WorldWideScience

Sample records for green synthesized silver

  1. Evaluation of antioxidant, antibacterial and cytotoxic effects of green synthesized silver nanoparticles by Piper longum fruit

    International Nuclear Information System (INIS)

    Reddy, N. Jayachandra; Nagoor Vali, D.; Rani, M.; Rani, S. Sudha

    2014-01-01

    Silver nanoparticles synthesized through bio-green method has been reported to have biomedical applications to control pathogenic microbes as it is cost effective compared to commonly used physical and chemical methods. In present study, silver nanoparticles were synthesized using aqueous Piper longum fruit extract (PLFE) and confirmed by UV–visible spectroscopy. The nanoparticles were spherical in shape with an average particle size of 46 nm as determined by scanning electronic microscopy (SEM) and dynamic light scattering (DLS) particle size analyzer respectively. FT-IR spectrum revealed the capping of the phytoconstituents, probably polyphenols from P. longum fruit extract and stabilizing the nanoparticles. Further the ferric ion reducing test, confirmed that the capping agents were condensed tannins. The aqueous P. longum fruit extract (PLFE) and the green synthesized silver nanoparticles (PLAgNPs) showed powerful antioxidant properties in in vitro antioxidant assays. The results from the antimicrobial assays suggested that green synthesized silver nanoparticles (PLAgNPs) were more potent against pathogenic bacteria than the P. longum fruit extract (PLFE) alone. The nanoparticles also showed potent cytotoxic effect against MCF-7 breast cancer cell lines with an IC 50 value of 67 μg/ml/24 h by the MTT assay. These results support the advantages of using bio-green method for synthesizing silver nanoparticles with antioxidant, antimicrobial and cytotoxic activities those are simple and cost effective as well. - Highlights: • 46 nm spherical shaped P. longum fruit silver nanoparticles was prepared. • Capping and reducing bioactive plant compounds with in nanoparticles were condensed tannins. • Particles are potent antioxidant and anti microbial in biological systems. • They are cytotoxic against MCF-7 cell lines

  2. Evaluation of antioxidant, antibacterial and cytotoxic effects of green synthesized silver nanoparticles by Piper longum fruit

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, N. Jayachandra; Nagoor Vali, D.; Rani, M.; Rani, S. Sudha, E-mail: sadrassudha@gmail.com

    2014-01-01

    Silver nanoparticles synthesized through bio-green method has been reported to have biomedical applications to control pathogenic microbes as it is cost effective compared to commonly used physical and chemical methods. In present study, silver nanoparticles were synthesized using aqueous Piper longum fruit extract (PLFE) and confirmed by UV–visible spectroscopy. The nanoparticles were spherical in shape with an average particle size of 46 nm as determined by scanning electronic microscopy (SEM) and dynamic light scattering (DLS) particle size analyzer respectively. FT-IR spectrum revealed the capping of the phytoconstituents, probably polyphenols from P. longum fruit extract and stabilizing the nanoparticles. Further the ferric ion reducing test, confirmed that the capping agents were condensed tannins. The aqueous P. longum fruit extract (PLFE) and the green synthesized silver nanoparticles (PLAgNPs) showed powerful antioxidant properties in in vitro antioxidant assays. The results from the antimicrobial assays suggested that green synthesized silver nanoparticles (PLAgNPs) were more potent against pathogenic bacteria than the P. longum fruit extract (PLFE) alone. The nanoparticles also showed potent cytotoxic effect against MCF-7 breast cancer cell lines with an IC 50 value of 67 μg/ml/24 h by the MTT assay. These results support the advantages of using bio-green method for synthesizing silver nanoparticles with antioxidant, antimicrobial and cytotoxic activities those are simple and cost effective as well. - Highlights: • 46 nm spherical shaped P. longum fruit silver nanoparticles was prepared. • Capping and reducing bioactive plant compounds with in nanoparticles were condensed tannins. • Particles are potent antioxidant and anti microbial in biological systems. • They are cytotoxic against MCF-7 cell lines.

  3. Green synthesis of silver nanoparticles and silver colloidal solutions

    International Nuclear Information System (INIS)

    Nguyen Thi Phuong Phong; Ngo Hoang Minh; Ngo Vo Ke Thanh; Dang Mau Chien

    2009-01-01

    In this paper, silver colloidal solutions have been synthesized rapidly in green conditions by using microwave irradiation and non-toxic chemistry substances (acid oxalic, silver nitrate, polyvinyl pyrolidone (PVP; Mw = 55 000)). The particle size and morphology of these solutions can be controlled by altering several factors like the time, the power of microwave exposure, and the ratio of silver oxalate and PVP etc. The silver nanoparticles were fabricated by thermal decomposition of silver oxalate. The synthesized silver colloidal solutions and silver nanoparticles were characterized by several analytical techniques like UV- VIS, XRD, TEM, FESEM/EDS and ICP-AAS studies. Finally, we used the synthesized silver colloidal solutions for antibacterial purpose. The obtained results showed that the synthesized silver colloidal solutions, even at very low concentrations, have highly efficient anti-bacterial property.

  4. A comparative study on larvicidal potential of selected medicinal plants over green synthesized silver nano particles

    Directory of Open Access Journals (Sweden)

    Syed Zameer Ahmed Khader

    2018-03-01

    Full Text Available Larvicidal activity was assessed for alcoholic extracts of Phyllanthus amarus, Annona squamosa, Coccinia grandis and Eclipta prostrata extracted using solvents of various polarity. Third instar stage larvae of Dengue-vector, Aedes aegypti and Japanese encephalitis (JE causing mosquito Culex tritaeniorhynchus were subjected to larvicidal bioassay at various concentrations (1000, 500, 250 ppm. The results explored that the phytoconstituents and secondary metabolites present in all the plants elucidated potent larvicidal activity. Among the tested extract ethyl acetate, petroleum ether and hexane extract expressed significant larvicidal activity. Similarly, these plants were subjected to green synthesis of silver nanoparticles, characterized and subjected for its larvicidal activity against Anopheles stephensi causing malaria. The synthesized silver nanoparticles were characterized by UV–VIS spectroscopy, Fourier Transform Infra-Red spectroscopy, Scanning Electron Microscopy respectively. The FTIR analysis strongly supported the capping behaviour of bio-reduced synthesized silver nanoparticles which in turn imparted the high stability of the synthesized silver nanoparticles. The average size of synthesized nanoparticles was less than 1 µm, most spherical in shape with SEM analysis. The findings revealed that Eclipta prostrata and Annona squamosa has effective larvicidal activity, whereas all the synthesised nanoparticles demonstrated dose dependent activity even at very low concentration and the findings reveals that these extracts and nanoparticles can be a better remedy against these mosquitoes.

  5. Cytotoxicity and antimicrobial activities of green synthesized silver nanoparticles.

    Science.gov (United States)

    Lokina, S; Stephen, A; Kaviyarasan, V; Arulvasu, C; Narayanan, V

    2014-04-09

    Bio-inspired silver nanoparticles are synthesized using Malus domestica (apple) extract. Polyphenols present in the apple extract act as a reducing and capping agent to produce the silver nanoparticles. UV-Visible analysis shows the surface plasmon resonance (SPR) absorption at 420 nm. The FTIR analysis was used to identify the functional groups responsible for the bio-reduction of silver ion. The XRD and HRTEM images confirm the formation of silver nanoparticles. The minimal inhibitory concentration (MIC) of silver nanoparticles was recorded against most of the bacteria and fungus. Further, MCF-7 human breast adenocarcinoma cancer cell line was employed to observe the efficacy of cancer cell killing. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  6. Monodisperse Silver Nanoparticles Synthesized by a Microwave-Assisted Method

    International Nuclear Information System (INIS)

    Shao-Peng, Zhu; Shao-Chun, Tang; Xiang-Kang, Meng

    2009-01-01

    Silver nanoparticles with an average size of about 20 nm are synthesized in a colloidal solution with the aid of microwave irradiation. Neither additional reductant nor stabilizer is required in this microwave-assisted method. The color of the colloidal solution is found to be dark green, different from the characteristic yellow of silver colloidal solutions. The silver nanoparticles in the colloidal solution have a narrow size distribution and large yield quantity. UV-visible absorption spectroscopy analysis reveals that the as-synthesized monodisperse silver nanoparticles have exceptional optical properties. Raman spectroscopy measurements demonstrate that these silver nanoparticles exhibit a notable surface-enhanced Raman scattering ability. (cross-disciplinary physics and related areas of science and technology)

  7. Mosquitocidal and antibacterial activity of green-synthesized silver nanoparticles from Aloe vera extracts: towards an effective tool against the malaria vector Anopheles stephensi?

    Science.gov (United States)

    Dinesh, Devakumar; Murugan, Kadarkarai; Madhiyazhagan, Pari; Panneerselvam, Chellasamy; Kumar, Palanisamy Mahesh; Nicoletti, Marcello; Jiang, Wei; Benelli, Giovanni; Chandramohan, Balamurugan; Suresh, Udaiyan

    2015-04-01

    Mosquitoes represent an important threat for lives of millions of people worldwide, acting as vectors for devastating pathogens, such as malaria, yellow fever, dengue, and West Nile. In addition, pathogens and parasites polluting water also constitute a severe plague for populations of developing countries. Here, we investigated the mosquitocidal and antibacterial properties of Aloe vera leaf extract and silver nanoparticles synthesized using A. vera extract. Mosquitocidal properties were assessed in laboratory against larvae (I-IV instar) and pupae of the malaria vector Anopheles stephensi. Green-synthesized silver nanoparticles were tested against An. stephensi also in field conditions. Antibacterial properties of nanoparticles were evaluated against Bacillus subtilis, Klebsiella pneumoniae, and Salmonella typhi using the agar disk diffusion and minimum inhibitory concentration protocol. The synthesized silver nanoparticles were characterized by UV-vis spectrum, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X-ray diffraction (XRD). In laboratory conditions, the A. vera extract was toxic against An. stephensi larvae and pupae, even at low dosages. LC50 were 48.79 ppm (I instar), 59.09 ppm (II instar), 70.88 ppm (III instar), 83.58 ppm (IV instar), and 152.55 ppm (pupae). Green-synthesized silver nanoparticles were highly toxic against An. stephensi. LC50 were 3.825 ppm (I instar), 4.119 ppm (II instar), 4.982 ppm (III instar), 5.711 ppm (IV instar), and 6.113 ppm (pupae). In field conditions, the application of A. vera-synthesized silver nanoparticles (10 × LC50) leads to An. stephensi larval reduction of 74.5, 86.6, and 97.7%, after 24, 48, and 72 h, respectively. Nanoparticles also showed antibacterial properties, and the maximum concentration tested (150 mg/L) evoked an inhibition zone wider than 80 mm in all tested bacterium species. This study adds knowledge about the use of green synthesis of nanoparticles in

  8. Green synthesis and antimicrobial activity of monodisperse silver nanoparticles synthesized using Ginkgo Biloba leaf extract

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Yan-yu [School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi' an 710021 (China); Yang, Hui, E-mail: 549456369@qq.com [School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi' an 710021 (China); Wang, Tao [School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi' an 710021 (China); Wang, Chuang [Department of Highway & Bridge, Shaanxi Railway Institute, Weinan 714000 (China)

    2016-11-25

    Various parts of plants can be used as a raw material for the synthesis of nanoparticles, which is eco-friendly way and does not involve any harmful chemicals. In this project, Ginkgo biloba leaf, an abundantly available medicinal plant in China, was for the first time adopted as a reducing and stabilizing agent to synthesize smaller sized and stable silver nanoparticles (AgNPs). To improve the quality of AgNPs, the reduction was accelerated by changing the concentrations of initial Ag{sup +} (0.02, 0.04, 0.06 and 0.08 mol/L) of the reaction mixture consisting of silver nitrate solution (AgNO{sub 3}) and Ginkgo biloba leaf extract. At pH = 8 and lower AgNO{sub 3} concentration (0.02 mol/L), a colloid consisting of well-dispersed spherical nanoparticles was obtained. The synthesized nanocrystals were successfully characterized by UV–vis and XRD. TEM images revealed the size of the spherical AgNPs ranged between 10–16 nm. FTIR analysis revealed that biological macromolecules with groups of −NH{sub 2}, −OH, and others were distributed on the surface of the nanoparticles. The biosynthesized AgNPs exhibited good antibacterial activities against gram-negative bacteria and gram-positive bacteria. Compared to traditional chemical methods, Ginkgo biloba leaf extract provides an easy green synthetical way. It is anticipated that the biosynthesized AgNPs can be used in areas such as cosmetics, foods and medical applications. - Highlights: • Monodisperse silver nanoparticles were first prepared by a green synthetical way through Ginkgo Biloba leaf extract. • The synthesized AgNPs is of high crystallinity, stable and good dispersion with smaller sizes between 10–16 nm. • The achieved AgNPs exhibits good antibacterial activities. • The biosynthesis method is advantageous for its cost effectiveness, availability, portability, nontoxic and environmentally benign.

  9. Green synthesis and antimicrobial activity of monodisperse silver nanoparticles synthesized using Ginkgo Biloba leaf extract

    International Nuclear Information System (INIS)

    Ren, Yan-yu; Yang, Hui; Wang, Tao; Wang, Chuang

    2016-01-01

    Various parts of plants can be used as a raw material for the synthesis of nanoparticles, which is eco-friendly way and does not involve any harmful chemicals. In this project, Ginkgo biloba leaf, an abundantly available medicinal plant in China, was for the first time adopted as a reducing and stabilizing agent to synthesize smaller sized and stable silver nanoparticles (AgNPs). To improve the quality of AgNPs, the reduction was accelerated by changing the concentrations of initial Ag + (0.02, 0.04, 0.06 and 0.08 mol/L) of the reaction mixture consisting of silver nitrate solution (AgNO 3 ) and Ginkgo biloba leaf extract. At pH = 8 and lower AgNO 3 concentration (0.02 mol/L), a colloid consisting of well-dispersed spherical nanoparticles was obtained. The synthesized nanocrystals were successfully characterized by UV–vis and XRD. TEM images revealed the size of the spherical AgNPs ranged between 10–16 nm. FTIR analysis revealed that biological macromolecules with groups of −NH 2 , −OH, and others were distributed on the surface of the nanoparticles. The biosynthesized AgNPs exhibited good antibacterial activities against gram-negative bacteria and gram-positive bacteria. Compared to traditional chemical methods, Ginkgo biloba leaf extract provides an easy green synthetical way. It is anticipated that the biosynthesized AgNPs can be used in areas such as cosmetics, foods and medical applications. - Highlights: • Monodisperse silver nanoparticles were first prepared by a green synthetical way through Ginkgo Biloba leaf extract. • The synthesized AgNPs is of high crystallinity, stable and good dispersion with smaller sizes between 10–16 nm. • The achieved AgNPs exhibits good antibacterial activities. • The biosynthesis method is advantageous for its cost effectiveness, availability, portability, nontoxic and environmentally benign.

  10. Asymmetric dumbbell-shaped silver nanoparticles and spherical gold nanoparticles green-synthesized by mangosteen (Garcinia mangostana pericarp waste extracts

    Directory of Open Access Journals (Sweden)

    Park JS

    2017-09-01

    Full Text Available Ji Su Park, Eun-Young Ahn, Youmie Park College of Pharmacy, Inje Institute of Pharmaceutical Sciences and Research, Inje University, Gimhae, Gyeongnam, Republic of Korea Abstract: Mangosteen (Garcinia mangostana pericarp waste extract was used to synthesize gold and silver nanoparticles by a green strategy. The extract was both a reducing and stabilizing agent during synthesis. Phytochemical screening of the extract was conducted to obtain information regarding the presence/absence of primary and secondary metabolites in the extract. The in vitro antioxidant activity results demonstrated that the extract had excellent antioxidant activity, which was comparable to a standard (butylated hydroxy toluene. Spherical gold nanoparticles (gold nanoparticles green synthesized by mangosteen pericarp extract [GM-AuNPs] with an average size of 15.37±3.99 to 44.20±16.99 nm were observed in high-resolution transmission electron microscopy (HR-TEM images. Most interestingly, the silver nanoparticles (silver nanoparticles green synthesized by mangosteen pericarp extract [GM-AgNPs] had asymmetric nanodumbbell shapes where one tail grew from a spherical head. The average head size was measured to be 13.65±5.07 to 31.08±3.99 nm from HR-TEM images. The hydrodynamic size of both nanoparticles tended to increase with increasing extract concentration. Large negative zeta potentials (–18.92 to –34.77 mV suggested that each nanoparticle solution possessed excellent colloidal stability. The reaction yields were 99.7% for GM-AuNPs and 82.8% for GM-AgNPs, which were assessed by inductively coupled plasma optical emission spectroscopy. A high-resolution X-ray diffraction pattern confirmed the face-centered cubic structure of both nanoparticles. Based on phytochemical screening and Fourier transform infrared spectra, the hydroxyl functional groups of carbohydrates, flavonoids, glycosides, and phenolic compounds were most likely involved in a reduction reaction of

  11. Biogenic silver and gold nanoparticles synthesized using red ginseng root extract, and their applications.

    Science.gov (United States)

    Singh, Priyanka; Kim, Yeon Ju; Wang, Chao; Mathiyalagan, Ramya; El-Agamy Farh, Mohamed; Yang, Deok Chun

    2016-05-01

    In the present study, we report a green methodology for the synthesis of silver and gold nanoparticles, using the root extract of the herbal medicinal plant Korean red ginseng. The silver and gold nanoparticles were synthesized within 1 h and 10 min respectively. The nanoparticles generated were not aggregated, and remained stable for a long time, which suggests the nature of nanoparticles. The phytochemicals and ginsenosides present in the root extract assist in reducing and stabilizing the synthesized nanoparticles. The red ginseng root extract-generated silver nanoparticles exhibit antimicrobial activity against pathogenic microorganisms including Vibrio parahaemolyticus, Staphylococcus aureus, Bacillus cereus, and Candida albicans. In addition, the silver nanoparticles exhibit biofilm degrading activity against S. aureus and Pseudomonas aeruginosa. Thus, the present study opens up a new possibility of synthesizing silver and gold nanoparticles in a green and rapid manner using Korean red ginseng root extract, and explores their biomedical applications.

  12. Silver/polysaccharide-based nanofibrous materials synthesized from green chemistry approach.

    Science.gov (United States)

    Martínez-Rodríguez, M A; Garza-Navarro, M A; Moreno-Cortez, I E; Lucio-Porto, R; González-González, V A

    2016-01-20

    In this contribution a novel green chemistry approach for the synthesis of nanofibrous materials based on blends of carboxymethyl-cellulose (CMC)-silver nanoparticles (AgNPs) composite and polyvinyl-alcohol (PVA) is proposed. These nanofibrous materials were obtained from the electrospinning of blends of aqueous solutions of CMC-AgNPs composite and PVA, which were prepared at different CMC/PVA weight ratios in order to electrospin nanofibers applying a constant tension of 15kV. The synthesized materials were characterized by means of transmission electron microscopy, scanning electron microscopy; as well as Fourier-transform infrared, ultraviolet and Raman spectroscopic techniques. Experimental evidence suggests that the diameter of the nanofibers is thinner than any other reported in the literature regarding the electrospinning of CMC. This feature is related to the interactions of AgNPs with carboxyl functional groups of the CMC, which diminish those between the later and acetyl groups of PVA. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Synthesis and Characterization of Polyethylene Glycol Mediated Silver Nanoparticles by the Green Method

    Directory of Open Access Journals (Sweden)

    Yadollah Abdollahi

    2012-05-01

    Full Text Available The roles of green chemistry in nanotechnology and nanoscience fields are very significant in the synthesis of diverse nanomaterials. Herein, we report a green chemistry method for synthesized colloidal silver nanoparticles (Ag NPs in polymeric media. The colloidal Ag NPs were synthesized in an aqueous solution using silver nitrate, polyethylene glycol (PEG, and β-d-glucose as a silver precursor, stabilizer, and reducing agent, respectively. The properties of synthesized colloidal Ag NPs were studied at different reaction times. The ultraviolet-visible spectra were in excellent agreement with the obtained nanostructure studies performed by transmission electron microscopy (TEM and their size distributions. The Ag NPs were characterized by utilizing X-ray diffraction (XRD, zeta potential measurements and Fourier transform infrared (FT-IR. The use of green chemistry reagents, such as glucose, provides green and economic features to this work.

  14. Asymmetric dumbbell-shaped silver nanoparticles and spherical gold nanoparticles green-synthesized by mangosteen (Garcinia mangostana) pericarp waste extracts

    Science.gov (United States)

    Park, Ji Su; Ahn, Eun-Young; Park, Youmie

    2017-01-01

    Mangosteen (Garcinia mangostana) pericarp waste extract was used to synthesize gold and silver nanoparticles by a green strategy. The extract was both a reducing and stabilizing agent during synthesis. Phytochemical screening of the extract was conducted to obtain information regarding the presence/absence of primary and secondary metabolites in the extract. The in vitro antioxidant activity results demonstrated that the extract had excellent antioxidant activity, which was comparable to a standard (butylated hydroxy toluene). Spherical gold nanoparticles (gold nanoparticles green synthesized by mangosteen pericarp extract [GM-AuNPs]) with an average size of 15.37±3.99 to 44.20±16.99 nm were observed in high-resolution transmission electron microscopy (HR-TEM) images. Most interestingly, the silver nanoparticles (silver nanoparticles green synthesized by mangosteen pericarp extract [GM-AgNPs]) had asymmetric nanodumbbell shapes where one tail grew from a spherical head. The average head size was measured to be 13.65±5.07 to 31.08±3.99 nm from HR-TEM images. The hydrodynamic size of both nanoparticles tended to increase with increasing extract concentration. Large negative zeta potentials (−18.92 to −34.77 mV) suggested that each nanoparticle solution possessed excellent colloidal stability. The reaction yields were 99.7% for GM-AuNPs and 82.8% for GM-AgNPs, which were assessed by inductively coupled plasma optical emission spectroscopy. A high-resolution X-ray diffraction pattern confirmed the face-centered cubic structure of both nanoparticles. Based on phytochemical screening and Fourier transform infrared spectra, the hydroxyl functional groups of carbohydrates, flavonoids, glycosides, and phenolic compounds were most likely involved in a reduction reaction of gold or silver salts to their corresponding nanoparticles. The in vitro cytotoxicity (based on a water-soluble tetrazolium assay) demonstrated that GM-AgNPs were toxic to both A549 (a human lung

  15. Green synthesis of silver nanoparticles and its application for mosquito control

    Directory of Open Access Journals (Sweden)

    Naba Kumar Mondal

    2014-02-01

    Full Text Available Objective: To synthesize and characterize silver nanoparticles from aqueous root extract of Parthenium hysterophorus (P. hysterophorus and also to evaluate the potentiality of synthesized silver nanoparticles as larvacidal agent against Culex quinquefasciatus (Cx. quinquefasciatus. Methods: The silver nano particles were generated using root extract of P. hysterophorus. The characterization of synthesized nanoparticles was done by visual color change, UV-Vis spectrum, scanning electron micrograph, fluorescent microscope and Fourier transform infrared spectroscopy. Results: It was found that aqueous silver ions can be reduced by aqueous root extract of P. hysterophorus to generate extremely stable silver nanoparticles in aqueous medium. Larvae were exposed to varying concentrations of plant extracts, aqueous silver nitrate solution and synthesized silver nanoparticles for 0, 24 and 48 h separately. Aqueous root extract showed moderate larvicidal effects; however, the maximum efficacy (60.18% was observed with the synthesized silver nanoparticles against the larvae of Cx. quinquefasciatus. Conclusions: These results suggest that the green synthesis of silver nanoparticles have the potential to be used as an ideal eco-friently approach for the control of the Cx. quinquefasciatus. This is the first report on the mosquito larvicidal activity of the nano particle synthesized by P. hysterophorus.

  16. Antimicrobial activity and physical characterization of silver nanoparticles green synthesized using nitrate reductase from Fusarium oxysporum.

    Science.gov (United States)

    Gholami-Shabani, Mohammadhassan; Akbarzadeh, Azim; Norouzian, Dariush; Amini, Abdolhossein; Gholami-Shabani, Zeynab; Imani, Afshin; Chiani, Mohsen; Riazi, Gholamhossein; Shams-Ghahfarokhi, Masoomeh; Razzaghi-Abyaneh, Mehdi

    2014-04-01

    Nanostructures from natural sources have received major attention due to wide array of biological activities and less toxicity for humans, animals, and the environment. In the present study, silver nanoparticles were successfully synthesized using a fungal nitrate reductase, and their biological activity was assessed against human pathogenic fungi and bacteria. The enzyme was isolated from Fusarium oxysporum IRAN 31C after culturing on malt extract-glucose-yeast extract-peptone (MGYP) medium. The enzyme was purified by a combination of ultrafiltration and ion exchange chromatography on DEAE Sephadex and its molecular weight was estimated by gel filtration on Sephacryl S-300. The purified enzyme had a maximum yield of 50.84 % with a final purification of 70 folds. With a molecular weight of 214 KDa, it is composed of three subunits of 125, 60, and 25 KDa. The purified enzyme was successfully used for synthesis of silver nanoparticles in a way dependent upon NADPH using gelatin as a capping agent. The synthesized silver nanoparticles were characterized by X-ray diffraction, dynamic light scattering spectroscopy, and transmission and scanning electron microscopy. These stable nonaggregating nanoparticles were spherical in shape with an average size of 50 nm and a zeta potential of -34.3. Evaluation of the antimicrobial effects of synthesized nanoparticles by disk diffusion method showed strong growth inhibitory activity against all tested human pathogenic fungi and bacteria as evident from inhibition zones that ranged from 14 to 25 mm. Successful green synthesis of biologically active silver nanoparticles by a nitrate reductase from F. oxysporum in the present work not only reduces laborious downstream steps such as purification of nanoparticle from interfering cellular components, but also provides a constant source of safe biologically-active nanomaterials with potential application in agriculture and medicine.

  17. Antimicrobial Activities of Silver Nanoparticles Synthesized by Using Water Extract of Arnicae anthodium.

    Science.gov (United States)

    Dobrucka, Renata; Długaszewska, Jolanta

    2015-06-01

    Green synthesis of nanoparticles has gained significant importance in recent years and has become the one of the most preferred methods. Also, green synthesis of nanoparticles is valuable branch of nanotechnology. Plant extracts are eco-friendly and can be an economic option for synthesis of nanoparticles. This study presents method the synthesis of silver nanoparticles using water extract of Arnicae anthodium. Formation of silver nanoparticles was confirmed by UV-visble spectroscopy, Fourier transform infrared spectroscopy and total reflection X-ray fluorescence analysis. The morphology of the synthesized silver nanoparticles was verified by SEM-EDS. The obtained silver nanoparticles were used to study their antimicrobial activity.

  18. Green synthesis of silver nanoparticle using Bambusa arundinacea leaves

    Science.gov (United States)

    Kataria, Bharat; Shyam, Vasvani; Kaushik, Babiya; Vasoya, Jaydeep; Joseph, Joyce; Savaliya, Chirag; Kumar, Sumit; Parikh, Sachin P.; Thakar, C. M.; Pandya, D. D.; Ravalia, A. B.; Markna, J. H.; Shah, N. A.

    2017-05-01

    The synthesis of nanoparticles using ecofriendly way is an interesting area in advance nanotechnology. Silver (Ag) nanoparticles are usually synthesized by chemicals route, which are quite flammable and toxic in nature. This study deals with a biosynthesis process (environment friendly) of silver nanoparticles using Bambusa arundinacea leaves for its antibacterial activity. The formation and characterization of AgNPs was confirmed by UV-Vis spectroscopy. Silver nanoparticles were successfully synthesized from AgNO3 through a simple green route using the latex of Bambusa arundinacea leaves as reducing as well as capping agent. Scanning Electron Microscopy (SEM) study indicates the formation of grains (particles) with different size and shape.

  19. Green synthesis of silver nanoparticles using tannins

    Science.gov (United States)

    Raja, Pandian Bothi; Rahim, Afidah Abdul; Qureshi, Ahmad Kaleem; Awang, Khalijah

    2014-09-01

    Colloidal silver nanoparticles were prepared by rapid green synthesis using different tannin sources as reducing agent viz. chestnut (CN), mangrove (MG) and quebracho (QB). The aqueous silver ions when exposed to CN, MG and QB tannins were reduced which resulted in formation of silver nanoparticles. The resultant silver nanoparticles were characterized using UV-Visible, X-ray diffraction (XRD), scanning electron microscopy (SEM/EDX), and transmission electron microscopy (TEM) techniques. Furthermore, the possible mechanism of nanoparticles synthesis was also derived using FT-IR analysis. Spectroscopy analysis revealed that the synthesized nanoparticles were within 30 to 75 nm in size, while XRD results showed that nanoparticles formed were crystalline with face centered cubic geometry.

  20. Quorum quenching and antibacterial activity of silver nanoparticles synthesized from Sargassum polyphyllum

    Directory of Open Access Journals (Sweden)

    Mani Arunkumar

    2014-03-01

    Full Text Available Development of efficient methodology for the green synthesis of silver nanoparticles using marine algae is a modern area of research in the field of phyconanotechnology. In this regard, the present study deals with green synthesis of silver nanoparticles (AgNPs by using aqueous extracts of marine brown seaweed Sargassum polyphyllum. UV-visible spectral analysis reveals the formation of AgNPs by showing absorption maximum at 420 nm wavelength and SEM analysis clearly elucidate the polydispersed structure of AgNPs without aggregation and ranged in size from 37-43 nm. X-ray Diffraction pattern confirmed the AgNPs crystalline personality. The synthesized AgNPs showed more enduring antibacterial activity against test bacterial pathogens. Furthermore, the synthesized AgNPs exhibited varying level of inhibition of violacein production and swarming motility. In the near future, silver nanoparticles can be extremely useful in clinical medicine as an alternative method for the treatment of wound infection.

  1. Study of mechanism of enhanced antibacterial activity by green synthesis of silver nanoparticles

    Science.gov (United States)

    Parashar, Upendra Kumar; Kumar, Vinod; Bera, Tanmay; Saxena, Preeti S.; Nath, Gopal; Srivastava, Sunil K.; Giri, Rajiv; Srivastava, Anchal

    2011-10-01

    The extensive use of silver nanoparticles needs a synthesis process that is greener without compromising their properties. The present study describes a novel green synthesis of silver nanoparticles using Guava (Psidium guajava) leaf extract. In order to compare with the conventionally synthesized ones, we also prepared Ag-NPs by chemical reduction. Their optical and morphological characteristics were thoroughly investigated and tested for their antibacterial properties on Escherichia coli. The green synthesized silver nanoparticles showed better antibacterial properties than their chemical counterparts even though there was not much difference between their morphologies. Fourier transform infrared (FTIR) spectroscopic analysis of the used extract and as-synthesized silver nanoparticles suggests the possible reduction of Ag + by the water-soluble ingredients of the guava leaf like tannins, eugenol and flavonoids. The possible reaction mechanism for the reduction of Ag + has been proposed and discussed. The time-dependent electron micrographs and the simulation studies indicated that a physical interaction between the silver nanoparticles and the bacterial cell membrane may be responsible for this effect. Based on the findings, it seems very reasonable to believe that this greener way of synthesizing silver nanoparticles is not just an environmentally viable technique but it also opens up scope to improve their antibacterial properties.

  2. Study of mechanism of enhanced antibacterial activity by green synthesis of silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Parashar, Upendra Kumar; Srivastava, Sunil K; Srivastava, Anchal [Department of Physics, Banaras Hindu University, Varanasi 221005 (India); Kumar, Vinod; Saxena, Preeti S [Department of Zoology, Banaras Hindu University, Varanasi 22005 (India); Bera, Tanmay [Department of Mechanical, Materials and Aerospace Engineering, University of Central Florida, Orlando, FL 32816 (United States); Nath, Gopal [Department of Microbiology, Institute of Medical Science, Banaras Hindu University, Varanasi 22005 (India); Giri, Rajiv, E-mail: anchalbhu@gmail.com [Department of Materials Science and Engineering, Norwegian University of Science and Technology, NO-7491 Trondheim (Norway)

    2011-10-14

    The extensive use of silver nanoparticles needs a synthesis process that is greener without compromising their properties. The present study describes a novel green synthesis of silver nanoparticles using Guava (Psidium guajava) leaf extract. In order to compare with the conventionally synthesized ones, we also prepared Ag-NPs by chemical reduction. Their optical and morphological characteristics were thoroughly investigated and tested for their antibacterial properties on Escherichia coli. The green synthesized silver nanoparticles showed better antibacterial properties than their chemical counterparts even though there was not much difference between their morphologies. Fourier transform infrared (FTIR) spectroscopic analysis of the used extract and as-synthesized silver nanoparticles suggests the possible reduction of Ag{sup +} by the water-soluble ingredients of the guava leaf like tannins, eugenol and flavonoids. The possible reaction mechanism for the reduction of Ag{sup +} has been proposed and discussed. The time-dependent electron micrographs and the simulation studies indicated that a physical interaction between the silver nanoparticles and the bacterial cell membrane may be responsible for this effect. Based on the findings, it seems very reasonable to believe that this greener way of synthesizing silver nanoparticles is not just an environmentally viable technique but it also opens up scope to improve their antibacterial properties.

  3. Green Synthesis, Characterization, and Antibacterial Activity of Silver/Polystyrene Nanocomposite

    Directory of Open Access Journals (Sweden)

    Manal A. Awad

    2015-01-01

    Full Text Available A novel, nontoxic, simple, cost-effective and ecofriendly technique was used to synthesize green silver nanoparticles (AgNPs. The AgNPs were synthesized using orange peel extract as a reducing agent for silver nitrate salt (AgNO3. The particle size distribution of AgNPs was determined by Dynamic Light Scattering (DLS. The average size of silver nanoparticles was 98.43 nm. The stable dispersion of silver nanoparticles was added slowly to polystyrene solution in toluene maintaining the temperature at 70°C. The AgNPs/polystyrene (PS nanocomposite solution was cast in a petri dish. The silver nanoparticles encapsulated within polymer chains were characterized by X-ray diffraction (XRD and Scanning Electron Microscopy (SEM equipped with Energy Dispersive Spectroscopy (EDS in addition to Transmission Electron Microscopy (TEM. The green AgNPs/PS nanocomposite film exhibited antimicrobial activity against Gram-negative bacteria Escherichia coli, Klebsiella pneumoniae and Salmonella, and Gram-positive bacteria Staphylococcus aureus. Thus, the key findings of the work include the use of a safe and simple AgNPs/PS nanocomposite which had a marked antibacterial activity which has a potential application in food packaging.

  4. Microwave-assisted facile green synthesis of silver nanoparticles

    Indian Academy of Sciences (India)

    Silver nanoparticles have been successfully synthesized in aqueous medium by a green, rapid and costefficient synthetic approach based on microwave irradiation. In this study, iota-carrageenan (I-carrageenan) is used both as reducing and stabilizing agent. The formation of nanoparticles is determined using UV–vis, ...

  5. Green synthesis and antimicrobial activity of monodisperse silver nanoparticles synthesized using Ginkgo Biloba leaf extract

    Science.gov (United States)

    Ren, Yan-yu; Yang, Hui; Wang, Tao; Wang, Chuang

    2016-11-01

    Various parts of plants can be used as a raw material for the synthesis of nanoparticles, which is eco-friendly way and does not involve any harmful chemicals. In this project, Ginkgo biloba leaf, an abundantly available medicinal plant in China, was for the first time adopted as a reducing and stabilizing agent to synthesize smaller sized and stable silver nanoparticles (AgNPs). To improve the quality of AgNPs, the reduction was accelerated by changing the concentrations of initial Ag+ (0.02, 0.04, 0.06 and 0.08 mol/L) of the reaction mixture consisting of silver nitrate solution (AgNO3) and Ginkgo biloba leaf extract. At pH = 8 and lower AgNO3 concentration (0.02 mol/L), a colloid consisting of well-dispersed spherical nanoparticles was obtained. The synthesized nanocrystals were successfully characterized by UV-vis and XRD. TEM images revealed the size of the spherical AgNPs ranged between 10-16 nm. FTIR analysis revealed that biological macromolecules with groups of sbnd NH2, sbnd OH, and others were distributed on the surface of the nanoparticles. The biosynthesized AgNPs exhibited good antibacterial activities against gram-negative bacteria and gram-positive bacteria. Compared to traditional chemical methods, Ginkgo biloba leaf extract provides an easy green synthetical way. It is anticipated that the biosynthesized AgNPs can be used in areas such as cosmetics, foods and medical applications.

  6. Rapid green synthesis of silver nanoparticles and nanorods using Piper nigrum extract

    International Nuclear Information System (INIS)

    Mohapatra, Bandita; Kuriakose, Sini; Mohapatra, Satyabrata

    2015-01-01

    Highlights: • Silver nanorods were synthesized by photoreduction using Piper nigrum extract. • The morphological and structural properties were studied by XRD and AFM. • Silver nanoparticles were formed at lower AgNO 3 concentration. • Increase in AgNO 3 concentration resulted in formation of silver nanorods. - Abstract: We report sun light driven rapid green synthesis of stable aqueous dispersions of silver nanoparticles and nanorods at room temperature using photoreduction of silver ions with Piper nigrum extract. Silver nanoparticles were formed within 3 min of sun light irradiation following addition of Piper nigrum extract to the AgNO 3 solution. The effects of AgNO 3 concentration and irradiation time on the formation and plasmonic properties of biosynthesized silver nanoparticles were studied using UV–visible absorption spectroscopy. The morphology and structure of silver nanoparticles were well characterized by atomic force microscopy (AFM) and X-ray diffraction (XRD). The size of Ag nanoparticles increased with increase in irradiation time, leading to the formation of anisotropic nanostructures. Increasing the AgNO 3 concentration resulted in the formation of Ag nanorods. UV–visible absorption studies revealed the presence of surface plasmon resonance (SPR) peaks which red shift and broaden with increasing AgNO 3 concentration. We have demonstrated a facile, energy efficient and rapid green synthetic route to synthesize stable aqueous dispersions of silver nanoparticles and nanorods

  7. Rapid green synthesis of silver nanoparticles and nanorods using Piper nigrum extract

    Energy Technology Data Exchange (ETDEWEB)

    Mohapatra, Bandita [Multifunctional Nanomaterials Laboratory, School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi 110078 (India); Kuriakose, Sini [Multifunctional Nanomaterials Laboratory, School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi 110078 (India); School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi 110078 (India); Mohapatra, Satyabrata, E-mail: smiuac@gmail.com [Multifunctional Nanomaterials Laboratory, School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi 110078 (India); School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi 110078 (India)

    2015-07-15

    Highlights: • Silver nanorods were synthesized by photoreduction using Piper nigrum extract. • The morphological and structural properties were studied by XRD and AFM. • Silver nanoparticles were formed at lower AgNO{sub 3} concentration. • Increase in AgNO{sub 3} concentration resulted in formation of silver nanorods. - Abstract: We report sun light driven rapid green synthesis of stable aqueous dispersions of silver nanoparticles and nanorods at room temperature using photoreduction of silver ions with Piper nigrum extract. Silver nanoparticles were formed within 3 min of sun light irradiation following addition of Piper nigrum extract to the AgNO{sub 3} solution. The effects of AgNO{sub 3} concentration and irradiation time on the formation and plasmonic properties of biosynthesized silver nanoparticles were studied using UV–visible absorption spectroscopy. The morphology and structure of silver nanoparticles were well characterized by atomic force microscopy (AFM) and X-ray diffraction (XRD). The size of Ag nanoparticles increased with increase in irradiation time, leading to the formation of anisotropic nanostructures. Increasing the AgNO{sub 3} concentration resulted in the formation of Ag nanorods. UV–visible absorption studies revealed the presence of surface plasmon resonance (SPR) peaks which red shift and broaden with increasing AgNO{sub 3} concentration. We have demonstrated a facile, energy efficient and rapid green synthetic route to synthesize stable aqueous dispersions of silver nanoparticles and nanorods.

  8. Uncapped silver nanoparticles synthesized by DC arc thermal plasma technique for conductor paste formulation

    Science.gov (United States)

    Shinde, Manish; Pawar, Amol; Karmakar, Soumen; Seth, Tanay; Raut, Varsha; Rane, Sunit; Bhoraskar, Sudha; Amalnerkar, Dinesh

    2009-11-01

    Uncapped silver nanoparticles were synthesized by DC arc thermal plasma technique. The synthesized nanoparticles were structurally cubic and showed wide particle size variation (between 20-150 nm). Thick film paste formulated from such uncapped silver nanoparticles was screen-printed on alumina substrates and the resultant `green' films were fired at different firing temperatures. The films fired at 600 °C revealed better microstructure properties and also yielded the lowest value of sheet resistance in comparison to those corresponding to conventional peak firing temperature of 850 °C. Our findings directly support the role of silver nanoparticles in substantially depressing the operative peak firing temperature involved in traditional conductor thick films technology.

  9. Green synthesis of silver nanoparticles and their characterization by XRD

    Science.gov (United States)

    Mehta, B. K.; Chhajlani, Meenal; Shrivastava, B. D.

    2017-05-01

    A cost effective and environment friendly technique for green synthesis of silver nanoparticles has been reported. Silver nanoparticles have been synthesized using ethanol extract of fruits of Santalum album (Family Santalaceae), commonly known as East Indian sandalwood. Fruits of S.album were collected and crushed. Ethanol was added to the crushed fruits and mixture was exposed to microwave for few minutes. Extract was concentrated by Buchi rotavaporator. To this extract, 1mM aqueous solution of silver nitrate (AgNO3) was added. After about 24 hr incubation Ag+ ions in AgNO3 solution were reduced to Ag atoms by the extract. Silver nanoparticles were obtained in powder form. X-ray diffraction (XRD) pattern of the prepared sample of silver nanoparticles was recorded The diffractogram has been compared with the standard powder diffraction card of JCPDS silver file. Four peaks have been identified corresponding to (hkl) values of silver. The XRD study confirms that the resultant particles are silver nanoparticles having FCC structure. The average crystalline size D, the value of the interplanar spacing between the atoms, d, lattice constant and cell volume have been estimated. Thus, silver nanoparticles with well-defined dimensions could be synthesized by reduction of metal ions due to fruit extract of S.album.

  10. Weissella oryzae DC6-facilitated green synthesis of silver nanoparticles and their antimicrobial potential.

    Science.gov (United States)

    Singh, Priyanka; Kim, Yeon J; Wang, Chao; Mathiyalagan, Ramya; Yang, Deok C

    2016-09-01

    Nanoparticles and nanomaterials are at the prominent edge of the rapidly developing field of nanotechnology. Recently, nanoparticle synthesis using biological resources has been found to be a new area with considerable prospects for development. Biological systems are the masters of ambient condition chemistry and are able to synthesize nanoparticles by utilizing metal salts. In the perspective of the current initiative to develop green technologies for the synthesis of nanoparticles, microorganisms are of considerable interest. Thus, the present study describes a bacterial strain-Weissella oryzae DC6-isolated from mountain ginseng, for the green and facile synthesis of silver nanoparticles. The particles were synthesized effectively without the need for any supplementary modification to maintain stability. The synthesized nanoparticles were evaluated by several instrumental techniques, comprising ultraviolet-visible spectrophotometry, field emission transmission electron microscopy, energy dispersive X-ray spectroscopy, elemental mapping, X-ray diffraction, and dynamic light scattering. In addition, the biosynthesized silver nanoparticles were explored for their antimicrobial activity against clinical pathogens including Vibrio parahaemolyticus, Bacillus cereus, Bacillus anthracis, Staphylococcus aureus, Escherichia coli, and Candida albicans. Furthermore, the potential of nanoparticles has been observed for biofilm inhibition against Staphylococcus aureus and Pseudomonas aeruginosa. Thus, the synthesis of silver nanoparticles by the strain W. oryzae DC6 may serve as a simple, green, cost-effective, consistent, and harmless method to produce antimicrobial silver nanoparticles.

  11. Characterization, antioxidant and antimicrobial activities of green synthesized silver nanoparticles from Psidium guajava L. leaf aqueous extracts.

    Science.gov (United States)

    Wang, Lu; Wu, Yanan; Xie, Jia; Wu, Sheng; Wu, Zhenqiang

    2018-05-01

    The green synthesis of nanoparticles has become increasingly promising due to their potential applications in nanomedicine and materials science. In this study, silver nanoparticles (P-AgNPs) were synthesized from aqueous extracts of P. guajava L. leaf. The synthesized silver nanoparticles were confirmed by UV-vis spectrophotometry at 438 nm. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and zetasizer analyses showed that the average sizes of the P-AgNPs were 20-35 nm, 25 nm, and 25-35 nm, respectively. Element mapping analyses of the P-AgNPs were confirmed by X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDX) analyses. Moreover, FTIR spectra of the synthesized P-AgNPs showed the presence of phyto constituents as capping agents. Zeta potential measurements (-20.17 mV) showed that the synthesized P-AgNPs had reasonably good stability. The in vitro antioxidant properties of the P-AgNPs were evaluated using two different methods. A highly efficient radical scavenging activity of P-AgNPs possessing IC 50 values of 52.53 ± 0.31 μg/mL (DPPH) and 55.10 ± 0.29 μg/mL (ABTS + ) were confirmed. At a concentration of 100 μg/mL, antimicrobial activity assays of the P-AgNPs showed significant inhibition against selected bacteria, S. cerevisiae, A. niger and R. oryzae, especially against Alcaligenes faecalis and Escherichia coli. The present study revealed that the low-cost and environmentally friendly synthesis of P-AgNPs can be widely used in biomedicine, water treatment or purification, and nanobiotechnology. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Time-dependent effect in green synthesis of silver nanoparticles

    Directory of Open Access Journals (Sweden)

    Darroudi M

    2011-04-01

    Full Text Available Majid Darroudi1,2, Mansor Bin Ahmad3, Reza Zamiri4, AK Zak5, Abdul Halim Abdullah1,3, Nor Azowa Ibrahim31Advanced Materials and Nanotechnology Laboratory, Institute of Advanced Technology (ITMA, Universiti Putra Malaysia, Selangor, Malaysia; 2Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; 3Department of Chemistry, 4Department of Physics, Faculty of Science, Universiti Putra Malaysia, Selangor, Malaysia; 5Low Dimensional Materials Research Center, Department of Physics, Faculty of Science, University of Malaya, Kuala Lumpur, MalaysiaAbstract: The application of “green” chemistry rules to nanoscience and nanotechnology is very important in the preparation of various nanomaterials. In this work, we successfully developed an eco-friendly chemistry method for preparing silver nanoparticles (Ag-NPs in natural polymeric media. The colloidal Ag-NPs were synthesized in an aqueous solution using silver nitrate, gelatin, and glucose as a silver precursor, stabilizer, and reducing agent, respectively. The properties of synthesized colloidal Ag-NPs were studied at different reaction times. The ultraviolet-visible (UV-vis spectra were in excellent agreement with the obtained nanostructure studies performed by transmission electron microscopy (TEM and their size distributions. The prepared samples were also characterized by X-ray diffraction (XRD and atomic force microscopy (AFM. The use of eco-friendly reagents, such as gelatin and glucose, provides green and economic attributes to this work.Keywords: silver nanoparticles, gelatin, green chemistry, time-dependent effect, ultraviolet-visible spectra

  13. Binding behaviors of greenly synthesized silver nanoparticles - Lysozyme interaction: Spectroscopic approach

    Science.gov (United States)

    Roy, Swarup

    2018-02-01

    Interaction of greenly synthesized silver nanoparticles (SNP) and lysozyme (Lys) has been studied using spectroscopy. From UV-Vis study it is observed that a moderate association constant (Kapp) of 5.36 × 104 L/mol giving an indication of interaction. Fluorescence emission and time resolved study, confirm static mode of quenching phenomena and the binding constant (Kb) was 25.12, 3.98 and 1.99 × 103 L/mol at 298, 305 and 312 K respectively and the number of binding sites (n) was found to be ∼1. Using temperature dependent fluorimetric data, thermodynamic parameters calculated (Enthalpy change, ΔH = -143.95 kJ/mol, Entropy change, ΔS = -400.32 J/mol/K, Gibbs free energy change, ΔG = -24.66 kJ/mol at 298 K) and resulting insight indicative of weak force (van der Walls interaction & H-bonding) as key feature for the Lys-SNP interaction. By following Förster's non-radiative energy transfer (FRET) theory, average binding distance (r = 3.05 nm) was calculated and observed that nonradiative type energy transfer between SNP and Lys. What is more, circular dichroism (CD) spectra indicates presence of SNP does not display substantial alteration in the secondary structure of Lys. Hence, this results may be very useful for the well thought of essential aspects of binding between the Lys and SNP.

  14. Safety evaluation of green synthesized Cola nitida pod, seed and seed shell extract-mediated silver nanoparticles (AgNPs using an Allium cepa assay

    Directory of Open Access Journals (Sweden)

    Taofeek A. Yekeen

    2017-11-01

    Full Text Available The increase in the use of nanoparticles in various fields of human endeavours calls for the need to understand the toxic potential of green synthesized nanoparticles. Cytogenotoxic potentials of green synthesized Cola pod (Cp-AgNPs, seed (Cs-AgNPs and seed shell (Css-AgNPs silver nanoparticles and silver nitrate salts (Ags were evaluated using an A. cepa assay. Twenty onion bulbs were exposed to 0.01, 0.10, 1.0, 10.0, and 100.0 μg/ml AgNPs and Ags solutions. Microscopic evaluation was performed at 24, 48 and 72 h with 5000 cells per concentration scored for chromosomal aberrations, while the effects on the root growth were evaluated at 72 h. The observed dividing cells and mitotic inhibition were dose-dependent for the three AgNPs and Ags at 24, 48 and 72 h. Mitotic index obtained for 1.0, 10 and 100 μg/mL at all times of evaluation were less than half the value of the negative control, while cell arrest was only observed at 72 h at a concentration of 100 μg/mL for the three AgNPs. The chromosomal aberrations observed were c-mitosis, a chromosome bridge, a vagrant chromosome, and a sticky chromosome, which indicate the potential of AgNPs for genotoxicity. The mean root length of A. cepa treated with AgNPs showed a dose-dependent significant decrease compared to the control, indicating their inhibitory potential, but the mean root lengths were found to be lower at all concentrations compared to those treated with Ags, thus showing the attenuation of growth inhibition. The EC50 values revealed the order of growth inhibition as Ags>Cp-AgNPs>Css-AgNPs>Cs-AgNPs. The cytogenotoxic potential of the AgNPs suggests that caution should be exercised in their usage to prevent environmental pollution. Keywords: Green synthesis, Nanoparticles, Silver, Aberration, Allium cepa, Cola nitida

  15. Green Synthesis of Silver Nanoparticles Using Pimpinella anisum L. Seed Aqueous Extract and Its Antioxidant Activity

    Directory of Open Access Journals (Sweden)

    Hashem Akhlaghi

    2015-09-01

    Full Text Available An aqueous extract of Pimpinella anisum was used for green synthesis of silver nanoparticles by bio reduction of an aqueous solution of silver nitrate. Silver nanoparticles were characterized by UV–Vis spectrometry, Fourier transform infrared spectroscopy (FTIR, X-ray diffraction (XRD analysis, scanning electron microscopy (SEM and energy-dispersive X-ray analysis (EDAX. The increase in absorption at 420 nm was used for recording the formation of a colloidal suspension of silver nanoparticles. The binding properties of the capped Ag nanoparticles synthesized from aqueous extract of P. anisum were analyzed by FTIR. XRD studies revealed that most of the nanoparticles were cubic and face centered cubic in shape. SEM analysis showed the size and shape of silver nanoparticles and EDAX confirmed the presence of silver. The synthesized silver nanoparticles showed DPPH free radical scavenging activity.

  16. Purification of simulated waste water using green synthesized silver nanoparticles of Piliostigma thonningii aqueous leave extract

    Science.gov (United States)

    Shittu, K. O.; Ihebunna, O.

    2017-12-01

    Synthesis of nanoparticles from various biological systems has been reported, but among all such systems, biosynthesis of nanoparticles from plants is considered the most suitable method. The use of plant material not only makes the process eco-friendly, but also the abundance makes it more economical. The aim of this study was to biologically synthesize silver nanoparticle using Piliostigma thonningii aqueous leaf extract and applied in the purification of laboratory stimulated waste with optimization using the different conditions of silver nanoparticle production such as time, temperature, pH, concentration of silver nitrate and volume of the aqueous extract. The biosynthesized silver nanoparticles were characterized by UV-visible spectrophotometry, nanosizer, energy dispersive x-ray analysis (EDX), transmission electron microscopy (TEM) and Fourier transform infrared (FTIR) spectroscopy. The time intervals for the reaction with aqueous silver nitrate solution shows an increase in the absorbance with time and became constant giving a maximum absorbance at 415 nm at 60 min of incubation. The pH of 6.5, temperature 65 °C, 1.25 mM of silver nitrate and 5 ml of plant extract was the best condition with maximum absorbance. The results from nanosizer, UV-vis and TEM suggested the biosynthesis silver nanoparticle to be spherical ranging from 50 nm to 114 nm. The EDX confirmed the elemental synthesis of silver at 2.60 keV and FTIR suggested the capping agent to be hydroxyl (OH) group with -C=C stretching vibrations. The synthesized silver nanoparticle also shows heavy metal removal activity in laboratory simulated waste water. The safety toxicity studies show no significant difference between the orally administered silver nanoparticles treated water group and control group, while the histopathological studies show well preserved hepatic architecture for the orally administered silver nanoparticle treated waste water group when compared with the control

  17. Green synthesis of silver nanoparticles from seed extract of Brassica nigra and its antibacterial activity

    Directory of Open Access Journals (Sweden)

    RAKSHA PANDIT

    2015-05-01

    Full Text Available Pandit R. 2015. Green synthesis of silver nanoparticles from seed extract of Brassica nigra and its antibacterial activity. Nusantara Bioscience 7: 15-19. We report the green synthesis of silver nanoparticles using seed extract of Brassica nigra. UV-visible spectroscopic analysis showed the absorbance peak at 432 nm which indicated the synthesis of silver nanoparticles. Nanoparticles Tracking and Analysis (NTA was used to determine the size of synthesized silver nanoparticles. Zeta potential analysis was carried out to study the stability of nanoparticles while FTIR analysis confirmed the presence of proteins as capping agents that provided stability to nanoparticles in colloid. Antibacterial activity of silver nanoparticles was evaluated against Propionibacterium acnes, Pseudomonas aeruginosa and Klebsiella pneumoniae. The activity of Vancomycin was significantly increased in combination with silver nanoparticles showing synergistic activity against all bacteria while the maximum activity was noted against P. acnes.

  18. Effect of Accelerator in Green Synthesis of Silver Nanoparticles

    Directory of Open Access Journals (Sweden)

    Kamyar Shameli

    2010-10-01

    Full Text Available Silver nanoparticles (Ag-NPs were successfully synthesized in the natural polymeric matrix. Silver nitrate, gelatin, glucose, and sodium hydroxide have been used as silver precursor, stabilizer, reducing agent, and accelerator reagent, respectively. This study investigated the role of NaOH as the accelerator. The resultant products have been confirmed to be Ag-NPs using powder X-ray diffraction (PXRD, UV-vis spectroscopy, and transmission electron microscopy (TEM. The colloidal sols of Ag-NPs obtained at different volumes of NaOH show strong and different surface plasmon resonance (SPR peaks, which can be explained from the TEM images of Ag-NPs and their particle size distribution. Compared with other synthetic methods, this work is green, rapid, and simple to use. The newly prepared Ag-NPs may have many potential applications in chemical and biological industries.

  19. Green Synthesis of Silver Nanoparticles by using Eucalyptus Globulus Leaf Extract

    Science.gov (United States)

    Balamurugan, Madheswaran; Saravanan, Shanmugam

    2017-12-01

    A single step eco-friendly, energy efficient and economically scalable green method was employed to synthesize silver nanoparticles. In this work, the synthesis of silver nanoparticles using Eucalyptus globulus leaf extract as reducing and capping agent along with water as solvent at normal room temperature is described. Silver nanoparticles were prepared from aqueous silver nitrate solution by adding the leaf extract. The prepared nanoparticles were characterized by using UV-visible Spectrophotometer, X-ray diffractometer, High Resolution Transmission Electron Microscope (HR-TEM) and Fourier Transform Infrared Spectroscope (FTIS). X-ray diffraction studies brought to light the crystalline nature and the face centered cubic structure of the silver nanoparticles. Using HR-TEM. the nano sizes and morphology of the particles were studied. The mean sizes of the prepared silver nanoparticles ranged from 30 to 36 nm. The density of the particles was tuned by varying the molar ratio of silver nitrate. FTIS studies showed the functional group of organic molecules which were located on the surface of the silver nanoparticles. Originating from the leaf extracts, these organic molecules reduced and capped the particles.

  20. Biological activity of green-synthesized silver nanoparticles depends on the applied natural extracts: a comprehensive study.

    Science.gov (United States)

    Rónavári, Andrea; Kovács, Dávid; Igaz, Nóra; Vágvölgyi, Csaba; Boros, Imre Miklós; Kónya, Zoltán; Pfeiffer, Ilona; Kiricsi, Mónika

    2017-01-01

    Due to obvious disadvantages of the classical chemical methods, green synthesis of metallic nanoparticles has attracted tremendous attention in recent years. Numerous environmentally benign synthesis methods have been developed yielding nanoparticles via low-cost, eco-friendly, and simple approaches. In this study, our aim was to determine the suitability of coffee and green tea extracts in green synthesis of silver nanoparticles as well as to compare the performance of the obtained materials in different biological systems. We successfully produced silver nanoparticles (C-AgNP and GT-AgNP) using coffee and green tea extracts; moreover, based on our comprehensive screening, we delineated major differences in the biological activity of C-AgNPs and GT-AgNPs. Our results indicate that although GT-AgNPs exhibited excellent antimicrobial activity against all the examined microbial pathogens, these particles were also highly toxic to mammalian cells, which limits their potential applications. On the contrary, C-AgNPs manifested substantial inhibitory action on the tested microbes but were nontoxic to human and mouse cells, indicating an outstanding capacity to discriminate between potential pathogens and mammalian cells. These results clearly show that the various green materials used for stabilization and for reduction of metal ions have a defining role in determining and fine-tuning the biological activity of the obtained nanoparticles.

  1. Biological application of green silver nanoparticle synthesized from leaf extract of Rauvolfi serpentina Benth

    Directory of Open Access Journals (Sweden)

    Sudipta Panja

    2016-07-01

    Full Text Available Objective: To synthesize silver nanoparticles (AgNPs from the leaf extract of Rauvolfia serpentina Benth and examination of their various biological activities. Methods: An ecofriendly, easy, one step, non-toxic and inexpensive approach is used, where aqueous plant extract acts as a reducing as well as stabilizing agent of AgNPs. The nanoparticles were characterized by UV-vis spectroscopy, Fourier transform infrared spectroscopy, transmission electron microscopy, X-ray diffraction, and energy-dispersive X-ray spectroscopy analysis. Results: Surface plasmon resonance of the nanoparticles was observed at 427 nm in UV-vis spectroscopy. Fourier transform infrared spectroscopy result confirms that the plant extract acts as the reducing as well as the capping agent of the AgNPs. Transmission electron microscopy indicated that the synthesized nanoparticles are spherical in shape and approximately 7–10 nm in size, whereas the crystalline nature with face-centered cubic structure of the AgNPs was detected by X-ray diffraction analysis. Presence of silver in the AgNPs is 31.43% by weight, as confirmed by energy-dispersive X-ray spectroscopy. The synthesized AgNPs have antimicrobial activities against human pathogenic microorganisms. It also shows larvicidal activity and cytotoxicity against HeLa, MCF-7 cell lines. Conclusions: Synthesized spherical shaped AgNPs from the leaf extract of Rauvolfia serpentina Benth have antimicrobial and larvicidal activities as well as cytotoxicity against HeLa and MCF-7 cell lines.

  2. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise

    Science.gov (United States)

    Ahmed, Shakeel; Ahmad, Mudasir; Swami, Babu Lal; Ikram, Saiqa

    2015-01-01

    Metallic nanoparticles are being utilized in every phase of science along with engineering including medical fields and are still charming the scientists to explore new dimensions for their respective worth which is generally attributed to their corresponding small sizes. The up-and-coming researches have proven their antimicrobial significance. Among several noble metal nanoparticles, silver nanoparticles have attained a special focus. Conventionally silver nanoparticles are synthesized by chemical method using chemicals as reducing agents which later on become accountable for various biological risks due to their general toxicity; engendering the serious concern to develop environment friendly processes. Thus, to solve the objective; biological approaches are coming up to fill the void; for instance green syntheses using biological molecules derived from plant sources in the form of extracts exhibiting superiority over chemical and/or biological methods. These plant based biological molecules undergo highly controlled assembly for making them suitable for the metal nanoparticle syntheses. The present review explores the huge plant diversity to be utilized towards rapid and single step protocol preparatory method with green principles over the conventional ones and describes the antimicrobial activities of silver nanoparticles. PMID:26843966

  3. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise

    Directory of Open Access Journals (Sweden)

    Shakeel Ahmed

    2016-01-01

    Full Text Available Metallic nanoparticles are being utilized in every phase of science along with engineering including medical fields and are still charming the scientists to explore new dimensions for their respective worth which is generally attributed to their corresponding small sizes. The up-and-coming researches have proven their antimicrobial significance. Among several noble metal nanoparticles, silver nanoparticles have attained a special focus. Conventionally silver nanoparticles are synthesized by chemical method using chemicals as reducing agents which later on become accountable for various biological risks due to their general toxicity; engendering the serious concern to develop environment friendly processes. Thus, to solve the objective; biological approaches are coming up to fill the void; for instance green syntheses using biological molecules derived from plant sources in the form of extracts exhibiting superiority over chemical and/or biological methods. These plant based biological molecules undergo highly controlled assembly for making them suitable for the metal nanoparticle syntheses. The present review explores the huge plant diversity to be utilized towards rapid and single step protocol preparatory method with green principles over the conventional ones and describes the antimicrobial activities of silver nanoparticles.

  4. Green synthesis of silver nanoparticles from marigold flower and its synergistic antimicrobial potential

    Directory of Open Access Journals (Sweden)

    Hemali Padalia

    2015-09-01

    Full Text Available In the present study, silver nanoparticles were synthesized using flower broth of Tagetes erecta as reductant by a simple and eco-friendly route. The aqueous silver ions when exposed to flower broth were reduced and resulted in green synthesis of silver nanoparticles. The silver nanoparticles were characterized by UV–visible spectroscopy, zeta potential, Fourier transform infra-red spectroscopy (FTIR, X-ray diffraction, Transmission electron microscopy (TEM analysis, Energy dispersive X-ray analysis (EDX and selected area electron diffraction (SAED pattern. UV–visible spectrum of synthesized silver nanoparticles showed maximum peak at 430 nm. TEM analysis revealed that the particles were spherical, hexagonal and irregular in shape and size ranging from 10 to 90 nm and Energy dispersive X-ray (EDX spectrum confirmed the presence of silver metal. Synergistic antimicrobial potential of silver nanoparticles was evaluated with various commercial antibiotics against Gram positive (Staphylococcus aureus and Bacillus cereus, Gram negative (Escherichia coli and Pseudomonas aeruginosa bacteria and fungi (Candida glabrata, Candida albicans, Cryptococcae neoformans. The antifungal activity of AgNPs with antibiotics was better than antibiotics alone against the tested fungal strains and Gram negative bacteria, thus signification of the present study is in production of biomedical products.

  5. Comparison on Bactericidal and Cytotoxic Effect of Silver Nanoparticles Synthesized by Different Methods

    Science.gov (United States)

    Mala, R.; Celsia, A. S. Ruby; Malathi Devi, S.; Geerthika, S.

    2017-08-01

    Biologically synthesized silver nanoparticle are biocompatible for medical applications. The present work is aimed to synthesize silver nanoparticle using the fruit pulp of Tamarindusindica and to evaluate its antibacterial and anticancer activity against lung cancercell lines. Antibacterial activity was assessed by well diffusion method. Cytotoxicity was evaluated using MTT assay. GC-MS of fruit pulp extract showed the presence of levoglucosenone, n-hexadecanoic acid, 9,12-octadecadienoic acid etc. Antioxidant activity of the fruit pulp was determined by DPPH assay, hydrogen peroxide scavenging assay and lipid peroxidation. The size of biologically synthesized silver nanoparticle varied from 50 nm to 76 nm. It was 59 nm to 98 nm for chemically synthesized silver nanoparticle. Biologically synthesized silver nanoparticle showed 26 mm inhibition zone against E. coli and chemically synthesized silver nanoparticle showed 20 mm. Antioxidant activity of fruit extract by DPPH showed 84 % reduction. The IC 50 of biologically synthesized silver nanoparticle against lung cancer cell lines was 48 µg/ml. It was 95 µg/ml for chemically synthesized silver nanoparticle. The increased activity of biologically synthesized silver nanoparticle was due to its smaller size, stability and the bioactive compounds capping the silver nanoparticle extracted from the fruit extract.

  6. Piper nigrum Leaf and Stem Assisted Green Synthesis of Silver Nanoparticles and Evaluation of Its Antibacterial Activity Against Agricultural Plant Pathogens

    Directory of Open Access Journals (Sweden)

    Kanniah Paulkumar

    2014-01-01

    Full Text Available Utilization of biological materials in synthesis of nanoparticles is one of the hottest topics in modern nanoscience and nanotechnology. In the present investigation, the silver nanoparticles were synthesized by using the leaf and stem extract of Piper nigrum. The synthesized nanoparticle was characterized by UV-vis spectroscopy, X-ray diffraction (XRD, scanning electron microscope (SEM, transmission electron microscope (TEM, energy dispersive X-ray analysis (EDAX, and Fourier Transform Infrared Spectroscopy (FTIR. The observation of the peak at 460 nm in the UV-vis spectra for leaf- and stem-synthesized silver nanoparticles reveals the reduction of silver metal ions into silver nanoparticles. Further, XRD analysis has been carried out to confirm the crystalline nature of the synthesized silver nanoparticles. The TEM images show that the leaf- and stem-synthesized silver nanoparticles were within the size of about 7–50 nm and 9–30 nm, respectively. The FTIR analysis was performed to identify the possible functional groups involved in the synthesis of silver nanoparticles. Further, the antibacterial activity of the green-synthesized silver nanoparticles was examined against agricultural plant pathogens. The antibacterial property of silver nanoparticles is a beneficial application in the field of agricultural nanotechnology.

  7. Green synthesis of silver nanoparticles using Beta vulgaris: Role of process conditions on size distribution and surface structure

    Energy Technology Data Exchange (ETDEWEB)

    Parameshwaran, R., E-mail: parameshviews@gmail.com [Department of Mechanical Engineering, Anna University, Chennai 600 025 (India); Centre for Nanoscience and Technology, Anna University, Chennai 600 025 (India); Kalaiselvam, S., E-mail: kalai@annauniv.edu [Centre for Nanoscience and Technology, Anna University, Chennai 600 025 (India); Department of Applied Science and Technology, Anna University, Chennai 600 025 (India); Jayavel, R., E-mail: rjvel@annauniv.edu [Centre for Nanoscience and Technology, Anna University, Chennai 600 025 (India)

    2013-06-15

    The present work reports the green synthesis of silver nanoparticles, using Beta vulgaris peel extract with a subsequent investigation on the size distribution and surface structure of nanoparticles formed under various process conditions. The green-chemical reduction mechanism of silver ions to nanoparticles by the active organic functional groups present in the extract was characterized, using the respective spectroscopic techniques. The effects of various process parameters, including induced intraparticle ripening, were attributed to the controlled formation of anisotropic silver nanoparticles within the supporting matrix of the extract. The plasmon absorption and resonance scattering properties were expected to be favourable for small and larger size nanoparticles (below 25 nm and above 75 nm) respectively, which was considered to be an indicative aspect for synthesizing nanoparticles of narrow size distribution. The zeta potential and dynamic light scattering (DLS) results suggest the good stability and mono-dispersed size distribution of the silver nanoparticles. The transmission electron microscope, selective area electron diffraction (SAED) and X-ray diffraction studies infer that the nanoparticles formed were spherical/quasi-spherical in shape, which primarily exhibited a face centred cubic crystal (FCC) structure. The green-chemical reduction of organic phases in the extract (especially amine (NH{sub 2}) groups) as reflected through shifts observed in the Fourier-transform infra red (FTIR) peaks, reveal the possible interaction of the organic molecules with the silver ions in the effective formation, surface modification and stabilization of the silver nanoparticles. - Highlights: • Functionally stable and crystalline silver nanoparticles were green synthesized. • Beta vulgaris peel extract was used as potential reducing and stabilizing agent. • Amine groups in extract were expected to reduce Ag{sup +} and stabilize nanoparticles. • Induced

  8. Green synthesis of silver nanoparticles using Beta vulgaris: Role of process conditions on size distribution and surface structure

    International Nuclear Information System (INIS)

    Parameshwaran, R.; Kalaiselvam, S.; Jayavel, R.

    2013-01-01

    The present work reports the green synthesis of silver nanoparticles, using Beta vulgaris peel extract with a subsequent investigation on the size distribution and surface structure of nanoparticles formed under various process conditions. The green-chemical reduction mechanism of silver ions to nanoparticles by the active organic functional groups present in the extract was characterized, using the respective spectroscopic techniques. The effects of various process parameters, including induced intraparticle ripening, were attributed to the controlled formation of anisotropic silver nanoparticles within the supporting matrix of the extract. The plasmon absorption and resonance scattering properties were expected to be favourable for small and larger size nanoparticles (below 25 nm and above 75 nm) respectively, which was considered to be an indicative aspect for synthesizing nanoparticles of narrow size distribution. The zeta potential and dynamic light scattering (DLS) results suggest the good stability and mono-dispersed size distribution of the silver nanoparticles. The transmission electron microscope, selective area electron diffraction (SAED) and X-ray diffraction studies infer that the nanoparticles formed were spherical/quasi-spherical in shape, which primarily exhibited a face centred cubic crystal (FCC) structure. The green-chemical reduction of organic phases in the extract (especially amine (NH 2 ) groups) as reflected through shifts observed in the Fourier-transform infra red (FTIR) peaks, reveal the possible interaction of the organic molecules with the silver ions in the effective formation, surface modification and stabilization of the silver nanoparticles. - Highlights: • Functionally stable and crystalline silver nanoparticles were green synthesized. • Beta vulgaris peel extract was used as potential reducing and stabilizing agent. • Amine groups in extract were expected to reduce Ag + and stabilize nanoparticles. • Induced intraparticle

  9. Biosynthesis of silver nanoparticles synthesized by Aspergillus

    Indian Academy of Sciences (India)

    In the present study, biosynthesis of silver nanoparticles and its antioxidant, antimicrobial and cytotoxic activities were investigated. Silver nanoparticles were extracellularly synthesized using Aspergillus flavus and the formation of nanoparticles was observed after 72 h of incubation. The results recorded from colour ...

  10. Sunlight based irradiation strategy for rapid green synthesis of highly stable silver nanoparticles using aqueous garlic (Allium sativum) extract and their antibacterial potential

    International Nuclear Information System (INIS)

    Rastogi, Lori; Arunachalam, J.

    2011-01-01

    Highlights: → We report green synthetic route for the production crystalline silver nanoparticles using garlic as both reducing and stabilizing agent. → Synthesis has been achieved by exposing the solution mixture of [Ag(NH 3 ) 2 ] + and aqueous garlic extract under sunlight. → Role of light in the synthesis process has been investigated and is discussed in detail. → The antibacterial effect of the synthesized silver nanoparticles has been assessed against both Gram classes of bacteria. → Synthesized silver colloidal solutions were found to be stable for a very long period and retained their bactericidal potential. - Abstract: A green synthetic route for the production of highly stable silver nanoparticles using aqueous garlic extract is being reported for the first time. The silver nanoparticles were synthesized by exposing a mixture of 0.1 M [Ag(NH 3 ) 2 ] + and diluted aqueous garlic extract under bright sunlight for 15 min. The garlic extract components served as both reducing and capping agents in the synthesis of silver nanoparticles while the sunlight acted as catalyst in the synthesis process. The synthesized nanoparticles were characterized using UV-visible (UV-vis) spectrophotometer; transmission electron microscopy (TEM), glancing angle X-ray diffraction (GA-XRD) and Fourier transform infra red (FTIR) spectrometry. The nanoparticles were found to be poly-dispersed in nature, spherical in shape and of 7.3 ± 4.4 nm in size. The FTIR analysis was suggestive of proteins as capping agents around the nanoparticles. The yield of synthesized nanoparticles was calculated to be approximately 80% by dry weight and 85% ICP-AES method. The synthesized silver nanoparticles exhibited good antibacterial potential against both Gram positive and Gram negative bacterial strains, as measured using well diffusion assay. Most importantly, the silver colloidal solutions thus synthesized were found to be stable for a very long period (more than a year) and retained

  11. Green Synthesis of Silver Nanoparticles Using Sodium Alginate and Lignosulphonic Acid Blends

    Science.gov (United States)

    Thakur, Amrita; Reddy, Giridhar

    2017-08-01

    A simple method based on the principles of green chemistry has been developed to synthesize stable silver nanoparticles (AgNP) for possible biomedical applications. Blend of sodium alginate (SA) and lignosulphonic acid (LS) prepared in the ratio of 80/20 mass percent respectively was used as reducing and stabilizing agent. This blend is biocompatible and has shown drug release ability under physiological conditions. Use of blend has an added advantage as LS has the ability to reduce silver while the blend matrix acts as a stabilizing agent. Effect of precursor concentration (AgNO3) and temperature was investigated. Progress of synthesis was monitored using UV-Vis spectroscopy. Higher temperature and lower silver nitrate concentration showed better synthesis of AgNP.

  12. Antibacterial Activity of Silver Nanoparticles Synthesized by Using Extracts of Hedera helix

    Directory of Open Access Journals (Sweden)

    Ahmadreza Abbasifar

    2017-01-01

    Full Text Available Background Silver nanoparticles (AgNPs are one of the most widely applicable particles whose application is increasing in Nano world daily. Silver nanoparticles have expressed significant advances owing to wide range of applications in the field of bio-medical, sensors, antimicrobials, catalysts, electronics, optical fibers, agricultural, bio-labeling and the other areas. Green synthesis is the safe and easiest method of producing silver nanoparticles. Because of the production of the silver ions, silver nanoparticles are found to have the antibacterial activity. Objectives The aim of this study was to investigate antibacterial activity of silver nanoparticles synthesized by using extracts of Hedera helix against Bacillus subtilis and Klebsiella pneumoniae. Methods In this experimental study AgNPs were prepared by the reaction of 1mM silver nitrate and extracts of Hedera helix. Antibacterial activity of AgNPs was assessed by using disc diffusion method against Bacillus subtilis and Klebsiella pneumoniae. The AgNPs were characterized by UV-visible (vis spectrophotometer, particle size analyzer by dynamic light scattering (DLS method, transmission electron microscopy (TEM. Results AgNPs obtained showed significantly higher antimicrobial activities against B. subtilis and K. pneumonia in comparison to both AgNO3 and raw plant extracts. Conclusions Biological methods are a good competent for the chemical procedures, which are environment friendly and convenient.

  13. One pot light assisted green synthesis, storage and antimicrobial activity of dextran stabilized silver nanoparticles.

    Science.gov (United States)

    Hussain, Muhammad Ajaz; Shah, Abdullah; Jantan, Ibrahim; Tahir, Muhammad Nawaz; Shah, Muhammad Raza; Ahmed, Riaz; Bukhari, Syed Nasir Abbas

    2014-12-03

    Green synthesis of nanomaterials finds the edge over chemical methods due to its environmental compatibility. Herein, we report green synthesis of silver nanoparticles (Ag NPs) mediated with dextran. Dextran was used as a stabilizer and capping agent to synthesize Ag NPs using silver nitrate (AgNO3) under diffused sunlight conditions. UV-vis spectra of as synthesized Ag nanoparticles showed characteristic surface plasmon band in the range from ~405-452 nm. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) studies showed spherical Ag NPs in the size regime of ~50-70 nm. Face centered cubic lattice of Ag NPs was confirmed by powder X-ray diffraction (PXRD). FT-IR spectroscopy confirmed that dextran not only acts as reducing agent but also functionalizes the surfaces of Ag NPs to make very stable dispersions. Moreover, on drying, the solution of dextran stabilized Ag NPs resulted in the formation of thin films which were found stable over months with no change in the plasmon band of pristine Ag NPs. The antimicrobial assay of the as synthesized Ag NPs showed remarkable activity. Being significantly active against microbes, the Ag NPs can be explored for antimicrobial medical devices.

  14. Synthesis of highly stable silver nanoparticles through a novel green method using Mirabillis jalapa for antibacterial, nonlinear optical applications

    Science.gov (United States)

    Pugazhendhi, S.; Palanisamy, P. K.; Jayavel, R.

    2018-05-01

    Green synthesis techniques are developing as more simplistic and eco-friendly approach for the synthesis of metal nanoparticles compared to chemical reduction methods. Herein we report Synthesis of highly stable silver nanoparticles using Mirabillis jalapa seed extract as a reducing and capping agent. The as-prepared silver nanoparticles were characterized by UV-vis spectroscopy (UV-vis) to confirm the formation of silver nanoparticles by its characteristic surface plasmon resonance peak observed at 420 nm. The Powder X-ray diffraction (P-XRD) revealed the structure and crystalline nature of synthesized silver nanoparticles, The Fourier transform infra-red spectroscopic (FT-IR) revealed the presence of the biomolecules in the extract that acted as reducing as well stabilizing agent. The high resolution transmission electron microscopic (HRTEM) images divulged that the synthesized silver nanoparticles were spherical in shape and poly dispersed. The energy dispersive X-ray diffraction (EDX) profile revealed the elements present in the as-synthesized colloidal silver nanoparticles and its percentages. The Zeta potential measured for silver nanoparticles evidenced that the prepared silver nanoparticles owned high stability in room temperature itself. The as-synthesized silver nanoparticles (AgNPs) in colloidal form were showed good antimicrobial effects and it's were found to exhibit third order optical nonlinearity as studied by Z-scan technique using 532 nm Nd:YAG (SHG) CW laser beam (COHERENT-Compass 215 M-50 diode pumped) output as source. The negative nonlinearity observed was well utilized for the study of optical limiting behavior of the silver nanoparticles.

  15. Evaluation of antimicrobial activity of silver nanoparticles synthesized from Piper betle leaves against human and plant pathogens

    Science.gov (United States)

    Jha, Babita; Rao, Mugdha; Prasad, K.; Jha, Anal K.

    2018-05-01

    The present work encompasses the fabrication of biocompatible silver nanoparticles from the leaves of the medicinal plant Piper betle using green chemistry approach. The synthesized nanoparticles were characterized by different standard techniques like: UV-visible spectroscopy, X-ray diffraction, scanning electron microscopy and Fourier transformed infrared spectroscopy. The antimicrobial efficacy of the silver nanoparticles was assessed against human and plant pathogens namely Ralstonia solanacearum, Burkholderia gladioli, Escherichia coli and Sacchromyces cerevisiae by agar well diffusion method. The obtained results clearly indicate its possible use as an alternative to antibiotics and pesticides in near future.

  16. Green synthesis of silver nanoparticles using Azadirachta indica leaf extract and its antimicrobial study

    Science.gov (United States)

    Roy, Pragyan; Das, Bhagyalaxmi; Mohanty, Abhipsa; Mohapatra, Sujata

    2017-11-01

    In this study, green synthesis of silver nanoparticles was done using leaf extracts of Azadirachta indica. The flavonoids and terpenoids present in the extract act as both reducing and capping agent. Microbes ( Escherichia coli and Gram-positive bacteria) were isolated from borewell water using selective media. The silver nanoparticles showed antimicrobial activities against Gram-positive bacteria and E. coli. However the silver nanoparticles were more effective against E. coli as compared to Gram-positive bacteria. Various techniques were used to characterize synthesized silver nanoparticles such as DLS and UV-visible spectrophotometer. The absorbance peak was in the range of 420-450 nm, that varied depending upon the variation in the concentration of neem extract. This is a very rapid and cost-effective method for generation of silver nanoparticle at room temperature, however, its exact dose in water purification has to be determined.

  17. Antibacterial activity of silver nanoparticles synthesized from serine

    Energy Technology Data Exchange (ETDEWEB)

    Jayaprakash, N. [Catalysis and Nanomaterials Research Laboratory, Department of Chemistry, Loyola College, Chennai 600 034 (India); SRM Valliammai Engineering College, Department of Chemistry, Chennai 603 203 (India); Judith Vijaya, J., E-mail: jjvijayaloyola@yahoo.co.in [Catalysis and Nanomaterials Research Laboratory, Department of Chemistry, Loyola College, Chennai 600 034 (India); John Kennedy, L. [Materials Division, School of Advanced Sciences, VIT University, Chennai Campus, Chennai 600 048 (India); Priadharsini, K.; Palani, P. [Department of Center for Advanced Study in Botany, University of Madras, Guindy Campus, Chennai 600 025 (India)

    2015-04-01

    Silver nanoparticles (Ag NPs) were synthesized by a simple microwave irradiation method using polyvinyl pyrrolidone (PVP) as a capping agent and serine as a reducing agent. UV–Visible spectra were used to confirm the formation of Ag NPs by observing the surface plasmon resonance (SPR) band at 443 nm. The emission spectrum of Ag NPs showed an emission band at 484 nm. In the presence of microwave radiation, serine acts as a reducing agent, which was confirmed by Fourier transformed infrared (FT-IR) spectrum. High-resolution transmission electron microscopy (HR-TEM) and high-resolution scanning electron microscopy (HR-SEM) were used to investigate the morphology of the synthesized sample. These images showed the sphere-like morphology. The elemental composition of the sample was determined by the energy dispersive X-ray analysis (EDX). Selected area electron diffraction (SAED) was used to find the crystalline nature of the Ag NPs. The electrochemical behavior of the synthesized Ag NPs was analyzed by the cyclic voltammetry (CV). Antibacterial experiments showed that the prepared Ag NPs showed relatively similar antibacterial activities, when compared with AgNO{sub 3} against Gram-positive and Gram-negative bacteria. - Highlights: • Microwave irradiation method is used to synthesize silver nanoparticles. • Highly stable silver nanoparticles are produced from serine. • A detailed study of antibacterial activities is discussed. • Formation mechanism of silver microspheres has been proposed.

  18. Sunlight based irradiation strategy for rapid green synthesis of highly stable silver nanoparticles using aqueous garlic (Allium sativum) extract and their antibacterial potential

    Energy Technology Data Exchange (ETDEWEB)

    Rastogi, Lori [National Center for Chemical Characterization of Materials, Bhabha Atomic Research Centre, ECIL-PO, Hyderabad 500 062 (India); Arunachalam, J., E-mail: aruncccm@rediffmail.com [National Center for Chemical Characterization of Materials, Bhabha Atomic Research Centre, ECIL-PO, Hyderabad 500 062 (India)

    2011-09-15

    Highlights: {yields} We report green synthetic route for the production crystalline silver nanoparticles using garlic as both reducing and stabilizing agent. {yields} Synthesis has been achieved by exposing the solution mixture of [Ag(NH{sub 3}){sub 2}]{sup +} and aqueous garlic extract under sunlight. {yields} Role of light in the synthesis process has been investigated and is discussed in detail. {yields} The antibacterial effect of the synthesized silver nanoparticles has been assessed against both Gram classes of bacteria. {yields} Synthesized silver colloidal solutions were found to be stable for a very long period and retained their bactericidal potential. - Abstract: A green synthetic route for the production of highly stable silver nanoparticles using aqueous garlic extract is being reported for the first time. The silver nanoparticles were synthesized by exposing a mixture of 0.1 M [Ag(NH{sub 3}){sub 2}]{sup +} and diluted aqueous garlic extract under bright sunlight for 15 min. The garlic extract components served as both reducing and capping agents in the synthesis of silver nanoparticles while the sunlight acted as catalyst in the synthesis process. The synthesized nanoparticles were characterized using UV-visible (UV-vis) spectrophotometer; transmission electron microscopy (TEM), glancing angle X-ray diffraction (GA-XRD) and Fourier transform infra red (FTIR) spectrometry. The nanoparticles were found to be poly-dispersed in nature, spherical in shape and of 7.3 {+-} 4.4 nm in size. The FTIR analysis was suggestive of proteins as capping agents around the nanoparticles. The yield of synthesized nanoparticles was calculated to be approximately 80% by dry weight and 85% ICP-AES method. The synthesized silver nanoparticles exhibited good antibacterial potential against both Gram positive and Gram negative bacterial strains, as measured using well diffusion assay. Most importantly, the silver colloidal solutions thus synthesized were found to be stable for

  19. Spectroscopic and microscopic characterization of silver nanoparticles synthesized using Justicia adhatoda flower

    Science.gov (United States)

    Singh, Tej; Shekhawat, Dharmender Singh; Jyoti, Kumari

    2018-05-01

    The synthesis of silver nanoparticles (SNPs) by chemical and physical methods produce harmful products which may cause various environmental problems, thus, there is an increasing demand to use ecofriendly methods. Therefore, biosynthesis of SNPs using Justicia adhatoda flower extract is demonstrated in the present study. The biosynthesized SNPs were characterized by UV-visible spectroscopy, Fourier transform-infrared spectroscopy (FTIR), transmission electron microscopy (TEM), selected area electron diffraction (SAED) and atomic force microscopy (AFM) analysis. The result of UV-visible spectroscopy peaked at 417 nm corresponding to the plasmon absorbance of SNPs. The TEM and SAED result reveals the crystalline nature of SNPs. FTIR spectroscopy used to identify the possible biomolecules responsible for the conversion of silver ions to SNPs. The study concluded that Justicia adhatoda flower extract act as an excellent reducing agent and the green synthesized SNPs are safer to the environment.

  20. Spectroscopy investigation on chemo-catalytic, free radical scavenging and bactericidal properties of biogenic silver nanoparticles synthesized using Salicornia brachiata aqueous extract

    Science.gov (United States)

    Seralathan, Janani; Stevenson, Priscilla; Subramaniam, Shankar; Raghavan, Rachana; Pemaiah, Brindha; Sivasubramanian, Aravind; Veerappan, Anbazhagan

    2014-01-01

    Nanosized silver have been widely used in many applications, such as catalysis, photonics, sensors, medicine etc. Thus, there is an increasing need to develop high-yield, low cost, non-toxic and eco-friendly procedures for the synthesis of nanoparticles. Herein, we report an efficient, green synthesis of silver nanoparticles utilizing the aqueous extract of Salicornia brachiata, a tropical plant of the Chenopodiaceae family. Silver nanoparticles have been characterized by ultraviolet-visible spectroscopy, scanning electron microscopy and transmission electron microscopy. The morphology of the particles formed consists of highly diversified shapes like spherical, rod-like, prism, triangular, pentagonal and hexagonal pattern. However, addition of sodium hydroxide to the extract produces mostly spherical particles. The stable nanoparticles obtained using this green method show remarkable catalytic activity in the reduction of 4-nitro phenol to 4-amino phenol. The reduction catalyzed by silver nanoparticles followed the first-order kinetics, with a rate constant of, 0.6 × 10-2 s-1. The bactericidal activity of the synthesized silver nanoparticles against the pathogenic bacteria, Staphylococcus aureus, Staphylococcus aureus E, Bacillus subtilis and Escherichia coli, was also explored using REMA. The obtained results showed that the minimum inhibitory concentration required to induce bactericidal effect is lower than the control antibiotic, ciprofloxacin. In addition to these, the biogenic synthesized nanoparticles also exhibited excellent free radical scavenging activity.

  1. Green Synthesis of Silver Nanoparticles and Their Bactericidal and Antimycotic Activities against Oral Microbes

    Directory of Open Access Journals (Sweden)

    Osvelia E. Rodríguez-Luis

    2016-01-01

    Full Text Available Nanotechnology is a new discipline with huge applications including medicine and pharmacology industries. Although several methods and reducing agents have been employed to synthesize silver nanoparticles, reactive chemicals promote toxicity and nondesired effects on the human and biological systems. The objective of this work was to synthesize silver nanoparticles from Glycyrrhiza glabra and Amphipterygium adstringens extracts and determine their bactericidal and antimycotic activities against Enterococcus faecalis and Candida albicans growth, respectively. 1 and 10 mM silver nitrate were mixed with an extract of Glycyrrhiza glabra and Amphipterygium adstringens. Green silver nanoparticles (AgNPs were characterized by TEM, Vis-NIR, FTIR, fluorescence, DLS, TGA, and X-ray diffraction (XRD analysis. Bactericidal and antimycotic activities of AgNPs were determined by Kirby and Bauer method and cell viability MTT assays. AgNPs showed a spherical shape and average size of 9 nm if prepared with Glycyrrhiza glabra extract and 3 nm if prepared with Amphipterygium adstringens extract. AgNPs inhibited the bacterial and fungal growth as was expected, without a significant cytotoxic effect on human epithelial cells. Altogether, these results strongly suggest that AgNPs could be an interesting option to control oral biofilms.

  2. Green synthesis of silver nanoparticles and investigation of their colorimetric sensing and cytotoxicity effects

    Science.gov (United States)

    Pahlavan Noghabi, Mohammad; Parizadeh, Mohammad Reza; Ghayour-Mobarhan, Majid; Taherzadeh, Danial; Hosseini, Hasan Ali; Darroudi, Majid

    2017-10-01

    The "Green" synthesis of metallic nanoparticles and investigation of their optical properties has become a useful application between nanoscience and medicine. In this work, silver nanoparticles (Ag-NPs) were successfully prepared through a facile and green method by treating silver ions with chitosan. Preparation of Ag-NPs in silver nitrate solution (0.01 M) resulted in small and spherical shapes of Ag-NPs with a mean diameter of 10.2 nm. The formation of Ag-NPs was approved by surface Plasmon resonance (SPR) absorption peaks, using UV-vis spectrophotometer, while Ag-NPs were successfully employed in colorimetric sensing of H2O2 via an analytical procedure. Degradation process of Ag-NPs, encouraged by the catalytic decomposition of H2O2, causes a significant change in the absorbance intensity of SPR band depending on the H2O2 concentration. The cytotoxicity effect of synthesized Ag-NPs was examined on HEK293 cell line. The results illustrate a concentration-dependent toxicity for the tested cells, while15.07 μg/mL of IC50 was obtained.

  3. Green synthesized silver nanoparticles destroy multidrug resistant bacteria via reactive oxygen species mediated membrane damage

    Directory of Open Access Journals (Sweden)

    Balaram Das

    2017-09-01

    Full Text Available The growing need of antimicrobial agent for novel therapies against multi-drug resistant bacteria has drawn researchers to green nanotechnology. Especially, eco-friendly biosynthesis of silver nanoparticles (Ag NPs has shown its interesting impact against bacterial infection in laboratory research. In this study, a simple method was developed to form Ag NPs at room temperature, bio-reduction of silver ions from silver nitrate salt by leaf extract from Ocimum gratissimum. The Ag NPs appear to be capped with plant proteins, but are otherwise highly crystalline and pure. The Ag NPs have a zeta potential of −15 mV, a hydrodynamic diameter of 31 nm with polydispersity index of 0.65, and dry sizes of 18 ± 3 nm and 16 ± 2 nm, based on scanning and transmission electron microscopy respectively. The minimum inhibitory concentration (MIC of the Ag NPs against a multi-drug resistant Escherichia coli was 4 μg/mL and the minimum bactericidal concentration (MBC was 8 μg/mL, while the MIC and MBC against a resistant strain of Staphylococcus aureus were slightly higher at 8 μg/mL and 16 μg/mL respectively. Further, the Ag NPs inhibited biofilm formation by both Escherichia coli and S. aureus at concentrations similar to the MIC for each strain. Treatment of E. coli and S. aureus with Ag NPs resulted in damage to the surface of the cells and the production of reactive oxygen species. Both mechanisms likely contribute to bacterial cell death. In summary, this new method appears promising for green biosynthesis of pure Ag NPs with potent antimicrobial activity.

  4. Antibacterial properties of silver nanoparticles synthesized by marine Ochrobactrum sp.

    Science.gov (United States)

    Thomas, Roshmi; Janardhanan, Anju; Varghese, Rintu T; Soniya, E V; Mathew, Jyothis; Radhakrishnan, E K

    2014-01-01

    Metal nanoparticle synthesis is an interesting area in nanotechnology due to their remarkable optical, magnetic, electrical, catalytic and biomedical properties, but there needs to develop clean, non-toxic and environmental friendly methods for the synthesis and assembly of nanoparticles. Biological agents in the form of microbes have emerged up as efficient candidates for nanoparticle synthesis due to their extreme versatility to synthesize diverse nanoparticles with varying size and shape. In the present study, an eco favorable method for the biosynthesis of silver nanoparticles using marine bacterial isolate has been attempted. Very interestingly, molecular identification proved it as a strain of Ochrobactrum anhtropi. In addition, the isolate was found to have the potential to form silver nanoparticles intracellularly at room temperature within 24 h. The biosynthesized silver nanoparticles were characterized by UV-Vis spectroscopy, transmission electron microscope (TEM) and scanning electron microscope (SEM). The UV-visible spectrum of the aqueous medium containing silver nanoparticles showed a peak at 450 nm corresponding to the plasmon absorbance of silver nanoparticles. The SEM and TEM micrographs revealed that the synthesized silver nanoparticles were spherical in shape with a size range from 38 nm - 85 nm. The silver nanoparticles synthesized by the isolate were also used to explore its antibacterial potential against pathogens like Salmonella Typhi, Salmonella Paratyphi, Vibrio cholerae and Staphylococcus aureus.

  5. Antibacterial properties of silver nanoparticles synthesized by marine Ochrobactrum sp.

    Directory of Open Access Journals (Sweden)

    Roshmi Thomas

    2014-12-01

    Full Text Available Metal nanoparticle synthesis is an interesting area in nanotechnology due to their remarkable optical, magnetic, electrical, catalytic and biomedical properties, but there needs to develop clean, non-toxic and environmental friendly methods for the synthesis and assembly of nanoparticles. Biological agents in the form of microbes have emerged up as efficient candidates for nanoparticle synthesis due to their extreme versatility to synthesize diverse nanoparticles with varying size and shape. In the present study, an eco favorable method for the biosynthesis of silver nanoparticles using marine bacterial isolate has been attempted. Very interestingly, molecular identification proved it as a strain of Ochrobactrum anhtropi. In addition, the isolate was found to have the potential to form silver nanoparticles intracellularly at room temperature within 24 h. The biosynthesized silver nanoparticles were characterized by UV-Vis spectroscopy, transmission electron microscope (TEM and scanning electron microscope (SEM. The UV-visible spectrum of the aqueous medium containing silver nanoparticles showed a peak at 450 nm corresponding to the plasmon absorbance of silver nanoparticles. The SEM and TEM micrographs revealed that the synthesized silver nanoparticles were spherical in shape with a size range from 38 nm - 85 nm. The silver nanoparticles synthesized by the isolate were also used to explore its antibacterial potential against pathogens like Salmonella Typhi, Salmonella Paratyphi, Vibrio cholerae and Staphylococcus aureus.

  6. Eco-friendly and green synthesis of silver nanoparticles using leaf extract of Strychnos potatorum Linn.F. and their bactericidal activities.

    Science.gov (United States)

    Kagithoju, Srikanth; Godishala, Vikram; Nanna, Rama Swamy

    2015-10-01

    Inspired green synthesis of metallic nanoparticles is evolving as an important branch of nanotechnology. Traditionally these are manufactured by wet chemical methods which require toxic and flammable chemicals. We report for the first time an economic and eco-friendly green synthesis of silver nanoparticles using Strychnos potatorum aqueous leaf extract from 3 mM silver nitrate solution. Nanoparticles thus formed are confirmed and characterized by using UV-Vis absorption spectroscopy, SEM and XRD measurements. The XRD and SEM analysis showed the average particle size of nanoparticles as 28 nm as well as revealed their (mixed, i.e., cubic and hexagonal) structure. Further, these green synthesized nanoparticles showed bactericidal activity against multidrug-resistant human pathogenic bacteria.

  7. Toxicity of seaweed-synthesized silver nanoparticles against the filariasis vector Culex quinquefasciatus and its impact on predation efficiency of the cyclopoid crustacean Mesocyclops longisetus.

    Science.gov (United States)

    Murugan, Kadarkarai; Benelli, Giovanni; Ayyappan, Suganya; Dinesh, Devakumar; Panneerselvam, Chellasamy; Nicoletti, Marcello; Hwang, Jiang-Shiou; Kumar, Palanisamy Mahesh; Subramaniam, Jayapal; Suresh, Udaiyan

    2015-06-01

    Nearly 1.4 billion people in 73 countries worldwide are threatened by lymphatic filariasis, a parasitic infection that leads to a disease commonly known as elephantiasis. Filariasis is vectored by mosquitoes, with special reference to the genus Culex. The main control tool against mosquito larvae is represented by treatments with organophosphates and insect growth regulators, with negative effects on human health and the environment. Recently, green-synthesized nanoparticles have been proposed as highly effective larvicidals against mosquito vectors. In this research, we attempted a reply to the following question: do green-synthesized nanoparticles affect predation rates of copepods against mosquito larvae? We proposed a novel method of seaweed-mediated synthesis of silver nanoparticles using the frond extract of Caulerpa scalpelliformis. The toxicity of the seaweed extract and silver nanoparticles was assessed against the filarial vector Culex quinquefasciatus. Then, we evaluated the predatory efficiency of the cyclopoid crustacean Mesocyclops longisetus against larval instars of C. quinquefasciatus in a nanoparticle-contaminated water environment. Green-synthesized silver nanoparticles were characterized by UV-vis spectrum, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X-ray diffraction (XRD). In mosquitocidal assays, the LC₅₀ values of the C. scalpelliformis extract against C. quinquefasciatus were 31.38 ppm (I), 46.49 ppm (II), 75.79 ppm (III), 102.26 ppm (IV), and 138.89 ppm (pupa), while LC₅₀ of silver nanoparticles were 3.08 ppm, (I), 3.49 ppm (II), 4.64 ppm (III), 5.86 ppm (IV), and 7.33 ppm (pupa). The predatory efficiency of the copepod M. longisetus in the control treatment was 78 and 59% against I and II instar larvae of C. quinquefasciatus. In a nanoparticle-contaminated environment, predation efficiency was 84 and 63%, respectively. Predation was higher against first instar larvae over other instars

  8. Green synthesis and characterization of silver nanoparticles using alcoholic flower extract of Nyctanthes arbortristis and in vitro investigation of their antibacterial and cytotoxic activities

    International Nuclear Information System (INIS)

    Gogoi, Nayanmoni; Babu, Punuri Jayasekhar; Mahanta, Chandan; Bora, Utpal

    2015-01-01

    Here we report the synthesis of silver nanoparticles using ethanolic flower extract of Nyctanthes arbortristis, UVvisible spectra and TEM indicated the successful formation of silver nanoparticles. Crystalline nature of the silver nanoparticles was confirmed by X-ray diffraction. Fourier Transform Infra-Red Spectroscopy analysis established the capping of the synthesized silver nanoparticles with phytochemicals naturally occurring in the ethanolic flower extract of N. arbortristis. The synthesized silver nanoparticles showed antibacterial activity against the pathogenic strain of Escherichia coli MTCC 443. Furthermore, cytotoxicity of the silver nanoparticles was tested on mouse fibroblastic cell line (L929) and found to be non-toxic, which thus proved their biocompatibility. Antibacterial activity and cytotoxicity assay carried out in this study open up an important perspective of the synthesized silver nanoparticles. - Highlights: • The present study depicts the green synthesis of AgNPs using Nyctanthes arbortristis. • AuNPs found to be biocompatible and can be used for biomedical applications. • The FTIR, TGA and DTA results showed that AgNPs are bounded by organic coating. • The synthesized AgNPs showed antibacterial activity on E. Coli MTCC 443. • We investigated the antioxidant activity for both EFE and AgNPs

  9. Green synthesis of silver nanoparticles using Alternanthera dentata leaf extract at room temperature and their antimicrobial activity.

    Science.gov (United States)

    Kumar, Deenadayalan Ashok; Palanichamy, V; Roopan, Selvaraj Mohana

    2014-06-05

    A green rapid biogenic synthesis of silver nanoparticles AgNPs using Alternanthera dentata (A. dentata) aqueous extract was demonstrated in this present study. The formation of silver nanoparticles was confirmed by Surface Plasmon Resonance (SPR) at 430nm using UV-visible spectrophotometer. The reduction of silver ions to silver nanoparticles by A. dentata extract was completed within 10min. Synthesized nanoparticles were characterized using UV-visible spectroscopy; Fourier transformed infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy and transmission electron microscopy (TEM). The extracellular silver nanoparticles synthesis by aqueous leaf extract demonstrates rapid, simple and inexpensive method comparable to chemical and microbial methods. The colloidal solution of silver nanoparticles were found to exhibit antibacterial activity against Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumonia and, Enterococcus faecalis. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Antibacterial and cytotoxic effect of biologically synthesized silver nanoparticles using aqueous root extract of Erythrina indica lam

    Science.gov (United States)

    Rathi Sre, P. R.; Reka, M.; Poovazhagi, R.; Arul Kumar, M.; Murugesan, K.

    2015-01-01

    Simple, yet an effective and rapid approach for the green synthesis of silver nanoparticles (Ag NPs) using root extract of Erythrina indica and its in vitro antibacterial activity was tried against human pathogenic bacteria and its cytotoxic effect in breast and lung cancer cell lines has been demonstrated in this study. Various instrumental techniques were adopted to characterize the synthesized Ag NPs viz. UV-Vis (Ultra violet), FTIR (Fourier Transform Infrared), XRD (X-ray diffraction), DLS (Dynamic light scattering), HR TEM (High-resolution transmission electron microscopy), EDX (Energy-dispersive X-ray spectroscopy). Surface plasmon spectra for Ag NPs are centered nearly at 438 nm with dark brown color. FTIR analysis revealed the presence of terpenes, phenol, flavonols and tannin act as effective reducing and capping agents for converting silver nitrate to Ag NPs. The synthesized Ag NPs were found to be spherical in shape with size in the range of 20-118 nm. Moreover, the synthesized Ag NPs showed potent antibacterial activity against Gram positive and Gram negative bacteria and these biologically synthesized nanoparticles were also proved to exhibit excellent cytotoxic effect on breast and lung cancer cell lines.

  11. In situ green synthesis of antimicrobial carboxymethyl chitosan-nanosilver hybrids with controlled silver release.

    Science.gov (United States)

    Huang, Siqi; Yu, Zhiming; Zhang, Yang; Qi, Chusheng; Zhang, Shifeng

    2017-01-01

    In order to fabricate antimicrobial carboxymethyl chitosan-nanosilver (CMC-Ag) hybrids with controlled silver release, this study demonstrated comparable formation via three synthetic protocols: 1) carboxymethyl chitosan (CMC) and glucose (adding glucose after AgNO 3 ), 2) CMC and glucose (adding glucose before AgNO 3 ), and 3) CMC only. Under principles of green chemistry, the synthesis was conducted in an aqueous medium exposed to microwave irradiation for 10 minutes with nontoxic chemicals. The structure and formation mechanisms of the three CMC-Ag hybrids were explored using X-ray diffraction, ultraviolet-visible spectroscopy, transmission electron microscopy, and Fourier-transform infrared analyses. Additionally, antimicrobial activity and in vitro silver release of the three synthesized hybrids were investigated in detail. The results revealed that a large number of stable, uniform, and small silver nanoparticles (AgNPs) were synthesized in situ on CMC chains via protocol 1. AgNPs were well dispersed with narrow size distribution in the range of 6-20 nm, with mean diameter only 12.22±2.57 nm. The addition of glucose resulted in greater AgNP synthesis. The order of addition of glucose and AgNO 3 significantly affected particle size and size distribution of AgNPs. Compared to CMC alone and commercially available AgNPs, the antimicrobial activities of three hybrids were significantly improved. Of the three hybrids, CMC-Ag1 synthesized via protocol 1 exhibited better antimicrobial activity than CMC-Ag2 and CMC-Ag3, and showed more effective inhibition of Staphylococcus aureus than Escherichia coli . Due to strong coordination and electrostatic interactions between CMC and silver and good steric protection provided by CMC, CMC-Ag1 displayed stable and continuous silver release and better performance in retaining silver for prolonged periods than CMC-Ag2 and CMC-Ag3.

  12. In situ green synthesis of antimicrobial carboxymethyl chitosan–nanosilver hybrids with controlled silver release

    Science.gov (United States)

    Huang, Siqi; Yu, Zhiming; Zhang, Yang; Qi, Chusheng; Zhang, Shifeng

    2017-01-01

    In order to fabricate antimicrobial carboxymethyl chitosan–nanosilver (CMC-Ag) hybrids with controlled silver release, this study demonstrated comparable formation via three synthetic protocols: 1) carboxymethyl chitosan (CMC) and glucose (adding glucose after AgNO3), 2) CMC and glucose (adding glucose before AgNO3), and 3) CMC only. Under principles of green chemistry, the synthesis was conducted in an aqueous medium exposed to microwave irradiation for 10 minutes with nontoxic chemicals. The structure and formation mechanisms of the three CMC-Ag hybrids were explored using X-ray diffraction, ultraviolet-visible spectroscopy, transmission electron microscopy, and Fourier-transform infrared analyses. Additionally, antimicrobial activity and in vitro silver release of the three synthesized hybrids were investigated in detail. The results revealed that a large number of stable, uniform, and small silver nanoparticles (AgNPs) were synthesized in situ on CMC chains via protocol 1. AgNPs were well dispersed with narrow size distribution in the range of 6–20 nm, with mean diameter only 12.22±2.57 nm. The addition of glucose resulted in greater AgNP synthesis. The order of addition of glucose and AgNO3 significantly affected particle size and size distribution of AgNPs. Compared to CMC alone and commercially available AgNPs, the antimicrobial activities of three hybrids were significantly improved. Of the three hybrids, CMC-Ag1 synthesized via protocol 1 exhibited better antimicrobial activity than CMC-Ag2 and CMC-Ag3, and showed more effective inhibition of Staphylococcus aureus than Escherichia coli. Due to strong coordination and electrostatic interactions between CMC and silver and good steric protection provided by CMC, CMC-Ag1 displayed stable and continuous silver release and better performance in retaining silver for prolonged periods than CMC-Ag2 and CMC-Ag3. PMID:28458539

  13. Uncaria gambir Roxb. mediated green synthesis of silver nanoparticles using diethanolamine as capping agent

    Science.gov (United States)

    Labanni, A.; Zulhadjri; Handayani, D.; Arief, S.

    2018-01-01

    Studies of silver nanoparticles preparation has been developed increasingly due to the wide application in various areas and field, such as medicine, energy, catalysis, and electronic. An environmental-friendly method is needed to fabricate biocompatible silver nanoparticles without producing hazardous materials to the environment. In this study, we synthesized silver nanoparticles by green synthesis method, using leaf extract of gambir (Uncaria gambir Roxb.) as bioreducing agent and aqueous diethanolamine (DEA) solution as capping agents. The AgNO3/DEA molar ratio was varied to investigate the effect of DEA concentration to the properties of silver nanoparticles. The formation of silver nanoparticles was indicated by colour changes to yellowish brown and confirmed by result of UV-Vis spectrophotometer analysis which shown absorption band at 400 to 410 nm. The absorbance was increased to the reaction time of 24 hours, and was decrease by the increasing of DEA concentration in reaction. TEM analysis showed that prepared silver nanoparticles were spherical in shape with diameter of 3,5 - 45,5 nm. The diameter of DEA capped silver nanoparticles was 13 nm, smaller than uncapped silver nanoparticles which was 26 nm It exhibited good stability to time reaction of one month which was potential to be developed in some fields.

  14. Green Synthesis of Silver Nanoparticles Using Avena sativa L. Extract

    Directory of Open Access Journals (Sweden)

    Nooshin Amini

    2017-02-01

    Full Text Available Objective(s: Nowadays, nanoparticles bio production, considering their performance in medicine and biological science, is increasing. Green synthesis of metal nanoparticles using organisms has emerged as a nontoxic and ecofriendly method for synthesis of metal nanoparticles The objectives of this study were the production of silver nanoparticles using Avena sativa L. extract and optimization of the biosynthesis process. The effects of quantity of substrate (silver nitrate (AgNo3 and temperature on the formation of silver nanoparticles are studied. Methods: In this work, silver nanoparticles were synthesized from an extract of Avena sativa L. at different temperatures (30° C, 60° C, 90° C  and AgNo3 concentrations( 1 mM, 2mM, 4mM . The morphology and size of the nanoparticles were determined using Scanning Electron Microscope (SEM and Dynamic Light Scattering (DLS. Results: SEM images showed that by increasing temperature nanoparticles size were decreased and by increasing concentrations of AgNo3 the number of nanoparticles was increased. Conclusions: The results indicated that by increasing the reaction temperature, the size of the nanoparticles would decrease. Also by increasing the concentrations of AgNo3, the amount of produced nanoparticles would be increased, but won't have a significant effect on its size. The preparation of nano- structured silver particles using Avena sativa L. extract provides an environmentally friendly option as compared to currently available chemical/ physical methods.

  15. Green Synthesis of Silver Nanoparticles using Achillea biebersteinii Flower Extract and Its Anti-Angiogenic Properties in the Rat Aortic Ring Model

    Directory of Open Access Journals (Sweden)

    Javad Baharara

    2014-04-01

    Full Text Available Silver nanoparticles display unique physical and biological properties which have attracted intensive research interest because of their important medical applications. In this study silver nanoparticles (Ab.Ag-NPs were synthesized for biomedical applications using a completely green biosynthetic method using Achillea biebersteinii flowers extract. The structure and properties of Ab.Ag-NPs were investigated using UV-visible spectroscopic techniques, transmission electron microscopy (TEM, zeta potential and energy dispersive X-ray spectrometers (EDS. The UV-visible spectroscopic analysis showed the absorbance peak at 460 nm, which indicates the synthesis of silver nanoparticles. The average particle diameter as determined by TEM was found to be 12 ± 2 nm. The zeta potential analysis indicated that Ab.Ag-NPs have good stability EDX analysis also exhibits presentation of silver element. As angiogenesis is an important phenomenon and as growth factors imbalance in this process causes the acceleration of several diseases including cancer, the anti-angiogenic properties of Ab.Ag-NPs were evaluated using the rat aortic ring model. The results showed that Ab.Ag-NPs (200 μg/mL lead to a 50% reduction in the length and number of vessel-like structures. The synthesized silver nanoparticles from the Achillea biebersteinii flowers extract, which do not involve any harmful chemicals were well-dispersed and stabilized through this green method and showed potential therapeutic benefits against angiogenesis.

  16. Completely green synthesis of dextrose reduced silver nanoparticles, its antimicrobial and sensing properties.

    Science.gov (United States)

    Mohan, Sneha; Oluwafemi, Oluwatobi S; George, Soney C; Jayachandran, V P; Lewu, Francis B; Songca, Sandile P; Kalarikkal, Nandakumar; Thomas, Sabu

    2014-06-15

    We herein report the green synthesis of highly monodispersed, water soluble, stable and smaller sized dextrose reduced gelatin capped-silver nanoparticles (Ag-NPs) via an eco-friendly, completely green method. The synthesis involves the use of silver nitrate, gelatin, dextrose and water as the silver precursor, stabilizing agent, reducing agent and solvent respectively. By varying the reaction time, the temporal evolution of the growth, optical, antimicrobial and sensing properties of the as-synthesised Ag-NPs were investigated. The nanoparticles were characterized using UV-vis absorption spectroscopy, Fourier transform infra-red spectroscopy (FT-IR), X-ray diffraction (XRD), transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HR-TEM). The absorption maxima of the as-synthesized materials at different reaction time showed characteristic silver surface plasmon resonance (SPR) peak. The as-synthesised Ag-NPs show better antibacterial efficacy than the antibiotics; ciproflaxin and imipenem against Pseudomonas aeruginosa with minimum inhibition concentration (MIC) of 6 μg/mL, and better efficacy than imipenem against Escherichia coli with MIC of 10 μg/mL. The minimum bactericidal concentration (MBC) of the as-synthesised Ag-NPs is 12.5 μg/mL. The sensitivity of the dextrose reduced gelatin-capped Ag-NPs towards hydrogen peroxide indicated that the sensor has a very good sensitivity and a linear response over wide concentration range of 10(-1)-10(-6)M H2O2. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Cytotoxic Effect on Cancerous Cell Lines by Biologically Synthesized Silver Nanoparticles

    Directory of Open Access Journals (Sweden)

    Balaji Kulandaivelu

    Full Text Available The biosynthesis of nanoparticles has been proposed as an environmental friendly and cost effective alternative to chemical and physical methods. Silver nanoparticles are biologically synthesized and characterized were used in the study. The invitro cytotoxic effect of biologically synthesized silver nanoparticles against MCF-7 cancer cell lines were assessed. The cytotoxic effects of the silver nanoparticles could significantly inhibited MCF-7 cancer cell lines proliferation in a time and concentration-dependent manner by MTT assay. Acridine orange, ethidium bromide (AO/EB dual staining, caspase-3 and DNA fragmentation assays were carried out using various concentrations of silver nanoparticles ranging from 1 to 100 μg/mL. At 100 μg/mL concentration, the silver nanoparticles exhibited significant cytotoxic effects and the apoptotic features were confirmed through caspase-3 activation and DNA fragmentation assays. Western blot analysis has revealed that nanoparticle was able to induce cytochrome c release from the mitochondria, which was initiated by the inhibition of Bcl-2 and activation of Bax. Thus, the results of the present study indicate that biologically synthesized silver nanoparticles might be used to treat breast cancer. The present studies suggest that these nanoparticles could be a new potential adjuvant chemotherapeutic and chemo preventive agent against cytotoxic cells. However, it necessitates clinical studies to ascertain their potential as anticancer agents.

  18. Green synthesis of colloidal silver nanoparticles using natural rubber latex extracted from Hevea brasiliensis.

    Science.gov (United States)

    Guidelli, Eder José; Ramos, Ana Paula; Zaniquelli, Maria Elisabete D; Baffa, Oswaldo

    2011-11-01

    Colloidal silver nanoparticles were synthesized by an easy green method using thermal treatment of aqueous solutions of silver nitrate and natural rubber latex (NRL) extracted from Hevea brasiliensis. The UV-Vis spectra detected the characteristic surface plasmonic absorption band around 435 nm. Both NRL and AgNO(3) contents in the reaction medium have influence in the Ag nanoparticles formation. Lower AgNO(3) concentration led to decreased particle size. The silver nanoparticles presented diameters ranging from 2 nm to 100 nm and had spherical shape. The selected area electron diffraction (SAED) patterns indicated that the silver nanoparticles have face centered cubic (fcc) crystalline structure. FTIR spectra suggest that reduction of the silver ions are facilitated by their interaction with the amine groups from ammonia, which is used for conservation of the NRL, whereas the stability of the particles results from cis-isoprene binding onto the surface of nanoparticles. Therefore natural rubber latex extracted from H. brasiliensis can be employed in the preparation of stable aqueous dispersions of silver nanoparticles acting as a dispersing and/or capping agent. Moreover, this work provides a new method for the synthesis of silver nanoparticles that is simple, easy to perform, pollutant free and inexpensive. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Fungus-Mediated Green Synthesis of Silver Nanoparticles Using Aspergillus terreus

    Directory of Open Access Journals (Sweden)

    Koji Yokoyama

    2011-12-01

    Full Text Available The biosynthesis of nanoparticles has received increasing attention due to the growing need to develop safe, cost-effective and environmentally friendly technologies for nano-materials synthesis. In this report, silver nanoparticles (AgNPs were synthesized using a reduction of aqueous Ag+ ion with the culture supernatants of Aspergillus terreus. The reaction occurred at ambient temperature and in a few hours. The bioreduction of AgNPs was monitored by ultraviolet-visible spectroscopy, and the AgNPs obtained were characterized by transmission electron microscopy and X-ray diffraction. The synthesized AgNPs were polydispersed spherical particles ranging in size from 1 to 20 nm and stabilized in the solution. Reduced nicotinamide adenine dinucleotide (NADH was found to be an important reducing agent for the biosynthesis, and the formation of AgNPs might be an enzyme-mediated extracellular reaction process. Furthermore, the antimicrobial potential of AgNPs was systematically evaluated. The synthesized AgNPs could efficiently inhibit various pathogenic organisms, including bacteria and fungi. The current research opens a new avenue for the green synthesis of nano-materials.

  20. Nanostructural Features of Silver Nanoparticles Powder Synthesized through Concurrent Formation of the Nanosized Particles of Both Starch and Silver

    Directory of Open Access Journals (Sweden)

    A. Hebeish

    2013-01-01

    Full Text Available Green innovative strategy was developed to accomplish silver nanoparticles formation of starch-silver nanoparticles (St-AgNPs in the powder form. Thus, St-AgNPs were synthesized through concurrent formation of the nanosized particles of both starch and silver. The alkali dissolved starch acts as reducing agent for silver ions and as stabilizing agent for the formed AgNPs. The chemical reduction process occurred in water bath under high-speed homogenizer. After completion of the reaction, the colloidal solution of AgNPs coated with alkali dissolved starch was cooled and precipitated using ethanol. The powder precipitate was collected by centrifugation, then washed, and dried; St-AgNPs powder was characterized using state-of-the-art facilities including UV-vis spectroscopy, Transmission Electron Microscopy (TEM, particle size analyzer (PS, Polydispersity index (PdI, Zeta potential (ZP, XRD, FT-IR, EDX, and TGA. TEM and XRD indicate that the average size of pure AgNPs does not exceed 20 nm with spherical shape and high concentration of AgNPs (30000 ppm. The results obtained from TGA indicates that the higher thermal stability of starch coated AgNPS than that of starch nanoparticles alone. In addition to the data obtained from EDX which reveals the presence of AgNPs and the data obtained from particle size analyzer and zeta potential determination indicate that the good uniformity and the highly stability of St-AgNPs.

  1. Rapid, green synthesis and surface-enhanced Raman scattering effect of single-crystal silver nanocubes

    Science.gov (United States)

    Mao, Aiqin; Jin, Xia; Gu, Xiaolong; Wei, Xiaoqing; Yang, Guojing

    2012-08-01

    Single-crystal silver (Ag) nanocubes have been synthesized by a rapid and green method at room temperature by adding sodium hydroxide solution to the mixed solutions of silver nitrate, glucose and polyvinylpyrrolidone (PVP). The X-ray diffraction (XRD), ultraviolet-visible (UV-visible) and transmission electron microscopy (TEM) were used to characterize the phase composition and morphology. The results showed that the as-prepared particles were single-crystal Ag nanocubes with edge lengths of around 77 nm and a growing direction along {1 0 0} facets. As substrates for surface-enhanced Raman scattering (SERS) experiment on crystal violet (CV), the SERS enhancement factor of the as-prepared Ag nanocubes were measured to be 5.5 × 104, indicating potential applications in chemical and biological analysis.

  2. Amelioration of excision wounds by topical application of green synthesized, formulated silver and gold nanoparticles in albino Wistar rats.

    Science.gov (United States)

    Naraginti, Saraschandra; Kumari, P Lakshmi; Das, Raunak Kumar; Sivakumar, A; Patil, Sagar Hindurao; Andhalkar, Vaibhav Vilas

    2016-05-01

    Wound healing, a complex biological process, has attained a lot of attention as dermatologists are primarily interested in stimulated wound closure without formation of scar or a faint scar. The recent upsurgence of nanotechnology has provided novel therapeutic materials in the form of silver and gold nanoparticles which accelerate the wound healing process. The effect of formulated nanoparticles using Coleus forskohlii root extract (green synthesized) has been tried out for ameliorating full thickness excision wounds in albino Wistar male rats. The evaluation of in vivo activity of nanoparticles in wound healing was carried out on open wounds made by excision on the dorsal sides of albino Wistar rats under anesthesia, and the healing of the wounds was assessed. Histological aspects of the healing process were studied by a HE (Hematoxylin and Eosin) staining method to assess various degrees of re-epithelialization and the linear alignment of the granulation tissue whereas Van Gieson's histochemical staining was performed to observe collagen fibers. The healing action shown by the formulated nanoparticles was remarkable during the early stages of wound healing, which resulted in the substantial reduction of the whole healing period. Topical application of formulated gold nanoparticles was found to be more effective in suppressing inflammation and stimulating re-epithelialization compared to silver nanoparticles during the healing process. The results throw light on the amelioration of excision wounds using nanoparticles which could be a novel therapeutic way of improving wound healing in clinical practice. The mechanism of advanced healing action of both types of nanoparticles could be due to their antimicrobial, antioxidant and anti-inflammatory properties. Copyright © 2016. Published by Elsevier B.V.

  3. Size-tunable silver nanoparticles synthesized by using aminopolycarboxylic acids at ambient-temperature

    International Nuclear Information System (INIS)

    Malkar, Vishwabharati V.; Chadha, R.; Biswas, N.; Mukherjee, T.; Kapoor, S.

    2009-01-01

    Full text: Stable aqueous sols of silver nanoparticles are prepared by using various aminopolycarboxylic acids as stabilizing agents at ambient temperature. The precursor silver perchlorate is reduced using γ radiations. Interestingly, it was observed that size of silver nanoparticles obtained could be tuned using various aminopolycarboxylic acids of varying carboxylic acid groups The silver sols synthesized by this method were stable for months and particles obtained were monodisperse in almost all cases. Particle formation was observed at equimolar concentration of silver and aminopolycarboxylic acids. The stabilization of particles even in the absence of any polymer indicates that the adsorption of aminopolycarboxylic acids on silver particle is a spontaneous process. The adsorbed aminopolycarboxylic acids can saturate the residual valence force of the silver atom on the particle surface by coordinating with unoccupied orbital. Adsorption of aminopolycarboxylic acids does not lead to any change in surface plasmon band of silver nanoparticles; this indicates that anions in the double layer on the colloidal particle have different chemical properties from the free anions. Synthesized silver nanoparticles were characterized by UV-visible spectrophotometer, X-ray Diffraction, Dynamic Light Scattering and Transmission Electron Microscope

  4. Innate catalytic and free radical scavenging activities of silver nanoparticles synthesized using Dillenia indica bark extract.

    Science.gov (United States)

    Mohanty, Alfa S; Jena, Bhabani S

    2017-06-15

    A green approach was envisaged for the rapid synthesis of stable silver nanoparticles in an aqueous medium using phenolic rich ethanolic bark extract from D. indica with marked free radical scavenging and reducing ability. Biosynthesis of silver nanoparticles (AgNPs) was confirmed and characterized by using UV-visible spectroscopy, particle size analyzer, X-ray diffractometry (XRD), Transmission Electron Microscopy (TEM) and Fourier Transform Infrared Spectroscopy (FT-IR). Bio-reduction of Ag+ was confirmed with the appearance of golden yellow coloration within 5-10min at 45°C with maximum absorbance at 421nm. XRD analysis of AgNPs indicated the crystalline nature of metallic Ag. As analyzed by TEM, AgNPs were found to be spherical in shape, well dispersed and size varied from 15 to 35nm and dynamic light scattering (DLS) studies showed the average particle size of 29nm with polydispersity index (PDI) of 0.280. Synthesized AgNPs were showing surface functionalization as revealed through FTIR studies. These AgNPs were observed to be highly stable at room temperature (28±2°C) for more than 3months, thereby indicating the ethanolic extract of D. indica was a reducing as well as a capping agent for stabilization of AgNPs. Moreover, these green synthesized AgNPs showed enhanced free radical scavenging and excellent catalytic activities when used in the reduction of 4-nitrophenol and methylene blue dye, at room temperature. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Microwave assisted facile green synthesis of silver and gold nanocatalysts using the leaf extract of Aerva lanata

    Science.gov (United States)

    Joseph, Siby; Mathew, Beena

    2015-02-01

    Herein, we report a simple microwave assisted method for the green synthesis of silver and gold nanoparticles by the reduction of aqueous metal salt solutions using leaf extract of the medicinal plant Aerva lanata. UV-vis., FTIR, XRD, and HR-TEM studies were conducted to assure the formation of nanoparticles. XRD studies clearly confirmed the crystalline nature of the synthesized nanoparticles. From the HR-TEM images, the silver nanoparticles (AgNPs) were found to be more or less spherical and gold nanoparticles (AuNPs) were observed to be of different morphology with an average diameter of 18.62 nm for silver and 17.97 nm for gold nanoparticles. In order to evaluate the effect of microwave heating upon rate of formation, the synthesis was also conducted under ambient condition without the assistance of microwave radiation and the former method was found to be much faster than the later. The synthesized nanoparticles were used as nanocatalysts in the reduction of 4-nitrophenol to 4-aminophenol by NaBH4.

  6. Characterization, antibacterial, and neurotoxic effect of Green synthesized nanosilver using Ziziphus spina Christi aqueous leaf extract collected from Riyadh, Saudi Arabia

    Science.gov (United States)

    El-Ansary, Afaf; Warsy, Arjumand; Daghestani, Maha; Merghani, Nada M.; Al-Dbass, Abeer; Bukhari, Wadha; Al-Ojayan, Badryah; Ibrahim, Eiman M.; Al-Qahtani, Asma M.; Shafi Bhat, Ramesa

    2018-02-01

    The current study aims to synthesize silver nanoparticles using Ziziphus spina Christi (ZSC) or (Sidr) aqueous leaf extract collected from Riyadh, Saudi Arabia. The green synthesis of silver nanoparticles using sidr leaves extract was successful. Production of silver nanoparticles was confirmed through UV-vis Spectrophotometer, particles size and zeta potential analysis, Infra-red spectroscopy, Scanning, and Transmission Electron Microscope (SEM and TEM). The UV-visible spectra showed that the absorption peak existed at 400 nm. SEM analysis showed that the synthesized AgNPs were spherical but in slightly aggregated form. TEM demonstrated different size range of 4-33 nm with an average size of 13. The element analysis profile showed silver signal together with oxygen, calcium, and potassium peaks which might be related to the plant structure. Biological effects of the synthesized AgNPs exhibit satisfactory inhibitory effect against ten tested microorganisms. It inhibited the growth of 5 gram-positive and five gram-negative bacteria. Moreover, AgNPs demonstrated a synergistic effect on the neurotoxicity induced in rat pups with orally administered methyl mercury (MeHg). The present study showed that AgNPs prepared from ZSC might be a promising antimicrobial agent for successful treatment of bacterial infection in intensive care units (ICU) especially in case of antibiotic resistance.

  7. Green synthesis of Silver and Gold Nanoparticles for Enhanced catalytic and bactericidal activity

    Science.gov (United States)

    Naraginti, S.; Tiwari, N.; Sivakumar, A.

    2017-11-01

    A rapid one step green synthetic method using kiwi fruit extract was employed for preparation of silver and gold nanoparticles. The synthesized nanoparticles were successfully used as green catalysts for the reduction of 4-nitrophenol (4-NP) and methylene blue (MB). They also exhibited excellent antimicrobial activity against clinically isolated Pseudomonas aeruginosa (P.aeruginosa) and Staphylococcus aureus (S.aureus). It was noticed that with increase in concentration of the aqueous silver and gold solutions, particle size of the Ag and Au NPS showed increase as evidenced from UV-Visible spectroscopy and TEM micrograph. The method employed for the synthesis required only a few minutes for more than 90% formation of nanoparticles when the temperature was raised to 80°C. It was also noticed that the catalytic activity of nanoparticles depends upon the size of the particles. These nanoparticles were observed to be crystalline from the clear lattice fringes in the transmission electron microscopic (TEM) images, bright circular spots in the selected area electron diffraction (SAED) pattern and peaks in the X-ray diffraction (XRD) pattern. The Fourier-transform infrared (FTIR) spectrum indicated the presence of different functional groups in the biomolecule capping the nanoparticles.

  8. Uniform silver/polypyrrole core-shell nanoparticles synthesized by hydrothermal reaction

    Energy Technology Data Exchange (ETDEWEB)

    Wang Shibin [Department of Chemistry, Tsinghua University, Beijing 100084 (China); Shi Gaoquan [Department of Chemistry, Tsinghua University, Beijing 100084 (China)]. E-mail: gshi@tsinghua.edu.cn

    2007-04-15

    Uniformly sized silver/polypyrrole (Ag/PPy) core-shell nanoparticles were synthesized by one-step hydrothermal reaction of pyrrole and silver nitrate in the presence of polyvinyl pyrrolidone (PVP) as protection agent. The morphology and structures of the nanoparticles have been studied by scanning and transmission electronic microscopes, X-ray diffractometer and Raman spectroscopy. The experimental results indicated that the particles had 120 nm silver cores with 20 nm polypyrrole (PPy) coatings. The reaction conditions have strong effects on the morphology of the nanoparticles.

  9. Uniform silver/polypyrrole core-shell nanoparticles synthesized by hydrothermal reaction

    International Nuclear Information System (INIS)

    Wang Shibin; Shi Gaoquan

    2007-01-01

    Uniformly sized silver/polypyrrole (Ag/PPy) core-shell nanoparticles were synthesized by one-step hydrothermal reaction of pyrrole and silver nitrate in the presence of polyvinyl pyrrolidone (PVP) as protection agent. The morphology and structures of the nanoparticles have been studied by scanning and transmission electronic microscopes, X-ray diffractometer and Raman spectroscopy. The experimental results indicated that the particles had 120 nm silver cores with 20 nm polypyrrole (PPy) coatings. The reaction conditions have strong effects on the morphology of the nanoparticles

  10. Green Synthesis of Silver Nanoparticles and the Study of Optical Properties

    Directory of Open Access Journals (Sweden)

    Ramakrishna Vasireddy

    2012-08-01

    Full Text Available The synthesis of silver nanoparticles of varying size has been achieved using different molar concentrations of NaOH while the effect of changing the temperature has been studied. AgNO3, gelatine, glucose and NaOH are used as a silver precursor, stabilizer, reducing agent and accelerator respectively. The synthesized nanoparticles have been characterized by a FESEM study, X‐ray diffractometry, Raman spectroscopy and UV‐vis spectroscopy. The colloidal sols of the silver nanoparticles in a biopolymer gelatine show strong surface plasmon resonance absorption peaks. The visible photoluminescence emission from the synthesized silver nanocrystals has been recorded within the wavelength range of 400‐600 nm under UV excitation. The synthesized nanoparticles may be extremely useful in making biosensor devices as well as for other applications.

  11. Antibacterial potential of silver nanoparticle synthesized by marine ...

    African Journals Online (AJOL)

    Multi resistance to antibiotics is a serious and disseminated clinical problem, common to several new compounds that block the resistance mechanism. The present study aimed at the comparative study of silver nanoparticles synthesized through actinomycetes and their antimicrobial metabolites with standard antibiotic.

  12. One-step green synthesis and characterization of leaf extract-mediated biocompatible silver and gold nanoparticles from Memecylon umbellatum

    Science.gov (United States)

    Arunachalam, Kantha D; Annamalai, Sathesh Kumar; Hari, Shanmugasundaram

    2013-01-01

    In this experiment, green-synthesized silver and gold nanoparticles were produced rapidly by treating silver and gold ions with an extract of Memecylon umbellatum leaf. The reaction process was simple and easy to handle, and was monitored using ultraviolet-visible spectroscopy. The effect of the phytochemicals present in M. umbellatum, including saponins, phenolic compounds, phytosterols, and quinones, on formation of stable silver and gold nanoparticles was investigated by Fourier-transform infrared spectroscopy. The morphology and crystalline phase of the nanoparticles were determined by transmission electron microscopy and energy-dispersive x-ray spectroscopy. The results indicate that the saponins, phytosterols, and phenolic compounds present in the plant extract play a major role in formation of silver and gold nanoparticles in their respective ions in solution. The characteristics of the nanoparticles formed suggest application of silver and gold nanoparticles as chemical sensors in the future. Given the simple and eco-friendly approach for synthesis, these nanoparticles could easily be commercialized for large-scale production. PMID:23569372

  13. Green Biosynthesis of Silver Nanoparticles using Aqueous Urginea Indica Bulbs Extract and Their Catalytic Activity Towards 4-NP

    Directory of Open Access Journals (Sweden)

    R. Manigandan

    2017-04-01

    Full Text Available A simple, green method is described for the synthesis of silver nanoparticles by reaction of the aqueous solution of Urginea indica (U. I. bulbs extract and AgNO3. In this process, colloidal metallic silver nanoparticles (Ag0 Nps were of a particular interest due to its haunting physicochemical properties. The formation of Ag0 Nps nanoparticles was proved by the significant color change during the preparation. The formation process and color variations by the impact of pH and concentration of extract were analyzed by UV-VIS spectrophotometer. Functional groups present in the extract and Ag0 NPs was characterized by FT-IR spectroscopy. The crystal structure, lattice parameter and crystallite size of synthesized silver NPs was confirmed by X-ray diffraction technique. The X-ray diffraction analysis of the sample showed the formation of nanoparticles with cubic silver structure. Elemental composition and morphology of the metallic silver was widely investigated by FESEM-EDX.

  14. A facile route to synthesize nanogels doped with silver nanoparticles

    Science.gov (United States)

    Coll Ferrer, M. Carme; Ferrier, Robert C.; Eckmann, David M.; Composto, Russell J.

    2013-01-01

    In this study, we describe a simple method to prepare hybrid nanogels consisting of a biocompatible core-shell polymer host containing silver nanoparticles. First, the nanogels (NG, 160 nm) containing a lysozyme rich core and a dextran rich shell, are prepared via Maillard and heat-gelation reactions. Second, silver nanoparticles (Ag NPs, 5 nm) are synthesized "in situ" in the NG solution without requiring additional reducing agents. This approach leads to stable Ag NPs located in the NG. Furthermore, we demonstrate that the amount of Ag NPs in the NG can be tuned by varying silver precursor concentration. Hybrid nanogels with silver nanoparticles have potential in antimicrobial, optical, and therapeutic applications.

  15. Bactericidal activity of bio-synthesized silver nanoparticles against human pathogenic bacteria

    International Nuclear Information System (INIS)

    Abalkhil, Tarad Abdulaziz; Alharbi, Sulaiman Ali; Salmen, Saleh Hussein; Wainwright, Milton

    2017-01-01

    Green synthesis is an attractive and eco-friendly approach to generate potent antibacterial silver nanoparticles (Ag-NPs). Such particles have long been used to fight bacteria and represent a promising tool to overcome the emergence of antibiotic-resistant bacteria. In this study, green synthesis of Ag-NPs was attempted using plant extracts of Aloe vera, Portulaca oleracea and Cynodon dactylon. The identity and size of Ag-NPs was characterized by ultraviolet–visible spectrophotometer and scanning electron microscopy. Monodispersed Ag-NPs were produced with a range of different sizes based on the plant extract used. The bactericidal activity of Ag-NPs against a number of human pathogenic bacteria was determined using the disc diffusion method. The results showed that Gram positive bacteria were more susceptible than Gram negative ones to these antibacterial agents. The minimum inhibitory concentration was determined using the 96- well plate method. Finally, the mechanism by which Ag-NPs affect bacteria was investigated by SEM analysis. Bacteria treated with Ag-NPs were seen to undergo shrinkage and to lose their viability. This study provides evidence for a cheap and effective method for synthesizing potent bactericidal Ag-NPs and demonstrates their effectiveness against human pathogenic bacteria

  16. Antimicrobial Activities of Silver Nanoparticles Synthesized by Using Water Extract of Arnicae anthodium

    OpenAIRE

    Dobrucka, Renata; Długaszewska, Jolanta

    2015-01-01

    Green synthesis of nanoparticles has gained significant importance in recent years and has become the one of the most preferred methods. Also, green synthesis of nanoparticles is valuable branch of nanotechnology. Plant extracts are eco-friendly and can be an economic option for synthesis of nanoparticles. This study presents method the synthesis of silver nanoparticles using water extract of Arnicae anthodium. Formation of silver nanoparticles was confirmed by UV–visble spectroscopy, Fourier...

  17. Determining the effects of green chemistry synthesized Ag-nisin nanoparticle on macrophage cells.

    Science.gov (United States)

    Moein, Masood; Imani Fooladi, Abbas Ali; Mahmoodzadeh Hosseini, Hamideh

    2018-01-01

    Bacteriocins are low molecular weight substances produced through post transcriptional changes. These molecules are easily degraded in mammalian gut by proteolytic enzymes especially protease. Nisin is a peptide with 34 aa and its structure contains a pentacyclic lanthionine and 4 beta metyllanthionine residues. Different formulations have been designed for nisin. Since "green synthesis" is a progressive method to prepare anti-microbial and anti-cancer compounds, this study aimed at green synthesis of nisin metal compounds to be used lower concentration still exerting nisin effects. For this purpose, a 1 mg/ml nisin solution was added to a 1 mM silver nitrate solution and incubated to synthesis nano Ag-nisin, then the optical density of new solution was detected using UV spectroscopy. To determine biomolecules in the Ag-nisin solution, the FTIR method was employed. The size and morphology of Ag-nisin was measured by TEM. The toxicity, inflammatory cytokines production, and intracellular ROS quantity was evaluated using MTT, ELISA and flow-cytometry. XRD pattern indicated the silver crystals in Ag-nisin solution. In addition, FTRI findings showed that the carbonyl groups of amino acid are potently able to bind to metal nanoparticles, cover, and prevent them from particle agglomeration. Treating macrophage cells with 10, 25, 50 and 100 μg/ml of Ag-nisin had no significant effect on the cell viability and intracellular ROS quantity compared to the control group. In addition, different concentrations of Ag-nisin had no effect on the IL-10 and TNF-α levels but caused an increased level of IL-12 in comparison with the control group. In the current study, for the first time, green synthesize was used to prepare Ag-nisin particles. The synthesized nanoparticle is able to induce inflammatory activity via increasing IL-12 without any change in the TNF-α level in macrophage cells. Copyright © 2017. Published by Elsevier Ltd.

  18. Larvicidal Activity of Silver Nanoparticles Synthesized Using Extracts of Ambrosia arborescens (Asteraceae to Control Aedes aegypti L. (Diptera: Culicidae

    Directory of Open Access Journals (Sweden)

    Bianca Morejón

    2018-01-01

    Full Text Available The mosquito species Aedes aegypti is the primary vector of dengue, chikungunya, and Zika infections worldwide. Since effective vaccines or drugs are not available for the prevention and/or treatment of these pathologies, vector control has been adopted as the main approach to reduce their transmission. To control Aedes populations, the most commonly used tool is the application of chemical insecticides and, despite their effectiveness, indiscriminate use of these chemicals has led to high operational costs, appearance of resistant populations, and adverse nontarget effects. Plant-derived insecticides may be an eco-friendly, cost-effective, and safe biocontrol alternative. The present study was carried out to evaluate the larvicidal activity of leaf extracts of Ambrosia arborescens and green-synthesized silver nanoparticles (AgNPs using aqueous extracts obtained from this plant against third instar larvae of Ae. aegypti. To test this, larvae were exposed for 24 h to the aqueous plant extract at 1500, 3000, 4500, and 6000 ppm and the plant-synthesized AgNPs at 0.2, 0.3, 0.4, and 0.5 ppm. In laboratory assays, AgNPs were more toxic (LC50 = 0.28 ppm; LC90 = 0.43 ppm than the plant extract (LC50 = 1844.61 ppm; LC90 = 6043.95 ppm. These results suggest that A. arborescens aqueous extract and green-synthesized silver nanoparticles produced from those extracts have the potential to be developed into suitable alternative tools useful for the control of Ae. aegypti populations.

  19. Effect of chemically and biologically synthesized Ag nanoparticles on the algae growth inhibition

    Science.gov (United States)

    Anna, Mražiková; Oksana, Velgosová; Jana, Kavuličová

    2017-12-01

    Over the past few years green methods for preparation of silver nanoparticles has become necessary due to its friendly influence on ecosystem. In the present work antimicrobial properties of biologically synthesized silver nanoparticles (Bio-AgNPs) using green algae extract and chemically synthesized silver nanoparticles (Chem-AgNPs) using sodium citrate against algae Parachlorella kessleri is investigated. Both used Bio-AgNPs and Chem-AgNPs exhibit long-term stability as demonstrated by UV-vis spectroscopy measurements. The results revealed stronger toxic effects of Bio-AgNPs on agar plates what was confirmed clear inhibition zone around wells impregnated with Bio-AgNPs. On the other hand Bio-AgNPs were confirmed to be less toxic in aquatic environments for the growths of green algae P. kessleri comparing to Chem-AgNPs.

  20. Nano structural Features of Silver Nanoparticles Powder Synthesized through Concurrent Formation of the Nano sized Particles of Both Starch and Silver

    International Nuclear Information System (INIS)

    Hebeish, A.; El-Rafie, M.H.; El-Sheikh, M.A.; El-Naggar, M.E.

    2013-01-01

    Green innovative strategy was developed to accomplish silver nanoparticles formation of starch-silver nanoparticles (St-AgNPs) in the powder form. Thus, St-AgNPs were synthesized through concurrent formation of the nano sized particles of both starch and silver. The alkali dissolved starch acts as reducing agent for silver ions and as stabilizing agent for the formed AgNPs. The chemical reduction process occurred in water bath under high-speed homogenizer. After completion of the reaction, the colloidal solution of AgNPs coated with alkali dissolved starch was cooled and precipitated using ethanol. The powder precipitate was collected by centrifugation, then washed, and dried; St-AgNPs powder was characterized using state-of-the-art facilities including UV-vis spectroscopy, Transmission Electron Microscopy (TEM), particle size analyzer (PS), Polydispersity index (PdI), Zeta potential (ZP), XRD, FT-IR, EDX, and TGA. TEM and XRD indicate that the average size of pure AgNPs does not exceed 20 nm with spherical shape and high concentration of AgNPs (30000 ppm). The results obtained from TGA indicates that the higher thermal stability of starch coated AgNPS than that of starch nanoparticles alone. In addition to the data obtained from EDX which reveals the presence of AgNPs and the data obtained from particle size analyzer and zeta potential determination indicate that the good uniformity and the highly stability of St-AgNPs).

  1. Antimicrobial and cytotoxicity effect of silver nanoparticle synthesized by Croton bonplandianum Baill. leaves

    Directory of Open Access Journals (Sweden)

    K. Khanra

    2016-01-01

    Full Text Available Objective(s: For the development of reliable, ecofriendly, less expensive process for the synthesis of silver nanoparticles and to evaluate the bactericidal, and cytotoxicity properties of silver nanoparticles synthesized from root extract of Croton bonplandianum, Baill. Materials and Methods: The synthesis of silver nanoparticles by plant part of Croton bonplandianum was carried out.  The formation of nanoparticles was confirmed by Transmission Electron Microscopy (TEM, Scanning Electron Microscopy (SEM, XRD and UV-Vis spectrophotometric analysis.  The biochemical properties were assayed by antibacterial study, cytotoxicity assay using cancer cell line.  Results: The formation of silver nanoparticles was confirmed by UV-VIS spectroscopic analysis which showed absorbance peak at 425 nm.  X-ray diffraction photograph indicated the face centered cubic structure of the synthesized AgNPs.  TEM has displayed the different dimensional images of biogenic silver nanoparticles with particle size distribution ranging from 15-40 nm with an average size of 32 nm. Silver particles are spherical in shape, clustered.  The EDX analysis was used to identify the elemental composition of synthesized AgNPs. Antibacterial activity of the synthesized AgNPs against three Gram positive and Gram negative bacteria strains like Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa carried out showed significant zones of inhibition. The cytotoxicity study by AgNPS also showed cytotoxicity on ovarian cancer cell line PA-1 and lung epithelial cancer cell line A549.  Conclusion: The present study confirms that the AgNPs have great promise as antibacterial, and anticancer agent.

  2. A facile route to synthesize nanogels doped with silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Coll Ferrer, M. Carme [University of Pennsylvania, Department of Materials Science (United States); Ferrier, Robert C. [University of Pennsylvania, Department of Chemical and Biomolecular Engineering (United States); Eckmann, David M. [University of Pennsylvania, Department of Anesthesiology and Critical Care (United States); Composto, Russell J., E-mail: composto@seas.upenn.edu [University of Pennsylvania, Department of Materials Science (United States)

    2013-01-15

    In this study, we describe a simple method to prepare hybrid nanogels consisting of a biocompatible core-shell polymer host containing silver nanoparticles. First, the nanogels (NG, {approx}160 nm) containing a lysozyme rich core and a dextran rich shell, are prepared via Maillard and heat-gelation reactions. Second, silver nanoparticles (Ag NPs, {approx}5 nm) are synthesized 'in situ' in the NG solution without requiring additional reducing agents. This approach leads to stable Ag NPs located in the NG. Furthermore, we demonstrate that the amount of Ag NPs in the NG can be tuned by varying silver precursor concentration. Hybrid nanogels with silver nanoparticles have potential in antimicrobial, optical, and therapeutic applications.

  3. A facile route to synthesize nanogels doped with silver nanoparticles

    International Nuclear Information System (INIS)

    Coll Ferrer, M. Carme; Ferrier, Robert C.; Eckmann, David M.; Composto, Russell J.

    2013-01-01

    In this study, we describe a simple method to prepare hybrid nanogels consisting of a biocompatible core–shell polymer host containing silver nanoparticles. First, the nanogels (NG, ∼160 nm) containing a lysozyme rich core and a dextran rich shell, are prepared via Maillard and heat-gelation reactions. Second, silver nanoparticles (Ag NPs, ∼5 nm) are synthesized “in situ” in the NG solution without requiring additional reducing agents. This approach leads to stable Ag NPs located in the NG. Furthermore, we demonstrate that the amount of Ag NPs in the NG can be tuned by varying silver precursor concentration. Hybrid nanogels with silver nanoparticles have potential in antimicrobial, optical, and therapeutic applications.

  4. Green synthesis of silver nanoparticles by Bacillus methylotrophicus, and their antimicrobial activity.

    Science.gov (United States)

    Wang, Chao; Kim, Yeon Ju; Singh, Priyanka; Mathiyalagan, Ramya; Jin, Yan; Yang, Deok Chun

    2016-06-01

    The synthesis of silver nanoparticles (AgNPs) by microorganisms is an area attracting growing interest in nanobiotechnology, due to the applications of these nanoparticles in various products including cosmetics and biosensors, and in the biomedical, clinical, and bioimaging fields as well. Various microorganisms have been found to be able to synthesize AgNPs when silver salts are supplied in the reaction system. The main objectives of this study were to evaluate the efficiency of synthesis of AgNPs by the strain Bacillus methylotrophicus DC3, isolated from the soil of Korean ginseng, a traditionally known oriental medicinal plant in Korea. The AgNPs showed maximum absorbance at 416 nm, when assayed by ultraviolet-visible spectroscopy (UV-vis). The field emission transmission electron micrograph (FE-TEM) results showed that the particles were spherical and 10-30 nm in size. In addition, the product was also characterized by energy dispersive X-ray spectroscopy (EDX), which displayed a 3 keV peak corresponding to the silver nanocrystal. Elemental mapping results also confirmed the presence of silver elements in the electron micrograph region. Furthermore, the AgNPs demonstrated antimicrobial activity against various pathogenic microorganisms such as Candida albicans, Salmonella enterica, Escherichia coli, and Vibrio parahaemolyticus, with enhanced antimicrobial activity being exhibited against C. albicans. Therefore, the current study describes the simple, efficient, and green method of synthesis of AgNPs by B. methylotrophicus DC3.

  5. Evaluation of plant-mediated synthesized silver nanoparticles against vector mosquitoes.

    Science.gov (United States)

    Veerakumar, Kaliyan; Govindarajan, Marimuthu; Hoti, S L

    2014-12-01

    Diseases transmitted by blood-feeding mosquitoes, such as dengue fever, dengue hemorrhagic fever, Japanese encephalitis, malaria, and filariasis, are increasing in prevalence, particularly in tropical and subtropical zones. To control mosquitoes and mosquito-borne diseases, which have worldwide health and economic impacts, synthetic insecticide-based interventions are still necessary, particularly in situations of epidemic outbreak and sudden increases of adult mosquitoes. Green nanoparticle synthesis has been achieved using environmentally acceptable plant extract and eco-friendly reducing and capping agents. In view of the recently increased interest in developing plant origin insecticides as an alternative to chemical insecticide, in the present study, the adulticidal activity of silver nanoparticles (AgNPs) synthesized using Heliotropium indicum plant leaf extract against adults of Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus was determined. Adult mosquitoes were exposed to varying concentrations of aqueous extract of H. indicum and synthesized AgNPs for 24 h. AgNPs were rapidly synthesized using the leaf extract of H. indicum, and the formation of nanoparticles was observed within 6 h. The results recorded from UV-vis spectrum, Fourier transform infrared, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy support the biosynthesis and characterization of AgNPs. The maximum efficacy was observed in synthesized AgNPs against the adult of A. stephensi (lethal dose (LD)₅₀ = 26.712 μg/mL; LD₉₀ = 49.061 μg/mL), A. aegypti (LD₅₀ = 29.626 μg/mL; LD₉₀ = 54.269 μg/mL), and C. quinquefasciatus (LD₅₀ = 32.077 μg/mL; LD₉₀ = 58.426 μg/mL), respectively. No mortality was observed in the control. These results suggest that the leaf aqueous extracts of H.indicum and green synthesis of AgNPs have the potential to be used as an ideal eco-friendly approach for the control of

  6. Toxicity Study of Silver Nanoparticles Synthesized from Suaeda monoica on Hep-2 Cell Line.

    Science.gov (United States)

    Satyavani, Kaliyamurthi; Gurudeeban, Selvaraj; Ramanathan, Thiruganasambandam; Balasubramanian, Thangavel

    2012-01-01

    Recently there has been fabulous excitement in the nano-biotechnological area for the study of nanoparticles synthesis using some natural biological system, which has led the growth advanced nanomaterials. This intention made us to assess the biologically synthesized silver nanoparticles from the leaf of Suaeda monoica (S.monoica) using 1 mM silver nitrate. The leaf extract of S.monoica incubated with 1 mM silver nitrate solution and characterized by UV- spectrometer and AFM. The effect of synthesized silver nanoparticles on Human Epidermoid Larynx Carcinoma cell line was evaluated by the MTT colorimetric technique. As a result we observed gradual change in the colour of extract from greenish to brown. The synthesized silver nanoparticles confirmed by UV at 430 nm and spherical shape identified in the range of 31 nm under AFM. The effect of silver nanoparticles on Human Epidermoid Larynx Carcinoma cell line exhibits a dose-dependent toxicity for the cell tested and the viability of Hep-2 cells decreased to 50 % (IC(50)) at the concentration of 500 nM. Further findings will be determined the exact mechanisms of this cost effective Nano-treatments.

  7. Study of silver nanoparticles synthesized by acidophilic strain of Actinobacteria isolated from the of Picea sitchensis forest soil.

    Science.gov (United States)

    Railean-Plugaru, V; Pomastowski, P; Wypij, M; Szultka-Mlynska, M; Rafinska, K; Golinska, P; Dahm, H; Buszewski, B

    2016-05-01

    In the present work the acidophilic actinobacteria strain was used as a novel reducing agent for the cheap, green and single-step synthesis of nanostructure silver particles. Structural, morphological and optical properties of the synthesized nanoparticles have been characterized by spectroscopy, dynamic light scattering and electron microscopy approach. The antimicrobial activity of silver nanoparticles against clinical strains such as Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Proteus mirabilis and Salmonella infantis alone and in combination with antibiotics were studied. The crystalline and stable biosynthesized silver nanoparticles ranged in size from 4 to 45 nm and were mostly spherical in shape being characterized evolving several analytical techniques. The bioAgNPs inhibited growth of most bacterial strains. The highest antimicrobial activity was observed against Ps. aeruginosa (10 mm), followed by Staph. aureus, B. subtilis and Pr. mirabilis (all 8 mm). The lower activity was noticed for E. coli and Kl. pneumoniae (6 and 2 mm, respectively). Moreover, the synergistic effect of bio(AgNPs) with various commercially available antibiotics was also evaluated. The most significant results were observed for bio(AgNPs) combined with tetracycline, kanamycin, ampicillin and neomycin, followed by streptomycin and gentamycin against E. coli, Salm. infantis and Kl. pneumoniae. The most resistant bacteria to commercial antibiotics was Pr. mirabilis. The Streptacidiphilus sp. strain CGG11n isolated from acidic soil can be used to efficiently synthesize the bioactive nanoparticles using inexpensive substances in an eco-friendly and nontoxic manner. The present work provides helpful insight into the development of new antimicrobial agents with the synergistic enhancement of the antibacterial mechanism against pathogenic micro-organisms. The synthesized silver bionanoparticles from Streptacidiphilus sp. strain

  8. Green synthesis of silver nanoparticles using a Melissa officinalis leaf extract with antibacterial properties

    Directory of Open Access Journals (Sweden)

    Álvaro de Jesús Ruíz-Baltazar

    Full Text Available The exceptional properties of the silver nanoparticles offer several applications in the biomedicine field. The development of antibiotics which are clinically useful against bacteria and drug resistant microorganisms, it is one of the main approaches of silver nanoparticles. However, it is necessary to develop environmentally friendly methods for their synthesis. In this sense, the main objective of this work is focused on to propose a simplified and efficient green synthesis of silver nanoparticles with proven antibacterial properties. The green synthesis route is based on the use of the Melissa officinalis as reducing agent of the silver ions in aqueous solution at room temperature. Complementary, the antibacterial activity of the silver nanoparticles against Staphylococcus aureus and Escherichia coli was confirmed. The silver nanoparticles obtained were characterized by transmission electron microscopy, X-ray diffraction, UV–vis, Raman and FT-IR spectroscopy. The observed results suggested that using Melissa officinalis, it is possible to performed silver nanoparticles with controlled characteristics and with significant inhibitory activity against the Staphylococcus aureus and Escherichia coli. Keywords: Green synthesis, Nanoparticles, Antibacterial effect

  9. Low-cost and eco-friendly green synthesis of silver nanoparticles using Prunus japonica (Rosaceae) leaf extract and their antibacterial, antioxidant properties.

    Science.gov (United States)

    Saravanakumar, Arthanari; Peng, Mei Mei; Ganesh, Mani; Jayaprakash, Jayabalan; Mohankumar, Murugan; Jang, Hyun Tae

    2017-09-01

    Low cost and eco-friendly green synthesis of silver nanoparticles (AgNPs) from silver nitrate (AgNO 3 ) using Prunus japonica leaves extract as reducing agent by a simple method at room temperature. The biosynthesized nanoparticles (NPs) were characterized by UV-Vis, tunneling electron microscopy (HR-TEM), scanning electron microscopy (SEM) coupled with X-ray energy dispersive spectrophotometer (EDAX), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). In UV-Vis spectroscopy results, the λ max was observed at 441 nm. The AgNPs synthesized were spherical, hexagonal, and irregular in shapes. The EDAX and XRD spectrum confirmed the presence of silver ions and crystalline nature of synthesized AgNPs. FTIR showed the functional groups such as C = O, N-H and C-N groups involved in the reduction of Ag +  to Ag. 2, 2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay was performed and it showed the percentage inhibition in concentration-dependent manner. The synthesized AgNPs showed antibacterial activity against Escherichia coli, Proteus vulgaris, Staphylococcus aureus and Bacillus cereus to different extents and the higher activity was observed in Proteus vulgaris.

  10. Green synthesis and characterization of gold and silver nanoparticles using Mussaenda glabrata leaf extract and their environmental applications to dye degradation.

    Science.gov (United States)

    Francis, Sijo; Joseph, Siby; Koshy, Ebey P; Mathew, Beena

    2017-07-01

    Plant-derived nanomaterials opened a green approach in solving the current environment issues. Present study focused on rapid microwave-assisted synthesis and applications of gold and silver nanoparticles mediated by aqueous leaf extract of Mussaenda glabrata. The synthesized nanoparticles were characterized by UV-vis, FT-IR, powder XRD, energy-dispersive X-ray spectroscopy (EDX), transmission electron (TEM), and atomic force microscopic techniques (AFM). FCC crystal structure of both nanoparticles was confirmed by peaks corresponding to (111), (200), (220), and (311) planes in XRD spectra and bright circular spots in SAED pattern. IC 50 values shown by gold and silver nanoparticles (44.1 ± 0.82 and 57.92 ± 1.33 μg/mL) reflected their high free radical scavenging potential. The synthesized gold and silver nanoparticles revealed their potency to inhibit pathogenic microorganisms Bacillus pumilus, Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Aspergillus niger, and Penicillium chrysogenum. Anthropogenic pollutants rhodamine B and methyl orange were effectively degraded from aquatic environment and waste water sewages of dye industries using the prepared nanocatalysts. The catalytic capacities of the synthesized nanoparticles were also exploited in the reduction of 4-nitrophenol. Graphical abstract.

  11. Synthesis and characterization of silver nanoparticles from Alpinia calcarata by Green approach and its applications in bactericidal and nonlinear optics

    Energy Technology Data Exchange (ETDEWEB)

    Pugazhendhi, S.; Kirubha, E. [Department of Physics, Anna University, Chennai 600 025 (India); Palanisamy, P.K. [Department of Medical Physics, Anna University, Chennai 600 025 (India); Gopalakrishnan, R., E-mail: krgkrishnan@yahoo.com [Department of Physics, Anna University, Chennai 600 025 (India)

    2015-12-01

    Graphical abstract: - Highlights: • Alpinia calcarata root extract was used for the synthesis Ag nanoparticle. • AgNPs show remarkable stability at 25–30 °C. • The morphologies of the AgNPs were analyzed using HRTEM. • AgNPs exhibit good nonlinear optical behaviour and antimicrobial activities. - Abstract: Development of green route for the synthesis of nanoparticles with plant extracts plays a very important role in nanotechnology without any toxicity chemicals. Herein we report a new approach to synthesize silver nanoparticles (AgNPs) using aqueous extract of Alpinia calcarata root as a reducing as well as stabilizing agent. The crystal structure and purity of the synthesized AgNPs were studied using Powder X-ray Diffraction analysis. The Surface Plasmon Resonance bands of synthesized silver nanoparticles have been obtained and monitored using UV–Visible spectrum. The morphologies of the AgNPs were analyzed using High resolution transmission electron microscopy (HRTEM). The elements present in the A. calcarata extract were determined by the inductively coupled plasma-optical emission Spectrometry (ICP-OES) and Fourier transform infrared spectroscopy (FTIR). Silver nanoparticles from A. calcarata possess very good antimicrobial activity which was confirmed by resazurin dye reduction assay method and thus it is a potential source of antimicrobial agent. The synthesized Ag nanoparticles exhibit good optical nonlinearity and the nonlinear optical studies have been carried out by Z-scan technique.

  12. Synthesis and characterization of silver nanoparticles from Alpinia calcarata by Green approach and its applications in bactericidal and nonlinear optics

    International Nuclear Information System (INIS)

    Pugazhendhi, S.; Kirubha, E.; Palanisamy, P.K.; Gopalakrishnan, R.

    2015-01-01

    Graphical abstract: - Highlights: • Alpinia calcarata root extract was used for the synthesis Ag nanoparticle. • AgNPs show remarkable stability at 25–30 °C. • The morphologies of the AgNPs were analyzed using HRTEM. • AgNPs exhibit good nonlinear optical behaviour and antimicrobial activities. - Abstract: Development of green route for the synthesis of nanoparticles with plant extracts plays a very important role in nanotechnology without any toxicity chemicals. Herein we report a new approach to synthesize silver nanoparticles (AgNPs) using aqueous extract of Alpinia calcarata root as a reducing as well as stabilizing agent. The crystal structure and purity of the synthesized AgNPs were studied using Powder X-ray Diffraction analysis. The Surface Plasmon Resonance bands of synthesized silver nanoparticles have been obtained and monitored using UV–Visible spectrum. The morphologies of the AgNPs were analyzed using High resolution transmission electron microscopy (HRTEM). The elements present in the A. calcarata extract were determined by the inductively coupled plasma-optical emission Spectrometry (ICP-OES) and Fourier transform infrared spectroscopy (FTIR). Silver nanoparticles from A. calcarata possess very good antimicrobial activity which was confirmed by resazurin dye reduction assay method and thus it is a potential source of antimicrobial agent. The synthesized Ag nanoparticles exhibit good optical nonlinearity and the nonlinear optical studies have been carried out by Z-scan technique.

  13. Green synthesis of silver nanoparticles using green tea leaves: Experimental study on the morphological, rheological and antibacterial behaviour

    Science.gov (United States)

    Nakhjavani, Maryam; Nikkhah, V.; Sarafraz, M. M.; Shoja, Saeed; Sarafraz, Marzieh

    2017-10-01

    In this paper, silver nanoparticles are produced via green synthesis method using green tea leaves. The introduced method is cost-effective and available, which provides condition to manipulate and control the average nanoparticle size. The produced particles were characterized using x-ray diffraction, scanning electron microscopic images, UV visualization, digital light scattering, zeta potential measurement and thermal conductivity measurement. Results demonstrated that the produced samples of silver nanoparticles are pure in structure (based on the x-ray diffraction test), almost identical in terms of morphology (spherical and to some extent cubic) and show longer stability when dispersed in deionized water. The UV-visualization showed a peak in 450 nm, which is in accordance with the previous studies reported in the literature. Results also showed that small particles have higher thermal and antimicrobial performance. As green tea leaves are used for extracting the silver nanoparticles, the method is eco-friendly. The thermal behaviour of silver nanoparticle was also analysed by dispersing the nanoparticles inside the deionized water. Results showed that thermal conductivity of the silver nano-fluid is higher than that of obtained for the deionized water. Activity of Ag nanoparticles against some bacteria was also examined to find the suitable antibacterial application for the produced particles.

  14. Phyto-crystallization of silver and gold by Erigeron annuus (L. Pers flower extract and catalytic potential of synthesized and commercial nano silver immobilized on sodium alginate hydrogel

    Directory of Open Access Journals (Sweden)

    Palanivel Velmurugan

    2016-05-01

    Full Text Available A green, eco-friendly approach for the synthesis of silver and gold nanoparticles (AgNPs and AuNPs using Erigeron annuus (L. pers flower extract as both the reducing and capping agent is reported for the first time. Optimal nanoparticle production was achieved by adjusting various parameters including pH, extract concentration, metal ion concentration, and time. Initial verification of AgNP and AuNP production was done by visual observation and measuring surface plasmon spectra at 434 and 537 nm, respectively. The synthesized AgNPs and AuNPs were characterized by high resolution-transmission electron microscopy (HR-TEM, X-ray diffraction (XRD, energy dispersive spectrophotometry (EDS, Fourier transform infrared spectroscopy (FTIR and zeta potential. The catalytic potential of E. annuus flower extract, silver ions, synthesized AgNPs, commercial grade AgNPs, and a mixture of flower extract and AgNPs immobilized on sodium alginate hydrogel beads (Na/Al HB was analyzed. The ability of these immobilized materials to degrade methylene blue was investigated. Commercial grade AgNPs immobilized with Na/Al HB 1.5 g/20 mL were observed to have good catalytic activity followed by a mixture of synthesized AgNPs immobilized with Na/Al HB and E. annuus flower extract immobilized with Na/Al HB at 1.5 g/20 mL.

  15. The effect of biologically and chemically synthesized silver nanoparticles (AgNPs) on biofilm formation

    Science.gov (United States)

    Chojniak, Joanna; Biedroń, Izabela; Mendrek, Barbara; Płaza, Grażyna

    2017-11-01

    Bionanotechnology has emerged up as integration between biotechnology and nanotechnology for developing biosynthetic and environmental-friendly technology for synthesis of nanomaterials. Different types of nanomaterials like copper, zinc, titanium, magnesium, gold, and silver have applied in the various industries but silver nanoparticles have proved to be most effective against bacteria, viruses and eukaryotic microorganisms. The antimicrobial property of silver nanoparticles are widely known. Due to strong antibacterial property silver nanoparticles are used, e.g. in clothing, food industry, sunscreens, cosmetics and many household and environmental appliances. The aim of the study was to compare the effect of silver nanoparticles (AgNPs) synthesized biologically and chemically on the biofilm formation. The biofilm was formed by the bacteria isolated from the water supply network. The commonly used crystal violet assay (CV) was applied for biofilm analysis. In this study effect of biologically synthesized Ag-NPs on the biofilm formation was evaluated.

  16. Surface Functionalization of “Rajshahi Silk” Using Green Silver Nanoparticles

    Directory of Open Access Journals (Sweden)

    Sakil Mahmud

    2017-09-01

    Full Text Available In this study, a novel functionalization approach has been addressed by using sodium alginate (Na-Alg assisted green silver nanoparticles (AgNPs on traditional “Rajshahi silk” fabric via an exhaustive method. The synthesized nanoparticles and coated silk fabrics were characterized by different techniques, including ultraviolet–visible spectroscopy (UV–vis spectra, scanning electron microscopy (SEM, transmission electron microscopy (TEM, energy dispersive X-ray spectroscopy (EDS, X-ray diffraction (XRD, thermogravimetric analysis (TGA, and Fourier transform infrared spectroscopy (FT-IR, which demonstrated that AgNPs with an average size of 6–10 nm were consistently deposited in the fabric surface under optimized conditions (i.e., pH 4, temperature 40 °C, and time 40 min. The silk fabrics treated with AgNPs showed improved colorimetric values and color fastness properties. Moreover, the UV-protection ability and antibacterial activity, as well as other physical properties—including tensile properties, the crease recovery angle, bending behavior, the yellowness index, and wettability (surface contact angle of the AgNPs-coated silk were distinctly augmented. Therefore, green AgNPs-coated traditional silk with multifunctional properties has high potential in the textile industry.

  17. One-pot facile green synthesis of biocidal silver nanoparticles

    Science.gov (United States)

    Nudrat Hazarika, Shabiha; Gupta, Kuldeep; Shamin, Khan Naseem Ahmed Mohammed; Bhardwaj, Pushpender; Boruah, Ratan; Yadav, Kamlesh K.; Naglot, Ashok; Deb, P.; Mandal, M.; Doley, Robin; Veer, Vijay; Baruah, Indra; Namsa, Nima D.

    2016-07-01

    The plant root extract mediated green synthesis method produces monodispersed spherical shape silver nanoparticles (AgNPs) with a size range of 15-30 nm as analyzed by atomic force and transmission electron microscopy. The material showed potent antibacterial and antifungal properties. Synthesized AgNPs display a characteristic surface plasmon resonance peak at 420 nm in UV-Vis spectroscopy. X-ray diffractometer analysis revealed the crystalline and face-centered cubic geometry of in situ prepared AgNPs. Agar well diffusion and a colony forming unit assay demonstrated the potent biocidal activity of AgNPs against Staphylococcus aureus, Escherichia coli, Bacillus subtilis, Klebsiella pneumoniae, Pseudomonas diminuta and Mycobacterium smegmatis. Intriguingly, the phytosynthesized AgNPs exhibited activity against pathogenic fungi, namely Trichophyton rubrum, Aspergillus versicolor and Candida albicans. Scanning electron microscopy observations indicated morphological changes in the bacterial cells incubated with silver nanoparticles. The genomic DNA isolated from the bacteria was incubated with an increasing concentration of AgNPs and the replication fidelity of 16S rDNA was observed by performing 18 and 35 cycles PCR. The replication efficiency of small (600 bp) and large (1500 bp) DNA fragments in the presence of AgNPs were compromised in a dose-dependent manner. The results suggest that the Thalictrum foliolosum root extract mediated synthesis of AgNPs could be used as a promising antimicrobial agent against clinical pathogens.

  18. Biosynthesis, characterization and antimicrobial studies of green synthesized silver nanoparticles from fruit extract of Syzygium alternifolium (Wt.) Walp. an endemic, endangered medicinal tree taxon

    Science.gov (United States)

    Yugandhar, P.; Savithramma, N.

    2016-02-01

    In nanotechnology, the plant mediated synthesis of nanoparticles has terrific application in biomedicine due to its novel properties and its eco-friendly nature. The present study deals with the biosynthesis of stable silver nanoparticles (SNPs) from aqueous fruit extract of S. alternifolium an endemic medicinal plant to Eastern Ghats. The synthesized nanoparticles are characterized by UV-VIS spectroscopy, FTIR, XRD, AFM, SEM with EDAX and TEM. Colour change from brown to grey indicates the formation of nanoparticles and UV-VIS surface plasmon resonance spectroscopy observed at 442 nm further confirms the synthesized nanoparticles are SNPs. FTIR studies reveal that the phenols and primary amines of proteins are main responsible for reduction, stabilization and capping agents towards these SNPs. The XRD data show crystalline nature of nanoparticles and EDAX measurements reveal the (12.74 %) percentage presence of Ag metal. AFM, SEM and TEM microscopic analyses revealed that the size of synthesized SNPs ranging from 5 to 68 nm has spherical shape and they are in polydispersed condition. Further, the antimicrobial studies of synthesized SNPs show high toxicity towards different bacterial and fungal isolates. This is the first report on fruit mediated synthesis of silver nanoparticles from S. alternifolium.

  19. Biomedical applications of green synthesized Nobel metal nanoparticles.

    Science.gov (United States)

    Khan, Zia Ul Haq; Khan, Amjad; Chen, Yongmei; Shah, Noor S; Muhammad, Nawshad; Khan, Arif Ullah; Tahir, Kamran; Khan, Faheem Ullah; Murtaza, Behzad; Hassan, Sadaf Ul; Qaisrani, Saeed Ahmad; Wan, Pingyu

    2017-08-01

    Synthesis of Nobel metal nanoparticles, play a key role in the field of medicine. Plants contain a substantial number of organic constituents, like phenolic compounds and various types of glycosides that help in synthesis of metal nanoparticles. Synthesis of metal nanoparticles by green method is one of the best and environment friendly methods. The major significance of the green synthesis is lack of toxic by-products produced during metal nanoparticle synthesis. The nanoparticles, synthesized by green method show various significant biological activities. Most of the research articles report the synthesized nanoparticles to be active against gram positive and gram negative bacteria. Some of these bacteria include Escherichia coli, Bacillus subtilis, Klebsiella pneumonia and Pseudomonas fluorescens. The synthesized nanoparticles also show significant antifungal activity against Trichophyton simii, Trichophyton mentagrophytes and Trichophyton rubrum as well as different types of cancer cells such as breast cancer cell line. They also exhibit significant antioxidant activity. The activities of these Nobel metal nano-particles mainly depend on the size and shape. The particles of small size with large surface area show good activity in the field of medicine. The synthesized nanoparticles are also active against leishmanial diseases. This research article explores in detail the green synthesis of the nanoparticles and their uses thereof. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Toxicity of Silver Nanoparticles to Green Algae – Towards a Biotic Ligand Understanding

    DEFF Research Database (Denmark)

    Laruelle, Sacha; Sørensen, Sara Nørgaard; Cupi, Denisa

    with the freshwater green algae Pseudokirschneriella subcapitata were carried out to falsify the hypothesis: “The toxicity of silver nanoparticles towards algae is solely caused by the monovalent silver ion”. These experiments were based on PHREEQC modeling of silver ion behavior (added as AgNO3) in 72h OECD algal...

  1. Green Synthesis of Robust, Biocompatible Silver Nanoparticles Using Garlic Extract

    International Nuclear Information System (INIS)

    White, G.V.; Kerscher, P.; Brown, R.M.; Morella, J.D.; Kitchens, C.L.; McAllister, W.; Dean, D.

    2012-01-01

    This paper details a facile approach for the synthesis of stable and monodisperse silver nanoparticles performed at ambient/low temperature, where Allium sativum (garlic) extract functions as the silver salt reducing agent during nanoparticle synthesis as well as the post synthesis stabilizing ligands. Varying the synthesis conditions provides control of particle size, size-distribution, and kinetics of particle formation. Infrared spectroscopy, energy dispersive X-ray chemical analysis, and high-performance liquid chromatography indicated that allicin and other carbohydrates in the garlic extract are the primary nanoparticle stabilizing moieties. The synthesized silver nanoparticles also demonstrate potential for biomedical applications, owing to (1) enhanced stability in biological media, (2) resistance to oxidation by the addition of H 2 O 2 , (3) ease and scalability of synthesis, and (4) lack of harsh chemicals required for synthesis. Cytotoxicity assays indicated no decrease in cellular proliferation for vascular smooth muscle cells and 3T3 fibroblasts at a concentration of 25 μg/mL, confirming that silver nanoparticles synthesized with garlic extract are potential candidates for future experimentation and implementation in the biomedical field.

  2. Biogenic synthesized nanoparticles and their applications

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Abhijeet, E-mail: abhijeet.singh@jaipur.manipal.edu; Sharma, Madan Mohan [Manipal University Jaipur (India)

    2016-05-06

    In the present scenario, there are growing concerns over the potential impacts of bioengineered nanoparticles in the health sector. However, our understanding of how bioengineered nanoparticles may affect organisms within natural ecosystems, lags far behind our rapidly increasing ability to engineer novel nanoparticles. To date, research on the biological impacts of bioengineered nanoparticles has primarily consisted of controlled lab studies of model organisms with single species in culture media. Here, we described a cost effective and environment friendly technique for green synthesis of silver nanoparticles. Silver nanoparticles were successfully synthesized from 1 mM AgNO{sub 3} via a green synthesis process using leaf extract as reducing as well as capping agent. Nanoparticles were characterized with the help of UV–vis absorption spectroscopy, X-ray diffraction and TEM analysis which revealed the size of nanoparticles of 30-40 nm size. Further the nanoparticles synthesized by green route are found highly toxic against pathogenic bacteria and plant pathogenic fungi viz. Escherichia coli, Pseudomonas syringae and Sclerotiniasclerotiorum. The most important outcome of this work will be the development of value-added products and protection of human health from pathogens viz., bacteria, virus, fungi etc.

  3. Biogenic synthesized nanoparticles and their applications

    International Nuclear Information System (INIS)

    Singh, Abhijeet; Sharma, Madan Mohan

    2016-01-01

    In the present scenario, there are growing concerns over the potential impacts of bioengineered nanoparticles in the health sector. However, our understanding of how bioengineered nanoparticles may affect organisms within natural ecosystems, lags far behind our rapidly increasing ability to engineer novel nanoparticles. To date, research on the biological impacts of bioengineered nanoparticles has primarily consisted of controlled lab studies of model organisms with single species in culture media. Here, we described a cost effective and environment friendly technique for green synthesis of silver nanoparticles. Silver nanoparticles were successfully synthesized from 1 mM AgNO_3 via a green synthesis process using leaf extract as reducing as well as capping agent. Nanoparticles were characterized with the help of UV–vis absorption spectroscopy, X-ray diffraction and TEM analysis which revealed the size of nanoparticles of 30-40 nm size. Further the nanoparticles synthesized by green route are found highly toxic against pathogenic bacteria and plant pathogenic fungi viz. Escherichia coli, Pseudomonas syringae and Sclerotiniasclerotiorum. The most important outcome of this work will be the development of value-added products and protection of human health from pathogens viz., bacteria, virus, fungi etc.

  4. Unexplored vegetal green synthesis of silver nanoparticles: A ...

    African Journals Online (AJOL)

    Antibacterial properties of silver ion are known from ancient times. The plant extract mediated synthesis of nanoparticles is gaining popularity due to green chemistry for the generation of nanosized materials. Corchorus olitorus Linn and Ipomea batatas (L.) Lam are world crops having leaves of high nutritional value.

  5. Green synthesis of silver nanoparticles using methanolic root extracts of Diospyros paniculata and their antimicrobial activities

    International Nuclear Information System (INIS)

    Rao, N.Hanumanta; Lakshmidevi, N.; Pammi, S.V.N.; Kollu, Pratap; Ganapaty, S.; Lakshmi, P.

    2016-01-01

    Since the discovery and subsequent widespread use of antibiotics, a variety of bacterial species of human and animal origin have developed numerous mechanisms that render bacteria resistant to some, and in certain cases to nearly all antibiotics, thereby limiting the treatment options and compromising effective therapy. In the present study, the green synthesis of nanoparticles is carried out by the reduction of silver acetate in the presence of crude methanolic root extracts of Diospyros paniculata, a member of family Ebenaceae. The UV–Vis absorption spectrum of the biologically reduced reaction mixture showed the surface plasmon peak at 428 nm, a characteristic peak of silver nanoparticles. X-ray diffraction (XRD) analysis confirmed the face-centered cubic crystalline structure of metallic silver. The average diameter of Ag NPs is about 17 nm from Transmission Electron Microscopy (TEM) which is in good agreement with the average crystallite size (19 nm) calculated from XRD analysis. Further the study has been extended to the antimicrobial activity against test pathogenic Gram (+), Gram (−) bacterial and fungal strains. The biologically synthesized silver nanoparticles showed promising activity against all the tested pathogenic strains and the activity has been enhanced with the increased dose levels. - Highlights: • Biosynthesis of silver nanoparticles (Ag NPs) using root extracts of Diospyros paniculata. • Average diameter of Ag NPs is about 17 nm from TEM analysis which is in good agreement with XRD analysis. • Antimicrobial activities of root extract mediated synthesis of silver Ag NPs were discussed in detail.

  6. Green synthesis of silver nanoparticles using methanolic root extracts of Diospyros paniculata and their antimicrobial activities

    Energy Technology Data Exchange (ETDEWEB)

    Rao, N.Hanumanta [Advanced Analytical Laboratory, DST-PURSE Programme, Andhra University, Visakhapatnam 530003 (India); Lakshmidevi, N. [Department of Microbiology, College of Science and Technology, Andhra University, Visakhapatnam 530003 (India); Pammi, S.V.N. [Advanced Analytical Laboratory, DST-PURSE Programme, Andhra University, Visakhapatnam 530003 (India); Department of Materials Science and Engineering, Chungnam National University, Daeduk Science Town, 305-764, Daejeon (Korea, Republic of); Kollu, Pratap [DST-INSPIRE Faculty, Department of Metallurgical Engineering & Materials Science, Indian Institute of Technology Bombay, Mumbai 400076 (India); Ganapaty, S. [GITAM Institute of Pharmacy, GITAM University, Visakhapatnam (India); Lakshmi, P., E-mail: lmkandregula@gmail.com [Department of Microbiology, College of Science and Technology, Andhra University, Visakhapatnam 530003 (India)

    2016-05-01

    Since the discovery and subsequent widespread use of antibiotics, a variety of bacterial species of human and animal origin have developed numerous mechanisms that render bacteria resistant to some, and in certain cases to nearly all antibiotics, thereby limiting the treatment options and compromising effective therapy. In the present study, the green synthesis of nanoparticles is carried out by the reduction of silver acetate in the presence of crude methanolic root extracts of Diospyros paniculata, a member of family Ebenaceae. The UV–Vis absorption spectrum of the biologically reduced reaction mixture showed the surface plasmon peak at 428 nm, a characteristic peak of silver nanoparticles. X-ray diffraction (XRD) analysis confirmed the face-centered cubic crystalline structure of metallic silver. The average diameter of Ag NPs is about 17 nm from Transmission Electron Microscopy (TEM) which is in good agreement with the average crystallite size (19 nm) calculated from XRD analysis. Further the study has been extended to the antimicrobial activity against test pathogenic Gram (+), Gram (−) bacterial and fungal strains. The biologically synthesized silver nanoparticles showed promising activity against all the tested pathogenic strains and the activity has been enhanced with the increased dose levels. - Highlights: • Biosynthesis of silver nanoparticles (Ag NPs) using root extracts of Diospyros paniculata. • Average diameter of Ag NPs is about 17 nm from TEM analysis which is in good agreement with XRD analysis. • Antimicrobial activities of root extract mediated synthesis of silver Ag NPs were discussed in detail.

  7. The Green Synthesis and Evaluation of Silver Nanoparticles and Zinc Oxide Nanoparticles

    Science.gov (United States)

    Gebear-Eigzabher, Bellsabel

    Nanoparticle (NP) research has received exceptional attention as the field of study that contributes to transforming the world of materials science. When implementing NPs in consumer and industrial products, their unique properties improve technologies to the extent of significant game-changing breakthroughs. Conversely, the increased production of NPs, their use, their disposal or inadvertent release in the environment drove the need for processes and policies that ensures consumer and environmental safety. Mitigation of any harmful effects that NPs could potentially have combines methods of safe preparation, safe handling and safe disposal as well as containment of any inadvertent release. Our focus is in safe preparation of nanomaterials and we report green and energy efficient synthesis methods for metal NPs and metal oxide NPs of two popular materials: silver (Ag) and zinc oxide (ZnO). The thesis explained: 1) The impact of NPs in nowadays' world; 2) Synthesis methods that were designed to include environmentally-friendly staring materials and energy-saving fabrication processes, with emphasis on maintaining NPs final size and morphology when compared with existing methods; and 3) Nanoparticles characterization and data collection which allowed us to determine and/or validate their properties. Nanoparticles were studied using transmission electron microscope (TEM), X-Ray powder diffraction (XRD), low-voltage (5 keV) transmission electron microscopy (LV EM 5), Fourier-Transform Infrared Spectroscopy (FT-IR), and Ultraviolet-Visible (UV-Vis) spectroscopy. We developed an aqueous-based preparation of zinc oxide nanoparticles (ZnO NPs) using microwave-assisted chemistry to render a well-controlled particle size distribution within each set of reaction conditions in the range of 15 nm to 75 nm. We developed a scalable silver nanoparticles synthesis by chemical reduction methods. The NPs could be used in consumer products. The measurement tools for consumer products

  8. Green synthesis of silver nanoparticles using methanolic root extracts of Diospyros paniculata and their antimicrobial activities.

    Science.gov (United States)

    Rao, N Hanumanta; N, Lakshmidevi; Pammi, S V N; Kollu, Pratap; S, Ganapaty; P, Lakshmi

    2016-05-01

    Since the discovery and subsequent widespread use of antibiotics, a variety of bacterial species of human and animal origin have developed numerous mechanisms that render bacteria resistant to some, and in certain cases to nearly all antibiotics, thereby limiting the treatment options and compromising effective therapy. In the present study, the green synthesis of nanoparticles is carried out by the reduction of silver acetate in the presence of crude methanolic root extracts of Diospyros paniculata, a member of family Ebenaceae. The UV-Vis absorption spectrum of the biologically reduced reaction mixture showed the surface plasmon peak at 428 nm, a characteristic peak of silver nanoparticles. X-ray diffraction (XRD) analysis confirmed the face-centered cubic crystalline structure of metallic silver. The average diameter of Ag NPs is about 17 nm from Transmission Electron Microscopy (TEM) which is in good agreement with the average crystallite size (19 nm) calculated from XRD analysis. Further the study has been extended to the antimicrobial activity against test pathogenic Gram (+), Gram (-) bacterial and fungal strains. The biologically synthesized silver nanoparticles showed promising activity against all the tested pathogenic strains and the activity has been enhanced with the increased dose levels. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Green synthesis of protein capped silver nanoparticles from phytopathogenic fungus Macrophomina phaseolina (Tassi) Goid with antimicrobial properties against multidrug-resistant bacteria

    OpenAIRE

    Chowdhury, Supriyo; Basu, Arpita; Kundu, Surekha

    2014-01-01

    In recent years, green synthesis of nanoparticles, i.e., synthesizing nanoparticles using biological sources like bacteria, algae, fungus, or plant extracts have attracted much attention due to its environment-friendly and economic aspects. The present study demonstrates an eco-friendly and low-cost method of biosynthesis of silver nanoparticles using cell-free filtrate of phytopathogenic fungus Macrophomina phaseolina. UV-visible spectrum showed a peak at 450 nm corresponding to the plasmon ...

  10. Sterilization of African Violet in the in Vitro Culture Using Synthesized Silver Nanoparticles by Two Plant Extracts

    Directory of Open Access Journals (Sweden)

    M. Solgi

    2015-12-01

    Full Text Available One of the major advantages of in vitro culture of African violet (Saintpaulha ionantha is production of new cultivars and propagation of their chimera which might not be propagated by the other methods. In this study, we tested the effects of silver nanoparticles on the sterilization rate (antifungal and antibacterial activity, regeneration and shoot formation of African violet "Pink Amiss" explants. These nanoparticles were synthesized from pomegranate peels and Damask rose petals extracts. We used a completely randomized design test with factorial arrangement to investigate various volumetric ratios of plant extracts to silver nitrate (1:20, 1:10, 1:5 and 1:1 on the culture contaminations. Using silver nanoparticles synthesized by the plant extracts, especially Damask rose petals extract resulted in no fungal and bacterial contamination in the African violet explants after 1 and 3 weeks as compared to the control, and silver nitrate (1mM. All tested concentrations of the silver nanoparticles significantly (P &le 0.05 controlled both bacterial and fungal contaminations. The 1:20 ratio of plant extracts to silver nitrate showed the best control. In addition, the highest regeneration (%52 and shoot regeneration (%38 was observed in this treatment. In conclusion, we suggest using silver nanoparticles synthesized by plant extracts for sterilization of in Vitro Culture for African Violet rather than using other chemicals such as silver nitrate.

  11. An investigation of in vivo wound healing activity of biologically synthesized silver nanoparticles

    Science.gov (United States)

    Kaler, Abhishek; Mittal, Amit Kumar; Katariya, Mahesh; Harde, Harshad; Agrawal, Ashish Kumar; Jain, Sanyog; Banerjee, Uttam Chand

    2014-09-01

    Therapeutic use of nano-silver is claimed to have reduced side effects and enhanced curative activity as compared to its ionic counterpart (silver ions). The present work aims to screen microbes for the synthesis of silver nanoparticles (AgNPs), to formulate the nano-silver-based Carbopol gel and evaluating its wound healing efficacy on rat model. The goal was to develop the topical formulation based on bio-nano-silver to control the infection and healing the wounds with higher efficacy. Procedure involved the use of Saccharomyces boulardii for the synthesis of silver nanoparticles in the size range of 3-10 nm and these nanoparticles were used for the preparation of Carbopol-based nano-silver gel. Highly stable Carbopol nanogel was developed with good rheological properties. The burn wound healing potential of this nano-silver gel was evaluated on SD rats via visual observation, transepidermal water loss and histology of skin. Excellent wound healing was observed with AgNPs. Biologically synthesized AgNPs-based nano-silver gel showed superior wound healing efficacy as compared to marketed formulations and silver ions.

  12. Green synthesis and characterization of silver nanoparticles using Lantana camara leaf extract

    Energy Technology Data Exchange (ETDEWEB)

    Ajitha, B., E-mail: ajithabondu@gmail.com [Department of Physics, Sri Venkateswara University, Tirupati 517502 (India); Ashok Kumar Reddy, Y. [Department of Electrical Engineering, Korea Advanced Institute of Science and Technology, 335 Gwahangno, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Sreedhara Reddy, P. [Department of Physics, Sri Venkateswara University, Tirupati 517502 (India)

    2015-04-01

    In this work, we have investigated on Lantana camara mediated silver nanoparticles (AgNPs) with different leaf extract (LE) quantity for the evaluation of efficient bactericidal activity. The AgNPs were prepared by simple, capable, eco-friendly and biosynthesis method using L. camara LE. This method allowed the synthesis of crystalline nanoparticles, which was confirmed by X-ray diffraction (XRD) and selected area electron diffraction (SAED) patterns. The X-ray photoelectron spectroscopy (XPS) analysis confirmed the formation of metallic silver and elucidates the surface state composition of AgNPs. UV–vis spectra of AgNPs and visual perception of brownish yellow color from colorless reaction mixture confirmed the AgNP formation. Involvement of functional groups of L. camara leaf extract in the reduction and capping process of nanoparticles was well displayed in Fourier transform infrared spectroscopy (FTIR). Decrement of particle size with an increment of leaf extract volume was evident in AFM, TEM images and also through a blue shift in the UV–vis spectra. The rate of formation and size of AgNPs were dependent on LE quantity. Meanwhile, these AgNPs exhibited effective antibacterial activity with the decrement of particle size against all tested bacterial cultures. - Highlights: • Monodispersed AgNPs are synthesized using L. camara leaf extract. • The higher the L. camara content, the smaller the particle size. • Green synthesized AgNPs are found to be photoluminescent. • Size dependence of antibacterial activity is reported. • The nanoparticle stability is improved by leaf extract quantity.

  13. Green synthesis and characterization of silver nanoparticles using Lantana camara leaf extract

    International Nuclear Information System (INIS)

    Ajitha, B.; Ashok Kumar Reddy, Y.; Sreedhara Reddy, P.

    2015-01-01

    In this work, we have investigated on Lantana camara mediated silver nanoparticles (AgNPs) with different leaf extract (LE) quantity for the evaluation of efficient bactericidal activity. The AgNPs were prepared by simple, capable, eco-friendly and biosynthesis method using L. camara LE. This method allowed the synthesis of crystalline nanoparticles, which was confirmed by X-ray diffraction (XRD) and selected area electron diffraction (SAED) patterns. The X-ray photoelectron spectroscopy (XPS) analysis confirmed the formation of metallic silver and elucidates the surface state composition of AgNPs. UV–vis spectra of AgNPs and visual perception of brownish yellow color from colorless reaction mixture confirmed the AgNP formation. Involvement of functional groups of L. camara leaf extract in the reduction and capping process of nanoparticles was well displayed in Fourier transform infrared spectroscopy (FTIR). Decrement of particle size with an increment of leaf extract volume was evident in AFM, TEM images and also through a blue shift in the UV–vis spectra. The rate of formation and size of AgNPs were dependent on LE quantity. Meanwhile, these AgNPs exhibited effective antibacterial activity with the decrement of particle size against all tested bacterial cultures. - Highlights: • Monodispersed AgNPs are synthesized using L. camara leaf extract. • The higher the L. camara content, the smaller the particle size. • Green synthesized AgNPs are found to be photoluminescent. • Size dependence of antibacterial activity is reported. • The nanoparticle stability is improved by leaf extract quantity

  14. Green synthesis of silver nanoparticles by using carambola fruit extract and their antibacterial activity

    International Nuclear Information System (INIS)

    Mane Gavade, S J; Nikam, G H; Dhabbe, R S; Sabale, S R; Tamhankar, B V; Mulik, G N

    2015-01-01

    In this study well defined silver nanoparticles were synthesized by using carambola fruit extract. After exposing the silver ions to the fruit extract, the rapid reduction of silver ions led to the formation of stable AgNPs in solution due to the reducing and stabilizing properties of carambola fruit juice. The synthesized NPs were analyzed by ultraviolet-visible spectroscopy and x-ray diffraction pattern. The as-synthesized AgNPs were phase pure and well crystalline with a face-centered cubic structure. The AgNPs were characterized by TEM to determine their size and morphology. The antimicrobial activity of the synthesized AgNPs was investigated against Escherichia coli and Pseudomonas aeruginosa by agar well diffusion method. This newly developed method is eco-friendly and could prove a better substitute for the current physical and chemical methods for the synthesis of AgNPs. (paper)

  15. Green Synthesis of Silver Nanoparticles and the Study of Optical Properties

    OpenAIRE

    Vasireddy, Ramakrishna; Paul, Rima; Mitra, Apurba Krishna

    2012-01-01

    The synthesis of silver nanoparticles of varying size has been achieved using different molar concentrations of NaOH while the effect of changing the temperature has been studied. AgNO3, gelatine, glucose and NaOH are used as a silver precursor, stabilizer, reducing agent and accelerator respectively. The synthesized nanoparticles have been characterized by a FESEM study, X‐ray diffractometry, Raman spectroscopy and UV‐vis spectroscopy. The colloidal sols of the silver nanoparticles in a biop...

  16. Poly thiophene hydrophobic and hydrophilic compounds, silver and iodine synthesized by plasma

    International Nuclear Information System (INIS)

    Palacios, J.C.; Chavez, J.A.; Olayo, M.G.; Cruz, G.J.

    2007-01-01

    Compounds in thin films of poly thiophene with silver and poly thiophene doped with iodine and silver using splendor discharges were synthesized. It is studied the wettability of the compounds and its transport properties. It was found that the compounds can modify their hydrophilic to hydrophobic behavior controlling their surface ruggedness and the metallic content. The doped with iodine plays a fundamental paper in the modification of the ruggedness of the compounds. (Author)

  17. Effets of Silver Salt Concentrations on Green Synthesis of Silver Nanoparticles Using the Plant Nigella Saliva

    Directory of Open Access Journals (Sweden)

    M.R. Saeri

    2016-03-01

    Full Text Available Bio-inspired silver nanoparticles were synthesized with the aid of a novel method, using leaves of the plant Nigella sativa. After drying the leaves in air, they were first sweltered in boiling distilled water and the liquid was filtered subsequently. The result was the brothused to reduce solutions including various concentrations of silver nitrate in a proper amount of pH. The displayed UV–visible spectra identified formation of silver nanoparticles whenever the colorless initial acclimated mixture turned brown. The centrifuged powder samples were examined using X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FTIR, scanning electron microscopy (FESEM and energy dispersive X-ray diffraction analysis (EDX methods. The results clearly revealed that the final particles of precipitated powder are high purity agglomerates of silver nanoparticles. Besides, the effects of various amounts of the silver salt on particle size of nano silver were studied, using a particle size analyzer. FTIR results also indicated the role of different functional groups in the synthetic process.

  18. Green Synthesized Silver Nanoparticles Exhibit Reduced Toxicity to Mammalian Cells and Retain Antimicrobial Activity

    Science.gov (United States)

    The interest in silver nanoparticles (AgNPs) and silver nanomaterial stems from their antimicrobial properties. AgNPs are being added to clothing, paint, refrigerators, washing machines and a variety of other commercially available items. Recent in vitro and in vivo studies, howe...

  19. Cadmium removal from aqueous solution by green synthesis zero valent silver nanoparticles with Benjamina leaves extract

    Directory of Open Access Journals (Sweden)

    Khairia M. Al-Qahtani

    2017-12-01

    Full Text Available Cadmium (II is an important element used in various industries, however, it is a poisonous element that affects the health of plants, animals and humans alike. It’s very important to remove this element from contaminated waters. This study aims at synthesizing zero valent silver nanoparticles by environmentally ecofriendly method without using hazardous compounds (via green approach. In this work, silver nanoparticles were prepared using hot water for the Ficus tree (Ficus Benjamina leaf extract (FBLE. The size of crystalline for AgNPs was measured by UV–vis spectroscopy and flourier transform infrared (FTIR. The properties of nano-silver particles (AgNPs have been studied using scanning electron microscope (SEM. The capability of nanoparticles to remove Cd2+ from contaminated solution was then studied. Parameter like adsorbent dose, heavy metal concentration, pH, agitation speed and contact time were studied. Cadmium removal increased when the dosage of biosorbent increases, pH increased from 1 to 6, contact time from 5 to 40 and initial concentration of Cd decrease. Isotherm adsorption was also described by the Freundleich model with a constant correlation (R2 higher than 0.973.

  20. Controlled silver delivery by silver-cellulose nanocomposites prepared by a one-pot green synthesis assisted by microwaves

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Ana Rosa; Unali, Gianfranco, E-mail: ana.rosa.silva@ua.pt [Structured Materials Expertise Group, Unilever Discover Port Sunlight, Quarry Road East, Bebington CH63 3JW (United Kingdom)

    2011-08-05

    Controlled silver release from cellulosic nanocomposites was achieved by synthesizing silver nanoparticles, under microwave heating for 1-15 min, in a one-pot, versatile and sustainable process in which microcrystalline cellulose simultaneously functions as reducing, stabilizing and supporting agent in water; chitin, starch and other cellulose derivatives could also be used as reducing, stabilizing and supporting agents for silver nanoparticles and the method was also found to be extensible to the preparation of noble metal (Au, Pt) and metal oxide nanoparticle (ZnO, Cu, CuO and Cu{sub 2}O) nanocomposites.

  1. Controlled silver delivery by silver-cellulose nanocomposites prepared by a one-pot green synthesis assisted by microwaves

    International Nuclear Information System (INIS)

    Silva, Ana Rosa; Unali, Gianfranco

    2011-01-01

    Controlled silver release from cellulosic nanocomposites was achieved by synthesizing silver nanoparticles, under microwave heating for 1-15 min, in a one-pot, versatile and sustainable process in which microcrystalline cellulose simultaneously functions as reducing, stabilizing and supporting agent in water; chitin, starch and other cellulose derivatives could also be used as reducing, stabilizing and supporting agents for silver nanoparticles and the method was also found to be extensible to the preparation of noble metal (Au, Pt) and metal oxide nanoparticle (ZnO, Cu, CuO and Cu 2 O) nanocomposites.

  2. Chemical phase analysis of seed mediated synthesized anisotropic silver nanoparticles

    International Nuclear Information System (INIS)

    Bharti, Amardeep; Goyal, Navdeep; Singh, Suman; Singla, M. L.

    2015-01-01

    Noble-metal nanoparticles are of great interest because of its broad applications almost in every stream (i.e. biology, chemistry and engineering) due to their unique size/shape dependant properties. In this paper, chemical phase of seed mediated synthesized anisotropic silver nanoparticle (AgNPs) has been investigated via fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). These nanaoparticles were synthesized by seed-growth method controlled by urea and dextrose results to highly stable 12-20 nm particle size revealed by zeta potential and transmission electron microscopy (TEM)

  3. Antibacterial Activity of Polyaniline Coated Silver Nanoparticles Synthesized from Piper Betle Leaves Extract.

    Science.gov (United States)

    Mamun Or Rashida, Md; Shafiul Islam, Md; Azizul Haque, Md; Arifur Rahman, Md; Tanvir Hossain, Md; Abdul Hamid, Md

    2016-01-01

    Plants or natural resources have been found to be a good alternative method for nanoparticles synthesis. In this study, polyaniline coated silver nanoparticles (AgNPs) synthesized from Piper betle leaves extract were investigated for their antibacterial activity. Silver nanoparticles were prepared from the reduction of silver nitrate and NaBH4 was used as reducing agent. Silver nanoparticles and extracts were mixed thoroughly and then coated by polyaniline. Prepared nanoparticles were characterized by Visual inspection, Ultraviolet-visible spectroscopy (UV), Fourier transform infrared Spectroscopy (FT-IR), Transmission Electron Microscopy (TEM) techniques. Antibacterial activities of the synthesized silver nanoparticles were tested against Staphylococcus aureus ATCC 25923, Salmonella typhi ATCC 14028, Escherichia coli ATCC 25922 and Pseudomonas aeruginosa ATCC 27853. UV-Vis spectrum of reaction mixture showed strong absorption peak with centering at 400 nm. The FT-IR results imply that Ag-NPs were successfully synthesized and capped with bio-compounds present in P. betle. TEM image showed that Ag-NPs formed were well dispersed with a spherical structures and particle size ranging from 10 to 30 nm. The result revealed that Ag-Extract NPs showed 32.78±0.64 mm zone of inhibition against S. aureus, whereas norfloxacin (positive control) showed maximum 32.15±0.40 mm zone of inhibition for S. aureus. Again, maximum zone of inhibition 29.55±0.45 mm was found for S. typhi, 27.12±0.38 mm for E. coli and 21.95±0.45 mm for P. aeruginosa. The results obtained by this study can't be directly extrapolated to human; so further studies should be undertaken to established the strong antimicrobial activity of Ag-Extract NPs for drug development program.

  4. Antioxidant, antibacterial and cytotoxic potential of silver nanoparticles synthesized using terpenes rich extract of Lantana camara L. leaves

    Directory of Open Access Journals (Sweden)

    Patil Shriniwas P.

    2017-07-01

    Full Text Available Several attempts have been made for green synthesis of silver nanoparticles (AgNPs using different plant extracts. Present study revealed that, antioxidant, antibacterial and cytotoxic AgNPs were synthesized using terpenes-rich extract (TRE of environmentally notorious Lantana camara L. leaves. AgNPs were characterized by advanced techniques like UV–Visible and Infra red spectroscopy; XRD, SEM techniques as terpenes coated sphere shaped NPs with average diameter 425 nm. Further, on evaluation, AgNPs were found to exhibit dose – dependent antioxidant potential, good to moderate antibacterial activity against Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa; and toxicity on Brine shrimp (A. salinanauplii with LD50 value 514.50 µg/ml.

  5. Synthesis and Characterization of Silver Nanoparticles Using Cannonball Leaves and Their Cytotoxic Activity against MCF-7 Cell Line

    International Nuclear Information System (INIS)

    Devaraj, P.; Kumari, P.; Aarti, Ch.; Renganathan, A.

    2013-01-01

    Cannonball (Couroupita guianensis) is a tree belonging to the family Lecythidaceae. Various parts of the tree have been reported to contain oils, keto steroids, glycosides, couroupitine, indirubin, isatin, and phenolic substances. We report here the synthesis of silver nanoparticles (AgNPs) using cannonball leaves. Green synthesized nanoparticles have been characterized by UV-Vis spectroscopy, SEM, TEM, and FTIR. Cannonball leaf broth as a reducing agent converts silver ions to AgNPs in a rapid and eco friendly manner. The UV-Vis spectra gave surface plasmon resonance peak at 434 nm. TEM image shows well-dispersed silver nanoparticles with an average particle size of 28.4 nm. FTIR showed the structure and respective bands of the synthesized nanoparticles and the stretch of bonds. Green synthesized silver nanoparticles by cannonball leaf extract show cytotoxicity to human breast cancer cell line (MCF-7). Overall, this environmentally friendly method of biological silver nanoparticles production provides rates of synthesis faster than or comparable to those of chemical methods and can potentially be used in various human contacting areas such as cosmetics, foods, and medical applications.

  6. Green Synthesis of Silver Nanoparticles Using Pinus eldarica Bark Extract

    Directory of Open Access Journals (Sweden)

    Siavash Iravani

    2013-01-01

    Full Text Available Recently, development of reliable experimental protocols for synthesis of metal nanoparticles with desired morphologies and sizes has become a major focus of researchers. Green synthesis of metal nanoparticles using organisms has emerged as a nontoxic and ecofriendly method for synthesis of metal nanoparticles. The objectives of this study were production of silver nanoparticles using Pinus eldarica bark extract and optimization of the biosynthesis process. The effects of quantity of extract, substrate concentration, temperature, and pH on the formation of silver nanoparticles are studied. TEM images showed that biosynthesized silver nanoparticles (approximately in the range of 10–40 nm were predominantly spherical in shape. The preparation of nano-structured silver particles using P. eldarica bark extract provides an environmentally friendly option, as compared to currently available chemical and/or physical methods.

  7. Diameter-dependent coloration of silver nanowires

    International Nuclear Information System (INIS)

    Stewart, Mindy S; Qiu Chao; Jiang Chaoyang; Kattumenu, Ramesh; Singamaneni, Srikanth

    2011-01-01

    Silver nanowires were synthesized with a green method and characterized with microscopic and diffractometric methods. The correlation between the colors of the nanowires deposited on a solid substrate and their diameters was explored. Silver nanowires that appear similar in color in the optical micrographs have very similar diameters as determined by atomic force microscopy. We have summarized the diameter-dependent coloration for these silver nanowires. An optical interference model was applied to explain such correlation. In addition, microreflectance spectra were obtained from individual nanowires and the observed spectra can be explained with the optical interference theory. This work provides a cheap, quick and simple screening method for studying the diameter distribution of silver nanowires, as well as the diameter variations of individual silver nanowires, without complicated sample preparation.

  8. Eco-friendly green synthesis of silver nanoparticles using salmalia malabarica: synthesis, characterization, antimicrobial, and catalytic activity studies

    Science.gov (United States)

    Murali Krishna, I.; Bhagavanth Reddy, G.; Veerabhadram, G.; Madhusudhan, A.

    2016-06-01

    An economically viable and "green" process has been developed for the synthesis of silver nanoparticles (AgNPs) with an average size of 7 nm using non-toxic and renewable salmalia malabarica gum (SMG) as reducing and capping agent without using any chemical reducing agent. The effect of various parameters such as concentration of SMG and silver nitrate and reaction time for the synthesis of AgNPs was studied. The synthesized AgNPs are systematically characterized by UV/Vis spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction and Transmission electron microscopy. The resultant SMG-capped AgNPs are highly stable and had significant antibacterial action on both Escherichia coli ( E. coli) and Staphylococcus aureus ( S. aureus). The catalytic action of the SMG-capped AgNPs to initiate the reduction of 4-nitrophenol (4-NP) in the presence of NaBH4 has also been reported. The kinetics of the reaction was found to be of pseudo-first-order with respect to the 4-NP.

  9. Evaluation of antibacterial activities of silver nanoparticles green-synthesized using pineapple leaf (Ananas comosus).

    Science.gov (United States)

    Emeka, Elemike Elias; Ojiefoh, Oseghale Charles; Aleruchi, Chuku; Hassan, Labulo Ayomide; Christiana, Owoseni Mojisola; Rebecca, Mfon; Dare, Enock Olugbenga; Temitope, Adesuji Elijah

    2014-02-01

    Pineapple leaf was used in this study for the synthesis of silver nanoparticles based on the search for sustainable synthetic means. Indeed, this offered an economical and sustainable synthetic route relative to expensive and toxic chemical methods. The leaf extract was used and the corresponding nanoparticles obtained were subjected to UV-vis analysis at different times. The UV-vis was used to monitor the silver nanoparticle formation through sampling at time intervals. The formation of silver nanoparticles was apparently displayed within 2 min with evidence of surface plasmon bands (SPB) between 440 and 460 nm. The crystals was equally characterized using FTIR, X-ray diffraction methods and TEM. The different results obtained suggested the appearance of silver nanoparticles (SNPs) as determined by the process parameters with a particle size of 12.4 nm. The sample was further screened against Staphylococcus aureus, Streptococcus pneumoniae, Proteus mirabilis and Escherichia coli using Gentamicin as control. From the results, there is evidence of inhibition towards bacteria growth. It can now be inferred from the studies that biosynthesis of nanoparticles could be a gateway to our numerous health issues. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Microalgae associated Brevundimonas sp. MSK 4 as the nano particle synthesizing unit to produce antimicrobial silver nanoparticles.

    Science.gov (United States)

    Rajamanickam, Karthic; Sudha, S S; Francis, Mebin; Sowmya, T; Rengaramanujam, J; Sivalingam, Periyasamy; Prabakar, Kandasamy

    2013-09-01

    The biosynthesis of silver nanoparticles and its antimicrobial property was studied using bacteria isolated from Spirulina products. Isolated bacteria were identified as Bacillus sp. MSK 1 (JX495945), Staphylococcus sp. MSK 2 (JX495946), Bacillus sp. MSK 3 (JX495947) and Brevundimonas sp. MSK 4 (JX495948). Silver nanoparticles (AgNPs) were synthesized using bacterial culture filtrate with AgNO3. The initial syntheses of Ag nanoparticles were characterized by UV-vis spectrophotometer (by measuring the color change to intense brown). Fourier Transform Infrared Spectroscopy (FTIR) study showed evidence that proteins are possible reducing agents and Energy-dispersive X-ray (EDX) study showing the metal silver as major signal. The structure of AgNPs was determined by Scanning electron microscopy (SEM) and X-ray diffraction (XRD). Synthesized Ag nanoparticles with an average size of 40-65 nm have antimicrobial property against human pathogens like Proteus vulgaris, Salmonella typhi, Vibrio cholera, Streptococcus sp., Bacillus subtilis, Staphylococcus aureus, and Escherichia coli. Among the isolates Brevundimonas sp. MSK 4 alone showed good activity in both synthesis of AgNPs and antimicrobial activity. This work demonstrates the possible use of biological synthesized silver nanoparticles to combat the drug resistant problem. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Evaluation of Biological Activities of Chemically Synthesized Silver Nanoparticles

    International Nuclear Information System (INIS)

    Mostafa, A. A.; Solkamy, E.N.; Sayed, Sh. R. M.; Khan, M.; Shaik, M.R.; Al-Warthan, A.; Adil, S.F.

    2015-01-01

    Silver nanoparticles were synthesized by the earlier reported methods. The synthesized nanoparticles were characterized using ultraviolet-visible spectrophotometry (UV/Vis), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), and X-ray powder diffraction (XRD). The synthesized materials were also evaluated for their antibacterial activity against Gram positive and Gram negative bacterial strains. TEM micrograph showed the spherical morphology of AgNPs with size range of 40-60 nm. The synthesized nanoparticles showed a strong antimicrobial activity and their effect depends upon bacterial strain as AgNPs exhibited greater inhibition zone for Pseudomonas aeruginosa (19.1 mm) followed by Staphylococcus aureus (14.8?mm) and S. pyogenes (13.6 mm) while the least activity was observed for Salmonella typhi (12.5 mm) at concentration of 5 μg/disc. The minimum inhibitory concentration (MIC) of AgNPs against S. aureus was 2.5 μg/disc and less than 2.5 μg/disc for P. aeruginosa. These results suggested that AgNPs can be used as an effective antiseptic agent for infectious control in medical field.

  12. Green synthesis of silver nanoparticles using biopolymers, carboxymethylated-curdlan and fucoidan

    International Nuclear Information System (INIS)

    Leung, Thomas Chun-Yiu; Wong, Chung Kai; Xie Yong

    2010-01-01

    There is a growing need in developing a reliable and eco-friendly methodology for the synthesis of metallic nanoparticles, which may be applied for many nanotechnological applications. Natural compounds such as biopolymers are one of the resources which could be used for this purpose. The present study involves the development of a simple, ecological and user-friendly method in synthesizing silver nanoparticles by using carboxymethylated-curdlan or fucoidan as reducing and stabilizing agents. Reduction of silver ions by these biopolymers occurred when heating at 100 deg. C, led to the formation of silver nanoparticles in the range of 40-80 nm in dimensions. The silver nanoparticles were formed readily within 10-15 min. Morphological observation and characterization of the silver nanoparticles were performed by using dynamic light scattering (DLS), high-resolution transmission electron microscopy (HRTEM), and UV-vis absorption spectrophotometer. The size of silver nanoparticles can be controlled by using different concentrations of carboxymethylated-curdlan, fucoidan or silver nitrate. This way of silver nanoparticles preparation is easy, fast, user-friendly and suitable for large-scale production.

  13. Green Nanoparticles for Mosquito Control

    Directory of Open Access Journals (Sweden)

    Namita Soni

    2014-01-01

    Full Text Available Here, we have used the green method for synthesis of silver and gold nanoparticles. In the present study the silver (Ag and gold (Au nanoparticles (NPs were synthesized by using the aqueous bark extract of Indian spice dalchini (Cinnamomum zeylanicum (C. zyelanicum or C. verum J. Presl. Additionally, we have used these synthesized nanoparticles for mosquito control. The larvicidal activity has been tested against the malaria vector Anopheles stephensi and filariasis vector Culex quinquefasciatus. The results were obtained using UV-visible spectrophotometer and the images were recorded with a transmission electron microscope (TEM. The efficacy tests were then performed at different concentrations and varying numbers of hours by probit analysis. The synthesized AgNPs were in spherical shape and average sizes (11.77 nm AgNPs and 46.48 nm AuNPs. The larvae of An. stephensi were found highly susceptible to the synthesized AgNPs and AuNPs than the Cx. quinquefasciatus. These results suggest that the C. zeylanicum synthesized silver and gold nanoparticles have the potential to be used as an ideal ecofriendly approach for the control of mosquito.

  14. Photocatalytic activity of biogenic silver nanoparticles synthesized using potato (Solanum tuberosum) infusion.

    Science.gov (United States)

    Roy, Kaushik; Sarkar, C K; Ghosh, C K

    2015-07-05

    In this study, we have reported a fast and eco-benign procedure to synthesis silver nanoparticle at room temperature using potato (Solanum tuberosum) infusion along with the study of its photocatalytic activity on methyl orange dye. After addition of potato infusion to silver nitrate solution, the color of the mixture changed indicating formation of silver nanoparticles. Time dependent UV-Vis spectra were obtained to study the rate of nanoparticle formation with time. Purity and crystallinity of the biogenic silver nanoparticles were examined by X-ray diffraction (XRD). Average size and morphology of the nanoparticles were characterized by dynamic light scattering (DLS) and transmission electron microscopy (TEM). Fourier transform infra-red spectroscopy (FTIR) was employed to detect functional bio-molecules responsible that contribute to the reduction and capping of biosynthesized Ag nanoparticles. Further, these synthesized nanoparticles were used to investigate their ability to degrade methyl orange dye under sunlight irradiation and the results showed effective photocatalytic property of these biogenic silver nanoparticles. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Green synthesis of protein capped silver nanoparticles from phytopathogenic fungus Macrophomina phaseolina (Tassi) Goid with antimicrobial properties against multidrug-resistant bacteria

    Science.gov (United States)

    2014-01-01

    In recent years, green synthesis of nanoparticles, i.e., synthesizing nanoparticles using biological sources like bacteria, algae, fungus, or plant extracts have attracted much attention due to its environment-friendly and economic aspects. The present study demonstrates an eco-friendly and low-cost method of biosynthesis of silver nanoparticles using cell-free filtrate of phytopathogenic fungus Macrophomina phaseolina. UV-visible spectrum showed a peak at 450 nm corresponding to the plasmon absorbance of silver nanoparticles. Scanning electron microscopy (SEM), atomic force microscopy (AFM), and transmission electron microscopy (TEM) revealed the presence of spherical silver nanoparticles of the size range 5 to 40 nm, most of these being 16 to 20 nm in diameter. X-ray diffraction (XRD) spectrum of the nanoparticles exhibited 2θ values corresponding to silver nanoparticles. These nanoparticles were found to be naturally protein coated. SDS-PAGE analysis showed the presence of an 85-kDa protein band responsible for capping and stabilization of the silver nanoparticles. Antimicrobial activities of the silver nanoparticles against human as well as plant pathogenic multidrug-resistant bacteria were assayed. The particles showed inhibitory effect on the growth kinetics of human and plant bacteria. Furthermore, the genotoxic potential of the silver nanoparticles with increasing concentrations was evaluated by DNA fragmentation studies using plasmid DNA. PMID:25114655

  16. Green chemistry focus on optimization of silver nanoparticles using response surface methodology (RSM) and mosquitocidal activity: Anopheles stephensi (Diptera: Culicidae).

    Science.gov (United States)

    Ondari Nyakundi, Erick; Padmanabhan, M Nalini

    2015-01-01

    There is an exigent necessity for development of environmental friendly bio-control agent(s) for elimination of mosquito due to increased resistance resurgence against synthetic control agents. Mosquito control strategy will lay a strong foundation to malaria exclusion or it can be curbed to certain level especially in the developing nations. In this study, silver nanoparticles were synthesized by green chemistry approach using Tridax procumbens leaf extract as a reducing agent. The reaction medium involved in the synthesis process was optimized by statistical experimental design using response surface methodology to obtain better yield, uniform size, shape and stability. Further, these synthesized nanoparticles were confirmed through UV-Visible, FT-IR spectroscopy, PSA and SEM Subsequently, the bioefficacy of these particles were investigated on Anopheles stephensi for larvicidal and pupicidal activity. Interestingly, time period of 90 min, temperature of 76±2 °C, pH 7.2±2, 2 mM silver nitrate (AgNO3), 3mM PEG and 2mM PVP showed excellent parameters for bioprocess design for large scale production of stabilized nanoparticles. A concentration of 5 ppm of PVP stabilized nanoparticles exhibited 100% mortality. Thus, the obtained results clearly suggest that silver nanoparticles stabilized by PEG and PVP may have important function as stabilizers, dispersants as well as larvicides for mosquito control. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Platycodon saponins from Platycodi Radix ( Platycodon grandiflorum) for the Green Synthesis of Gold and Silver Nanoparticles

    Science.gov (United States)

    Choi, Yoonho; Kang, Sehyeon; Cha, Song-Hyun; Kim, Hyun-Seok; Song, Kwangho; Lee, You Jeong; Kim, Kyeongsoon; Kim, Yeong Shik; Cho, Seonho; Park, Youmie

    2018-01-01

    A green synthesis of gold and silver nanoparticles is described in the present report using platycodon saponins from Platycodi Radix ( Platycodon grandiflorum) as reducing agents. Platycodin D (PD), a major triterpenoidal platycodon saponin, was enriched by an enzymatic transformation of an aqueous extract of Platycodi Radix. This PD-enriched fraction was utilized for processing reduction reactions of gold and silver salts to synthesize gold nanoparticles (PD-AuNPs) and silver nanoparticles (PD-AgNPs), respectively. No other chemicals were introduced during the reduction reactions, providing an entirely green, eco-friendly, and sustainable method. UV-visible spectra showed the surface plasmon resonance bands of PD-AuNPs at 536 nm and PD-AgNPs at 427 nm. Spherically shaped nanoparticles were observed from high-resolution transmission electron microscopy with average diameters of 14.94 ± 2.14 nm for PD-AuNPs and 18.40 ± 3.20 nm for PD-AgNPs. Minor triangular and other polygonal shapes were also observed for PD-AuNPs along with spherical ones. Atomic force microscopy (AFM) images also demonstrated that both nanoparticles were mostly spherical in shape. Curvature-dependent evolution was employed to enhance the AFM images and precisely measure the sizes of the nanoparticles. The sizes were measured as 19.14 nm for PD-AuNPs and 29.93 nm for PD-AgNPs from the enhanced AFM images. Face-centered cubic structures for both nanoparticles were confirmed by strong diffraction patterns from high-resolution X-ray diffraction analyses. Fourier transform infrared spectra revealed the contribution of -OH, aromatic C=C, C-O, and C-H functional groups to the synthesis. Furthermore, the catalytic activity of PD-AuNPs was assessed with a reduction reaction of 4-nitrophenol to 4-aminophenol in the presence of sodium borohydride. The catalytic activity results suggest the potential application of these gold nanoparticles as catalysts in the future. The green strategy reported in this

  18. Antimicrobial, Antioxidant and Cytotoxic Activity of Silver Nanoparticles Synthesized by Leaf Extract of Erythrina suberosa (Roxb.).

    Science.gov (United States)

    Mohanta, Yugal K; Panda, Sujogya K; Jayabalan, Rasu; Sharma, Nanaocha; Bastia, Akshaya K; Mohanta, Tapan K

    2017-01-01

    In this experiment, biosynthesized silver nanoparticles (AgNPs) were synthesized using aqueous leaf extract of Erythrina suberosa (Roxb.). The biosynthesis of silver nanoparticle was continuously followed by UV-vis spectrophotometric analysis. The response of the phytoconstituents resides in E. suberusa during synthesis of stable AgNPs were analyzed by ATR- fourier-transform infrared spectroscopy. Further, the size, charge, and polydispersity nature of AgNPs were studied using dynamic light scattering spectroscopy. The morphology of the nanoparticles was determined by scanning electron microscopy. Current result shows core involvement of plant extracts containing glycosides, flavonoids, and phenolic compounds played a crucial role in the biosynthesis of AgNPs. The antimicrobial activities of silver nanoparticles were evaluated against different pathogenic bacterium and fungi. The antioxidant property was studied by radical scavenging (DPPH) assay and cytotoxic activity was evaluated against A-431 osteosarcoma cell line by MTT assay. The characteristics of the synthesized silver nanoparticles suggest their application as a potential antimicrobial and anticancer agent.

  19. Green synthesis of silver nanoparticles: The reasons for and against Aspergillus parasiticus

    Directory of Open Access Journals (Sweden)

    Maryam Moazeni

    2014-09-01

    Full Text Available Abstract Objective(s: The enzymatic activity of fungi has recently inspired the scientists with re-explore the fungi as potential biofactories rather than the causing agents of humans and plants infections. In very recent years, fungi are considered as worthy, applicable and available candidates for synthesis of smaller gold, silver and other nano-sized particles. Materials and Methods: A standard strain of Aspergillus parasiticus was grown on a liquid medium containing mineral salt. The cell-free filtrate of the culture was then obtained and subjected to synthesize SNPs while expose with 1mM of AgNO 3. Further characterization of synthesized SNPs was performed afterward. In addition, antifungal activity of synthesized SNPs was evaluated against a standard strain of Candida albicans. The reduction of Ag+ ions to metal nanoparticles was investigated virtually by tracing the color of the solution which turned into reddish-brown after 72h. Results: The UV-vis spectra demonstrated a broad peak centering at 400nm which corresponds to the particle size much less than 70nm. The results of TEM demonstrated that the particles were formed fairly uniform, spherical, and small in size with almost 90% in 5-30nm range. The zeta potential of silver nanoparticles was negative and equal to -15.0 which meets the quality and suggested that there was not much aggression. Silver nanoparticles synthesized by A. parasiticus showed antifungal activity against yeast strain tested an d exhibited MIC value of 4 μg/mL. Conclusion: The filamentous fungus, A. parasiticus has successfully demonstrated potential for extra cellular synthesis of fairly monodispersed, tiny silver nanoparticles.

  20. Non-hazardous anticancerous and antibacterial colloidal 'green' silver nanoparticles.

    Science.gov (United States)

    Barua, Shaswat; Konwarh, Rocktotpal; Bhattacharya, Satya Sundar; Das, Pallabi; Devi, K Sanjana P; Maiti, Tapas K; Mandal, Manabendra; Karak, Niranjan

    2013-05-01

    Poly(ethylene glycol) stabilized colloidal silver nanoparticles were prepared using the reductive potency of the aqueous extract of Thuja occidentalis leaves under ambient conditions. The nanoparticles were well dispersed within a narrow size spectrum (7-14 nm) and displayed characteristic surface plasmon resonance peak at around 420 nm and Bragg's reflection planes of fcc structure. MTT assay revealed the dose-dependent cytocompatibility and toxicity of the nanoparticles with the L929 normal cell line. On the other hand, the antiproliferative action of the nanoparticles was evaluated on HeLa cell (cancerous cells) line. Fluorescence and phase contrast microscopic imaging indicated the appearance of multinucleate stages with aggregation and nuclear membrane disruption of the HeLa cells post treatment with the nanoparticles. The interaction at the prokaryotic level was also assessed via differential antibacterial efficacy against Staphylococcus aureus (MTCC 3160) and Escherichia coli (MTCC 40). Under these perspectives, it is also necessary to observe the environmental impact of the prepared silver nanoparticles. Hence, the dose dependent toxicity of silver nanoparticles was evaluated upon the earthworm species Eisenia fetida. Neither the survival nor the reproduction was affected by the addition of silver nanoparticles up to 1000 ppm. Thus these 'green' silver nanoparticles have promising potential as future materials. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Sericins of mulberry and non-mulberry silkworms for eco-friendly synthesis of silver nanoparticles.

    Science.gov (United States)

    Chaisabai, Wanna; Khamhaengpol, Arunrat; Siri, Sineenat

    2018-05-01

    Green synthesis of silver nanoparticles (AgNPs) has received many interests as a simple, cost-effective, and environmentally friendly method. This study reported the use of sericins extracted from non-mulberry (Samia cynthia ricini) and mulberry (Bombyx mori) silkworms for green syntheses of AgNPs. Both sericins possessed the reducing activity, which the reducing activity of S. c. ricini sericin was significantly higher than that of B. mori sericin. The formation of AgNPs facilitated by S. c. ricini sericin was greater than B. mori sericin as determined by the intensity of the surfacing plasmon resonance peak of silver at 412 nm. The synthesized AgNPs using both sericins were spherical and uniform in size with the average diameter of ∼13 nm. The silver component and the crystalline structure was determined by energy-dispersive X-ray and X-ray diffraction analyses. The synthesized AgNPs exhibited the antibacterial activity against both Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli, suggesting their potential application as an effective antibacterial agent.

  2. Green Synthesis of Silver Nanoparticles from several NTFP Plants

    Directory of Open Access Journals (Sweden)

    Somnath BHOWMIK

    2016-03-01

    Full Text Available The biological synthesis of nanoparticles using plant extracts plays an important role in the field of nanotechnology. In this study, rapid, simple approach was applied for synthesis of silver nanoparticles using , Clerodendrum infortunatum, Mucuna interrupta, Phlogancanthus thyrsiflorus and Sansevieria trifasciata aqueous leaf extract. The plant extract acts both as reducing agent as well as capping agent. To identify the compounds responsible for reduction of silver ions, the functional groups present in plant extract were investigated by FTIR. Various techniques used to characterize synthesized nanoparticles are Scanning Electron Microscopy (SEM, Atomic Force Microscopy (AFM and UV–Visible spectrophotometer. Results confirmed that this protocol was simple, rapid, one step, eco-friendly, non-toxic and might be an alternative conventional physical/chemical methods. Conversion of silver nanoparticles takes place at room temperature without the involvement of any hazardous chemicals.

  3. Antimicrobial activity of silver nanoparticles synthesized using honey and gamma radiation against silver-resistant bacteria from wounds and burns

    Science.gov (United States)

    Hosny, A. M. S.; Kashef, M. T.; Rasmy, S. A.; Aboul-Magd, D. S.; El-Bazza, Z. E.

    2017-12-01

    Silver nanoparticles (AgNPs) are promising antimicrobial agents for treatment of wounds and burns. We synthesized AgNPs using honey at different pH values or with different gamma irradiation doses. The resulting nanoparticles were characterized by UV-vis spectroscopy, TEM, DLS and FTIR. Their antimicrobial activity, against standard bacterial strains and silver-resistant clinical isolates from infected wounds and burns, was evaluated in vitro through determination of their minimum inhibitory concentration (MIC). AgNPs prepared using 30 g of honey exposed to 5 kGy gamma radiation had the best physical characters regarding stability and uniformity of particle size and shape. They recorded the lowest MIC values against both the standard and silver-resistant isolates. In conclusion, honey and gamma radiation can be used in synthesis of highly stable pure AgNPs, without affecting the physico-chemical and antimicrobial activity of honey. This offered an advantage in terms of inhibition of silver-resistant bacteria isolates.

  4. Synthesis of self-assembly plasmonic silver nanoparticles with tunable luminescence color

    International Nuclear Information System (INIS)

    Al-Ghamdi, Haifa S.; Mahmoud, Waleed E.

    2014-01-01

    Assembly is an elegant and effective bottom-up approach to prepare arrays of nanoparticles from nobel metals. Noble metal nanoparticles are perfect building blocks because they can be prepared with an adequate functionalization to allow their assembly and with controlled sizes. Herein, we report a novel recipe for the synthesis of self-assembled silver nanoparticles with tunable optical properties and sizes. The synthetic route followed here based on the covalent binding among silver nanoparticles by means of poly vinyl alcohol for the first time. The size of silver nanoparticle is governed by varying the amount of sodium borohydride. The as-synthesized nanoparticles were characterized by transmission electron microscopy, x-ray diffraction, energy dispersive x-ray spectroscopy, selected area electron diffraction and UV–vis spectroscopy. Results depicted that self-assembly of mono-dispersed silver nanoparticles with different sizes have been achieved. The silver nanostructure has a single crystalline faced centered cubic structure with growth orientation along (1 1 1) facet. These nanoparticles exhibited localized surface plasmon resonance at 403 nm. The luminescence peaks were red-sifted from violet to green due to the increase of the particle sizes. -- Highlights: • Self-assembled silver nanoparticles based PVA were synthesized. • NaBH 4 amount was found particle size dependent. • Silver nanoparticles strongly affected the surface plasmon resonance. • Highly symmetric luminescence emission band narrow width is obtained. • Dark field image showed a tunable color change from violet to green

  5. “Miswak” Based Green Synthesis of Silver Nanoparticles: Evaluation and Comparison of Their Microbicidal Activities with the Chemical Synthesis

    Directory of Open Access Journals (Sweden)

    Mohammed Rafi Shaik

    2016-11-01

    Full Text Available Microbicidal potential of silver nanoparticles (Ag-NPs can be drastically improved by improving their solubility or wettability in the aqueous medium. In the present study, we report the synthesis of both green and chemical synthesis of Ag-NPs, and evaluate the effect of the dispersion qualities of as-prepared Ag-NPs from both methods on their antimicrobial activities. The green synthesis of Ag-NPs is carried out by using an aqueous solution of readily available Salvadora persica L. root extract (RE as a bioreductant. The formation of highly crystalline Ag-NPs was established by various analytical and microscopic techniques. The rich phenolic contents of S. persica L. RE (Miswak not only promoted the reduction and formation of NPs but they also facilitated the stabilization of the Ag-NPs, which was established by Fourier transform infrared spectroscopy (FT-IR analysis. Furthermore, the influence of the volume of the RE on the size and the dispersion qualities of the NPs was also evaluated. It was revealed that with increasing the volume of RE the size of the NPs was deteriorated, whereas at lower concentrations of RE smaller size and less aggregated NPs were obtained. During this study, the antimicrobial activities of both chemically and green synthesized Ag-NPs, along with the aqueous RE of S. persica L., were evaluated against various microorganisms. It was observed that the green synthesized Ag-NPs exhibit comparable or slightly higher antibacterial activities than the chemically obtained Ag-NPs.

  6. Catalytic and antibacterial properties of silver nanoparticles green biosynthesized using soluble green tea powder

    Science.gov (United States)

    Xu, Wei; Fan, Yapei; Liu, Xinfang; Luo, Denglin; Liu, Huan; Yang, Ningning

    2018-04-01

    Silver nanoparticles (Ag NPs) were green fabricated using soluble green tea powder (SGTP) as stabilizer and reducing agent. The properties and morphology of Ag NPs were investigated through UV–visible spectroscopy, field emission transmission electron microscope (FE-TEM) and fourier transform infrared (FT-IR). The spectroscopy showed surface plasmon resonance around at 420 nm revealing the synthesis of Ag NPs. FE-TEM results confirmed that the Ag NPs are spherical and face-centered cubic structure. FT-IR spectroscopy identified the role of various functional groups in the nanoparticle synthesis. The one spot biosynthesized Ag NPs showed favourable antibacterial properties on Escherichia coli and Staphyloccocus aureus, and excellent catalytic reduction of 4-nitrophenol. This work provided a feasible, green method to fabricate Ag NPs with promising photocatalytic and antimicrobial activities.

  7. Green synthesis of monodisperse silver nanoparticles using hydroxy propyl methyl cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Chunfa; Zhang, Xianglin, E-mail: hust_zxl@mail.hust.edu.cn; Cai, Hao

    2014-01-15

    Graphical abstract: -- Highlights: • Synthesis of silver nanoparticles using hydroxy propyl methyl cellulose is reported. • HPMC and glucose are used as capping agent and reducing agent respectively. • It is the first time to use HPMC for synthesis of silver nanoparticles. • The small, spherical and well-dispersed particle is observed in the range of 3–17 nm. • The green method can be extended to other noble metals. -- Abstract: A simple and environmentally friendly method for the synthesis of highly stable and small sized silver nanoparticles with narrow distribution from 3 nm to 17 nm is reported. Silver nitrate, hydroxy propyl methyl cellulose (HPMC) and glucose, were used as silver precursor, capping agents and reducing agents respectively. The formation of silver nanoparticles was observed by change of color from colorless to wine red. The silver nanoparticles were characterized by transmission electron microscopy (TEM), UV–visible spectroscopy (UV–vis), X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FT-IR). The results demonstrated that the obtained metallic nanoparticles were single crystalline silver nanoparticles capped with HPMC. The effects of the reaction time, reaction temperature and the concentration of silver ion and reducing agents on the particle size were investigated. A possible formation mechanism was proposed. The method may be extended to other noble metal for other technological applications such as additional medicinal, industrial applications.

  8. Green synthesis of monodisperse silver nanoparticles using hydroxy propyl methyl cellulose

    International Nuclear Information System (INIS)

    Dong, Chunfa; Zhang, Xianglin; Cai, Hao

    2014-01-01

    Graphical abstract: -- Highlights: • Synthesis of silver nanoparticles using hydroxy propyl methyl cellulose is reported. • HPMC and glucose are used as capping agent and reducing agent respectively. • It is the first time to use HPMC for synthesis of silver nanoparticles. • The small, spherical and well-dispersed particle is observed in the range of 3–17 nm. • The green method can be extended to other noble metals. -- Abstract: A simple and environmentally friendly method for the synthesis of highly stable and small sized silver nanoparticles with narrow distribution from 3 nm to 17 nm is reported. Silver nitrate, hydroxy propyl methyl cellulose (HPMC) and glucose, were used as silver precursor, capping agents and reducing agents respectively. The formation of silver nanoparticles was observed by change of color from colorless to wine red. The silver nanoparticles were characterized by transmission electron microscopy (TEM), UV–visible spectroscopy (UV–vis), X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FT-IR). The results demonstrated that the obtained metallic nanoparticles were single crystalline silver nanoparticles capped with HPMC. The effects of the reaction time, reaction temperature and the concentration of silver ion and reducing agents on the particle size were investigated. A possible formation mechanism was proposed. The method may be extended to other noble metal for other technological applications such as additional medicinal, industrial applications

  9. Chloride ion addition for controlling shapes and properties of silver nanorods capped by polyvinyl alcohol synthesized using polyol method

    Energy Technology Data Exchange (ETDEWEB)

    Junaidi, E-mail: junaidi.1982@fmipa.unila.ac.id [Department of Physics, Universitas Gadjah Mada, Yogyakarta, 55281 (Indonesia); Department of Physics, Lampung University, Bandar Lampung (Indonesia); Yunus, Muhammad, E-mail: muhammad.yunus@mail.ugm.ac.id [Department of Physics, Universitas Gadjah Mada, Yogyakarta, 55281 (Indonesia); Triyana, Kuwat, E-mail: triyana@ugm.ac.id; Harsojo,, E-mail: harsojougm@ugm.ac.id; Suharyadi, Edi, E-mail: esuharyadi@ugm.ac.id [Department of Physics, Universitas Gadjah Mada, Yogyakarta, 55281 (Indonesia); Nanomaterials Research Group, Universitas Gadjah Mada, Yogyakarta, 55281 (Indonesia)

    2016-04-19

    We report our investigation on the effect of chloride ions on controlling the shapes and properties of silver nanorods (AgNRs) synthesized using a polyol method. In this study, we used polyvinyl alcohol (PVA) as a capping agent and sodium chloride (NaCl) as a salt precursor and performed at the oil bath temperature of 140°C. The chloride ions originating from the NaCl serve to control the growth of the silver nanorods. Furthermore, the synthesized silver nanorods were characterized using SEM and XRD. The results showed that besides being able to control the growth of AgCl atoms, the chloride ions were also able to control the growth of multi-twinned-particles into the single crystalline of silver nanorods by micrometer-length. At an appropriate concentration of NaCl, the diameter of silver nanorods decreased significantly compared to that of without chloride ion addition. This technique may be useful since a particular diameter of silver nanorods affects a particular application in the future.

  10. Chloride ion addition for controlling shapes and properties of silver nanorods capped by polyvinyl alcohol synthesized by polyol method

    International Nuclear Information System (INIS)

    Junaidi; Triyana, Kuwat; Harsojo,; Suharyadi, Edi

    2016-01-01

    We report our investigation on the effect of chloride ions oncontrolling the shapes and properties of silver nanorods(AgNRs) synthesized using a polyol method. In this study, we used polyvinyl alcohol (PVA) as a capping agent and sodium chloride (NaCl) as asalt precursor and performed at the oilbath temperature of 140 °C. The chloride ions originating from the NaCl serve to control the growth of the silver nanorods. Furthermore, the synthesized silver nanorodswere characterized using UV-VIS, XRD, SEM and TEM. The results showed that besides being able to control the growth of AgCl atoms, the chloride ions were also able to control the growth of multi-twinned-particles into the single crystalline silver nanorods by micrometer-length. At an appropriate concentration of NaCl, the diameter of silver nanorodsdecreased significantly compared to that of without chloride ion addition. This technique may be useful since a particular diameter of silver nanorods affects a particular application in the future.

  11. Chloride ion addition for controlling shapes and properties of silver nanorods capped by polyvinyl alcohol synthesized using polyol method

    International Nuclear Information System (INIS)

    Junaidi; Yunus, Muhammad; Triyana, Kuwat; Harsojo,; Suharyadi, Edi

    2016-01-01

    We report our investigation on the effect of chloride ions on controlling the shapes and properties of silver nanorods (AgNRs) synthesized using a polyol method. In this study, we used polyvinyl alcohol (PVA) as a capping agent and sodium chloride (NaCl) as a salt precursor and performed at the oil bath temperature of 140°C. The chloride ions originating from the NaCl serve to control the growth of the silver nanorods. Furthermore, the synthesized silver nanorods were characterized using SEM and XRD. The results showed that besides being able to control the growth of AgCl atoms, the chloride ions were also able to control the growth of multi-twinned-particles into the single crystalline of silver nanorods by micrometer-length. At an appropriate concentration of NaCl, the diameter of silver nanorods decreased significantly compared to that of without chloride ion addition. This technique may be useful since a particular diameter of silver nanorods affects a particular application in the future.

  12. Synthesis, characterization and catalytic activity of silver nanoparticles using Tribulus terrestris leaf extract.

    Science.gov (United States)

    Ashokkumar, S; Ravi, S; Kathiravan, V; Velmurugan, S

    2014-01-01

    Biomediated silver nanoparticles were synthesized with the aid of an eco-friendly biomaterial, namely, aqueous Tribulus terrestris extract. Silver nanoparticles were synthesized using a rapid, single step, and completely green biosynthetic method employing aqueous T. terrestris leaf extracts as both the reducing and capping agent. Silver ions were rapidly reduced by aqueous T. terrestris leaf extracts, leading to the formation of highly crystalline silver nanoparticles. An attempt has been made and formation of the silver nanoparticles was verified by surface plasmon spectra using an UV-vis (Ultra violet), spectrophotometer. Morphology and crystalline structure of the prepared silver nanoparticles were characterized by TEM (Transmission Electron Microscope) and XRD (X-ray Diffraction), techniques, respectively. FT-IR (Fourier Transform Infrared), analysis suggests that the obtained silver nanoparticles might be stabilized through the interactions of carboxylic groups, carbonyl groups and the flavonoids present in the T. terrestris extract. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Green Biosynthesis of Silver Nanoparticles Using Callicarpa maingayi Stem Bark Extraction

    Directory of Open Access Journals (Sweden)

    Mohammed Zidan

    2012-07-01

    Full Text Available Different biological methods are gaining recognition for the production of silver nanoparticles (Ag-NPs due to their multiple applications. The use of plants in the green synthesis of nanoparticles emerges as a cost effective and eco-friendly approach. In this study the green biosynthesis of silver nanoparticles using Callicarpa maingayi stem bark extract has been reported. Characterizations of nanoparticles were done using different methods, which include; ultraviolet-visible spectroscopy (UV-Vis, powder X-ray diffraction (XRD, transmission electron microscopy (TEM, scanning electron microscopy (SEM, energy dispersive X-ray fluorescence (EDXF spectrometry, zeta potential measurements and Fourier transform infrared (FT-IR spectroscopy. UV-visible spectrum of the aqueous medium containing silver nanoparticles showed absorption peak at around 456 nm. The TEM study showed that mean diameter and standard deviation for the formation of silver nanoparticles were 12.40 ± 3.27 nm. The XRD study showed that the particles are crystalline in nature, with a face centered cubic (fcc structure. The most needed outcome of this work will be the development of value added products from Callicarpa maingayi for biomedical and nanotechnology based industries.

  14. Biogenic synthesis of silver nanoparticles using guava ( Psidium guajava) leaf extract and its antibacterial activity against Pseudomonas aeruginosa

    Science.gov (United States)

    Bose, Debadin; Chatterjee, Someswar

    2016-08-01

    Among the various inorganic nanoparticles, silver nanoparticles have received substantial attention in the field of antimicrobial research. For safe and biocompatible use of silver nanoparticles in antimicrobial research, the different biogenic routes are developed to synthesize silver nanoparticles that do not use toxic chemicals. Among those, to synthesize silver nanoparticles, the use of plant part extract becomes an emerging field because plant part acts as reducing as well as capping agent. For large-scale production of antibacterial silver nanoparticles using plant part, the synthesis route should be very simple, rapid, cost-effective and environment friendly based on easy availability and non-toxic nature of plant, stability and antibacterial potential of biosynthesized nanoparticles. In the present study, we report a very simple, rapid, cost-effective and environment friendly route for green synthesis of silver nanoparticles using guava ( Psidium guajava) leaf extract as reducing as well as capping agent. This plant has been opted for the present study for its known medicinal properties, and it is easily available in all seasons and everywhere. The biosynthesized silver nanoparticles are characterized by UV-Vis and TEM analysis. The average particle size is 40 nm in the range of 10-90 nm. The antibacterial activity of these nanoparticles against Pseudomonas aeruginosa MTCC 741 has been measured by disc diffusion method, agar cup assay and serial dilution turbidity measurement assay. The results show that green synthesized silver nanoparticles, using guava ( Psidium guajava) leaf extract, have a potential to inhibit the growth of bacteria.

  15. Sustainable Utilization of Bio waste towards the Green Synthesis of Nanoparticles and its Utility in the Naked Eye Detection of Metals Coupled with its Larvicidal and Antimicrobial Properties

    Science.gov (United States)

    Nikhila, P. S.; Satheesh, Namitha; Sreejitha, V. S.; Pillai, Anandu R.; Saritha, A.; Smitha Chandran, S.

    2018-02-01

    Green synthesis of nanoparticles has become a prominent zone of attention in the field of nanotechnology, as it is a nontoxic, economically feasible and green approach. In the present work we have developed an eco-friendly and zero cost method for the synthesis of silver nanoparticles using common a bio waste banana blossom peel. The well-known characteristic phenomenon of surface Plasmon resonance (SPR) has been exploited towards the characterization of the green synthesized nanoparticles. The aforementioned nanoparticles were characterized by UV spectroscopy and the behaviour of these particles towards naked eye detection of metal ions were observed. The sensitivity of the nanoparticles towards the detection of metal ions was carefully monitored by the shift in the SPR band. Moreover the larvicidal potential of these green synthesized silver nanoparticles were evaluated as per WHO standards. The synthesized silver nanoparticles were found to be an effective antibacterial agent against Gram negative bacteria-E.coli. The method we followed for the synthesis of silver nanoparticles is economically feasible as well as environment friendly and also capable of rapid synthesis of nanoparticles at ambient conditions.

  16. Structural Studies of Silver Nanoparticles Obtained Through Single-Step Green Synthesis

    Science.gov (United States)

    Prasad Peddi, Siva; Abdallah Sadeh, Bilal

    2015-10-01

    Green synthesis of silver Nanoparticles (AGNP's) has been the most prominent among the metallic nanoparticles for research for over a decade and half now due to both the simplicity of preparation and the applicability of biological species with extensive applications in medicine and biotechnology to reduce and trap the particles. The current article uses Eclipta Prostrata leaf extract as the biological species to cap the AGNP's through a single step process. The characterization data obtained was used for the analysis of the sample structure. The article emphasizes the disquisition of their shape and size of the lattice parameters and proposes a general scheme and a mathematical model for the analysis of their dependence. The data of the synthesized AGNP's has been used to advantage through the introduction of a structural shape factor for the crystalline nanoparticles. The properties of the structure of the AGNP's proposed and evaluated through a theoretical model was undeviating with the experimental consequences. This modus operandi gives scope for the structural studies of ultrafine particles prepared using biological methods.

  17. Effect of laser energy on the SPR and size of silver nanoparticles synthesized by pulsed laser ablation in distilled water

    Science.gov (United States)

    Baruah, Prahlad K.; Sharma, Ashwini K.; Khare, Alika

    2018-04-01

    The effect of incident laser energy on the surface plasmon resonance (SPR) and size of silver nanoparticles synthesized via pulsed laser ablation of silver immersed in distilled water is reported in this paper. The broadening in the plasmonic bandwidth of the synthesized nanoparticles with the increase in the laser energy incident onto the silver target indicates the reduction in size of the nanoparticles. This is confirmed by the transmission electron microscope (TEM) images which show a decrease in the average particle size of the nanoparticles from approximately 15 to 10 nm with the increase in incident laser energy from 30 to 70 mJ, respectively. The structural features as revealed by the selected area electron diffraction and ultra-high resolution TEM studies confirmed the formation of both silver as well as silver oxide nanoparticles.

  18. Synthesis, characterization and evaluation cytotoxic activity of silver nanoparticles synthesized by Chinese herbal Cornus officinalis via environment friendly approach.

    Science.gov (United States)

    He, Yangqing; Li, Xing; Wang, Ju; Yang, Qian; Yao, Binghua; Zhao, Yingjuan; Zhao, Aiming; Sun, Wenxing; Zhang, Qian

    2017-12-01

    Cornus officinalis has been widely used as a precious herb and as the tonic food to improve kidney function in China. Its fruits have been used in many traditional Chinese medicine prescriptions to treat kidney diseases, diabetes, cancer and shock. In this study, a new eco-friendly approach for green synthesis of silver nanoparticles (AgNPs) by using the fruits of Cornus officinalis aqueous extract as a reducing and stabilizing agent. The so-synthesized AgNPs showed quasi-spherical in shape with uniform dispersal and an average mean size of 11.7nm. Water soluble biomolecules such as flavonoids and/or anthocyanins from the extract played important roles in the nanoparticles formation. The AgNPs displayed distinctive cytotoxicity activities against human prostate cancer (PC-3) and human liver cancer (HepG2) cell lines. The results provided a low cost, nontoxic and eco-friendly approach for synthesizing metal nanoparticles to explore alternative anticancer agents on the way fighting against cancer in future. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Cobweb as novel biomaterial for the green and eco-friendly synthesis of silver nanoparticles

    Science.gov (United States)

    Lateef, A.; Ojo, S. A.; Azeez, M. A.; Asafa, T. B.; Yekeen, T. A.; Akinboro, A.; Oladipo, I. C.; Gueguim-Kana, E. B.; Beukes, L. S.

    2016-08-01

    In this study, spider cobweb as a novel biomaterial was used for the green synthesis of silver nanoparticles (AgNPs). The synthesized AgNPs were characterized using UV-Vis spectroscopy, Fourier-transform infrared spectroscopy (FTIR), and transmission electron microscopy. The efficacy of biosynthesized particles as antibacterial agents was evaluated using multi-drug resistant clinical bacterial isolates through sensitivity testing with AgNPs and combination of AgNPs with some selected antibiotics. In addition, the potential application of the particles as additives in paints was demonstrated using some bacterial and fungal isolates. The synthesized AgNPs which were dark brown in color displayed maximum absorbance at the wavelength of 436 nm. It was observed that the reaction mixture of 1:40 (extract:AgNO3 solution) at pH of 8.5 produced particles with maximum absorbance at 436 nm. The FTIR spectrum showed peaks at 3298, 2359, 2089, and 1635 cm-1, indicating that proteins were the capping and stabilization molecules in the synthesis of AgNPs. The particles were spherical in shape with size ranging about 3-50 nm. The energy-dispersive X-ray analysis showed the presence of silver as the most prominent metal, while the selected area electron diffraction pattern conformed to the face-centered cubic phase and crystalline nature of AgNPs. The AgNPs inhibited the growth of several bacterial isolates including S. aureus, E. coli, Klebsiella granulomatis and P. aeruginosa in the range of 10-17 mm at concentration of 100 µg/ml. It was also demonstrated that AgNPs potentiated the activities of augmentin, ofloxacin and cefixime in the AgNP-antibiotic synergy studies. Similarly, the inclusion of AgNPs as additive in white emulsion paint led to the total inhibition of growth of E. coli, P. aeruginosa, Aspergillus niger and A. fumigatus. To the best of our knowledge, this is the first report of the use of cobweb for the green synthesis of AgNPs. The immense antimicrobial

  20. Platycodon saponins from Platycodi Radix (Platycodon grandiflorum) for the Green Synthesis of Gold and Silver Nanoparticles.

    Science.gov (United States)

    Choi, Yoonho; Kang, Sehyeon; Cha, Song-Hyun; Kim, Hyun-Seok; Song, Kwangho; Lee, You Jeong; Kim, Kyeongsoon; Kim, Yeong Shik; Cho, Seonho; Park, Youmie

    2018-01-17

    A green synthesis of gold and silver nanoparticles is described in the present report using platycodon saponins from Platycodi Radix (Platycodon grandiflorum) as reducing agents. Platycodin D (PD), a major triterpenoidal platycodon saponin, was enriched by an enzymatic transformation of an aqueous extract of Platycodi Radix. This PD-enriched fraction was utilized for processing reduction reactions of gold and silver salts to synthesize gold nanoparticles (PD-AuNPs) and silver nanoparticles (PD-AgNPs), respectively. No other chemicals were introduced during the reduction reactions, providing an entirely green, eco-friendly, and sustainable method. UV-visible spectra showed the surface plasmon resonance bands of PD-AuNPs at 536 nm and PD-AgNPs at 427 nm. Spherically shaped nanoparticles were observed from high-resolution transmission electron microscopy with average diameters of 14.94 ± 2.14 nm for PD-AuNPs and 18.40 ± 3.20 nm for PD-AgNPs. Minor triangular and other polygonal shapes were also observed for PD-AuNPs along with spherical ones. Atomic force microscopy (AFM) images also demonstrated that both nanoparticles were mostly spherical in shape. Curvature-dependent evolution was employed to enhance the AFM images and precisely measure the sizes of the nanoparticles. The sizes were measured as 19.14 nm for PD-AuNPs and 29.93 nm for PD-AgNPs from the enhanced AFM images. Face-centered cubic structures for both nanoparticles were confirmed by strong diffraction patterns from high-resolution X-ray diffraction analyses. Fourier transform infrared spectra revealed the contribution of -OH, aromatic C=C, C-O, and C-H functional groups to the synthesis. Furthermore, the catalytic activity of PD-AuNPs was assessed with a reduction reaction of 4-nitrophenol to 4-aminophenol in the presence of sodium borohydride. The catalytic activity results suggest the potential application of these gold nanoparticles as catalysts in the future. The green strategy

  1. Green, one-step and template-free synthesis of silver spongelike networks via a solvothermal method

    International Nuclear Information System (INIS)

    Yi, Zao; Xu, Xibin; Zhang, Kuibao; Tan, Xiulan; Li, Xibo; Luo, Jiangshan; Ye, Xin; Wu, Weidong; Wu, Jie; Yi, Yougen; Tang, Yongjian

    2013-01-01

    Silver spongelike networks were synthesized from an alkaline pH solution of silver nitrate and glucose under solvothermal conditions. The products were characterized by X-ray powder diffraction, UV–visible spectroscopy, transmission electron microscopy, scanning electron microscopy and selected area electron diffraction. These Ag nanoparticles (NPs) appear to undergo sequentially linear aggregation and welding initially, and then, they randomly cross link into self-supporting, three-dimensional (3D) networks with time. The carboxylate groups, generated by glucose oxidation, interacted with the Ag nanostructures, resulting in formation of silver spongelike networks having very uniform wire diameters distributions (about 20 nm in diameter). A new plasmon band was observed in the longer-wavelengths region (565–912 nm) of the conventional transverse plasmon resonance band at 430 nm. In principle, this one-step, template-free approach can also be extended to large-scale 3D organizations of other transition/noble metal NPs. - Graphical abstract: Silver spongelike networks were synthesized from an alkaline pH solution of silver nitrate and glucose under solvothermal conditions, with any other reducing or capping agent. These Ag nanoparticles appear to undergo sequentially linear aggregation and welding initially, and then, they randomly cross link into self-supporting, three-dimensional spongelike networks with time. Highlights: ► Silver spongelike networks were synthesized using eco-friendly glucose. ► This synthesis was a seedless process, and did not need any other surfactant or capping agent. ► The process was initial reduction – nucleation – adsorption – growth – branching

  2. The silver nanowires synthesized using different molecule weight of polyvinyl pyrrolidone for controlling diameter and length by one-pot polyol method

    Energy Technology Data Exchange (ETDEWEB)

    Junaidi, E-mail: junaidi.1982@fmipa.unila.ac.id [Departement of Physics, Universitas Gadjah Mada, Yogyakarta, 55281 (Indonesia); Departement of Physics, Lampung University, Bandar Lampung (Indonesia); Triyana, K., E-mail: triyana@ugm.ac.id; Suharyadi, E.; Harsojo [Departement of Physics, Universitas Gadjah Mada, Yogyakarta, 55281 (Indonesia); Nanomaterials Research Group, Universitas Gadjah Mada, Yogyakarta, 55281 (Indonesia); Hui, H.; Wu, L. Y. L., E-mail: ylwu@simtech.a-star.edu.sg [Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, Singapore 638075 (Singapore)

    2016-06-17

    In this paper, we report our investigation on the effect of the molecular weight and molar ratio of polyvinyl pyrrolidone (PVP) and silver nitrate (AgNO{sub 3}) for controlling diameter and length of the silver nanowires synthesized with a high-aspect-ratio. The silver nanowires synthesized by one-pot polyol method at a constant temperature oil bath of 130°C. Different molecule weights of PVP, i.e. 55 K, 360 K, and 1300 K were used combined with different molar ratios of [PVP:Ag]. The UV–vis spectrophotometry and Field-emission scanning electron microscopy (FE-SEM) were employed to characterize the silver nanowires. The results show that the molecular weight and molar ratio of [PVP:Ag] are very important for controlling growth and properties of the silver nanowires. The diameter and length of silver nanowires are obtained 80 to 140 nm and 30 to 70 µm, respectively. The higher molecular weight of PVP, the greater diameter and length of silver nanowires.

  3. The silver nanowires synthesized using different molecule weight of polyvinyl pyrrolidone for controlling diameter and length by one-pot polyol method

    International Nuclear Information System (INIS)

    Junaidi; Triyana, K.; Suharyadi, E.; Harsojo; Hui, H.; Wu, L. Y. L.

    2016-01-01

    In this paper, we report our investigation on the effect of the molecular weight and molar ratio of polyvinyl pyrrolidone (PVP) and silver nitrate (AgNO 3 ) for controlling diameter and length of the silver nanowires synthesized with a high-aspect-ratio. The silver nanowires synthesized by one-pot polyol method at a constant temperature oil bath of 130°C. Different molecule weights of PVP, i.e. 55 K, 360 K, and 1300 K were used combined with different molar ratios of [PVP:Ag]. The UV–vis spectrophotometry and Field-emission scanning electron microscopy (FE-SEM) were employed to characterize the silver nanowires. The results show that the molecular weight and molar ratio of [PVP:Ag] are very important for controlling growth and properties of the silver nanowires. The diameter and length of silver nanowires are obtained 80 to 140 nm and 30 to 70 µm, respectively. The higher molecular weight of PVP, the greater diameter and length of silver nanowires.

  4. Synthesis and characterization of silver-copper core-shell nanoparticles using polyol method for antimicrobial agent

    Science.gov (United States)

    Hikmah, N.; Idrus, N. F.; Jai, J.; Hadi, A.

    2016-06-01

    Silver and copper nanoparticles are well-known as the good antimicrobial agent. The nano-size of particles influences in enhancing the antimicrobial activity. This paper discusses the effect of molarity on the microstructure and morphology of silver-copper core-shell nanoparticles prepared by a polyol method. In this study, silver-copper nanoparticles are synthesized through the green approach of polyol method using ethylene glycol (EG) as green solvent and reductant, and polyoxyethylene-(80)-sorbitan monooleate (Tween 80) as a nontoxic stabilizer. The phase and morphology of silver-copper nanoparticles are characterized by X-ray diffraction (XRD) and Field emission scanning electron microscope (FESEM) and Transmission electron microscope (TEM). The results XRD confirm the pure crystalline of silver and copper nanoparticles with face-centered cubic (FCC) structure. FESEM and TEM analysis confirm the existence of Ag and Cu nanoparticles in core-shell shape.

  5. Green synthesis of silver nanoparticles for the control of mosquito vectors of malaria, filariasis, and dengue.

    Science.gov (United States)

    Arjunan, Naresh Kumar; Murugan, Kadarkarai; Rejeeth, Chandrababu; Madhiyazhagan, Pari; Barnard, Donald R

    2012-03-01

    A biological method was used to synthesize stable silver nanoparticles that were tested as mosquito larvicides against Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus. Annona squamosa leaf broth (5%) reduced aqueous 1 mM AgNO₃ to stable silver nanoparticles with an average size of 450 nm. The structure and percentage of synthesized nanoparticles was characterized by using ultraviolet spectrophotometry, X-Ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy methods. The median lethal concentrations (LC₅₀) of silver nanoparticles that killed fourth instars of Ae. aegypti, Cx. quinquefasciatus, and An. stephensi were 0.30, 0.41, and 2.12 ppm, respectively. Adult longevity (days) in male and female mosquitoes exposed as larvae to 0.1 ppm silver nanoparticles was reduced by ~30% (p<0.05), whereas the number of eggs laid by females exposed as larvae to 0.1 ppm silver nanoparticles decreased by 36% (p<0.05).

  6. Antimicrobial activity of latex silver nanoparticles using Calotropis procera

    Directory of Open Access Journals (Sweden)

    Nadia Hussein Mohamed

    2014-11-01

    Conclusions: It can be concluded that serum latex of Calotropis procera was found to display strong potential for the synthesis of AgNPs as antimicrobial agents through rapid reduction of silver ions (Ag+ to Ag0. The green synthesized AgNPs were found to show higher antimicrobial efficacy than crude latex.

  7. Characterization of silver nanoparticles synthesized using Urtica dioica Linn. leaves and their synergistic effects with antibiotics

    Directory of Open Access Journals (Sweden)

    Kumari Jyoti

    2016-07-01

    Full Text Available In continuation of the efforts for synthesizing silver nanoparticles (AgNPs by green chemistry route, here we report a facile bottom-up ‘green’ route for the synthesis of AgNPs using aqueous leaves extract of Urtica dioica (Linn.. The synthesized AgNPs were characterized by UV-vis spectroscopy, X-ray diffraction (XRD, Fourier transform-infrared spectroscopy (FTIR, Zeta-sizer and Zeta-potential, Scanning electron microscopy (SEM, Energy dispersive X-ray (EDX spectroscopy, Transmission electron microscopy (TEM and Selected area electron diffraction (SAED. The results obtained from various characterizations revealed that AgNPs were in the size range of 20–30 nm and crystallized in face-centered-cubic structure. The antibacterial activity against Gram-positive (Bacillus cereus, Bacillus subtilis, Staphylococcus aureus and Staphylococcus epidermidis and Gram-negative (Escherichia coli, Klebsiella pneumoniae, Serratia marcescens and Salmonella typhimurium bacterial pathogens was demonstrated by synthesized nanoparticles. Further, synergistic effects of AgNPs with various antibiotics were evaluated against above mentioned bacterial pathogens. The results showed that AgNPs in combination with antibiotics have better antibacterial effect as compared with AgNPs alone and hence can be used in the treatment of infectious diseases caused by bacteria. The maximum effect, with a 17.8 fold increase in inhibition zone, was observed for amoxicillin with AgNPs against S. marcescens proving the synergistic role of AgNPs. Therefore, it may be used to augment the activities of antibiotics.

  8. Controlled synthesis and characterization of hollow flower-like silver nanostructures

    Directory of Open Access Journals (Sweden)

    Eid KAM

    2012-03-01

    Full Text Available Kamel AM Eid, Hassan ME AzzazyNovel Diagnostics and Therapeutics Group, Yousef Jameel Science and Technology Research Center, School of Sciences and Engineering, The American University in Cairo, New Cairo, EgyptBackground: The synthesis of anisotropic silver nanoparticles is a time-consuming process and involves the use of expensive toxic chemicals and specialized laboratory equipment. The presence of toxic chemicals in the prepared anisotropic silver nanostructures hindered their medical application. The authors have developed a fast and inexpensive method for the synthesis of three-dimensional hollow flower-like silver nanostructures without the use of toxic chemicals.Methods: In this method, silver nitrate was reduced using dextrose in presence of trisodium citrate as a capping agent. Sodium hydroxide was added to enhance reduction efficacy of dextrose and reduce time of synthesis. The effects of all four agents on the shape and size of silver nanostructures were investigated.Results: Robust hollow flower-like silver nanostructures were successfully synthesized and ranged in size from 0.2 µm to 5.0 µm with surface area between 25–240 m2/g. Changing the concentration of silver nitrate, dextrose, sodium hydroxide, and trisodium citrate affected the size and shape of the synthesized structures, while changing temperature had no effect.Conclusion: The proposed method is simple, safe, and allows controlled synthesis of anisotropic silver nanostructures, which may represent promising tools as effective antimicrobial agents and for in vitro diagnostics. The synthesized hollow nanostructures may be used for enhanced drug encapsulation and sustained release.Keywords: silver nanoparticles, 3D hollow, flower-like, green synthesis

  9. Development and Antibacterial Activity of Cashew Gum-Based Silver Nanoparticles

    Directory of Open Access Journals (Sweden)

    Maria José dos S. Soares

    2013-03-01

    Full Text Available The present study describes the development of a green synthesis of silver nanoparticles reduced and stabilized by exuded gum from Anacardium occidentale L. and evaluates in vitro their antibacterial and cytotoxic activities. Characterization of cashew gum-based silver nanoparticles (AgNPs was carried out based on UV–Vis spectroscopy, transmission electron microscopy and dynamic light scattering analysis which revealed that the synthesized silver nanoparticles were spherical in shape, measuring about 4 nm in size with a uniform dispersal. AgNPs presented antibacterial activity, especially against Gram-negative bacteria, in concentrations where no significant cytotoxicity was observed.

  10. Green way genesis of silver nanoparticles using multiple fruit peels waste and its antimicrobial, anti-oxidant and anti-tumor cell line studies

    Science.gov (United States)

    Naganathan, Kiruthika; Thirunavukkarasu, Somanathan

    2017-04-01

    Green synthesis of silver nanoparticles (SNP) opens a new path to kill and prevent various infectious diseases and also tumor. In this study, we have synthesized silver nanoparticles using multiple fruit peel waste (pomegranate, orange, banana and apple (POBA)). The primarily nanoparticles formation has been confirmed by the color change. The synthesized SNP were analyzed by various physicochemical techniques such as UV- Visible spectroscopy, x-ray diffraction (XRD), fourier transform infra red (FT-IR) spectroscopy and transmission electron microscope (TEM). The formation of SNP was confirmed by its absorbance peak observed at 430 nm in UV-Visible spectrum. Further, the obtained SNP were identified by XRD and TEM, respectively to know the crystalline nature and size and shape of the particles. The activities of SNP were checked with human pathogens (Salmonella, E.coli and Pseudomonas), plant pathogen (Fusarium) and marine pathogen (Aeromonas hydrophila) and also studied the scavenging effect and anticancer properties against MCF-7 cell lines. This studies proves that the SNP prepared from fruit waste peel extract approach appears extremely fast, cost efficient, eco-friendly and alternative for conventional methods of SNP synthesis to promote the usage of these nanoparticles in medicinal application.

  11. Green synthesis of gold and silver nanoparticles using gallic acid: catalytic activity and conversion yield toward the 4-nitrophenol reduction reaction

    Science.gov (United States)

    Park, Jisu; Cha, Song-Hyun; Cho, Seonho; Park, Youmie

    2016-06-01

    In the present report, gallic acid was used as both a reducing and stabilizing agent to synthesize gold and silver nanoparticles. The synthesized gold and silver nanoparticles exhibited characteristic surface plasmon resonance bands at 536 and 392 nm, respectively. Nanoparticles that were approximately spherical in shape were observed in high-resolution transmission electron microscopy and atomic force microscopy images. The hydrodynamic radius was determined to be 54.4 nm for gold nanoparticles and 33.7 nm for silver nanoparticles in aqueous medium. X-ray diffraction analyses confirmed that the synthesized nanoparticles possessed a face-centered cubic structure. FT-IR spectra demonstrated that the carboxylic acid functional groups of gallic acid contributed to the electrostatic binding onto the surface of the nanoparticles. Zeta potential values of -41.98 mV for the gold nanoparticles and -53.47 mV for the silver nanoparticles indicated that the synthesized nanoparticles possess excellent stability. On-the-shelf stability for 4 weeks also confirmed that the synthesized nanoparticles were quite stable without significant changes in their UV-visible spectra. The synthesized nanoparticles exhibited catalytic activity toward the reduction reaction of 4-nitrophenol to 4-aminophenol in the presence of sodium borohydride. The rate constant of the silver nanoparticles was higher than that of the gold nanoparticles in the catalytic reaction. Furthermore, the conversion yield (%) of 4-nitrophenol to 4-aminophenol was determined using reversed-phase high-performance liquid chromatography with UV detection at 254 nm. The silver nanoparticles exhibited an excellent conversion yield (96.7-99.9 %), suggesting that the synthesized silver nanoparticles are highly efficient catalysts for the 4-nitrophenol reduction reaction.

  12. Green synthesis of gold and silver nanoparticles using gallic acid: catalytic activity and conversion yield toward the 4-nitrophenol reduction reaction

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jisu [Inje University, College of Pharmacy (Korea, Republic of); Cha, Song-Hyun; Cho, Seonho [Seoul National University, Department of Naval Architecture and Ocean Engineering (Korea, Republic of); Park, Youmie, E-mail: youmiep@inje.ac.kr [Inje University, College of Pharmacy (Korea, Republic of)

    2016-06-15

    In the present report, gallic acid was used as both a reducing and stabilizing agent to synthesize gold and silver nanoparticles. The synthesized gold and silver nanoparticles exhibited characteristic surface plasmon resonance bands at 536 and 392 nm, respectively. Nanoparticles that were approximately spherical in shape were observed in high-resolution transmission electron microscopy and atomic force microscopy images. The hydrodynamic radius was determined to be 54.4 nm for gold nanoparticles and 33.7 nm for silver nanoparticles in aqueous medium. X-ray diffraction analyses confirmed that the synthesized nanoparticles possessed a face-centered cubic structure. FT-IR spectra demonstrated that the carboxylic acid functional groups of gallic acid contributed to the electrostatic binding onto the surface of the nanoparticles. Zeta potential values of −41.98 mV for the gold nanoparticles and −53.47 mV for the silver nanoparticles indicated that the synthesized nanoparticles possess excellent stability. On-the-shelf stability for 4 weeks also confirmed that the synthesized nanoparticles were quite stable without significant changes in their UV–visible spectra. The synthesized nanoparticles exhibited catalytic activity toward the reduction reaction of 4-nitrophenol to 4-aminophenol in the presence of sodium borohydride. The rate constant of the silver nanoparticles was higher than that of the gold nanoparticles in the catalytic reaction. Furthermore, the conversion yield (%) of 4-nitrophenol to 4-aminophenol was determined using reversed-phase high-performance liquid chromatography with UV detection at 254 nm. The silver nanoparticles exhibited an excellent conversion yield (96.7–99.9 %), suggesting that the synthesized silver nanoparticles are highly efficient catalysts for the 4-nitrophenol reduction reaction.

  13. Green synthesis of gold and silver nanoparticles using gallic acid: catalytic activity and conversion yield toward the 4-nitrophenol reduction reaction

    International Nuclear Information System (INIS)

    Park, Jisu; Cha, Song-Hyun; Cho, Seonho; Park, Youmie

    2016-01-01

    In the present report, gallic acid was used as both a reducing and stabilizing agent to synthesize gold and silver nanoparticles. The synthesized gold and silver nanoparticles exhibited characteristic surface plasmon resonance bands at 536 and 392 nm, respectively. Nanoparticles that were approximately spherical in shape were observed in high-resolution transmission electron microscopy and atomic force microscopy images. The hydrodynamic radius was determined to be 54.4 nm for gold nanoparticles and 33.7 nm for silver nanoparticles in aqueous medium. X-ray diffraction analyses confirmed that the synthesized nanoparticles possessed a face-centered cubic structure. FT-IR spectra demonstrated that the carboxylic acid functional groups of gallic acid contributed to the electrostatic binding onto the surface of the nanoparticles. Zeta potential values of −41.98 mV for the gold nanoparticles and −53.47 mV for the silver nanoparticles indicated that the synthesized nanoparticles possess excellent stability. On-the-shelf stability for 4 weeks also confirmed that the synthesized nanoparticles were quite stable without significant changes in their UV–visible spectra. The synthesized nanoparticles exhibited catalytic activity toward the reduction reaction of 4-nitrophenol to 4-aminophenol in the presence of sodium borohydride. The rate constant of the silver nanoparticles was higher than that of the gold nanoparticles in the catalytic reaction. Furthermore, the conversion yield (%) of 4-nitrophenol to 4-aminophenol was determined using reversed-phase high-performance liquid chromatography with UV detection at 254 nm. The silver nanoparticles exhibited an excellent conversion yield (96.7–99.9 %), suggesting that the synthesized silver nanoparticles are highly efficient catalysts for the 4-nitrophenol reduction reaction.

  14. Green biosynthesis of silver nanoparticles using Curcuma longa tuber powder

    Science.gov (United States)

    Shameli, Kamyar; Ahmad, Mansor Bin; Zamanian, Ali; Sangpour, Parvanh; Shabanzadeh, Parvaneh; Abdollahi, Yadollah; Zargar, Mohsen

    2012-01-01

    Green synthesis of noble metal nanoparticles is a vastly developing area of research. Metallic nanoparticles have received great attention from chemists, physicists, biologists, and engineers who wish to use them for the development of a new-generation of nanodevices. In this study, silver nanoparticles were biosynthesized from aqueous silver nitrate through a simple and eco-friendly route using Curcuma longa tuber-powder extracts, which acted as a reductant and stabilizer simultaneously. Characterizations of nanoparticles were done using different methods, which included ultraviolet-visible spectroscopy, powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy-dispersive X-ray fluorescence spectrometry, and Fourier-transform infrared spectroscopy. The ultraviolet-visible spectrum of the aqueous medium containing silver nanoparticles showed an absorption peak at around 415 nm. Transmission electron microscopy showed that mean diameter and standard deviation for the formation of silver nanoparticles was 6.30 ± 2.64 nm. Powder X-ray diffraction showed that the particles are crystalline in nature, with a face-centered cubic structure. The most needed outcome of this work will be the development of value-added products from C. longa for biomedical and nanotechnology-based industries. PMID:23341739

  15. Antifouling activity of green-synthesized 7-hydroxy-4-methylcoumarin.

    Science.gov (United States)

    Pérez, Miriam; García, Mónica; Ruiz, Diego; Autino, Juan Carlos; Romanelli, Gustavo; Blustein, Guillermo

    2016-02-01

    In the search for new environmental-friendly antifoulants for replace metallic biocides, 7-hydroxy-4-methylcoumarin was synthesized according to green chemistry procedures. This compound was characterized by current organic analysis and its antifouling properties were firstly evaluated on the bivalve Mytilus edulis platensis in the laboratory. In the second stage, a soluble matrix antifouling coating formulated with this compound was assayed in marine environment. Laboratory experiments showed that 7-hydroxy-4-methylcoumarin was effective in inhibiting both the settlement as well as the byssogenesis of mussels. In addition, after exposure time in the sea, painted panels containing this compound showed strong antifouling effect on conspicuous species of the fouling community of Mar el Plata harbor. In conclusion, green-synthesized coumarin could be a suitable antifoulant candidate for marine protective coatings. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Removal of pathogenic bacteria from wastewater using silver nanoparticles synthesized by two fungal species

    Directory of Open Access Journals (Sweden)

    Mohammed Taha Moustafa

    2017-10-01

    Full Text Available Nanotechnology are fast advancing and currently became more effective than the conventional technologies used in water treatment that offers safe opportunities for using unconventional water supply sources. Fungi are more versatile in growth and metal tolerance in contrast to bacterial population. This work aims to demonstrate the extracellular synthesis of silver nanoparticle by using two filamentous fungi Penciillium Citreonigum Dierck and Scopulaniopsos brumptii Salvanet-Duval isolated from Lake Burullus, examine the biosynthesized nano-silver particles by UV–vis spectroscopy, transmission electron microscopy (TEM. The functional group of protein molecules surrounding AgNPs was identified using Fourier transform infrared (FTIR analysis. Check the antibacterial activity of biosynthesized silver nanoparticles at two concentrations (550.7 and 676.9 mg/l and interact it with bacteria for different durations (15, 60 and 120 min. Polyurethane foam was used as silver carrier and nano-silver solution for the removal of pathogenic bacteria in polluted water. The synthesized AgNPs showed an excellent antibacterial property on gram positive and gram negative bacterial strains.

  17. Effect of phyto-synthesized silver nanoparticles on developmental stages of malaria vector, Anopheles stephensi and dengue vector, Aedes aegypti

    Directory of Open Access Journals (Sweden)

    Madanagopal Nalini

    2017-09-01

    Full Text Available Rapidly synthesized phyto-mediated silver nanoparticles (Ag NPs using Artemisia nilagirica aqueous leaf filtrate has been confirmed through UV–visible spectrophotometer. The synthesized Ag NPs were further characterized using Fourier transform infra-red (FTIR, X-ray diffraction analysis (XRD to determine the present of functional groups and average particle size (6.723 nm with cubic nature, respectively. Spherical shape (≤30 nm of Ag NPs was confirmed by scanning electron microscopy (SEM. Bio-efficacy of these nanoparticles showed larvicidal and pupicidal properties than the aqueous leaf extract treatment alone against developmental stages (I–IV instars and pupa of malaria vector Anopheles stephensi and dengue vector Aedes aegypti at 0.25% concentration level. The LC50 (LCL:UCL at 95% confidence limit values of I–IV instar and pupa of An. stephensi were recorded at 0.343 (0.261:0.405, 0.169 (0.025:0.263, 0.198 (0.105:0.265, 0.141 (0.045:0.205 and 0.050 (0.606:0.224 % respectively and for Ae. aegypti (I–IV instar and pupa 0.460 (0.364:0.537, 0.352 (0.239:0.432, 0.331 (0.833:0.549, 0.217 (0.228:0.378 and 0.161 (0.630:0.356 % were observed, after 24 h exposure. The first report of present investigation revealed that the rapid biological synthesis of silver nanoparticles using A. nilagirica leaf filtrate would be an effective potential alternative green larvicide for the control of mosquitoes at the developmental stages with eco-friendly approach.

  18. “Synthesis, characterization and studies on antioxidant activity of silver nanoparticles using Elephantopus scaber leaf extract”

    Energy Technology Data Exchange (ETDEWEB)

    Kharat, Sopan N., E-mail: sopankharat@gmail.com; Mendhulkar, Vijay D., E-mail: drmendhulkar@gmail.com

    2016-05-01

    The simple, eco-friendly and cost effective method of green synthesis of silver nanoparticle in the leaf extract of medicinal plant Elephantopus scaber L. is illustrated in the present work. The synthesized silver nanoparticles (AgNPs) were characterized with UV–Vis-spectroscopy, nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier transform infrared (FTIR) analysis. The UV-spectra show maximum absorbance at 435 nm, NTA analysis shows 78 nm average sizes of nanoparticles, TEM analysis indicates spherical shape of the nanoparticles with the average diameter of 50 nm. The XRD peaks at 2θ range of 30–80° correspond to (111), (200), (220), (311) reflection planes that indicate the structure of metallic silver. FTIR analysis reveals surface capping of phenolic groups. Existence of peaks in the range of 1611 to 1400 cm{sup −1} indicates the presence of aromatic rings in the leaf extract. The peak at 1109 cm{sup −1} is due to the presence of OH groups. The antioxidant activity of synthesized nanoparticles was evaluated performing DPPH assay and it is observed that the photosynthesized nanoparticle also possesses antioxidant potentials. Thus, it can be used as potential free radical scavenger. Silver particles have tremendous applications in the field of diagnostics and therapeutics. To this context, the surface coating of plant metabolite constituents has great potentials. Therefore, the present work has been undertaken to synthesize the AgNPs using leaf extract of medicinal plant, E. scaber, to characterize and access their antioxidant properties. - Highlights: • Green synthesis of silver nanoparticle using leaf extract of medicinal plant Elephantopus scaber L. • Synthesized nanoparticles (SNP's) were characterized by UV-Spectroscopy, NTA, TEM, XRD and FTIR analysis. • Silver nanoparticles (AgNPs) showed average size of 78 nm in NTA analysis and spherical shape in TEM analysis.

  19. Synthesis and Catalytic Activity of Pluronic Stabilized Silver-Gold Bimetallic Nanoparticles

    OpenAIRE

    Holden, Megan S.; Nick, Kevin E.; Hall, Mia; Milligan, Jamie R.; Chen, Qiao; Perry, Christopher C.

    2014-01-01

    In this report, we demonstrate a rapid, simple, and green method for synthesizing silver-gold (Ag-Au) bimetallic nanoparticles (BNPs). We used a novel modification to the galvanic replacement reaction by suspending maltose coated silver nanoparticles (NPs) in ≈ 2% aqueous solution of EO100PO65EO100 (Pluronic F127) prior to HAuCl4 addition. The Pluronic F127 stabilizes the BNPs, imparts biocompatibility, and mitigates the toxicity issues associated with other surfactant stabilizers. BNPs with ...

  20. Silver nanoparticles with gelatin nanoshells: photochemical facile green synthesis and their antimicrobial activity

    International Nuclear Information System (INIS)

    Pourjavadi, Ali; Soleyman, Rouhollah

    2011-01-01

    In the current study, a facile green synthesis of silver-gelatin core–shell nanostructures (spherical, spherical/cubic hybrid, and cubic, DLS diameter: 4.1–6.9 nm) is reported via the wet chemical synthesis procedure. Sunlight-UV as an available reducing agent cause mild reduction of silver ions into the silver nanoparticles (Ag-NPs). Gelatin protein, as an effective capping/shaping agent, was used in the reaction to self-assemble silver nanostructures. The formation of silver nanostructures and their self-assembly pattern was confirmed by SEM, AFM, and TEM techniques. Further investigations were carried out using zeta-potential, UV–Vis, FTIR, GPC, and TGA/DTG/DTA data. The prepared Ag-NPs showed proper and acceptable antimicrobial activity against three classes of microorganisms (Escherichia coli Gram-negative bacteria, Staphylococcus aureus Gram-positive bacteria, and Candida albicans fungus). The antibacterial and antifungal Ag-NPs exhibit good stability in solution and can be considered as promising candidates for a wide range of biomedical applications.

  1. Silver nanoparticles with gelatin nanoshells: photochemical facile green synthesis and their antimicrobial activity

    Science.gov (United States)

    Pourjavadi, Ali; Soleyman, Rouhollah

    2011-10-01

    In the current study, a facile green synthesis of silver-gelatin core-shell nanostructures (spherical, spherical/cubic hybrid, and cubic, DLS diameter: 4.1-6.9 nm) is reported via the wet chemical synthesis procedure. Sunlight-UV as an available reducing agent cause mild reduction of silver ions into the silver nanoparticles (Ag-NPs). Gelatin protein, as an effective capping/shaping agent, was used in the reaction to self-assemble silver nanostructures. The formation of silver nanostructures and their self-assembly pattern was confirmed by SEM, AFM, and TEM techniques. Further investigations were carried out using zeta-potential, UV-Vis, FTIR, GPC, and TGA/DTG/DTA data. The prepared Ag-NPs showed proper and acceptable antimicrobial activity against three classes of microorganisms ( Escherichia coli Gram-negative bacteria, Staphylococcus aureus Gram-positive bacteria, and Candida albicans fungus). The antibacterial and antifungal Ag-NPs exhibit good stability in solution and can be considered as promising candidates for a wide range of biomedical applications.

  2. Antibacterial Activity of Electrochemically Synthesized Colloidal Silver Nanoparticles Against Hospital-Acquired Infections

    Science.gov (United States)

    Thuc, Dao Tri; Huy, Tran Quang; Hoang, Luc Huy; Hoang, Tran Huy; Le, Anh-Tuan; Anh, Dang Duc

    2017-06-01

    This study evaluated the antibacterial activity of electrochemically synthesized colloidal silver nanoparticles (AgNPs) against hospital-acquired infections. Colloidal AgNPs were synthesized via a single process using bulk silver bars, bi-distilled water, trisodium citrate, and direct current voltage at room temperature. Colloidal AgNPs were characterized by transmission electron microscopy, field-emission scanning electron microscopy, and energy-dispersive x-ray analyses. The antibacterial activity of colloidal AgNPs against four bacterial strains isolated from clinical samples, including methicillin-resistant Staphylococcus aureus, Escherichia coli O157:H7, multidrug-resistant Pseudomonas aeruginosa, and carbapenem-resistant Klebsiella pneumonia, was evaluated by disc diffusion, minimum inhibitory concentration (MIC), and ultrathin sectioning electron microscopy. The results showed that the prepared AgNPs were 19.7 ± 4.3 nm in size, quasi-spherical, and of high purity. Zones of inhibition approximately 6-10 mm in diameter were found, corresponding to AgNPs concentrations of 50 μg/mL to 100 μg/mL. The MIC results revealed that the antibacterial activity of the prepared AgNPs was strongly dependent on the concentration and strain of the tested bacteria.

  3. Efficacy of plant-mediated synthesized silver nanoparticles against hematophagous parasites.

    Science.gov (United States)

    Jayaseelan, Chidambaram; Rahuman, Abdul Abdul; Rajakumar, Govindasamy; Santhoshkumar, Thirunavukkarasu; Kirthi, Arivarasan Vishnu; Marimuthu, Sampath; Bagavan, Asokan; Kamaraj, Chinnaperumal; Zahir, Abdul Abduz; Elango, Gandhi; Velayutham, Kanayairam; Rao, Kokati Venkata Bhaskara; Karthik, Loganathan; Raveendran, Sankariah

    2012-08-01

    The purpose of the present study was to investigate the acaricidal and larvicidal activity against the larvae of Haemaphysalis bispinosa Neumann (Acarina: Ixodidae) and larvae of hematophagous fly Hippobosca maculata Leach (Diptera: Hippoboscidae) and against the fourth-instar larvae of malaria vector, Anopheles stephensi Liston, Japanese encephalitis vector, Culex tritaeniorhynchus Giles (Diptera: Culicidae) of synthesized silver nanoparticles (AgNPs) utilizing aqueous leaf extract from Musa paradisiaca L. (Musaceae). The color of the extract changed to light brown within an hour, and later it changed to dark brown during the 30-min incubation period. AgNPs results were recorded from UV-vis spectrum at 426 nm; Fourier transform infrared (FTIR) analysis confirmed that the bioreduction of Ag(+) ions to silver nanoparticles are due to the reduction by capping material of plant extract, X-ray diffraction (XRD) patterns clearly illustrates that the nanoparticles formed in the present synthesis are crystalline in nature and scanning electron microscopy (SEM) support the biosynthesis and characterization of AgNPs with rod in shape and size of 60-150 nm. After reaction, the XRD pattern of AgNPs showed diffraction peaks at 2θ = 34.37°, 38.01°, 44.17°, 66.34° and 77.29° assigned to the (100), (111), (102), (110) and (120) planes, respectively, of a faced centre cubic (fcc) lattice of silver were obtained. For electron microscopic studies, a 25 μl sample was sputter-coated on copper stub, and the images of nanoparticles were studied using scanning electron microscopy. The spot EDX analysis showed the complete chemical composition of the synthesized AgNPs. The parasite larvae were exposed to varying concentrations of aqueous extract of M. paradisiaca and synthesized AgNPs for 24 h. In the present study, the percent mortality of aqueous extract of M. paradisiaca were 82, 71, 46, 29, 11 and 78, 66, 38, 31and 16 observed in the concentrations of 50, 40, 30, 20, 10 mg

  4. A novel 'green' synthesis of colloidal silver nanoparticles (SNP) using Dillenia indica fruit extract.

    Science.gov (United States)

    Singh, Susmita; Saikia, Jyoti P; Buragohain, Alak K

    2013-02-01

    In the present research we have defined a novel green method of silver nanoparticles synthesis using Dillenia indica fruit extract. D. indica is an edible fruit widely distributed in the foothills of Himalayas and known for its antioxidant and further predicted for cancer preventive potency. The maximum absorbance of the colloidal silver nanoparticle solution was observed at 421 nm when examined with UV-vis spectrophotometer. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Eco-friendly synthesis of silver nanoparticles using green algae (Caulerpa serrulata): reaction optimization, catalytic and antibacterial activities.

    Science.gov (United States)

    Aboelfetoh, Eman F; El-Shenody, Rania A; Ghobara, Mohamed M

    2017-07-01

    Stable colloidal silver nanoparticles (AgNPs) were synthesized using Caulerpa serrulata (green marine algae) aqueous extract as an efficient reducing and stabilizing agent. This method is considered to be a sustainable alternate to the more complicated chemical procedures. To achieve the optimization synthesis of AgNPs, several effects such as extract concentration, contact time, pH values, and temperature were examined. The synthesized AgNPs were characterized by UV-Vis spectroscopy, FT-IR, XRD, and HR-TEM. The synthesized AgNPs showed an intense surface plasmon resonance band at 412 nm at the optimal conditions (20% (v/v) extract and 95 °C). TEM reveal that higher extract concentration and higher temperature leading to the formation of spherical AgNPs with an average particle size of 10 ± 2 nm. The synthesized AgNPs showed excellent catalytic reduction activity of Congo red (CR) dye from aqueous solutions. The degradation percentage of CR with AgNPs accelerated by increasing either NaBH 4 concentration or catalytic dosage. The AgNPs synthesized at higher temperature (e.g., 10Ag-95) exhibited the highest catalytic activity. The reaction kinetics was found to be pseudo first order with respect to the dye concentration. Moreover, the AgNPs displayed antibacterial activity at lower concentration against Staphylococcus aureus, Pseudomonas aeruginosa, Shigella sp., Salmonella typhi, and Escherichia coli and may be a good alternative therapeutic approach. The outcomes of the current study confirmed that the synthesized AgNPs had an awesome guarantee for application in catalysis and wastewater treatment.

  6. Polyaniline/silver nanocomposites synthesized via UV-Vis-Assisted aniline polymerization with a reversed micellar microemulsion system

    NARCIS (Netherlands)

    Li, Z.; Li, Y.; Lin, W.; Zheng, F.; Laven, J.

    Polyaniline (PANI)/silver (Ag) nanocomposites were successfully synthesized within a sodium dodecyl sulfate reverse micro-emulsion system and characterized by Fourier transform infrared spectroscopy, X-ray diffraction, ultraviolet spectrometry, thermogravimetric analysis, scanning electron

  7. Green synthesis and characterization of silver nanoparticles using Artemisia absinthium aqueous extract — A comprehensive study

    International Nuclear Information System (INIS)

    Ali, Mohammad; Kim, Bosung; Belfield, Kevin D.; Norman, David; Brennan, Mary; Ali, Gul Shad

    2016-01-01

    Unlike chemical synthesis, biological synthesis of nanoparticles is gaining tremendous interest, and plant extracts are preferred over other biological sources due to their ample availability and wide array of reducing metabolites. In this project, we investigated the reducing potential of aqueous extract of Artemisia absinthium L. for synthesizing silver nanoparticles (AgNPs). Optimal synthesis of AgNPs with desirable physical and biological properties was investigated using ultra violet–visible spectroscopy (UV–vis), dynamic light scattering (DLS), transmission electron microscopy (TEM) and energy-dispersive X-ray analysis (EDX). To determine their appropriate concentrations for AgNP synthesis, two-fold dilutions of silver nitrate (20 to 0.62 mM) and aqueous plant extract (100 to 0.79 mg ml"−"1) were reacted. The results showed that silver nitrate (2 mM) and plant extract (10 mg ml"−"1) mixed in different ratios significantly affected size, stability and yield of AgNPs. Extract to AgNO_3 ratio of 6:4 v/v resulted in the highest conversion efficiency of AgNO_3 to AgNPs, with the particles in average size range of less than 100 nm. Furthermore, the direct imaging of synthesized AgNPs by TEM revealed polydispersed particles in the size range of 5 to 20 nm. Similarly, nanoparticles with the characteristic peak of silver were observed with EDX. This study presents a comprehensive investigation of the differential behavior of plant extract and AgNO_3 to synthesize biologically stable AgNPs. - Graphical abstract: Aqueous extract from Artemisia absinthium when used in appropriate ratio (shown in Eppendorf tubes and microtiter plate) is highly active in reducing elemental silver to colloidal silver nanoparticles in the 5–20 nm size range (shown in TEM image, bottom left panel; DLS histogram, upper left panel; EDX analysis, bottom right panel). - Highlights: • Artemisia absinthium extract provides excellent reducing potential for biosynthesis of silver

  8. Green synthesis and characterization of silver nanoparticles using Artemisia absinthium aqueous extract — A comprehensive study

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Mohammad [Mid-Florida Research and Education Center and Department of Plant Pathology, University of Florida/Institute of Food and Agricultural Sciences, 2725 Binion Rd., Apopka, FL 32703 (United States); Kim, Bosung [Department of Chemistry, University of Central Florida, Orlando, FL 32816 (United States); Belfield, Kevin D. [Department of Chemistry, University of Central Florida, Orlando, FL 32816 (United States); College of Science and Liberal Arts, New Jersey Institute of Technology, Newark, NJ 07102 (United States); Norman, David; Brennan, Mary [Mid-Florida Research and Education Center and Department of Plant Pathology, University of Florida/Institute of Food and Agricultural Sciences, 2725 Binion Rd., Apopka, FL 32703 (United States); Ali, Gul Shad, E-mail: gsali@ufl.edu [Mid-Florida Research and Education Center and Department of Plant Pathology, University of Florida/Institute of Food and Agricultural Sciences, 2725 Binion Rd., Apopka, FL 32703 (United States)

    2016-01-01

    Unlike chemical synthesis, biological synthesis of nanoparticles is gaining tremendous interest, and plant extracts are preferred over other biological sources due to their ample availability and wide array of reducing metabolites. In this project, we investigated the reducing potential of aqueous extract of Artemisia absinthium L. for synthesizing silver nanoparticles (AgNPs). Optimal synthesis of AgNPs with desirable physical and biological properties was investigated using ultra violet–visible spectroscopy (UV–vis), dynamic light scattering (DLS), transmission electron microscopy (TEM) and energy-dispersive X-ray analysis (EDX). To determine their appropriate concentrations for AgNP synthesis, two-fold dilutions of silver nitrate (20 to 0.62 mM) and aqueous plant extract (100 to 0.79 mg ml{sup −1}) were reacted. The results showed that silver nitrate (2 mM) and plant extract (10 mg ml{sup −1}) mixed in different ratios significantly affected size, stability and yield of AgNPs. Extract to AgNO{sub 3} ratio of 6:4 v/v resulted in the highest conversion efficiency of AgNO{sub 3} to AgNPs, with the particles in average size range of less than 100 nm. Furthermore, the direct imaging of synthesized AgNPs by TEM revealed polydispersed particles in the size range of 5 to 20 nm. Similarly, nanoparticles with the characteristic peak of silver were observed with EDX. This study presents a comprehensive investigation of the differential behavior of plant extract and AgNO{sub 3} to synthesize biologically stable AgNPs. - Graphical abstract: Aqueous extract from Artemisia absinthium when used in appropriate ratio (shown in Eppendorf tubes and microtiter plate) is highly active in reducing elemental silver to colloidal silver nanoparticles in the 5–20 nm size range (shown in TEM image, bottom left panel; DLS histogram, upper left panel; EDX analysis, bottom right panel). - Highlights: • Artemisia absinthium extract provides excellent reducing potential for

  9. Biosynthesis of silver nanoparticles using Alternanthera sessilis (Linn.) extract and their antimicrobial, antioxidant activities.

    Science.gov (United States)

    Niraimathi, K L; Sudha, V; Lavanya, R; Brindha, P

    2013-02-01

    The present work focuses the use of the aqueous extract of Alternanthera sessilis Linn. (Amaranthaceae) in producing silver nanoparticles (AgNPs) from silver nitrate aqueous. Phytochemical analysis of the extract revealed the presence of alkaloid, tannins, ascorbic acid, carbohydrates and proteins and they serve as effective reducing and capping agents for converting silver nitrate into nanoparticles. The synthesized silver nanoparticles (AgNPs) were also tested for proteins and ascorbic acid. Its pH was also determined (5.63). The AgNPs obtained was characterized by UV-vis spectroscopy, FT-IR spectroscopy, SEM, Zeta sizer and TG-DSC. SEM images which revealed the presence of various shapes and sizes. FT-IR spectrum showed the AgNPs having a coating of proteins indicating a dual role of bio-molecules responsible for capping and efficient stabilization of the silver nanoparticles. Presence of impurities and melting point profile were screened by TG-DSC analyzer. AgNPs were synthesized from the silver nitrate through the reducing power of ascorbic acid present in A. sessilis leaves. In this study, we also investigated antimicrobial and antioxidant activity of green synthesized AgNPs. The antimicrobial activity is investigated by Bauer et al.'s method. Antioxidant activity was done by DPPH method. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Templated green synthesis of plasmonic silver nanoparticles in onion epidermal cells suitable for surface-enhanced Raman and hyper-Raman scattering

    DEFF Research Database (Denmark)

    Palanco, Marta Espina; Mogensen, Klaus Bo; Guehlke, Marina

    2016-01-01

    We report fast and simple green synthesis of plasmonic silver nanoparticles in the epidermal cells of onions after incubation with AgNO3 solution. The biological environment supports the generation of silver nanostructures in two ways. The plant tissue delivers reducing chemicals for the initial...... for one-and two-photon-excited spectroscopy such as surface enhanced Raman scattering (SERS) and surface enhanced hyper-Raman scattering (SEHRS). Our studies demonstrate a templated green preparation of enhancing plasmonic nanoparticles and suggest a new route to deliver silver nanoparticles as basic...... building blocks of plasmonic nanosensors to plants by the uptake of solutions of metal salts....

  11. 'Chocolate' silver nanoparticles: Synthesis, antibacterial activity and cytotoxicity.

    Science.gov (United States)

    Chowdhury, Neelika Roy; MacGregor-Ramiasa, Melanie; Zilm, Peter; Majewski, Peter; Vasilev, Krasimir

    2016-11-15

    Silver nanoparticles (AgNPs) have emerged as a powerful weapon against antibiotic resistant microorganisms. However, most conventional AgNPs syntheses require the use of hazardous chemicals and generate toxic organic waste. Hence, in recent year's, plant derived and biomolecule based synthetics have has gained much attention. Cacao has been used for years for its medicinal benefits and contains a powerful reducing agent - oxalic acid. We hypothesized that, due to the presence of oxalic acid, cacao extract is capable of reducing silver nitrate (AgNO3) to produce AgNPs. In this study, AgNPs were synthesized by using natural cacao extract as a reducing and stabilizing agent. The reaction temperature, time and reactant molarity were varied to optimize the synthesis yield. UV-visible spectroscopy (UV-vis), dynamic light scattering (DLS) and transmission electron microscopy (TEM) characterization demonstrated that the synthesized AgNPs were spherical particles ranging in size from 35 to 42.5nm. The synthesized AgNPs showed significant antibacterial activity against clinically relevant pathogens such as Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Staphylococcus epidermidis. Importantly, these green AgNPs are not cytotoxic to human dermal fibroblasts (HDFs) at concentrations below 32μg/ml. We conclude that cacao-based synthesis is a reproducible and sustainable method for the generation of stable antimicrobial silver nanoparticles with low cytotoxicity to human cells. The AgNPs synthesized in this work have promising properties for applications in the biomedical field. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Phytofabrication of bioinduced silver nanoparticles for biomedical applications

    Directory of Open Access Journals (Sweden)

    Ahmad N

    2015-11-01

    Full Text Available Nabeel Ahmad,1 Sharad Bhatnagar,1 Syed Salman Ali,2 Rajiv Dutta3 1School of Biotechnology, 2School of Pharmaceutical Sciences, IFTM University, Lodhipur Rajput, Moradabad, Uttar Pradesh, India; 3Institute of Bio-Science and Technology, Shri Ramswaroop Memorial University, Barabanki, Uttar Pradesh, India Abstract: Synthesis of nanomaterials holds infinite possibilities as nanotechnology is revolutionizing the field of medicine by its myriad applications. Green synthesis of nanoparticles has become the need of the hour because of its eco-friendly, nontoxic, and economic nature. In this study, leaf extract of Rosa damascena was used as a bioreductant to reduce silver nitrate, leading to synthesis of silver nanoparticles (AgNPs in a single step, without the use of any additional reducing or capping agents. The synthesized nanoparticles were characterized by the use of UV-visible spectroscopy, fourier transform infrared spectroscopy, dynamic light scattering, transmission electron microscopy, and field emission scanning electron microscopy. Time-dependent synthesis of AgNPs was studied spectrophotometrically. Synthesized AgNPs were found to possess flower-like spherical structure where individual nanoparticles were of 16 nm in diameter, whereas the agglomerated AgNPs were in the range of 60–80 nm. These biologically synthesized AgNPs exhibited significant antibacterial activity against Gram-negative bacterial species but not against Gram-positive ones (Escherichia coli and Bacillus cereus. Anti-inflammatory and analgesic activities were studied on a Wistar rat model to gauge the impact of AgNPs for a probable role in these applications. AgNPs tested positive for both these activities, although the potency was less as compared to the standard drugs. Keywords: silver nanoparticles, green synthesis, anti-inflammatory, analgesic, animal model study, antibacterial

  13. Butea monosperma bark extract mediated green synthesis of silver nanoparticles: Characterization and biomedical applications

    Directory of Open Access Journals (Sweden)

    Sutanuka Pattanayak

    2017-09-01

    Full Text Available The work deals with an environmentally benign process for the synthesis of silver nanoparticle using Butea monosperma bark extract which is used both as a reducing as well as capping agent at room temperature. The reaction mixture turned brownish yellow after about 24 h and an intense surface plasmon resonance (SPR band at around 424 nm clearly indicates the formation of silver nanoparticles. Fourier transform-Infrared (FT-IR spectroscopy showed that the nanoparticles were capped with compounds present in the plant extract. Formation of crystalline fcc silver nanoparticles is analysed by XRD data and the SAED pattern obtained also confirms the crystalline behaviour of the Ag nanoparticles. The size and morphology of these nanoparticles were studied using High Resolution Transmission Electron Microscopy (HRTEM which showed that the nanoparticles had an average dimension of ∼35 nm. A larger DLS data of ∼98 nm shows the presence of the stabilizer on the nanoparticles surface. The bio-synthesized silver nanoparticles revealed potent antibacterial activity against human bacteria of both Gram types. In addition these biologically synthesized nanoparticles also proved to exhibit excellent cytotoxic effect on human myeloid leukemia cell line, KG-1A with IC50 value of 11.47 μg/mL.

  14. Green synthesis of silver nanoparticles by Escherichia coli : Analysis of antibacterial activity

    Directory of Open Access Journals (Sweden)

    Koilparambil Divya

    2016-07-01

    Full Text Available The emerging infectious diseases and the development of drug resistance in the pathogenic microorganism is a matter of serious concern. Despite the increased knowledge of microbial pathogenesis and application of modern therapeutics, the morbidity and mortality associated with the microbial infections still remains high. Therefore, there is a pressing demand to discover novel strategies and identify new antimicrobial agents to develop the next generation of drugs or agents to control microbial infections. The use of nanoparticles is gaining impetus in the present century as they possess defined chemical, optical and mechanical properties. In the present study green synthesis of silver nanoparticles by Escherichia coli has been done. Various parameters such as mixing ratio of culture supernatant and silver nitrate, media, temperature and pH for production of silver nanoparticles were optimised. The nanoparticles synthesised was characterized using SEM, FTIR and XRD. The antibacterial activity of silver nanoparticles synthesised using both pellet and supernatant against human pathogens Salmonella typhi, Vibrio cholerae, Bacillus subtilis and Klebsiella pneumoniae was analysed and MIC was calculated as 20µg and 50µg respectively.

  15. Green synthesis, antimicrobial and cytotoxic effects of silver nanoparticles using Eucalyptus chapmaniana leaves extract.

    Science.gov (United States)

    Sulaiman, Ghassan Mohammad; Mohammed, Wasnaa Hatif; Marzoog, Thorria Radam; Al-Amiery, Ahmed Abdul Amir; Kadhum, Abdul Amir H; Mohamad, Abu Bakar

    2013-01-01

    To synthesize silver nanopaticles from leaves extract of Eucalyptus chapmaniana (E. chapmaniana) and test the antimicrobial of the nanoparticles against different pathogenic bacteria, yeast and its toxicity against human acute promyelocytic leukemia (HL-60) cell line. Ten milliliter of leaves extract was mixed with 90 mL of 0.01 mmol/mL or 0.02 mmol/mL aqueous AgNO3 and exposed to sun light for 1 h. A change from yellowish to reddish brown color was observed. Characterization using UV-vis spectrophotometery and X-ray diffraction analysis were performed. Antimicrobial activity against six microorganisms was tested using well diffusion method and cytoxicity test using 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide, a yellow tetrazole was obtained on the human leukemia cell line (HL-60). UV-vis spectral analysis showed silver surface plasmon resonance band at 413 nm. X-ray diffraction showed that the particles were crystalline in nature with face centered cubic structure of the bulk silver with broad beaks at 38.50° and 44.76°. The synthesized silver nanoparticles efficiently inhibited various pathogenic organisms and reduced viability of the HL-60 cells in a dose-dependent manner. It has been demonstrated that the extract of E. chapmaniana leaves are capable of producing silver nanoparticles extracellularly and the Ag nanoparticles are quite stable in solution. Further studies are needed to fully characterize the toxicity and the mechanisms involved with the antimicrobial and anticancer activity of these particles.

  16. Green synthesis and antibacterial activity screening of silver nanoparticles reduced by papaya (Carica papaya L.) leaves extract

    International Nuclear Information System (INIS)

    Esplana, Camille S.; Cabling, Mercedes Q.

    2013-01-01

    The field of nano technology is the most active area of research in modern material sciences. Though there are many chemical, as well as physical methods, green synthesis is the most emerging method of synthesis. This study aimed to describe a cost effective and environment friendly technique for green synthesis of silver nanoparticles. The synthesis of silver nanoparticles was prepared by adding Carica papaya L. leaves extract to 1mM silver nitrate solution. The color change in reaction mixture (pale yellow to dark brown color was observed during the incubation period , due to excitation of surface plasmon vibrations in silver nanoparticles. Nanoparticles were characterized using UV-Visible absorption spectroscopy, X-Ray Diffraction (XRD) pattern, Scanning Electron Microscopy (SEM) and Energy-Dispersive Spectroscopy (EDX) analysis. Absorption spectra of silver nanoparticles formed in the reaction media has absorbance peak at 280 nm, broadening of peak indicates that the particles are poly dispersed. SEM analysis described the morphology and the size of the particles. XRD confirmed the crystalline structure of the nanoparticles. The presence of the elemental silver was observed in the graph obtained from EDX analysis, which also supports the XRD results. The biomass of plants produces their nano materials by a process called bio mineralization. The tests cultures included in the study were Staphylococcus aureus, Escherichia coli and Salmonella. Results showed that the maximum inhibitory effect using 1mM silver nitrates against the microbes were obtained. The approach of plant-mediated synthesis appears to be cost efficient, eco-friendly and easy alternative to conventional methods of silver nanoparticles synthesis (author)

  17. Moderating effect of ammonia on particle growth and stability of quasi-monodisperse silver nanoparticles synthesized by the Turkevich method.

    Science.gov (United States)

    Gorup, Luiz F; Longo, Elson; Leite, Edson R; Camargo, Emerson R

    2011-08-15

    A new method to stabilize silver nanoparticles by the addition of ammonia is proposed. Colloidal dispersions of silver nanoparticles were synthesized by the Turkevich method using sodium citrate to reduce silver nitrate at high pH and at 90 °C. After approximately 12 min, a diluted ammonia solution was added to the reaction flask to form soluble diamine silver (I) complexes that played an important growth moderating role, making it possible to stabilize metallic silver nanoparticles with sizes as small as 1.6 nm after 17 min of reaction. Colloidal dispersions were characterized by UV-visible absorption spectroscopy, X-ray diffraction, and transmission electronic microscopy. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Bio-functionalized silver nanoparticles for selective colorimetric sensing of toxic metal ions and antimicrobial studies

    Science.gov (United States)

    Vinod Kumar, V.; Anbarasan, S.; Christena, Lawrence Rene; SaiSubramanian, Nagarajan; Philip Anthony, Savarimuthu

    2014-08-01

    Hibiscus Sabdariffa (Gongura) plant extracts (leaves (HL) and stem (HS) were used for the first time in the green synthesis of bio-functionalized silver nanoparticles (AgNPs). The bio-functionality of AgNPs has been successfully utilized for selective colorimetric sensing of potentially health and environmentally hazardous Hg2+, Cd2+ and Pb2+ metal ions at ppm level in aqueous solution. Importantly, clearly distinguishable colour for all three metal ions was observed. The influence of extract preparation condition and pH were also explored on the formation of AgNPs. Both selectivity and sensitivity differed for AgNPs synthesized from different parts of the plant. Direct correlation between the stability of green synthesized AgNPs at different pH and its antibacterial effects has been established. The selective colorimetric sensing of toxic metal ions and antimicrobial effect of green synthesized AgNPs demonstrated the multifunctional applications of green nanotechnology.

  19. Eco-friendly and green synthesis of silver nanoparticles using leaf extract of Strychnos potatorum Linn.F. and their bactericidal activities

    OpenAIRE

    Kagithoju, Srikanth; Godishala, Vikram; Nanna, Rama Swamy

    2014-01-01

    Inspired green synthesis of metallic nanoparticles is evolving as an important branch of nanotechnology. Traditionally these are manufactured by wet chemical methods which require toxic and flammable chemicals. We report for the first time an economic and eco-friendly green synthesis of silver nanoparticles using Strychnos potatorum aqueous leaf extract from 3 mM silver nitrate solution. Nanoparticles thus formed are confirmed and characterized by using UV–Vis absorption spectroscopy, SEM and...

  20. Controlling Aedes albopictus and Culex pipiens pallens using silver nanoparticles synthesized from aqueous extract of Cassia fistula fruit pulp and its mode of action.

    Science.gov (United States)

    Fouad, Hatem; Hongjie, Li; Hosni, Dawood; Wei, Jiqian; Abbas, Ghulam; Ga'al, Hassan; Jianchu, Mo

    2018-05-01

    Mosquitoes act as key vector for transmission of devastating parasites and pathogens which affect millions of people globally. In this research, the green synthesis of silver nanoparticles of Cassia fistula fruit pulp as an innovative and operative tool against vector mosquitoes is presented. Silver nanoparticles were characterized by a series of techniques including Fourier transform infrared spectroscopy, Transmission Electron Microscope and confirmed by Scanning Electron Microscope, UV-Vis spectrophotometry and X-ray diffraction. Silver nanoparticles were highly effective against the larvae (I-IV instar) and pupae of Aedes albopictus and Culex pipiens pallens after 24, 48 and 72 h of treatment. Ae. albopictus had LC50 values ranging from 8.3 mg/L (I instar) to 17.3 mg/L (pupae) and LC50 ranging from 1.1 mg/L (I instar) to 19.0 mg/L (pupae) against Cx. pipiens pallens. The systemic effect of AgNPs was further assessed in the fourth instar larvae of Ae. albopictus and Cx. pipiens pallens by measuring the levels of total proteins and activity of two important marker enzymes: Acetylcholinesterase and α- and β-carboxylesterase. Overall, the findings of the study suggest that the use of Cassia fistula-fruit pulp extract mediated synthesis of silver nanoparticles can be used for controlling vector mosquitoes. This is the first report on the mosquito larvicidal and pupicidal activity of AgNPs synthesized by Cassia fistula fruit pulp and its possible mechanism of action.

  1. Evaluation of antibacterial properties on polysulfone composite membranes using synthesized biogenic silver nanoparticles with Ulva compressa (L.) Kütz. and Cladophora glomerata (L.) Kütz. extracts.

    Science.gov (United States)

    Minhas, Fozia T; Arslan, Gulsin; Gubbuk, I Hilal; Akkoz, Cengiz; Ozturk, Betul Yılmaz; Asıkkutlu, Baran; Arslan, Ugur; Ersoz, Mustafa

    2018-02-01

    Polysulfone (PS) composite membrane using green synthesized biogenic silver nanoparticles (Ag-NPs) with Ulva compressa (L.) Kütz. and Cladophora glomerata (L.) Kütz. extract were prepared by spin coating technique and are tested for antimicrobial activity using a direct contact test for the first time. Initially green synthesis of Ag-NPs was accomplished utilizing green macro algae i.e. U. compressa (L.) Kütz. and C. glomerata (L.) Kütz. by the reduction of AgNO 3 . The Ag-NPs/PS composite membranes from both algae revealed outstanding antimicrobial activity against all bacteria i.e. K. pneumonia, P. aeruginasa, E. coli, E. faecium and S. aureus. Bacterial growth was monitored for 17h with a temperature controlled microplate spectrophotometer. The kinetics of the outgrowth in each well were recorded continuously at 630nm every 60min. Thus present work remarkably offers a feasible, cheap and efficient alternative for making Ag-NPs and their utilization as antimicrobial agent on the PS composite membrane. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Green synthesis of silver nanoparticles using Cordia dichotoma fruit extract and its enhanced antibacterial, anti-biofilm and photo catalytic activity

    Science.gov (United States)

    Bharathi, Devaraj; Vasantharaj, Seerangaraj; Bhuvaneshwari, V.

    2018-05-01

    The present study describes the antibacterial, anti-biofilm and photo catalytic activity of silver nanoparticles synthesized using Cordia dichotoma fruits (Cd-AgNPs) for the first time. The phyto-synthesized Cd-AgNPs were characterized by UV-Visible spectroscopy, Field emission-scanning electron microscopy (FE-SEM), Transmission electron microscopy (TEM), Energy dispersive x-ray spectrometer (EDX), Fourier transform infrared spectroscopy (FT-IR), and x-ray diffraction (XRD). FE-SEM and TEM observation showed that the average size of 2–60 nm with spherical shape of Cd-AgNPs and the presence of phyto-compounds which are responsible for capping and reduction were studied by FT-IR. XRD studies revealed the face-centered cubic structure of Cd-AgNPs. The synthesized Cd-AgNPs showed significant antibacterial activity against Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli, assayed using agar well diffusion method. Phyto-synthesized Cd-AgNPs exhibited more than 90% inhibition of biofilm activity formed by S. aureus and E. coli. Furthermore, photocatalytic degradation of crystal violet (CV) under UV light irradiation using Cd-AgNPs was performed. Synthesized Cd-AgNPs exhibited ∼85% degradation activity for CV. Collectively, our findings suggest that C.dichotoma is a green source for the eco-friendly synthesis of Cd-AgNPs, which further can be used as a novel biocidal agent against bacterial pathogens and a potent photo catalytic agent.

  3. Caulerpa racemosa: a marine green alga for eco-friendly synthesis of silver nanoparticles and its catalytic degradation of methylene blue.

    Science.gov (United States)

    Edison, Thomas Nesakumar Jebakumar Immanuel; Atchudan, Raji; Kamal, Chennappan; Lee, Yong Rok

    2016-09-01

    In this study, a simple and green method has been demonstrated for the synthesis of highly stable silver nanoparticles (AgNPs) using aqueous extract of Caulerpa racemosa (C. racemosa) as a reducing and capping agent. The formation and stability of AgNPs were studied using visual observation and UV-Visible (UV-Vis) spectroscopy. The stable AgNPs were further characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy and high resolution transmission electron microscopy (HR-TEM) with energy dispersive spectroscopic (EDS) methods. The biosynthesized AgNPs showed a sharp surface plasmon resonance peak at 441 nm in the visible region and they have extended stability which has been confirmed by the UV-Vis spectroscopic results. XRD result revealed the crystalline nature of synthesized AgNPs and they are mainly oriented in (111) plane. FT-IR studies proved that the phytoconstituents of C. racemosa protect the AgNPs from aggregation and also which are responsible for the high stability. The size of synthesized AgNPs was approximately 25 nm with distorted spherical shape, identified from the HR-TEM images. The synthesized AgNPs showed excellent catalytic activity towards degradation of methylene blue.

  4. In vitro and in vivo evaluation of biologically synthesized silver nanoparticles for topical applications: effect of surface coating and loading into hydrogels

    Directory of Open Access Journals (Sweden)

    Mekkawy AI

    2017-01-01

    Full Text Available Aml I Mekkawy,1 Mohamed A El-Mokhtar,2 Nivien A Nafady,3 Naeima Yousef,3 Mostafa A Hamad,4 Sohair M El-Shanawany,5 Ehsan H Ibrahim,5 Mahmoud Elsabahy5–8 1Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Sohag University, Sohag, 2Department of Microbiology and Immunology, Faculty of Medicine, 3Department of Botany and Microbiology, Faculty of Science, 4Department of Surgery, Faculty of Medicine, 5Department of Pharmaceutics, Faculty of Pharmacy, 6Assiut International Center of Nanomedicine, Al-Rajhi Liver Hospital, Assiut University, Assiut, Egypt; 7Laboratory for Synthetic-Biologic Interactions, Department of Chemistry, Texas A&M University, College Station, TX, USA; 8Misr University for Science and Technology, 6th of October, Egypt Abstract: In the present study, silver nanoparticles (AgNPs were synthesized via biological reduction of silver nitrate using extract of the fungus Fusarium verticillioides (green chemistry principle. The synthesized nanoparticles were spherical and homogenous in size. AgNPs were coated with polyethylene glycol (PEG 6000, sodium dodecyl sulfate (SDS, and β-cyclodextrin (β-CD. The averaged diameters of AgNPs were 19.2±3.6, 13±4, 14±4.4, and 15.7±4.8 nm, for PEG-, SDS-, and ß-CD-coated and uncoated AgNPs, respectively. PEG-coated AgNPs showed greater stability as indicated by a decreased sedimentation rate of particles in their water dispersions. The antibacterial activities of different AgNPs dispersions were investigated against Gram-positive bacteria (methicillin-sensitive and methicillin-resistant Staphylococcus aureus and Gram-negative bacteria (Escherichia coli by determination of the minimum inhibitory concentrations (MICs and minimum bactericidal concentrations (MBCs. MIC and MBC values were in the range of 0.93–7.5 and 3.75–15 µg/mL, respectively, which were superior to the reported values in literature. AgNPs-loaded hydrogels were prepared from the coated

  5. Microwave Assisted Rapid and Green Synthesis of Silver Nanoparticles Using a Pigment Produced by Streptomyces coelicolor klmp33

    OpenAIRE

    Manikprabhu, Deene; Lingappa, K.

    2013-01-01

    Traditional synthesis of silver nanoparticles using chemical methods produces toxic substances. In contrast biological synthesis is regarded as a safe and nontoxic process but the major drawback of biological synthesis is, this process is slow. In the present investigation, we developed a rapid and green synthesis of silver nanoparticles employing a pigment produced by Streptomyces coelicolor klmp33 in just 90?s. The silver nanoparticles were characterized by UV-visible spectroscopy, transmis...

  6. Green synthesis and characterization of silver nanoparticles using Artemisia absinthium aqueous extract--A comprehensive study.

    Science.gov (United States)

    Ali, Mohammad; Kim, Bosung; Belfield, Kevin D; Norman, David; Brennan, Mary; Ali, Gul Shad

    2016-01-01

    Unlike chemical synthesis, biological synthesis of nanoparticles is gaining tremendous interest, and plant extracts are preferred over other biological sources due to their ample availability and wide array of reducing metabolites. In this project, we investigated the reducing potential of aqueous extract of Artemisia absinthium L. for synthesizing silver nanoparticles (AgNPs). Optimal synthesis of AgNPs with desirable physical and biological properties was investigated using ultra violet-visible spectroscopy (UV-vis), dynamic light scattering (DLS), transmission electron microscopy (TEM) and energy-dispersive X-ray analysis (EDX). To determine their appropriate concentrations for AgNP synthesis, two-fold dilutions of silver nitrate (20 to 0.62 mM) and aqueous plant extract (100 to 0.79 mg ml(-1)) were reacted. The results showed that silver nitrate (2mM) and plant extract (10 mg ml(-1)) mixed in different ratios significantly affected size, stability and yield of AgNPs. Extract to AgNO3 ratio of 6:4v/v resulted in the highest conversion efficiency of AgNO3 to AgNPs, with the particles in average size range of less than 100 nm. Furthermore, the direct imaging of synthesized AgNPs by TEM revealed polydispersed particles in the size range of 5 to 20 nm. Similarly, nanoparticles with the characteristic peak of silver were observed with EDX. This study presents a comprehensive investigation of the differential behavior of plant extract and AgNO3 to synthesize biologically stable AgNPs. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. A novel green synthesis and characterization of Ag NPs with its ultra-rapid catalytic reduction of methyl green dye

    International Nuclear Information System (INIS)

    Junejo, Y.; Sirajuddin; Baykal, A.; Safdar, M.; Balouch, A.

    2014-01-01

    Ampicillin derived silver nanoparticles were synthesized in an aqueous medium. Particle size and shape were determined by Transmission electron microscopy which showed the monodispersed morphology. The Fourier transform infrared spectra were represented the interaction of Ampicillin with surface of Ampicillin derived silver nanoparticles. X-ray powder diffraction study gave crystalline nature of the Ampicillin derived silver nanoparticles which exhibited exceptional catalytic activity for the reduction of Methylene Green dye. However, complete reduction of dye was accomplished by Ampicillin derived silver nanoparticles within 4 min only. The catalytic performance of these nanoparticles was adsorbed on glass. They were recovered easily from reaction medium and reused with enhanced catalytic potential. Based upon these results it has been concluded that Ampicillin derived silver nanoparticles are novel, rapid and highly economical alternative for environmental safety against pollution by dyes and extendable for control of other reducible contaminants as well.

  8. Green synthesis,antimicrobial and cytotoxic effects of silver nanoparticles using Eucalyptus chapmaniana leaves extract

    Institute of Scientific and Technical Information of China (English)

    Ghassan; Mohammad; Sulaiman; Wasnaa; Hatif; Mohammed; Thorria; Radam; Marzoog; Ahmed; Abdul; Amir; Al-Amiery; Abdul; Amir; H.Kadhum; Abu; Bakar; Mohamad

    2013-01-01

    Objective:To synthesize silver nanopaticles from leaves extract of Eucalyptus chapmaniana(E.chapmaniana)and test the antimicrobial of the nanoparticles against different pathogenic bacteria,yeast and its toxicity against human acute promyelocytic leukemia(HL-60)cell line.Methods:Ten milliliter of leaves extract was mixed with 90 mL of 0.01 mmol/mL or 0.02 mmol/mL aqueous AgNO3 and exposed to sun light for 1 h.A change from yellowish to reddish brown color was observed.Characterization using UV-vis spectrophotometery and X-ray diffraction analysis were performed.Antimicrobial activity against six microorganisms was tested using well diffusion method and cytoxicity test using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide,a yellow tetrazole was obtained on the human leukemia cell line(HL-60).Results:UV-vis spectral analysis showed silver surface plasmon resonance band at 413 nm.X-ray diffraction showed that the particles were crystalline in nature with face centered cubic structure of the bulk silver with broad beaks at 38.50°and 44.76°.The synthesized silver nanoparticles efficiently inhibited various pathogenic organisms and reduced viability of the HL-60 cells in a dose-dependent manner.Conclusions:It has been demonstrated that the extract of E.chapmaniana leaves are capable of producing silver nanoparticles extracellularly and the Ag nanoparticles are quite stable in solution.Further studies are needed to fully characterize the toxicity and the mechanisms involved with the antimicrobial and anticancer activity of these particles.

  9. Green synthesis, antimicrobial and cytotoxic effects of silver nanoparticles using Eucalyptus chapmaniana leaves extract

    Institute of Scientific and Technical Information of China (English)

    Ghassan Mohammad Sulaiman; Wasnaa Hatif Mohammed; Thorria Radam Marzoog; Ahmed Abdul Amir Al-Amiery; Abdul Amir H Kadhum; Abu Bakar Mohamad

    2013-01-01

    Objective: To synthesize silver nanopaticles from leaves extract of Eucalyptus chapmaniana (E. chapmaniana) and test the antimicrobial of the nanoparticles against different pathogenic bacteria, yeast and its toxicity against human acute promyelocytic leukemia (HL-60) cell line.Methods:Ten milliliter of leaves extract was mixed with 90 mL of 0.01 mmol/mL or 0.02 mmol/mL aqueous AgNO3 and exposed to sun light for 1 h. A change from yellowish to reddish brown color was observed. Characterization using UV-vis spectrophotometery and X-ray diffraction analysis were performed. Antimicrobial activity against six microorganisms was tested using well diffusion method and cytoxicity test using 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide, a yellow tetrazole was obtained on the human leukemia cell line (HL-60). Results: UV-vis spectral analysis showed silver surface plasmon resonance band at 413 nm. X-ray diffraction showed that the particles were crystalline in nature with face centered cubic structure of the bulk silver with broad beaks at 38.50 ° and 44.76 °. The synthesized silver nanoparticles efficiently inhibited various pathogenic organisms and reduced viability of the HL-60 cells in a dose-dependent manner. Conclusions: It has been demonstrated that the extract of E. chapmaniana leaves are capable of producing silver nanoparticles extracellularly and the Ag nanoparticles are quite stable in solution. Further studies are needed to fully characterize the toxicity and the mechanisms involved with the antimicrobial and anticancer activity of these particles.

  10. A novel thermal decomposition approach to synthesize hydroxyapatite-silver nanocomposites and their antibacterial action against GFP-expressing antibiotic resistant E. coli.

    Science.gov (United States)

    Sahni, Geetika; Gopinath, P; Jeevanandam, P

    2013-03-01

    A novel thermal decomposition approach to synthesize hydroxyapatite-silver (Hap-Ag) nanocomposites has been reported. The nanocomposites were characterized by X-ray diffraction, field emission scanning electron microscopy coupled with energy dispersive X-ray analysis, transmission electron microscopy and diffuse reflectance spectroscopy techniques. Antibacterial activity studies for the nanocomposites were explored using a new rapid access method employing recombinant green fluorescent protein (GFP) expressing antibiotic resistant Escherichia coli (E. coli). The antibacterial activity was studied by visual turbidity analysis, optical density analysis, fluorescence spectroscopy and microscopy. The mechanism of bactericidal action of the nanocomposites on E. coli was investigated using atomic force microscopy, and TEM analysis. Excellent bactericidal activity at low concentration of the nanocomposites was observed which may allow their use in the production of microbial contamination free prosthetics. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Environment friendly approach for size controllable synthesis of biocompatible Silver nanoparticles using diastase.

    Science.gov (United States)

    Maddinedi, Sireesh Babu; Mandal, Badal Kumar; Anna, Kiran Kumar

    2017-01-01

    A green, facile method for the size selective synthesis of silver nanoparticles (AgNPs) using diastase as green reducing and stabilizing agent is reported. The thiol groups present in the diastase are mainly responsible for the rapid reaction rate of silver nanoparticles synthesis. The variation in the size and morphology of AgNPs were studied by changing the pH of diastase. The prepared silver nanoparticles were characterized by using UV-vis, XRD, FTIR, TEM and SAED. The FTIR analysis revealed the stabilization of diastase molecules on the surface of AgNPs. Additionally, in-vitro cytotoxicity experiments concluded that the cytotoxicity of the as-synthesized AgNPs towards mouse fibroblast (3T3) cell lines is dose and size dependent. Furthermore, the present method is an alternative to the traditional chemical methods of size controlled AgNPs synthesis. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Photochemically synthesized heparin-based silver nanoparticles: an antimicrobial activity study

    Science.gov (United States)

    Rodriguez-Torres, Maria del Pilar; Acosta-Torres, Laura Susana; Díaz-Torres, Luis Armando

    2017-08-01

    The antimicrobial activity of silver nanoparticles has been extensively studied in the last years. Such nanoparticles constitute a potential and promising approach for the development of new antimicrobial systems especially due to the fact that several microorganisms are developing resistance to some already existing antimicrobial agents, therefore making antibacterial and antimicrobial studies on alternative materials necessary to overcome this issue. Silver nanoparticle concentration and size are determining factors on the antimicrobial activity of these nano systems. Heparin is a polysaccharide that belongs to the glycosaminoglycans (GAGs) family, molecules formed by a base disaccharide whose components are joined by a glycosidic linkage that is a repeating unit along their structure. It is highly sulfated making it a negatively charged material that is also widely used as an anticoagulant in Medicine because its biocompatibility besides it is also produced within the human body, specifically in the mast cells. Heparin alone possesses antimicrobial activity although it has not been studied very much in detail, it only has been demonstrated that it inhibits E. coli, P. aeruginosa, S. aureus and S. epidermidis, so taking this into account, this study is dedicated to assess UV photochemically-synthesized (λ=254 nm) heparin-based silver nanoparticles antimicrobial activity using the agar disk diffusion method complemented by the broth microdilution method to estimate de minimum inhibitory concentration (MIC), that is the lowest concentration at which an antimicrobial will inhibit visible growth of a microorganism. The strains used were the ones aforementioned to assess the antimicrobial activity degree these heparinbased nanoparticles exhibit.

  13. Photochemical transformation of silver nanoparticles by combining blue and green irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso-Avila, P. E.; Pichardo-Molina, J. L., E-mail: jpichardo@cio.mx [Centro de Investigaciones en Optica A.C (Mexico); Krishna, C. Murali [Advanced Center for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Center (TMC) (India); Castro-Beltran, R. [Centro de Investigaciones en Optica A.C (Mexico)

    2015-03-15

    Spherical silver nanoparticles (diameter 3 nm) were transformed by means of photochemical synthesis using superluminescent LEDs. Flat rounded (21 nm) and decahedral nanoparticles (78 nm) were, respectively, obtained when the colloid was exposed to green and blue radiation. Furthermore, by changing from blue to green radiation at different exposure times, various morphologies and sizes were obtained. Exposure times shorter than 30 min of blue radiation followed by green radiation resulted on different morphologies such as twine rounded (42 nm), flat elongated (peanuts, 17 nm), and flat rounded nanoparticles (11 and 24 nm). Times longer than 45 min produced decahedral nanoparticles with corners ranging from rounded to sharp (size 71–78 nm). Additionally, these results showed that by controlling morphologies and sizes through the combination of blue and green light at different exposure times, it was possible to tune the plasmon band from 511 to 594 nm. Moreover, controlling the morphology of nanoparticles is of prime importance in order to exploit their properties as part of novel emerging technologies.

  14. Mangifera Indica leaf-assisted biosynthesis of well-dispersed silver nanoparticles

    Science.gov (United States)

    Philip, Daizy

    2011-01-01

    The use of various parts of plants for the synthesis of nanoparticles is considered as a green technology as it does not involve any harmful chemicals. The present study reports a facile and rapid biosynthesis of well-dispersed silver nanoparticles. The method developed is environmentally friendly and allows the reduction to be accelerated by changing the temperature and pH of the reaction mixture consisting of aqueous AgNO 3 and Mangifera Indica leaf extract. At a pH of 8, the colloid consists of well-dispersed triangular, hexagonal and nearly spherical nanoparticles having size ˜20 nm. The UV-vis spectrum of silver nanoparticles gave surface plasmon resonance (SPR) at 439 nm. The synthesized nanocrystals were characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. Water soluble organics present in the leaf are responsible for the reduction of silver ions. This green method provides faster synthesis comparable to chemical methods and can be used in areas such as cosmetics, foods and medical applications.

  15. A Review on the Green Synthesis of Silver Nanoparticles and Their Morphologies Studied via TEM

    Directory of Open Access Journals (Sweden)

    Protima Rauwel

    2015-01-01

    Full Text Available Silver has been recognized as a nontoxic, safe inorganic antibacterial/antifungal agent used for centuries. Silver demonstrates a very high potential in a wide range of biological applications, more particularly in the form of nanoparticles. Environmentally friendly synthesis methods are becoming more and more popular in chemistry and chemical technologies and the need for ecological methods of synthesis is increasing; the aim is to reduce polluting reaction by-products. Another important advantage of green synthesis methods lies in its cost-effectiveness and in the abundance of raw materials. During the last five years, many efforts were put into developing new greener and cheaper methods for the synthesis of nanoparticles. The cost decrease and less harmful synthesis methods have been the motivation in comparison to other synthesis techniques where harmful reductive organic species produce hazardous by-products. This environment-friendly aspect has now become a major social issue and is instrumental in combatting environmental pollution through reduction or elimination of hazardous materials. This review describes a brief overview of the research on green synthesis of silver metal nanoparticles and the influence of the method on their size and morphology.

  16. Green synthesis of silver nanoparticles mediated by Coccinia grandis and Phyllanthus emblica: a comparative comprehension

    Science.gov (United States)

    Nayagam, Vasanth; Gabriel, Melchias; Palanisamy, Kumaravel

    2018-04-01

    Fruit extracts also have the potentiality to synthesize silver nanoparticles, which serve as antimicrobial agent in the biological field. At present, the field of biomedical largely depends on the biosynthesized NPs to fight against the multi-drug-resistant pathogens. The fruit residue of Coccinia grandis and Phyllanthus emblica are employed for synthesizing AgNPs by green method. The NPs are further subjected to UV, FTIR, SEM, and XRD measurements. The ten different pathogens were tested against the AgNPs synthesized. The same were tested for early growth of some seed variety too, so as to check the advantages of AgNPs. The UV spectrum analysis showed 442 nm and 423 nm, respectively, and FTIR peaks for the functional group that is responsible for the conversion of NPs were observed at 1640.02 for N-H bond amines (Coccinia grandis) and at 1637.45 for N-H bond amines (Phyllanthus emblica). The SEM results also illustrated that AgNPs are spherical in shape. The XRD patterns indicate the crystalline nature of the AgNPs formed with both these plants. The antimicrobial assay of AgNPs from Coccinia grandis shows maximum zone of inhibition (14 mm) for Vibrio cholerae whereas the AgNPs from Phyllanthus emblica show maximum inhibition at distinct points, namely for Staphylococcus aureus, Vibrio cholerae, Salmonella typhi, and Proteus mirabilis (12 mm). Seed germination initiated by AgNPs is quiet effective and healthier compared to the water-induced seeds. Hence, biogenic AgNPs have various applications in favour of human society.

  17. Multi-functional nano silver: A novel disruptive and theranostic agent for pathogenic organisms in real-time

    Science.gov (United States)

    Gopinath, Ponnusamy Manogaran; Ranjani, Anandan; Dhanasekaran, Dharumadurai; Thajuddin, Nooruddin; Archunan, Govindaraju; Akbarsha, Mohammad Abdulkader; Gulyás, Balázs; Padmanabhan, Parasuraman

    2016-01-01

    The present study was aimed at evaluating the fluorescence property, sporicidal potency against Bacillus and Clostridium endospores, and surface disinfecting ability of biogenic nano silver. The nano silver was synthesized using an actinobacterial cell-filtrate. The fluorescence property as well as imaging facilitator potency of this nano silver was verified adopting spectrofluorometer along with fluorescent and confocal laser scanning microscope wherein strong emission and bright green fluorescence, respectively, on the entire spore surface was observed. Subsequently, the endospores of B. subtilis, B. cereus, B. amyloliquefaciens, C. perfringens and C. difficile were treated with physical sporicides, chemical sporicides and nano silver, in which the nano silver brought about pronounced inhibition even at a very low concentration. Finally, the environmental surface-sanitizing potency of nano silver was investigated adopting cage co-contamination assay, wherein vital organs of mice exposed to the nano silver-treated cage did not show any signs of pathological lesions, thus signifying the ability of nano silver to completely disinfect the spore or reduce the count required for infection. Taken these observations together, we have shown the multi-functional biological properties of the nano silver, synthesized using an actinobacterial cell-filtrate, which could be of application in advanced diagnostics, biomedical engineering and therapeutics in the near future. PMID:27666290

  18. Nanowires of silver-polyaniline nanocomposite synthesized via in situ polymerization and its novel functionality as an antibacterial agent.

    Science.gov (United States)

    Tamboli, Mohaseen S; Kulkarni, Milind V; Patil, Rajendra H; Gade, Wasudev N; Navale, Shalaka C; Kale, Bharat B

    2012-04-01

    Silver-polyaniline (Ag-PANI) nanocomposite was synthesized by in situ polymerization method using ammonium persulfate (APS) as an oxidizing agent in the presence of dodecylbenzene sulfonic acid (DBSA) and silver nitrate (AgNO(3)). The as synthesized Ag-PANI nanocomposite was characterized by using different analytical techniques such as UV-visible (UV-vis) and Fourier transform Infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FE-SEM), thermo gravimetric analysis (TGA), X-ray diffraction (XRD), and transmission electron microscopy (TEM). UV-visible spectra of the synthesized nanocomposite showed a sharp peak at ~420 nm corresponding to the surface plasmon resonance (SPR) of the silver nanoparticles (AgNPs) embedded in the polymer matrix which is overlapped by the polaronic peak of polyaniline appearing at that wavelength. Nanowires of Ag-PANI nanocomposite with diameter 50-70 nm were observed in FE-SEM and TEM. TGA has indicated an enhanced thermal stability of nanocomposite as compared to that of pure polymer. The Ag-PANI nanocomposite has shown an antibacterial activity against model organisms, a gram positive Bacillus subtilis NCIM 6633 in Mueller-Hinton (MH) medium, which is hitherto unattempted. The Ag-PANI nanocomposite with monodispersed AgNPs is considered to have potential applications in sensors, catalysis, batteries and electronic devices. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: A systematic review and critical appraisal of peer-reviewed scientific papers

    International Nuclear Information System (INIS)

    Tolaymat, Thabet M.; El Badawy, Amro M.; Genaidy, Ash; Scheckel, Kirk G.; Luxton, Todd P.; Suidan, Makram

    2010-01-01

    Background: Most recently, renewed interest has arisen in manufactured silver nanomaterials because of their unusually enhanced physicochemical properties and biological activities compared to the bulk parent materials. A wide range of applications has emerged in consumer products ranging from disinfecting medical devices and home appliances to water treatment. Because the hypothesized mechanisms that govern the fate and transport of bulk materials may not directly apply to materials at the nanoscale, there are great concerns in the regulatory and research communities about potential environmental impacts associated with the use of silver nanoparticles. In particular, the unlimited combinations of properties emerging from the syntheses and applications of silver nanoparticles are presenting an urgent need to document the predominant salt precursors, reducing agents and stabilizing agents utilized in the synthesis processes of silver nanoparticles to guide the massive efforts required for environmental risk assessment and management. Objectives: The primary objective of this study is to present an evidence-based environmental perspective of silver nanoparticle properties in syntheses and applications. The following specific aims are designed to achieve the study objective: Aim 1 - to document the salt precursors and agents utilized in synthesizing silver nanoparticles; Aim 2 - to determine the characteristics of silver nanoparticles currently in use in the scientific literature when integrated in polymer matrices to form nanocomposites and combined with other metal nanoparticles to form bimetallic nanoparticles; Aim 3 - to provide a summary of the morphology of silver nanoparticles; and (4) Aim 4 - to provide an environmental perspective of the evidence presented in Aims 1 to 3. Methods: A comprehensive electronic search of scientific databases was conducted in support of the study objectives. Specific inclusion criteria were applied to gather the most pertinent

  20. An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: A systematic review and critical appraisal of peer-reviewed scientific papers

    Energy Technology Data Exchange (ETDEWEB)

    Tolaymat, Thabet M., E-mail: tolaymat.thabet@epa.gov [USEPA Office of Research and Development, National Risk Management Laboratory, 26 West Martin Luther King Drive, Cincinnati, OH 45224 (United States); El Badawy, Amro M. [Dept. of Civil and Environmental Engineering, University of Cincinnati, Cincinnati, OH (United States); Genaidy, Ash [WorldTek Inc, Cincinnati, OH (United States); Scheckel, Kirk G.; Luxton, Todd P. [USEPA Office of Research and Development, National Risk Management Laboratory, 26 West Martin Luther King Drive, Cincinnati, OH 45224 (United States); Suidan, Makram [Dept. of Civil and Environmental Engineering, University of Cincinnati, Cincinnati, OH (United States)

    2010-02-01

    Background: Most recently, renewed interest has arisen in manufactured silver nanomaterials because of their unusually enhanced physicochemical properties and biological activities compared to the bulk parent materials. A wide range of applications has emerged in consumer products ranging from disinfecting medical devices and home appliances to water treatment. Because the hypothesized mechanisms that govern the fate and transport of bulk materials may not directly apply to materials at the nanoscale, there are great concerns in the regulatory and research communities about potential environmental impacts associated with the use of silver nanoparticles. In particular, the unlimited combinations of properties emerging from the syntheses and applications of silver nanoparticles are presenting an urgent need to document the predominant salt precursors, reducing agents and stabilizing agents utilized in the synthesis processes of silver nanoparticles to guide the massive efforts required for environmental risk assessment and management. Objectives: The primary objective of this study is to present an evidence-based environmental perspective of silver nanoparticle properties in syntheses and applications. The following specific aims are designed to achieve the study objective: Aim 1 - to document the salt precursors and agents utilized in synthesizing silver nanoparticles; Aim 2 - to determine the characteristics of silver nanoparticles currently in use in the scientific literature when integrated in polymer matrices to form nanocomposites and combined with other metal nanoparticles to form bimetallic nanoparticles; Aim 3 - to provide a summary of the morphology of silver nanoparticles; and (4) Aim 4 - to provide an environmental perspective of the evidence presented in Aims 1 to 3. Methods: A comprehensive electronic search of scientific databases was conducted in support of the study objectives. Specific inclusion criteria were applied to gather the most pertinent

  1. Chromatographic analysis of phytochemicals components present in mangifera indica leaves for the synthesis of silver nanoparticles by AgNO3 reduction

    Science.gov (United States)

    Martínez-Bernett, D.; Silva-Granados, A.; Correa-Torres, S. N.; Herrera, A.

    2016-02-01

    It was studied the green synthesis of silver nanoparticles (AgNPs) from the reduction of a silver nitrate solution (1 and 10mM) in the presence of an extract of mangifera indica leaves. Phytochemicals components present in extracts of mango leaves were determined using a GC-MS chromatograph. The results showed the presence of the phenolic compound pyrogallol (26.9% wt/5mL of extract) and oleic acid (29.1% wt/5mL of extract), which are useful for the reduction of the metallic salt AgNO3 and the stabilization of silver nanoparticles. The synthesized nanoparticles were characterized by UV visible spectroscopy (UV-vis), evidencing absorbances at wavelengths of 417nm (AgNPs-1) and 414nm (AgNPs- 10), which are characteristic peaks of this metallic nanoparticles. Scanning Electron Microscopy (SEM) was used to determine the size of the synthesized nanoparticles. A particle size of about 28±7nm was observed for the AgNPs-1 sample and 26±5nm for the AgNPs-10. This suggests the advantages of green chemistry to obtain silver nanoparticles with a narrow size distribution.

  2. Chromatographic analysis of phytochemicals components present in mangifera indica leaves for the synthesis of silver nanoparticles by AgNO3 reduction

    International Nuclear Information System (INIS)

    Martínez-Bernett, D; Silva-Granados, A; Herrera, A; Correa-Torres, S N

    2016-01-01

    It was studied the green synthesis of silver nanoparticles (AgNPs) from the reduction of a silver nitrate solution (1 and 10mM) in the presence of an extract of mangifera indica leaves. Phytochemicals components present in extracts of mango leaves were determined using a GC-MS chromatograph. The results showed the presence of the phenolic compound pyrogallol (26.9% wt/5mL of extract) and oleic acid (29.1% wt/5mL of extract), which are useful for the reduction of the metallic salt AgNO 3 and the stabilization of silver nanoparticles. The synthesized nanoparticles were characterized by UV visible spectroscopy (UV-vis), evidencing absorbances at wavelengths of 417nm (AgNPs-1) and 414nm (AgNPs- 10), which are characteristic peaks of this metallic nanoparticles. Scanning Electron Microscopy (SEM) was used to determine the size of the synthesized nanoparticles. A particle size of about 28±7nm was observed for the AgNPs-1 sample and 26±5nm for the AgNPs-10. This suggests the advantages of green chemistry to obtain silver nanoparticles with a narrow size distribution. (paper)

  3. Antibacterial effect of silk treated with silver and copper nanoparticles synthesized by pulsed laser ablation in distilled water

    Science.gov (United States)

    Baruah, Prahlad K.; Raman, Moghe A.; Chakrabartty, Ishani; Rangan, Latha; Sharma, Ashwini K.; Khare, Alika

    2018-05-01

    The antibacterial activity of three kinds of silks viz. Eri, Pat and Muga treated with silver and copper nanoparticles is reported in this paper. The nanoparticles have been synthesized by pulsed laser ablation of the respective metal targets in distilled water. Treatment of the silk pellets with the synthesized nanoparticles exhibited definite antibacterial activity whereas no such activity is observed in the untreated silk pellets.

  4. Influence of dose on particle size of colloidal silver nanoparticles synthesized by gamma radiation

    International Nuclear Information System (INIS)

    Naghavi, Kazem; Saion, Elias; Rezaee, Khadijeh; Yunus, Wan Mahmood Mat

    2010-01-01

    Colloidal silver nanoparticles were synthesized by γ-irradiation-induced reduction method of an aqueous solution containing silver nitrate as a precursor in various concentrations between 7.40x10 -4 and 1.84x10 -3 M, polyvinyl pyrrolidone for capping colloidal nanoparticles, isopropanol as radical scavenger of hydroxyl radicals and deionised water as a solvent. The irradiations were carried out in a 60 Co γ source chamber at doses up to 70 kGy. The optical absorption spectra were measured using UV-vis spectrophotometer and used to study the particle distribution and electronic structure of silver nanoparticles. As the radiation dose increases from 10 to 70 kGy, the absorption intensity increases with increasing dose. The absorption peak λ max blue shifted from 410 to 403 nm correspond to the increase of absorption conduction electron energy from 3.02 to 3.08 eV, indicating the particle size decreases with increasing dose. The particle size was determined by photon cross correlation spectroscopy and the results showed that the particle diameter decreases exponentially with the increase of dose. The transmission electron microscopy images were taken at doses of 20 and 60 kGy and the results confirmed that as the dose increases the diameter of colloidal silver nanoparticle decreases and the particle distribution increases.

  5. Synthesize of silver-nanoparticles by plant extract and its application for preconcentration of cadmium followed by flame atomic absorption spectrometry.

    Science.gov (United States)

    Almertaha, Abdul-Hossein; Eftekhari, Mohammad; Chamsaz, Mahmoud; Gheibi, Mohammad

    2018-02-02

    In this paper, Mentha pulegium leaves extract was used as a green reducing agent for the synthesis of silver-nanoparticles. The synthesized silver-nanoparticles were characterized by UV-VIS spectrophotometry, transmission electron microscopy, X-ray spectroscopy and used as an adsorbent for preconcentration of trace levels of cadmium (ІІ). After the desorption of cadmium (ІІ) in 5 mol L -1 formic acid, the desorbent solution was aspirated into the flame atomic absorption spectrometry for the determination of cadmium. In order to optimize the experimental condition, a response surface methodology based on central composite design was used. The optimum conditions are: pH: 8.6, amounts of adsorbent: 30 mg, 10 min extraction time and desorption time of 2 min. Under the optimum condition, the calibration curve was linear in the range of 5-200 μg L -1 cadmium (ІІ) ion with a correlation coefficient of 0.9995. The limit of detection was 1.1 μg L -1 and the relative standard deviation for 25 μg L -1 cadmium (ІІ) ion was 3.0% (n = 5). In order to check the applicability of the proposed method, different real samples were analyzed. Also, the accuracy of this method was successfully checked by the analysis of certified reference material and spike tests.

  6. Green synthesis and characterization of silver nanoparticle using Aloe barbadensis

    Energy Technology Data Exchange (ETDEWEB)

    Thappily, Praveen, E-mail: pravvmon@gmail.com, E-mail: shiiuvenus@gmail.com; Shiju, K., E-mail: pravvmon@gmail.com, E-mail: shiiuvenus@gmail.com [Laboratory for Molecular Photonics and Electronics (LAMP), Department of Physics, National Institute of Technology, Calicut, Kerala 673601 (India)

    2014-10-15

    Green synthesis of silver nanoparticles was achieved by simple visible light irradiation using aloe barbadensis leaf extract as reducing agent. UV-Vis spectroscopic analysis was used for confirmation of the successful formation of nanoparticles. Investigated the effect of light irradiation time on the light absorption of the nanoparticles. It is observed that upto 25 minutes of light irradiation, the absorption is linearly increasing with time and after that it becomes saturated. Finally, theoretically fitted the time-absorption graph and modeled a relation between them with the help of simulation software.

  7. Green synthesis and characterization of silver nanoparticle using Aloe barbadensis

    International Nuclear Information System (INIS)

    Thappily, Praveen; Shiju, K.

    2014-01-01

    Green synthesis of silver nanoparticles was achieved by simple visible light irradiation using aloe barbadensis leaf extract as reducing agent. UV-Vis spectroscopic analysis was used for confirmation of the successful formation of nanoparticles. Investigated the effect of light irradiation time on the light absorption of the nanoparticles. It is observed that upto 25 minutes of light irradiation, the absorption is linearly increasing with time and after that it becomes saturated. Finally, theoretically fitted the time-absorption graph and modeled a relation between them with the help of simulation software

  8. Electrical and optical characterization of green synthesized Gd{sub 2}S{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Somnath, E-mail: somnathpaul459@gmail.com; Sarkar, A. [Dept of Physics, Bijoy Krishna Girls’ College, 5/3, M. G. Road, Howrah-711101 (India)

    2016-05-06

    Gadolinium sulphide (Gd{sub 2}S{sub 3}) is a magnetic semiconductor with large band gap. Gd{sub 2}S{sub 3} was synthesized following chemical and green techniques. Later process provides good stability of the nano clusters (NC) due to in-situ capping of Gd{sub 2}S{sub 3} NC. It has been found that the optical band gap in Gd{sub 2}S{sub 3} developed by green synthesis is lowered considerably over that in chemically synthesized Gd{sub 2}S{sub 3}. The green agencies used in this work are Jatropha Latex and dilute Garlic extract; both are enriched in sulphur and other organic polymer molecules. Simple observation shows that Gd{sub 2}S{sub 3} NC retains residual magnetization. In this work optical and electrical characterization of the developed Gd{sub 2}S{sub 3} specimens are carried out. The overall results obtained are good.

  9. Large third-order optical nonlinearity of silver colloids in silica glasses synthesized by ion implantation

    International Nuclear Information System (INIS)

    Ghosh, Binita; Chakraborty, Purushottam

    2011-01-01

    Silver ion implantations in fused silica glasses have been made to synthesize silver nanocluster-glass composites and a combination of 'Anti-Resonant Interferometric Nonlinear Spectroscopy (ARINS)' and 'Z-scan' techniques has been employed for the measurement of the third-order optical susceptibility of these nanocomposites. The ARINS technique utilizes the dressing of two unequal-intensity counter-propagating pulsed optical beams with differential nonlinear phases, which occurs upon traversing the sample. This difference in phase manifests itself in the intensity-dependent transmission, measurement of which enables us to extract the values of nonlinear refractive index (η 2 ) and nonlinear absorption coefficient (β), finally yielding the real and imaginary parts of the third-order dielectric susceptibility (χ (3) ). The real and imaginary parts of χ (3) are obtained in the orders of 10 -10 e.s.u for silver nanocluster-glass composites. The present value of χ (3) , to our knowledge, is extremely accurate and much more reliable compared to the values previously obtained by other workers for similar silver-glass nanocomposites using only Z-scan technique. Optical nonlinearity has been explained to be due to two-photon absorption in the present nanocomposite glasses and is essentially of electronic origin.

  10. Green synthesis of silver nanoparticles using cranberry powder aqueous extract: characterization and antimicrobial properties.

    Science.gov (United States)

    Ashour, Asmaa A; Raafat, Dina; El-Gowelli, Hanan M; El-Kamel, Amal H

    2015-01-01

    The growing threat of microbial resistance against traditional antibiotics has prompted the development of several antimicrobial nanoparticles (NPs), including silver NPs (AgNPs). In this article, a simple and eco-friendly method for the synthesis of AgNPs using the cranberry powder aqueous extract is reported. Cranberry powder aqueous extracts (0.2%, 0.5%, and 0.8% w/v) were allowed to interact for 24 hours with a silver nitrate solution (10 mM) at 30°C at a ratio of 1:10. The formation of AgNPs was confirmed by ultraviolet-visible spectroscopy and their concentrations were determined using atomic absorption spectroscopy. The prepared NPs were evaluated by transmission electron microscopy, measurement of ζ-potential, and Fourier-transform infrared spectroscopy. The in vitro antimicrobial properties of AgNPs were then investigated against several microbial strains. Finally, in vivo appraisal of both wound-healing and antimicrobial properties of either plain AgNPs (prepared using 0.2% extract) or AgNP-Pluronic F-127 gel was conducted in a rat model after induction of a Staphylococcus aureus ATCC 6538P wound infection. The formation of AgNPs was confirmed by ultraviolet-visible spectroscopy, where a surface-plasmon resonance absorption peak was observed between 432 and 438 nm. Both size and concentration of the formed AgNPs increased with increasing concentration of the extracts. The developed NPs were stable, almost spherical, and polydisperse, with a size range of 1.4-8.6 nm. The negative ζ-potential values, as well as Fourier-transform infrared spectroscopy analysis, indicated the presence of a capping agent adsorbed onto the surface of the particles. In vitro antimicrobial evaluation revealed a size-dependent activity of the AgNPs against the tested organisms. Finally, AgNPs prepared using 0.2% extract exhibited a substantial in vivo healing potential for full-thickness excision wounds in rats. AgNPs were successfully synthesized from a silver nitrate solution

  11. GREEN SYNTHESIS OF SILVER AND PALLADIUM NANOPARTICLES AT ROOM TEMPERATURE USING COFFEE AND TEA EXTRACT

    Science.gov (United States)

    An extremely simple green approach that generates bulk quantities of nanocrystals of noble metals such as silver (Ag) and palladium (Pd) using coffee and tea extract at room temperature is described. The single-pot method uses no surfactant, capping agent, and/or template. The ob...

  12. Carboxymethylguargum-silver nanocomposite: green synthesis, characterization and an optical sensor for ammonia detection

    International Nuclear Information System (INIS)

    Gupta, Anek Pal; Verma, Devendra Kumar

    2014-01-01

    This work describes the preparation of new carboxymethyl guar gum-silver nanocomposite (CMGG/Ag NC) by green synthesis method. For this carboxymethyl guar gum was used as a reducing agent as well as stabilizer. The silver nanoparticles obtained were characterized by field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), UV–vis spectroscopy, Fourier transform infrared (FTIR) and energy dispersive x-ray analysis (EDX). The average size of the silver nanoparticles was found of ∼6 nm. Thus, the obtained CMGG/AgNPs NC was examined for optical sensing property for detection of ammonia in aqueous medium. The response time and the detection limit of ammonia in aqueous solution were detected at room temperature. It was concluded that in the future, at this room temperature optical ammonia sensor may be used for medical diagnosis and clinically for detecting low ammonia level (up to 1 ppm) in biological samples for various biomedical applications. (paper)

  13. Mechanically stable antimicrobial chitosan-PVA-silver nanocomposite coatings deposited on titanium implants.

    Science.gov (United States)

    Mishra, Sandeep K; Ferreira, J M F; Kannan, S

    2015-05-05

    Bionanocomposite coatings with antimicrobial activity comprising polyvinyl alcohol (PVA)-capped silver nanoparticles embedded in chitosan (CS) matrix were developed by a green soft chemistry synthesis route. Colloidal sols of PVA-capped silver nanoparticles (AgNPs) were synthesized by microwave irradiating an aqueous solution comprising silver nitrate and PVA. The bionanocomposites were prepared by adding an aqueous solution of chitosan to the synthesized PVA-capped AgNPs sols in appropriate ratios. Uniform bionanocomposite coatings with different contents of PVA-capped AgNPs were deposited onto titanium substrates by "spread casting" followed by solvent evaporation. Nanoindentation and antimicrobial activity tests performed on CS and bionanocomposites revealed that the incorporation of PVA-capped AgNPs enhanced the overall functional properties of the coatings, namely their mechanical stability and bactericidal activity against Escherichia coli and Staphylococcus aureus. The coated specimens maintained their antimicrobial activity for 8h due to the slow sustained release of silver ions. The overall benefits for the relevant functional properties of the coatings were shown increase with increasing contents of PVA-capped AgNPs in the bionanocomposites. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Green synthesis of graphene/Ag nanocomposites

    International Nuclear Information System (INIS)

    Yuan Wenhui; Gu Yejian; Li Li

    2012-01-01

    Graphical abstract: A facile and green approach to synthesis of GNS/AgNPs is reported by employing sodium citrate as reductant, and this study represents the use of biocompounds for nontoxic and scalable production of GNS/AgNPs under a suitable concentration of silver ions and the prepared GNS/AgNPs can be used in the field of disinfection. Highlights: ► Graphene/Ag nanocomposites were prepared by a green and facile strategy based on sodium citrate. ► The influence of AgNO 3 amount on particle size and size range of AgNPs was studied. ► The surface plasmon resonance properties of AgNPs on graphene was investigated. ► The antibacterial activity of silver nanoparticles was retained in the nanocomposites. - Abstract: Graphene/Ag nanocomposites (GNS/AgNPs) were fabricated via a green and facile method, employing graphite oxide (GO) as a precursor of graphene, AgNO 3 as a precursor of Ag nanoparticles, and sodium citrate as an environmentally friendly reducing and stabilizing agent. The synthesized GNS/AgNPs were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) and Raman spectra (RS), respectively. The results indicated that graphite oxide was completely reduced to graphene, and the silver ion was reduced by sodium citrate simultaneously. Under a suitable dosage of silver ions, well-dispersed AgNPs on the graphene sheets mostly centralized at 20–25 nm. The surface plasmon resonance property of AgNPs on graphene showed that there was a interaction between AgNPs and graphene supports. In addition, antibacterial activity of silver nanoparticles was retained in the nanocomposites, suggesting that they can be potentially used as a graphene-based biomaterial.

  15. A facile and rapid method for the black pepper leaf mediated green synthesis of silver nanoparticles and the antimicrobial study

    Science.gov (United States)

    Augustine, Robin; Kalarikkal, Nandakumar; Thomas, Sabu

    2014-10-01

    Green synthesis of nanoparticles is widely accepted due to the less toxicity in comparison with chemical methods. But there are certain drawbacks like slow formation of nanoparticles, difficulty to control particle size and shape make them less convenient. Here we report a novel cost-effective and eco-friendly method for the rapid green synthesis of silver nanoparticles using leaf extracts of Piper nigrum. Our results suggest that this method can be used for obtaining silver nanoparticles with controllable size within a few minutes. The fabricated nanoparticles possessed excellent antibacterial property against both Gram-positive and Gram-negative bacteria.

  16. Green synthesized conditions impacting on the reactivity of Fe NPs for the degradation of malachite green.

    Science.gov (United States)

    Huang, Lanlan; Luo, Fang; Chen, Zuliang; Megharaj, Mallavarapu; Naidu, Ravendra

    2015-02-25

    This study investigates green tea extract synthesized conditions impacting on the reactivity of iron nanoparticles (Fe NPs) used for the degradation of malachite green (MG), including the volume ratio of Fe(2+) and tea extract, the solution pH and temperature. Results indicated that the reactivity of Fe NPs increased with higher temperature, but fell with increasing pH and the volume ratio of Fe(2+) and tea extract. Scanning electron microscope (SEM), energy-dispersive spectrometer (EDS), Fourier transform infrared spectroscope (FTIR) and X-ray diffraction (XRD) indicated that Fe NPs were spherical in shape, their diameter was 70-80 nm and they were mainly composed of iron oxide nanoparticles. UV-visible (UV-vis) indicated that reactivity of Fe NPs used in degradation of MG significantly depended on the synthesized conditions of Fe NPs. This was due to their impact on the reactivity and morphology of Fe NPs. Finally, degradation of MG showed that 90.56% of MG was removed using Fe NPs. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Influence of dose on particle size of colloidal silver nanoparticles synthesized by gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Naghavi, Kazem, E-mail: Kazem.naghavi@gmail.co [Universiti Putra Malaysia, Physics Department, 43400 UPM SERDANG, Selangor (Malaysia); Saion, Elias [Universiti Putra Malaysia, Physics Department, 43400 UPM SERDANG, Selangor (Malaysia); Rezaee, Khadijeh [Department of Nuclear Engineering, Faculty of Modern Sciences and Technologies, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of); Yunus, Wan Mahmood Mat [Universiti Putra Malaysia, Physics Department, 43400 UPM SERDANG, Selangor (Malaysia)

    2010-12-15

    Colloidal silver nanoparticles were synthesized by {gamma}-irradiation-induced reduction method of an aqueous solution containing silver nitrate as a precursor in various concentrations between 7.40x10{sup -4} and 1.84x10{sup -3} M, polyvinyl pyrrolidone for capping colloidal nanoparticles, isopropanol as radical scavenger of hydroxyl radicals and deionised water as a solvent. The irradiations were carried out in a {sup 60}Co {gamma} source chamber at doses up to 70 kGy. The optical absorption spectra were measured using UV-vis spectrophotometer and used to study the particle distribution and electronic structure of silver nanoparticles. As the radiation dose increases from 10 to 70 kGy, the absorption intensity increases with increasing dose. The absorption peak {lambda}{sub max} blue shifted from 410 to 403 nm correspond to the increase of absorption conduction electron energy from 3.02 to 3.08 eV, indicating the particle size decreases with increasing dose. The particle size was determined by photon cross correlation spectroscopy and the results showed that the particle diameter decreases exponentially with the increase of dose. The transmission electron microscopy images were taken at doses of 20 and 60 kGy and the results confirmed that as the dose increases the diameter of colloidal silver nanoparticle decreases and the particle distribution increases.

  18. Robustness analysis of a green chemistry-based model for the classification of silver nanoparticles synthesis processes

    Science.gov (United States)

    This paper proposes a robustness analysis based on Multiple Criteria Decision Aiding (MCDA). The ensuing model was used to assess the implementation of green chemistry principles in the synthesis of silver nanoparticles. Its recommendations were also compared to an earlier develo...

  19. Mosquito larvicidal properties of silver nanoparticles synthesized using Heliotropium indicum (Boraginaceae) against Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus (Diptera: Culicidae).

    Science.gov (United States)

    Veerakumar, Kaliyan; Govindarajan, Marimuthu; Rajeswary, Mohan; Muthukumaran, Udaiyan

    2014-06-01

    Mosquitoes transmit dreadful diseases to human beings wherein biological control of these vectors using plant-derived molecules would be an alternative to reduce mosquito population. In the present study activity of aqueous leaf extract and silver nanoparticles (AgNPs) synthesized using Helitropium indicum plant leaves against late third instar larvae of Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus. The range of varying concentrations of synthesized AgNPs (8, 16, 24, 32, and 40 μg/mL) and aqueous leaf extract (30, 60, 90, 120, and 150 μg/mL) were tested against the larvae of Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus. The synthesized AgNPs from H. indicum were highly toxic than crude leaf aqueous extract in three important vector mosquito species. The results were recorded from UV-Vis spectrum, Fourier transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy analysis, transmission electron microscopy, and histogram. The synthesized AgNPs showed larvicidal effects after 24 h of exposure. Considerable mortality was evident after the treatment of H. indicum for all three important vector mosquitoes. The LC50 and LC90 values of H. indicum aqueous leaf extract appeared to be effective against A. stephensi (LC50, 68.73 μg/mL; LC90, 121.07 μg/mL) followed by A. aegypti (LC50, 72.72 μg/mL; LC90, 126.86 μg/mL) and C. quinquefasciatus (LC50, 78.74 μg/mL; LC90, 134.39 μg/mL). Synthesized AgNPs against the vector mosquitoes of A. stephensi, A. aegypti, and C. quinquefasciatus had the following LC50 and LC90 values: A. stephensi had LC50 and LC90 values of 18.40 and 32.45 μg/mL, A. aegypti had LC50 and LC90 values of 20.10 and 35.97 μg/mL, and C. quinquefasciatus had LC50 and LC90 values of 21.84 and 38.10 μg/mL. No mortality was observed in the control. These results suggest that the leaf aqueous extracts of H. indicum and green synthesis of silver nanoparticles have the

  20. Seaweed-synthesized silver nanoparticles: an eco-friendly tool in the fight against Plasmodium falciparum and its vector Anopheles stephensi?

    Science.gov (United States)

    Murugan, Kadarkarai; Samidoss, Christina Mary; Panneerselvam, Chellasamy; Higuchi, Akon; Roni, Mathath; Suresh, Udaiyan; Chandramohan, Balamurugan; Subramaniam, Jayapal; Madhiyazhagan, Pari; Dinesh, Devakumar; Rajaganesh, Rajapandian; Alarfaj, Abdullah A; Nicoletti, Marcello; Kumar, Suresh; Wei, Hui; Canale, Angelo; Mehlhorn, Heinz; Benelli, Giovanni

    2015-11-01

    Malaria, the most widespread mosquito-borne disease, affects 350-500 million people each year. Eco-friendly control tools against malaria vectors are urgently needed. This research proposed a novel method of plant-mediated synthesis of silver nanoparticles (AgNP) using a cheap seaweed extract of Ulva lactuca, acting as a reducing and capping agent. AgNP were characterized by UV-vis spectrophotometry, Fourier transform infrared (FTIR) spectroscopy, energy-dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), and X-ray diffraction (XRD). The U. lactuca extract and the green-synthesized AgNP were tested against larvae and pupae of the malaria vector Anopheles stephensi. In mosquitocidal assays, LC50 values of U. lactuca extract against A. stephensi larvae and pupae were 18.365 ppm (I instar), 23.948 ppm (II), 29.701 ppm (III), 37.517 ppm (IV), and 43.012 ppm (pupae). LC50 values of AgNP against A. stephensi were 2.111 ppm (I), 3.090 ppm (II), 4.629 ppm (III), 5.261 ppm (IV), and 6.860 ppm (pupae). Smoke toxicity experiments conducted against mosquito adults showed that U. lactuca coils evoked mortality rates comparable to the permethrin-based positive control (66, 51, and 41%, respectively). Furthermore, the antiplasmodial activity of U. lactuca extract and U. lactuca-synthesized AgNP was evaluated against CQ-resistant (CQ-r) and CQ-sensitive (CQ-s) strains of Plasmodium falciparum. Fifty percent inhibitory concentration (IC50) values of U. lactuca were 57.26 μg/ml (CQ-s) and 66.36 μg/ml (CQ-r); U. lactuca-synthesized AgNP IC50 values were 76.33 μg/ml (CQ-s) and 79.13 μg/ml (CQ-r). Overall, our results highlighted out that U. lactuca-synthesized AgNP may be employed to develop newer and safer agents for malaria control.

  1. Green synthesis of silver nanoparticles by waste tea extract and degradation of organic dye in the absence and presence of H2O2

    Science.gov (United States)

    Qing, Weixia; Chen, Kui; Wang, Yong; Liu, Xiuhua; Lu, Minghua

    2017-11-01

    The silver nanoparticles (AgNPs) had been successfully synthesized by using an aqueous extract of waste tea as a stabilizing and reducing agent. The green synthesized AgNPs were characterized by ultraviolet visible (UV-vis) spectroscopy, Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), X-ray powder diffraction (XRD) and zeta potential. The work focused on the degradation of methylene blue (MB) and ethyl violet (EV) in aqueous solution with AgNPs as catalyst in the absence and presence of H2O2. The AgNPs exhibit fast, efficient and stable catalytic activity in the degradation of cationic organic dyes, but it is no catalytic degradation of anionic organic dyes at room temperature. The kinetics of dyes degradation with AgNPs follows the pseudo-second-order model. Meanwhile, the AgNPs also show better antimicrobial activity against pathogenic bacteria. The formed highly catalytic active AgNPs can be used as catalyst in industries and water purification.

  2. Rapid green synthesis of silver nanoparticles from Chrysanthemum indicum L and its antibacterial and cytotoxic effects: an in vitro study

    Directory of Open Access Journals (Sweden)

    Arokiyaraj S

    2014-01-01

    Full Text Available Selvaraj Arokiyaraj,1 Mariadhas Valan Arasu,2 Savariar Vincent,3 Nyayirukannaian Udaya Prakash,4 Seong Ho Choi,5 Young-Kyoon Oh,1 Ki Choon Choi,2 Kyoung Hoon Kim1,61Department of Animal Nutrition and Physiology, National Institute of Animal Science, Rural Development Administration, Suwon, Republic of Korea; 2Grassland and Forage Division, National Institute of Animal Science, Rural Development Administration, Seonghwan-Eup, Cheonan-Si, Chungnam, Republic of Korea; 3Center for Environmental Research and Development, Loyola College, Chennai, India; 4Research and Development, Vel Tech Dr RR and Dr SR Technical University, Chennai, India; 5Department of Animal Science, Chungbuk National University, Chungbuk, Republic of Korea; 6Department of Animal Science, Seoul National University, Pyeongchang, Republic of KoreaAbstract: The present work reports a simple, cost-effective, and ecofriendly method for the synthesis of silver nanoparticles (AgNPs using Chrysanthemum indicum and its antibacterial and cytotoxic effects. The formation of AgNPs was confirmed by color change, and it was further characterized by ultraviolet–visible spectroscopy (435 nm. The phytochemical screening of C. indicum revealed the presence of flavonoids, terpenoids, and glycosides, suggesting that these compounds act as reducing and stabilizing agents. The crystalline nature of the synthesized particles was confirmed by X-ray diffraction, as they exhibited face-centered cubic symmetry. The size and morphology of the particles were characterized by transmission electron microscopy, which showed spherical shapes and sizes that ranged between 37.71–71.99 nm. Energy-dispersive X-ray spectroscopy documented the presence of silver. The antimicrobial effect of the synthesized AgNPs revealed a significant effect against the bacteria Klebsiella pneumonia, Escherichia coli, and Pseudomonas aeruginosa. Additionally, cytotoxic assays showed no toxicity of AgNPs toward 3T3 mouse embryo

  3. Egg extract of apple snail for eco-friendly synthesis of silver nanoparticles and their antibacterial activity.

    Science.gov (United States)

    Janthima, Ratima; Khamhaengpol, Arunrat; Siri, Sineenat

    2018-03-01

    Green synthesis of silver nanoparticles (AgNPs) provides the alternative method with cost effectiveness and the eco-friendly process by using natural biomolecules as reducing and stabilizing agents. Alternative to the most studies of plant extracts, this work demonstrated a use of egg extract of apple snail (Pomacea canaliculata) for an eco-friendly production of AgNPs. The extract contained at least six proteins with the molecular weight in a range of 24-65 kDa that exhibited the reducing activity. The dispersive AgNPs were produced in the reaction containing only the extract and silver nitrate, as determined by the characteristic surface plasmon resonance peak of silver at 412 nm. The synthesized AgNPs were spherical with the average diameter of 9.0 ± 5.9 nm. The X-ray diffraction pattern and selected area electron diffraction (SAED) analyses confirmed the face-cubic centre (fcc) unit cell structure of AgNPs. The synthesized AgNPs exhibited the antibacterial activity against both Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli. Results of this work clearly showed the potential use of the egg extract of apple snail for a green synthesis of small size AgNPs exhibiting the antibacterial activity.

  4. Application of silver nanoparticles in the detection of SYBR Green I by surface enhanced Raman and surface-enhanced fluorescence

    Science.gov (United States)

    Guo, Wei; Wu, Jian; Wang, Chunyan; Zhang, Tian; Chen, Tao

    2018-05-01

    Silver nanomaterials have remarkable application in biomedical detection due to their unique surface plasmon resonance (SPR) characteristics. It can be used for surface-enhanced Raman scattering (SERS) and surface-enhanced fluorescence (SEF). Current research elaborates a technique for improvement of SYBR Green I detection obtained from surface-enhanced Raman scattering (SERS) and surface-enhanced fluorescence (SEF) by silver nanoparticles with the average size about 70 nm. Primarily, SYBR Green I is an important fluorescent dye used in polymerase chain reaction (PCR). It is found that both Raman and fluorescence can be used for detection of this dye. Furthermore, the enhanced efficiency of the Raman and fluorescence by SERS and SEF is observed in this study, the enhancement factor for Raman signals is 3.2 × 103, and the fluorescence intensity bincreased two times by SEF. The quantitative detection of SYBR Green I by SERS and SEF can be achieved. The present work can be used to improve the detection of SYBR Green I by SERS and SEF. It would also be employed for high-sensitive detection of other materials in the future.

  5. Physicochemical characterization of silver nanoparticles synthesize using Aloe Vera (Aloe barbadensis)

    Science.gov (United States)

    Kuponiyi, Abiola; Kassama, Lamin; Kukhtareva, Tatiana

    2014-08-01

    Production of silver nanoparticles (AgNPs) using different biological methods is gaining recognition due to their multiple applications. Although, several physical and chemical methods have been used for the synthesis and stabilizing of AgNPs, yet, a green chemistry method is preferable because it is cost effective and environmentally friendly. The synthesis was done using Aloe Vera (AV) extract because it has chemical compounds such as "Antrokinon" that are known for its antibacterial, antivirus and anticancer properties. We hypothesize that AV extract can produce a stable nanoparticles within the 100 nm range and be biologically active. The biological compounds were extracted from AV skin with water and ethanol which was used as the reduction agent for the synthesis of nanoparticles. The biological extract and AgNO3 were blended and heated to synthesize AgNPs. The reaction process was monitored using UV-Visible spectroscopy. Fourier Transfer Infrared spectroscopy (FTIR) was used for the characterization of biological compounds and their substituent groups before and after the reaction process. Dynamic Light scattering (DLS) method was used to characterize particle size of AgNPs and their biomolecular stability. Results showed that biological compounds such as aliphatic amines, alkenes (=C-H), alkanes (C-H), alcohol (O-H) and unsaturated esters(C-O), which has an average particle size of 109 and 215.8 nm and polydispersity index of 0.451 and 0.375 for ethanol and water extract, respectively. According to TEM measurements the size of AgNPs are in the range 5-20 nm The results suggested that ethanol derived AgNPs contained higher yield of organic compounds, thus has better solubility power than water. Ag NPs can be used to control salmonella in poultry industry.

  6. Green Synthesis and Antimicrobial Activities of Silver Nanoparticles using Cell Free-Extracts of Enterococcus species

    Directory of Open Access Journals (Sweden)

    Iyabo C. OLADIPO

    2017-06-01

    Full Text Available Cell-free extracts of six strains of Enterococcus species obtained from fermented foods were used for the green synthesis of silver nanoparticles (AgNPs, which was characterized by UV-Vis spectroscopy, Fourier-transform infrared spectroscopy (FTIR and transmission electron microscopy (TEM. The biosynthesized AgNPs were dark brown in colour having surface plasmon resonance in the range of 420-442 nm. The spherical shaped AgNPs had sizes of 4-55 nm, whose formations were facilitated by proteins as indicated by the presence of peaks 1,635-1,637 and 3,275-3,313 cm-1 in the FTIR spectra. The energy dispersive x-ray (EDX showed prominent presence of silver in the AgNPs colloidal solution, while the selected area electron diffraction was typified by the face-centred crystalline nature of silver. The particles inhibited the growth of multi-drug resistant clinical isolates of Escherichia coli, Klebsiella pneumoniae and Proteus vulgaris, and also potentiated the activities of ampicillin, ciprofloxacin and cefuroxime in the AgNPs-antibiotic synergy studies. In addition, the prospective relevance of the particles as nanopreservative in paints was demonstrated with the inhibition of growth of Staphylococcus aureus, Pseudomonas aeruginosa, Aspergillus niger and A. flavus in AgNPs-paint admixture. This report further demonstrates the green synthesis of AgNPs by strains of Enterococcus species.

  7. Plant-mediated synthesis of silver nanoparticles using parsley ( Petroselinum crispum) leaf extract: spectral analysis of the particles and antibacterial study

    Science.gov (United States)

    Roy, Kaushik; Sarkar, C. K.; Ghosh, C. K.

    2015-12-01

    Synthesis of nanomaterials may involve various routes including physical, chemical and biological approaches. Here, the biological green route was chosen to prepare silver nanoparticles from silver salts to avoid the requirement of costly instruments and involvement of hazardous chemicals as well. To make the process clean and green, leaf extract of parsley ( Petroselinum crispum) was used to synthesize Ag nanoparticles at room temperature. The formation of Ag-nanoparticles was monitored by UV-Vis spectroscopy. The presence of silver in the sample and its crystalline nature were verified by X-ray diffraction (XRD) analysis. The size distribution profile and particle size in the suspension were manipulated from dynamic light scattering (DLS) pattern. The shape, size and morphology of the biogenic nanoparticles were studied using high resolution transmission electron microscope (TEM). Fourier transform infra-red spectroscopy was used to detect the biomolecules responsible for reduction of silver ions. These biogenic Ag-nanoparticles showed appreciable antibacterial efficacy against three bacteria— Klebsiella pneumoniae, Escherichia coli and Staphylococcus aureus.

  8. Green synthesis of silver nanoparticles using Pimpinella anisum seeds: antimicrobial activity and cytotoxicity on human neonatal skin stromal cells and colon cancer cells

    Directory of Open Access Journals (Sweden)

    AlSalhi MS

    2016-09-01

    Full Text Available Mohamad S AlSalhi,1,2 Sandhanasamy Devanesan,1,2 Akram A Alfuraydi,3 Radhakrishnan Vishnubalaji,4 Murugan A Munusamy,3 Kadarkarai Murugan,5 Marcello Nicoletti,6 Giovanni Benelli7 1Research Chair in Laser Diagnosis of Cancers, 2Department of Physics and Astronomy, 3Department of Botany and Microbiology, College of Science, 4Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia; 5Division of Entomology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, India; 6Department of Environmental Biology, Sapienza University of Rome, Rome, 7Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy Background: The present study focused on a simple and eco-friendly method for the synthesis of silver nanoparticles (AgNPs with multipurpose anticancer and antimicrobial activities. Materials and methods: We studied a green synthesis route to produce AgNPs by using an aqueous extract of Pimpinella anisum seeds (3 mM. Their antimicrobial activity and cytotoxicity on human neonatal skin stromal cells (hSSCs and colon cancer cells (HT115 were assessed. Results: A biophysical characterization of the synthesized AgNPs was realized: the morphology of AgNPs was determined by transmission electron microscopy, energy dispersive spectroscopy, X-ray powder diffraction, and ultraviolet-vis absorption spectroscopy. Transmission electron microscopy showed spherical shapes of AgNPs of P. anisum seed extracts with a 3.2 nm minimum diameter and average diameter ranging from 3.2 to 16 nm. X-ray powder diffraction highlighted the crystalline nature of the nanoparticles, ultraviolet-vis absorption spectroscopy was used to monitor their synthesis, and Fourier transform infrared spectroscopy showed the main reducing groups from the seed extract. Energy dispersive spectroscopy was used to confirm the presence of elemental silver. We evaluated the antimicrobial potential

  9. Low-cost and eco-friendly green synthesis of silver nanoparticles using Feronia elephantum (Rutaceae) against Culex quinquefasciatus, Anopheles stephensi, and Aedes aegypti (Diptera: Culicidae).

    Science.gov (United States)

    Veerakumar, Kaliyan; Govindarajan, Marimuthu; Rajeswary, Mohan; Muthukumaran, Udaiyan

    2014-05-01

    Mosquitoes transmit serious human diseases, causing millions of deaths every year. The use of synthetic insecticides to control vector mosquitoes has caused physiological resistance and adverse environmental effects in addition to high operational cost. Insecticides of synthesized natural products for vector control have been a priority in this area. In the present study, the larvicidal activity of silver nanoparticles (AgNPs) synthesized using Feronia elephantum plant leaf extract against late third-instar larvae of Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus was determined. The range of concentrations of synthesized AgNPs (5, 10, 15, 20, and 25 μg mL(-1)) and aqueous leaf extract (25, 50, 75, 100, and 125 μg mL(-1)) were tested against the larvae of A. stephensi, A. aegypti, and C. quinquefasciatus. Larvae were exposed to varying concentrations of aqueous crude extract and synthesized AgNPs for 24 h. Considerable mortality was evident after the treatment of F. elephantum for all three important vector mosquitoes. The synthesized AgNPs from F. elephantum were highly toxic than crude leaf aqueous extract to three important vector mosquito species. The results were recorded from UV-visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy analysis (EDX). Synthesized AgNPs against the vector mosquitoes A. stephensi, A. aegypti, and C. quinquefasciatus had the following LC50 and LC90 values: A. stephensi had LC50 and LC90 values of 11.56 and 20.56 μg mL(-1); A. aegypti had LC50 and LC90 values of 13.13 and 23.12 μg mL(-1); and C. quinquefasciatus had LC50 and LC90 values of 14.19 and 24.30 μg mL(-1). No mortality was observed in the control. These results suggest that the green synthesis of silver nanoparticles using F. elephantum has the potential to be used as an ideal eco-friendly approach for the control of A. stephensi, A. aegypti, and C

  10. Green synthesis and antibacterial effects of aqueous colloidal solutions of silver nanoparticles using camomile terpenoids as a combined reducing and capping agent.

    Science.gov (United States)

    Parlinska-Wojtan, Magdalena; Kus-Liskiewicz, Małgorzata; Depciuch, Joanna; Sadik, Omowunmi

    2016-08-01

    Green synthesis method using camomile extract was applied to synthesize silver nanoparticles to tune their antibacterial properties merging the synergistic effect of camomile and Ag. Scanning transmission electron microscopy revealed that camomile extract (CE) consisted of porous globular nanometer sized structures, which were a perfect support for Ag nanoparticles. The Ag nanoparticles synthesized with the camomile extract (AgNPs/CE) of 7 nm average sizes, were uniformly distributed on the CE support, contrary to the pure Ag nanoparticles synthesized with glucose (AgNPs/G), which were over 50 nm in diameter and strongly agglomerated. The energy dispersive X-ray spectroscopy chemical analysis showed that camomile terpenoids act as a capping and reducing agent being adsorbed on the surface of AgNPs/CE enabling their reduction from Ag(+) and preventing them from agglomeration. Fourier transform infrared and ultraviolet-visible spectroscopy measurements confirmed these findings, as the spectra of AgNPs/CE, compared to pure CE, did not contain the 1109 cm(-1) band, corresponding to -C-O groups of terpenoids and the peaks at 280 and 320 nm, respectively. Antibacterial tests using four bacteria strains showed that the AgNPs/CE performed five times better compared to CE AgNPs/G samples, reducing totally all the bacteria in 2 h.

  11. Antiproliferative effect of silver nanoparticles synthesized using amla on Hep2 cell line

    Institute of Scientific and Technical Information of China (English)

    Fathima Stanley Rosarin; Vadivel Arulmozhi; Samuthira Nagarajan; Sankaran Mirunalini

    2013-01-01

    Objective: To synthesize silver nanoparticles by amla extract, screen the cytotoxic, oxidative stress and apoptotic effect of silver nanoparticles (AgNPs) on Hep2 cell line (laryngeal carcinoma cells) in vitro, and to compare the effect of Phyllanthus emblica (P. emblica) (amla) with AgNPs synthesized by amla and 5-FU. Methods: AgNPs was synthesized by P. emblica (aqueous extract) and nanoparticles were characterized UV-Vis spec, the presence of biomoloecules of amla capped in AgNPs was found by FT-IR analysis, shape and size were examined by SEM and DLS. Cytotoxicity of experimental drugs was tested to find IC50 value. ROS generation in cells have been measured by DCFH-DA staining, AO-EtBr, Rhodamine-123 staining and DNA fragmentation were performed to assess apoptotic cell death, mitochondrial membrane potential and apoptotic DNA damage, respectively. Oxidative stress was analyzed by measuring lipid peroxides and antioxidants level to understand the cancer cell death by pro-oxidant mechanism.Results:PE-AgNPs was synthesized and confirmed through kinetic behavior of NPs. The shape of PE-AgNPs was spherical and cubic since it was agglomerated, and the nanoparticle surface was complicated. Average particle size distribution of PE-AgNPs was found to be 188 nm. Potent biomolecules of P. emblica such as polyphenols were capped with AgNPs and reduced its toxicity. In cytotoxicity assay the concentration in which the maximum number of cell death was 60 μg/mL and 50 μg/mL for P. emblica (alone) and AgNPs, respectively and IC50 values were fixed as 30 μg/mL and 20 μg/mL. ROS generation, apoptotic morphological changes, mitochondrial depolarization, DNA damage and oxidative stress was observed as more in AgNPs treated cells than in P. emblica (30 μg/mL) (alone) treated cells and 5-FU treated cells gave similar result.Conclusions:The results suggest that the AgNPs are capped with biomolecules of amla enhanced cytotoxicity in laryngeal cancer cells through oxidative

  12. X-ray diffraction analysis of synthesized silver nanohexagon for the study of their mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Das, Ratan, E-mail: dasratanphy@gmail.com; Sarkar, Sumit, E-mail: sarkarsumit07phy@gmail.com

    2015-11-01

    Silver nanohexagons have been prepared through the chemical reduction method using poly(vinyl pyrrolidone) (PVP) as a capping agent. High Resolution Transmission Electron Microscopic (HRTEM) study shows that average size of the prepared silver nanoparticles is 45 nm approximately with nearly hexagon shape. The peaks in the X-Ray Diffraction (XRD) pattern are in good agreement with that of face centered cubic structure. Williamson–Hall plots (W–H plot) have been analyzed to study the crystalline size and lattice strain considering the peak broadening of the AgNHs. The mechanical properties such as strain, stress and energy density of prepared nanohexagon have been calculated assuming uniform deformation model (UDM), uniform stress deformation model (USDM), and uniform deformation energy density model (UDEDM) and size–strain plot method (SSP). From all these results, it is found that the size and strain estimated from W–H analysis and SSP method are in good agreement. - Highlights: • PVP capped silver nanohexagons have been synthesized by chemical reduction method. • HRTEM images show that the average size of the prepared nanohexagons is 45 nm. • X-ray diffraction study confirms the crystallinity of silver nanohexagons. • Elastic properties have been calculated by W–H analysis using different models. • Further, the results from UDM, USDM, and UDEDM matches with SSP method.

  13. ANTIFUNGAL ACTIVITY OF SILVER NANOPARTICLES OBTAINED BY GREEN SYNTHESIS

    Directory of Open Access Journals (Sweden)

    Eduardo José J. MALLMANN

    2015-04-01

    Full Text Available Silver nanoparticles (AgNPs are metal structures at the nanoscale. AgNPs have exhibited antimicrobial activities against fungi and bacteria; however synthesis of AgNPs can generate toxic waste during the reaction process. Accordingly, new routes using non-toxic compounds have been researched. The proposal of the present study was to synthesize AgNPs using ribose as a reducing agent and sodium dodecyl sulfate (SDS as a stabilizer. The antifungal activity of these particles against C. albicans and C. tropicalis was also evaluated. Stable nanoparticles 12.5 ± 4.9 nm (mean ± SD in size were obtained, which showed high activity against Candida spp. and could represent an alternative for fungal infection treatment.

  14. Antibacterial Potential of Jatropha curcas Synthesized Silver Nanoparticles against Food Borne Pathogens

    Science.gov (United States)

    Chauhan, Nitin; Tyagi, Amit K.; Kumar, Pushpendar; Malik, Anushree

    2016-01-01

    The aqueous leaf extract of Jatropha curcas was used for the synthesis of silver nanoparticles (Jc-AgNps) which were further evaluated for its antibacterial potential against food borne pathogens. J. curcas leaf extract could synthesize stable silver nanoparticles (Zeta potential: -23.4 mV) with absorption band at 430 nm. Fourier transform infrared spectroscopy indicated various biological compounds responsible for capping and stabilizing Jc-AgNps in suspension, while the presence of silver was authenticated by scanning electron microscopy (SEM) equipped with energy-dispersive X-ray. Jc-AgNps were confirmed to be uniform in shape, size and behavior through dynamic light scattering, transmission electron microscopy (TEM), X-ray diffraction, SEM, and atomic force microscopy (AFM) analysis. To investigate the antibacterial activity, disk diffusion and microplate dilution assays were performed and zone of inhibition (ZOI) as well as minimum inhibitory/bactericidal concentrations (MIC/MBCs) were evaluated against selected bacterial strains. Overall results showed that Escherichia coli (ZOI: 23 mm, MBC: 0.010 mg/ml) was the most sensitive organism, whereas Staphylococcus aureus (ZOI: 14.66 mm, MBC: 0.041 mg/ml) and Salmonella enterica (ZOI: 16.66 mm, MBC: 0.041 mg/ml) were the least sensitive against Jc-AgNps. The detailed microscopic investigations using SEM, TEM, and AFM were performed to understand the antibacterial impacts of Jc-AgNps against Listeria monocytogenes. SEM and TEM analysis showed the clear deformation and disintegration of treated L. monocytogenes cells, whereas AFM established a decrease in the height and cell surface roughness (root mean square value) in the treated L. monocytogenes. PMID:27877160

  15. Green synthesis of silver nanoparticles using Ganoderma neo-japonicum Imazeki: a potential cytotoxic agent against breast cancer cells

    Science.gov (United States)

    Gurunathan, Sangiliyandi; Raman, Jegadeesh; Malek, Sri Nurestri Abd; John, Priscilla A; Vikineswary, Sabaratnam

    2013-01-01

    Background Silver nanoparticles (AgNPs) are an important class of nanomaterial for a wide range of industrial and biomedical applications. AgNPs have been used as antimicrobial and disinfectant agents due their detrimental effect on target cells. The aim of our study was to determine the cytotoxic effects of biologically synthesized AgNPs using hot aqueous extracts of the mycelia of Ganoderma neo-japonicum Imazeki on MDA-MB-231 human breast cancer cells. Methods We developed a green method for the synthesis of water-soluble AgNPs by treating silver ions with hot aqueous extract of the mycelia of G. neo-japonicum. The formation of AgNPs was characterized by ultraviolet-visible absorption spectroscopy, X-ray diffraction, dynamic light scattering, and transmission electron microscopy. Furthermore, the toxicity of synthesized AgNPs was evaluated using a series of assays: such as cell viability, lactate dehydrogenase leakage, reactive oxygen species generation, caspase 3, DNA laddering, and terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick-end labeling in human breast cancer cells (MDA-MB-231). Results The ultraviolet-visible absorption spectroscopy results showed a strong resonance centered on the surface of AgNPs at 420 nm. The X-ray diffraction analysis confirmed that the synthesized AgNPs were single-crystalline, corresponding with the result of transmission electron microscopy. Treatment of MDA-MB-231 breast cancer cells with various concentrations of AgNPs (1–10 μg/mL) for 24 hours revealed that AgNPs could inhibit cell viability and induce membrane leakage in a dose-dependent manner. Cells exposed to AgNPs showed increased reactive oxygen species and hydroxyl radical production. Furthermore, the apoptotic effects of AgNPs were confirmed by activation of caspase 3 and DNA nuclear fragmentation. Conclusion The results indicate that AgNPs possess cytotoxic effects with apoptotic features and suggest that the reactive oxygen species generated by

  16. A green approach to prepare silver nanoparticles loaded gum acacia/poly(acrylate) hydrogels.

    Science.gov (United States)

    Bajpai, S K; Kumari, Mamta

    2015-09-01

    In this work, gum acacia (GA)/poly(sodium acrylate) semi-interpenetrating polymer networks (Semi-IPN) have been fabricated via free radical initiated aqueous polymerization of monomer sodium acrylate (SA) in the presence of dissolved Gum acacia (GA), using N,N'-methylenebisacrylamide (MB) as cross-linker and potassium persulphate (KPS) as initiator. The semi-IPNs, synthesized, were characterized by various techniques such as X-ray diffraction (XRD), thermo gravimetric analysis (TGA) and Fourier transform infrared (FTIR) spectroscopy. The dynamic water uptake behavior of semi-IPNs was investigated and the data were interpreted by various kinetic models. The equilibrium swelling data were used to evaluate various network parameters. The semi-IPNs were used as template for the in situ preparation of silver nanoparticles using extract of Syzygium aromaticum (clove). The formation of silver nanoparticles was confirmed by surface plasmon resonance (SPR), XRD and transmission electron microscopy (TEM). Finally, the antibacterial activity of GA/poly(SA)/silver nanocomposites was tested against E. coli. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Synthesis and characterization of silver nanoparticles by sol-gel route from silver nitrate

    International Nuclear Information System (INIS)

    Morales, Jorge; Moran, Jose; Quintana, Maria; Estrada, Walter

    2009-01-01

    Silver nanoparticles colloids have been synthesized by sol-gel method. This synthesis consists in silver nitrate reduction by ethylene glycol in a process called polyol. The growth of the nanoparticles have been controlled by the steric stabilization of the colloid with polyvinylpyrrolidone (PVP, M w = 40 000). The silver nanoparticle size and structure was depending on the control of parameters such as: molar concentrations ratio of silver nitrate and PVP, temperature of reaction and the reflux time. Colloids have been characterized by UV-vis spectroscopy in the range from 300 to 1000 nm. The results show that the typical peak of surface plasmon resonance is formed at 400-450 nm indicating the formation of silver nanoparticles. The presences of silver nanoparticles of spherical shape with size among 20-40 nm were observed by transmission electronic microscopy (TEM). Electron diffraction patterns confirmed that synthesized colloids contain metallic silver with a crystal structure face centered cubic FCC. (author)

  18. Eco-friendly synthesis of silver and gold nanoparticles with enhanced bactericidal activity and study of silver catalyzed reduction of 4-nitrophenol.

    Science.gov (United States)

    Naraginti, Saraschandra; Sivakumar, A

    2014-07-15

    The present study reports a simple and robust method for synthesis of silver and gold nanoparticles using Coleus forskohlii root extract as reducing and stabilizing agent. Stable silver nanoparticles (AgNPs) and gold nanopoarticles (AuNPs) were formed on treatment of an aqueous silver nitrate (AgNO3) and chloroauric acid (HAuCl4) solutions with the root extract. The nanoparticles obtained were characterized by UV-Visible spectroscopy, Transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FT-IR). UV-Vis and TEM analysis indicate that with higher quantities of root extract, the interaction is enhanced leading to size reduction of spherical metal nanoparticles. XRD confirms face-centered cubic phase and the diffraction peaks can be attributed to (111), (200), (222) and (311) planes for these nanoparticles. These synthesized Ag and Au nanoparticles were found to exhibit excellent bactericidal activity against clinically isolated selected pathogens such as Escherichia coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus). The synthesized AgNPs were also found to function as an efficient green catalyst in the reduction of anthropogenic pollutant 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) by sodium borohydride, which was apparent from the periodical color change from bright yellow to colorless, after the addition of AgNPs. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Plant Extract Synthesized PLA Nanoparticles for Controlled and Sustained Release of Quercetin: A Green Approach

    Science.gov (United States)

    Yadav, Sudesh Kumar

    2012-01-01

    Background Green synthesis of metallic nanoparticles (NPs) has been extensively carried out by using plant extracts (PEs) which have property of stabilizers/ emulsifiers. To our knowledge, there is no comprehensive study on applying a green approach using PEs for fabrication of biodegradable PLA NPs. Conventional methods rely on molecules like polyvinyl alcohol, polyethylene glycol, D-alpha-tocopheryl poly(ethylene glycol 1000) succinate as stabilizers/emulsifiers for the synthesis of such biodegradable NPs which are known to be toxic. So, there is urgent need to look for stabilizers which are biogenic and non-toxic. The present study investigated use of PEs as stabilizers/emulsifiers for the fabrication of stable PLA NPs. Synthesized PLA NPs through this green process were explored for controlled release of the well known antioxidant molecule quercetin. Methodology/Principal Findings Stable PLA NPs were synthesized using leaf extracts of medicinally important plants like Syzygium cumini (1), Bauhinia variegata (2), Cedrus deodara (3), Lonicera japonica (4) and Eleaocarpus sphaericus (5). Small and uniformly distributed NPs in the size range 70±30 nm to 143±36 nm were formed with these PEs. To explore such NPs for drugs/ small molecules delivery, we have successfully encapsulated quercetin a lipophilic molecule on a most uniformly distributed PLA-4 NPs synthesized using Lonicera japonica leaf extract. Quercetin loaded PLA-4 NPs were observed for slow and sustained release of quercetin molecule. Conclusions This green approach based on PEs mediated synthesis of stable PLA NPs pave the way for encapsulating drug/small molecules, nutraceuticals and other bioactive ingredients for safer cellular uptake, biodistribution and targeted delivery. Hence, such PEs synthesized PLA NPs would be useful to enhance the therapeutic efficacy of encapsulated small molecules/drugs. Furthermore, different types of plants can be explored for the synthesis of PLA as well as other

  20. Bioreduction potentials of dried root of Zingiber officinale for a simple green synthesis of silver nanoparticles: Antibacterial studies.

    Science.gov (United States)

    Judith Vijaya, J; Jayaprakash, N; Kombaiah, K; Kaviyarasu, K; John Kennedy, L; Jothi Ramalingam, R; Al-Lohedan, Hamad A; V M, Mansoor-Ali; Maaza, M

    2017-12-01

    Green synthesis of silver nanoparticles (Ag NPs) using an extract of dried Zingiber officinale (ginger) root as a reducing and capping agent in the presence of microwave irradiation was herein reported for the first time. The formation of symmetrical spheres is confirmed from the UV-Visible spectrum of Ag NPs. Fourier transform infra-red spectroscopy confirms the formation of the Ag NPs. X-ray diffraction analysis was utilized to calculate the crystallite size of Ag NPs and the value was found to be 10nm. High-resolution transmission electron microscopy and high-resolution scanning electron microscopy were used to investigate the morphology and size of the synthesized samples. The sphere like morphology is confirmed from the images. The purity and crystallinity of Ag NPs is confirmed by energy-dispersive X-Ray analysis and selected area electron diffraction respectively. The electrochemical behavior of the synthesized Ag NPs was assessed by cyclic voltammetry (CV) and shows the redox peaks in the potential range of -1.1 to +1.1V. Agar diffusion method is used to examine the antibacterial activity of Ag NPs. For this purpose, two gram positive and two gram negative bacteria were studied. This single step approach was found to be simple, short time, cost-effective, reproducible, and eco-friendly. Copyright © 2017. Published by Elsevier B.V.

  1. Green synthesis of silver nanoparticles by Ricinus communis var. carmencita leaf extract and its antibacterial study

    Science.gov (United States)

    Ojha, Sunita; Sett, Arghya; Bora, Utpal

    2017-09-01

    In this study, we report synthesis of silver nanoparticles (RcAgNPs) from silver nitrate solution using methanolic leaf extract of Ricinus communis var. carmencita. The polyphenols present in the leaves reduce Ag++ ions to Ag0 followed by a color change. Silver nanoparticle formation was ensured by surface plasmon resonance between 400 nm to 500 nm. Crystallinity of the synthesized nanoparticles was confirmed by UHRTEM, SAED and XRD analysis. The capping of phytochemicals and thermal stability of RcAgNPs were assessed by FTIR spectra and TGA analysis, respectively. It also showed antibacterial activity against both gram positive and gram negative strains. RcAgNPs were non-toxic against normal cell line (mouse fibroblast cell line L929) at lower concentrations (80 µg ml-1).

  2. Green synthesis of chondroitin sulfate-capped silver nanoparticles: characterization and surface modification.

    Science.gov (United States)

    Cheng, Kuang-ming; Hung, Yao-wen; Chen, Cheng-cheung; Liu, Cheng-che; Young, Jenn-jong

    2014-09-22

    A one-step route for the green synthesis of highly stable and nanosized silver metal particles with narrow distribution is reported. In this environmentally friendly synthetic method, silver nitrate was used as silver precursor and biocompatible chondroitin sulfate (ChS) was used as both reducing agent and stabilizing agent. The reaction was carried out in a stirring aqueous medium at the room temperature without any assisted by microwave, autoclave, laser irradiation, γ-ray irradiation or UV irradiation. The transparent colorless solution was converted to the characteristics light red then deep red-brown color as the reaction proceeds, indicating the formation of silver nanoparticles (Ag NPs). The Ag NPs were characterized by UV-visible spectroscopy (UV-vis), photon correlation spectroscopy, laser Doppler anemometry, transmission electron microscopy (TEM), and Fourier-transform infrared spectroscopy (FT-IR). The results demonstrated that the obtained metallic nanoparticles were Ag NPs capped with ChS. In this report, dynamic light scattering (DLS) was used as a routinely analytical tool for measuring size and distribution in a liquid environment. The effects of the reaction time, reaction temperature, concentration and the weight ratio of ChS/Ag+ on the particle size and zeta potential were investigated. The TEM image clearly shows the morphology of the well-dispersed ChS-capped Ag NPs are spherical in shape, and the average size (propyl] chitosan chloride (HTCC) were prepared by an ionic gelation method and the surface charge of Ag NPs was switched from negative to positive. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Assessing bio-available silver released from silver nanoparticles embedded in silica layers using the green algae Chlamydomonas reinhardtii as bio-sensors

    Energy Technology Data Exchange (ETDEWEB)

    Pugliara, Alessandro [nMat group-CEMES (Centre d' Elaboration de Matériaux et d' Etudes Structurales)-CNRS, Université de Toulouse, 29 rue Jeanne Marvig, BP 94347, F-31055 Toulouse Cedex 4 (France); LAPLACE (LAboratoire PLAsma et Conversion d' Energie), Université de Toulouse, CNRS, UPS, INPT, 118 route de Narbonne, F-31062 Toulouse (France); Makasheva, Kremena; Despax, Bernard [LAPLACE (LAboratoire PLAsma et Conversion d' Energie), Université de Toulouse, CNRS, UPS, INPT, 118 route de Narbonne, F-31062 Toulouse (France); Bayle, Maxime; Carles, Robert; Benzo, Patrizio; BenAssayag, Gérard; Pécassou, Béatrice [nMat group-CEMES (Centre d' Elaboration de Matériaux et d' Etudes Structurales)-CNRS, Université de Toulouse, 29 rue Jeanne Marvig, BP 94347, F-31055 Toulouse Cedex 4 (France); Sancho, Maria Carmen; Navarro, Enrique [IPE (Instituto Pirenaico de Ecología)-CSIC, Avda. Montañana 1005, Zaragoza 50059 (Spain); Echegoyen, Yolanda [I3A, Department of Analytical Chemistry, University of Zaragoza, C/ María de Luna 3, 50018, Zaragoza (Spain); Bonafos, Caroline, E-mail: bonafos@cemes.fr [nMat group-CEMES (Centre d' Elaboration de Matériaux et d' Etudes Structurales)-CNRS, Université de Toulouse, 29 rue Jeanne Marvig, BP 94347, F-31055 Toulouse Cedex 4 (France)

    2016-09-15

    Silver nanoparticles (AgNPs) because of their strong antibacterial activity are widely used in health-care sector and industrial applications. Their huge surface-volume ratio enhances the silver release compared to the bulk material, leading to an increased toxicity for microorganisms sensitive to this element. This work presents an assessment of the toxic effect on algal photosynthesis due to small (size < 20 nm) AgNPs embedded in silica layers. Two physical approaches were originally used to elaborate the nanocomposite structures: (i) low energy ion beam synthesis and (ii) combined silver sputtering and plasma polymerization. These techniques allow elaboration of a single layer of AgNPs embedded in silica films at defined nanometer distances (from 0 to 7 nm) beneath the free surface. The structural and optical properties of the nanostructures were studied by transmission electron microscopy and optical reflectance. The silver release from the nanostructures after 20 h of immersion in buffered water was measured by inductively coupled plasma mass spectrometry and ranges between 0.02 and 0.49 μM. The short-term toxicity of Ag to photosynthesis of Chlamydomonas reinhardtii was assessed by fluorometry. The obtained results show that embedding AgNPs reduces the interactions with the buffered water free media, protecting the AgNPs from fast oxidation. The release of bio-available silver (impacting on the algal photosynthesis) is controlled by the depth at which AgNPs are located for a given host matrix. This provides a procedure to tailor the toxicity of nanocomposites containing AgNPs. - Highlights: • Controlled synthesis of 2D arrays of silver nanoparticles embedded in silica. • Assessing bio-available silver release using the green algae as bio-sensors. • The Ag release can be controlled by the distance nanoparticles/dielectric surface. • All the Ag released in solution is in the form of Ag{sup +} ions. • Toxicity comparable to similar concentrations of

  4. Green synthesis of silver nanoparticles aimed at improving theranostics

    Science.gov (United States)

    Vedelago, José; Gomez, Cesar G.; Valente, Mauro; Mattea, Facundo

    2018-05-01

    Nowadays, the combination of diagnosis and therapy, known as theranostics, is one of the keys for an optimal treatment for cancer diseases. Theranostics can be significantly improved by incorporating metallic nanoparticles that are specifically delivered and accumulated in cancerous tissue. In this context, precise knowledge about dosimetric effects in nanoparticle-infused tissues as well as the detection and processing of emerging radiation are extremely important issues. In the last years the first studies on theranostic nanomaterials in gel dosimetry have been presented but there is still a broad field of study to explore. Most of gel dosimetric materials are extremely sensible to modifications in their composition, the addition of enhancers, metallic or inorganic charges can alter their stability and dosimetric properties; therefore, thorough studies must be made before the incorporation of any type of modifier. In this work, the synthesis of metallic nanoparticles suitable for gel dosimetry for x-ray applications is presented. A green synthesis process of silver nanoparticles coated with porcine skin gelatin by thermal reduction of silver nitrate is presented. Nanoparticles were obtained and purified for their application in gel dosimetry. Also, nanoparticles size distribution, reaction yield and the preliminar application as theranostic agents were tested in Fricke gel dosimetry in the keV range. The obtained nanoparticles were successfully used in theranostic applications acting as fluorescent agents and dose enhancers in X-ray beam irradiation simultaneously.

  5. Characterization and antimicrobial application of biosynthesized gold and silver nanoparticles by using Microbacterium resistens.

    Science.gov (United States)

    Wang, Chao; Singh, Priyanka; Kim, Yeon Ju; Mathiyalagan, Ramya; Myagmarjav, Davaajargal; Wang, Dandan; Jin, Chi-Gyu; Yang, Deok Chun

    2016-11-01

    Various microorganisms were found to be cable of synthesizing gold and silver nanoparticles when gold and silver salts were supplied in the reaction system. The main objective of this study was to evaluate the extracellular synthesis of gold and silver nanoparticles by the type strain Microbacterium resistens(T) [KACC14505]. The biosynthesized gold and silver nanoparticles were characterized by ultraviolet-visible spectroscopy (UV-Vis), field emission transmission electron micrograph (FE-TEM), energy dispersive X-ray spectroscopy (EDX), elemental mapping, and dynamic light scattering (DLS). Moreover, the nanoparticles were evaluated for antimicrobial potential against various pathogenic microorganisms such as Vibrio parahaemolyticus [ATCC 33844], Salmonella enterica [ATCC 13076], Staphylococcus aureus [ATCC 6538], Bacillus anthracis [NCTC 10340], Bacillus cereus [ATCC 14579], Escherichia coli [ATCC 10798], and Candida albicans [KACC 30062]. The silver nanoparticles were found as a potent antimicrobial agent whereas gold nanoparticles not showed any ability. Therefore, the current study describes the simple, green, and extracellular synthesis of gold and silver nanoparticles by the type strain Microbacterium resistens(T) [KACC14505].

  6. Photobiosynthesis of stable and functional silver/silver chloride nanoparticles with hydrolytic activity using hyperthermophilic β-glucosidases with industrial potential.

    Science.gov (United States)

    Araújo, Juscemácia N; Tofanello, Aryane; da Silva, Viviam M; Sato, Juliana A P; Squina, Fabio M; Nantes, Iseli L; Garcia, Wanius

    2017-09-01

    The β-glucosidases are important enzymes employed in a large number of processes and industrial applications, including biofuel production from biomass. Therefore, in this study, we reported for the first time the photobiosynthesis of stable and functional silver/silver chloride nanoparticles (Ag/AgCl-NPs) using two hyperthermostable bacterial β-glucosidases with industrial potential. The syntheses were straightforward and rapid processes carried out by mixing β-glucosidase and silver nitrate (in buffer 10mM Tris-HCl, pH 8) under irradiation with light (over a wavelength range of 450-600nm), therefore, compatible with the green chemistry procedure. Synthesized Ag/AgCl-NPs were characterized using a series of physical techniques. Absorption spectroscopy showed a strong absorption band centered at 460nm due to surface plasmon resonance of the Ag-NPs. X-ray diffraction analysis revealed that the Ag/AgCl-NPs were purely crystalline in nature. Under electron microscopy, Ag/AgCl-NPs of variable diameter ranging from 10 to 100nm can be visualized. Furthermore, electron microscopy, zeta potential and Fourier transform infrared spectroscopy results confirmed the presence of β-glucosidases coating and stabilizing the Ag/AgCl-NPs. Finally, the results showed that the enzymatic activities were maintained in the β-glucosidases assisted Ag/AgCl-NPs. The information described here should provide a useful basis for future studies of β-glucosidases assisted Ag/AgCl-NPs, including biotechnological applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Size- and Shape-Dependent Antibacterial Studies of Silver Nanoparticles Synthesized by Wet Chemical Routes

    Directory of Open Access Journals (Sweden)

    Muhammad Akram Raza

    2016-04-01

    Full Text Available Silver nanoparticles (AgNPs of different shapes and sizes were prepared by solution-based chemical reduction routes. Silver nitrate was used as a precursor, tri-sodium citrate (TSC and sodium borohydride as reducing agents, while polyvinylpyrrolidone (PVP was used as a stabilizing agent. The morphology, size, and structural properties of obtained nanoparticles were characterized by scanning electron microscopy (SEM, UV-visible spectroscopy (UV-VIS, and X-ray diffraction (XRD techniques. Spherical AgNPs, as depicted by SEM, were found to have diameters in the range of 15 to 90 nm while lengths of the edges of the triangular particles were about 150 nm. The characteristic surface plasmon resonance (SPR peaks of different spherical silver colloids occurring in the wavelength range of 397 to 504 nm, whereas triangular particles showed two peaks, first at 392 nm and second at 789 nm as measured by UV-VIS. The XRD spectra of the prepared samples indicated the face-centered cubic crystalline structure of metallic AgNPs. The in vitro antibacterial properties of all synthesized AgNPs against two types of Gram-negative bacteria, Pseudomonas aeruginosa and Escherichia coli were examined by Kirby–Bauer disk diffusion susceptibility method. It was noticed that the smallest-sized spherical AgNPs demonstrated a better antibacterial activity against both bacterial strains as compared to the triangular and larger spherical shaped AgNPs.

  8. Phytofabrication of bioinduced silver nanoparticles for biomedical applications

    Science.gov (United States)

    Ahmad, Nabeel; Bhatnagar, Sharad; Ali, Syed Salman; Dutta, Rajiv

    2015-01-01

    Synthesis of nanomaterials holds infinite possibilities as nanotechnology is revolutionizing the field of medicine by its myriad applications. Green synthesis of nanoparticles has become the need of the hour because of its eco-friendly, nontoxic, and economic nature. In this study, leaf extract of Rosa damascena was used as a bioreductant to reduce silver nitrate, leading to synthesis of silver nanoparticles (AgNPs) in a single step, without the use of any additional reducing or capping agents. The synthesized nanoparticles were characterized by the use of UV-visible spectroscopy, fourier transform infrared spectroscopy, dynamic light scattering, transmission electron microscopy, and field emission scanning electron microscopy. Time-dependent synthesis of AgNPs was studied spectrophotometrically. Synthesized AgNPs were found to possess flower-like spherical structure where individual nanoparticles were of 16 nm in diameter, whereas the agglomerated AgNPs were in the range of 60–80 nm. These biologically synthesized AgNPs exhibited significant antibacterial activity against Gram-negative bacterial species but not against Gram-positive ones (Escherichia coli and Bacillus cereus). Anti-inflammatory and analgesic activities were studied on a Wistar rat model to gauge the impact of AgNPs for a probable role in these applications. AgNPs tested positive for both these activities, although the potency was less as compared to the standard drugs. PMID:26648715

  9. Green production of microalgae-based silver chloride nanoparticles with antimicrobial activity against pathogenic bacteria.

    Science.gov (United States)

    da Silva Ferreira, Veronica; ConzFerreira, Mateus Eugenio; Lima, Luís Maurício T R; Frasés, Susana; de Souza, Wanderley; Sant'Anna, Celso

    2017-02-01

    Silver nanoparticles are powerful antimicrobial agents. Here, the synthesis of silver chloride nanoparticles (AgCl-NPs) was consistently evidenced from a commercially valuable microalgae species, Chlorella vulgaris. Incubation of C. vulgaris conditioned medium with AgNO 3 resulted in a medium color change to yellow/brown (with UV-vis absorbance at 415nm), indicative of silver nanoparticle formation. Energy-dispersive X-ray spectroscopy (EDS) of purified nanoparticles confirmed the presence of both silver and chlorine atoms, and X-ray diffraction (XRD) showed the typical pattern of cubic crystalline AgCl-NPs. Transmission electron microscopy (TEM) showed that most particles (65%) were spherical, with average diameter of 9.8±5.7nm. Fourier transform infrared spectroscopy (FTIR) of purified nanoparticle fractions suggested that proteins are the main molecular entities involved in AgCl-NP formation and stabilization. AgCl-NPs (from 10μg/mL) decreased by 98% the growth of Gram-positive Staphylococcus aureus and Gram-negative Klebsiella pneumoniae bacterial pathogens, and had a dose-dependent effect on cell viability, which was measured by automated image-based high content screening (HCS). Ultrastructural analysis of treated bacteria by TEM revealed the abnormal arrangement of the chromosomal DNA. Our findings strongly indicated that the AgCl-NPs from C. vulgaris conditioned medium is a promising 'green' alternative for biomedical application as antimicrobials. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Characterization and biotoxicity of Hypnea musciformis-synthesized silver nanoparticles as potential eco-friendly control tool against Aedes aegypti and Plutella xylostella.

    Science.gov (United States)

    Roni, Mathath; Murugan, Kadarkarai; Panneerselvam, Chellasamy; Subramaniam, Jayapal; Nicoletti, Marcello; Madhiyazhagan, Pari; Dinesh, Devakumar; Suresh, Udaiyan; Khater, Hanem F; Wei, Hui; Canale, Angelo; Alarfaj, Abdullah A; Munusamy, Murugan A; Higuchi, Akon; Benelli, Giovanni

    2015-11-01

    Two of the most important challenges facing humanity in the 21st century comprise food production and disease control. Eco-friendly control tools against mosquito vectors and agricultural pests are urgently needed. Insecticidal products of marine origin have a huge potential to control these pests. In this research, we reported a single-step method to synthesize silver nanoparticles (AgNP) using the aqueous leaf extract of the seaweed Hypnea musciformis, a cheap, nontoxic and eco-friendly material, that worked as reducing and stabilizing agent during the biosynthesis. The formation of AgNP was confirmed by surface plasmon resonance band illustrated in UV-vis spectrophotometer. AgNP were characterized by FTIR, SEM, EDX and XRD analyses. AgNP were mostly spherical in shape, crystalline in nature, with face-centered cubic geometry, and their mean size was 40-65nm. Low doses of H. musciformis aqueous extract and seaweed-synthesized AgNP showed larvicidal and pupicidal toxicity against the dengue vector Aedes aegypti and the cabbage pest Plutella xylostella. The LC50 value of AgNP ranged from 18.14 to 38.23ppm for 1st instar larvae (L1) and pupae of A. aegypti, and from 24.5 to 38.23ppm for L1 and pupae of P. xylostella. Both H. musciformis extract and AgNP strongly reduced longevity and fecundity of A. aegypti and P. xylostella adults. This study adds knowledge on the toxicity of seaweed borne insecticides and green-synthesized AgNP against arthropods of medical and agricultural importance, allowing us to propose the tested products as effective candidates to develop newer and cheap pest control tools. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Comparison of biological activities of selenium and silver nanoparticles attached with bioactive phytoconstituents: green synthesized using Spermacoce hispida extract

    Science.gov (United States)

    Vennila, Krishnan; Chitra, Loganathan; Balagurunathan, Rama; Palvannan, Thayumanavan

    2018-03-01

    Selenium and silver nanoparticles (NPs) were synthesized using Spermacoce hispida aqueous leaf extract (Sh-ALE). The optimum condition required for the synthesis of Sh-SeNPs was found to be 30 mM selenious acid solution to Sh-ALE at the ratio of 4:46, pH 9, incubated at 40 °C for 10 min. On the other hand, for Sh-AgNPs the optimum condition was found to be 1 mM AgNO3 to the Sh-ALE solution at the ratio of 4:46, pH 8, incubated at 40 °C for 10 min. SEM analysis revealed that both the Sh-AgNPs and Sh-SeNPs are predominantly rod-shaped. Sh-SeNPs and Sh-AgNPs were found to possess concentration-dependent antioxidant activity. However, Sh-SeNPs showed potent anti-inflammatory property, antibacterial property and anticancer activity against human cervical cancer cell in comparison to Sh-AgNPs. Phytochemical analysis, FTIR and GC-MS analysis showed that various flavonoids, saponins and phenolic compounds present in Sh-ALE catalysed the formation of NPs. Also, GC-MS analysis revealed that Sh-SeNPs are capped by synaptogenin B and derivatives of apigenin, quinoline and quinazoline. The advantage of attachment of such phytoconstituents on Sh-SeNPs for its potent biological activity in comparison to Sh-AgNPs is evident in in vitro conditions.

  12. In situ reduction of antibacterial silver ions to metallic silver nanoparticles on bioactive glasses functionalized with polyphenols

    Energy Technology Data Exchange (ETDEWEB)

    Ferraris, S., E-mail: sara.ferraris@polito.it [Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129, Torino (Italy); Miola, M. [Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129, Torino (Italy); Department of Health Sciences, Università del Piemonte Orientale UPO, Via Solaroli 17, 28100, Novara (Italy); Cochis, A.; Azzimonti, B.; Rimondini, L. [Department of Health Sciences, Università del Piemonte Orientale UPO, Via Solaroli 17, 28100, Novara (Italy); Prenesti, E. [Department of Chemistry, Università degli Studi di Torino, Via Pietro Giuria 7, Torino, 10125 (Italy); Vernè, E. [Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129, Torino (Italy)

    2017-02-28

    Highlights: • Gallic acid and natural polyphenols were grafted onto bioactive glasses. • Grafting ability was dependent on glass reactivity. • In situ reduction of silver nanoparticles was performed onto functionalized glasses. • Bioactive glasses decorated with silver nanoparticles showed antibacterial activity. - Abstract: The realization of surfaces with antibacterial properties due to silver nanoparticles loaded through a green approach is a promising research challenge of the biomaterial field. In this research work, two bioactive glasses have been doubly surface functionalized with polyphenols (gallic acid or natural polyphenols extracted from red grape skins and green tea leaves) and silver nanoparticles deposited by in situ reduction from a silver nitrate aqueous solution. The presence of biomolecules – showing reducing ability to directly obtain in situ metallic silver – and silver nanoparticles was investigated by means of UV–vis spectroscopy, X-Ray Photoelectron Spectroscopy (XPS) and Field Emission Scanning Electron Microscopy (FESEM). The antibacterial activity of the modified surfaces was tested against a multidrug resistant Staphylococcus aureus bacterial strain.

  13. Silver nanoparticle production by Rhizopus stolonifer and its antibacterial activity against extended spectrum β-lactamase producing (ESBL) strains of Enterobacteriaceae

    International Nuclear Information System (INIS)

    Banu, Afreen; Rathod, Vandana; Ranganath, E.

    2011-01-01

    Highlights: → Silver nanoparticle production by using Rhizopus stolonifer. → Antibacterial activity of silver nanoparticles against extended spectrum β-lactamase producing (ESBL) strains of Enterobacteriaceae. → Synergistic effect of antibiotics with silver nanoparticles towards ESBL-strains. → Characterization of silver nanoparticles made by UV-vis spectra, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transformed infrared (FTIR) spectroscopy, atomic force microscopy (AFM). -- Abstract: This report focuses on the synthesis of silver nanoparticles using the fungus, Rhizopus stolonifer and its antimicrobial activity. Research in nanotechnology highlights the possibility of green chemistry pathways to produce technologically important nanomaterials. Characterization of newly synthesized silver nanoparticles was made by UV-visible absorption spectroscopy, scanning electron microscope (SEM), transmission electron microscope (TEM), Fourier transform infrared (FTIR) spectroscopy and atomic force microscope (AFM). TEM micrograph revealed the formation of spherical nanoparticles with size ranging between 3 and 20 nm. The biosynthesized silver nanoparticles (AgNPs) showed excellent antibacterial activity against ESBL-strains which includes E. coli, Proteus. sp. and Klebsiella sp.

  14. Silver nanoparticle production by Rhizopus stolonifer and its antibacterial activity against extended spectrum {beta}-lactamase producing (ESBL) strains of Enterobacteriaceae

    Energy Technology Data Exchange (ETDEWEB)

    Banu, Afreen [Department of Microbiology, Gulbarga University, Gulbarga 585106, Karnataka (India); Rathod, Vandana, E-mail: drvandanarathod@rediffmail.com [Department of Microbiology, Gulbarga University, Gulbarga 585106, Karnataka (India); Ranganath, E. [Department of Microbiology, Gulbarga University, Gulbarga 585106, Karnataka (India)

    2011-09-15

    Highlights: {yields} Silver nanoparticle production by using Rhizopus stolonifer. {yields} Antibacterial activity of silver nanoparticles against extended spectrum {beta}-lactamase producing (ESBL) strains of Enterobacteriaceae. {yields} Synergistic effect of antibiotics with silver nanoparticles towards ESBL-strains. {yields} Characterization of silver nanoparticles made by UV-vis spectra, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transformed infrared (FTIR) spectroscopy, atomic force microscopy (AFM). -- Abstract: This report focuses on the synthesis of silver nanoparticles using the fungus, Rhizopus stolonifer and its antimicrobial activity. Research in nanotechnology highlights the possibility of green chemistry pathways to produce technologically important nanomaterials. Characterization of newly synthesized silver nanoparticles was made by UV-visible absorption spectroscopy, scanning electron microscope (SEM), transmission electron microscope (TEM), Fourier transform infrared (FTIR) spectroscopy and atomic force microscope (AFM). TEM micrograph revealed the formation of spherical nanoparticles with size ranging between 3 and 20 nm. The biosynthesized silver nanoparticles (AgNPs) showed excellent antibacterial activity against ESBL-strains which includes E. coli, Proteus. sp. and Klebsiella sp.

  15. Linseed hydrogel-mediated green synthesis of silver nanoparticles for antimicrobial and wound-dressing applications.

    Science.gov (United States)

    Haseeb, Muhammad Tahir; Hussain, Muhammad Ajaz; Abbas, Khawar; Youssif, Bahaa Gm; Bashir, Sajid; Yuk, Soon Hong; Bukhari, Syed Nasir Abbas

    2017-01-01

    Polysaccharides are being extensively employed for the synthesis of silver nanoparticles (Ag NPs) having diverse morphology and applications. Herein, we present a novel and green synthesis of Ag NPs without using any physical reaction conditions. Linseed hydrogel (LSH) was used as a template to reduce Ag + to Ag 0 . AgNO 3 (10, 20, and 30 mmol) solutions were mixed with LSH suspension in deionized water and exposed to diffused sunlight. Reaction was monitored by noting the change in the color of reaction mixture up to 10 h. Ag NPs showed characteristic ultraviolet-visible (UV/Vis) absorptions from 410 to 437 nm in the case of sunlight and 397-410 nm in the case of temperature study. Transmission electron microscopy images revealed the formation of spherical Ag NPs in the range of 10-35 nm. Face-centered cubic array of Ag NPs was confirmed by characteristic diffraction peaks in powder X-ray diffraction spectrum. Ag NPs were stored in LSH thin films, and UV/Vis spectra recorded after 6 months indicated that Ag NPs retained their texture over the storage period. Significant antimicrobial activity was observed when microbial cultures (bacteria and fungi) were exposed to the synthesized Ag NPs. Wound-healing studies revealed that Ag NP-impregnated LSH thin films could have potential applications as an antimicrobial dressing in wound management procedures.

  16. In vitro study of the antibacterial and anticancer activities of silver nanoparticles synthesized from Penicillium brevicompactum (MTCC-1999

    Directory of Open Access Journals (Sweden)

    Shahnaz Majeed

    2016-07-01

    Full Text Available Among the most promising nanomaterials, metallic nanoparticles with antibacterial and antitumor properties are expected to open new avenues to fight and prevent various tumours and infectious diseases. The study of bactericidal nanomaterial is particularly timely considering the recent increase in new resistant strains of bacteria to the most potent antibiotics and the potential role of bactericidal nanomaterial as anticancer agents. This has promoted the research of the well-known activity of silver ions and silver-based compounds, including silver nanoparticles. The present work is the study of silver nanoparticles synthesized from Penicillium brevicompactum (MTCC-1999. The colour of the cell filtrate changes to dark brown upon addition of 1 mM AgNO3, suggesting the formation of silver nanoparticles. These silver nanoparticles (AgNPs were characterized and analyzed by UV–vis spectrophotometric analysis, which showed a peak of absorbance at 420 nm. Fourier transform infrared (FTIR analysis showed amines and amides that are responsible for the stabilization of AgNPs. To determine the particle size, atomic force microscopy (AFM analysis was used, which showed that the nanoparticles are spherical and are 30–50 nm in size. High-resolution transmission electron microscopy (HRTEM showed that AgNPs were well dispersed, spherical, and well within the range of 40–50 nm. These nanoparticles displayed good antibacterial activity and also increased the antibiotic activity of gatifloxacin, tetracycline, and vancomycin. These nanoparticles were further studied for their anticancer activity and showed high toxicity towards the MCF-7 breast cancer cell line.

  17. Determination of dextrose in peritoneal dialysis solution by localized surface plasmon resonance technique based on silver nanoparticles formation

    Science.gov (United States)

    Masrournia, Mahboube; Montazarolmahdi, Maliheh; Sani, Faramarz Aliasghari

    2017-07-01

    Determination of dextrose in peritoneal dialysis with a method based on silver nanoparticles (AgNPs) formation was investigated. In a green chemistry method, silver nanoparticles (AgNPs) were synthesized in the natural polymeric matrix of gelatin. The nanoparticles were characterized with UV-Vis spectroscopy and transmission electron microscopy (TEM). Absorbance signal of AgNPs could be applied to determine the various concentrations of dextrose solutions. Drop wise and ultrasonic methods were used and compared with each other. The dynamic range of methods with limit of detection and relative standard deviations were obtained. Results for real sample (peritoneal dialysis) were satisfied.

  18. Antibacterial, Antiproliferative, and Immunomodulatory Activity of Silver Nanoparticles Synthesized with Fucans from the Alga Dictyota mertensii

    Directory of Open Access Journals (Sweden)

    Marília Medeiros Fernandes-Negreiros

    2017-12-01

    Full Text Available In this study, we aimed to synthesize silver nanoparticles containing fucans from Dictyota mertensii (Martius Kützing using an environmentally friendly method and to characterize their structure as well as antiproliferative, immunomodulatory, and antibacterial effects. Fucan-coated silver nanoparticles (FN were characterized by Fourier-transform infrared analysis, dynamic light scattering, zeta potential, atomic force microscopy, energy dispersive X-ray spectroscopy, and inductively coupled plasma emission spectrometry. They were evaluated for their effect on cell viability, minimum inhibitory bactericidal concentration, and release of nitric oxide and cytokines. The FN were successfully synthesized using an environmentally friendly method. They were size-stable for 16 months, of a spherical shape, negative charge (−19.1 mV, and an average size of 103.3 ± 43 nm. They were able to inhibit the proliferation of the melanoma tumor cell line B16F10 (60%. In addition, they had immunomodulatory properties: they caused an up to 7000-fold increase in the release of nitric oxide and cytokines (IL-10; IL-6 and TNF-α up to 7000 times. In addition, the FN showed inhibitory effect on Gram-positive and -negative bacteria, with MIC values of 50 µg/mL. Overall, the data showed that FN are nanoparticles with the potential to be used as antitumor, immunomodulatory, and antibacterial agents.

  19. Antioxidant and Antibacterial Potential of Silver Nanoparticles: Biogenic Synthesis Utilizing Apple Extract

    Directory of Open Access Journals (Sweden)

    Upendra Nagaich

    2016-01-01

    Full Text Available The advancement of the biological production of nanoparticles using herbal extracts performs a significant role in nanotechnology discipline as it is green and does not engage harsh chemicals. The objective of the present investigation was to extract flavonoids in the mode of apple extract and synthesize its silver nanoparticles and ultimately nanoparticles loading into hydrogels. The presence of flavonoids in apple extract was characterized by preliminary testing like dil. ammonia test and confirmatory test by magnesium ribbon test. The synthesized silver nanoparticles were characterized using UV spectroscopy, particle size and surface morphology, and zeta potential. Silver nanoparticles loaded hydrogels were evaluated for physical appearance, pH, viscosity, spreadability, porosity, in vitro release, ex vivo permeation, and antibacterial (E. coli and S. aureus and antioxidant studies (DPPH radical scavenging assay. Well dispersed silver nanoparticles below were observed in scanning electron microscope image. Hydrogels displayed in vitro release of 98.01%  ±  0.37% up to 24 h and ex vivo permeation of 98.81  ±  0.24% up to 24 h. Hydrogel effectively inhibited the growth of both microorganism indicating good antibacterial properties. The value of percent radical inhibition was 75.16%  ±  0.04 revealing its high antioxidant properties. As an outcome, it can be concluded that antioxidant and antiageing traits of flavonoids in apple extract plus biocidal feature of silver nanoparticles can be synergistically and successfully utilized in the form of hydrogel.

  20. Biosynthesis, mosquitocidal and antibacterial properties of Toddalia asiatica-synthesized silver nanoparticles: do they impact predation of guppy Poecilia reticulata against the filariasis mosquito Culex quinquefasciatus?

    Science.gov (United States)

    Murugan, Kadarkarai; Venus, Joseph Selvaraj Eugine; Panneerselvam, Chellasamy; Bedini, Stefano; Conti, Barbara; Nicoletti, Marcello; Sarkar, Santosh Kumar; Hwang, Jiang-Shiou; Subramaniam, Jayapal; Madhiyazhagan, Pari; Kumar, Palanisamy Mahesh; Dinesh, Devakumar; Suresh, Udaiyan; Benelli, Giovanni

    2015-11-01

    Mosquito-borne diseases represent a deadly threat for millions of people worldwide. Furthermore, pathogens and parasites polluting water also constitute a severe plague for populations of developing countries. In this study, silver nanoparticles (AgN) were biosynthesized a cheap aqueous extract of T. asiatica leaves as reducing and stabilizing agent. The formation of nanoparticle was confirmed by surface Plasmon resonance band illustrated in UV-vis spectrophotometer. AgN were characterized by FTIR, SEM, EDX, and XRD analyses. AgN were mostly spherical in shape, crystalline in nature, with face-centered cubic geometry, and their mean size was 25-30 nm. T. asiatica aqueous extract and green-synthesized AgN showed excellent larvicidal and pupicidal toxicity against the filariasis vector Culex quinqufasciatus, both in laboratory and field experiments. AgN LC50 ranged from 16.48 (I instar larvae) to 31.83 ppm (pupae). T. asiatica-synthesized were also highly effective in inhibiting growth of Bacillus subtilis, Klebsiella pneumoniae, and Salmonella typhi using the agar disk diffusion and minimum inhibitory concentration protocol. Lastly, we evaluated if sublethal doses of nanoparticles affect predation rates of fishes, Poecilia reticulata, against C. quinquefasciatus. In AgN-contaminated environment, predation of guppies against mosquito larvae was slightly higher over normal laboratory conditions. Overall, this study highlighted that T. asiatica-synthesized AgN are easy to produce, stable over time, and may be employed at low dosages to reduce populations of filariasis vectors, without detrimental effects on predation rates of mosquito natural enemies.

  1. Synthesis and characterization of novel silver nanoparticles using Chamaemelum nobile extract for antibacterial application

    Science.gov (United States)

    Erjaee, Hoda; Rajaian, Hamid; Nazifi, Saeed

    2017-06-01

    The present study reports green synthesis of silver nanoparticles (AgNPs) at room temperature using aqueous Chamaemelum nobile extract for the first time. The effect of silver nitrate concentration, quantity of the plant extract and the reaction time on particle size was optimized and studied by UV-Vis spectroscopy and dynamic light scattering. The appearance of brownish color with λ max of 422 nm confirmed the formation of AgNPs. Synthesized nanoparticles were further characterized by Fourier transform infrared spectroscopy, x-ray diffraction and transmission electron microscopy. In addition, antimicrobial activity of the AgNPs against Escherichia coli, Salmonella typhimurium, Staphylococcus aureus and Bacillus subtilis was evaluated based on the inhibition zone using the disc-diffusion assay and measurement of minimal inhibition concentration and minimal bactericidal concentration by standard microdilution method. In conclusion, synthesis of nanoparticle with aqueous Chamaemelum nobile extract is simple, rapid, environmentally benign and inexpensive. Moreover, these synthesized nanoparticles exhibit significant antibacterial activity.

  2. The effect of green synthesized gold nanoparticles on rice germination and roots

    Science.gov (United States)

    Tsi Ndeh, Nji; Maensiri, Santi; Maensiri, Duangkamol

    2017-09-01

    In this paper, gold nanoparticles were synthesized by means of a green approach with Tiliacora triandra leaf extracts under different conditions. No additional reducing or capping agents were employed. The gold nanoparticles were characterized using UV-visible spectrophotometry, transmission electron microscope, x-ray diffraction and Fourier transform infrared spectroscopy. Gold nanoparticles synthesized at temperature of 80 °C were further used to treat rice (Oryza sativa) grains at different concentrations (0, 10, 100, 500, 1000, 2000 mg l-1) for one week. While germination percentages were high (95-98.38%), a slight decrease in root and shoot lengths relative to the control was observed. Phytotoxicity results indicated that the plant synthesized gold nanoparticles were of minimal toxicity to rice seedlings. Increases in cell death, hydrogen peroxide formation and lipid peroxidation in roots and shoots were noted. However, these increases were not statistically significant. The overall results confirmed that Tiliacora triandra synthesized gold nanoparticles are biocompatible and can be potentially used as nanocarriers in agriculture. Contribution at 5th Thailand International Nanotechnology Conference (Nano Thailand-2016), 27-29 November 2016, Nakhon Ratchasima, Thailand.

  3. Rapid decolorization of textile wastewater by green synthesized iron nanoparticles.

    Science.gov (United States)

    Ozkan, Z Y; Cakirgoz, M; Kaymak, E S; Erdim, E

    2018-01-01

    The effectiveness of green tea (Camellia sinensis) and pomegranate (Punica granatum) extracts for the production of iron nanoparticles and their application for color removal from a textile industry wastewater was investigated. Polyphenols in extracts act as reducing agents for iron ions in aqueous solutions, forming iron nanoparticles. Pomegranate extract was found to have almost a 10-fold higher polyphenolic content than the same amount of green tea extract on a mass basis. However, the size of the synthesized nanoparticles did not show a correlation with the polyphenolic content. 100 ppm and 300 ppm of iron nanoparticles were evaluated in terms of color removal efficiency from a real textile wastewater sample. 300 ppm of pomegranate nanoscale zero-valent iron particles showed more than 95% color removal and almost 80% dissolved organic carbon removal. The degradation mechanisms are is considered to be adsorption and precipitation to a major extent, and mineralization to a minor extent.

  4. Growth mechanism of silver nanowires synthesized by polyvinylpyrrolidone-assisted polyol reduction

    International Nuclear Information System (INIS)

    Gao Yan; Jiang Peng; Song Li; Liu Lifeng; Yan Xiaoqin; Zhou Zhenping; Liu Dongfang; Wang Jianxiong; Yuan Huajun; Zhang Zengxing; Zhao Xiaowei; Dou Xinyuan; Zhou Weiya; Wang Gang; Xie Sishen

    2005-01-01

    Silver (Ag) nanowires with a pentagonal cross section have been synthesized by polyvinylpyrrolidone (PVP)-assisted polyol reduction in the presence of Pt nanoparticle seeds. The UV-visible absorption spectra and scanning electron microscopy have been used to trace the growth process of the Ag nanowires. X-ray photoelectron spectroscopy investigation further shows that the PVP molecules are adsorbed on the surface of the Ag nanowires through Ag : O coordination. Comparing with the growth process of Ag nanoparticles, a possible growth mechanism of the Ag nanowires has been proposed. It is implied that the PVP molecules are used as both a protecting agent and a structure-directing agent for the growth of Ag nanowires. It is concluded that the five-fold twinning Ag nanoparticles are formed through heterogenous nucleation after the introduction of Pt nanoparticle seeds and then grow anisotropically along the (110) direction, while the growth along (100) is relatively depressed

  5. Novel synthesis of silver nanoparticles using Bauhinia variegata: a recent eco-friendly approach for mosquito control.

    Science.gov (United States)

    Govindarajan, Marimuthu; Rajeswary, Mohan; Veerakumar, Kaliyan; Muthukumaran, Udaiyan; Hoti, S L; Mehlhorn, Heinz; Barnard, Donald R; Benelli, Giovanni

    2016-02-01

    Mosquito vectors are responsible for transmitting diseases such as malaria, dengue, chikungunya, Japanese encephalitis, dengue, and lymphatic filariasis. The use of synthetic insecticides to control mosquito vectors has caused physiological resistance and adverse environmental effects, in addition to high operational cost. Biosynthesis of silver nanoparticles has been proposed as an alternative to traditional control tools. In the present study, green synthesis of silver nanoparticles (AgNPs) using aqueous leaf extract of Bauhinia variegata by reduction of Ag(+) ions from silver nitrate solution has been investigated. The bioreduced silver nanoparticles were characterized by UV–visible spectrophotometry, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray analysis (EDX), and X-ray diffraction analysis (XRD). Leaf extract and synthesized AgNPs were evaluated against the larvae of Anopheles subpictus, Aedes albopictus, and Culex tritaeniorhynchus. Compared to aqueous extract, synthesized AgNPs showed higher toxicity against An. subpictus, Ae. albopictus, and Cx. tritaeniorhynchus with LC50 and LC90 values of 41.96, 46.16, and 51.92 μg/mL and 82.93, 89.42, and 97.12 μg/mL, respectively. Overall, this study proves that B. variegata is a potential bioresource for stable, reproducible nanoparticle synthesis and may be proposed as an efficient mosquito control agent.

  6. Structural characterization of silver nanoparticles phyto-mediated by a plant waste, seed hull of Vigna mungo and their biological applications

    Science.gov (United States)

    Varadavenkatesan, Thivaharan; Vinayagam, Ramesh; Selvaraj, Raja

    2017-11-01

    Nanobiotechnology has rapidly become a critical facet of nanotechnology. The green synthesis of silver nanoparticles, making use of the hull of black gram (Vigna mungo), paves the way for a simple and eco-friendly utilization of a domestic waste to a product with antioxidant and anticoagulant activities. The emergence of silver nanoparticles was characterized by a variety of methods UV-visible spectrophotometry, scanning electron microscopy added to energy dispersive spectroscopy, X-ray diffractometry, particle size distribution and FT-IR spectroscopy analyses. A discrete band at 421 nm was obtained from UV-visible spectroscopy of the silver nanoparticle suspension. The extract sourced from the hull of black gram showed evidence of the presence of a variety of functional moieties of phytochemicals using FTIR spectroscopy. These were also deemed responsible for maintaining the stability of silver nanoparticles. SEM and EDAX techniques combined, proved that the zero-valent silver nanoparticles were lesser than 100 nm in size. The crystallinity of the nanoparticles was confirmed, as deduced by the (1 1 1) plane, from XRD analysis. The potential of the phytochemicals in maintaining the steadiness of nanoparticles was implied by the zeta potential value that stood at -30.3 mV. In the current study, we have endeavored to comprehend the antioxidant and anticoagulant nature of the green-synthesized benign silver nanoparticles.

  7. Poly thiophene hydrophobic and hydrophilic compounds, silver and iodine synthesized by plasma; Compuestos hidrofobicos e hidrofilicos de politiofeno, plata y yodo sintetizados por plasma

    Energy Technology Data Exchange (ETDEWEB)

    Palacios, J.C.; Chavez, J.A. [IIM, UNAM, Circuito exterior, Ciudad Universitaria, 04510 Coyoacan, D.F. (Mexico); Olayo, M.G.; Cruz, G.J. [ININ, Apdo. Postal 18-1027, 11801 Mexico D.F. (Mexico)

    2007-07-01

    Compounds in thin films of poly thiophene with silver and poly thiophene doped with iodine and silver using splendor discharges were synthesized. It is studied the wettability of the compounds and its transport properties. It was found that the compounds can modify their hydrophilic to hydrophobic behavior controlling their surface ruggedness and the metallic content. The doped with iodine plays a fundamental paper in the modification of the ruggedness of the compounds. (Author)

  8. Evaluation of phytosynthesised silver nanoparticles from leaf extracts of Leucas aspera and Hyptis suaveolens and their larvicidal activity against malaria, dengue and filariasis vectors

    Directory of Open Access Journals (Sweden)

    Devan Elumalai

    2017-11-01

    Full Text Available The present study deals with the green synthesis of silver nanoparticle from the aqueous leaf extracts of Leucas aspera and Hyptis suaveolens as reducing agent and to investigate the larvicidal activity of synthesized silver nanoparticles. The synthesized silver nanoparticles were characterized by Ultraviolet and visible absorption spectroscopy (UV, Fourier transform-infrared spectroscopy (FT-IR, X-ray spectroscopy (XRD, Field emission scanning electron microscope (FESEM and High-resonance transmission electron microscopy (HRTEM analysis. The nanoparticles are spherical, hexagonal, triangular and polyhedral in shape and the size of the Silver nanoparticles (AgNPs of L. aspera was found to be in the range of 7–22 nm and AgNPs of H. suaveolens was 5–25 nm. Larvicidal bioassay with synthesized AgNPs synthesized from L. aspera and H. suaveolens extract, showed 100% mortality at 10 mg/L against Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus with LC50 of 4.02, 4.69, 5.06 mg/L and LC90 of 11.22, 12.09, 12.74 mg/L and LC50 of 4.63, 4.04, 3.52 mg/L and LC90 of 12.07, 10.99, 09.61 respectively. These results suggest that the synthesized AgNPs of L. aspera and H. suaveolens have the potential to be used as an ideal eco-friendly agent for the control of the mosquito larvae.

  9. Synthesis of colloidal silver nanoparticle clusters and their application in ascorbic acid detection by SERS.

    Science.gov (United States)

    Cholula-Díaz, Jorge L; Lomelí-Marroquín, Diana; Pramanick, Bidhan; Nieto-Argüello, Alfonso; Cantú-Castillo, Luis A; Hwang, Hyundoo

    2018-03-01

    Ascorbic acid (vitamin C) has an essential role in the human body mainly due to its antioxidant function. In this work, metallic silver nanoparticle (AgNP) colloids were used in SERS experiments to detect ascorbic acid in aqueous solution. The AgNPs were synthesized by a green method using potato starch as reducing and stabilizing agent, and water as the solvent. The optical properties of the yellowish as-synthesized silver colloids were characterized by UV-vis spectroscopy, in which besides a typical band at 410 nm related to the localized surface plasmon resonance of the silver nanoparticles, a shoulder band around 500 nm, due to silver nanoparticle cluster formation, is presented when relatively higher concentrations of starch are used in the synthesis. These starch-capped silver nanoparticles show an intrinsic Raman peak at 1386 cm -1 assigned to deformation modes of the starch structure. The increase of the intensity of the SERS peak at 1386 cm -1 with an increase in the concentration of the ascorbic acid is related to a decrease of the gap between dimers and trimers of the silver nanoparticle clusters produced by the presence of ascorbic acid in the colloid. The limit of detection of this technique for ascorbic acid is 0.02 mM with a measurement concentration range of 0.02-10 mM, which is relevant for the application of this method for detecting ascorbic acid in biological specimen. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Rapid sensing of melamine in milk by interference green synthesis of silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Varun, S.; Kiruba Daniel, S.C.G.; Gorthi, Sai Siva, E-mail: saisiva.gorthi@iap.iisc.ernet.in

    2017-05-01

    A highly sensitive, selective, and rapid interference green synthesis based determination of potential milk adulterant melamine has been reported here. Melamine is a nitrogenous compound added to milk for mimicking proteins, consumption of which leads to kidney stones and renal failures. Melamine interacts with ascorbic acid (AA) through strong hydrogen-bonding interactions, thus resulting in an interference/interruption in the formation of silver (Ag) nanoparticles which was confirmed by UV–Vis spectroscopy and Transmission Electron Microscopy (TEM). The corresponding benchmark validations for melamine spiked milk samples were performed using High Performance Liquid Chromatography (HPLC). This interference in the formation of Ag nanoparticles resulted in color change that varies with concentration of melamine, thereby enabling in-situ rapid sensing of melamine from milk to a lower limit of 0.1 ppm with a linear correlation coefficient of 0.9908. - Highlights: • Rapid detection of milk adulterant melamine based on interference green synthesis. • Green chemical ascorbic acid used as the reducing agent for interference sensing. • Enabling in-situ sensing of melamine from milk with a limit of detection of 0.1 ppm. • Presence of analyte inhibits the nanoparticle formation.

  11. Biosynthesis of silver nanoparticles synthesized by Aspergillus ...

    Indian Academy of Sciences (India)

    Biotechnology Division, Applied Science Department, University of ... Abstract. In the present study, biosynthesis of silver nanoparticles and its antioxidant, antimicrobial and cytotoxic ... example of the biosynthesis using fungi was that the cell-.

  12. Green synthesized zinc oxide nanoparticles as a therapeutic tool to combat candidiasis

    Science.gov (United States)

    Rathod, Tejas; Padalia, Hemali; Chanda, Sumitra

    2017-05-01

    Advancement of modern medicine, the increasing ratio of immunocompromised and immunosuppressive individuals is increased in hospitalized with serious underlying disease. This has resulted in a rise in the incidence of fungal infections, especially those due to Candida species. For many years the conventional antibiotic therapy has been critical in the fight against Candidiasis. Candidiasis is a fungal infection due to various types of Candida (yeast) species. In this study, zinc oxide nanoparticles (ZnONPs) were synthesized using the Cinnamomum verum bark plus Cassia auriculata leaf powder extracts. The characterization of synthesized ZnONPs was done by UV-Vis spectrophotometer and SEM analysis. The average size of nanoparticles was 77 nm. Synergistic anticandidal activity of ZnONPs (ZnONPs plus antibiotics) was determined by disc diffusion method against 16 multidrug resistant clinical pathogens of Candida species. Antibiotic Ketoconazole plus ZnONPs showed best synergistic anticandidal activity against all the 16 isolates. Green synthesized ZnONPs appears to be a new promising approach to fight against Candidiasis.

  13. Biosynthesized Silver Nanoparticles Used in Preservative Solutions for Chrysanthemum cv. Puma

    Directory of Open Access Journals (Sweden)

    Luis M. Carrillo-López

    2016-01-01

    Full Text Available The use of pulse solutions containing antimicrobials has been reported, but more research is necessary. To increase vase life and to study their effect on opening inflorescences, silver nanoparticles were used in vase solutions for cv. Puma Chrysanthemum stems. The nanoparticles were synthesized biologically using Chenopodium ambrosioides L. applied at concentrations of 0.01, 0.05, 0.1, 0.5, 1, and 5 mM and compared with a control. Treatments were replicated five times. The stems were cut to 50 cm and observed until the end of their vase life. Low concentrations of silver nanoparticles promoted inflorescence opening and leaf yellowing, while the control leaves remained green, but there was a lower degree of inflorescence opening. High concentrations of silver nanoparticles (0.5, 1, and 5 mM caused senescence due to low water uptake through the stems. Statistical differences in inflorescence opening and diameter, bacterial growth (CFU mL−1 in vase solutions, fresh weight, water uptake, and vase life were found among treatments. Longer vase life and less weight loss were observed in the stems exposed to low concentrations of silver nanoparticles. Low concentrations of silver nanoparticles promoted inflorescence opening and increased vase life of Chrysanthemum cv. Puma.

  14. In vivo antimicrobial activity of silver nanoparticles produced via a green chemistry synthesis using Acacia rigidula as a reducing and capping agent.

    Science.gov (United States)

    Escárcega-González, Carlos Enrique; Garza-Cervantes, J A; Vázquez-Rodríguez, A; Montelongo-Peralta, Liliana Zulem; Treviño-González, M T; Díaz Barriga Castro, E; Saucedo-Salazar, E M; Chávez Morales, R M; Regalado Soto, D I; Treviño González, F M; Carrazco Rosales, J L; Cruz, Rocío Villalobos; Morones-Ramírez, José Rubén

    2018-01-01

    One of the main issues in the medical field and clinical practice is the development of novel and effective treatments against infections caused by antibiotic-resistant bacteria. One avenue that has been approached to develop effective antimicrobials is the use of silver nanoparticles (Ag-NPs), since they have been found to exhibit an efficient and wide spectrum of antimicrobial properties. Among the main drawbacks of using Ag-NPs are their potential cytotoxicity against eukaryotic cells and the latent environmental toxicity of their synthesis methods. Therefore, diverse green synthesis methods, which involve the use of environmentally friendly plant extracts as reductive and capping agents, have become attractive to synthesize Ag-NPs that exhibit antimicrobial effects against resistant bacteria at concentrations below toxicity thresholds for eukaryotic cells. In this study, we report a green one-pot synthesis method that uses Acacia rigidula extract as a reducing and capping agent, to produce Ag-NPs with applications as therapeutic agents to treat infections in vivo. The Ag-NPs were characterized using transmission electron microscopy (TEM), high-resolution TEM, selected area electron diffraction, energy-dispersive spectroscopy, ultraviolet-visible, and Fourier transform infrared. We show that Ag-NPs are spherical with a narrow size distribution. The Ag-NPs show antimicrobial activities in vitro against Gram-negative ( Escherichia coli , Pseudomonas aeruginosa , and a clinical multidrug-resistant strain of P. aeruginosa ) and Gram-positive ( Bacillus subtilis ) bacteria. Moreover, antimicrobial effects of the Ag-NPs, against a resistant P. aeruginosa clinical strain, were tested in a murine skin infection model. The results demonstrate that the Ag-NPs reported in this work are capable of eradicating pathogenic resistant bacteria in an infection in vivo. In addition, skin, liver, and kidney damage profiles were monitored in the murine infection model, and the

  15. Environmentally friendly synthesis of organic-soluble silver nanoparticles for printed electronics

    International Nuclear Information System (INIS)

    Lee, Kwi Jong; Jun, Byung Ho; Choi, Junrak; Lee, Young Il; Joung, Jaewoo; Oh, Yong Soo

    2007-01-01

    In this study, we attempted to synthesize organic-soluble silver nanoparticles in the concentrated organic phase with an environmentally friendly method. The fully organic phase system contains silver acetate as a silver precursor, oleic acid as both a medium and a capping molecule, and tin acetate as a reducing agent. Monodisperse silver nanoparticles with average diameters of ca. 5 nm can be easily synthesized at large scale. Only a small usage of tin acetate ( 90%). Also, it was investigated that the residual tin atom does not exist in the synthesized silver nanoparticles. This implied that tin acetate acts as a reducing catalyst

  16. Photo-catalyzed and phyto-mediated rapid green synthesis of silver nanoparticles using herbal extract of Salvinia molesta and its antimicrobial efficacy.

    Science.gov (United States)

    Verma, Devendra Kumar; Hasan, Syed Hadi; Banik, Rathindra Mohan

    2016-02-01

    Current study presents an economic, ecofriendly and simple photo-catalytic green route for the swift biosynthesis of silver nanoparticles (AgNPs) within 20s, devoid of any instrumental support or chemical reductant. Aqueous leaf-extract of an aquatic fern, Salvinia molesta (AES), was used as a bioreductant as well as a stabilizing agent. Rapid change in color of reaction mixture from yellowish green to reddish brown within 20s in direct sun light exposure was considered as the primary visual indication of AgNPs biosynthesis. The biosynthesis of AgNPs was confirmed by UV-visible spectroscopy through the presence of a characteristic surface plasmon resonance (SPR) band for AgNPs at λmax of 425 nm. The process parameters were optimized through one factor at a time approach. Optimal values of different process parameters for the current biosynthetic system were found as; 35 min of reaction time under sun light, 8.0mM AgNO3 concentration and 5.0% (v/v) AES inoculum dose. Field emission scanning electron microscopy (FESEM), energy dispersive X-Ray spectroscopy (EDX), high resolution transmission electron microscopy (HRTEM), atomic force microscopy (AFM) and X-ray diffraction (XRD) analysis showed that most of AgNPs were spherical in shape with average size distribution of 12.46 nm having face centered cubic (fcc) crystal lattice. IR analysis of AES and synthesized AgNPs indicated the involvement of both hydroxyl and amino groups in the biosynthesis and stabilization of AgNPs. The synthesized AgNPs were found to be an effective antibacterial agent against both Gram positive and Gram negative bacteria. On the basis of results and facts, a probable mechanism has also been proposed to explore the possible route of biosynthesis of AgNPs through AES. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. In vitro anticancer potential of BaCO3 nanoparticles synthesized via green route.

    Science.gov (United States)

    Nagajyothi, P C; Pandurangan, Muthuraman; Sreekanth, T V M; Shim, Jaesool

    2016-03-01

    Green synthesis of nanoparticles is a growing research area because of their potential applications in nanomedicine. Barium carbonate nanoparticles (BaCO3 NPs) were synthesized using an aqueous extract of Mangifera indica seed as a reducing agent. These particles were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), Transmission electron microscopy (TEM), selected area electron diffraction (SAED), Energy-dispersive-X-ray (EDX) and X-ray photoelectron spectroscopy (XPS) analysis. HR-TEM images are confirmed that green synthesized BaCO3 NPs have spherical, triangular and uneven shapes. EDX analysis confirmed the presence of Ba, C and O. The peaks at 2θ of 19.45, 23.90, 24.29, 27.72, 33.71, 34.08, 34.60, 41.98, 42.95, 44.18, 44.85, and 46.78 corresponding to (110), (111), (021), (002), (200), (112), (130), (221), (041), (202), (132) and (113) showed that BaCO3 NPs average size was ~18.3 nm. SAED pattern confirmed that BaCO3 NPs are crystalline nature. BaCO3 NPs significantly inhibited cervical carcinoma cells, as evidenced by cytotoxicity assay. Immunofluorescence and fluorescence assays showed that BaCO3 NPs increased the expression and activity of caspase-3, an autocatalytic enzyme that promotes apoptosis. According to the results, green synthesis route has great potential for easy, rapid, inexpensive, eco-friendly and efficient development of novel multifunctional nanoparticles for the treatment of cancer. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Green chemistry for the preparation of L-cysteine functionalized silver nanoflowers

    Science.gov (United States)

    Ma, Xinfu; Guo, Qingquan; Xie, Yu; Ma, Haixiang

    2016-05-01

    The preparation of size- and shape-controlled metallic nanostructures in an eco-friendly manner has been regarded as one of the key issues in nanoscience research today. In this paper, biosynthesis of silver nanoflowers (AgNFs) using L-cysteine as reducing and capping agent in alkaline solution via 70 °C water bath for 4 h has been demonstrated. The formation of L-cys-AgNPs was observed visually by color change of the samples. The prepared samples were characterized by UV-vis spectroscopy, Transmission electron microscopy (TEM) spectroscopy, X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). These results indicate that single-crystalline of AgNFs have been successfully synthesized.

  19. Synthesis and characterization of silver nanoparticles using Gelidium amansii and its antimicrobial property against various pathogenic bacteria.

    Science.gov (United States)

    Pugazhendhi, Arivalagan; Prabakar, Desika; Jacob, Jaya Mary; Karuppusamy, Indira; Saratale, Rijuta Ganesh

    2018-01-01

    Microfouling is evolving at a fast rate causing augmented mortality rates and damage worldwide. Until now, several remedial measures have been exploited to overcome microfouling, amongst them nanoparticles play a superior role. Currently, green synthesized nanoparticles have been centered owing to its eco-friendly, cost effectively and non-toxic nature which has also increased its industrial applications (biomedicine, food and textile). In the present research Silver Nanoparticles (Ag NPs) synthesized using marine red algae Gelidium amansii. The synthesized Ag NPs were characterized using UV-Vis Spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). Further the antibacterial potentials of Ag NPs were evaluated against pathogenic Gram positive (Staphylococcus aureus, Bacillus pumilus) and Gram negative bacterial (Escherichia coli, Pseudomonas aeruginosa, Vibrio parahaemolyticus, Aeromonas hydrophila) pathogens. Our findings suggest that Ag NPs synthesized using a green approach effectively reduce the bacterial growth by eliciting a bactericidal activity against the Gram Negative and Gram Positive biofilm forming pathogens. Thereby, Ag NPs synthesized using G. amansii could reflect as potential anti micro-fouling coatings for various biomedical and environmental applications. Copyright © 2017. Published by Elsevier Ltd.

  20. Extracellular Production of Silver Nanoparticles by Using Three Common Species of Dermatophytes: Trichophyton rubrum, Trichophyton mentagrophytes and Microsporum canis

    International Nuclear Information System (INIS)

    Moazeni, M.; Rashidi, N.; Shahverdi, Ahmad R.; Noorbakhsh, F.; Rezaie, S.

    2012-01-01

    To develop a new green approach for biosynthesis of silver nanoparticles, myconanotechnology has been represented as a novel field of study in nano technology. In this study, we have reported the extracellular synthesis of highly stable silver nanoparticles using three species of dermatophytes: Trichophyton rubrum, Trichophyton mentagrophytes and Microsporum canis. Methods: Clinical strains of these species were grown in a liquid medium containing mineral salt and incubated at 25 d egree C for 5-7 days. The cell-free filtrate of each culture was obtained and subjected to synthesize silver nanoparticles in the presence of 1 m M AgNO 3 . Results: The reduction of Ag + ions in metal nanoparticles was investigated virtually by tracing the solution color which was switched into reddish-light brown after 72 h. For T. mentagrophytes, a UV-visible spectra demonstrating a strong, quite narrow peak located between 422 and 425 nm was obtained. For M. canis, a fairly wide peak centering at 441 nm and for T. rubrum, a weak spectrum to decipher were observed. According to transmission electron microscopy results, fairly uniform, spherical, and small in size with almost less than 50 nm particles were forms in case of T. mentagrophytes. For the other two species, transmission electron microscopy images showed existence of small spherical nano silvers but not as small as nanoparticles synthesized by T. mentagrophytes. Conclusion: We observed that species belong to a single genus of the fungi have variable ability to synthesize silver nanoparticles extracellulary with different efficiency. Furthermore, the extracellular synthesis may make the process simpler and easier for following processes.

  1. Green-synthetized silver nanoparticles for Nanoparticle-Enhanced Laser Induced Breakdown Spectroscopy (NELIBS) using a mobile instrument

    Science.gov (United States)

    Poggialini, F.; Campanella, B.; Giannarelli, S.; Grifoni, E.; Legnaioli, S.; Lorenzetti, G.; Pagnotta, S.; Safi, A.; Palleschi, V.

    2018-03-01

    When compared to other analytical techniques, LIBS shows relatively low precision and, generally, high Limits of Detection (LODs). Until recently, the attempts in improving the LIBS performances have been based on the use of more stable/powerful lasers, high sensitivity detectors or controlled environmental parameters. This can hinder the competitiveness of LIBS by increasing the instrumental setup cost and the difficulty of operation. Sample treatment has proved to be a viable and simple way to increase the LIBS signal; in particular, the Nanoparticle-Enhanced Laser Induced Breakdown Spectroscopy (NELIBS) methodology uses a deposition of metal nanoparticles on the sample to greatly increase the emission of the LIBS plasma. In this work, we used a simple, fast, "green" and low-cost method to synthetize silver nanoparticles by using coffee extract as reducing agents for a silver nitrate solution. This allowed us to obtain nanoparticles of about 25 nm in diameter. We then explored the application of such nanoparticles to the NELIBS analysis of metallic samples with a mobile LIBS instrument. By adjusting the laser parameters and optimizing the sample preparation procedure, we obtained a NELIBS signal that is 4 times the LIBS one. This showed the potential of green-synthetized nanoparticle for NELIBS applications and suggests the possibility of an in-situ application of the technique.

  2. In Vivo toxicological assessment of biologically synthesized silver nanoparticles in adult Zebrafish (Danio rerio)

    Energy Technology Data Exchange (ETDEWEB)

    Krishnaraj, Chandran, E-mail: krishnarajbio@gmail.com [Department of Food Science & Technology, College of Agriculture & Life Sciences, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Harper, Stacey L. [Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331 (United States); Yun, Soon-Il, E-mail: siyun@jbnu.ac.kr [Department of Food Science & Technology, College of Agriculture & Life Sciences, Chonbuk National University, Jeonju 561-756 (Korea, Republic of)

    2016-01-15

    Highlights: • Synthesis of AgNPs achieved using Malva crispa Linn., leaves extract. • 96 h LC{sub 50} concentration of AgNPs was observed at 142.2 μg/l in adult zebrafish. • Cytological changes and intrahepatic localization of AgNPs were demonstrated in tissues. • Presence of micronuclei and nuclear abnormalities were observed. • The mRNA expression of stress and immune response related genes were analyzed. - Abstract: The present study examines the deleterious effect of biologically synthesized silver nanoparticles in adult zebrafish. Silver nanoparticles (AgNPs) used in the study were synthesized by treating AgNO{sub 3} with aqueous leaves extract of Malva crispa Linn., a medicinal herb as source of reductants. LC{sub 50} concentration of AgNPs at 96 h was observed as 142.2 μg/l. In order to explore the underlying toxicity mechanisms of AgNPs, half of the LC{sub 50} concentration (71.1 μg/l) was exposed to adult zebrafish for 14 days. Cytological changes and intrahepatic localization of AgNPs were observed in gills and liver tissues respectively, and the results concluded a possible sign for oxidative stress. In addition to oxidative stress the genotoxic effect was observed in peripheral blood cells like presence of micronuclei, nuclear abnormalities and also loss in cell contact with irregular shape was observed in liver parenchyma cells. Hence to confirm the oxidative stress and genotoxic effects the mRNA expression of stress related (MTF-1, HSP70) and immune response related (TLR4, NFKB, IL1B, CEBP, TRF, TLR22) genes were analyzed in liver tissues and the results clearly concluded that the plant extract mediated synthesis of AgNPs leads to oxidative stress and immunotoxicity in adult zebrafish.

  3. Streptomyces somaliensis mediated green synthesis of silver nanoparticles

    Directory of Open Access Journals (Sweden)

    Meysam Soltani Nejad

    2015-07-01

    Full Text Available Objective(s: The development of reliable and ecofriendly process for the synthesis of nano-metals is an important aspect in the field of nanotechnology. Nano-metals are a special group of materials with broad area of applications. Materials and Methods: In this study, extracellular synthesis of silver nanoparticles (SNPs performed by use of the gram positive soil Streptomycetes. Streptomycetes isolated from rice fields of Guilan Province, Iran (5 isolates. Initial characterization of SNPs was performed by visual change color. To determine the bacterium taxonomical identity, its colonies characterized morphologically by use of scanning electron microscope. The PCR molecular analysis of active isolate represented its identity partially. In this regard, 16S rDNA of isolate G was amplified using universal bacterial primers FD1 and RP2. The PCR products were purified and sequenced. Sequence analysis of 16S rDNA was then conducted using NCBI GenBank database using BLAST. Also SNPs were characterized by, transmission electron microscopy (TEM and X-ray diffraction spectroscopy (XRD. Results: From all 5 collected Streptomyces somaliensis isolates, isolate G showed highest extracellular synthesis of SNPs via in vitro. SNPs were formed immediately by the addition of (AgNO3 solution (1 mM. UV-visible spectrophotometry for measuring surface plasmon resonance showed a single absorption peak at 450 nm, which confirmed the presence of SNPs. TEM revealed the extracellular formation of spherical silver nanoparticles in the size range of 5-35 nm. Conclusions: The biological approach for the synthesis of metal nanoparticles offers an environmentally benign alternative to the traditional chemical and physical synthesis methods. So, a simple, environmentally friendly and cost-effective method has been developed to synthesize AgNPs using Streptomycetes.

  4. Blue-green luminescent CdZnSeS nanocrystals synthesized with activated alkyl thiol

    International Nuclear Information System (INIS)

    Xia Xing; Liu Zuli; Du Guihuan; Li Yuebin; Ma Ming; Yao Kailun

    2012-01-01

    Semiconductor nanocrystals with blue-green luminescence are potentially useful in various applications, but the preparation has not been easy compared to regular semiconductor nanocrystals with emission in the orange-red range. In this research alloyed CdZnSeS nanocrystals with luminescence covering the wavelength range from 430 to 560 nm are obtained by a one-step method with the assistance of alkyl thiol compound 1-dodecanethiol, which serves both as the sulfur source and surface ligand. The luminescence of CdZnSeS nanocrystals can be tuned from blue to green by altering the Cd:Zn molar ratio. Besides, the amount of 1-dodecanethiol in the reaction mixture can influence the emission wavelength by restricting the growth of nanocrystals. The dual control of both particle composition and size has enabled the tuning of luminescence to cover the blue-green spectral window. This research presents a convenient method to synthesize nanocrystals with tunable blue-green emission; these materials can be useful in advanced technologies such as photovoltaics, lighting and display. - Highlights: → Obtained blue-green luminescent nanocrystals by a one-step process. → Alkyl thiol used as a sulfur source and a surface stabilizer to control particle size. → Luminescence color of NCs could be easily tuned by changing their composition and particle size simultaneously.

  5. Green synthesis of silver nanoparticles from aqueous leaf extract of Pomegranate (Punica granatum) and their anticancer activity on human cervical cancer cells

    Science.gov (United States)

    Sarkar, Sonia; Kotteeswaran, Venkatesan

    2018-06-01

    Plants contain different important phytochemicals that can be used as a potential treatment for various ailments including cancer. The green synthesis of silver nanoparticles from the extract of different plant parts has gained a wide range of engrossment among the researchers due to its unique optical and structural property. The aim of this study is green synthesis of silver nanoparticles from the aqueous leaf extract of pomegranate (Punica granatum) and to investigate its anticancer activity on human cervical cancer cells (HeLa). The synthesis of silver nanoparticle was depicted by the colour change from golden yellowish to dark brownish, UV-visible spectral analysis gave a characteristic surface plasmon absorption peak at . Further morphological characterization was done by Zeta potential where the size analysis was depicted to be 46.1 nm and zeta potential as . Fourier transform infrared spectroscopy (FTIR) inferred 3 intense sharp peaks at , , , confirmed the presence of flavonoids and polyphenols. The scanning electron microscopy (SEM) analysis with energy diffraction spectroscopy (EDS) confirmed the presence of silver nanoparticles with size ranged from to . X-ray diffraction (XRD) confirmed the crystallographic nature of silver. The cell proliferation activity of nanoparticles was tested by 3, ‑4, 5 dimethylthiazol-2,5 diphenyl tetrazolium bromide (MTT) assay where the inhibitory concentration () was found at inhibiting of HeLa cell line. The anticancer activity of nanoparticles was determined by lactate dehydrogenase (LDH) assay where showed of cytotoxicity. Furthermore, the anticancer property of nanoparticles was confirmed by the DNA fragmentation assay.

  6. Formulation and screen printing of water based conductive flake silver pastes onto green ceramic tapes for electronic applications

    International Nuclear Information System (INIS)

    Faddoul, Rita; Reverdy-Bruas, Nadège; Blayo, Anne

    2012-01-01

    Highlights: ► Formulation of water-based pastes. ► Viscosity, yield stress, elastic and viscous modulus determination. ► Screen printing onto green ceramic tapes. ► Rheology effect on line dimensions and electrical properties. ► Resistivity ∼18–33 nΩ m. Minimum width ∼60 μm after sintering. - Abstract: Environmentally friendly, water-based silver pastes, adapted for screen printing, were formulated with different silver contents (67–75%). These pastes allowed screen printing onto low temperature co-fired ceramic (LTCC) of narrow conductive tracks with a 60 μm line width and a 3 × 10 −8 Ω m electrical resistivity. Inks were formulated with a mixture of spherical and flake shape silver particles with 2–4 μm mean diameter. Rheological behaviour of pastes was studied in order to determine its effect on printed lines properties. Prepared inks were then screen printed and sintered under normal atmosphere at 875 °C. As expected, electrical properties depended on silver content. Resistivity values varying from 1.6 × 10 −8 to 3.3 × 10 −8 Ω m were calculated over 36.3 cm line length. These values are very close to bulk silver resistivity (1.6 × 10 −8 Ω m). Compared to previous research and commercial pastes, the newly formulated pastes reached equivalent or even better conductivities with lower silver content (70% by weight).

  7. Preparation of silver nanoparticles from synthetic and natural sources: remediation model for PAHs

    International Nuclear Information System (INIS)

    Abbasi, M.; Saeed, F.; Rafique, U.

    2013-01-01

    The emergence of nanoscience and technology is gaining popularity with an increasing demand for metal nanoparticles applicability in various areas such as electronics, catalysis, chemistry, energy and medicine. Metallic nanoparticles are traditionally synthesized by wet chemical techniques, where the chemicals used are quite often toxic and flammable. In this work, an attempt is made to compare the efficiency of two different synthesis methods and application of each for the remediation of poly aromatic hydrocarbons (PAHs). In this regard, silver nanoparticles are prepared by green and wet chemical method using plant extract of garlic (Allium sativum). The extract is known to reduce the metal during synthesis and acts as stabilizing ligand. These synthesized silver nanoparticles (Agp) and (AgW) were applied as adsorbents in synthetic batch mode experiments at varying parameters of pH and temperature. A concentration of 0.01mg/L of Phenanthrene, Anthracene, and Pyrene were induced at fixed dosage of 1mg/Kg of adsorbent. Residual concentration of each PAH was analyzed on UV-Visible spectrophotometer. The results indicated that both adsorbents follow the sequence of Phenanthrene>Pyrene>Anthracene with optimal removal of higher than 85 percentage in each case. A distinguishing privilege is attained by Agp adsorbent showing 3, 3 and 11 orders of magnitude higher efficiency than Agw. It may be attributed to more functional groups in the plant extract participating in binding of PAH to the surface. Each synthesized adsorbents was characterized by FTIR, SEM and EDX. The average particle size was determined to be of the order of 13-26 nm. The study concludes the use of alternate economical and green adsorbents for control of poly aromatic hydrocarbons (PAHs). (author)

  8. Preparation of Silver Nanoparticles from Synthetic and Natural Sources: Remediation Model for PAHs

    International Nuclear Information System (INIS)

    Abbasi, Maryam; Saeed, Fatima; Rafique, Uzaira

    2014-01-01

    The emergence of nanoscience and technology is gaining popularity with an increasing demand for metal nanoparticles applicability in various areas such as electronics, catalysis, chemistry, energy and medicine. Metallic nanoparticles are traditionally synthesized by wet chemical techniques, where the chemicals used are quite often toxic and flammable. In this work, an attempt is made to compare the efficiency of two different synthesis methods and application of each for the remediation of poly aromatic hydrocarbons (PAHs). In this regard, silver nanoparticles are prepared by green and wet chemical method using plant extract of garlic (Allium sativum). The extract is known to reduce the metal during synthesis and acts as stabilizing ligand. These synthesized silver nanoparticles (Agp) and (AgW) were applied as adsorbents in synthetic batch mode experiments at varying parameters of pH and temperature. A concentration of 0.01mg/L of Phenanthrene, Anthracene, and Pyrene were induced at fixed dosage of 1mg/Kg of adsorbent. Residual concentration of each PAH was analyzed on UV-Visible spectrophotometer. The results indicated that both adsorbents follow the sequence of Phenanthrene>Pyrene>Anthracene with optimal removal of higher than 85% in each case. A distinguishing privilege is attained by Agp adsorbent showing 3, 3 and 11 orders of magnitude higher efficiency than Agw. It may be attributed to more functional groups in the plant extract participating in binding of PAH to the surface. Each synthesized adsorbents was characterized by FTIR, SEM and EDX. The average particle size was determined to be of the order of 13-26 nm. The study concludes the use of alternate economical and green adsorbents for control of poly aromatic hydrocarbons (PAHs)

  9. Preparation of Silver Nanoparticles from Synthetic and Natural Sources: Remediation Model for PAHs

    Science.gov (United States)

    Abbasi, Maryam; Saeed, Fatima; Rafique, Uzaira

    2014-06-01

    The emergence of nanoscience and technology is gaining popularity with an increasing demand for metal nanoparticles applicability in various areas such as electronics, catalysis, chemistry, energy and medicine. Metallic nanoparticles are traditionally synthesized by wet chemical techniques, where the chemicals used are quite often toxic and flammable. In this work, an attempt is made to compare the efficiency of two different synthesis methods and application of each for the remediation of poly aromatic hydrocarbons (PAHs). In this regard, silver nanoparticles are prepared by green and wet chemical method using plant extract of garlic (Allium sativum). The extract is known to reduce the metal during synthesis and acts as stabilizing ligand. These synthesized silver nanoparticles (Agp) and (AgW) were applied as adsorbents in synthetic batch mode experiments at varying parameters of pH and temperature. A concentration of 0.01mg/L of Phenanthrene, Anthracene, and Pyrene were induced at fixed dosage of 1mg/Kg of adsorbent. Residual concentration of each PAH was analyzed on UV-Visible spectrophotometer. The results indicated that both adsorbents follow the sequence of Phenanthrene>Pyrene>Anthracene with optimal removal of higher than 85% in each case. A distinguishing privilege is attained by Agp adsorbent showing 3, 3 and 11 orders of magnitude higher efficiency than Agw. It may be attributed to more functional groups in the plant extract participating in binding of PAH to the surface. Each synthesized adsorbents was characterized by FTIR, SEM and EDX. The average particle size was determined to be of the order of 13-26 nm. The study concludes the use of alternate economical and green adsorbents for control of poly aromatic hydrocarbons (PAHs).

  10. A Novel Photosynthesis of Carboxymethyl Starch-Stabilized Silver Nanoparticles

    Science.gov (United States)

    El-Sheikh, M. A.

    2014-01-01

    The water soluble photoinitiator (PI) 4-(trimethyl ammonium methyl) benzophenone chloride is used for the first time in the synthesis of silver nanoparticles (AgNPs). A new green synthesis method involves using PI/UV system, carboxymethyl starch (CMS), silver nitrate, and water. A mechanism of the reduction of silver ions to AgNPs by PI/UV system as well as by the newly born aldehydic groups was proposed. The synthesis process was assessed by UV-vis spectra and TEM of AgNPs colloidal solution. The highest absorbance was obtained using CMS, PI and AgNO3 concentrations of 10 g/L, 1 g/L, and 1 g/L, respectively; 40°C; 60 min; pH 7; and a material : liquor ratio 1 : 20. AgNPs so-obtained were stable in aqueous solution over a period of three weeks at room temperature (~25°C) and have round shape morphology. The sizes of synthesized AgNPs were in the range of 1–21 nm and the highest counts % of these particles were for particles of 6–10 and 1–3 nm, respectively. PMID:24672325

  11. A Novel Photosynthesis of Carboxymethyl Starch-Stabilized Silver Nanoparticles

    Directory of Open Access Journals (Sweden)

    M. A. El-Sheikh

    2014-01-01

    Full Text Available The water soluble photoinitiator (PI 4-(trimethyl ammonium methyl benzophenone chloride is used for the first time in the synthesis of silver nanoparticles (AgNPs. A new green synthesis method involves using PI/UV system, carboxymethyl starch (CMS, silver nitrate, and water. A mechanism of the reduction of silver ions to AgNPs by PI/UV system as well as by the newly born aldehydic groups was proposed. The synthesis process was assessed by UV-vis spectra and TEM of AgNPs colloidal solution. The highest absorbance was obtained using CMS, PI and AgNO3 concentrations of 10 g/L, 1 g/L, and 1 g/L, respectively; 40°C; 60 min; pH 7; and a material : liquor ratio 1 : 20. AgNPs so-obtained were stable in aqueous solution over a period of three weeks at room temperature (~25°C and have round shape morphology. The sizes of synthesized AgNPs were in the range of 1–21 nm and the highest counts % of these particles were for particles of 6–10 and 1–3 nm, respectively.

  12. Silver Accumulation in the Green Microalga Coccomyxa actinabiotis: Toxicity, in Situ Speciation, and Localization Investigated Using Synchrotron XAS, XRD, and TEM.

    Science.gov (United States)

    Leonardo, Thomas; Farhi, Emmanuel; Pouget, Stéphanie; Motellier, Sylvie; Boisson, Anne-Marie; Banerjee, Dipanjan; Rébeillé, Fabrice; den Auwer, Christophe; Rivasseau, Corinne

    2016-01-05

    Microalgae are good candidates for toxic metal remediation biotechnologies. This study explores the cellular processes implemented by the green microalga Coccomyxa actinabiotis to take up and cope with silver over the concentration range of 10(-7) to 10(-2) M Ag(+). Understanding these processes enables us to assess the potential of this microalga for applications for bioremediation. Silver in situ speciation and localization were investigated using X-ray absorption spectroscopy, X-ray diffraction, and transmission electron microscopy. Silver toxicity was evaluated by monitoring microalgal growth and photochemical parameters. Different accumulation mechanisms were brought out depending on silver concentration. At low micromolar concentration, microalgae fixed all silver initially present in solution, trapping it inside the cells into the cytosol, mainly as unreduced Ag(I) bound with molecules containing sulfur. Silver was efficiently detoxified. When concentration increased, silver spread throughout the cell and particularly entered the chloroplast, where it damaged the photosystem. Most silver was reduced to Ag(0) and aggregated to form crystalline silver nanoparticles of face-centered cubic structure with a mean size of 10 nm. An additional minor interaction of silver with molecules containing sulfur indicated the concomitant existence of the mechanism observed at low concentration or nanoparticle capping. Nanoparticles were observed in chloroplasts, in mitochondria, on the plasma membrane, on cytosolic membrane structures, and in vacuoles. Above 10(-4) M Ag(+), damages were irreversible, and photosynthesis and growth were definitely inhibited. However, high silver amounts remained confined inside microalgae, showing their potential for the bioremediation of contaminated water.

  13. Microscopic origin of the fast blue-green luminescence of chemically synthesized non-oxidized silicon quantum dots

    NARCIS (Netherlands)

    Dohnalova, K.; Fucikova, A.; Umesh, C.P.; Humpolickova, J.; Paulusse, Jos Marie Johannes; Valenta, J.; Zuilhof, H.

    2012-01-01

    The microscopic origin of the bright nanosecond blue-green photoluminescence (PL), frequently reported for synthesized organically terminated Si quantum dots (Si-QDs), has not been fully resolved, hampering potential applications of this interesting material. Here a comprehensive study of the PL

  14. Microscopic Origin of the Fast Blue-Green Luminescence from Chemically Synthesized Non-Oxidized Silicon Quantum Dots

    NARCIS (Netherlands)

    Dohnalová, K.; Gregorkiewicz, T.; Fucíková, A.; Valenta, J.; Umesh, C.; Paulusse, J.M.J.; Zuilhof, H.; Humpolícková, J.; Hof, van M.

    2012-01-01

    The microscopic origin of the bright nanosecond blue-green photoluminescence (PL), frequently reported for synthesized organically terminated Si quantum dots (Si-QDs), has not been fully resolved, hampering potential applications of this interesting material. Here a comprehensive study of the PL

  15. Green synthesis and characterization of monodispersed silver nanoparticles using root bark aqueous extract of Annona muricata Linn and their antimicrobial activity

    Science.gov (United States)

    Ezealisiji, K. M.; Noundou, X. S.; Ukwueze, S. E.

    2017-11-01

    In recent time, various phytosynthetic methods have been employed for the fabrication of silver nanoparticles; these unique metal nanoparticles are used in several applications which include pharmaceuticals and material engineering. The current research reports a rapid and simple synthetic partway for silver nanoparticles (AgNPs) using root bark aqueous extract of Annona muricata and the evaluation of its antimicrobial efficacy against pathogenic microorganisms. The root bark extract was treated with aqueous silver nitrate solution. Silver ions were reduced to silver atoms which on aggregation gave Silver nanoparticles; the biosynthesized AgNPs were characteristically spherical, discreet and stabilized by phytochemical entities and were characterized using ultraviolet visible spectroscopy, transmission electron microscope (TEM) and photon correlation microscopy. The aqueous plant extract-AgNPs suspension was subjected to Fourier transform infrared spectroscopy. TEM result for the average particle size is 22 ± 2 nm. The polydispersity index and zeta-potential were found to be 0.44 ± 0.02 and - 27.90 ± 0.01 mV, respectively (Zeta-Sizer). The antimicrobial evaluation result showed that the synthesized silver nanoparticles at different concentration were very active against the Gram-positive bacteria ( B. subtilis, S. aureous) and Gram-negative bacteria ( K. Pneumonia, E. Coli and Pseudomonas aeruginosa), P. aeruginosa being most susceptible to the anti microbial effect of the silver nanoparticles. Stable silver nanoparticles with antimicrobial activity were obtained through biosynthesis.

  16. Facile green synthesis of silver doped fluor-hydroxyapatite/β-cyclodextrin nanocomposite in the dual acting fluorine-containing ionic liquid medium for bone substitute applications

    Energy Technology Data Exchange (ETDEWEB)

    Jegatheeswaran, S. [Advanced Green Chemistry Lab, Department of Industrial Chemistry, School of Chemical Sciences, Alagappa University, Karaikudi-3, Tamil Nadu (India); Selvam, S. [Laser and Sensor Application Laboratory, Pusan National University, Busan 609735 (Korea, Republic of); Sri Ramkumar, V. [Deptartment of Environmental Biotechnology, School of Environmental, Sciences, Bharathidasan University, Tiruchirappalli, Tamilnadu (India); Sundrarajan, M., E-mail: sundrarajan@yahoo.com [Advanced Green Chemistry Lab, Department of Industrial Chemistry, School of Chemical Sciences, Alagappa University, Karaikudi-3, Tamil Nadu (India)

    2016-05-15

    Highlights: • Fluorine based ionic liquid was highly influenced the morphological structure of nanocomposites. • These composites has been motivated controlled release of silver nanoparticles for uniform antibacterial activity. • These material has given excellent antibacterial biofilm activity and favourable cytotoxical behavior on the human osteosarcoma (MG-63) cells. • These material has been highly suitable for bone substitute appliactions. - Abstract: A novel green route has approached for the synthesis of silver doped fluor-hydroxyapatite/β-cyclodextrin composite by the assistance of fluorine-based ionic liquid. The selected [BMIM]BF{sub 4} ionic liquid for this work plays a dual role as fluoride source and templating agent. It helps to improve the crystalline structures and the shape of the composites. The crystallinity, surface morphology, topographical studies of the synthesized composite were validated. The XRD results of the composite show typical Ag reflection peaks at 38.1°, 44.2° and 63.4°. The ionic liquid assisted composite displayed the hexagonal shaped HA particles, which are surrounded by spherical nano-Ag particles and these particles are uniformly dispersed in the β-cyclodextrin matrix in both horizontal and cross sections from surface morphology observations. The Ionic liquid assisted silver doped fluor-hydroxyapatite/β-cyclodextrin composite exhibited very good antibacterial activities against Escherichia coli, Salmonella typhi, Klebsiella pneumonia and Serratia liquefaciens pathogens. The antibacterial proficiencies were established using Confocal Laser Scanning Microscopic developed biofilms images and bacterial growth curve analysis. The cytotoxicity results of the ionic liquid assisted composite analyzed by cell proliferation in vitro studies using human osteosarcoma cell line (MG-63) and this study has shown excellent biocompatibility.

  17. Facile green synthesis of silver doped fluor-hydroxyapatite/β-cyclodextrin nanocomposite in the dual acting fluorine-containing ionic liquid medium for bone substitute applications

    International Nuclear Information System (INIS)

    Jegatheeswaran, S.; Selvam, S.; Sri Ramkumar, V.; Sundrarajan, M.

    2016-01-01

    Highlights: • Fluorine based ionic liquid was highly influenced the morphological structure of nanocomposites. • These composites has been motivated controlled release of silver nanoparticles for uniform antibacterial activity. • These material has given excellent antibacterial biofilm activity and favourable cytotoxical behavior on the human osteosarcoma (MG-63) cells. • These material has been highly suitable for bone substitute appliactions. - Abstract: A novel green route has approached for the synthesis of silver doped fluor-hydroxyapatite/β-cyclodextrin composite by the assistance of fluorine-based ionic liquid. The selected [BMIM]BF_4 ionic liquid for this work plays a dual role as fluoride source and templating agent. It helps to improve the crystalline structures and the shape of the composites. The crystallinity, surface morphology, topographical studies of the synthesized composite were validated. The XRD results of the composite show typical Ag reflection peaks at 38.1°, 44.2° and 63.4°. The ionic liquid assisted composite displayed the hexagonal shaped HA particles, which are surrounded by spherical nano-Ag particles and these particles are uniformly dispersed in the β-cyclodextrin matrix in both horizontal and cross sections from surface morphology observations. The Ionic liquid assisted silver doped fluor-hydroxyapatite/β-cyclodextrin composite exhibited very good antibacterial activities against Escherichia coli, Salmonella typhi, Klebsiella pneumonia and Serratia liquefaciens pathogens. The antibacterial proficiencies were established using Confocal Laser Scanning Microscopic developed biofilms images and bacterial growth curve analysis. The cytotoxicity results of the ionic liquid assisted composite analyzed by cell proliferation in vitro studies using human osteosarcoma cell line (MG-63) and this study has shown excellent biocompatibility.

  18. Effect of silver addition on the properties of combustion synthesized nanocrystalline LiCoO2

    International Nuclear Information System (INIS)

    Ghosh, Paromita; Mahanty, S.; Basu, R.N.

    2008-01-01

    Nanocrystalline (∼50 nm) LiCoO 2 powders containing 0-10 mol% of Ag have been prepared by combustion synthesis using citrate-nitrate combustion route. Thermal analyses show a sharp decomposition of the gel at ∼177 deg. C for pristine LiCoO 2 . With addition of silver, the decomposition becomes sluggish and it completes only above 430 deg. C. X-ray powder diffraction analyses show an increase in lattice parameter, c, with increasing Ag content suggesting the occupation of Ag within LiCoO 2 interlayer spacings. Transmission electron microscopy indicates diffusion of Ag into LiCoO 2 grains. It has been observed that adding 1.0 mol% silver increases the room temperature electrical conductivity by more than two orders of magnitude (1.5 x 10 -3 S cm -1 ). Galvanostatic charge-discharge profiles of coin cells fabricated with the synthesized powders show a two-fold enhancement in the discharge capacity for 1.0 mol% Ag-added LiCoO 2 cathode (140 mAh g -1 ) compared to that for pristine LiCoO 2 (70 mAh g -1 )

  19. Enhancement of antidandruff activity of shampoo by biosynthesized silver nanoparticles from Solanum trilobatum plant leaf

    Science.gov (United States)

    Pant, Gaurav; Nayak, Nitesh; Gyana Prasuna, R.

    2013-10-01

    The present investigation describes simple and effective method for synthesis of silver nanoparticles via green route. Solanum trilobatum Linn extract were prepared by both conventional and homogenization method. We optimized the production of silver nanoparticles under sunlight, microwave and room temperature. The best results were obtained with sunlight irradiation, exhibiting 15-20 nm silver nanoparticles having cubic and hexagonal shape. Biosynthesized nanoparticles were highly toxic to various bacterial strains tested. In this study we report antibacterial activity against various Gram negative ( Klebsiella pneumoniae, Vibrio cholerae and Salmonella typhi) and Gram positive ( Staphylococcus aureus, Bacillus cereus and Micrococcus luteus) bacterial strains. Screening was also performed for any antifungal properties of the nanoparticles against human pathogenic fungal strains ( Candida albicans and Candida parapsilosis). We also demonstrated that these nanoparticles when mixed with shampoo enhance the anti-dandruff effect against dandruff causing fungal pathogens ( Pityrosporum ovale and Pityrosporum folliculitis). The present study showed a simple, rapid and economical route to synthesize silver nanoparticles and their applications hence has a great potential in biomedical field.

  20. Honey Mediated Green Synthesis of Nanoparticles: New Era of Safe Nanotechnology

    Directory of Open Access Journals (Sweden)

    Eranga Roshan Balasooriya

    2017-01-01

    Full Text Available With the advent of nanotechnology, many related industries rapidly developed over the recent past. Generally, top-down and bottom-up approaches are the two major processes used to synthesize nanoparticles; most of these require high temperatures, vacuum conditions, and harsh/toxic chemicals. As a consequence, adverse effects impacted organisms including humans. Some synthesis methods are expensive and time-consuming. As a corollary, the concept of “green nanotechnology” emerged with the green synthesis of nanoparticles commencing a new epoch in nanotechnology. This involves the synthesis of nanomaterial from microorganisms, macroorganisms, and other biological materials. Honey is documented as the world’s oldest food source with exceptional medical, chemical, physical, and pharmaceutical values. Honey mediated green synthesis is a relatively novel concept used during the past few years to synthesize gold, silver, carbon, platinum, and palladium nanoparticles. Honey acts as both a stabilizing and a reducing agent and importantly functions as a precursor in nanoparticle synthesis. This method usually requires room temperature and does not produce toxic byproducts. In conclusion, honey mediated green synthesis of nanoparticles provides a simple, cost effective, biocompatible, reproducible, rapid, and safe method. The special activity of honey functionalized nanoparticles may provide valuable end products with numerous applications in diverse fields.

  1. Direct Silver Micro Circuit Patterning on Transparent Polyethylene Terephthalate Film Using Laser-Induced Photothermochemical Synthesis

    Directory of Open Access Journals (Sweden)

    Chen-Jui Lan

    2017-02-01

    Full Text Available This study presents a new and improved approach to the rapid and green fabrication of highly conductive microscale silver structures on low-cost transparent polyethylene terephthalate (PET flexible substrate. In this new laser direct synthesis and pattering (LDSP process, silver microstructures are simultaneously synthesized and laid down in a predetermined pattern using a low power continuous wave (CW laser. The silver ion processing solution, which is transparent and reactive, contains a red azo dye as the absorbing material. The silver pattern is formed by photothermochemical reduction of the silver ions induced by the focused CW laser beam. In this improved LDSP process, the non-toxic additive in the transparent ionic solution absorbs energy from a low cost CW visible laser without the need for the introduction of any hazardous chemical process. Tests were carried out to determine the durability of the conductive patterns, and numerical analyses of the thermal and fluid transport were performed to investigate the morphology of the deposited patterns. This technology is an advanced method for preparing micro-scale circuitry on an inexpensive, flexible, and transparent polymer substrate that is fast, environmentally benign, and shows potential for Roll-to-Roll manufacture.

  2. Structural, morphological, and optical properties of tin(IV) oxide nanoparticles synthesized using Camellia sinensis extract: a green approach

    Science.gov (United States)

    Selvakumari, J. Celina; Ahila, M.; Malligavathy, M.; Padiyan, D. Pathinettam

    2017-09-01

    Tin oxide (SnO2) nanoparticles were cost-effectively synthesized using nontoxic chemicals and green tea ( Camellia sinensis) extract via a green synthesis method. The structural properties of the obtained nanoparticles were studied using X-ray diffraction, which indicated that the crystallite size was less than 20 nm. The particle size and morphology of the nanoparticles were analyzed using scanning electron microscopy and transmission electron microscopy. The morphological analysis revealed agglomerated spherical nanoparticles with sizes varying from 5 to 30 nm. The optical properties of the nanoparticles' band gap were characterized using diffuse reflectance spectroscopy. The band gap was found to decrease with increasing annealing temperature. The O vacancy defects were analyzed using photoluminescence spectroscopy. The increase in the crystallite size, decreasing band gap, and the increasing intensities of the UV and visible emission peaks indicated that the green-synthesized SnO2 may play future important roles in catalysis and optoelectronic devices.

  3. Synthesis of silver nanoparticles using DL-alanine for ESR dosimetry applications

    International Nuclear Information System (INIS)

    Guidelli, Eder José; Ramos, Ana Paula; Zaniquelli, Maria Elisabete D.; Nicolucci, Patricia; Baffa, Oswaldo

    2012-01-01

    The potential use of alanine for the production of nanoparticles is presented here for the first time. Silver nanoparticles were synthesized using a simple green method, namely the thermal treatment of silver nitrate aqueous solutions with DL-alanine. The latter compound was employed both as a reducing and a capping agent. Particles with average size equal to 7.5 nm, face-centered cubic crystalline structure, narrow size distribution, and spherical shape were obtained. Interaction between the silver ions present on the surface of the nanoparticles and the amine group of the DL-alanine molecule seems to be responsible for reduction of the silver ions and for the stability of the colloid. The bio-hybrid nano-composite was used as an ESR dosimeter. The amount of silver nanoparticles in the nanocomposite was not sufficient to cause considerable loss of tissue equivalency. Moreover, the samples containing nanoparticles presented increased sensitivity and reduced energetic dependence as compared with pure DL-alanine, contributing to the construction of small-sized dosimeters. - Highlights: ► The synthesis is environmentally benign, easy to perform, and of low-cost. ► DL-Alanine was employed both as reducing and capping agent. ► Mean size of 7.5 nm, narrow size distribution, and spherical shape of particles. ► Increased sensitivity and reduced energetic dependence compared with pure alanine. ► The nanocomposite has potential application for ESR dosimetry.

  4. Characterization, antibacterial, antioxidant, antidiabetic, anti-inflammatory and antityrosinase activity of green synthesized silver nanoparticles using Calophyllum tomentosum leaves extract

    Science.gov (United States)

    Govindappa, M.; Hemashekhar, B.; Arthikala, Manoj-Kumar; Ravishankar Rai, V.; Ramachandra, Y. L.

    2018-06-01

    The current research study is to develop an easy and eco-friendly method for the synthesis of AgNPs using aqueous leaf extract of Calophyllum tomentosum (CtAgNPs) and evaluated the extract to know the effects of anti-bacterial, antioxidant, anti-diabetic, anti-inflammatory and anti-tyrosinase activity. Using UV-vis spectrophotometer, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX) characterized the Calophyllum tomentosum mediated silver nanoparticles. The leaf extract of C. tomentosum yielded flavonoids, saponins, tannins, alkaloids, glycosides, phenols, terpenoids and coumarins. AgNPs formation was confirmed by UV-vis spectra at 438 nm. Crystalline structure with a face centered cubic (fcc) of AgNPs was observed in XRD. FTIR had shown that the phytochemicals were responsible for the reduction and capping material of silver nanoparticles. The size and shape of the AgNPs were determined using SEM. From EDX study analysed the strong absorption property of AgNPs. The CtAgNPs have showed significant antibacterial activity on multi drug resistance bacteria. The CtAgNPs had shown strong antioxidant (DPPH, H2O2 scavenging, nitric oxide scavenging power, reducing power) activities. The CtAgNPs had strongly inhibited the α-glucosidase and DPPIV compared to α-amylase. The CtAgNPs exhibited strong anti-inflammatory activity (albumin denaturation, membrane stabilization, heat haemolytic, protein inhibitory, lipoxygenase, xanthine oxidase) and tyrosinase inhibitory activity. To our best knowledge, this is the first attempt on the synthesis of silver nanoparticles using Calophyllum tomentosum leaves extract. Hence, to validate our results the in vivo studies at molecular level are needed to develop an antioxidant, anti-diabetic and anti-inflammatory agent.

  5. Polypyrrole-silver Nanocomposite: Synthesis and Characterization

    OpenAIRE

    D. M. Nerkar; S. V. Panse; S. P. Patil; S. E. Jaware; G. G. Padhye

    2016-01-01

    Polypyrrole-Silver (PPy-Ag) nanocomposite has been successfully synthesized by the chemical oxidative polymerization of pyrrole with iron (III) chloride as an oxidant, in the presence of a colloidal suspension of silver nanoparticles. Turkevich method (Citrate reduction method) was used for the synthesis of silver nanoparticles (Ag NPs). The silver nanoparticles were characterized by UV-Visible spectroscopy which showed an absorption band at 423 nm confirming the formation of nanoparticles. P...

  6. Synthesis and characterization of colloidal fluorescent silver nanoclusters.

    Science.gov (United States)

    Huang, Sherry; Pfeiffer, Christian; Hollmann, Jana; Friede, Sebastian; Chen, Justin Jin-Ching; Beyer, Andreas; Haas, Benedikt; Volz, Kerstin; Heimbrodt, Wolfram; Montenegro Martos, Jose Maria; Chang, Walter; Parak, Wolfgang J

    2012-06-19

    Ultrasmall water-soluble silver nanoclusters are synthesized, and their properties are investigated. The silver nanoclusters have high colloidal stability and show fluorescence in the red. This demonstrates that like gold nanoclusters also silver nanoclusters can be fluorescent.

  7. Evaluation of dose dependent antimicrobial activity of self-assembled chitosan, nano silver and chitosan-nano silver composite against several pathogens.

    Science.gov (United States)

    Tareq, Foysal Kabir; Fayzunnesa, Mst; Kabir, Md Shahariar; Nuzat, Musrat

    2018-01-01

    The aim of this investigation to preparation of silver nanoparticles organized chitosan nano polymer, which effective against microbial and pathogens, when apply to liquid medium and edible food products surface, will rescue the growth of microbes. Self-assembly approach used to synthesis of silver nanoparticles and silver nanoparticles organized chitosan nano polymer. Silver nanoparticles and silver nanoparticles organized chitosan nano polymer and film characterized using Ultra-violate visible spectrometer (UV-vis), X-ray diffraction (X-ray), and Scanning electronic microscope (SEM). The crystalline structured protein capped nano silver successfully synthesized at range of 12 nm-29 nm and organized into chitosan nano polymer. Antimicrobial ingredient in liquid medium and food product surface provide to rescue oxidative change and growth of microorganism to provide higher safety. The silver nanoparticles organized chitosan nano polymer caused the death of microorganism. The materials in nano scale synthesized successfully using self-assembly method, which showed good antimicrobial properties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. One-pot silver nanoring synthesis.

    OpenAIRE

    Drogat , Nicolas; Granet , Robert; Sol , Vincent; Krausz , Pierre

    2009-01-01

    Abstract Silver colloidal nanorings have been synthesized by reducing silver ions with NaBH4 in trisodium citrate buffers. pH increase, by addition of NaOH, was used to speed up reduction reaction. The UV–vis absorption spectra of resulting silver nanorings showed two peaks accounting for transverse and longitudinal surface plasmon resonance, at ≈400 nm, and between 600 and 700 nm, respectively. The shapes of these silver nanoparticles (nanorings) depended on AgNO3/NaBH4 ratio, pH...

  9. Distribution of silver in rats following 28 days of repeated oral exposure to silver nanoparticles or silver acetate

    DEFF Research Database (Denmark)

    Löschner, Katrin; Hadrup, Niels; Qvortrup, Klaus

    2011-01-01

    Background: The study investigated the distribution of silver after 28 days repeated oral administration of silver nanoparticles (AgNPs) and silver acetate (AgAc) to rats. Oral administration is a relevant route of exposure because of the use of silver nanoparticles in products related to food...... and food contact materials. Results: AgNPs were synthesized with a size distribution of 14 ± 4 nm in diameter (90% of the nanoparticle volume) and stabilized in aqueous suspension by the polymer polyvinylpyrrolidone (PVP). The AgNPs remained stable throughout the duration of the 28-day oral toxicity study...... in rats. The organ distribution pattern of silver following administration of AgNPs and AgAc was similar. However the absolute silver concentrations in tissues were lower following oral exposure to AgNPs. This was in agreement with an indication of a higher fecal excretion following administration of Ag...

  10. Alkyne-Azide Cycloaddition Catalyzed by Silver Chloride and “Abnormal” Silver N-Heterocyclic Carbene Complex

    Directory of Open Access Journals (Sweden)

    Aldo I. Ortega-Arizmendi

    2013-01-01

    Full Text Available A library of 1,2,3-triazoles was synthesized from diverse alkynes and azides using catalytic amounts of silver chloride instead of copper compounds. In addition, a novel “abnormal” silver N-heterocyclic carbene complex was tested as catalyst in this process. The results suggest that the reaction requires only 0.5% of silver complex, affording 1,2,3-triazoles in good yields.

  11. Synthesis of battery grade reduced silver powder

    International Nuclear Information System (INIS)

    Qadeer, R.; Hameed, M.; Ikram, S.; Munir, A.

    2002-01-01

    Process for production of battery grade reduced silver powder, an active positive material for zinc-silver oxide batteries, having specific characteristics has been optimized and the synthesized reduced silver powder was characterized. Results reveal that the values of bulk density (1.25 0.1 g/cm3) and activity (73.27 %) of synthesized reduced silver powder lies within the recommended range for use as battery material. It has purity ≥ 98% and contains Fe and Cu as traces in the concentration range of 30 5 ppm and 15 7 ppm respectively. Others determined values of surface and pores parameters are: surface area 2.6 .4 m2/g: pore volume 3.10 cm3/g: pore diameter 0.043 mu m and porosity 20%. XRD studies reveal that reduced silver powder has a cubic structure. (author)

  12. Bark extract mediated green synthesis of silver nanoparticles: Evaluation of antimicrobial activity and antiproliferative response against osteosarcoma.

    Science.gov (United States)

    Nayak, Debasis; Ashe, Sarbani; Rauta, Pradipta Ranjan; Kumari, Manisha; Nayak, Bismita

    2016-01-01

    In the current investigation we report the biosynthesis potentials of bark extracts of Ficus benghalensis and Azadirachta indica for production of silver nanoparticle without use of any external reducing or capping agent. The appearance of dark brown color indicated the complete nanoparticle synthesis which was further validated by absorbance peak by UV-vis spectroscopy. The morphology of the synthesized particles was characterized by Field emission- scanning electron microscopy (Fe-SEM) and atomic force microscopy (AFM). The X-ray diffraction (XRD) patterns clearly illustrated the crystalline phase of the synthesized nanoparticles. ATR-Fourier Transform Infrared (ATR-FTIR) spectroscopy was performed to identify the role of various functional groups in the nanoparticle synthesis. The synthesized nanoparticles showed promising antimicrobial activity against Gram negative (Escherichia coli, Pseudomonas aeruginosa and Vibrio cholerae) and Gram positive (Bacillus subtilis) bacteria. The synthesized nano Ag also showed antiproliferative activity against MG-63 osteosarcoma cell line in a dose dependent manner. Thus, these synthesized Ag nanoparticles can be used as a broad spectrum therapeutic agent against osteosarcoma and microorganisms. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Antibacterial nanocarriers of resveratrol with gold and silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sohyun [College of Pharmacy, Inje University, 197 Inje-ro Gimhae, Gyeongnam 621-749 (Korea, Republic of); Cha, Song-Hyun [National Creative Research Initiatives (NCRI) Center for Isogeometric Optimal Design, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Cho, Inyoung [School of Civil, Environmental and Architecture Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 136-701 (Korea, Republic of); Park, Soomin [National Creative Research Initiatives (NCRI) Center for Isogeometric Optimal Design, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Park, Yohan [College of Pharmacy, Inje University, 197 Inje-ro Gimhae, Gyeongnam 621-749 (Korea, Republic of); Cho, Seonho [National Creative Research Initiatives (NCRI) Center for Isogeometric Optimal Design, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Park, Youmie, E-mail: youmiep@inje.ac.kr [College of Pharmacy, Inje University, 197 Inje-ro Gimhae, Gyeongnam 621-749 (Korea, Republic of); National Creative Research Initiatives (NCRI) Center for Isogeometric Optimal Design, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-744 (Korea, Republic of)

    2016-01-01

    This study focused on the preparation of resveratrol nanocarrier systems and the evaluation of their in vitro antibacterial activities. Gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs) for resveratrol nanocarrier systems were synthesized using green synthetic routes. During the synthesis steps, resveratrol was utilized as a reducing agent to chemically reduce gold and silver ions to AuNPs and AgNPs. This system provides green and eco-friendly synthesis routes that do not involve additional chemical reducing agents. Resveratrol nanocarriers with AuNPs (Res-AuNPs) and AgNPs (Res-AgNPs) were observed to be spherical and to exhibit characteristic surface plasmon resonance at 547 nm and at 412–417 nm, respectively. The mean size of the nanoparticles ranged from 8.32 to 21.84 nm, as determined by high-resolution transmission electron microscopy. The face-centered cubic structure of the Res-AuNPs was confirmed by high-resolution X-ray diffraction. Fourier-transform infrared spectra indicated that the hydroxyl groups and C=C in the aromatic ring of resveratrol were involved in the reduction reaction. Res-AuNPs retained excellent colloidal stability during ultracentrifugation and re-dispersion, suggesting that resveratrol also played a role as a capping agent. Zeta potentials of Res-AuNPs and Res-AgNPs were in the range of − 20.58 to − 48.54 mV. Generally, against Gram-positive and Gram-negative bacteria, the Res-AuNPs and Res-AgNPs exhibited greater antibacterial activity compared to that of resveratrol alone. Among the tested strains, the highest antibacterial activity of the Res-AuNPs was observed against Streptococcus pneumoniae. The addition of sodium dodecyl sulfate during the synthesis of Res-AgNPs slightly increased their antibacterial activity. These results suggest that the newly developed resveratrol nanocarrier systems with metallic nanoparticles show potential for application as nano-antibacterial agents with enhanced activities. - Highlights

  14. Biosynthesis of silver nanoparticles from Tribulus terrestris and its antimicrobial activity: a novel biological approach.

    Science.gov (United States)

    Gopinath, V; MubarakAli, D; Priyadarshini, S; Priyadharsshini, N Meera; Thajuddin, N; Velusamy, P

    2012-08-01

    In the recent decades, increased development of green synthesis of nanoparticles is inevitable because of its incredible applications in all fields of science. There were numerous work have been produced based on the plant and its extract mediated synthesis of nanoparticles, in this present study to explore that the novel approaches for the biosynthesis of silver nanoparticles using plant fruit bodies. The plant, Tribulus terrestris L. fruit bodies are used in this study, where the dried fruit body extract was mixed with silver nitrate in order to synthesis of silver nanoparticles. The active phytochemicals present in the plant were responsible for the quick reduction of silver ion (Ag(+)) to metallic silver nanoparticles (Ag(0)). The reduced silver nanoparticles were characterized by Transmission Electron Microscope (TEM), Atomic Force Microscope (AFM), XRD, FTIR, UV-vis spectroscopy. The spherical shaped silver nanoparticles were observed and it was found to be 16-28 nm range of sizes. The diffraction pattern also confirmed that the higher percentage of silver with fine particles size. The antibacterial property of synthesized nanoparticles was observed by Kirby-Bauer method with clinically isolated multi-drug resistant bacteria such as Streptococcus pyogens, Pseudomonas aeruginosa, Escherichia coli, Bacillus subtilis and Staphylococcus aureus. The plant materials mediated synthesis of silver nanoparticles have comparatively rapid and less expensive and wide application to antibacterial therapy in modern medicine. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Green Synthesis of Silver Nanoparticles Using Polyalthia longifolia Leaf Extract along with D-Sorbitol: Study of Antibacterial Activity

    Directory of Open Access Journals (Sweden)

    S. Kaviya

    2011-01-01

    Full Text Available Synthesis of silver nanoparticles (AgNPs using Polyalthia longifolia leaf extract as reducing and capping agent along with D-sorbitol used to increase the stability of the nanoparticles has been reported. The reaction is carried out at two different concentrations (10−3 M and 10−4 M of silver nitrate, and the effect of temperature on the synthesis of AgNPs is investigated by stirring at room temperature (25°C and at 60°C. The UV-visible spectra of NPs showed a blue shift with increasing temperature at both concentrations. FT-IR analysis shows that the biomoites played an important role in the reduction of Ag+ ions and the growth of AgNPs. TEM results were utilized for the determination of the size and morphology of nanoparticles. The synthesized silver nanoparticles are found to be highly toxic against Gram-positive bacteria than Gram-negative bacteria.

  16. Application of gamma irradiation method to synthesize silver nanoparticle and fix them on porous ceramics for water treatment

    International Nuclear Information System (INIS)

    Nguyen Thuy Ai Trinh; Phan Dinh Tuan; Ngo Manh Thang; Dang Van Phu; Le Anh Quoc; Nguyen Quoc Hien

    2013-01-01

    The colloidal silver nanoparticles (AgNPs) solution with the AgNPs diameter of 10-15 nm was synthesized by gamma irradiation method using polyvinylpyrrolidone as stabilizer. Porous ceramic samples were functionalized by treatment with an aminosilane (AS) agent (3-aminopropyltriethoxysilane) and then impregnated in colloidal silver nanoparticles solution for fixing through coordination bonds between - NH 2 groups of the aminosilane and the silver atoms. The AgNPs content attached in porous ceramic (AgNPs/PC) was of about 200-250 mg/kg. The contents silver release from AgNPs/PC into filtrated water by flowing test with the rate of about 5 litters/h were less than 10 μg/L analyzed by neutron activation analysis method, it is satisfactory to the WHO guideline of 100 μg/L for drinking water. The antimicrobial effect of AgNPs/PC for E. coli was carried out by flowing test with an inoculated initial contamination of E.coli in water of about 10 6 CFU/100 ml. Results showed that the contamination of E. coli in filtrated water through AgNPs/PC (up to 500 litters) was less than 1 CFU/100 ml compared to 2.5x10 4 CFU/100 ml for base porous ceramic (only up to 60 litters). The antimicrobial effect of AgNPs/PC is in accordance with the TCVN 6096-2004 for bottled drinking. Thus, AgNPs/PC with the silver content of 200-250 mg/kg and the specific surface area of 1.51 m 2 /g, average pore size of 48.2 Å and pore volume of 1.8x10 -3 cm 3 /g has highly antimicrobial effect that can be applied for point-of-use drinking water treatment. (author)

  17. Photochemical Study of Silver Nanoparticles Formed from the Reduction of Silver Ions by Humic Acid

    Science.gov (United States)

    Leslie, Renee M.

    This study focuses on the ability of silver ions and humic acid to form silver nanoparticles in the presence of UV and visible light. Silver nanoparticles have a number of industrial applications due primarily to their antimicrobial properties, but these properties pose an environmental threat. Silver nanoparticles can directly disrupt sensitive ecosystems by harming bacteria. Consumption of silver nanoparticles results in silver ions and silver nanoparticles entering waterways; the presence of silver ions raises the question of whether nanoparticles can reform in environmental waters. As our data show, silver nanoparticles can form from the reduction of silver ions by humic acid after irradiation with UV and visible light. In order to better understand the mechanism of these naturally synthesized silver nanoparticles, we investigated the effects of reactant concentration, experimental conditions and presence of ions/reactive species. We monitored silver nanoparticle growth with UV-visible spectroscopy. The evolution in time of nanoparticle size was monitored by dynamic light scattering (DLS).

  18. Removal of pyrene and benzo(a)pyrene micropollutant from water via adsorption by green synthesized iron oxide nanoparticles

    Science.gov (United States)

    Hassan, Saad S. M.; Abdel-Shafy, Hussein I.; Mansour, Mona S. M.

    2018-03-01

    Polycyclic aromatic hydrocarbons (PAHs) in water are classified as organic micropollutants, which are carcinogenic even in very low concentration (ppb). In this study the green synthesized iron oxide nanoparticles (IONPs) were green synthesized at room temperature by using pomegranate peel extract. The green synthesized IONPs were used for adsorbing benzo(a)pyrene and pyrene (PAHs) from water. Factors affecting the adsorption were investigated. These factors are: nanoparticles dose, pH, temperature, and initial concentration of PAHs. The overall results showed that the maximum adsorption capacities of IONPs towards pyrene and benzo(a)pyrene were 2.8 and 0.029 mg g-1, respectively. The thermodynamic study indicated an exothermic adsorption process of pyrene and benzo(a)pyrene. The kinetic and isotherm studies were carried out. The obtained data revealed that the adsorption process follows a pseudo-second order mechanism and obeys Langmuir isotherm model. In addition, the IONPs proved to be a potential candidate for the adsorption of pyrene and benzo(a)pyrene even after five cycles of use and regeneration. The investigation was extended using semi-pilot plant to remove the studied PAHs from artificially contaminated water. The results showed that the IONPs was capable to remove the pyrene and benzo (a) pyrene at the rate of 98.5 and 99%, respectively. It also can be used as disinfectant.

  19. Comparative study of synthesized silver and gold nanoparticles ...

    Indian Academy of Sciences (India)

    The present investigation aimed at comparing the synthesis, characterization and in vitro anticancer ... Bauhinia tomentosa Linn; silver nanoparticles; gold nanoparticles; A-549; HEp-2; MCF-7. 1. Introduction ..... Methods 65 55. [33] Singh A K ...

  20. Biosynthesis of silver nanoparticles using Stevia extracts

    International Nuclear Information System (INIS)

    Laguta, I.V.; Fesenko, T.V.; Stavinskaya, O.N.; Shpak, L.M.; Dzyuba, O.I.

    2015-01-01

    Silver nanoparticles are synthesized using Stevia rebaudiana extracts. It is shown that the rate of nanoparticles formation is affected by plant cultivation conditions. It is found that, in the presence of the extract from callus, the formation of nanoparticles occurs faster than in the presence of extracts from plants grown under conditions of ex situ and in vitro. The synthesized silver nanoparticles were studied by UV and IR spectroscopies

  1. Biogenic silver nanoparticles synthesized with rhamnogalacturonan gum: Antibacterial activity, cytotoxicity and its mode of action

    Directory of Open Access Journals (Sweden)

    Aruna Jyothi Kora

    2018-03-01

    Full Text Available Silver nanoparticles synthesized from gum kondagogu (5 nm were used to evaluate the antibacterial activity against Gram-positive and Gram-negative bacteria. To decipher the mode of antibacterial action of nanoparticles, a comprehensive study was carried out employing a variety of susceptibility assays: micro-broth dilution, antibiofilm activity, growth kinetics, cytoplasmic content leakage, membrane permeabilization, etc. The production of reactive oxygen species (ROS and cell surface damage during bacterial nanoparticle interaction were also demonstrated using dichlorodihydrofluorescein diacetate, N-acetylcysteine; and scanning electron microscopy and energy dispersive X-ray spectra. Further, the biocompatibility with HeLa cell line was also evaluated. Compared to earlier reports, the minimum inhibitory concentration values were lower by 3.2- and 16-folds for Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli strains, respectively. The minimum bactericidal concentration values were lower by 4 and 50-folds. Thus, the biogenic silver nanoparticles were found to be more potent bactericidal agents in terms of concentration. The nanoparticles exhibited significant antibiofilm activity against test strains at 2 μg mL−1, which can have implications in the treatment of drug resistant bacterial infections caused by biofilms. Growth curve in nanoparticle supplemented indicated a faster inhibition in Gram-negative bacteria as compared to Gram-positive. Treatment with nanoparticles caused cytoplasmic content leakage and membrane permeabilization in a dose dependent manner, an evidence for membrane damage. The observations noted in our study substantiated the association of ROS and membrane damage in the antibacterial action of silver nanoparticles. The promising antibacterial activity enables these nanoparticles as potential bactericidal material for various environmental and biomedical applications.

  2. Applications of plant terpenoids in the synthesis of colloidal silver nanoparticles.

    Science.gov (United States)

    Mashwani, Zia-Ur-Rehman; Khan, Mubarak Ali; Khan, Tariq; Nadhman, Akhtar

    2016-08-01

    Green chemistry is the design of chemical products and processes that reduce or eliminate the generation of hazardous substances. Since the last few years, natural products especially plant secondary metabolites have been extensively explored for their potency to synthesize silver nanoparticles (AgNPs). The plant-based AgNPs are safer, energy efficient, eco-friendly, and less toxic than chemically synthesized counterparts. The secondary metabolites, ubiquitously found in plants especially the terpenoid-rich essential oils, have a significant role in AgNPs synthesis. Terpenoids belong to the largest family of natural products and are found in all kinds of organisms. Their involvement in the synthesis of plant-based AgNPs has got much attention in the recent years. The current article is not meant to provide an exhaustive overview of green synthesis of nanoparticles, but to present the pertinent role of plant terpenoids in the biosynthesis of AgNPs, as capping and reducing agents for development of uniform size and shape AgNPs. An emphasis on the important role of FTIR in the identification and elucidation of major functional groups in terpenoids for AgNPs synthesis has also been reviewed in this manuscript. It was found that no such article is available that has discussed the role of plant terpenoids in the green synthesis of AgNPs. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. One-Pot Silver Nanoring Synthesis

    Science.gov (United States)

    Drogat, Nicolas; Granet, Robert; Sol, Vincent; Krausz, Pierre

    2010-03-01

    Silver colloidal nanorings have been synthesized by reducing silver ions with NaBH4 in trisodium citrate buffers. pH increase, by addition of NaOH, was used to speed up reduction reaction. The UV-vis absorption spectra of resulting silver nanorings showed two peaks accounting for transverse and longitudinal surface plasmon resonance, at ≈400 nm, and between 600 and 700 nm, respectively. The shapes of these silver nanoparticles (nanorings) depended on AgNO3/NaBH4 ratio, pH and reaction temperature. Particles were analysed by transmission electron microscopy, scanning electron microscopy and X-ray diffraction. A reaction pathway is proposed to explain silver nanoring formation.

  4. Coriandrum sativum mediated synthesis of silver nanoparticles and evaluation of their biological characteristics

    Science.gov (United States)

    Senthilkumar, N.; Aravindhan, V.; Ruckmani, K.; Vetha Potheher, I.

    2018-05-01

    Silver (Ag) nanoparticles (NPs) were prepared by percolated green synthesis method using Coriandrum sativum leaf, root, seed and stem extracts and reported its antibacterial activity. The synthesized Ag NPs were confirmed by UV–visible Spectroscopy, Powder x-ray Diffraction (PXRD), Fourier Transform Infra Red (FT-IR) Spectroscopy analyzes. The Maximum absorbance observed around 400–450 nm reveal the characteristic absorbance of Ag NPs. The Dynamic Light Scattering (DLS) analysis shows the stability of synthesized NPs with average size varying from 35 to 53 nm and also zeta potential stability varying from ‑20 to ‑30 mV. The cubic structure, crystalline nature and purity of the material was confirmed by powder x-ray diffraction studies. FT-IR spectrum shows the presence of various functional groups in the resultant material. The Field Emission Scanning Electron Microscopy (FESEM) image shows the surface morphology of the synthesized NPs and the Energy Dispersive x-ray Analysis (EDAX) confirms the presence of silver metal ions. The Coriandrum sativum aqueous extract exhibited excellent antimicrobial activity against Klebsiella pneumoniae (Gram -ve) bacteria. Numerous studies have been made previously in our field of study but optimization has not been carried out by both extract (different parts like leaf, root, seed and stem) and without addition of any external source such as chemicals, heat etc.

  5. Characterization, antibacterial, total antioxidant, scavenging, reducing power and ion chelating activities of green synthesized silver, copper and titanium dioxide nanoparticles using Artemisia haussknechtii leaf extract.

    Science.gov (United States)

    Alavi, Mehran; Karimi, Naser

    2017-12-12

    Recently, major problem related to pathogenic bacteria is augmentation of antibiotic resistance which has been changed treatment and recovery of millions of infectious patients. The present study reports an eco-friendly, rapid and easy method for synthesis of silver (Ag), copper (Cu) and titanium dioxide (TiO 2 ) nanoparticles (NPs) using Artemisia haussknechtii leaf aqueous extract with antibacterial activities against multi-drug resistance (MDR) bacteria species. Three different concentrations (0.001, 0.01 and 0.1 M) of AgNO 3 , CuSO 4 and TiO (OH) 2 were investigated for obtaining optimum NPs green synthesis. Total phenolic content, total flavonoid content of leaf extract and total antioxidant activity (DPPH) assay were determined as radical scavenging methods. UV-Visible spectroscopy, Fourier transform infrared spectroscopy analysis, X-ray diffraction, energy dispersive X-ray spectroscopy, field emission scanning electron microscope and atomic force microscopy (AFM) were used due to NPs characterization. The size average of the Ag, Cu and TiO 2 NPs obtained were respectively 10.69 ± 5.55, 35.36 ± 44.4 and 92.58 ± 56.98 nm. In the case of antibacterial assay, disc diffusion assay, minimum inhibitory concentration, minimum bactericidal concentration, bacterial growth and morphology of four MDR species Staphylococcus aureus ATCC 43300, Staphylococcus epidermidis ATCC 12258, Serratia marcescens ATTC13880 and Escherichia coli ATCC 25922 were evaluated. Results of this study demonstrated that A. haussknechtii leaf extract with various groups of phytochemicals such as phenols and flavonoids had suitable ability in green synthesis of Ag, Cu and TiO 2 NPs. Also, Ag and Cu NPs had more antibacterial activities compared to TiO 2 NPs.

  6. Silver Nanoparticles Synthesized Using Wild Mushroom Show Potential Antimicrobial Activities against Food Borne Pathogens

    Directory of Open Access Journals (Sweden)

    Yugal Kishore Mohanta

    2018-03-01

    Full Text Available The present study demonstrates an economical and eco-friendly method for the synthesis of silver nanoparticles (AgNPs using the wild mushroom Ganoderma sessiliforme. The synthesis of AgNPs was confirmed and the products characterized by UV-visible spectroscopy, dynamic light scattering spectroscopy and X-ray diffraction analysis. Furthermore, Fourier transform infrared spectroscopy (ATR-FTIR analysis was performed to identify the viable biomolecules involved in the capping and active stabilization of AgNPs. Moreover, the average sizes and morphologies of AgNPs were analyzed by field emission scanning electron microscopy (FE-SEM. The potential impacts of AgNPs on food safety and control were evaluated by the antimicrobial activity of the synthesized AgNPs against common food-borne bacteria, namely, Escherichia coli, Bacillus subtilis, Streptococcus faecalis, Listeria innocua and Micrococcus luteus. The results of this study revealed that the synthesized AgNPs can be used to control the growth of food-borne pathogens and have potential application in the food packaging industry. Moreover, the AgNPs were evaluated for antioxidant activity (DPPH, for biocompatibility (L-929, normal fibroblast cells, and for cytotoxic effects on human breast adenosarcoma cells (MCF-7 & MDA-MB231 to highlight their potential for use in a variety of bio-applications.

  7. Field Test Of Capability To Prevent Cabbage Clubroot Disease Caused By Plasmodiophora brassicae Of Silver Nanoparticles Synthesized By Gamma Radiation

    International Nuclear Information System (INIS)

    Pham Thi Le Ha; Nguyen Tan Man; Nguyen Duy Hang; Le Hai; Tran Thi Tam; Pham Thi Sam; Le Huu Tu; Tran Thu Hong; Tran Thi Thuy; Nguyen Tuong Ly Lan

    2014-01-01

    The effects of four dose rates 0.27; 0.90; 1.80 and 3.60 kGy/h on the solution of silver (Ag + 10 -2 M, PVP 2%, ethylenglycol 6%) irradiated at 25 kGy were investigated. The results showed that as the dose rates increased, the absorption peak shifted to blue wavelengths and also the particles decreased in size. For field test, nano particles were prepared by irradiation of silver solution at 25 kGy with the dose rate of 3.60 kGy/h. The absorption peaks of the synthesized nanoparticles were obtained at wavelengths of 412 nm and the average diameter of particles were 14 nm. Using two concentrations of 15 and 20 ppm, silver nanoparticles had not affected the growth and development of cabbage but showed antifungal activity against Plasmodiophora brassicae cause club root in cabbage. Using nano particles, the clubroot disease index were 9-10% compared to 5% of nebijin (fungicide), and 12% of control. The yield of cabbage were 55 tons/ha, 63 tons/ha and 70 tons/ha for the control, nanosilver group, and nebijin group, respectively. (author)

  8. Green and Rapid Synthesis of Anticancerous Silver Nanoparticles by Saccharomyces boulardii and Insight into Mechanism of Nanoparticle Synthesis

    Directory of Open Access Journals (Sweden)

    Abhishek Kaler

    2013-01-01

    Full Text Available Rapidly developing field of nanobiotechnology dealing with metallic nanoparticle (MNP synthesis is primarily lacking control over size, shape, dispersity, yield, and reaction time. Present work describes an ecofriendly method for the synthesis of silver nanoparticles (AgNPs by cell free extract (CFE of Saccharomyces boulardii. Parameters such as culture age (stationary phase growth, cell mass concentration (400 mg/mL, temperature (35°C, and reaction time (4 h, have been optimized to exercise a control over the yield of nanoparticles and their properties. Nanoparticle (NP formation was confirmed by UV-Vis spectroscopy, elemental composition by EDX (energy dispersive X-rays analysis, and size and shape by transmission electron microscopy. Synthesized nanoparticles had the size range of 3–10 nm with high negative zeta potential (−31 mV indicating excellent stability. Role of proteins/peptides in NP formation and their stability were also elucidated. Finally, anticancer activity of silver nanoparticles as compared to silver ions was determined on breast cancer cell lines.

  9. Datura metel-synthesized silver nanoparticles magnify predation of dragonfly nymphs against the malaria vector Anopheles stephensi.

    Science.gov (United States)

    Murugan, Kadarkarai; Dinesh, Devakumar; Kumar, Prabhu Jenil; Panneerselvam, Chellasamy; Subramaniam, Jayapal; Madhiyazhagan, Pari; Suresh, Udaiyan; Nicoletti, Marcello; Alarfaj, Abdullah A; Munusamy, Murugan A; Higuchi, Akon; Mehlhorn, Heinz; Benelli, Giovanni

    2015-12-01

    Malaria is a life-threatening disease caused by parasites transmitted to people and animals through the bites of infected mosquitoes. The employ of synthetic insecticides to control Anopheles populations leads to high operational costs, non-target effects, and induced resistance. Recently, plant-borne compounds have been proposed for efficient and rapid extracellular synthesis of mosquitocidal nanoparticles. However, their impact against predators of mosquito larvae has been poorly studied. In this study, we synthesized silver nanoparticles (AgNPs) using the Datura metel leaf extract as reducing and stabilizing agent. The biosynthesis of AgNPs was confirmed analyzing the excitation of surface plasmon resonance using ultraviolet-visible (UV-vis) spectroscopy. Scanning electron microscopy (SEM) showed the clustered and irregular shapes of AgNPs, with a mean size of 40-60 nm. The presence of silver was determined by energy-dispersive X-ray (EDX) spectroscopy. Fourier transform infrared (FTIR) spectroscopy analysis investigated the identity of secondary metabolites, which may be acting as AgNP capping agents. In laboratory, LC50 of D. metel extract against Anopheles stephensi ranged from 34.693 ppm (I instar larvae) to 81.500 ppm (pupae). LC50 of AgNP ranged from 2.969 ppm (I instar larvae) to 6.755 ppm (pupae). Under standard laboratory conditions, the predation efficiency of Anax immaculifrons nymphs after 24 h was 75.5 % (II instar larvae) and 53.5 % (III instar larvae). In AgNP-contaminated environment, predation rates were boosted to 95.5 and 78 %, respectively. Our results documented that D. metel-synthesized AgNP might be employed at rather low doses to reduce larval populations of malaria vectors, without detrimental effects on behavioral traits of young instars of the dragonfly Anax immaculifrons.

  10. Biological synthesis of silver nanoparticles

    International Nuclear Information System (INIS)

    Maliszewska, I; Szewczyk, K; Waszak, K

    2009-01-01

    Fungus-mediated synthesis of silver nanoparticles is reported. The nanosilver was formed in contact with the cell-free filtrate of Penicillium strain studied. The nanoparticles were characterized by means of the UV-Vis spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The synthesized nanosilver showed a absorbed maximum at 425 nm in the visible region. The SEM characterization of the fungus cells treated with silver nitrite indicated that the protein might be responsible for the reduction of silver ions. Transmission electron microscopy (TEM) micrograph showed formation of silver nanoparticles in the range of 10-100 nm.

  11. Isatis tinctoria mediated synthesis of amphotericin B-bound silver nanoparticles with enhanced photoinduced antileishmanial activity: A novel green approach.

    Science.gov (United States)

    Ahmad, Aftab; Wei, Yun; Syed, Fatima; Khan, Shafiullah; Khan, Gul Majid; Tahir, Kamran; Khan, Arif Ullah; Raza, Muslim; Khan, Faheem Ullah; Yuan, Qiping

    2016-08-01

    After malaria, Leishmaniasis is the most prevalent infectious disease in terms of fatality and geographical distribution. The availability of a limited number of antileishmanial agents, emerging resistance to the available drugs, and the high cost of treatment complicate the treatment of leishmaniasis. To overcome these issues, critical research for new therapeutic agents with enhanced antileishmanial potential and low treatment cost is needed. In this contribution, we developed a green protocol to prepare biogenic silver nanoparticles (AgNPs) and amphotericin B-bound biogenic silver nanoparticles (AmB-AgNPs). Phytochemicals from the aqueous extract of Isatis tinctoria were used as reducing and capping agents to prepare silver nanoparticles. Amphotericin B was successfully adsorbed on the surface of biogenic silver nanoparticles. The prepared nanoparticles were characterized by various analytical techniques. UV-Visible spectroscopy was employed to detect the characteristic localized surface plasmon resonance peaks (LSPR) for the prepared nanoparticles. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) studies revealed the formation of spherical silver nanoparticles with an average particle size of 10-20nm. The cubic crystalline structure of the prepared nanoparticles was confirmed by X-ray diffraction (XRD) study. FTIR spectroscopic analysis revealed that plant polyphenolic compounds are mainly involved in metal reduction and capping. Under visible light irradiation, biogenic silver nanoparticles exhibited significant activity against Leishmania tropica with an IC50 value of 4.2μg/mL. The leishmanicidal activity of these nanoparticles was considerably enhanced by conjugation with amphotericin B (IC50=2.43μg/mL). In conclusion, the findings of this study reveal that adsorption of amphotericin B, an antileishmanial drug, to biogenic silver nanoparticles, could be a safe, more effective and economic alternative to the available

  12. One-Pot Silver Nanoring Synthesis

    Directory of Open Access Journals (Sweden)

    Drogat Nicolas

    2009-01-01

    Full Text Available Abstract Silver colloidal nanorings have been synthesized by reducing silver ions with NaBH4 in trisodium citrate buffers. pH increase, by addition of NaOH, was used to speed up reduction reaction. The UV–vis absorption spectra of resulting silver nanorings showed two peaks accounting for transverse and longitudinal surface plasmon resonance, at ≈400 nm, and between 600 and 700 nm, respectively. The shapes of these silver nanoparticles (nanorings depended on AgNO3/NaBH4 ratio, pH and reaction temperature. Particles were analysed by transmission electron microscopy, scanning electron microscopy and X-ray diffraction. A reaction pathway is proposed to explain silver nanoring formation.

  13. Verification of resistance to three mediated microbial strains and cancerous defense against MCF7 compared to HepG2 through microwave synthesized plant-mediated silver nanoparticle

    Science.gov (United States)

    Abdel-Fattah, W. I.; Eid, M. M.; Hanafy, M. F.; Hussein, M.; Abd El-Moez, Sh I.; El-Hallouty, S. M.; Mohamed, E.

    2015-09-01

    The antimicrobial and anticancer efficiencies of green synthesized silver nanoparticles (AgNPs) through biogenic extracts were assessed on three bacterial strains and two cancer cell lines. Bio-synthesized AgNPs were achieved through domestic microwave generator for obtaining extracts from Asian nuts and Egyptian blackberry fruits. Surface plasmon resonance (SPR) ˜435 nm demonstrated AgNPs earlier formation by the fruit extract. Capping by triglycerides/almond and phenols/berry extracts were responsible for the reduction proved by FTIR. XRD calculated particle sizes were 18 and 42 nm while TEM sizes are 24.5 and 21.5 nm for AgNPs from almond nut and blackberry fruits extracts (Alm.N.Ext. and BB.F.Ext.), respectively. Ag 3d5/2 was recorded at 368.12 eV for both samples through XPS. The monodispersed AgNPs recorded 0.727 and 0.5 polydispersity indices (PdI) for almond/Ag and berry/Ag, respectively. Zeta potential ˜ -31 and -13.2 for the same sequence confirmed the higher stability of the former. Reaction kinetics confirmed the advantage of fruit extract consuming only six minutes compared to nuts, consuming twice. Bactericidal effect of the extracts seldomly presented remarkable inhibition compared to extracts/Ag against the three species. In addition, Alm.N.Ext. showed the highest inhibition against staphylococcus aureus (S. aureus) at 4 mM. The anti-cancerous effect of Ag/berry against HepG2 is stronger than Ag/almond, and similarly for MCF7.

  14. Verification of resistance to three mediated microbial strains and cancerous defense against MCF7 compared to HepG2 through microwave synthesized plant-mediated silver nanoparticle

    International Nuclear Information System (INIS)

    Abdel-Fattah, W I; Eid, M M; Hanafy, M F; Hussein, M; Mohamed, E; Abd El-Moez, Sh I; El-Hallouty, S M

    2015-01-01

    The antimicrobial and anticancer efficiencies of green synthesized silver nanoparticles (AgNPs) through biogenic extracts were assessed on three bacterial strains and two cancer cell lines. Bio-synthesized AgNPs were achieved through domestic microwave generator for obtaining extracts from Asian nuts and Egyptian blackberry fruits. Surface plasmon resonance (SPR) ∼435 nm demonstrated AgNPs earlier formation by the fruit extract. Capping by triglycerides/almond and phenols/berry extracts were responsible for the reduction proved by FTIR. XRD calculated particle sizes were 18 and 42 nm while TEM sizes are 24.5 and 21.5 nm for AgNPs from almond nut and blackberry fruits extracts (Alm.N.Ext. and BB.F.Ext.), respectively. Ag 3d5/2 was recorded at 368.12 eV for both samples through XPS. The monodispersed AgNPs recorded 0.727 and 0.5 polydispersity indices (PdI) for almond/Ag and berry/Ag, respectively. Zeta potential ∼ −31 and −13.2 for the same sequence confirmed the higher stability of the former. Reaction kinetics confirmed the advantage of fruit extract consuming only six minutes compared to nuts, consuming twice. Bactericidal effect of the extracts seldomly presented remarkable inhibition compared to extracts/Ag against the three species. In addition, Alm.N.Ext. showed the highest inhibition against staphylococcus aureus (S. aureus) at 4 mM. The anti-cancerous effect of Ag/berry against HepG2 is stronger than Ag/almond, and similarly for MCF7. (paper)

  15. Biosynthesis, antimicrobial and cytotoxic effect of silver nanoparticles using a novel Nocardiopsis sp. MBRC-1.

    Science.gov (United States)

    Manivasagan, Panchanathan; Venkatesan, Jayachandran; Senthilkumar, Kalimuthu; Sivakumar, Kannan; Kim, Se-Kwon

    2013-01-01

    The biosynthesis of nanoparticles has been proposed as a cost effective environmental friendly alternative to chemical and physical methods. Microbial synthesis of nanoparticles is under exploration due to wide biomedical applications, research interest in nanotechnology and microbial biotechnology. In the present study, an ecofriendly process for the synthesis of nanoparticles using a novel Nocardiopsis sp. MBRC-1 has been attempted. We used culture supernatant of Nocardiopsis sp. MBRC-1 for the simple and cost effective green synthesis of silver nanoparticles. The reduction of silver ions occurred when silver nitrate solution was treated with the Nocardiopsis sp. MBRC-1 culture supernatant at room temperature. The nanoparticles were characterized by UV-visible, TEM, FE-SEM, EDX, FTIR, and XRD spectroscopy. The nanoparticles exhibited an absorption peak around 420 nm, a characteristic surface plasmon resonance band of silver nanoparticles. They were spherical in shape with an average particle size of 45 ± 0.15 nm. The EDX analysis showed the presence of elemental silver signal in the synthesized nanoparticles. The FTIR analysis revealed that the protein component in the form of enzyme nitrate reductase produced by the isolate in the culture supernatant may be responsible for reduction and as capping agents. The XRD spectrum showed the characteristic Bragg peaks of 1 2 3, 2 0 4, 0 4 3, 1 4 4, and 3 1 1 facets of the face centered cubic silver nanoparticles and confirms that these nanoparticles are crystalline in nature. The prepared silver nanoparticles exhibited strong antimicrobial activity against bacteria and fungi. Cytotoxicity of biosynthesized AgNPs against in vitro human cervical cancer cell line (HeLa) showed a dose-response activity. IC50 value was found to be 200 μg/mL of AgNPs against HeLa cancer cells. Further studies are needed to elucidate the toxicity and the mechanism involved with antimicrobial and anticancer activity of the synthesized AgNPs as

  16. Tangential Flow Filtration of Colloidal Silver Nanoparticles: A "Green" Laboratory Experiment for Chemistry and Engineering Students

    Science.gov (United States)

    Dorney, Kevin M.; Baker, Joshua D.; Edwards, Michelle L.; Kanel, Sushil R.; O'Malley, Matthew; Pavel Sizemore, Ioana E.

    2014-01-01

    Numerous nanoparticle (NP) fabrication methodologies employ "bottom-up" syntheses, which may result in heterogeneous mixtures of NPs or may require toxic capping agents to reduce NP polydispersity. Tangential flow filtration (TFF) is an alternative "green" technique for the purification, concentration, and size-selection of…

  17. Microstructural and Z-scan measurement of silver nanoparticles

    International Nuclear Information System (INIS)

    Sivakami, R.; Dhanuskodi, S.

    2015-01-01

    Graphical abstract: - Highlights: • Novel Ag nanoparticles were prepared by hydrothermal method. • The modified forms of W-H analysis of Ag nanoparticles are reported first time. • Nonlinear optical (NLO) properties of Ag nanoflowers are reported and high nonlinearity was obtained. - Abstract: Silver nanoflowers were synthesized by the hydrothermal route. Formation of Ag nanoparticles is confirmed from the UV–vis spectrum where the surface plasmon absorption maxima are observed at 415–454 nm. FE-SEM and TEM images revealed the formation of silver nanoflowers and the flower-like silver nanostructures are estimated using transmission electron microscopy. XRD confirms that the synthesized silver is highly crystalline with face centered cubic structure. The X-ray line broadening is studied by the modified forms of Williamson–Hall analysis. The Z-scan results reveal that the flower-like silver nanostructures exhibit the nonlinear susceptilibility as 1.14 × 10 −5 esu

  18. Synthesis, characterization and SERS activity of biosynthesized silver nanoparticles

    Science.gov (United States)

    Bindhu, M. R.; Sathe, V.; Umadevi, M.

    2013-11-01

    Silver nanoparticles were rapidly synthesized using Moringa oleifera flower extract as the reducing agent shows surface plasmon resonance peak at 439 nm. The size and shape of the nanoparticles controlled by varying the concentration of M. oleifera flower extract in the reaction medium. The synthesized silver nanoparticles were well-dispersed spherical nanoparticles with the average size of 14 nm. The retinoic acid present in M. oleifera flower extract used as reducing agent and proteins was responsible for capping of the bioreduced silver nanoparticles. The obtained nanoparticle shows size-dependent SERS activity. The SERS spectrum indicates that the pyridine adsorbed on the silver surface in a stand-on orientation via its nitrogen lone pair electrons.

  19. High Density Silver Nanowire Arrays using Self-ordered Anodic Aluminum Oxide (AAO) Membrane

    OpenAIRE

    Han, Young-Hwan

    2008-01-01

    High density silver nanowire arrays were synthesized through the self-ordered Anodic Aluminum Oxide (AAO) template. The pore size in the AAO membrane was confirmed by processing the widening porosity with a honeycomb structure with cross sections of 20nm, 50nm, and 100nm, by SEM. Pore numbers by unit area were consistent; only pore size changed. The synthesized silver nanowire, which was crystallized, was dense in the cross sections of the amorphous AAO membrane. The synthesized silver nanowi...

  20. Cytotoxicity and antiviral activity of electrochemical - synthesized silver nanoparticles against poliovirus.

    Science.gov (United States)

    Huy, Tran Quang; Hien Thanh, Nguyen Thi; Thuy, Nguyen Thanh; Chung, Pham Van; Hung, Pham Ngoc; Le, Anh-Tuan; Hong Hanh, Nguyen Thi

    2017-03-01

    Silver nanoparticles (AgNPs) have been proven to have noticeable cytotoxicity in vitro and antiviral activity against some types of enveloped viruses. This paper presents the cytotoxicity and antiviral activity of pure AgNPs synthesized by the electrochemical method, towards cell culture and poliovirus (a non-enveloped virus). Prepared AgNPs were characterized by ultraviolet-visible spectroscopy, energy-dispersive X-ray spectroscopy and transmission electron microscopy. Before incubation with poliovirus, different concentrations of AgNPs were added to human rhabdomyosarcoma (RD) cell monolayers seeded in 96 well plates for testing their cytotoxicity. The in vitro cytotoxicity and anti-poliovirus activity of AgNPs were daily assessed for cytopathic effect (CPE) through inverted light microscopy. CPE in the tested wells was determined in comparison with those in wells of negative and positive control. Structure analysis showed that AgNPs were formed with a quasi-spherical shape with mean size about 7.1nm and high purity. No CPE of RD cells was seen in wells at the time point of 48h post-incubation with AgNPs at concentration up to 100ppm. The anti-poliovirus activity of AgNPs was determined at 3.13ppm corresponding to the viral concentration of 1TCID 50 (Tissue Culture Infective Dose) after 30min, and 10TCID 50 after 60min, the cell viability was found up to 98% at 48h post-infection, with no CPE found. Whereas, a strong CPE of RD cells was found at 48h post-infection with the mixture of AgNPs and poliovirus at concentration of 100TCID 50 , and in wells of positive controls. With mentioned advantages, electrochemical-synthesized AgNPs are promising candidate for advanced biomedical and disinfection applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Biological and electrical properties of biosynthesized silver

    Indian Academy of Sciences (India)

    Biological and electrical properties of biosynthesized silver nanoparticles. Madhulika ... Abstract. In this work, silver nanoparticles (AgNPs) were synthesized biochemically at room temperature using aqueous extract of rhizome of Rheum australe plant. ... The obtained results may have potential applications as sensors.

  2. Silver Nanoparticles and Graphitic Carbon Through Thermal Decomposition of a Silver/Acetylenedicarboxylic Salt

    Directory of Open Access Journals (Sweden)

    Komninou Philomela

    2009-01-01

    Full Text Available Abstract Spherically shaped silver nanoparticles embedded in a carbon matrix were synthesized by thermal decomposition of a Ag(I/acetylenedicarboxylic acid salt. The silver nanoparticles, which are formed either by pyrolysis at 300 °C in an autoclave or thermolysis in xylene suspension at reflux temperature, are acting catalytically for the formation of graphite layers. Both reactions proceed through in situ reduction of the silver cations and polymerization of the central acetylene triple bonds and the exact temperature of the reaction can be monitored through DTA analysis. Interestingly, the thermal decomposition of this silver salt in xylene partly leads to a minor fraction of quasicrystalline silver, as established by HR-TEM analysis. The graphitic layers covering the silver nanoparticles are clearly seen in HR-TEM images and, furthermore, established by the presence of sp2carbon at the Raman spectrum of both samples.

  3. Field emission studies of silver nanoparticles synthesized by electron cyclotron resonance plasma

    International Nuclear Information System (INIS)

    Purohit, Vishwas; Mazumder, Baishakhi; Bhise, A.B.; Poddar, Pankaj; Joag, D.S.; Bhoraskar, S.V.

    2011-01-01

    Field emission has been studied for silver nanoparticles (25-200 nm), deposited within a cylindrical silver target in an electron cyclotron resonance (ECR) plasma. Particle size distribution was controlled by optimum biasing voltages between the chamber and the target. Presence of non-oxidized silver was confirmed from the X-Ray diffraction analysis; however, thin protective layer of oxide was identified from the selective area electron diffraction pattern obtained with transmission electron microscopy. The silver nanoparticles were seen to exhibit hilly pointed like structures when viewed under the atomic force microscopy (AFM). The emissive properties of these particles were investigated by field emission microscopy. It is found that this technique of deposition is ideal for formation of nanoparticles films on different substrate geometries with size controllability as well as its application to emission devices.

  4. Simple One-Step Method to Synthesize Polypyrrole-Indigo Carmine-Silver Nanocomposite

    OpenAIRE

    Loguercio, Lara Fernandes; Demingos, Pedro; Manica, Luiza de Mattos; Griep, Jordana Borges; Santos, Marcos José Leite; Ferreira, Jacqueline

    2016-01-01

    A nanocomposite of indigo carmine doped polypyrrole/silver nanoparticles was obtained by a one-step electrochemical process. The nanocomposite was characterized by scanning electron microscopy, infrared spectroscopy, ultraviolet-visible-near infrared spectroscopy, and cyclic voltammetry. The simple one-step process allowed the growth of silver nanoparticles during the polymerization of polypyrrole, resulting in films with electrochromic behavior and improved electroactivity. In addition, poly...

  5. Development of nanostructured silver vanadates decorated with silver nanoparticles as a novel antibacterial agent

    Energy Technology Data Exchange (ETDEWEB)

    Holtz, R D; Souza Filho, A G; Alves, O L [Laboratorio de Quimica do Estado Solido (LQES), Instituto de Quimica, Universidade Estadual de Campinas, CP 6154, 13081-970, Campinas-SP (Brazil); Brocchi, M; Martins, D [Departamento de Genetica, Evolucao and Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas-SP (Brazil); Duran, N, E-mail: rholtz@iqm.unicamp.br, E-mail: agsf@fisica.ufc.br, E-mail: oalves@iqm.unicamp.br [Laboratorio de Quimica Biologica, Instituto de Quimica, Universidade Estadual de Campinas, Campinas-SP (Brazil)

    2010-05-07

    In this work we report the synthesis, characterization and application of silver vanadate nanowires decorated with silver nanoparticles as a novel antibacterial agent. These hybrid materials were synthesized by a precipitation reaction of ammonium vanadate and silver nitrate followed by hydrothermal treatment. The silver vanadate nanowires have lengths of the order of microns and diameters around 60 nm. The silver nanoparticles decorating the nanowires present a diameter distribution varying from 1 to 20 nm. The influence of the pH of the reaction medium on the chemical structure and morphology of silver vanadates was studied and we found that synthesis performed at pH 5.5-6.0 led to silver vanadate nanowires with a higher morphological yield. The antimicrobial activity of these materials was evaluated against three strains of Staphylococcus aureus and very promising results were found. The minimum growth inhibiting concentration value against a MRSA strain was found to be ten folds lower than for the antibiotic oxacillin.

  6. Fabrication of transparent quaternized PVA/silver nanocomposite hydrogel and its evaluation as an antimicrobial patch for wound care systems.

    Science.gov (United States)

    Bhowmick, Sirsendu; Mohanty, Sujata; Koul, Veena

    2016-11-01

    Grafting of quaternary nitrogen atoms into the backbone of polymer is an efficient way of developing new generation antimicrobial polymeric wound dressing. In this study, an elastic, non-adhesive and antimicrobial transparent hydrogel based dressing has been designed, which might be helpful for routine observation of wound area without removing the dressing material along with maintaining a sterile environment for a longer period of time. Green synthesized silver nanoparticles have been loaded into the quaternized PVA hydrogel matrix to improve its antimicrobial property. Silver nanoparticles loaded quaternized PVA hydrogel showed enhanced mechanical and swelling properties compared to native quaternized PVA hydrogel. Release kinetics evaluated by atomic absorption spectroscopy revealed that the release mechanism of silver nanoparticles from the hydrogel follows Fickian diffusion. Antimicrobial efficacy of the hydrogels was evaluated by disk diffusion test on Pseudomonas aeruginosa, Staphylococcus aureus and Escherichia coli. After 96 h of release in phosphate buffer, the growth inhibition zone created by silver nanoparticless loaded quaternized PVA hydrogel is comparable to that created by ampicillin. These observations assert that the silver nanoparticles loaded quaternized PVA hydrogel acts as a reservoir of silver nanoparticles, which helps in maintaining a sterile environment for longer time duration by releasing Ag nanocrystallite in sustained manner.

  7. Synthesis of nanosized silver colloids by microwave dielectric heating

    Indian Academy of Sciences (India)

    Silver nanosized crystallites have been synthesized in aqueous and polyols viz., ethylene glycol and glycerol, using a microwave technique. Dispersions of colloidal silver have been prepared by the reduction of silver nitrate both in the presence and absence of stabilizer poly(vinylpyrolidone) (PVP). It was observed that ...

  8. Radiation Synthesis of PVA/ Chitosan Membranes Containing Silver Nanoparticles for Biomedical Applications

    International Nuclear Information System (INIS)

    Elbarbary, A.M.; El-Sawy, N.M.

    2015-01-01

    Silver Nanoparticles (AgNPs) were synthesized by γ-rays of polyvinyl alcohol/ chitosan (PVA/ CS) membranes containing silver nitrate (AgNO ) with promising antimicrobial and biomedical applications. The synthesized silver nanoparticles characterized by Ultra Violet spectroscopy (UV), Fourier transform infrared (FT-IR), X-ray diffraction (XRD), and transmission electron microscopy (TEM). UV studies showed a strong peak around λmax at 420 nm. A uniform distribution of silver nanoparticles inside PVA/ CS membranes was achieved by TEM investigation. The prepared silver nanoparticles showed good antimicrobial activity. The membranes containing AgNPs showed non-thrombogenicity effect and slightly haemolytic potential. The prepared membranes containing AgNPs had promising use in biomedical applications.

  9. Room temperature synthesis of silver nanowires from tabular silver bromide crystals in the presence of gelatin

    Science.gov (United States)

    Liu, Suwen; Wehmschulte, Rudolf J.; Lian, Guoda; Burba, Christopher M.

    2006-03-01

    Long silver nanowires were synthesized at room temperature by a simple and fast process derived from the development of photographic films. A film consisting of an emulsion of tabular silver bromide grains in gelatin was treated with a photographic developer (4-(methylamino)phenol sulfate (metol), citric acid) in the presence of additional aqueous silver nitrate. The silver nanowires have lengths of more than 50 μm, some even more than 100 μm, and average diameters of about 80 nm. Approximately, 70% of the metallic silver formed in the reduction consists of silver nanowires. Selected area electron diffraction (SAED) results indicate that the silver nanowires grow along the [111] direction. It was found that the presence of gelatin, tabular silver bromide crystals and silver ions in solution are essential for the formation of the silver nanowires. The nanowires appear to originate from the edges of the silver bromide crystals. They were characterized by transmission electron microscopy (TEM), SAED, scanning electron microscopy (SEM), and powder X-ray diffraction (XRD).

  10. Room temperature synthesis of silver nanowires from tabular silver bromide crystals in the presence of gelatin

    International Nuclear Information System (INIS)

    Liu Suwen; Wehmschulte, Rudolf J.; Lian Guoda; Burba, Christopher M.

    2006-01-01

    Long silver nanowires were synthesized at room temperature by a simple and fast process derived from the development of photographic films. A film consisting of an emulsion of tabular silver bromide grains in gelatin was treated with a photographic developer (4-(methylamino)phenol sulfate (metol), citric acid) in the presence of additional aqueous silver nitrate. The silver nanowires have lengths of more than 50 μm, some even more than 100 μm, and average diameters of about 80 nm. Approximately, 70% of the metallic silver formed in the reduction consists of silver nanowires. Selected area electron diffraction (SAED) results indicate that the silver nanowires grow along the [111] direction. It was found that the presence of gelatin, tabular silver bromide crystals and silver ions in solution are essential for the formation of the silver nanowires. The nanowires appear to originate from the edges of the silver bromide crystals. They were characterized by transmission electron microscopy (TEM), SAED, scanning electron microscopy (SEM), and powder X-ray diffraction (XRD)

  11. A comparative study of the effect of α-, β-, and γ-cyclodextrins as stabilizing agents in the synthesis of silver nanoparticles using a green chemistry method

    Energy Technology Data Exchange (ETDEWEB)

    Suárez-Cerda, Javier [Centro de Graduados e Investigación, Instituto Tecnológico de Tijuana, Apartado Postal 1166, Tijuana, B. C. (Mexico); Nuñez, Gabriel Alonso [Centro de Nanociencia y Nanotecnología de la UNAM, CNyN, Km. 107 Carretera Tijuana-Ensenada, C.P. 22860 Ensenada, B. C. (Mexico); Espinoza-Gómez, Heriberto [Facultad de Ciencias Químicas e Ingeniería, UABC, Calzada Universidad 14418 Parque Industrial Internacional, C.P. 22390 Tijuana, B.C. (Mexico); Flores-López, Lucía Z., E-mail: lzflores@hotmail.com [Centro de Graduados e Investigación, Instituto Tecnológico de Tijuana, Apartado Postal 1166, Tijuana, B. C. (Mexico)

    2014-10-01

    This paper describes the effect of different types of cyclodextrins (CDs) in the synthesis of silver nanoparticles (Ag-NPs), using an easy green chemistry method. The Ag-NPs were obtained using an aqueous silver nitrate solution (AgNO{sub 3}) with α-, β-, or γ-CDs (aqueous solutions) as stabilizing agents, employing the chemical reduction method with citric acid as a reducing agent. A comparative study was done to determine which cyclodextrin (CD) was the best stabilizing agent, and we found out that β-CD was the best due to the number of glucopyranose units in its structure. The formation of the Ag-NPs was demonstrated by analysis of UV–vis spectroscopy, atomic force microscopy (AFM), scanning electron microscopy–energy dispersive spectroscopy (SEM–EDS) and transmission electron microscopy (TEM). SEM–EDS showed the formation of a cluster with a significant amount of silver, for β-CD-Ag-NPs, spherical agglomerates can be observed. However, for α-, γ-CD, the agglomerates do not have a specific form, but their appearance is porous. TEM analysis shows spherical nanoparticles in shape and size between ∼ 0.5 to 7 nm. The clear lattice fringes in TEM images and the typical selected area electron diffraction (SAED) pattern, showed that the Ag-NPs obtained were highly crystalline with a face cubic center structure (FCC). - Highlights: • We report a green chemistry method for silver nanoparticles (Ag-NPs) synthesis. • We study the effect of cyclodextrin type on the silver nanoparticles (Ag-NPs) synthesis. • The silver nanoparticles (Ag-NPs) characterization were done by UV–vis, AFM, SEM–EDS, and TEM. • The Ag-NPs obtained have a face cubic center structure (FCC). • The nanoparticles obtained are spherical in shape and between ∼ 0.5 and 7 nm in size.

  12. A comparative study of the effect of α-, β-, and γ-cyclodextrins as stabilizing agents in the synthesis of silver nanoparticles using a green chemistry method

    International Nuclear Information System (INIS)

    Suárez-Cerda, Javier; Nuñez, Gabriel Alonso; Espinoza-Gómez, Heriberto; Flores-López, Lucía Z.

    2014-01-01

    This paper describes the effect of different types of cyclodextrins (CDs) in the synthesis of silver nanoparticles (Ag-NPs), using an easy green chemistry method. The Ag-NPs were obtained using an aqueous silver nitrate solution (AgNO 3 ) with α-, β-, or γ-CDs (aqueous solutions) as stabilizing agents, employing the chemical reduction method with citric acid as a reducing agent. A comparative study was done to determine which cyclodextrin (CD) was the best stabilizing agent, and we found out that β-CD was the best due to the number of glucopyranose units in its structure. The formation of the Ag-NPs was demonstrated by analysis of UV–vis spectroscopy, atomic force microscopy (AFM), scanning electron microscopy–energy dispersive spectroscopy (SEM–EDS) and transmission electron microscopy (TEM). SEM–EDS showed the formation of a cluster with a significant amount of silver, for β-CD-Ag-NPs, spherical agglomerates can be observed. However, for α-, γ-CD, the agglomerates do not have a specific form, but their appearance is porous. TEM analysis shows spherical nanoparticles in shape and size between ∼ 0.5 to 7 nm. The clear lattice fringes in TEM images and the typical selected area electron diffraction (SAED) pattern, showed that the Ag-NPs obtained were highly crystalline with a face cubic center structure (FCC). - Highlights: • We report a green chemistry method for silver nanoparticles (Ag-NPs) synthesis. • We study the effect of cyclodextrin type on the silver nanoparticles (Ag-NPs) synthesis. • The silver nanoparticles (Ag-NPs) characterization were done by UV–vis, AFM, SEM–EDS, and TEM. • The Ag-NPs obtained have a face cubic center structure (FCC). • The nanoparticles obtained are spherical in shape and between ∼ 0.5 and 7 nm in size

  13. Evaluation of tetraethoxysilane (TEOS) sol–gel coatings, modified with green synthesized zinc oxide nanoparticles for combating microfouling

    Energy Technology Data Exchange (ETDEWEB)

    Krupa, A. Nithya Deva; Vimala, R., E-mail: vimala.r@vit.ac.in

    2016-04-01

    Green synthesis of zinc oxide nanoparticles (ZnO-NPs) is gaining importance as an eco-friendly alternative to conventional methods due to its enormous applications. The present work reports the synthesis of ZnO-NPs using the endosperm of Cocos nucifera (coconut water) and the bio-molecules responsible for nanoparticle formation have been identified. The synthesized nanoparticles were characterized using UV–Visible spectroscopy (UV–Vis), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Transmission Electron Microscopy (TEM) and Zeta potential measurement. The results obtained reveal that the synthesized nanoparticles are moderately stable with the size ranging from 20 to 80 nm. The bactericidal effect of the nanoparticles was proved by well diffusion assay and determination of minimum inhibitory concentration (MIC) against marine biofilm forming bacteria. Further the green synthesized ZnO-NPs were doped with TEOS sol–gels (TESGs) in order to assess their antimicrofouling capability. Different volumes of liquid sol–gels were coated on to 96-well microtitre plate and cured under various conditions. The optimum curing conditions were found to be temperature 60 °C, time 72 h and volume 200 μl. Antiadhesion test of the undoped (SG) and ZnO-NP doped TEOS sol–gel (ZNSG) coatings were evaluated using marine biofilm forming bacteria. ZNSG coatings exhibited highest biofilm inhibition (89.2%) represented by lowest OD value against Pseudomonasotitidis strain NV1. - Highlights: • The study reports low cost, and simple procedure for the synthesis of ZnO-NPs using coconut water. • XRD result shows the high crystalline nature of the synthesized ZnO-NPs. • TEM and zeta potential distribution confirms the nanostructure, stability of the synthesized ZnO-NPs. • ZnO-NPs doped with TEOS sol¬-gels (TESGs) exhibited excellent antimicrofouling activity.

  14. In vitro assessment of activity of graphene silver composite sheets ...

    African Journals Online (AJOL)

    Purpose: To synthesize graphene-based silver nanocomposites and evaluate their antimicrobial and anti-Tomato Bushy Stunt Virus (TBSV) activities. Methods: A graphene-based silver composite was prepared by adsorbing silver nanoparticles AgNPs to the surfaces of graphene oxide (GO) sheets. Scanning electron ...

  15. Biosynthesis of Silver Nanoparticles and Its Applications

    International Nuclear Information System (INIS)

    Firdhouse, M. J.; Lalitha, P.

    2015-01-01

    Silver nanoparticles possess unique properties which find myriad applications such as antimicrobial, anticancer, larvicidal, catalytic, and wound healing activities. Biogenic syntheses of silver nanoparticles using plants and their pharmacological and other potential applications are gaining momentum owing to its assured rewards. This critical review is aimed at providing an insight into the phyto mediated synthesis of silver nanoparticles, its significant applications in various fields, and characterization techniques involved.

  16. Anticancer and enhanced antimicrobial activity of biosynthesizd silver nanoparticles against clinical pathogens

    Science.gov (United States)

    Rajeshkumar, Shanmugam; Malarkodi, Chelladurai; Vanaja, Mahendran; Annadurai, Gurusamy

    2016-07-01

    The present investigation shows the biosynthesis of eco-friendly silver nanoparticles using culture supernatant of Enterococcus sp. and study the effect of enhanced antimicrobial activity, anticancer activity against pathogenic bacteria, fungi and cancer cell lines. Silver nanoparticles was synthesized by adding 1 mM silver nitrate into the 100 ml of 24 h freshly prepared culture supernatant of Enterococcus sp. and were characterized by UV-vis spectroscopy, X-ray diffraction (XRD), Transmission Electron Microscope (TEM), Selected Area Diffraction X-Ray (SAED), Energy Dispersive X Ray (EDX) and Fourier Transform Infra red Spectroscopy (FT-IR). The synthesized silver nanoparticles were impregnated with commercial antibiotics for evaluation of enhanced antimicrobial activity. Further these synthesized silver nanoparticles were assessed for its anticancer activity against cancer cell lines. In this study crystalline structured nanoparticles with spherical in the size ranges from 10 to 80 nm and it shows excellent enhanced antimicrobial activity than the commercial antibiotics. The in vitro assay of silver nanoparticles on anticancer have great potential to inhibit the cell viability. Amide linkages and carboxylate groups of proteins from Enterococcus sp. may bind with silver ions and convert into nanoparticles. The activities of commercial antibiotics were enhanced by coating silver nanoparticles shows significant improved antimicrobial activity. Silver nanoparticles have the great potential to inhibit the cell viability of liver cancer cells lines (HepG2) and lung cancer cell lines (A549).

  17. SAXS Combined with UV-vis Spectroscopy and QELS: Accurate Characterization of Silver Sols Synthesized in Polymer Matrices.

    Science.gov (United States)

    Bulavin, Leonid; Kutsevol, Nataliya; Chumachenko, Vasyl; Soloviov, Dmytro; Kuklin, Alexander; Marynin, Andrii

    2016-12-01

    The present work demonstrates a validation of small-angle X-ray scattering (SAXS) combining with ultra violet and visible (UV-vis) spectroscopy and quasi-elastic light scattering (QELS) analysis for characterization of silver sols synthesized in polymer matrices. Polymer matrix internal structure and polymer chemical nature actually controlled the sol size characteristics. It was shown that for precise analysis of nanoparticle size distribution these techniques should be used simultaneously. All applied methods were in good agreement for the characterization of size distribution of small particles (less than 60 nm) in the sols. Some deviations of the theoretical curves from the experimental ones were observed. The most probable cause is that nanoparticles were not entirely spherical in form.

  18. Green synthesis of silver nanoparticles and biopolymer ...

    Indian Academy of Sciences (India)

    2018-03-29

    Mar 29, 2018 ... Keywords. Biogenic silver nanoparticles; biopolymer nanocomposites; nanoparticles stability; ... Production of nanomaterials by using living organisms of plant-based ... 2.1b Microorganisms and cell culture: The evaluation of.

  19. Synthesis of nanoparticles composed of silver and silver chloride for a plasmonic photocatalyst using an extract from a weed Solidago altissima (goldenrod)

    Science.gov (United States)

    Kumar, Vemu Anil; Uchida, Takashi; Mizuki, Toru; Nakajima, Yoshikata; Katsube, Yoshihiro; Hanajiri, Tatsuro; Maekawa, Toru

    2016-03-01

    Phytosynthesis of nanomaterials is advantageous since it is economical, ecofriendly, and simple, and, what is more, in the synthetic protocols, nontoxic chemicals and biocompatible materials are used. Here, a green synthetic methodology of nanoparticles (NPs) composed of silver (Ag) and silver chloride (AgCl) NPs is developed using a leaf extract of Solidago altissima as a reducing agent for the first time. Utilization of a terrestrial weed for the synthesis of Ag and AgCl NPs is a novel environmentally friendly approach considering that no toxic chemicals, external halide source, or elaborate experimental procedures are included in the process. The optical properties and elemental compositions of as-synthesized Ag and AgCl NPs are well characterized, and the degradation of an organic dye, i.e., rhodamine B (RhB), is investigated using the Ag and AgCl NPs. We find that degradation of RhB is effectively achieved thanks to both surface plasmon resonance and semiconductor properties of Ag and AgCl NPs. The surface-enhanced Raman scattering and antibacterial activities are also examined. The present approach to the synthesis of NPs using a weed may encourage the utilization of hazardous plants for the creation of novel nanomaterials.

  20. Synthesis of nanoparticles composed of silver and silver chloride for a plasmonic photocatalyst using an extract from a weed Solidago altissima (goldenrod)

    International Nuclear Information System (INIS)

    Kumar, Vemu Anil; Uchida, Takashi; Mizuki, Toru; Nakajima, Yoshikata; Katsube, Yoshihiro; Hanajiri, Tatsuro; Maekawa, Toru

    2016-01-01

    Phytosynthesis of nanomaterials is advantageous since it is economical, ecofriendly, and simple, and, what is more, in the synthetic protocols, nontoxic chemicals and biocompatible materials are used. Here, a green synthetic methodology of nanoparticles (NPs) composed of silver (Ag) and silver chloride (AgCl) NPs is developed using a leaf extract of Solidago altissima as a reducing agent for the first time. Utilization of a terrestrial weed for the synthesis of Ag and AgCl NPs is a novel environmentally friendly approach considering that no toxic chemicals, external halide source, or elaborate experimental procedures are included in the process. The optical properties and elemental compositions of as-synthesized Ag and AgCl NPs are well characterized, and the degradation of an organic dye, i.e., rhodamine B (RhB), is investigated using the Ag and AgCl NPs. We find that degradation of RhB is effectively achieved thanks to both surface plasmon resonance and semiconductor properties of Ag and AgCl NPs. The surface-enhanced Raman scattering and antibacterial activities are also examined. The present approach to the synthesis of NPs using a weed may encourage the utilization of hazardous plants for the creation of novel nanomaterials. (paper)

  1. Silver nanoparticles: synthesis and size control by electron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Bogle, K A; Dhole, S D; Bhoraskar, V N [Microtron Accelerator Laboratory, Department of Physics, University of Pune, Pune-411007 (India)

    2006-07-14

    Silver nanoparticles were synthesized by irradiating solutions, prepared by mixing AgNO{sub 3} and poly-vinyl alcohol (PVA), with 6 MeV electrons. The electron-irradiated solutions and the thin coatings cast from them were characterized using the ultraviolet-visible (UV-vis), x-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) techniques. During electron irradiation, the process of formation of the silver nanoparticles appeared to be initiated at an electron fluence of {approx}2 x 10{sup 13} e cm{sup -2}. This was evidenced from the solution, which turned yellow and exhibited the characteristic plasmon absorption peak around 455 nm. Silver nanoparticles of different sizes in the range 60-10 nm, with a narrow size distribution, could be synthesized by varying the electron fluence from 2 x 10{sup 13} to 3 x 10{sup 15} e cm{sup -2}. Silver nanoparticles of sizes in the range 100-200 nm were also synthesized by irradiating an aqueous AgNO{sub 3} solution with 6 MeV electrons.

  2. Characterization of silver nanoparticles synthesized using an endophytic fungus, Penicillium oxalicum having potential antimicrobial activity

    Science.gov (United States)

    Bhattacharjee, Sukla; Debnath, Gopal; Das, Aparajita Roy; Krishna Saha, Ajay; Das, Panna

    2017-12-01

    The aim of the present study was to test the efficacy of the extracellular mycelium extract of Penicillium oxalicum isolated from Phlogacanthus thyrsiflorus to biosynthesize silver nanoparticles. It was characterized using ultraviolet-visible absorption spectroscopy, atomic force microscopy, transmission electron microscopy and Fourier transforms infrared spectroscopy. The silver nanoparticles were evaluated for antimicrobial activity. The characterization confirms the synthesis of silver nanoparticles. Both silver nanoparticles and combination of silver nanoparticles with streptomycin showed activity against the four bacteria. The results suggested that P. oxalicum offers eco-friendly production of silver nanoparticles and the antibacterial activity may find application in biomedicine.

  3. Solvothermal syntheses and characterization of three new silver(I)/copper(I)-thioarsenates based on As{sup 2+}/As{sup 3+} ions

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Hua-Gang, E-mail: hgyao@gdpu.edu.cn [School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458 (China); Guangdong Cosmetics Engineering & Technology Research Center, Zhongshan 528458 (China); Tang, Cheng-Fei [School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458 (China); An, Yong-Lin [Department of Chemistry, Dalian University of Technology, Dalian 116024 (China); Ou, Zi-Jian; Wu, Guo-Hao; Lan, Pei; Zheng, Yi-Long [School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458 (China)

    2017-02-15

    Three new silver(I)/copper(I)-thioarsenates KAgAs{sup II}S{sub 2} (1), RbCu{sub 2}As{sup III}S{sub 3} (2) and RbCu{sub 4}As{sup III}S{sub 4} (3) have been solvothermally synthesized and structurally characterized. 1 exhibits a two-dimensional anionic network built up by As−As bond connecting the left- and right-handed helical [AgS{sub 2}]{sup 4−} chains, and represents the first examples of thioarsenates(II). The structure of 2 consists of two kinds of helical [Cu{sub 2}S{sub 3}]{sup 4–} chains linked by the arsenic atoms to form double layers with rubidium ions between the layers. Compound 3 is built up of infinite [Cu{sub 2}S{sub 2}]{sup 2–} chain and layered [Cu{sub 6}As{sub 2}S{sub 6}] linked to form a three-dimensional anionic framework, [Cu{sub 4}AsS{sub 4}]{sup –}, and containing channels in which the rubidium cations reside. The optical properties of 1–3 have been investigated by UV–vis spectroscopy. - Graphical abstract: Three new silver(I)/copper(I)-thioarsenates have been solvothermally synthesized and structurally characterized. 1 represents the first examples of thioarsenates(II) while compounds 2 and 3 possess noncondensed pyramidal AsS{sub 3}{sup 3–} unit.

  4. Green biosynthesis of silver nanoparticles using pomegranate peel and inhibitory effects of the nanoparticles on aflatoxin production

    International Nuclear Information System (INIS)

    Monira, A.O.; Mohammad, M.A.; Ashraf, H.A.

    2017-01-01

    In this work, pomegranate peel has been used as a natural and safe method for biosynthesis of silver nanoparticles. The synthesis of silver nanoparticles was confirmed using UV spectroscopy, which showed a peak around a wavelength of 437 nm. The morphology showed spherical and monodispersed nanoparticles with a size range between 5-50 nm. Using scanning electron microscopy (SEM) and transmission electron microscopy (TEM), X-ray diffraction (XRD) experiments revealed their crystalline nature. Active functional groups in the synthesized silver nanoparticles were determined using Fourier transform infrared (FTIR) spectrometers contained four bands at 3281.21 cm/sup -1/, possibly indicating the participationof O-H functional group. The peak take place at 1,636.22 cm/sup -1/ may be pointed to C = N bending in the amide group or C = O stretching in carboxyl. Transfer in this peak (from 1,641 to 1,643 cm/sup -1/) shown the possible role of amino groups or carboxyl in nanoparticle synthesis. The peaks at 431.95 and 421.28 cm/sup -1/ be related to AgNPs bonding with oxygen from hydroxyl groups which confirm the role of pomegranate peel as a reducing agent. Furthermore, we investigated effects of these nanoparticles on aflatoxin B1 production by the fungus Aspergillus flavus, isolated from hazelnut. The results found that aflatoxin production in all A. flavus isolates decreased with an increase in the concentration of silver nanoparticles. Maximum suppression of aflatoxin production was recorded at a nanoparticle concentration of 150 ppm. (author)

  5. Silver nanoprisms self-assembly on differently functionalized silica surface

    International Nuclear Information System (INIS)

    Pilipavicius, J; Chodosovskaja, A; Beganskiene, A; Kareiva, A

    2015-01-01

    In this work colloidal silica/silver nanoprisms (NPRs) composite coatings were made. Firstly colloidal silica sols were synthesized by sol-gel method and produced coatings on glass by dip-coating technique. Next coatings were silanized by (3-Aminopropyl)triethoxysilane (APTES), N-[3-(Trimethoxysilyl)propyl]ethylenediamine (AEAPTMS), (3- Mercaptopropyl)trimethoxysilane (MPTMS). Silver NPRs where synthesized via seed-mediated method and high yield of 94±15 nm average edge length silver NPRs were obtained with surface plasmon resonance peak at 921 nm. Silica-Silver NPRs composite coatings obtained by selfassembly on silica coated-functionalized surface. In order to find the most appropriate silanization way for Silver NPRs self-assembly, the composite coatings were characterized by scanning electron microscopy (SEM), dynamic light scattering (DLS), water contact angle (CA) and surface free energy (SFE) methods. Results have showed that surface functionalization is necessary to achieve self-assembled Ag NPRs layer. MPTMS silanized coatings resulted sparse distribution of Ag NPRs. Most homogeneous, even distribution composite coatings obtained on APTES functionalized silica coatings, while AEAPTMS induced strong aggregation of Silver NPRs

  6. The removal of 2,4-dichlorophenol under visible light irradiation by silver indium sulfide nanoparticles synthesized by microwave

    Directory of Open Access Journals (Sweden)

    Amir Hossein

    2013-04-01

    Full Text Available Silver indium sulfide (AgInS2 nanoparticles were synthesized by microwave method. These nanopartricles were characterized by FT-IR, XRD, DRS, SEM and TEM techniques. The band gap energy of 1.96 eV was determined by UV-Vis diffuse reflection spectrum (DRS. The photocatalytic activity was studied by photodegradation reaction of 2,4-dichlorophenol (2,4-DCP under visible light irradiation. The influence of initial concentration, initial solution pH on the degradation percentage of 2,4-DCP and also, the kinetics of photodegradation were investigated. The removal efficiency up to 95% proved the superior capability of AgInS2 (AIS nanoparticles for water purification.

  7. Gross and histologic evaluation of effects of photobiomodulation, silver sulfadiazine, and a topical antimicrobial product on experimentally induced full-thickness skin wounds in green iguanas (Iguana iguana).

    Science.gov (United States)

    Cusack, Lara M; Mayer, Joerg; Cutler, Daniel C; Rissi, Daniel R; Divers, Stephen J

    2018-04-01

    OBJECTIVE To assess effects of photobiomodulation, silver sulfadiazine, and a topical antimicrobial product for the treatment of experimentally induced full-thickness skin wounds in green iguanas (Iguana iguana). ANIMALS 16 healthy subadult green iguanas. PROCEDURES Iguanas were anesthetized, and three 5-mm cutaneous biopsy specimens were obtained from each iguana (day 0). Iguanas were randomly assigned to 2 treatment groups, each of which had a control treatment. Wounds in the topical treatment group received silver sulfadiazine, a topical antimicrobial product, or no treatment. Wounds in the laser treatment group received treatment with a class 4 laser at 5 or 10 J/cm 2 or no treatment. Wound measurements were obtained daily for 14 days. Iguanas were euthanized, and treatment sites were evaluated microscopically to detect ulceration, bacterial contamination, reepithelialization, necrosis, inflammation, fibrosis, and collagen maturity. RESULTS On day 14, wounds treated with a laser at 10 J/cm 2 were significantly smaller than those treated with silver sulfadiazine, but there were no other significant differences among treatments. Histologically, there were no significant differences in ulceration, bacterial infection, reepithelialization, necrosis, inflammation, fibrosis, and collagen maturity among treatments. CONCLUSIONS AND CLINICAL RELEVANCE Photobiomodulation at 10 J/cm 2 appeared to be a safe treatment that was tolerated well by green iguanas, but it did not result in substantial improvement in histologic evidence of wound healing, compared with results for other treatments or no treatment.

  8. Antibacterial and anticancerous biocompatible silver nanoparticles synthesised from the cold-tolerant strain of Spirulina platensis

    Directory of Open Access Journals (Sweden)

    Selvaraj Karthick Raja Namasivayam

    2015-04-01

    Full Text Available Objective: To synthesize silver nanoparticles from the biomass of cold tolerant strain of Spirulina platensis and evalute the synthesized nanoparticles against antibacterial and anticancer activity. Methods: Silver nanoparticles were synthesized by the algal culture and characterized by UV-vis spectroscopy, Fourier transform infrared spectroscopy, field emission scanning electron microscopy and X ray diffraction studies. Antibacterial activity has been studied with free nanoparticles adopting agar diffusion assay, biofilm inhibition assay and nanoparticles fabricated wound dressing against representative Gram-negative organism Pseudomonas aeruginosa and Gram-positive organism Staphylococcus aureus respectively. The in vitro anticancer activity of silver nanoparticles were screened against human Hep2 cell lines by means of MTT assay. Results: Reduction of silver ions by the algal culture was observed during 72 h of incubation and the synthesized nanoparticles were further characterized. Antibacterial study reveals both the strains were susceptible to free nanoparticles and fabricated wound dressing treatment. The in vitro anticancer activity of silver nanoparticles were screened against human Hep 2 cell lines by means of MTT assay which reveals that cell viability has been reduced as dose dependent manner. Conclusions: The observed results imply that silver nanoparticles synthesized from Spirulina platensis cold tolerant strain can be used as potential antibacterial and anticancerous agent.

  9. Antibacterial and anticancerous biocompatible silver nanoparticles synthesised from the cold-tolerant strain of Spirulina platensis

    Institute of Scientific and Technical Information of China (English)

    Duraisamy Jayakumar; Ramesh Kumar; Rajan SowriArvind Bharani

    2015-01-01

    Objective: To synthesize silver nanoparticles from the biomass of cold tolerant strain of Spirulina platensis and evalute the synthesized nanoparticles against antibacterial and anticancer activity. Methods: Silver nanoparticles were synthesized by the algal culture and characterized by UV-vis spectroscopy, Fourier transform infrared spectroscopy, field emission scanning electron microscopy and X ray diffraction studies. Antibacterial activity has been studied with free nanoparticles adopting agar diffusion assay, biofilm inhibition assay and nanoparticles fabricated wound dressing against representative Gram-negative organism Pseudomonas aeruginosa and Gram-positive organism Staphylococcus aureus respectively. The in vitro anticancer activity of silver nanoparticles were screened against human Hep2 cell lines by means of MTT assay. Results: Reduction of silver ions by the algal culture was observed during 72 h of incubation and the synthesized nanoparticles were further characterized. Antibacterial study reveals both the strains were susceptible to free nanoparticles and fabricated wound dressing treatment. The in vitro anticancer activity of silver nanoparticles were screened against human Hep 2 cell lines by means of MTT assay which reveals that cell viability has been reduced as dose dependent manner. Conclusions: The observed results imply that silver nanoparticles synthesized from Spirulina platensis cold tolerant strain can be used as potential antibacterial and anticancerous agent.

  10. Structural and optical characteristics of silver/poly(N-vinyl-2-pyrrolidone) nanosystems synthesized by γ-irradiation

    International Nuclear Information System (INIS)

    Jovanović, Željka; Radosavljević, Aleksandra; Šiljegović, Milorad; Bibić, Nataša; Mišković-Stanković, Vesna; Kačarević-Popović, Zorica

    2012-01-01

    Silver nanoparticles (AgNPs) were synthesized in situ by γ-irradiation using poly(N-vinyl-2-pyrrolidone) (PVP) as a capping agent. The concentration, molecular weight and the structure (crosslinked and interpenetrated network) of PVP were varied, in order to determine the influence of the capping agent in the radiolytic synthesis of the Ag/PVP nanosystems. Transmission electron microscopy (TEM) showed that AgNPs obtained from the solutions containing higher PVP concentration and higher molecular weight were spherical in shape, with narrow size distribution and a diameter of∼6 nm, while slightly larger rod-shaped silver agglomerates, with bimodal nanoparticle size distribution and diameters of ∼10 nm and ∼20 nm were obtained from the solutions containing lower PVP concentration and lower molecular weight. Strong plasmon coupling and extending of plasmon resonance was observed by UV–vis spectroscopy, as a result of formation of nanorod-like agglomerates. Crosslinked and interpenetrated network did not affect the structure of synthesized AgNPs. Ag/PVP nanocomposite, in the form of thin film, was obtained by solvent evaporation from Ag/PVP colloid solution with 10 wt% of PVP, and characterized by FTIR spectroscopy. The interactions in Ag/PVP nanocomposite are shown to be the result of the coordination bonding between AgNPs and nitrogen from pyrrolidone ring of PVP. The optical properties of investigated Ag/PVP nanosystems, as measured by the values of optical band gap, E g , are mainly the consequence of the interparticle distance as a result of the concentration and the structure of surrounding PVP macromolecules. - Highlights: ► AgNPs of different structure and optical properties were obtained by γ-irradiation. ► Different PVP concentration and molecular weight induced different structure. ► Rod-shaped AgNPs were obtained with lower PVP concentration and molecular weight. ► Stabilization by coordination bonding between AgNPs and N from pyrrolidone

  11. Silver nanoparticles reduce brain inflammation and related neurotoxicity through induction of H2S-synthesizing enzymes

    Science.gov (United States)

    Gonzalez-Carter, Daniel A.; Leo, Bey Fen; Ruenraroengsak, Pakatip; Chen, Shu; Goode, Angela E.; Theodorou, Ioannis G.; Chung, Kian Fan; Carzaniga, Raffaella; Shaffer, Milo S. P.; Dexter, David T.; Ryan, Mary P.; Porter, Alexandra E.

    2017-03-01

    Silver nanoparticles (AgNP) are known to penetrate into the brain and cause neuronal death. However, there is a paucity in studies examining the effect of AgNP on the resident immune cells of the brain, microglia. Given microglia are implicated in neurodegenerative disorders such as Parkinson’s disease (PD), it is important to examine how AgNPs affect microglial inflammation to fully assess AgNP neurotoxicity. In addition, understanding AgNP processing by microglia will allow better prediction of their long term bioreactivity. In the present study, the in vitro uptake and intracellular transformation of citrate-capped AgNPs by microglia, as well as their effects on microglial inflammation and related neurotoxicity were examined. Analytical microscopy demonstrated internalization and dissolution of AgNPs within microglia and formation of non-reactive silver sulphide (Ag2S) on the surface of AgNPs. Furthermore, AgNP-treatment up-regulated microglial expression of the hydrogen sulphide (H2S)-synthesizing enzyme cystathionine-γ-lyase (CSE). In addition, AgNPs showed significant anti-inflammatory effects, reducing lipopolysaccharide (LPS)-stimulated ROS, nitric oxide and TNFα production, which translated into reduced microglial toxicity towards dopaminergic neurons. Hence, the present results indicate that intracellular Ag2S formation, resulting from CSE-mediated H2S production in microglia, sequesters Ag+ ions released from AgNPs, significantly limiting their toxicity, concomitantly reducing microglial inflammation and related neurotoxicity.

  12. [Ag25(SR)18]¯: The ‘Golden’ Silver Nanoparticle

    KAUST Repository

    Joshi, Chakra Prasad

    2015-08-31

    Silver nanoparticles with an atomically precise molecular formula [Ag25(SR)18]¯ (‒SR: thiolate) are synthesized and their single-crystal structure is determined. This synthesized nanocluster is the only silver nanoparticle that has a virtually identical analogue in gold, i.e., [Au25(SR)18]¯, in terms of number of metal atoms, ligand count, super-atom electronic configuration, and atomic arrangement. Furthermore, both [Ag25(SR)18]¯ and its gold analogue share a number of features in their optical absorption spectra. This unprecedented molecular synthesis in silver to mimic gold offers the first model nanoparticle platform to investigate the centuries-old problem of understanding the fundamental differences between silver and gold in terms of nobility, catalytic activity, and optical property.

  13. [Ag25(SR)18]¯: The ‘Golden’ Silver Nanoparticle

    KAUST Repository

    Joshi, Chakra Prasad; Bootharaju, Megalamane Siddaramappa; Alhilaly, Mohammad J.; Bakr, Osman

    2015-01-01

    Silver nanoparticles with an atomically precise molecular formula [Ag25(SR)18]¯ (‒SR: thiolate) are synthesized and their single-crystal structure is determined. This synthesized nanocluster is the only silver nanoparticle that has a virtually identical analogue in gold, i.e., [Au25(SR)18]¯, in terms of number of metal atoms, ligand count, super-atom electronic configuration, and atomic arrangement. Furthermore, both [Ag25(SR)18]¯ and its gold analogue share a number of features in their optical absorption spectra. This unprecedented molecular synthesis in silver to mimic gold offers the first model nanoparticle platform to investigate the centuries-old problem of understanding the fundamental differences between silver and gold in terms of nobility, catalytic activity, and optical property.

  14. Phyto-synthesis and antibacterial studies of bio-based silver nanoparticles using Sesbania grandiflora (Avisa) leaf tea extract

    Science.gov (United States)

    Mallikarjuna, K.; Balasubramanyam, K.; Narasimha, G.; Kim, Haekyoung

    2018-01-01

    Green nanobiotechnology using plants, micro-organisms, and their extracts has improved the utilization of natural resources. More efficient and eco-friendly routes are being developed for the creation of benign, biodegradable materials that have medical applicability. We developed silver nanoparticles encapsulated with Sesbania grandiflora (Avisa) leaf extract, which served as a reducing and capping material. The structure and functionalization of the synthesized nanoparticles were investigated using UV-vis, XRD, FE-TEM, SAED, and FTIR analyses. The nanoparticles were found to be isotropic and spherical, with a core of Ag wrapped in phytochemicals. The presence of phytochemicals stabilized the nanoparticles during production by preventing agglomeration. Antibacterial properties against both gram-positive and gram-negative bacteria were also tested. The phytochemical-wrapped silver nanoparticles were more effective antibiotics than were bare silver nanoparticles. The phytochemicals were likely responsible for both direct and indirect improvements in the bactericidal properties of the Ag particles. Additionally, the developed nanoparticles showed higher antibacterial activity towards gram-negative bacteria than towards gram-positive bacteria, with the cell wall playing an important role in adsorption and absorption of Ag+.

  15. Green synthesis, characterization of gold and silver nanoparticles and their potential application for cancer therapeutics

    International Nuclear Information System (INIS)

    Patra, Sujata; Mukherjee, Sudip; Barui, Ayan Kumar; Ganguly, Anirban; Sreedhar, Bojja; Patra, Chitta Ranjan

    2015-01-01

    In the present article, we demonstrate the delivery of anti-cancer drug to the cancer cells using biosynthesized gold and silver nanoparticles (b-AuNP & b-AgNP). The nanoparticles synthesized by using Butea monosperma (BM) leaf extract are thoroughly characterized by various analytical techniques. Both b-AuNP and b-AgNP are stable in biological buffers and biocompatible towards normal endothelial cells (HUVEC, ECV-304) as well as cancer cell lines (B16F10, MCF-7, HNGC2 & A549). Administration of nanoparticle based drug delivery systems (DDSs) using doxorubicin (DOX) [b-Au-500-DOX and b-Ag-750-DOX] shows significant inhibition of cancer cell proliferation (B16F10, MCF-7) compared to pristine drug. Therefore, we strongly believe that biosynthesized nanoparticles will be useful for the development of cancer therapy using nanomedicine approach in near future. - Highlights: • Biosynthesis of gold and silver nanoparticles using plant leaf extract • The approach is clean, efficient, eco-friendly & economically safe. • Biosynthesized nanoparticles are biocompatible towards normal and cancer cells. • Design and development of biosynthesized nanoparticle based drug delivery systems • Biosynthesized nanoparticles could be useful for cancer and other diseases

  16. Green synthesis, characterization of gold and silver nanoparticles and their potential application for cancer therapeutics

    Energy Technology Data Exchange (ETDEWEB)

    Patra, Sujata; Mukherjee, Sudip; Barui, Ayan Kumar; Ganguly, Anirban [Biomaterials Group, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana State (India); Sreedhar, Bojja [Inorganic and Physical Chemistry Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana State (India); Patra, Chitta Ranjan, E-mail: crpatra@iict.res.in [Biomaterials Group, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana State (India)

    2015-08-01

    In the present article, we demonstrate the delivery of anti-cancer drug to the cancer cells using biosynthesized gold and silver nanoparticles (b-AuNP & b-AgNP). The nanoparticles synthesized by using Butea monosperma (BM) leaf extract are thoroughly characterized by various analytical techniques. Both b-AuNP and b-AgNP are stable in biological buffers and biocompatible towards normal endothelial cells (HUVEC, ECV-304) as well as cancer cell lines (B16F10, MCF-7, HNGC2 & A549). Administration of nanoparticle based drug delivery systems (DDSs) using doxorubicin (DOX) [b-Au-500-DOX and b-Ag-750-DOX] shows significant inhibition of cancer cell proliferation (B16F10, MCF-7) compared to pristine drug. Therefore, we strongly believe that biosynthesized nanoparticles will be useful for the development of cancer therapy using nanomedicine approach in near future. - Highlights: • Biosynthesis of gold and silver nanoparticles using plant leaf extract • The approach is clean, efficient, eco-friendly & economically safe. • Biosynthesized nanoparticles are biocompatible towards normal and cancer cells. • Design and development of biosynthesized nanoparticle based drug delivery systems • Biosynthesized nanoparticles could be useful for cancer and other diseases.

  17. A simple method of growing silver chloride nanocubes on silver nanowires

    Science.gov (United States)

    Hosseinzadeh Khaligh, Hadi; Goldthorpe, Irene A.

    2015-09-01

    The growth of AgCl nanocubes directly on the sidewalls of Ag nanowires is demonstrated. The nanocubes can be simply obtained through extended low temperature annealing of polyol-synthesized silver nanowires in a vacuum. The length of time and temperature of the anneal and the diameter of the nanowire affect the size and density of the nanocubes obtained. It is hypothesized that the AgCl material is supplied from reactants leftover from the silver nanowire synthesis. This novel hybrid nanostructure may have applications in areas such as photovoltaics, surface enhanced Raman spectroscopy, and photocatalysis.

  18. Development of an eco-friendly approach for biogenesis of silver nanoparticles using spores of Bacillus athrophaeus.

    Science.gov (United States)

    Hosseini-Abari, Afrouzossadat; Emtiazi, Giti; Ghasemi, Seyed Mahdi

    2013-12-01

    The biological synthesis methods have been emerging as a promising new approach for production of nanoparticles due to their simplicity and non-toxicity. In the present study, spores of Bacillus athrophaeus were used to achieve the objective of developing a green synthesis method of silver nanoparticles. Enzyme assay revealed that the spores and their heat inactivated forms (microcapsules) were highly active and their enzymatic contents differed from the vegetative cells. Laccase, glucose oxidase, and alkaline phosphatase activities were detected in the dormant forms, but not in the vegetative cells. Although no nanoparticle was produced by active cells of B. athrophaeus, both spores and microcapsules were efficiently capable of reducing the silver ions (Ag⁺) to elemental silver (Ag⁰) leading to the formation of nanoparticles from silver nitrate (AgNO₃). The presence of biologically synthesized silver nanoparticles was determined by obtaining broad spectra with maximum absorbance at 400 nm in UV-visible spectroscopy. The X-ray diffraction analysis pattern revealed that the nanoscale particles have crystalline nature with various topologies, as confirmed by transmission electron microscopy (TEM). The TEM micrograph showed the nanocrystal structures with dimensions ranging from 5 to 30 nm. Accordingly, the spore mixture could be employed as a factory for detoxification of heavy metals and subsequent production of nanoparticles. This research introduces an environmental friendly and cost effective biotechnological process for the extracellular synthesis of silver nanoparticles using the bacterial spores.

  19. Biosynthesis, characterization and antimicrobial action of silver nanoparticles from root bark extract of Berberislycium Royle.

    Science.gov (United States)

    Mehmood, Ansar; Murtaza, Ghulam; Bhatti, Tariq Mahmood; Kausar, Rehana; Ahmed, Muhammad Jamil

    2016-01-01

    Various biological methods are being recognized for the fabrication of silver nanoparticles, which are used in several fields. The phytosynthesis of nanoparticles came out as a cost effective and enviro-friendly approach. When root bark extract of Berberis lycium was treated with silver ions, they reduced to silver nanoparticles, which were spherical, crystalline, size ranged from 10-100nm and capped by biomolecules. Synthesized silver nanoparticles were characterized by UV-visible spectroscopy, Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDX), Transmission Electron Microscopy (TEM), X-Ray Diffraction (XRD) and Fourier Transform Infra Red Spectroscopy (FTIR). The plant mediated synthesized silver nanoparticles showed pronounced antimicrobial activities against both Gram negative bacteria (Escherichia coli, Klebseilla pneumoniae, Pseudomonas aeruginosa) and Gram positive bacteria (Staphylococcus aureus and Bacillus subtilis). The plant mediated process proved to be non-toxic and low cost contender as reducing agent for synthesizing stable silver nanoparticles.

  20. Synthesis and characterization of silver nanoparticles using fruit extract of Momordica cymbalaria and assessment of their in vitro antimicrobial, antioxidant and cytotoxicity activities.

    Science.gov (United States)

    Swamy, Mallappa Kumara; Akhtar, Mohd Sayeed; Mohanty, Sudipta Kumar; Sinniah, Uma Rani

    2015-12-05

    Plant mediated synthesis of nanoparticles has been considered as green route and a reliable technique for the synthesis of nanoparticles due to its eco-friendly approach. In this study, we report a simple and eco-friendly approach for the synthesis of silver nanoparticles (AgNPs) using methanolic Momordica cymbalaria fruit extract as reducing agent. The fruit extract of M. cymbalaria exposed to AgNO3 solution showed the change in color from green to light yellow at room temperature within 1h of incubation confirms the synthesis of AgNPs. UV-vis spectra analysis revealed that the synthesized AgNPs had a sharp surface plasmon resonance at around 450 nm, while, the X-ray Diffraction (XRD) patterns confirmed distinctive peaks indices to the crystalline planes of the face centered cubic silver. The Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM) analysis results confirmed the presence of spherical shaped AgNPs by a huge disparity in the particle size distribution with an average size of 15.5 nm. The synthesized AgNPs showed strong antibacterial activity against all the tested multidrug resistant human pathogenic bacterial strains and also exhibited highest free radical scavenging activity (74.2%) compared to fruit extract (60.4%). Moreover, both fruit extract and the synthesized AgNPs showed the cytotoxicity towards Rat L6 skeletal muscle cell line at different concentrations, but the highest inhibition percentage was recorded for AgNPs at concentration of 100 μg/ml. Copyright © 2015. Published by Elsevier B.V.

  1. Simple One-Step Method to Synthesize Polypyrrole-Indigo Carmine-Silver Nanocomposite

    Directory of Open Access Journals (Sweden)

    Lara Fernandes Loguercio

    2016-01-01

    Full Text Available A nanocomposite of indigo carmine doped polypyrrole/silver nanoparticles was obtained by a one-step electrochemical process. The nanocomposite was characterized by scanning electron microscopy, infrared spectroscopy, ultraviolet-visible-near infrared spectroscopy, and cyclic voltammetry. The simple one-step process allowed the growth of silver nanoparticles during the polymerization of polypyrrole, resulting in films with electrochromic behavior and improved electroactivity. In addition, polypyrrole chains in the nanocomposite were found to present longer conjugation length than pristine polypyrrole films.

  2. Green synthesis of antimicrobial and antitumor N,N,N-trimethyl chitosan chloride/poly (acrylic acid)/silver nanocomposites.

    Science.gov (United States)

    Abu Elella, Mahmoud H; Mohamed, Riham R; Abdel-Aziz, Marwa M; Sabaa, Magdy W

    2018-05-01

    The present study is imported to solve two critical problems we face in our daily life which are microbial pollution and colon cancer. One pot green synthesis of a water soluble polyelectrolyte complex (PEC) between cationic polysaccharide as N,N,N-trimethyl chitosan chloride (TMC) and anionic polymer as poly (acrylic acid) (PAA) in presence of silver nanoparticles to yield (TMC/PAA/Ag) nanocomposites with different Ag weight ratios. Structure of TMC, PAA and TMC/PAA (PEC) were proved via different analysis tools. TMC/PAA and its Ag nanocomposites are used as antimicrobial agents against different pathogenic bacteria and fungi to solve microbial pollution. TMC/PAA-Silver nanocomposites had the highest antimicrobial activity which increases with increasing Ag %. Cytotoxicity data confirmed also that TMC/PAA/Ag (3%) had the most cytotoxic effect (the less cell viability %) towards colon cancer. TMC/PAA (PEC) was formed through electrostatic interactions between N-quaternized (-N + R 3 ) groups in TMC and carboxylate (-COO - ) groups in PAA. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Biosynthesis of silver nanoparticles using Plectranthus amboinicus leaf extract and its antimicrobial activity.

    Science.gov (United States)

    Ajitha, B; Ashok Kumar Reddy, Y; Sreedhara Reddy, P

    2014-07-15

    This study reports the simple green synthesis method for the preparation of silver nanoparticles (Ag NPs) using Plectranthus amboinicus leaf extract. The pathway of nanoparticles formation is by means of reduction of AgNO3 by leaf extract, which acts as both reducing and capping agents. Synthesized Ag NPs were subjected to different characterizations for studying the structural, chemical, morphological, optical and antimicrobial properties. The bright circular fringes in SAED pattern and diffraction peaks in XRD profile reveals high crystalline nature of biosynthesized Ag NPs. Morphological studies shows the formation of nearly spherical nanoparticles. FTIR spectrum confirms the existence of various functional groups of biomolecules capping the nanoparticles. UV-visible spectrum displays single SPR band at 428 nm indicating the absence of anisotropic particles. The synthesized Ag NPs exhibited better antimicrobial property towards gram negative Escherichia coli and towards tested Penicillium spp. than other tested microorganisms using disc diffusion method. Finally it has proven that the synthesized bio-inspired Ag NPs have potent antimicrobial effect. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Preparation of silver nanoparticles at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Mini, E-mail: mishramini5@gmail.com [Centre of Environmental Science, Department of Botany, University of Allahabad, Allahabad, U.P. (India); Chauhan, Pratima, E-mail: mangu167@yahoo.co.in [Department of Physics, University of Allahabad, Allahabad U.P. (India)

    2016-04-13

    Silver from ancient time is used as antimicrobial agent in the bulk form but now with the advancement in nanotechnology silver in the form of nanoparticles shown potential effect against microbes which make us easy to fight with many diseases plants and animals. In this work silver nanoparticles were synthesized by chemical routes using sodium borohydride as reducing agent at low temperature. The particles were characterized through UV-Visible spectroscopy as well as X-Ray Diffraction. The UV-visible spectra of silver nanoparticles exhibited absorption at 425 cm; the crystallite size of the particles is between 19nm to 39nm. EDAX graph shows two peaks of silver and oxygen. Water absorbed by silver nanoparticles was removed by the calcinations.

  5. Preparation of silver nanoparticles at low temperature

    International Nuclear Information System (INIS)

    Mishra, Mini; Chauhan, Pratima

    2016-01-01

    Silver from ancient time is used as antimicrobial agent in the bulk form but now with the advancement in nanotechnology silver in the form of nanoparticles shown potential effect against microbes which make us easy to fight with many diseases plants and animals. In this work silver nanoparticles were synthesized by chemical routes using sodium borohydride as reducing agent at low temperature. The particles were characterized through UV-Visible spectroscopy as well as X-Ray Diffraction. The UV-visible spectra of silver nanoparticles exhibited absorption at 425 cm; the crystallite size of the particles is between 19nm to 39nm. EDAX graph shows two peaks of silver and oxygen. Water absorbed by silver nanoparticles was removed by the calcinations.

  6. Synthesis and extracellular accumulation of silver nanoparticles by employing radiation-resistant Deinococcus radiodurans, their characterization, and determination of bioactivity

    Directory of Open Access Journals (Sweden)

    Kulkarni RR

    2015-01-01

    Full Text Available Rasika R Kulkarni, Nayana S Shaiwale, Dileep N Deobagkar, Deepti D Deobagkar Molecular Biology Research Laboratory, Center of Advanced Studies, Department of Zoology, University of Pune, Pune, India Abstract: There has been rapid progress in exploring microorganisms for green synthesis of nanoparticles since microbes show extraordinary diversity in terms of species richness and niche localization. Microorganisms are easy to culture using relatively inexpensive and simple nutrients under varied conditions of temperature, pressure, pH, etc. In this work, Deinococcus radiodurans that possesses the ability to withstand extremely high radiation and desiccation stress has been employed for the synthesis of silver nanoparticles (AgNPs. D. radiodurans was able to accumulate AgNPs in medium under various conditions, and process optimization was carried out with respect to time, temperature, pH, and concentration of silver salt. AgNPs were characterized using UV/vis spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray diffraction, energy-dispersive X-ray spectroscopy, and Fourier transform infrared spectroscopy. The microbially synthesized AgNPs exhibited good antimicrobial activity against both Gram-negative and Gram-positive organisms and anti-biofouling activity. Their ability to inhibit growth and proliferation of cancer cell line was also examined, and it could be seen that AgNPs synthesized using D. radiodurans exhibited excellent anticancer activity. Keywords: Deinococcus radiodurans, silver nanoparticles, anticancer, radiation resistance, antibacterial, anti-biofouling 

  7. Biosynthesis of silver nanoparticles and its antibacterial activity ...

    African Journals Online (AJOL)

    In the present research work, biosynthesis of silver nanoparticles and its activity on bacterial pathogens were investigated. Silver nanoparticles were rapidly synthesized using Urospora sp. and the formation of nanoparticles was observed within 30 min. The results recorded from UV–vis spectrum, Fourier Transform Infrared ...

  8. Biosynthesis of silver nanoparticles by Leishmania tropica | Rahi ...

    African Journals Online (AJOL)

    A novel biosynthesis route for Silver Nanoparticles (Ag-NPs) was attempted in the present study using Leishmania tropica the causative agent of cutaneous leishmaniasis in different countries, particularly in Mediterranean region in Iraq. Silver nanoparticles were successfully synthesized from AgNO3 by reduction of ...

  9. Silver nanoparticles: Synthesis methods, bio-applications and properties.

    Science.gov (United States)

    Abbasi, Elham; Milani, Morteza; Fekri Aval, Sedigheh; Kouhi, Mohammad; Akbarzadeh, Abolfazl; Tayefi Nasrabadi, Hamid; Nikasa, Parisa; Joo, San Woo; Hanifehpour, Younes; Nejati-Koshki, Kazem; Samiei, Mohammad

    2016-01-01

    Silver nanoparticles size makes wide range of new applications in various fields of industry. Synthesis of noble metal nanoparticles for applications such as catalysis, electronics, optics, environmental and biotechnology is an area of constant interest. Two main methods for Silver nanoparticles are the physical and chemical methods. The problem with these methods is absorption of toxic substances onto them. Green synthesis approaches overcome this limitation. Silver nanoparticles size makes wide range of new applications in various fields of industry. This article summarizes exclusively scalable techniques and focuses on strengths, respectively, limitations with respect to the biomedical applicability and regulatory requirements concerning silver nanoparticles.

  10. Green Synthesis and Antibacterial Effect of Silver Nanoparticles Using Vitex Negundo L.

    Directory of Open Access Journals (Sweden)

    Fatima Abu Bakar

    2011-08-01

    Full Text Available Different biological methods are gaining recognition for the production of silver nanoparticles (Ag-NPs due to their multiple applications. One of the most important applications of Ag-NPs is their use as an anti-bacterial agent. The use of plants in the synthesis of nanoparticles emerges as a cost effective and eco-friendly approach. In this study the biosynthesis of silver nanoparticles using Vitex negundo L. extract and its antimicrobial properties has been reported. The resulting silver particles are characterized using transmission electron microscopy (TEM, X-ray diffraction (XRD and UV–Visible (UV-Vis spectroscopic techniques. The TEM study showed the formation of silver nanoparticles in the 10–30 nm range and average 18.2 nm in size. The XRD study showed that the particles are crystalline in nature, with a face centered cubic (fcc structure. The silver nanoparticles showed the antimicrobial activity against Gram positive and Gram negative bacteria. Vitex negundo L. was found to display strong potential for the synthesis of silver nanoparticles as antimicrobial agents by rapid reduction of silver ions (Ag+ to Ag0.

  11. Tapping the unexploited plant resources for the synthesis of silver ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-09-03

    Sep 3, 2008 ... screen the un-exploited plant sources in the development of silver ... coated on glass substrate bio-film was carried out on a Philips PW 1830 instrument operating at 40 kV and a ... and silver nanoparticles: a green method.

  12. Microwave-Assisted Green Synthesis of Silver Nanostructures

    Science.gov (United States)

    This account summarizes a microwave (MW)-assisted synthetic approach for producing silver nanostructures. The rapid and in-core MW heating has received considerable attention as a promising new method for the one-pot synthesis of metallic nanostructures in solutions. Conceptually...

  13. Biomimetic Synthesis of Silver Nanoparticles Using Endosymbiotic Bacterium Inhabiting Euphorbia hirta L. and Their Bactericidal Potential

    Directory of Open Access Journals (Sweden)

    Baker Syed

    2016-01-01

    Full Text Available The present investigation aims to evaluate biomimetic synthesis of silver nanoparticles using endophytic bacterium EH 419 inhabiting Euphorbia hirta L. The synthesized nanoparticles were initially confirmed with change in color from the reaction mixture to brown indicating the synthesis of nanoparticles. Further confirmation was achieved with the characteristic absorption peak at 440 nm using UV-Visible spectroscopy. The synthesized silver nanoparticles were subjected to biophysical characterization using hyphenated techniques. The possible role of biomolecules in mediating the synthesis was depicted with FTIR analysis. Further crystalline nature of synthesized nanoparticles was confirmed using X-ray diffraction (XRD with prominent diffraction peaks at 2θ which can be indexed to the (111, (200, (220, and (311 reflections of face centered cubic structure (fcc of metallic silver. Transmission electron microscopy (TEM revealed morphological characteristics of synthesized silver nanoparticles to be polydisperse in nature with size ranging from 10 to 60 nm and different morphological characteristics such as spherical, oval, hexagonal, and cubic shapes. Further silver nanoparticles exhibited bactericidal activity against panel of significant pathogenic bacteria among which Pseudomonas aeruginosa was most sensitive compared to other pathogens. To the best of our knowledge, present study forms first report of bacterial endophyte inhabiting Euphorbia hirta L. in mediating synthesizing silver nanoparticles.

  14. Synthesize, characterization, and anti-Parkinson activity of silver-Indonesian velvet beans (Mucuna pruriens) seed extract nanoparticles (AgMPn)

    Science.gov (United States)

    Sardjono, R. E.; Khoerunnisa, F.; Musthopa, I.; Akasum, N. S. M. M.; Rachmawati, R.

    2018-05-01

    Parkinson is one of the progressive neurodegenerative diseases. Various efforts are made in handling this disease, one of them is the utilization of plant extracts that have anti-Parkinson activity, for example, velvet bean (Mucuna pruriens L.). Changing the particle size of the extract into nanoscale particle is expected to increase its anti-parkinson activity. The research was conducted to synthesize silver-velvet bean (Mucuna pruriens L.) seed extract nanoparticles (AgMPn) and to evaluate its antiparkinson activity through the catalepsy test in mice. The research consisted of several stages i.e. extraction of velvet bean seed powder, synthesis and characterization of AgMPn, and catalepsy test of AgMPn. Velvet bean seed powder was extracted by maceration method using ethanol-water (1:1) at pH 3 adjusted with citric acid. AgMPn was synthesized by reacting the silver nitrate (AgNO3) solution with the extract of velvet bean seed for 40 min, dispersibility of solution during the reaction was controlled by using sonication and ultrasonic processor homogenizer. Characterization of AgMPn was done by using Fourier transform infrared (FT-IR), scanning electron microscopy-energy dispersive X-ray (SEM-EDX), and transmission electron microscopy (TEM). Catalepsy test was conducted on AgMpn at the doses of 5, 10, 15, 20 and 25 mg/kg body weight. The results of SEM-EDX and TEM showed that AgMPn formed aggregates with several shapes such as rectangle, oval, and spherical, with the average particle diameter was 36.5 nm. FT-IR spectra showed a band at 464.8 cm-1 absorbance area which is typical band indicated the interaction of Ag-O of AgMPn. Catalepsy test demonstrated that AgMPn at the doses of 5, 15, and 20 mg/kg body weight lowered the catalepsy symptoms in mice significantly, with the best dose was 5 mg/kg body weight.

  15. Silver Flakes and Silver Dendrites for Hybrid Electrically Conductive Adhesives with Enhanced Conductivity

    Science.gov (United States)

    Ma, Hongru; Li, Zhuo; Tian, Xun; Yan, Shaocun; Li, Zhe; Guo, Xuhong; Ma, Yanqing; Ma, Lei

    2018-03-01

    Silver dendrites were prepared by a facile replacement reaction between silver nitrate and zinc microparticles of 20 μm in size. The influence of reactant molar ratio, reaction solution volume, silver nitrate concentration, and reaction time on the morphology of dendrites was investigated systematically. It was found that uniform tree-like silver structures are synthesized under the optimal conditions. Their structure can be described as a trunk, symmetrical branches, and leaves, which length scales of 5-10, 1-2 μm, and 100-300 nm, respectively. All features were systematically characterized by scanning electron microscopy, transmission electron microscopy (TEM), high-resolution TEM, and x-ray powder diffraction. A hybrid fillers system using silver flakes and dendrites as electrically conductive adhesives (ECAs) exhibited excellent overall performance. This good conductivity can be attributed mainly to the synergy between the silver microflakes (5-20 μm sized irregular sheet structures) and dendrites, allowing more conductive pathways to be formed between the fillers. In order to further optimize the overall electrical conductivity, various mixtures of silver microflakes and silver dendrites were tested in ECAs, with results indicating that the highest conductivity was shown when the amounts of silver microflakes, silver dendrites and the polymer matrix were 69.4 wt.% (20.82 vol.%), 0.6 wt.% (0.18 vol.%), and 30.0 wt.% (79.00 vol.%), respectively. The corresponding mass ratio of silver flakes to silver dendrites was 347:3. The resistivity of ECAs reached as low as 1.7 × 10-4 Ω cm.

  16. Preparation of silver nanocrystals in microemulsion by the γ-radiation method

    International Nuclear Information System (INIS)

    Hongkai Wu; Xiangling Xu; Xuewu Ge; Zhicheng Zhang

    1997-01-01

    Silver colloids of well-defined shape, size were synthesized by γ-ray irradiating silver salt in reversed microemulsions, and then pure silver dry powders were obtained. The sols were studied by absorption spectroscopy, and the silver powders were characterized by Transmission Electron Micrographs (TEM) and X-ray Diffraction (XRD). The effect of radiation dose and aging time was discussed. (Author)

  17. Miswak mediated green synthesized palladium nanoparticles as effective catalysts for the Suzuki coupling reactions in aqueous media

    Directory of Open Access Journals (Sweden)

    Mujeeb Khan

    2017-05-01

    Full Text Available Green and eco-friendly synthesis of palladium nanoparticles NPs is carried out under facile and eco-friendly conditions using an aqueous solution of Salvadora persica L. (SP root extract (RE as a bioreductant, which is commonly known as Miswak. The as-synthesized Pd NPs were characterized using various spectroscopic and microscopic techniques, including, UV–Vis spectroscopy, FT-IR spectroscopy, XRD, ICP-MS and TEM. Detailed investigations of the Pd NPs have confirmed that the polyphenolic phytomolecules present in the RE of Miswak not only act as a bioreductant by facilitating the reduction and growth of Pd NPs, but they also functionalize the surface of Pd NPs and stabilized them in various solvents. Furthermore, the catalytic activity of the green synthesized Pd NPs was also tested toward the Suzuki coupling reactions of various aryl halides in aqueous media. The as-prepared Pd NPs exhibited superior catalytic activity and reusability for the Suzuki coupling reaction in aqueous and aerobic conditions. The kinetics of the reaction studied by GC revealed that the conversion of various aryl halides to biphenyl takes place in a short time.

  18. Effect of Synthesis Parameters on the Structure and Magnetic Properties of Magnetic Manganese Ferrite/Silver Composite Nanoparticles Synthesized by Wet Chemistry Method

    DEFF Research Database (Denmark)

    Huy, L.T.; Tam, L.T.; Phan, V.N.

    2016-01-01

    In the present work, magnetic manganese ferrite/silver (MnFe2O4-Ag) composite nanoparticles were synthesized by wet chemistry method. This synthesis process consists of two steps: first, the seed of manganese ferrite nanoparticles (MnFe2O4 NPs) was prepared by a coprecipitationmethod; second......, growth of silver nanoparticles (AgNPs) on the MnFe2O4 seed by modified photochemical reaction. We have conducted systematically the effects of synthesis parameters such as pH value, synthesis time, precursor salts concentration, mass ratio and stabilizing agents on the structure and magnetic properties......-prepared MnFe2O4-Ag magnetic nanocomposites display excellent properties of high crystallinity, long-term aggregation stability in aqueous medium, large saturation magnetization in the range of 15-20 emu/g, and small sizes of Ag-NPs similar to 20 nm. These exhibited properties made the MnFe2O4-Ag...

  19. Green synthesized nanoparticles in the fight against mosquito-borne diseases and cancer-a brief review.

    Science.gov (United States)

    Benelli, Giovanni

    2016-12-01

    Nanobiomedicine and parasitology are facing a number of key challenges, which mostly deal with the paucity of effective preventive and curative tools against mosquito-borne diseases and cancer. In this scenario, the employ of botanical and invertebrate extracts as reducing, stabilizing and capping agents for the synthesis of nanoparticles is advantageous over chemical and physical methods, since it is one-pot, cheap, and does not require high pressure, energy, temperature, or the use of highly toxic chemicals. Considering the overlooked connection between mosquito vector activity and the spread of cancer in USA, this review focused on the current knowledge available about green synthesized nanoparticles with efficacy against mosquito-borne diseases and cancer. Green fabricated metal nanoparticles showed antiplasmodial activity that often encompasses the efficacy of currently marked drugs for malaria treatment. They have been also reported as growth inhibitors against dengue virus (serotype DEN-2), with moderate cytotoxicity on mammalian cells. However, this feature is strongly dependent to the botanical agents employed during nanosynthesis. In addition, green nanoparticles have been successfully used to reduce mosquito young instar populations in the field. The final section focuses on some issues for future research, with special reference to the chemical standardization of the botanical extracts used for nanosynthesis and the potential effects on green fabricated nanoparticles on non-target organisms. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Spectroscopic synthetic optimizations monitoring of silver nanoparticles formation from Megaphrynium macrostachyum leaf extract

    Directory of Open Access Journals (Sweden)

    François Eya'ane Meva

    Full Text Available ABSTRACT Nanobiotechnology is one of the most promising areas in modern nanoscience and technology. Metallic nanoparticles have found uses in many applications in different fields, such as catalysis, photonics, electronics, medicine and agriculture. Synthesized nanoparticles through chemical and physical methods are expensive and have low biocompatibility. In the present study, silver nanoparticles have been synthesized from Megaphrynium macrostachyum (Benth. & Hook. f. Milne-Redh., Marantaceae, leaf extract. Megaphrynium macrostachyum is a plant with large leaves found in the rainforest of West and Central Africa. Synthetic optimizations following factors such as incubation time, temperature, pH, extract and silver ion concentration during silver formation are discussed. UV–visible spectra gave surface plasmon resonance for synthesized silver nanoparticles based Megaphrynium macrostachyum peaks at 400–450 nm. X-ray diffraction revealed the average size of pure crystallites composed from Ag and AgCl.

  1. The Effect of PH and Molecular Weight of Chitosan on Silver Nanoparticles Synthesized by γ-Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Phu, Dang Van; Duy, Nguyen Ngoc; Quoc, Le Anh; Hien, Nguyen Quoc [Research and Development Center for Radiation Technology, Vietnam Atomic Energy Institute, 202a, 11 Street, Linh Xuan Ward, Thu Duc District, Ho Chi Minh City (Viet Nam)

    2011-07-01

    Radiation-induced synthesis of colloidal silver nanoparticles (Ag-NPs) using chitosan (CTS) as a stabilizer and free radical scavenger is feasible and satisfiable for green method. The conversion dose (Ag{sup +} into Ag{sup 0}) was determined by UV-Vis spectroscopy and Ag-NPs size was characterized by transmission electron microscopy (TEM). The effect of pH and molecular weight (Mw) of CTS on diameter and size distribution of Ag-NPs was investigated. The obtained results showed that CTS with higher M{sub w} has better stability for colloidal Ag-NPs. The average diameter of Ag-NPs was of 5-16 nm with narrow size distribution. The colloidal Ag-NPs prepared from Ag{sup +}/CTS solution with pH adjustment (pH~6) have smaller size (7 nm) compared to that (15 nm) from Ag{sup +}/CTS solution without pH (~3) adjustment. (author)

  2. Biological activities of synthesized silver nanoparticles

    Indian Academy of Sciences (India)

    The C. halicacabum leaf extract synthesized AgNPs efficiency were tested against different bacterial pathogens MTCC-426 Proteus vulgaris, MTCC-2453 Pseudomonas aeruginosa, MTCC-96 Staphylococcus aureus, MTCC-441 Bacillus subtilis andMTCC-735 Salmonella paratyphi, and fungal pathogens Alternaria solani ...

  3. Stable and Controllable Synthesis of Silver Nanowires for Transparent Conducting Film

    Science.gov (United States)

    Liu, Bitao; Yan, Hengqing; Chen, Shanyong; Guan, Youwei; Wu, Guoguo; Jin, Rong; Li, Lu

    2017-03-01

    Silver nanowires without particles are synthesized by a solvothermal method at temperature 150 °C. Silver nanowires are prepared via a reducing agent of glycerol and a capping agent of polyvinylpyrrolidone ( M w ≈ 1,300,000). Both of them can improve the purity of the as-prepared silver nanowires. With controllable shapes and sizes, silver nanowires are grown continuously up to 10-20 μm in length with 40-50 nm in diameter. To improve the yield of silver nanowires, the different concentrations of AgNO3 synthesis silver nanowires are discussed. The characterizations of the synthesized silver nanowires are analyzed by UV-visible absorption spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and atomic force microscope (AFM), and silver nanowires are pumped on the cellulose membrane and heated stress on the PET. Then, the cellulose membrane is dissolved by the steam of acetone to prepare flexible transparent conducting thin film, which is detected 89.9 of transmittance and 58 Ω/□. Additionally, there is a close loop connected by the thin film, a blue LED, a pair of batteries, and a number of wires, to determinate directly the film if conductive or not.

  4. Polypyrrole-silver Nanocomposite: Synthesis and Characterization

    Directory of Open Access Journals (Sweden)

    D. M. Nerkar

    2016-07-01

    Full Text Available Polypyrrole-Silver (PPy-Ag nanocomposite has been successfully synthesized by the chemical oxidative polymerization of pyrrole with iron (III chloride as an oxidant, in the presence of a colloidal suspension of silver nanoparticles. Turkevich method (Citrate reduction method was used for the synthesis of silver nanoparticles (Ag NPs. The silver nanoparticles were characterized by UV-Visible spectroscopy which showed an absorption band at 423 nm confirming the formation of nanoparticles. PPy-Ag nanocomposite was characterized by Transmission Electron Microscopy (TEM, Scanning Electron Microscopy (SEM, Fourier Transform Infrared Spectroscopy (FTIR and X-ray diffraction (XRD techniques for morphological and structural confirmations. TEM and SEM images revealed that the silver nanoparticles were well dispersed in the PPy matrix. XRD pattern showed that PPy is amorphous but the presence of the peaks at 2q values of 38.24°, 44.57°, 64.51° and 78.45° corresponding to a cubic phase of silver, revealed the incorporation of silver nanoparticles in the PPy matrix. A possible formation mechanism of PPy-Ag nanocomposite was also proposed. The electrical conductivity of PPy-Ag nanocomposite was studied using two probe method. The electrical conductivity of the PPy-Ag nanocomposite prepared was found to be 4.657´10- 2 S/cm, whereas that of pure PPy was found to be 9.85´10-3 S/cm at room temperature (303 K. The value of activation energy (Ea for pure PPy was 0.045 eV while it decreased to 0.034 eV for PPy-Ag nanocomposite. The synthesized nanocomposite powder can be utilized as a potential material for fabrication of gas sensors operating at room temperature.

  5. STABILITY OF SYNTHESIZED SILVER NANOPARTICLES IN CITRATE AND MIXED GELATIN/CITRATE SOLUTION

    Directory of Open Access Journals (Sweden)

    Jana Kavuličová

    2018-04-01

    Full Text Available The study focuses on an investigation of the influence of both citrate and mixed gelatin/citrate as a reductant and stabilizer on the colloidal stability of silver nanoparticles (AgNPssynthesized by a chemical reduction of Ag+ ions after a short - (7th day - and long - (118th day - term storage. Formed AgNPs were characterized by a UV–vis Spectroscopy, Transmission Electron Microscope (TEM, Dynamic light scattering (DLS and Zeta-potential (ZP. The obtained results revealed that a short-term stability of the synthesized AgNPs was greatly influenced by a citrate stabilizer with the absence of gelatin. Smaller-sized AgNPs (average particle diameter of 3 nm, roughly spherical in a shape, were obtained with a narrow size distribution. The very negative value of the Zeta-potential confirmed a strong stability of the citrate capped AgNPs. However, a surface coating of the AgNPs by a gelatin/citrate stabilizer was found to be a dominant contributor in improving a long-term stability of the AgNPs (average particle diameter of 26 nm. The use of gelatin in mixed stabilizer solution provided the AgNPs with higher monodispersity and a controllable size after both the short and long-term storage.

  6. Biosynthesis of silver nanoparticles by Novosphingobium sp. THG-C3 and their antimicrobial potential.

    Science.gov (United States)

    Du, Juan; Singh, Hina; Yi, Tae-Hoo

    2017-03-01

    The present study described biosynthesis of silver nanoparticles (AgNPs) using a bacterial strain Novosphingobium sp. THG-C3, isolated from soil, and their application in antibacterial activity. The maximum absorbance values of the synthesized AgNPs was measured at 406 nm in ultraviolet-visible spectrophotometry and were mostly spherical in shape with particle size in range of 8-25 nm by field emission transmission electron microscopy analysis. X-ray diffraction pattern corresponding to planes (111), (200), (220), and (311) demonstrated the crystalline nature of the AgNPs. The synthesized AgNPs exhibited antimicrobial activity against various pathogens inculding Staphylococcus aureus, Candida tropicalis, Pseudomonas aeruginosa, Escherichia coli, Vibrio parahaemolyticus, Candida albicans, Salmonella enterica, Bacillus subtilis, and Bacillus cereus. In addition, the AgNPs in combination with commercial antibiotics enhanced antimicrobial activity against P. aeruginosa, S. enterica, E. coli, and V. parahaemolyticus. The AgNPs synthesized by strain Novosphingobium sp. THG-C3 are comparatively simple, green, cost-effective, and may serve as a potential antimicrobial agent.

  7. A simple method of growing silver chloride nanocubes on silver nanowires

    International Nuclear Information System (INIS)

    Khaligh, Hadi Hosseinzadeh; Goldthorpe, Irene A

    2015-01-01

    The growth of AgCl nanocubes directly on the sidewalls of Ag nanowires is demonstrated. The nanocubes can be simply obtained through extended low temperature annealing of polyol-synthesized silver nanowires in a vacuum. The length of time and temperature of the anneal and the diameter of the nanowire affect the size and density of the nanocubes obtained. It is hypothesized that the AgCl material is supplied from reactants leftover from the silver nanowire synthesis. This novel hybrid nanostructure may have applications in areas such as photovoltaics, surface enhanced Raman spectroscopy, and photocatalysis. (fast track communication)

  8. Bark extract mediated green synthesis of silver nanoparticles: Evaluation of antimicrobial activity and antiproliferative response against osteosarcoma

    Energy Technology Data Exchange (ETDEWEB)

    Nayak, Debasis; Ashe, Sarbani; Rauta, Pradipta Ranjan; Kumari, Manisha; Nayak, Bismita, E-mail: nayakb@nitrkl.ac.in

    2016-01-01

    In the current investigation we report the biosynthesis potentials of bark extracts of Ficus benghalensis and Azadirachta indica for production of silver nanoparticle without use of any external reducing or capping agent. The appearance of dark brown color indicated the complete nanoparticle synthesis which was further validated by absorbance peak by UV–vis spectroscopy. The morphology of the synthesized particles was characterized by Field emission- scanning electron microscopy (Fe-SEM) and atomic force microscopy (AFM). The X-ray diffraction (XRD) patterns clearly illustrated the crystalline phase of the synthesized nanoparticles. ATR-Fourier Transform Infrared (ATR-FTIR) spectroscopy was performed to identify the role of various functional groups in the nanoparticle synthesis. The synthesized nanoparticles showed promising antimicrobial activity against Gram negative (Escherichia coli, Pseudomonas aeruginosa and Vibrio cholerae) and Gram positive (Bacillus subtilis) bacteria. The synthesized nano Ag also showed antiproliferative activity against MG-63 osteosarcoma cell line in a dose dependent manner. Thus, these synthesized Ag nanoparticles can be used as a broad spectrum therapeutic agent against osteosarcoma and microorganisms. - Highlights: • Rapid, cost effective, benign synthesis of AgNPs using novel bark extracts • Color change and absorbance peak observed at 426 and 420 nm due to SPR phenomenon • Crystalline and spherical nanoparticles having average size of ~ 40 and ~ 50 nm each • Highly enhanced antimicrobial activity against human nosocomial strains • Demonstrated dose dependent toxicity towards osteosarcoma MG-63 cell lines.

  9. Bark extract mediated green synthesis of silver nanoparticles: Evaluation of antimicrobial activity and antiproliferative response against osteosarcoma

    International Nuclear Information System (INIS)

    Nayak, Debasis; Ashe, Sarbani; Rauta, Pradipta Ranjan; Kumari, Manisha; Nayak, Bismita

    2016-01-01

    In the current investigation we report the biosynthesis potentials of bark extracts of Ficus benghalensis and Azadirachta indica for production of silver nanoparticle without use of any external reducing or capping agent. The appearance of dark brown color indicated the complete nanoparticle synthesis which was further validated by absorbance peak by UV–vis spectroscopy. The morphology of the synthesized particles was characterized by Field emission- scanning electron microscopy (Fe-SEM) and atomic force microscopy (AFM). The X-ray diffraction (XRD) patterns clearly illustrated the crystalline phase of the synthesized nanoparticles. ATR-Fourier Transform Infrared (ATR-FTIR) spectroscopy was performed to identify the role of various functional groups in the nanoparticle synthesis. The synthesized nanoparticles showed promising antimicrobial activity against Gram negative (Escherichia coli, Pseudomonas aeruginosa and Vibrio cholerae) and Gram positive (Bacillus subtilis) bacteria. The synthesized nano Ag also showed antiproliferative activity against MG-63 osteosarcoma cell line in a dose dependent manner. Thus, these synthesized Ag nanoparticles can be used as a broad spectrum therapeutic agent against osteosarcoma and microorganisms. - Highlights: • Rapid, cost effective, benign synthesis of AgNPs using novel bark extracts • Color change and absorbance peak observed at 426 and 420 nm due to SPR phenomenon • Crystalline and spherical nanoparticles having average size of ~ 40 and ~ 50 nm each • Highly enhanced antimicrobial activity against human nosocomial strains • Demonstrated dose dependent toxicity towards osteosarcoma MG-63 cell lines

  10. Highly bacterial resistant silver nanoparticles: synthesis and antibacterial activities

    International Nuclear Information System (INIS)

    Chudasama, Bhupendra; Vala, Anjana K.; Andhariya, Nidhi; Mehta, R. V.; Upadhyay, R. V.

    2010-01-01

    In this article, we describe a simple one-pot rapid synthesis route to produce uniform silver nanoparticles by thermal reduction of AgNO 3 using oleylamine as reducing and capping agent. To enhance the dispersal ability of as-synthesized hydrophobic silver nanoparticles in water, while maintaining their unique properties, a facile phase transfer mechanism has been developed using biocompatible block co-polymer pluronic F-127. Formation of silver nanoparticles is confirmed by X-ray diffraction (XRD), transmission electron microscopy (TEM) and UV-vis spectroscopy. Hydrodynamic size and its distribution are obtained from dynamic light scattering (DLS). Hydrodynamic size and size distribution of as-synthesized and phase transferred silver nanoparticles are 8.2 ± 1.5 nm (σ = 18.3%) and 31.1 ± 4.5 nm (σ = 14.5%), respectively. Antimicrobial activities of hydrophilic silver nanoparticles is tested against two Gram positive (Bacillus megaterium and Staphylococcus aureus), and three Gram negative (Escherichiacoli, Proteusvulgaris and Shigellasonnei) bacteria. Minimum inhibitory concentration (MIC) values obtained in the present study for the tested microorganisms are found much better than those reported for commercially available antibacterial agents.

  11. Highly bacterial resistant silver nanoparticles: synthesis and antibacterial activities

    Energy Technology Data Exchange (ETDEWEB)

    Chudasama, Bhupendra, E-mail: bnchudasama@gmail.co [Thapar University, School of Physics and Materials Science (India); Vala, Anjana K.; Andhariya, Nidhi; Mehta, R. V. [Bhavnagar University, Department of Physics (India); Upadhyay, R. V. [Charotar University of Science and Technology, P.D. Patel Institute of Applied Sciences (India)

    2010-06-15

    In this article, we describe a simple one-pot rapid synthesis route to produce uniform silver nanoparticles by thermal reduction of AgNO{sub 3} using oleylamine as reducing and capping agent. To enhance the dispersal ability of as-synthesized hydrophobic silver nanoparticles in water, while maintaining their unique properties, a facile phase transfer mechanism has been developed using biocompatible block co-polymer pluronic F-127. Formation of silver nanoparticles is confirmed by X-ray diffraction (XRD), transmission electron microscopy (TEM) and UV-vis spectroscopy. Hydrodynamic size and its distribution are obtained from dynamic light scattering (DLS). Hydrodynamic size and size distribution of as-synthesized and phase transferred silver nanoparticles are 8.2 {+-} 1.5 nm ({sigma} = 18.3%) and 31.1 {+-} 4.5 nm ({sigma} = 14.5%), respectively. Antimicrobial activities of hydrophilic silver nanoparticles is tested against two Gram positive (Bacillus megaterium and Staphylococcus aureus), and three Gram negative (Escherichiacoli, Proteusvulgaris and Shigellasonnei) bacteria. Minimum inhibitory concentration (MIC) values obtained in the present study for the tested microorganisms are found much better than those reported for commercially available antibacterial agents.

  12. Interaction of bilirubin with Ag and Au ions: green synthesis of bilirubin-stabilized nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Shukla, Shashi P. [Bhabha Atomic Research Centre, Radiation and Photochemistry Division (India); Roy, Mainak [Bhabha Atomic Research Centre, Chemistry Division (India); Mukherjee, Poulomi [Bhabha Atomic Research Centre, Nuclear Agriculture and Biotechnology Division (India); Tyagi, A. K. [Bhabha Atomic Research Centre, Chemistry Division (India); Mukherjee, Tulsi [Bhabha Atomic Research Centre, Chemistry Group (India); Adhikari, Soumyakanti, E-mail: asoumya@barc.gov.in [Bhabha Atomic Research Centre, Radiation and Photochemistry Division (India)

    2012-07-15

    We report a simple green chemistry to synthesize and stabilize monodispersed silver and gold nanoparticles sols by reducing aqueous solution of the respective metal salts in the presence of bilirubin (BR). No additional capping agent was used in the process of stabilization of the nanoparticles. As a completely new finding, we have observed that BR known to be toxic at higher concentration in one hand and conversely an antioxidant at physiological concentration reduces these metal ions to form the respective metal nanoparticles. Moreover, BR and its oxidized products also serve as capping agents to the nanoparticles. The particles were characterized by transmission electron microscopy. BR and its oxidized products capped nanoparticles are stable for months. The UV-Vis absorption spectra of the silver sol show the plasmon peak of symmetric spherical particles which was further reflected in the TEM images. The sizes of the silver particles were about 5 nm. These silver particles showed reasonably high antibacterial activity in Gram negative wild type E. coli. In the case of interaction of BR with gold ions, we could obtain cubic gold nanoparticles of average sizes 20-25 nm. Possible modes of anchorage of BR and/its oxidized products to silver nanoparticles were demonstrated by surface-enhanced resonance Raman spectroscopy (SERS) that in turn demonstrated the feasibility of using these nanoparticles as SERS substrates.

  13. Interaction of bilirubin with Ag and Au ions: green synthesis of bilirubin-stabilized nanoparticles

    Science.gov (United States)

    Shukla, Shashi P.; Roy, Mainak; Mukherjee, Poulomi; Tyagi, A. K.; Mukherjee, Tulsi; Adhikari, Soumyakanti

    2012-07-01

    We report a simple green chemistry to synthesize and stabilize monodispersed silver and gold nanoparticles sols by reducing aqueous solution of the respective metal salts in the presence of bilirubin (BR). No additional capping agent was used in the process of stabilization of the nanoparticles. As a completely new finding, we have observed that BR known to be toxic at higher concentration in one hand and conversely an antioxidant at physiological concentration reduces these metal ions to form the respective metal nanoparticles. Moreover, BR and its oxidized products also serve as capping agents to the nanoparticles. The particles were characterized by transmission electron microscopy. BR and its oxidized products capped nanoparticles are stable for months. The UV-Vis absorption spectra of the silver sol show the plasmon peak of symmetric spherical particles which was further reflected in the TEM images. The sizes of the silver particles were about 5 nm. These silver particles showed reasonably high antibacterial activity in Gram negative wild type E. coli. In the case of interaction of BR with gold ions, we could obtain cubic gold nanoparticles of average sizes 20-25 nm. Possible modes of anchorage of BR and/its oxidized products to silver nanoparticles were demonstrated by surface-enhanced resonance Raman spectroscopy (SERS) that in turn demonstrated the feasibility of using these nanoparticles as SERS substrates.