29

    Cypermethrin (CYP) is one of the most widely used pesticides in large scale for agricultural and domestic purpose and the residue often seriously affects aquatic system. Environmental pollutant-induced protein changes in organisms could be detected by proteomics, leading to discovery of potential biomarkers and understanding of mode of action. While proteomics investigations of CYP stress in some animal models have been well studied, few reports about the effects of exposure to CYP on algae proteome were published. To determine CYP effect in algae, the impact of various dosages (0.001μg/L, 0.01μg/L and 1μg/L) of CYP on green algae Chlorella vulgaris for 24h and 96h was investigated by using iTRAQ quantitative proteomics technique. A total of 162 and 198 proteins were significantly altered after CYP exposure for 24h and 96h, respectively. Overview of iTRAQ results indicated that the influence of CYP on algae protein might be dosage-dependent. Functional analysis of differentially expressed proteins showed that CYP could induce protein alterations related to photosynthesis, stress responses and carbohydrate metabolism. This study provides a comprehensive view of complex mode of action of algae under CYP stress and highlights several potential biomarkers for further investigation of pesticide-exposed plant and algae. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. A novel ether-linked phytol-containing digalactosylglycerolipid in the marine green alga, Ulva pertusa

    International Nuclear Information System (INIS)

    Ishibashi, Yohei; Nagamatsu, Yusuke; Miyamoto, Tomofumi; Matsunaga, Naoyuki; Okino, Nozomu; Yamaguchi, Kuniko; Ito, Makoto

    2014-01-01

    Highlights: • Alkaline-resistant galactolipid, AEGL, was found in marine algae. • The sugar moiety of AEGL is identical to that of digalactosyldiacylglycerol. • AEGL is the first identified glycolipid that possesses an ether-linked phytol. • AEGL is ubiquitously distributed in green, red and brown marine algae. - Abstract: Galactosylglycerolipids (GGLs) and chlorophyll are characteristic components of chloroplast in photosynthetic organisms. Although chlorophyll is anchored to the thylakoid membrane by phytol (tetramethylhexadecenol), this isoprenoid alcohol has never been found as a constituent of GGLs. We here described a novel GGL, in which phytol was linked to the glycerol backbone via an ether linkage. This unique GGL was identified as an Alkaline-resistant and Endogalactosylceramidase (EGALC)-sensitive GlycoLipid (AEGL) in the marine green alga, Ulva pertusa. EGALC is an enzyme that is specific to the R-Galα/β1-6Galβ1-structure of galactolipids. The structure of U. pertusa AEGL was determined following its purification to 1-O-phytyl-3-O-Galα1-6Galβ1-sn-glycerol by mass spectrometric and nuclear magnetic resonance analyses. AEGLs were ubiquitously distributed in not only green, but also red and brown marine algae; however, they were rarely detected in terrestrial plants, eukaryotic phytoplankton, or cyanobacteria

  11. A novel ether-linked phytol-containing digalactosylglycerolipid in the marine green alga, Ulva pertusa

    Energy Technology Data Exchange (ETDEWEB)

    Ishibashi, Yohei; Nagamatsu, Yusuke [Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Miyamoto, Tomofumi [Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582 (Japan); Matsunaga, Naoyuki; Okino, Nozomu; Yamaguchi, Kuniko [Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Ito, Makoto, E-mail: makotoi@agr.kyushu-u.ac.jp [Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan)

    2014-10-03

    Highlights: • Alkaline-resistant galactolipid, AEGL, was found in marine algae. • The sugar moiety of AEGL is identical to that of digalactosyldiacylglycerol. • AEGL is the first identified glycolipid that possesses an ether-linked phytol. • AEGL is ubiquitously distributed in green, red and brown marine algae. - Abstract: Galactosylglycerolipids (GGLs) and chlorophyll are characteristic components of chloroplast in photosynthetic organisms. Although chlorophyll is anchored to the thylakoid membrane by phytol (tetramethylhexadecenol), this isoprenoid alcohol has never been found as a constituent of GGLs. We here described a novel GGL, in which phytol was linked to the glycerol backbone via an ether linkage. This unique GGL was identified as an Alkaline-resistant and Endogalactosylceramidase (EGALC)-sensitive GlycoLipid (AEGL) in the marine green alga, Ulva pertusa. EGALC is an enzyme that is specific to the R-Galα/β1-6Galβ1-structure of galactolipids. The structure of U. pertusa AEGL was determined following its purification to 1-O-phytyl-3-O-Galα1-6Galβ1-sn-glycerol by mass spectrometric and nuclear magnetic resonance analyses. AEGLs were ubiquitously distributed in not only green, but also red and brown marine algae; however, they were rarely detected in terrestrial plants, eukaryotic phytoplankton, or cyanobacteria.

  12. Cryptochrome photoreceptors in green algae: Unexpected versatility of mechanisms and functions.

    Science.gov (United States)

    Kottke, Tilman; Oldemeyer, Sabine; Wenzel, Sandra; Zou, Yong; Mittag, Maria

    2017-10-01

    Green algae have a highly complex and diverse set of cryptochrome photoreceptor candidates including members of the following subfamilies: plant, plant-like, animal-like, DASH and cryptochrome photolyase family 1 (CPF1). While some green algae encode most or all of them, others lack certain members. Here we present an overview about functional analyses of so far investigated cryptochrome photoreceptors from the green algae Chlamydomonas reinhardtii (plant and animal-like cryptochromes) and Ostreococcus tauri (CPF1) with regard to their biological significance and spectroscopic properties. Cryptochromes of both algae have been demonstrated recently to be involved to various extents in circadian clock regulation and in Chlamydomonas additionally in life cycle control. Moreover, CPF1 even performs light-driven DNA repair. The plant cryptochrome and CPF1 are UVA/blue light receptors, whereas the animal-like cryptochrome responds to almost the whole visible spectrum including red light. Accordingly, plant cryptochrome, animal-like cryptochrome and CPF1 differ fundamentally in their structural response to light as revealed by their visible and infrared spectroscopic signatures, and in the role of the flavin neutral radical acting as dark form or signaling state. Copyright © 2017 Elsevier GmbH. All rights reserved.

  13. Basis of genetic adaptation to heavy metal stress in the acidophilic green alga Chlamydomonas acidophila.

    Science.gov (United States)

    Puente-Sánchez, Fernando; Díaz, Silvia; Penacho, Vanessa; Aguilera, Angeles; Olsson, Sanna

    2018-07-01

    To better understand heavy metal tolerance in Chlamydomonas acidophila, an extremophilic green alga, we assembled its transcriptome and measured transcriptomic expression before and after Cd exposure in this and the neutrophilic model microalga Chlamydomonas reinhardtii. Genes possibly related to heavy metal tolerance and detoxification were identified and analyzed as potential key innovations that enable this species to live in an extremely acid habitat with high levels of heavy metals. In addition we provide a data set of single orthologous genes from eight green algal species as a valuable resource for comparative studies including eukaryotic extremophiles. Our results based on differential gene expression, detection of unique genes and analyses of codon usage all indicate that there are important genetic differences in C. acidophila compared to C. reinhardtii. Several efflux family proteins were identified as candidate key genes for adaptation to acid environments. This study suggests for the first time that exposure to cadmium strongly increases transposon expression in green algae, and that oil biosynthesis genes are induced in Chlamydomonas under heavy metal stress. Finally, the comparison of the transcriptomes of several acidophilic and non-acidophilic algae showed that the Chlamydomonas genus is polyphyletic and that acidophilic algae have distinctive aminoacid usage patterns. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Preliminary results on laboratory simulations of the decomposition of the green algae Ulva rigida

    International Nuclear Information System (INIS)

    Karavoltsos, S.; Scoullous, M.; Kaberi, H.

    1999-01-01

    The Ulva Rigida is a cosmopolitan green algae characteristic of many eutrophic and mesotrophic coastal environments. The effect of its growth and decomposition on the cycle of trace metals has been studied by using enclosures in the site Loutropyrgos over a number of years. The present study is a continuation of that research. Its main aim was to simulate a number of the field experiments in the laboratory, under more controlled conditions and understand better the impact of the decomposition of algae on sea water and sediment

  15. Pathophysiology and Toxicokinetic Studies of Blue-Green Algae Intoxication in the Swine Model

    Science.gov (United States)

    1991-06-26

    Carmichael, W. W., Kleppe, G., Hooser, S. B., and Haschek, W. M. (1987) Blue-grezn algae (Microcystis aeruginosa) hepatotoxicosis in dairy cows . Am. J. Vet...Kleppe, G., Hooser, S. B., and Haschek, W. M. (1987) Blue-green algae (Microcystis aeruginosa) hepatotoxicosis in dairy cows . Am. J. Vet. Res. 48...containing (per 500 ml) 100 ml of fetal bovine serum (FBS) and 0.3 ml of insulin (100 U/ml), and placed on ice. Uptake of Dihydromicrocystin-LR into

  16. Distribution and relationships between selected chemical elements in green alga Enteromorpha sp. from the southern Baltic

    International Nuclear Information System (INIS)

    Zbikowski, Radoslaw; Szefer, Piotr; Latala, Adam

    2006-01-01

    The concentrations of heavy metals (Cd, Cu, Ni, Pb, Zn and Mn) and macroelements (K, Na, Ca and Mg) were determined in green alga Enteromorpha sp. from the coastal zone of the southern Baltic including Gulf of Gdansk and Vistula Lagoon in 2000-2003. In order to estimate the degree of accumulation of each element by the green alga, concentration and discrimination factors (CFs) with respect to seawater were calculated. The results of factor analysis (FA) and ANOVA clearly indicate geographical differences between concentrations of chemical elements. Enteromorpha sp. from Vistula Lagoon and the southern Baltic exhibited higher levels of Mn and Ni, and Na and K, respectively. Anthropogenic impact of Cu, Pb and Zn, possibly originated from municipal sewage, was identified in alga samples collected in the Gulf of Gdansk, especially in the vicinity of Gdynia. From comparison our data with those published earlier results that Pb content in Enteromorpha sp. from the Gulf of Gdansk decreased within 1978-2003 reflecting reducing use of leaded petrol in Baltic countries in this period. The alga Enteromorpha sp. can be used for biomonitoring surveys of metal contaminants in coastal areas of the Baltic Sea. - Enteromorpha sp. can be used as efficient biomonitor for chemical elements in coastal areas of the Baltic Sea

  17. The adsorption potential and recovery of thallium using green micro-algae from eutrophic water sources.

    Science.gov (United States)

    Birungi, Z S; Chirwa, E M N

    2015-12-15

    Thallium (Tl) is a highly volatile and toxic heavy metal regarded to cause pollution even at very low concentrations of several parts per million. Despite the extremely high risk of Tl in the environment, limited information on removal/recovery exists. The study focussed on the use of green algae to determine the sorption potential and recovery of Tl. From the study, removal efficiency was achieved at 100% for lower concentrations of ≥150 mg/L of Tl. At higher concentrations in a range of 250-500 mg/L, the performance of algae was still higher with sorption capacity (qmax) between 830 and 1000 mg/g. Generally, Chlorella vulgaris was the best adsorbent with a high qmax and lower affinity of 1000 mg/g and 1.11 L/g, respectively. When compared to other studies on Tl adsorption, the tested algae showed a better qmax than most adsorbents. The kinetic studies showed better correlation co-efficient of ≤0.99 for Pseudo-second order model than the first order model. Recovery was achieved highest for C. vulgaris using nitric acid at 93.3%. The strongest functional groups responsible for Tl binding on the algal cell wall were carboxyl and phenols. Green algae from freshwater bodies showed significant potential for Tl removal/recovery from industrial wastewater. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. A Green Algae Mixture of Scenedesmus and Schroederiella Attenuates Obesity-Linked Metabolic Syndrome in Rats

    Science.gov (United States)

    Kumar, Senthil Arun; Magnusson, Marie; Ward, Leigh C.; Paul, Nicholas A.; Brown, Lindsay

    2015-01-01

    This study investigated the responses to a green algae mixture of Scenedesmus dimorphus and Schroederiella apiculata (SC) containing protein (46.1% of dry algae), insoluble fibre (19.6% of dry algae), minerals (3.7% of dry algae) and omega-3 fatty acids (2.8% of dry algae) as a dietary intervention in a high carbohydrate, high fat diet-induced metabolic syndrome model in four groups of male Wistar rats. Two groups were fed with a corn starch diet containing 68% carbohydrates as polysaccharides, while the other two groups were fed a diet high in simple carbohydrates (fructose and sucrose in food, 25% fructose in drinking water, total 68%) and fats (saturated and trans fats from beef tallow, total 24%). High carbohydrate, high fat-fed rats showed visceral obesity with hypertension, insulin resistance, cardiovascular remodelling, and nonalcoholic fatty liver disease. SC supplementation (5% of food) lowered total body and abdominal fat mass, increased lean mass, and attenuated hypertension, impaired glucose and insulin tolerance, endothelial dysfunction, infiltration of inflammatory cells into heart and liver, fibrosis, increased cardiac stiffness, and nonalcoholic fatty liver disease in the high carbohydrate, high fat diet-fed rats. This study suggests that the insoluble fibre or protein in SC helps reverse diet-induced metabolic syndrome. PMID:25875119

  19. Terrestrial adaptation of green algae Klebsormidium and Zygnema (Charophyta) involves diversity in photosynthetic traits but not in CO2 acquisition

    Czech Academy of Sciences Publication Activity Database

    Pierangelini, M.; Ryšánek, David; Lang, I.; Adlassnig, W.; Holzinger, A.

    2017-01-01

    Roč. 246, č. 5 (2017), s. 971-986 ISSN 0032-0935 Institutional support: RVO:61388971 Keywords : Desiccation * Green algae * Photosynthesis Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 3.361, year: 2016

  20. Relation between hydrogen production and photosynthesis in the green algae Chlamydomonas reinhardtii

    OpenAIRE

    Basu, Alex

    2015-01-01

    The modernized world is over-consuming low-cost energy sources that strongly contributes to pollution and environmental stress. As a consequence, the interest for environmentally friendly alternatives has increased immensely. One such alternative is the use of solar energy and water as a raw material to produce biohydrogen through the process of photosynthetic water splitting. In this work, the relation between H2-production and photosynthesis in the green algae Chlamydomonas reinhardtii was ...

  1. On the assessment of the productivity of suspension cultures of unicellular green algae at defined light conditions

    Energy Technology Data Exchange (ETDEWEB)

    Seiss, U; Borns, E; Boehm, H

    1985-01-01

    A description is given of the possibility of a comparison of the production between different suspension cultures of microalgae at equal and defined light conditions. For this, a variant of the turbidostat technique is used by which with the acid of a phototransistor and the filter combination of red filter/opal glass filter a chlorophyll-equivalent signal is applied for control. The equal light conditions are compared and set by the preparation of the respective absorption profiles. From this one can derive the mean level of irradiation within the suspension cultures and use it as the reference value for the light conditions. By this technique it is possible to set equal light conditions in suspension cultures independent of the given cell sizes, cell shapes and dry matter contents.

  2. An unexpectedly large and loosely packed mitochondrial genome in the charophycean green alga Chlorokybus atmophyticus

    Directory of Open Access Journals (Sweden)

    Lemieux Claude

    2007-05-01

    Full Text Available Abstract Background The Streptophyta comprises all land plants and six groups of charophycean green algae. The scaly biflagellate Mesostigma viride (Mesostigmatales and the sarcinoid Chlorokybus atmophyticus (Chlorokybales represent the earliest diverging lineages of this phylum. In trees based on chloroplast genome data, these two charophycean green algae are nested in the same clade. To validate this relationship and gain insight into the ancestral state of the mitochondrial genome in the Charophyceae, we sequenced the mitochondrial DNA (mtDNA of Chlorokybus and compared this genome sequence with those of three other charophycean green algae and the bryophytes Marchantia polymorpha and Physcomitrella patens. Results The Chlorokybus genome differs radically from its 42,424-bp Mesostigma counterpart in size, gene order, intron content and density of repeated elements. At 201,763-bp, it is the largest mtDNA yet reported for a green alga. The 70 conserved genes represent 41.4% of the genome sequence and include nad10 and trnL(gag, two genes reported for the first time in a streptophyte mtDNA. At the gene order level, the Chlorokybus genome shares with its Chara, Chaetosphaeridium and bryophyte homologues eight to ten gene clusters including about 20 genes. Notably, some of these clusters exhibit gene linkages not previously found outside the Streptophyta, suggesting that they originated early during streptophyte evolution. In addition to six group I and 14 group II introns, short repeated sequences accounting for 7.5% of the genome were identified. Mitochondrial trees were unable to resolve the correct position of Mesostigma, due to analytical problems arising from accelerated sequence evolution in this lineage. Conclusion The Chlorokybus and Mesostigma mtDNAs exemplify the marked fluidity of the mitochondrial genome in charophycean green algae. The notion that the mitochondrial genome was constrained to remain compact during charophycean

  3. Acute toxicity of live and decomposing green alga Ulva ( Enteromorpha) prolifera to abalone Haliotis discus hannai

    Science.gov (United States)

    Wang, Chao; Yu, Rencheng; Zhou, Mingjiang

    2011-05-01

    From 2007 to 2009, large-scale blooms of green algae (the so-called "green tides") occurred every summer in the Yellow Sea, China. In June 2008, huge amounts of floating green algae accumulated along the coast of Qingdao and led to mass mortality of cultured abalone and sea cucumber. However, the mechanism for the mass mortality of cultured animals remains undetermined. This study examined the toxic effects of Ulva ( Enteromorpha) prolifera, the causative species of green tides in the Yellow Sea during the last three years. The acute toxicity of fresh culture medium and decomposing algal effluent of U. prolifera to the cultured abalone Haliotis discus hannai were tested. It was found that both fresh culture medium and decomposing algal effluent had toxic effects to abalone, and decomposing algal effluent was more toxic than fresh culture medium. The acute toxicity of decomposing algal effluent could be attributed to the ammonia and sulfide presented in the effluent, as well as the hypoxia caused by the decomposition process.

  4. Competition between cyanobacteria and green algae at low versus elevated CO2: who will win, and why?

    Science.gov (United States)

    Ji, Xing; Verspagen, Jolanda M H; Stomp, Maayke; Huisman, Jef

    2017-06-01

    Traditionally, it has often been hypothesized that cyanobacteria are superior competitors at low CO2 and high pH in comparison with eukaryotic algae, owing to their effective CO2-concentrating mechanism (CCM). However, recent work indicates that green algae can also have a sophisticated CCM tuned to low CO2 levels. Conversely, cyanobacteria with the high-flux bicarbonate uptake system BicA appear well adapted to high inorganic carbon concentrations. To investigate these ideas we studied competition between three species of green algae and a bicA strain of the harmful cyanobacterium Microcystis aeruginosa at low (100 ppm) and high (2000 ppm) CO2. Two of the green algae were competitively superior to the cyanobacterium at low CO2, whereas the cyanobacterium increased its competitive ability with respect to the green algae at high CO2. The experiments were supported by a resource competition model linking the population dynamics of the phytoplankton species with dynamic changes in carbon speciation, pH and light. Our results show (i) that competition between phytoplankton species at different CO2 levels can be predicted from species traits in monoculture, (ii) that green algae can be strong competitors under CO2-depleted conditions, and (iii) that bloom-forming cyanobacteria with high-flux bicarbonate uptake systems will benefit from elevated CO2 concentrations. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  5. Lead (Pb heavy metal impacts in the green Ulva lactuca (Chlorophyceae marine algae

    Directory of Open Access Journals (Sweden)

    B. Saleh

    2016-05-01

    Full Text Available Toxicity of different lead (Pb (0, 2, 4 and 8 mg/L concentrations in the green Ulva lactuca (Chlorophyta marine algae at physiological level has been investigated 48 h after Pb treatment under laboratory conditions. Thalus algae damages followed Pb treatment as revealed by microscopy test showed that the 4 and 8 mg/L Pb caused morphological changes in cells viability; whereas, no effect observed at the lowest Pb applied concentration (2 mg/L. Data revealed that Pb stress caused reduction in most investigated physiological parameters i.e. Pigments content, osmotic potential and membrane stability index values. This decline in osmotic potential was significantly (p ≤ 0.001 different. Whereas, estimated electric conductivity (EC values increased significantly (p ≤ 0.001 as applied Pb concentration increased. The current study allowed somewhat to highlight and better understanding Pb impacts in U. lactuca algae. Thereby, the studied algae could be used as a useful bioindicator in Pb polluted ecosystems.

  6. Photosynthetic biomanufacturing in green algae; production of recombinant proteins for industrial, nutritional, and medical uses.

    Science.gov (United States)

    Rasala, Beth A; Mayfield, Stephen P

    2015-03-01

    Recombinant proteins are widely used for industrial, nutritional, and medical applications. Green microalgae have attracted considerable attention recently as a biomanufacturing platform for the production of recombinant proteins for a number of reasons. These photosynthetic eukaryotic microorganisms are safe, scalable, easy to genetically modify through transformation, mutagenesis, or breeding, and inexpensive to grow. Many microalgae species are genetically transformable, but the green alga Chlamydomonas reinhardtii is the most widely used host for recombinant protein expression. An extensive suite of molecular genetic tools has been developed for C. reinhardtii over the last 25 years, including a fully sequenced genome, well-established methods for transformation, mutagenesis and breeding, and transformation vectors for high levels of recombinant protein accumulation and secretion. Here, we review recent successes in the development of C. reinhardtii as a biomanufacturing host for recombinant proteins, including antibodies and immunotoxins, hormones, industrial enzymes, an orally-active colostral protein for gastrointestinal health, and subunit vaccines. In addition, we review the biomanufacturing potential of other green algae from the genera Dunaliella and Chlorella.

  7. Emergence of green business models: The case of algae biofuel for aviation

    International Nuclear Information System (INIS)

    Nair, Sujith; Paulose, Hanna

    2014-01-01

    Emergent business models seek to take advantage of new market mechanisms driven by technological changes, particularly those related to the production and delivery of clean or sustainable energy. Such business models often function at the intersection of various industries, with global views, and the resulting systems have distinct social, political, environmental, economic, technological, and business dimensions. Such holistic systems are not only difficult to develop but also require support from a broad range of actors with effective regulations and policies in place, such that the firm functions within a framework that integrates various factors. This study substantiates such a framework by detailing the nascent algae-based bio-fuel industry that caters to the aviation sector while arguing that businesses in the energy industry can emerge as a next-practice platform that drive a sixth wave of innovation. The framework begins with three basic enablers, innovation, flexibility, and sustainability, and explains how value from renewable energy technologies can be created and captured sustainably and innovatively with new market mechanisms implemented by firms with green business models. - Highlights: • We develop a framework that enables the emergence of green energy business models. • We present a case study on the algae based biofuel system for airline industry. • The green business models in energy are global in nature and are next practice platforms. • New market mechanisms and policy measures lead to sustainable energy business models. • Innovation, flexibility and sustainability are the basic enablers of the framework

  8. Effects of antibiotics and ultraviolet radiation on the halophilic blue-green alga

    International Nuclear Information System (INIS)

    Yopp, J.H.; Albright, G.; Miller, D.M.; Southern Illinois Univ., Carbondale

    1979-01-01

    The effects of a variety of antibiotics, ultraviolet radiation and N-methyl-N-nitro-N-nitro-N-nitrosoguanidine (NTG) on the survival and mutability of the halophilic blue-green alga, Aphanothece halophytica, were determined. The halophile was found extremely sensitive to penicillin G and bacitracin; moderately sensitive to novobiocin, amino acid analogs, chloramphenicol and streptomycin; and tolerant to actidione and hydroxyurea. Ultraviolet and NTG killing curves and photoreactivation capabilities were seimilar to those reported for other members of the Chroococcales. Three stable morphological mutants were obtained by ultraviolet and NTG treatment, the latter being much more efficient in the production of mutants. (orig.)

  9. Phenotypic plasticity of wall ultrastructure in the green alga Pediastrum s.l. (Chlorophyta, Sphaeropleales

    Directory of Open Access Journals (Sweden)

    Lenarczyk Joanna

    2016-07-01

    Full Text Available This study examined wall ultrastructure variability in the microscopic green alga Pediastrum s.l. Its value as a diagnostic character is discussed. Field and cultured material of 21 taxa were compared using light and scanning electron microscopy. Nine ultrastructural elements occurring on the surface of Pediastrum are documented with LM and SEM micrographs. The highest number of taxa showed reticulate ornamentation composed of a trigonal mesh and granules situated on its corners. The paper considers the use of wall ultrastructure to reconcile traditional and modern taxonomical systems with regard to Pediastrum varieties, and addresses the phylogenetic relationships between strains representing different varieties.

  10. Lysis of Gymnodinium breve by cultures of the green alga Nannochloris eucaryotum.

    Science.gov (United States)

    Pérez, E; Sawyers, W G; Martin, D F

    2001-01-01

    Laboratory cultures of Florida's red tide organism, Gymnodinium breve, were killed by the green alga Nannochloris eucaryotum. Studies involved organism-organism interaction as well as organism-cell-free culture (N. eucaryotum) interaction. Both studies demonstrated that N. eucaryotum adversely affected Florida's red tide organism. The lysis has been attributed to compounds called APONINs (apparent oceanic naturally occurring cytolins). N. eucaryotum crude APONIN was extracted from cell-free cultures, partially purified and fractionated. The fractions were bioassayed against G. breve, and 'fingerprints' of the deleterious fractions were obtained.

  11. Proteasome and NF-kappaB inhibiting phaeophytins from the green alga Cladophora fascicularis.

    Science.gov (United States)

    Huang, Xinping; Li, Min; Xu, Bo; Zhu, Xiaobin; Deng, Zhiwei; Lin, Wenhan

    2007-03-21

    Chemical examination of the green alga Cladophora fascicularis resulted in the isolation and characterization of a new porphyrin derivative, porphyrinolactone (1), along with five known phaeophytins 2-6 and fourteen sterols and cycloartanes. The structure of 1 was determined on the basis of spectroscopic analyses and by comparison of its NMR data with those of known phaeophytins. Compounds 1-6 displayed moderate inhibition of tumor necrosis factor alpha (TNF-alpha) induced nuclear factor-kappaB (NF-kappaB) activation, while 2 and 4 displayed potential inhibitory activity toward proteasome chymotripsin-like activation. The primary structure-activity relationship was also discussed.

  12. Neutron activation analysis for development of mercury sorbent based on blue-green alga salipriina palatinates

    International Nuclear Information System (INIS)

    Frontasyeva, M.V.; Kirkesali, E.I.; Aksenova, N.G.; Mosulishvili, L.M.; Belokobylsky, A.I.; Khizanishvili, A.I.

    2005-01-01

    Epithermal neutron activation analysis was used to study interaction of blue-green alga Spirulina platensis with toxic metal mercury. Various concentrations of Hg(II) were added to cell cultures in a nutrient medium. The dynamic of accumulation of Hg was investigated over days in relation to Spirulina biomass growth. The process of Hg adsorption by Spirulina biomass was studied in short-time experiments. The isotherm of adsorption was / out in Freindlich coordinates. Natural Spirulina biomass has potential to be used in the remediation of sewage waters at Hg concentrations ∼ 100 μg/1

  13. Bioaccumulation and subcellular partitioning of Cr(III) and Cr(VI) in the freshwater green alga Chlamydomonas reinhardtii

    Energy Technology Data Exchange (ETDEWEB)

    Aharchaou, Imad [Laboratoire Interdisciplinaire des Environnements Continentaux, UMR 7360, Université de Lorraine and CNRS, 8 rue du Général Delestraint, 57070 Metz (France); Rosabal, Maikel; Liu, Fengjie [Institut National de la Recherche Scientifique, Centre Eau Terre Environnement (INRS-ETE), 490 rue de la Couronne, Québec (Québec) G1K 9A9 (Canada); Battaglia, Eric; Vignati, Davide A.L. [Laboratoire Interdisciplinaire des Environnements Continentaux, UMR 7360, Université de Lorraine and CNRS, 8 rue du Général Delestraint, 57070 Metz (France); Fortin, Claude, E-mail: claude.fortin@ete.inrs.ca [Institut National de la Recherche Scientifique, Centre Eau Terre Environnement (INRS-ETE), 490 rue de la Couronne, Québec (Québec) G1K 9A9 (Canada)

    2017-01-15

    Highlights: • C. reinhardtii accumulated similar levels of Cr(III) and Cr(VI). • The subcellular partitioning of Cr(III) and Cr(VI) was similar. • Cr(III) and Cr(VI) associated mainly with organelles and heat-stable proteins. • Metallomic analysis showed two main Cr-binding biomolecules after 72 h of exposure. - Abstract: Chromium occurs in aquatic environments under two main redox forms, namely Cr(III) and Cr(VI), with different geochemical and biochemical properties. Cr(VI) readily crosses biological membranes of living organisms and once inside the cells it undergoes a rapid reduction to Cr(III). The route of entry for the latter form is, however, poorly known. Using the radioactive tracer {sup 51}Cr we compared the accumulation (absorption and adsorption) of the two Cr forms by the green unicellular alga Chlamydomonas reinhardii after 1 h and 72 h of exposure to 100 nM of either Cr(III) or Cr(VI) at pH 7. Both Cr forms had similar accumulation, with a major part in the extracellular (adsorbed) fraction after 1 h and a major part of total accumulated Cr in the intracellular (absorbed) fraction after 72 h. We also investigated the intracellular partitioning of Cr using an operational fractionation scheme and found that both Cr forms had similar distributions among fractions: Cr was mostly associated with organelles (23 ± 12% after 1 h and 37 ± 7% after 72 h) and cytosolic heat-stable proteins and peptides (39 ± 18% after 1 h and 35 ± 3% after 72 h) fractions. Further investigations using a metallomic approach (SEC-ICP-MS) were performed with the heat-stable proteins and peptides fraction to compare the distribution of the two Cr forms among various biomolecules of this fraction. One Cr-binding biomolecule (∼28 kDa) appeared after 1 h of exposure for both Cr species. After 72 h another biomolecule of lower molecular weight (∼0.7 kDa) was involved in binding Cr and higher signal intensities were observed for Cr(VI) than for Cr(III). We show, for the

  14. Bioaccumulation and subcellular partitioning of Cr(III) and Cr(VI) in the freshwater green alga Chlamydomonas reinhardtii

    International Nuclear Information System (INIS)

    Aharchaou, Imad; Rosabal, Maikel; Liu, Fengjie; Battaglia, Eric; Vignati, Davide A.L.; Fortin, Claude

    2017-01-01

    Highlights: • C. reinhardtii accumulated similar levels of Cr(III) and Cr(VI). • The subcellular partitioning of Cr(III) and Cr(VI) was similar. • Cr(III) and Cr(VI) associated mainly with organelles and heat-stable proteins. • Metallomic analysis showed two main Cr-binding biomolecules after 72 h of exposure. - Abstract: Chromium occurs in aquatic environments under two main redox forms, namely Cr(III) and Cr(VI), with different geochemical and biochemical properties. Cr(VI) readily crosses biological membranes of living organisms and once inside the cells it undergoes a rapid reduction to Cr(III). The route of entry for the latter form is, however, poorly known. Using the radioactive tracer "5"1Cr we compared the accumulation (absorption and adsorption) of the two Cr forms by the green unicellular alga Chlamydomonas reinhardii after 1 h and 72 h of exposure to 100 nM of either Cr(III) or Cr(VI) at pH 7. Both Cr forms had similar accumulation, with a major part in the extracellular (adsorbed) fraction after 1 h and a major part of total accumulated Cr in the intracellular (absorbed) fraction after 72 h. We also investigated the intracellular partitioning of Cr using an operational fractionation scheme and found that both Cr forms had similar distributions among fractions: Cr was mostly associated with organelles (23 ± 12% after 1 h and 37 ± 7% after 72 h) and cytosolic heat-stable proteins and peptides (39 ± 18% after 1 h and 35 ± 3% after 72 h) fractions. Further investigations using a metallomic approach (SEC-ICP-MS) were performed with the heat-stable proteins and peptides fraction to compare the distribution of the two Cr forms among various biomolecules of this fraction. One Cr-binding biomolecule (∼28 kDa) appeared after 1 h of exposure for both Cr species. After 72 h another biomolecule of lower molecular weight (∼0.7 kDa) was involved in binding Cr and higher signal intensities were observed for Cr(VI) than for Cr(III). We show, for the

  15. Contamination of a green algae (Scenedesmus obliquus) from fresh water by radionuclides typical of PWR effluents: culture in a turbidostat

    International Nuclear Information System (INIS)

    Sombre, L.; Carraro, S.; Myttenaere, C.

    1987-01-01

    The fixation of radioactive polluents, typical for PWR effluents, by the green soft water algae Scenedesmus obliquus is studied by means of a continuous culture method and in controlled conditions (turbidostat). Transfer factors are obtained. The elimination of radiocesium occurs in two distinct phases characterized respectively by a short biological period of less than one hour and a long period of the order of one day. The photosynthetic metabolism of the algae accounts for 25% of the decorporation. (Author)

  16. (Carbon and hydrogen metabolism of green algae in light and dark)

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    The focus of this project was the elucidation of anaerobic metabolism in ecuaryotic green algae, chlamydomonas reinhardii. Chlamydomonas is a versatile organism that can grow under disparate conditions such as fresh water lakes and sewage ponds. The cell an photoassimilate CO{sub 2} aerobically and anaerobically, the latter after adaptation'' to a hydrogen metabolism. It can recall the knallgas or oxyhydrogen reaction and utilize hydrogen the simplest of all reducing agents for the dark assimilation of CO{sub 2} by the photosynthetic carbon reduction cycle. The dark reduction with hydrogen lies on the border line between autotrophic and heterotrophic carbon assimilation. Both autotrophic and heterotrophic bacteria are known in which molecular hydrogen can replace either inorganic or organic hydrogen donors. Here the dark reduction of CO{sub 2} acquires a particular importance since it occurs in the same cell that carries on photoreduction and photosynthesis. We will demonstrate here that the alga chloroplast possesses a respiratory capacity. It seems likely that Chlamydomonas may have retained the chloroplastic respiratory pathway because of the selective advantage provided to the algae under a wide range of environmental conditions that the cells experience in nature. The ability to cycle electrons and poise the reduction level of the photosynthetic apparatus under aerobic and microaerobic conditions could allow more efficient CO{sub 2} fixation and enhanced growth under unfavorable conditions or survival under more severe conditions.

  17. Spectroscopic investigation of ionizing-radiation tolerance of a Chlorophyceae green micro-alga

    Energy Technology Data Exchange (ETDEWEB)

    Farhi, E; Compagnon, E; Marzloff, V; Ollivier, J; Boisson, A M; Natali, F; Russo, D [Institut Laue-Langevin, BP 156, 38042 Grenoble cedex 9 (France); Rivasseau, C; Gromova, M; Bligny, R [CEA, Laboratoire de Physiologie Cellulaire Vegetale, 17 rue des Martyrs, 38054 Grenoble cedex 9 (France); Coute, A [Museum National d' Histoire Naturelle, Laboratoire de Cryptogamie, 2 rue Buffon, 75005 Paris (France)

    2008-03-12

    Micro-organisms living in extreme environments are captivating in the peculiar survival processes they have developed. Deinococcus radiodurans is probably the most famous radio-resistant bacteria. Similarly, a specific ecosystem has grown in a research reactor storage pool, and has selected organisms which may sustain radiative stress. An original green micro-alga which was never studied for its high tolerance to radiations has been isolated. It is the only autotrophic eukaryote that develops in this pool, although contamination possibilities coming from outside are not unusual. Studying what could explain this irradiation tolerance is consequently very interesting. An integrative study of the effects of irradiation on the micro-algae physiology, metabolism, internal dynamics, and genomics was initiated. In the work presented here, micro-algae were stressed with irradiation doses up to 20 kGy (2 Mrad), and studied by means of nuclear magnetic resonance, looking for modifications in the metabolism, and on the IN13 neutron backscattering instrument at the ILL, looking for both dynamics and structural macromolecular changes in the cells.

  18. Stress-physiological reactions of the green alga Scenedesmus opoliensis to water pollution with herbicides

    Directory of Open Access Journals (Sweden)

    Zsolt Gyula KERESZTES

    2009-05-01

    Full Text Available The freshwater green alga Scenedesmus opoliensis proves to be a suitable bioindicator of water pollution with different herbicides. One of the best molecular markers of stress condition imposed by herbicides is overproduction of malondialdehyde resulting from lipid peroxidation in the damaged membranes. Methylviologen, a largely used pre-emergence herbicide which generates reactive oxygen species in the illuminated chloroplasts, triggers the accumulation of ascorbic acid and enhances the enzymatic activity of catalase, both of these substances being involved in the antioxidative protection of algal cells. Diuron, a herbicide that inhibits photosynthetic electron transport on the acceptor side of photosystem II, causes a decline in oxygen production and in biomass accumulation of algae. Glufosinate induces accumulation of toxic ammonia and leads to enhanced net oxygen production, associated with a low rate of carbon assimilation. Long-term exposure to micromolar concentrations of herbicides results in significant changes in the rate of cell division, in hotosynthetic parameters and in the intensity of antioxidative defense. A proper bioindication of toxic effects of herbicides on algae requires a selected combination of different physiological and biochemical parameters which reflect the degree of stress exerted on living organisms by water pollution with xenobiotic organic compounds.

  19. Influence of Speciation of Thorium on Toxic Effects to Green Algae Chlorella pyrenoidosa

    Directory of Open Access Journals (Sweden)

    Can Peng

    2017-04-01

    Full Text Available Thorium (Th is a natural radioactive element present in the environment and has the potential to be used as a nuclear fuel. Relatively little is known about the influence and toxicity of Th in the environment. In the present study, the toxicity of Th to the green algae Chlorella pyrenoidosa (C. pyrenoidosa was evaluated by algal growth inhibition, biochemical assays and morphologic observations. In the cultural medium (OECD TG 201, Th(NO34 was transformed to amorphous precipitation of Th(OH4 due to hydrolysis. Th was toxic to C. pyrenoidosa, with a 96 h half maximum effective concentration (EC50 of 10.4 μM. Scanning electron microscopy shows that Th-containing aggregates were attached onto the surface of the algal cells, and transmission electron microscopy indicates the internalization of nano-sized Th precipitates and ultrastructural alterations of the algal cells. The heteroagglomeration between Th(OH4 precipitation and alga cells and enhanced oxidative stress might play important roles in the toxicity of Th. To our knowledge, this is the first report of the toxicity of Th to algae with its chemical species in the exposure medium. This finding provides useful information on understanding the fate and toxicity of Th in the aquatic environment.

  20. Spectroscopic investigation of ionizing-radiation tolerance of a Chlorophyceae green micro-alga

    International Nuclear Information System (INIS)

    Farhi, E; Compagnon, E; Marzloff, V; Ollivier, J; Boisson, A M; Natali, F; Russo, D; Rivasseau, C; Gromova, M; Bligny, R; Coute, A

    2008-01-01

    Micro-organisms living in extreme environments are captivating in the peculiar survival processes they have developed. Deinococcus radiodurans is probably the most famous radio-resistant bacteria. Similarly, a specific ecosystem has grown in a research reactor storage pool, and has selected organisms which may sustain radiative stress. An original green micro-alga which was never studied for its high tolerance to radiations has been isolated. It is the only autotrophic eukaryote that develops in this pool, although contamination possibilities coming from outside are not unusual. Studying what could explain this irradiation tolerance is consequently very interesting. An integrative study of the effects of irradiation on the micro-algae physiology, metabolism, internal dynamics, and genomics was initiated. In the work presented here, micro-algae were stressed with irradiation doses up to 20 kGy (2 Mrad), and studied by means of nuclear magnetic resonance, looking for modifications in the metabolism, and on the IN13 neutron backscattering instrument at the ILL, looking for both dynamics and structural macromolecular changes in the cells

  1. Removal of cadmium from aqueous solution using marine green algae, Ulva lactuca

    Directory of Open Access Journals (Sweden)

    Mohamed M. Ghoneim

    2014-01-01

    Full Text Available The present study aimed to evaluate the efficiency of marine algae for removal of metals from the aqueous solution. The green alga, Ulva lactuca, collected from the intertidal zone of the Suez Bay, northern part of the Red Sea was used to reduce cadmium levels from the aqueous solutions. The biosorption mechanisms of Cd2+ ions onto the algal tissues were examined using various analytical techniques: Fourier-transform infrared spectroscopy (FT-IR and Scanning electron microscopy (SEM. Results indicated that at the optimum pH value of 5.5; about 0.1 g of U. lactuca was enough to remove 99.2% of 10 mg L−1 Cd2+ at 30 °C in the aqueous solutions. The equilibrium data were well fitted with the Langmuir and Freundlich isotherms. The monolayer adsorption capacity was 29.1 mg g−1. The calculated RL and ‘n’ values have proved the favorability of cadmium adsorption onto U. lactuca. The desorption test revealed that HCl was the best for the elution of metals from the tested alga. In conclusion, the seaweed U. lactuca was the favorable alternative of cadmium removal from water.

  2. Comparative analyses of chloroplast genome data representing nine green algae in Sphaeropleales (Chlorophyceae, Chlorophyta

    Directory of Open Access Journals (Sweden)

    Karolina Fučíková

    2016-06-01

    Full Text Available The chloroplast genomes of green algae are highly variable in their architecture. In this article we summarize gene content across newly obtained and published chloroplast genomes in Chlorophyceae, including new data from nine of species in Sphaeropleales (Chlorophyceae, Chlorophyta. We present genome architecture information, including genome synteny analysis across two groups of species. Also, we provide a phylogenetic tree obtained from analysis of gene order data for species in Chlorophyceae with fully sequenced chloroplast genomes. Further analyses and interpretation of the data can be found in “Chloroplast phylogenomic data from the green algal order Sphaeropleales (Chlorophyceae, Chlorophyta reveal complex patterns of sequence evolution” (Fučíková et al., In review [1].

  3. Plutonium uptake by the green alga Scenedesmus obliquus (Turp) Kutz, as a function of isotope and oxidation state

    Energy Technology Data Exchange (ETDEWEB)

    Tkacik, M.F.

    1977-01-01

    This study was designed to determine the effect of plutonium chemical valence state on the availability of small concentrations of /sup 238/Pu and /sup 239/Pu to algae. The uptake experiments involved the green alga Scenedesmus obliquus, grown in batch cultures. Plutonium concentrations accumulated by this alga were linearly related to plutonium concentrations. There was no significant difference (rho = 0.05) in algal plutonium accumulations, on a mass basis, of either /sup 238/Pu or /sup 239/Pu in either Pu/sup +4/ or Pu/sup +6/ oxidation state at the concentrations studied.

  4. Plutonium uptake by the green alga Scenedesmus obliquus (Turp) Kutz, as a function of isotope and oxidation state

    International Nuclear Information System (INIS)

    Tkacik, M.F.

    1977-01-01

    This study was designed to determine the effect of plutonium chemical valence state on the availability of small concentrations of 238 Pu and 239 Pu to algae. The uptake experiments involved the green alga Scenedesmus obliquus, grown in batch cultures. Plutonium concentrations accumulated by this alga were linearly related to plutonium concentrations. There was no significant difference (rho = 0.05) in algal plutonium accumulations, on a mass basis, of either 238 Pu or 239 Pu in either Pu +4 or Pu +6 oxidation state at the concentrations studied

  5. Determination of Volatile Compounds in Four Commercial Samples of Japanese Green Algae Using Solid Phase Microextraction Gas Chromatography Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Masayoshi Yamamoto

    2014-01-01

    Full Text Available Green algae are of great economic importance. Seaweed is consumed fresh or as seasoning in Japan. The commercial value is determined by quality, color, and flavor and is also strongly influenced by the production area. Our research, based on solid phase microextraction gas chromatography mass spectrometry (SPME-GC-MS, has revealed that volatile compounds differ intensely in the four varieties of commercial green algae. Accordingly, 41 major volatile compounds were identified. Heptadecene was the most abundant compound from Okayama (Ulva prolifera, Tokushima (Ulva prolifera, and Ehime prefecture (Ulva linza. Apocarotenoids, such as ionones, and their derivatives were prominent volatiles in algae from Okayama (Ulva prolifera and Tokushima prefecture (Ulva prolifera. Volatile, short chained apocarotenoids are among the most potent flavor components and contribute to the flavor of fresh, processed algae, and algae-based products. Benzaldehyde was predominant in seaweed from Shizuoka prefecture (Monostroma nitidum. Multivariant statistical analysis (PCA enabled simple discrimination of the samples based on their volatile profiles. This work shows the potential of SPME-GC-MS coupled with multivariant analysis to discriminate between samples of different geographical and botanical origins and form the basis for development of authentication methods of green algae products, including seasonings.

  6. Determination of volatile compounds in four commercial samples of Japanese green algae using solid phase microextraction gas chromatography mass spectrometry.

    Science.gov (United States)

    Yamamoto, Masayoshi; Baldermann, Susanne; Yoshikawa, Keisuke; Fujita, Akira; Mase, Nobuyuki; Watanabe, Naoharu

    2014-01-01

    Green algae are of great economic importance. Seaweed is consumed fresh or as seasoning in Japan. The commercial value is determined by quality, color, and flavor and is also strongly influenced by the production area. Our research, based on solid phase microextraction gas chromatography mass spectrometry (SPME-GC-MS), has revealed that volatile compounds differ intensely in the four varieties of commercial green algae. Accordingly, 41 major volatile compounds were identified. Heptadecene was the most abundant compound from Okayama (Ulva prolifera), Tokushima (Ulva prolifera), and Ehime prefecture (Ulva linza). Apocarotenoids, such as ionones, and their derivatives were prominent volatiles in algae from Okayama (Ulva prolifera) and Tokushima prefecture (Ulva prolifera). Volatile, short chained apocarotenoids are among the most potent flavor components and contribute to the flavor of fresh, processed algae, and algae-based products. Benzaldehyde was predominant in seaweed from Shizuoka prefecture (Monostroma nitidum). Multivariant statistical analysis (PCA) enabled simple discrimination of the samples based on their volatile profiles. This work shows the potential of SPME-GC-MS coupled with multivariant analysis to discriminate between samples of different geographical and botanical origins and form the basis for development of authentication methods of green algae products, including seasonings.

  7. Phagotrophy by the picoeukaryotic green alga Micromonas: implications for Arctic Oceans.

    Science.gov (United States)

    McKie-Krisberg, Zaid M; Sanders, Robert W

    2014-10-01

    Photosynthetic picoeukaryotes (PPE) are recognized as major primary producers and contributors to phytoplankton biomass in oceanic and coastal environments. Molecular surveys indicate a large phylogenetic diversity in the picoeukaryotes, with members of the Prymnesiophyceae and Chrysophyseae tending to be more common in open ocean waters and Prasinophyceae dominating coastal and Arctic waters. In addition to their role as primary producers, PPE have been identified in several studies as mixotrophic and major predators of prokaryotes. Mixotrophy, the combination of photosynthesis and phagotrophy in a single organism, is well established for most photosynthetic lineages. However, green algae, including prasinophytes, were widely considered as a purely photosynthetic group. The prasinophyte Micromonas is perhaps the most common picoeukaryote in coastal and Arctic waters and is one of the relatively few cultured representatives of the picoeukaryotes available for physiological investigations. In this study, we demonstrate phagotrophy by a strain of Micromonas (CCMP2099) isolated from Arctic waters and show that environmental factors (light and nutrient concentration) affect ingestion rates in this mixotroph. In addition, we show size-selective feeding with a preference for smaller particles, and determine P vs I (photosynthesis vs irradiance) responses in different nutrient conditions. If other strains have mixotrophic abilities similar to Micromonas CCMP2099, the widespread distribution and frequently high abundances of Micromonas suggest that these green algae may have significant impact on prokaryote populations in several oceanic regimes.

  8. Blue green alga mediated synthesis of gold nanoparticles and its antibacterial efficacy against Gram positive organisms

    Energy Technology Data Exchange (ETDEWEB)

    Uma Suganya, K.S. [Centre for Ocean Research, Sathyabama University, Chennai 600 119 (India); Govindaraju, K., E-mail: govindtu@gmail.com [Centre for Ocean Research, Sathyabama University, Chennai 600 119 (India); Ganesh Kumar, V.; Stalin Dhas, T.; Karthick, V. [Centre for Ocean Research, Sathyabama University, Chennai 600 119 (India); Singaravelu, G. [Nanoscience Division, Department of Zoology, Thiruvalluvar University, Vellore 632115 (India); Elanchezhiyan, M. [Department of Microbiology, Dr ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Chennai 600113 (India)

    2015-02-01

    Biofunctionalized gold nanoparticles (AuNPs) play an important role in design and development of nanomedicine. Synthesis of AuNPs from biogenic materials is environmentally benign and possesses high bacterial inhibition and bactericidal properties. In the present study, blue green alga Spirulina platensis protein mediated synthesis of AuNPs and its antibacterial activity against Gram positive bacteria is discussed. AuNPs were characterized using Ultraviolet–visible (UV–vis) spectroscopy, Fluorescence spectroscopy, Fourier Transform-Infrared (FTIR) spectroscopy, Raman spectroscopy, High Resolution-Transmission Electron Microscopy (HR-TEM) and Energy Dispersive X-ray analysis (EDAX). Stable, well defined AuNPs of smaller and uniform shape with an average size of ∼ 5 nm were obtained. The antibacterial efficacy of protein functionalized AuNPs were tested against Gram positive organisms Bacillus subtilis and Staphylococcus aureus. - Highlights: • Size controlled synthesis of gold nanoparticles from blue green alga Spirulina platensis • Stability of gold nanoparticles at different temperatures • Potent antibacterial efficacy against Gram positive organisms.

  9. Photoreactivation of UV-irradiated blue-green algae and algal virus LPP-1

    Energy Technology Data Exchange (ETDEWEB)

    Singh, P K [Central Rice Research Inst., Cuttack (India)

    1975-01-01

    Ultraviolet (UV) sensitivity and photoreactivation of blue-green algae Cylindrospermum sp., Plectonema boryanum, spores of Fischerella muscicola and algal virus (cyanophage) LPP-1 were studied. The survival value after UV irradiation of filaments of Cylindrospermum sp. and Virus LPP-1 showed exponential trend and these were comparatively sensitive towards UV than F. muscicola and P. boryanum. Photoreactivation of UV-induced damage occurred in black, blue, green, yellow, red and white light in Cylindrospermum sp., however only black, blue and white light were capable of photorepair of UV-induced damage in P. boryanum, spores of F. muscicola and virus LPP-1 in infected host alga. Pre-exposure to yellow and black light did not show photoprotection. The non-heterocystous and nitrogen fixation-less mutants of Cylindrospermum sp. were not induced by UV and their spontaneous mutation frequency was not affected after photoreactivation. The short trichome mutants of P. boryanum were more resistant towards UV. The occurrence of photoreactivation of UV-induced killing in wide range of light in Cylindrospermum sp. is the first report in organisms.

  10. Quantitative structure-activity relationships for green algae growth inhibition by polymer particles.

    Science.gov (United States)

    Nolte, Tom M; Peijnenburg, Willie J G M; Hendriks, A Jan; van de Meent, Dik

    2017-07-01

    After use and disposal of chemical products, many types of polymer particles end up in the aquatic environment with potential toxic effects to primary producers like green algae. In this study, we have developed Quantitative Structure-Activity Relationships (QSARs) for a set of highly structural diverse polymers which are capable to estimate green algae growth inhibition (EC50). The model (N = 43, R 2  = 0.73, RMSE = 0.28) is a regression-based decision tree using one structural descriptor for each of three polymer classes separated based on charge. The QSAR is applicable to linear homo polymers as well as copolymers and does not require information on the size of the polymer particle or underlying core material. Highly branched polymers, non-nitrogen cationic polymers and polymeric surfactants are not included in the model and thus cannot be evaluated. The model works best for cationic and non-ionic polymers for which cellular adsorption, disruption of the cell wall and photosynthesis inhibition were the mechanisms of action. For anionic polymers, specific properties of the polymer and test characteristics need to be known for detailed assessment. The data and QSAR results for anionic polymers, when combined with molecular dynamics simulations indicated that nutrient depletion is likely the dominant mode of toxicity. Nutrient depletion in turn, is determined by the non-linear interplay between polymer charge density and backbone flexibility. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Iron colloids reduce the bioavailability of phosphorus to the green alga Raphidocelis subcapitata.

    Science.gov (United States)

    Baken, Stijn; Nawara, Sophie; Van Moorleghem, Christoff; Smolders, Erik

    2014-08-01

    Phosphorus (P) is a limiting nutrient in many aquatic systems. The bioavailability of P in natural waters strongly depends on its speciation. In this study, structural properties of iron colloids were determined and related to their effect on P sorption and P bioavailability. The freshwater green alga Raphidocelis subcapitata was exposed to media spiked with radiolabelled (33)PO4, and the uptake of (33)P was monitored for 1 h. The media contained various concentrations of synthetic iron colloids with a size between 10 kDa and 0.45 μm. The iron colloids were stabilised by natural organic matter. EXAFS spectroscopy showed that these colloids predominantly consisted of ferrihydrite with small amounts of organically complexed Fe. In colloid-free treatments, the P uptake flux by the algae obeyed Michaelis-Menten kinetics. In the presence of iron colloids at 9 or 90 μM Fe, corresponding to molar P:Fe ratios between 0.02 and 0.17, the truly dissolved P (<10 kDa) was between 4 and 60% of the total dissolved P (<0.45 μm). These colloids reduced the P uptake flux by R. subcapitata compared to colloid-free treatments at the same total dissolved P concentration. However, the P uptake flux from colloid containing solutions equalled that from colloid-free ones when expressed as truly dissolved P. This demonstrates that colloidal P did not contribute to the P uptake flux. It is concluded that, on the short term, phosphate adsorbed to ferrihydrite colloids is not available to the green alga R. subcapitata. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. On the uptake and binding of uranium (VI) by the green alga Chlorella Vulgaris

    International Nuclear Information System (INIS)

    Vogel, Manja

    2011-01-01

    Uranium could be released into the environment from geogenic deposits and from former mining and milling areas by weathering and anthropogenic activities. The elucidation of uranium behavior in geo- and biosphere is necessary for a reliable risk assessment of radionuclide migration in the environment. Algae are widespread in nature and the most important group of organisms in the aquatic habitat. Because of their ubiquitous occurrence in nature the influence of algae on the migration process of uranium in the environment is of fundamental interest e.g. for the development of effective and economical remediation strategies for contaminated waters. Besides, algae are standing at the beginning of the food chain and play an economically relevant role as food and food additive. Therefore the transfer of algae-bound uranium along the food chain could arise to a serious threat to human health. Aim of this work was the quantitative and structural characterization of the interaction between U(VI) and the green alga Chlorella vulgaris in environmental relevant concentration and pH range with special emphasis on metabolic activity. Therefore a defined medium was created which assures the survival/growth of the algae as well as the possibility to predict the uranium speciation. The speciation of uranium in the mineral medium was calculated and experimentally verified by time-resolved laser-induced fluorescence spectroscopy (TRLFS). The results of the sorption experiments showed that both metabolic active and inactive algal cells bind uranium in significant amounts of around 14 mg U/g dry biomass and 28 mg U/g dry biomass, respectively. Another interesting observation was made during the growth of Chlorella cells in mineral medium at the environmental relevant uranium concentration of 5 μM. Under these conditions and during ongoing cultivation a mobilization of the algae-bound uranium occurred. At higher uranium concentrations this effect was not observed due to the die off of

  13. Chlamydomonas reinhardtii: the model of choice to study mitochondria from unicellular photosynthetic organisms.

    Science.gov (United States)

    Funes, Soledad; Franzén, Lars-Gunnar; González-Halphen, Diego

    2007-01-01

    Chlamydomonas reinhardtii is a model organism to study photosynthesis, cellular division, flagellar biogenesis, and, more recently, mitochondrial function. It has distinct advantages in comparison to higher plants because it is unicellular, haploid, and amenable to tetrad analysis, and its three genomes are subject to specific transformation. It also has the possibility to grow either photoautotrophically or heterotrophically on acetate, making the assembly of the photosynthetic machinery not essential for cell viability. Methods developed allow the isolation of C. reinhardtii mitochondria free of thylakoid contaminants. We review the general procedures used for the biochemical characterization of mitochondria from this green alga.

  14. Bioaccumulation and toxicity of selenium compounds in the green alga Scenedesmus quadricauda

    Science.gov (United States)

    Umysová, Dáša; Vítová, Milada; Doušková, Irena; Bišová, Kateřina; Hlavová, Monika; Čížková, Mária; Machát, Jiří; Doucha, Jiří; Zachleder, Vilém

    2009-01-01

    Background Selenium is a trace element performing important biological functions in many organisms including humans. It usually affects organisms in a strictly dosage-dependent manner being essential at low and toxic at higher concentrations. The impact of selenium on mammalian and land plant cells has been quite extensively studied. Information about algal cells is rare despite of the fact that they could produce selenium enriched biomass for biotechnology purposes. Results We studied the impact of selenium compounds on the green chlorococcal alga Scenedesmus quadricauda. Both the dose and chemical forms of Se were critical factors in the cellular response. Se toxicity increased in cultures grown under sulfur deficient conditions. We selected three strains of Scenedesmus quadricauda specifically resistant to high concentrations of inorganic selenium added as selenite (Na2SeO3) – strain SeIV, selenate (Na2SeO4) – strain SeVI or both – strain SeIV+VI. The total amount of Se and selenomethionine in biomass increased with increasing concentration of Se in the culturing media. The selenomethionine made up 30–40% of the total Se in biomass. In both the wild type and Se-resistant strains, the activity of thioredoxin reductase, increased rapidly in the presence of the form of selenium for which the given algal strain was not resistant. Conclusion The selenium effect on the green alga Scenedesmus quadricauda was not only dose dependent, but the chemical form of the element was also crucial. With sulfur deficiency, the selenium toxicity increases, indicating interference of Se with sulfur metabolism. The amount of selenium and SeMet in algal biomass was dependent on both the type of compound and its dose. The activity of thioredoxin reductase was affected by selenium treatment in dose-dependent and toxic-dependent manner. The findings implied that the increase in TR activity in algal cells was a stress response to selenium cytotoxicity. Our study provides a new

  15. Bioaccumulation and toxicity of selenium compounds in the green alga Scenedesmus quadricauda

    Directory of Open Access Journals (Sweden)

    Doucha Jiří

    2009-05-01

    Full Text Available Abstract Background Selenium is a trace element performing important biological functions in many organisms including humans. It usually affects organisms in a strictly dosage-dependent manner being essential at low and toxic at higher concentrations. The impact of selenium on mammalian and land plant cells has been quite extensively studied. Information about algal cells is rare despite of the fact that they could produce selenium enriched biomass for biotechnology purposes. Results We studied the impact of selenium compounds on the green chlorococcal alga Scenedesmus quadricauda. Both the dose and chemical forms of Se were critical factors in the cellular response. Se toxicity increased in cultures grown under sulfur deficient conditions. We selected three strains of Scenedesmus quadricauda specifically resistant to high concentrations of inorganic selenium added as selenite (Na2SeO3 – strain SeIV, selenate (Na2SeO4 – strain SeVI or both – strain SeIV+VI. The total amount of Se and selenomethionine in biomass increased with increasing concentration of Se in the culturing media. The selenomethionine made up 30–40% of the total Se in biomass. In both the wild type and Se-resistant strains, the activity of thioredoxin reductase, increased rapidly in the presence of the form of selenium for which the given algal strain was not resistant. Conclusion The selenium effect on the green alga Scenedesmus quadricauda was not only dose dependent, but the chemical form of the element was also crucial. With sulfur deficiency, the selenium toxicity increases, indicating interference of Se with sulfur metabolism. The amount of selenium and SeMet in algal biomass was dependent on both the type of compound and its dose. The activity of thioredoxin reductase was affected by selenium treatment in dose-dependent and toxic-dependent manner. The findings implied that the increase in TR activity in algal cells was a stress response to selenium cytotoxicity

  16. Effects of artificial sweeteners on metal bioconcentration and toxicity on a green algae Scenedesmus obliquus.

    Science.gov (United States)

    Hu, Hongwei; Deng, Yuanyuan; Fan, Yunfei; Zhang, Pengfei; Sun, Hongwen; Gan, Zhiwei; Zhu, Hongkai; Yao, Yiming

    2016-05-01

    The ecotoxicity of heavy metals depends much on their speciation, which is influenced by other co-existing substances having chelating capacity. In the present study, the toxic effects of Cd(2+) and Cu(2+) on a green algae Scenedesmus obliquus were examined in the presence of two artificial sweeteners (ASs), acesulfame (ACE) and sucralose (SUC) by comparing the cell specific growth rate μ and pulse-amplitude-modulated (PAM) parameters (maximal photosystem II photochemical efficiency Fv/Fm, actual photochemical efficiency Yield, and non-photochemical quenching NPQ) of the algae over a 96-h period. Simultaneously, the bioconcentration of the metals by the algal cells in the presence of the ASs was measured. The presence of ACE enhanced the growth of S. obliquus and promoted the bioconcentration of Cd(2+) in S. obliquus, while the impacts of SUC were not significant. Meanwhile, EC50 values of Cd(2+) on the growth of S. obliquus increased from 0.42 mg/L to 0.54 mg/L and 0.48 mg/L with the addition of 1.0 mg/L ACE and SUC, respectively. As for Cu(2+), EC50 values increased from 0.13 mg/L to 0.17 mg/L and 0.15 mg/L with the addition of 1.0 mg/L ACE and SUC, respectively. In summary, the two ASs reduced the toxicity of the metals on the algae, with ACE showing greater effect than SUC. Although not as sensitive as the cell specific growth rate, PAM parameters could disclose the mechanisms involved in metal toxicity at subcellular levels. This study provides the first evidence for the possible impact of ASs on the ecotoxicity of heavy metals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Annual development of mat-forming conjugating green algae Zygnema spp. in hydro-terrestrial habitats in the Arctic

    Czech Academy of Sciences Publication Activity Database

    Pichrtová, M.; Hájek, Tomáš; Elster, Josef

    2016-01-01

    Roč. 39, č. 9 (2016), s. 1653-1662 ISSN 0722-4060 R&D Projects: GA MŠk ME 934; GA MŠk LA341 Institutional support: RVO:67985939 Keywords : green algae * resting stage * stress tolerance Subject RIV: EH - Ecology, Behaviour Impact factor: 1.949, year: 2016

  18. Overview on Biological Activities and Molecular Characteristics of Sulfated Polysaccharides from Marine Green Algae in Recent Years

    Science.gov (United States)

    Wang, Lingchong; Wang, Xiangyu; Wu, Hao; Liu, Rui

    2014-01-01

    Among the three main divisions of marine macroalgae (Chlorophyta, Phaeophyta and Rhodophyta), marine green algae are valuable sources of structurally diverse bioactive compounds and remain largely unexploited in nutraceutical and pharmaceutical areas. Recently, a great deal of interest has been developed to isolate novel sulfated polysaccharides (SPs) from marine green algae because of their numerous health beneficial effects. Green seaweeds are known to synthesize large quantities of SPs and are well established sources of these particularly interesting molecules such as ulvans from Ulva and Enteromorpha, sulfated rhamnans from Monostroma, sulfated arabinogalactans from Codium, sulfated galacotans from Caulerpa, and some special sulfated mannans from different species. These SPs exhibit many beneficial biological activities such as anticoagulant, antiviral, antioxidative, antitumor, immunomodulating, antihyperlipidemic and antihepatotoxic activities. Therefore, marine algae derived SPs have great potential for further development as healthy food and medical products. The present review focuses on SPs derived from marine green algae and presents an overview of the recent progress of determinations of their structural types and biological activities, especially their potential health benefits. PMID:25257786

  19. Extraction of Nutraceuticals from Spirulina (Blue-Green Alga): A Bioorganic Chemistry Practice Using Thin-layer Chromatography

    Science.gov (United States)

    Herrera Bravo de Laguna, Irma; Toledo Marante, Francisco J.; Luna-Freire, Kristerson R.; Mioso, Roberto

    2015-01-01

    Spirulina is a blue-green alga (cyanobacteria) with high nutritive value. This work provides an innovative and original approach to the consideration of a bioorganic chemistry practice, using Spirulina for the separation of phytochemicals with nutraceutical characteristics via thin-layer chromatography (TLC) plates. The aim is to bring together…

  20. Extractable substances (anionic surfactants) from membrane filters induce morphological changes in the green alga Scenedesmus obliquus (Chlorophyceae)

    NARCIS (Netherlands)

    Lürling, M.; Beekman, W.

    2002-01-01

    The effect of filtration of medium through different kinds of filters (glass fiber, mixed esters of cellulose and nitrocellulose) on the morphology in the green alga Scenedesmus obliquus was examined. Several compounds potentially released from membrane filters were further investigated, and among

  1. Consequences of state transitions on the structural and functional organization of Photosystem I in the green alga Chlamydomonas reinhardtii

    NARCIS (Netherlands)

    Drop, Bartlomiej; Yadav K.N., Sathish; Boekema, Egbert J.; Croce, Roberta

    State transitions represent a photoacclimation process that regulates the light-driven photosynthetic reactions in response to changes in light quality/quantity. It balances the excitation between photosystem I (PSI) and II (PSII) by shuttling LHCII, the main light-harvesting complex of green algae

  2. The toxicity of plastic nanoparticles to green algae as influenced by surface modification, medium hardness and cellular adsorption

    NARCIS (Netherlands)

    Nolte, Tom M.; Hartmann, Nanna B.; Kleijn, Mieke; Garnæs, Jørgen; Meent, van de Dik; Jan Hendriks, A.; Baun, Anders

    2017-01-01

    To investigate processes possibly underlying accumulation and ecological effects of plastic nano-particles we have characterized their interaction with the cell wall of green algae. More specifically, we have investigated the influence of particle surface functionality and water hardness (Ca2+

  3. Removal of Selected Pharmaceutical and Personal Care Products by the Green Alga Nannochloris sp.

    Science.gov (United States)

    Bai, X.; Acharya, K.

    2016-12-01

    Emerging contaminants have become an increasing concern in the environment due to their ubiquitous distribution and potential adverse effects on wildlife and humans. Municipal wastewater is a major source of pharmaceutical and personal care products (PPCPs) in the Las Vegas metropolitan area. The ecotoxic impacts of PPCPs on aquatic organisms include development of antimicrobial resistance, decreases in plankton diversity, and endocrine disruption. Freshwater algae can be responsible for the uptake and transfer of the contaminants because they are a major food source for most aquatic organisms. This research applied laboratory-based incubation studies to evaluate the removal efficiency and uptake mechanisms of the selected PPCPs (trimethoprim, sulfamethoxazole, and triclosan) by the green alga Nannochloris sp. The results showed that trimethoprim and sulfamethoxazole remained in the algal culture at 100% and 68%, respectively, after 14 days of incubation, and therefore were not significantly removed from the medium. However, the antimicrobial triclosan was significantly removed from the medium. Immediately after incubation began, 74% of triclosan dissipated and 100% of triclosan was removed after 7 days of incubation. Additionally, over 42% of triclosan was found associated with the algal cells throughout the incubation. The results demonstrate that the presence of Nannochloris sp. eliminated triclosan in the aquatic system, but could not significantly remove the antibiotics trimethoprim and sulfamethoxazole. This study provided crucial information that toxicity of triclosan in aquatic organisms is a critical concern because of its high uptake by phytoplankton. The resistance of trimethoprim and sulfamethoxazole to uptake by phytoplankton may threaten water quality.

  4. Detection, purification and characterization of a lectin from freshwater green algae Spirogyra spp.

    Directory of Open Access Journals (Sweden)

    ANTÔNIA S. DE OLIVEIRA

    2017-08-01

    Full Text Available ABSTRACT Freshwater algae are rich sources of structurally biologically active metabolites, such as fatty acids, steroids, carotenoids and polysaccharides. Among these metabolites, lectins stand out. Lectins are proteins or glycoproteins of non-immune origin which bind to carbohydrates or glycoconjugates, without changing ligand structure. Many studies have reported on the use of Spirogyra spp. as effective bioindicators of heavy metals; however, reports on Spirogyra molecular bioprospecting are quite limited. Therefore, this study aimed to detect, isolate, purify and characterize a lectin present in the freshwater green algae Spirogyra. Presence of the lectin protein in the extract was detected by hemagglutination assays. Subsequently, the protein extract was subjected to a sugar inhibition assay to identify the lectin-specific carbohydrate. Following this, the extract was applied to a guar gum column to afford the pure lectin. The lectin was inhibited by N-acetyl-glucosamine and N-acetyl-beta-D-mannose, but more strongly by D-galactose. The apparent molecular mass of the purified lectin was evaluated by Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate (SDS-PAGE. Electrophoretic analysis revealed a single protein band with an apparent molecular mass of 56 kDa. Thus, it could be concluded that a lectin was purified from Spirogyra spp.

  5. Evaluation of antigenotoxic effects of carotenoids from green algae Chlorococcum humicola using human lymphocytes

    Science.gov (United States)

    Bhagavathy, S; Sumathi, P

    2012-01-01

    Objective To identify the available phytochemicals and carotenoids in the selected green algae and evaluate the potential genotoxic/antigenotoxic effect using lymphocytes. Methods Organic solvent extracts of Chlorococcum humicola (C. humicola) were used for the phytochemical analysis. The available carotenoids were assessed by HPLC, and LC-MS analysis. The genotoxicity was induced by the benzo(a)pyrene in the lymphocyte culture, the genotoxic and antigenotoxic effects of algal carotenoids with and without genotoxic inducer were evaluated by chromosomal aberration (CA), sister chromatid exchange (SCE) and micronucleus assay (MN). Results The results of the analysis showed that the algae were rich in carotenoids and fatty acids. In the total carotenoids lutein, β-carotene and α-carotene were found to be present in higher concentration. The frequency of CA and SCE increased by benzo(a)pyrene were significantly decreased by the carotenoids (Pcarotenoids when compared with the positive controls (Pcarotenoids which effectively fight against environmental genotoxic agents, the carotenoids itself is not a genotoxic substance and should be further considered for its beneficial effects. PMID:23569879

  6. Moessbauer study of cobalt and iron in the cyanobacterium (blue green alga)

    International Nuclear Information System (INIS)

    Ambe, Shizuko

    1990-01-01

    Moessbauer emission and absorption studies have been performed on cobalt and iron in the cyanobacterium (blue-green alga). The Moessbauer spectrum of the cyanobacterium cultivated with 57 Co is decomposed into two doublets. The parameters of the major doublet are in good agreement with those of cyanocobalamin (vitamin B 12 ) labeled with 57 Co. The other minor doublet has parameters close to those of Fe(II) coordinated with six nitrogen atoms. These suggest that cobalt is used for the biosynthesis of vitamin B 12 or its analogs in the cyanobacterium. The spectra of the cyanobacterium grown with 57 Fe show that iron is in the high-spin trivalent state and possibly in the form of ferritin, iron storage protein. (orig.)

  7. Predictive modeling studies for the ecotoxicity of ionic liquids towards the green algae Scenedesmus vacuolatus.

    Science.gov (United States)

    Das, Rudra Narayan; Roy, Kunal

    2014-06-01

    Hazardous potential of ionic liquids is becoming an issue of high concern with increasing application of these compounds in various industrial processes. Predictive toxicological modeling on ionic liquids provides a rational assessment strategy and aids in developing suitable guidance for designing novel analogues. The present study attempts to explore the chemical features of ionic liquids responsible for their ecotoxicity towards the green algae Scenedesmus vacuolatus by developing mathematical models using extended topochemical atom (ETA) indices along with other categories of chemical descriptors. The entire study has been conducted with reference to the OECD guidelines for QSAR model development using predictive classification and regression modeling strategies. The best models from both the analyses showed that ecotoxicity of ionic liquids can be decreased by reducing chain length of cationic substituents and increasing hydrogen bond donor feature in cations, and replacing bulky unsaturated anions with simple saturated moiety having less lipophilic heteroatoms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Hydrogen evolution by a thermophilic blue-green alga. Mastigocladus laminosus

    Energy Technology Data Exchange (ETDEWEB)

    Mirua, Y; Yokoyama, H; Kanaoka, K; Saito, S; Iwasa, K; Okazaki, M; Komemushi, S

    1980-01-01

    The thermophillic blue-green alga (cyanobacterium), Mastigocladus laminosus isolated from a hot spring, evolved hydrogen gas under nitrogen-starved conditions in light when algal cells were grown in a nitrate-free medium. Cells grown in a nitrate-medium evolved no detectable hydrogen gas in light. The optimal temperature and pH for hydrogen evolution were 44-49 degrees C and 7.0-7.5. High activity of hydrogen evolution, 1.6 ml H/sub 2//mg chl.hr, was induced when algal cells grown in the nitrate medium were actively forming heterocysts in the nitrate-free medium in air. Hydrogen evolution in light was depressed by nitrogen gas and inhibited by salicylaldoxime or DNP. This hydrogen evolution by M. laminosus is attributed to the action of nitrogenase.

  9. A UAV and S2A data-based estimation of the initial biomass of green algae in the South Yellow Sea.

    Science.gov (United States)

    Xu, Fuxiang; Gao, Zhiqiang; Jiang, Xiaopeng; Shang, Weitao; Ning, Jicai; Song, Debin; Ai, Jinquan

    2018-03-01

    Previous studies have shown that the initial biomass of green tide was the green algae attaching to Pyropia aquaculture rafts in the Southern Yellow Sea. In this study, the green algae was identified with unmanned aerial vehicle (UAV), an biomass estimation model was proposed for green algae biomass in the radial sand ridge area based on Sentinel-2A image (S2A) and UAV images. The result showed that the green algae was detected highly accurately with the normalized green-red difference index (NGRDI); approximately 1340 tons and 700 tons of green algae were attached to rafts and raft ropes respectively, and the lower biomass might be the main cause for the smaller scale of green tide in 2017. In addition, UAV play an important role in raft-attaching green algae monitoring and long-term research of its biomass would provide a scientific basis for the control and forecast of green tide in the Yellow Sea. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Equilibrium, thermodynamic and kinetic investigations for biosorption of uranium with green algae (Cladophora hutchinsiae).

    Science.gov (United States)

    Bağda, Esra; Tuzen, Mustafa; Sarı, Ahmet

    2017-09-01

    Removal of toxic chemicals from environmental samples with low-cost methods and materials are very useful approach for especially large-scale applications. Green algae are highly abundant biomaterials which are employed as useful biosorbents in many studies. In the present study, an interesting type of green algae, Cladophora hutchinsiae (C. hutchinsiae) was used for removal of highly toxic chemical such as uranium. The pH, biosorbent concentration, contact time and temperature were optimized as 5.0, 12 g/L, 60 min and 20 °C, respectively. For the equilibrium calculations, three well known isotherm models (Langmuir, Freundlich and Dubinin-Radushkevich) were employed. The maximum biosorption capacity of the biosorbent was calculated as about 152 mg/g under the optimum batch conditions. The mean energy of biosorption was calculated as 8.39 kJ/mol from the D-R biosorption isotherm. The thermodynamic and kinetic characteristics of biosorption were also investigated to explain the nature of the process. The kinetic data best fits the pseudo-second-order kinetic model with a regression coefficient of >0.99 for all studied temperatures. The calculated ΔH° and ΔG° values showed that the biosorption process is exothermic and spontaneous for temperatures between 293 and 333 K. Furthermore, after seven cycling process, the sorption and desorption efficiencies of the biosorbent were found to be 70, and 58%, respectively meaning that the biosorbent had sufficiently high reusability performance as a clean-up tool. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Sensitivity evaluation of the green alga Chlamydomonas reinhardtii to uranium by pulse amplitude modulated (PAM) fluorometry.

    Science.gov (United States)

    Herlory, Olivier; Bonzom, Jean-Marc; Gilbin, Rodolphe

    2013-09-15

    Although ecotoxicological studies tend to address the toxicity thresholds of uranium in freshwaters, there is a lack of information on the effects of the metal on physiological processes, particularly in aquatic plants. Knowing that uranium alters photosynthesis via impairment of the water photo-oxidation process, we determined whether pulse amplitude modulated (PAM) fluorometry was a relevant tool for assessing the impact of uranium on the green alga Chlamydomonas reinhardtii and investigated how and to what extent uranium hampered photosynthetic performance. Photosynthetic activity and quenching were assessed from fluorescence induction curves generated by PAM fluorometry, after 1 and 5h of uranium exposure in controlled conditions. The oxygen-evolving complex (OEC) of PSII was identified as the primary action site of uranium, through alteration of the water photo-oxidation process as revealed by F0/Fv. Limiting re-oxidation of the plastoquinone pool, uranium impaired the electron flux between the photosystems until almost complete inhibition of the PSII quantum efficiency ( [Formula: see text] , EC50=303 ± 64 μg UL(-1) after 5h of exposure) was observed. Non-photochemical quenching (qN) was identified as the most sensitive fluorescence parameter (EC50=142 ± 98 μg UL(-1) after 5h of exposure), indicating that light energy not used in photochemistry was dissipated in non-radiative processes. It was shown that parameters which stemmed from fluorescence induction kinetics are valuable indicators for evaluating the impact of uranium on PSII in green algae. PAM fluorometry provided a rapid and reasonably sensitive method for assessing stress response to uranium in microalgae. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. [Fe]-hydrogenases in green algae: photo-fermentation and hydrogen evolution under sulfur deprivation

    Energy Technology Data Exchange (ETDEWEB)

    Winkler, M.; Hemschemeier, A.; Happe, T. [Botanisches Institut der Universitat Bonn (Germany); Gotor, C. [CSIC y Universidad de Sevilla (Spain). Instituto de Bioquimica Vegetal y Fotosintesis; Melis, A. [University of California, Berkeley, CA (United States). Department of Plant and Microbial Biology

    2002-12-01

    Recent studies indicate that [Fe]-hydrogenases and H{sub 2} metabolism are widely distributed among green algae. The enzymes are simple structured and catalyze H{sub 2} evolution with similar rates than the more complex [Fe]-hydrogenases from bacteria. Different green algal species developed diverse strategies to survive under sulfur deprivation. Chlamydomonas reinhardtii evolves large quantities of hydrogen gas in the absence of sulfur. In a sealed culture of C. reinhardtii, the photosynthetic O{sub 2} evolution rate drops below the rate of respiratory O{sub 2} consumption due to a reversible inhibition of photosystem II, thus leading to an intracellular anaerobiosis. The algal cells survive under these anaerobic conditions by switching their metabolism to a kind of photo-fermentation. Although possessing a functional [Fe]-hydrogenase gene, the cells of Scenedesmus obliquus produce no significant amounts of H{sub 2} under S-depleted conditions. Biochemical analyses indicate that S. obliquus decreases almost the complete metabolic activities while maintaining a low level of respiratory activity. (author)

  13. Unraveling the Photoprotective Response of Lichenized and Free-Living Green Algae (Trebouxiophyceae, Chlorophyta to Photochilling Stress

    Directory of Open Access Journals (Sweden)

    Fátima Míguez

    2017-07-01

    Full Text Available Lichens and free-living terrestrial algae are widespread across many habitats and develop successfully in ecosystems where a cold winter limits survival. With the goal of comparing photoprotective responses in free-living and lichenized algae, the physiological responses to chilling and photochilling conditions were studied in three lichens and their isolated algal photobionts together as well as in a fourth free-living algal species. We specifically addressed the following questions: (i Are there general patterns of acclimation in green algae under chilling and photochilling stresses? (ii Do free-living algae exhibit a similar pattern of responses as their lichenized counterparts? (iii Are these responses influenced by the selection pressure of environmental conditions or by the phylogenetic position of each species? To answer these questions, photosynthetic fluorescence measurements as well as pigment and low molecular weight carbohydrate pool analyses were performed under controlled laboratory conditions. In general, photochemical efficiency in all free-living algae decreased with increasing duration of the stress, while the majority of lichens maintained an unchanged photochemical activity. Nevertheless, these patterns cannot be generalized because the alga Trebouxia arboricola and the lichen Ramalina pollinaria (associated with Trebouxia photobionts both showed a similar decrease in photochemical efficiency. In contrast, in the couple Elliptochloris bilobata-Baeomyces rufus, only the algal partner exhibited a broad physiological performance under stress. This study also highlights the importance of the xanthophyll cycle in response to the studied lichens and algae to photochilling stress, while the accumulation of sugars was not related to cold acclimation, except in the alga E. bilobata. The differences in response patterns detected among species can be mainly explained by their geographic origin, although the phylogenetic position should

  14. Screening and isolation of the algicidal compounds from marine green alga Ulva intestinalis

    Science.gov (United States)

    Sun, Xue; Jin, Haoliang; Zhang, Lin; Hu, Wei; Li, Yahe; Xu, Nianjun

    2016-07-01

    Twenty species of seaweed were collected from the coast of Zhejiang, China, extracted with ethanol, and screened for algicidal activity against red tide microalgae Heterosigma akashiwo and Prorocentrum micans. Inhibitory effects of fresh and dried tißsues of green alga Ulva intestinalis were assessed and the main algicidal compounds were isolated, purified, and identified. Five seaweed species, U. intestinalis, U. fasciata, Grateloupia romosissima, Chondria crassicaulis, and Gracilariopsis lemaneiformis, were investigated for their algicidal activities. Fresh tissues of 8.0 and 16.0 mg/mL of U. intestinalis dissolved in media significantly inhibited growth of H. akashiwo and P. micans, respectively. Dried tissue and ethyl acetate (EtOAc) extracts of U. intestinalis at greater than 1.2 and 0.04 mg/mL, respectively, were fatal to H. akashiwo, while its water and EtOAc extracts in excess of 0.96 and 0.32 mg/mL, respectively, were lethal to P. micans. Three algicidal compounds in the EtOAc extracts were identified as 15-ethoxy-(6z,9z,12z)-hexadecatrienoic acid (I), (6E,9E,12E)-(2-acetoxy- β-D-glucose)-octadecatrienoic acid ester (II) and hexadecanoic acid (III). Of these, compound II displayed the most potent algicidal activity with IC50 values of 4.9 and 14.1 µg/mL for H. akashiwo and P. micans, respectively. Compound I showed moderate algicidal activity with IC50 values of 13.4 and 24.7 µg/mL for H. akashiwo and P. micans, respectively. These findings suggested that certain macroalgae or products therefrom could be used as effective biological control agents against red tide algae.

  15. TiO2 nanoparticles in seawater: Aggregation and interactions with the green alga Dunaliella tertiolecta.

    Science.gov (United States)

    Morelli, Elisabetta; Gabellieri, Edi; Bonomini, Alessandra; Tognotti, Danika; Grassi, Giacomo; Corsi, Ilaria

    2018-02-01

    Titanium dioxide nanoparticles (TiO 2 NPs) have been widely employed in industrial applications, thus rising concern about their impact in the aquatic environment. In this study we investigated the chemical behaviour of TiO 2 NPs in the culture medium and its effect on the green alga Dunaliella tertiolecta, in terms of growth inhibition, oxidative stress, ROS (Reactive Oxygen Species) accumulation and chlorophyll content. In addition, the influence of exopolymeric substances (EPS) excreted by the microalgae on the stability of NPs has been evaluated. The physicochemical characterization showed a high propensity of TiO 2 NPs to form micrometric-sized aggregates within 30min, large enough to partially settle to the bottom of the test vessel. Indeed, an increasing amount of TiO 2 particles settled out with time, but the presence of EPS seemed to mitigate this behaviour in the first 6h of exposure where the main effects in D. tertiolecta were observed. TiO 2 NPs did not inhibit the 72-h growth rate of D. tertiolecta, nor affected the cellular chlorophyll concentration in the range 0.01-10mgL -1 . The time-course of ROS production showed an initial transient increase of ROS in TiO 2 NP-exposed algae compared to the control, concomitant with an enhancement of catalase activity. Interestingly, intracellular ROS was a small fraction of total ROS, the highest amount being extracellular. The occurrence of cell-mediated chemical transformations of TiO 2 NPs in the external medium, related to the presence of EPS, has been evaluated. Our results showed that carbohydrates were the major component of EPS, whereas proteins of medium molecular weight (20-80kDa) were preferentially bound to TiO 2 NPs, likely influencing their biological fate. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Effect of scenedesmus acuminatus green algae extracts on the development of Candida lipolytic yeast in gas condensate-containing media

    Science.gov (United States)

    Bilmes, B. I.; Kasymova, G. A.; Runov, V. I.; Karavayeva, N. N.

    1980-01-01

    Data are given of a comparative study of the growth and development as well as the characteristics of the biomass of the C. Lipolytica yeast according to the content of raw protein, protein, lipids, vitamins in the B group, and residual hydrocarbons during growth in media with de-aromatized gas-condensate FNZ as the carbon source with aqueous and alcohol extracts of S. acuminatus as the biostimulants. It is shown that the decoction and aqueous extract of green algae has the most intensive stimulating effect on the yeast growth. When a decoction of algae is added to the medium, the content of residual hydrocarbons in the biomass of C. lipolytica yeast is reduced by 4%; the quantity of protein, lipids, thamine and inositol with replacement of the yeast autolysate by the decoction of algae is altered little.

  17. The toxicity of plastic nanoparticles to green algae as influenced by surface modification, medium hardness and cellular adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Nolte, Tom M., E-mail: T.Nolte@science.ru.nl [Department of Environmental Engineering, Technical University of Denmark, Miljøvej, B113, 2800 Kgs. Lyngby (Denmark); Radboud University Nijmegen, Institute for Water and Wetland Research, Department of Environmental Science, P.O. Box 9010, NL-6500 GL, Nijmegen (Netherlands); Hartmann, Nanna B. [Department of Environmental Engineering, Technical University of Denmark, Miljøvej, B113, 2800 Kgs. Lyngby (Denmark); Kleijn, J. Mieke [Physical Chemistry Soft Matter, Wageningen University, Stippeneng 4, NL-6708WE Wageningen (Netherlands); Garnæs, Jørgen [Danish Fundamental Metrology, Matematiktorvet 307, 2800 Kgs. Lyngby (Denmark); Meent, Dik van de [Radboud University Nijmegen, Institute for Water and Wetland Research, Department of Environmental Science, P.O. Box 9010, NL-6500 GL, Nijmegen (Netherlands); National Institute of Public Health and the Environment RIVM, P.O. Box 1, 3720 BA, Bilthoven (Netherlands); Jan Hendriks, A. [Radboud University Nijmegen, Institute for Water and Wetland Research, Department of Environmental Science, P.O. Box 9010, NL-6500 GL, Nijmegen (Netherlands); Baun, Anders [Department of Environmental Engineering, Technical University of Denmark, Miljøvej, B113, 2800 Kgs. Lyngby (Denmark)

    2017-02-15

    Highlights: • P. subcapitata cultures were exposed to plastic nanoparticles in adsorption assays. • UV/Vis and AFM showed ionic strength and surface chemistry influence adsorption of anionic and neutral nanoplastics. • Growth inhibition of algae is antagonistically influenced by carboxylate-modified polystyrene and calcium. • Physico-chemical characterization and proper dose metrics can be used to predict ecotoxicity. - Abstract: To investigate processes possibly underlying accumulation and ecological effects of plastic nano-particles we have characterized their interaction with the cell wall of green algae. More specifically, we have investigated the influence of particle surface functionality and water hardness (Ca{sup 2+} concentration) on particle adsorption to algae cell walls. Polystyrene nanoparticles with different functional groups (non-functionalized, −COOH and −NH{sub 2}) as well as coated (starch and PEG) gold nanoparticles were applied in these studies. Depletion measurements and atomic force microscopy (AFM) showed that adsorption of neutral and positively charged plastic nanoparticles onto the cell wall of P. subcapitata was stronger than that of negatively charged plastic particles. Results indicated that binding affinity is a function of both inter-particle and particle-cell wall interactions which are in turn influenced by the medium hardness and particle concentration. Physicochemical modelling using DLVO theory was used to interpret the experimental data, using also values for interfacial surface free energies. Our study shows that material properties and medium conditions play a crucial role in the rate and state of nanoparticle bio-adsorption for green algae. The results show that the toxicity of nanoparticles can be better described and assessed by using appropriate dose metrics including material properties, complexation/agglomeration behavior and cellular attachment and adsorption. The applied methodology provides an efficient

  18. The toxicity of plastic nanoparticles to green algae as influenced by surface modification, medium hardness and cellular adsorption

    International Nuclear Information System (INIS)

    Nolte, Tom M.; Hartmann, Nanna B.; Kleijn, J. Mieke; Garnæs, Jørgen; Meent, Dik van de; Jan Hendriks, A.; Baun, Anders

    2017-01-01

    Highlights: • P. subcapitata cultures were exposed to plastic nanoparticles in adsorption assays. • UV/Vis and AFM showed ionic strength and surface chemistry influence adsorption of anionic and neutral nanoplastics. • Growth inhibition of algae is antagonistically influenced by carboxylate-modified polystyrene and calcium. • Physico-chemical characterization and proper dose metrics can be used to predict ecotoxicity. - Abstract: To investigate processes possibly underlying accumulation and ecological effects of plastic nano-particles we have characterized their interaction with the cell wall of green algae. More specifically, we have investigated the influence of particle surface functionality and water hardness (Ca"2"+ concentration) on particle adsorption to algae cell walls. Polystyrene nanoparticles with different functional groups (non-functionalized, −COOH and −NH_2) as well as coated (starch and PEG) gold nanoparticles were applied in these studies. Depletion measurements and atomic force microscopy (AFM) showed that adsorption of neutral and positively charged plastic nanoparticles onto the cell wall of P. subcapitata was stronger than that of negatively charged plastic particles. Results indicated that binding affinity is a function of both inter-particle and particle-cell wall interactions which are in turn influenced by the medium hardness and particle concentration. Physicochemical modelling using DLVO theory was used to interpret the experimental data, using also values for interfacial surface free energies. Our study shows that material properties and medium conditions play a crucial role in the rate and state of nanoparticle bio-adsorption for green algae. The results show that the toxicity of nanoparticles can be better described and assessed by using appropriate dose metrics including material properties, complexation/agglomeration behavior and cellular attachment and adsorption. The applied methodology provides an efficient and

  19. Sensitivity evaluation of the green alga Chlamydomonas reinhardtii to uranium by pulse amplitude modulated (PAM) fluorometry

    International Nuclear Information System (INIS)

    Herlory, Olivier; Bonzom, Jean-Marc; Gilbin, Rodolphe

    2013-01-01

    Highlights: •Our study addressed the toxicity thresholds of uranium on microalgae using PAM fluorometry. •The oxygen-evolving complex (OEC) of PSII was identified as the primary action site of uranium. •Uranium impaired the electron flux between the photosystems until almost complete inhibition. •Non-photochemical quenching was identified as the most sensitive fluorescence parameter. •PAM fluorometry provided a rapid and reasonably sensitive method for assessing stress response. -- Abstract: Although ecotoxicological studies tend to address the toxicity thresholds of uranium in freshwaters, there is a lack of information on the effects of the metal on physiological processes, particularly in aquatic plants. Knowing that uranium alters photosynthesis via impairment of the water photo-oxidation process, we determined whether pulse amplitude modulated (PAM) fluorometry was a relevant tool for assessing the impact of uranium on the green alga Chlamydomonas reinhardtii and investigated how and to what extent uranium hampered photosynthetic performance. Photosynthetic activity and quenching were assessed from fluorescence induction curves generated by PAM fluorometry, after 1 and 5 h of uranium exposure in controlled conditions. The oxygen-evolving complex (OEC) of PSII was identified as the primary action site of uranium, through alteration of the water photo-oxidation process as revealed by F 0 /F v . Limiting re-oxidation of the plastoquinone pool, uranium impaired the electron flux between the photosystems until almost complete inhibition of the PSII quantum efficiency (F ′ q /F ′ m , EC 50 = 303 ± 64 μg U L −1 after 5 h of exposure) was observed. Non-photochemical quenching (qN) was identified as the most sensitive fluorescence parameter (EC 50 = 142 ± 98 μg U L −1 after 5 h of exposure), indicating that light energy not used in photochemistry was dissipated in non-radiative processes. It was shown that parameters which stemmed from

  20. Sensitivity evaluation of the green alga Chlamydomonas reinhardtii to uranium by pulse amplitude modulated (PAM) fluorometry

    Energy Technology Data Exchange (ETDEWEB)

    Herlory, Olivier, E-mail: olivier.herlory@gmail.com [IRSN-Laboratoire d’Ecotoxicologie des Radionucléides, Centre de Cadarache, BP3, 13115 Saint Paul lez Durance (France); Bonzom, Jean-Marc, E-mail: jean-marc.bonzom@irsn.fr [IRSN-Laboratoire d’Ecotoxicologie des Radionucléides, Centre de Cadarache, BP3, 13115 Saint Paul lez Durance (France); Gilbin, Rodolphe, E-mail: rodolphe.gilbin@irsn.fr [IRSN-Laboratoire de Biogéochimie, Biodisponibilité et Transferts des Radionucléides, Centre de Cadarache, BP3, 13115 Saint Paul lez Durance (France)

    2013-09-15

    Highlights: •Our study addressed the toxicity thresholds of uranium on microalgae using PAM fluorometry. •The oxygen-evolving complex (OEC) of PSII was identified as the primary action site of uranium. •Uranium impaired the electron flux between the photosystems until almost complete inhibition. •Non-photochemical quenching was identified as the most sensitive fluorescence parameter. •PAM fluorometry provided a rapid and reasonably sensitive method for assessing stress response. -- Abstract: Although ecotoxicological studies tend to address the toxicity thresholds of uranium in freshwaters, there is a lack of information on the effects of the metal on physiological processes, particularly in aquatic plants. Knowing that uranium alters photosynthesis via impairment of the water photo-oxidation process, we determined whether pulse amplitude modulated (PAM) fluorometry was a relevant tool for assessing the impact of uranium on the green alga Chlamydomonas reinhardtii and investigated how and to what extent uranium hampered photosynthetic performance. Photosynthetic activity and quenching were assessed from fluorescence induction curves generated by PAM fluorometry, after 1 and 5 h of uranium exposure in controlled conditions. The oxygen-evolving complex (OEC) of PSII was identified as the primary action site of uranium, through alteration of the water photo-oxidation process as revealed by F{sub 0}/F{sub v}. Limiting re-oxidation of the plastoquinone pool, uranium impaired the electron flux between the photosystems until almost complete inhibition of the PSII quantum efficiency (F{sup ′}{sub q}/F{sup ′}{sub m}, EC{sub 50} = 303 ± 64 μg U L{sup −1} after 5 h of exposure) was observed. Non-photochemical quenching (qN) was identified as the most sensitive fluorescence parameter (EC{sub 50} = 142 ± 98 μg U L{sup −1} after 5 h of exposure), indicating that light energy not used in photochemistry was dissipated in non-radiative processes. It was shown

  1. [Peculiarities of growth of the monocellular green algae culture after the influence of electromagnetic field in deuterated water-containing media].

    Science.gov (United States)

    Semenov, K T; Aslanian, R R

    2013-01-01

    Exposing the inoculum of monocellular green algae Dunalialla tertiolecta and Tetraselmis viridis to 50 Hz electromagnetic field for several hours resulted in a reduced growth rate in both cultures. It was ascertained that heavy water inhibited growth of algae Dunaliella tertiolecta. The light water activated growth of the culture in the exponential phase only.

  2. Isolation and Molecular Identification of Some Blue-Green Algae (Cyanobacteria from Freshwater Sites in Tokat Province of Turkey

    Directory of Open Access Journals (Sweden)

    Tunay Karan

    2017-11-01

    Full Text Available Collected blue-green algae (cyanobacteria from freshwater sites throughout Tokat province and its outlying areas were isolated in laboratory environment and their morphological systematics were determined and also their species identifications were studied by molecular methods. Seven different species of blue-green algae collected from seven different sites were isolated by purifying in cultures in laboratory environment. DNA extractions were made from isolated cells and extracted DNAs were amplified by using PCR. Cyanobacteria specific primers were used to amplify 16S rRNA and phycocyanine gene regions using PCR. Phylogenetic identification of species were conducted by evaluation of obtained sequence analysis data by using computer software. According to species identification by sequence analysis, it was seen that molecular data supports morphological systematics.

  3. X-ray induced inactivation of the capacity for photosynthetic oxygen evolution and nitrate reduction in blue-green algae

    International Nuclear Information System (INIS)

    Stevens, S.E. Jr.; Simic, M.G.; Rao, V.S.K.

    1975-01-01

    The level of inactivation of oxygen evolving photosynthesis in the green alga, Chlorella pyrenoidosa was 12 percent in N 2 at a dose of 100 krad of x irradiation. Under similar conditions, as well as under O 2 , there resulted a 20 percent inactivation of the same function in the blue-green algae, Agmenellum quadruplicatum, strains PR-6 and AQ-6. Nitrate reduction capacity in the mutant AQ-6 was inactivated to 40 percent in N 2 and to 7 percent in O 2 . Catalase and formate provided some protection from irradiation in O 2 , suggesting some inactivation by H 2 O 2 . Most of the damage to the nitrate reduction system resulted from the direct action of x irradiation on a constitutive subunit of the nitrate reductase complex. Moreover, the slight inactivation of the O 2 evolving system, a function which is associated with photosystem II, cannot account for the inactivation of nitrate reduction

  4. Effect of chromium oxide (III) nanoparticles on the production of reactive oxygen species and photosystem II activity in the green alga Chlamydomonas reinhardtii

    International Nuclear Information System (INIS)

    Costa, Cristina Henning da; Perreault, François; Oukarroum, Abdallah; Melegari, Sílvia Pedroso; Popovic, Radovan; Matias, William Gerson

    2016-01-01

    With the growth of nanotechnology and widespread use of nanomaterials, there is an increasing risk of environmental contamination by nanomaterials. However, the potential implications of such environmental contamination are hard to evaluate since the toxicity of nanomaterials if often not well characterized. The objective of this study was to evaluate the toxicity of a chromium-based nanoparticle, Cr_2O_3-NP, used in a wide diversity of industrial processes and commercial products, on the unicellular green alga Chlamydomonas reinhardtii. The deleterious impacts of Cr_2O_3-NP were characterized using cell density measurements, production of reactive oxygen species (ROS), esterase enzymes activity, and photosystem II electron transport as indicators of toxicity. Cr_2O_3-NP exposure inhibited culture growth and significantly lowered cellular Chlorophyll a content. From cell density measurements, EC50 values of 2.05 ± 0.20 and 1.35 ± 0.06 g L"−"1 Cr_2O_3-NP were obtained after 24 and 72 h of exposure, respectively. In addition, ROS levels were increased to 160.24 ± 2.47% and 59.91 ± 0.15% of the control value after 24 and 72 h of exposition to 10 g L"−"1 Cr_2O_3-NP. At 24 h of exposure, the esterase activity increased to 160.24% of control value, revealing a modification of the short-term metabolic response of algae to Cr_2O_3-NP exposure. In conclusion, the metabolism of C. reinhardtii was the most sensitive to Cr_2O_3-NP after 24 h of treatment. - Highlights: • Cr_2O_3 nanoparticles are unstable and form large aggregates in the medium. • EC50 for growth inhibition of C. reinhardtii is 1.35 g L"−"1 at 72 h. • Cr_2O_3 nanoparticles increase ROS levels at 10 g L"−"1. • Cr_2O_3 nanoparticles affect photosynthetic electron transport.

  5. Effect of chromium oxide (III) nanoparticles on the production of reactive oxygen species and photosystem II activity in the green alga Chlamydomonas reinhardtii

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Cristina Henning da [Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Campus Universitário, CEP: 88040-970, Florianópolis, SC (Brazil); Perreault, François [School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-3005 (United States); Oukarroum, Abdallah [Department of Chemistry, University of Quebec in Montréal, 2101, Jeanne Mance Street, Station Centre-Ville, Montréal, QC H2X 2J6 (Canada); Melegari, Sílvia Pedroso [Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Campus Universitário, CEP: 88040-970, Florianópolis, SC (Brazil); Center of Marine Studies, Federal University of Parana, Beira-mar Avenue, 83255-976, Pontal do Parana, PR (Brazil); Popovic, Radovan [Department of Chemistry, University of Quebec in Montréal, 2101, Jeanne Mance Street, Station Centre-Ville, Montréal, QC H2X 2J6 (Canada); Matias, William Gerson, E-mail: william.g.matias@ufsc.br [Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Campus Universitário, CEP: 88040-970, Florianópolis, SC (Brazil)

    2016-09-15

    With the growth of nanotechnology and widespread use of nanomaterials, there is an increasing risk of environmental contamination by nanomaterials. However, the potential implications of such environmental contamination are hard to evaluate since the toxicity of nanomaterials if often not well characterized. The objective of this study was to evaluate the toxicity of a chromium-based nanoparticle, Cr{sub 2}O{sub 3}-NP, used in a wide diversity of industrial processes and commercial products, on the unicellular green alga Chlamydomonas reinhardtii. The deleterious impacts of Cr{sub 2}O{sub 3}-NP were characterized using cell density measurements, production of reactive oxygen species (ROS), esterase enzymes activity, and photosystem II electron transport as indicators of toxicity. Cr{sub 2}O{sub 3}-NP exposure inhibited culture growth and significantly lowered cellular Chlorophyll a content. From cell density measurements, EC50 values of 2.05 ± 0.20 and 1.35 ± 0.06 g L{sup −1} Cr{sub 2}O{sub 3}-NP were obtained after 24 and 72 h of exposure, respectively. In addition, ROS levels were increased to 160.24 ± 2.47% and 59.91 ± 0.15% of the control value after 24 and 72 h of exposition to 10 g L{sup −1} Cr{sub 2}O{sub 3}-NP. At 24 h of exposure, the esterase activity increased to 160.24% of control value, revealing a modification of the short-term metabolic response of algae to Cr{sub 2}O{sub 3}-NP exposure. In conclusion, the metabolism of C. reinhardtii was the most sensitive to Cr{sub 2}O{sub 3}-NP after 24 h of treatment. - Highlights: • Cr{sub 2}O{sub 3} nanoparticles are unstable and form large aggregates in the medium. • EC50 for growth inhibition of C. reinhardtii is 1.35 g L{sup −1} at 72 h. • Cr{sub 2}O{sub 3} nanoparticles increase ROS levels at 10 g L{sup −1}. • Cr{sub 2}O{sub 3} nanoparticles affect photosynthetic electron transport.

  6. Vanillic acid derivatives from the green algae Cladophora socialis as potent protein tyrosine phosphatase 1B inhibitors.

    Science.gov (United States)

    Feng, Yunjiang; Carroll, Anthony R; Addepalli, Rama; Fechner, Gregory A; Avery, Vicky M; Quinn, Ronald J

    2007-11-01

    A novel vanillic acid derivative (1) and its sulfate adduct (2) were isolated from a green algae, Cladophora socialis. The structures of 1 and 2 were elucidated from NMR and HRESIMS experiments. Both compounds showed potent inhibitory activity against protein tyrosine phosphatase 1B (PTP1B), an enzyme involved in the regulation of insulin cell signaling. Compounds 1 and 2 had IC50 values of 3.7 and 1.7 microM, respectively.

  7. Experimental grounds for developing selenium- and iodine-containing pharmaceuticals based on blue-green algae Spirulina platensis

    International Nuclear Information System (INIS)

    Frontas'eva, M.V.; Pavlov, S.S.; Mosulishvili, L.M.; Belokobyl'skij, A.I.; Kirkesali, E.I.

    2002-01-01

    The possibility of using blue-green algae Spirulina platensis as a matrix for production of the selenium- and iodine-containing pharmaceuticals was studied. The dependence of Se and I accumulation in Spirulina biomass during the cultivation in a nutrient medium loading of above elements was determined more precisely. The dynamics of Spirulina biomass growth was observed with nutrient medium loading of selenium. It is found that Spirulina platensis biomass quality may be used for pharmaceutical purposes

  8. Gradual plasticity alters population dynamics in variable environments: thermal acclimation in the green alga Chlamydomonas reinhartdii.

    Science.gov (United States)

    Kremer, Colin T; Fey, Samuel B; Arellano, Aldo A; Vasseur, David A

    2018-01-10

    Environmental variability is ubiquitous, but its effects on populations are not fully understood or predictable. Recent attention has focused on how rapid evolution can impact ecological dynamics via adaptive trait change. However, the impact of trait change arising from plastic responses has received less attention, and is often assumed to optimize performance and unfold on a separate, faster timescale than ecological dynamics. Challenging these assumptions, we propose that gradual plasticity is important for ecological dynamics, and present a study of the plastic responses of the freshwater green algae Chlamydomonas reinhardtii as it acclimates to temperature changes. First, we show that C. reinhardtii 's gradual acclimation responses can both enhance and suppress its performance after a perturbation, depending on its prior thermal history. Second, we demonstrate that where conventional approaches fail to predict the population dynamics of C. reinhardtii exposed to temperature fluctuations, a new model of gradual acclimation succeeds. Finally, using high-resolution data, we show that phytoplankton in lake ecosystems can experience thermal variation sufficient to make acclimation relevant. These results challenge prevailing assumptions about plasticity's interactions with ecological dynamics. Amidst the current emphasis on rapid evolution, it is critical that we also develop predictive methods accounting for plasticity. © 2018 The Author(s).

  9. The effects of nitric oxide in settlement and adhesion of zoospores of the green alga Ulva.

    Science.gov (United States)

    Thompson, Stephanie E M; Callow, Maureen E; Callow, James A

    2010-01-01

    Previous studies have shown that elevated nitric oxide (NO) reduces adhesion in diatom, bacterial and animal cells. This article reports experiments designed to investigate whether elevated NO reduces the adhesion of zoospores of the green alga Ulva, an important fouling species. Surface-normalised values of NO were measured using the fluorescent indicator DAF-FM DA and parallel hydrodynamic measurements of adhesion strength were made. Elevated levels of NO caused by the addition of the exogenous NO donor SNAP reduced spore settlement by 20% and resulted in lower adhesion strength. Addition of the NO scavenger cPTIO abolished the effects of SNAP on adhesion. The strength of attachment and NO production by spores in response to four coatings (Silastic T2; Intersleek 700; Intersleek 900 and polyurethane) shows that reduced adhesion is correlated with an increase in NO production. It is proposed that in spores of Ulva, NO is used as an intracellular signalling molecule to detect how conducive a surface is for settlement and adhesion. The effect of NO on the adhesion of a range of organisms suggests that NO-releasing coatings could have the potential to control fouling.

  10. Stereocontrolled reduction of alpha- and beta-keto esters with micro green algae, Chlorella strains.

    Science.gov (United States)

    Ishihara, K; Yamaguchi, H; Adachi, N; Hamada, H; Nakajima, N

    2000-10-01

    The stereocontrolled reduction of alpha- and beta-keto esters using micro green algae was accomplished by a combination of the cultivation method and the introduction of an additive. The reduction of ethyl pyruvate and ethyl benzoylformate by the photoautotrophically cultivated Chlorella sorokiniana gave the corresponding alcohol in high e.e. (>99% e.e. (S) and >99% e.e. (R), respectively). In the presence of glucose as an additive, the reduction of ethyl 3-methyl-2-oxobutanoate by the heterotrophically cultivated C. sorokiniana afforded the corresponding (R)-alcohol. On the other hand, the reduction in the presence of ethyl propionate gave the (S)-alcohol. Ethyl 2-methyl-3-oxobutanoate was reduced in the presence of glycerol by the photoautotrophically cultivated C. sorokiniana or the heterotrophically cultivated C. sorokiniana to the corresponding syn-(2R,3S)-hydroxy ester with high diastereo- and enantiomeric excess (e.e.). Some additives altered the stereochemical course in the reduction of alpha- and beta-keto esters.

  11. Synthesis of gold nanoparticles by blue-green algae Spirulina platensis

    International Nuclear Information System (INIS)

    Kalabegishvili, T.; Kirkesali, E.; Rcheulishvili, A.

    2012-01-01

    The synthesis of gold nanoparticles by one of the many popular microorganisms - blue-green algae Spirulina platensis was studied. The complex of optical and analytical methods was applied for investigation of experimental samples after exposure to chloroaurate (HAuCl 4 ) solution at different doses and for different time intervals. To characterize formed gold nanoparticles UV-vis, TEM, SEM, EDAX, and XRD were used. It was shown that after 1.5-2 days of exposure the extracellular formation of nanoparticles of spherical form and the distribution peak within the interval of 20-30 nm took place. To determine gold concentrations in the Spirulina platensis biomass, neutron activation analysis (NAA) and atomic absorption spectrometry (AAS) were applied. The results obtained evidence that the concentration of gold accumulated by Spirulina biomass is rapidly growing in the beginning, followed by some increase for the next few days. The obtained substance of Spirulina biomass with gold nanoparticles may be used for medical, pharmaceutical, and technological purposes

  12. Some metabolic pathways in the blue - green alga micro cystis aeruginosa using 14 C - Labelled compounds

    International Nuclear Information System (INIS)

    Mohammed, H.A.K.

    1993-01-01

    Blue - green algae (cyanobacteria) are of world Wied distribution in fresh water, their toxic and nontoxic strains are forming heavy blooms regularly in eutrophic natural water. They grow rapidly under many physicochemical stresses even in many domestic sewage (Skulberg et al., 1984). The toxic and nontoxic strains are morphologically indistin - guishable, so extensive toxicity testing must be taken into consideration and is so much essential because some species are marketed to human consumption as a food. From the toxicological point of view, at least five genera are now known as toxic strains, these are anabaena, nostoc, oscillator, aphanizomenon, micro cystis (Carmichael, 1981; Carmichael and Mahmood, 1984, and carmichael et al, 1985). The toxicity levels of these species are varied widely with regard to site, season, week or even day of collection (Carmichael and Gorham, 1981). Such variability may be correlated to the changes in species composition. The intensive growth of toxin producing organisms in municipal and recreational water supplies affect human health both wild and domestic animals, Livestock, pets, fish and birds in many countries and are suspected to cause the last and smell of drinking water to be unpleasant (Beasley et al, 1983 and carmichael et al, 1985)

  13. Effect of inoculating blue-green algae and Azolla on rice yield

    International Nuclear Information System (INIS)

    Kulasooriya, S.A.

    1985-01-01

    Nitrogen fixing blue-green algae (BGA) and the Azolla-Anaebaena symbiosis are potential alternative sources of nitrogen for lowland rice production. A survey of the literature shows that on the average, when BGA inoculation is effective, a rice yield increase of 14% (450 kg grain ha -1 ) has been observed. However, in Sri Lanka no significant increases in grain yield have been observed due to BGA inoculation. Azolla inoculation in broadcast, transplanted, and avenue transplanted rice gave yield increases of 12, 22 and 48%, and was equivalent to 55 to 80 kg N ha -1 as urea. Azolla was observed to reduce weed growth by 53%. Azolla is easier to establish in rice fields since it can be easily recognized with the naked eye, however, BGA are better able to withstand periods of desiccation which occur in rain-fed rice production. Most algalization experiments have been performed on a ''black box'' basis where only the final grain yield has been measured. Isotope experiments can play a vital role in understanding the processes by which BGA and Azolla increase rice yields. (author)

  14. Removal of malachite green by using an invasive marine alga Caulerpa racemosa var. cylindracea

    International Nuclear Information System (INIS)

    Bekci, Zehra; Seki, Yoldas; Cavas, Levent

    2009-01-01

    The biosorption of a cationic dye, malachite green oxalate (MG) from aqueous solution onto an invasive marine alga Caulerpa racemosa var. cylindracea (CRC) was investigated at different temperatures (298, 308 and 318 K). The dye adsorption onto CRC was confirmed by FTIR analysis. Equilibrium data were analyzed using Freundlich, Langmuir and Dubinin-Radushkevich (DR) equations. All of the isotherm parameters were calculated. The Freundlich model gave a better conformity than Langmuir equation. The mean free energy values (E) from DR isotherm were also estimated. In order to clarify the sorption kinetic, the fit of pseudo-first-order kinetic model, second-order kinetic model and intraparticle diffusion model were investigated. It was obtained that the biosorption process followed the pseudo-second-order rate kinetics. From thermodynamic studies the free energy changes were found to be -7.078, -9.848 and -10.864 kJ mol -1 for 298, 308 and 318 K, respectively. This implied the spontaneous nature of biosorption and the type of adsorption as physisorption. Activation energy value for MG sorption (E a ) was found to be 37.14 kJ mol -1 . It could be also derived that this result supported physisorption as a type of adsorption

  15. Antibacterial and Antioxidant Activity of Green Algae Halimeda gracilis from Seribu Island District

    Directory of Open Access Journals (Sweden)

    Abdul Basir

    2017-08-01

    Full Text Available Seaweeds have ecological functions as primary producers in marine waters. It also has an important economic value as a producer of hydrocolloids (alginate, agar and carrageenan that is used in various industries of food and pharmaceuticals. This study aimed to determine the antibacterial and antioxidant activity of green algae Halimeda gracilis. The study was conducted in several stages, sample collection and preparation, extraction of bioactive compound, fractionation, antibacterial and antioxidant test, and phytochemical. Extraction was done by maceration method using methanol and concentrated by rotary evaporator. The methanol extracts of H. gracilis were tested against Staphylococcus aureus and Escherichia coli. Methanol extract of H. gracilis formed inhibition zone against the test bacteria with diameter of inhibition zone was 10 mm and 6 mm, respectively. After liquid-liquid partition (water: ethyl acetate, inhibition zone was only seen in the ethyl acetate fraction of H. gracilis with diameter of inhibition zone was 6 mm and 7.50±1.71 mm, respectively. Antioxidant test methanol extracts and ethyl acetate fractions of H. gracilis each show IC50 value of 290.49 ppm and 375.50 ppm. Phytochemical test showed methanol extract of H. gracilis contains phenols and steroids.

  16. Effects of lead on tolerance, bioaccumulation, and antioxidative defense system of green algae, Cladophora.

    Science.gov (United States)

    Cao, De-ju; Shi, Xiao-dong; Li, Hao; Xie, Pan-pan; Zhang, Hui-min; Deng, Juan-wei; Liang, Yue-gan

    2015-02-01

    Effects of various concentrations (0.5, 1.0, 2.5, 5.0, 7.5, and 10.0 mg/L) of lead (Pb(2+)) on the growth, bioaccumulation, and antioxidative defense system of green algae, Cladophora, was investigated. Low concentrations of Pb(2+) accelerated Cladophora growth, but concentrations of 10.0 mg/L and above inhibited the growth because of the hinderance to photosynthesis. The total soluble sugar content of Cladophora was affected by Pb(2+) treatment, but the protein content showed no significant changes. The malondialdehyde (MDA) content and peroxidase(POD) activity of Cladophora gradually increased whereas superoxide dismutase(SOD) decreased with Pb(2+) concentrations. Catalase (CAT) activity exhibited no significant changes following Pb(2+) treatment. Pb(2+) accumulated in Cladophora and that the lead content in Cladophora was correlated with POD growth, MDA, and Metallothionein (MT). POD and MT play a role in the survival of Cladophora in Pb-contaminated environments. This study suggests that Cladophora can be a choice organism for the phytoremediation of Pb-polluted coastal areas. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Effects of Cu(2+) and Zn(2+) on growth and physiological characteristics of green algae, Cladophora.

    Science.gov (United States)

    Cao, De-ju; Xie, Pan-pan; Deng, Juan-wei; Zhang, Hui-min; Ma, Ru-xiao; Liu, Cheng; Liu, Ren-jing; Liang, Yue-gan; Li, Hao; Shi, Xiao-dong

    2015-11-01

    Effects of various concentrations of Cu(2+) and Zn(2+) (0.0, 0.1, 0.25, 0.5, or 1.0 mg/L) on the growth, malondialdehyde (MDA), the intracellular calcium, and physiological characteristics of green algae, Cladophora, were investigated. Low Zn(2+) concentrations accelerated the growth of Cladophora, whereas Zn(2+) concentration increases to 0.25 mg/L inhibited its growth. Cu(2+) greatly influences Cladophora growth. The photosynthesis of Cladophora decreased under Zn(2+) and Cu(2+) stress. Cu(2+) and Zn(2+) treatment affected the content of total soluble sugar in Cladophora and has small increases in its protein content. Zn(2+) induced the intracellular calcium release, and copper induced the intracellular calcium increases in Cladophora. Exposure to Cu(2+) and Zn(2+) induces MDA in Cladophora. The stress concent of Cu(2+) was strictly correlated with the total soluble sugar content, Chla+Chlb, and MDA in Cladophora, and the stress concent of Zn(2+) was strictly correlated with the relative growth rate (RGR) and MDA of Cladophora.

  18. The hepatoprotective activity of blue green algae in Schistosoma mansoni infected mice.

    Science.gov (United States)

    Mohamed, Azza H; Osman, Gamalat Y; Salem, Tarek A; Elmalawany, Alshimaa M

    2014-10-01

    This study aims to evaluate the immunomodulatory effects of a natural product, blue green algae (BGA) (100 mg/kg BW), alone or combined with praziquantel PZQ (250 mg/kg BW) on granulomatous inflammation, liver histopathology, some biochemical and immunological parameters in mice infected with Schistosoma mansoni. Results showed that the diameter and number of egg granuloma were significantly reduced after treatment of S. mansoni-infected mice with BGA, PZQ and their combination. The histopathological alterations observed in the liver of S. mansoni-infected mice were remarkably inhibited after BGA treatments. BGA decreased the activities of aspartate aminotransferase (AST), alanine aminotransferase (ALT) and alkaline phosphatase (ALP) as well as the level of total protein (TP) while the level of albumin was increased. Treatment of infected mice with BGA, PZQ as well as their combination led to significant elevation in the activities of hepatic antioxidant enzymes glutathione peroxidase (GPX) and glutathione-S-transferase (GST) as compared with control group. Combination of BGA and PZQ resulted in significant reduction in the level of intercellular adhesion molecules-1 (ICAM-1), vascular adhesion molecules-1 (VCAM-1) and tumor necrosis factor-alpha (TNF-α) when compared to those of the S. mansoni-infected group. Overall, BGA significantly inhibited the liver damage accompanied with schistosomiasis, exhibited a potent antioxidant and immunoprotective activities. This study suggests that BGA can be considered as promising for development a complementary and/or alternative medicine against schistosomiasis. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Characterization of biosorption process of As(III) on green algae Ulothrix cylindricum

    International Nuclear Information System (INIS)

    Tuzen, Mustafa; Sari, Ahmet; Mendil, Durali; Uluozlu, Ozgur Dogan; Soylak, Mustafa; Dogan, Mehmet

    2009-01-01

    Arsenic (As) is generally found as As(III) and As(V) in environmental samples. Toxicity of As(III) is higher than As(V). This paper presents the characteristics of As(III) biosorption from aqueous solution using the green algae (Ulothrix cylindricum) biomass as a function of pH, biomass dosage, contact time, and temperature. Langmuir, Freundlich and Dubinin-Radushkevich (D-R) models were applied to describe the biosorption isotherm of As(III) by U. cylindricum biomass. The biosorption capacity of U. cylindricum biomass was found as 67.2 mg/g. The metal ions were desorbed from U. cylindricum using 1 M HCl. The high stability of U. cylindricum permitted 10 times of adsorption-elution process along the studies with a slightly decrease about 16% in recovery of As(III) ions. The mean free energy value evaluated from the D-R model indicated that the biosorption of As(III) onto U. cylindricum biomass was taken place by chemical ion-exchange. The calculated thermodynamic parameters, ΔG o , ΔH o and ΔS o showed that the biosorption of As(III) onto U. cylindricum biomass was feasible, spontaneous and exothermic under examined conditions. Experimental data were also tested in terms of biosorption kinetics using pseudo-first-order and pseudo-second-order kinetic models. The results showed that the biosorption processes of As(III) followed well pseudo-second-order kinetics.

  20. High Yields of Hydrogen Production Induced by Meta-Substituted Dichlorophenols Biodegradation from the Green Alga Scenedesmus obliquus

    Science.gov (United States)

    Papazi, Aikaterini; Andronis, Efthimios; Ioannidis, Nikolaos E.; Chaniotakis, Nikolaos; Kotzabasis, Kiriakos

    2012-01-01

    Hydrogen is a highly promising energy source with important social and economic implications. The ability of green algae to produce photosynthetic hydrogen under anaerobic conditions has been known for years. However, until today the yield of production has been very low, limiting an industrial scale use. In the present paper, 73 years after the first report on H2-production from green algae, we present a combinational biological system where the biodegradation procedure of one meta-substituted dichlorophenol (m-dcp) is the key element for maintaining continuous and high rate H2-production (>100 times higher than previously reported) in chloroplasts and mitochondria of the green alga Scenedesmus obliquus. In particular, we report that reduced m-dcps (biodegradation intermediates) mimic endogenous electron and proton carriers in chloroplasts and mitochondria, inhibit Photosystem II (PSII) activity (and therefore O2 production) and enhance Photosystem I (PSI) and hydrogenase activity. In addition, we show that there are some indications for hydrogen production from sources other than chloroplasts in Scenedesmus obliquus. The regulation of these multistage and highly evolved redox pathways leads to high yields of hydrogen production and paves the way for an efficient application to industrial scale use, utilizing simple energy sources and one meta-substituted dichlorophenol as regulating elements. PMID:23145057

  1. The toxicity of plastic nanoparticles to green algae as influenced by surface modification, medium hardness and cellular adsorption.

    Science.gov (United States)

    Nolte, Tom M; Hartmann, Nanna B; Kleijn, J Mieke; Garnæs, Jørgen; van de Meent, Dik; Jan Hendriks, A; Baun, Anders

    2017-02-01

    To investigate processes possibly underlying accumulation and ecological effects of plastic nano-particles we have characterized their interaction with the cell wall of green algae. More specifically, we have investigated the influence of particle surface functionality and water hardness (Ca 2+ concentration) on particle adsorption to algae cell walls. Polystyrene nanoparticles with different functional groups (non-functionalized, -COOH and -NH 2 ) as well as coated (starch and PEG) gold nanoparticles were applied in these studies. Depletion measurements and atomic force microscopy (AFM) showed that adsorption of neutral and positively charged plastic nanoparticles onto the cell wall of P. subcapitata was stronger than that of negatively charged plastic particles. Results indicated that binding affinity is a function of both inter-particle and particle-cell wall interactions which are in turn influenced by the medium hardness and particle concentration. Physicochemical modelling using DLVO theory was used to interpret the experimental data, using also values for interfacial surface free energies. Our study shows that material properties and medium conditions play a crucial role in the rate and state of nanoparticle bio-adsorption for green algae. The results show that the toxicity of nanoparticles can be better described and assessed by using appropriate dose metrics including material properties, complexation/agglomeration behavior and cellular attachment and adsorption. The applied methodology provides an efficient and feasible approach for evaluating potential accumulation and hazardous effects of nanoparticles to algae caused by particle interactions with the algae cell walls. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Autophagy in unicellular eukaryotes

    NARCIS (Netherlands)

    Kiel, J.A.K.W.

    2010-01-01

    Cells need a constant supply of precursors to enable the production of macromolecules to sustain growth and survival. Unlike metazoans, unicellular eukaryotes depend exclusively on the extracellular medium for this supply. When environmental nutrients become depleted, existing cytoplasmic components

  3. The effect of bloom of filamentous green algae on the reproduction of yellowfin sculpin Cottocomephorus grewingkii (Dybowski, 1874) (Cottoidae) during ecological crisis in Lake Baikal.

    Science.gov (United States)

    Khanaev, I V; Dzyuba, E V; Kravtsova, L S; Grachev, M A

    2016-03-01

    In shallow water areas of open Lake Baikal, filamentous green alga of the genus Spirogyra grows abundantly. Together with alga of the genus Ulothrix, it forms algal mats. According to our observations from 2010 to 2013, the spawning habitat conditions for the yellowfin sculpin Cottocomephorus grewingkii (Dybowski, 1874) (Cottidae) proved to be significantly disturbed in the littoral zone of Listvennichnyi Bay (southern Baikal), which, in turn, reduced the number of egg layings. With a 100% projective cover of the floor and a high density of green filamentous algae, the shallow-water stony substrate becomes completely inaccessible for spawning of the August population.

  4. Toxicity of lead (Pb) to freshwater green algae: Development and validation of a bioavailability model and inter-species sensitivity comparison

    Energy Technology Data Exchange (ETDEWEB)

    De Schamphelaere, K.A.C., E-mail: karel.deschamphelaere@ugent.be; Nys, C., E-mail: chnys.nys@ugent.be; Janssen, C.R., E-mail: colin.janssen@ugent.be

    2014-10-15

    Highlights: • Chronic toxicity of Pb varied 4-fold among three algae species. • The use of an organic P avoided Pb precipitation in the experiments. • pH and Dissolved Organic Carbon strongly affect Pb toxicity, Ca and Mg do not. • A bioavailability model was developed that accurately predicts toxicity. • Algae may become the most sensitive species to Pb above pH 7.4. - Abstract: Scientifically sound risk assessment and derivation of environmental quality standards for lead (Pb) in the freshwater environment are hampered by insufficient data on chronic toxicity and bioavailability to unicellular green algae. Here, we first performed comparative chronic (72-h) toxicity tests with three algal species in medium at pH 6, containing 4 mg fulvic acid (FA)/L and containing organic phosphorous (P), i.e. glycerol-2-phosphate, instead of PO{sub 4}{sup 3−} to prevent lead-phosphate mineral precipitation. Pseudokirchneriella subcapitata was 4-fold more sensitive to Pb than Chlorella kesslerii, with Chlamydomonas reinhardtii in the middle. The influence of medium physico-chemistry was therefore investigated in detail with P. subcapitata. In synthetic test media, higher concentrations of fulvic acid or lower pH protected against toxicity of (filtered) Pb to P. subcapitata, while effects of increased Ca or Mg on Pb toxicity were less clear. When toxicity was expressed on a free Pb{sup 2+} ion activity basis, a log-linear, 260-fold increase of toxicity was observed between pH 6.0 and 7.6. Effects of fulvic acid were calculated to be much more limited (1.9-fold) and were probably even non-existent (depending on the affinity constant for Pb binding to fulvic acid that was used for calculating speciation). A relatively simple bioavailability model, consisting of a log-linear pH effect on Pb{sup 2+} ion toxicity linked to the geochemical speciation model Visual Minteq (with the default NICA-Donnan description of metal and proton binding to fulvic acid), provided relatively

  5. Toxicity of lead (Pb) to freshwater green algae: Development and validation of a bioavailability model and inter-species sensitivity comparison

    International Nuclear Information System (INIS)

    De Schamphelaere, K.A.C.; Nys, C.; Janssen, C.R.

    2014-01-01

    Highlights: • Chronic toxicity of Pb varied 4-fold among three algae species. • The use of an organic P avoided Pb precipitation in the experiments. • pH and Dissolved Organic Carbon strongly affect Pb toxicity, Ca and Mg do not. • A bioavailability model was developed that accurately predicts toxicity. • Algae may become the most sensitive species to Pb above pH 7.4. - Abstract: Scientifically sound risk assessment and derivation of environmental quality standards for lead (Pb) in the freshwater environment are hampered by insufficient data on chronic toxicity and bioavailability to unicellular green algae. Here, we first performed comparative chronic (72-h) toxicity tests with three algal species in medium at pH 6, containing 4 mg fulvic acid (FA)/L and containing organic phosphorous (P), i.e. glycerol-2-phosphate, instead of PO 4 3− to prevent lead-phosphate mineral precipitation. Pseudokirchneriella subcapitata was 4-fold more sensitive to Pb than Chlorella kesslerii, with Chlamydomonas reinhardtii in the middle. The influence of medium physico-chemistry was therefore investigated in detail with P. subcapitata. In synthetic test media, higher concentrations of fulvic acid or lower pH protected against toxicity of (filtered) Pb to P. subcapitata, while effects of increased Ca or Mg on Pb toxicity were less clear. When toxicity was expressed on a free Pb 2+ ion activity basis, a log-linear, 260-fold increase of toxicity was observed between pH 6.0 and 7.6. Effects of fulvic acid were calculated to be much more limited (1.9-fold) and were probably even non-existent (depending on the affinity constant for Pb binding to fulvic acid that was used for calculating speciation). A relatively simple bioavailability model, consisting of a log-linear pH effect on Pb 2+ ion toxicity linked to the geochemical speciation model Visual Minteq (with the default NICA-Donnan description of metal and proton binding to fulvic acid), provided relatively accurate toxicity

  6. First discovery of the charophycean green alga Lychnothamnus barbatus (Charophyceae) extant in the New World.

    Science.gov (United States)

    Karol, Kenneth G; Skawinski, Paul M; McCourt, Richard M; Nault, Michelle E; Evans, Reesa; Barton, Martha E; Berg, Matthew S; Perleberg, Donna J; Hall, John D

    2017-07-27

    Although some species of Characeae, known as stoneworts, can be found on every continent except Antarctica, many species and some genera have limited geographic distributions. The genus Lychnothamnus , represented by a single extant species L. barbatus , was known only from scattered localities in Europe and Australasia until it was recently discovered in North America. Morphological identifications were made from specimens collected in Minnesota and Wisconsin, USA. DNA sequences were obtained for three plastid-encoded genes ( atpB , psbC , rbcL ) from seven putative Lychnothamnus samples from two states in the USA Distribution and abundance were estimated in each lake using point intercept surveys where surveyors sampled aquatic vegetation. Fourteen lakes in Wisconsin and two lakes in Minnesota, USA, were found to harbor Lychnothamnus barbatus . These represent the first report of this rare charophycean extant in the New World. The North American specimens matched the morphological description for L. barbatus and were compared directly with the neotype. Phylogenetic results using three plastid-encoded genes confirmed the identification placing New World samples with those from Europe and Australasia. Our phylogenetic analyses also confirmed the sister relationship between L. barbatus and Nitellopsis obtusa . Because this taxon is not known for aggressive invasiveness in its native range, it may have existed in heretofore-undiscovered native populations, although the possibility that it is a recent introduction cannot be eliminated. The potential for discovery of novel lineages of green algae in even well-studied regions is apparently far from exhausted. © 2017 Karol et al. Published by the Botanical Society of America. This work is licensed under a Creative Commons Attribution License (CC-BY-NC).

  7. Synthesis of Biodiesel from the Oily Content of Marine Green Alga Ulva fasciata

    International Nuclear Information System (INIS)

    Khan, A. M.; Fatima, N.

    2015-01-01

    The present study is focused on the chemical transformation of oils derived from the marine green alga Ulva fasciata Delile to biodiesel. The transesterification of algal oil was performed with a variety of alcohols using Na metal and NaOH as catalysts. Transesterification of algal oil by mechanical stirring yielded significant biodiesel within an hour at 60 degree C with NaOH and at room temperature with Na metal. In addition, microwave irradiated transesterification produced significant amount of biodiesel with NaOH and Na metal within 1-5 minutes. However, reaction of sodium metal in microwave oven was highly exothermic and uncontrollable that could also damage the radiation source. The reactivity order of alcohols was found to be methanol > ethanol > benzyl alcohol > 1-propanol > 1-butanol > 1-pentanol > 1-hexanol > 2-propanol. Isopropyl alcohol was found to be least reactive due to steric hindrance. Benzyl alcohol was found to be more reactive than 1-propyl alcohol due to the electron withdrawing effect of benzene ring. The highest % conversion of FAME and FAEE were found to be 97% and 98% respectively using Na metal through mechanical stirring. Biodiesel production was confirmed by thin layer chromatography (TLC). Furthermore, the fuel properties including density, kinematics viscosity, high heating value, acid value, free fatty acid (%), cloud point and pour point of U. fasciata oil and all the esters were determined and compared with the standard limits of biodiesel. Fatty acid methyl, ethyl, 1-propyl, 2-propyl, 1-butyl, 1-pentyl and 1-hexyl esters showed the fuel properties within the biodiesel standard limits therefore all of them were considered as the substitute of biodiesel. On the other hand, the fuel properties of benzyl ester were found to be above the limits of biodiesel specifications and thus it could not be considered as biodiesel. This research article will be helpful to overcome the current challenges of energy crisis, global warming and

  8. Evidence of coexistence of C₃ and C₄ photosynthetic pathways in a green-tide-forming alga, Ulva prolifera.

    Directory of Open Access Journals (Sweden)

    Jianfang Xu

    Full Text Available Ulva prolifera, a typical green-tide-forming alga, can accumulate a large biomass in a relatively short time period, suggesting that photosynthesis in this organism, particularly its carbon fixation pathway, must be very efficient. Green algae are known to generally perform C₃ photosynthesis, but recent metabolic labeling and genome sequencing data suggest that they may also perform C₄ photosynthesis, so C₄ photosynthesis might be more wide-spread than previously anticipated. Both C₃ and C₄ photosynthesis genes were found in U. prolifera by transcriptome sequencing. We also discovered the key enzymes of C₄ metabolism based on functional analysis, such as pyruvate orthophosphate dikinase (PPDK, phosphoenolpyruvate carboxylase (PEPC, and phosphoenolpyruvate carboxykinase (PCK. To investigate whether the alga operates a C₄-like pathway, the expression of rbcL and PPDK and their enzyme activities were measured under various forms and intensities of stress (differing levels of salinity, light intensity, and temperature. The expression of rbcL and PPDK and their enzyme activities were higher under adverse circumstances. However, under conditions of desiccation, the expression of rbcL and ribulose-1, 5-biphosphate carboxylase (RuBPCase activity was lower, whereas that of PPDK was higher. These results suggest that elevated PPDK activity may alter carbon metabolism and lead to a partial operation of C₄-type carbon metabolism in U. prolifera, probably contributing to its wide distribution and massive, repeated blooms in the Yellow Sea.

  9. Epithermal neutron activation analysis of blue-green algae Spirulina Platensis as a matrix for selenium-containing pharmaceuticals

    International Nuclear Information System (INIS)

    Mosulishvili, L.M.; Kirkesali, E.I.; Belokobyl'skij, A.I.; Khizanishvili, A.I.; Frontas'eva, M.V.; Gundorina, S.F.; Oprea, C.D.

    2000-01-01

    To evaluate the potentiality of the blue-green algae Spirulina Platensis as a matrix for the production of Se-containing pharmaceuticals, the background levels of 31 major, minor and trace elements (Na, Mg, Al, Cl, K, Ca, Sc, V, Cr, Mn, Fe, Co, Ni (using (n,p)-reaction), As, Br, Zn, Rb, Mo, Ag, Sb, I, Ba, Sm, Tb, Tm, Hf, Ta, W, Au, Hg, Th) in Spirulina Platensis biomass were determined by means of epithermal neutron activation analysis. The possibility of the purpose-oriented incorporation of Se into Spirulina Platensis biomass was demonstrated. The polynomial dependence of the Se accumulation on nutritional medium loading was revealed. The employed analytical technique allows one to reliably control the amount of toxic elements in algae Spirulina Platensis. Based on this study, a conclusion of the possibility to use Spirulina Platensis as a matrix for the production of Se-containing pharmaceuticals was drawn

  10. Growth of filamentous blue-green algae at high temperatures: a source of biomass for renewable fuels

    Energy Technology Data Exchange (ETDEWEB)

    Timourian, H.; Ward, R.L.; Jeffries, T.W.

    1977-08-17

    The growth of filamentous blue-green algae (FBGA) at high temperatures in outdoor, shallow solar ponds is being investigated. The temperature of the 60-m/sup 2/ ponds can be controlled to an average temperature of 45/sup 0/C. The growth of FBGA at high temperatures offers an opportunity, not presently available from outdoor algal ponds or energy farms, to obtain large amounts of biomass. Growth of algae at high temperatures results in higher yields because of increased growth rate, the higher light intensity that can be used before saturating the photosynthetic process, easier maintenance of selected FBGA strains, and fewer predators to decimate culture. Additional advantages of growing FBGA as a source of biomass include: bypassing the limitations of nutrient sources, because FBGA fix their own nitrogen and require only CO/sub 2/ when inorganic nutrients are recycled; toleration of higher salinity and metal ion concentrations; and easier and less expensive harvesting procedures.

  11. The toxicity of plastic nanoparticles to green algae as influenced by surface modification, medium hardness and cellular adsorption

    DEFF Research Database (Denmark)

    Nolte, Tom M.; Hartmann, Nanna B.; Kleijn, J. Mieke

    2017-01-01

    To investigate processes possibly underlying accumulation and ecological effects of plastic nano-particles we have characterized their interaction with the cell wall of green algae. More specifically, we have investigated the influence of particle surface functionality and water hardness (Ca2......+ concentration) on particle adsorption to algae cell walls. Polystyrene nanoparticles with different functional groups (non-functionalized, −COOH and −NH2) as well as coated (starch and PEG) gold nanoparticles were applied in these studies. Depletion measurements and atomic force microscopy (AFM) showed...... that adsorption of neutral and positively charged plastic nanoparticles onto the cell wall of P. subcapitata was stronger than that of negatively charged plastic particles. Results indicated that binding affinity is a function of both inter-particle and particle-cell wall interactions which are in turn influenced...

  12. Evolutionary relatedness does not predict competition and co-occurrence in natural or experimental communities of green algae

    Science.gov (United States)

    Alexandrou, Markos A.; Cardinale, Bradley J.; Hall, John D.; Delwiche, Charles F.; Fritschie, Keith; Narwani, Anita; Venail, Patrick A.; Bentlage, Bastian; Pankey, M. Sabrina; Oakley, Todd H.

    2015-01-01

    The competition-relatedness hypothesis (CRH) predicts that the strength of competition is the strongest among closely related species and decreases as species become less related. This hypothesis is based on the assumption that common ancestry causes close relatives to share biological traits that lead to greater ecological similarity. Although intuitively appealing, the extent to which phylogeny can predict competition and co-occurrence among species has only recently been rigorously tested, with mixed results. When studies have failed to support the CRH, critics have pointed out at least three limitations: (i) the use of data poor phylogenies that provide inaccurate estimates of species relatedness, (ii) the use of inappropriate statistical models that fail to detect relationships between relatedness and species interactions amidst nonlinearities and heteroskedastic variances, and (iii) overly simplified laboratory conditions that fail to allow eco-evolutionary relationships to emerge. Here, we address these limitations and find they do not explain why evolutionary relatedness fails to predict the strength of species interactions or probabilities of coexistence among freshwater green algae. First, we construct a new data-rich, transcriptome-based phylogeny of common freshwater green algae that are commonly cultured and used for laboratory experiments. Using this new phylogeny, we re-analyse ecological data from three previously published laboratory experiments. After accounting for the possibility of nonlinearities and heterogeneity of variances across levels of relatedness, we find no relationship between phylogenetic distance and ecological traits. In addition, we show that communities of North American green algae are randomly composed with respect to their evolutionary relationships in 99% of 1077 lakes spanning the continental United States. Together, these analyses result in one of the most comprehensive case studies of how evolutionary history influences

  13. Cell Wall Structure of Coccoid Green Algae as an Important Trade-Off Between Biotic Interference Mechanisms and Multidimensional Cell Growth.

    Science.gov (United States)

    Dunker, Susanne; Wilhelm, Christian

    2018-01-01

    Coccoid green algae can be divided in two groups based on their cell wall structure. One group has a highly chemical resistant cell wall (HR-cell wall) containing algaenan. The other group is more susceptible to chemicals (LR-cell wall - Low resistant cell wall). Algaenan is considered as important molecule to explain cell wall resistance. Interestingly, cell wall types (LR- and HR-cell wall) are not in accordance with the taxonomic classes Chlorophyceae and Trebouxiophyceae, which makes it even more interesting to consider the ecological function. It was already shown that algaenan helps to protect against virus, bacterial and fungal attack, but in this study we show for the first time that green algae with different cell wall properties show different sensitivity against interference competition with the cyanobacterium Microcystis aeruginosa . Based on previous work with co-cultures of M. aeruginosa and two green algae ( Acutodesmus obliquus and Oocystis marssonii ) differing in their cell wall structure, it was shown that M. aeruginosa could impair only the growth of the green algae if they belong to the LR-cell wall type. In this study it was shown that the sensitivity to biotic interference mechanism shows a more general pattern within coccoid green algae species depending on cell wall structure.

  14. A Simple Method to Decode the Complete 18-5.8-28S rRNA Repeated Units of Green Algae by Genome Skimming.

    Science.gov (United States)

    Lin, Geng-Ming; Lai, Yu-Heng; Audira, Gilbert; Hsiao, Chung-Der

    2017-11-06

    Green algae, Chlorella ellipsoidea , Haematococcus pluvialis and Aegagropila linnaei (Phylum Chlorophyta) were simultaneously decoded by a genomic skimming approach within 18-5.8-28S rRNA region. Whole genomic DNAs were isolated from green algae and directly subjected to low coverage genome skimming sequencing. After de novo assembly and mapping, the size of complete 18-5.8-28S rRNA repeated units for three green algae were ranged from 5785 to 6028 bp, which showed high nucleotide diversity (π is around 0.5-0.6) within ITS1 and ITS2 (Internal Transcribed Spacer) regions. Previously, the evolutional diversity of algae has been difficult to decode due to the inability design universal primers that amplify specific marker genes across diverse algal species. In this study, our method provided a rapid and universal approach to decode the 18-5.8-28S rRNA repeat unit in three green algal species. In addition, the completely sequenced 18-5.8-28S rRNA repeated units provided a solid nuclear marker for phylogenetic and evolutionary analysis for green algae for the first time.

  15. Interactive effects of copper oxide nanoparticles and light to green alga Chlamydomonas reinhardtii

    Energy Technology Data Exchange (ETDEWEB)

    Cheloni, Giulia; Marti, Elodie; Slaveykova, Vera I., E-mail: vera.slaveykova@unige.ch

    2016-01-15

    Highlights: • Comparable stability of CuO-NP suspensions under different light conditions. • UVR* inhibits growth, bleaches chlorophyll fluorescence and damages membrane. • Below 1 mg L{sup −1} CuO-NPs do not attenuate light in algal suspension. • SNL enhances significantly the effect of 0.8 mg L{sup −1} CuO-NPs on microalgae. • Synergistic interactions between UVR* and CuO-NPs. - Abstract: The present study explores the effect of light with different spectral composition on the stability of CuO-nanoparticle (CuO-NP) dispersions and their effects to green alga Chlamydomonas reinhardtii. The results showed that simulated natural light (SNL) and light with enhanced UVB radiation (UVR*) do not affect the dissolution of CuO-NPs as compared to light irradiation conditions typically used in laboratory incubator (INC). Comparable values of ζ-potential and hydrodynamic size during 24 h were found under all studied conditions. Concentrations of CuO-NPs below 1 mg L{sup −1} do not attenuate the light penetration in the algal suspensions in comparison with NP-free system. Exposure to a combination of 8 μg L{sup −1} or 0.8 mg L{sup −1} CuO-NPs and INC or SNL has no significant effect on the algal growth inhibition, algal fluorescence and membrane integrity under short-term exposure. However, an enhancement of the percentage of cells experiencing oxidative stress was observed upon exposure to 0.8 mg L{sup −1} CuO-NPs and SNL for 4 and 8 h. Combination of UVR* and 0.8 mg L{sup −1} CuO-NPs resulted in synergistic effects for all biological endpoints. Despite the photocatalytic properties of CuO-NPs no significant increase in abiotic reactive oxygen species (ROS) production under simulated solar radiation was observed suggesting that the synergistic effect observed might be correlated to other factors than CuO-NP-mediated ROS photoproduction. Tests performed with CuSO{sub 4} confirmed the important role of dissolution as toxicity driving force for lower

  16. Genome-wide identification of regulatory elements and reconstruction of gene regulatory networks of the green alga Chlamydomonas reinhardtii under carbon deprivation.

    Directory of Open Access Journals (Sweden)

    Flavia Vischi Winck

    Full Text Available The unicellular green alga Chlamydomonas reinhardtii is a long-established model organism for studies on photosynthesis and carbon metabolism-related physiology. Under conditions of air-level carbon dioxide concentration [CO2], a carbon concentrating mechanism (CCM is induced to facilitate cellular carbon uptake. CCM increases the availability of carbon dioxide at the site of cellular carbon fixation. To improve our understanding of the transcriptional control of the CCM, we employed FAIRE-seq (formaldehyde-assisted Isolation of Regulatory Elements, followed by deep sequencing to determine nucleosome-depleted chromatin regions of algal cells subjected to carbon deprivation. Our FAIRE data recapitulated the positions of known regulatory elements in the promoter of the periplasmic carbonic anhydrase (Cah1 gene, which is upregulated during CCM induction, and revealed new candidate regulatory elements at a genome-wide scale. In addition, time series expression patterns of 130 transcription factor (TF and transcription regulator (TR genes were obtained for cells cultured under photoautotrophic condition and subjected to a shift from high to low [CO2]. Groups of co-expressed genes were identified and a putative directed gene-regulatory network underlying the CCM was reconstructed from the gene expression data using the recently developed IOTA (inner composition alignment method. Among the candidate regulatory genes, two members of the MYB-related TF family, Lcr1 (Low-CO 2 response regulator 1 and Lcr2 (Low-CO2 response regulator 2, may play an important role in down-regulating the expression of a particular set of TF and TR genes in response to low [CO2]. The results obtained provide new insights into the transcriptional control of the CCM and revealed more than 60 new candidate regulatory genes. Deep sequencing of nucleosome-depleted genomic regions indicated the presence of new, previously unknown regulatory elements in the C. reinhardtii genome

  17. Proliferation of group II introns in the chloroplast genome of the green alga Oedocladium carolinianum (Chlorophyceae

    Directory of Open Access Journals (Sweden)

    Jean-Simon Brouard

    2016-10-01

    Full Text Available Background The chloroplast genome sustained extensive changes in architecture during the evolution of the Chlorophyceae, a morphologically and ecologically diverse class of green algae belonging to the Chlorophyta; however, the forces driving these changes are poorly understood. The five orders recognized in the Chlorophyceae form two major clades: the CS clade consisting of the Chlamydomonadales and Sphaeropleales, and the OCC clade consisting of the Oedogoniales, Chaetophorales, and Chaetopeltidales. In the OCC clade, considerable variations in chloroplast DNA (cpDNA structure, size, gene order, and intron content have been observed. The large inverted repeat (IR, an ancestral feature characteristic of most green plants, is present in Oedogonium cardiacum (Oedogoniales but is lacking in the examined members of the Chaetophorales and Chaetopeltidales. Remarkably, the Oedogonium 35.5-kb IR houses genes that were putatively acquired through horizontal DNA transfer. To better understand the dynamics of chloroplast genome evolution in the Oedogoniales, we analyzed the cpDNA of a second representative of this order, Oedocladium carolinianum. Methods The Oedocladium cpDNA was sequenced and annotated. The evolutionary distances separating Oedocladium and Oedogonium cpDNAs and two other pairs of chlorophycean cpDNAs were estimated using a 61-gene data set. Phylogenetic analysis of an alignment of group IIA introns from members of the OCC clade was performed. Secondary structures and insertion sites of oedogonialean group IIA introns were analyzed. Results The 204,438-bp Oedocladium genome is 7.9 kb larger than the Oedogonium genome, but its repertoire of conserved genes is remarkably similar and gene order differs by only one reversal. Although the 23.7-kb IR is missing the putative foreign genes found in Oedogonium, it contains sequences coding for a putative phage or bacterial DNA primase and a hypothetical protein. Intergenic sequences are 1.5-fold

  18. Antibacterial and anti-hyperlipidemic activities of the green alga Cladophora koeiei

    Directory of Open Access Journals (Sweden)

    Neveen Abdel-Raouf

    2018-03-01

    Full Text Available In the present investigation, an antihyperlipidemic activity of Cladophora koeiei ethanol extract against six pathogenic bacteria was conducted. Also, we evaluate the activity of the alga extract against hyperlipedemia in the administrated albino rates through measuring the blood lipid profiles [triglycerides (TG, total cholesterol (TC, low-density lipoprotein (LDL-C, high-density lipoprotein cholesterol (HDL-C, cholesterol] and induced hepatic damage by measuring the contents of creatinine, total proteins, blood urea nitrogen (BUN, albumin and globulin and diagnostic marker enzymes such as aspartate aminotransaminase (AST and alanine aminotransaminase (ALT. Alga extract proved efficient activity against the tested bacteria ranged between medium and high suppression action. Results revealed also, the efficiency of C. koeiei extract in the decreasing the triglycerides (TG, total cholesterol (TC, low-density lipoproteins (LDL-C, blood urea nitrogen (BUN and creatinine caused by alcohol. However, the treatment by alga extract exhibits high-density of lipoproteins (HDL-C (beneficial, total protein, albumin, and globulins. Also, the algal treatments masking the lethal effects caused by harmful alcohol from raising the rate of enzymes ALT, AST, which returned to the normal state in the groups treated with alga extract. Our findings provide the evidence that new natural antioxidant substances can be present in the C. koeiei extract and hence this alga proves to be effective as a source for therapeutic agents.

  19. The GC-Rich Mitochondrial and Plastid Genomes of the Green Alga Coccomyxa Give Insight into the Evolution of Organelle DNA Nucleotide Landscape

    Energy Technology Data Exchange (ETDEWEB)

    Smith, David Roy; Burki, Fabien; Yamada, Takashi; Grimwood, Jane; Grigoriev, Igor V.; Van Etten, James L.; Keeling, Patrick J.

    2011-05-13

    Most of the available mitochondrial and plastid genome sequences are biased towards adenine and thymine (AT) over guanine and cytosine (GC). Examples of GC-rich organelle DNAs are limited to a small but eclectic list of species, including certain green algae. Here, to gain insight in the evolution of organelle nucleotide landscape, we present the GC-rich mitochondrial and plastid DNAs from the trebouxiophyte green alga Coccomyxa sp. C-169. We compare these sequences with other GC-rich organelle DNAs and argue that the forces biasing them towards G and C are nonadaptive and linked to the metabolic and/or life history features of this species. The Coccomyxa organelle genomes are also used for phylogenetic analyses, which highlight the complexities in trying to resolve the interrelationships among the core chlorophyte green algae, but ultimately favour a sister relationship between the Ulvophyceae and Chlorophyceae, with the Trebouxiophyceae branching at the base of the chlorophyte crown.

  20. Removal of bisphenol A by the freshwater green alga Monoraphidium braunii and the role of natural organic matter

    International Nuclear Information System (INIS)

    Gattullo, C. Eliana; Bährs, Hanno; Steinberg, Christian E.W.; Loffredo, Elisabetta

    2012-01-01

    Phytoremediation of waters by aquatic organisms such as algae has been recently explored for the removal of organic pollutants possessing endocrine disrupting capacity. Monoraphidium braunii, a green alga known for rapid growth and good tolerance to different natural organic matter (NOM) qualities, was tested in this study for the ability to tolerate and remove the endocrine disruptor bisphenol A at concentrations of 2, 4 and 10 mg L −1 , either in NOM-free or NOM-containing media. NOM at concentrations of 2, 5 and 20 mg L −1 of DOC, was added because it may interfere with xenobiotics and modify their effects, modulate algal growth performances or produce a trade-off of both effects. After 2 and 4 days of algal growth, the cell number and size, the maximum quantum yield of photosystem II in the dark or light adapted state, and the chlorophyll a content were recorded in order to evaluate the algal response to bisphenol A. Moreover, the residual bisphenol A was measured in the algal cultures by chromatographic technique. Results indicated that after 2 and 4 days bisphenol A at the lower concentrations was not toxic for alga, whereas at the highest concentration it reduced algal growth and photosynthetic efficiency. The sole NOM and its combinations with bisphenol A at the lower concentrations increased the cell number and the chlorophyll a content of algae. After 4-day growth, good removal efficiency was exerted by M. braunii at concentrations of 2, 4 and 10 mg L −1 removing, respectively, 39%, 48% and 35% of the initial bisphenol A. Lower removal percentages were found after 2-day growth in the different treatments. NOM at any concentration scarcely influenced the bisphenol A removal. On the basis of data obtained, the use of M. braunii could be reasonably recommended for the phytoremediation of aquatic environments from bisphenol A. - Highlights: ► The alga Monoraphidium braunii tolerates high concentrations of bisphenol A. ► The alga Monoraphidium

  1. Removal of bisphenol A by the freshwater green alga Monoraphidium braunii and the role of natural organic matter

    Energy Technology Data Exchange (ETDEWEB)

    Gattullo, C. Eliana, E-mail: e.gattullo@agr.uniba.it [Dipartimento di Biologia e Chimica Agro-forestale e Ambientale, University of Bari, Via Amendola 165/A, 70126 Bari (Italy); Baehrs, Hanno; Steinberg, Christian E.W. [Department of Biology, Freshwater and Stress Ecology, Humboldt Universitaet zu Berlin, Spaethstr. 80/81, 12437 Berlin (Germany); Loffredo, Elisabetta [Dipartimento di Biologia e Chimica Agro-forestale e Ambientale, University of Bari, Via Amendola 165/A, 70126 Bari (Italy)

    2012-02-01

    Phytoremediation of waters by aquatic organisms such as algae has been recently explored for the removal of organic pollutants possessing endocrine disrupting capacity. Monoraphidium braunii, a green alga known for rapid growth and good tolerance to different natural organic matter (NOM) qualities, was tested in this study for the ability to tolerate and remove the endocrine disruptor bisphenol A at concentrations of 2, 4 and 10 mg L{sup -1}, either in NOM-free or NOM-containing media. NOM at concentrations of 2, 5 and 20 mg L{sup -1} of DOC, was added because it may interfere with xenobiotics and modify their effects, modulate algal growth performances or produce a trade-off of both effects. After 2 and 4 days of algal growth, the cell number and size, the maximum quantum yield of photosystem II in the dark or light adapted state, and the chlorophyll a content were recorded in order to evaluate the algal response to bisphenol A. Moreover, the residual bisphenol A was measured in the algal cultures by chromatographic technique. Results indicated that after 2 and 4 days bisphenol A at the lower concentrations was not toxic for alga, whereas at the highest concentration it reduced algal growth and photosynthetic efficiency. The sole NOM and its combinations with bisphenol A at the lower concentrations increased the cell number and the chlorophyll a content of algae. After 4-day growth, good removal efficiency was exerted by M. braunii at concentrations of 2, 4 and 10 mg L{sup -1} removing, respectively, 39%, 48% and 35% of the initial bisphenol A. Lower removal percentages were found after 2-day growth in the different treatments. NOM at any concentration scarcely influenced the bisphenol A removal. On the basis of data obtained, the use of M. braunii could be reasonably recommended for the phytoremediation of aquatic environments from bisphenol A. - Highlights: Black-Right-Pointing-Pointer The alga Monoraphidium braunii tolerates high concentrations of bisphenol A

  2. THE EFFECT OF BIOMASS FROM GREEN ALGAE OF CHLORELLA GENUS ON THE BIOCHEMICAL CHARACTERISTICS OF TABLE EGGS

    Directory of Open Access Journals (Sweden)

    SVETLANA GRIGOROVA

    2006-10-01

    Full Text Available An analysis was made of the fatty-acid content of the dry biomass from green algae of Chlorella genus cultivated in Bulgaria, with the aim of establishing its effect on the content of total lipids, cholesterol, phospholipids and the fattyacid content of the table eggs. The fatty-acid composition of the dry biomass from green microalgae of Chlorella genus was characterized by its high content of α linolenic acid – 36,5 %, palmitic acid – 20,4 %, linoleic acid – 15 % and oleic acid – 10,3 % of the total amount of fatty acids in the product. Omega-3/Omega-6 fatty acids ratio in the biomass was 0,4. When adding 2 % and 10 % of alga biomass to the forage for the laying hens the total cholesterol content in 100 g of yolk decreased in the experimental groups compared to the control one, however, the differences were statistically insignifi cant. The supplement of 2 % and 10 % of the studied product exerted an effect on the fatty-acid content of the egg yolk and it led to the increase of the amount of palmitic and linoleic acids and to the decrease of the docosatetraenic acid.

  3. DNA Damage during G2 Phase Does Not Affect Cell Cycle Progression of the Green Alga Scenedesmus quadricauda

    Science.gov (United States)

    Vítová, Milada; Bišová, Kateřina; Zachleder, Vilém

    2011-01-01

    DNA damage is a threat to genomic integrity in all living organisms. Plants and green algae are particularly susceptible to DNA damage especially that caused by UV light, due to their light dependency for photosynthesis. For survival of a plant, and other eukaryotic cells, it is essential for an organism to continuously check the integrity of its genetic material and, when damaged, to repair it immediately. Cells therefore utilize a DNA damage response pathway that is responsible for sensing, reacting to and repairing damaged DNA. We have studied the effect of 5-fluorodeoxyuridine, zeocin, caffeine and combinations of these on the cell cycle of the green alga Scenedesmus quadricauda. The cells delayed S phase and underwent a permanent G2 phase block if DNA metabolism was affected prior to S phase; the G2 phase block imposed by zeocin was partially abolished by caffeine. No cell cycle block was observed if the treatment with zeocin occurred in G2 phase and the cells divided normally. CDKA and CDKB kinases regulate mitosis in S. quadricauda; their kinase activities were inhibited by Wee1. CDKA, CDKB protein levels were stabilized in the presence of zeocin. In contrast, the protein level of Wee1 was unaffected by DNA perturbing treatments. Wee1 therefore does not appear to be involved in the DNA damage response in S. quadricauda. Our results imply a specific reaction to DNA damage in S. quadricauda, with no cell cycle arrest, after experiencing DNA damage during G2 phase. PMID:21603605

  4. DNA damage during G2 phase does not affect cell cycle progression of the green alga Scenedesmus quadricauda.

    Directory of Open Access Journals (Sweden)

    Monika Hlavová

    Full Text Available DNA damage is a threat to genomic integrity in all living organisms. Plants and green algae are particularly susceptible to DNA damage especially that caused by UV light, due to their light dependency for photosynthesis. For survival of a plant, and other eukaryotic cells, it is essential for an organism to continuously check the integrity of its genetic material and, when damaged, to repair it immediately. Cells therefore utilize a DNA damage response pathway that is responsible for sensing, reacting to and repairing damaged DNA. We have studied the effect of 5-fluorodeoxyuridine, zeocin, caffeine and combinations of these on the cell cycle of the green alga Scenedesmus quadricauda. The cells delayed S phase and underwent a permanent G2 phase block if DNA metabolism was affected prior to S phase; the G2 phase block imposed by zeocin was partially abolished by caffeine. No cell cycle block was observed if the treatment with zeocin occurred in G2 phase and the cells divided normally. CDKA and CDKB kinases regulate mitosis in S. quadricauda; their kinase activities were inhibited by Wee1. CDKA, CDKB protein levels were stabilized in the presence of zeocin. In contrast, the protein level of Wee1 was unaffected by DNA perturbing treatments. Wee1 therefore does not appear to be involved in the DNA damage response in S. quadricauda. Our results imply a specific reaction to DNA damage in S. quadricauda, with no cell cycle arrest, after experiencing DNA damage during G2 phase.

  5. Large Diversity of Nonstandard Genes and Dynamic Evolution of Chloroplast Genomes in Siphonous Green Algae (Bryopsidales, Chlorophyta).

    Science.gov (United States)

    Cremen, Ma Chiela M; Leliaert, Frederik; Marcelino, Vanessa R; Verbruggen, Heroen

    2018-04-01

    Chloroplast genomes have undergone tremendous alterations through the evolutionary history of the green algae (Chloroplastida). This study focuses on the evolution of chloroplast genomes in the siphonous green algae (order Bryopsidales). We present five new chloroplast genomes, which along with existing sequences, yield a data set representing all but one families of the order. Using comparative phylogenetic methods, we investigated the evolutionary dynamics of genomic features in the order. Our results show extensive variation in chloroplast genome architecture and intron content. Variation in genome size is accounted for by the amount of intergenic space and freestanding open reading frames that do not show significant homology to standard plastid genes. We show the diversity of these nonstandard genes based on their conserved protein domains, which are often associated with mobile functions (reverse transcriptase/intron maturase, integrases, phage- or plasmid-DNA primases, transposases, integrases, ligases). Investigation of the introns showed proliferation of group II introns in the early evolution of the order and their subsequent loss in the core Halimedineae, possibly through RT-mediated intron loss.

  6. Biochemical activity of di- and polyamines in the green alga Chlorella vulgaris Beijerinck (Chlorophyceae

    Directory of Open Access Journals (Sweden)

    Romuald Czerpak

    2011-01-01

    Full Text Available This study concerns on the influence of diamines (agmatine, putrescine and polyamines (spermine, spermidine upon the growth and the content of chlorophyll a and b, monosaccharides and proteins in the cells of alga Chlorella vulgaris Beijerinck (Chlorophyceae. In the experiments agmatine, putrescine, spermine and spermidine in the range of concentrations 10-6-10-3 M were used. At the concentration 10-3 M and the 1st day of cultivation, they have a toxic effect on growth of the algae. It was found that di- and polyamines used within the range of concentration 10-6-10-4 M stimulate the growth and the contents of analysed biochemical parameters in the cells of C. vulgaris. The most stimulating influence on metabolism of the alga was demonstrated by spermidine and putrescine at concentration of 10-4 M. Agmatine and spermine were characterised by a lower biological activity than spermidine and putrescine demonstrated the most stimulating influence.

  7. DNA barcoding of a new record of epi-endophytic green algae ...

    Indian Academy of Sciences (India)

    2014-07-13

    Jul 13, 2014 ... red algae Laurencia obtusa collected from India. DNA barcodes at ... nuisance for algal pure culture, and a number of techniques were developed to get ... Asian countries for promoting sea urchin larval settlement and metamorphosis ... vacuum-dried, and subsequently bidirectional DNA se- quencing was ...

  8. Fungal parasites of the marine green algae, @iCladophora@@ and @iRhizoclonium@@

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, C.

    fungi could not be cultured on artificial media. The species of @iLabyrinthula@@ required cholesterol (0.001%) for growth on artificial medium. Most of these parasites were host specific and they could not be cross inoculated on other algae or even other...

  9. Coelastrum pascheri sp. n., a new green alga from lakes of the Bohemian Forest

    Czech Academy of Sciences Publication Activity Database

    Lukavský, Jaromír

    2006-01-01

    Roč. 61, Suppl20 (2006), S485-S490 ISSN 0006-3088 R&D Projects: GA MŠk 1M0571 Institutional research plan: CEZ:AV0Z60050516 Keywords : Coelastrum pascheri, sp. n * algae * lakes Subject RIV: EF - Botanics Impact factor: 0.213, year: 2006

  10. Estrogenic activity in extracts and exudates of cyanobacteria and green algae

    Czech Academy of Sciences Publication Activity Database

    Sychrová, E.; Štěpánkdová, T.; Nováková, K.; Bláha, Luděk; Giesy, J.P.; Hilscherová, K.

    2012-01-01

    Roč. 39, č. 1 (2012), s. 134-140 ISSN 0160-4120 R&D Projects: GA ČR GA524/08/0496 Institutional support: RVO:67985939 Keywords : cyanobacteria * endocrine disruption * estrogenicity * algae * phytoplankton Subject RIV: EF - Botanics Impact factor: 6.248, year: 2012

  11. Effects of UV/Ag-TiO2/O3 advanced oxidation on unicellular green alga Dunaliella salina: implications for removal of invasive species from ballast water.

    Science.gov (United States)

    Wu, Donghai; You, Hong; Du, Jiaxuan; Chen, Chuan; Jin, Darui

    2011-01-01

    The UV/Ag-TiO2/O3 process was investigated for ballast water treatment using Dunaliella salina as an indicator. Inactivation curves were obtained, and the toxicity of effluent was determined. Compared with individual unit processes using ozone or UV/Ag-TiO2, the inactivation efficiency of D. salina by the combined UV/Ag-TiO2/O3 process was enhanced. The presence of ozone caused an immediate decrease in chlorophyll a (chl-a) concentration. Inactivation efficiency and ch1-a removal efficiency were positively correlated with ozone dose and ultraviolet intensity. The initial total residual oxidant (TRO) concentration of effluent increased with increasing ozone dose, and persistence of TRO resulted in an extended period of toxicity. The results suggest that UV/Ag-TiO2/O3 has potential for ballast water treatment.

  12. Imaging the Dynamics of Cell Wall Polymer Deposition in the Unicellular Model Plant, Penium margaritaceum.

    Science.gov (United States)

    Domozych, David; Lietz, Anna; Patten, Molly; Singer, Emily; Tinaz, Berke; Raimundo, Sandra C

    2017-01-01

    The unicellular green alga, Penium margaritaceum, represents a novel and valuable model organism for elucidating cell wall dynamics in plants. This organism's cell wall contains several polymers that are highly similar to those found in the primary cell walls of land plants. Penium is easily grown in laboratory culture and is effectively manipulated in various experimental protocols including microplate assays and correlative microscopy. Most importantly, Penium can be live labeled with cell wall-specific antibodies or other probes and returned to culture where specific cell wall developmental events can be monitored. Additionally, live cells can be rapidly cryo-fixed and cell wall surface microarchitecture can be observed with variable pressure scanning electron microscopy. Here, we describe the methodology for maintaining Penium for experimental cell wall enzyme studies.

  13. Molecular toxicity of triclosan and carbamazepine to green algae Chlorococcum sp.: A single cell view using synchrotron-based Fourier transform infrared spectromicroscopy.

    Science.gov (United States)

    Xin, Xiaying; Huang, Guohe; Liu, Xia; An, Chunjiang; Yao, Yao; Weger, Harold; Zhang, Peng; Chen, Xiujuan

    2017-07-01

    Although pharmaceuticals and personal care products have been used and introduced into the environment in large quantities, little information on potential ecological risks is currently available considering their effects on living organisms. We verified the feasibility of using synchrotron-based Fourier Transform Infrared (SR-FTIR) spectromicroscopy to explore in vivo toxic effects on single living Chlorococcum sp. cells. The study provided important information to achieve a better understanding of the toxic mechanism of triclosan and carbamazepine on living algae Chlorococcum sp.. Triclosan and carbamazepine had distinctive toxic effects on unicellular living algae. Most strikingly, triclosan had more dramatic toxic effects on biochemical components than carbamazepine. Triclosan can affect algae primarily by inhibiting fatty acid synthesis and causing protein aggregation. The toxicity response was irreversible at higher concentration (100.000 μM), but attenuated at lower concentration (0.391 μM) as time extended. Carbamazepine can produce hydrophobic interactions to affect the phospholipid bilayer and work on specific proteins to disfunction the cell membrane. Carbamazepine-exposed cells developed a resistance while extending exposure time. This is the first demonstration from an ecological standpoint that SR-FTIR can provide an innovative approach to reveal the toxicity of emerging pollutants in aquatic environments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Ecotoxicity tests using the green algae chlorella vulgaris — a useful tool in hazardous effluents management

    OpenAIRE

    Silva, Aurora; Figueiredo, Sónia Adriana; Sales, M. Goreti F.; Delerue-Matos, Cristina

    2009-01-01

    The treatment efficiency of laboratory wastewaters was evaluated and ecotoxicity tests with Chlorella vulgaris were performed on them to assess the safety of their environmental discharge. For chemical oxygen demand wastewaters, chromium (VI), mercury (II) and silver were efficiently removedby chemical treatments.Areduction of ecotoxicitywas achieved; nevertheless, an EC50 (effective concentration that causes a 50% inhibition in the algae growth) of 1.5% (v/v) indicated still high...

  15. An omics based assessment of cadmium toxicity in the green alga Chlamydomonas reinhardtii

    Energy Technology Data Exchange (ETDEWEB)

    Jamers, An; Blust, Ronny; De Coen, Wim [Laboratory for Ecophysiology, Biochemistry and Toxicology, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium); Griffin, Julian L. [Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 2QA (United Kingdom); Jones, Oliver A.H., E-mail: oliver.jones@rmit.edu.au [School of Applied Sciences, RMIT University, GPO Box 2476, Melbourne, VIC 3001 (Australia)

    2013-01-15

    The effects of cadmium were assessed in the freshwater alga Chlamydomonas reinhardtii. Algae were exposed to concentrations of 0, 8.1 or 114.8 {mu}M of cadmium and growth rates, gene transcription and metabolite profiles were examined after 48 and 72 h of exposure. In algae exposed to 8.1 {mu}M Cd, several genes were differentially transcribed after 48 h but no adverse growth related effects were detected. A transient effect on both gene transcription patterns and metabolite profiles could be discerned after 48 h of exposure but the majority of these changes disappeared after 72 h. In contrast, all effects were more pronounced at the 114.8 {mu}M cadmium exposure. Here growth was clearly reduced and transcription of a large number of genes involved in oxidative stress defense mechanisms was differentially increased. Metabolites involved in the glutathione synthesis pathway (an important antioxidant defense) were also affected but the effects of cadmium were found to be more pronounced at the transcript level than in the metabolome, suggesting that the former exhibits greater sensitivity toward cadmium exposure.

  16. Removal of blue-green algae using the hybrid method of hydrodynamic cavitation and ozonation.

    Science.gov (United States)

    Wu, Zhilin; Shen, Haifeng; Ondruschka, Bernd; Zhang, Yongchun; Wang, Weimin; Bremner, David H

    2012-10-15

    A suspension of Microcystis aeruginosa (30 μg L(-1)chlorophyll a) was circulated in a hydrodynamic cavitation device and ozone was introduced at the suction side of the pump. The removal of algae over 10 min using hydrodynamic cavitation alone and ozone alone is less than 15% and 35%, respectively. The destruction of algae rises significantly from 24% in the absence of the orifice to 91% with the optimized orifice on 5 min of processing using hydrodynamic cavitation along with ozone (HC/O(3)) and the utilization of ozone increases from 32% to 61%. Interestingly, the suction process is more effective than the extrusion method (positive pressure) and the optimal bulk temperature for algal elimination was found to be 20 °C. Increasing the input concentration of ozone is favorable for the removal of algae but leads to a greater loss of ozone and a decrease in the utilization of ozone. Under the optimal conditions, the algal cells and chlorophyll a are completely destroyed in 10 min by use of the hybrid method. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Highly efficient lipid production in the green alga Parachlorella kessleri: draft genome and transcriptome endorsed by whole-cell 3D ultrastructure

    Czech Academy of Sciences Publication Activity Database

    Ota, S.; Oshima, K.; Yamazaki, T.; Kim, S.; Yu, Z.; Yoshihara, M.; Takeda, K.; Takeshita, T.; Hirata, A.; Bišová, Kateřina; Zachleder, Vilém; Hattori, M.; Kawano, S.

    2016-01-01

    Roč. 9, č. 13 (2016), s. 13 ISSN 1754-6834 Institutional support: RVO:61388971 Keywords : 3D-TEM * Green alga * Parachlorella kessleri * RNA-seq Subject RIV: EE - Microbiology, Virology Impact factor: 5.203, year: 2016

  18. The sporulation of the green alga Ulva prolifera is controlled by changes in photosynthetic electron transport chain.

    Science.gov (United States)

    Wang, Hui; Lin, Apeng; Gu, Wenhui; Huan, Li; Gao, Shan; Wang, Guangce

    2016-04-22

    Sporulation and spore release are essential phases of the life cycle in algae and land plants. Ulva prolifera, which is an ideal organism for studying sporulation and spore release, was used as the experimental material in the present study. The determination of photosynthetic parameters, combined with microscopic observation, treatment with photosynthetic inhibitors, limitation of carbon acquisition, and protein mass spectrometry, was employed in this experiment. Cycle electron transport (CEF) was found enhanced at the onset of sporangia formation. The inhibition effect of dibromothymoquinone (DBMIB) towards sporulation was always strong during the sporulation process whereas the inhibition effect of 3-(3',4'-dichlorophenyl)-1,1-dimethylurea (DCMU) was continuously declined accompanied with the progress of sporulation. The changes of photosynthesis resulted from the limitation of CO2 acquisition could stimulate sporulation onset. Quantitative protein analysis showed that enzymes involved in carbon fixation, including RUBISCO and pyruvate orthophosphate dikinase, declined during sporogenesis, while proteins involved in sporulation, including tubulin and centrin, increased. These results suggest that enhanced cyclic electron flow (CEF) and oxidation of the plastoquinone pool are essential for sporangia formation onset, and changes in photosynthetic electron transport chain have significant impacts on sporulation of the green algae.

  19. The influence of salinity on the toxicity of selected sulfonamides and trimethoprim towards the green algae Chlorella vulgaris.

    Science.gov (United States)

    Borecka, Marta; Białk-Bielińska, Anna; Haliński, Łukasz P; Pazdro, Ksenia; Stepnowski, Piotr; Stolte, Stefan

    2016-05-05

    This paper presents the investigation of the influence of salinity variations on the toxicity of sulfapyridine, sulfamethoxazole, sulfadimethoxine and trimethoprim towards the green algae Chlorella vulgaris after exposure times of 48 and 72 h. In freshwater the EC50 values ranged from 0.98 to 123.22 mg L(-1) depending on the compound. The obtained results revealed that sulfamethoxazole and sulfapyridine were the most toxic, while trimethoprim was the least toxic pharmaceutical to the selected organism. Deviations between the nominal and real test concentrations were determined via instrumental analysis to support the interpretation of ecotoxicological data. The toxicity effects were also tested in saline water (3, 6 and 9 PSU). The tendency that the toxicity of selected pharmaceuticals decreases with increasing salinity was observed. Higher salinity implies an elevated concentration of inorganic monovalent cations that are capable of binding with countercharges available on algal surfaces (hydroxyl functional groups). Hence it can reduce the permeability of pharmaceuticals through the algal cell walls, which could be the probable reason for the observed effect. Moreover, for the classification of the mode of toxic action, the toxic ratio concept was applied, which indicated that the effects of the investigated drugs towards algae are caused by the specific mode of toxic action. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Investigation on the distribution of tritium and carbon-14 in the amino acids of labelled green algae (Scenedesmus Quadricauda ssp.)

    International Nuclear Information System (INIS)

    Nuernberger, E.; Clausen, E.; Kistner, G.

    1982-01-01

    Green algae (Scenedesmus quadricauda ssp. subspicatus), labelled twice tritium and carbon-14, showed an incorporation of nuclides into the cell mass of 0.02% and 95%, respectively. The distribution of radioactivity in the individual amino acids was examined in a protein fraction with special emphasis on the essential amino acids in view of their following incorporation into the next link of the aquatic food chain (Daphnia). The highest values were found in glutamine and asparagine acids as well as in the essential amino acids leucine and arginine, which are amino acids with a relatively high amount of non exchangeable H-positions per molecule and, therefore, a relatively high and stable labelling. (author)

  1. Differential larval settlement responses of Porites astreoides and Acropora palmata in the presence of the green alga Halimeda opuntia

    Science.gov (United States)

    Olsen, K.; Sneed, J. M.; Paul, V. J.

    2016-06-01

    Settlement is critical to maintaining coral cover on reefs, yet interspecific responses of coral planulae to common benthic macroalgae are not well characterized. Larval survival and settlement of two Caribbean reef-building corals, the broadcast-spawner Acropora palmata and the planulae-brooder Porites astreoides, were quantified following exposure to plastic algae controls and the green macroalga Halimeda opuntia. Survival and settlement rates were not significantly affected by the presence of H. opuntia in either species. However, ~10 % of P. astreoides larvae settled on the surface of the macroalga, whereas larvae of A. palmata did not. It is unlikely that corals that settle on macroalgae will survive post-settlement; therefore, H. opuntia may reduce the number of P. astreoides and other non-discriminatory larvae that survive to adulthood. Our results suggest that the presence of macroalgae on impacted reefs can have unexpected repercussions for coral recruitment and highlight discrepancies in settlement specificity between corals with distinct life history strategies.

  2. Proteasome and NF-κB Inhibiting Phaeophytins from the Green Alga Cladophora fascicularis

    Directory of Open Access Journals (Sweden)

    Wenhan Lin

    2007-03-01

    Full Text Available Chemical examination of the green alga Cladophora fascicularis resulted in the isolation and characterization of a new porphyrin derivative, porphyrinolactone (1, along with five known phaeophytins 2-6 and fourteen sterols and cycloartanes. The structure of 1 was determined on the basis of spectroscopic analyses and by comparison of its NMR data with those of known phaeophytins. Compounds 1-6 displayed moderate inhibition of tumor necrosis factor alpha (TNF-α induced nuclear factor-κB (NF-κB activation, while 2 and 4 displayed potential inhibitory activity toward proteasome chymotripsin-like activation. The primary structure-activity relationship was also discussed.

  3. Comparative effects of the blue green algae Nodularia spumigena and a lysed extract on detoxification and antioxidant enzymes in the green lipped mussel (Perna viridis)

    International Nuclear Information System (INIS)

    Davies, Warren R.; Siu, William H.L.; Jack, Ralph W.; Wu, Rudolf S.S.; Lam, Paul K.S.; Nugegoda, Dayanthi

    2005-01-01

    Nodularia spumigena periodically proliferates to cause toxic algal blooms with some aquatic animals enduring and consuming high densities of the blue green algae or toxic lysis. N. spumigena contains toxic compounds such as nodularin and lipopolysaccharides. This current work investigates physiological effects of exposure from bloom conditions of N. spumigena cells and a post-bloom lysis. Biochemical and antioxidative biomarkers were comparatively studied over an acute 3-day exposure. In general, a post-bloom N. spumigena lysis caused opposite physiological responses to bloom densities of N. spumigena. Specifically, increases in glutathione (GSH) and glutathione peroxidase (GPx) and decreases in glutathione S-transferase (GST) were observed from the N. spumigena lysis. In contrast, N. spumigena cell densities decreased GSH and increased GST and lipid peroxidation (LPO) in mussels. Findings also suggest that at different stages of a toxic bloom, exposure may result in toxic stress to specific organs in the mussel

  4. Bio-oil production through pyrolysis of blue-green algae blooms (BGAB): Product distribution and bio-oil characterization

    International Nuclear Information System (INIS)

    Hu, Zhiquan; Zheng, Yang; Yan, Feng; Xiao, Bo; Liu, Shiming

    2013-01-01

    Pyrolysis experiments of blue-green algae blooms (BGAB) were carried out in a fixed-bed reactor to determine the effects of pyrolysis temperature, particle size and sweep gas flow rate on pyrolysis product yields and bio-oil properties. The pyrolysis temperature, particle size and sweep gas flow rate were varied in the ranges of 300–700 °C, below 0.25–2.5 mm and 50–400 mL min −1 , respectively. The maximum oil yield of 54.97% was obtained at a pyrolysis temperature of 500 °C, particle size below 0.25 mm and sweep gas flow rate of 100 mL min −1 . The elemental analysis and calorific value of the oil were determined, and the chemical composition of the oil was investigated using gas chromatography–mass spectroscopy (GC–MS) technique. The analysis of bio-oil composition showed that bio-oil from BGAB could be a potential source of renewable fuel with a heating value of 31.9 MJ kg −1 . - Highlights: ► Bio-oil production from pyrolysis of blue-green algae blooms in fixed bed reactor. ► Effects of pyrolysis conditions on product distribution were investigated. ► The maximum bio-oil yield reached 54.97 wt %. ► The bio-oil has high heating value and may be suitable as renewable fuel. ► Pyrolysis of algal biomass beneficial for energy recovery, eutrophication control

  5. Occurrence of green alga Ernodesmisverticillata (Kuetzing) Boergesen at Malvan (Maharashtra coast)

    Digital Repository Service at National Institute of Oceanography (India)

    Untawale, A.G.; Agadi, V.V.

    of marine algal resources of the Maharashtra Coast, a green marine algal species was collected and identified as E. verticillata. From the literature it was observed that E. verticillata has not so far been reported from the Indian coast...

  6. Induction of mutations in blue-green alga Anacystis nidulans by consolidated and split UV irradiation

    International Nuclear Information System (INIS)

    Amla, D.V.

    1979-01-01

    Ultraviolet mutability of consolidated and split dose treatment in A. nidulans was investigated with reference to induction of phage- and streptomycin-resistant markers. The consolidated UV treatment induced both the markers about 100-150-fold, whereas under photoreactivating conditions the survival of alga was enhanced and mutation frequency was decreased. The split UV treatment with 6 hr dark incubation between two UV exposures enhanced the survival and mutation frequencies to 500-700 fold above the back-ground level. The data give indirect evidence for the presence of error-prone dark repair system in this organism. (auth.)

  7. Ecotoxicity tests using the green algae Chlorella vulgaris--a useful tool in hazardous effluents management.

    Science.gov (United States)

    Silva, Aurora; Figueiredo, Sónia A; Sales, M Goreti; Delerue-Matos, Cristina

    2009-08-15

    The treatment efficiency of laboratory wastewaters was evaluated and ecotoxicity tests with Chlorella vulgaris were performed on them to assess the safety of their environmental discharge. For chemical oxygen demand wastewaters, chromium (VI), mercury (II) and silver were efficiently removed by chemical treatments. A reduction of ecotoxicity was achieved; nevertheless, an EC50 (effective concentration that causes a 50% inhibition in the algae growth) of 1.5% (v/v) indicated still high level of ecotoxicity. For chloride determination wastewaters, an efficient reduction of chromium and silver was achieved after treatment. Regarding the reduction of ecotoxicity observed, EC50 increased from 0.059% to 0.5%, only a 0.02% concentration in the aquatic environment would guarantee no effects. Wastewaters containing phenanthroline/iron (II) complex were treated by chemical oxidation. Treatment was satisfactory concerning chemical parameters, although an increase in ecotoxicity was observed (EC50 reduced from 0.31% to 0.21%). The wastes from the kinetic study of persulphate and iodide reaction were treated with sodium bisulphite until colour was removed. Although they did not reveal significant ecotoxicity, only over 1% of the untreated waste produced observable effects over algae. Therefore, ecotoxicity tests could be considered a useful tool not only in laboratory effluents treatment, as shown, but also in hazardous wastewaters management.

  8. Ecotoxicity tests using the green algae Chlorella vulgaris-A useful tool in hazardous effluents management

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Aurora [REQUIMTE, Instituto Superior de Engenharia do Instituto Politecnico do Porto, R. Antonio Bernardino de Almeida, 431 4200-072 Porto (Portugal); Figueiredo, Sonia A., E-mail: saf@isep.ipp.pt [REQUIMTE, Instituto Superior de Engenharia do Instituto Politecnico do Porto, R. Antonio Bernardino de Almeida, 431 4200-072 Porto (Portugal); Sales, M. Goreti; Delerue-Matos, Cristina [REQUIMTE, Instituto Superior de Engenharia do Instituto Politecnico do Porto, R. Antonio Bernardino de Almeida, 431 4200-072 Porto (Portugal)

    2009-08-15

    The treatment efficiency of laboratory wastewaters was evaluated and ecotoxicity tests with Chlorella vulgaris were performed on them to assess the safety of their environmental discharge. For chemical oxygen demand wastewaters, chromium (VI), mercury (II) and silver were efficiently removed by chemical treatments. A reduction of ecotoxicity was achieved; nevertheless, an EC50 (effective concentration that causes a 50% inhibition in the algae growth) of 1.5% (v/v) indicated still high level of ecotoxicity. For chloride determination wastewaters, an efficient reduction of chromium and silver was achieved after treatment. Regarding the reduction of ecotoxicity observed, EC50 increased from 0.059% to 0.5%, only a 0.02% concentration in the aquatic environment would guarantee no effects. Wastewaters containing phenanthroline/iron (II) complex were treated by chemical oxidation. Treatment was satisfactory concerning chemical parameters, although an increase in ecotoxicity was observed (EC50 reduced from 0.31% to 0.21%). The wastes from the kinetic study of persulphate and iodide reaction were treated with sodium bisulphite until colour was removed. Although they did not reveal significant ecotoxicity, only over 1% of the untreated waste produced observable effects over algae. Therefore, ecotoxicity tests could be considered a useful tool not only in laboratory effluents treatment, as shown, but also in hazardous wastewaters management.

  9. Ecotoxicity tests using the green algae Chlorella vulgaris-A useful tool in hazardous effluents management

    International Nuclear Information System (INIS)

    Silva, Aurora; Figueiredo, Sonia A.; Sales, M. Goreti; Delerue-Matos, Cristina

    2009-01-01

    The treatment efficiency of laboratory wastewaters was evaluated and ecotoxicity tests with Chlorella vulgaris were performed on them to assess the safety of their environmental discharge. For chemical oxygen demand wastewaters, chromium (VI), mercury (II) and silver were efficiently removed by chemical treatments. A reduction of ecotoxicity was achieved; nevertheless, an EC50 (effective concentration that causes a 50% inhibition in the algae growth) of 1.5% (v/v) indicated still high level of ecotoxicity. For chloride determination wastewaters, an efficient reduction of chromium and silver was achieved after treatment. Regarding the reduction of ecotoxicity observed, EC50 increased from 0.059% to 0.5%, only a 0.02% concentration in the aquatic environment would guarantee no effects. Wastewaters containing phenanthroline/iron (II) complex were treated by chemical oxidation. Treatment was satisfactory concerning chemical parameters, although an increase in ecotoxicity was observed (EC50 reduced from 0.31% to 0.21%). The wastes from the kinetic study of persulphate and iodide reaction were treated with sodium bisulphite until colour was removed. Although they did not reveal significant ecotoxicity, only over 1% of the untreated waste produced observable effects over algae. Therefore, ecotoxicity tests could be considered a useful tool not only in laboratory effluents treatment, as shown, but also in hazardous wastewaters management.

  10. The biosynthesis of nitrous oxide in the green alga Chlamydomonas reinhardtii.

    Science.gov (United States)

    Plouviez, Maxence; Wheeler, David; Shilton, Andy; Packer, Michael A; McLenachan, Patricia A; Sanz-Luque, Emanuel; Ocaña-Calahorro, Francisco; Fernández, Emilio; Guieysse, Benoit

    2017-07-01

    Over the last decades, several studies have reported emissions of nitrous oxide (N 2 O) from microalgal cultures and aquatic ecosystems characterized by a high level of algal activity (e.g. eutrophic lakes). As N 2 O is a potent greenhouse gas and an ozone-depleting pollutant, these findings suggest that large-scale cultivation of microalgae (and possibly, natural eutrophic ecosystems) could have a significant environmental impact. Using the model unicellular microalga Chlamydomonas reinhardtii, this study was conducted to investigate the molecular basis of microalgal N 2 O synthesis. We report that C. reinhardtii supplied with nitrite (NO 2 - ) under aerobic conditions can reduce NO 2 - into nitric oxide (NO) using either a mitochondrial cytochrome c oxidase (COX) or a dual enzymatic system of nitrate reductase (NR) and amidoxime-reducing component, and that NO is subsequently reduced into N 2 O by the enzyme NO reductase (NOR). Based on experimental evidence and published literature, we hypothesize that when nitrate (NO 3 - ) is the main Nitrogen source and the intracellular concentration of NO 2 - is low (i.e. under physiological conditions), microalgal N 2 O synthesis involves the reduction of NO 3 - to NO 2 - by NR followed by the reduction of NO 2 - to NO by the dual system involving NR. This microalgal N 2 O pathway has broad implications for environmental science and algal biology because the pathway of NO 3 - assimilation is conserved among microalgae, and because its regulation may involve NO. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  11. Production of nutritionally-deficient mutants of the axenic blue-green alga Anabaena flos-aquae NRC-44-1 by ultraviolet irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, H D; Gorham, P R

    1975-01-01

    Anabaena flos-aquae NRC-44-1 is a freshwater nitrogen fixing blue-green alga of some ecological significance because of its toxicity. In axenic culture and possibly also in nature, the alga is highly susceptible to lysis at certain stages of its growth. Nothing is known about genetic phenomena governing toxin production, nitrogen fixation or other characteristics of this organism, mainly because of unavailability of mutant strains that could be utilized in genetic experiments. With the object of overcoming this obstacle to the eventual study of genetics of Anabaena flos-aquae, attempts were made to produce and isolate nutritionally-deficient mutants of this species.

  12. Induction of mutations in the blue-green alga Plectonema boryanum Gomont

    International Nuclear Information System (INIS)

    Singh, R.N.; Kashyap, A.K.

    1977-01-01

    Mutations to cyanophage and streptomycin resistance were induced in the filamentous blue-gree alga Plectonema boryanum IU 594 after treatment with ultraviolet irradiation, N-methyl-N'-nitro-Nnitrosoguanidine, acriflavine, 2-aminopurine and caffeine. Phage-resistant mutants were obtained with all the mutagens tested. Their efficiencies were in the order: MNNG>UV>acriflavine >2-AP>caffeine. In contrast, the drug-resistant mutants were not induced by base analogues: the efficiencies were: acriflavine>MNNG>UV. Lethal and mutational lesions induced with UV were efficiently repaired under photo-reactivating conditions whereas post-treatment with caffeine resulted in enhanced mutation frequencies especially at low UV doses. Neither survival nor mutagenesis was enhanced by keeping the MNNG-treated population in subdued light

  13. Systems Biology of Lipid Body Formation in the Green Alga Chlamydomonas reinhardtii

    Energy Technology Data Exchange (ETDEWEB)

    Goodenough, Ursula [Washington Univ., St. Louis, MO (United States)

    2017-11-10

    The project aimed to deepen our understanding of alga triacylglycerol (TAG) production to undergird explorations of using algal TAG as a source of biodiesel fuel. Our published contributions included the following: 1) Development of a rapid assay for TAG in algal cultures which was widely distributed to the algal community. 2) A comprehensive transcriptome analysis of the development of the ultra-high-TAG “obese” phenotype In Chlamydomonas reinhardtii. 3) A comprehensive biochemical and ultrastructural analysis of the cell wall of Nannochloropsis gaditana, whose walls render it both growth-hardy and difficult to rupture for TAG recovery. A manuscript in preparation considers the autophagy response in C. reinhardtii and its entrance into stationary phase, both having an impact on TAG production.

  14. Evidence for land plant cell wall biosynthetic mechanisms in charophyte green algae

    DEFF Research Database (Denmark)

    Mikkelsen, Maria Dalgaard; Harholt, Jesper; Ulvskov, Peter

    2014-01-01

    in CGA is currently unknown, as no genomes are available, so this study sought to give insight into the evolution of the biosynthetic machinery of CGA through an analysis of available transcriptomes. METHODS: Available CGA transcriptomes were mined for cell wall biosynthesis GTs and compared with GTs...... to colonize land. These cell walls provide support and protection, are a source of signalling molecules, and provide developmental cues for cell differentiation and elongation. The cell wall of land plants is a highly complex fibre composite, characterized by cellulose cross-linked by non......-cellulosic polysaccharides, such as xyloglucan, embedded in a matrix of pectic polysaccharides. How the land plant cell wall evolved is currently unknown: early-divergent chlorophyte and prasinophyte algae genomes contain a low number of glycosyl transferases (GTs), while land plants contain hundreds. The number of GTs...

  15. An Ocean Acidification Acclimatised Green Tide Alga Is Robust to Changes of Seawater Carbon Chemistry but Vulnerable to Light Stress.

    Directory of Open Access Journals (Sweden)

    Guang Gao

    Full Text Available Ulva is the dominant genus in the green tide events and is considered to have efficient CO2 concentrating mechanisms (CCMs. However, little is understood regarding the impacts of ocean acidification on the CCMs of Ulva and the consequences of thalli's acclimation to ocean acidification in terms of responding to environmental factors. Here, we grew a cosmopolitan green alga, Ulva linza at ambient (LC and elevated (HC CO2 levels and investigated the alteration of CCMs in U. linza grown at HC and its responses to the changed seawater carbon chemistry and light intensity. The inhibitors experiment for photosynthetic inorganic carbon utilization demonstrated that acidic compartments, extracellular carbonic anhydrase (CA and intracellular CA worked together in the thalli grown at LC and the acquisition of exogenous carbon source in the thalli could be attributed to the collaboration of acidic compartments and extracellular CA. Contrastingly, when U. linza was grown at HC, extracellular CA was completely inhibited, acidic compartments and intracellular CA were also down-regulated to different extents and thus the acquisition of exogenous carbon source solely relied on acidic compartments. The down-regulated CCMs in U. linza did not affect its responses to changes of seawater carbon chemistry but led to a decrease of net photosynthetic rate when thalli were exposed to increased light intensity. This decrease could be attributed to photodamage caused by the combination of the saved energy due to the down-regulated CCMs and high light intensity. Our findings suggest future ocean acidification might impose depressing effects on green tide events when combined with increased light exposure.

  16. Distinctive Architecture of the Chloroplast Genome in the Chlorodendrophycean Green Algae Scherffelia dubia and Tetraselmis sp. CCMP 881.

    Science.gov (United States)

    Turmel, Monique; de Cambiaire, Jean-Charles; Otis, Christian; Lemieux, Claude

    2016-01-01

    The Chlorodendrophyceae is a small class of green algae belonging to the core Chlorophyta, an assemblage that also comprises the Pedinophyceae, Trebouxiophyceae, Ulvophyceae and Chlorophyceae. Here we describe for the first time the chloroplast genomes of chlorodendrophycean algae (Scherffelia dubia, 137,161 bp; Tetraselmis sp. CCMP 881, 100,264 bp). Characterized by a very small single-copy (SSC) region devoid of any gene and an unusually large inverted repeat (IR), the quadripartite structures of the Scherffelia and Tetraselmis genomes are unique among all core chlorophytes examined thus far. The lack of genes in the SSC region is offset by the rich and atypical gene complement of the IR, which includes genes from the SSC and large single-copy regions of prasinophyte and streptophyte chloroplast genomes having retained an ancestral quadripartite structure. Remarkably, seven of the atypical IR-encoded genes have also been observed in the IRs of pedinophycean and trebouxiophycean chloroplast genomes, suggesting that they were already present in the IR of the common ancestor of all core chlorophytes. Considering that the relationships among the main lineages of the core Chlorophyta are still unresolved, we evaluated the impact of including the Chlorodendrophyceae in chloroplast phylogenomic analyses. The trees we inferred using data sets of 79 and 108 genes from 71 chlorophytes indicate that the Chlorodendrophyceae is a deep-diverging lineage of the core Chlorophyta, although the placement of this class relative to the Pedinophyceae remains ambiguous. Interestingly, some of our phylogenomic trees together with our comparative analysis of gene order data support the monophyly of the Trebouxiophyceae, thus offering further evidence that the previously observed affiliation between the Chlorellales and Pedinophyceae is the result of systematic errors in phylogenetic reconstruction.

  17. Green energy from marine algae: biogas production and composition from the anaerobic digestion of Irish seaweed species.

    Science.gov (United States)

    Vanegas, C H; Bartlett, J

    2013-01-01

    Marine algae have emerged as an alternative feedstock for the production of a number of renewable fuels, including biogas. In addition to energy potential, other characteristics make them attractive as an energy source, including their ability to absorb carbon dioxide (CO2), higher productivity rates than land-based crops and the lack of water use or land competition. For Ireland, biofuels from marine algae can play an important role by reducing imports of fossil fuels as well as providing the necessary energy in rural communities. In this study, five potential seaweed species common in Irish waters, Saccorhiza polyschides, Ulva sp., Laminaria digitata, Fucus serratus and Saccharina latissima, were co-digested individually with bovine slurry. Batch reactors of 120ml and 1000ml were set up and incubated at 35 degrees C to investigate their suitability for production of biogas. Digesters fed with S. latissima produced the maximum methane yield (335 ml g volatile solids(-1) (g(VS)(-1) followed by S. polyschides with 255 ml g(VS)(-1). L. digitata produced 246ml g(VS)(-1) and the lowest yields were from the green seaweed Ulva sp. 191ml g(VS)(-1). The methane and CO2 percentages ranged between 50-72% and 10-45%, respectively. The results demonstrated that the seaweed species investigated are good feedstocks candidates for the production of biogas and methane as a source of energy. Their use on a large-scale process will require further investigation to increase yields and reduce production costs.

  18. Bioaccumulation and toxicity of zinc in the green alga, Cladophora glomerata.

    Science.gov (United States)

    McHardy, B M; George, J J

    1990-01-01

    The bioaccumulation and toxicity of zinc in Cladophora glomerata from two populations in the River Roding, Essex, UK, were examined in experimental laboratory flowing-water channels. Plants were subjected to zinc concentrations ranging from 0 to 4.0 mg litre(-1) at current velocities of 20-33 cm s(-1) for up to 3 h. Zinc in algal tissue was then quantified and toxicity was assessed by the ability of the alga to grow in a recovery medium after the experimental treatment. There was little difference in zinc bioaccumulation between Cladophora from the site showing mild organic pollution and that from the site subjected to considerable inputs from urban and motorway runoff. Uptake of zinc increased with increasing concentration in the test solution and was linear and proportional up to 0.4 mg litre(-1). Three stages of uptake were identified with the most dramatic accumulation occurring in the first 10 min. Experimental concentration factors ranged from 1.9-5.2 x 10(3), which were in agreement with those previously obtained in the field. Cellular damage was evident in Cladophora subjected to 0.4 mg litre(-1) zinc, and this increased with increasing zinc concentration, thus leading to the conclusion that, at times, the levels of zinc found in the river could be potentially damaging.

  19. Green energy from microalgae: Usage of algae biomass for anaerobic digestion

    International Nuclear Information System (INIS)

    Skorupskaite, Virginija; Makarevicie, Violeta

    2014-01-01

    The microalgae biomass can be used for various types of biofuels, including biodiesel and biogas. The aim of this study is to investigate the possibilities of microalgae Scenedesmus sp. and Chlorella sp. (widespread in freshwater Lithuanian lakes) usage for biogas production. Microalgae were cultivated under mixotrophic conditions (growth medium BG11 containing technical glycerol). In order to determine biogas yield and quality dependence on feedstock preparation, the analyses of biogas production have been performed with algae biomass prepared i n different ways: wet centrifuged; wet centrifuged, frozen and defrost; dry not de-oiled and dry de-oiled. The highest biogas yield in both cases (Scenedesmus sp. – 646 ml/gDM and Chlorella sp. – 652 ml/gDM) was obtained from centrifuged, frozen and defrost biomass. Biogas yield was app. 1.46 times higher comparing to yield of biogas produced from wastewater sludge. Our results showed that different types of biomass preparation have no significant influence on quality of biogas. Key words: microalgae, biomass, biogas production, biogas quality

  20. A Rapid and Reproducible Genomic DNA Extraction Protocol for Sequence-Based Identification of Archaea, Bacteria, Cyanobacteria, Diatoms, Fungi, and Green Algae

    OpenAIRE

    Farkhondeh Saba; Moslem Papizadeh; Javad Khansha; Mahshid Sedghi; Mehrnoosh Rasooli; Mohammad Ali Amoozegar; Mohammad Reza Soudi; Seyed Abolhassan Shahzadeh Fazeli

    2016-01-01

    Background:  Sequence-based identification of various microorganisms including Archaea, Bacteria, Cyanobacteria, Diatoms, Fungi, and green algae necessitates an efficient and reproducible genome extraction procedure though which a pure template DNA is yielded and it can be used in polymerase chain reactions (PCR). Considering the fact that DNA extraction from these microorganisms is time consuming and laborious, we developed and standardized a safe, rapid and inexpensive miniprep protocol. Me...

  1. Evaluation of antiangiogenic and antiproliferative potential of the organic extract of green algae chlorella pyrenoidosa

    Science.gov (United States)

    Kyadari, Mahender; Fatma, Tasneem; Azad, Rajvardhan; Velpandian, Thirumurthy

    2013-01-01

    Objective: algae isolates obtained from fresh and marine resources could be one of the richest sources of novel bioactive secondary metabolites expected to have pharmaceutical significance for new drug development. This study was conducted to evaluate the antiangiogenic and antiproliferative activity of Chlorella pyrenoidosa in experimental models of angiogenesis and by MTT assay. Materials and Methods: lyophilized extract of C. pyrenoidosa was extracted using dichloromethane/methanol (2:1), concentrated and vacuum evaporated to obtain the dried extract. The crude extract was evaluated in the vascular endothelial growth factor (VEGF)-induced angiogenesis in in ovo chick chorioallantoic membrane assay (CAM) at various concentrations (n = 8) using thalidomide and normal saline as positive and untreated control groups, respectively. The crude extract was also subjected to the antiangiogenic activity in the silver nitrate/potassium nitrate cautery model of corneal neovascularization (CN) in rats where topical bevacizumab was used as a positive control. The vasculature was photographed and blood vessel density was quantified using Aphelion imaging software. The extract was also evaluated for its anti proliferative activity by microculture tetrazolium test (MTT) assay using HeLa cancer cell line (ATCC). Results: VEGF increased the blood vessel density by 220% as compared to normal and thalidomide treatment decreased it to 67.2% in in ovo assay. In the in-vivo CN model, the mean neovascular density in the control group, the C. pyrenoidosa extract and bevacizumab group were found to be 100%, 59.02%, and 32.20%, respectively. The Chlorella pyrenoidosa extract negatively affected the viability of HeLa cells. An IC50 value of the extract was 570 μg/ml, respectively. Conclusion: a significant antiangiogenic activity was observed against VEGF-induced neovascularization and antiproliferative activity by MTT assay. In this study, it could be attributed that the activity may be

  2. Removal of pharmaceutical pollutants from synthetic wastewater using chemically modified biomass of green alga Scenedesmus obliquus.

    Science.gov (United States)

    Ali, Mohamed E M; Abd El-Aty, Azza M; Badawy, Mohamed I; Ali, Rizka K

    2018-04-30

    Pharmaceutical compounds are considered emerging environmental pollutants that have a potential harmful impact on environment and human health. In this study, the biomass of alga (Scenedesmus obliquus) was modified using alkaline solution, and used for the biosorption of tramadol (TRAM) and other pharmaceuticals. The adsorption kinetics and isotherms were investigated. The obtained results reveal high adsorption capacity of tramadol over modified algal biomass (MAB) after 45min with removal percentage of 91%. Pseudo-second order model was well fitted with the experimental data with correlation coefficient (0.999). Biosorption of tramadol on modified algal biomass proceeds with Freundlich isotherm model with correlation coefficient (0.942) that emphasized uptake of TRAM by MAB is driven by chemisorption. FTIR spectra of MAB before and after the adsorption were analyzed; some IR bands were detected with slight shift and low intensity suggesting their involving in adsorption. The tramadol biosorption by MAB is a chemical process as confirmed by Dubinin-Radushkevich. The adsorption of pharmaceutical over MAB is mainly preceded by hydrophilic interactions between amino and carbonyl groups in pharmaceutical molecules and hydroxyl and carbonyl functional groups on surface of biosorbent. It was emphasized by disappearance O-H and C-O from biomass IR spectra after adsorption. In matrix of pharmaceutical, the recorded adsorption capacities for CEFA, PARA, IBU, TRAM and CIP are 68, 58, 42, 42 and 39mg/g over MAB at natural pH and MAB dose of 0.5g/L. Furthermore, oxygen uptake by bacteria was applied for estimate the toxicity of pharmaceutical. The recorded result concluded the efficient reusability of modified algal biomass for biosorption of pharmaceuticals, as well only the adsorption efficiency decreased by 4.5% after three runs. Subsequently, the modified algal biomass is a promising reusable adsorbent for decontamination of wastewater from pharmaceuticals. Copyright

  3. Development of suitable photobioreactors for CO{sub 2} sequestration addressing global warming using green algae and cyanobacteria

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, K.; Dasgupta, C.N.; Nayak, B.; Lindblad, P.; Das, D. [Indian Institute of Technology, Kharagpur (India)

    2011-04-15

    CO{sub 2} sequestration by cyanobacteria and green algae are receiving increased attention in alleviating the impact of increasing CO{sub 2} in the atmosphere. They, in addition to CO{sub 2} capture, can produce renewable energy carriers such as carbon free energy hydrogen, bioethanol, biodiesel and other valuable biomolecules. Biological fixation of CO{sub 2} are greatly affected by the characteristics of the microbial strains, their tolerance to temperature and the CO{sub 2} present in the flue gas including SOx, NOx. However, there are additional factors like the availability of light, pH, O{sub 2}, removal, suitable design of the photobioreactor, culture density and the proper agitation of the reactor that will affect significantly the CO{sub 2} sequestration process. Present paper deals with the photobioreactors of different geometry available for biomass production. It also focuses on the hybrid types of reactors (integrating two reactors) which can be used for overcoming the bottlenecks of a single photobioreactor.

  4. Elevated water temperature reduces the acute toxicity of the widely used herbicide diuron to a green alga, Pseudokirchneriella subcapitata.

    Science.gov (United States)

    Tasmin, Rumana; Shimasaki, Yohei; Tsuyama, Michito; Qiu, Xuchun; Khalil, Fatma; Okino, Nozomu; Yamada, Naotaka; Fukuda, Shinji; Kang, Ik-Joon; Oshima, Yuji

    2014-01-01

    In the actual environment, temperatures fluctuate drastically through season or global warming and are thought to affects risk of pollutants for aquatic biota; however, there is no report about the effect of water temperature on toxicity of widely used herbicide diuron to fresh water microalgae. The present research investigated inhibitory effect of diuron on growth and photosynthetic activity of a green alga Pseudokirchneriella subcapitata at five different temperatures (10, 15, 20, 25, and 30 °C) for 144 h of exposure. As a result, effective diuron concentrations at which a 50% decrease in algal growth occurred was increased with increasing water temperature ranging from 9.2 to 20.1 μg L(-1) for 72 h and 9.4-28.5 μg L(-1) for 144 h. The photochemical efficiency of photosystem II (F v/F m ratio) was significantly reduced at all temperatures by diuron exposure at 32 μg L(-1) after 72 h. Inhibition rates was significantly increased with decreased water temperature (P diuron treatment groups and were about 2.5 times higher in diuron treatment groups than that of controls (P diuron in freshwater and should therefore be considered in environmental risk assessment.

  5. Selective binding of Ca2+, Zn2+, Cu2+ and K+ by the physodes of the green alga Mougeotia scalaris.

    Science.gov (United States)

    Tretyn, A; Grolig, F; Magdowski, G; Wagner, G

    1996-01-01

    Cells of the zygnematophycean green alga Mougeotia contain numerous globules with polyphenolic matrix, which resemble physodes. In order to analyse the capability of this compartment to sequester various ions, trichomes of Mougeotia scalaris were either fixed for X-ray microanalysis simultaneously in 2% glutardialdehyde/1% OsO4 in phosphate buffers of different K+/Na(+)-ratios, or embedded directly (fresh material) in Nanoplast resin. In addition, fixed material was treated with potassium antimonate and Ca2+ localization was examined by electron microscopic cytochemistry. A Ca(2+)-depletion upon fixation at different K+/Na(+)-ratios resulted in selective uptake of potassium, but not sodium. Consistent with earlier findings, calcium-binding by the polyphenolic physode matrix does not depend merely on electric charge but also on the presence of protonated/deprotonated phenolic groups, together with ester-linked carbonyl oxygen, which seem to be good candidates for a co-ordinate type of calcium-binding. Nanoplast embedding turned out to be the most adequate and fastest preparation for X-ray microanalysis and, apart from retaining calcium, allowed the detection of zinc and copper inside the physodes.

  6. Quality evaluation of the edible blue-green alga Nostoc flagelliforme using a chlorophyll fluorescence parameter and several biochemical markers.

    Science.gov (United States)

    Gao, Xiang; Yang, Yiwen; Ai, Yufeng; Luo, Hongyi; Qiu, Baosheng

    2014-01-15

    Nostoc flagelliforme is an edible blue-green alga with herbal and dietary values. Due to the diminishing supply of natural N. flagelliforme and the large investment on the development of its cultivation technology, it is anticipated that artificially cultured N. flagelliforme will soon sustain the market supply. Once this change occurs, the storage-associated quality problem will become the focus of attention for future trade. In this paper, we used a chlorophyll fluorescence parameter, maximum quantum efficiency of Photosystem II (Fv/Fm), and several biomarkers to evaluate the quality of several N. flagelliforme samples. It was found that longer storage times resulted in darker coloured solutions (released pigments) and decreased amounts of chlorophyll a (Chl a) and water-soluble sugars (WSS). Additionally, a higher Fv/Fm value suggests better physiological recovery and quality. In actual application, determination of Fv/Fm would be the first step for evaluating the quality of N. flagelliforme, and the biochemical indexes would serve as good secondary markers. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Investigations on the isoprenoid biosynthesis in the green alga Scenedesmus obliquus by using the 13C-labelling technique

    International Nuclear Information System (INIS)

    Schwender, J.

    1995-01-01

    The biosynthesis of several prenyllipids (isoprenoid lipids) of the green alga Scendesmus obliquus was investigated. The aim was to verify, whether the biosynthesis of isopentenyl diphosphate (IPP) in Scenedesmus proceeds according to the classical acetate mevalonate pathway or to an alternative pathway. An alternative pathway for IPP formation has recently been detected in some eubacteria by the group of Prof. M. Rohmer. Some inhibition tests were performed with mevinolin, a specific inhibitor of HMG-CoA reductase which yields mevalonic acid. Mevinolin should block the biosynthesis of such isoprenoids which are formed via the acetate mevalonate pathway. Scenedesmus was grown heterotrophically on 13 C-labelled glucose or acetate. After isolation and purification of 13 C-labelled phytol (side chains of chlorophylls), β-carotene, lutein, plastoquinone-9 and three sterol compounds, the enrichment of 13 C at different carbon-positions of the labelled compounds was determined. This was achieved by the 13 C-NMR technique in cooperation with Miriam Seemann of the group of Prof. M. Rohmer in Mullhouse/France. (orig.) [de

  8. Ultrasonic selectivity on depressing photosynthesis of cyanobacteria and green algae probed by chlorophyll-a fluorescence transient.

    Science.gov (United States)

    Duan, Zhipeng; Tan, Xiao; Li, Niegui

    2017-10-01

    Ultrasound can inhibit cyanobacterial growth through rupturing cells, but this pathway frequently has the risk to release intercellular toxin (e.g., microcystin). Depressing photosynthesis without cell disruption may provide a new strategy to control cyanobacterial blooms using ultrasound, especially Microcystis blooms. In this work, Microcystis aeruginosa (toxic cyanobacteria) and Chlorella pyrenoidosa (typical green algae) were chosen as model microalgae to verify this hypothesis. Results showed that ultrasound has the ability to inhibit cyanobacterial photosynthesis significantly and selectively. Specifically, sonication damaged Q A , a tightly bound one-electron acceptor, and blocked electron flow at Q B , a two-electron acceptor, in the photosystem II (PSII) of M. aeruginosa when it was exposed for 60 s (35 kHz, 0.043 W/cm 3 ). Moreover, 44.8% of the reaction centers (RCs) in the PSII of M. aeruginosa were transferred into inactive ones (RC si s), and the cell concentration decreased by 32.5% after sonication for 300 s. By contrast, only 7.9% of RC si occurred in C. pyrenoidosa, and cell concentration and chlorophyll-a content reduced by 18.7% and 9.3%, respectively. Differences in both species (i.e., cell structures) might be responsible for the varying levels to sonication. This research suggests that cyanobacteria, especially Microcystis, could be controlled by ultrasound via damaging their PSIIs.

  9. The green alga Zygogonium ericetorum (Zygnematophyceae, Charophyta) shows high iron and aluminium tolerance: protection mechanisms and photosynthetic performance.

    Science.gov (United States)

    Herburger, Klaus; Remias, Daniel; Holzinger, Andreas

    2016-08-01

    Streptophyte green algae, ancestors of Embryophytes, occur frequently in terrestrial habitats being exposed to high light intensities, water scarcity and potentially toxic metal cations under acidic conditions. The filamentous Zygogonium ericetorum synthesizes a purple vacuolar ferrous pigment, which is lost after aplanospore formation. However, it is unknown whether this cellular reorganization also removes excessive iron from the protoplast and how Z. ericetorum copes with high concentrations of aluminium. Here we show that aplanospore formation shifts iron into the extracellular space of the algal filament. Upon germination of aplanospores, aluminium is bound in the parental cell wall. Both processes reduce iron and aluminium in unpigmented filaments. Comparison of the photosynthetic oxygen production in response to light and temperature gradients in two different Z. ericetorum strains from an Austrian alpine and a Scottish highland habitat revealed lower values in the latter strain. In contrast, the Scottish strain showed a higher optimum quantum yield of PSII during desiccation stress followed by rehydration. Furthermore, pigmented filaments of both strains exhibited a higher light and temperature dependent oxygen production when compared to the unpigmented phenotype. Our results demonstrate a high metal tolerance of Z. ericetorum, which is crucial for surviving in acidic terrestrial habitats. © FEMS 2016.

  10. Glycosyltransferase family 43 is also found in early eukaryotes and has three subfamilies in Charophycean green algae.

    Directory of Open Access Journals (Sweden)

    Rahil Taujale

    Full Text Available The glycosyltransferase family 43 (GT43 has been suggested to be involved in the synthesis of xylans in plant cell walls and proteoglycans in animals. Very recently GT43 family was also found in Charophycean green algae (CGA, the closest relatives of extant land plants. Here we present evidence that non-plant and non-animal early eukaryotes such as fungi, Haptophyceae, Choanoflagellida, Ichthyosporea and Haptophyceae also have GT43-like genes, which are phylogenetically close to animal GT43 genes. By mining RNA sequencing data (RNA-Seq of selected plants, we showed that CGA have evolved three major groups of GT43 genes, one orthologous to IRX14 (IRREGULAR XYLEM14, one orthologous to IRX9/IRX9L and the third one ancestral to all land plant GT43 genes. We confirmed that land plant GT43 has two major clades A and B, while in angiosperms, clade A further evolved into three subclades and the expression and motif pattern of A3 (containing IRX9 are fairly different from the other two clades likely due to rapid evolution. Our in-depth sequence analysis contributed to our overall understanding of the early evolution of GT43 family and could serve as an example for the study of other plant cell wall-related enzyme families.

  11. Effects of non-steroidal anti-inflammatory drugs on cyanobacteria and algae in laboratory strains and in natural algal assemblages.

    Science.gov (United States)

    Bácsi, István; B-Béres, Viktória; Kókai, Zsuzsanna; Gonda, Sándor; Novák, Zoltán; Nagy, Sándor Alex; Vasas, Gábor

    2016-05-01

    In recent years measurable concentrations of non-steroidal anti-inflammatory drugs (NSAIDs) have been shown in the aquatic environment as a result of increasing human consumption. Effects of five frequently used non-steroidal anti-inflammatory drugs (diclofenac, diflunisal, ibuprofen, mefenamic acid and piroxicam in 0.1 mg ml(-1) concentration) in batch cultures of cyanobacteria (Synechococcus elongatus, Microcystis aeruginosa, Cylindrospermopsis raciborskii), and eukaryotic algae (Desmodesmus communis, Haematococcus pluvialis, Cryptomonas ovata) were studied. Furthermore, the effects of the same concentrations of NSAIDs were investigated in natural algal assemblages in microcosms. According to the changes of chlorophyll-a content, unicellular cyanobacteria seemed to be more tolerant to NSAIDs than eukaryotic algae in laboratory experiments. Growth of eukaryotic algae was reduced by all drugs, the cryptomonad C. ovata was the most sensitive to NSAIDs, while the flagellated green alga H. pluvialis was more sensitive than the non-motile green alga D. communis. NSAID treatments had weaker impact in the natural assemblages dominated by cyanobacteria than in the ones dominated by eukaryotic algae, confirming the results of laboratory experiments. Diversity and number of functional groups did not change notably in cyanobacteria dominated assemblages, while they decreased significantly in eukaryotic algae dominated ones compared to controls. The results highlight that cyanobacteria (especially unicellular ones) are less sensitive to the studied, mostly hardly degradable NSAIDs, which suggest that their accumulation in water bodies may contribute to the expansion of cyanobacterial mass productions in appropriate environmental circumstances by pushing back eukaryotic algae. Thus, these contaminants require special attention during wastewater treatment and monitoring of surface waters. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Cars will be fed on algae

    International Nuclear Information System (INIS)

    Peltier, G.

    2012-01-01

    The development of the first and second generations of bio-fuels has led to a rise in food prices and the carbon balance sheet is less good than expected. Great hopes have been put on unicellular algae for they can synthesize oils, sugar and even hydrogen and the competition with food production is far less harsh than with actual bio-fuels. Moreover, when you grow micro-algae, the loss of water through evaporation is less important than in the case of intensive farm cultures. In 2009 10.000 tonnes of micro-algae were produced worldwide, they were mainly used for the production of fish food and of complements for humane food (fat acids and antioxidants). Different research programs concern unicellular algae: they aim at modifying micro-algae genetically in order to give them a higher productivity or to make them produce an oil more adapted for motor fuel or more easily recoverable. (A.C.)

  13. The Evolutionary Relationships between Endosymbiotic Green Algae of Paramecium bursaria Syngens Originating from Different Geographical Locations.

    Science.gov (United States)

    Zagata, Patrycja; Greczek-Stachura, Magdalena; Tarcz, Sebastian; Rautian, Maria

    2016-01-01

    Paramecium bursaria (Ehrenberg 1831), a freshwater ciliate, typically harbors hundreds of green algal symbionts inside the cell. The aim of present study was the molecular identification of newly analyzed P. bursaria symbionts. The second aspect of the present survey was testing a hypothesis whether endosymbionts prefer the specified syngen of the host, and the specified geographical distribution. Ten strains of endosymbionts isolated from strains of P. bursaria originating from different geographical locations were studied. We analyzed for the first time, both the fragment of plastid genome containing 3'rpl36-5' infA genes and a fragment of a nuclear gene encoding large subunit ribosomal RNA (LSU rDNA). The analysis of the LSU rDNA sequences showed the existence of 3 haplotypes and the haplotype diversity of 0.733, and 8 haplotypes for the 3'rpl36-5' infA gene fragment and haplotype diversity of 0.956. The endosymbionts isolated from P. bursaria strains were identified as Chlorella vulgaris, Ch. variabilis and Micractinium conductrix. There was no correlation between the syngen of P. bursaria and the species of endosymbiont.

  14. Reduced graphene oxide induces cytotoxicity and inhibits photosynthetic performance of the green alga Scenedesmus obliquus.

    Science.gov (United States)

    Du, Shaoting; Zhang, Peng; Zhang, Ranran; Lu, Qi; Liu, Lin; Bao, Xiaowei; Liu, Huijun

    2016-12-01

    Increased use of graphene materials might ultimately lead to their release into the environment. However, only a few studies have investigated the impact of graphene-based materials on green plants. In this study, the impact of reduced graphene oxide (RGO) on the microalgae Scenedesmus obliquus was evaluated to determine its phytotoxicity. Treatment with RGO suppressed the growth of the microalgae. The 72-h IC 50 values of RGO evaluated using the logistic and Gompertz models were 148 and 151 mg L -1 , respectively. RGO significantly inhibited Chl a and Chl a/b levels in the algal cells. Chlorophyll a fluorescence analysis showed that RGO significantly down-regulated photosystem II activity. The mechanism of how RGO inhibited algal growth and photosynthetic performance was determined by analyzing the alterations in ultrastructural morphology. RGO adhered to the algal cell surface as a semitranslucent coating. Cell wall damage and membrane integrity loss occurred in the treated cells. Moreover, nuclear chromatin clumping and starch grain number increase were noted. These changes might be attributed to the increase in malondialdehyde and reactive oxygen species levels, which might have exceeded the scavenging ability of antioxidant enzymes (including peroxidase and superoxide dismutase). RGO impaired the extra- and intra-cellular morphology and increased oxidative stress and thus inhibited algal growth and photosynthesis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. New α-Glucosidase Inhibitory Triterpenic Acid from Marine Macro Green Alga Codium dwarkense Boergs

    Directory of Open Access Journals (Sweden)

    Liaqat Ali

    2015-07-01

    Full Text Available The marine ecosystem has been a key resource for secondary metabolites with promising biological roles. In the current study, bioassay-guided phytochemical investigations were carried out to assess the presence of enzyme inhibitory chemical constituents from the methanolic extract of marine green alga—Codium dwarkense. The bioactive fractions were further subjected to chromatographic separations, which resulted in the isolation of a new triterpenic acid; dwarkenoic acid (1 and the known sterols; androst-5-en-3β-ol (2, stigmasta-5,25-dien-3β,7α-diol (3, ergosta-5,25-dien-3β-ol (4, 7-hydroxystigmasta-4,25-dien-3-one-7-O-β-d-fucopyranoside (5, 7-hydroxystigmasta-4,25-dien-3-one (6, and stigmasta-5,25-dien-3β-ol (7. The structure elucidation of the new compound was carried out by combined mass spectrometry and 1D (1H and 13C and 2D (HSQC, HMBC, COSY, and NOESY NMR spectroscopic data. The sub-fractions and pure constituents were assayed for enzymatic inhibition of alpha-glucosidase. Compound 1 showed significant inhibition at all concentrations. Compounds 2, 3, 5, and 7 exhibited a dose-dependent response, whereas compounds 4–6 showed moderate inhibition. Utilizing such marine-derived biological resources could lead to drug discoveries related to anti-diabetics.

  16. Enzymatic hydrolysis and production of bioethanol from common macrophytic green alga Ulva fasciata Delile.

    Science.gov (United States)

    Trivedi, Nitin; Gupta, Vishal; Reddy, C R K; Jha, Bhavanath

    2013-12-01

    The green seaweed Ulva which proliferates fast and occurs abundantly worldwide was used as a feedstock for production of ethanol following enzymatic hydrolysis. Among the different cellulases investigated for efficient saccharification, cellulase 22119 showed the highest conversion efficiency of biomass into reducing sugars than Viscozyme L, Cellulase 22086 and 22128. Pre-heat treatment of biomass in aqueous medium at 120°C for 1h followed by incubation in 2% (v/v) enzyme for 36 h at 45°C gave a maximum yield of sugar 206.82±14.96 mg/g. The fermentation of hydrolysate gave ethanol yield of 0.45 g/g reducing sugar accounting for 88.2% conversion efficiency. These values are substantially higher than those of reported so far for both agarophytes and carrageenophytes. It was also confirmed that enzyme can be used twice without compromising on the saccharification efficiency. The findings of this study reveal that Ulva can be a potential feedstock for bioethanol production. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Natural dissolved organic matter mobilizes Cd but does not affect the Cd uptake by the green algae Pseudokirchneriella subcapitata (Korschikov) in resin buffered solutions

    Energy Technology Data Exchange (ETDEWEB)

    Verheyen, Liesbeth, E-mail: verheyenliesbeth@gmail.com; Versieren, Liske, E-mail: liske.versieren@ees.kuleuven.be; Smolders, Erik, E-mail: erik.smolders@ees.kuleuven.be

    2014-09-15

    Highlights: • Different DOM samples were added to solutions with a resin buffered Cd{sup 2+} activity. • This increased total dissolved Cd by factors 3–16 due to complexation reactions. • Cd uptake in algae was unaffected or increased maximally 1.6 fold upon addition. • Free Cd{sup 2+} is the main bioavailable form of Cd for algae in well buffered solutions. - Abstract: Natural dissolved organic matter (DOM) can have contrasting effects on metal bioaccumulation in algae because of complexation reactions that reduce free metal ion concentrations and because of DOM adsorption to algal surfaces which promote metal adsorption. This study was set up to reveal the role of different natural DOM samples on cadmium (Cd) uptake by the green algae Pseudokirchneriella subcapitata (Korschikov). Six different DOM samples were collected from natural freshwater systems and isolated by reverse osmosis. In addition, one {sup 13}C enriched DOM sample was isolated from soil to trace DOM adsorption to algae. Algae were exposed to standardized solutions with or without these DOM samples, each exposed at equal DOM concentrations and at equal non-toxic Cd{sup 2+} activity (∼4 nM) that was buffered with a resin. The DOM increased total dissolved Cd by factors 3–16 due to complexation reactions at equal Cd{sup 2+} activity. In contrast, the Cd uptake was unaffected by DOM or increased maximally 1.6 fold ({sup 13}C enriched DOM). The {sup 13}C analysis revealed that maximally 6% of algal C was derived from DOM and that this can explain the small increase in biomass Cd. It is concluded that free Cd{sup 2+} and not DOM-complexed Cd is the main bioavailable form of Cd when solution Cd{sup 2+} is well buffered.

  18. Plastomes of the green algae Hydrodictyon reticulatum and Pediastrum duplex (Sphaeropleales, Chlorophyceae

    Directory of Open Access Journals (Sweden)

    Hilary A. McManus

    2017-05-01

    Full Text Available Background Comparative studies of chloroplast genomes (plastomes across the Chlorophyceae are revealing dynamic patterns of size variation, gene content, and genome rearrangements. Phylogenomic analyses are improving resolution of relationships, and uncovering novel lineages as new plastomes continue to be characterized. To gain further insight into the evolution of the chlorophyte plastome and increase the number of representative plastomes for the Sphaeropleales, this study presents two fully sequenced plastomes from the green algal family Hydrodictyaceae (Sphaeropleales, Chlorophyceae, one from Hydrodictyon reticulatum and the other from Pediastrum duplex. Methods Genomic DNA from Hydrodictyon reticulatum and Pediastrum duplex was subjected to Illumina paired-end sequencing and the complete plastomes were assembled for each. Plastome size and gene content were characterized and compared with other plastomes from the Sphaeropleales. Homology searches using BLASTX were used to characterize introns and open reading frames (orfs ≥ 300 bp. A phylogenetic analysis of gene order across the Sphaeropleales was performed. Results The plastome of Hydrodictyon reticulatum is 225,641 bp and Pediastrum duplex is 232,554 bp. The plastome structure and gene order of H. reticulatum and P. duplex are more similar to each other than to other members of the Sphaeropleales. Numerous unique open reading frames are found in both plastomes and the plastome of P. duplex contains putative viral protein genes, not found in other Sphaeropleales plastomes. Gene order analyses support the monophyly of the Hydrodictyaceae and their sister relationship to the Neochloridaceae. Discussion The complete plastomes of Hydrodictyon reticulatum and Pediastrum duplex, representing the largest of the Sphaeropleales sequenced thus far, once again highlight the variability in size, architecture, gene order and content across the Chlorophyceae. Novel intron insertion sites and unique

  19. Lipid metabolism and potentials of biofuel and high added-value oil production in red algae.

    Science.gov (United States)

    Sato, Naoki; Moriyama, Takashi; Mori, Natsumi; Toyoshima, Masakazu

    2017-04-01

    Biomass production is currently explored in microalgae, macroalgae and land plants. Microalgal biofuel development has been performed mostly in green algae. In the Japanese tradition, macrophytic red algae such as Pyropia yezoensis and Gelidium crinale have been utilized as food and industrial materials. Researches on the utilization of unicellular red microalgae such as Cyanidioschyzon merolae and Porphyridium purpureum started only quite recently. Red algae have relatively large plastid genomes harboring more than 200 protein-coding genes that support the biosynthetic capacity of the plastid. Engineering the plastid genome is a unique potential of red microalgae. In addition, large-scale growth facilities of P. purpureum have been developed for industrial production of biofuels. C. merolae has been studied as a model alga for cell and molecular biological analyses with its completely determined genomes and transformation techniques. Its acidic and warm habitat makes it easy to grow this alga axenically in large scales. Its potential as a biofuel producer is recently documented under nitrogen-limited conditions. Metabolic pathways of the accumulation of starch and triacylglycerol and the enzymes involved therein are being elucidated. Engineering these regulatory mechanisms will open a possibility of exploiting the full capability of production of biofuel and high added-value oil. In the present review, we will describe the characteristics and potential of these algae as biotechnological seeds.

  20. Analysis of the action of X-rays on the multiplication of a unicellular chlorophyllous organism: the chlorophycee scenesdesmus crassus chod (1961)

    International Nuclear Information System (INIS)

    Gilet, R.; Ozenda, P.

    1961-01-01

    The technique of growing cultures on agar-agar has made it possible to obtain on single cultures results which had previously been acquired on populations of unicellular algae in a liquid medium. (authors) [fr

  1. Natural vitamin B12 and fucose supplementation of green smoothies with edible algae and related quality changes during their shelf life.

    Science.gov (United States)

    Castillejo, Noelia; Martínez-Hernández, Ginés Benito; Goffi, Valentina; Gómez, Perla A; Aguayo, Encarna; Artés, Francisco; Artés-Hernández, Francisco

    2018-04-01

    Some algae are an excellent sources of vitamin B12, of special interest for vegetarian/vegan consumers, and of fucose to supplement fruit and vegetable beverages such as smoothies. Nevertheless, supplementation of smoothies with algae may lead to possible quality changes during smoothie shelf life that need to be studied. Therefore, the quality changes in fresh green smoothies supplemented (2.2%) with nine edible algae (sea lettuce, kombu, wakame, thongweed, dulse, Irish moss, nori, Spirulina and Chlorella) were studied throughout 24 days at 5 °C. The initial vitamin C content - 238.7-326.0 mg kg -1 fresh weight (FW) - of a 200 g portion of any of the smoothies ensured full coverage of its recommended daily intake, and still supplying 50-60% of the recommended intake after 7 days. Chlorella and Spirulina smoothies showed the highest vitamin B12 content (33.3 and 15.3 µg kg -1 FW, respectively), while brown algae showed fucose content of 141.1-571.3 mg kg -1 FW. These vitamin B12 and fucose contents were highly maintained during shelf life. The Spirulina supplementation of a 200 g smoothie portion ensured full coverage of the recommended vitamin B12 intake, with lower vitamin C degradation, during a shelf life of 17 days. Furthermore, thongweed and kombu are also considered as excellent fucose sources with similar shelf life. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  2. Eco-friendly synthesis of silver nanoparticles using green algae (Caulerpa serrulata): reaction optimization, catalytic and antibacterial activities.

    Science.gov (United States)

    Aboelfetoh, Eman F; El-Shenody, Rania A; Ghobara, Mohamed M

    2017-07-01

    Stable colloidal silver nanoparticles (AgNPs) were synthesized using Caulerpa serrulata (green marine algae) aqueous extract as an efficient reducing and stabilizing agent. This method is considered to be a sustainable alternate to the more complicated chemical procedures. To achieve the optimization synthesis of AgNPs, several effects such as extract concentration, contact time, pH values, and temperature were examined. The synthesized AgNPs were characterized by UV-Vis spectroscopy, FT-IR, XRD, and HR-TEM. The synthesized AgNPs showed an intense surface plasmon resonance band at 412 nm at the optimal conditions (20% (v/v) extract and 95 °C). TEM reveal that higher extract concentration and higher temperature leading to the formation of spherical AgNPs with an average particle size of 10 ± 2 nm. The synthesized AgNPs showed excellent catalytic reduction activity of Congo red (CR) dye from aqueous solutions. The degradation percentage of CR with AgNPs accelerated by increasing either NaBH 4 concentration or catalytic dosage. The AgNPs synthesized at higher temperature (e.g., 10Ag-95) exhibited the highest catalytic activity. The reaction kinetics was found to be pseudo first order with respect to the dye concentration. Moreover, the AgNPs displayed antibacterial activity at lower concentration against Staphylococcus aureus, Pseudomonas aeruginosa, Shigella sp., Salmonella typhi, and Escherichia coli and may be a good alternative therapeutic approach. The outcomes of the current study confirmed that the synthesized AgNPs had an awesome guarantee for application in catalysis and wastewater treatment.

  3. Addressing unknown constants and metabolic network behaviors through petascale computing: understanding H2 production in green algae

    International Nuclear Information System (INIS)

    Chang, Christopher; Alber, David; Graf, Peter; Kim, Kwiseon; Seibert, Michael

    2007-01-01

    The Genomics Revolution has resulted in a massive and growing quantity of whole-genome DNA sequences, which encode the metabolic catalysts necessary for life. However, gene annotations can rarely be complete, and measurement of the kinetic constants associated with the encoded enzymes can not possibly keep pace, necessitating the use of careful modeling to explore plausible network behaviors. Key challenges are (1) quantitatively formulating kinetic laws governing each transformation in a fixed model network; (2) characterizing the stable solution (if any) of the associated ordinary differential equations (ODEs); (3) fitting the latter to metabolomics data as it becomes available; and (4) optimizing a model output against the possible space of kinetic parameters, with respect to properties such as robustness of network response, or maximum consumption/production. This SciDAC-2 project addresses this large-scale uncertainty in the genome-scale metabolic network of the water-splitting, H 2 -producing green alga Chlamydomonas reinhardtii. Each metabolic transformation is formulated as an irreversible steady-state process, such that the vast literature on known enzyme mechanisms may be incorporated directly. To start, glycolysis, the tricarboxylic acid cycle, and basic fermentation pathways have been encoded in Systems Biology Markup Language (SBML) with careful annotation and consistency with the KEGG database, yielding a model with 3 compartments, 95 species, 38 reactions, and 109 kinetic constants. To study and optimize such models with a view toward larger models, we have developed a system which takes as input an SBML model, and automatically produces C code that when compiled and executed optimizes the model's kinetic parameters according to test criteria. We describe the system and present numerical results. Further development, including overlaying of a parallel multistart algorithm, will allow optimization of thousands of parameters on high-performance systems

  4. Rubisco activase is required for optimal photosynthesis in the green alga Chlamydomonas reinhardtii in a low-CO(2) atmosphere.

    Science.gov (United States)

    Pollock, Steve V; Colombo, Sergio L; Prout, Davey L; Godfrey, Ashley C; Moroney, James V

    2003-12-01

    This report describes a Chlamydomonas reinhardtii mutant that lacks Rubisco activase (Rca). Using the BleR (bleomycin resistance) gene as a positive selectable marker for nuclear transformation, an insertional mutagenesis screen was performed to select for cells that required a high-CO2 atmosphere for optimal growth. The DNA flanking the BleR insert of one of the high-CO2-requiring strains was cloned using thermal asymmetric interlaced-polymerase chain reaction and inverse polymerase chain reaction and sequenced. The flanking sequence matched the C. reinhardtii Rca cDNA sequence previously deposited in the National Center for Biotechnology Information database. The loss of a functional Rca in the strain was confirmed by the absence of Rca mRNA and protein. The open reading frame for Rca was cloned and expressed in pSL18, a C. reinhardtii expression vector conferring paromomycin resistance. This construct partially complemented the mutant phenotype, supporting the hypothesis that the loss of Rca was the reason the mutant grew poorly in a low-CO2 atmosphere. Sequencing of the C. reinhardtii Rca gene revealed that it contains 10 exons ranging in size from 18 to 470 bp. Low-CO2-grown rca1 cultures had a growth rate and maximum rate of photosynthesis 60% of wild-type cells. Results obtained from experiments on a cia5 rca1 double mutant also suggest that the CO2-concentrating mechanism partially compensates for the absence of an active Rca in the green alga C. reinhardtii.

  5. Addressing unknown constants and metabolic network behaviors through petascale computing: understanding H{sub 2} production in green algae

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Christopher; Alber, David; Graf, Peter; Kim, Kwiseon; Seibert, Michael [National Renewable Energy Laboratory (NREL), Golden, CO 80401 (United States)

    2007-07-15

    The Genomics Revolution has resulted in a massive and growing quantity of whole-genome DNA sequences, which encode the metabolic catalysts necessary for life. However, gene annotations can rarely be complete, and measurement of the kinetic constants associated with the encoded enzymes can not possibly keep pace, necessitating the use of careful modeling to explore plausible network behaviors. Key challenges are (1) quantitatively formulating kinetic laws governing each transformation in a fixed model network; (2) characterizing the stable solution (if any) of the associated ordinary differential equations (ODEs); (3) fitting the latter to metabolomics data as it becomes available; and (4) optimizing a model output against the possible space of kinetic parameters, with respect to properties such as robustness of network response, or maximum consumption/production. This SciDAC-2 project addresses this large-scale uncertainty in the genome-scale metabolic network of the water-splitting, H{sub 2}-producing green alga Chlamydomonas reinhardtii. Each metabolic transformation is formulated as an irreversible steady-state process, such that the vast literature on known enzyme mechanisms may be incorporated directly. To start, glycolysis, the tricarboxylic acid cycle, and basic fermentation pathways have been encoded in Systems Biology Markup Language (SBML) with careful annotation and consistency with the KEGG database, yielding a model with 3 compartments, 95 species, 38 reactions, and 109 kinetic constants. To study and optimize such models with a view toward larger models, we have developed a system which takes as input an SBML model, and automatically produces C code that when compiled and executed optimizes the model's kinetic parameters according to test criteria. We describe the system and present numerical results. Further development, including overlaying of a parallel multistart algorithm, will allow optimization of thousands of parameters on high

  6. Evaluation of an oil-producing green alga Chlorella sp. C2 for biological DeNOx of industrial flue gases.

    Science.gov (United States)

    Zhang, Xin; Chen, Hui; Chen, Weixian; Qiao, Yaqin; He, Chenliu; Wang, Qiang

    2014-09-02

    NOx, a significant portion of fossil fuel flue gases, are among the most serious environmental issues in the world and must be removed in an additional costly gas treatment step. This study evaluated the growth of the green alga Chlorella sp. C2 under a nitrite-simulated NOx environment and the removal rates of actual flue gas fixed salts (FGFSs) from Sinopec's Shijiazhuang refinery along with lipid production. The results showed that nitrite levels lower than 176.5 mM had no significant adverse effects on the cell growth and photosynthesis of Chlorella sp. C2, demonstrating that this green alga could utilize nitrite and NOx as a nitrogen source. High concentrations of nitrite (88.25-176.5 mM) also resulted in the accumulation of neutral lipids. A 60% nitrite removal efficiency was obtained together with the production of 33% algae lipids when cultured with FGFS. Notably, the presence of nitrate in the FGFS medium significantly enhanced the nitrite removal capability, biomass and lipid production. Thus, this study may provide a new insight into the economically viable application of microalgae in the synergistic combination of biological DeNOx of industrial flue gases and biodiesel production.

  7. Unicellular cyanobacteria with a new mode of life: the lack of photosynthetic oxygen evolution allows nitrogen fixation to proceed.

    Science.gov (United States)

    Bothe, Hermann; Tripp, H James; Zehr, Jonathan P

    2010-10-01

    Some unicellular N(2)-fixing cyanobacteria have recently been found to lack a functional photosystem II of photosynthesis. Such organisms, provisionally termed UCYN-A, of the oceanic picoplanktion are major contributors to the global marine N-input by N(2)-fixation. Since their photosystem II is inactive, they can perform N(2)-fixation during the day. UCYN-A organisms cannot be cultivated as yet. Their genomic analysis indicates that they lack genes coding for enzymes of the Calvin cycle, the tricarboxylic acid cycle and for the biosynthesis of several amino acids. The carbon source in the ocean that allows them to thrive in such high abundance has not been identified. Their genomic analysis implies that they metabolize organic carbon by a new mode of life. These unicellular N(2)-fixing cyanobacteria of the oceanic picoplankton are evolutionarily related to spheroid bodies present in diatoms of the family Epithemiaceae, such as Rhopalodia gibba. More recently, spheroid bodies were ultimately proven to be related to cyanobacteria and to express nitrogenase. They have been reported to be completely inactive in all photosynthetic reactions despite the presence of thylakoids. Sequence data show that R. gibba and its spheroid bodies are an evolutionarily young symbiosis that might serve as a model system to unravel early events in the evolution of chloroplasts. The cell metabolism of UCYN-A and the spheroid bodies may be related to that of the acetate photoassimilating green alga Chlamydobotrys.

  8. The study of photoresponses of unicellular motile microalgae by Doppler spectrometry

    International Nuclear Information System (INIS)

    Vlasenko, V.V.

    2004-01-01

    Quasielastic light scattering is used to investigate the mechanism of photosensory transduction in the unicellular motile algae. It is shown that cells of these species have the different reactions on the effect of a laser beam. The intensity modulations of the scattering beam from the cell motion and flagellar beating are directly detected

  9. Trophic strategies of unicellular plankton

    DEFF Research Database (Denmark)

    Chakraborty, Subhendu; Nielsen, Lasse Tor; Andersen, Ken Haste

    2017-01-01

    . To this end, we develop and calibrate a trait-based model for unicellular planktonic organisms characterized by four traits: cell size and investments in phototrophy, nutrient uptake, and phagotrophy. We use the model to predict how optimal trophic strategies depend on cell size under various environmental...... unicellulars are colimited by organic carbon and nutrients, and only large photoautotrophs and smaller mixotrophs are nutrient limited; (2) trophic strategy is bottom-up selected by the environment, while optimal size is top-down selected by predation. The focus on cell size and trophic strategies facilitates......Unicellular plankton employ trophic strategies ranging from pure photoautotrophs over mixotrophy to obligate heterotrophs (phagotrophs), with cell sizes from 10-8 to 1 μg C. A full understanding of how trophic strategy and cell size depend on resource environment and predation is lacking...

  10. Genomics of Volvocine Algae

    Science.gov (United States)

    Umen, James G.; Olson, Bradley J.S.C.

    2015-01-01

    Volvocine algae are a group of chlorophytes that together comprise a unique model for evolutionary and developmental biology. The species Chlamydomonas reinhardtii and Volvox carteri represent extremes in morphological diversity within the Volvocine clade. Chlamydomonas is unicellular and reflects the ancestral state of the group, while Volvox is multicellular and has evolved numerous innovations including germ-soma differentiation, sexual dimorphism, and complex morphogenetic patterning. The Chlamydomonas genome sequence has shed light on several areas of eukaryotic cell biology, metabolism and evolution, while the Volvox genome sequence has enabled a comparison with Chlamydomonas that reveals some of the underlying changes that enabled its transition to multicellularity, but also underscores the subtlety of this transition. Many of the tools and resources are in place to further develop Volvocine algae as a model for evolutionary genomics. PMID:25883411

  11. The complete chloroplast genome sequence of the chlorophycean green alga Scenedesmus obliquus reveals a compact gene organization and a biased distribution of genes on the two DNA strands

    Science.gov (United States)

    de Cambiaire, Jean-Charles; Otis, Christian; Lemieux, Claude; Turmel, Monique

    2006-01-01

    Background The phylum Chlorophyta contains the majority of the green algae and is divided into four classes. While the basal position of the Prasinophyceae is well established, the divergence order of the Ulvophyceae, Trebouxiophyceae and Chlorophyceae (UTC) remains uncertain. The five complete chloroplast DNA (cpDNA) sequences currently available for representatives of these classes display considerable variability in overall structure, gene content, gene density, intron content and gene order. Among these genomes, that of the chlorophycean green alga Chlamydomonas reinhardtii has retained the least ancestral features. The two single-copy regions, which are separated from one another by the large inverted repeat (IR), have similar sizes, rather than unequal sizes, and differ radically in both gene contents and gene organizations relative to the single-copy regions of prasinophyte and ulvophyte cpDNAs. To gain insights into the various changes that underwent the chloroplast genome during the evolution of chlorophycean green algae, we have sequenced the cpDNA of Scenedesmus obliquus, a member of a distinct chlorophycean lineage. Results The 161,452 bp IR-containing genome of Scenedesmus features single-copy regions of similar sizes, encodes 96 genes, i.e. only two additional genes (infA and rpl12) relative to its Chlamydomonas homologue and contains seven group I and two group II introns. It is clearly more compact than the four UTC algal cpDNAs that have been examined so far, displays the lowest proportion of short repeats among these algae and shows a stronger bias in clustering of genes on the same DNA strand compared to Chlamydomonas cpDNA. Like the latter genome, Scenedesmus cpDNA displays only a few ancestral gene clusters. The two chlorophycean genomes share 11 gene clusters that are not found in previously sequenced trebouxiophyte and ulvophyte cpDNAs as well as a few genes that have an unusual structure; however, their single-copy regions differ

  12. Water-splitting-based, sustainable and efficient H2 production in green algae as achieved by substrate limitation of the Calvin-Benson-Bassham cycle.

    Science.gov (United States)

    Nagy, Valéria; Podmaniczki, Anna; Vidal-Meireles, André; Tengölics, Roland; Kovács, László; Rákhely, Gábor; Scoma, Alberto; Tóth, Szilvia Z

    2018-01-01

    Photobiological H 2 production has the potential of becoming a carbon-free renewable energy source, because upon the combustion of H 2 , only water is produced. The [Fe-Fe]-type hydrogenases of green algae are highly active, although extremely O 2 -sensitive. Sulphur deprivation is a common way to induce H 2 production, which, however, relies substantially on organic substrates and imposes a severe stress effect resulting in the degradation of the photosynthetic apparatus. We report on the establishment of an alternative H 2 production method by green algae that is based on a short anaerobic induction, keeping the Calvin-Benson-Bassham cycle inactive by substrate limitation and preserving hydrogenase activity by applying a simple catalyst to remove the evolved O 2 . Cultures remain photosynthetically active for several days, with the electrons feeding the hydrogenases mostly derived from water. The amount of H 2 produced is higher as compared to the sulphur-deprivation procedure and the process is photoautotrophic. Our protocol demonstrates that it is possible to sustainably use algal cells as whole-cell catalysts for H 2 production, which enables industrial application of algal biohydrogen production.

  13. Acidophilic green alga Pseudochlorella sp. YKT1 accumulates high amount of lipid droplets under a nitrogen-depleted condition at a low-pH.

    Directory of Open Access Journals (Sweden)

    Shunsuke Hirooka

    Full Text Available Microalgal storage lipids are considered to be a promising source for next-generation biofuel feedstock. However, microalgal biodiesel is not yet economically feasible due to the high cost of production. One of the reasons for this is that the use of a low-cost open pond system is currently limited because of the unavoidable contamination with undesirable organisms. Extremophiles have an advantage in culturing in an open pond system because they grow in extreme environments toxic to other organisms. In this study, we isolated the acidophilic green alga Pseudochlorella sp. YKT1 from sulfuric acid mine drainage in Nagano Prefecture, Japan. The vegetative cells of YKT1 display the morphological characteristics of Trebouxiophyceae and molecular phylogenetic analyses indicated it to be most closely related to Pseudochlorella pringsheimii. The optimal pH and temperature for the growth of YKT1 are pH 3.0-5.0 and a temperature 20-25°C, respectively. Further, YKT1 is able to grow at pH 2.0 and at 32°C, which corresponds to the usual water temperature in the outdoors in summer in many countries. YKT1 accumulates a large amount of storage lipids (∼30% of dry weigh under a nitrogen-depleted condition at low-pH (pH 3.0. These results show that acidophilic green algae will be useful for industrial applications by acidic open culture systems.

  14. On the uptake and binding of uranium (VI) by the green alga Chlorella Vulgaris; Zur Aufnahme und Bindung von Uran(VI) durch die Gruenalge Chlorella Vulgaris

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, Manja

    2011-07-01

    Uranium could be released into the environment from geogenic deposits and from former mining and milling areas by weathering and anthropogenic activities. The elucidation of uranium behavior in geo- and biosphere is necessary for a reliable risk assessment of radionuclide migration in the environment. Algae are widespread in nature and the most important group of organisms in the aquatic habitat. Because of their ubiquitous occurrence in nature the influence of algae on the migration process of uranium in the environment is of fundamental interest e.g. for the development of effective and economical remediation strategies for contaminated waters. Besides, algae are standing at the beginning of the food chain and play an economically relevant role as food and food additive. Therefore the transfer of algae-bound uranium along the food chain could arise to a serious threat to human health. Aim of this work was the quantitative and structural characterization of the interaction between U(VI) and the green alga Chlorella vulgaris in environmental relevant concentration and pH range with special emphasis on metabolic activity. Therefore a defined medium was created which assures the survival/growth of the algae as well as the possibility to predict the uranium speciation. The speciation of uranium in the mineral medium was calculated and experimentally verified by time-resolved laser-induced fluorescence spectroscopy (TRLFS). The results of the sorption experiments showed that both metabolic active and inactive algal cells bind uranium in significant amounts of around 14 mg U/g dry biomass and 28 mg U/g dry biomass, respectively. Another interesting observation was made during the growth of Chlorella cells in mineral medium at the environmental relevant uranium concentration of 5 {mu}M. Under these conditions and during ongoing cultivation a mobilization of the algae-bound uranium occurred. At higher uranium concentrations this effect was not observed due to the die off

  15. Refactoring the six-gene photosystem II core in the chloroplast of the green algae Chlamydomonas reinhardtii

    DEFF Research Database (Denmark)

    Gimpel, Javier A.; Nour-Eldin, Hussam Hassan; Scranton, Melissa A.

    2016-01-01

    production, particularly under specific environmental conditions. PSII is a complex multisubunit enzyme with strong interdependence among its components. In this work, we have deleted the six core genes of PSII in the eukaryotic alga Chlamydomonas reinhardtii and refactored them in a single DNA construct...

  16. Structural Features and Anti-coagulant Activity of the Sulphated Polysaccharide SPS-CF from a Green Alga Capsosiphon fulvescens

    Czech Academy of Sciences Publication Activity Database

    Synytsya, A.; Choi, D. J.; Pohl, Radek; Na, Y. S.; Capek, P.; Lattová, E.; Taubner, T.; Choi, J. W.; Lee, C. W.; Park, J. K.; Kim, W. J.; Kim, S. M.; Lee, J.; Park, Y. I.

    2015-01-01

    Roč. 17, č. 6 (2015), s. 718-735 ISSN 1436-2228 Institutional support: RVO:61388963 Keywords : alga Maesaengi (Capsosiphon fulvescens) * ulvan * monosaccharide composition * structure * anti-coagulant activity Subject RIV: EI - Biotechnology ; Bionics Impact factor: 3.062, year: 2015

  17. Monetary value of the impacts of filamentous green algae on commercial agriculture: Results from two geographically different case studies

    CSIR Research Space (South Africa)

    De Lange, Willem J

    2016-07-01

    Full Text Available on the impact, and the extent of the impact, of algae on farming practice. The paper presents the study areas, methodological approach, surveyed pollution impacts and the calculated monetary value of the impacts of such pollution. A short conclusion discusses...

  18. Active water transport in unicellular algae: where, why, and how.

    Science.gov (United States)

    Raven, John A; Doblin, Martina A

    2014-12-01

    The occurrence of active water transport (net transport against a free energy gradient) in photosynthetic organisms has been debated for several decades. Here, active water transport is considered in terms of its roles, where it is found, and the mechanisms by which it could occur. First there is a brief consideration of the possibility of active water transport into plant xylem in the generation of root pressure and the refilling of embolized xylem elements, and from an unsaturated atmosphere into terrestrial organisms living in habitats with limited availability of liquid water. There is then a more detailed consideration of volume and osmotic regulation in wall-less freshwater unicells, and the possibility of generation of buoyancy in marine phytoplankton such as large-celled diatoms. Calculations show that active water transport is a plausible mechanism to assist cells in upwards vertical movements, requires less energy than synthesis of low-density organic solutes, and potentially on a par with excluding certain ions from the vacuole. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  19. Preliminary identification of unicellular algal genus by using combined confocal resonance Raman spectroscopy with PCA and DPLS analysis

    Science.gov (United States)

    He, Shixuan; Xie, Wanyi; Zhang, Ping; Fang, Shaoxi; Li, Zhe; Tang, Peng; Gao, Xia; Guo, Jinsong; Tlili, Chaker; Wang, Deqiang

    2018-02-01

    The analysis of algae and dominant alga plays important roles in ecological and environmental fields since it can be used to forecast water bloom and control its potential deleterious effects. Herein, we combine in vivo confocal resonance Raman spectroscopy with multivariate analysis methods to preliminary identify the three algal genera in water blooms at unicellular scale. Statistical analysis of characteristic Raman peaks demonstrates that certain shifts and different normalized intensities, resulting from composition of different carotenoids, exist in Raman spectra of three algal cells. Principal component analysis (PCA) scores and corresponding loading weights show some differences from Raman spectral characteristics which are caused by vibrations of carotenoids in unicellular algae. Then, discriminant partial least squares (DPLS) classification method is used to verify the effectiveness of algal identification with confocal resonance Raman spectroscopy. Our results show that confocal resonance Raman spectroscopy combined with PCA and DPLS could handle the preliminary identification of dominant alga for forecasting and controlling of water blooms.

  20. A link between lead and cadmium kinetic speciation in seawater and accumulation by the green alga Ulva lactuca

    International Nuclear Information System (INIS)

    Muse, J.O.; Carducci, C.N.; Stripeikis, J.D.; Tudino, M.B.; Fernandez, F.M.

    2006-01-01

    In this work, studies on the bioaccumulation of Cd and Pb by Ulva lactuca at different sites of Gulf San Jorge (Patagonia, Argentina) are presented. Higher values of bioaccumulated Cd were found in Punta Maqueda - a site believed to serve as a control - in comparison to those in Punta Borja, a place highly exposed to urban and industrial activities. Consequently; the labile fractions of Cd and Pb in seawater were determined with a flow injection-preconcentration manifold interfaced to a graphite furnace-atomic absorption spectrometer (FI-GFAAS). The results obtained by kinetic speciation showed that the variable that correctly explains heavy metals accumulation in the alga, is the labile metal fraction in seawater. We propose to use an enhancement ratio - on the basis of the kinetically labile metal fraction - for calculation of the metal accumulated by the alga relative to its environment. - Metal kinetic speciation can overcome CF limitations for the evaluation of marine pollution

  1. Efficacy of marine green alga Ulva fasciata extract on the management of shrimp bacterial diseases Eficacia del extracto del alga marina verde Ulva fasciata sobre el manejo de las enfermedades bacterianas en camarones

    Directory of Open Access Journals (Sweden)

    Joseph Selvin

    2011-07-01

    Full Text Available Secondary metabolites of the green algae, Ulva fasciata, were tested to determine the efficacy of controlling shrimp bacterial pathogens. Exploratory experiments indicated that an intermediate dose (1 g kg-1 of shrimp of Ulva in the diet was highly effective at controlling bacterial pathogens of shrimp, as compared to lower (500 mg kg-1 and higher (1.5 g kg-1 doses. The pilot experiments evaluated the percent of relative protection afforded shrimps treated with Ulva diet and faced with various concentrations of bacterial pathogen. The survival of shrimps treated with Ulva diet was significant (P Metabolites secundario de algas verdes Ulva fasciata fue probado para determinar la eficacia de controlar el camarón pathogens bacterial. Las conclusiones de experimentos exploratorios indicaron que la dosis mediana (1 g kg-1 de camarón de dieta Ulva era sumamente eficaz en el control de pathogens bacterial de camarón cuando comparado al más abajo (500 mg kg-1 y más alto (1,5 g kg-1 dosis. En los experimentos pilotos, la protección de pariente de por ciento de camarones trató con la dieta Ulva y desafió con varias concentraciones de bacterial patógeno fueron evaluados. La supervivencia de camarones trató con la dieta Ulva era significativo (P < 0,01. Basado en las conclusiones presentes, podría ser deducido que U. verde fasciata puede ser una fuente excelente para desarrollar la comida potente medicinal para la dirección de enfermedad de camarón.

  2. Do photobionts influence the ecology of lichens? A case study of environmental preferences in symbiotic green alga Asterochloris (Trebouxiophyceae).

    Science.gov (United States)

    Peksa, Ondřej; Skaloud, Pavel

    2011-09-01

    The distribution patterns of symbiotic algae are thought to be conferred mainly by their hosts, however, they may originate in algal environmental requirements as well. In lichens, predominantly terrestrial associations of fungi with algae or cyanobacteria, the ecological preferences of photobionts have not been directly studied so far. Here, we examine the putative environmental requirements in lichenized alga Asterochloris, and search for the existence of ecological guilds in Asterochloris-associating lichens. Therefore, the presence of phylogenetic signal in several environmental traits was tested. Phylogenetic analysis based on the concatenated set of internal transcribed spacer rDNA and actin type I intron sequences from photobionts associated with lichens of the genera Lepraria and Stereocaulon (Stereocaulaceae, Ascomycota) revealed 13 moderately to well-resolved clades. Photobionts from particular algal clades were found to be associated with taxonomically different, but ecologically similar lichens. The rain and sun exposure were the most significant environmental factor, clearly distinguishing the Asterochloris lineages. The photobionts from ombrophobic and ombrophilic lichens were clustered in completely distinct clades. Moreover, two photobiont taxa were obviously differentiated based on their substrate and climatic preferences. Our study, thus reveals that the photobiont, generally the subsidiary member of the symbiotic lichen association, could exhibit clear preferences for environmental factors. These algal preferences may limit the ecological niches available to lichens and lead to the existence of specific lichen guilds. © 2011 Blackwell Publishing Ltd.

  3. Effects of zinc oxide and titanium dioxide nanoparticles on green algae under visible, UVA, and UVB irradiations: no evidence of enhanced algal toxicity under UV pre-irradiation.

    Science.gov (United States)

    Lee, Woo-Mi; An, Youn-Joo

    2013-04-01

    Some metal oxide nanoparticles are photoreactive, thus raising concerns regarding phototoxicity. This study evaluated ecotoxic effects of zinc oxide nanoparticles and titanium dioxide nanoparticles to the green algae Pseudokirchneriella subcapitata under visible, UVA, and UVB irradiation conditions. The nanoparticles were prepared in algal test medium, and the test units were pre-irradiated by UV light in a photoreactor. Algal assays were also conducted with visible, UVA or UVB lights only without nanoparticles. Algal growth was found to be inhibited as the nanoparticle concentration increased, and ZnO NPs caused destabilization of the cell membranes. We also noted that the inhibitory effects on the growth of algae were not enhanced under UV pre-irradiation conditions. This phenomenon was attributed to the photocatalytic activities of ZnO NPs and TiO2 NPs in both the visible and UV regions. The toxicity of ZnO NPs was almost entirely the consequence of the dissolved free zinc ions. This study provides us with an improved understanding of toxicity of photoreactive nanoparticles as related to the effects of visible and UV lights. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Validation of a Mathematical Model for Green Algae (Raphidocelis Subcapitata Growth and Implications for a Coupled Dynamical System with Daphnia Magna

    Directory of Open Access Journals (Sweden)

    Michael Stemkovski

    2016-05-01

    Full Text Available Toxicity testing in populations probes for responses in demographic variables to anthropogenic or natural chemical changes in the environment. Importantly, these tests are primarily performed on species in isolation of adjacent tropic levels in their ecosystem. The development and validation of coupled species models may aid in predicting adverse outcomes at the ecosystems level. Here, we aim to validate a model for the population dynamics of the green algae Raphidocelis subcapitata, a planktonic species that is often used as a primary food source in toxicity experiments for the fresh water crustacean Daphnia magna. We collected longitudinal data from three replicate population experiments of R. subcapitata. We used this data with statistical model comparison tests and uncertainty quantification techniques to compare the performance of four models: the Logistic model, the Bernoulli model, the Gompertz model, and a discretization of the Logistic model. Overall, our results suggest that the logistic model is the most accurate continuous model for R. subcapitata population growth. We then implement the numerical discretization showing how the continuous logistic model for algae can be coupled to a previously validated discrete-time population model for D. magna.

  5. Experimental Substantiation of the Possibility of Developing Selenium- and Iodine-Containing Pharmaceuticals Based on Blue-Green Algae Spirulina Platensis

    CERN Document Server

    Mosulishvili, L M; Belokobylsky, A I; Khisanishvili, L A; Frontasyeva, M V; Pavlov, C C; Gundorina, S F

    2001-01-01

    The great potential of using blue-green algae Spirulina platensis as a matrix for the production of selenium- and iodine-containing pharmaceuticals is shown experimentally. The background levels of 31 major, minor and trace elements (Na, Mg, Al, Cl, K, Ca, Sc, V, Cr, Mn, Fe, Co, Ni (using -reaction), As, Br, Zn, Rb, Mo, Ag, Sb, I, Ba, Sm, Tb, Tm, Hf, Ta, W, Au, Hg, Th) in Spirulina platensis biomass were determined by means of epithermal neutron activation analysis. The dependence of selenium and iodine accumulation in spirulina biomass on a nutrient medium loding of the above elements was characterised. To demonstrate the possibilities of determining toxic element intake by spirulina biomass, mercury was selected. The technological parameters for production of iodinated treatment-and-prophylactic pills are developed.

  6. Experimental substantiation of the possibility of developing selenium- and iodine-containing pharmaceuticals based on blue-green algae Spirulina platensis.

    Science.gov (United States)

    Mosulishvili, L M; Kirkesali, E I; Belokobylsky, A I; Khizanishvili, A I; Frontasyeva, M V; Pavlov, S S; Gundorina, S F

    2002-08-22

    The great potential of using blue-green algae Spirulina platensis as a matrix for the production of selenium- and iodine-containing pharmaceuticals is shown experimentally. The background levels of 31 major, minor and trace elements (Na, Mg, Al, Cl, K, Ca, Sc, V, Cr, Mn, Fe, Co, Ni (using (n,p) reaction), As, Br, Zn, Rb, Mo, Ag, Sb, I, Ba, Sm, Tb, Tm, Hf, Ta, W, Au, Hg, Th) in S. platensis biomass were determined by means of epithermal neutron activation analysis. The dependence of selenium and iodine accumulation in spirulina biomass on a nutrient medium loading of the above elements was characterized. To demonstrate the possibilities of determining toxic element intake by spirulina biomass, mercury was selected. The technological parameters for production of iodinated treatment-and-prophylactic pills are developed.

  7. Fluorescent minerals - A potential source of UV protection and visible light for the growth of green algae and cyanobacteria in extreme cosmic environments

    Science.gov (United States)

    Omairi, Tareq; Wainwright, Milton

    2015-07-01

    We propose that green algae (Chlorella variabilis and Dunaliella tertiolecta) and cyanobacteria (Synechococcus elongatus and Nostoc commune) can grow inside fluorescent rock minerals which convert damaging UV light to visible light, thereby allowing these organisms to survive and thrive in UV-rich environments without (or with limited) visible light, which would otherwise be inimical to them. The four microorganisms were incubated inside fluorescent rocks composed of fluorite, calcite and pyrite. The resultant growth was then measured following exposure to UV radiation, with the use of optical density and measurement of chlorophyll concentration. Results show that the microorganisms were shielded from harmful UV in these semi-transparent rocks, while at the same time benefiting from the fact that the minerals converted UV to visible light; this have been shown by a statistically significant increase in their growth, which although lower than when the cells were incubated in sunlight, was significantly higher than in controls incubated in the dark.

  8. Inhibitory effect of trichodermanone C, a sorbicillinoid produced by Trichoderma citrinoviride associated to the green alga Cladophora sp., on nitrite production in LPS-stimulated macrophages.

    Science.gov (United States)

    Marra, Roberta; Nicoletti, Rosario; Pagano, Ester; DellaGreca, Marina; Salvatore, Maria Michela; Borrelli, Francesca; Lombardi, Nadia; Vinale, Francesco; Woo, Sheridan L; Andolfi, Anna

    2018-05-31

    From the green alga Cladophora sp. collected in Italy, the marine fungal strain A12 of Trichoderma citrinoviride was isolated, identified and characterized. LC-MS qTOF analysis was applied to perform a metabolic profile of the fungal culture. Chromatographic techniques and spectroscopic methods were used to isolate and characterize the major secondary metabolites produced by this strain in liquid culture. In particular, four known sorbicillinoids (trichodermanone C, spirosorbicillinol A, vertinolide and sorbicillin) were purified and identified, together with 2-phenylethanol and tyrosol. Moreover, metabolomic analysis allowed to detect small amounts of trichodimerol, rezishanone A, 2',3'-dihydrosorbicillin and bisvertinol. For the first time a significant inhibitory effect on nitrite levels has been shown for trichodermanone C in lipopolysaccharide-stimulated J774A.1 macrophages.

  9. Experimental substantiation of the possibility of developing selenium- and iodine-containing pharmaceuticals based on blue-green algae Spirulina platensis

    International Nuclear Information System (INIS)

    Mosulishvili, L.M.; Kirkesali, E.I.; Belokobyl'skij, A.I.; Khizanishvili, A.I.; Frontas'eva, M.V.; Pavlov, S.S.; Gundorina, S.F.

    2001-01-01

    The great potential of using blue-green algae Spirulina platensis as a matrix for the production of selenium- and iodine-containing pharmaceuticals is shown experimentally. The background levels of 31 major, minor and trace elements (Na, Mg, Al, Cl, K, Ca, Sc, V, Cr, Mn, Fe, Co, Ni (using (n,p)-reaction), As, Br, Zn, Rb, Mo, Ag, Sb, I, Ba, Sm, Tb, Tm, Hf, Ta, W, Au, Hg, Th) in Spirulina platensis biomass were determined by means of epithermal neutron activation analysis. The dependence of selenium and iodine accumulation in spirulina biomass on a nutrient medium loading of the above elements was characterised. To demonstrate the possibilities of determining toxic element intake by spirulina biomass, mercury was selected. The technological parameters for production of iodinated treatment-and-prophylactic pills are developed

  10. Effects of acetylene and carbon monoxide on long-term hydrogen production by Mastigocladus laminosus, a thermophilic blue-green alga

    Energy Technology Data Exchange (ETDEWEB)

    Miura, Y; Yokoyama, H; Takahara, K; Miyamoto, K

    1982-01-01

    Long-term H/sub 2/ production by a thermophilic and heterocystous blue-green alga (cyanobacterium) Mastigocladus laminosus was studied under the conditions when acetylene and carbon monoxide were supplemented to the gas phase of the culture vessel. The addition of both gases enhanced H/sub 2/ evolution by nitrogen-starved cells. The concentrations of acetylene and carbon monoxide in the gas phase of argon/CO/sub 2/ (97.5/2.5) were 10% and 0.2 to 1%, respectively, for the maximum H/sub 2/ production. Renewals of the gas phase, in addition to the addition of acetylene and carbon monoxide, were necessary for durable H/sub 2/ production. Since the concentrations of both H/sub 2/ and O/sub 2/ accumulated in the gas phase were minimized after the renewals, the H/sub 2/ uptake activity, which was not completely inhibited by acetylene and carbon monoxide, was reduced and thereby H/sub 2/ evolution was restored. Under such conditions, H/sub 2/ production for up to 20 days was observed under argon and N/sub 2/ atmospheres with average rats of 3.9 and 3.3..mu..l/mg dry wt/h, respectively. H/sub 2/ evolution for 15 days was observed even under an air atmosphere containing acetylene and carbon monoxide. It was thus shown that prolonged production of H/sub 2/ was possible by the use of a blue-green alga which exhibits a high activity of H/sub 2/ uptake under nitrogen-starved conditions.

  11. In vitro vascular effects produced by crude aqueous extract of green marine algae, Cladophora patentiramea (Mont.) Kützing, in aorta from normotensive rats.

    Science.gov (United States)

    Lim, Yee-Ling; Mok, Shiueh-Lian

    2010-01-01

    To investigate the antihypertensive activity of aqueous extracts obtained from Malaysian coastal seaweeds and to determine the pharmacological mechanisms of the extracts on rat aorta in vitro. The antihypertensive activity of 11 species of seaweeds (5 brown, 1 red and 5 green algae) were tested by cumulative addition of the extracts to phenylephrine (PE)-precontracted Wistar-Kyoto (WKY) aortic rings in in vitro isometric contraction studies. Mechanisms for vasorelaxant effect were investigated in the presence of various antagonists. Of the 11 species tested, 2 showed a vasorelaxant effect. Further investigation of the mechanisms of action of the aqueous extract of green alga, Cladophora patentiramea (AECP),showed that the vascular relaxant effect was endothelium- and concentration-dependent. A maximum relaxation of 45.8 +/- 4.6% (n = 8, p < 0.001) was obtained at 0.1 mg/ml of extract, after which the response was found to reduce in a concentration-dependent manner to 15.7 +/- 4.9% (n = 8, p < 0.001) at the highest extract concentration tested. Pretreatment of endothelium-intact aortic rings with Nomega-nitro-L-arginine methyl ester (L-NAME, 30 microM), (1)H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, 10 microM) and methylene blue (100 microM) resulted in a complete blockade of AECP-induced vasorelaxation. However, the relaxant effects of the extract were not blocked by atropine (1 microM), indomethacin (10 microM) and glibenclamide (10 microM), although the maximum relaxant responses were enhanced in the presence of glibenclamide. Our data showed that the in vitro vascular relaxant effect of AECPwas mediated through endothelium-dependent nitric oxide-cGMP pathway, and was not associated with the release of vasodilator prostaglandins, activation of muscarinic receptors, or ATP-sensitive potassium channels opening. Copyright 2010 S. Karger AG, Basel.

  12. Algae biotechnology: products and processes

    National Research Council Canada - National Science Library

    Bux, F; Chisti, Yusuf

    2016-01-01

    This book examines the utilization of algae for the development of useful products and processes with the emphasis towards green technologies and processes, and the requirements to make these viable...

  13. Serpins in unicellular Eukarya, Archaea, and Bacteria:

    DEFF Research Database (Denmark)

    Roberts, T.H.; Hejgaard, Jørn; Saunders, N.F.W

    2004-01-01

    , where serpins were found in only 4 of 13 genera, and Bacteria, in only 9 of 56 genera. The serpins from unicellular organisms appear to be phylogenetically distinct from all of the clades of higher eukaryotic serpins. Most of the sequences from unicellular organisms have the characteristics...

  14. The physiological response of two green calcifying algae from the Great Barrier Reef towards high dissolved inorganic and organic carbon (DIC and DOC availability.

    Directory of Open Access Journals (Sweden)

    Friedrich Wilhelm Meyer

    Full Text Available Increasing dissolved inorganic carbon (DIC concentrations associated with ocean acidification can affect marine calcifiers, but local factors, such as high dissolved organic carbon (DOC concentrations through sewage and algal blooms, may interact with this global factor. For calcifying green algae of the genus Halimeda, a key tropical carbonate producer that often occurs in coral reefs, no studies on these interactions have been reported. These data are however urgently needed to understand future carbonate production. Thus, we investigated the independent and combined effects of DIC (pCO2 402 μatm/ pHtot 8.0 and 996 μatm/ pHtot 7.7 and DOC (added as glucose in 0 and 294 μmol L-1 on growth, calcification and photosynthesis of H. macroloba and H. opuntia from the Great Barrier Reef in an incubation experiment over 16 days. High DIC concentrations significantly reduced dark calcification of H. opuntia by 130 % and led to net dissolution, but did not affect H. macroloba. High DOC concentrations significantly reduced daily oxygen production of H. opuntia and H. macroloba by 78 % and 43 %, respectively, and significantly reduced dark calcification of H. opuntia by 70%. Combined high DIC and DOC did not show any interactive effects for both algae, but revealed additive effects for H. opuntia where the combination of both factors reduced dark calcification by 162 % compared to controls. Such species-specific differences in treatment responses indicate H. opuntia is more susceptible to a combination of high DIC and DOC than H. macroloba. From an ecological perspective, results further suggest a reduction of primary production for Halimeda-dominated benthic reef communities under high DOC concentrations and additional decreases of carbonate accretion under elevated DIC concentrations, where H. opuntia dominates the benthic community. This may reduce biogenic carbonate sedimentation rates and hence the buffering capacity against further ocean

  15. The physiological response of two green calcifying algae from the Great Barrier Reef towards high dissolved inorganic and organic carbon (DIC and DOC) availability.

    Science.gov (United States)

    Meyer, Friedrich Wilhelm; Vogel, Nikolas; Teichberg, Mirta; Uthicke, Sven; Wild, Christian

    2015-01-01

    Increasing dissolved inorganic carbon (DIC) concentrations associated with ocean acidification can affect marine calcifiers, but local factors, such as high dissolved organic carbon (DOC) concentrations through sewage and algal blooms, may interact with this global factor. For calcifying green algae of the genus Halimeda, a key tropical carbonate producer that often occurs in coral reefs, no studies on these interactions have been reported. These data are however urgently needed to understand future carbonate production. Thus, we investigated the independent and combined effects of DIC (pCO2 402 μatm/ pHtot 8.0 and 996 μatm/ pHtot 7.7) and DOC (added as glucose in 0 and 294 μmol L-1) on growth, calcification and photosynthesis of H. macroloba and H. opuntia from the Great Barrier Reef in an incubation experiment over 16 days. High DIC concentrations significantly reduced dark calcification of H. opuntia by 130 % and led to net dissolution, but did not affect H. macroloba. High DOC concentrations significantly reduced daily oxygen production of H. opuntia and H. macroloba by 78 % and 43 %, respectively, and significantly reduced dark calcification of H. opuntia by 70%. Combined high DIC and DOC did not show any interactive effects for both algae, but revealed additive effects for H. opuntia where the combination of both factors reduced dark calcification by 162 % compared to controls. Such species-specific differences in treatment responses indicate H. opuntia is more susceptible to a combination of high DIC and DOC than H. macroloba. From an ecological perspective, results further suggest a reduction of primary production for Halimeda-dominated benthic reef communities under high DOC concentrations and additional decreases of carbonate accretion under elevated DIC concentrations, where H. opuntia dominates the benthic community. This may reduce biogenic carbonate sedimentation rates and hence the buffering capacity against further ocean acidification.

  16. pH modulates transport rates of manganese and cadmium in the green alga Chlamydomonas reinhardtii through non-competitive interactions: Implications for an algal BLM

    International Nuclear Information System (INIS)

    Francois, Laura; Fortin, Claude; Campbell, Peter G.C.

    2007-01-01

    The influence of pH on short-term uptake of manganese and cadmium by the green alga Chlamydomonas reinhardtii was studied to better understand the nature of proton interactions with metal membrane transporters. Manganese and cadmium internalization fluxes (J int ) were measured over a wide range of free metal ion concentrations from 1 x 10 -10 to 4 x 10 -4 M at several pH values (Mn: 5.0, 6.5 and 8.0; Cd: 5.0 and 6.5). For both metals, first-order biological internalization kinetics were observed but the maximum transport flux (J max ) decreased when pH decreased, in contradiction with the Biotic Ligand Model (BLM). This result suggested a non-competitive inhibition of metal uptake by the H + -ion. A Michaelis-Menten type inhibition model considering proton and calcium competition was tested. The metal biotic ligand stability constants and the stability constants for competitive binding of Ca 2+ and H + with the metal transporters were calculated: for manganese, K Mn = 10 4.20 and K Ca = 10 3.71 ; for cadmium, K Cd = 10 4.19 and K Ca = 10 4.76 ; for both metal transport systems, K H was not a significant parameter. Furthermore, metal uptake was not significantly influenced by the pH of the antecedent growth medium, suggesting that increases in metal fluxes as the pH is raised are caused by conformational changes of the surface transport proteins rather than by the synthesis of additional transport sites. Our results demonstrate that the BLM in its present state does not properly describe the true influence of pH on manganese and cadmium uptake by algae and that a non-competitive inhibition component must be integrated

  17. Lipid content and fatty acid composition of green algae Scenedesmus obliquus grown in a constant cell density apparatus

    Science.gov (United States)

    Choi, K. J.; Nakhost, Z.; Barzana, E.; Karel, M.

    1987-01-01

    The lipids of alga Scenedesmus obliquus grown under controlled conditions were separated and fractionated by column and thin-layer chromatography, and fatty acid composition of each lipid component was studied by gas-liquid chromatography (GLC). Total lipids were 11.17%, and neutral lipid, glycolipid and phospholipid fractions were 7.24%, 2.45% and 1.48% on a dry weight basis, respectively. The major neutral lipids were diglycerides, triglycerides, free sterols, hydrocarbons and sterol esters. The glycolipids were: monogalactosyl diglyceride, digalactosyl diglyceride, esterified sterol glycoside, and sterol glycoside. The phospholipids included: phosphatidyl choline, phosphatidyl glycerol and phosphatidyl ethanolamine. Fourteen fatty acids were identified in the four lipid fractions by GLC. The main fatty acids were C18:2, C16:0, C18:3(alpha), C18:1, C16:3, C16:1, and C16:4. Total unsaturated fatty acid and essential fatty acid compositions of the total algal lipids were 80% and 38%, respectively.

  18. The use of 15N-labelled dinitrogen in the study of nitrogen fixation by blue-green algae

    International Nuclear Information System (INIS)

    Jones, J.

    1985-01-01

    Prior to the development of the acetylene reduction technique 15 N was used as the main qualitative and quantitative measure of nitrogen fixation by free-living cyanobacteria in a variety of aquatic and terrestrial habitats. Despite its expense and the technical difficulty, 15 N is a major tool in the study of cyanobacteria, for example, incorporation of 15 N 2 is the definitive test for nitrogen fixation; it is used in the determination of the correct ratio of acetylene reduction to nitrogen fixation, in in situ nitrogen fixation assays, in tracing the formation and fate of extra-cellular nitrogen and in measuring the turnover and grazing rates of cyanobacterial intra-cellular nitrogen. These latter studies show that 15 N-labelled extra-cellular nitrogen can serve as nitrogen sources for a variety of bacteria, fungi, algae and higher plants, and that cyanobacteria are graced and digested by a variety of animals. The turnover rates of cyanobacterial 15 N-labelled cells are dependent on the type of cell, species, environmental conditions and the availability of degrading organisms. The breakdown products are rapidly mineralised and used as nitrogen sources by higher plants. (author)

  19. Metagenome changes in the mesophilic biogas-producing community during fermentation of the green alga Scenedesmus obliquus.

    Science.gov (United States)

    Wirth, Roland; Lakatos, Gergely; Böjti, Tamás; Maróti, Gergely; Bagi, Zoltán; Kis, Mihály; Kovács, Attila; Ács, Norbert; Rákhely, Gábor; Kovács, Kornél L

    2015-12-10

    A microalgal biomass offers a potential alternative to the maize silage commonly used in biogas technology. In this study, photoautotrophically grown Scenedesmus obliquus was used as biogas substrate. This microalga has a low C/N ratio of 8.5 relative to the optimum 20-30. A significant increase in the ammonium ion content was not observed. The methane content of the biogas generated from Sc. obliquus proved to be higher than that from maize silage, but the specific biogas yield was lower. Semi-continuous steady biogas production lasted for 2 months. Because of the thick cell wall of Sc. obliquus, the biomass-degrading microorganisms require additional time to digest its biomass. The methane concentration in the biogas was also high, in co-digestion (i.e., 52-56%) as in alga-fed anaerobic digestion (i.e., 55-62%). These results may be related to the relative predominance of the order Clostridiales in co-digestion and to the more balanced C/N ratio of the mixed algal-maize biomass. Predominance of the order Methanosarcinales was observed in the domain Archaea, which supported the diversity of metabolic pathways in the process. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Vulnerability of marine habitats to the invasive green alga Caulerpa racemosa var. cylindracea within a marine protected area.

    Science.gov (United States)

    Katsanevakis, Stelios; Issaris, Yiannis; Poursanidis, Dimitris; Thessalou-Legaki, Maria

    2010-08-01

    The relative vulnerability of various habitat types to Caulerpa racemosa var. cylindracea invasion was investigated in the National Marine Park of Zakynthos (Ionian Sea, Greece). The density of C. racemosa fronds was modelled with generalized additive models for location, scale and shape (GAMLSS), based on an information theory approach. The species was present in as much as 33% of 748 randomly placed quadrats, which documents its aggressive establishment in the area. The probability of presence of the alga within randomly placed 20 x 20 cm quadrats was 83% on 'matte morte' (zones of fibrous remnants of a former Posidonia oceanica bed), 69% on rocky bottoms, 86% along the margins of P. oceanica meadows, 10% on sandy/muddy substrates, and 6% within P. oceanica meadows. The high frond density on 'matte morte' and rocky bottoms indicates their high vulnerability. The lowest frond density was observed within P. oceanica meadows. However, on the margins of P. oceanica meadows and within gaps in fragmented meadows relative high C. racemosa densities were observed. Such gaps within meadows represent spots of high vulnerability to C. racemosa invasion.

  1. Composition of phytoplankton algae in Gubi Reservoir, Bauchi ...

    African Journals Online (AJOL)

    Studies on the distribution, abundance and taxonomic composition of phytoplankton algae in Gubi reservoir were carried out for 12 months (from January to December 1995). Of the 26 algal taxa identified, 14 taxa belonged to the diatoms, 8 taxa were green algae while 4 taxa belonged to the blue-green algae. Higher cell ...

  2. Distribution and biomass estimation of shell-boring algae in the intertidal area at Goa India

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, C.; Sharma, S.; Lande, V.

    The distribution and frequency of shell-boring green and blue-green algae in the intertidal at Goa, India were studied. The green alga Gomontia sp. and the blue green algae Hyella caespitosa Bornet et Flahault, H. gigas Lucas et Golubic...

  3. Influence of agglomeration of cerium oxide nanoparticles and speciation of cerium(III) on short term effects to the green algae Chlamydomonas reinhardtii

    Energy Technology Data Exchange (ETDEWEB)

    Röhder, Lena A. [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, Dübendorf 8600 (Switzerland); ETH-Zurich, Institute of Biogeochemistry and Pollutant Dynamics, Zürich 8092 (Switzerland); Brandt, Tanja [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, Dübendorf 8600 (Switzerland); Sigg, Laura [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, Dübendorf 8600 (Switzerland); ETH-Zurich, Institute of Biogeochemistry and Pollutant Dynamics, Zürich 8092 (Switzerland); Behra, Renata, E-mail: Renata.behra@eawag.ch [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, Dübendorf 8600 (Switzerland)

    2014-07-01

    Highlights: • Phosphate-dispersed CeO₂ NP did not affect photosynthetic yield in C. reinhardtii. • Agglomerated CeO₂ NP slightly decreased photosynthetic yield. • Cerium(III) was shown to affect photosynthetic yield and intracellular ROS level. • Slight effects of CeO₂ NP were caused by dissolved Ce³⁺ ions present in suspensions. • Wild type and cell wall free mutant of C. reinhardtii showed the same sensitivity. - Abstract: Cerium oxide nanoparticles (CeO₂ NP) are increasingly used in industrial applications and may be released to the aquatic environment. The fate of CeO₂ NP and effects on algae are largely unknown. In this study, the short term effects of CeO₂ NP in two different agglomeration states on the green algae Chlamydomonas reinhardtii were examined. The role of dissolved cerium(III) on toxicity, its speciation and the dissolution of CeO₂ NP were considered. The role of cell wall of C. reinhardtii as a barrier and its influence on the sensitivity to CeO₂ NP and cerium(III) was evaluated by testing both, the wild type and the cell wall free mutant of C. reinhardtii. Characterization showed that CeO₂ NP had a surface charge of ~0 mV at physiological pH and agglomerated in exposure media. Phosphate stabilized CeO₂ NP at pH 7.5 over 24 h. This effect was exploited to test CeO₂ NP dispersed in phosphate with a mean size of 140 nm and agglomerated in absence of phosphate with a mean size of 2000 nm. The level of dissolved cerium(III) in CeO₂ NP suspensions was very low and between 0.1 and 27 nM in all tested media. Exposure of C. reinhardtii to Ce(NO₃)₃ decreased the photosynthetic yield in a concentration dependent manner with EC₅₀ of 7.5 ± 0.84 μM for wild type and EC₅₀ of 6.3 ± 0.53 μM for the cell wall free mutant. The intracellular level of reactive oxygen species (ROS) increased upon exposure to Ce(NO₃)₃ with effective concentrations similar to those inhibiting photosynthesis. The agglomerated Ce

  4. RNAi knock-down of LHCBM1, 2 and 3 increases photosynthetic H2 production efficiency of the green alga Chlamydomonas reinhardtii.

    Directory of Open Access Journals (Sweden)

    Melanie Oey

    Full Text Available Single cell green algae (microalgae are rapidly emerging as a platform for the production of sustainable fuels. Solar-driven H2 production from H2O theoretically provides the highest-efficiency route to fuel production in microalgae. This is because the H2-producing hydrogenase (HYDA is directly coupled to the photosynthetic electron transport chain, thereby eliminating downstream energetic losses associated with the synthesis of carbohydrate and oils (feedstocks for methane, ethanol and oil-based fuels. Here we report the simultaneous knock-down of three light-harvesting complex proteins (LHCMB1, 2 and 3 in the high H2-producing Chlamydomonas reinhardtii mutant Stm6Glc4 using an RNAi triple knock-down strategy. The resultant Stm6Glc4L01 mutant exhibited a light green phenotype, reduced expression of LHCBM1 (20.6% ±0.27%, LHCBM2 (81.2% ±0.037% and LHCBM3 (41.4% ±0.05% compared to 100% control levels, and improved light to H2 (180% and biomass (165% conversion efficiencies. The improved H2 production efficiency was achieved at increased solar flux densities (450 instead of ∼100 µE m(-2 s(-1 and high cell densities which are best suited for microalgae production as light is ideally the limiting factor. Our data suggests that the overall improved photon-to-H2 conversion efficiency is due to: 1 reduced loss of absorbed energy by non-photochemical quenching (fluorescence and heat losses near the photobioreactor surface; 2 improved light distribution in the reactor; 3 reduced photoinhibition; 4 early onset of HYDA expression and 5 reduction of O2-induced inhibition of HYDA. The Stm6Glc4L01 phenotype therefore provides important insights for the development of high-efficiency photobiological H2 production systems.

  5. Nitrogen limitation and slow drying induce desiccation tolerance in conjugating green algae (Zygnematophyceae, Streptophyta from polar habitats.

    Directory of Open Access Journals (Sweden)

    Martina Pichrtová

    Full Text Available Filamentous Zygnematophyceae are typical components of algal mats in the polar hydro-terrestrial environment. Under field conditions, they form senescent vegetative cells, designated as pre-akinetes, which are tolerant to desiccation and osmotic stress.Pre-akinete formation and desiccation tolerance was investigated experimentally under monitored laboratory conditions in four strains of Arctic and Antarctic isolates with vegetative Zygnema sp. morphology. Phylogenetic analyses of rbcL sequences revealed one Arctic strain as genus Zygnemopsis, phylogenetically distant from the closely related Zygnema strains. Algae were cultivated in liquid or on solidified medium (9 weeks, supplemented with or lacking nitrogen. Nitrogen-free cultures (liquid as well as solidified consisted of well-developed pre-akinetes after this period. Desiccation experiments were performed at three different drying rates (rapid: 10% relative humidity, slow: 86% rh and very slow; viability, effective quantum yield of PS II, visual and ultrastructural changes were monitored. Recovery and viability of pre-akinetes were clearly dependent on the drying rate: slower desiccation led to higher levels of survival. Pre-akinetes survived rapid drying after acclimation by very slow desiccation.The formation of pre-akinetes in polar Zygnema spp. and Zygnemopsis sp. is induced by nitrogen limitation. Pre-akinetes, modified vegetative cells, rather than specialized stages of the life cycle, can be hardened by mild desiccation stress to survive rapid drying. Naturally hardened pre-akinetes play a key role in stress tolerance and dispersal under the extreme conditions of polar regions, where sexual reproduction and production of dormant stages is largely suppressed.

  6. X-ray dense cellular inclusions in the cells of the green alga Chlamydomonas reinhardtii as seen by soft-x-ray microscopy

    International Nuclear Information System (INIS)

    Stead, A.D.; Ford, T.W.; Page, A.M.; Brown, J.T.; Meyer-Ilse, W.

    1997-01-01

    Soft x-rays, having a greater ability to penetrate biological material than electrons, have the potential for producing images of intact, living cells. In addition, by using the so-called open-quotes water windowclose quotes area of the soft x-ray spectrum, a degree of natural contrast is introduced into the image due to differential absorption of the wavelengths by compounds with a high carbon content compared to those with a greater oxygen content. The variation in carbon concentration throughout a cell therefore generates an image which is dependent upon the carbon density within the specimen. Using soft x-ray contact microscopy the authors have previously examined the green alga Chlamydomonas reinhardtii, and the most prominent feature of the cells are the numerous x-ray absorbing spheres, But they were not seen by conventional transmission electron microscopy. Similar structures have also been reported by the Goettingen group using their cryo transmission x-ray microscope at BESSY. Despite the fact that these spheres appear to occupy up to 20% or more of the cell volume when seen by x-ray microscopy, they are not visible by transmission electron microscopy. Given the difficulties and criticisms associated with soft x-ray contact microscopy, the present study was aimed at confirming the existence of these cellular inclusions and learning more of their possible chemical composition

  7. Contamination by Microcystis and microcystins of blue-green algae food supplements (BGAS) on the Italian market and possible risk for the exposed population.

    Science.gov (United States)

    Vichi, Susanna; Lavorini, Paolo; Funari, Enzo; Scardala, Simona; Testai, Emanuela

    2012-12-01

    Blue green algae supplements (BGAS) are generally proposed as health-promoting natural products for their purported beneficial effects. Spirulina spp. and Aphanizomenon flos aquae are mainly used in BGAS production. They are usually collected from the natural environment, where other potentially toxic cyanobacteria can be present, making possible BGAS contamination by cyanotoxins, with potential risk for human health. In this work we apply a combined approach, by using chemical and molecular techniques, on BGAS of 17 brands available in Italy. Samples containing Spirulina-only were free of contamination. The Aphanizomenon flos aquae-based samples were contaminated by highly variable levels of microcystins (MC-LR and MC-LA congeners), up to 5.2 μg MC-LR equivalents per gram product. The highest variability (up to 50 fold) was among batches of the same brand, although intra-batch differences were also evidenced. PCR analyses were positive only for the presence of Microcystis sp., identified as the toxin-producing species responsible for contamination. At the maximum contamination levels found, a risk for consumers can be expected following chronic or sub-chronic exposure to a reasonable daily BGAS consumption of 4 g. The need for a strict monitoring by producers and Health Authority to assure an adequate protection for consumers is underscored. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Structure-function mapping of key determinants for hydrocarbon biosynthesis by squalene and squalene synthase-like enzymes from the green alga Botryococcus braunii race B.

    Science.gov (United States)

    Bell, Stephen A; Niehaus, Thomas D; Nybo, S Eric; Chappell, Joseph

    2014-12-09

    Squalene and botryococcene are branched-chain, triterpene compounds that arise from the head-to-head condensation of two molecules of farnesyl diphosphate to yield 1'-1 and 1'-3 linkages, respectively. The enzymes that catalyze their formation have attracted considerable interest from the medical field as potential drug targets and the renewable energy sector for metabolic engineering efforts. Recently, the enzymes responsible for botryococcene and squalene biosynthesis in the green alga Botryococcus braunii race B were characterized. To better understand how the specificity for the 1'-1 and 1'-3 linkages was controlled, we attempted to identify the functional residues and/or domains responsible for this step in the catalytic cascade. Existing crystal structures for the mammalian squalene synthase and Staphylococcus dehydrosqualene synthase enzymes were exploited to develop molecular models for the B. braunii botryococcene and squalene synthase enzymes. Residues within the active sites that could mediate catalytic specificity were identified, and reciprocal mutants were created in an attempt to interconvert the reaction product specificity of the enzymes. We report here the identification of several amino acid positions contributing to the rearrangement of the cyclopropyl intermediate to squalene, but these same positions do not appear to be sufficient to account for the cyclopropyl rearrangement to give botryococcene.

  9. Fluorescent minerals--A potential source of UV protection and visible light for the growth of green algae and cyanobacteria in extreme cosmic environments.

    Science.gov (United States)

    Omairi, Tareq; Wainwright, Milton

    2015-07-01

    We propose that green algae (Chlorella variabilis and Dunaliella tertiolecta) and cyanobacteria (Synechococcus elongatus and Nostoc commune) can grow inside fluorescent rock minerals which convert damaging UV light to visible light, thereby allowing these organisms to survive and thrive in UV-rich environments without (or with limited) visible light, which would otherwise be inimical to them. The four microorganisms were incubated inside fluorescent rocks composed of fluorite, calcite and pyrite. The resultant growth was then measured following exposure to UV radiation, with the use of optical density and measurement of chlorophyll concentration. Results show that the microorganisms were shielded from harmful UV in these semi-transparent rocks, while at the same time benefiting from the fact that the minerals converted UV to visible light; this have been shown by a statistically significant increase in their growth, which although lower than when the cells were incubated in sunlight, was significantly higher than in controls incubated in the dark. Copyright © 2015 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  10. A Rapid and Reproducible Genomic DNA Extraction Protocol for Sequence-Based Identification of Archaea, Bacteria, Cyanobacteria, Diatoms, Fungi, and Green Algae

    Directory of Open Access Journals (Sweden)

    Farkhondeh Saba

    2017-01-01

    Full Text Available Background:  Sequence-based identification of various microorganisms including Archaea, Bacteria, Cyanobacteria, Diatoms, Fungi, and green algae necessitates an efficient and reproducible genome extraction procedure though which a pure template DNA is yielded and it can be used in polymerase chain reactions (PCR. Considering the fact that DNA extraction from these microorganisms is time consuming and laborious, we developed and standardized a safe, rapid and inexpensive miniprep protocol. Methods:  According to our results, amplification of various genomic regions including SSU, LSU, ITS, β-tubulin, actin, RPB2, and EF-1 resulted in a reproducible and efficient DNA extraction from a wide range of microorganisms yielding adequate pure genomic material for reproducible PCR-amplifications. Results:   This method relies on a temporary shock of increased concentrations of detergent which can be applied concomitant with multiple freeze-thaws to yield sufficient amount of DNA for PCR amplification of multiple or single fragments(s of the genome. As an advantage, the recipe seems very flexible, thus, various optional steps can be included depending on the samples used.Conclusion:   Having the needed flexibility in each step, this protocol is applicable on a very wide range of samples. Hence, various steps can be included depending on the desired quantity and quality.

  11. A Rapid and Reproducible Genomic DNA Extraction Protocol for Sequence-Based Identification of Archaea, Bacteria, Cyanobacteria, Diatoms, Fungi, and Green Algae

    Directory of Open Access Journals (Sweden)

    Farkhondeh Saba

    2016-09-01

    Full Text Available Background:  Sequence-based identification of various microorganisms including Archaea, Bacteria, Cyanobacteria, Diatoms, Fungi, and green algae necessitates an efficient and reproducible genome extraction procedure though which a pure template DNA is yielded and it can be used in polymerase chain reactions (PCR. Considering the fact that DNA extraction from these microorganisms is time consuming and laborious, we developed and standardized a safe, rapid and inexpensive miniprep protocol. Methods:  According to our results, amplification of various genomic regions including SSU, LSU, ITS, β-tubulin, actin, RPB2, and EF-1 resulted in a reproducible and efficient DNA extraction from a wide range of microorganisms yielding adequate pure genomic material for reproducible PCR-amplifications. Results:   This method relies on a temporary shock of increased concentrations of detergent which can be applied concomitant with multiple freeze-thaws to yield sufficient amount of DNA for PCR amplification of multiple or single fragments(s of the genome. As an advantage, the recipe seems very flexible, thus, various optional steps can be included depending on the samples used.Conclusion:   Having the needed flexibility in each step, this protocol is applicable on a very wide range of samples. Hence, various steps can be included depending on the desired quantity and quality.

  12. Occurrence of the PsbS and LhcSR products in the green alga Ulva linza and their correlation with excitation pressure.

    Science.gov (United States)

    Zhang, Xiaowen; Ye, Naihao; Mou, Shanli; Xu, Dong; Fan, Xiao

    2013-09-01

    To avoid photoinhibition, plants have developed diverse photoprotection mechanisms. One of the short-term high light protection mechanisms in plants is non-photochemical quenching (NPQ), which dissipates the absorbed light energy as thermal energy. In the green alga, Ulva linza, the kinetics of NPQ starts with an initial, quick rise followed by a decline, and then a second and higher rise at longer time periods. During the whole phase, NPQ is triggered and controlled by ΔpH, then strengthened and modulated by zeaxanthin. Light-harvesting complex (LHC) family members are known to play crucial roles in this mechanism. The PSBS protein, a member of the LHC family that was thought to be present exclusively in higher plants, has been identified for the first time in U. linza. The expression of both PSBS and LHCSR was up-regulated during high light conditions, and LHCSR increased more than PSBS. Both LHCSR and PSBS-dependent NPQ may be important strategies for adapting to the environment, and they have undoubtedly played a role in their evolution. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  13. X-ray dense cellular inclusions in the cells of the green alga Chlamydomonas reinhardtii as seen by soft-x-ray microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Stead, A.D.; Ford, T.W.; Page, A.M. [Univ. of London (United Kingdom); Brown, J.T.; Meyer-Ilse, W. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    Soft x-rays, having a greater ability to penetrate biological material than electrons, have the potential for producing images of intact, living cells. In addition, by using the so-called {open_quotes}water window{close_quotes} area of the soft x-ray spectrum, a degree of natural contrast is introduced into the image due to differential absorption of the wavelengths by compounds with a high carbon content compared to those with a greater oxygen content. The variation in carbon concentration throughout a cell therefore generates an image which is dependent upon the carbon density within the specimen. Using soft x-ray contact microscopy the authors have previously examined the green alga Chlamydomonas reinhardtii, and the most prominent feature of the cells are the numerous x-ray absorbing spheres, But they were not seen by conventional transmission electron microscopy. Similar structures have also been reported by the Goettingen group using their cryo transmission x-ray microscope at BESSY. Despite the fact that these spheres appear to occupy up to 20% or more of the cell volume when seen by x-ray microscopy, they are not visible by transmission electron microscopy. Given the difficulties and criticisms associated with soft x-ray contact microscopy, the present study was aimed at confirming the existence of these cellular inclusions and learning more of their possible chemical composition.

  14. Characteristics of unique HBr-hydrolyzed cellulose nanocrystals from freshwater green algae (Cladophora rupestris) and its reinforcement in starch-based film.

    Science.gov (United States)

    Sucaldito, Melvir R; Camacho, Drexel H

    2017-08-01

    Cellulose nanocrystals (CNCs) are promising materials that are readily extracted from plants and other cellulose-containing organisms. In this study, CNCs were isolated from freshwater green algae (Cladophora rupestris) thriving in a volcanic lake, using hydrobromic acid (HBr) hydrolysis. Morphological and structural studies revealed highly crystalline CNCs (94.0% crystallinity index) with preferred orientation to [100] lattice plane as shown by XRD measurements and have an average diameter of 20.0 (±4.4)nm as shown by TEM. Thermal studies showed increased temperature for thermal decomposition of CNCs (381.6°C), which is a result of HBr hydrolysis for CNCs isolation. The isolated CNCs were reinforced into starch based biocomposites via solution casting and evaporation method. Mechanical strength was improved as high as 78% upon addition of 1% cellulose nanocrystals in the films. The produced films are promising materials for their high mechanical strength, biodegradability and availability of raw materials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Subcellular Sequestration and Impact of Heavy Metals on the Ultrastructure and Physiology of the Multicellular Freshwater Alga Desmidium swartzii

    Directory of Open Access Journals (Sweden)

    Ancuela Andosch

    2015-05-01

    Full Text Available Due to modern life with increasing traffic, industrial production and agricultural practices, high amounts of heavy metals enter ecosystems and pollute soil and water. As a result, metals can be accumulated in plants and particularly in algae inhabiting peat bogs of low pH and high air humidity. In the present study, we investigated the impact and intracellular targets of aluminum, copper, cadmium, chromium VI and zinc on the filamentous green alga Desmidium swartzii, which is an important biomass producer in acid peat bogs. By means of transmission electron microscopy (TEM and electron energy loss spectroscopy (EELS it is shown that all metals examined are taken up into Desmidium readily, where they are sequestered in cell walls and/or intracellular compartments. They cause effects on cell ultrastructure to different degrees and additionally disturb photosynthetic activity and biomass production. Our study shows a clear correlation between toxicity of a metal and the ability of the algae to compartmentalize it intracellularly. Cadmium and chromium, which are not compartmentalized, exert the most toxic effects. In addition, this study shows that the filamentous alga Desmidium reacts more sensitively to aluminum and zinc when compared to its unicellular relative Micrasterias, indicating a severe threat to the ecosystem.

  16. Bystander effects in unicellular organisms

    International Nuclear Information System (INIS)

    DeVeaux, Linda C.; Durtschi, Lynn S.; Case, Jonathan G.; Wells, Douglas P.

    2006-01-01

    Radiation-induced bystander effects have been seen in mammalian cells from diverse origins. These effects can be transmitted through the medium to cells not present at the time of irradiation. We have developed an assay for detecting bystander effects in the unicellular eukaryote, the fission yeast Schizosaccharomyces pombe. This assay allows maximal exposure of unirradiated cells to cells that have received electron beam irradiation. S. pombe cells were irradiated with 16-18 MeV electrons from a pulsed electron LINAC. When survival of the irradiated cells decreased to approximately 50%, forward-mutation to 2-deoxy-D-glucose resistance increased in the unirradiated bystander cells. Further increase in dose had no additional effect on this increase. In order to detect this response, it was necessary for the irradiated cell/unirradiated cell ratio to be high. Other cellular stresses, such as heat treatment, UV irradiation, and bleomycin exposure, also caused a detectable response in untreated cells grown with the treated cells. We discuss evolutionary implications of these results

  17. Bystander effects in unicellular organisms

    Energy Technology Data Exchange (ETDEWEB)

    DeVeaux, Linda C. [Idaho Accelerator Center, Campus Box 8263, Idaho State University, Pocatello, ID 83209 (United States) and Department of Biological Sciences, Campus Box 8007, Idaho State University, Pocatello, ID 83209 (United States)]. E-mail: develind@isu.edu; Durtschi, Lynn S. [Department of Biological Sciences, Campus Box 8007, Idaho State University, Pocatello, ID 83209 (United States); Case, Jonathan G. [Department of Physics, Campus Box 8106, Idaho State University, Pocatello, ID 83209 (United States); Wells, Douglas P. [Department of Physics, Campus Box 8106, Idaho State University, Pocatello, ID 83209 (United States)

    2006-05-11

    Radiation-induced bystander effects have been seen in mammalian cells from diverse origins. These effects can be transmitted through the medium to cells not present at the time of irradiation. We have developed an assay for detecting bystander effects in the unicellular eukaryote, the fission yeast Schizosaccharomyces pombe. This assay allows maximal exposure of unirradiated cells to cells that have received electron beam irradiation. S. pombe cells were irradiated with 16-18 MeV electrons from a pulsed electron LINAC. When survival of the irradiated cells decreased to approximately 50%, forward-mutation to 2-deoxy-D-glucose resistance increased in the unirradiated bystander cells. Further increase in dose had no additional effect on this increase. In order to detect this response, it was necessary for the irradiated cell/unirradiated cell ratio to be high. Other cellular stresses, such as heat treatment, UV irradiation, and bleomycin exposure, also caused a detectable response in untreated cells grown with the treated cells. We discuss evolutionary implications of these results.

  18. Bystander effects in unicellular organisms.

    Science.gov (United States)

    DeVeaux, Linda C; Durtschi, Lynn S; Case, Jonathan G; Wells, Douglas P

    2006-05-11

    Radiation-induced bystander effects have been seen in mammalian cells from diverse origins. These effects can be transmitted through the medium to cells not present at the time of irradiation. We have developed an assay for detecting bystander effects in the unicellular eukaryote, the fission yeast Schizosaccharomyces pombe. This assay allows maximal exposure of unirradiated cells to cells that have received electron beam irradiation. S. pombe cells were irradiated with 16-18 MeV electrons from a pulsed electron LINAC. When survival of the irradiated cells decreased to approximately 50%, forward-mutation to 2-deoxy-d-glucose resistance increased in the unirradiated bystander cells. Further increase in dose had no additional effect on this increase. In order to detect this response, it was necessary for the irradiated cell/unirradiated cell ratio to be high. Other cellular stresses, such as heat treatment, UV irradiation, and bleomycin exposure, also caused a detectable response in untreated cells grown with the treated cells. We discuss evolutionary implications of these results.

  19. Identification and Functional Characterization of Genes Encoding Omega-3 Polyunsaturated Fatty Acid Biosynthetic Activities from Unicellular Microalgae

    Directory of Open Access Journals (Sweden)

    Royah Vaezi

    2013-12-01

    Full Text Available In order to identify novel genes encoding enzymes involved in the biosynthesis of nutritionally important omega-3 long chain polyunsaturated fatty acids, a database search was carried out in the genomes of the unicellular photoautotrophic green alga Ostreococcus RCC809 and cold-water diatom Fragilariopsis cylindrus. The search led to the identification of two putative “front-end” desaturases (Δ6 and Δ4 from Ostreococcus RCC809 and one Δ6-elongase from F. cylindrus. Heterologous expression of putative open reading frames (ORFs in yeast revealed that the encoded enzyme activities efficiently convert their respective substrates: 54.1% conversion of α-linolenic acid for Δ6-desaturase, 15.1% conversion of 22:5n-3 for Δ4-desaturase and 38.1% conversion of γ-linolenic acid for Δ6-elongase. The Δ6-desaturase from Ostreococcus RCC809 displays a very strong substrate preference resulting in the predominant synthesis of stearidonic acid (C18:4Δ6,9,12,15. These data confirm the functional characterization of omega-3 long chain polyunsaturated fatty acid biosynthetic genes from these two species which have until now not been investigated for such activities. The identification of these new genes will also serve to expand the repertoire of activities available for metabolically engineering the omega-3 trait in heterologous hosts as well as providing better insights into the synthesis of eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA in marine microalgae.

  20. Biosorption of U(VI) by the green algae Chlorella vulgaris in dependence of pH value and cell activity

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, M., E-mail: M.Vogel@fzd.de; Guenther, A.; Rossberg, A.; Li, B.; Bernhard, G.; Raff, J.

    2010-12-15

    Biosorption of uranium(VI) by the green alga Chlorella vulgaris was studied at varying uranium concentrations from 5 {mu}M to 1 mM, and in the environmentally relevant pH range of 4.4 to 7.0. Living cells bind in a 0.1 mM uranium solution at pH 4.4 within 5 min 14.3 {+-} 5.5 mg U/g dry biomass and dead cells 28.3 {+-} 0.6 mg U/g dry biomass which corresponds to 45% and 90% of total uranium in solution, respectively. During 96 h of incubation with uranium initially living cells died off and with 26.6 {+-} 2.1 mg U/g dry biomass bound similar amounts of uranium compared to dead cells, binding 27.0 {+-} 0.7 mg U/g dry biomass. In both cases, these amounts correspond to around 85% of the initially applied uranium. Interestingly, at a lower and more environmentally relevant uranium concentration of 5 {mu}M, living cells firstly bind with 1.3 {+-} 0.2 mg U/g dry biomass to 1.4 {+-} 0.1 mg U/g dry biomass almost all uranium within the first 5 min of incubation. But then algal cells again mobilize up to 80% of the bound uranium during ongoing incubation in the time from 48 h to 96 h. The release of metabolism related substances is suggested to cause this mobilization of uranium. As potential leachates for algal-bound uranium oxalate, citrate and ATP were tested and found to be able to mobilize more than 50% of the algal-bound uranium within 24 h. Differences in complexation of uranium by active and inactive algae cells were investigated with a combination of time-resolved laser-induced fluorescence spectroscopy (TRLFS), extended X-ray absorption fine structure (EXAFS) spectroscopy and attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. Obtained results demonstrated an involvement of carboxylic and organic/inorganic phosphate groups in the uranium complexation with varying contributions dependent on cell status, uranium concentration and pH.

  1. Biosorption of U(VI) by the green algae Chlorella vulgaris in dependence of pH value and cell activity

    International Nuclear Information System (INIS)

    Vogel, M.; Guenther, A.; Rossberg, A.; Li, B.; Bernhard, G.; Raff, J.

    2010-01-01

    Biosorption of uranium(VI) by the green alga Chlorella vulgaris was studied at varying uranium concentrations from 5 μM to 1 mM, and in the environmentally relevant pH range of 4.4 to 7.0. Living cells bind in a 0.1 mM uranium solution at pH 4.4 within 5 min 14.3 ± 5.5 mg U/g dry biomass and dead cells 28.3 ± 0.6 mg U/g dry biomass which corresponds to 45% and 90% of total uranium in solution, respectively. During 96 h of incubation with uranium initially living cells died off and with 26.6 ± 2.1 mg U/g dry biomass bound similar amounts of uranium compared to dead cells, binding 27.0 ± 0.7 mg U/g dry biomass. In both cases, these amounts correspond to around 85% of the initially applied uranium. Interestingly, at a lower and more environmentally relevant uranium concentration of 5 μM, living cells firstly bind with 1.3 ± 0.2 mg U/g dry biomass to 1.4 ± 0.1 mg U/g dry biomass almost all uranium within the first 5 min of incubation. But then algal cells again mobilize up to 80% of the bound uranium during ongoing incubation in the time from 48 h to 96 h. The release of metabolism related substances is suggested to cause this mobilization of uranium. As potential leachates for algal-bound uranium oxalate, citrate and ATP were tested and found to be able to mobilize more than 50% of the algal-bound uranium within 24 h. Differences in complexation of uranium by active and inactive algae cells were investigated with a combination of time-resolved laser-induced fluorescence spectroscopy (TRLFS), extended X-ray absorption fine structure (EXAFS) spectroscopy and attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. Obtained results demonstrated an involvement of carboxylic and organic/inorganic phosphate groups in the uranium complexation with varying contributions dependent on cell status, uranium concentration and pH.

  2. Seaweed extracts and unsaturated fatty acid constituents from the green alga Ulva lactuca as activators of the cytoprotective Nrf2–ARE pathway

    Science.gov (United States)

    Wang, Rui; Paul, Valerie J.; Luesch, Hendrik

    2013-01-01

    Increased amounts of reactive oxygen species (ROS) have been implicated in many pathological conditions, including cancer. The major machinery that the cell employs to neutralize excess ROS is through the activation of the antioxidant-response element (ARE) that controls the activation of many phase II detoxification enzymes. The transcription factor that recognizes the ARE, Nrf2, can be activated by a variety of small molecules, most of which contain an α,β-unsaturated carbonyl system. In the pursuit of chemopreventive agents from marine organisms, we built, fractionated, and screened a library of 30 field-collected eukaryotic algae from Florida. An edible green alga, Ulva lactuca, yielded multiple active fractions by ARE–luciferase reporter assay. We isolated three monounsaturated fatty acid (MUFA) derivatives as active components, including a new keto-type C18 fatty acid (1), the corresponding shorter chain C16 acid (2), and an amide derivative (3) of the C18 acid. Their chemical structures were elucidated by NMR and mass spectrometry. All three contain the conjugated enone motif between C7 and C9, which is thought to be responsible for the ARE activity. Subsequent biological studies focused on 1, the most active and abundant ARE activator isolated. C18 acid 1 induced the expression of ARE-regulated cytoprotective genes, including NAD(P)H:quinone oxidoreductase 1, heme oxygenase 1, thioredoxin reductase 1, both subunits of the glutamate–cysteine ligase (catalytic subunit and modifier subunit), and the cystine/glutamate exchange transporter, in IMR-32 human neuroblastoma cells. Its cellular activity requires the presence of Nrf2 and PI3K function, based on RNA interference and pharmacological inhibitor studies, respectively. Treatment with 1 led only to Nrf2 activation, and not the increase in production of NRF2 mRNA. To test its ARE activity and cytoprotective potential in vivo, we treated mice with a single dose of a U. lactuca fraction that was enriched

  3. Determination of elemental distribution in green micro-algae using synchrotron radiation nano X-ray fluorescence (SR-nXRF) and electron microscopy techniques--subcellular localization and quantitative imaging of silver and cobalt uptake by Coccomyxa actinabiotis.

    Science.gov (United States)

    Leonardo, T; Farhi, E; Boisson, A-M; Vial, J; Cloetens, P; Bohic, S; Rivasseau, C

    2014-02-01

    The newly discovered unicellular micro-alga Coccomyxa actinabiotis proves to be highly radio-tolerant and strongly concentrates radionuclides, as well as large amounts of toxic metals. This study helps in the understanding of the mechanisms involved in the accumulation and detoxification of silver and cobalt. Elemental distribution inside Coccomyxa actinabiotis cells was determined using synchrotron nano X-ray fluorescence spectroscopy at the ID22 nano fluorescence imaging beamline of the European Synchrotron Radiation Facility. The high resolution and high sensitivity of this technique enabled the assessment of elemental associations and exclusions in subcellular micro-algae compartments. A quantitative treatment of the scans was implemented to yield absolute concentrations of each endogenous and exogenous element with a spatial resolution of 100 nm and compared to the macroscopic content in cobalt and silver determined using inductively coupled plasma-mass spectrometry. The nano X-ray fluorescence imaging was complemented by transmission electron microscopy coupled to X-ray microanalysis (TEM-EDS), yielding differential silver distribution in the cell wall, cytosol, nucleus, chloroplast and mitochondria with unique resolution. The analysis of endogenous elements in control cells revealed that iron had a unique distribution; zinc, potassium, manganese, molybdenum, and phosphate had their maxima co-localized in the same area; and sulfur, copper and chlorine were almost homogeneously distributed among the whole cell. The subcellular distribution and quantification of cobalt and silver in micro-alga, assessed after controlled exposure to various concentrations, revealed that exogenous metals were mainly sequestered inside the cell rather than on mucilage or the cell wall, with preferential compartmentalization. Cobalt was homogeneously distributed outside of the chloroplast. Silver was localized in the cytosol at low concentration and in the whole cell excluding the

  4. Macro algae as substrate for biogas production

    DEFF Research Database (Denmark)

    Møller, Henrik; Sarker, Shiplu; Gautam, Dhan Prasad

    Algae as a substrate for biogas is superior to other crops since it has a much higher yield of biomass per unit area and since algae grows in the seawater there will be no competition with food production on agricultural lands. So far, the progress in treating different groups of algae as a source...... of energy is promising. In this study 5 different algae types were tested for biogas potential and two algae were subsequent used for co-digestion with manure. Green seaweed, Ulva lactuca and brown seaweed Laminaria digitata was co-digested with cattle manure at mesophilic and thermophilic condition...

  5. Air-drying of cells, the novel conditions for stimulated synthesis of triacylglycerol in a Green Alga, Chlorella kessleri.

    Directory of Open Access Journals (Sweden)

    Takuma Shiratake

    Full Text Available Triacylglycerol is used for the production of commodities including food oils and biodiesel fuel. Microalgae can accumulate triacylglycerol under adverse environmental conditions such as nitrogen-starvation. This study explored the possibility of air-drying of green algal cells as a novel and simple protocol for enhancement of their triacylglycerol content. Chlorella kessleri cells were fixed on the surface of a glass fibre filter and then subjected to air-drying with light illumination. The dry cell weight, on a filter, increased by 2.7-fold in 96 h, the corresponding chlorophyll content ranging from 1.0 to 1.3-fold the initial one. Concomitantly, the triacylglycerol content remarkably increased to 70.3 mole% of fatty acids and 15.9% (w/w, relative to total fatty acids and dry cell weight, respectively, like in cells starved of nitrogen. Reduction of the stress of air-drying by placing the glass filter on a filter paper soaked in H2O lowered the fatty acid content of triacylglycerol to 26.4 mole% as to total fatty acids. Moreover, replacement of the H2O with culture medium further decreased the fatty acid content of triacylglycerol to 12.2 mole%. It thus seemed that severe dehydration is required for full induction of triacylglycerol synthesis, and that nutritional depletion as well as dehydration are crucial environmental factors. Meanwhile, air-drying of Chlamydomonas reinhardtii cells increased the triacylglycerol content to only 37.9 mole% of fatty acids and 4.8% (w/w, relative to total fatty acids and dry cell weight, respectively, and a marked decrease in the chlorophyll content, on a filter, of 33%. Air-drying thus has an impact on triacylglycerol synthesis in C. reinhardtii also, however, the effect is considerably limited, owing probably to instability of the photosynthetic machinery. This air-drying protocol could be useful for the development of a system for industrial production of triacylglycerol with appropriate selection of the

  6. Oil accumulation in the model green alga Chlamydomonas reinhardtii: characterization, variability between common laboratory strains and relationship with starch reserves

    Directory of Open Access Journals (Sweden)

    Carrier Patrick

    2011-01-01

    Full Text Available Abstract Background When cultivated under stress conditions, many microalgae species accumulate both starch and oil (triacylglycerols. The model green microalga Chlamydomonas reinhardtii has recently emerged as a model to test genetic engineering or cultivation strategies aiming at increasing lipid yields for biodiesel production. Blocking starch synthesis has been suggested as a way to boost oil accumulation. Here, we characterize the triacylglycerol (TAG accumulation process in Chlamydomonas and quantify TAGs in various wild-type and starchless strains. Results In response to nitrogen deficiency, Chlamydomonas reinhardtii produced TAGs enriched in palmitic, oleic and linoleic acids that accumulated in oil-bodies. Oil synthesis was maximal between 2 and 3 days following nitrogen depletion and reached a plateau around day 5. In the first 48 hours of oil deposition, a ~80% reduction in the major plastidial membrane lipids occurred. Upon nitrogen re-supply, mobilization of TAGs started after starch degradation but was completed within 24 hours. Comparison of oil content in five common laboratory strains (CC124, CC125, cw15, CC1690 and 11-32A revealed a high variability, from 2 μg TAG per million cell in CC124 to 11 μg in 11-32A. Quantification of TAGs on a cell basis in three mutants affected in starch synthesis (cw15sta1-2, cw15sta6 and cw15sta7-1 showed that blocking starch synthesis did not result in TAG over-accumulation compared to their direct progenitor, the arginine auxotroph strain 330. Moreover, no significant correlation was found between cellular oil and starch levels among the twenty wild-type, mutants and complemented strains tested. By contrast, cellular oil content was found to increase steeply with salt concentration in the growth medium. At 100 mM NaCl, oil level similar to nitrogen depletion conditions could be reached in CC124 strain. Conclusion A reference basis for future genetic studies of oil metabolism in Chlamydomonas

  7. Effect of Inorganic and Organic Carbon Enrichments (DIC and DOC on the Photosynthesis and Calcification Rates of Two Calcifying Green Algae from a Caribbean Reef Lagoon.

    Directory of Open Access Journals (Sweden)

    Friedrich W Meyer

    Full Text Available Coral reefs worldwide are affected by increasing dissolved inorganic carbon (DIC and organic carbon (DOC concentrations due to ocean acidification (OA and coastal eutrophication. These two stressors can occur simultaneously, particularly in near-shore reef environments with increasing anthropogenic pressure. However, experimental studies on how elevated DIC and DOC interact are scarce and fundamental to understanding potential synergistic effects and foreseeing future changes in coral reef function. Using an open mesocosm experiment, the present study investigated the impact of elevated DIC (pHNBS: 8.2 and 7.8; pCO2: 377 and 1076 μatm and DOC (added as 833 μmol L-1 of glucose on calcification and photosynthesis rates of two common calcifying green algae, Halimeda incrassata and Udotea flabellum, in a shallow reef environment. Our results revealed that under elevated DIC, algal photosynthesis decreased similarly for both species, but calcification was more affected in H. incrassata, which also showed carbonate dissolution rates. Elevated DOC reduced photosynthesis and calcification rates in H. incrassata, while in U. flabellum photosynthesis was unaffected and thalus calcification was severely impaired. The combined treatment showed an antagonistic effect of elevated DIC and DOC on the photosynthesis and calcification rates of H. incrassata, and an additive effect in U. flabellum. We conclude that the dominant sand dweller H. incrassata is more negatively affected by both DIC and DOC enrichments, but that their impact could be mitigated when they occur simultaneously. In contrast, U. flabellum can be less affected in coastal eutrophic waters by elevated DIC, but its contribution to reef carbonate sediment production could be further reduced. Accordingly, while the capacity of environmental eutrophication to exacerbate the impact of OA on algal-derived carbonate sand production seems to be species-specific, significant reductions can be expected

  8. Effect of Inorganic and Organic Carbon Enrichments (DIC and DOC) on the Photosynthesis and Calcification Rates of Two Calcifying Green Algae from a Caribbean Reef Lagoon.

    Science.gov (United States)

    Meyer, Friedrich W; Schubert, Nadine; Diele, Karen; Teichberg, Mirta; Wild, Christian; Enríquez, Susana

    2016-01-01

    Coral reefs worldwide are affected by increasing dissolved inorganic carbon (DIC) and organic carbon (DOC) concentrations due to ocean acidification (OA) and coastal eutrophication. These two stressors can occur simultaneously, particularly in near-shore reef environments with increasing anthropogenic pressure. However, experimental studies on how elevated DIC and DOC interact are scarce and fundamental to understanding potential synergistic effects and foreseeing future changes in coral reef function. Using an open mesocosm experiment, the present study investigated the impact of elevated DIC (pHNBS: 8.2 and 7.8; pCO2: 377 and 1076 μatm) and DOC (added as 833 μmol L-1 of glucose) on calcification and photosynthesis rates of two common calcifying green algae, Halimeda incrassata and Udotea flabellum, in a shallow reef environment. Our results revealed that under elevated DIC, algal photosynthesis decreased similarly for both species, but calcification was more affected in H. incrassata, which also showed carbonate dissolution rates. Elevated DOC reduced photosynthesis and calcification rates in H. incrassata, while in U. flabellum photosynthesis was unaffected and thalus calcification was severely impaired. The combined treatment showed an antagonistic effect of elevated DIC and DOC on the photosynthesis and calcification rates of H. incrassata, and an additive effect in U. flabellum. We conclude that the dominant sand dweller H. incrassata is more negatively affected by both DIC and DOC enrichments, but that their impact could be mitigated when they occur simultaneously. In contrast, U. flabellum can be less affected in coastal eutrophic waters by elevated DIC, but its contribution to reef carbonate sediment production could be further reduced. Accordingly, while the capacity of environmental eutrophication to exacerbate the impact of OA on algal-derived carbonate sand production seems to be species-specific, significant reductions can be expected under future

  9. Rubisco Activase Is Required for Optimal Photosynthesis in the Green Alga Chlamydomonas reinhardtii in a Low-CO2 Atmosphere1

    Science.gov (United States)

    Pollock, Steve V.; Colombo, Sergio L.; Prout, Davey L.; Godfrey, Ashley C.; Moroney, James V.

    2003-01-01

    This report describes a Chlamydomonas reinhardtii mutant that lacks Rubisco activase (Rca). Using the BleR (bleomycin resistance) gene as a positive selectable marker for nuclear transformation, an insertional mutagenesis screen was performed to select for cells that required a high-CO2 atmosphere for optimal growth. The DNA flanking the BleR insert of one of the high-CO2-requiring strains was cloned using thermal asymmetric interlaced-polymerase chain reaction and inverse polymerase chain reaction and sequenced. The flanking sequence matched the C. reinhardtii Rca cDNA sequence previously deposited in the National Center for Biotechnology Information database. The loss of a functional Rca in the strain was confirmed by the absence of Rca mRNA and protein. The open reading frame for Rca was cloned and expressed in pSL18, a C. reinhardtii expression vector conferring paromomycin resistance. This construct partially complemented the mutant phenotype, supporting the hypothesis that the loss of Rca was the reason the mutant grew poorly in a low-CO2 atmosphere. Sequencing of the C. reinhardtii Rca gene revealed that it contains 10 exons ranging in size from 18 to 470 bp. Low-CO2-grown rca1 cultures had a growth rate and maximum rate of photosynthesis 60% of wild-type cells. Results obtained from experiments on a cia5 rca1 double mutant also suggest that the CO2-concentrating mechanism partially compensates for the absence of an active Rca in the green alga C. reinhardtii. PMID:14605215

  10. Litorimonas cladophorae sp. nov., a new alphaproteobacterium isolated from the Pacific green alga Cladophora stimpsoni, and emended descriptions of the genus Litorimonas and Litorimonas taeaensis.

    Science.gov (United States)

    Nedashkovskaya, Olga I; Kukhlevskiy, Andrey D; Zhukova, Natalia V; Kim, So-Jeong; Rhee, Sung-Keun

    2013-06-01

    A strictly aerobic, Gram-stain-negative, rod-shaped and red-orange pigmented bacterium, designated strain KMM 6395(T), was isolated from the green alga Cladophora stimpsoni and subjected to a polyphasic taxonomic study. Phylogenetic analysis based on 16S rRNA gene sequencing revealed that the novel strain affiliated to the family Hyphomonadaceae of the class Alphaproteobacteria being most closely related to the type strain of the single species of the genus Litorimonas, Litorimonas taeanensis G5(T), with 16S rRNA gene sequence similarity of 96.8 %. Strain KMM 6395(T) grew with 1-5 % NaCl and at 4-35 °C, hydrolysed starch and Tween 80. The DNA G+C content was 48.7 mol%. The prevalent fatty acids were C18:1 ω7c, C19:1 ω8c and C18:1 ω7c 10-methyl. The polar lipid profile was characterized by the presence of phosphatidylglycerol, monoglycosyldiglyceride, glucuronopyranosyldiglyceride and an unidentified glycolipid. The major respiratory quinone was Q-10. The significant molecular distinctiveness between the novel isolate and its nearest neighbour, L. taeanensis G5(T), were strongly supported by the differences in physiological and biochemical tests. Therefore, strain KMM 6395(T) represents a novel species of the genus Litorimonas, for which the name Litorimonas cladophorae sp. nov. is proposed. The type strain is KMM 6395(T) (=KCTC 23968(T) = LMG 26985(T)). The emended descriptions of the genus Litorimonas and L. taeaensis are also provided.

  11. Cd2+ Toxicity to a Green Alga Chlamydomonas reinhardtii as Influenced by Its Adsorption on TiO2 Engineered Nanoparticles

    Science.gov (United States)

    Yang, Wei-Wan; Miao, Ai-Jun; Yang, Liu-Yan

    2012-01-01

    In the present study, Cd2+ adsorption on polyacrylate-coated TiO2 engineered nanoparticles (TiO2-ENs) and its effect on the bioavailability as well as toxicity of Cd2+ to a green alga Chlamydomonas reinhardtii were investigated. TiO2-ENs could be well dispersed in the experimental medium and their pHpzc is approximately 2. There was a quick adsorption of Cd2+ on TiO2-ENs and a steady state was reached within 30 min. A pseudo-first order kinetics was found for the time-related changes in the amount of Cd2+ complexed with TiO2-ENs. At equilibrium, Cd2+ adsorption followed the Langmuir isotherm with the maximum binding capacity 31.9, 177.1, and 242.2 mg/g when the TiO2-EN concentration was 1, 10, and 100 mg/l, respectively. On the other hand, Cd2+ toxicity was alleviated in the presence of TiO2-ENs. Algal growth was less suppressed in treatments with comparable total Cd2+ concentration but more TiO2-ENs. However, such toxicity difference disappeared and all the data points could be fitted to a single Logistic dose-response curve when cell growth inhibition was plotted against the free Cd2+ concentration. No detectable amount of TiO2-ENs was found to be associated with the algal cells. Therefore, TiO2-ENs could reduce the free Cd2+ concentration in the toxicity media, which further lowered its bioavailability and toxicity to C. reinhardtii. PMID:22403644

  12. Influence of thylakoid membrane lipids on the structure of aggregated light-harvesting complexes of the diatom Thalassiosira pseudonana and the green alga Mantoniella squamata.

    Science.gov (United States)

    Schaller-Laudel, Susann; Latowski, Dariusz; Jemioła-Rzemińska, Małgorzata; Strzałka, Kazimierz; Daum, Sebastian; Bacia, Kirsten; Wilhelm, Christian; Goss, Reimund

    2017-07-01

    The study investigated the effect of the thylakoid membrane lipids monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), sulphoquinovosyldiacylglycerol (SQDG) and phosphatidylglycerol (PG) on the structure of two algal light-harvesting complexes (LHCs). In contrast to higher plants whose thylakoid membranes are characterized by an enrichment of the neutral galactolipids MGDG and DGDG, both the green alga Mantoniella squamata and the centric diatom Thalassiosira pseudonana contain membranes with a high content of the negatively charged lipids SQDG and PG. The algal thylakoids do not show the typical grana-stroma differentiation of higher plants but a regular arrangement. To analyze the effect of the membrane lipids, the fucoxanthin chlorophyll protein (FCP) complex of T. pseudonana and the LHC of M. squamata (MLHC) were prepared by successive cation precipitation using Triton X-100 as detergent. With this method, it is possible to isolate LHCs with a reduced amount of associated lipids in an aggregated state. The results from 77 K fluorescence and photon correlation spectroscopy show that neither the neutral galactolipids nor the negatively charged lipids are able to significantly alter the aggregation state of the FCP or the MLHC. This is in contrast to higher plants where SQDG and PG lead to a strong disaggregation of the LHCII whereas MGDG and DGDG induce the formation of large macroaggregates. The results indicate that LHCs which are integrated into thylakoid membranes with a high amount of negatively charged lipids and a regular arrangement are less sensitive to lipid-induced structural alterations than their counterparts in membranes enriched in neutral lipids with a grana-stroma differentiation. © 2017 Scandinavian Plant Physiology Society.

  13. The Study of Algae

    Science.gov (United States)

    Rushforth, Samuel R.

    1977-01-01

    Included in this introduction to the study of algae are drawings of commonly encountered freshwater algae, a summary of the importance of algae, descriptions of the seven major groups of algae, and techniques for collection and study of algae. (CS)

  14. The chloroplast genome sequence of the green alga Leptosira terrestris: multiple losses of the inverted repeat and extensive genome rearrangements within the Trebouxiophyceae

    Directory of Open Access Journals (Sweden)

    Turmel Monique

    2007-07-01

    Full Text Available Abstract Background In the Chlorophyta – the green algal phylum comprising the classes Prasinophyceae, Ulvophyceae, Trebouxiophyceae and Chlorophyceae – the chloroplast genome displays a highly variable architecture. While chlorophycean chloroplast DNAs (cpDNAs deviate considerably from the ancestral pattern described for the prasinophyte Nephroselmis olivacea, the degree of remodelling sustained by the two ulvophyte cpDNAs completely sequenced to date is intermediate relative to those observed for chlorophycean and trebouxiophyte cpDNAs. Chlorella vulgaris (Chlorellales is currently the only photosynthetic trebouxiophyte whose complete cpDNA sequence has been reported. To gain insights into the evolutionary trends of the chloroplast genome in the Trebouxiophyceae, we sequenced cpDNA from the filamentous alga Leptosira terrestris (Ctenocladales. Results The 195,081-bp Leptosira chloroplast genome resembles the 150,613-bp Chlorella genome in lacking a large inverted repeat (IR but differs greatly in gene order. Six of the conserved genes present in Chlorella cpDNA are missing from the Leptosira gene repertoire. The 106 conserved genes, four introns and 11 free standing open reading frames (ORFs account for 48.3% of the genome sequence. This is the lowest gene density yet observed among chlorophyte cpDNAs. Contrary to the situation in Chlorella but similar to that in the chlorophycean Scenedesmus obliquus, the gene distribution is highly biased over the two DNA strands in Leptosira. Nine genes, compared to only three in Chlorella, have significantly expanded coding regions relative to their homologues in ancestral-type green algal cpDNAs. As observed in chlorophycean genomes, the rpoB gene is fragmented into two ORFs. Short repeats account for 5.1% of the Leptosira genome sequence and are present mainly in intergenic regions. Conclusion Our results highlight the great plasticity of the chloroplast genome in the Trebouxiophyceae and indicate

  15. Soil algae

    African Journals Online (AJOL)

    Timothy Ademakinwa

    Also, the importance of algae in soil formation and soil fertility improvement cannot be over ... The presence of nitrogen fixing microalgae (Nostoc azollae) in the top soil of both vegetable ..... dung, fish food and dirty water from fish ponds on.

  16. Seaweed extracts and unsaturated fatty acid constituents from the green alga Ulva lactuca as activators of the cytoprotective Nrf2-ARE pathway.

    Science.gov (United States)

    Wang, Rui; Paul, Valerie J; Luesch, Hendrik

    2013-04-01

    Increased amounts of reactive oxygen species (ROS) have been implicated in many pathological conditions, including cancer. The major machinery that the cell employs to neutralize excess ROS is through the activation of the antioxidant-response element (ARE) that controls the activation of many phase II detoxification enzymes. The transcription factor that recognizes the ARE, Nrf2, can be activated by a variety of small molecules, most of which contain an α,β-unsaturated carbonyl system. In the pursuit of chemopreventive agents from marine organisms, we built, fractionated, and screened a library of 30 field-collected eukaryotic algae from Florida. An edible green alga, Ulva lactuca, yielded multiple active fractions by ARE-luciferase reporter assay. We isolated three monounsaturated fatty acid (MUFA) derivatives as active components, including a new keto-type C18 fatty acid (1), the corresponding shorter chain C16 acid (2), and an amide derivative (3) of the C18 acid. Their chemical structures were elucidated by NMR and mass spectrometry. All three contain the conjugated enone motif between C7 and C9, which is thought to be responsible for the ARE activity. Subsequent biological studies focused on 1, the most active and abundant ARE activator isolated. C18 acid 1 induced the expression of ARE-regulated cytoprotective genes, including NAD(P)H:quinone oxidoreductase 1, heme oxygenase 1, thioredoxin reductase 1, both subunits of the glutamate-cysteine ligase (catalytic subunit and modifier subunit), and the cystine/glutamate exchange transporter, in IMR-32 human neuroblastoma cells. Its cellular activity requires the presence of Nrf2 and PI3K function, based on RNA interference and pharmacological inhibitor studies, respectively. Treatment with 1 led only to Nrf2 activation, and not the increase in production of NRF2 mRNA. To test its ARE activity and cytoprotective potential in vivo, we treated mice with a single dose of a U. lactuca fraction that was enriched with

  17. Ecophysiological traits of various genotypes of a green key alga in biological soil crusts from the semi-arid Colorado Plateau, USA

    Czech Academy of Sciences Publication Activity Database

    Donner, A.; Ryšánek, David; Mikhailyuk, T.; Karsten, U.

    2017-01-01

    Roč. 26, č. 3 (2017), s. 2911-2923 ISSN 0921-8971 Institutional support: RVO:61388971 Keywords : Terrestrial algae * Desiccation * Photosynthesis Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 2.616, year: 2016

  18. Marine Bacteria from Danish Coastal Waters Show Antifouling Activity against the Marine Fouling Bacterium Pseudoalteromonas sp. Strain S91 and Zoospores of the Green Alga Ulva australis Independent of Bacteriocidal Activity

    DEFF Research Database (Denmark)

    Bernbom, Nete; Ng, Yoke Yin; Kjelleberg, Staffan

    2011-01-01

    , representing the major taxonomic groups, different seasons, and isolation strategies, were tested for antiadhesive effect against the marine biofilm-forming bacterium Pseudoalteromonas sp. strain S91 and zoospores of the green alga Ulva australis. The antiadhesive effects were assessed by quantifying...... the number of strain S91 or Ulva spores attaching to a preformed biofilm of each of the 22 strains. The strongest antifouling activity was found in Pseudoalteromonas strains. Biofilms of Pseudoalteromonas piscicida, Pseudoalteromonas tunicata, and Pseudoalteromonas ulvae prevented Pseudoalteromonas S91 from...

  19. The complete chloroplast DNA sequence of the green alga Oltmannsiellopsis viridis reveals a distinctive quadripartite architecture in the chloroplast genome of early diverging ulvophytes

    Directory of Open Access Journals (Sweden)

    Lemieux Claude

    2006-02-01

    Full Text Available Abstract Background The phylum Chlorophyta contains the majority of the green algae and is divided into four classes. The basal position of the Prasinophyceae has been well documented, but the divergence order of the Ulvophyceae, Trebouxiophyceae and Chlorophyceae is currently debated. The four complete chloroplast DNA (cpDNA sequences presently available for representatives of these classes have revealed extensive variability in overall structure, gene content, intron composition and gene order. The chloroplast genome of Pseudendoclonium (Ulvophyceae, in particular, is characterized by an atypical quadripartite architecture that deviates from the ancestral type by a large inverted repeat (IR featuring an inverted rRNA operon and a small single-copy (SSC region containing 14 genes normally found in the large single-copy (LSC region. To gain insights into the nature of the events that led to the reorganization of the chloroplast genome in the Ulvophyceae, we have determined the complete cpDNA sequence of Oltmannsiellopsis viridis, a representative of a distinct, early diverging lineage. Results The 151,933 bp IR-containing genome of Oltmannsiellopsis differs considerably from Pseudendoclonium and other chlorophyte cpDNAs in intron content and gene order, but shares close similarities with its ulvophyte homologue at the levels of quadripartite architecture, gene content and gene density. Oltmannsiellopsis cpDNA encodes 105 genes, contains five group I introns, and features many short dispersed repeats. As in Pseudendoclonium cpDNA, the rRNA genes in the IR are transcribed toward the single copy region featuring the genes typically found in the ancestral LSC region, and the opposite single copy region harbours genes characteristic of both the ancestral SSC and LSC regions. The 52 genes that were transferred from the ancestral LSC to SSC region include 12 of those observed in Pseudendoclonium cpDNA. Surprisingly, the overall gene organization of

  20. Assessing bio-available silver released from silver nanoparticles embedded in silica layers using the green algae Chlamydomonas reinhardtii as bio-sensors

    Energy Technology Data Exchange (ETDEWEB)

    Pugliara, Alessandro [nMat group-CEMES (Centre d' Elaboration de Matériaux et d' Etudes Structurales)-CNRS, Université de Toulouse, 29 rue Jeanne Marvig, BP 94347, F-31055 Toulouse Cedex 4 (France); LAPLACE (LAboratoire PLAsma et Conversion d' Energie), Université de Toulouse, CNRS, UPS, INPT, 118 route de Narbonne, F-31062 Toulouse (France); Makasheva, Kremena; Despax, Bernard [LAPLACE (LAboratoire PLAsma et Conversion d' Energie), Université de Toulouse, CNRS, UPS, INPT, 118 route de Narbonne, F-31062 Toulouse (France); Bayle, Maxime; Carles, Robert; Benzo, Patrizio; BenAssayag, Gérard; Pécassou, Béatrice [nMat group-CEMES (Centre d' Elaboration de Matériaux et d' Etudes Structurales)-CNRS, Université de Toulouse, 29 rue Jeanne Marvig, BP 94347, F-31055 Toulouse Cedex 4 (France); Sancho, Maria Carmen; Navarro, Enrique [IPE (Instituto Pirenaico de Ecología)-CSIC, Avda. Montañana 1005, Zaragoza 50059 (Spain); Echegoyen, Yolanda [I3A, Department of Analytical Chemistry, University of Zaragoza, C/ María de Luna 3, 50018, Zaragoza (Spain); Bonafos, Caroline, E-mail: bonafos@cemes.fr [nMat group-CEMES (Centre d' Elaboration de Matériaux et d' Etudes Structurales)-CNRS, Université de Toulouse, 29 rue Jeanne Marvig, BP 94347, F-31055 Toulouse Cedex 4 (France)

    2016-09-15

    Silver nanoparticles (AgNPs) because of their strong antibacterial activity are widely used in health-care sector and industrial applications. Their huge surface-volume ratio enhances the silver release compared to the bulk material, leading to an increased toxicity for microorganisms sensitive to this element. This work presents an assessment of the toxic effect on algal photosynthesis due to small (size < 20 nm) AgNPs embedded in silica layers. Two physical approaches were originally used to elaborate the nanocomposite structures: (i) low energy ion beam synthesis and (ii) combined silver sputtering and plasma polymerization. These techniques allow elaboration of a single layer of AgNPs embedded in silica films at defined nanometer distances (from 0 to 7 nm) beneath the free surface. The structural and optical properties of the nanostructures were studied by transmission electron microscopy and optical reflectance. The silver release from the nanostructures after 20 h of immersion in buffered water was measured by inductively coupled plasma mass spectrometry and ranges between 0.02 and 0.49 μM. The short-term toxicity of Ag to photosynthesis of Chlamydomonas reinhardtii was assessed by fluorometry. The obtained results show that embedding AgNPs reduces the interactions with the buffered water free media, protecting the AgNPs from fast oxidation. The release of bio-available silver (impacting on the algal photosynthesis) is controlled by the depth at which AgNPs are located for a given host matrix. This provides a procedure to tailor the toxicity of nanocomposites containing AgNPs. - Highlights: • Controlled synthesis of 2D arrays of silver nanoparticles embedded in silica. • Assessing bio-available silver release using the green algae as bio-sensors. • The Ag release can be controlled by the distance nanoparticles/dielectric surface. • All the Ag released in solution is in the form of Ag{sup +} ions. • Toxicity comparable to similar concentrations of

  1. Algae Resources

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-06-01

    Algae are highly efficient at producing biomass, and they can be found all over the planet. Many use sunlight and nutrients to create biomass, which contain key components—including lipids, proteins, and carbohydrates— that can be converted and upgraded to a variety of biofuels and products. A functional algal biofuels production system requires resources such as suitable land and climate, sustainable management of water resources, a supplemental carbon dioxide (CO2) supply, and other nutrients (e.g., nitrogen and phosphorus). Algae can be an attractive feedstock for many locations in the United States because their diversity allows for highpotential biomass yields in a variety of climates and environments. Depending on the strain, algae can grow by using fresh, saline, or brackish water from surface water sources, groundwater, or seawater. Additionally, they can grow in water from second-use sources such as treated industrial wastewater; municipal, agricultural, or aquaculture wastewater; or produced water generated from oil and gas drilling operations.

  2. Accumulation of polycyclic arenes in Baltic Sea algae

    Energy Technology Data Exchange (ETDEWEB)

    Veldre, I.A.; Itra, A.R.; Paal' me, L.P.; Kukk, Kh.A.

    1985-01-01

    The paper presents data on the level of benzo(a)pyrene (BP) and some other polycyclic arenes in alga and phanerogam specimens from different gulfs of the Baltic Sea. Algae were shown to absorb BP from sea water. The mean concentration of BP in sea water was under 0.004 microgram/1, while in algae it ranged 0.1-21.2 micrograms/kg dry weight. Algae accumulate BP to a higher degree than phanerogams. The highest concentrations of BP were found in algae Enteromorpha while the lowest ones in Furcellaria. In annual green algae, BP level was higher in autumn, i. e. at the end of vegetation period, than in spring. Brown algae Fucus vesiculosus is recommended for monitoring polycyclic arene pollution in the area from Vormsi Island to Kaesmu and green algae Cladophora or Enteromorpha in the eastern part of the Finnish Gulf.

  3. Cryopreservation studies of an artificial co-culture between the cobalamin-requiring green alga Lobomonas rostrata and the bacterium Mesorhizobium loti.

    Science.gov (United States)

    Ridley, Christian J A; Day, John G; Smith, Alison G

    2018-01-01

    Algal-bacterial co-cultures, rather than cultures of algae alone, are regarded as having the potential to enhance productivity and stability in industrial algal cultivation. As with other inocula in biotechnology, to avoid loss of production strains, it is important to develop preservation methods for the long-term storage of these cultures, and one of the most commonly used approaches is cryopreservation. However, whilst there are many reports of cryopreserved xenic algal cultures, little work has been reported on the intentional preservation of both algae and beneficial bacteria in xenic cultures. Instead, studies have focused on the development of methods to conserve the algal strain(s) present, or to avoid overgrowth of bacteria in xenic isolates during the post-thaw recovery phase. Here, we have established a co-cryopreservation method for the long-term storage of both partners in a unialgal-bacterial co-culture. This is an artificial model mutualism between the alga Lobomonas rostrata and the bacterium Mesorhizobium loti , which provides vitamin B 12 (cobalamin) to the alga in return for photosynthate. Using a Planer Kryo 360 controlled-rate cooler, post-thaw viability (PTV) values of 72% were obtained for the co-culture, compared to 91% for the axenic alga. The cultures were successfully revived after 6 months storage in liquid nitrogen, and continued to exhibit mutualism. Furthermore, the alga could be cryopreserved with non-symbiotic bacteria, without bacterial overgrowth occurring. It was also possible to use less controllable passive freezer chambers to cryopreserve the co-cultures, although the PTV was lower. Finally, we demonstrated that an optimised cryopreservation method may be used to prevent the overgrowth potential of non-symbiotic, adventitious bacteria in both axenic and co-cultures of L. rostrata after thawing.

  4. Aging and immortality in unicellular species.

    Science.gov (United States)

    Florea, Michael

    2017-10-01

    It has been historically thought that in conditions that permit growth, most unicellular species do not to age. This was particularly thought to be the case for symmetrically dividing species, as such species lack a clear distinction between the soma and the germline. Despite this, studies of the symmetrically dividing species Escherichia coli and Schizosaccharomyces pombe have recently started to challenge this notion. They indicate that E. coli and S. pombe do age, but only when subjected to environmental stress. If true, this suggests that aging may be widespread among microbial species in general, and that studying aging in microbes may inform other long-standing questions in aging. This review examines the recent evidence for and against replicative aging in symmetrically dividing unicellular organisms, the mechanisms that underlie aging, why aging evolved in these species, and how microbial aging fits into the context of other questions in aging. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Macroecology of unicellular organisms - patterns and processes.

    Science.gov (United States)

    Soininen, Janne

    2012-02-01

    Macroecology examines the relationship between organisms and their environment at large spatial (and temporal) scales. Typically, macroecologists explain the large-scale patterns of abundance, distribution and diversity. Despite the difficulties in sampling and characterizing microbial diversity, macroecologists have recently also been interested in unicellular organisms. Here, I review the current advances made in microbial macroecology, as well as discuss related ecosystem functions. Overall, it seems that microorganisms suit surprisingly well to known species abundance distributions and show positive relationship between distribution and adundance. Microbial species-area and distance-decay relationships tend to be weaker than for macroorganisms, but nonetheless significant. Few findings on altitudinal gradients in unicellular taxa seem to differ greatly from corresponding findings for larger taxa, whereas latitudinal gradients among microorganisms have either been clearly evident or absent depending on the context. Literature also strongly emphasizes the role of spatial scale for the patterns of diversity and suggests that patterns are affected by species traits as well as ecosystem characteristics. Finally, I discuss the large role of local biotic and abiotic variables driving the community assembly in unicellular taxa and eventually dictating how multiple ecosystem processes are performed. Present review highlights the fact that most microorganisms may not differ fundamentally from larger taxa in their large-scale distribution patterns. Yet, review also shows that many aspects of microbial macroecology are still relatively poorly understood and specific patterns depend on focal taxa and ecosystem concerned. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  6. Programmed cell death in trypanosomatids and other unicellular organisms.

    Science.gov (United States)

    Debrabant, Alain; Lee, Nancy; Bertholet, Sylvie; Duncan, Robert; Nakhasi, Hira L

    2003-03-01

    In multicellular organisms, cellular growth and development can be controlled by programmed cell death (PCD), which is defined by a sequence of regulated events. However, PCD is thought to have evolved not only to regulate growth and development in multicellular organisms but also to have a functional role in the biology of unicellular organisms. In protozoan parasites and in other unicellular organisms, features of PCD similar to those in multicellular organisms have been reported, suggesting some commonality in the PCD pathway between unicellular and multicellular organisms. However, more extensive studies are needed to fully characterise the PCD pathway and to define the factors that control PCD in the unicellular organisms. The understanding of the PCD pathway in unicellular organisms could delineate the evolutionary origin of this pathway. Further characterisation of the PCD pathway in the unicellular parasites could provide information regarding their pathogenesis, which could be exploited to target new drugs to limit their growth and treat the disease they cause.

  7. Biogenic Properties of Deep Waters from the Black Sea Reduction (Hydrogen Sulphide) Zone for Marine Algae

    OpenAIRE

    Polikarpov, Gennady G.; Lazorenko, Galina Е.; Тereschenko, Natalya N.

    2015-01-01

    Abstract Generalized data of biogenic properties investigations of the Black Sea deep waters from its reduction zone for marine algae are presented. It is shown on board and in laboratory that after pre-oxidation of hydrogen sulphide by intensive aeration of the deep waters lifted to the surface of the sea, they are ready to be used for cultivation of the Black Sea unicellular, planktonic, and multicellular, benthic, algae instead of artificial medium. Naturally balanced micro- and macroeleme...

  8. Chemical composition and antibacterial activity of extracts of freshwater green algae, Cladophora glomerata Kützing andMicrospora floccosa (Vaucher Thuret

    Directory of Open Access Journals (Sweden)

    Ratiphan Laungsuwon

    2014-12-01

    Full Text Available Freshwater macroalgae, Cladophora glomerata Kützing and Microspora floccosa (Vaucher Thuret, harvested from Nan River in northern Thailand, were extracted with hexane, ethyl acetate, methanol and hot water. The extracts were screened for antibacterial activities. Hexane and ethyl acetate extracts of both algae showed the activities against Bacillus cereus and Vibrio parahaemolyticus. The extracts were further separated using column chromatography and chemically characterized by GC–MS in order to be tentative identify the compounds responsible for such activities. The main compositions were fatty acid and other organic compounds, in which have not been reported in these algae. These results indicate that extracts of C. glomerata and M. floccosa exhibited appreciable antimicrobial activity and could be a source of valuable bioactive materials for health products.

  9. green

    Directory of Open Access Journals (Sweden)

    Elena Grigoryeva

    2011-02-01

    Full Text Available The “green” topic follows the “youngsters”, which is quite natural for the Russian language.Traditionally these words put together sound slightly derogatory. However, “green” also means fresh, new and healthy.For Russia, and for Siberia in particular, “green” architecture does sound new and fresh. Forced by the anxious reality, we are addressing this topic intentionally. The ecological crisis, growing energy prices, water, air and food deficits… Alexander Rappaport, our regular author, writes: “ It has been tolerable until a certain time, but under transition to the global civilization, as the nature is destroyed, and swellings of megapolises expand incredibly fast, the size and the significance of all these problems may grow a hundredfold”.However, for this very severe Siberian reality the newness of “green” architecture may turn out to be well-forgotten old. A traditional Siberian house used to be built on principles of saving and environmental friendliness– one could not survive in Siberia otherwise.Probably, in our turbulent times, it is high time to fasten “green belts”. But we should keep from enthusiastic sticking of popular green labels or repainting of signboards into green color. We should avoid being drowned in paper formalities under “green” slogans. And we should prevent the Earth from turning into the planet “Kin-dza-dza”.

  10. Mitochondrial uncoupling proteins in unicellular eukaryotes.

    Science.gov (United States)

    Jarmuszkiewicz, Wieslawa; Woyda-Ploszczyca, Andrzej; Antos-Krzeminska, Nina; Sluse, Francis E

    2010-01-01

    Uncoupling proteins (UCPs) are members of the mitochondrial anion carrier protein family that are present in the mitochondrial inner membrane and mediate free fatty acid (FFA)-activated, purine nucleotide (PN)-inhibited proton conductance. Since 1999, the presence of UCPs has been demonstrated in some non-photosynthesising unicellular eukaryotes, including amoeboid and parasite protists, as well as in non-fermentative yeast and filamentous fungi. In the mitochondria of these organisms, UCP activity is revealed upon FFA-induced, PN-inhibited stimulation of resting respiration and a decrease in membrane potential, which are accompanied by a decrease in membranous ubiquinone (Q) reduction level. UCPs in unicellular eukaryotes are able to divert energy from oxidative phosphorylation and thus compete for a proton electrochemical gradient with ATP synthase. Our recent work indicates that membranous Q is a metabolic sensor that might utilise its redox state to release the PN inhibition of UCP-mediated mitochondrial uncoupling under conditions of phosphorylation and resting respiration. The action of reduced Q (QH2) could allow higher or complete activation of UCP. As this regulatory feature was demonstrated for microorganism UCPs (A. castellanii UCP), plant and mammalian UCP1 analogues, and UCP1 in brown adipose tissue, the process could involve all UCPs. Here, we discuss the functional connection and physiological role of UCP and alternative oxidase, two main energy-dissipating systems in the plant-type mitochondrial respiratory chain of unicellular eukaryotes, including the control of cellular energy balance as well as preventive action against the production of reactive oxygen species. Copyright © 2009 Elsevier B.V. All rights reserved.

  11. Apoptosis in unicellular organisms: mechanisms and evolution.

    Science.gov (United States)

    Gordeeva, A V; Labas, Y A; Zvyagilskaya, R A

    2004-10-01

    Data about the programmed death (apoptosis) in unicellular organisms, from bacteria to ciliates, are discussed. Firstly apoptosis appeared in lower eukaryotes, but its mechanisms in these organisms are different from the classical apoptosis. During evolution, the apoptotic process has been improving gradually, with reactive oxygen species and Ca2+ playing an essential role in triggering apoptosis. All eukaryotic organisms have apoptosis inhibitors, which might be introduced by viruses. In the course of evolution, caspases and apoptosis-inducing factor appeared before other apoptotic proteins, with so-called death receptors being the last among them. The functional analogs of eukaryotic apoptotic proteins take parts in the programmed death of bacteria.

  12. Recovery of soil unicellular eukaryotes: an efficiency and activity analysis on the single cell level.

    Science.gov (United States)

    Lentendu, Guillaume; Hübschmann, Thomas; Müller, Susann; Dunker, Susanne; Buscot, François; Wilhelm, Christian

    2013-12-01

    Eukaryotic unicellular organisms are an important part of the soil microbial community, but they are often neglected in soil functional microbial diversity analysis, principally due to the absence of specific investigation methods in the special soil environment. In this study we used a method based on high-density centrifugation to specifically isolate intact algal and yeast cells, with the aim to analyze them with flow cytometry and sort them for further molecular analysis such as deep sequencing. Recovery efficiency was tested at low abundance levels that fit those in natural environments (10(4) to 10(6) cells per g soil). Five algae and five yeast morphospecies isolated from soil were used for the testing. Recovery efficiency was between 1.5 to 43.16% and 2 to 30.2%, respectively, and was dependent on soil type for three of the algae. Control treatments without soil showed that the majority of cells were lost due to the method itself (58% and 55.8% respectively). However, the cell extraction technique did not much compromise cell vitality because a fluorescein di-acetate assay indicated high viability percentages (73.3% and 97.2% of cells, respectively). The low abundant algae and yeast morphospecies recovered from soil were cytometrically analyzed and sorted. Following, their DNA was isolated and amplified using specific primers. The developed workflow enables isolation and enrichment of intact autotrophic and heterotrophic soil unicellular eukaryotes from natural environments for subsequent application of deep sequencing technologies. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. The pH-dependent toxicity of basic pharmaceuticals in the green algae Scenedesmus vacuolatus can be explained with a toxicokinetic ion-trapping model

    Energy Technology Data Exchange (ETDEWEB)

    Neuwoehner, Judith [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Uberlandstr. 133, 8600 Duebendorf (Switzerland); Institute of Biogeochemistry and Pollutant Dynamics (IBP), ETH Zuerich, 8092 Zuerich (Switzerland); Escher, Beate I., E-mail: b.escher@uq.edu.au [The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 39 Kessels Road, Brisbane, QLD 4108 (Australia); Eawag, Swiss Federal Institute of Aquatic Science and Technology, Uberlandstr. 133, 8600 Duebendorf (Switzerland)

    2011-01-17

    Several previous studies revealed that pharmaceuticals with aliphatic amine function exhibit a higher toxicity toward algae than toward other aquatic organisms. Here we investigated the pH-dependent toxicity of the five basic pharmaceuticals fluoxetine, its metabolite norfluoxetine, propranolol, lidocaine, and trimipramine. For all of them, the toxicity increased with increasing pH when aqueous effect concentrations were considered. Since these pharmaceuticals contain a basic amine group that is protonated and thus positively charged at physiological pH and because algae are capable of biological homeostasis, i.e., pH inside the algal cell remains virtually independent of variable external pH, the speciation of aliphatic amines can be different inside the algal cell compared to the external medium. Therefore, we hypothesized that the high toxicity of aliphatic amines in algae is a toxicokinetic effect caused by speciation and not a toxicodynamic effect caused by a specific mode of toxic action. This hypothesis also implies that internal effect concentrations are independent on external pH. On this basis we developed a simple toxicokinetic model, which assumes that only the neutral molecule is bioavailable and can pass the plasma membrane. This assumption is likely to be valid at pH values down to two units below the acidity constant (pK{sub a}). For lower pH values a more complex model would have to be evoked that includes, an, albeit smaller, permeability of the charged species. For pH > pK{sub a} - 2, we can safely assume that the outer membrane serves as insulator and that the charged species is formed inside the cell according to the pH in the cytoplasm. Thus this toxicokinetic model is an ion-trapping model. The input parameters of this model are the measured aqueous effect concentrations determined as a function of pH and the membrane-water partitioning, which was modelled by the liposome-water partition coefficients of the neutral and cationic species. They

  14. The pH-dependent toxicity of basic pharmaceuticals in the green algae Scenedesmus vacuolatus can be explained with a toxicokinetic ion-trapping model

    International Nuclear Information System (INIS)

    Neuwoehner, Judith; Escher, Beate I.

    2011-01-01

    Several previous studies revealed that pharmaceuticals with aliphatic amine function exhibit a higher toxicity toward algae than toward other aquatic organisms. Here we investigated the pH-dependent toxicity of the five basic pharmaceuticals fluoxetine, its metabolite norfluoxetine, propranolol, lidocaine, and trimipramine. For all of them, the toxicity increased with increasing pH when aqueous effect concentrations were considered. Since these pharmaceuticals contain a basic amine group that is protonated and thus positively charged at physiological pH and because algae are capable of biological homeostasis, i.e., pH inside the algal cell remains virtually independent of variable external pH, the speciation of aliphatic amines can be different inside the algal cell compared to the external medium. Therefore, we hypothesized that the high toxicity of aliphatic amines in algae is a toxicokinetic effect caused by speciation and not a toxicodynamic effect caused by a specific mode of toxic action. This hypothesis also implies that internal effect concentrations are independent on external pH. On this basis we developed a simple toxicokinetic model, which assumes that only the neutral molecule is bioavailable and can pass the plasma membrane. This assumption is likely to be valid at pH values down to two units below the acidity constant (pK a ). For lower pH values a more complex model would have to be evoked that includes, an, albeit smaller, permeability of the charged species. For pH > pK a - 2, we can safely assume that the outer membrane serves as insulator and that the charged species is formed inside the cell according to the pH in the cytoplasm. Thus this toxicokinetic model is an ion-trapping model. The input parameters of this model are the measured aqueous effect concentrations determined as a function of pH and the membrane-water partitioning, which was modelled by the liposome-water partition coefficients of the neutral and cationic species. They were

  15. Structure and organization of phycobilisomes on membranes of the red alga Porphyridium cruentum

    NARCIS (Netherlands)

    Arteni, Ana A.; Liu, Lu-Ning; Aartsma, Thijs J.; Zhang, Yu-Zhong; Zhou, Bai-Cheng; Boekema, Egbert J.

    In the present work, electron microscopy and single particle averaging was performed to investigate the supramolecular architecture of hemiellipsoidal phycobilisomes from the unicellular red alga Porphyridium cruentum. The dimensions were measured as 60 x 41 x 34 nm (length x width x height) for

  16. Not in your usual Top 10: protists that infect plants and algae.

    Science.gov (United States)

    Schwelm, Arne; Badstöber, Julia; Bulman, Simon; Desoignies, Nicolas; Etemadi, Mohammad; Falloon, Richard E; Gachon, Claire M M; Legreve, Anne; Lukeš, Julius; Merz, Ueli; Nenarokova, Anna; Strittmatter, Martina; Sullivan, Brooke K; Neuhauser, Sigrid

    2018-04-01

    Fungi, nematodes and oomycetes belong to the most prominent eukaryotic plant pathogenic organisms. Unicellular organisms from other eukaryotic lineages, commonly addressed as protists, also infect plants. This review provides an introduction to plant pathogenic protists, including algae infecting oomycetes, and their current state of research. © 2017 THE AUTHORS. MOLECULAR PLANT PATHOLOGY PUBLISHED BY BRITISH SOCIETY FOR PLANT PATHOLOGY AND JOHN WILEY & SONS LTD.

  17. Synthetic algae and cyanobacteria: Great potential but what is the exposure risk?

    Science.gov (United States)

    Green algae and cyanobacteria (hereafter, algae) have the attractive properties of relatively simple genomes, rapid growth rates, and an ability to synthesize useful compounds using solar energy and carbon dioxide. They are attractive targets for applications of synthetic biology...

  18. Differences in species richness patterns between unicellular and multicellular organisms.

    Science.gov (United States)

    Hillebrand, Helmut; Watermann, Frank; Karez, Rolf; Berninger, Ulrike-G

    2001-01-01

    For unicellular organisms, a lack of effects of local species richness on ecosystem function has been proposed due to their locally high species richness and their ubiquitous distribution. High dispersal ability and high individual numbers may enable unicellular taxa to occur everywhere. Using our own and published data sets on uni- and multicellular organisms, we conducted thorough statistical analyses to test whether (1) unicellular taxa show higher relative local species richness compared to multicellular taxa, (2) unicellular taxa show lower slopes of the species:area relationships and species:individuals relationships, and (3) the species composition of unicellular taxa is less influenced by geographic distance compared to multicellular taxa. We found higher local species richness compared to the global species pool for unicellular organisms than for metazoan taxa. The difference was significant if global species richness was conservatively estimated but not if extrapolated, and therefore higher richness estimates were used. Both microalgae and protozoans showed lower slopes between species richness and sample size (area or individuals) compared to macrozoobenthos, also indicating higher local species richness for unicellular taxa. The similarity of species composition of both benthic diatoms and ciliates decreased with increasing geographic distance. This indicated restricted dispersal ability of protists and the absence of ubiquity. However, a steeper slope between similarity and distance was found for polychaetes and corals, suggesting a stronger effect of distance on the dispersal of metazoans compared to unicellular taxa. In conclusion, we found partly different species richness patterns among uni- and multicellular eukaryotes, but no strict ubiquity of unicellular taxa. Therefore, the effect of local unicellular species richness on ecosystem function has to be reanalyzed. Macroecological patterns suggested for multicellular organisms may differ in

  19. Algae-Based Carbon Sequestration

    Science.gov (United States)

    Haoyang, Cai

    2018-03-01

    Our civilization is facing a series of environmental problems, including global warming and climate change, which are caused by the accumulation of green house gases in the atmosphere. This article will briefly analyze the current global warming problem and propose a method that we apply algae cultivation to absorb carbon and use shellfish to sequestrate it. Despite the importance of decreasing CO2 emissions or developing carbon-free energy sources, carbon sequestration should be a key issue, since the amount of carbon dioxide that already exists in the atmosphere is great enough to cause global warming. Algae cultivation would be a good choice because they have high metabolism rates and provides shellfish with abundant food that contains carbon. Shellfish’s shells, which are difficult to be decomposed, are reliable storage of carbon, compared to dead organisms like trees and algae. The amount of carbon that can be sequestrated by shellfish is considerable. However, the sequestrating rate of algae and shellfish is not high enough to affect the global climate. Research on algae and shellfish cultivation, including gene technology that aims to create “super plants” and “super shellfish”, is decisive to the solution. Perhaps the baton of history will shift to gene technology, from nuclear physics that has lost appropriate international environment after the end of the Cold War. Gene technology is vital to human survival.

  20. The Capsaspora genome reveals a complex unicellular prehistory of animals.

    Science.gov (United States)

    Suga, Hiroshi; Chen, Zehua; de Mendoza, Alex; Sebé-Pedrós, Arnau; Brown, Matthew W; Kramer, Eric; Carr, Martin; Kerner, Pierre; Vervoort, Michel; Sánchez-Pons, Núria; Torruella, Guifré; Derelle, Romain; Manning, Gerard; Lang, B Franz; Russ, Carsten; Haas, Brian J; Roger, Andrew J; Nusbaum, Chad; Ruiz-Trillo, Iñaki

    2013-01-01

    To reconstruct the evolutionary origin of multicellular animals from their unicellular ancestors, the genome sequences of diverse unicellular relatives are essential. However, only the genome of the choanoflagellate Monosiga brevicollis has been reported to date. Here we completely sequence the genome of the filasterean Capsaspora owczarzaki, the closest known unicellular relative of metazoans besides choanoflagellates. Analyses of this genome alter our understanding of the molecular complexity of metazoans' unicellular ancestors showing that they had a richer repertoire of proteins involved in cell adhesion and transcriptional regulation than previously inferred only with the choanoflagellate genome. Some of these proteins were secondarily lost in choanoflagellates. In contrast, most intercellular signalling systems controlling development evolved later concomitant with the emergence of the first metazoans. We propose that the acquisition of these metazoan-specific developmental systems and the co-option of pre-existing genes drove the evolutionary transition from unicellular protists to metazoans.

  1. Inorganic phosphate uptake in unicellular eukaryotes.

    Science.gov (United States)

    Dick, Claudia F; Dos-Santos, André L A; Meyer-Fernandes, José R

    2014-07-01

    Inorganic phosphate (Pi) is an essential nutrient for all organisms. The route of Pi utilization begins with Pi transport across the plasma membrane. Here, we analyzed the gene sequences and compared the biochemical profiles, including kinetic and modulator parameters, of Pi transporters in unicellular eukaryotes. The objective of this review is to evaluate the recent findings regarding Pi uptake mechanisms in microorganisms, such as the fungi Neurospora crassa and Saccharomyces cerevisiae and the parasite protozoans Trypanosoma cruzi, Trypanosoma rangeli, Leishmania infantum and Plasmodium falciparum. Pi uptake is the key step of Pi homeostasis and in the subsequent signaling event in eukaryotic microorganisms. Biochemical and structural studies are important for clarifying mechanisms of Pi homeostasis, as well as Pi sensor and downstream pathways, and raise possibilities for future studies in this field. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Screening of Various Herbicide Modes of Action for Selective Control of Algae Responsible for Harmful Blooms

    Science.gov (United States)

    2009-01-01

    included, Scenedesmus quadricauda and Selenastrum sp. After a two-week exposure period, all flasks were filtered. The planktonic algae were measured...activity against the various algal species tested (Figures 1 through 7). Aside from the reduction in biomass of the green alga Scenedesmus by...controls (Figures 1 through 7). Penoxsulam was highly active against the blue-greens Cylindrospermopsis and Anabaena, and the green alga Scenedesmus

  3. Sensitivity of the green alga Pediastrum duplex Meyen to allelochemicals is strain-specific and not related to co-occurrence with allelopathic macrophytes.

    Directory of Open Access Journals (Sweden)

    Falk Eigemann

    Full Text Available Interspecific differences in the response of microalgae to stress have numerous ecological implications. However, little is known of intraspecific sensitivities and the potential role of local genetic adaptation of populations. We compared the allelochemical sensitivity of 23 Pediastrum duplex Meyen strains, a common component of the freshwater phytoplankton. In order to test for local genetic adaptation, strains were isolated from water bodies with and without the allelopathically-active submerged macrophyte Myriophyllum. Strains were assigned to P. duplex on the basis of cell shape and colony morphology and only P. duplex strains that belonged to the same lineage in an ITS rDNA phylogeny were used. Inhibition of strain growth rates and maximum quantum yields of photosystem II were measured after exposure to tannic acid (TA and co-culture with Myriophyllum spicatum. Growth rate inhibition varied over one order of magnitude between the P. duplex strains. There was no correlation between the presence of Myriophyllum in the source location and the sensitivity of the strains to TA or the presence of Myriophyllum, suggesting that at least strong unidirectional local adaptation to Myriophyllum had not taken place in the studied water bodies. The maximum quantum yield of photosystem II of TA exposed algae decreased, whereas the yield of algae exposed to M. spicatum was slightly higher than that of the controls. The ranking of P. duplex strain sensitivities differed between the types of exposure (single additions of TA versus co-existence with M. spicatum and the parameter measured (growth rate versus maximum quantum yield, emphasizing the importance of measuring multiple traits when analysing strain-specific sensitivities towards allelochemicals. The observation that sensitivities to allelochemicals vary widely among strains of a single freshwater algal species should be taken into account if evaluating ecological consequences of allelopathic

  4. Algae commensal community in Genlisea traps

    Directory of Open Access Journals (Sweden)

    Konrad Wołowski

    2011-01-01

    Full Text Available The community of algae occurring in Genlisea traps and on the external traps surface in laboratory conditions were studied. A total of 29 taxa were found inside the traps, with abundant diatoms, green algae (Chlamydophyceae and four morphotypes of chrysophytes stomatocysts. One morphotype is described as new for science. There are two ways of algae getting into Genlisea traps. The majority of those recorded inside the traps, are mobile; swimming freely by flagella or moving exuding mucilage like diatoms being ablate to colonize the traps themselves. Another possibility is transport of algae by invertebrates such as mites and crustaceans. In any case algae in the Genlisea traps come from the surrounding environment. Two dominant groups of algae (Chladymonas div. and diatoms in the trap environment, show ability to hydrolyze phosphomonoseters. We suggest that algae in carnivorous plant traps can compete with plant (host for organic phosphate (phosphomonoseters. From the spectrum and ecological requirements of algal species found in the traps, environment inside the traps seems to be acidic. However, further studies are needed to test the relations between algae and carnivorous plants both in laboratory conditions and in the natural environment. All the reported taxa are described briefly and documented with 74 LM and SEM micrographs.

  5. Biomineralization of unicellular organisms: an unusual membrane biochemistry for the production of inorganic nano- and microstructures.

    Science.gov (United States)

    Bäuerlein, Edmund

    2003-02-10

    With evolution, Nature has ingeniously succeeded in giving rise to an impressive variety of inorganic structures. Every organism that synthesizes biogenic minerals does so in a form that is unique to that species. This biomineralization is apparently biologically controlled. It is thus expected that both the synthesis and the form of every specific biogenic mineral is genetically determined and controlled. An investigation of the mechanism of biomineralization has only become possible with the development of modern methods in molecular biology. Unicellular organisms such as magnetic bacteria, calcareous algae, and diatoms, all of which are amongst the simplest forms of life, are particularly suited to be investigated by these methods. Crystals and composites of proteins and amorphous inorganic polymers are formed as complex structures within these organisms; these structures are not known in conventional inorganic chemistry.

  6. Atividade antioxidante in vitro de extratos de algumas algas verdes (Chlorophyta do litoral catarinense (Brasil Antioxidant in vitro activity of extracts of some green seaweed (Chlorophyta from southern Brazilian coast

    Directory of Open Access Journals (Sweden)

    Melissa dos Santos Raymundo

    2004-12-01

    Full Text Available O efeito antioxidante de quatro espécies de algas marinhas do filo Chlorophyta (Codium decorticatum, Enteromorpha intestinalis, Ulva fasciata e Chaetomorpha anteninna foi avaliado através da inibição da peroxidação do ácido linoléico em emulsão. Os extratos etéreos e metanólicos, na concentração de 0,01%, foram obtidos por extração seqüencial das biomassas secas. As espécies mais efetivas sobre a peroxidação lipídica foram Enteromorpha intestinalis e Chaetomorpha anteninna, com porcentagens de inibição acima de 70%. A habilidade dos extratos metanólicos para seqüestrar o peróxido de hidrogênio foi avaliada, obtendo-se valores médios para porcentagens de captura entre 1,26% e 20,01%. Além disto, quantificaram-se os teores de clorofila a, carotenóides totais e compostos fenólicos totais nas biomassas algais. Os resultados indicam que as algas verdes estudadas são uma fonte promissora de compostos biologicamente ativos com propriedades antioxidantes.The antioxidant activity of four species of green seaweeds of the phylo Chlorophyta (Codium decorticatum, Enteromorpha intestinalis, Ulva fasciata and Chaetomorpha anteninna collected at the seacoast of the State of Santa Catarina, Brazil, was evaluated by means of the inhibition of peroxidation of linoleic acid converted into emulsion. Both ethereal and methanolic extracts were obtained from dried biomasses by sequential extraction procedures in concentrations of 0.01%. The most efficient species towards lipid peroxidation were E. intestinalis and C. anteninna with inhibition yields above 70% .The capacity of methanolic extracts to quench hydrogen peroxide was also estimated. Mean values varied from 1.26 to 20.01%. Chlorophylls a, total carotenoids and phenolic compounds were also quantified in the biomasses. Results indicated that studied green seaweeds are a very promising source of biologically active compounds with antioxidant properties.

  7. Hydrodynamic synchronization of flagella on the surface of the colonial alga Volvox carteri

    Science.gov (United States)

    Brumley, Douglas; Polin, Marco; Goldstein, Raymond; Pedley, Timothy

    2012-11-01

    Whether on the surface of unicellular ciliates or in the respiratory epithelium, groups of eukaryotic cilia and flagella are capable of coordinating their beating over large scales. The mechanism responsible for the emergence of these metachronal waves is still unclear, mostly because finding an experimental system in which the beating filaments can be followed individually is challenging. We propose the multicellular green alga Volvox carteri as an ideal model system to study metachronal coordination, and report the existence of robust metachronal waves on its surface. Inspired by flagellar tip trajectories of Volvox somatic cells, we model a flagellum using a sphere of radius a elastically bound to a circular orbit of radius r0, perpendicular to a no-slip plane. This elastohydrodynamic model of weakly-coupled self-sustained oscillators can be recast in terms of interacting phase oscillators, offering an intuitive understanding of the mechanism driving the emergence of coordination. Our results confirm that elasticity is fundamental to guarantee fast and robust synchronization, and that sufficiently compliant trajectories lead to the emergence of metachronal waves in a manner essentially independent of boundary conditions.

  8. Chromosome organizaton in simple and complex unicellular organisms.

    Science.gov (United States)

    O'Sullivan, Justin M

    2011-01-01

    The genomes of unicellular organisms form complex 3-dimensional structures. This spatial organization is hypothesized to have a significant role in genomic function. Spatial organization is not limited solely to the three-dimensional folding of the chromosome(s) in genomes but also includes genome positioning, and the folding and compartmentalization of any additional genetic material (e.g. episomes) present within complex genomes. In this comment, I will highlight similarities in the spatial organization of eukaryotic and prokaryotic unicellular genomes.

  9. Downsides and benefits of unicellularity in budding yeast

    Science.gov (United States)

    Balazsi, Gabor; Chen, Lin; Kuzdzal-Fick, Jennie

    Yeast cells that do not separate after cell division form clumps. Clumping was shown to aid utilization of certain sugars, but its effects in stressful conditions are unknown. Generally speaking, what are the costs and benefits of unicellularity versus clumping multicellularity in normal and stressful conditions? To address this question, we evolved clumping yeast towards unicellularity by continuously propagating only those cells that remain suspended in liquid culture after settling. Whole-genome sequencing indicated that mutations in the AMN1 (antagonist of mitotic exit network) gene underlie the changes from clumping to unicellular phenotypes in these evolved yeast cells. Simple models predict that clumping should hinder growth in normal conditions while being protective in stress. Accordingly, we find experimentally that yeast clumps are more resistant to freeze/thaw, hydrogen peroxide, and ethanol stressors than their unicellular counterparts. On the other hand, unicellularity seems to be advantageous in normal conditions. Overall, these results reveal the downsides and benefits of unicellularity in different environmental conditions and uncover its genetic bases in yeast. This research was supported by the NIH Director's New Innovator Award Program (1DP2 OD006481-01), by NSF/IOS 1021675 and the Laufer Center for Physical & Quantitative Biology.

  10. Study of metal bioaccumulation by nuclear microprobe analysis of algae fossils and living algae cells

    International Nuclear Information System (INIS)

    Guo, P.; Wang, J.; Li, X.; Zhu, J.; Reinert, T.; Heitmann, J.; Spemann, D.; Vogt, J.; Flagmeyer, R.-H.; Butz, T.

    2000-01-01

    Microscopic ion-beam analysis of palaeo-algae fossils and living green algae cells have been performed to study the metal bioaccumulation processes. The algae fossils, both single cellular and multicellular, are from the late Neoproterozonic (570 million years ago) ocean and perfectly preserved within a phosphorite formation. The biosorption of the rare earth element ions Nd 3+ by the green algae species euglena gracilis was investigated with a comparison between the normal cells and immobilized ones. The new Leipzig Nanoprobe, LIPSION, was used to produce a proton beam with 2 μm size and 0.5 nA beam current for this study. PIXE and RBS techniques were used for analysis and imaging. The observation of small metal rich spores (<10 μm) surrounding both of the fossils and the living cells proved the existence of some specific receptor sites which bind metal carrier ligands at the microbic surface. The bioaccumulation efficiency of neodymium by the algae cells was 10 times higher for immobilized algae cells. It confirms the fact that the algae immobilization is an useful technique to improve its metal bioaccumulation

  11. Water-stable diblock polystyrene-block-poly(2-vinyl pyridine) and diblock polystyrene-block-poly(methyl methacrylate) cylindrical patterned surfaces inhibit settlement of zoospores of the green alga Ulva.

    Science.gov (United States)

    Grozea, Claudia M; Gunari, Nikhil; Finlay, John A; Grozea, Daniel; Callow, Maureen E; Callow, James A; Lu, Zheng-Hong; Walker, Gilbert C

    2009-04-13

    Nanopatterned surfaces with hydrophobic and hydrophilic domains were produced using the diblock copolymer polystyrene-block-poly(2-vinyl pyridine) (PS-b-P2VP) and polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA). The PS-b-P2VP diblock copolymer, mixed with the cross-linker benzophenone and spin-coated onto silicon wafers, showed self-assembled cylindrical structures, which were retained after UV treatment for cross-linking. The thin films displayed cylindrical domains after immersion in water. This study shows that pattern retention in water is possible for a long period of time, at least for two weeks in pure water and three weeks in artificial seawater. The PS-b-PMMA diblock showed self-assembled cylindrical structures. PS-b-P2VP and PS-b-PMMA cylindrical patterned surfaces showed reduced settlement of zoospores of the green alga Ulva compared to unpatterned surfaces. The copolymers were investigated using atomic force microscopy and X-ray photoelectron spectroscopy.

  12. UV-induced effects on growth, photosynthetic performance and sunscreen contents in different populations of the green alga Klebsormidium fluitans (Streptophyta) from alpine soil crusts.

    Science.gov (United States)

    Kitzing, C; Pröschold, T; Karsten, U

    2014-02-01

    Members of the green algal genus Klebsormidium (Klebsormidiales, Streptophyta) are typical components of biological soil crust communities worldwide, which exert important ecological functions. Klebsormidium fluitans (F. Gay) Lokhorst was isolated from an aeroterrestrial biofilm as well as from four different biological soil crusts along an elevational gradient between 600 and 2350 m in the Tyrolean and South Tyrolean Alps (Austria, Italy), which are characterised by seasonally high solar radiation. Since the UVtolerance of Klebsormidium has not been studied in detail, an ecophysiological and biochemical study was applied. The effects of controlled artificial ultraviolet radiation (UVR; sampling location. All data indicate a generally high UV tolerance which surely contributes to the aeroterrestrial lifestyle of K. fluitans in soil crusts of the alpine regions of the European Alps.

  13. A relative contribution of carbon from green tide algae Cladophora glomerata and Ulva intestinalis in the coastal food webs in the Neva Estuary (Baltic Sea).

    Science.gov (United States)

    Golubkov, Sergey M; Berezina, Nadezhda A; Gubelit, Yulia I; Demchuk, Anna S; Golubkov, Mikhail S; Tiunov, Alexei V

    2018-01-01

    We analyzed stable isotope composition of carbon and nitrogen of suspended organic matter (seston) and tissues of macroalgae, macroinvertebrates and fish from the coastal area of the highly eutrophic Neva Estuary to test a hypothesis that organic carbon of macroalgae Cladophora glomerata and Ulva intestinalis produced during green tides may be among primary sources supporting coastal food webs. The Stable Isotope Bayesian mixing model (SIAR) showed that consumers poorly use organic carbon produced by macroalgae. According to the results of SIAR modeling, benthic macroinvertebrates and fish mostly rely on pelagic derived carbon as a basal resource for their production. Only some species of macroinvertebrates consumed macroalgae. Fish used this resource directly consuming zooplankton or indirectly via benthic macroinvertebrates. This was consistent with the results of the gut content analysis, which revealed a high proportion of zooplankton in the guts of non-predatory fish. Copyright © 2017. Published by Elsevier Ltd.

  14. Magnetic separation of algae

    Science.gov (United States)

    Nath, Pulak; Twary, Scott N.

    2016-04-26

    Described herein are methods and systems for harvesting, collecting, separating and/or dewatering algae using iron based salts combined with a magnetic field gradient to separate algae from an aqueous solution.

  15. Influence of Algae Age and Population on the Response to TiO2 Nanoparticles

    OpenAIRE

    David M. Metzler; Ayca Erdem; Chin Pao Huang

    2018-01-01

    This work shows the influence of algae age (at the time of the exposure) and the initial algae population on the response of green algae Raphidocelis subcapitata to titanium dioxide nanoparticles (TiO2 NPs). The different algae age was obtained by changes in flow rate of continually stirred tank reactors prior to NP exposure. Increased algae age led to a decreased growth, variations in chlorophyll content, and an increased lipid peroxidation. Increased initial algae population (0.3−4.2 × 106 ...

  16. Caulerpa racemosa: a marine green alga for eco-friendly synthesis of silver nanoparticles and its catalytic degradation of methylene blue.

    Science.gov (United States)

    Edison, Thomas Nesakumar Jebakumar Immanuel; Atchudan, Raji; Kamal, Chennappan; Lee, Yong Rok

    2016-09-01

    In this study, a simple and green method has been demonstrated for the synthesis of highly stable silver nanoparticles (AgNPs) using aqueous extract of Caulerpa racemosa (C. racemosa) as a reducing and capping agent. The formation and stability of AgNPs were studied using visual observation and UV-Visible (UV-Vis) spectroscopy. The stable AgNPs were further characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy and high resolution transmission electron microscopy (HR-TEM) with energy dispersive spectroscopic (EDS) methods. The biosynthesized AgNPs showed a sharp surface plasmon resonance peak at 441 nm in the visible region and they have extended stability which has been confirmed by the UV-Vis spectroscopic results. XRD result revealed the crystalline nature of synthesized AgNPs and they are mainly oriented in (111) plane. FT-IR studies proved that the phytoconstituents of C. racemosa protect the AgNPs from aggregation and also which are responsible for the high stability. The size of synthesized AgNPs was approximately 25 nm with distorted spherical shape, identified from the HR-TEM images. The synthesized AgNPs showed excellent catalytic activity towards degradation of methylene blue.

  17. Genome-Scale Metabolic Model for the Green Alga Chlorella vulgaris UTEX 395 Accurately Predicts Phenotypes under Autotrophic, Heterotrophic, and Mixotrophic Growth Conditions.

    Science.gov (United States)

    Zuñiga, Cristal; Li, Chien-Ting; Huelsman, Tyler; Levering, Jennifer; Zielinski, Daniel C; McConnell, Brian O; Long, Christopher P; Knoshaug, Eric P; Guarnieri, Michael T; Antoniewicz, Maciek R; Betenbaugh, Michael J; Zengler, Karsten

    2016-09-01

    The green microalga Chlorella vulgaris has been widely recognized as a promising candidate for biofuel production due to its ability to store high lipid content and its natural metabolic versatility. Compartmentalized genome-scale metabolic models constructed from genome sequences enable quantitative insight into the transport and metabolism of compounds within a target organism. These metabolic models have long been utilized to generate optimized design strategies for an improved production process. Here, we describe the reconstruction, validation, and application of a genome-scale metabolic model for C. vulgaris UTEX 395, iCZ843. The reconstruction represents the most comprehensive model for any eukaryotic photosynthetic organism to date, based on the genome size and number of genes in the reconstruction. The highly curated model accurately predicts phenotypes under photoautotrophic, heterotrophic, and mixotrophic conditions. The model was validated against experimental data and lays the foundation for model-driven strain design and medium alteration to improve yield. Calculated flux distributions under different trophic conditions show that a number of key pathways are affected by nitrogen starvation conditions, including central carbon metabolism and amino acid, nucleotide, and pigment biosynthetic pathways. Furthermore, model prediction of growth rates under various medium compositions and subsequent experimental validation showed an increased growth rate with the addition of tryptophan and methionine. © 2016 American Society of Plant Biologists. All rights reserved.

  18. Genome-Scale Metabolic Model for the Green Alga Chlorella vulgaris UTEX 395 Accurately Predicts Phenotypes under Autotrophic, Heterotrophic, and Mixotrophic Growth Conditions1

    Science.gov (United States)

    Zuñiga, Cristal; Li, Chien-Ting; Zielinski, Daniel C.; Guarnieri, Michael T.; Antoniewicz, Maciek R.; Zengler, Karsten

    2016-01-01

    The green microalga Chlorella vulgaris has been widely recognized as a promising candidate for biofuel production due to its ability to store high lipid content and its natural metabolic versatility. Compartmentalized genome-scale metabolic models constructed from genome sequences enable quantitative insight into the transport and metabolism of compounds within a target organism. These metabolic models have long been utilized to generate optimized design strategies for an improved production process. Here, we describe the reconstruction, validation, and application of a genome-scale metabolic model for C. vulgaris UTEX 395, iCZ843. The reconstruction represents the most comprehensive model for any eukaryotic photosynthetic organism to date, based on the genome size and number of genes in the reconstruction. The highly curated model accurately predicts phenotypes under photoautotrophic, heterotrophic, and mixotrophic conditions. The model was validated against experimental data and lays the foundation for model-driven strain design and medium alteration to improve yield. Calculated flux distributions under different trophic conditions show that a number of key pathways are affected by nitrogen starvation conditions, including central carbon metabolism and amino acid, nucleotide, and pigment biosynthetic pathways. Furthermore, model prediction of growth rates under various medium compositions and subsequent experimental validation showed an increased growth rate with the addition of tryptophan and methionine. PMID:27372244

  19. Errors When Extracting Oil from Algae

    Science.gov (United States)

    Murphy, E.; Treat, R.; Ichiuji, T.

    2014-12-01

    Oil is in popular demand, but the worldwide amount of oil is decreasing and prices for it are steadily increasing. Leading scientists have been working to find a solution of attaining oil in an economically and environmentally friendly way. Researchers at the U.S. Department of Energy's Pacific Northwest National Laboratory (PNNL) have determined that "a small mixture of algae and water can be turned into crude oil in less than an hour" (Sheehan, Duhahay, Benemann, Poessler). There are various ways of growing the algae, such as closed loop and open loop methods, as well as processes of extracting oil, such as hydrothermal liquefaction and the hexane-solvent method. Our objective was to grow the algae (C. reinhardtii) and extract oil from it using NaOH and HCl, because we had easy access to those specific chemicals. After two trials of attempted algae growth, we discovered that a bacteria was killing off the algae. This led us to further contemplation on how this dead algae and bacteria are affecting our environment, and the organisms within it. Eutrophication occurs when excess nutrients stimulate rapid growth of algae in an aquatic environment. This can clog waterways and create algal blooms in blue-green algae, as well as neurotoxic red tide phytoplankton. These microscopic algae die upon consumption of the nutrients in water and are degraded by bacteria. The bacteria respires and creates an acidic environment with the spontaneous conversion of carbon dioxide to carbonic acid in water. This process of degradation is exactly what occurred in our 250 mL flask. When the phytoplankton attacked our algae, it created a hypoxic environment, which eliminated any remaining amounts of oxygen, carbon dioxide, and nutrients in the water, resulting in a miniature dead zone. These dead zones can occur almost anywhere where there are algae and bacteria, such as the ocean, and make it extremely difficult for any organism to survive. This experiment helped us realize the

  20. Chloroplast DNA sequence of the green alga Oedogonium cardiacum (Chlorophyceae: Unique genome architecture, derived characters shared with the Chaetophorales and novel genes acquired through horizontal transfer

    Directory of Open Access Journals (Sweden)

    Lemieux Claude

    2008-06-01

    Full Text Available Abstract Background To gain insight into the branching order of the five main lineages currently recognized in the green algal class Chlorophyceae and to expand our understanding of chloroplast genome evolution, we have undertaken the sequencing of chloroplast DNA (cpDNA from representative taxa. The complete cpDNA sequences previously reported for Chlamydomonas (Chlamydomonadales, Scenedesmus (Sphaeropleales, and Stigeoclonium (Chaetophorales revealed tremendous variability in their architecture, the retention of only few ancestral gene clusters, and derived clusters shared by Chlamydomonas and Scenedesmus. Unexpectedly, our recent phylogenies inferred from these cpDNAs and the partial sequences of three other chlorophycean cpDNAs disclosed two major clades, one uniting the Chlamydomonadales and Sphaeropleales (CS clade and the other uniting the Oedogoniales, Chaetophorales and Chaetopeltidales (OCC clade. Although molecular signatures provided strong support for this dichotomy and for the branching of the Oedogoniales as the earliest-diverging lineage of the OCC clade, more data are required to validate these phylogenies. We describe here the complete cpDNA sequence of Oedogonium cardiacum (Oedogoniales. Results Like its three chlorophycean homologues, the 196,547-bp Oedogonium chloroplast genome displays a distinctive architecture. This genome is one of the most compact among photosynthetic chlorophytes. It has an atypical quadripartite structure, is intron-rich (17 group I and 4 group II introns, and displays 99 different conserved genes and four long open reading frames (ORFs, three of which are clustered in the spacious inverted repeat of 35,493 bp. Intriguingly, two of these ORFs (int and dpoB revealed high similarities to genes not usually found in cpDNA. At the gene content and gene order levels, the Oedogonium genome most closely resembles its Stigeoclonium counterpart. Characters shared by these chlorophyceans but missing in members

  1. Motility, Force Generation, and Energy Consumption of Unicellular Parasites.

    Science.gov (United States)

    Hochstetter, Axel; Pfohl, Thomas

    2016-07-01

    Motility is a key factor for pathogenicity of unicellular parasites, enabling them to infiltrate and evade host cells, and perform several of their life-cycle events. State-of-the-art methods of motility analysis rely on a combination of optical tweezers with high-resolution microscopy and microfluidics. With this technology, propulsion forces, energies, and power generation can be determined so as to shed light on the motion mechanisms, chemotactic behavior, and specific survival strategies of unicellular parasites. With these new tools in hand, we can elucidate the mechanisms of motility and force generation of unicellular parasites, and identify ways to manipulate and eventually inhibit them. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Marine Bacteria from Danish Coastal Waters Show Antifouling Activity against the Marine Fouling Bacterium Pseudoalteromonas sp. Strain S91 and Zoospores of the Green Alga Ulva australis Independent of Bacteriocidal Activity▿†

    Science.gov (United States)

    Bernbom, Nete; Ng, Yoke Yin; Kjelleberg, Staffan; Harder, Tilmann; Gram, Lone

    2011-01-01

    The aims of this study were to determine if marine bacteria from Danish coastal waters produce antifouling compounds and if antifouling bacteria could be ascribed to specific niches or seasons. We further assess if antibacterial effect is a good proxy for antifouling activity. We isolated 110 bacteria with anti-Vibrio activity from different sample types and locations during a 1-year sampling from Danish coastal waters. The strains were identified as Pseudoalteromonas, Phaeobacter, and Vibrionaceae based on phenotypic tests and partial 16S rRNA gene sequence similarity. The numbers of bioactive bacteria were significantly higher in warmer than in colder months. While some species were isolated at all sampling locations, others were niche specific. We repeatedly isolated Phaeobacter gallaeciensis at surfaces from one site and Pseudoalteromonas tunicata at two others. Twenty-two strains, representing the major taxonomic groups, different seasons, and isolation strategies, were tested for antiadhesive effect against the marine biofilm-forming bacterium Pseudoalteromonas sp. strain S91 and zoospores of the green alga Ulva australis. The antiadhesive effects were assessed by quantifying the number of strain S91 or Ulva spores attaching to a preformed biofilm of each of the 22 strains. The strongest antifouling activity was found in Pseudoalteromonas strains. Biofilms of Pseudoalteromonas piscicida, Pseudoalteromonas tunicata, and Pseudoalteromonas ulvae prevented Pseudoalteromonas S91 from attaching to steel surfaces. P. piscicida killed S91 bacteria in the suspension cultures, whereas P. tunicata and P. ulvae did not; however, they did prevent adhesion by nonbactericidal mechanism(s). Seven Pseudoalteromonas species, including P. piscicida and P. tunicata, reduced the number of settling Ulva zoospores to less than 10% of the number settling on control surfaces. The antifouling alpP gene was detected only in P. tunicata strains (with purple and yellow pigmentation), so

  3. Lacinutrix cladophorae sp. nov., a flavobacterium isolated from the green alga Cladophora stimpsonii, transfer of Flavirhabdus iliipiscaria Shakeela et al. 2015 to the genus Lacinutrix as Lacinutrix iliipiscaria comb. nov. and emended description of the genus Lacinutrix.

    Science.gov (United States)

    Nedashkovskaya, Olga I; Kim, Song-Gun; Zhukova, Natalia V; Lee, Jung-Sook; Mikhailov, Valery V

    2016-11-01

    A strictly aerobic, Gram-stain-negative, rod-shaped, motile by gliding and yellow-pigmented bacterium, designated strain 7Alg 4T, was isolated from the green alga Cladophora stimpsonii. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the novel strain was affiliated to the family Flavobacteriaceae of the phylum Bacteroidetes, and was most closely related to the recognized species of the genera Lacinutrixand Flavirhabdus, with 16S rRNA gene sequence similarities of 95.1-98.1 and 97.0 %, respectively. Strain 7Alg 4T grew in the presence of 1-5 % NaCl and at 4-32 °C, and hydrolysed aesculin, gelatin, starch and Tween 80. The prevalent fatty acids were iso-C15 : 1 G, iso-C15 : 0, iso-C17 : 0 3-OH, iso-C15 : 0 3-OH and C15 : 0. The polar lipid profile was characterized by the presence of phosphatidylethanolamine, three unidentified aminolipids and four unidentified lipids. The major respiratory quinone was MK-6. The DNA G+C content was 31.9 mol%. On the basis of the differences in 16S rRNA gene sequences, chemotaxonomic and phenotypic characteristics, it is suggested that strain 7Alg 4T represents a novel species of the genus Lacinutrix, for which the name Lacinutrixcladophorae sp. nov. is proposed. The type strain is 7Alg 4T (=KCTC 23036T=KMM 6381T). Reclassification of Flavirhabdus iliipiscaria as Lacinutrix iliipiscaria comb. nov. and an emend of the genus Lacinutrix are also proposed.

  4. [Characteristics of the proteins of unicellular organisms as potential components of ecological life-support systems].

    Science.gov (United States)

    Barashkov, V A; Trubachev, I N; Gitel'zon, I I

    1979-01-01

    A comparative characterization of the biological value of proteins from green and blue-green algae, bacteria, and microbial coenosis of straw mineralizing active sludge is given with respect to the fractional composition of total protein, its amino acid composition, and affinity for proteolytic enzymes in vitro. The above microorganisms have an adequate amino acid composition, a high content of essential amino acids, and differ in their content of readily soluble proteins. The presence of protein complexes with other cellular components, for instance lipids and carbohydrates, seems to be responsible for a poor digestibility of these proteins.

  5. The genome of Cyanothece 51142, a unicellular diazotrophic cyanobacterium important in the marine nitrogen cycle

    Energy Technology Data Exchange (ETDEWEB)

    Welsh, Eric A.; Liberton, Michelle L.; Stockel, Jana; Loh, Thomas; Elvitigala, Thanura R.; Wang, Chunyan; Wollam, Aye; Fulton, Robert S.; Clifton, Sandra W.; Jacobs, Jon M.; Aurora, Rajeev; Ghosh, Bijoy K.; Sherman, Louis A.; Smith, Richard D.; Wilson, Richard K.; Pakrasi, Himadri B.

    2008-09-30

    Cyanobacteria are oxygenic photosynthetic bacteria that have significant roles in global biological carbon sequestration and oxygen production. They occupy a diverse range of habitats, from open ocean, to hot springs, deserts, and arctic waters. Cyanobacteria are known as the progenitors of the chloroplasts of plants and algae, and are the simplest known organisms to exhibit circadian behavior4. Cyanothece sp. ATCC 51142 is a unicellular marine cyanobacterium capable of N2-fixation, a process that is biochemically incompatible with oxygenic photosynthesis. To resolve this problem, Cyanothece performs photosynthesis during the day and nitrogen fixation at night, thus temporally separating these processes in the same cell. The genome of Cyanothece 51142 was completely sequenced and found to contain a unique arrangement of one large circular chromosome, four small plasmids, and one linear chromosome, the first report of such a linear element in a photosynthetic bacterium. Annotation of the Cyanothece genome was aided by the use of highthroughput proteomics data, enabling the reclassification of 25% of the proteins with no informative sequence homology. Phylogenetic analysis suggests that nitrogen fixation is an ancient process that arose early in evolution and has subsequently been lost in many cyanobacterial strains. In cyanobacterial cells, the circadian clock influences numerous processes, including carbohydrate synthesis, nitrogen fixation, photosynthesis, respiration, and the cell division cycle. During a diurnal period, Cyanothece cells actively accumulate and degrade different storage inclusion bodies for the products of photosynthesis and N2-fixation. This ability to utilize metabolic compartmentalization and energy storage makes Cyanothece an ideal system for bioenergy research, as well as studies of how a unicellular organism balances multiple, often incompatible, processes in the same cell.

  6. Molecular analysis of the replication program in unicellular model organisms.

    Science.gov (United States)

    Raghuraman, M K; Brewer, Bonita J

    2010-01-01

    Eukaryotes have long been reported to show temporal programs of replication, different portions of the genome being replicated at different times in S phase, with the added possibility of developmentally regulated changes in this pattern depending on species and cell type. Unicellular model organisms, primarily the budding yeast Saccharomyces cerevisiae, have been central to our current understanding of the mechanisms underlying the regulation of replication origins and the temporal program of replication in particular. But what exactly is a temporal program of replication, and how might it arise? In this article, we explore this question, drawing again on the wealth of experimental information in unicellular model organisms.

  7. What do unicellular organisms teach us about DNA methylation?

    Science.gov (United States)

    Harony, Hala; Ankri, Serge

    2008-05-01

    DNA methylation is an epigenetic hallmark that has been studied intensively in mammals and plants. However, knowledge of this phenomenon in unicellular organisms is scanty. Examining epigenetic regulation, and more specifically DNA methylation, in these organisms represents a unique opportunity to better understand their biology. The determination of their methylation status is often complicated by the presence of several differentiation stages in their life cycle. This article focuses on some recent advances that have revealed the unexpected nature of the epigenetic determinants present in protozoa. The role of the enigmatic DNA methyltransferase Dnmt2 in unicellular organisms is discussed.

  8. Factors controlling induction of reproduction in algae--review: the text.

    Science.gov (United States)

    Agrawal, S C

    2012-09-01

    This review surveys on the influence of different environmental factors like light (intensity, quality, photoperiod), temperature, season, nutrients (inorganic, organic), biotic factors (algal extracellular products, bacterial association, animals grazing), osmotic stress, pH of the medium, wave motion and mechanical shock, pollution, and radiations (UV, X-rays, gamma radiation) on the induction (or inhibition) of algal reproduction like cell division in unicellular algae, and formation of zoospores, aplanospores, akinetes, cysts, antheridia, oogonia, zygospores, etc.

  9. Cellulose degradation and assimilation by the unicellular phototrophic eukaryote Chlamydomonas reinhardtii.

    Science.gov (United States)

    Blifernez-Klassen, Olga; Klassen, Viktor; Doebbe, Anja; Kersting, Klaudia; Grimm, Philipp; Wobbe, Lutz; Kruse, Olaf

    2012-01-01

    Plants convert sunlight to biomass, which is primarily composed of lignocellulose, the most abundant natural biopolymer and a potential feedstock for fuel and chemical production. Cellulose assimilation has so far only been described for heterotrophic organisms that rely on photosynthetically active primary producers of organic compounds. Among phototrophs, the unicellular green microalga Chlamydomonas reinhardtii is widely known as one of the best established model organisms. It occupies many habitats, including aquatic and soil ecosystems. This ubiquity underscores the versatile metabolic properties of this microorganism. Here we present yet another paradigm of adaptation for C. reinhardtii, highlighting its photoheterotrophic ability to utilize cellulose for growth in the absence of other carbon sources. When grown under CO(2)-limiting conditions in the light, secretion of endo-β-1,4-glucanases by the cell causes digestion of exogenous cellulose, followed by cellobiose uptake and assimilation. Phototrophic microbes like C. reinhardtii may thus serve as biocatalysts for cellulosic biofuel production.

  10. Molecular toxicity of cerium oxide nanoparticles to the freshwater alga Chlamydomonas reinhardtii is associated with supra-environmental exposure concentrations

    Science.gov (United States)

    Taylor, Nadine S.; Merrifield, Ruth; Williams, Tim D.; Chipman, J. Kevin; Lead, Jamie R.; Viant, Mark R.

    2016-01-01

    Abstract Ceria nanoparticles (NPs) are widely used as fuel catalysts and consequently are likely to enter the environment. Their potential impacts on. biota at environmentally relevant concentrations, including uptake and toxicity, remain to be elucidated and quantitative data on which to assess risk are sparse. Therefore, a definitive assessment of the molecular and phenotypic effects of ceria NPs was undertaken, using well-characterised mono-dispersed NPs as their toxicity is likely to be higher, enabling a conservative hazard assessment. Unbiased transcriptomics and metabolomics approaches were used to investigate the potential toxicity of tightly constrained 4–5 nm ceria NPs to the unicellular green alga, Chlamydomonas reinhardtii, a sentinel freshwater species. A wide range of exposure concentrations were investigated from predicted environmental levels, to support hazard assessment, to supra-environmental levels to provide insight into molecular toxicity pathways. Ceria NPs were internalised into intracellular vesicles within C. reinhardtii, yet caused no significant effect on algal growth at any exposure concentration. Molecular perturbations were only detected at supra-environmental ceria NP-concentrations, primarily down-regulation of photosynthesis and carbon fixation with associated effects on energy metabolism. For acute exposures to small mono-dispersed particles, it can be concluded there should be little concern regarding their dispersal into the environment for this trophic level. PMID:25740379

  11. Behaviour of technetium in marine algae

    International Nuclear Information System (INIS)

    Bonotto, S.; Kirchmann, R.; Van Baelen, J.; Hurtger, C.; Cogneau, M.; Van der Ben, D.; Verthe, C.; Bouquegneau, J.M.

    1985-01-01

    Uptake and distribution of technetium were studied in several green (Acetabularia acetabulum, Boergesenia forbesii, Ulva lactuca) and brown (Ascophyllum nodosum, Fucus serratus, Fucus spiralis and Fucus vesiculosus) marine algae. Technetium was supplied to the algae as Tc-95m-pertechnetate. Under laboratory conditions, the algae were capable of accumulating technetium, with the exception, however, of Boergesenia, which showed concentration factors (C.F.) comprised between 0.28 and 0.71. The concentration of technetium-99 in Fucus spiralis, collected along the Belgian coast, was measured by a radiochemical procedure. The intracellular distribution of technetium was studied by differential centrifugation in Acetabularia and by the puncturing technique in Boergesenia. The chemical forms of technetium penetrated into the cells were investigated by selective chemical extractions, molecular sieving and thin layer chromatography

  12. Freshwater algae of the Nevada Test Site

    International Nuclear Information System (INIS)

    Taylor, W.D.; Giles, K.R.

    1979-06-01

    Fifty-two species of freshwater algae were identified in samples collected from the eight known natural springs of the Nevada Test Site. Although several species were widespread, 29 species were site specific. Diatoms provided the greatest variety of species at each spring. Three-fifths of all algal species encountered were diatoms. Well-developed mats of filamentous green algae (Chlorophyta) were common in many of the water tanks associated with the springs and accounted for most of the algal biomass. Major nutrients were adequate, if not abundant, in most spring waters - growth being limited primarily by light and physical habitat. There was some evidence of cesium-137 bioconcentration by algae at several of the springs

  13. Behaviour of technetium in marine algae

    International Nuclear Information System (INIS)

    Bonotto, S.; Kirchmann, R.; Baelen, J. van; Hurtgen, C.; Cogneau, M.; Ben, D. van der; Verthe, C.; Bouquegneau, J.M.

    1986-01-01

    Uptake and distribution of technetium were studied in several green (Acetabularia acetabulum, Boergesenia forbesii, Ulva lactuca) and brown (Ascophyllum nodosum, Fucus serratus, Fucus spiralis and Fucus vesiculosus) marine algae. Technetium was supplied to the algae as Tc-95-pertechnetate. Under laboratory conditions, the algae were capable of accumulating technetium, with the exception, however, of Boergesenia, which showed concentration factors (C.F.) comprised between 0.28 and 0.71. The concentration of technetium-99 in Fucus spiralis, collected along the Belgian coast, was measured by a radiochemical procedure. The intracellular distribution of technetium was studied by differential centrifugation in Acetabularia and by the puncturing technique in Boergesenia. The chemical forms of technetium penetrated into the cells were investigated by selective chemical extractions, molecular sieving and thin layer chromatography. (author)

  14. Compositional patterns in the genomes of unicellular eukaryotes.

    Science.gov (United States)

    Costantini, Maria; Alvarez-Valin, Fernando; Costantini, Susan; Cammarano, Rosalia; Bernardi, Giorgio

    2013-11-05

    The genomes of multicellular eukaryotes are compartmentalized in mosaics of isochores, large and fairly homogeneous stretches of DNA that belong to a small number of families characterized by different average GC levels, by different gene concentration (that increase with GC), different chromatin structures, different replication timing in the cell cycle, and other different properties. A question raised by these basic results concerns how far back in evolution the compartmentalized organization of the eukaryotic genomes arose. In the present work we approached this problem by studying the compositional organization of the genomes from the unicellular eukaryotes for which full sequences are available, the sample used being representative. The average GC levels of the genomes from unicellular eukaryotes cover an extremely wide range (19%-60% GC) and the compositional patterns of individual genomes are extremely different but all genomes tested show a compositional compartmentalization. The average GC range of the genomes of unicellular eukaryotes is very broad (as broad as that of prokaryotes) and individual compositional patterns cover a very broad range from very narrow to very complex. Both features are not surprising for organisms that are very far from each other both in terms of phylogenetic distances and of environmental life conditions. Most importantly, all genomes tested, a representative sample of all supergroups of unicellular eukaryotes, are compositionally compartmentalized, a major difference with prokaryotes.

  15. Journal of Biosciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    The prasinophytes (early diverging Chlorophyta), consisting of simple unicellular green algae, occupy a critical position at the base of the green algal tree of life, with some of its representatives viewed as the cell form most similar to the first green alga, the `ancestral green flagellate'. Relatively large-celled unicellular ...

  16. Washington State University Algae Biofuels Research

    Energy Technology Data Exchange (ETDEWEB)

    chen, Shulin [Washington State Univ., Pullman, WA (United States). Dept. of Biological Systems Engineering; McCormick, Margaret [Targeted Growth, Inc., Seattle, WA (United States); Sutterlin, Rusty [Inventure Renewables, Inc., Gig Harbor, WA (United States)

    2012-12-29

    The goal of this project was to advance algal technologies for the production of biofuels and biochemicals by establishing the Washington State Algae Alliance, a collaboration partnership among two private companies (Targeted Growth, Inc. (TGI), Inventure Chemicals (Inventure) Inc (now Inventure Renewables Inc) and Washington State University (WSU). This project included three major components. The first one was strain development at TGI by genetically engineering cyanobacteria to yield high levels of lipid and other specialty chemicals. The second component was developing an algal culture system at WSU to produce algal biomass as biofuel feedstock year-round in the northern states of the United States. This system included two cultivation modes, the first one was a phototrophic process and the second a heterotrophic process. The phototrophic process would be used for algae production in open ponds during warm seasons; the heterotrophic process would be used in cold seasons so that year-round production of algal lipid would be possible. In warm seasons the heterotrophic process would also produce algal seeds to be used in the phototrophic culture process. Selected strains of green algae and cyanobacteria developed by TGI were tested in the system. The third component was downstream algal biomass processing by Inventure that included efficiently harvesting the usable fuel fractions from the algae mass and effectively isolating and separating the usable components into specific fractions, and converting isolated fractions into green chemicals.

  17. Studies on allergenic algae of Delhi area: botanical aspects.

    Science.gov (United States)

    Mittal, A; Agarwal, M K; Shivpuri, D N

    1979-04-01

    To study distribution of algae in and around Delhi aerobiological surveys were undertaken for two consecutive years (September, 1972, to August, 1974). The surveys were accomplished by (a) slide exposure method and (b) culture plate exposure method. A total of 850 slides were exposed using Durham's gravity sampling device. Of these, 560 slides were exposed during 1973 (272 slides at two meter and 288 at ten meter height) and the rest (290 slides) were exposed during 1974 at ten meter height. A total of 858 culture plates were exposed (276 for one hour and 282 for two hours) during 1973 and the rest (300 culture plates) were exposed during 1974 at ten meter height for two hours duration only. Air was found to be rich in algae flora during the months of September to November. The dominant forms of algae present were all blue greens. This might be due to the relative greater resistance of blue green algae to unfavorable conditions.

  18. Evolutionary origins, molecular cloning and expression of carotenoid hydroxylases in eukaryotic photosynthetic algae

    Science.gov (United States)

    2013-01-01

    Background Xanthophylls, oxygenated derivatives of carotenes, play critical roles in photosynthetic apparatus of cyanobacteria, algae, and higher plants. Although the xanthophylls biosynthetic pathway of algae is largely unknown, it is of particular interest because they have a very complicated evolutionary history. Carotenoid hydroxylase (CHY) is an important protein that plays essential roles in xanthophylls biosynthesis. With the availability of 18 sequenced algal genomes, we performed a comprehensive comparative analysis of chy genes and explored their distribution, structure, evolution, origins, and expression. Results Overall 60 putative chy genes were identified and classified into two major subfamilies (bch and cyp97) according to their domain structures. Genes in the bch subfamily were found in 10 green algae and 1 red alga, but absent in other algae. In the phylogenetic tree, bch genes of green algae and higher plants share a common ancestor and are of non-cyanobacterial origin, whereas that of red algae is of cyanobacteria. The homologs of cyp97a/c genes were widespread only in green algae, while cyp97b paralogs were seen in most of algae. Phylogenetic analysis on cyp97 genes supported the hypothesis that cyp97b is an ancient gene originated before the formation of extant algal groups. The cyp97a gene is more closely related to cyp97c in evolution than to cyp97b. The two cyp97 genes were isolated from the green alga Haematococcus pluvialis, and transcriptional expression profiles of chy genes were observed under high light stress of different wavelength. Conclusions Green algae received a β-xanthophylls biosynthetic pathway from host organisms. Although red algae inherited the pathway from cyanobacteria during primary endosymbiosis, it remains unclear in Chromalveolates. The α-xanthophylls biosynthetic pathway is a common feature in green algae and higher plants. The origination of cyp97a/c is most likely due to gene duplication before divergence of

  19. Evolutionary origins, molecular cloning and expression of carotenoid hydroxylases in eukaryotic photosynthetic algae.

    Science.gov (United States)

    Cui, Hongli; Yu, Xiaona; Wang, Yan; Cui, Yulin; Li, Xueqin; Liu, Zhaopu; Qin, Song

    2013-07-08

    Xanthophylls, oxygenated derivatives of carotenes, play critical roles in photosynthetic apparatus of cyanobacteria, algae, and higher plants. Although the xanthophylls biosynthetic pathway of algae is largely unknown, it is of particular interest because they have a very complicated evolutionary history. Carotenoid hydroxylase (CHY) is an important protein that plays essential roles in xanthophylls biosynthesis. With the availability of 18 sequenced algal genomes, we performed a comprehensive comparative analysis of chy genes and explored their distribution, structure, evolution, origins, and expression. Overall 60 putative chy genes were identified and classified into two major subfamilies (bch and cyp97) according to their domain structures. Genes in the bch subfamily were found in 10 green algae and 1 red alga, but absent in other algae. In the phylogenetic tree, bch genes of green algae and higher plants share a common ancestor and are of non-cyanobacterial origin, whereas that of red algae is of cyanobacteria. The homologs of cyp97a/c genes were widespread only in green algae, while cyp97b paralogs were seen in most of algae. Phylogenetic analysis on cyp97 genes supported the hypothesis that cyp97b is an ancient gene originated before the formation of extant algal groups. The cyp97a gene is more closely related to cyp97c in evolution than to cyp97b. The two cyp97 genes were isolated from the green alga Haematococcus pluvialis, and transcriptional expression profiles of chy genes were observed under high light stress of different wavelength. Green algae received a β-xanthophylls biosynthetic pathway from host organisms. Although red algae inherited the pathway from cyanobacteria during primary endosymbiosis, it remains unclear in Chromalveolates. The α-xanthophylls biosynthetic pathway is a common feature in green algae and higher plants. The origination of cyp97a/c is most likely due to gene duplication before divergence of green algae and higher plants

  20. Phospholipids of New Zealand Edible Brown Algae.

    Science.gov (United States)

    Vyssotski, Mikhail; Lagutin, Kirill; MacKenzie, Andrew; Mitchell, Kevin; Scott, Dawn

    2017-07-01

    Edible brown algae have attracted interest as a source of beneficial allenic carotenoid fucoxanthin, and glyco- and phospholipids enriched in polyunsaturated fatty acids. Unlike green algae, brown algae contain no or little phosphatidylserine, possessing an unusual aminophospholipid, phosphatidyl-O-[N-(2-hydroxyethyl) glycine], PHEG, instead. When our routinely used technique of 31 P-NMR analysis of phospholipids was applied to the samples of edible New Zealand brown algae, a number of signals corresponding to unidentified phosphorus-containing compounds were observed in total lipids. NI (negative ion) ESI QToF MS spectra confirmed the presence of more familiar phospholipids, and also suggested the presence of PHEG or its isomers. The structure of PHEG was confirmed by comparison with a synthetic standard. An unusual MS fragmentation pattern that was also observed prompted us to synthesise a number of possible candidates, and was found to follow that of phosphatidylhydroxyethyl methylcarbamate, likely an extraction artefact. An unexpected outcome was the finding of ceramidephosphoinositol that has not been reported previously as occurring in brown algae. An uncommon arsenic-containing phospholipid has also been observed and quantified, and its TLC behaviour studied, along with that of the newly synthesised lipids.

  1. Algae Derived Biofuel

    Energy Technology Data Exchange (ETDEWEB)

    Jahan, Kauser [Rowan Univ., Glassboro, NJ (United States)

    2015-03-31

    One of the most promising fuel alternatives is algae biodiesel. Algae reproduce quickly, produce oils more efficiently than crop plants, and require relatively few nutrients for growth. These nutrients can potentially be derived from inexpensive waste sources such as flue gas and wastewater, providing a mutual benefit of helping to mitigate carbon dioxide waste. Algae can also be grown on land unsuitable for agricultural purposes, eliminating competition with food sources. This project focused on cultivating select algae species under various environmental conditions to optimize oil yield. Membrane studies were also conducted to transfer carbon di-oxide more efficiently. An LCA study was also conducted to investigate the energy intensive steps in algae cultivation.

  2. Genetics of blue-green algae

    International Nuclear Information System (INIS)

    Ladha, J.K.; Kumar, H.D.

    1978-01-01

    Mutagenesis and genetics of cyanophyceae are reviewed. Mutant isolation, ultraviolet inactivation, reactivation and production of mutants resistant or sensitive to ultraviolet light, control of gene expression, genetic transfer and mapping are discussed. (UK)

  3. Combination of a higher-tier flow-through system and population modeling to assess the effects of time-variable exposure of isoproturon on the green algae Desmodesmus subspicatus and Pseudokirchneriella subcapitata.

    Science.gov (United States)

    Weber, Denis; Schaefer, Dieter; Dorgerloh, Michael; Bruns, Eric; Goerlitz, Gerhard; Hammel, Klaus; Preuss, Thomas G; Ratte, Hans Toni

    2012-04-01

    A flow-through system was developed to investigate the effects of time-variable exposure of pesticides on algae. A recently developed algae population model was used for simulations supported and verified by laboratory experiments. Flow-through studies with Desmodesmus subspicatus and Pseudokirchneriella subcapitata under time-variable exposure to isoproturon were performed, in which the exposure patterns were based on the results of FOrum for Co-ordination of pesticide fate models and their USe (FOCUS) model calculations for typical exposure situations via runoff or drain flow. Different types of pulsed exposure events were realized, including a whole range of repeated pulsed and steep peaks as well as periods of constant exposure. Both species recovered quickly in terms of growth from short-term exposure and according to substance dissipation from the system. Even at a peak 10 times the maximum predicted environmental concentration of isoproturon, only transient effects occurred on algae populations. No modified sensitivity or reduced growth was observed after repeated exposure. Model predictions of algal growth in the flow-through tests agreed well with the experimental data. The experimental boundary conditions and the physiological properties of the algae were used as the only model input. No calibration or parameter fitting was necessary. The combination of the flow-through experiments with the algae population model was revealed to be a powerful tool for the assessment of pulsed exposure on algae. It allowed investigating the growth reduction and recovery potential of algae after complex exposure, which is not possible with standard laboratory experiments alone. The results of the combined approach confirm the beneficial use of population models as supporting tools in higher-tier risk assessments of pesticides. Copyright © 2012 SETAC.

  4. A screening method for cardiovascular active compounds in marine algae.

    Science.gov (United States)

    Agatonovic-Kustrin, S; Kustrin, E; Angove, M J; Morton, D W

    2018-05-18

    The interaction of bioactive compounds from ethanolic extracts of selected marine algae samples, separated on chromatographic plates, with nitric/nitrous acid was investigated. The nature of bioactive compounds in the marine algae extracts was characterised using UV absorption spectra before and after reaction with diluted nitric acid, and from the characteristic colour reaction after derivatization with anisaldehyde. It was found that diterpenes from Dictyota dichotoma, an edible brown algae, and sterols from green algae Caulerpa brachypus, bind nitric oxide and may act as a nitric oxide carrier. Although the carotenoid fucoxanthin, found in all brown marine algae also binds nitric oxide, the bonds between nitrogen and the fucoxanthin molecule are much stronger. Further studies are required to evaluate the effects of diterpenes from Dictyota dichotoma and sterols from green algae Caulerpa brachypus to see if they have beneficial cardiovascular effects. The method reported here should prove useful in screening large numbers of algae species for compounds with cardiovascular activity. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Stress resistance of single stock cultures of filamentous green algae from the genus Klebsormidium (Streptophyta) isolated from the polar regions and from Slovakia; Stresova rezistencia jednodruhovych kmenovych kultur vlaknitej zelenej riasy z rodu Klebsormidium (Streptophyta) izolovanych z polarnych oblasti a zo Slovenska

    Energy Technology Data Exchange (ETDEWEB)

    Segecova, J; Kovacik, L [Univerzita Komenskeho v Bratislave, Prirodovedecka fakulta, Katedra botaniky, 81102 Bratislava (Slovakia); Elster, J [Centrum polarni ekologie, Prirodovedecka fakulta, Jihoceska Universita, 37005 Ceske Budejovice (Czech Republic)

    2012-04-25

    Single-fiber stem cultures of green algae of the genus Klebsormidium PC Silva, K. R. Mattox et W.H. Blackwell isolated from the both polar regions and from Slovakia were subjected to the effects of the environmental stress including various options of dessication and freezing. Klebsormidium algae species has a wide ecological amplitude and equally broad biological plasticity that allows it to adapt and survive in adverse environmental conditions. Based on the performed microscopic analyses of algaes after exposure to stressors, the experimental strains were generally the most resistant to the slow and rapid freezing. Exposure of the strains to lyophilization was shown as the most drastic stress factor of all, to who were the most resistant arctic strains 9 LUC, LUC 11, LUC 14 as well as MON 1 strain from Slovakia and LUC strain 8 of Antarctica. The least resistant to environmental stress were two Antarctic strains LUC LUC 4 and 5. However, we can not explain it yet and it will be the subject of the further study. (authors)

  6. Cultivation of macroscopic marine algae

    Energy Technology Data Exchange (ETDEWEB)

    Ryther, J.H.

    1982-11-01

    The red alga Gracilaria tikvahiae may be grown outdoors year-round in central Florida with yields averaging 35.5 g dry wt/m/sup 2/.day, greater than the most productive terrestrial plants. This occurs only when the plants are in a suspended culture, with vigorous aeration and an exchange of 25 or more culture volumes of enriched seawater per day, which is not cost-effective. A culture system was designed in which Gracilaria, stocked at a density of 2 kg wet wt/m/sup 2/, grows to double its biomass in one to two weeks; it is then harvested to its starting density, and anaerobically digested to methane. The biomass is soaked for 6 hours in the digester residue, storing enough nutrients for two weeks' growth in unenriched seawater. The methane is combusted for energy and the waste gas is fed to the culture to provide mixing and CO/sub 2/, eliminating the need for aeration and seawater exchange. The green alga Ulva lactuca, unlike Gracilaria, uses bicarbonate as a photosynthesis carbon source, and can grow at high pH, with little or no free CO/sub 2/. It can therefore produce higher yields than Gracilaria in low water exchange conditions. It is also more efficiently converted to methane than is Gracilaria, but cannot tolerate Florida's summer temperatures so cannot be grown year-round. Attempts are being made to locate or produce a high-temperature tolerant strain.

  7. Molecular analysis of the replication program in unicellular model organisms

    OpenAIRE

    Raghuraman, M. K.; Brewer, Bonita J.

    2010-01-01

    Eukaryotes have long been reported to show temporal programs of replication, different portions of the genome being replicated at different times in S phase, with the added possibility of developmentally regulated changes in this pattern depending on species and cell type. Unicellular model organisms, primarily the budding yeast Saccharomyces cerevisiae, have been central to our current understanding of the mechanisms underlying the regulation of replication origins and the temporal program o...

  8. A simple viability analysis for unicellular cyanobacteria using a new autofluorescence assay, automated microscopy, and ImageJ

    Directory of Open Access Journals (Sweden)

    Schulze Katja

    2011-11-01

    Full Text Available Abstract Background Currently established methods to identify viable and non-viable cells of cyanobacteria are either time-consuming (eg. plating or preparation-intensive (eg. fluorescent staining. In this paper we present a new and fast viability assay for unicellular cyanobacteria, which uses red chlorophyll fluorescence and an unspecific green autofluorescence for the differentiation of viable and non-viable cells without the need of sample preparation. Results The viability assay for unicellular cyanobacteria using red and green autofluorescence was established and validated for the model organism Synechocystis sp. PCC 6803. Both autofluorescence signals could be observed simultaneously allowing a direct classification of viable and non-viable cells. The results were confirmed by plating/colony count, absorption spectra and chlorophyll measurements. The use of an automated fluorescence microscope and a novel ImageJ based image analysis plugin allow a semi-automated analysis. Conclusions The new method simplifies the process of viability analysis and allows a quick and accurate analysis. Furthermore results indicate that a combination of the new assay with absorption spectra or chlorophyll concentration measurements allows the estimation of the vitality of cells.

  9. Single Cell Genomics and Transcriptomics for Unicellular Eukaryotes

    Energy Technology Data Exchange (ETDEWEB)

    Ciobanu, Doina; Clum, Alicia; Singh, Vasanth; Salamov, Asaf; Han, James; Copeland, Alex; Grigoriev, Igor; James, Timothy; Singer, Steven; Woyke, Tanja; Malmstrom, Rex; Cheng, Jan-Fang

    2014-03-14

    Despite their small size, unicellular eukaryotes have complex genomes with a high degree of plasticity that allow them to adapt quickly to environmental changes. Unicellular eukaryotes live with prokaryotes and higher eukaryotes, frequently in symbiotic or parasitic niches. To this day their contribution to the dynamics of the environmental communities remains to be understood. Unfortunately, the vast majority of eukaryotic microorganisms are either uncultured or unculturable, making genome sequencing impossible using traditional approaches. We have developed an approach to isolate unicellular eukaryotes of interest from environmental samples, and to sequence and analyze their genomes and transcriptomes. We have tested our methods with six species: an uncharacterized protist from cellulose-enriched compost identified as Platyophrya, a close relative of P. vorax; the fungus Metschnikowia bicuspidate, a parasite of water flea Daphnia; the mycoparasitic fungi Piptocephalis cylindrospora, a parasite of Cokeromyces and Mucor; Caulochytrium protosteloides, a parasite of Sordaria; Rozella allomycis, a parasite of the water mold Allomyces; and the microalgae Chlamydomonas reinhardtii. Here, we present the four components of our approach: pre-sequencing methods, sequence analysis for single cell genome assembly, sequence analysis of single cell transcriptomes, and genome annotation. This technology has the potential to uncover the complexity of single cell eukaryotes and their role in the environmental samples.

  10. On the paradigm of altruistic suicide in the unicellular world.

    Science.gov (United States)

    Nedelcu, Aurora M; Driscoll, William W; Durand, Pierre M; Herron, Matthew D; Rashidi, Armin

    2011-01-01

    Altruistic suicide is best known in the context of programmed cell death (PCD) in multicellular individuals, which is understood as an adaptive process that contributes to the development and functionality of the organism. After the realization that PCD-like processes can also be induced in single-celled lineages, the paradigm of altruistic cell death has been extended to include these active cell death processes in unicellular organisms. Here, we critically evaluate the current conceptual framework and the experimental data used to support the notion of altruistic suicide in unicellular lineages, and propose new perspectives. We argue that importing the paradigm of altruistic cell death from multicellular organisms to explain active death in unicellular lineages has the potential to limit the types of questions we ask, thus biasing our understanding of the nature, origin, and maintenance of this trait. We also emphasize the need to distinguish between the benefits and the adaptive role of a trait. Lastly, we provide an alternative framework that allows for the possibility that active death in single-celled organisms is a maladaptive trait maintained as a byproduct of selection on pro-survival functions, but that could-under conditions in which kin/group selection can act-be co-opted into an altruistic trait. © 2010 The Author(s). Evolution© 2010 The Society for the Study of Evolution.

  11. Multimodal sensorimotor system in unicellular zoospores of a fungus.

    Science.gov (United States)

    Swafford, Andrew J M; Oakley, Todd H

    2018-01-19

    Complex sensory systems often underlie critical behaviors, including avoiding predators and locating prey, mates and shelter. Multisensory systems that control motor behavior even appear in unicellular eukaryotes, such as Chlamydomonas , which are important laboratory models for sensory biology. However, we know of no unicellular opisthokonts that control motor behavior using a multimodal sensory system. Therefore, existing single-celled models for multimodal sensorimotor integration are very distantly related to animals. Here, we describe a multisensory system that controls the motor function of unicellular fungal zoospores. We found that zoospores of Allomyces arbusculus exhibit both phototaxis and chemotaxis. Furthermore, we report that closely related Allomyces species respond to either the chemical or the light stimuli presented in this study, not both, and likely do not share this multisensory system. This diversity of sensory systems within Allomyces provides a rare example of a comparative framework that can be used to examine the evolution of sensory systems following the gain/loss of available sensory modalities. The tractability of Allomyces and related fungi as laboratory organisms will facilitate detailed mechanistic investigations into the genetic underpinnings of novel photosensory systems, and how multisensory systems may have functioned in early opisthokonts before multicellularity allowed for the evolution of specialized cell types. © 2018. Published by The Company of Biologists Ltd.

  12. Metazoan-like signaling in a unicellular receptor tyrosine kinase

    Directory of Open Access Journals (Sweden)

    Schultheiss Kira P

    2013-02-01

    Full Text Available Abstract Background Receptor tyrosine kinases (RTKs are crucial components of signal transduction systems in multicellular animals. Surprisingly, numerous RTKs have been identified in the genomes of unicellular choanoflagellates and other protists. Here, we report the first biochemical study of a unicellular RTK, namely RTKB2 from Monosiga brevicollis. Results We cloned, expressed, and purified the RTKB2 kinase, and showed that it is enzymatically active. The activity of RTKB2 is controlled by autophosphorylation, as in metazoan RTKs. RTKB2 possesses six copies of a unique domain (designated RM2 in its C-terminal tail. An isolated RM2 domain (or a synthetic peptide derived from the RM2 sequence served as a substrate for RTKB2 kinase. When phosphorylated, the RM2 domain bound to the Src homology 2 domain of MbSrc1 from M. brevicollis. NMR structural studies of the RM2 domain indicated that it is disordered in solution. Conclusions Our results are consistent with a model in which RTKB2 activation stimulates receptor autophosphorylation within the RM2 domains. This leads to recruitment of Src-like kinases (and potentially other M. brevicollis proteins and further phosphorylation, which may serve to increase or dampen downstream signals. Thus, crucial features of signal transduction circuitry were established prior to the evolution of metazoans from their unicellular ancestors.

  13. EST analysis of the scaly green flagellate Mesostigma viride (Streptophyta: Implications for the evolution of green plants (Viridiplantae

    Directory of Open Access Journals (Sweden)

    Melkonian Michael

    2006-02-01

    Full Text Available Abstract Background The Viridiplantae (land plants and green algae consist of two monophyletic lineages, the Chlorophyta and the Streptophyta. The Streptophyta include all embryophytes and a small but diverse group of freshwater algae traditionally known as the Charophyceae (e.g. Charales, Coleochaete and the Zygnematales. The only flagellate currently included in the Streptophyta is Mesostigma viride Lauterborn. To gain insight into the genome evolution in streptophytes, we have sequenced 10,395 ESTs from Mesostigma representing 3,300 independent contigs and compared the ESTs of Mesostigma with available plant genomes (Arabidopsis, Oryza, Chlamydomonas, with ESTs from the bryophyte Physcomitrella, the genome of the rhodophyte Cyanidioschyzon, the ESTs from the rhodophyte Porphyra, and the genome of the diatom Thalassiosira. Results The number of expressed genes shared by Mesostigma with the embryophytes (90.3 % of the expressed genes showing similarity to known proteins is higher than with Chlamydomonas (76.1 %. In general, cytosolic metabolic pathways, and proteins involved in vesicular transport, transcription, regulation, DNA-structure and replication, cell cycle control, and RNA-metabolism are more conserved between Mesostigma and the embryophytes than between Mesostigma and Chlamydomonas. However, plastidic and mitochondrial metabolic pathways, cytoskeletal proteins and proteins involved in protein folding are more conserved between Mesostigma and Chlamydomonas than between Mesostigma and the embryophytes. Conclusion Our EST-analysis of Mesostigma supports the notion that this organism should be a suitable unicellular model for the last flagellate common ancestor of the streptophytes. Mesostigma shares more genes with the embryophytes than with the chlorophyte Chlamydomonas reinhardtii, although both organisms are flagellate unicells. Thus, it seems likely that several major physiological changes (e.g. in the regulation of photosynthesis

  14. Switching from a unicellular to multicellular organization in an Aspergillus niger hypha.

    Science.gov (United States)

    Bleichrodt, Robert-Jan; Hulsman, Marc; Wösten, Han A B; Reinders, Marcel J T

    2015-03-03

    Pores in fungal septa enable cytoplasmic streaming between hyphae and their compartments. Consequently, the mycelium can be considered unicellular. However, we show here that Woronin bodies close ~50% of the three most apical septa of growing hyphae of Aspergillus niger. The incidence of closure of the 9th and 10th septa was even ≥94%. Intercompartmental streaming of photoactivatable green fluorescent protein (PA-GFP) was not observed when the septa were closed, but open septa acted as a barrier, reducing the mobility rate of PA-GFP ~500 times. This mobility rate decreased with increasing septal age and under stress conditions, likely reflecting a regulatory mechanism affecting septal pore diameter. Modeling revealed that such regulation offers effective control of compound concentration between compartments. Modeling also showed that the incidence of septal closure in A. niger had an even stronger impact on cytoplasmic continuity. Cytoplasm of hyphal compartments was shown not to be in physical contact when separated by more than 4 septa. Together, data show that apical compartments of growing hyphae behave unicellularly, while older compartments have a multicellular organization. The hyphae of higher fungi are compartmentalized by porous septa that enable cytosolic streaming. Therefore, it is believed that the mycelium shares cytoplasm. However, it is shown here that the septa of Aspergillus niger are always closed in the oldest part of the hyphae, and therefore, these compartments are physically isolated from each other. In contrast, only part of the septa is closed in the youngest part of the hyphae. Still, compartments in this hyphal part are physically isolated when separated by more than 4 septa. Even open septa act as a barrier for cytoplasmic mixing. The mobility rate through such septa reduces with increasing septal age and under stress conditions. Modeling shows that the septal pore width is set such that its regulation offers maximal control of

  15. Cytotoxicity effects of water dispersible oxidized multiwalled carbon nanotubes on marine alga, Dunaliella tertiolecta

    International Nuclear Information System (INIS)

    Wei Liping; Thakkar, Megha; Chen Yuhong; Ntim, Susana Addo; Mitra, Somenath; Zhang Xueyan

    2010-01-01

    The multiwalled carbon nanotubes (MWNTs) are novel materials with many potential applications. The ecotoxicity of these materials is not well studied, but it is essential for environmental impact assessments. In this study a commercially available MWNT material was carboxylated by microwave assisted acid oxidation. This functionalized MWNT (f-MWNT) material was examined for toxicity effects using unicellular marine green alga Dunaliella tertiolecta. D. tertiolecta was exposed to f-MWNT which had been pre-equilibrated with culture media for 24 h. Substantial growth lag phase was observed at 5 and 10 mg L -1 f-MWNT, and the resulting 50% effective concentration (EC50) on 96-h growth was 0.82 ± 0.08 mg L -1 . During mid-exponential growth phase cytotoxicity was evidenced at 10 mg L -1 f-MWNT in 36% reduction in exponential growth rate, 88 mV more positive glutathione redox potential (indicative of oxidative stress), 5% and 22% reduction in photosystem II (PSII) quantum yield and functional cross section respectively, all relative to the control cultures. However, when the large f-MWNT aggregates in the media with 10 mg L -1 f-MWNT were removed by 0.2 μm filtration, D. tertiolecta did not show significant cytotoxicity effects in any of the above parameters. This suggests that the cytotoxicity effects originated predominately from the large f-MWNT aggregates. Analysis of the f-MWNT aggregation dynamics suggests active interaction between f-MWNT and algal cells or cell metabolites that promoted f-MWNT aggregation formation. The f-MWNT particles were also found absorbed on algal cell surface. The direct contact between f-MWNT and cell surface was likely responsible for reduced PSII functional cross section and oxidative stress during exponential growth.

  16. Design of a novel flat-plate photobioreactor system for green algal hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Tamburic, B.; Zemichael, F.W.; Maitland, G.C.; Hellgardt, K. [Imperial College London (United Kingdom)

    2010-07-01

    Some unicellular green algae have the ability to photosynthetically produce molecular hydrogen using sunlight and water. This renewable, carbon-neutral process has the additional benefit of sequestering carbon dioxide during the algal growth phase. The main costs associated with this process result from building and operating a photobioreactor system. The challenge is to design an innovative and cost effective photobioreactor that meets the requirements of algal growth and sustainable hydrogen production. We document the details of a novel 1 litre vertical flat-plate photobioreactor that has been designed to accommodate green algal hydrogen production at the laboratory scale. Coherent, non-heating illumination is provided by a panel of cool white LEDs. The reactor body consists of two compartments constructed from transparent Perspex sheets. The primary compartment holds the algal culture, which is agitated by means of a recirculating gas flow. A secondary compartment is filled with water and used to control the temperature and wavelength of the system. The reactor is fitted with instruments that monitor the pH, pO{sub 2}, temperature and optical density of the culture. A membrane-inlet mass spectrometry system has been developed for hydrogen collection and in situ monitoring. The reactor is fully autoclaveable and the possibility of hydrogen leaks has been minimised. The modular nature of the reactor allows efficient cleaning and maintenance. (orig.)

  17. Biofuels and algae

    International Nuclear Information System (INIS)

    Anon.

    2011-01-01

    Bio-fuels based on micro-algae are promising, their licensing for being used in plane fuels in a mix containing 50% of fossil kerosene is expected in the coming months. In United-States research on bio-fuels has been made more important since 2006 when 2 policies were launched: 'Advanced energy initiative' and 'Twenty-in-ten', the latter aiming to develop alternative fuels. In Europe less investment has been made concerning micro-algae fuels but research programs were launched in Spain, United-Kingdom and France. In France 3 important projects were launched: SHAMASH (2006-2010) whose aim is to produce lipidic fuels from micro-algae, ALGOHUB (2008-2013) whose aim is to use micro-algae as a raw material for humane and animal food, medicine and cosmetics, SYMBIOSE (2009-2011) whose aim is the optimization of the production of methane through the anaerobic digestion of micro-algae, SALINALGUE (2010-2016) whose aim is to grow micro-algae for the production of bio-energies and bio-products. (A.C.)

  18. Biogeochemical cycling of metals in freshwater algae from Manaus and Carajas, Brazil

    International Nuclear Information System (INIS)

    Konhauser, K.O.; Fyfe, W.S.

    1993-01-01

    Freshwater algae were analyzed in different riverine environments in Manaus and Carajas, Brazil. Filamentous algae from both locations were characterized by enhanced levels of a wide array of heavy metals. A comparison of the two main rivers in the Manaus area indicated that the algal samples from the solute-rich waters of the Rio Solimoes consistently contained higher metal concentrations than in the solute-deficient waters of the Rio Negro. A similar relationship also existed between algal samples collected from forested regions relative to adjacent deforested regions in the Carajas area. In the Rio Negro, diatoms were shown to be the most prolific eucaryotic microorganisms found in the study area. These siliceous algae were found adhering to a variety of submerged solid substrates, including wood, rocks, and leaves. The abundance of these unicellular micro-organisms suggested that the dissolved silicon levels of the Rio Negro were influenced by biological activity

  19. Research for Developing Renewable Biofuels from Algae

    Energy Technology Data Exchange (ETDEWEB)

    Black, Paul N. [Univ. of Nebraska, Lincoln, NE (United States)

    2012-12-15

    Task A. Expansion of knowledge related to lipid production and secretion in algae A.1 Lipid biosynthesis in target algal species; Systems biology approaches are being used in combination with recent advances in Chlorella and Chlamydomonas genomics to address lipid accumulation in response to defined nutrient regimes. The UNL Algal Group continues screening additional species of Chlorella and other naturally occurring algae for those with optimal triglyceride production; Of the strains examined by the DOE's Aquatic Species Program, green algae, several species of Chlorella represent the largest group from which oleaginous candidates have been identified; A.1.1. Lipid profiling; Neutral lipid accumulation is routinely monitored by Nile red and BODIPY staining using high throughput strategies to screen for naturally occurring algae that accumulate triglyceride. These strategies complement those using spectrofluorometry to quantify lipid accumulation; Neutral lipid accumulation is routinely monitored by high performance thin-layer chromatography (HPTLC) and high performance liquid chromatography (HPLC) of lipid extracts in conjunction with; Carbon portioning experiments have been completed and the data currently are being analyzed and prepared for publication; Me