WorldWideScience

Sample records for green suspension cells

  1. Cell suspension method to improve green spot in in-vitro culture of jarak pagar (Jatropha curcas L ) mutant lines

    International Nuclear Information System (INIS)

    Ita Dwimahyani

    2007-01-01

    Jatropha curcas has a high potential as an alternative energy source, since it can produce natural oil which could be processed into fuel replacing fossil energy. Increasing demand of biodiesel has resulted in increasing demand for high quality of Jatropha germplasm. Cell suspension method is expected to assure the production of a homogeneous germplasm of Jatropha. A laboratory experiment was conducted to evaluate the effectiveness cell suspension method in of Jatropha curcas cotyledon. The explant used in this experiment was Jatropha curcas seed mutant line (JH-38) which has superiority in plant height, early maturity and unseasonable fruiting. Two kinds of in-vitro medium were used for callus induction, i.e. medium A (MS + 2,4-D 2.0 mg/l + BAP 0.5 mg/l + malt extract 0.1 g + agar 8.0 g/l) and medium B (MS + 2,4-D 3.0 mg/l + BAP 0,5 mg/l + malt extract 0,1 g + agar 8.0 g/l). The same medium composition without agar was used for cell generating, and medium ECS (MS + glutamine 0.5 g + casein hydrolysate 0.5 g + IAA 0.5 mg/l + BAP 3.0 mg/l + agar 8.0 g/l for cell growth. Results of the experiment showed that the optimum growth of calli was obtained by explant JH-38/3 in medium A. The growth level of embryonic cell ranged from 0 to 130 %. The optimum percentage green spot is shown by JH-38/1 explant in medium A. (author)

  2. Characterization of cell suspensions from solid tumors

    International Nuclear Information System (INIS)

    Pallavicini, M.

    1985-01-01

    The desirable features of cells in suspension will necessarily be dependent upon the use for which the cells were prepared. Adequate cell yield or recovery is defined by the measurement to be performed. Retention of cellular morphology is important for microscopic identification of cell types in a heterogenous cell suspension, and may be used to determine whether the cells in suspension are representative of those in the tumor in situ. Different dispersal protocols may yield cells with different degrees of clonogenicity, as well as altered biochemical features, such as loss of cellular proteins, surface antigens, nucleotide pools, etc. The quality of the cell suspension can be judged by the degree of cell clumping and level of cellular debris, both of which impact on flow cytometric measurements and studies in which the number of cells be known accurately. Finally, if the data measured on the cells in suspension are to be extrapolated to phenomena occurring in the tumor in situ, it is desirable that the cells in suspension are representative of those in the solid tumor in vivo. This report compares characteristics of tumor cell suspensions obtained by different types of selected disaggregation methods. 33 refs., 2 figs., 4 tabs

  3. 75 FR 36128 - Green Energy Resources, Inc.; Order of Suspension of Trading

    Science.gov (United States)

    2010-06-24

    ... Suspension of Trading June 22, 2010. It appears to the Securities and Exchange Commission that there is a... a suspension of trading in the securities of Green Energy. Therefore, it is ordered, pursuant to Section 12(k) of the Securities Exchange Act of 1934, that trading in the securities of the above-listed...

  4. The study of size and stability of n-butylcyanoacrylate nanocapsule suspensions encapsulating green grass fragrance

    Science.gov (United States)

    Zhu, G. Y.; Lin, C. T.; Chen, J. M.; Lei, D. M.; Zhu, G. X.

    2018-01-01

    Green grass fragrance has been widely used in many fields. However, fragrances are volatile compounds that do not last long. In order to prolong its odor, nanocapsules encapsulated green grass fragrance were prepared. The paper deals with the preparation of green grass fragrance nanocapsules by emulsion polymerization. N-butylcyanoacrylate (BCA) with excellent biocompatibility and biodegradability was used as encapsulant. The nanocapsule suspension systems were characterized and its stability was investigated. The physicochemical properties of polymeric nanocapsules (average diameter and polydispersity) were evaluated as a function of time to assess the system stability. The result showed that the system (containing 0.8% of green grass fragrance, with a polydispersity index (PDI) near 0.1 and an average diameter in the range of 20-30 nm) was an ideal state and relatively stable. Besides, the distinction of stability of three nanocapsule suspensions with different green grass fragrance content was also obvious from scanning electron microscopy (SEM).

  5. Large-scale photochemical reactions of nanocrystalline suspensions: a promising green chemistry method.

    Science.gov (United States)

    Veerman, Marcel; Resendiz, Marino J E; Garcia-Garibay, Miguel A

    2006-06-08

    Photochemical reactions in the solid state can be scaled up from a few milligrams to 10 grams by using colloidal suspensions of a photoactive molecular crystal prepared by the solvent shift method. Pure products are recovered by filtration, and the use of H(2)O as a suspension medium makes this method a very attractive one from a green chemistry perspective. Using the photodecarbonylation of dicumyl ketone (DCK) as a test system, we show that reaction efficiencies in colloidal suspensions rival those observed in solution. [reaction: see text

  6. Scale-up of hydrophobin-assisted recombinant protein production in tobacco BY-2 suspension cells.

    Science.gov (United States)

    Reuter, Lauri J; Bailey, Michael J; Joensuu, Jussi J; Ritala, Anneli

    2014-05-01

    Plant suspension cell cultures are emerging as an alternative to mammalian cells for production of complex recombinant proteins. Plant cell cultures provide low production cost, intrinsic safety and adherence to current regulations, but low yields and costly purification technology hinder their commercialization. Fungal hydrophobins have been utilized as fusion tags to improve yields and facilitate efficient low-cost purification by surfactant-based aqueous two-phase separation (ATPS) in plant, fungal and insect cells. In this work, we report the utilization of hydrophobin fusion technology in tobacco bright yellow 2 (BY-2) suspension cell platform and the establishment of pilot-scale propagation and downstream processing including first-step purification by ATPS. Green fluorescent protein-hydrophobin fusion (GFP-HFBI) induced the formation of protein bodies in tobacco suspension cells, thus encapsulating the fusion protein into discrete compartments. Cultivation of the BY-2 suspension cells was scaled up in standard stirred tank bioreactors up to 600 L production volume, with no apparent change in growth kinetics. Subsequently, ATPS was applied to selectively capture the GFP-HFBI product from crude cell lysate, resulting in threefold concentration, good purity and up to 60% recovery. The ATPS was scaled up to 20 L volume, without loss off efficiency. This study provides the first proof of concept for large-scale hydrophobin-assisted production of recombinant proteins in tobacco BY-2 cell suspensions. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  7. Acoustic manipulation of bacteria cells suspensions

    Science.gov (United States)

    GutiéRrez-Ramos, Salomé; Hoyos, Mauricio; Aider, Jean Luc; Ruiz, Carlos; Acoustofluidics Team Team; Soft; Bio Group Collaboration

    An acoustic contacless manipulation gives advantages in the exploration of the complex dynamics enviroment that active matter exhibits. Our works reports the control confinement and dispersion of Escherichia coliRP437-pZA3R-YFP suspensions (M9Glu-Ca) via acoustic levitation.The manipulation of the bacteria bath in a parallel plate resonator is achieved using the acoustic radiation force and the secondary radiation force. The primary radiation force generates levitation of the bacteria cells at the nodal plane of the ultrasonic standing wave generated inside the resonator. On the other side, secondary forces leads to the consolidation of stable aggregates. All the experiments were performed in the acoustic trap described, where we excite the emission plate with a continuous sinusoidal signal at a frequency in the order of MHz and a quartz slide as the reflector plate. In a typical experiment we observed that, before the input of the signal, the bacteria cells exhibit their typical run and tumble behavior and after the sound is turned on all of them displace towards the nodal plane, and instantaneously the aggregation begins in this region. CNRS French National Space Studies, CONACYT Mexico.

  8. Improved production of chlorogenic acid from cell suspension ...

    African Journals Online (AJOL)

    Chlorogenic acid is a free radical scavenger, antibacterial, anti- inflammatory, antiviral, hypoglycemic, and in addition to ... experiments, the effect of various strengths of B5 medium (1/4 .... Growth kinetics of L. macranthoides cell suspension ...

  9. In vitro production of azadirachtin from cell suspension cultures of ...

    Indian Academy of Sciences (India)

    PRAKASH KUMAR G

    proven effective in the control of agricultural pests in an environmentally ..... Prakash G and Srivastava A K 2005 Statistical media optimization for cell growth and ... Juss. suspension cultures; Process Biochemistry 40 3795–3800. Prakash G ...

  10. Establishment of the callus and cell suspension culture of ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-10-05

    Oct 5, 2009 ... Full Length Research Paper. Establishment of the callus ... study provided an efficient way for E. angustifolia cell suspension culture to produce secondary metabolite. .... was also observed that in these treatments the stem.

  11. Establishment of sorghum cell suspension culture system for ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-03-18

    Mar 18, 2008 ... Additionally, sorghum cell suspension cultures have been initiated from the friable ... proteomics technologies. The field of proteomics is .... air dried at room temperature and resuspended in 2 ml of urea buffer [9 M urea, 2 M ...

  12. Establishment and characterization of American elm cell suspension cultures

    Science.gov (United States)

    Steven M. Eshita; Joseph C. Kamalay; Vicki M. Gingas; Daniel A. Yaussy

    2000-01-01

    Cell suspension cultures of Dutch elm disease (DED)-tolerant and DED-susceptible American elms clones have been established and characterized as prerequisites for contrasts of cellular responses to pathogen-derived elicitors. Characteristics of cultured elm cell growth were monitored by A700 and media conductivity. Combined cell growth data for all experiments within a...

  13. Flavonoids and darkness lower PCD in senescing Vitis vinifera suspension cell cultures.

    Science.gov (United States)

    Bertolini, Alberto; Petrussa, Elisa; Patui, Sonia; Zancani, Marco; Peresson, Carlo; Casolo, Valentino; Vianello, Angelo; Braidot, Enrico

    2016-10-26

    Senescence is a key developmental process occurring during the life cycle of plants that can be induced also by environmental conditions, such as starvation and/or darkness. During senescence, strict control of genes regulates ordered degradation and dismantling events, the most remarkable of which are genetically programmed cell death (PCD) and, in most cases, an upregulation of flavonoid biosynthesis in the presence of light. Flavonoids are secondary metabolites that play multiple essential roles in development, reproduction and defence of plants, partly due to their well-known antioxidant properties, which could affect also the same cell death machinery. To understand further the effect of endogenously-produced flavonoids and their interplay with different environment (light or dark) conditions, two portions (red and green) of a senescing grapevine callus were used to obtain suspension cell cultures. Red Suspension cell Cultures (RSC) and Green Suspension cell Cultures (GSC) were finally grown under either dark or light conditions for 6 days. Darkness enhanced cell death (mainly necrosis) in suspension cell culture, when compared to those grown under light condition. Furthermore, RSC with high flavonoid content showed a higher viability compared to GSC and were more protected toward PCD, in accordance to their high content in flavonoids, which might quench ROS, thus limiting the relative signalling cascade. Conversely, PCD was mainly occurring in GSC and further increased by light, as it was shown by cytochrome c release and TUNEL assays. Endogenous flavonoids were shown to be good candidates for exploiting an efficient protection against oxidative stress and PCD induction. Light seemed to be an important environmental factor able to induce PCD, especially in GSC, which lacking of flavonoids were not capable of preventing oxidative damage and signalling leading to senescence.

  14. Induced accumulation of 20-hydroxyecdysone in cell suspension ...

    African Journals Online (AJOL)

    Administrator

    2011-09-12

    Sep 12, 2011 ... This study describes the effects of culture medium, culture temperature, sucrose concentration and cholesterol feeding on cell growth and 20-hydroxyecdysone production in suspension cultures of Vitex glabrata, an important medicinal plant in Thailand. Cell growth and 20-hydroxyecdysone production.

  15. Induced accumulation of 20-hydroxyecdysone in cell suspension ...

    African Journals Online (AJOL)

    This study describes the effects of culture medium, culture temperature, sucrose concentration and cholesterol feeding on cell growth and 20-hydroxyecdysone production in suspension cultures of Vitex glabrata, an important medicinal plant in Thailand. Cell growth and 20-hydroxyecdysone production were not significantly ...

  16. Mevastatin-induced inhibition of cell growth in avocado suspension ...

    African Journals Online (AJOL)

    Cell suspension cultures were established using soft, friable callus derived from nucellar tissue of 'Hass' avocado (Persea americana Mill.) seed from fruit harvested 190 days after full bloom. Cell cultures were maintained in liquid medium supplemented with naphthalene acetic acid (NAA), isopentenyl adenine (iP) and ...

  17. Chlorogenic acid in a Nicotiana plumbaginifolia cell suspension.

    Science.gov (United States)

    Gillet; Mesnard; Fliniaux; Monti; Fliniaux

    1999-11-01

    A phenylpropanoid compound has been characterized in a Nicotiana plumbaginifolia cell suspension. This compound has been isolated and purified by semi-preparative reverse phase-high performance liquid chromatography. Its structure has been identified by NMR spectroscopy as 5-O-caffeoylquinic acid, which is chlorogenic acid (CA). The influence of culture conditions on the accumulation of this metabolite by N. plumbaginifolia cell suspensions has been studied. Darkness strongly inhibits the CA accumulation. Moreover, it has been shown that feeding experiments with caffeic acid had a deleterious effect upon the CA content. This one was not influenced by a supplementation with quinic acid.

  18. Mapping and characterisation of the sorghum cell suspension ...

    African Journals Online (AJOL)

    Here we reported the first secretomic study of sorghum (Sorghum bicolor), a naturally drought tolerant cereal crop. In this study, we used a gel-based proteomic approach in combination with mass spectrometry to separate and identify proteins secreted into the culture medium of sorghum cell suspensions, a first step ...

  19. Establishment of the callus and cell suspension culture of ...

    African Journals Online (AJOL)

    The objective of this work was the optimization of the conditions of callus and cell suspension culture of Elaeagnus angustifolia for the production of condensed tannins. The effects of different conditions on the callus growth and the production of condensed tannins were researched. The leaf tissue part of E. angustifolia was ...

  20. Assessment of drug salt release from solutions, suspensions and in situ suspensions using a rotating dialysis cell

    DEFF Research Database (Denmark)

    Parshad, Henrik; Frydenvang, Karla; Liljefors, Tommy

    2003-01-01

    buffer is used as release media. Generally, the initial release of the drug salt from in situ suspensions occurred faster as compared to conventional suspensions, probably due to incomplete precipitation of the drug salt, and hence formation of supersaturated solutions where the rate of release......A rotating dialysis cell consisting of a small (10 ml) and a large compartment (1000 ml) was used to study the release of drug salt (bupivacaine 9-anthracene carboxylate) from (i). solutions, (ii). suspensions and (iii). in situ formed suspensions. Initial release experiments from suspensions...... indicated that the release of drug salt in deionized water was predominantly limited by the diffusion across the membrane whereas it is essentially dissolution rate controlled in 0.05 M phosphate buffer (pH 7.40). Thus, the in vitro model appears to have a potential in formulation screening when phosphate...

  1. Different characteristics between menadione and menadione sodium bisulfite as redox mediator in yeast cell suspension

    OpenAIRE

    Yamashoji, Shiro

    2016-01-01

    Menadione promoted the production of active oxygen species (AOS) in both yeast cell suspension and the crude enzymes from the cells, but menadione sodium bisulfite (MSB) had little effect on the production of AOS in the cell suspension. MSB kept the stable increase in the electron transfer from intact yeast cells to anode compared to menadione, but the electron transfer promoted by MSB was inhibited in permeabilized yeast cell suspension. Menadione promoted oxidation of NAD(P)H much faster th...

  2. Pipette tip with integrated electrodes for gene electrotransfer of cells in suspension: a feasibility study in CHO cells

    International Nuclear Information System (INIS)

    Rebersek, Matej; Kanduser, Masa; Miklavcic, Damijan

    2011-01-01

    Gene electrotransfer is a non-viral gene delivery method that requires successful electroporation for DNA delivery into the cells. Changing the direction of the electric field during the pulse application improves the efficacy of gene delivery. In our study, we tested a pipette tip with integrated electrodes that enables changing the direction of the electric field for electroporation of cell suspension for gene electrotransfer. A new pipette tip consists of four cylindrical rod electrodes that allow the application of electric pulses in different electric field directions. The experiments were performed on cell suspension of CHO cells in phosphate buffer. Plasmid DNA encoding for green fluorescent protein (GFP) was used and the efficiency of gene electrotransfer was determined by counting cells expressing GFP 24 h after the experiment. Experimental results showed that the percentage of cells expressing GFP increased when the electric field orientation was changed during the application. The GFP expression was almost two times higher when the pulses were applied in orthogonal directions in comparison with single direction, while cell viability was not significantly affected. We can conclude that results obtained with the described pipette tip are comparable to previously published results on gene electrotransfer using similar electrode geometry and electric pulse parameters. The tested pipette tip, however, allows work with small volumes/samples and requires less cell manipulation

  3. Immunocytochemical characterization of the cell walls of bean cell suspensions during habituation and dehabituation to dichlobenil

    DEFF Research Database (Denmark)

    Garcia-Angulo, P.; Willats, W. G. T.; Encina, A. E.

    2006-01-01

    The effects of the cellulose inhibitor dichlobenil on the cell wall composition and structure during the habituation/dehabituation process of suspension-cultured bean cells were assessed. A range of techniques were used including cell wall fractionation, sugar analysis, immunofluorescence...... and fluorochrome labelling of resin-embedded sections, and immunodot assays (IDAs) of cell wall fractions. The cell walls from bean cell suspensions with initial levels of habituation to dichlobenil had decreased levels of cellulose, but this effect lessened with increasing numbers of subcultures. All cell walls...

  4. Signal transduction events in aluminum-induced cell death in tomato suspension cells

    NARCIS (Netherlands)

    Iakimova, E.T.; Kapchina-Toteva, V.M.; Woltering, E.J.

    2007-01-01

    In this study, some of the signal transduction events involved in AlCl3-induced cell death in tomato (Lycopersicon esculentum Mill.) suspension cells were elucidated. Cells treated with 100 ¿M AlCl3 showed typical features of programmed cell death (PCD) such as nuclear and cytoplasmic condensation.

  5. High-level production of human interleukin-10 fusions in tobacco cell suspension cultures

    Science.gov (United States)

    Kaldis, Angelo; Ahmad, Adil; Reid, Alexandra; McGarvey, Brian; Brandle, Jim; Ma, Shengwu; Jevnikar, Anthony; Kohalmi, Susanne E; Menassa, Rima

    2013-01-01

    The production of pharmaceutical proteins in plants has made much progress in recent years with the development of transient expression systems, transplastomic technology and humanizing glycosylation patterns in plants. However, the first therapeutic proteins approved for administration to humans and animals were made in plant cell suspensions for reasons of containment, rapid scale-up and lack of toxic contaminants. In this study, we have investigated the production of human interleukin-10 (IL-10) in tobacco BY-2 cell suspension and evaluated the effect of an elastin-like polypeptide tag (ELP) and a green fluorescent protein (GFP) tag on IL-10 accumulation. We report the highest accumulation levels of hIL-10 obtained with any stable plant expression system using the ELP fusion strategy. Although IL-10-ELP has cytokine activity, its activity is reduced compared to unfused IL-10, likely caused by interference of ELP with folding of IL-10. Green fluorescent protein has no effect on IL-10 accumulation, but examining the trafficking of IL-10-GFP over the cell culture cycle revealed fluorescence in the vacuole during the stationary phase of the culture growth cycle. Analysis of isolated vacuoles indicated that GFP alone is found in vacuoles, while the full-size fusion remains in the whole-cell extract. This indicates that GFP is cleaved off prior to its trafficking to the vacuole. On the other hand, IL-10-GFP-ELP remains mostly in the ER and accumulates to high levels. Protein bodies were observed at the end of the culture cycle and are thought to arise as a consequence of high levels of accumulation in the ER. PMID:23297698

  6. Convection in a colloidal suspension in a closed horizontal cell

    International Nuclear Information System (INIS)

    Smorodin, B. L.; Cherepanov, I. N.

    2015-01-01

    The experimentally detected [1] oscillatory regimes of convection in a colloidal suspension of nanoparticles with a large anomalous thermal diffusivity in a closed horizontal cell heated from below have been simulated numerically. The concentration inhomogeneity near the vertical cavity boundaries arising from the interaction of thermal-diffusion separation and convective mixing has been proven to serve as a source of oscillatory regimes (traveling waves). The dependence of the Rayleigh number at the boundary of existence of the traveling-wave regime on the aspect ratio of the closed cavity has been established. The spatial characteristics of the emerging traveling waves have been determined

  7. Isolation of plasmodesmata from Arabidopsis suspension culture cells.

    Science.gov (United States)

    Grison, Magali S; Fernandez-Calvino, Lourdes; Mongrand, Sébastien; Bayer, Emmanuelle M F

    2015-01-01

    Due to their position firmly anchored within the plant cell wall, plasmodesmata (PD) are notoriously difficult to isolate from plant tissue. Yet, getting access to isolated PD represents the most straightforward strategy for the identification of their molecular components. Proteomic and lipidomic analyses of such PD fractions have provided and will continue to provide critical information on the functional and structural elements that define these membranous nano-pores. Here, we describe a two-step simple purification procedure that allows isolation of pure PD-derived membranes from Arabidopsis suspension cells. The first step of this procedure consists in isolating cell wall fragments containing intact PD while free of contamination from other cellular compartments. The second step relies on an enzymatic degradation of the wall matrix and the subsequent release of "free" PD. Isolated PD membranes provide a suitable starting material for the analysis of PD-associated proteins and lipids.

  8. Rheological characteristics of cell suspension and cell culture of Perilla frutescens.

    Science.gov (United States)

    Zhong, J J; Seki, T; Kinoshita, S; Yoshida, T

    1992-12-05

    Physical properties such as viscosity, fluid dynamic behavior of cell suspension, and size distribution of cell aggregates of a plant, Perilla frustescens, cultured in a liquid medium were studied. As a result of investigations using cells harvester after 12 days of cultivation in a flask, it was found that the apparent viscosity of the cell suspension did not change with any variation of cell concentration below 5 g dry cell/L but markedly increased when the cell concentration increased over 12.8 g dry cell/L. The cell suspension exhibited the characteristics of a Bingham plastic fluid with a small yield stress. The size of cell aggregates in the range 74 to 500 mum did not influence the rheological characteristics of the cell suspension. The rheological characteristics of cultivation mixtures of P. frutescens cultivated in a flask and in a bioreactor were also investigated. The results showed that the flow characteristics of the cell culture could be described by a Bingham plastic model. At the later stage of cultivation, the apparent viscosity increased steadily, even though the biomass concentration (by dry weight) decreased, due to the increase of individual cell size. (c) 1992 John Wiley & Sons, Inc.

  9. Suspension culture of pluripotent stem cells: effect of shear on stem cell fate.

    Science.gov (United States)

    Keller, Kevin C; Rodrigues, Beatriz; zur Nieden, Nicole I

    2014-01-01

    Despite significant promise, the routine usage of suspension cell culture to manufacture stem cell-derived differentiated cells has progressed slowly. Suspension culture is an innovative way of either expanding or differentiating cells and sometimes both are combined into a single bioprocess. Its advantages over static 2D culturing include a homogeneous and controllable culture environment and producing a large quantity of cells in a fraction of time. This feature makes suspension cell culture ideal for use in stem cell research and eventually ideal in the large-scale production of differentiated cells for regenerative medicine. Because of their tremendous differentiation capacities and unlimited growth properties, pluripotent stem cells (PSCs) in particular are considered potential sources for future cell-replacement therapies. Currently, expansion of PSCs is accomplished in 2D, which only permits a limited amount of cell growth per culture flask before cells need to be passaged. However, before stem cells can be applied clinically, several aspects of their expansion, such as directed growth, but also differentiation, need to be better controlled. This review will summarize recent advantages in suspension culture of PSCs, while at the same time highlighting current challenges.

  10. Characterization of bone marrow derived mesenchymal stem cells in suspension

    Science.gov (United States)

    2012-01-01

    Introduction Bone marrow mesenchymal stem cells (BMMSCs) are a heterogeneous population of postnatal precursor cells with the capacity of adhering to culture dishes generating colony-forming unit-fibroblasts (CFU-F). Here we identify a new subset of BMMSCs that fail to adhere to plastic culture dishes and remain in culture suspension (S-BMMSCs). Methods To catch S-BMMSCs, we used BMMSCs-produced extracellular cell matrix (ECM)-coated dishes. Isolated S-BMMSCs were analyzed by in vitro stem cell analysis approaches, including flow cytometry, inductive multiple differentiation, western blot and in vivo implantation to assess the bone regeneration ability of S-BMMSCs. Furthermore, we performed systemic S-BMMSCs transplantation to treat systemic lupus erythematosus (SLE)-like MRL/lpr mice. Results S-BMMSCs are capable of adhering to ECM-coated dishes and showing mesenchymal stem cell characteristics with distinction from hematopoietic cells as evidenced by co-expression of CD73 or Oct-4 with CD34, forming a single colony cluster on ECM, and failure to differentiate into hematopoietic cell lineage. Moreover, we found that culture-expanded S-BMMSCs exhibited significantly increased immunomodulatory capacities in vitro and an efficacious treatment for SLE-like MRL/lpr mice by rebalancing regulatory T cells (Tregs) and T helper 17 cells (Th17) through high NO production. Conclusions These data suggest that it is feasible to improve immunotherapy by identifying a new subset BMMSCs. PMID:23083975

  11. On the assessment of the productivity of suspension cultures of unicellular green algae at defined light conditions

    Energy Technology Data Exchange (ETDEWEB)

    Seiss, U; Borns, E; Boehm, H

    1985-01-01

    A description is given of the possibility of a comparison of the production between different suspension cultures of microalgae at equal and defined light conditions. For this, a variant of the turbidostat technique is used by which with the acid of a phototransistor and the filter combination of red filter/opal glass filter a chlorophyll-equivalent signal is applied for control. The equal light conditions are compared and set by the preparation of the respective absorption profiles. From this one can derive the mean level of irradiation within the suspension cultures and use it as the reference value for the light conditions. By this technique it is possible to set equal light conditions in suspension cultures independent of the given cell sizes, cell shapes and dry matter contents.

  12. Growth and Plating of Cell Suspension Cultures of Datura Innoxia

    DEFF Research Database (Denmark)

    Engvild, Kjeld Christensen

    1974-01-01

    Suspension cultures of Datura innoxia Mill, were successfully grown on a modified Murashige and Skoog medium with 2,4–D, NAA or BAP as growth substances, provided the micronutrient levels were reduced to 1/10. Normal amounts of micronutrients were toxic. Attempts to identify the toxic elements did...... not succeed. Cultures grew exponentially on a shaker at 27°C in the light. Their doubling times varied from 1.1 days on 2,4–D (10–6M) or NAA (10−5M)+ 1 g/1 casein hydrolysate to 2.7 days on BAP (3 × 10−7M) and 5.1 days on supraoptimal levels of 2,4-D (10−5M). Cultures grew on NH4+-N alone (from ammonium...... malate) or on NO3−-N alone. Dry weight yield was proportional to the amount of nitrate-N added (47 mg/mg N). Filtered suspension cultures containing single cells (plating cultures) could be grown in agar in petri dishes when NAA or 2,4-D were used as growth substances. Cells grew at densities above 500...

  13. Isolation and culture of Celosia cristata L cell suspension protoplasts

    Directory of Open Access Journals (Sweden)

    Retno Mastuti

    2003-06-01

    Full Text Available Developmental competence of Celosia cristata L. cell suspension-derived protoplasts was investigated. The protoplasts were isolatedfrom 3- to 9-d old cultures in enzyme solution containing 2% (w/v Cellulase YC and 0.5% (w/v Macerozyme R-10 which was dissolvedin washing solution (0.4 M mannitol and 10 mM CaCl2 at pH 5.6 for 3 hours. The highest number of viable protoplasts was releasedfrom 5-d old culture of a homogenous cell suspension. Subsequently, three kinds of protoplast culture media were simultaneously examinedwith four kinds of concentration of gelling agent. Culturing the protoplasts on KM8p medium solidified with 1.2% agarose significantlyenhanced plating efficiency as well as microcolony formation. Afterwards, the microcalli actively proliferated into friable watery calluswhen they were subcultured on MS medium supplemented with 0.3 mg/l 2,4-D and 1.0 mg/l kinetin. Although the plant regenerationfrom the protoplasts-derived calli has not yet been obtained, the reproducible developmental step from protoplasts to callus in thisstudy may facilitate the establishment of somatic hybridization using C. cristata as one parent.

  14. Stereotaxic implantation of dispersed cell suspensions into brain. A systematic appraisal of cell placement and survival

    International Nuclear Information System (INIS)

    Plunkett, R.J.; Weber, R.J.; Oldfield, E.H.

    1988-01-01

    The application of several recent advances in cell biology, brain implantation, and cell-mediated tumor immunotherapy requires successful and reproducible placement of viable cell suspensions into brain. Stereotaxic implantation is being used to inject cytotoxic lymphocytes into gliomas and to replace dopaminergic cells in parkinsonian models. Systematic assessment of the factors that influence success in implantation of cell suspensions into solid tissues is needed. A model was developed for investigation of stereotaxic implantation using radiolabeled rat lymphokine-activated killer (LAK) cells. Anesthetized rats received microliter injections of cell suspension into the right caudate nucleus. The injection volume, cell concentration, infusion rate, and needle size were varied systematically. The animals were sacrificed 1 hour after injection; the brain was removed and sectioned, and the radioactivity was counted. Three aliquots of the suspension were injected into counting tubes for control analysis. Recovery of radioactivity was expressed as the percent of mean counts per minute (cpm) in the right frontal lobe/mean cpm in the three control tubes. To assess the viability of implanted cells, the right frontal region was mechanically dissociated in media and centrifuged, and the pellet and supernatant were counted. By using small needles and slow infusion of volumes of 10 microliters or less, 85% to 90% of the radioactivity was recovered in the caudate nucleus. At least half of the implanted cells were viable. Consistent, accurate implantation of dispersed cells into brain over a range of volumes, cell concentrations, infusion rates, and needle sizes was achieved

  15. ( Linum usitatissimum L. cv. Modran cell suspension culture

    Directory of Open Access Journals (Sweden)

    Aleksandra Seta-Koselska

    2018-01-01

    Full Text Available Flax ( Linum usitatissimum L. is an ancient crop that is widely cultivated as a source of oil, fiber, and bioactive compounds. Flax fiber is traditionally used in textile industry, linseed oil is processed for industrial oils, paints, varnishes and bio-petroleum. Flaxseeds are also rich in α-linolenic acid and phytochemicals such as lignans. In addition to the commercial aspects, this species has been used widely and readily in biotechnological, developmental, and plant-pathogen interaction studies. Differences in the levels of endogenous hormones in various cultivars of flax significantly affected the intensity of callogenesis and determined the type and concentration of growth regulators necessary for callus production. The aim of our investigation was to optimize the culture conditions for callus formation and cell proliferation in liquid medium of the Polish cultivar of fiber flax – Modran. In the first step, 4 combinations of phytohormones in the medium were tested to obtain established callus tissue suitable for initiation of suspension culture. Next, we investigated the effect of chosen plant growth regulators on cell divisions, fresh and dry weight, and dispersal of callus cells in liquid medium. Fast growing and friable callus was obtained in a modified MS medium supplemented with 0.5 mg/l BAP and 0.1 mg/l NAA. We determined that for the initiation of cell suspension supplementation with 0.5 mg/l BAP and 0.5 mg/l NAA is optimal. The results obtained indicated that high concentration of cytokinin (BAP in liquid medium limited cell proliferation and decreased biomass formation.

  16. Efficient Secretion of Recombinant Proteins from Rice Suspension-Cultured Cells Modulated by the Choice of Signal Peptide.

    Science.gov (United States)

    Huang, Li-Fen; Tan, Chia-Chun; Yeh, Ju-Fang; Liu, Hsin-Yi; Liu, Yu-Kuo; Ho, Shin-Lon; Lu, Chung-An

    2015-01-01

    Plant-based expression systems have emerged as a competitive platform in the large-scale production of recombinant proteins. By adding a signal peptide, αAmy3sp, the desired recombinant proteins can be secreted outside transgenic rice cells, making them easy to harvest. In this work, to improve the secretion efficiency of recombinant proteins in rice expression systems, various signal peptides including αAmy3sp, CIN1sp, and 33KDsp have been fused to the N-terminus of green fluorescent protein (GFP) and introduced into rice cells to explore the efficiency of secretion of foreign proteins. 33KDsp had better efficiency than αAmy3sp and CIN1sp for the secretion of GFP from calli and suspension-cultured cells. 33KDsp was further applied for the secretion of mouse granulocyte-macrophage colony-stimulating factor (mGM-CSF) from transgenic rice suspension-cultured cells; approximately 76%-92% of total rice-derived mGM-CSF (rmGM-CSF) was detected in the culture medium. The rmGM-CSF was bioactive and could stimulate the proliferation of a murine myeloblastic leukemia cell line, NSF-60. The extracellular yield of rmGM-CSF reached 31.7 mg/L. Our study indicates that 33KDsp is better at promoting the secretion of recombinant proteins in rice suspension-cultured cell systems than the commonly used αAmy3sp.

  17. Determining Quiescent Colloidal Suspension Viscosities Using the Green-Kubo Relation and Image-Based Stress Measurements

    Science.gov (United States)

    Lin, Neil Y. C.; Bierbaum, Matthew; Cohen, Itai

    2017-09-01

    By combining confocal microscopy and stress assessment from local structural anisotropy, we directly measure stresses in 3D quiescent colloidal liquids. Our noninvasive and nonperturbative method allows us to measure forces ≲50 fN with a small and tunable probing volume, enabling us to resolve the stress fluctuations arising from particle thermal motions. We use the Green-Kubo relation to relate these measured stress fluctuations to the bulk Brownian viscosity at different volume fractions, comparing against simulations and conventional rheometry measurements. We find that the Green-Kubo analysis gives excellent agreement with these prior results, suggesting that similar methods could be applied to investigations of local flow properties in many poorly understood far-from-equilibrium systems, including suspensions that are glassy, strongly sheared, or highly confined.

  18. Regio-selective deglycosylation of icariin by cell suspension cultures of Glycyrrhiza uralensis and Morus alba.

    Science.gov (United States)

    Zhang, De-Wu; Tao, Xiao-Yu; Chen, Ri-Dao; Yu, Li-Yan; Dai, Jun-Gui

    2015-01-01

    Biotransformations of icariin (1) by cell suspension cultures of Glycyrrhiza uralensis and Morus alba yielded two new metabolites, icaruralins A and B (2 and 3), and one known metabolite, baohuoside I (4). Their structures were determined on the basis of extensive spectroscopic analysis. This is the first report that the cell suspension cultures of G. uralensis and M. alba possess deglycosylation functionality.

  19. Structure and organ specificity of an anionic peroxidase from Arabidopsis thaliana cell suspension culture

    DEFF Research Database (Denmark)

    Ostergaard, L; Abelskov, A K; Mattsson, O

    1996-01-01

    The predominant peroxidase (pI 3.5) (E.C. 1.11.1.7) of an Arabidopsis thaliana cell suspension culture was purified and partially sequenced. Oligonucleotides were designed and a specific probe was obtained. A cDNA clone was isolated from an Arabidopsis cell suspension cDNA library and completely ...

  20. Reflection coefficients of permeant molecules in human red cell suspensions.

    Science.gov (United States)

    Owen, J D; Eyring, E M

    1975-08-01

    The Staverman reflection coefficient, sigma for several permeant molecules was determined in human red cell suspensions with a Durrum stopped-flow spectrophotometer. This procedure was first used with dog, cat, and beef red cells and with human red cells. The stopped-flow technique used was similar to the rapid-flow method used by those who originally reported sigma measurements in human red cells for molecules which rapidly penetrate the red cell membrane. The sigma values we obtained agreed with those previously reported for most of the slow penetrants, except malonamide, but disagreed with all the sigma values previously reported for the rapid penetrants. We were unable to calculate an "equivalent pore radius" with our sigma data. The advantages of our equipment and our experimental procedure are discussed. Our sigma data suggest that sigma is indirectly proportional to the log of the nonelectrolyte permeability coefficient, omega. Since a similar trend has been previously shown for log omega and molar volume of the permeant molecules, a correlatioo was shown between sigma and molar volume suggesting the membrane acts as a sieve.

  1. Enrichment of unlabeled human Langerhans cells from epidermal cell suspensions by discontinuous density gradient centrifugation

    NARCIS (Netherlands)

    Teunissen, M. B.; Wormmeester, J.; Kapsenberg, M. L.; Bos, J. D.

    1988-01-01

    In this report we introduce an alternative procedure for enrichment of human epidermal Langerhans cells (LC) from epidermal cell suspensions of normal skin. By means of discontinuous Ficoll-Metrizoate density gradient centrifugation, a fraction containing high numbers of viable, more than 80% pure

  2. Convective flows of colloidal suspension in an inclined closed cell

    Energy Technology Data Exchange (ETDEWEB)

    Smorodin, Boris; Ishutov, Sergey [Department of Physics of Phase Transitions, Perm State University, Perm (Russian Federation); Cherepanov, Ivan, E-mail: bsmorodin@yandex.ru [Department of Radio Electronics and Information Security, Perm State University, Perm (Russian Federation)

    2016-12-15

    The nonlinear spatiotemporal evolution of convective flows is numerically investigated in the case of colloidal suspension filling an inclined closed cell heated from below. The bifurcation diagram (the dependency of the Nusselt number on the Rayleigh number) is obtained. The characteristics of the wave and steady patterns are investigated depending on heat intensity. The travelling wave changing travel direction and the non-regular oscillatory flow are found to be stable solutions within a certain interval of the Rayleigh number. Temporal Fourier decomposition is used together with other diagnostic tools to analyse the complex bifurcation and spatiotemporal properties caused by the interplay of the gravity-induced gradient of concentration and convective mixing of the fluid. It is shown that a more complex flow structure exists at a lower heating intensity (Rayleigh number). (paper)

  3. Suspension state increases reattachment of breast cancer cells by up-regulating lamin A/C.

    Science.gov (United States)

    Zhang, Xiaomei; Lv, Yonggang

    2017-12-01

    Extravasation is a rate-limiting step of tumor metastasis, for which adhesion to endothelium of circulating tumor cells (CTCs) is the prerequisite. The suspension state of CTCs undergoing detachment from primary tumor is a persistent biomechanical cue, which potentially regulates the biophysical characteristics and cellular behaviors of tumor cells. In this study, breast tumor cells MDA-MB-231 in suspension culture condition were used to investigate the effect of suspension state on reattachment of CTCs. Our study demonstrated that suspension state significantly increased the adhesion ability of breast tumor cells. In addition, suspension state markedly promoted the formation of stress fibers and focal adhesions and reduced the motility in reattached breast cancer cells. Moreover, lamin A/C was reversibly accumulated at posttranscriptional level under suspension state, improving the cell stiffness of reattached breast cancer cells. Disruption of actin cytoskeleton by cytochalasin D caused lamin A/C accumulation. Conversely, decreasing actomyosin contraction by ROCK inhibitor Y27632 reduced lamin A/C level. Knocking down lamin A/C weakened the suspension-induced increase of adhesion, and also abolished the suspension-induced decrease of motility and increase of stress fibers and focal adhesion in reattaching tumor cells, suggesting a crucial role of lamin A/C. In conclusion, it was demonstrated that suspension state promoted the reattachment of breast tumor cells by up-regulating lamin A/C via cytoskeleton disruption. These findings highlight the important role of suspension state for tumor cells in tumor metastasis. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Biolistic transformation of tobacco and maize suspension cells using bacterial cells as microprojectiles.

    Science.gov (United States)

    Rasmussen, J L; Kikkert, J R; Roy, M K; Sanford, J C

    1994-01-01

    We have used both Escherichia coli cells and Agrobacterium tumefaciens cells as microprojectiles to deliver DNA into suspension-cultured tobacco (Nicotiana tabacum L. line NT1) cells using a helium powered biolistic device. In addition, E. coli cells were used as microprojectiles for the transformation of suspension-cultured maize (Zea mays cv. Black Mexican Sweet) cells. Pretreating the bacterial cells with phenol at a concentration of 1.0%, and combining the bacterial cells with tungsten particles increased the rates of transformation. In N. tabacum, we obtained hundreds of transient transformants per bombardment, but were unable to recover any stable transformants. In Z. mays we obtained thousands of transient transformants and an average of six stable transformants per bombardment. This difference is discussed.

  5. Iron induction of ferritin synthesis in soybean cell suspensions.

    Science.gov (United States)

    Proudhon, D; Briat, J F; Lescure, A M

    1989-06-01

    In animal cells specialized for iron storage, iron-induced accumulation of ferritin is known to result from a shift of stored mRNA from the ribonucleoprotein fraction to polysomes. Previous reports with bean leaves suggested that in plants iron induction of ferritin synthesis would result from a regulation at the transcriptional level (F van der Mark, F Bienfait, H van der Ende [1983] Biochem Biophys Res Commun 115:463-469). Soybean (Glycine max, cv Mandarin) cell suspension cultures have been used here to support these findings. Ferritin induction is obtained by addition of Fe-citrate to the culture medium. A good correlation is found between cellular iron content and the amount of ferritin accumulation. This protein accumulation corresponds to an increase of in vitro translatable ferritin mRNA. Addition of 4 micrograms actinomycin D per milliliter to the cultures inhibits completely in vivo RNA synthesis, whereas protein synthesis was poorly affected, at least for 24 hours. During the same time, this concentration of actinomycin D strongly inhibits the iron-induced synthesis of ferritin. These results show that in soybean cell cultures, the mechanism of regulation of ferritin synthesis in response to iron does not result from recruitment of preexisting mRNA. They confirm that in plant systems, ferritin synthesis results from increased transcription of the corresponding genes.

  6. Do rice suspension-cultured cells treated with abscisic acid mimic developing seeds?

    Science.gov (United States)

    Matsuno, Koya; Fujimura, Tatsuhito

    2015-08-01

    Starch synthesis is activated in the endosperm during seed development and also in rice suspension cells cultured with abscisic acid. In the anticipation that the mechanisms of starch synthesis are similar between the endosperm and the suspension cells cultured with abscisic acid, expression of genes involved in starch synthesis was evaluated in the suspension cells after abscisic acid treatment. However, it was found that the regulatory mechanism of starch synthesis in the suspension cells cultured with abscisic acid was different from that in developing seeds. Expression analyses of genes involved in oil bodies, which accumulate in the embryo and aleurone layer, and seed storage proteins, which accumulate mainly in the endosperm, showed that the former were activated in the suspension cells cultured with abscisic acid, but the latter were not. Master regulators for embryogenesis, OsVP1 (homologue of AtABI3) and OsLFL1 (homologue of AtFUS3 or AtLFL2), were expressed in the suspension cells at levels comparable to those in the embryo. From these results, it is suggested that interactions between regulators and abscisic acid control the synthesis of phytic acid and oil bodies in the cultured cells and embryo. We suggest that the system of suspension cells cultured with abscisic acid helps to reveal the mechanisms of phytic acid and oil body synthesis in embryo.

  7. Lignans from cell suspension cultures of Phyllanthus niruri, an Indonesian medicinal plant

    NARCIS (Netherlands)

    Elfahmi, [No Value; Batterman, S; Koulman, A; Hackl, T; Bos, R; Kayser, O; Woerdenbag, HJ; Quax, WJ

    Cell suspension cultures of Phyllanthus niruri were used to study the lignan profiles and biosynthesis. Suspension cultures yielded two lignans: the new cubebin dimethyl ether (1) and urinatetralin (2), a new lignan from P. niruri, but reported earlier from P. urinaria. This is the first report of

  8. Flavonoid Production, Growth and Differentiation of Stelechocarpus burahol (Bl.) Hook. F. and Th. Cell Suspension Culture.

    Science.gov (United States)

    Aini Habibah, Noor; Moeljopawiro, Sukarti; Dewi, Kumala; Indrianto, Ari

    2017-01-01

    Stelechocarpus burahol is a plant containing flavonoid compounds that have the potential for use as an antihyperuricemic for gout medication. This study was performed to assess flavonoid production, growth and cell differentiation of S. burahol in cell suspension culture. Mesocarp was planted in Murashige and Skoog (MS) medium supplemented with 7.5 mg L-1 picloram for the induction of callus. Non-embryonic callus obtained was used in the formation of cell suspension cultures. Growth of cells was determined by fresh and dry weights. During the culturing, the fresh weight, dry weight and flavonoid content were determined as a result of culture status. The growth of the S. burahol cell suspension was slow, the stationary phase occurred at 30 days. The production of flavonoids was not in line with the growth of cells and the maximum production occurred on the 15th day of the log phase. The globular-shaped cells dominated the cell suspension culture at all ages. Fluorescein diacetate (FDA) staining of cells derived from cell cultures aged for 36 days showed that some cells were still viable. The results show that flavonoid production, growth and cell differentiation of a S. burahol cell suspension culture differed according to the culture age.

  9. A phytochemical study of lignans in whole plants and cell suspension cultures of Anthriscus sylvestris

    NARCIS (Netherlands)

    Koulman, A; Kubbinga, M.E.; Batterman, S; Woerdenbag, H.J.; Pras, N.; Woolley, J.G.; Quax, Wim

    2003-01-01

    In the roots of Anthriscus sylvestris 12 different lignans were detected. Arctigenin, dimethylmatairesinol, dimethylthujaplicatin, podophyllotoxin, 7-hydroxyyatein and 7-hydroxyanhydropodorhizol have not been previously reported to be present in A. sylvestris. In the cell suspension cultures, which

  10. Suspension culture combined with chemotherapeutic agents for sorting of breast cancer stem cells

    International Nuclear Information System (INIS)

    Li, Hai-zhi; Yi, Tong-bo; Wu, Zheng-yan

    2008-01-01

    Cancer stem cell (CSC) hypothesis has not been well demonstrated by the lack of the most convincing evidence concerning a single cell capable of giving rise to a tumor. The scarcity in quantity and improper approaches for isolation and purification of CSCs have become the major obstacles for great development in CSCs. Here we adopted suspension culture combined with anticancer regimens as a strategy for screening breast cancer stem cells (BrCSCs). BrCSCs could survive and be highly enriched in non-adherent suspension culture while chemotherapeutic agents could destroy most rapidly dividing cancer cells and spare relatively quiescent BrCSCs. TM40D murine breast cancer cells were cultured in serum-free medium. The expression of CD44 + CD24 - was measured by flow cytometry. Cells of passage 10 were treated in combination with anticancer agents pacilitaxel and epirubicin at different peak plasma concentrations for 24 hours, and then maintained under suspension culture. The rate of apoptosis was examined by flow cytometry with Annexin-V fluorescein isothiocyanate (FITC)/propidium iodide (PI) double staining method. Selected cells in different amounts were injected subcutaneously into BALB/C mice to observe tumor formation. Cells of passage 10 in suspension culture had the highest percentage of CD44 + CD24 - (about 77 percent). A single tumor cell in 0.35 PPC could generate tumors in 3 of 20 BALB/C mice. Suspension culture combined with anticancer regimens provides an effective means of isolating, culturing and purifying BrCSCs

  11. An efficient method for the establishment of cell suspension cultures in potato (Solanum tuberosum L.)

    International Nuclear Information System (INIS)

    Sajid, Z.A.

    2016-01-01

    Cell suspension cultures offers an In vitro system that can be used as a tool for various studies involving mutant selection, mass propagation, protoplast isolation, gene transfer and selection of cell-lines which are resistant to various biotic or abiotic stresses. Research work on the development of cell suspension cultures was carried out to establish the most efficient method in Potato (cv. Desiree). Healthy, well-proliferating tissues from different types of callus cultures (compact, friable, embryogenic or non-embryogenic) were inoculated on various media combinations, i.e., MS, MS2 or AA liquid medium containing 18.09 micro M 2, 4-D. A fixed quantity (0.5-1.0 g) of callus tissue from 60-day-old callus cultures was transferred to 10-25 ml of liquid medium in 100 ml Erlenmeyer flask. Cultures were placed on an orbital shaker and agitated at different speeds (75, 100 or 125 rpm) under 16-h photoperiod at 25 ± 2 degree C. Medium was changed after every 3 days and fractionated tissue was filtered after every 6 days through sterile mesh (100-800 micro m) to develop a cell-line by transferring resulting suspension to fresh medium under the same conditions. Results indicated that eight-week-old translucent, friable, off-white callus cultures were an excellent starting material for the initiation of homogeneous cell suspension cultures as compared to other tested sources. Of the three tested media (MS, MS2 or AA medium containing 18.09 micro M 2, 4-D), MS2 was found to be a better medium for the initiation of cell suspension cultures. Cell suspension cultures, placed in 16-h photoperiod at 25 ± 2 degree C and agitated at 120 rpm using a gyratory shaker showed excellent results. Several other factors influencing quick establishment of cell suspension cultures in this cultivar are also discussed in this communication. (author)

  12. Relations between fatty acid synthesis, pyruvate concentration and cell concentration of suspensions of isolated rat hepatocytes

    NARCIS (Netherlands)

    Beynen, A.C.; Geelen, M.J.H.

    1984-01-01

    1. 1. The cell concentration of suspensions of isolated rat hepatocytes affects both the rate of pyruvate accumulation in the incubation medium and the rate of fatty acid synthesis. 2. 2. At low cell concentrations pyruvate accumulation is directly related to the cell concentration but levels off

  13. Elimination of acute muelogenous leukemic cells from marrow and tumor suspensions in the rat with 4-hydroperoxycyclophosphamide

    International Nuclear Information System (INIS)

    Sharkis, S.J.; Santos, G.W.; Colvin, M.

    1980-01-01

    Cell suspensions of normal rat marrow mixed with rat acute myelogenous leukemic cells were prepared and incubated in vitro with graded doses of 4-hydroperoxycyclophosphamide (4HC). The cell suspensions were injected into rats prepared with a lethal dose of total body irradiation. Animals injected with these cells survived fatal irradiation induced aplasia. In a dose related manner 4HC was able to purge tumor cells from the cell mixtures. Thus, animals given cell suspensions incubated with the lower doses of 4HC showed prolonged survived before death from leukemia and animals given cell suspensions incubated with higher doses of 4HC survival lethal irradiation without the subsequent appearance of leukemia. These studies clearly establish that tumor cells may be eliminated from normal marrow suspensions without completely destroying the pluripotent stem cells

  14. Growing Arabidopsis in vitro: cell suspensions, in vitro culture, and regeneration.

    Science.gov (United States)

    Barkla, Bronwyn J; Vera-Estrella, Rosario; Pantoja, Omar

    2014-01-01

    An understanding of basic methods in Arabidopsis tissue culture is beneficial for any laboratory working on this model plant. Tissue culture refers to the aseptic growth of cells, organs, or plants in a controlled environment, in which physical, nutrient, and hormonal conditions can all be easily manipulated and monitored. The methodology facilitates the production of a large number of plants that are genetically identical over a relatively short growth period. Techniques, including callus production, cell suspension cultures, and plant regeneration, are all indispensable tools for the study of cellular biochemical and molecular processes. Plant regeneration is a key technology for successful stable plant transformation, while cell suspension cultures can be exploited for metabolite profiling and mining. In this chapter we report methods for the successful and highly efficient in vitro regeneration of plants and production of stable cell suspension lines from leaf explants of both Arabidopsis thaliana and Arabidopsis halleri.

  15. Somatic embryogenesis and plant regeneration from cell suspension cultures of Cucumis sativus L.

    Science.gov (United States)

    Chee, P P; Tricoli, D M

    1988-06-01

    A procedure for the regeneration of whole cucumber plants (Cucumis sativus L. cv. Poinsett 76) by embryogenesis from cell suspension cultures is described. Embryogenic callus was initiated from the primary leaves of 14-17 day old plants. Suspension cultures of embryogenic cells were grown in liquid Murashige and Skoog basal medium containing 5 uM 2,4,5-trichlorophenoxyacetic acid and 4 uM 6-benzylaminopurine. Suspension cultures were composed of a population of cells that were densely cytoplasmic and potentially embryogenic. Differentiation of embryos was enhanced by washing the suspension culture cells with MS basal medium containing 0.5% activated charcoal and twice with MS basal medium followed by liquid shake cultures in MS basal medium. Sixty to 70 percent of the embryos prewashed with activated charcoal germinated into plantlets with normal morphology. Embryos obtained from suspension cultured cells without prewashing with activated charcoal organized into plantlets with abnormal primary leaves. Morphologically normal plantlets were obtained by excising the shoot tips and transferring them to fresh medium.

  16. Enhanced Mulberroside A Production from Cell Suspension and Root Cultures of Morus alba Using Elicitation.

    Science.gov (United States)

    Komaikul, Jukrapun; Kitisripanya, Tharita; Tanaka, Hiroyuki; Sritularak, Boonchoo; Putalun, Waraporn

    2015-07-01

    Morus alba L. has been used in Asian traditional medicine as an anti-inflammatory, anti-asthmatic, anthelmintic and as a whitening agent in cosmetic products. Mulberroside A is the major active compound from M. alba root bark. In this study, cell suspension and root cultures of M. alba were established, and the effect of the elicitors on the enhancement of mulberroside A production in M. alba was investigated. The cell suspension and root cultures of M. alba were exposed to elicitors and then mulberroside A contents were determined by an indirect competitive ELISA method. High levels of mulberroside A were obtained by addition of 100 and 200 μM salicylic acid with 24 h exposure time in cell suspension cultures (37.9 ± 1.5 and 34.0 ± 4.7 mg/g dry wt., respectively). Furthermore, addition of yeast extract at 2 mg/mL with 24 h exposure time can significantly increase mulberroside A contents from both cell suspension (3.2-fold) and root cultures (6.6-fold). Mulberroside A contents from both cell suspension and root cultures after treatment with elicitors are similar or higher than those found in the intact root and root bark of several years old M. alba. These results indicate that mulberry tissue cultures using the elicitation method are interesting alternative sources for mulberroside A production.

  17. Involvement of ethylene and lipid signalling in cadmium-induced programmed cell death in tomato suspension cells

    NARCIS (Netherlands)

    Yakimova, E.T.; Kapchina-Toteva, V.M.; Laarhoven, L.J.J.; Harren, F.J.M.; Woltering, E.J.

    2006-01-01

    Cadmium-induced cell death was studied in suspension-cultured tomato (Lycopersicon esculentum Mill.) cells (line MsK8) treated with CdSO4. Within 24 h, cadmium treatment induced cell death in a concentration-dependent manner. Cell cultures showed recovery after 23 days which indicates the existence

  18. Involvement of ethylene and lipid signalling in cadmium-induced programmed cell death in tomato suspension cells

    NARCIS (Netherlands)

    Iakimova, E.T.; Kapchina-Toteva, V.M.; Laarhoven, L.J.; Harren, F.; Woltering, E.J.

    2006-01-01

    Cadmium-induced cell death was studied in suspension-cultured tomato (Lycopersicon esculentum Mill.) cells (line MsK8) treated with CdSO4. Within 24 h, cadmium treatment induced cell death in a concentration-dependent manner. Cell cultures showed recovery after 2¿3 days which indicates the existence

  19. Development of a scalable suspension culture for cardiac differentiation from human pluripotent stem cells

    Directory of Open Access Journals (Sweden)

    Vincent C. Chen

    2015-09-01

    Full Text Available To meet the need of a large quantity of hPSC-derived cardiomyocytes (CM for pre-clinical and clinical studies, a robust and scalable differentiation system for CM production is essential. With a human pluripotent stem cells (hPSC aggregate suspension culture system we established previously, we developed a matrix-free, scalable, and GMP-compliant process for directing hPSC differentiation to CM in suspension culture by modulating Wnt pathways with small molecules. By optimizing critical process parameters including: cell aggregate size, small molecule concentrations, induction timing, and agitation rate, we were able to consistently differentiate hPSCs to >90% CM purity with an average yield of 1.5 to 2 × 109 CM/L at scales up to 1 L spinner flasks. CM generated from the suspension culture displayed typical genetic, morphological, and electrophysiological cardiac cell characteristics. This suspension culture system allows seamless transition from hPSC expansion to CM differentiation in a continuous suspension culture. It not only provides a cost and labor effective scalable process for large scale CM production, but also provides a bioreactor prototype for automation of cell manufacturing, which will accelerate the advance of hPSC research towards therapeutic applications.

  20. Use of sulfate reducing cell suspension bioreactors for the treatment of SO2 rich flue gases

    NARCIS (Netherlands)

    Lens, P.N.L.; Gastesi, R.; Lettinga, G.

    2003-01-01

    This paper describes a novel bioscrubber concept for biological flue gas desulfurization, based on the recycling of a cell suspension of sulfite/sulfate reducing bacteria between a scrubber and a sulfite/sulfate reducing hydrogen fed bioreactor. Hydrogen metabolism in sulfite/sulfate reducing cell

  1. Regulation of Cytoplasmic and Vacuolar Volumes by Plant Cells in Suspension Culture

    DEFF Research Database (Denmark)

    Owens, Trevor; Poole, Ronald J

    1979-01-01

    Quantitative microscopical measurements have been made of the proportion of cell volume occupied by cytoplasm in a cell suspension culture derived from cotyledons of bush bean (cv. Contender). On a 7-day culture cycle, the content of cytoplasm varies from 25% at the time of transfer to 45% at the...

  2. Computer Simulation Study of Collective Phenomena in Dense Suspensions of Red Blood Cells under Shear

    CERN Document Server

    Krüger, Timm

    2012-01-01

    The rheology of dense red blood cell suspensions is investigated via computer simulations based on the lattice Boltzmann, the immersed boundary, and the finite element methods. The red blood cells are treated as extended and deformable particles immersed in the ambient fluid. In the first part of the work, the numerical model and strategies for stress evaluation are discussed. In the second part, the behavior of the suspensions in simple shear flow is studied for different volume fractions, particle deformabilities, and shear rates. Shear thinning behavior is recovered. The existence of a shear-induced transition from a tumbling to a tank-treading motion is demonstrated. The transition can be parameterized by a single quantity, namely the effective capillary number. It is the ratio of the suspension stress and the characteristic particle membrane stress. At the transition point, a strong increase in the orientational order of the red blood cells and a significant decrease of the particle diffusivity are obser...

  3. Induction of cell death by graphene in Arabidopsis thaliana (Columbia ecotype) T87 cell suspensions

    International Nuclear Information System (INIS)

    Begum, Parvin; Fugetsu, Bunshi

    2013-01-01

    Highlights: • This study was set up to explore potential influence of graphene on T87 cells. • Fragmented nuclei, membrane damage, mitochondrial dysfunction were observed. • ROS increased, ROS are key mediators in the cell death signaling pathway. • Translocation of graphene into cells and an endocytosis-like structure was observed. • Graphene entering into the cells by endocytosis. -- Abstract: The toxicity of graphene on suspensions of Arabidopsis thaliana (Columbia ecotype) T87 cells was investigated by examining the morphology, mitochondrial dysfunction, reactive oxygen species generation (ROS), and translocation of graphene as the toxicological endpoints. The cells were grown in Jouanneau and Péaud-Lenoel (JPL) media and exposed to graphene at concentrations 0–80 mg/L. Morphological changes were observed by scanning electron microscope and the adverse effects such as fragmented nuclei, membrane damage, mitochondrial dysfunction was observed with fluorescence microscopy by staining with Hoechst 33342/propidium iodide and succinate dehydrogenase (mitochondrial bioenergetic enzyme). Analysis of intracellular ROS by 2′,7′-dichlorofluorescein diacetate demonstrated that graphene induced a 3.3-fold increase in ROS, suggesting that ROS are key mediators in the cell death signaling pathway. Transmission electron microscopy verified the translocation of graphene into cells and an endocytosis-like structure was observed which suggested graphene entering into the cells by endocytosis. In conclusion, our results show that graphene induced cell death in T87 cells through mitochondrial damage mediated by ROS

  4. A critical role for ethylene in hydrogen peroxide release during programmed cell death in tomato suspension cells

    NARCIS (Netherlands)

    Jong, de A.J.; Yakimova, E.T.; Kapchina, V.M.; Woltering, E.J.

    2002-01-01

    Camptothecin, a topo isomerase-I inhibitor used in cancer therapy, induces apoptosis in animal cells. In tomato (Lycopersicon esculentum Mill.) suspension cells, camptothecin induces cell death that is accompanied by the characteristic nuclear morphological changes such as chromatin condensation and

  5. Poisson-Boltzmann theory of charged colloids: limits of the cell model for salty suspensions

    International Nuclear Information System (INIS)

    Denton, A R

    2010-01-01

    Thermodynamic properties of charge-stabilized colloidal suspensions and polyelectrolyte solutions are commonly modelled by implementing the mean-field Poisson-Boltzmann (PB) theory within a cell model. This approach models a bulk system by a single macroion, together with counterions and salt ions, confined to a symmetrically shaped, electroneutral cell. While easing numerical solution of the nonlinear PB equation, the cell model neglects microion-induced interactions and correlations between macroions, precluding modelling of macroion ordering phenomena. An alternative approach, which avoids the artificial constraints of cell geometry, exploits the mapping of a macroion-microion mixture onto a one-component model of pseudo-macroions governed by effective interparticle interactions. In practice, effective-interaction models are usually based on linear-screening approximations, which can accurately describe strong nonlinear screening only by incorporating an effective (renormalized) macroion charge. Combining charge renormalization and linearized PB theories, in both the cell model and an effective-interaction (cell-free) model, we compute osmotic pressures of highly charged colloids and monovalent microions, in Donnan equilibrium with a salt reservoir, over a range of concentrations. By comparing predictions with primitive model simulation data for salt-free suspensions, and with predictions from nonlinear PB theory for salty suspensions, we chart the limits of both the cell model and linear-screening approximations in modelling bulk thermodynamic properties. Up to moderately strong electrostatic couplings, the cell model proves accurate for predicting osmotic pressures of deionized (counterion-dominated) suspensions. With increasing salt concentration, however, the relative contribution of macroion interactions to the osmotic pressure grows, leading predictions from the cell and effective-interaction models to deviate. No evidence is found for a liquid

  6. Cell suspension culture and mutants selection for resistance to PEG induced water stress in alfalfa (Medicago sativa L.)

    International Nuclear Information System (INIS)

    Zhang Xiaodong; Lin Tingan

    1994-01-01

    Elements affecting suspension cell culture in alfalfa (Medicago sativa L.) were studied and a method of rapid establishment of embryogenic suspension cell lines was introduced. Effects of γ ray irradiation on the growth of suspension cells were studied, and the optimum dose of irradiation for inducing mutants from suspension cells was about 20 ∼ 60 Gy. Effects of PEG and NaCl induced water stress on the growth of suspension cells were also investigated, and the results showed that the congregants of preliminary suspension culture were more susceptible than the established suspension cell lines. With 20 Gy of γ ray irradiation on suspension cell line (JL416), six clones were obtained with 70 days of selection on medium of 15% PEG (about-11 bar). A number of regenerated plants were obtained from these clones. One clone was also gained from medium containing 20% PEG (about-15 bar). The selected mutant cell lines (JP15 and JP20) has strong resistances to high concentration of PEG and NaCl induced water stress

  7. Ultrasound Characterization of Microbead and Cell Suspensions by Speed of Sound Measurements of Neutrally Buoyant Samples

    DEFF Research Database (Denmark)

    Cushing, Kevin W.; Garofalo, Fabio; Magnusson, Cecilia

    2017-01-01

    . The density of the microparticles is determined by using a neutrally buoyant selection process that involves centrifuging of microparticles suspended in different density solutions, CsCl for microbeads and Percoll for cells. The speed of sound at 3 MHz in the neutrally buoyant suspensions is measured...... and fixed cells, such as red blood cells, white blood cells, DU-145 prostate cancer cells, MCF-7 breast cancer cells, and LU-HNSCC-25 head and-neck squamous carcinoma cells in phosphate buffered saline. The results show agreement with published data obtained by other methods....

  8. Differentiation of Human Pluripotent Stem Cells into Functional Endothelial Cells in Scalable Suspension Culture

    Directory of Open Access Journals (Sweden)

    Ruth Olmer

    2018-05-01

    Full Text Available Summary: Endothelial cells (ECs are involved in a variety of cellular responses. As multifunctional components of vascular structures, endothelial (progenitor cells have been utilized in cellular therapies and are required as an important cellular component of engineered tissue constructs and in vitro disease models. Although primary ECs from different sources are readily isolated and expanded, cell quantity and quality in terms of functionality and karyotype stability is limited. ECs derived from human induced pluripotent stem cells (hiPSCs represent an alternative and potentially superior cell source, but traditional culture approaches and 2D differentiation protocols hardly allow for production of large cell numbers. Aiming at the production of ECs, we have developed a robust approach for efficient endothelial differentiation of hiPSCs in scalable suspension culture. The established protocol results in relevant numbers of ECs for regenerative approaches and industrial applications that show in vitro proliferation capacity and a high degree of chromosomal stability. : In this article, U. Martin and colleagues show the generation of hiPSC endothelial cells in scalable cultures in up to 100 mL culture volume. The generated ECs show in vitro proliferation capacity and a high degree of chromosomal stability after in vitro expansion. The established protocol allows to generate hiPSC-derived ECs in relevant numbers for regenerative approaches. Keywords: hiPSC differentiation, endothelial cells, scalable culture

  9. Biotransformation of isonitrosoacetophenone (2-keto-2-phenyl-acetaldoxime) in tobacco cell suspensions

    CSIR Research Space (South Africa)

    Madala, NE

    2012-07-01

    Full Text Available Nicotiana tabacum cell suspensions, 2g wet wt/ml, rapidly took up 1 mM isonitrosoacetophenone (INAP), a plant-derived stress metabolite with anti-oxidative and anti-fungal properties, producing 40-hexopyranosyloxy-30-methoxyisonitrosoacetophenone...

  10. Studies on Rapidly Frozen Suspensions of Yeast Cells by Differential Thermal Analysis and Conductometry

    Science.gov (United States)

    Mazur, Peter

    1963-01-01

    Few, if any, yeast cells survived rapid cooling to -196°C and subsequent slow warming. After rapid freezing, the suspensions absorbed latent heat of fusion between -15° and 0°C during warming, and the relation between the amount of heat absorbed and the concentration of cells was the same as that in equivalent KCl solutions, indicating that frozen suspensions behave thermally like frozen solutions. The amount of heat absorbed was such that more than 80 per cent of the intracellular solution had to be frozen. The conductometric behavior of frozen suspensions showed that cell solutes were still inside the cells and surrounded by an intact cell membrane at the time heat was being absorbed. Two models are consistent with these findings. The first assumes that intracellular freezing has taken place; the second that all freezable water has left the cells and frozen externally. The latter model is ruled out because rapidly cooled cells do not shrink by an amount equal to the volume of water that would have to be withdrawn to prevent internal freezing. PMID:13934216

  11. Effects of Selected Physicochemical Parameters on Zerumbone Production of Zingiber zerumbet Smith Cell Suspension Culture.

    Science.gov (United States)

    Jalil, Mahanom; Annuar, Mohamad Suffian Mohamad; Tan, Boon Chin; Khalid, Norzulaani

    2015-01-01

    Zingiber zerumbet Smith is an important herb that contains bioactive phytomedicinal compound, zerumbone. To enhance cell growth and production of this useful compound, we investigated the growth conditions of cell suspension culture. Embryogenic callus generated from shoot bud was used to initiate cell suspension culture. The highest specific growth rate of cells was recorded when it was cultured in liquid Murashige and Skoog basal medium containing 3% sucrose with pH 5.7 and incubated under continuous shaking condition of 70 rpm for 16 h light and 8 h dark cycle at 24°C. Our results also revealed that the type of carbohydrate substrate, light regime, agitation speed, and incubation temperature could affect the production of zerumbone. Although the zerumbone produced in this study was not abundant compared to rhizome of Z. zerumbet, the possibility of producing zerumbone during early stage could serve as a model for subsequent improvement.

  12. Effects of Selected Physicochemical Parameters on Zerumbone Production of Zingiber zerumbet Smith Cell Suspension Culture

    Directory of Open Access Journals (Sweden)

    Mahanom Jalil

    2015-01-01

    Full Text Available Zingiber zerumbet Smith is an important herb that contains bioactive phytomedicinal compound, zerumbone. To enhance cell growth and production of this useful compound, we investigated the growth conditions of cell suspension culture. Embryogenic callus generated from shoot bud was used to initiate cell suspension culture. The highest specific growth rate of cells was recorded when it was cultured in liquid Murashige and Skoog basal medium containing 3% sucrose with pH 5.7 and incubated under continuous shaking condition of 70 rpm for 16 h light and 8 h dark cycle at 24°C. Our results also revealed that the type of carbohydrate substrate, light regime, agitation speed, and incubation temperature could affect the production of zerumbone. Although the zerumbone produced in this study was not abundant compared to rhizome of Z. zerumbet, the possibility of producing zerumbone during early stage could serve as a model for subsequent improvement.

  13. NMR water-proton spin-lattice relaxation time of human red blood cells and red blood cell suspensions

    International Nuclear Information System (INIS)

    Sullivan, S.G.; Rosenthal, J.S.; Winston, A.; Stern, A.

    1988-01-01

    NMR water-proton spin-lattice relaxation times were studied as probes of water structure in human red blood cells and red blood cell suspensions. Normal saline had a relaxation time of about 3000 ms while packed red blood cells had a relaxation time of about 500 ms. The relaxation time of a red blood cell suspension at 50% hematocrit was about 750 ms showing that surface charges and polar groups of the red cell membrane effectively structure extracellular water. Incubation of red cells in hypotonic saline increases relaxation time whereas hypertonic saline decreases relaxation time. Relaxation times varied independently of mean corpuscular volume and mean corpuscular hemoglobin concentration in a sample population. Studies with lysates and resealed membrane ghosts show that hemoglobin is very effective in lowering water-proton relaxation time whereas resealed membrane ghosts in the absence of hemoglobin are less effective than intact red cells. 9 refs.; 3 figs.; 1 table

  14. Characterization of technetium(vII) reduction by cell suspensions of thermophilic bacteria and archaea.

    Science.gov (United States)

    Chernyh, Nikolay A; Gavrilov, Sergei N; Sorokin, Vladimir V; German, Konstantin E; Sergeant, Claire; Simonoff, Monique; Robb, Frank; Slobodkin, Alexander I

    2007-08-01

    Washed cell suspensions of the anaerobic hyperthermophilic archaea Thermococcus pacificus and Thermoproteus uzoniensis and the anaerobic thermophilic gram-positive bacteria Thermoterrabacterium ferrireducens and Tepidibacter thalassicus reduced technetium [(99)Tc(VII)], supplied as soluble pertechnetate with molecular hydrogen as an electron donor, forming highly insoluble Tc(IV)-containing grayish-black precipitate. Apart from molecular hydrogen, T. ferrireducens reduced Tc(VII) with lactate, glycerol, and yeast extract as electron donors, and T. thalassicus reduced it with peptone. Scanning electron microscopy and X-ray microanalysis of cell suspensions of T. ferrireducens showed the presence of Tc-containing particles attached to the surfaces of non-lysed cells. This is the first report on the reduction in Tc(VII) by thermophilic microorganisms of the domain Bacteria and by archaea of the phylum Euryarchaeota.

  15. Enhancement of Shikonin Production in Suspension Cultures of Lithospermum erythrorhizon Cells by Gamma-irradiation

    International Nuclear Information System (INIS)

    Baek, Myung Hwa; Chung, Byung Yeoup; Kim, Jae Sung; An, Beyoung Chul; Lee, Young Bok

    2005-01-01

    The shikonin and several derivatives produced by the roots of Boraginacae family plants are purple compounds that have been used in several parts of the World as antimicrobial and antitumor agents in human pharmaceuticals. Shikonin has been reported as the most successful specimen of the mass production of plant secondary metabolites by cell suspension culture. Numerous studies have elucidated the regulation of production of these compounds in cell suspension cultures. It has known that ultrasonic and gamma irradiation can enhance the production of secondary metabolites. Thus, in present study, we investigate the effects of gamma-irradiation on the shikonin production and the key enzymes in the shikonin biosynthetic pathway of L. erythrorhizon cells

  16. Neuropharmacological and neuroprotective activities of some metabolites produced by cell suspension culture of Waltheria americana Linn.

    Science.gov (United States)

    Mundo, Jorge; Villeda-Hernández, Juana; Herrera-Ruiz, Maribel; Gutiérrez, María Del Carmen; Arellano-García, Jesús; León-Rivera, Ismael; Perea-Arango, Irene

    2017-10-01

    Waltheria americana is a plant used in Mexican traditional medicine to treat some nervous system disorders. The aims of the present study were to isolate and determine the neuropharmacological and neurprotective activities of metabolites produced by a cell suspension culture of Waltheria americana. Submerged cultivation of W. americana cells provided biomass. A methanol-soluble extract (WAsc) was obtained from biomass. WAsc was fractionated yielding the chromatographic fractions 4WAsc-H 2 O and WAsc-CH 2 Cl 2 . For the determination of anticonvulsant activity in vivo, seizures were induced in mice by pentylenetetrazol (PTZ). Neuropharmacological activities (release of gamma amino butyric acid (GABA) and neuroprotection) of chromatographic fractions were determined by in vitro histological analysis of brain sections of mice post mortem. Fraction 4WAsc-H 2 O (containing saccharides) did not produce neuronal damage, neurodegeneration, interstitial tissue edema, astrocytic activation, nor cell death. Pretreatment of animals with 4WAsc-H 2 O and WAsc-CH 2 Cl 2 from W. americana cell suspensions induced an increase in: GABA release, seizure latency, survival time, neuroprotection, and a decrease in the degree of severity of tonic/tonic-clonic convulsions, preventing PTZ-induced death of up to 100% of animals of study. Bioactive compounds produced in suspension cell culture of W. americana produce neuroprotective and neuropharmacological activities associated with the GABAergic neurotransmission system. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. Mevastatin-induced inhibition of cell growth in avocado suspension ...

    African Journals Online (AJOL)

    Research Centre for Plant Growth and Development, School of Agricultural Sciences and Agribusiness, University of .... source of regulatory molecules that modulate cell division .... nucellar tissue from embryo callus derived from seed of.

  18. Impact of fluidic agitation on human pluripotent stem cells in stirred suspension culture.

    Science.gov (United States)

    Nampe, Daniel; Joshi, Ronak; Keller, Kevin; Zur Nieden, Nicole I; Tsutsui, Hideaki

    2017-09-01

    The success of human pluripotent stem cells (hPSCs) as a source of future cell therapies hinges, in part, on the availability of a robust and scalable culture system that can readily produce a clinically relevant number of cells and their derivatives. Stirred suspension culture has been identified as one such promising platform due to its ease of use, scalability, and widespread use in the pharmaceutical industry (e.g., CHO cell-based production of therapeutic proteins) among others. However, culture of undifferentiated hPSCs in stirred suspension is a relatively new development within the past several years, and little is known beyond empirically optimized culture parameters. In particular, detailed characterizations of different agitation rates and their influence on the propagation of hPSCs are often not reported in the literature. In the current study, we systematically investigated various agitation rates to characterize their impact on cell yield, viability, and the maintenance of pluripotency. Additionally, we closely examined the distribution of cell aggregates and how the observed culture outcomes are attributed to their size distribution. Overall, our results showed that moderate agitation maximized the propagation of hPSCs to approximately 38-fold over 7 days by keeping the cell aggregates below the critical size, beyond which the cells are impacted by the diffusion limit, while limiting cell death caused by excessive fluidic forces. Furthermore, we observed that fluidic agitation could regulate not only cell aggregation, but also expression of some key signaling proteins in hPSCs. This indicates a new possibility to guide stem cell fate determination by fluidic agitation in stirred suspension cultures. Biotechnol. Bioeng. 2017;114: 2109-2120. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  19. Experiment of amnion epithelial cell suspension liquid used for acute rabbit corneal alkali burn

    Directory of Open Access Journals (Sweden)

    Yan-Yan Zhang

    2017-10-01

    Full Text Available AIM: To investigate the effects of amnion epithelial cell(AECsuspension liquid on the biological behavior of the rabbit's corneal epithelium, combined with the in vitro and in vivo experiments. METHODS: The rabbit's corneal epithelium were cultured in the lower chamber of transwell, and AEC suspension liquid was dropwised in the upper chamber. There was only culture medium in the upper chamber of the control group. The proliferation of rabbit's corneal epithelium was observed with CCK-8 automated colorimetry and the expression of PCNA was detected by immunocytochemistry. We used the scratch wound assay to detect the migration of corneal epithelial cell(CEC. The in vivo models were established by placing a 10mm diameter corneal trephine in the center of the cornea, within 1mol/L NaOH for 1min. We divided those into three groups: treatment group of AEC suspension liquid eye drop, AEC suspension liquid subconjunctival injection and the control group without any treatment. Using the slit-lamp biomicroscope and fluorescence staining to observe the cornea per week. After 28d we took the eyeballs with the HE staining. The expression of VEGF was detected by immunohistochemistry. RESULTS: The activity of CEC with AEC treatment was much higher than the control group(PPIn vivo, the inflammation of the corneal and the CNV of the AEC group were all significantly reduced compared with the control group(PPCONCLUSION: AEC suspension liquid can promote the proliferation and migration of the rabbit's corneal epithelium. The potential of AEC suspension liquid as a therapy for acute corneal alkali burn.

  20. A photonic crystal hydrogel suspension array for the capture of blood cells from whole blood

    Science.gov (United States)

    Zhang, Bin; Cai, Yunlang; Shang, Luoran; Wang, Huan; Cheng, Yao; Rong, Fei; Gu, Zhongze; Zhao, Yuanjin

    2016-02-01

    Diagnosing hematological disorders based on the separation and detection of cells in the patient's blood is a significant challenge. We have developed a novel barcode particle-based suspension array that can simultaneously capture and detect multiple types of blood cells. The barcode particles are polyacrylamide (PAAm) hydrogel inverse opal microcarriers with characteristic reflection peak codes that remain stable during cell capture on their surfaces. The hydrophilic PAAm hydrogel scaffolds of the barcode particles can entrap various plasma proteins to capture different cells in the blood, with little damage to captured cells.Diagnosing hematological disorders based on the separation and detection of cells in the patient's blood is a significant challenge. We have developed a novel barcode particle-based suspension array that can simultaneously capture and detect multiple types of blood cells. The barcode particles are polyacrylamide (PAAm) hydrogel inverse opal microcarriers with characteristic reflection peak codes that remain stable during cell capture on their surfaces. The hydrophilic PAAm hydrogel scaffolds of the barcode particles can entrap various plasma proteins to capture different cells in the blood, with little damage to captured cells. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06368j

  1. Quantitative proteome changes in Arabidopsis thaliana suspension-cultured cells in response to plant natriuretic peptides

    KAUST Repository

    Turek, Ilona; Wheeler, Janet I.; Gehring, Christoph A; Irving, Helen R.; Marondedze, Claudius

    2015-01-01

    Proteome changes in the Arabidopsis thaliana suspension cells in response to the A. thaliana plant natriuretic peptide (PNP), AtPNP-A (At2g18660) were assessed using quantitative proteomics employing tandem mass tag (TMT) labeling and tandem mass spectrometry (LC–MS/MS). In this study, we characterized temporal responses of suspension-cultured cells to 1 nM and 10 pM AtPNP-A at 0, 10 and 30 min post-treatment. Both concentrations we found to yield a distinct differential proteome signature. The data shown in this article are associated with the article “Plant natriuretic peptides induce a specific set of proteins diagnostic for an adaptive response to abiotic stress” by Turek et al. (Front. Plant Sci. 5 (2014) 661) and have been deposited to the ProteomeXchange with identifier PXD001386.

  2. Quantitative proteome changes in Arabidopsis thaliana suspension-cultured cells in response to plant natriuretic peptides

    KAUST Repository

    Turek, Ilona

    2015-06-30

    Proteome changes in the Arabidopsis thaliana suspension cells in response to the A. thaliana plant natriuretic peptide (PNP), AtPNP-A (At2g18660) were assessed using quantitative proteomics employing tandem mass tag (TMT) labeling and tandem mass spectrometry (LC–MS/MS). In this study, we characterized temporal responses of suspension-cultured cells to 1 nM and 10 pM AtPNP-A at 0, 10 and 30 min post-treatment. Both concentrations we found to yield a distinct differential proteome signature. The data shown in this article are associated with the article “Plant natriuretic peptides induce a specific set of proteins diagnostic for an adaptive response to abiotic stress” by Turek et al. (Front. Plant Sci. 5 (2014) 661) and have been deposited to the ProteomeXchange with identifier PXD001386.

  3. Expression of a highly basic peroxidase gene in NaCl-adapted tomato cell suspensions.

    Science.gov (United States)

    Medina, M I; Botella, M A; Quesada, M A; Valpuesta, V

    1997-05-05

    A tomato peroxidase gene, TPX2, that is only weakly expressed in the roots of young tomato seedlings is highly expressed in tomato suspension cells adapted to high external NaCl concentration. The protein encoded by this gene, with an isolectric point value of approximately 9.6, is found in the culture medium of the growing cells. Our data suggest that the expression of TPX2 in the salt-adapted cells is not the result of the elicitation imposed by the in vitro culture or the presence of high NaCl concentration in the medium.

  4. Predominance of membrane damage in yeast cells in suspension with monochromatic 163-nm vacuum ultraviolet light

    International Nuclear Information System (INIS)

    Ito, T.; Ito, A.

    1980-01-01

    Effects of monochromatic 163-nm ultraviolet light on aqueous suspensions of yeast cells were studied under N 2 and O 2 bubbling conditions. This is a continuation of previous attempts at using a bromine resonance lamp immersed in cell suspension as a means of treating cells with water radicals (163-nm photons decompose water molecules into H atoms and OH' radicals). We found that inactivation occurred only under O 2 bubbling. Genetic changes were induced, but this was attributed to the effects of far-uv components which contaminate the emission. A characteristic feature of the vacuum uv inactivation was a decrease in survival when cells were held in liquid after irradiation. The presence of p-nitrosodimethylaniline (a known OH' scavenger) during irradiation prevented the O 2 -dependent enhancement of inactivation. Cells irradiated under N 2 bubbling showed no such enhancement. Thus, the fast access of oxygen is a necessary condition for fixing initial damage. Initial damage of this type seems to be amplified during subsequent incubation, causing further killing. Cells irradiated under N 2 bubbling were not, however, free of damage, since dye permeability across the cell membrane of irradiated samples increased markedly with both N 2 and O 2 as tested by photodynamic induction of genetic changes using normally unpenetrable dye as a sensitizer. Spectrophotometric evidence for the presence of toluidine blue in the irradiated cells are also presented

  5. [Determination of Azospirillum Brasilense Cells With Bacteriophages via Electrooptical Analysis of Microbial Suspensions].

    Science.gov (United States)

    Gulii, O I; Karavayeva, O A; Pavlii, S A; Sokolov, O I; Bunin, V D; Ignatov, O V

    2015-01-01

    The dependence-of changes in the electrooptical properties of Azospirillum brasilense cell suspension Sp7 during interaction with bacteriophage ΦAb-Sp7 on the number and time of interactions was studied. Incubation of cells with bacteriophage significantly changed the electrooptical signal within one minute. The selective effect of bacteriophage ΦAb on 18 strains of bacteria of the genus Azospirillum was studied: A. amazonense Ami4, A. brasilense Sp7, Cd, Sp107, Sp245, Jm6B2, Brl4, KR77, S17, S27, SR55, SR75, A. halopraeferans Au4, A. irakense KBC1, K A3, A. lipoferum Sp59b, SR65 and RG20a. We determined the limit of reliable determination of microbial cells infected with bacteriophage: - 10(4) cells/mL. The presence of foreign cell cultures of E. coli B-878 and E. coli XL-1 did not complicate the detection of A brasilense Sp7 cells with the use of bacteriophage ΦAb-Sp7. The results demonstrated that bacteriophage (ΦAb-Sp7 can be used for the detection of Azospirillum microbial cells via t electrooptical analysis of cell suspensions.

  6. Nanometer-scale sizing accuracy of particle suspensions on an unmodified cell phone using elastic light scattering.

    Science.gov (United States)

    Smith, Zachary J; Chu, Kaiqin; Wachsmann-Hogiu, Sebastian

    2012-01-01

    We report on the construction of a Fourier plane imaging system attached to a cell phone. By illuminating particle suspensions with a collimated beam from an inexpensive diode laser, angularly resolved scattering patterns are imaged by the phone's camera. Analyzing these patterns with Mie theory results in predictions of size distributions of the particles in suspension. Despite using consumer grade electronics, we extracted size distributions of sphere suspensions with better than 20 nm accuracy in determining the mean size. We also show results from milk, yeast, and blood cells. Performing these measurements on a portable device presents opportunities for field-testing of food quality, process monitoring, and medical diagnosis.

  7. Nanometer-scale sizing accuracy of particle suspensions on an unmodified cell phone using elastic light scattering.

    Directory of Open Access Journals (Sweden)

    Zachary J Smith

    Full Text Available We report on the construction of a Fourier plane imaging system attached to a cell phone. By illuminating particle suspensions with a collimated beam from an inexpensive diode laser, angularly resolved scattering patterns are imaged by the phone's camera. Analyzing these patterns with Mie theory results in predictions of size distributions of the particles in suspension. Despite using consumer grade electronics, we extracted size distributions of sphere suspensions with better than 20 nm accuracy in determining the mean size. We also show results from milk, yeast, and blood cells. Performing these measurements on a portable device presents opportunities for field-testing of food quality, process monitoring, and medical diagnosis.

  8. High level of expression of recombinant human granulocyte-macrophage colony stimulating factor in transgenic rice cell suspension culture

    DEFF Research Database (Denmark)

    Shin, Yun-Ji; Hong, Shin-Young; Kwon, Tae-Ho

    2003-01-01

    Recombinant human granulocyte-macrophage colony stimulating factor (hGM-CSF) has been previously produced in tobacco cell suspension cultures. However, the amount of hGM-CSF accumulated in the culture medium dropped quickly from its maximum of 150 microg/L at 5 d after incubation. To overcome...... of recombinant hGM-CSF in transgenic rice cell suspension culture and protease activity of this culture medium was low compared to that of tobacco culture system....

  9. Rotational magnetic pulses enhance the magnetofection efficiency in vitro in adherent and suspension cells

    International Nuclear Information System (INIS)

    Dahmani, Ch.; Mykhaylyk, O.; Helling, Fl.; Götz, St.; Weyh, Th.; Herzog, H.-G.; Plank, Ch.

    2013-01-01

    The association of magnetic nanoparticles with gene delivery vectors in combination with the use of gradient magnetic fields (magnetofection) enables improved and synchronised gene delivery to cells. In this paper, we report a system comprising rotating permanent magnets to generate defined magnetic field pulses with frequencies from 2.66 to 133 Hz and a field amplitude of 190 or 310 mT at the location of the cells. Low-frequency pulses of 2.66–10 Hz with a magnetic flux density of 190 mT were applied to the examined cells for 30–120 s after magnetofection. These pulses resulted in a 1.5–1.9-fold enhancement in the transfection efficiency compared with magnetofection with only a static magnetic field in both adherent and suspension cells. The magnetic field amplitudes of 190 and 310 mT had similar effects on the transfection efficacy. No increase in the percentage of transgene-expressing suspension cells and no cytotoxic effects (based on the results of the MTT assay) were observed after applying alternating magnetic fields. - Highlights: ► We developed a magnetic system capable of generating defined magnetic pulses based on permanent magnets. ► The main advantage of the system is the lack of heat-induced fluctuations in the working parameters. ► Our system succeeded in enhancing the transfection of adherent human lung epithelial cells and human suspension cells. ► The enhancement in the transfection efficiency compared with static magnetic field is due to the magnetic field pulses. ► The approach could be used as a complementary method for drug targeting

  10. Generation of Neural Progenitor Spheres from Human Pluripotent Stem Cells in a Suspension Bioreactor.

    Science.gov (United States)

    Yan, Yuanwei; Song, Liqing; Tsai, Ang-Chen; Ma, Teng; Li, Yan

    2016-01-01

    Conventional two-dimensional (2-D) culture systems cannot provide large numbers of human pluripotent stem cells (hPSCs) and their derivatives that are demanded for commercial and clinical applications in in vitro drug screening, disease modeling, and potentially cell therapy. The technologies that support three-dimensional (3-D) suspension culture, such as a stirred bioreactor, are generally considered as promising approaches to produce the required cells. Recently, suspension bioreactors have also been used to generate mini-brain-like structure from hPSCs for disease modeling, showing the important role of bioreactor in stem cell culture. This chapter describes a detailed culture protocol for neural commitment of hPSCs into neural progenitor cell (NPC) spheres using a spinner bioreactor. The basic steps to prepare hPSCs for bioreactor inoculation are illustrated from cell thawing to cell propagation. The method for generating NPCs from hPSCs in the spinner bioreactor along with the static control is then described. The protocol in this study can be applied to the generation of NPCs from hPSCs for further neural subtype specification, 3-D neural tissue development, or potential preclinical studies or clinical applications in neurological diseases.

  11. Biochemical precursor effects on the fatty acid production in cell suspension cultures of Theobroma cacao L.

    Science.gov (United States)

    Parra, O; Gallego, A M; Urrea, A; Rojas, L F; Correa, C; Atehortúa, L

    2017-02-01

    Cocoa butter (CB) is composed of 96% palmitic, stearic, oleic, linoleic and linolenic fatty acids that are responsible for the hardness, texture and fusion properties of chocolate. Through in vitro plant cell culture it is possible to modify CB lipid profiles and to study the fatty acid biosynthesis pathway on a subcellular level, evaluating fundamental aspects to enhance in vitro fatty acid production in a specific and controlled way. In this research, culture media was supplemented with acetate, biotin, pyruvate, bicarbonate and glycerol at three different concentrations and the effects on the biomass production (g/L), cell viability, and fatty acids profile and production was evaluated in in vitro cell suspensions culture. It was found that biotin stimulated fatty acid synthesis without altering cell viability and cell growth. It was also evident a change in the lipid profile of cell suspensions, increasing middle and long chain fatty acids proportion, which are unusual to those reported in seeds; thus implying that it is possible to modify lipid profiles according to the treatment used. According to the results of sucrose gradients and enzyme assays performed, it is proposed that cacao cells probably use the pentose phosphate pathway, mitochondria being the key organelle in the carbon flux for the synthesis of reductant power and fatty acid precursors. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  12. Aggregate formation and suspension culture of human pluripotent stem cells and differentiated progeny.

    Science.gov (United States)

    Hookway, Tracy A; Butts, Jessica C; Lee, Emily; Tang, Hengli; McDevitt, Todd C

    2016-05-15

    Culture of human pluripotent stem cells (hPSC) as in vitro multicellular aggregates has been increasingly used as a method to model early embryonic development. Three-dimensional assemblies of hPSCs facilitate interactions between cells and their microenvironment to promote morphogenesis, analogous to the multicellular organization that accompanies embryogenesis. In this paper, we describe a method for reproducibly generating and maintaining populations of homogeneous three-dimensional hPSC aggregates using forced aggregation and rotary orbital suspension culture. We propose solutions to several challenges associated with the consistent formation and extended culture of cell spheroids generated from hPSCs and their differentiated progeny. Further, we provide examples to demonstrate how aggregation can be used as a tool to select specific subpopulations of cells to create homotypic spheroids, or as a means to introduce multiple cell types to create heterotypic tissue constructs. Finally, we demonstrate that the aggregation and rotary suspension method can be used to support culture and maintenance of hPSC-derived cell populations representing each of the three germ layers, underscoring the utility of this platform for culturing many different cell types. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Effect of Magnetic Nanoparticles on Tobacco BY-2 Cell Suspension Culture

    Science.gov (United States)

    Krystofova, Olga; Sochor, Jiri; Zitka, Ondrej; Babula, Petr; Kudrle, Vit; Adam, Vojtech; Kizek, Rene

    2012-01-01

    Nanomaterials are structures whose exceptionality is based on their large surface, which is closely connected with reactivity and modification possibilities. Due to these properties nanomaterials are used in textile industry (antibacterial textiles with silver nanoparticles), electronics (high-resolution imaging, logical circuits on the molecular level) and medicine. Medicine represents one of the most important fields of application of nanomaterials. They are investigated in connection with targeted therapy (infectious diseases, malignant diseases) or imaging (contrast agents). Nanomaterials including nanoparticles have a great application potential in the targeted transport of pharmaceuticals. However, there are some negative properties of nanoparticles, which must be carefully solved, as hydrophobic properties leading to instability in aqueous environment, and especially their possible toxicity. Data about toxicity of nanomaterials are still scarce. Due to this fact, in this work we focused on studying of the effect of magnetic nanoparticles (NPs) and modified magnetic nanoparticles (MNPs) on tobacco BY-2 plant cell suspension culture. We aimed at examining the effect of NPs and MNPs on growth, proteosynthesis—total protein content, thiols—reduced (GSH) and oxidized (GSSG) glutathione, phytochelatins PC2-5, glutathione S-transferase (GST) activity and antioxidant activity of BY-2 cells. Whereas the effect of NPs and MNPs on growth of cell suspension culture was only moderate, significant changes were detected in all other biochemical parameters. Significant changes in protein content, phytochelatins levels and GST activity were observed in BY-2 cells treated with MNPs nanoparticles treatment. Changes were also clearly evident in the case of application of NPs. Our results demonstrate the ability of MNPs to negatively affect metabolism and induce biosynthesis of protective compounds in a plant cell model represented by BY-2 cell suspension culture. The

  14. Induction of phytic acid synthesis by abscisic acid in suspension-cultured cells of rice.

    Science.gov (United States)

    Matsuno, Koya; Fujimura, Tatsuhito

    2014-03-01

    A pathway of phytic acid (PA) synthesis in plants has been revealed via investigations of low phytic acid mutants. However, the regulation of this pathway is not well understood because it is difficult to control the environments of cells in the seeds, where PA is mainly synthesized. We modified a rice suspension culture system in order to study the regulation of PA synthesis. Rice cells cultured with abscisic acid (ABA) accumulate PA at higher levels than cells cultured without ABA, and PA accumulation levels increase with ABA concentration. On the other hand, higher concentrations of sucrose or inorganic phosphorus do not affect PA accumulation. Mutations in the genes RINO1, OsMIK, OsIPK1 and OsLPA1 have each been reported to confer low phytic acid phenotypes in seeds. Each of these genes is upregulated in cells cultured with ABA. OsITPK4 and OsITPK6 are upregulated in cells cultured with ABA and in developing seeds. These results suggest that the regulation of PA synthesis is similar between developing seeds and cells in this suspension culture system. This system will be a powerful tool for elucidating the regulation of PA synthesis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  15. Enhancement effect of shikonin in cell suspension culture and transfermanant culture by radiation application

    International Nuclear Information System (INIS)

    Kim, Jae Sung; Lee, Young Keun; Chung, Byung Yeoup; Lee, Young Bok; Hwang Hye Yeon

    2004-10-01

    The cell lines 679, 679-29 and 622-46 of L. erythrorhizon could be selected on LS agar medium for the production shikonin in cell suspension culture. The shikonin was increased moderately in suspension culture of cell line 622-46 in LS liquid medium containing BA 2 mg·L -1 and IAA 0.2 mg·L -1 in the dark, and was increased by adding 1 μM Cu 2+ and 100 μM methyl jasmonate The accumulation of shikonin in the liquid medium was increased significantly by 2 Gy irradiation to callus of cell line 622-46 and culture in LS liquid medium containing BA 2 mg·L -1 and IAA 0.2 mg·L -1 in the dark and shikonin in cell debris was higher by 16 Gy irradiation. The activity of p-hydroxybenzoate geranyltransferase was increased by irradiation of 2 Gy and 16 Gy of γ radiation. Seedling hypocotyles of L. erythrorhizon were infected with Agrogacterium rhizogenes strain 15834 harboring a binary vector with an intron bearing the GUS (β-glucuronidase) gene driven by cauliflower mosaic virus (CaMV) 35S promotor as well as the HPT (hygromycin phosphotransferase) gene as the selection marker. Hairy roots isolated were hygromycin resistant and had integrated GUS gene in DNA. The root tip grown on M-9 medium showed normal pigment production pattern in border cells and root hairs

  16. Cytoplasmic Acidification and Secondary Metabolite Production in Different Plant Cell Suspensions (A Comparative Study).

    Science.gov (United States)

    Hagendoorn, MJM.; Wagner, A. M.; Segers, G.; Van Der Plas, LHW.; Oostdam, A.; Van Walraven, H. S.

    1994-10-01

    In this study, a correlation is described between low cytoplasmic pH, measured with the fluorescent probes 2[prime],7[prime]-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (acetoxymethyl ester) and bis- [3-propyl-5-oxoisoxazol-4-yl]pentamethine oxonol, and the production of secondary metabolites for several plant cell-suspension systems. Anthraquinone production in Morinda citrifolia suspensions is negligible in the presence of 2,4-dichlorophenoxyacetic acid (2,4-D), whereas with naphthalene acetic acid (NAA) a significant accumulation is realized. NAA-grown cells showed a lower cytoplasmic pH than did 2,4-D-grown cells. Addition of 2,4-D or parachlorophenoxy acetic acid to NAA-grown cells resulted in an inhibition of anthraquinone production and an increase of the cytoplasmic pH, whereas addition of parachlorophenyl acetic acid had no effect on either parameter. Lignin production in Petunia hybrida cells could be induced by subculturing them in a medium without iron. These cells showed a lower cytoplasmic pH than control cells. Addition of Fe3+ led to a decreased lignin content and an increased cytoplasmic pH. Two cell lines of Linum flavum showed a different level of coniferin and lignin concentration in their cells. Cells that accumulated coniferin and lignin had a lower cytoplasmic pH than cells that did not accumulate these secondary metabolites. Apparently, in different species and after different kinds of treatment there is a correlation between acidification of the cytoplasm and the production of different secondary metabolites. The possible role of this acidification in secondary metabolite production is discussed.

  17. Rapid preparation of a noncultured skin cell suspension that promotes wound healing.

    Science.gov (United States)

    Yoon, Cheonjae; Lee, Jungsuk; Jeong, Hyosun; Lee, Sungjun; Sohn, Taesik; Chung, Sungphil

    2017-06-01

    Autologous skin cell suspensions have been used for wound healing in patients with burns and against normal pigmentation in vitiligo. To separate cells and the extracellular matrix from skin tissue, most researchers use enzymatic digestion. Therefore, this process is difficult to perform during a routine surgical procedure. We aimed to prepare a suspension of noncultured autologous skin cells (NCSCs) using a tissue homogenizer as a new method instead of harsh biochemical reagents. The potential clinical applicability of NCSCs was analyzed using a nude-rat model of burn healing. After optimization of the homogenizer settings, cell viability ranged from 52 to 89%. Scanning electron microscopy showed evidence of keratinocyte-like cell morphology, and several growth factors, including epidermal growth factor and basic fibroblast growth factor, were present in the NCSCs. The rat model revealed that NCSCs accelerated skin regeneration. NCSCs could be generated using a tissue homogenizer for enhancement of wound healing in vivo. In the NCSC group of wounds, on day 7 of epithelialization, granulation was observed, whereas on day 14, there was a significant increase in skin adnexa regeneration as compared to the control group (PBS treatment; p study suggests that the proposed process is rapid and does not require the use of biochemical agents. Thus, we recommend a combination of surgical treatment with the new therapy for a burn as an effective method.

  18. A population balance equation model of aggregation dynamics in Taxus suspension cell cultures.

    Science.gov (United States)

    Kolewe, Martin E; Roberts, Susan C; Henson, Michael A

    2012-02-01

    The nature of plant cells to grow as multicellular aggregates in suspension culture has profound effects on bioprocess performance. Recent advances in the measurement of plant cell aggregate size allow for routine process monitoring of this property. We have exploited this capability to develop a conceptual model to describe changes in the aggregate size distribution that are observed over the course of a Taxus cell suspension batch culture. We utilized the population balance equation framework to describe plant cell aggregates as a particulate system, accounting for the relevant phenomenological processes underlying aggregation, such as growth and breakage. We compared model predictions to experimental data to select appropriate kernel functions, and found that larger aggregates had a higher breakage rate, biomass was partitioned asymmetrically following a breakage event, and aggregates grew exponentially. Our model was then validated against several datasets with different initial aggregate size distributions and was able to quantitatively predict changes in total biomass and mean aggregate size, as well as actual size distributions. We proposed a breakage mechanism where a fraction of biomass was lost upon each breakage event, and demonstrated that even though smaller aggregates have been shown to produce more paclitaxel, an optimum breakage rate was predicted for maximum paclitaxel accumulation. We believe this is the first model to use a segregated, corpuscular approach to describe changes in the size distribution of plant cell aggregates, and represents an important first step in the design of rational strategies to control aggregation and optimize process performance. Copyright © 2011 Wiley Periodicals, Inc.

  19. Comparison of Cuminaldehyde Contents from Cell Suspension Cultures and Seeds of [Bunium persicum (Boiss. B. Fedtsch.

    Directory of Open Access Journals (Sweden)

    Sara KHOSRAVINIA

    2012-11-01

    Full Text Available The cell suspension culture and seed samples of Bunium persicum were extracted by supercritical fluid, hydrodistillation and solvent methods and analyzed by Gas Chromatography. In this study to compare the different methods of extractions, cuminaldehyde was targeted as one of the Black zira essential oil constitute. For callus induction the germinated seeds were cultured as explants on Murashige and Skoog medium supplemented with 2 mg/l 2,4-dichlorophenoxy acetic acid and 0.5 mg/l kinetin (treatment A as well as 2 mg/l ?-naphthalene acetic acid and 0.5 mg/l 6-benzyl aminopurine (treatment B and followed by cells suspension cultures establishment for the first time. The results of cell culture showed that cells from treatment B have a growth rate higher than A. All extracts were dissolved in 1 ml hexane and analyzed by Gas Chromatography. According to the Gas Chromatography analysis, cuminaldehyde was not detected in the supercritical fluid samples, while it was present in hydrodistillation and solvent extract. Cuminaldehyde percentage in cell and seed solvent extracts was 4.65% and 18.61% respectively. Gas Chromatography results also showed that no cuminaldehyde is present in media extracts, means no cuminaldehyde has been secreted into the medium.

  20. Suspension Matrices for Improved Schwann-Cell Survival after Implantation into the Injured Rat Spinal Cord

    Science.gov (United States)

    Patel, Vivek; Joseph, Gravil; Patel, Amit; Patel, Samik; Bustin, Devin; Mawson, David; Tuesta, Luis M.; Puentes, Rocio; Ghosh, Mousumi

    2010-01-01

    Abstract Trauma to the spinal cord produces endogenously irreversible tissue and functional loss, requiring the application of therapeutic approaches to achieve meaningful restoration. Cellular strategies, in particular Schwann-cell implantation, have shown promise in overcoming many of the obstacles facing successful repair of the injured spinal cord. Here, we show that the implantation of Schwann cells as cell suspensions with in-situ gelling laminin:collagen matrices after spinal-cord contusion significantly enhances long-term cell survival but not proliferation, as well as improves graft vascularization and the degree of axonal in-growth over the standard implantation vehicle, minimal media. The use of a matrix to suspend cells prior to implantation should be an important consideration for achieving improved survival and effectiveness of cellular therapies for future clinical application. PMID:20144012

  1. Uptake and metabolism of sugars by suspension-cultured catharanthus roseus cells

    International Nuclear Information System (INIS)

    Ashihara, Hiroshi; Sagishima, Kyoko; Kubota, Kaoru

    1989-01-01

    The Uptake and metabolism of sugars by suspension-cultured Catharanthus roseus cells were investigated. Substantially all the sucrose in the culture medium was hydrolyzed to glucose and fructose before being taken up by the cells. The activity of invertase bound to cell walls, determined in situ, was high at the early stage of culture. Glucose was more easily taken up by the cells than was fructose. Tracer experiments using [U- 14 C]glucose and [U- 14 C]fructose indicated that glucose is a better precursor for respiration than fructose, while fructose is preferentially utilized for the synthesis of sucrose, especially in the early phase of cell growth. These results suggest that fructose is utilized for the synthesis of sucrose via the reaction catalyzed by sucrose synthase, prior to the phosphorylation by hexokinase or fructokinase

  2. Microbial fuel cell: A green technology

    International Nuclear Information System (INIS)

    Jong Bor Chyan; Liew Pauline Woan Ying; Muhamad Lebai Juri; Ahmad Zainuri Mohd Dzomir; Leo Kwee Wah; Mat Rasol Awang

    2010-01-01

    Microbial Fuel Cell (MFC) was developed which was able to generate bio energy continuously while consuming wastewater containing organic matters. Even though the bio energy generated is not as high as hydrogen fuel cell, the MFC demonstrated great potential in bio-treating wastewater while using it as fuel source. Thus far, the dual-ability of the MFC to generate bio energy and bio-treating organic wastewater has been examined successfully using synthetic acetate and POME wastewaters. (author)

  3. Simple suspension culture system of human iPS cells maintaining their pluripotency for cardiac cell sheet engineering.

    Science.gov (United States)

    Haraguchi, Yuji; Matsuura, Katsuhisa; Shimizu, Tatsuya; Yamato, Masayuki; Okano, Teruo

    2015-12-01

    In this study, a simple three-dimensional (3D) suspension culture method for the expansion and cardiac differentiation of human induced pluripotent stem cells (hiPSCs) is reported. The culture methods were easily adapted from two-dimensional (2D) to 3D culture without any additional manipulations. When hiPSCs were directly applied to 3D culture from 2D in a single-cell suspension, only a few aggregated cells were observed. However, after 3 days, culture of the small hiPSC aggregates in a spinner flask at the optimal agitation rate created aggregates which were capable of cell passages from the single-cell suspension. Cell numbers increased to approximately 10-fold after 12 days of culture. The undifferentiated state of expanded hiPSCs was confirmed by flow cytometry, immunocytochemistry and quantitative RT-PCR, and the hiPSCs differentiated into three germ layers. When the hiPSCs were subsequently cultured in a flask using cardiac differentiation medium, expression of cardiac cell-specific genes and beating cardiomyocytes were observed. Furthermore, the culture of hiPSCs on Matrigel-coated dishes with serum-free medium containing activin A, BMP4 and FGF-2 enabled it to generate robust spontaneous beating cardiomyocytes and these cells expressed several cardiac cell-related genes, including HCN4, MLC-2a and MLC-2v. This suggests that the expanded hiPSCs might maintain the potential to differentiate into several types of cardiomyocytes, including pacemakers. Moreover, when cardiac cell sheets were fabricated using differentiated cardiomyocytes, they beat spontaneously and synchronously, indicating electrically communicative tissue. This simple culture system might enable the generation of sufficient amounts of beating cardiomyocytes for use in cardiac regenerative medicine and tissue engineering. Copyright © 2013 John Wiley & Sons, Ltd.

  4. Gene Inactivation by CRISPR-Cas9 in Nicotiana tabacum BY-2 Suspension Cells.

    Science.gov (United States)

    Mercx, Sébastien; Tollet, Jérémie; Magy, Bertrand; Navarre, Catherine; Boutry, Marc

    2016-01-01

    Plant suspension cells are interesting hosts for the heterologous production of pharmacological proteins such as antibodies. They have the advantage to facilitate the containment and the application of good manufacturing practices. Furthermore, antibodies can be secreted to the extracellular medium, which makes the purification steps much simpler. However, improvements are still to be made regarding the quality and the production yield. For instance, the inactivation of proteases and the humanization of glycosylation are both important targets which require either gene silencing or gene inactivation. To this purpose, CRISPR-Cas9 is a very promising technique which has been used recently in a series of plant species, but not yet in plant suspension cells. Here, we sought to use the CRISPR-Cas9 system for gene inactivation in Nicotiana tabacum BY-2 suspension cells. We transformed a transgenic line expressing a red fluorescent protein (mCherry) with a binary vector containing genes coding for Cas9 and three guide RNAs targeting mCherry restriction sites, as well as a bialaphos-resistant (bar) gene for selection. To demonstrate gene inactivation in the transgenic lines, the mCherry gene was PCR-amplified and analyzed by electrophoresis. Seven out of 20 transformants displayed a shortened fragment, indicating that a deletion occurred between two target sites. We also analyzed the transformants by restriction fragment length polymorphism and observed that the three targeted restriction sites were hit. DNA sequencing of the PCR fragments confirmed either deletion between two target sites or single nucleotide deletion. We therefore conclude that CRISPR-Cas9 can be used in N. tabacum BY2 cells.

  5. Dynamic changes in transcriptome and cell wall composition underlying brassinosteroid-mediated lignification of switchgrass suspension cells.

    Science.gov (United States)

    Rao, Xiaolan; Shen, Hui; Pattathil, Sivakumar; Hahn, Michael G; Gelineo-Albersheim, Ivana; Mohnen, Debra; Pu, Yunqiao; Ragauskas, Arthur J; Chen, Xin; Chen, Fang; Dixon, Richard A

    2017-01-01

    Plant cell walls contribute the majority of plant biomass that can be used to produce transportation fuels. However, the complexity and variability in composition and structure of cell walls, particularly the presence of lignin, negatively impacts their deconstruction for bioenergy. Metabolic and genetic changes associated with secondary wall development in the biofuel crop switchgrass ( Panicum virgatum ) have yet to be reported. Our previous studies have established a cell suspension system for switchgrass, in which cell wall lignification can be induced by application of brassinolide (BL). We have now collected cell wall composition and microarray-based transcriptome profiles for BL-induced and non-induced suspension cultures to provide an overview of the dynamic changes in transcriptional reprogramming during BL-induced cell wall modification. From this analysis, we have identified changes in candidate genes involved in cell wall precursor synthesis, cellulose, hemicellulose, and pectin formation and ester-linkage generation. We have also identified a large number of transcription factors with expression correlated with lignin biosynthesis genes, among which are candidates for control of syringyl (S) lignin accumulation. Together, this work provides an overview of the dynamic compositional changes during brassinosteroid-induced cell wall remodeling, and identifies candidate genes for future plant genetic engineering to overcome cell wall recalcitrance.

  6. Electrochemical performance of solid oxide fuel cells having electrolytes made by suspension and solution precursor plasma spraying

    Science.gov (United States)

    Marr, M.; Kuhn, J.; Metcalfe, C.; Harris, J.; Kesler, O.

    2014-01-01

    Yttria-stabilized zirconia (YSZ) electrolytes were deposited by suspension plasma spraying (SPS) and solution precursor plasma spraying (SPPS). The electrolytes were evaluated for permeability, microstructure, and electrochemical performance. With SPS, three different suspensions were tested to explore the influence of powder size distribution and liquid properties. Electrolytes made from suspensions of a powder with d50 = 2.6 μm were more gas-tight than those made from suspensions of a powder with d50 = 0.6 μm. A peak open circuit voltage of 1.00 V was measured at 750 °C with a cell with an electrolyte made from a suspension of d50 = 2.6 μm powder. The use of a flammable suspension liquid was beneficial for improving electrolyte conductivity when using lower energy plasmas, but the choice of liquid was less important when using higher energy plasmas. With SPPS, peak electrolyte conductivities were comparable to the peak conductivities of the SPS electrolytes. However, leak rates through the SPPS electrolytes were higher than those through the electrolytes made from suspensions of d50 = 2.6 μm powder. The electrochemical test data on SPPS electrolytes are the first reported in the literature.

  7. Enhanced Production of Anthraquinones and Phenolic Compounds and Biological Activities in the Cell Suspension Cultures of Polygonum multiflorum

    Directory of Open Access Journals (Sweden)

    Muthu Thiruvengadam

    2016-11-01

    Full Text Available Anthraquinones (AQs and phenolic compounds are important phytochemicals that are biosynthesized in cell suspension cultures of Polygonum multiflorum. We wanted to optimize the effects of plant growth regulators (PGRs, media, sucrose, l-glutamine, jasmonic acid (JA, and salicylic acid (SA for the production of phytochemicals and biomass accumulation in a cell suspension culture of P. multiflorum. The medium containing Murashige and Skoog (MS salts and 4% sucrose supplemented with 1 mg/L 2,4-dichlorophenoxyacetic acid, 0.5 mg/L thidiazuron, and 100 µM l-glutamine at 28 days of cell suspension culture was suitable for biomass accumulation and AQ production. Maximum biomass accumulation (12.5 and 12.35 g fresh mass (FM; 3 and 2.93 g dry mass (DM and AQ production (emodin 295.20 and 282 mg/g DM; physcion 421.55 and 410.25 mg/g DM were observed using 100 µM JA and SA, respectively. JA- and SA-elicited cell cultures showed several-fold higher biomass accumulation and AQ production than the control cell cultures. Furthermore, the cell suspension cultures effectively produced 23 phenolic compounds, such as flavonols and hydroxycinnamic and hydroxybenzoic acid derivatives. PGR-, JA-, and SA-elicited cell cultures produced a higher amount of AQs and phenolic compounds. Because of these metabolic changes, the antioxidant, antimicrobial, and anticancer activities were high in the PGR-, JA-, and SA-elicited cell cultures. The results showed that the elicitors (JA and SA induced the enhancement of biomass accumulation and phytochemical (AQs and phenolic compounds production as well as biological activities in the cell suspension cultures of P. multiflorum. This optimized protocol can be developed for large-scale biomass accumulation and production of phytochemicals (AQs and phenolic compounds from cell suspension cultures, and the phytochemicals can be used for various biological activities.

  8. Enhanced Production of Anthraquinones and Phenolic Compounds and Biological Activities in the Cell Suspension Cultures of Polygonum multiflorum

    Science.gov (United States)

    Thiruvengadam, Muthu; Rekha, Kaliyaperumal; Rajakumar, Govindasamy; Lee, Taek-Jun; Kim, Seung-Hyun; Chung, Ill-Min

    2016-01-01

    Anthraquinones (AQs) and phenolic compounds are important phytochemicals that are biosynthesized in cell suspension cultures of Polygonum multiflorum. We wanted to optimize the effects of plant growth regulators (PGRs), media, sucrose, l-glutamine, jasmonic acid (JA), and salicylic acid (SA) for the production of phytochemicals and biomass accumulation in a cell suspension culture of P. multiflorum. The medium containing Murashige and Skoog (MS) salts and 4% sucrose supplemented with 1 mg/L 2,4-dichlorophenoxyacetic acid, 0.5 mg/L thidiazuron, and 100 µM l-glutamine at 28 days of cell suspension culture was suitable for biomass accumulation and AQ production. Maximum biomass accumulation (12.5 and 12.35 g fresh mass (FM); 3 and 2.93 g dry mass (DM)) and AQ production (emodin 295.20 and 282 mg/g DM; physcion 421.55 and 410.25 mg/g DM) were observed using 100 µM JA and SA, respectively. JA- and SA-elicited cell cultures showed several-fold higher biomass accumulation and AQ production than the control cell cultures. Furthermore, the cell suspension cultures effectively produced 23 phenolic compounds, such as flavonols and hydroxycinnamic and hydroxybenzoic acid derivatives. PGR-, JA-, and SA-elicited cell cultures produced a higher amount of AQs and phenolic compounds. Because of these metabolic changes, the antioxidant, antimicrobial, and anticancer activities were high in the PGR-, JA-, and SA-elicited cell cultures. The results showed that the elicitors (JA and SA) induced the enhancement of biomass accumulation and phytochemical (AQs and phenolic compounds) production as well as biological activities in the cell suspension cultures of P. multiflorum. This optimized protocol can be developed for large-scale biomass accumulation and production of phytochemicals (AQs and phenolic compounds) from cell suspension cultures, and the phytochemicals can be used for various biological activities. PMID:27854330

  9. Modulated differential photoacoustic cell to study the gelatinization in a starch-water suspension

    Science.gov (United States)

    Villada, J. A.; Herrera, W.; Espinosa-Arbeláez, D. G.; Mosquera, J. C.; Rodríguez-García, M. E.

    2014-06-01

    In this paper the design and implementation of a novel Differential Photoacoustic Cell (DPC) system is presented. The system was used to study the thermo optic transition in water-starch suspension called gelatinization. The melting temperature of Gallium was used to calibrate the temperature of the system. Both temperature values for starch gelatinization and gallium melting were agreed with those obtained using differential scanning calorimetry (DSC). The results show that this system is suitable to study other thermal processes in food or any thermal transition at low temperature.

  10. Modulated differential photoacoustic cell to study the gelatinization in a starch-water suspension

    Directory of Open Access Journals (Sweden)

    J. A. Villada

    2014-06-01

    Full Text Available In this paper the design and implementation of a novel Differential Photoacoustic Cell (DPC system is presented. The system was used to study the thermo optic transition in water-starch suspension called gelatinization. The melting temperature of Gallium was used to calibrate the temperature of the system. Both temperature values for starch gelatinization and gallium melting were agreed with those obtained using differential scanning calorimetry (DSC. The results show that this system is suitable to study other thermal processes in food or any thermal transition at low temperature.

  11. Induction of sesquiterpenoid biosynthesis in tobacco cell suspension cultures by fungal elicitor

    International Nuclear Information System (INIS)

    Chappell, J.; Nable, R.

    1987-01-01

    Large amounts of the sesquiterpenoid capsidiol accumulated in the media of tobacco (Nicotiana tabacum L. cv KY14) cell suspension cultures upon addition of fungal elicitor. Capsidiol accumulation was proportional to the amount of elicitor added. The accumulation of capsidiol was preceded by a transient increase in the capsidiol de novo synthesis rate as measured by the incorporation of exogenous [ 14 C]acetate. Changes in 3-hydroxy-3-methylglutaryl-CoA reductase activity, an enzyme of general isoprenoid metabolism, paralleled the changes in [ 14 C]acetate incorporation into capsidiol. Incubation of the cell cultures with mevinolin, a potent in vitro inhibitor of the tobacco HMGR enzyme activity, inhibited the elicitor-induced capsidiol accumulation in a concentration dependent manner. [ 14 C]Acetate incorporation into capsidiol was likewise inhibited by mevinolin treatment. Unexpectedly, [ 3 H] mevalonate incorporation into capsidiol was also partially inhibited by mevinolin, suggesting that mevinolin may effect secondary sites of sesquiterpenoid biosynthesis in vivo beyond HMGR. The data indicated the importance of the induced HMGR activity for capsidiol production in elicitor-treated tobacco cell suspension cultures

  12. Establishment of Aquilaria malaccensis Callus, cell suspension and adventitious root systems

    International Nuclear Information System (INIS)

    Norazlina Noordin; Rusli Ibrahim

    2010-01-01

    Aquilaria malaccensis is a tropical forest tree from the family Thymelaeaceae, an endangered forest species and was listed in CITES since 1995. Locally known as Pokok Karas, this tree produces agar wood or gaharu, a highly valuable, resinous and fragrant forest product. Karas has been highly recognized for its vast medicinal values and gaharu has been widely use for perfumery, incense and religious purposes. The phyto chemical studies of agar wood showed that Sesqui terpenoid and Phenyl ethy chromone derivatives are the principal compounds that have anti allergic and anti microbe activities. Cell and organ culture systems provide large scale production of biomass and offers feasibilities for the production of secondary metabolites. This paper describes the work done for establishing reproducible systems for callus initiation and production of cell suspension cultures as well as production of adventitious roots that will later be amenable for the production of secondary metabolites of A. malaccensis. Hence, further manipulation with Methyl Jasmonate, a chemical elicitor could be done to induce secondary metabolites using callus, cell suspension and adventitious roots systems. (author)

  13. Solid oxide fuel cell electrolytes produced via very low pressure suspension plasma spray and electrophoretic deposition

    Science.gov (United States)

    Fleetwood, James D.

    Solid oxide fuel cells (SOFCs) are a promising element of comprehensive energy policies due to their direct mechanism for converting the oxidization of fuel, such as hydrogen, into electrical energy. Both very low pressure plasma spray and electrophoretic deposition allow working with high melting temperature SOFC suspension based feedstock on complex surfaces, such as in non-planar SOFC designs. Dense, thin electrolytes of ideal composition for SOFCs can be fabricated with each of these processes, while compositional control is achieved with dissolved dopant compounds that are incorporated into the coating during deposition. In the work reported, sub-micron 8 mole % Y2O3-ZrO2 (YSZ) and gadolinia-doped ceria (GDC), powders, including those in suspension with scandium-nitrate dopants, were deposited on NiO-YSZ anodes, via very low pressure suspension plasma spray (VLPSPS) at Sandia National Laboratories' Thermal Spray Research Laboratory and electrophoretic deposition (EPD) at Purdue University. Plasma spray was carried out in a chamber held at 320 - 1300 Pa, with the plasma composed of argon, hydrogen, and helium. EPD was characterized utilizing constant current deposition at 10 mm electrode separation, with deposits sintered from 1300 -- 1500 °C for 2 hours. The role of suspension constituents in EPD was analyzed based on a parametric study of powder loading, powder specific surface area, polyvinyl butyral (PVB) content, polyethyleneimine (PEI) content, and acetic acid content. Increasing PVB content and reduction of particle specific surface area were found to eliminate the formation of cracks when drying. PEI and acetic acid content were used to control suspension stability and the adhesion of deposits. Additionally, EPD was used to fabricate YSZ/GDC bilayer electrolyte systems. The resultant YSZ electrolytes were 2-27 microns thick and up to 97% dense. Electrolyte performance as part of a SOFC system with screen printed LSCF cathodes was evaluated with peak

  14. Jasmonic and salicylic acids enhanced phytochemical production and biological activities in cell suspension cultures of spine gourd (Momordica dioica Roxb).

    Science.gov (United States)

    Chung, Ill-Min; Rekha, Kaliyaperumal; Rajakumar, Govindasamy; Thiruvengadam, Muthu

    2017-03-01

    In vitro cell suspension culture was established for the production of commercially valuable phytochemicals in Momordica dioica. The influence of elicitors in jasmonic acid (JA) and salicylic acid (SA) increased their effect on phytochemical production and biomass accumulation in M. dioica. The results indicate that compared with non-elicited cultures, JA- and SA-elicited cell suspension cultures had significantly enhanced phenolic, flavonoid, and carotenoid production, as well as antioxidant, antimicrobial, and antiproliferative activities. Furthermore, elicited cultures produced 22 phenolic compounds, such as flavonols, hydroxycinnamic acids, and hydroxybenzoic acids. Greater biomass production, phytochemical accumulation, and biological activity occurred in JA- than in SA-elicited cell cultures. This study is the first to successfully establish M. dioica cell suspension cultures for the production of phenolic compounds and carotenoids, as well as for biomass accumulation.

  15. Production of Monascus pigments as extracellular crystals by cell suspension culture.

    Science.gov (United States)

    Lu, Fengling; Liu, Lujie; Huang, Yaolin; Zhang, Xuehong; Wang, Zhilong

    2018-01-01

    It is generally accepted that Monascus pigments are predominantly cell-bound, including both intracellular and surface-bound pigments. This long-term misconception was corrected in the present work. Production of extracellular crystal pigments by submerged culture of Monascus sp. was confirmed by microscopic observation and collection of Monascus pigments from extracellular broth by direct membrane filtration. Following up the new fact, the bioactivity of mycelia as whole-cell biocatalyst for biosynthesis and biodegradation of Monascus pigments had been detailedly examined in both an aqueous solution and a nonionic surfactant micelle aqueous solution. Based on those experimental results, cell suspension culture in an aqueous medium was developed as a novel strategy for accumulation of high concentration of Monascus pigments. Thus, glucose feeding during submerged culture in the aqueous medium was carried out successfully and high orange Monascus pigments concentration of near 4 g/L was achieved.

  16. Visualisation of microtubules and actin filaments in fixed BY-2 suspension cells using an optimised whole mount immunolabelling protocol

    NARCIS (Netherlands)

    Szechynska-Hebda, M.; Wedzony, M.; Dubas, E.; Kieft, H.; Lammeren, van A.A.M.

    2006-01-01

    Excellent visualisation of microtubules and actin filaments was obtained in fixed tobacco BY-2 suspension cells after optimising a protocol for whole mount immunolabelling. The procedure is based on modification of fixation, cell wall digestion, dimethyl sulfoxide (DMSO) treatment, post fixation,

  17. Bottlenecks in the generation and maintenance of morphogenic banana cell suspensions and plant regeneration via somatic embryogenesis therefrom

    Czech Academy of Sciences Publication Activity Database

    Schoofs, H.; Panis, B.; Strosse, H.; Mosqueda, A. M.; Torres, J. L.; Roux, N.; Doležel, Jaroslav; Swennen, R.

    2001-01-01

    Roč. 8, č. 2 (2001), s. 3-7 ISSN 0989-8972 R&D Projects: GA MŠk ME 376 Institutional research plan: CEZ:AV0Z5038910 Keywords : banana cell suspensions * plant regeneration Subject RIV: EA - Cell Biology

  18. Optimizing the transient transfection process of HEK-293 suspension cells for protein production by nucleotide ratio monitoring

    DEFF Research Database (Denmark)

    de Los Milagros Bassani Molinas, Maria; Beer, Christiane; Hesse, F

    2014-01-01

    Large scale, transient gene expression (TGE) is highly dependent of the physiological status of a cell line. Therefore, intracellular nucleotide pools and ratios were used for identifying and monitoring the optimal status of a suspension cell line used for TGE. The transfection efficiency upon po...

  19. Isolation of UV-sensitive mutants of mouse L5178Y cells by a cell suspension spotting method

    International Nuclear Information System (INIS)

    Shiomi, T.; Hieda-Shiomi, N.; Sato, K.

    1982-01-01

    We have isolated 56 UV-sensitive mutant clones from a mouse L51 T/t line of L5178Y cells by a cell suspension spotting method. Five mutants have also been isolated from L51 T/t and L5178Y cells by the method reported by Thompson and coworkers. We divided the mutants into two groups, highly sensitive and moderately sensitive mutants, according to their sensitivity to UV irradiation. Fifty-eight mutants were highly sensitive and three were moderately sensitive to UV. The reconstruction experiments indicate that more than 90% of highly sensitive mutants were recovered by the cell suspension spotting method. Frequencies of recovered mutants highly sensitive to UV increased with increasing dose of mutagens. Recovered mutant frequency reached 10(-2) after treatment with 1.5 micrograms/ml of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) (survival 0.2%). Eight UV-sensitive mutants were divided into four complementation groups. These mutants were 2-6 times more sensitive to UV than parental L51 T/t cells in terms of D37 (dose required to reduce survival to 37%). Four representative UV-sensitive mutants which are classified into different complementation groups were examined for their sensitivity to killing by UV, 4-nitroquinoline-1-oxide (4NQO), mitomycin C (MMC), X-rays, and MNNG. All four classes of mutants were found to be cross-sensitive to UV, 4NQO, and MMC, but not sensitive to X-rays and MNNG

  20. Proteomic characterization of golgi membranes enriched from Arabidopsis suspension cell cultures

    DEFF Research Database (Denmark)

    Hansen, Sara Fasmer; Ebert, Berit; Rautengarten, Carsten

    2016-01-01

    The plant Golgi apparatus has a central role in the secretory pathway and is the principal site within the cell for the assembly and processing of macromolecules. The stacked membrane structure of the Golgi apparatus along with its interactions with the cytoskeleton and endoplasmic reticulum has...... historically made the isolation and purification of this organelle difficult. Density centrifugation has typically been used to enrich Golgi membranes from plant microsomal preparations, and aside from minor adaptations, the approach is still widely employed. Here we outline the enrichment of Golgi membranes...... from an Arabidopsis cell suspension culture that can be used to investigate the proteome of this organelle. We also provide a useful workflow for the examination of proteomic data as the result of multiple analyses. Finally, we highlight a simple technique to validate the subcellular localization...

  1. Characterization of Ni-YSZ anodes for solid oxide fuel cells fabricated by suspension plasma spraying with axial feedstock injection

    Science.gov (United States)

    Metcalfe, Craig; Kuhn, Joel; Kesler, Olivera

    2013-12-01

    Composite Ni-Y0.15Zr0.85O1.925 anodes were fabricated by axial-injection suspension plasma spraying in open atmosphere conditions. The composition of the anode is controllable by adjustment of the plasma gas composition, stand-off distance, and suspension feed rate. The total porosity is controllable through the addition of carbon black to the suspension as a sacrificial pore-forming material as well as by adjustment of the suspension feed rate. The size of the NiO particles in suspension affects both the composition and total porosity, with larger NiO particles leading to increased Ni content and porosity in the deposited coatings. The surface roughness increases with a decrease of the in-flight droplet momentum, which results from both smaller NiO particles in suspension and the addition of low density pore-forming materials. A solid oxide fuel cell was fabricated with both electrodes and electrolyte fabricated by axial-injection plasma spraying. Peak power densities of 0.718 W cm-2 and 1.13 W cm-2 at 750 °C and 850 °C, respectively, were achieved.

  2. Experimental and analytical study of oxygen depletion in stirred cell suspensions

    International Nuclear Information System (INIS)

    Whillans, D.W.; Rauth, A.M.

    1980-01-01

    The determination and maintenance of constant low but non-zero levels of oxygen is critical in the study of the radiation chemical interactions of nitroimidazoles in mammalian cells in vitro. As well, many of these chemicals have increased toxicity toward hypoxic compared to aerobic cells, although absolute hypoxia probably is not required. Both of these phenomena must be investigated in systems where significant consumption of oxygen takes place, either through radiation depletion or by cellular metabolism. In this paper an analysis has been made of the form of oxygen depletion in stirred cell suspensions with overlying gas phase, and it has been found to conform to the relationship (C[t] - C/sub infinity/) = (C[0] - C/sub infinity/) exp(-k 1 t), where C/sub infinity/ = C/sub g/ - R/k 1 . Here C[t] is the oxygen tension throughout the solution; C/sub g/, the equivalent level in the overlying gas phase; R (concentration units per sec), the depletion rate; k 1 (sec/sup -1/), a physical constant independent of oxygen concentration and depletion rate; and C/sub infinity/, the oxygen level in solution approached at long times. This relationship has been confirmed in detail using a Clark-type oxygen sensor and a high-stability amplifier design due to Koch. Since oxygen levels down to a few hundred parts per million can be determined with accuracy, it has been possible to measure precisely the oxygen levels present in our experimental systems. Implications of these results for the interpretation of data obtained in stirred cell suspension with overlying gas phase under conditions of consumption are discussed

  3. Chitosan mediated enhancement of hydrolysable tannin in Phyllanthus debilis Klein ex Willd via plant cell suspension culture.

    Science.gov (United States)

    V, Malayaman; N, Sisubalan; R P, Senthilkumar; S, Sheik Mohamed; R, Ranjithkumar; M, Ghouse Basha

    2017-11-01

    Phyllanthus debilis Klein ex Willd. is wild medicinal plant used in the traditional system of medicine. This plant has been actively used for hepatoprotection and to cure many diseases including jaundice and so on; which leads to complete extinction of this particular species. Therefore, the chitosan mediated cost effective cell suspension method has been developed for the production of hydrolysable tannin. The hydrolysable tannins are the main therapeutically active constituents with antioxidant, anticancer, and antimicrobial properties. An in vitro cell suspension culture was optimized by adding chitosan for production of hydrolysable tannin. According to the growth kinetics, a maximum biomass of 4.46±0.06g fresh cell weight and 1.33±0.04g dry cell weight were obtained from the optimal suspension medium consisted of MS medium+0.5mgL -1 BAP+1.5mgL -1 NAA. Chitosan was treated at the stationary phase which leads to the highest accumulation of hydrolysable tannin compared to the untreated control. Hydrolysable tannin was observed and compared using HPLC at the Rt of 4.91 in both chitosan treated and untreated cells. This is the first ever report where use of chitosan has been done to enhance the production of the hydrolysable tannin in P. debilis using cell suspension culture technique. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. [Formation of protodioscin and deltoside isomers in suspension cultures of Nepal yam (Dioscorea deltoidea Wall.) cells].

    Science.gov (United States)

    Khandy, M T; Titova, M V; Konstantinova, S V; Kochkin, D V; Ivanov, I M; Nosov, A M

    2016-01-01

    Changes in the content of the furostanol glycosides protodioscin and deltoside, particularly that of the (25S)-isomers of the glycosides, during suspension cultivation of different lines of Nepal yam (Dioscorea deltoidea Wall.) cells of the strain IFR-DM-0.5 has been investigated. The composition of furostanol glycosides has been characterized, and the dynamics of the accumulation of individual glycosides during lengthy subcultivation of cells maintained in flasks or in a barbotage bioreactor has been analyzed. A positive correlation between the growth and accumulation of substances that belonged to the class of furostanol glycosides has been demonstrated for cultured dioscorea cells, whereas the content of some of the individual glycosides varied considerably between the lines of the strain, cultures maintained under different conditions, and even between cells in different phases of the growth cycle. The increased content of (25R)-forms of the glycosides (protodioscin and deltoside) was correlated with a decrease in the cellular growth rate, whereas an increase in culture growth intensity occurred concomitantly to an increase of the amount of (25S)-isomers. This may be indicative of the specific stimulatory effect of (25S)-glycosides, but not the (25R)-forms, on cell proliferation in vitro. Thus, the concentration of (25S)-forms may increase due to the autoselection of cells capable of intensive division during prolonged cultivation.

  5. PHARMACOKINETICS OF CEFTIOFUR CRYSTALLINE FREE ACID STERILE SUSPENSION IN GREEN IGUANAS ( IGUANA IGUANA) AFTER SINGLE INTRAMUSCULAR ADMINISTRATION.

    Science.gov (United States)

    Sadar, Miranda J; Hawkins, Michelle G; Taylor, Ian T; Byrne, Barbara A; Tell, Lisa A

    2018-03-01

    The objective of this study was to establish the pharmacokinetic parameters of ceftiofur crystalline free acid (CCFA) for a single intramuscular injection in green iguanas ( Iguana iguana). Six green iguanas received an injection of 5 mg/kg CCFA into the triceps muscle. Using high-performance liquid chromatography, concentrations of ceftiofur free acid equivalents in plasma samples collected at predetermined time points were evaluated up to 21 days following drug administration. Noncompartmental pharmacokinetic analysis was applied to the data. The observed maximum plasma concentration (C max obs ) was 2.765 ± 0.864 μg/mL, and the time of observed maximum concentration (T max obs ) was 6.1 ± 9.2 hr. The area under the curve (0 to infinity) was 239.3 ± 121.1 μg·hr/mL. No significant adverse drug reactions were clinically observed, and no visible injection site reactions were noted. Minimum inhibitory concentrations of bacterial isolates from iguanas were used to establish a target plasma concentration of 2.0 μg/mL. Based on the results from this study, a potential dosing interval for ceftiofur crystalline free acid administered at 5 mg/kg intramuscularly for iguanas maintained at a temperature of 30°C would be 24 hr based on a target plasma concentration of 2 μg/mL; however, multidose studies still need to be performed.

  6. Isoferritins in rat Kupffer cells, hepatocytes, and extrahepatic macrophages. Biosynthesis in cell suspensions and cultures in response to iron

    International Nuclear Information System (INIS)

    Doolittle, R.L.; Richter, G.W.

    1981-01-01

    Cultures of Kupffer cells and of hepatocytes, prepared from single rat livers, synthesized ferritin protein equally efficiently. In culture but not in suspension, both sorts of cells responded significantly to stimulation with iron by increased ferritin synthesis. As determined by isoelectric focusing, the isoferritin profiles of newly synthesized 14 -labeled Kupffer cell and hepatocyte ferritin were identical, each having three bands. However, unlabeled ferritin, extracted from nonparenchymal liver cells (mainly Kupffer and endothelial cells) of iron-loaded rats, contained an acidic isoferritin that was not present in hepatocyte ferritin. Investigation of ferritin synthesis in cultured peritoneal and alveolar macrophages yielded similar results. The isofocusing profile of newly synthesized peritoneal macrophage ferritin was indistinguishable from the profile of fresh Kupffer cell or hepatocyte ferritin. Thus, the three isoferritins common to Kupffer cells, hepatocytes, and extrahepatic macrophages are neither cell- nor tissue-specific. However, modifications on intracellular storage may affect the isofocusing properties. The findings, although consistent with the LnH24-n subunit model of ferritin protein, indicate identical restrictive genomic control of the H:L ratios in these sorts of cells. Further, they make it probable that Kupffer cell ferritin iron, originating by endogenous synthesis, is the principal source of Kupffer cell hemosiderin iron

  7. Effects of oligosaccharides from endophytic Fusarium oxysporum Dzf17 on activities of defense-related enzymes in Dioscorea zingiberensis suspension cell and seedling cultures

    Directory of Open Access Journals (Sweden)

    Peiqin Li

    2014-07-01

    Conclusions: Both EOS and WOS significantly increased the activities of PAL, PPO and POD in the suspension cell and seedling cultures of D. zingiberensis. The results suggested that the oligosaccharides from the endophytic fungus F. oxysporum Dzf17 may be related to the activation and enhancement of the defensive mechanisms of D. zingiberensis suspension cell and seedling cultures.

  8. Three sesquiterpene compounds biosynthesised from artemisinic acid using suspension-cultured cells of Averrhoa carambola (Oxalidaceae).

    Science.gov (United States)

    Yang, Li; Zhu, Jianhua; Song, Liyan; Shi, Xiaojian; Li, Xingyi; Yu, Rongmin

    2012-01-01

    A new sesquiterpene glycoside, artemisinic acid 3-β-O-β-D-glucopyranoside (3, 31.24%) and other two biotransformation products, 3-β-hydroxyartemisinic acid (2, 36.69%) and 3-β-hydroxyartemisinic acid β-D-glucopyranosyl ester (4, 7.03%), were biosynthesised after artemisinic acid (1) was administered to the cultured cells of Averrhoa carambola. The three biotransformation products were obtained for the first time by using the suspension-cultured cells of A. carambola as a new biocatalyst system, and their structures were identified on the basis of the physico-chemical properties, NMR and mass spectral analyses. The results indicate that the cultured cells of A. carambola have the abilities to hydroxylate and glycosylate sesquiterpene compounds in a regio- and stereoselective manner. Furthermore, the anti-tumour activity of compounds 3 and 4 was evaluated against K562 and HeLa cell lines. Compound 4 showed strong activity against HeLa cell line, with the IC₅₀ value of 0.56 µmol mL⁻¹.

  9. Changes in cell wall properties coincide with overexpression of extensin fusion proteins in suspension cultured tobacco cells.

    Science.gov (United States)

    Tan, Li; Pu, Yunqiao; Pattathil, Sivakumar; Avci, Utku; Qian, Jin; Arter, Allison; Chen, Liwei; Hahn, Michael G; Ragauskas, Arthur J; Kieliszewski, Marcia J

    2014-01-01

    Extensins are one subfamily of the cell wall hydroxyproline-rich glycoproteins, containing characteristic SerHyp4 glycosylation motifs and intermolecular cross-linking motifs such as the TyrXaaTyr sequence. Extensins are believed to form a cross-linked network in the plant cell wall through the tyrosine-derivatives isodityrosine, pulcherosine, and di-isodityrosine. Overexpression of three synthetic genes encoding different elastin-arabinogalactan protein-extensin hybrids in tobacco suspension cultured cells yielded novel cross-linking glycoproteins that shared features of the extensins, arabinogalactan proteins and elastin. The cell wall properties of the three transgenic cell lines were all changed, but in different ways. One transgenic cell line showed decreased cellulose crystallinity and increased wall xyloglucan content; the second transgenic cell line contained dramatically increased hydration capacity and notably increased cell wall biomass, increased di-isodityrosine, and increased protein content; the third transgenic cell line displayed wall phenotypes similar to wild type cells, except changed xyloglucan epitope extractability. These data indicate that overexpression of modified extensins may be a route to engineer plants for bioenergy and biomaterial production.

  10. In vitro production of azadirachtin from cell suspension cultures of Azadirachta indica.

    Science.gov (United States)

    Sujanya, S; Devi, B Poornasri; Sai, Isha

    2008-03-01

    The present study aimed to elucidate the effect of nutritional alteration on biomass content and azadirachtin production in cell suspensions of the elite neem variety crida-8. Variations in total nitrogen availability in the medium in terms of different ratios of nitrate: ammonium showed that the ratio 4:1 revealed a profound effect, leading to a 1.5-fold increase in the total extracellular azadirachtin production (5.59 mg/l) over the standard MS medium. Reduction in sucrose (15 mg/l) in the medium exhibited a reduction in biomass and absence of azadirachtin, whereas total phosphate reduction raised intracellular azadirachtin production (6.98 mg/l). An altered medium with a nitrate: ammonium ratio of 4:1 coupled with complete elimination of phosphate enhanced biomass by 36% (59.36 g/l).

  11. Metabolic cycles in primary metabolism of cell suspensions of Daucus carota L. analysed by C-NMR

    NARCIS (Netherlands)

    Krook, J.

    1999-01-01

    In the work described in this thesis, uptake and conversion of sugar by cells of batch-grown suspensions of Daucus carota L. were studied. Invasive techniques (measurements of enzyme activities and sugar and starch levels) and non-invasive techniques (

  12. Increased podophyllotoxin production in Podophyllum hexandrum cell suspension cultures after feeding coniferyl alcohol as a β-cyclodextrin complex

    NARCIS (Netherlands)

    Woerdenbag, H.J.; Van Uden, W.; Frijlink, H.W.; Lerk, C.F.; Pras, N.; Malingre, T.M.

    1990-01-01

    Cell suspension cultures, derived from roots of Podophyllum hexandrum Royle (Berberidaceae), accumulate podophyllotoxin. In this study the use of β-cyclodextrin in feeding the poorly water-soluble precursor coniferyl alcohol to these cultures is described. By complexation with β-cyclodextrin, a

  13. Increased podophyllotoxin production in Podophyllum hexandrum cell suspension cultures after feeding coniferyl alcohol as a β-cyclodextrin complex

    NARCIS (Netherlands)

    Woerdenbag, H J; van Uden, W; Frijlink, H W; Lerk, C F; Pras, N; Malingré, T M

    Cell suspension cultures, derived from roots of Podophyllum hexandrum Royle (Berberidaceae), accumulate podophyllotoxin. In this study the use of β-cyclodextrin in feeding the poorly water-soluble precursor coniferyl alcohol to these cultures is described. By complexation with β-cyclodextrin, a

  14. Assessment of cultivation factors that affect biomass and geraniol production in transgenic tobacco cell suspension cultures.

    Directory of Open Access Journals (Sweden)

    Nikolay Vasilev

    Full Text Available A large-scale statistical experimental design was used to determine essential cultivation parameters that affect biomass accumulation and geraniol production in transgenic tobacco (Nicotiana tabacum cv. Samsun NN cell suspension cultures. The carbohydrate source played a major role in determining the geraniol yield and factors such as filling volume, inoculum size and light were less important. Sucrose, filling volume and inoculum size had a positive effect on geraniol yield by boosting growth of plant cell cultures whereas illumination of the cultures stimulated the geraniol biosynthesis. We also found that the carbohydrates sucrose and mannitol showed polarizing effects on biomass and geraniol accumulation. Factors such as shaking frequency, the presence of conditioned medium and solubilizers had minor influence on both plant cell growth and geraniol content. When cells were cultivated under the screened conditions for all the investigated factors, the cultures produced ∼ 5.2 mg/l geraniol after 12 days of cultivation in shaking flasks which is comparable to the yield obtained in microbial expression systems. Our data suggest that industrial experimental designs based on orthogonal arrays are suitable for the selection of initial cultivation parameters prior to the essential medium optimization steps. Such designs are particularly beneficial in the early optimization steps when many factors must be screened, increasing the statistical power of the experiments without increasing the demand on time and resources.

  15. Electrical pulse – mediated enhanced delivery of silver nanoparticles into living suspension cells for surface enhanced Raman spectroscopy

    International Nuclear Information System (INIS)

    Lin, J; Li, B; Feng, S; Chen, G; Li, Y; Huang, Z; Chen, R; Yu, Y; Huang, H; Lin, S; Li, C; Su, Y; Zeng, H

    2012-01-01

    Electrical pulse-mediated enhanced silver nanoparticles delivery is a much better method for intracellular surface-enhanced Raman spectroscopy (SERS) measurements of suspension cells. Robust and high-quality SERS spectra of living suspension cells were obtained based on an electroporation-SERS method, which can overcomes the shortcoming of non-uniform distribution of silver nanoparticles localized in the cell cytoplasm after electroporation and reduces the amount variance of silver nanoparticles delivered into different cells. The electroporation parameters include three 150 V (375 V/cm) electric pulses of 1, 5, and 5 ms durations respectively. Our results indicate that considerable amount of silver nanoparticles can be rapidly delivered into the human promyelocytic leukemia HL60 cells, and the satisfied SERS spectra were obtained while the viability of the treated cells was highly maintained (91.7%). The electroporation-SERS method offers great potential approach in delivering silver nanoparticles into living suspension cells, which is useful for widely biomedical applications including the real-time intracellular SERS analysis of living cells

  16. Xyloglucan biosynthesis by Golgi membranes from suspension-cultured sycamore (Acer pseudoplatanus) cells

    International Nuclear Information System (INIS)

    White, A.R.; Xin, Yi

    1990-01-01

    Xyloglucan is a major hemicellulose polysaccharide in plant cell walls. Biosynthesis of such cell wall polysaccharides is closely linked to the process of plant cell growth and development. Xyloglucan polysaccharides consist of a β-1,4 glucan backbone synthesized by xyloglucan synthase and sidechains of xylose, galactose, and fucose added by other transferase enzymes. Most plant Golgi and plasma membranes also contain glucan synthases I ampersand II, which make β-1,4 and β-1,3 glucans, respectively. All of these enzymes have very similar activities. Cell walls on suspension-cultured cells from Acer pseudoplatanus (sycamore maple) were enzymatically softened prior to cell disruption by passing through a 30 μm nylon screen. Cell membranes from homogenates were separated by ultracentrifugation on top-loaded or flotation sucrose density gradients. Samples were collected by gradient fractionation and assayed for membrane markers and xyloglucan and glucan synthase activities. Standard marker assays (cyt. c reductase for eR, IDPase ampersand UDPase for Golgi, and eosin 5'-malelmide binding for plasma membrane) showed partial separation of these three membrane types. Golgi and plasma membrane markers overlapped in most gradients. Incorporation of 14 C-labeled sugars from UDP-glucose and UDP-xylose was used to detect xyloglucan synthase, glucan synthases I ampersand II, and xylosyl transferase in Golgi membrane fractions. These activities overlapped, although distinct peaks of xyloglucan synthase and xylosyl transferase were found. Ca ++ had a stimulatory effect on glucan synthases I ampersand II, while Mn ++ had an inhibitory effect on glucan synthase I in the presence of Ca ++ . The similarity of these various synthase activities demonstrates the need for careful structural characterization of newly synthesized polysaccharides

  17. Purification and characterization of an iron-induced ferritin from soybean (Glycine max) cell suspensions.

    Science.gov (United States)

    Lescure, A M; Massenet, O; Briat, J F

    1990-11-15

    Ferric citrate induces ferritin synthesis and accumulation in soybean (Glycine max) cell suspension cultures [Proudhon, Briat & Lescure (1989) Plant Physiol. 90, 586-590]. This iron-induced ferritin has been purified from cells grown for 72 h in the presence of either 100 microM- or 500 microM-ferric citrate. It has a molecular mass of about 600 kDa and is built up from a 28 kDa subunit which is recognized by antibodies raised against pea (Pisum sativum) seed ferritin and it has the same N-terminal sequence as this latter, except for residue number 3, which is alanine in pea seed ferritin instead of valine in iron-induced soybean cell ferritin. It contains an average of 1800 atoms of iron per molecule whatever the ferric citrate concentration used to induce its synthesis. It is shown that the presence of 100 microM- or 500 microM-ferric citrate in the culture medium leads respectively to an 11- and 28-fold increase in the total intracellular iron concentration and to a 30- and 60-fold increase in the ferritin concentration. However, the percentage of iron stored in the mineral core of ferritin remains constant whatever the ferric citrate concentration used and represents only 5-6% of cellular iron.

  18. green

    Directory of Open Access Journals (Sweden)

    Elena Grigoryeva

    2011-02-01

    Full Text Available The “green” topic follows the “youngsters”, which is quite natural for the Russian language.Traditionally these words put together sound slightly derogatory. However, “green” also means fresh, new and healthy.For Russia, and for Siberia in particular, “green” architecture does sound new and fresh. Forced by the anxious reality, we are addressing this topic intentionally. The ecological crisis, growing energy prices, water, air and food deficits… Alexander Rappaport, our regular author, writes: “ It has been tolerable until a certain time, but under transition to the global civilization, as the nature is destroyed, and swellings of megapolises expand incredibly fast, the size and the significance of all these problems may grow a hundredfold”.However, for this very severe Siberian reality the newness of “green” architecture may turn out to be well-forgotten old. A traditional Siberian house used to be built on principles of saving and environmental friendliness– one could not survive in Siberia otherwise.Probably, in our turbulent times, it is high time to fasten “green belts”. But we should keep from enthusiastic sticking of popular green labels or repainting of signboards into green color. We should avoid being drowned in paper formalities under “green” slogans. And we should prevent the Earth from turning into the planet “Kin-dza-dza”.

  19. Enhanced resveratrol production in Vitis vinifera cell suspension cultures by heavy metals without loss of cell viability.

    Science.gov (United States)

    Cai, Zhenzhen; Kastell, Anja; Speiser, Claire; Smetanska, Iryna

    2013-09-01

    The effects of heavy metal ions (Co(2+), Ag(+), Cd(2+)) on cell viability and secondary metabolite production, particularly anthocyanins and phenolic acids in Vitis vinifera cell suspension cultures, were investigated. Of these, Co at all three used concentrations (5.0, 25, and 50 μM), Ag, and Cd at low concentration (5.0 μM) were most effective to stimulate the phenolic acid production, increasing the 3-O-glucosyl-resveratrol up to 1.6-fold of the control level (250.5 versus 152.4 μmol/g), 4 h after the treatments. Meanwhile, the elicitors at effective concentrations did not suppress cell growth, while the cell viability maintained. In contrast, Ag and Cd at high concentrations (25 and 50 μM) remarkably reduced the cell viability, decreasing the cell viability up to about 15 % of the control level, 24 h after the treatments. The heavy metal ions did not affect the anthocyanin production. These observations show how, in a single system, different groups of secondary products can show distinct differences in their responses to potential elicitors. The 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity, peroxidase activity, medium pH value, and conductivity were only slightly elevated by the heavy metal ions. The results suggest that some of the secondary metabolites production was stimulated by the used elicitors, but there was not a stress response of the cells.

  20. A transgenic plant cell-suspension system for expression of epitopes on chimeric Bamboo mosaic virus particles.

    Science.gov (United States)

    Muthamilselvan, Thangarasu; Lee, Chin-Wei; Cho, Yu-Hsin; Wu, Feng-Chao; Hu, Chung-Chi; Liang, Yu-Chuan; Lin, Na-Sheng; Hsu, Yau-Heiu

    2016-01-01

    We describe a novel strategy to produce vaccine antigens using a plant cell-suspension culture system in lieu of the conventional bacterial or animal cell-culture systems. We generated transgenic cell-suspension cultures from Nicotiana benthamiana leaves carrying wild-type or chimeric Bamboo mosaic virus (BaMV) expression constructs encoding the viral protein 1 (VP1) epitope of foot-and-mouth disease virus (FMDV). Antigens accumulated to high levels in BdT38 and BdT19 transgenic cell lines co-expressing silencing suppressor protein P38 or P19. BaMV chimeric virus particles (CVPs) were subsequently purified from the respective cell lines (1.5 and 2.1 mg CVPs/20 g fresh weight of suspended biomass, respectively), and the resulting CVPs displayed VP1 epitope on the surfaces. Guinea pigs vaccinated with purified CVPs produced humoral antibodies. This study represents an important advance in the large-scale production of immunopeptide vaccines in a cost-effective manner using a plant cell-suspension culture system. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  1. Optimization of mNeonGreen for Homo sapiens increases its fluorescent intensity in mammalian cells.

    Science.gov (United States)

    Tanida-Miyake, Emiko; Koike, Masato; Uchiyama, Yasuo; Tanida, Isei

    2018-01-01

    Green fluorescent protein (GFP) is tremendously useful for investigating many cellular and intracellular events. The monomeric GFP mNeonGreen is about 3- to 5-times brighter than GFP and monomeric enhanced GFP and shows high photostability. The maturation half-time of mNeonGreen is about 3-fold faster than that of monomeric enhanced GFP. However, the cDNA sequence encoding mNeonGreen contains some codons that are rarely used in Homo sapiens. For better expression of mNeonGreen in human cells, we synthesized a human-optimized cDNA encoding mNeonGreen and generated an expression plasmid for humanized mNeonGreen under the control of the cytomegalovirus promoter. The resultant plasmid was introduced into HEK293 cells. The fluorescent intensity of humanized mNeonGreen was about 1.4-fold higher than that of the original mNeonGreen. The humanized mNeonGreen with a mitochondria-targeting signal showed mitochondrial distribution of mNeonGreen. We further generated an expression vector of humanized mNeonGreen with 3xFLAG tags at its carboxyl terminus as these tags are useful for immunological analyses. The 3xFLAG-tagged mNeonGreen was recognized well with an anti-FLAG-M2 antibody. These plasmids for the expression of humanized mNeonGreen and mNeonGreen-3xFLAG are useful tools for biological studies in mammalian cells using mNeonGreen.

  2. Transient GFP expression in Nicotiana plumbaginifolia suspension cells: the role of gene silencing, cell death and T-DNA loss.

    Science.gov (United States)

    Weld, R; Heinemann, J; Eady, C

    2001-03-01

    The transient nature of T-DNA expression was studied with a gfp reporter gene transferred to Nicotiana plumbaginifolia suspension cells from Agrobacterium tumefaciens. Individual GFP-expressing protoplasts were isolated after 4 days' co-cultivation. The protoplasts were cultured without selection and 4 weeks later the surviving proto-calluses were again screened for GFP expression. Of the proto-calluses initially expressing GFP, 50% had lost detectable GFP activity during the first 4 weeks of culture. Multiple T-DNA copies of the gfp gene were detected in 10 of 17 proto-calluses lacking visible GFP activity. The remaining 7 cell lines contained no gfp sequences. Our results confirm that transiently expressed T-DNAs can be lost during growth of somatic cells and demonstrate that transiently expressing cells frequently integrate multiple T-DNAs that become silenced. In cells competent for DNA uptake, cell death and gene silencing were more important barriers to the recovery of stably expressing transformants than lack of T-DNA integration.

  3. Rosmarinic acid and antioxidant enzyme activities in Lavandula vera MM cell suspension culture: a comparative study.

    Science.gov (United States)

    Georgiev, Milen; Abrashev, Radoslav; Krumova, Ekaterina; Demirevska, Klimentina; Ilieva, Mladenka; Angelova, Maria

    2009-11-01

    The growth and intracellular protein content of lavender (Lavandula vera MM) cell suspension culture was followed along with some antioxidant defense system members-non-enzymatic (rosmarinic acid) and enzymatic [superoxide dismutase (EC 1.15.1.1) and catalase (EC 1.11.1.6)]. It was found that the media content and the cultivation mode strongly influenced the production of plant defense compounds as well as the ratio between non-enzymatic and enzymatic ones. The bioreactor culture contains about two times more rosmarinic acid, superoxide dismutase, and catalase compared to the shake-flask cultivation. These findings are discussed with respect to the relative stress levels and plant antioxidant orchestra system. It was concluded that investigated defense system components (enzymatic and non-enzymatic) were closely associated in a complex balance. The three isoenzyme forms of SOD (Cu/ZnSOD, FeSOD, and MnSOD) in the cells of Lavandula vera were revealed by polyacrylamide gel electrophoresis analysis, and the FeSOD isoform exhibited highest activity.

  4. Adsorptive loss of secreted recombinant proteins in transgenic rice cell suspension cultures.

    Science.gov (United States)

    Kwon, Jun-Young; Lee, Kyoung-Hoon; Cheon, Su-Hwan; Ryu, Hyun-Nam; Kim, Sun Jin; Kim, Dong-Il

    2012-03-01

    Adsorptive loss of human cytotoxic T-lymphocyte antigen 4-immunoglobulin (hCTLA4Ig) in transgenic rice cell suspension cultures was investigated using glass flasks, plastic flasks, disposable vessels, and stainless steel vessels. When hCTLA4Ig was added to the glass flasks containing sterile AA medium, a rapid decrease in the concentration of hCTLA4Ig, independent on pH, was observed resulting in more than 90% of the protein loss within 1 h due to the surface adsorption. When the same experiments were performed on four different types of culture equipments mentioned above, the lowest adsorption level was observed in the plastic flasks and the highest level was observed in the glass flasks. The use of the plastic flasks retarded the adsorptive loss of hCTLA4Ig at the early stage of the protein production. There was a significant increase in the production of hCTLA4Ig when the flasks were coated with bovine serum albumin. However, the spike test of purified hCTLA4Ig at two different concentrations of 15 and 100 mg L(-1) in 500-mL spinner flasks confirmed that the amount of hCTLA4Ig adsorbed was dependent on the surface area of the flasks but not on the concentrations. In conclusion, although the protein adsorption affected the total amount of the protein yielded to some extent, it could be regarded as a minor factor in transgenic plant cell cultures with higher titer.

  5. Glutamine synthetase activity in solanaceous cell suspensions accumulating alkaloids or not. 13C NMR and enzymatic assay

    International Nuclear Information System (INIS)

    Mesnard, F.; Marty, D.; Monti, J.P.; Gillet-Manceau, F.; Fliniaux, M.A.

    1999-01-01

    The metabolism of labelled pyruvate followed by 13 C NMR and the measure of glutamine synthetase (GS) showed, according to previous results, a high activity of this enzyme in suspension cells of Nicotiana plumbaginifolia. This activity could derive glutamate from the alkaloid synthesizing pathways. However, a recent work showed that the rate of the GS gene transcription was inversely proportional to the Gln/Glu ratio. The measures of Gln and Glu concentrations in Nicotiana plumbaginifolia cells revealed that high GS activity correlates with the weak value of Gln/Glu ratio. Therefore, the hypothesis of GS dysfunction for the non-biosynthesis of alkaloids in N. plumbaginifolia suspension cells can be discarded. This conclusion is strengthened by the results obtained when using a GS inhibitor. (author)

  6. Plant regeneration from haploid cell suspension-derived protoplasts of Mediterranean rice (Oryza sativa L. cv. Miara).

    Science.gov (United States)

    Guiderdoni, E; Chaïr, H

    1992-11-01

    More than 750 plants were regenerated from protoplasts isolated from microspore callus-derived cell suspensions of the Mediterranean japonica rice Miara, using a nurse-feeder technique and N6-based culture medium. The mean plating efficiency and the mean regeneration ability of the protocalluses were 0.5% and 49% respectively. Flow cytometric evaluation of the DNA contents of 7 month old-cell and protoplast suspensions showed that they were still haploid. Contrastingly, the DNA contents of leaf cell nuclei of the regenerated protoclones ranged from 1C to 5C including 60% 2C plants. This was consistent with the morphological type and the fertility of the mature plants. These results and the absence of chimeric plants suggest that polyploidization occurred during the early phase of protoplast culture.

  7. Comparison of mesencephalic free-floating tissue culture grafts and cell suspension grafts in the 6-hydroxydopamine-lesioned rat

    DEFF Research Database (Denmark)

    Meyer, Morten; Widmer, H R; Wagner, B

    1998-01-01

    days in culture or directly as dissociated cell suspensions, and compared with regard to neuronal survival and ability to normalize rotational behavior in adult rats with unilateral 6-hydroxydopamine (6-OHDA) lesions. Other lesioned rats received injections of cell-free medium and served as controls...... of grafted dopaminergic neurons and to correlate that with the behavioral effects. Additional cultures and acutely prepared explants were also fixed and stored for histological investigation in order to estimate the loss of dopaminergic neurons in culture and after transplantation. Similar behavioral...... improvements in terms of significant reductions in amphetamine-induced rotations were observed in rats grafted with FFRT cultures (127%) and rats grafted with cell suspensions (122%), while control animals showed no normalization of rotational behavior. At 84 days after transplantation, there were similar...

  8. Affinity Purification and Characterization of Functional Tubulin from Cell Suspension Cultures of Arabidopsis and Tobacco1

    Science.gov (United States)

    Fujita, Satoshi; Uchimura, Seiichi; Noguchi, Masahiro; Demura, Taku

    2016-01-01

    Microtubules assemble into several distinct arrays that play important roles in cell division and cell morphogenesis. To decipher the mechanisms that regulate the dynamics and organization of this versatile cytoskeletal component, it is essential to establish in vitro assays that use functional tubulin. Although plant tubulin has been purified previously from protoplasts by reversible taxol-induced polymerization, a simple and efficient purification method has yet to be developed. Here, we used a Tumor Overexpressed Gene (TOG) column, in which the tubulin-binding domains of a yeast (Saccharomyces cerevisiae) TOG homolog are immobilized on resin, to isolate functional plant tubulin. We found that several hundred micrograms of pure tubulin can readily be purified from cell suspension cultures of tobacco (Nicotiana tabacum) and Arabidopsis (Arabidopsis thaliana). The tubulin purified by the TOG column showed high assembly competence, partly because of low levels of polymerization-inhibitory phosphorylation of α-tubulin. Compared with porcine brain tubulin, Arabidopsis tubulin is highly dynamic in vitro at both the plus and minus ends, exhibiting faster shrinkage rates and more frequent catastrophe events, and exhibits frequent spontaneous nucleation. Furthermore, our study shows that an internal histidine tag in α-tubulin can be used to prepare particular isotypes and specifically engineered versions of α-tubulin. In contrast to previous studies of plant tubulin, our mass spectrometry and immunoblot analyses failed to detect posttranslational modification of the isolated Arabidopsis tubulin or detected only low levels of posttranslational modification. This novel technology can be used to prepare assembly-competent, highly dynamic pure tubulin from plant cell cultures. PMID:26747285

  9. Production, secretion, and stability of human secreted alkaline phosphatase in tobacco NT1 cell suspension cultures.

    Science.gov (United States)

    Becerra-Arteaga, Alejandro; Mason, Hugh S; Shuler, Michael L

    2006-01-01

    Tobacco NT1 cell suspension cultures secreting active human secreted alkaline phosphatase (SEAP) were generated for the first time as a model system to study recombinant protein production, secretion, and stability in plant cell cultures. The SEAP gene encodes a secreted form of the human placental alkaline phosphatase (PLAP). During batch culture, the highest level of active SEAP in the culture medium (0.4 U/mL, corresponding to approximately 27 mg/L) was observed at the end of the exponential growth phase. Although the level of active SEAP decreased during the stationary phase, the activity loss did not appear to be due to SEAP degradation (based on Western blots) but due to SEAP denaturation. The protein-stabilizing agents polyvinylpirrolidone (PVP) and bacitracin were added extracellularly to test for their ability to reduce the loss of SEAP activity during the stationary phase. Bacitracin (100 mg/L) was the most effective treatment at sustaining activity levels for up to 17 days post-subculture. Commercially available human placental alkaline phosphatase (PLAP) was used to probe the mechanism of SEAP deactivation. Experiments with PLAP in sterile and conditioned medium corroborated the denaturation of SEAP by factors generated by cell growth and not due to simple proteolysis. We also show for the first time that the factors promoting activity loss are heat labile at 95 degrees C but not at 70 degrees C, and they are not inactivated after a 5 day incubation period under normal culture conditions (27 degrees C). In addition, there were no significant changes in pH or redox potential when comparing sterile and cell-free conditioned medium during PLAP incubation, indicating that these factors were unimportant.

  10. Proteins differentially expressed in elicited cell suspension culture of Podophyllum hexandrum with enhanced podophyllotoxin content

    Directory of Open Access Journals (Sweden)

    Bhattacharyya Dipto

    2012-05-01

    Full Text Available Abstract Background Podophyllotoxin (PTOX, the precursor for semi-synthesis of cancer therapeutics like etoposide, teniposide and etophos, is primarily obtained from an endangered medicinal herb, Podophyllum hexandrum Royle. PTOX, a lignan is biosynthetically derived from the phenylpropanoid pathway. The aim of this study is to investigate changes in the P. hexandrum cell proteome potentially related to PTOX accumulation in response to methyl jasmonate (MeJA elicitation. High-resolution two-dimensional gel electrophoresis (2-DE followed by colloidal Coomassie staining and mass spectrometric analysis was used to detect statistically significant changes in cell’s proteome. Result The HPLC analysis showed approximately 7–8 fold change in accumulation of PTOX, in the 12day old cell suspension culture (i.e. after 9days of elicitation elicited with 100 μM MeJA as compared to the control. Using 2-DE a total of 233 spots was detected, out of which 105 spots were identified by MALDI TOF-TOF MS/MS. Data were subjected to functional annotation from a biological point of view through KEGG. The phenylpropanoid and monolignol pathway enzymes were identified, amongst these, chalcone synthase, polyphenol oxidase, caffeoyl CoA 3-O-methyltransferase, S-adenosyl-L-methionine-dependent methyltransferases, caffeic acid-O-methyl transferase etc. are noted as important. The relation of other differentially accumulated proteins with varied effects caused by elicitors on P. hexandrum cells namely stress and defense related protein, transcription and DNA replication and signaling are also discussed. Conclusions Elicitor-induced PTOX accumulation in P. hexandrum cell cultures provides a responsive model system to profile modulations in proteins related to phenylpropanoid/monolignol biosynthesis and other defense responses. Present findings form a baseline for future investigation on a non-sequenced medicinal herb P. hexandrum at molecular level.

  11. Effect of terbinafine on the biosynthetic pathway of isoprenoid compounds in carrot suspension cultured cells.

    Science.gov (United States)

    Miras-Moreno, Begoña; Almagro, Lorena; Pedreño, María Angeles; Sabater-Jara, Ana Belén

    2018-04-21

    cell cultures treated with cyclodextrins or terbinafine were able to produce high levels of phytosterols and squalene, respectively, and, therefore, these suspension-cultured cells of carrot constitute an alternative biotechnological system, which is at the same time more sustainable, economic and ecological for the production of these bioactive compounds.

  12. Green tea EGCG, T-cell function, and T-cell-mediated autoimmune encephalomyelitis

    Science.gov (United States)

    Autoimmune diseases are common, disabling immune disorders affecting millions of people. Recent studies indicate that dysregulated balance of different CD4+ T-cell subpopulations plays a key role in immune pathogenesis of several major autoimmune diseases. Green tea and its active ingredient, epigal...

  13. Stem-Cell Inactivation on Transplantation of Haemopoietic Cell Suspensions from Genetically Different Donors

    Energy Technology Data Exchange (ETDEWEB)

    Petrov, R. V. [Institute of Biophysics, Ministry of Public Health of the USSR, Moscow, USSR (Russian Federation)

    1969-07-15

    The transplantation of a mixture of haemopoietic or lymphoid cells from two genetically different mice into lethally irradiated F{sub 1} recipients results in marked or total inactivation of the colony-forming units of the graft. This phenomenon is observed following transplantation of mixtures of spleen cells or bone-marrow cells from animals of different genotypes: CBA + C57BL, A + CBA, A + C57BL, C3H + C57BL, CBA + (CBA x C57BL) F{sub 1}. Maximum inactivation is observed when lymph-node cells of one genotype are transplanted with spleen or bone-marrow cells of another genotype. Use of non-syngenic kidney cells or lymphoid cells inactivated by irradiation as one component of the mixture shows that inactivation of genetically heterogeneous stem cells requires the participation of viable lymphoid cells. The inactivation phenomenon is also observed with Jerne's method. This shows that inactivation affects not only colony-forming cells but also the immunologically competent precursors of antibody-producing cells. (author)

  14. Transformation of haploid, microspore-derived cell suspension protoplasts of rice (Oryza sativa L.).

    Science.gov (United States)

    Chaïr, H; Legavre, T; Guiderdoni, E

    1996-06-01

    We compared the transient activity of three cereal gene-derived promoter-gus fusions and the efficiency of selection mediated by three different selectable genes in a polyethylene glycol transformation system with haploid cell suspension protoplasts of rice. The maize ubiquitin promoter was found to be the most active in transformed protoplasts, and selection on ammonium glufosinate mediated by the bar gene was the most efficient for producing resistant calluses. Cotransformation of protoplasts with two separate plasmids carrying the gus and the bar genes, at either a 2∶1 or 1∶1 ratio, led to 0.8 × 10(-5) and 1.6 × 10(-5) resistant callus recovery frequencies and 59.7 and 37.9 cotransformation efficiencies respectively. No escapes were detected in dot blot analyses of 100 resistant calluses with a probe consisting of the bar coding region. Cotransformation efficiency, based on resistance to basta and β-glucuronidase staining of the leaf tissue of 115 regenerated plants, was 47%. Resistance tests and Southern analysis of seed progenies of three diploid transgenic plants demonstrated homozygous integration of multiple copies of the transgene at one locus at least in the first plant, heterozygous integration at one locus in the second plant and heterozygous integration at two loci in the third plant.

  15. Agrobacterium tumefaciens-mediated genetic transformation of embryogenesis cell suspensions of banana cultivar Grande naine (AAA

    Directory of Open Access Journals (Sweden)

    Idalmis Bermúdez-Caraballoso

    2004-01-01

    Full Text Available The black Sigatoka (Mycosphaerella fijiensis Morelet has become in the last years, the most destructive disease that affects the production of banana and plantains world-wide. The present work was made with the objective to obtain transgenic plants of banana cultivar Grand naine (AAA resistant to this disease with the use of genetic transformation. Embryogenenic cell suspensions obtained from somatic embryos formed from immature male flowers, were used for the transformation by Agrobacterium tumefaciens. The bacterial strain EHA-105 was used with the binary plasmids pHCA-58, pHCG-59 and pHGA-91, which contain different combinations of genes that encode for the antifungal chitinase, glucanase enzymes and the AP-24 osmotin. The commercial herbicide BASTA® was used as selective agent. One hundred ten putative transformed lines of the three constructions were obtained, after three selection months in the culture medium. The transgenic events were verified by means of Polymerase Chain Reaction analysis. Key words: AP-24, chitinase, glucanase, Musa, Mycosphaerella fijiensis

  16. Stereoselectivity of the demethylation of nicotine piperidine homologues by Nicotiana plumbaginifolia cell suspension cultures.

    Science.gov (United States)

    Bartholomeusz, Trixie Ann; Molinié, Roland; Roscher, Albrecht; Felpin, François-Xavier; Gillet, Françoise; Lebreton, Jacques; Mesnard, François; Robins, Richard J

    2005-08-01

    The metabolism of (R,S)-N-methylanabasine and (R,S)-N-methylanatabine has been studied in a cell suspension culture of Nicotiana plumbaginifolia. Both substrates are effectively demethylated, anabasine or anatabine, respectively, accumulating in the medium. Similarly, there is strong stereoselectivity for the (R)-isomers of both substrates. The kinetics of metabolism of (R,S)-N-methylanabasine differ significantly from those of nicotine in that no further degradation of the initial demethylation product occurs. (R,S)-N-Methylanatabine, however, shows kinetics closer to those of nicotine, with loss of alkaloid from the system. Further more, (R,S)-N-methylanabasine does not diminish (S)-nicotine demethylation, indicating a lack of competition. However, the metabolism of (S)-nicotine is affected by the presence of (R,S)-N-methylanabasine. Hence, the demethylation of the piperidine homologues of nicotine is seen to be similar but not identical to that of the pyridine analogues. The implications of these different metabolic profiles in relation to the demethylation activity are discussed.

  17. Nicotine demethylation in Nicotiana cell suspension cultures: N'-formylnornicotine is not involved.

    Science.gov (United States)

    Bartholomeusz, Trixie Ann; Bhogal, Ramneek K; Molinié, Roland; Felpin, François-Xavier; Mathé-Allainmat, Monique; Meier, Anna-Carolin; Dräger, Birgit; Lebreton, Jacques; Roscher, Albrecht; Robins, Richard J; Mesnard, François

    2005-10-01

    Nicotine or nornicotine enriched with stable isotopes in either the N'-methyl group or the pyrrolidine-N were fed to Nicotiana plumbaginifolia suspension cell cultures that do not form endogenous nicotine. The metabolism of these compounds was investigated by analysing the incorporation of isotope into other alkaloids using gas chromatography-mass spectroscopy (GC-MS). Nicotine metabolism primarily resulted in the accumulation of nornicotine, the N'-demethylation product. In addition, six minor metabolites appeared during the course of nicotine metabolism, four of which were identified as cotinine, myosmine, N'-formylnornicotine and N'-carboethoxynornicotine. While cotinine was formed from [(13)C,(2)H(3)-methyl]nicotine without dilution of label, N'-formylnornicotine was labelled at only about 6% of the level of nicotine and N'-carboethoxynornicotine was unlabelled. Feeding with [1'-(15)N]nornicotine resulted in incorporation without dilution of label into both N'-formylnornicotine and N'-carboethoxynornicotine. This pattern strongly indicates that, while nornicotine and cotinine are derived directly from nicotine, N'-formylnornicotine and N'-carboethoxynornicotine are metabolites of nornicotine. Thus, it is directly demonstrated that N'-formylnornicotine is not an intermediate in nicotine demethylation.

  18. Treatment strategies for high resveratrol induction in Vitis vinifera L. cell suspension culture

    Directory of Open Access Journals (Sweden)

    Thu V. Vuong

    2014-06-01

    Full Text Available Bioprocesses capable of producing large scales of resveratrol at nutraceutical grade are in demand. This study herein investigated treatment strategies to induce the production of resveratrol in Vitis vinifera L. cell suspension cultures. Among seven investigated elicitors, jasmonic acid (JA, salicylic acid, β-glucan (GLU, and chitosan enhanced the production of intracellular resveratrol manyfold. The combined treatment of JA and GLU increased extracellular resveratrol production by up to tenfold. The application of Amberlite XAD-7 resin for in situ removal and artificial storage of secreted resveratrol further increased resveratrol production by up to four orders of magnitude. The level of resveratrol produced in response to the combined treatment with 200 g/L XAD-7, 10 μM JA and 1 mg/mL GLU was approximately 2400 mg/L, allowing the production of resveratrol at an industrial scale. The high yield of resveratrol is due to the involvement of a number of mechanisms working in concert.

  19. Characterization of metal-supported axial injection plasma sprayed solid oxide fuel cells with aqueous suspension plasma sprayed electrolyte layers

    Science.gov (United States)

    Waldbillig, D.; Kesler, O.

    A method for manufacturing metal-supported SOFCs with atmospheric plasma spraying (APS) is presented, making use of aqueous suspension feedstock for the electrolyte layer and dry powder feedstock for the anode and cathode layers. The cathode layer was deposited first directly onto a metal support, in order to minimize contact resistance, and to allow the introduction of added porosity. The electrolyte layers produced by suspension plasma spraying (SPS) were characterized in terms of thickness, permeability, and microstructure, and the impact of substrate morphology on electrolyte properties was investigated. Fuel cells produced by APS were electrochemically tested at temperatures ranging from 650 to 750 °C. The substrate morphology had little effect on open circuit voltage, but substrates with finer porosity resulted in lower kinetic losses in the fuel cell polarization.

  20. Characterization of metal-supported axial injection plasma sprayed solid oxide fuel cells with aqueous suspension plasma sprayed electrolyte layers

    Energy Technology Data Exchange (ETDEWEB)

    Waldbillig, D. [University of British Columbia, Department of Materials Engineering, 309-6350 Stores Road, Vancouver, BC (Canada); Kesler, O. [University of Toronto, Department of Mechanical and Industrial Engineering, 5 King' s College Road, Toronto, Ontario (Canada)

    2009-06-15

    A method for manufacturing metal-supported SOFCs with atmospheric plasma spraying (APS) is presented, making use of aqueous suspension feedstock for the electrolyte layer and dry powder feedstock for the anode and cathode layers. The cathode layer was deposited first directly onto a metal support, in order to minimize contact resistance, and to allow the introduction of added porosity. The electrolyte layers produced by suspension plasma spraying (SPS) were characterized in terms of thickness, permeability, and microstructure, and the impact of substrate morphology on electrolyte properties was investigated. Fuel cells produced by APS were electrochemically tested at temperatures ranging from 650 to 750 C. The substrate morphology had little effect on open circuit voltage, but substrates with finer porosity resulted in lower kinetic losses in the fuel cell polarization. (author)

  1. Asymmetric cell division and its role in cell fate determination in the green alga Tetraselmis indica

    Digital Repository Service at National Institute of Oceanography (India)

    Arora, M.; Anil, A.C.; Burgess, K.; Delany, J.E.; Mesbahi, E.

    is a mechanism to ensure survival upon exposure to stress. Int. J. Food Microbiol. 78 19-30 De Smet I and Beeckman T 2011 Asymmetric cell division in land plants and algae: the driving force for differentiation. Nature Rev. Mol. Cell Biol. 12 177... of Prasinophytes, but are as evolved as any other green alga or land plant. These organisms share several ultrastructural features with the other core Chlorophytes (Trebouxiophyceae, Ulvophyceae and Chlorophyceae). However, the role of Chlorodendrophycean algae...

  2. Use of embryogenic cell suspension and meristem-tip cultures for mutation breeding of apomictic Musa species

    International Nuclear Information System (INIS)

    Novak, F.J.; Afza, R.; Duren, M. van

    1990-01-01

    Full text: Breeding by crossing is difficult for banana and plantain. The plants are heterozygous, therefore mutagenic treatment may uncover a recessive allele by mutating or deleting a corresponding dominant allele. Meristem tips were excised from in vitro growing shoots and used for mutation experiments. Induction was carried out by irradiating shoot tips with γ rays and/or by treatment of explants with ethylmethanesulfonate (EMS). Cell suspension was initiated from corm and leaf tissue excised from in vitro grown plantlets. Mutagenised cell suspensions were derived from leaf and corm tissues irradiated with 60 Co γ rays - (10 to 60 Gy, 8 Gy/min). Musa clones exhibited differences in radiosensitivity and post-irradiation recovery. Doses of 20 to 40 Gy seem suitable for mutation induction. The EMS concentration of 25 mM for 4 hours was found effective for isolated shoot tips. Considerable phenotypic variation was observed among plants regenerated from in vitro shoot tips after mutagenic treatment. Leaf and corm explants kept their morphogenic ability in embryogenic cell suspensions after irradiation up to 25 Gy. (author)

  3. Evaluation of treatment response to autologous transplantation of noncultured melanocyte/keratinocyte cell suspension in patients with stable vitiligo.

    Science.gov (United States)

    Ramos, Mariana Gontijo; Ramos, Daniel Gontijo; Ramos, Camila Gontijo

    2017-01-01

    Vitiligo is a chronic disease characterized by the appearance of achromic macules caused by melanocyte destruction. Surgical treatments with melanocyte transplantation can be used for stable vitiligo cases. To evaluate treatment response to the autologous transplantation of noncultured epidermal cell suspension in patients with stable vitiligo. Case series study in patients with stable vitiligo submitted to noncultured epidermal cell suspension transplantation and evaluated at least once, between 3 and 6 months after the procedure, to observe repigmentation and possible adverse effects. The maximum follow-up period for some patients was 24 months. Of the 20 patients who underwent 24 procedures, 25% showed an excellent rate of repigmentation, 50% good repigmentation, 15% regular, and 10% poor response. The best results were observed in face and neck lesions, while the worst in extremity lesions (88% and 33% of satisfactory responses, respectively). Patients with segmental vitiligo had a better response (84%) compared to non-segmental ones (63%). As side effects were observed hyperpigmentation of the treated area and the appearance of Koebner phenomenon in the donor area. Some limitations of the study included the small number of patients, a subjective evaluation, and the lack of long-term follow-up on the results. CONCLUSION: Noncultured epidermal cell suspension transplantation is efficient and well tolerated for stable vitiligo treatment, especially for segmental vitiligo on the face and neck.

  4. Synergistic reduction of toluylene blue induced by acetaldehyde and menadione in yeast cell suspension: Application to determination of yeast cell activity

    Directory of Open Access Journals (Sweden)

    Shiro Yamashoji

    2017-03-01

    Full Text Available Membrane permeant acetaldehyde and menadione induced the synergistic reduction of toluylene blue (TB acting as non-membrane permeant redox indicator in yeast cell suspension. NADH and acetaldehyde also induced the synergistic TB reduction in permeabilized yeast cells and phosphate buffer, but menadione had no ability to promote TB reduction. The pre-incubation of acetaldehyde inhibited the above synergistic reduction of TB in intact and permeabilized yeast cell suspension. The pre-incubation of acetaldehyde might promote NADH oxidation by alcohol dehydrogenase, because acetaldehyde decreased the intracellular NAD(PH concentration. The above facts indicate that the synergistic reduction of TB is controlled by the order of addition of menadione and acetaldehyde. The synergistic reduction of TB by menadione and acetaldehyde was proportional to viable yeast cell number from 104 to 2×106 cells/ml, and this assay was applicable to cytotoxicity test. The time required for the above assay was only 2 min.

  5. Magnetic bead based immuno-detection of Listeria monocytogenes and Listeria ivanovii from infant formula and leafy green vegetables using the Bio-Plex suspension array system.

    Science.gov (United States)

    Day, J B; Basavanna, U

    2015-04-01

    Listeriosis, a disease contracted via the consumption of foods contaminated with pathogenic Listeria species, can produce severe symptoms and high mortality in susceptible people and animals. The development of molecular methods and immuno-based techniques for detection of pathogenic Listeria in foods has been challenging due to the presence of assay inhibiting food components. In this study, we utilize a macrophage cell culture system for the isolation and enrichment of Listeria monocytogenes and Listeria ivanovii from infant formula and leafy green vegetables for subsequent identification using the Luminex xMAP technique. Macrophage monolayers were exposed to infant formula, lettuce and celery contaminated with L. monocytogenes or L. ivanovii. Magnetic microspheres conjugated to Listeria specific antibody were used to capture Listeria from infected macrophages and then analyzed using the Bio-Plex 200 analyzer. As few as 10 CFU/mL or g of L. monocytogenes was detected in all foods tested. The detection limit for L. ivanovii was 10 CFU/mL in infant formula and 100 CFU/g in leafy greens. Microsphere bound Listeria obtained from infected macrophage lysates could also be isolated on selective media for subsequent confirmatory identification. This method presumptively identifies L. monocytogenes and L. ivanovii from infant formula, lettuce and celery in less than 28 h with confirmatory identifications completed in less than 48 h. Published by Elsevier Ltd.

  6. The durative use of suspension cells and callus for volatile oil by comparative with seeds and fruits in Capparis spinosa L.

    Directory of Open Access Journals (Sweden)

    Yongtai Yin

    Full Text Available Capparis spinosa is one of the most important eremophytes among the medicinal plants, and continued destruction of these plants poses a major threat to species survival. The development of methods to extract compounds, especially those of medicinal value, without harvesting the whole plant is an issue of considerable socioeconomic importance. On the basis of an established system for culture of suspension cells and callus in vitro, Gas Chromatograph-Mass Spectrometer (GC-MS was used for the volatile oil composition analyzing in seed, fruit, suspension cells and callus. Fatty acids were the major component, and the highest content of alkanes was detected in seed, with <1.0% in suspension cells and callus. Esters, olefins and heterocyclic compounds were significantly higher in fruit than in the other materials. The content of acid esters in the suspension cells and callus was significantly higher than in seed and fruit. This indicated that the suspension cells and callus could be helpful for increasing the value of volatile oil and replacing seeds and fruit partially as a source of some compounds of the volatile oil and may also produce some new medical compounds. The above results give valuable information for sustainable use of C. spinosa and provide a foundation for use of the C. spinosa suspension cells and callus as an ongoing medical resource.

  7. Rotary orbital suspension culture of embryonic stem cell-derived neural stem/progenitor cells: impact of hydrodynamic culture on aggregate yield, morphology and cell phenotype.

    Science.gov (United States)

    Laundos, Tiago L; Silva, Joana; Assunção, Marisa; Quelhas, Pedro; Monteiro, Cátia; Oliveira, Carla; Oliveira, Maria J; Pêgo, Ana P; Amaral, Isabel F

    2017-08-01

    Embryonic stem (ES)-derived neural stem/progenitor cells (ES-NSPCs) constitute a promising cell source for application in cell therapies for the treatment of central nervous system disorders. In this study, a rotary orbital hydrodynamic culture system was applied to single-cell suspensions of ES-NSPCs, to obtain homogeneously-sized ES-NSPC cellular aggregates (neurospheres). Hydrodynamic culture allowed the formation of ES-NSPC neurospheres with a narrower size distribution than statically cultured neurospheres, increasing orbital speeds leading to smaller-sized neurospheres and higher neurosphere yield. Neurospheres formed under hydrodynamic conditions (72 h at 55 rpm) showed higher cell compaction and comparable percentages of viable, dead, apoptotic and proliferative cells. Further characterization of cellular aggregates provided new insights into the effect of hydrodynamic shear on ES-NSPC behaviour. Rotary neurospheres exhibited reduced protein levels of N-cadherin and β-catenin, and higher deposition of laminin (without impacting fibronectin deposition), matrix metalloproteinase-2 (MMP-2) activity and percentage of neuronal cells. In line with the increased MMP-2 activity levels found, hydrodynamically-cultured neurospheres showed higher outward migration on laminin. Moreover, when cultured in a 3D fibrin hydrogel, rotary neurospheres generated an increased percentage of neuronal cells. In conclusion, the application of a constant orbital speed to single-cell suspensions of ES-NSPCs, besides allowing the formation of homogeneously-sized neurospheres, promoted ES-NSPC differentiation and outward migration, possibly by influencing the expression of cell-cell adhesion molecules and the secretion of proteases/extracellular matrix proteins. These findings are important when establishing the culture conditions needed to obtain uniformly-sized ES-NSPC aggregates, either for use in regenerative therapies or in in vitro platforms for biomaterial development or

  8. Effect of substrate and cathode parameters on the properties of suspension plasma sprayed solid oxide fuel cell electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Waldbillig, D.; Tang, Z.; Burgess, A. [British Columbia Univ., Vancouver, BC (Canada); Kesler, O. [Toronto Univ., ON (Canada)

    2008-07-01

    An axial injection suspension plasma spray system has been used to produce layers of fully stabilized yttriastabilized zirconia (YSZ) that could be used as solid oxide fuel cell (SOFC) electrolytes. Suspension plasma spraying is a promising technique for the rapid production of coatings with fine microstructures and controlled porosity without requiring a post-deposition heat treatment. This new manufacturing technique to produce SOFC active layers requires the build up of a number of different plasma sprayed SOFC functional layers (cathode, electrolyte and anode) sequentially on top of each other. To understand the influence of the substrate and previouslydeposited coating layers on subsequent coating layer properties, YSZ layers were deposited on top of plasma sprayed composite lanthanum strontium manganite (LSM)/YSZ cathode layers that were first deposited on porous ferritic stainless steel substrates. Three layer half cells consisting of the porous steel substrate, composite cathode, and suspension plasma sprayed electrolyte layer were then characterized. A systematic study was performed in order to investigate the effect of parameters such as substrate and cathode layer roughness, substrate surface pore size, and cathode microstructure and thickness on electrolyte deposition efficiency, cathode and electrolyte permeability, and layer microstructure. (orig.)

  9. Signal transduction in artichoke [Cynara cardunculus L. subsp. scolymus (L.) Hayek] callus and cell suspension cultures under nutritional stress.

    Science.gov (United States)

    Lattanzio, Vincenzo; Caretto, Sofia; Linsalata, Vito; Colella, Giovanni; Mita, Giovanni

    2018-06-01

    Stimulated production of secondary phenolic metabolites and proline was studied by using cell cultures of artichoke [Cynara cardunculus L. subsp. scolymus (L.) Hayek] submitted to nutritional stress. Artichoke cell cultures accumulated phenolic secondary metabolites in a pattern similar to that seen in artichoke leaves and heads (capitula). This paper shows that both callus and cell suspension cultures under nutritional stress accumulated phenolic compounds and proline, at the same time their biomass production was negatively affected by nutrient deficiency. The results obtained strongly suggest that plant tissues respond to nutrient deprivation by a defensive costly mechanism, which determines the establishment of a mechanism of trade-off between growth and adaptive response. Furthermore, the results of this research suggest that perception of abiotic stress and increased phenolic metabolites are linked by a sequence of biochemical processes that also involves the intracellular free proline and the oxidative pentose phosphate pathway. The main conclusion of this paper is that, once calli and cell suspension cultures respond to nutrient deficiency, in acclimated cells the establishment of a negative correlation between primary metabolism (growth) and secondary metabolism (defence compounds) is observed. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  10. Elicitation of Jerusalem artichoke (Helianthus tuberosus L.) cell suspension culture for enhancement of inulin production and altered degree of polymerisation.

    Science.gov (United States)

    Ma, Chunquan; Zhou, Dong; Wang, Haitao; Han, Dongming; Wang, Yang; Yan, Xiufeng

    2017-01-01

    Plant cell suspension cultures have emerged as a potential source of secondary metabolites for food additives and pharmaceuticals. In this study inulin accumulation and its degree of polymerisation (DP) in the treated cells in the same medium were investigated after treatment with six types of elicitors. An in vitro cell suspension culture of Jerusalem artichoke (Helianthus tuberosus L.) was optimised by adding an extra nitrogen source. According to the growth kinetics, a maximum biomass of 5.48 g L -1 was obtained from the optimal cell suspension medium consisted of Murashige and Skoog basic medium (MS) + 1.0 mg L -1 α-naphthalene acetic acid (NAA) + 1.0 mg L -1 6-benzylaminopurine (6-BA) + 0.5 mg L -1 proline + 1.0 mg L -1 glutamine. Methyl jasmonate (MeJA, 250 µmol L -1 ) treatment for 15 days led to the highest levels of inulin (2955.27 ± 9.81 mg L -1 compared to control of 1217.46 ± 0.26 mg L -1 ). The elicited effect of five elicitors to the suspension cells of Jerusalem artichoke is as follows: AgNO 3 (Ag, 10 µmol L -1 ), salicylic acid (SA, 75 µmol L -1 ), chitosan (KJT, 40 mg L -1 ), Trichoderma viride (Tv, 90 mg L -1 ), yeast extract (YE, 0.25 mg L -1 ), and the corresponding content of inulin is increased by 2.05-, 1.93-, 1.76-, 1.44- and 1.18-fold compared to control, respectively. The obvious effect on the percentage of lower DP in inulin was observed in cells treated with 40 mg L -1 KJT, 0.25 mg L -1 YE and 10 µmol L -1 Ag. Among the six types of elicitors, the descending order of inulin content is MeJA > Ag > SA > KJT > Tv > YE. For the purpose inulin with lower DP and its application to prebiotic food, three elicitors, including KJT, YE and Ag, can be used for the elicitation. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  11. Red blood cell (RBC) suspensions in confined microflows: Pressure-flow relationship.

    Science.gov (United States)

    Stauber, Hagit; Waisman, Dan; Korin, Netanel; Sznitman, Josué

    2017-10-01

    Microfluidic-based assays have become increasingly popular to explore microcirculation in vitro. In these experiments, blood is resuspended to a desired haematocrit level in a buffer solution, where frequent choices for preparing RBC suspensions comprise notably Dextran and physiological buffer. Yet, the rational for selecting one buffer versus another is often ill-defined and lacks detailed quantification, including ensuing changes in RBC flow characteristics. Here, we revisit RBC suspensions in microflows and attempt to quantify systematically some of the differences emanating between buffers. We measure bulk flow rate (Q) of RBC suspensions, using PBS- and Dextran-40, as a function of the applied pressure drop (ΔP) for two hematocrits (∼0% and 23%). Two distinct microfluidic designs of varying dimensions are employed: a straight channel larger than and a network array similar to the size of individual RBCs. Using the resulting pressure-flow curves, we extract the equivalent hydrodynamic resistances and estimate the relative viscosities. These efforts are a first step in rigorously quantifying the influence of the 'background' buffer on RBC flows within microfluidic devices and thereby underline the importance of purposefully selecting buffer suspensions for microfluidic in vitro assays. Copyright © 2017. Published by Elsevier Ltd.

  12. Effects of exogenous growth regulators on cell suspension culture of yin-hong grape (vitis vinifera l.) and establishment of the optimum medium

    International Nuclear Information System (INIS)

    Chao, Y.; Feng, J.C.; Yan, W.Y.; Xiao, Y.; Jun, Y.Y

    2015-01-01

    Callus induced by stem of Yin-hong grape (Vitis vinifera L.) was used as materials and B5 medium as basic medium. The major growth parameters of cell suspension cultures with various levels of 1-Naphthaleneacetic acid (NAA) and 6-Benzyl aminopurine (6-BA) were investigated to provide a basis for the optimum medium of suspension cell cultures of Yin-hong grape regarding cell number, packed cell volume (PCV), dry cell weight (DCW), cell viability, and morphology. All data were analysed by of two-way analysis of variance (ANOVA). Results showed that the treatment of 6-BA and NAA would effect the cell growth dynamics, probably causing logarithmic phase in advance at higher levels of 6-BA. Different concentration of 6-BA and NAA had significant effects on cells number, PCV, DCW and viability (p<0.05), while no-significant effect was observed on the cells morphology. The optimum medium for suspension cell cultures of Yin-hong grape was identified as B5+1.5 mg/L6-BA+1.5 mg/LNAA+ 250 mg/L casein hydrolysate + 30 g/L sucrose. With the optimum medium, the maximum number of suspension cells after the logarithmic growth phase was 34.78 * 108 / mL, the highest cell viability reached 86.45%.; DCW reached 3.84 g/L and PCV reached 0.092 mL/mL after eight days cultivating. (author)

  13. Transient transfection of serum-free suspension HEK 293 cell culture for efficient production of human rFVIII

    Science.gov (United States)

    2011-01-01

    Background Hemophilia A is a bleeding disorder caused by deficiency in coagulation factor VIII. Recombinant factor VIII (rFVIII) is an alternative to plasma-derived FVIII for the treatment of hemophilia A. However, commercial manufacturing of rFVIII products is inefficient and costly and is associated to high prices and product shortage, even in economically privileged countries. This situation may be solved by adopting more efficient production methods. Here, we evaluated the potential of transient transfection in producing rFVIII in serum-free suspension HEK 293 cell cultures and investigated the effects of different DNA concentration (0.4, 0.6 and 0.8 μg/106 cells) and repeated transfections done at 34° and 37°C. Results We observed a decrease in cell growth when high DNA concentrations were used, but no significant differences in transfection efficiency and in the biological activity of the rFVIII were noticed. The best condition for rFVIII production was obtained with repeated transfections at 34°C using 0.4 μg DNA/106 cells through which almost 50 IU of active rFVIII was produced six days post-transfection. Conclusion Serum-free suspension transient transfection is thus a viable option for high-yield-rFVIII production. Work is in progress to further optimize the process and validate its scalability. PMID:22115125

  14. Enhanced production of phenolic acids in cell suspension culture of Salvia leriifolia Benth. using growth regulators and sucrose.

    Science.gov (United States)

    Modarres, Masoomeh; Esmaeilzadeh Bahabadi, Sedigheh; Taghavizadeh Yazdi, Mohammad Ehsan

    2018-04-01

    Salvia leriifolia Benth. (Lamiaceae) is an endangered medicinal plant with hypoglycemic, anti-inflammatory and analgesic properties. Many of the beneficial effects of Salvia spp. are attributed to the phenolic compounds. In the present study, an efficient procedure has been developed for establishment of cell suspension culture of S. leriifolia as a strategy to obtain an in vitro phenolic acids producing cell line for the first time. The effect of growth regulators and various concentrations of sucrose have been analyzed, to optimize biomass growth and phenolic acids production. The callus used for this purpose was obtained from leaves of 15-day-old in vitro seedlings, on Murashige and Skoog (MS) basal medium supplemented with different hormone balances including benzylaminopurine (BAP) and indole butyric acid (IBA); 2,4-dichlorophenoxyacetic acid (2,4-D) and kinetin (KIN); naphthaleneacetic acid (NAA) and BAP. Modified MS medium supplemented with 5 mg/L BAP and 5 mg/L NAA was the optimal condition for callus formation with the highest induction rate (100%), the best callus growth and the highest phenolic acids content. No callus induction was observed in combinations of IBA and BAP. Cell suspension cultures were established by transferring 0.5 g of callus to 30 mL liquid MS medium supplemented with 5 mg/L BAP and 5 mg/L NAA. Dynamics of phenolic acids production has been investigated during the growth cycle of the suspension cultures. The maximum content of caffeic acid and salvianolic acid B were observed on the 15th day of the cultivation cycle while the highest amount of rosmarinic acid was observed on the first day. In response to various sucrose concentrations, cell cultures with 40 g/L sucrose not only produced the highest dry biomass but also the highest induction of caffeic acid and salvianolic acid B. The highest amount of rosmarinic acid was observed in media containing 50 g/L sucrose. These prepared cell suspension cultures provided a useful

  15. Purification of extensin from cell walls of tomato (hybrid of Lycopersicon esculentum and L. peruvianum) cells in suspension culture.

    Science.gov (United States)

    Brownleader, M D; Dey, P M

    1993-01-01

    Extensin, a hydroxyproline-rich glycoprotein comprising substantial amounts of beta-L-arabinose-hydroxyproline glycosidic linkages is believed to be insolubilized in the cell wall during host-pathogen interaction by a peroxidase/hydroperoxide-mediated cross-linking process. Both extensin precursor and extensin peroxidase were ionically eluted from intact water-washed tomato (hybrid of Lycopersicon esculentum Mill. and L. peruvianum L. (Mill.) cells in suspension cultures and purified to homogeneity by a rapid and simple procedure under mild and non-destructive experimental conditions. The molecular weight of native extensin precursor was estimated to be greater than 240-300 kDa by Superose-12 gel-filtration chromatography. Extensin monomers have previously been designated a molecular weight of approximately 80 kDa. Our results indicate that salt-eluted extensin precursor is not monomeric. Agarose-gel electrophoresis, Superose-12-gel-filtration, extensin-peroxidase-catalysed cross-linking, Mono-S ion-exchange fast protein liquid chromatography (FPLC), and peptide-sequencing data confirmed the homogeneity of the extensin preparation. Evidence that the purified protein was extensin is attributed to the presence of the putative sequence motif--Ser (Hyp)4--within the N-terminal end of the protein. Treatment of extensin with trifluoroacetic acid demonstrated that arabinose was the principal carbohydrate. The amino-acid composition of the purified extensin was similar to those reported in the literature. The cross-linking of extensin in vitro upon incubation with extensin peroxidase and exogenous H2O2 was characteristic of other reported extensins. Furthermore, Mono-S ion-exchange FPLC of native extensin precursor resolved it into two isoforms, A (90%) and B (10%). The amino-acid compositions of extensin A and extensin B were found to be similar to each other and both extensins were cross-linked in vitro by extensin peroxidase.

  16. Bio-inactivation of human malignant cells through highly responsive diluted colloidal suspension of functionalized magnetic iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Roberta V. [Federal Center of Technological Education of Minas Gerais, Department of Materials (Brazil); Silva-Caldeira, Priscila P. [Federal Center of Technological Education of Minas Gerais, Department of Chemistry (Brazil); Pereira-Maia, Elene C.; Fabris, José D.; Cavalcante, Luis Carlos D. [Federal University of Minas Gerais (UFMG), Department of Chemistry – ICEx (Brazil); Ardisson, José D. [Nuclear Technology Development Center (CDTN) (Brazil); Domingues, Rosana Z., E-mail: rosanazd@yahoo.com.br, E-mail: rosanazd@ufmg.br [Federal University of Minas Gerais (UFMG), Department of Chemistry – ICEx (Brazil)

    2016-04-15

    Magnetic fluids, more specifically aqueous colloidal suspensions containing certain magnetic nanoparticles (MNPs), have recently been gaining special interest due to their potential use in clinical treatments of cancerous formations in mammalians. The technological application arises mainly from their hyperthermic behavior, which means that the nanoparticles dissipate heat upon being exposed to an alternating magnetic field (AMF). If the temperature is raised to slightly above 43 °C, cancer cells are functionally inactivated or killed; however, normal cells tend to survive under those same conditions, entirely maintaining their bioactivity. Recent in vitro studies have revealed that under simultaneous exposure to an AMF and magnetic nanoparticles, certain lines of cancer cells are bio-inactivated even without experiencing a significant temperature increase. This non-thermal effect is cell specific, indicating that MNPs, under alternating magnetic fields, may effectively kill cancer cells under conditions that were previously thought to be implausible, considering that the temperature does not increase more than 5 °C, which is also true in cases for which the concentration of MNPs is too low. To experimentally test for this effect, this study focused on the feasibility of inducing K562 cell death using an AMF and aqueous suspensions containing very low concentrations of MNPs. The assay was designed for a ferrofluid containing magnetite nanoparticles, which were obtained through the co-precipitation method and were functionalized with citric acid; the particles had an average diameter of 10 ± 2 nm and a mean hydrodynamic diameter of approximately 40 nm. Experiments were first performed to test for the ability of the ferrofluid to release heat under an AMF. The results show that for concentrations ranging from 2.5 to 1.0 × 10{sup 3} mg L{sup −1}, the maximum temperature increase was actually less than 2 °C. However, the in vitro test results from K

  17. Unexpected features of exponentially growing Tobacco Bright Yellow-2 cell suspension culture in relation to excreted extracellular polysaccharides and cell wall composition.

    Science.gov (United States)

    Issawi, Mohammad; Muhieddine, Mohammad; Girard, Celine; Sol, Vincent; Riou, Catherine

    2017-10-01

    This article presents a new insight about TBY-2 cells; from extracellular polysaccharides secretion to cell wall composition during cell suspension culture. In the medium of cells taken 2 days after dilution (end of lag phase), a two unit pH decrease from 5.38 to 3.45 was observed and linked to a high uronic acid (UA) amount secretion (47.8%) while, in 4 and 7 day-old spent media, pH increased and UA amounts decreased 35.6 and 42.3% UA, respectively. To attain deeper knowledge of the putative link between extracellular polysaccharide excretion and cell wall composition, we determined cell wall UA and neutral sugar composition of cells from D2 to D12 cultures. While cell walls from D2 and D3 cells contained a large amount of uronic acid (twice as much as the other analysed cell walls), similar amounts of neutral sugar were detected in cells from lag to end of exponential phase cells suggesting an enriched pectin network in young cultures. Indeed, monosaccharide composition analysis leads to an estimated percentage of pectins of 56% for D3 cell wall against 45% D7 cell walls indicating that the cells at the mid-exponential growth phase re-organized their cell wall linked to a decrease in secreted UA that finally led to a stabilization of the spent medium pH to 5.4. In conclusion, TBY-2 cell suspension from lag to stationary phase showed cell wall remodeling that could be of interest in drug interaction and internalization study.

  18. Glycyrrhiza glabra (Linn.) and Lavandula officinalis (L.) cell suspension cultures-based biotransformation of β-artemether.

    Science.gov (United States)

    Patel, Suman; Gaur, Rashmi; Upadhyaya, Mohita; Mathur, Archana; Mathur, Ajay K; Bhakuni, Rajendra S

    2011-07-01

    The biotransformation of β-artemether (1) by cell suspension cultures of Glycyrrhiza glabra and Lavandula officinalis is reported here for the first time. The major biotransformed product appeared as a grayish-blue color spot on thin-layer chromatography (TLC) with transparent crystal-like texture. Based on its infrared (IR) and (1)H nuclear magnetic resonance (NMR) spectra, the product was characterized as a tetrahydrofuran (THF)-acetate derivative (2). The highest conversion efficiencies of 57 and 60% were obtained when 8-9-day-old cell suspensions of G. glabra and L. officinalis were respectively fed with 4-7 mg of compound 1 in 40 ml of medium per culture and the cells were harvested after 2-5 days of incubation. The addition of compound 1 at the beginning of the culture cycle caused severe growth depression in a dose-dependent manner, resulting in poor bioconversion efficiency of ~25% at 2-5 mg/culture dose only.

  19. ROS enhancement by silicon nanoparticles in X-ray irradiated aqueous suspensions and in glioma C6 cells

    International Nuclear Information System (INIS)

    David Gara, Pedro M.; Garabano, Natalia I.; Llansola Portoles, Manuel J.; Moreno, M. Sergio; Dodat, Diego; Casas, Oscar R.; Gonzalez, Mónica C.; Kotler, Mónica L.

    2012-01-01

    The capability of silicon nanoparticles to increase the yield of reactive species upon 4 MeV X-ray irradiation of aqueous suspensions and C6 glioma cell cultures was investigated. ROS generation was detected and quantified using several specific probes. The particles were characterized by FTIR, XPS, TEM, DLS, luminescence, and adsorption spectroscopy before and after irradiation to evaluate the effect of high energy radiation on their structure. The total concentration of O 2 •− /HO 2 • , HO • , and H 2 O 2 generated upon 4-MeV X-ray irradiation of 6.4 μM silicon nanoparticle aqueous suspensions were on the order of 10 μM per Gy, ten times higher than that obtained in similar experiments but in the absence of particles. Cytotoxic 1 O 2 was generated only in irradiation experiments containing the particles. The particle surface became oxidized to SiO 2 and the luminescence yield reduced with the irradiation dose. Changes in the surface morphology did not affect, within the experimental error, the yields of ROS generated per Gy. X-ray irradiation of glioma C6 cell cultures with incorporated silicon nanoparticles showed a marked production of ROS proportional to the radiation dose received. In the absence of nanoparticles, the cells showed no irradiation-enhanced ROS generation. The obtained results indicate that silicon nanoparticles of 1 O 2 upon X-ray irradiation opens novel approaches in the design of therapy strategies.

  20. Brownian Dynamics of a Suspension of Particles with Constrained Voronoi Cell Volumes

    KAUST Repository

    Singh, John P.; Walsh, Stuart D. C.; Koch, Donald L.

    2015-01-01

    © 2015 American Chemical Society. Solvent-free polymer-grafted nanoparticle fluids consist of inorganic core particles fluidized by polymers tethered to their surfaces. The attachment of the suspending fluid to the particle surface creates a strong penalty for local variations in the fluid volume surrounding the particles. As a model of such a suspension we perform Brownian dynamics of an equilibrium system consisting of hard spheres which experience a many-particle potential proportional to the variance of the Voronoi volumes surrounding each particle (E = α(Vi-V0)2). The coefficient of proportionality α can be varied such that pure hard sphere dynamics is recovered as α → 0, while an incompressible array of hairy particles is obtained as α →. As α is increased the distribution of Voronoi volumes becomes narrower, the mean coordination number of the particle increases and the variance in the number of nearest neighbors decreases. The nearest neighbor peaks in the pair distribution function are suppressed and shifted to larger radial separations as the constraint acts to maintain relatively uniform interstitial regions. The structure factor of the model suspension satisfies S(k=0) → 0 as α → in accordance with expectation for a single component (particle plus tethered fluid) incompressible system. The tracer diffusivity of the particles is reduced by the volume constraint and goes to zero at φ 0.52, indicating an earlier glass transition than has been observed in hard sphere suspensions. The total pressure of the suspension grows in proportion to (αkBT)1/2 as the strength of the volume-constraint potential grows. This stress arises primarily from the interparticle potential forces, while the hard-sphere collisional contribution to the stress is suppressed by the volume constraint.

  1. Brownian Dynamics of a Suspension of Particles with Constrained Voronoi Cell Volumes

    KAUST Repository

    Singh, John P.

    2015-06-23

    © 2015 American Chemical Society. Solvent-free polymer-grafted nanoparticle fluids consist of inorganic core particles fluidized by polymers tethered to their surfaces. The attachment of the suspending fluid to the particle surface creates a strong penalty for local variations in the fluid volume surrounding the particles. As a model of such a suspension we perform Brownian dynamics of an equilibrium system consisting of hard spheres which experience a many-particle potential proportional to the variance of the Voronoi volumes surrounding each particle (E = α(Vi-V0)2). The coefficient of proportionality α can be varied such that pure hard sphere dynamics is recovered as α → 0, while an incompressible array of hairy particles is obtained as α →. As α is increased the distribution of Voronoi volumes becomes narrower, the mean coordination number of the particle increases and the variance in the number of nearest neighbors decreases. The nearest neighbor peaks in the pair distribution function are suppressed and shifted to larger radial separations as the constraint acts to maintain relatively uniform interstitial regions. The structure factor of the model suspension satisfies S(k=0) → 0 as α → in accordance with expectation for a single component (particle plus tethered fluid) incompressible system. The tracer diffusivity of the particles is reduced by the volume constraint and goes to zero at φ 0.52, indicating an earlier glass transition than has been observed in hard sphere suspensions. The total pressure of the suspension grows in proportion to (αkBT)1/2 as the strength of the volume-constraint potential grows. This stress arises primarily from the interparticle potential forces, while the hard-sphere collisional contribution to the stress is suppressed by the volume constraint.

  2. Comparison of mesencephalic free-floating tissue culture grafts and cell suspension grafts in the 6-hydroxydopamine-lesioned rat

    DEFF Research Database (Denmark)

    Meyer, Morten; Widmer, H R; Wagner, B

    1998-01-01

    of grafted dopaminergic neurons and to correlate that with the behavioral effects. Additional cultures and acutely prepared explants were also fixed and stored for histological investigation in order to estimate the loss of dopaminergic neurons in culture and after transplantation. Similar behavioral...... numbers of TH-immunoreactive (TH-ir) neurons in grafts of cultured tissue (775 +/- 98, mean +/- SEM) and grafts of fresh, dissociated cell suspension (806 +/- 105, mean +/- SEM). Cell counts in fresh explants, 7-day-old cultures, and grafted cultures revealed a 68.2% loss of TH-ir cells 7 days after......Ventral mesencephalon (VM) of fetal rat and human origin grown as free-floating roller-tube (FFRT) cultures can survive subsequent grafting to the adult rat striatum. To further explore the functional efficacy of such grafts, embryonic day 13 ventral mesencephalic tissue was grafted either after 7...

  3. NMR quantification of diffusional exchange in cell suspensions with relaxation rate differences between intra and extracellular compartments.

    Science.gov (United States)

    Eriksson, Stefanie; Elbing, Karin; Söderman, Olle; Lindkvist-Petersson, Karin; Topgaard, Daniel; Lasič, Samo

    2017-01-01

    Water transport across cell membranes can be measured non-invasively with diffusion NMR. We present a method to quantify the intracellular lifetime of water in cell suspensions with short transverse relaxation times, T2, and also circumvent the confounding effect of different T2 values in the intra- and extracellular compartments. Filter exchange spectroscopy (FEXSY) is specifically sensitive to exchange between compartments with different apparent diffusivities. Our investigation shows that FEXSY could yield significantly biased results if differences in T2 are not accounted for. To mitigate this problem, we propose combining FEXSY with diffusion-relaxation correlation experiment, which can quantify differences in T2 values in compartments with different diffusivities. Our analysis uses a joint constrained fitting of the two datasets and considers the effects of diffusion, relaxation and exchange in both experiments. The method is demonstrated on yeast cells with and without human aquaporins.

  4. Reprogramming of enteroendocrine K cells to pancreatic β-cells through the combined expression of Nkx6.1 and Neurogenin3, and reaggregation in suspension culture

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Esder; Ryu, Gyeong Ryul; Moon, Sung-Dae; Ko, Seung-Hyun; Ahn, Yu-Bae; Song, Ki-Ho, E-mail: kihos@catholic.ac.kr

    2014-01-17

    Highlights: •K cells were selected from STC-1 cells, a heterogeneous enteroendocrine cell line. •K cells did not express Nkx6.1 and Neurogenin3. •Combined expression of Nkx6.1 and Neurogenin3 reprogrammed K cells to β-cells. •Reprogramming of K cells to β-cells was not complete. -- Abstract: Recent studies have demonstrated that adult cells such as pancreatic exocrine cells can be converted to pancreatic β-cells in a process called cell reprogramming. Enteroendocrine cells and β-cells share similar pathways of differentiation during embryonic development. Notably, enteroendocrine K cells express many of the key proteins found in β-cells. Thus, K cells could be reprogrammed to β-cells under certain conditions. However, there is no clear evidence on whether these cells convert to β-cells. K cells were selected from STC-1 cells, an enteroendocrine cell line expressing multiple hormones. K cells were found to express many genes of transcription factors crucial for islet development and differentiation except for Nkx6.1 and Neurogenin3. A K cell clone stably expressing Nkx6.1 (Nkx6.1{sup +}-K cells) was established. Induction of Neurogenin3 expression in Nkx6.1{sup +}-K cells, by either treatment with a γ-secretase inhibitor or infection with a recombinant adenovirus expressing Neurogenin3, led to a significant increase in Insulin1 mRNA expression. After infection with the adenovirus expressing Neurogenin3 and reaggregation in suspension culture, about 50% of Nkx6.1{sup +}-K cells expressed insulin as determined by immunostaining. The intracellular insulin content was increased markedly. Electron microscopy revealed the presence of insulin granules. However, glucose-stimulated insulin secretion was defective, and there was no glucose lowering effect after transplantation of these cells in diabetic mice. In conclusion, we demonstrated that K cells could be reprogrammed partially to β-cells through the combined expression of Nkx6.1 and Neurogenin3, and

  5. Reprogramming of enteroendocrine K cells to pancreatic β-cells through the combined expression of Nkx6.1 and Neurogenin3, and reaggregation in suspension culture

    International Nuclear Information System (INIS)

    Lee, Esder; Ryu, Gyeong Ryul; Moon, Sung-Dae; Ko, Seung-Hyun; Ahn, Yu-Bae; Song, Ki-Ho

    2014-01-01

    Highlights: •K cells were selected from STC-1 cells, a heterogeneous enteroendocrine cell line. •K cells did not express Nkx6.1 and Neurogenin3. •Combined expression of Nkx6.1 and Neurogenin3 reprogrammed K cells to β-cells. •Reprogramming of K cells to β-cells was not complete. -- Abstract: Recent studies have demonstrated that adult cells such as pancreatic exocrine cells can be converted to pancreatic β-cells in a process called cell reprogramming. Enteroendocrine cells and β-cells share similar pathways of differentiation during embryonic development. Notably, enteroendocrine K cells express many of the key proteins found in β-cells. Thus, K cells could be reprogrammed to β-cells under certain conditions. However, there is no clear evidence on whether these cells convert to β-cells. K cells were selected from STC-1 cells, an enteroendocrine cell line expressing multiple hormones. K cells were found to express many genes of transcription factors crucial for islet development and differentiation except for Nkx6.1 and Neurogenin3. A K cell clone stably expressing Nkx6.1 (Nkx6.1 + -K cells) was established. Induction of Neurogenin3 expression in Nkx6.1 + -K cells, by either treatment with a γ-secretase inhibitor or infection with a recombinant adenovirus expressing Neurogenin3, led to a significant increase in Insulin1 mRNA expression. After infection with the adenovirus expressing Neurogenin3 and reaggregation in suspension culture, about 50% of Nkx6.1 + -K cells expressed insulin as determined by immunostaining. The intracellular insulin content was increased markedly. Electron microscopy revealed the presence of insulin granules. However, glucose-stimulated insulin secretion was defective, and there was no glucose lowering effect after transplantation of these cells in diabetic mice. In conclusion, we demonstrated that K cells could be reprogrammed partially to β-cells through the combined expression of Nkx6.1 and Neurogenin3, and reaggregation

  6. Increased sesquiterpenoid biosynthesis and an apparent decrease in sterol biosynthesis in elicitor-treated tobacco cell suspension cultures

    International Nuclear Information System (INIS)

    Voegeli, U.; Bhatt, P.N.; Chappell, J.

    1987-01-01

    Addition of fungel elicitor prepared from Phytophthora parasitica to tobacco cell suspension cultures leads to an increased production of the phytoalexin capsidiol. Capsidiol is a sesquiterpenoid which is most likely synthesized from farnesylpyrophosphat (FPP) by a bicyclic cyclase reaction. Because FPP is also a substrate for squalene synthetase and therefore a precursor of sterol biosynthesis, the question arises whether or not the accumulation of capsidiol in elicitor-treated cells occurs at the expense of sterol biosynthesis. ( 14 C]-acetate was given to elicitor-treated and control (no treatment) cell cultures and incorporation into sterols and capsidiol determined. No labeled capsidiol was detected in control cells. In elicitor-treated cells about 12-15% of the radioactivity taken up by the cells was incorporated into capsidiol. In contrast, control cells incorporated 4 times more radioactivity into sterols than elicitor-treated cells. Similar results were obtained using ( 3 H)-mevalonate as a precursor of capsidiol and sterol biosynthesis. Likely explanations for the apparently decline in sterol biosynthesis in elicitor-treated cells include: (1) inhibition of squalene synthetase; (2) induction of capsidiol synthesizing enzymes; and (3) metabolic channeling of FPP into capsidiol versus sterols. These possibilities will be discussed further together with other results

  7. Biosynthesis of phenolic compounds inVitis vinifera cell suspension cultures: Study on hydroxycinnamoyl CoA:ligase.

    Science.gov (United States)

    Lotfy, S; Lofty, S; Fleuriet, A; Ramos, T; Macheix, J J

    1989-02-01

    In cell suspensions cultures from grape berry pulp (Vitis vinifera cv. Gamay fréaux)hydroxycinnamoyl CoA ligase (CoAL) displayed maximum activity (100 %) forp-coumaric acid and then, in decreasing order, for ferulic acid (81.3 %) and caffeic acid (60.4 %). No activity was detected with sinapic and cinnamic acids. The changes in CoAL activity during the growth cycle of the culture displayed two peaks : the highest (6 h after subculturing) was linked with a strong increase in protein caused by dilution ; the second was weaker and occurred on the 7th day of culture.Grape cell suspension accumulated mainly peonidin (Pn) and cyanidin (Cy) glucosides (Pn 3-glucoside, Cy 3-glucoside, Pn 3-acetylglucoside, Pn 3-caffeylglucoside, Pn 3-p-coumarylglucoside, and Cy 3-p-coumarylglucoside). Maximum accumulation of anthocyanins was associated with the exponential growth phase of the culture and might be the result of the substantial increase in CoAL activity resulting from the effect of dilution. The second enzyme activity peak was probably oriented towards the acylation of anthocyanins since the percentage of acylated forms increased with time after subculturing.

  8. Load-cell based characterization system for a “Violin-Mode” shadow-sensor in advanced LIGO suspensions

    International Nuclear Information System (INIS)

    Lockerbie, N. A.; Tokmakov, K. V.

    2016-01-01

    The background to this work was a prototype shadow sensor, which was designed for retro-fitting to an advanced LIGO (Laser Interferometer Gravitational wave Observatory) test-mass/mirror suspension, in which 40 kg test-mass/mirrors are each suspended by four approximately 600 mm long by 0.4 mm diameter fused-silica suspension fibres. The shadow sensor comprised a LED source of Near InfraRed (NIR) radiation and a rectangular silicon photodiode detector, which, together, were to bracket the fibre under test. The aim was to detect transverse Violin-Mode resonances in the suspension fibres. Part of the testing procedure involved tensioning a silica fibre sample and translating it transversely through the illuminating NIR beam, so as to measure the DC responsivity of the detection system to fibre displacement. However, an equally important part of the procedure, reported here, was to keep the fibre under test stationary within the beam, whilst trying to detect low-level AC Violin-Mode resonances excited on the fibre, in order to confirm the primary function of the sensor. Therefore, a tensioning system, incorporating a load-cell readout, was built into the test fibre’s holder. The fibre then was excited by a signal generator, audio power amplifier, and distant loudspeaker, and clear resonances were detected. A theory for the expected fundamental resonant frequency as a function of fibre tension was developed and is reported here, and this theory was found to match closely with the detected resonant frequencies as they varied with tension. Consequently, the resonances seen were identified as being proper Violin-Mode fundamental resonances of the fibre, and the operation of the Violin-Mode detection system was validated.

  9. Load-cell based characterization system for a "Violin-Mode" shadow-sensor in advanced LIGO suspensions

    Science.gov (United States)

    Lockerbie, N. A.; Tokmakov, K. V.

    2016-07-01

    The background to this work was a prototype shadow sensor, which was designed for retro-fitting to an advanced LIGO (Laser Interferometer Gravitational wave Observatory) test-mass/mirror suspension, in which 40 kg test-mass/mirrors are each suspended by four approximately 600 mm long by 0.4 mm diameter fused-silica suspension fibres. The shadow sensor comprised a LED source of Near InfraRed (NIR) radiation and a rectangular silicon photodiode detector, which, together, were to bracket the fibre under test. The aim was to detect transverse Violin-Mode resonances in the suspension fibres. Part of the testing procedure involved tensioning a silica fibre sample and translating it transversely through the illuminating NIR beam, so as to measure the DC responsivity of the detection system to fibre displacement. However, an equally important part of the procedure, reported here, was to keep the fibre under test stationary within the beam, whilst trying to detect low-level AC Violin-Mode resonances excited on the fibre, in order to confirm the primary function of the sensor. Therefore, a tensioning system, incorporating a load-cell readout, was built into the test fibre's holder. The fibre then was excited by a signal generator, audio power amplifier, and distant loudspeaker, and clear resonances were detected. A theory for the expected fundamental resonant frequency as a function of fibre tension was developed and is reported here, and this theory was found to match closely with the detected resonant frequencies as they varied with tension. Consequently, the resonances seen were identified as being proper Violin-Mode fundamental resonances of the fibre, and the operation of the Violin-Mode detection system was validated.

  10. Load-cell based characterization system for a “Violin-Mode” shadow-sensor in advanced LIGO suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Lockerbie, N. A.; Tokmakov, K. V. [SUPA (Scottish Universities Physics Alliance) Department of Physics, University of Strathclyde, 107 Rottenrow, Glasgow G4 0NG (United Kingdom)

    2016-07-15

    The background to this work was a prototype shadow sensor, which was designed for retro-fitting to an advanced LIGO (Laser Interferometer Gravitational wave Observatory) test-mass/mirror suspension, in which 40 kg test-mass/mirrors are each suspended by four approximately 600 mm long by 0.4 mm diameter fused-silica suspension fibres. The shadow sensor comprised a LED source of Near InfraRed (NIR) radiation and a rectangular silicon photodiode detector, which, together, were to bracket the fibre under test. The aim was to detect transverse Violin-Mode resonances in the suspension fibres. Part of the testing procedure involved tensioning a silica fibre sample and translating it transversely through the illuminating NIR beam, so as to measure the DC responsivity of the detection system to fibre displacement. However, an equally important part of the procedure, reported here, was to keep the fibre under test stationary within the beam, whilst trying to detect low-level AC Violin-Mode resonances excited on the fibre, in order to confirm the primary function of the sensor. Therefore, a tensioning system, incorporating a load-cell readout, was built into the test fibre’s holder. The fibre then was excited by a signal generator, audio power amplifier, and distant loudspeaker, and clear resonances were detected. A theory for the expected fundamental resonant frequency as a function of fibre tension was developed and is reported here, and this theory was found to match closely with the detected resonant frequencies as they varied with tension. Consequently, the resonances seen were identified as being proper Violin-Mode fundamental resonances of the fibre, and the operation of the Violin-Mode detection system was validated.

  11. The Effect of Mercury Vapor and the Role of Green Tea Extract on Brain Cells

    Directory of Open Access Journals (Sweden)

    Dhona Afriza

    2013-09-01

    Full Text Available Mercury is a wellknown toxic metal that is capable to induce free radical-induced oxidative stress. It can cause human disease including brain disorders. Objective: To identify the effect of mercury vapor inhalation on brain cells and the role of green tea extract (Camellia sinensis as antioxidant on the brain cells exposed to mercury. Methods: Fourty-eight male Mus musculus were divided into 8 groups, which were given treatment for 3 and 6 weeks. Group A did not receive any treatment and served as a negative control. Group B was a positive control exposed to Mercury. Group C was exposed to Mercury and treated with 26μg/g green tea extract. Group D was exposed to mercury and treated with 52μg/g green tea extract. All animals in the Group B, C, D were exposed to mercury through inhalation for 4 hours daily. The effect of mercury on the brain cells were examined histopathologically. Results: The numbers of necrotic cells counted in the green tea-treated mice group were significantly lower than those untreated group (p<0,05. Conclusion: Mercury vapor inhalation may cause necrosis on brain cells. Administration of green tea extract as an antioxidant reduced the amount of mercury-induced necrotic brain cells in mice.DOI: 10.14693/jdi.v20i2.151

  12. The effects of low frequency electrical stimulation on satellite cell activity in rat skeletal muscle during hindlimb suspension

    Directory of Open Access Journals (Sweden)

    Zhang Hong-Yu

    2010-11-01

    Full Text Available Abstract Background The ability of skeletal muscle to grow and regenerate is dependent on resident stem cells called satellite cells. It has been shown that chronic hindlimb unloading downregulates the satellite cell activity. This study investigated the role of low-frequency electrical stimulation on satellite cell activity during a 28 d hindlimb suspension in rats. Results Mechanical unloading resulted in a 44% reduction in the myofiber cross-sectional area as well as a 29% and 34% reduction in the number of myonuclei and myonuclear domains, respectively, in the soleus muscles (P vs the weight-bearing control. The number of quiescent (M-cadherin+, proliferating (BrdU+ and myoD+, and differentiated (myogenin+ satellite cells was also reduced by 48-57% compared to the weight-bearing animals (P P Conclusion This study shows that electrical stimulation partially attenuated the decrease in muscle size and satellite cells during hindlimb unloading. The causal relationship between satellite cell activation and electrical stimulation remain to be established.

  13. Analysis of survival of C-18 cells after irradiation in suspension with chelated and ionic bismuth-212 using microdosimetry

    International Nuclear Information System (INIS)

    Stinchcomb, T.G.; Roeske, J.C.

    1994-01-01

    A previous analysis of non-stochastic dose based on data obtained during irradiations of C-18 cells in suspension by α particles emitted from two forms (chelated and ionic) of 212 Bi was made using survival curves. No appreciable difference in slope (1/D o ) was found between the two forms. Such non-stochastic analyses do not account for the large differences in specific energies deposited in the individual cell nuclei. This microdosimetric (1/z o ) of the individual C-18 cells using the distribution of specific energies deposited in the individual cell nuclei. The resulting sensitivity is greater for the α particles emitted from the chelated 212 Bi than from the ionic 212 Bi. An attempt to account for this greater sensitivity in terms of greater LET of α particles passing through the cell nuclei from the chelated 212 Bi is unsuccessful. Instead the greater sensitivity disappears if the microdosimetric analysis uses average values for the radii of the cell and of its nucleus rather than the values (from the peak in the cell size distribution) used by the non-stochastic dose analysis. 13 refs., 7 figs

  14. Biochemical properties of the matrix metalloproteinase NtMMP1 from Nicotiana tabacum cv. BY-2 suspension cells.

    Science.gov (United States)

    Mandal, Manoj K; Fischer, Rainer; Schillberg, Stefan; Schiermeyer, Andreas

    2010-09-01

    A zinc-dependent matrix metalloproteinase (NtMMP1) found in the plasma membrane of Nicotiana tabacum cv. Bright Yellow 2 (BY-2) suspension cells is thought to be responsible for the degradation of recombinant proteins secreted into the culture supernatant. We have characterized the proteolytic activity of NtMMP1 by expressing a recombinant derivative lacking the C-terminal transmembrane domain in yeast. After purifying the protein by affinity chromatography, its autocatalytic activity was analyzed using monoclonal antibodies raised against its N-terminal and C-terminal portions. Both the unprocessed and processed forms of NtMMP1 displayed caseinolytic activity and N-terminal sequencing identified an autocatalytic cleavage site within the sequence motif HFSFFP, which is similar to the corresponding sequences of the human matrix metalloproteinases stromelysin-1 (MMP-3) and stromelysin-2 (MMP-10). Unlike all other matrix metalloproteinases investigated so far, NtMMP1 contains a disulfide bond within its propeptide thus rendering the proenzyme catalytically active. Kinetic analysis of NtMMP1 with a synthetic substrate revealed a K(m) of 10.55 +/- 0.9 microM, a k(cat) of 0.6 +/- 0.01 s(-1) and maximum activity at pH 7.5. We found that NtMMP1 degrades Desmodus rotundus salivary plasminogen activator alpha 1 (DSPAalpha1), a biopharmaceutical protein, that has proven difficult to produce in tobacco BY-2 cells. This provides a likely explanation for the frequent instability of secreted recombinant biopharmaceuticals produced in plant suspension cell cultures. Our data suggest new avenues that can be explored to improve the production of pharmaceutical proteins in plants and plant cells.

  15. ROS enhancement by silicon nanoparticles in X-ray irradiated aqueous suspensions and in glioma C6 cells

    Energy Technology Data Exchange (ETDEWEB)

    David Gara, Pedro M. [CITOMA, Fundacion Avanzar, Instituto de Terapia Radiante S.A., CIO La Plata (Argentina); Garabano, Natalia I. [University of Buenos Aires, Departamento de Quimica Biologica, Facultad de Ciencias Exactas y Naturales, UBA (Argentina); Llansola Portoles, Manuel J. [UNLP, INIFTA, Departamento de Quimica, Facultad de Ciencias Exactas (Argentina); Moreno, M. Sergio [Centro Atomico Bariloche (Argentina); Dodat, Diego; Casas, Oscar R. [CITOMA, Fundacion Avanzar, Instituto de Terapia Radiante S.A., CIO La Plata (Argentina); Gonzalez, Monica C., E-mail: gonzalez@inifta.unlp.edu.ar [UNLP, INIFTA, Departamento de Quimica, Facultad de Ciencias Exactas (Argentina); Kotler, Monica L., E-mail: kotler@qb.fcen.uba.ar [University of Buenos Aires, Departamento de Quimica Biologica, Facultad de Ciencias Exactas y Naturales, UBA (Argentina)

    2012-03-15

    The capability of silicon nanoparticles to increase the yield of reactive species upon 4 MeV X-ray irradiation of aqueous suspensions and C6 glioma cell cultures was investigated. ROS generation was detected and quantified using several specific probes. The particles were characterized by FTIR, XPS, TEM, DLS, luminescence, and adsorption spectroscopy before and after irradiation to evaluate the effect of high energy radiation on their structure. The total concentration of O{sub 2}{sup Bullet -}/HO{sub 2}{sup Bullet}, HO{sup Bullet}, and H{sub 2}O{sub 2} generated upon 4-MeV X-ray irradiation of 6.4 {mu}M silicon nanoparticle aqueous suspensions were on the order of 10 {mu}M per Gy, ten times higher than that obtained in similar experiments but in the absence of particles. Cytotoxic {sup 1}O{sub 2} was generated only in irradiation experiments containing the particles. The particle surface became oxidized to SiO{sub 2} and the luminescence yield reduced with the irradiation dose. Changes in the surface morphology did not affect, within the experimental error, the yields of ROS generated per Gy. X-ray irradiation of glioma C6 cell cultures with incorporated silicon nanoparticles showed a marked production of ROS proportional to the radiation dose received. In the absence of nanoparticles, the cells showed no irradiation-enhanced ROS generation. The obtained results indicate that silicon nanoparticles of <5 nm size have the potential to be used as radiosensitizers for improving the outcomes of cancer radiotherapy. Their capability of producing {sup 1}O{sub 2} upon X-ray irradiation opens novel approaches in the design of therapy strategies.

  16. Anti-Cancer Activity of Resveratrol and Derivatives Produced by Grapevine Cell Suspensions in a 14 L Stirred Bioreactor

    Directory of Open Access Journals (Sweden)

    Laetitia Nivelle

    2017-03-01

    Full Text Available In the present study, resveratrol and various oligomeric derivatives were obtained from a 14 L bioreactor culture of elicited grapevine cell suspensions (Vitis labrusca L.. The crude ethyl acetate stilbene extract obtained from the culture medium was fractionated by centrifugal partition chromatography (CPC using a gradient elution method and the major stilbenes contained in the fractions were subsequently identified by using a 13C-NMR-based dereplication procedure and further 2D NMR analyses including HSQC, HMBC, and COSY. Beside δ-viniferin (2, leachianol F (4 and G (4′, four stilbenes (resveratrol (1, ε-viniferin (5, pallidol (3 and a newly characterized dimer (6 were recovered as pure compounds in sufficient amounts to allow assessment of their biological activity on the cell growth of three different cell lines, including two human skin malignant melanoma cancer cell lines (HT-144 and SKMEL-28 and a healthy human dermal fibroblast HDF line. Among the dimers obtained in this study, the newly characterized resveratrol dimer (6 has never been described in nature and its biological potential was evaluated here for the first time. ε-viniferin as well as dimer (6 showed IC50 values on the three tested cell lines lower than the ones exerted by resveratrol and pallidol. However, activities of the first two compounds were significantly decreased in the presence of fetal bovine serum although that of resveratrol and pallidol was not. The differential tumor activity exerted by resveratrol on healthy and cancer lines was also discussed.

  17. Computational fluid dynamics (CFD) analysis of airlift bioreactor: effect of draft tube configurations on hydrodynamics, cell suspension, and shear rate.

    Science.gov (United States)

    Pawar, Sanjay B

    2018-01-01

    The biomass productivity of microalgae cells mainly depends on the hydrodynamics of airlift bioreactor (ABR). Thus, the hydrodynamics of concentric tube ABR was initially studied using two-phase three-dimensional CFD simulations with the Eulerian-Lagrangian approach. The performance of ABR (17 L) was examined for different configurations of the draft tube using various drag models such as Grace, Ishii-Zuber, and Schiller-Naumann. The gas holdups in the riser and the downcomer were well predicted using E-L approach. This work was further extended to study the dispersion of microalgae cells in the ABR using three-phase CFD simulations. In this model (combined E-E and E-L), the solid phase (microalgae cells) was dispersed into the continuous liquid phase (water), while the gas phase (air bubbles) was modeled as a particle transport fluid. The effect of non-drag forces such as virtual mass and lift forces was also considered. Flow regimes were explained on the basis of the relative gas holdup distribution in the riser and the downcomer. The microalgae cells were found in suspension for the superficial gas velocities of 0.02-0.04 m s -1 experiencing an average shear of 23.52-44.56 s -1 which is far below the critical limit of cell damage.

  18. Effect of sucrose and methyl jasmonate on biomass and anthocyanin production in cell suspension culture of Melastoma malabathricum (Melastomaceae

    Directory of Open Access Journals (Sweden)

    Koay Suan See

    2011-06-01

    Full Text Available Melastoma malabathricum, belongs to the Melastomaceae family, is an important medicinal plant widely distributed from Madagascar to Australia, that is used in traditional remedies for the treatment of variousailments. Besides its medicinal properties, it has been identified as a potential source of anthocyanin production.The present study was carried out to investigate the effect of sucrose and methyl jasmonate and feeding time oncell biomass yield and anthocyanin production in cell suspension culture of M. malabathricum. Addition of differentconcentrations of sucrose into the cell culture of M. malabathricum influenced cell biomass and pigment accumulation. The addition of methyl jasmonate was found to have no effect on cell biomass but the presence of higher amount (12.5-50mg/L had caused a reduction in anthocyanin production and accumulation. MS medium supplemented with 30g/L sucrose and 3.5 mg/L of MeJA added on cero day and 3rd day produced high fresh cell mass at the end of nine days of culture but did not support the production of anthocyanins. However, cells cultured in the medium supplemented with 45g/L sucrose without MeJA showed the highest pigment content (0.69±0.22Cv/g-FCM. The cells cultured in MS medium supplemented with 30 g/L sucrose with 3.5mg/L MeJA added on the 3rd and 6th day of culture, showed the lowest pigment content (0.37-0.40Cv/g-FCM. This study indicated that MeJA was not necessary but sucrose was needed for the enhancement of cell growth and anthocyanin production in M. malabathricum cell cultures. Rev. Biol. Trop. 59 (2: 597-606. Epub 2011 June 01.

  19. Metabolism of pentachlorophenol in cell suspension cultures of wheat (Triticum aestivum L.). Tetrachlorocatechol as a primary metabolite

    International Nuclear Information System (INIS)

    Schaefer, W.; Sandermann, H. Jr.

    1988-01-01

    Wheat cell suspension cultures were incubated with [U- 14 C] pentachlorophenol (PCP; 1 ppm, 48 h, 27 0 C). Soluble metabolites were formed in ∼ 50% yield, another ∼ 31% of the applied radioactivity being incorporated into the insoluble residue. The soluble metabolite fraction, and its β-D-glucoside conjugate components, the total insoluble residue, and its lignin components, were all found to contain a novel polar PCP derivative besides smaller amounts of tetrachlorohydroquinone and PCP. The novel derivative also predominated in intact wheat plants and was identified as tetrachlorocatechol by TLC, HPLC, GC, and EI as well as CI mass spectroscopy. Tetrachlorocatechol is a potential mutagen, so that the soluble and insoluble conjugates formed in wheat from PCP may present a toxicological hazard

  20. Biotransformation of artemisinin using cell suspension cultures of Catharanthus roseus (L.) G.Don and Lavandula officinalis L.

    Science.gov (United States)

    Patel, Suman; Gaur, Rashmi; Verma, Priyanka; Bhakuni, Rajendra S; Mathur, Archana

    2010-08-01

    Artemisinin, an antimalarial compound, at 5 mg/40 ml, was transformed by cell suspension cultures of Catharanthus roseus (L.) G.Don and Lavandula officinalis L. into deoxyartemisinin with yields >78% (3.93 mg deoxyartemisinin from 5 mg artemisinin). Maximum conversion (78.6 and 78%) occurred after 6 and 7 days of adding artemisinin to 20 and 9 days old cultures of C. roseus and L. officinalis, respectively. The procedure was scaled up by and 500 mg artemisinin was transformed into 390 mg deoxyartemisinin. Addition of artemisinin at the beginning of the culture cycle resulted in >50% reduction in dry biomass production with no bioconversion. Conversion of artemisinin occurred intracellularly followed by leaching of the product into the medium.

  1. A fundamental research of growth, metabolism and product formation of tobacco suspension cells at different scales

    OpenAIRE

    Ullisch, David

    2012-01-01

    For over two decades, plant cell cultures have been promising hosts for the expression of recombinant proteins such as hormones, growth factors, full-size antibodies and antigens. So far, over 700 different plant cell cultures are stored in the German Collection of Microorganisms and Cell Cultures (DSMZ) in Braunschweig. Among these plant cell cultures, the tobacco cell line Nicotiana tabacum Bright Yellow 2 (BY-2) was chosen as a good host cell line for the production of recombinant proteins...

  2. Salicylic acid modulates levels of phosphoinositide dependent-phospholipase C substrates and products to remodel the Arabidopsis suspension cell transcriptome

    Directory of Open Access Journals (Sweden)

    Eric eRuelland

    2014-11-01

    Full Text Available Basal phosphoinositide-dependent phospholipase C (PI-PLC activity controls gene expression in Arabidopsis suspension cells and seedlings. PI-PLC catalyzes the production of phosphorylated inositol and diacylglycerol (DAG from phosphoinositides. It is not known how PI-PLC regulates the transcriptome although the action of DAG-kinase (DGK on DAG immediately downstream from PI-PLC is responsible for some of the regulation. We previously established a list of genes whose expression is affected in the presence of PI-PLC inhibitors. Here this list of genes was used as a signature in similarity searches of curated plant hormone response transcriptome data. The strongest correlations obtained with the inhibited PI-PLC signature were with salicylic acid (SA treatments. We confirm here that in Arabidopsis suspension cells SA treatment leads to an increase in phosphoinositides, then demonstrate that SA leads to a significant 20% decrease in phosphatidic acid, indicative of a decrease in PI-PLC products. Previous sets of microarray data were re-assessed. The SA response of one set of genes was dependent on phosphoinositides. Alterations in the levels of a second set of genes, mostly SA-repressed genes, could be related to decreases in PI-PLC products that occur in response to SA action. Together, the two groups of genes comprise at least 40% of all SA-responsive genes. Overall these two groups of genes are distinct in the functional categories of the proteins they encode, their promoter cis-elements and their regulation by DGK or phospholipase D. SA-regulated genes dependent on phosphoinositides are typical SA response genes while those with an SA response that is possibly dependent on PI-PLC products are less SA-specific. We propose a model in which SA inhibits PI-PLC activity and alters levels of PI-PLC products and substrates, thereby regulating gene expression divergently.

  3. Recombinant human IGF-1 produced by transgenic plant cell suspension culture enhances new bone formation in calvarial defects.

    Science.gov (United States)

    Poudel, Sher Bahadur; Bhattarai, Govinda; Kook, Sung-Ho; Shin, Yun-Ji; Kwon, Tae-Ho; Lee, Seung-Youp; Lee, Jeong-Chae

    2017-10-01

    Transgenic plant cell suspension culture systems have been utilized extensively as convenient and efficient expression systems for the production of recombinant human growth factors. We produced insulin-like growth factor-1 using a plant suspension culture system (p-IGF-1) and explored its effect on new bone formation in calvarial defects. We also compared the bone regenerating potential of p-IGF-1 with commercial IGF-1 derived from Escherichia coli (e-IGF-1). Male C57BL/6 mice underwent calvarial defect surgery, and the defects were loaded with absorbable collagen sponge (ACS) only (ACS group) or ACS impregnated with 13μg of p-IGF-1 (p-IGF-1 group) or e-IGF-1 (e-IGF-1 group). The sham group did not receive any treatment with ACS or IGFs after surgery. Live μCT and histological analyses showed critical-sized bone defects in the sham group, whereas greater bone formation was observed in the p-IGF-1 and e-IGF-1 groups than the ACS group both 5 and 10weeks after surgery. Bone mineral density, bone volume, and bone surface values were also higher in the IGF groups than in the ACS group. Local delivery of p-IGF-1 or e-IGF-1 more greatly enhanced the expression of osteoblast-specific markers, but inhibited osteoclast formation, in newly formed bone compared with ACS control group. Specifically, p-IGF-1 treatment induced higher expression of alkaline phosphatase, osteocalcin, and osteopontin in the defect site than did e-IGF-1. Furthermore, treatment with p-IGF-1, but not e-IGF-1, increased mineralization of MC3T3-E1 cells, with the attendant upregulation of osteogenic marker genes. Collectively, our findings suggest the potential of p-IGF-1 in promoting the processes required for bone regeneration. Copyright © 2017. Published by Elsevier Ltd.

  4. Changes in phytochelatins and their biosynthetic intermediates in red spruce (Picea rubens Sarg.) cell suspension cultures under cadmium and zinc stress

    Science.gov (United States)

    P. Thangavel; Stephanie Long; Rakesh Minocha

    2007-01-01

    Cell suspension cultures of red spruce (Picea rubens Sarg.) were selected to study the effects of cadmium (Cd) and zinc (Zn) on phytochelatins (PCs) and related metabolites after 24 h exposure. The PC2 and its precursor, γ-glutamylcysteine (γ-EC) increased two to fourfold with Cd concentrations ranging from 12...

  5. Enhanced accumulation of phytosterols and phenolic compounds in cyclodextrin-elicited cell suspension culture of Daucus carota.

    Science.gov (United States)

    Miras-Moreno, Begoña; Almagro, Lorena; Pedreño, M A; Sabater-Jara, Ana Belén

    2016-09-01

    In this work, suspension-cultured cells of Daucus carota were used to evaluate the effect of β-cyclodextrins on the production of isoprenoid and phenolic compounds. The results showed that the phytosterols and phenolic compounds were accumulated in the extracellular medium (15100μgL(-1) and 477.46μgL(-1), respectively) in the presence of cyclodextrins. Unlike the phytosterol and phenolic compound content, β-carotene (1138.03μgL(-1)), lutein (25949.54μgL(-1)) and α-tocopherol (8063.82μgL(-1)) chlorophyll a (1625.13μgL(-1)) and b (9.958 (9958.33μgL(-1)) were mainly accumulated inside the cells. Therefore, cyclodextrins were able to induce the cytosolic mevalonate pathway, increasing the biosynthesis of phytosterols and phenolic compounds, and accumulate them outside the cells. However, in the absence of these cyclic oligosaccharidic elicitors, carrot cells mainly accumulated carotenoids through the methylerythritol 4-phosphate pathway. Therefore, the use of cyclodextrins would allow the extracellular accumulation of both phytosterols and phenolic compounds by diverting the carbon flux towards the cytosolic mevalonate/phenylpropanoid pathway. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Effect of Green Tea Extract in Reducing Genotoxic Injuries of Cell Phone Microwaves on Bone Marrow

    Directory of Open Access Journals (Sweden)

    Zahra Zahedifar

    2013-11-01

    Full Text Available Background: Green tea (Camellia sinensis extract is rich source of natural antioxidants specially catechin that is quickly absorbed into the body and it has cancer protective, anti microbial and anti inflammation effects. In this study has been studied role of green tea extract against genotoxic damage induced by cell phone microwaves on bone marrow polychromatic erythrocytes of adult male Balb/C mouse.Materials and Methods: In this experimental study 40 mouse were divided into five groups, control animals were located under natural condition, sham -exposed animals were prepared by experimental condition without cell phone waves radiation. Experimental 1 group that irradiated at cell phones for 4 days (3 hours/day and experimental 2 groups were injected intraperitoneal 100 mg/kg green tea extract for 5 days and experimental 3 group that irradiated at active mobile phones for 4 days (3 hours/day and were injected intraperitoneal 100 mg/kg green tea extract for 5 days. After treatment period micronucleus test was evaluated in polychromatic erythrocytes on bone marrow. The quantitative data was analyzed by ANOVA and Tukey test with using of SPSS-13 software at the level of p<0.05.Results: Based on this study, treatment with extracts of green tea decreased micronucleus frequency in bone marrow polychromatic erythrocytes of Balb/C mouse that irradiated at cell phone microwave (0.92±0.129, (p<0.001.Conclusion: Cell phone microwaves (940 MHz increased micronucleus on bone marrow polychromatic erythrocytes of male Balb/C mouse, but green tea had inhibitory effect and it decreased the average number of micronucleus.

  7. Structural characterisation of xyloglucan secreted by suspension-cultured cells of Nicotiana plumbaginifolia.

    Science.gov (United States)

    Sims, I M; Munro, S L; Currie, G; Craik, D; Bacic, A

    1996-10-31

    Linkage analysis of a xyloglucan from the extracellular medium of suspension cultures of Nicotiana plumbaginifolia showed mostly 4-Glcp and 4,6-Glcp, terminal Xylp and 2-Xylp, and terminal Araf, along with approximately 10% (w/w) O-acetyl groups, equivalent to approximately 0.28 mol acetyl per mol of glycosyl residue. Methylation with methyl trifluoromethanesulfonate under neutral conditions, followed by re-methylation with CD3I under basic conditions, and conversion into partially methylated alditol acetates showed that O-acetyl groups were primarily attached to C-6 of approximately 44% of the 4-Glcp backbone not substituted with Xylp residues and to C-5 of approximately 15% of the terminal Araf residues. These positions of the O-acetyl groups were confirmed by 1H-NMR. Oligosaccharides generated by digestion of native xyloglucan with endo-(1-->4)-beta-glucanase were separated by a combination of gel-filtration chromatography and anion-exchange HPLC, and analysed by glycosyl linkage analysis and by electrospray ionisation-mass spectrometry (ESI-MS). The major oligosaccharide subunits were Glc4Xyl2 and Glc5Xyl2, of which 50-60% are substituted with one terminal Araf residue attached to O-2 of a Xylp residue, and a further 20-25% are substituted with two terminal Araf residues attached to O-2 of the Xylp residues. ESI-MS showed that many of the oligosaccharide subunits carried one, two, and, occasionally three O-acetyl groups.

  8. Correlated accumulation of anthocyanins and rosmarinic acid in mechanically stressed red cell suspensions of basil (Ocimum basilicum).

    Science.gov (United States)

    Strazzer, Pamela; Guzzo, Flavia; Levi, Marisa

    2011-02-15

    A red basil cell line (T2b) rich in rosmarinic acid (RA) was selected for the stable production of anthocyanins (ACs) in the dark. Cell suspension cultures were subjected to mechanical stress through increased agitation (switch from 90 to 150 rpm) to determine the relationship between AC and RA accumulation. Cell extracts were analyzed by HPLC and LC-MS, and the resulting data were processed with multivariate statistical analysis. MS and MS/MS spectra facilitated the putative annotation of several complex cyanidin-based ACs, which were esterified with coumaric acid and, in some cases, also with malonic acid. It was also possible to identify various RA-related molecules, some caffeic and coumaric acid derivatives and some flavanones. Mechanical stress increased the total AC and RA contents, but reduced biomass accumulation. Many metabolites were induced by mechanical stress, including RA and some of its derivatives, most ACs, hydroxycinnamic acids and flavonoids, whereas the abundance of some RA dimers was reduced. Although AC and RA share a common early biosynthetic pathway (from phenylalanine to 4-coumaroyl-CoA) and could have similar or overlapping functions providing antioxidant activity against stress-generated reactive oxygen species, there appeared to be no competition between their individual pathways. Copyright © 2010 Elsevier GmbH. All rights reserved.

  9. Recombinant protein expression for structural biology in HEK 293F suspension cells: a novel and accessible approach.

    Science.gov (United States)

    Portolano, Nicola; Watson, Peter J; Fairall, Louise; Millard, Christopher J; Milano, Charles P; Song, Yun; Cowley, Shaun M; Schwabe, John W R

    2014-10-16

    The expression and purification of large amounts of recombinant protein complexes is an essential requirement for structural biology studies. For over two decades, prokaryotic expression systems such as E. coli have dominated the scientific literature over costly and less efficient eukaryotic cell lines. Despite the clear advantage in terms of yields and costs of expressing recombinant proteins in bacteria, the absence of specific co-factors, chaperones and post-translational modifications may cause loss of function, mis-folding and can disrupt protein-protein interactions of certain eukaryotic multi-subunit complexes, surface receptors and secreted proteins. The use of mammalian cell expression systems can address these drawbacks since they provide a eukaryotic expression environment. However, low protein yields and high costs of such methods have until recently limited their use for structural biology. Here we describe a simple and accessible method for expressing and purifying milligram quantities of protein by performing transient transfections of suspension grown HEK (Human Embryonic Kidney) 293 F cells.

  10. Induction of lethal and genetic damage by vacuum-ultraviolet (163 nm) irradiation of aqueous suspensions of yeast cells

    International Nuclear Information System (INIS)

    Ito, T.; Kobayashi, K.

    1976-01-01

    Yeast cells suspended in distilled water were irradiated with monochromatic 163 nm photons by immersing a specially designed discharge tube into the suspension. This was thought to be a useful means of investigating in vivo effects of radiation-induced water radicals on well cells in the complete absence of ionic species, since 163 nm photons can dissociate water only via excitation. These experiments showed that the water radicals (excluding e/sub aq/ - ) exerted both lethal and genetic (gene-conversion) effects quite potently, and the characteristic protection against these effects was observable when 2-mercaptoethanol or, in particular, p-aminobenzoic acid, a specific scavenger for OH radicals, was added to the medium prior to irradiation. Nearly complete protection from both lethal and genetic effects was observed in some cases with p-aminobenzoic acid. These results establish unequivocally that the OH radical, and not the hydrogen atom (H radical), possesses the damaging potency in the cell. Comparisons with γ-ray experiments revealed several differences between 163 nm photons and γ rays in the protective actions of radical scavengers, which may be attributable to reactive species other than OH radicals produced by the γ rays

  11. Refractive index sensing of green fluorescent proteins in living cells using fluorescence lifetime imaging microscopy

    NARCIS (Netherlands)

    van Manen, Henk-Jan; Verkuijlen, Paul; Wittendorp, Paul; Subramaniam, Vinod; van den Berg, Timo K; Roos, Dirk; Otto, Cees

    2008-01-01

    We show that fluorescence lifetime imaging microscopy (FLIM) of green fluorescent protein (GFP) molecules in cells can be used to report on the local refractive index of intracellular GFP. We expressed GFP fusion constructs of Rac2 and gp91(phox), which are both subunits of the phagocyte NADPH

  12. Detection of anthraquinones and identification of 1,4-naphthohydroquinone in cell suspension cultures of Rudgea jasminoides (Cham.) Müll. Arg. (Rubiaceae)

    OpenAIRE

    Oliveira, Marisa de Cacia; Negri, Giusepina; Salatino, Antônio; Braga, Márcia Regina

    2007-01-01

    In Rubiaceae, anthraquinones and naphthoquinones are secondary metabolites characteristic of the subfamily Rubioideae, in which Rudgea jasminoides is included. Thin-layer chromatography using specific solvent systems and spray reagents indicated the presence of anthraquinones constitutively produced by cell suspension cultures of R. jasminoides. GC/MS analysis detected 1,4-naphthohydroquinone as a product of biosynthesis only after elicitation of the cells with yeast extract (Saccharomyces ce...

  13. Membranes replace irradiated blast cells as growth requirement for leukemic blast progenitors in suspension culture

    International Nuclear Information System (INIS)

    Nara, N.; McCulloch, E.A.

    1985-01-01

    The blast cells of acute myeloblastic leukemia (AML) may be considered as a renewal population, maintained by blast stem cells capable of both self-renewal and the generation of progeny with reduced or absent proliferative potential. This growth requires that two conditions be met: first, the cultures must contain growth factors in media conditioned either by phytohemagglutinin (PHA)-stimulated mononuclear leukocytes (PHA-LCM), or by cells of the continuous bladder carcinoma line HTB9 (HTB9-CM). Second, the cell density must be maintained at 10(6) blasts/ml; this may be achieved by adding irradiated cells to smaller numbers of intact blasts. The authors are concerned with the mechanism of the feeding function. They present evidence that (a) cell-cell contact is required. (b) Blasts are heterogeneous in respect to their capacity to support growth. (c) Fractions containing membranes from blast cells will substitute for intact cells in promoting the generation of new blast progenitors in culture. (d) This membrane function may be specific for AML blasts, since membranes from blasts of lymphoblastic leukemia or normal marrow cells were inactive

  14. Biosynthesis of 14C-phytoene from tomato cell suspension cultures (Lycopersicon esculentum) for utilization in prostate cancer cell culture studies.

    Science.gov (United States)

    Campbell, Jessica K; Rogers, Randy B; Lila, Mary Ann; Erdman, John W

    2006-02-08

    This work describes the development and utilization of a plant cell culture production approach to biosynthesize and radiolabel phytoene and phytofluene for prostate cancer cell culture studies. The herbicide norflurazon was added to established cell suspension cultures of tomato (Lycopersicon esculentum cv. VFNT cherry), to induce the biosynthesis and accumulation of the lycopene precursors, phytoene and phytofluene, in their natural isomeric forms (15-cis-phytoene and two cis-phytofluene isomers). Norflurazon concentrations, solvent carrier type and concentration, and duration of culture exposure to norflurazon were screened to optimize phytoene and phytofluene synthesis. Maximum yields of both phytoene and phytofluene were achieved after 7 days of treatment with 0.03 mg norflurazon/40 mL fresh medium, provided in 0.07% solvent carrier. Introduction of 14C-sucrose to the tomato cell culture medium enabled the production of 14C-labeled phytoene for subsequent prostate tumor cell uptake studies. In DU 145 prostate tumor cells, it was determined that 15-cis-phytoene and an oxidized product of phytoene were taken up and partially metabolized by the cells. The ability to biosynthesize, radiolabel, and isolate these carotenoids from tomato cell cultures is a novel, valuable methodology for further in vitro and in vivo investigations into the roles of phytoene and phytofluene in cancer chemoprevention.

  15. Plant peroxisomes are degraded by starvation-induced and constitutive autophagy in tobacco BY-2 suspension-cultured cells.

    Science.gov (United States)

    Voitsekhovskaja, Olga V; Schiermeyer, Andreas; Reumann, Sigrun

    2014-01-01

    Very recently, autophagy has been recognized as an important degradation pathway for quality control of peroxisomes in Arabidopsis plants. To further characterize the role of autophagy in plant peroxisome degradation, we generated stable transgenic suspension-cultured cell lines of heterotrophic Nicotiana tabacum L. cv. Bright Yellow 2 expressing a peroxisome-targeted version of enhanced yellow fluorescent protein. Indeed, this cell line model system proved advantageous for detailed cytological analyses of autophagy stages and for quantification of cellular peroxisome pools under different culturing conditions and upon inhibitor applications. Complementary biochemical, cytological, and pharmacological analyses provided convincing evidence for peroxisome degradation by bulk autophagy during carbohydrate starvation. This degradation was slowed down by the inhibitor of autophagy, 3-methyladenine (3-MA), but the 3-MA effect ceased at advanced stages of starvation, indicating that another degradation mechanism for peroxisomes might have taken over. 3-MA also caused an increase particularly in peroxisomal proteins and cellular peroxisome numbers when applied under nutrient-rich conditions in the logarithmic growth phase, suggesting a high turnover rate for peroxisomes by basal autophagy under non-stress conditions. Together, our data demonstrate that a great fraction of the peroxisome pool is subject to extensive autophagy-mediated turnover under both nutrient starvation and optimal growth conditions. Our analyses of the cellular pool size of peroxisomes provide a new tool for quantitative investigations of the role of plant peroxisomes in reactive oxygen species metabolism.

  16. Role of Changes in Cell Fatty Acids Composition in the Increasing of Frost Resistance of Winter Wheat Suspension Culture

    Directory of Open Access Journals (Sweden)

    I.V. Lyubushkina

    2013-11-01

    Full Text Available Influences of low temperatures (4 and 8 ° С on the frost tolerance and fatty acid compositions of cells in a winter wheat suspension culture have been studied. It has been found that treatment of the culture with 4 °C (7 days did not protect cells from subsequent freezing temperature action (-8 °С, 6 h and was not accompanied significant changes in the fatty acid composition. On the contrary, the treatment of the culture with the temperature 8 °C (7 days prevented the death caused by freezing temperature and the content of saturated fatty acids decreased: pentadecanoic acid (by 35,0%, palmitic acid (by 19,9% and stearic acid (by 65,4%, and the content of α-linolenic acid increased by 94%. That was the cause of the double bond index (DBI increase by 16%. The role of fatty acids composition changes in the process of increasing frost tolerance in plants are discussed.

  17. A modified suspension spray combined with particle gradation method for preparation of protonic ceramic membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Kui; Wang, Songlin; Chen, Xiaorui; Jiang, Tao; Lin, Bin; Wei, Ming; Liu, Xingqin; Meng, Guangyao [Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026 (China); Yan, Ruiqiang [Department of Materials Engineering, Taizhou University, Linhai, Zhejiang 317000 (China); Dong, Dehua [Department of Chemical Engineering, Monash University, Clayton, VIC 3800 (Australia)

    2008-05-01

    In order to prepare a dense proton-conductive Ba(Zr{sub 0.1}Ce{sub 0.7})Y{sub 0.2}O{sub 3-{delta}} (BZCY7) electrolyte membrane, a proper anode composition with 65% Ni{sub 2}O{sub 3} in weight ratio was determined after investigating the effects of anode compositions on anode shrinkages for co-sintering. The thermal expansion margins between sintered anodes and electrolytes, which were less than 1% below 750 C, also showed good thermal expansion compatibility. A suspension spray combined with particle gradation method had been introduced to prepare dense electrolyte membrane on porous anode support. After a heat treatment at 1400 C for 5 h, a cell with La{sub 0.5}Sr{sub 0.5}CoO{sub 3-{delta}} (LSCO) cathode was assembled and tested with hydrogen and ammonia as fuels. The outputs reached as high as 330 mW cm{sup -2} in hydrogen and 300 mW cm{sup -2} in ammonia at 700 C, respectively. Comparing with the interface of another cell prepared by dry-pressing method, this one also showed a good interface contact between electrodes and electrolyte. To sum up, this combined technique can be considered as commercial fabrication technology candidate. (author)

  18. First insights in the Eu(III) speciation in plant cell suspension cultures

    Energy Technology Data Exchange (ETDEWEB)

    Moll, Henry; Sachs, Susanne [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Biogeochemistry

    2017-06-01

    More than 80 % of the initial Eu(III) amount was associated on Brassica napus cells after an incubation time of 24 h. The spectroscopic speciation of the cell-bound Eu(III) is characterized by an increased intensity of the {sup 7}F{sub 2} transition and prolonged luminescence lifetimes.

  19. First insights in the Eu(III) speciation in plant cell suspension cultures

    International Nuclear Information System (INIS)

    Moll, Henry; Sachs, Susanne

    2017-01-01

    More than 80 % of the initial Eu(III) amount was associated on Brassica napus cells after an incubation time of 24 h. The spectroscopic speciation of the cell-bound Eu(III) is characterized by an increased intensity of the "7F_2 transition and prolonged luminescence lifetimes.

  20. Production of L-DOPA by suspension grown cells of Mucuna pruriens.

    NARCIS (Netherlands)

    Wichers, H.J.

    1985-01-01

    In vitro cultured plant cells can be utilized for the production of valuable metabolites. Many biochemical and physiological characteristics of ln vitro cultured plant cells depend on various environmental parameters, such as the composition of the growth medium in which many parameters are

  1. Neutron moisture monitoring (NMM) and moisture contents in the Green River, Utah, UMTRA disposal cell

    International Nuclear Information System (INIS)

    1992-06-01

    This report provides the basis for the US Department of Energy's (DOE) request to discontinue neutron moisture monitoring (NMM) at the Green River, Utah, Uranium Mill Tailings Remedial Action (UMTRA) disposal cell and decommission the neutron access holes. After 3 years of monitoring the disposal cell, the DOE has determined that the NMM method is not suitable for determining changes in moisture content in the disposal cell. Existing tailings moisture contents in the disposal cell result in a low seepage flux. The combination of a low seepage flux and geochemical retardation by foundation materials underneath the disposal cell ensures that the proposed US Environmental Protection Agency (EPA) groundwater protection standards will not be exceeded within the design life of the disposal cell. To assess the effectiveness of the NMM method for monitoring moisture contents In the disposal cell at Green River, the DOE subsequently conducted a field study and a review of historical and new literature. The literature review allowed the DOE to identify performance criteria for the NMM method. Findings of these studies suggest that: The NMM method is not sensitive to the low moisture contents found in the disposal cell.; there is an insufficient range of moisture contents in the disposal cell to develop a field calibration curve relating moisture content to neutron counts; it is not possible to collect NMM data from the disposal cell that meet data quality objectives for precision and accuracy developed from performance criteria described in the literature

  2. Green light for quantitative live-cell imaging in plants

    NARCIS (Netherlands)

    Grossmann, Guido; Krebs, Melanie; Maizel, Alexis; Stahl, Yvonne; Vermeer, Joop E.M.; Ott, Thomas

    2018-01-01

    Plants exhibit an intriguing morphological and physiological plasticity that enables them to thrive in a wide range of environments. To understand the cell biological basis of this unparalleled competence, a number ofmethodologies have been adapted or developed over the last decades that allow

  3. THE EFFECT OF GREEN TEA EXTRACT - EPIGALLOCATECHIN GALLATE (EGCG ON PORCINE OVARIAN GRANULOSA CELL

    Directory of Open Access Journals (Sweden)

    Attila Kádasi

    2014-02-01

    Full Text Available The aim of our study was to elucidate the potential effect of green tea substance on basic ovarian functions. For this purpose, we examined the action of green tea bioactive molecule, epigallocatechin gallate (given at doses 0, 1, 10, 100 μg/mL, on cultured porcine ovarian granulosa cell functions - proliferation, apoptosis and steroidogenesis. Accumulation of PCNA (marker of proliferation, BAX (marker of apoptosis and the release of steroid hormones (progesterone and testosterone were analysed by immunocytochemistry and RIA respectively. It was observed that epigallocatechin gallate addition decreased the percentage of proliferative (PCNA-positive cells at all used doses (1, 10 and 100 μg/mL. The percentage of apoptotic (BAX-positive cells was increased at the highest used dose (100 μg/mL, but not a lower doses. Epigallocatechin gallate stimulated progesterone release (at 10 μg/mL but not at 1 and 100 μg/mL and diminished testosterone release (at 1 μg/mL but not at 10 and 100 μg/mL by porcine granulosa cells. Our results suggest a direct effect of epigallocatechin gallate on proliferation, apoptosis and steroidogenesis in porcine ovaries. Taken together, these data suggest that green tea molecule epigallocatechin gallate can negatively affect reproductive (ovarian functions – suppress ovarian cell proliferation, promote their apoptosis and alter release of steroid hormones.

  4. Relationship between aluminum stress and caffeine biosynthesis in suspension cells of Coffea arabica L.

    Science.gov (United States)

    Pech-Kú, Roberto; Muñoz-Sánchez, J Armando; Monforte-González, Miriam; Vázquez-Flota, Felipe; Rodas-Junco, Beatriz A; González-Mendoza, Víctor M; Hernández-Sotomayor, S M Teresa

    2018-04-01

    Toxicity by aluminum is a growth-limiting factor in plants cultivated in acidic soils. This metal also promotes signal transduction pathways leading to the biosynthesis of defense compounds, including secondary metabolites. In this study, we observed that Coffea arabica L. cells that were kept in the dark did not produce detectable levels of caffeine. However, irradiation with light and supplementation of the culture medium with theobromine were the best conditions for cell maintenance to investigate the role of aluminum in caffeine biosynthesis. The addition of theobromine to the cells did not cause any changes to cell growth and was useful for the bioconversion of theobromine to caffeine. During a short-term AlCl 3 -treatment (500μM) of C. arabica cells kept under light irradiation, increases in the caffeine levels in samples that were recovered from both the cells and culture media were evident. This augmentation coincided with increases in the enzyme activity of caffeine synthase (CS) and the transcript level of the gene encoding this enzyme (CS). Together, these results suggest that actions by Al and theobromine on the same pathway lead to the induction of caffeine biosynthesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Fast Filtration of Bacterial or Mammalian Suspension Cell Cultures for Optimal Metabolomics Results.

    Directory of Open Access Journals (Sweden)

    Natalie Bordag

    Full Text Available The metabolome offers real time detection of the adaptive, multi-parametric response of the organisms to environmental changes, pathophysiological stimuli or genetic modifications and thus rationalizes the optimization of cell cultures in bioprocessing. In bioprocessing the measurement of physiological intracellular metabolite levels is imperative for successful applications. However, a sampling method applicable to all cell types with little to no validation effort which simultaneously offers high recovery rates, high metabolite coverage and sufficient removal of extracellular contaminations is still missing. Here, quenching, centrifugation and fast filtration were compared and fast filtration in combination with a stabilizing washing solution was identified as the most promising sampling method. Different influencing factors such as filter type, vacuum pressure, washing solutions were comprehensively tested. The improved fast filtration method (MxP® FastQuench followed by routine lipid/polar extraction delivers a broad metabolite coverage and recovery reflecting well physiological intracellular metabolite levels for different cell types, such as bacteria (Escherichia coli as well as mammalian cells chinese hamster ovary (CHO and mouse myeloma cells (NS0.The proposed MxP® FastQuench allows sampling, i.e. separation of cells from medium with washing and quenching, in less than 30 seconds and is robustly designed to be applicable to all cell types. The washing solution contains the carbon source respectively the 13C-labeled carbon source to avoid nutritional stress during sampling. This method is also compatible with automation which would further reduce sampling times and the variability of metabolite profiling data.

  6. In Vitro Evaluation of the Link Between Cell Activation State and Its Rheological Impact on the Microscale Flow of Neutrophil Suspensions

    Science.gov (United States)

    Akenhead, Michael L.; Horrall, Nolan M.; Rowe, Dylan; Sethu, Palaniappan; Shin, Hainsworth Y.

    2015-01-01

    Activated neutrophils have been reported to affect peripheral resistance, for example, by plugging capillaries or adhering to the microvasculature. In vivo and ex vivo data indicate that activated neutrophils circulating in the blood also influence peripheral resistance. We used viscometry and microvascular mimics for in vitro corroboration. The rheological impact of differentiated neutrophil-like HL-60 promyelocytes (dHL60s) or human neutrophil suspensions stimulated with 10 nM fMet-Leu-Phe (fMLP) was quantified using a cone-plate rheometer (450 s−1 shear rate). To evaluate their impact on microscale flow resistance, we used 10-μm Isopore® membranes to model capillaries as well as single 200 × 50 μm microchannels and networks of twenty 20 × 50 μm microfluidic channels to mimic noncapillary microvasculature. Stimulation of dHL60 and neutrophil populations significantly altered their flow behavior as evidenced by their impact on suspension viscosity. Notably, hematocrit abrogated the impact of leukocyte activation on blood cell suspension viscosity. In micropore filters, activated cell suspensions enhanced flow resistance. This effect was further enhanced by the presence of erythrocytes. The resistance of our noncapillary microvascular mimics to flow of activated neutrophil suspensions was significantly increased only with hematocrit. Notably, it was elevated to a higher extent within the micronetwork chambers compared to the single-channel chambers. Collectively, our findings provide supportive evidence that activated neutrophils passing through the microcirculation may alter hemodynamic resistance due to their altered rheology in the noncapillary microvasculature. This effect is another way neutrophil activation due to chronic inflammation may, at least in part, contribute to the elevated hemodynamic resistance associated with cardiovascular diseases (e.g., hypertension and hypercholesterolemia). PMID:26065495

  7. In Vitro Evaluation of the Link Between Cell Activation State and Its Rheological Impact on the Microscale Flow of Neutrophil Suspensions.

    Science.gov (United States)

    Akenhead, Michael L; Horrall, Nolan M; Rowe, Dylan; Sethu, Palaniappan; Shin, Hainsworth Y

    2015-09-01

    Activated neutrophils have been reported to affect peripheral resistance, for example, by plugging capillaries or adhering to the microvasculature. In vivo and ex vivo data indicate that activated neutrophils circulating in the blood also influence peripheral resistance. We used viscometry and microvascular mimics for in vitro corroboration. The rheological impact of differentiated neutrophil-like HL-60 promyelocytes (dHL60s) or human neutrophil suspensions stimulated with 10 nM fMet-Leu-Phe (fMLP) was quantified using a cone-plate rheometer (450 s(-1) shear rate). To evaluate their impact on microscale flow resistance, we used 10-μm Isopore® membranes to model capillaries as well as single 200 × 50 μm microchannels and networks of twenty 20 × 50 μm microfluidic channels to mimic noncapillary microvasculature. Stimulation of dHL60 and neutrophil populations significantly altered their flow behavior as evidenced by their impact on suspension viscosity. Notably, hematocrit abrogated the impact of leukocyte activation on blood cell suspension viscosity. In micropore filters, activated cell suspensions enhanced flow resistance. This effect was further enhanced by the presence of erythrocytes. The resistance of our noncapillary microvascular mimics to flow of activated neutrophil suspensions was significantly increased only with hematocrit. Notably, it was elevated to a higher extent within the micronetwork chambers compared to the single-channel chambers. Collectively, our findings provide supportive evidence that activated neutrophils passing through the microcirculation may alter hemodynamic resistance due to their altered rheology in the noncapillary microvasculature. This effect is another way neutrophil activation due to chronic inflammation may, at least in part, contribute to the elevated hemodynamic resistance associated with cardiovascular diseases (e.g., hypertension and hypercholesterolemia).

  8. Green grasses as light harvesters in dye sensitized solar cells

    Science.gov (United States)

    Shanmugam, Vinoth; Manoharan, Subbaiah; Sharafali, A.; Anandan, Sambandam; Murugan, Ramaswamy

    2015-01-01

    Chlorophylls, the major pigments presented in plants are responsible for the process of photosynthesis. The working principle of dye sensitized solar cell (DSSC) is analogous to natural photosynthesis in light-harvesting and charge separation. In a similar way, natural dyes extracted from three types of grasses viz. Hierochloe Odorata (HO), Torulinium Odoratum (TO) and Dactyloctenium Aegyptium (DA) were used as light harvesters in dye sensitized solar cells (DSSCs). The UV-Vis absorption spectroscopy, Fourier transform infrared (FT-IR), and liquid chromatography-mass spectrometry (LC-MS) were used to characterize the dyes. The electron transport mechanism and internal resistance of the DSSCs were investigated by the electrochemical impedance spectroscopy (EIS). The performance of the cells fabricated with the grass extract shows comparable efficiencies with the reported natural dyes. Among the three types of grasses, the DSSC fabricated with the dye extracted from Hierochloe Odorata (HO) exhibited the maximum efficiency. LC-MS investigations indicated that the dominant pigment present in HO dye was pheophytin a (Pheo a).

  9. A New Green Power Inverter for Fuel Cells

    DEFF Research Database (Denmark)

    Andersen, Gert Karmisholt; Klumpner, Christian; Kjær, Søren Bækhøj

    2002-01-01

    This paper presents a new grid connected inverter for fuel cells. It consists of a two stage power conversion topology. Since the fuel cell operates with a low voltage in a wide voltage range (25 V-45 V) this volt- age must be transformed to around 350-400 V in order to invert this dc power into ac...... power to the grid. The proposed converter consists of an isolated dc-dc converter cascaded with a single phase H-bridge inverter. The dc-dc converter is a current-fed push-pull converter. A new dedicated voltage mode startup procedure has been developed in order to limit the inrush current during...... startup. The inverter is controlled as a power factor controller with resistor emulation.Experimental results of converter efficiency, grid performance and fuel cell response are shown for a 1 kW prototype. The proposed converter exhibits a high efficiency in a wide power range (higher than 92...

  10. Photogalvanic cell: A new approach for green and sustainable chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Genwa, K.R. [Department of Chemistry, JNV University, Jodhpur 342 001 (India); Genwa, Mahaveer [Department of Chemistry, Deen Dayal Upadhyaya College (Delhi University), Shivaji Marg, Karam Pura, New Delhi 110015 (India)

    2008-05-15

    A comparative study of anionic, cationic, and nonionic surfactants on photogalvanic effect was studied in a photogalvanic cell containing dioctyl sulfosuccinate (DSS), cetyltrimethylammonium bromide (CTAB), and TritonX-100 as surfactants, rhodamine 6G as photosensitizer, and oxalic acid as reductant. Observed values of photopotential, photocurrent, fill factor, conversion efficiency, and storage capacity for DSS-rhodamine 6G-oxalic acid system was, respectively, 880.0 mV, 200 {mu}A, 0.41, 0.86%, and 131.0 min, for CTAB-rhodamine 6G-oxalic acid system, 414.0 mV, 90.0 {mu}A, 0.45, 0.24%, and 68.0 min, and for TritonX-100-rhodamine 6G-oxalic acid system, 672.0 mV, 165.0 {mu}A, 0.38, 0.55%, and 96.0 min. The effects of different parameters on electrical output of the cell were observed and a tentative mechanism has also been proposed for the generation of photocurrent in photogalvanic cell. (author)

  11. Green grasses as light harvesters in dye sensitized solar cells.

    Science.gov (United States)

    Shanmugam, Vinoth; Manoharan, Subbaiah; Sharafali, A; Anandan, Sambandam; Murugan, Ramaswamy

    2015-01-25

    Chlorophylls, the major pigments presented in plants are responsible for the process of photosynthesis. The working principle of dye sensitized solar cell (DSSC) is analogous to natural photosynthesis in light-harvesting and charge separation. In a similar way, natural dyes extracted from three types of grasses viz. Hierochloe Odorata (HO), Torulinium Odoratum (TO) and Dactyloctenium Aegyptium (DA) were used as light harvesters in dye sensitized solar cells (DSSCs). The UV-Vis absorption spectroscopy, Fourier transform infrared (FT-IR), and liquid chromatography-mass spectrometry (LC-MS) were used to characterize the dyes. The electron transport mechanism and internal resistance of the DSSCs were investigated by the electrochemical impedance spectroscopy (EIS). The performance of the cells fabricated with the grass extract shows comparable efficiencies with the reported natural dyes. Among the three types of grasses, the DSSC fabricated with the dye extracted from Hierochloe Odorata (HO) exhibited the maximum efficiency. LC-MS investigations indicated that the dominant pigment present in HO dye was pheophytin a (Pheo a). Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Establishment of Cell Suspension Culture and Plant Regeneration in Abrus precatorius L., a Rare Medicinal Plant

    Directory of Open Access Journals (Sweden)

    Mohammad Serajur RAHMAN

    2012-02-01

    Full Text Available A new protocol has been developed for cell culture and in vitro regeneration of Abrus precatorius that holds enormous potentiality for preparation of medicines. In vitro grown calli were cultured in Murashige and Skoog (MS liquid media in agitated condition fortified with 0.5 mg/l 6-Benzylaminopurine. Growth curve of cells revealed that the cells continued to grow until 12 days of culture and got the highest peak from day 6-8. Isolated cell was found to produce highest 8.2% calli when suspended on MS medium supplemented with 0.5 mg/l 6-Benzylaminopurine and 0.1 mg/l 1-Naphthaleneacetic acid. Callus derived from single cell produced highest number of embryo (25-28% cultured on MS medium fortified with 2.0 mg/l 6-Benzylaminopurine and 0.2 mg/l 1-Naphthaleneacetic acid. The bipolar embryos were selected and optimum shoot formation was recorded on MS medium supplemented with 2.0 mg/l 6-Benzylaminopurine and 0.1 mg/l 1-Naphthaleneacetic acid. The optimum root induction was noticed in MS medium supplemented with 1.0 mg/l 3-Indolebutyric acid. Rooted plantlets were successfully transferred to potting soil and acclimatized to outdoor conditions.

  13. Stable lentiviral transformation of CHO cells for the expression of the hemagglutinin H5 of avian influenza virus in suspension culture

    Directory of Open Access Journals (Sweden)

    Alaín González Pose

    2014-09-01

    Full Text Available Avian influenza virus H5N1 has caused extensive damage worldwide among poultry and humans. Effective expression systems are needed for the production of viral proteins required for monitoring this devastating disease. The present study deals with the establishment of a stable expression system for the hemagglutinin H5 (HAH5 of avian influenza virus using CHO cells in suspension culture transduced with a recombinant lentiviral vector. The synthetic gene coding the HAH5 protein was inserted in a lentiviral vector with the aim of performing a stable transduction of CHO cells. After the selection of recombinant clones, the one with the highest expression level was adapted to suspension culture and the HAH5 protein was purified by immunoaffinity chromatography from the culture supernatant. There were no significant differences when this protein, purified or direct from the culture supernatant of CHO or SiHa cells, was utilized in an immunologic assay using positive and negative sera as reference. It was also demonstrated that the HAH5 protein in its purified form is able to bind anti-HAH5 antibodies generated with proper and non-proper folded proteins. The results demonstrate that the CHO cell line stably transduced with a lentiviral vector coding the sequence of the HAH5 protein and cultured in suspension can be a suitable expression system to obtain this protein for diagnostic purpose in a consistent and reliable manner.

  14. Zinc tolerance and accumulation in stable cell suspension cultures and in vitro regenerated plants of the emerging model plant Arabidopsis halleri (Brassicaceae).

    Science.gov (United States)

    Vera-Estrella, Rosario; Miranda-Vergara, Maria Cristina; Barkla, Bronwyn J

    2009-03-01

    Arabidopsis halleri is increasingly employed as a model plant for studying heavy metal hyperaccumulation. With the aim of providing valuable tools for studies on cellular physiology and molecular biology of metal tolerance and transport, this study reports the development of successful and highly efficient methods for the in vitro regeneration of A. halleri plants and production of stable cell suspension lines. Plants were regenerated from leaf explants of A. halleri via a three-step procedure: callus induction, somatic embryogenesis and shoot development. Efficiency of callus proliferation and regeneration depended on the initial callus induction media and was optimal in the presence of 1 mg L(-1) 2,4-dichlorophenoxyacetic acid, and 0.05 mg L(-1) benzylaminopurine. Subsequent shoot and root regeneration from callus initiated under these conditions reached levels of 100% efficiency. High friability of the callus supported the development of cell suspension cultures with minimal cellular aggregates. Characterization of regenerated plants and cell cultures determined that they maintained not only the zinc tolerance and requirement of the whole plant but also the ability to accumulate zinc; with plants accumulating up to 50.0 micromoles zinc g(-1) FW, and cell suspension cultures 30.9 micromoles zinc g(-1) DW. Together this work will provide the experimental basis for furthering our knowledge of A. halleri as a model heavy metal hyperaccumulating plant.

  15. Large-scale expansion of human skin-derived precursor cells (hSKPs) in stirred suspension bioreactors.

    Science.gov (United States)

    Surrao, Denver C; Boon, Kathryn; Borys, Breanna; Sinha, Sarthak; Kumar, Ranjan; Biernaskie, Jeff; Kallos, Michael S

    2016-12-01

    Human skin-derived precursor cells (hSKPs) are multipotent adult stem cells found in the dermis of human skin. Incorporation of hSKPs into split-thickness skin grafts (STSGs), the current gold standard to treat severe burns or tissue resections, has been proposed as a treatment option to enhance skin wound healing and tissue function. For this approach to be clinically viable substantial quantities of hSKPs are required, which is the rate-limiting step, as only a few thousand hSKPs can be isolated from an autologous skin biopsy without causing donor site morbidity. In order to produce sufficient quantities of clinically viable cells, we have developed a bioprocess capable of expanding hSKPs as aggregates in stirred suspension bioreactors (SSBs). In this study, we found hSKPs from adult donors to expand significantly more (P skin biopsy without causing donor site morbidity. At 60 rpm, aggregates were markedly smaller and did not experience oxygen diffusional limitations, as seen in hSKPs cultured at 40 rpm. While hSKPs also grew at 80 rpm (0.74 Pa) and 100 rpm (1 Pa), they produced smaller aggregates due to high shear stress. The pH of the media in all the SSBs was closer to biological conditions and significantly different (P skin wounds. Biotechnol. Bioeng. 2016;113: 2725-2738. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  16. Impact of government incentives in the profitability of green energy production using fuel cells in Colombia.

    Directory of Open Access Journals (Sweden)

    Bernardo A. Potosí-Guerrero

    2016-07-01

    Full Text Available Fuel cells are a technological alternative to produce green energy, however, high costs make fuel cell a non-profitable option. This paper analyses the impact of the Colombian government incentives in the profitability of fuel cells. The analysis is based on the total operation cost of the fuel cell in three representative applications: residential, office and building elevator. The economic viability of fuel cell generation in those cases is contrasted with classical solutions like diesel generators and standard grid to provide a reference framework. Such results enable to evaluate the effectiveness of the Colombian government incentives in promoting the use of fuel cells over other less environmental-friendly options such as diesel generators. Finally, new incentives are proposed by subsidies offered by other countries with higher fuel cell penetration into their electric market. All the analyses are supported in simulations performed with a mathematical model parameterized using the characteristics of commercial devices.

  17. Green tea extract induces protective autophagy in A549 non-small lung cancer cell line.

    Science.gov (United States)

    Izdebska, Magdalena; Klimaszewska-Wiśniewska, Anna; Hałas, Marta; Gagat, Maciej; Grzanka, Alina

    2015-12-31

    For many decades, polyphenols, including green tea extract catechins, have been reported to exert multiple anti-tumor activities. However, to date the mechanisms of their action have not been completely elucidated. Thus, the aim of this study was to assess the effect of green tea extract on non-small lung cancer A549 cells. A549 cells following treatment with GTE were analyzed using the inverted light and fluorescence microscope. In order to evaluate cell sensitivity and cell death, the MTT assay and Tali image-based cytometer were used, respectively. Ultrastructural alterations were assessed using a transmission electron microscope. The obtained data suggested that GTE, even at the highest dose employed (150 μM), was not toxic to A549 cells. Likewise, the treatment with GTE resulted in only a very small dose-dependent increase in the population of apoptotic cells. However, enhanced accumulation of vacuole-like structures in response to GTE was seen at the light and electron microscopic level. Furthermore, an increase in the acidic vesicular organelles and LC3-II puncta formation was observed under the fluorescence microscope, following GTE treatment. The analysis of the functional status of autophagy revealed that GTE-induced autophagy may provide self-protection against its own cytotoxicity, since we observed that the blockage of autophagy by bafilomycin A1 decreased the viability of A549 cells and potentiated necrotic cell death induction in response to GTE treatment. Collectively, our results revealed that A549 cells are insensitive to both low and high concentrations of the green tea extract, probably due to the induction of cytoprotective autophagy. These data suggest that a potential utility of GTE in lung cancer therapy may lie in its synergistic combinations with drugs or small molecules that target autophagy, rather than in monotherapy.

  18. Green tea extract induces protective autophagy in A549 non-small lung cancer cell line

    Directory of Open Access Journals (Sweden)

    Magdalena Izdebska

    2015-12-01

    Full Text Available Background and objectives: For many decades, polyphenols, including green tea extract catechins, have been reported to exert multiple anti-tumor activities. However, to date the mechanisms of their action have not been completely elucidated. Thus, the aim of this study was to assess the effect of green tea extract on non-small lung cancer A549 cells. Material and methods: A549 cells following treatment with GTE were analyzed using the inverted light and fluorescence microscope. In order to evaluate cell sensitivity and cell death, the MTT assay and Tali image-based cytometer were used, respectively. Ultrastructural alterations were assessed using a transmission electron microscope.Results: The obtained data suggested that GTE, even at the highest dose employed (150 μM, was not toxic to A549 cells. Likewise, the treatment with GTE resulted in only a very small dose-dependent increase in the population of apoptotic cells. However, enhanced accumulation of vacuole-like structures in response to GTE was seen at the light and electron microscopic level. Furthermore, an increase in the acidic vesicular organelles and LC3-II puncta formation was observed under the fluorescence microscope, following GTE treatment. The analysis of the functional status of autophagy revealed that GTE-induced autophagy may provide self-protection against its own cytotoxicity, since we observed that the blockage of autophagy by bafilomycin A1 decreased the viability of A549 cells and potentiated necrotic cell death induction in response to GTE treatment.Conclusion: Collectively, our results revealed that A549 cells are insensitive to both low and high concentrations of the green tea extract, probably due to the induction of cytoprotective autophagy. These data suggest that a potential utility of GTE in lung cancer therapy may lie in its synergistic combinations with drugs or small molecules that target autophagy, rather than in monotherapy.

  19. Induction of Shikimic Acid Pathway Enzymes by Light in Suspension Cultured Cells of Parsley (Petroselinum crispum) 1

    Science.gov (United States)

    McCue, Kent F.; Conn, Eric E.

    1990-01-01

    Light treatment of suspension cultured cells of parsley (Petroselinum crispum) was shown to increase the activity of the shikimic acid pathway enzyme, 3-deoxy-d-arabino-heptulosonic acid-7-phosphate (DAHP) synthase (EC 4.1.2.15). DAHP synthase activity was assayed for two isoforms, DS-Mn and DS-Co (RJ Ganson, TA d'Amato, RA Jensen [1986] Plant Physiol 82: 203-210). Light increased the enzymatic activity of the plastidic isoform DS-Mn as much as 2-fold, averaging 1.6-fold with >95% confidence. The cytosolic isoform DS-Co was unaffected. Cycloheximide and actinomycin D, translational and transcriptional inhibitors, respectively, both reversed induction of DS-Mn by light suggesting transcriptional regulation of the gene. Chorismate mutase activity was assayed for the two isoforms CM I and CM II (BK Singh, JA Connelly, EE Conn [1985] Arch Biochem Biophys 243: 374-384). Treatment by light did not significantly affect either chorismate mutase isoform. The ratio of the two chorismate mutase isoforms changed during the growth cycle, with an increase in the ratio of plastidic to cytosolic isoforms occurring towards the end of logarithmic growth. PMID:16667741

  20. Establishing in vitro Zinnia elegans cell suspension culture with high tracheary elements differentiation

    NARCIS (Netherlands)

    Twumasi, P.; Schel, J.H.N.; Ieperen, van W.; Woltering, E.J.; Emons, A.M.C.

    2009-01-01

    The Zinnia elegans mesophyll cell culture is a useful system for xylogenesis studies. The system is associated with highly synchronous tracheary element (TE) differentiation, making it more suitable for molecular studies requiring larger amounts of molecular isolates, such as mRNA and proteins and

  1. Electrical Impedance Spectroscopy for Detection of Cells in Suspensions Using Microfluidic Device with Integrated Microneedles

    Directory of Open Access Journals (Sweden)

    Muhammad Asraf Mansor

    2017-02-01

    Full Text Available In this study, we introduce novel method of flow cytometry for cell detection based on impedance measurements. The state of the art method for impedance flow cytometry detection utilizes an embedded electrode in the microfluidic to perform measurement of electrical impedance of the presence of cells at the sensing area. Nonetheless, this method requires an expensive and complicated electrode fabrication process. Furthermore, reuse of the fabricated electrode also requires an intensive and tedious cleaning process. Due to that, we present a microfluidic device with integrated microneedles. The two microneedles are placed at the half height of the microchannel for cell detection and electrical measurement. A commercially-available Tungsten needle was utilized for the microneedles. The microneedles are easily removed from the disposable PDMS (Polydimethylsiloxane microchannel and can be reused with a simple cleaning process, such as washing by ultrasonic cleaning. Although this device was low cost, it preserves the core functionality of the sensor, which is capable of detecting passing cells at the sensing area. Therefore, this device is suitable for low-cost medical and food safety screening and testing process in developing countries.

  2. Fast filtration sampling protocol for mammalian suspension cells tailored for phosphometabolome profiling by capillary ion chromatography - tandem mass spectrometry.

    Science.gov (United States)

    Kvitvang, Hans F N; Bruheim, Per

    2015-08-15

    Capillary ion chromatography (capIC) is the premium separation technology for low molecular phosphometabolites and nucleotides in biological extracts. Removal of excessive amounts of salt during sample preparation stages is a prerequisite to enable high quality capIC separation in combination with reproducible and sensitive MS detection. Existing sampling protocols for mammalian cells used for GC-MS and LC-MS metabolic profiling can therefore not be directly applied to capIC separations. Here, the development of a fast filtration sampling protocol for mammalian suspension cells tailored for quantitative profiling of the phosphometabolome on capIC-MS/MS is presented. The whole procedure from sampling the culture to transfer of filter to quenching and extraction solution takes less than 10s. To prevent leakage it is critical that a low vacuum pressure is applied, and satisfactorily reproducibility was only obtained by usage of a vacuum pressure controlling device. A vacuum of 60mbar was optimal for filtration of multiple myeloma Jjn-3 cell cultures through 5μm polyvinylidene (PVDF) filters. A quick deionized water (DI-water) rinse step prior to extraction was tested, and significantly higher metabolite yields were obtained during capIC-MS/MS analyses in this extract compared to extracts prepared by saline and reduced saline (25%) washing steps only. In addition, chromatographic performance was dramatically improved. Thus, it was verified that a quick DI-water rinse is tolerated by the cells and can be included as the final stage during filtration. Over 30 metabolites were quantitated in JJN-3 cell extracts by using the optimized sampling protocol with subsequent capIC-MS/MS analysis, and up to 2 million cells can be used in a single filtration step for the chosen filter and vacuum pressure. The technical set-up is also highly advantageous for microbial metabolome filtration protocols after optimization of vacuum pressure and washing solutions, and the reduced salt

  3. Biochemical and morphological responses to abiotc elicitor chitin in suspension-cultured sugarcane cells

    Directory of Open Access Journals (Sweden)

    Maria Izabel Gallão

    2010-04-01

    Full Text Available Cells of Saccharum officinarum submitted to hydrolyzated chitin for 1 to 8h produced phenolic compounds. These alterations were observed through cytochemical methods using Toluidine Blue and Phloroglucinol/HCl. After 4 h, besides cell wall change, there was a change in nuclear pattern of chitin treated cells. There was a 96% increase in nuclear area in 6 h chitin treated material, as observed by Feulgen reaction. The treated cells showed chromatin compacted regions and a degeneration process of nucleoli. In the outer areas of cell wall, there was a polysaccharide desagregation, confirming results obtained for different plants with the use of other elicitors. Peroxidase activity was maximal after 4 h and decreased progressively. PAL activity started to increase at 4 h of incubation. These results showed that chitin hydrolyzate stimulated a defense response in sugarcane cells.Células de Saccharum officinarum quando submetidas a quitina hidrolisada por 1 a 8h produziram material fenólico. Essas alterações foram observadas por meio de métodos citoquímicos como o Azul de Toluidina e Floroglucinol/HCl. Após 4 h, além das mudanças nas paredes celulares houve uma mudança no padrão nuclear das células tratadas com quitina. Por observação da reação de Feulgen, houve um aumento de 96% na área nuclear no material em 6h. Para as células tratadas foram observadas regiões de cromatina compactada e um processo de degeneração do nucléolo. Nas áreas externas da parede celular existia uma desagregação dos polisacarídios confirmando os resultados obtidos para diferentes plantas com o uso de outros elicitores. A atividade da peroxidase foi maxima após 4 h e então decresceu progressivamente. A atividade da PAL aumentou a partir de 4 h de incubação. Estes resultados mostram que o hidrolisado de quitina estimula as respostas de defesa em células de cana.

  4. Evaluation of ferromagnetic fluids and suspensions for the site-specific radiofrequency-induced hyperthermia of MX11 sarcoma cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Brusentsov, Nikolai A.; Gogosov, V.V.; Brusentsova, T.N.; Sergeev, A.V.; Jurchenko, N.Y.; Kuznetsov, Anatoly A.; Kuznetsov, Oleg A. E-mail: oleg@louisiana.edu; Shumakov, L.I

    2001-07-01

    Seventeen different ferromagnetic fluids and suspensions were prepared and evaluated for application in radiofrequency-induced hyperthermia. Specific power absorption rates were measured at 0.88 MHz to range from 0 to 240 W per gram of iron for different preparations. Survival of MX11 cells mixed with ferrofluids and subjected to radiofrequency was much lower than with RF without ferrofluid or ferrofluid alone.

  5. Evaluation of ferromagnetic fluids and suspensions for the site-specific radiofrequency-induced hyperthermia of MX11 sarcoma cells in vitro

    International Nuclear Information System (INIS)

    Brusentsov, Nikolai A.; Gogosov, V.V.; Brusentsova, T.N.; Sergeev, A.V.; Jurchenko, N.Y.; Kuznetsov, Anatoly A.; Kuznetsov, Oleg A.; Shumakov, L.I.

    2001-01-01

    Seventeen different ferromagnetic fluids and suspensions were prepared and evaluated for application in radiofrequency-induced hyperthermia. Specific power absorption rates were measured at 0.88 MHz to range from 0 to 240 W per gram of iron for different preparations. Survival of MX11 cells mixed with ferrofluids and subjected to radiofrequency was much lower than with RF without ferrofluid or ferrofluid alone

  6. Evaluation of analgesic, anti-inflammatory, anti-depressant and anti-coagulant properties of Lactuca sativa (CV. Grand Rapids) plant tissues and cell suspension in rats.

    Science.gov (United States)

    Ismail, Hammad; Mirza, Bushra

    2015-06-27

    Lactuca sativa (lettuce) has been traditionally used for relieving pain, inflammation, stomach problems including indigestion and lack of appetite. Moreover, the therapeutic significance of L. sativa includes its anticonvulsant, sedative-hypnotic and antioxidant properties. In the present study, the MC (methanol and chloroform; 1:1) and aqueous extracts of seed and leaf along with cell suspension exudate were prepared. These extracts were explored for their analgesic, anti-inflammatory, antidepressant and anticoagulant effects by hot plate analgesic assay; carrageenan induced hind paw edema test, forced swimming test and capillary method for blood clotting respectively in a rat model. The results were analyzed using one-way Analysis of Variance (ANOVA) followed by Turkey multiple comparison test. Interestingly, the extracts and the cell suspension exudate showed dual inhibition by reducing pain and inflammation. The results indicated that the aqueous extracts of leaf exhibited highest analgesic and anti-inflammatory activities followed by leaf MC, cell suspension exudate, seed aqueous and seed MC extracts. The current findings show that aqueous and MC extracts of seed have the least immobility time in the forced swimming test, which could act as an anti-depressant on the central nervous system. The leaf extracts and cell suspension exudate also expressed moderate anti-depressant activities. In anticoagulant assay, the coagulation time of aspirin (positive control) and MC extract of leaf was comparable, suggesting strong anti-coagulant effect. Additionally, no abnormal behavior or lethality was observed in any animal tested. Taken together, L. sativa can potentially act as a strong herbal drug due to its multiple pharmaceutical effects and is therefore of interest in drug discovery and development of formulations.

  7. Metabolism of ibuprofen in higher plants: A model Arabidopsis thaliana cell suspension culture system

    Czech Academy of Sciences Publication Activity Database

    Maršík, Petr; Šíša, Miroslav; Lacina, O.; Moťková, Kateřina; Langhansová, Lenka; Rezek, Jan; Vaněk, Tomáš

    2017-01-01

    Roč. 220, JAN (2017), s. 383-392 ISSN 0269-7491 R&D Projects: GA ČR(CZ) GA14-22593S Grant - others:European Regional Development Fund(XE) CZ.2.16/3.1.00/24014 Institutional support: RVO:61389030 Keywords : Arabidopsis thaliana * Ibuprofen * Metabolism * Plant cells * Sequestration Subject RIV: CE - Biochemistry OBOR OECD: Plant sciences, botany Impact factor: 5.099, year: 2016

  8. The Effects of Brazilian Green Propolis against Excessive Light-Induced Cell Damage in Retina and Fibroblast Cells

    Directory of Open Access Journals (Sweden)

    Hiromi Murase

    2013-01-01

    Full Text Available Background. We investigated the effects of Brazilian green propolis and its constituents against white light- or UVA-induced cell damage in mouse retinal cone-cell line 661W or human skin-derived fibroblast cells (NB1-RGB. Methods. Cell damage was induced by 3,000lx white light for 24 h or 4/10 J/cm2 UVA exposure. Cell viability was assessed by Hoechst33342 and propidium iodide staining or by tetrazolium salt (WST-8 cell viability assay. The radical scavenging activity of propolis induced by UVA irradiation in NB1-RGB cells was measured using a reactive-oxygen-species- (ROS- sensitive probe CM-H2DCFDA. Moreover, the effects of propolis on the UVA-induced activation of p38 and extracellular signal-regulated kinase (ERK were examined by immunoblotting. Results. Treatment with propolis and two dicaffeoylquinic acids significantly inhibited the decrease in cell viability induced by white light in 661W. Propolis and its constituents inhibited the decrease in cell viability induced by UVA in NB1-RGB. Moreover, propolis suppressed the intracellular ROS production by UVA irradiation. Propolis also inhibited the levels of phosphorylated-p38 and ERK by UVA irradiation. Conclusion. Brazilian green propolis may become a major therapeutic candidate for the treatment of AMD and skin damage induced by UV irradiation.

  9. Differential impact of amino acids on OXPHOS system activity following carbohydrate starvation in Arabidopsis cell suspensions.

    Science.gov (United States)

    Cavalcanti, João Henrique F; Quinhones, Carla G S; Schertl, Peter; Brito, Danielle S; Eubel, Holger; Hildebrandt, Tatjana; Nunes-Nesi, Adriano; Braun, Hans-Peter; Araújo, Wagner L

    2017-12-01

    Plant respiration mostly depends on the activity of glycolysis and the oxidation of organic acids in the tricarboxylic acid cycle to synthesize ATP. However, during stress situations plant cells also use amino acids as alternative substrates to donate electrons through the electron-transfer flavoprotein (ETF)/ETF:ubiquinone oxidoreductase (ETF/ETFQO) complex to the mitochondrial electron transport chain (mETC). Given this, we investigated changes of the oxidative phosphorylation (OXPHOS) system in Arabidopsis thaliana cell culture under carbohydrate starvation supplied with a range of amino acids. Induction of isovaleryl-CoA dehydrogenase (IVDH) activity was observed under carbohydrate starvation which was associated with increased amounts of IVDH protein detected by immunoblotting. Furthermore, activities of the protein complexes of the mETC were reduced under carbohydrate starvation. We also observed that OXPHOS system activity behavior is differently affected by different amino acids and that proteins associated with amino acids catabolism are upregulated in cells following carbohydrate starvation. Collectively, our results support the contention that ETF/ETFQO is an essential pathway to donate electrons to the mETC and that amino acids are alternative substrates to maintain respiration under carbohydrate starvation. © 2017 Scandinavian Plant Physiology Society.

  10. Inhibition of Cycloartenol Synthase (CAS) Function in Tobacco BY-2 Cell Suspensions: A Proteomic Analysis.

    Science.gov (United States)

    Gas-Pascual, Elisabet; Simonovik, Biljana; Heintz, Dimitri; Bergdoll, Marc; Schaller, Hubert; Bach, Thomas J

    2015-08-01

    The effect of an inhibitor of cycloartenol synthase (CAS, EC 5.4.99.8) on the proteome of tobacco BY-2 cells has been examined. CAS catalyzes the first committed step in phytosterol synthesis in plants. BY-2 cells were treated with RO 48-8071, a potent inhibitor of oxidosqualene cyclization. Proteins were separated by two-dimensional electrophoresis and spots, that clearly looked differentially accumulated after visual inspection, were cut, in-gel trypsin digested, and peptides were analyzed by nano-HPLC-MS/MS. Distinct peptides were compared to sequences in the data banks and attributed to corresponding proteins and genes. Inhibition of CAS induced proteins that appear to mitigate the negative effects of the chemical exposure. However, as all enzymes that are directly involved in phytosterol biosynthesis are low-abundant proteins, significant changes in their levels could not be observed. Differences could be seen with enzymes involved in primary metabolism (glycolysis, pentose phosphate pathway etc.), in proteins of the chaperonin family, and those, like actin, that participate in formation and strengthening of the cytoskeleton and have some impact on cell growth and division.

  11. A fast platform for simulating semi-flexible fiber suspensions applied to cell mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Nazockdast, Ehssan, E-mail: ehssan@cims.nyu.edu [Courant Institute of Mathematical Sciences, New York University, New York, NY 10012 (United States); Center for Computational Biology, Simons Foundation, New York, NY 10010 (United States); Rahimian, Abtin, E-mail: arahimian@acm.org [Courant Institute of Mathematical Sciences, New York University, New York, NY 10012 (United States); Zorin, Denis, E-mail: dzorin@cs.nyu.edu [Courant Institute of Mathematical Sciences, New York University, New York, NY 10012 (United States); Shelley, Michael, E-mail: shelley@cims.nyu.edu [Courant Institute of Mathematical Sciences, New York University, New York, NY 10012 (United States); Center for Computational Biology, Simons Foundation, New York, NY 10010 (United States)

    2017-01-15

    We present a novel platform for the large-scale simulation of three-dimensional fibrous structures immersed in a Stokesian fluid and evolving under confinement or in free-space in three dimensions. One of the main motivations for this work is to study the dynamics of fiber assemblies within biological cells. For this, we also incorporate the key biophysical elements that determine the dynamics of these assemblies, which include the polymerization and depolymerization kinetics of fibers, their interactions with molecular motors and other objects, their flexibility, and hydrodynamic coupling. This work, to our knowledge, is the first technique to include many-body hydrodynamic interactions (HIs), and the resulting fluid flows, in cellular assemblies of flexible fibers. We use non-local slender body theory to compute the fluid–structure interactions of the fibers and a second-kind boundary integral formulation for other rigid bodies and the confining boundary. A kernel-independent implementation of the fast multipole method is utilized for efficient evaluation of HIs. The deformation of the fibers is described by nonlinear Euler–Bernoulli beam theory and their polymerization is modeled by the reparametrization of the dynamic equations in the appropriate non-Lagrangian frame. We use a pseudo-spectral representation of fiber positions and implicit time-stepping to resolve large fiber deformations, and to allow time-steps not excessively constrained by temporal stiffness or fiber–fiber interactions. The entire computational scheme is parallelized, which enables simulating assemblies of thousands of fibers. We use our method to investigate two important questions in the mechanics of cell division: (i) the effect of confinement on the hydrodynamic mobility of microtubule asters; and (ii) the dynamics of the positioning of mitotic spindle in complex cell geometries. Finally to demonstrate the general applicability of the method, we simulate the sedimentation of a

  12. A fast platform for simulating semi-flexible fiber suspensions applied to cell mechanics

    International Nuclear Information System (INIS)

    Nazockdast, Ehssan; Rahimian, Abtin; Zorin, Denis; Shelley, Michael

    2017-01-01

    We present a novel platform for the large-scale simulation of three-dimensional fibrous structures immersed in a Stokesian fluid and evolving under confinement or in free-space in three dimensions. One of the main motivations for this work is to study the dynamics of fiber assemblies within biological cells. For this, we also incorporate the key biophysical elements that determine the dynamics of these assemblies, which include the polymerization and depolymerization kinetics of fibers, their interactions with molecular motors and other objects, their flexibility, and hydrodynamic coupling. This work, to our knowledge, is the first technique to include many-body hydrodynamic interactions (HIs), and the resulting fluid flows, in cellular assemblies of flexible fibers. We use non-local slender body theory to compute the fluid–structure interactions of the fibers and a second-kind boundary integral formulation for other rigid bodies and the confining boundary. A kernel-independent implementation of the fast multipole method is utilized for efficient evaluation of HIs. The deformation of the fibers is described by nonlinear Euler–Bernoulli beam theory and their polymerization is modeled by the reparametrization of the dynamic equations in the appropriate non-Lagrangian frame. We use a pseudo-spectral representation of fiber positions and implicit time-stepping to resolve large fiber deformations, and to allow time-steps not excessively constrained by temporal stiffness or fiber–fiber interactions. The entire computational scheme is parallelized, which enables simulating assemblies of thousands of fibers. We use our method to investigate two important questions in the mechanics of cell division: (i) the effect of confinement on the hydrodynamic mobility of microtubule asters; and (ii) the dynamics of the positioning of mitotic spindle in complex cell geometries. Finally to demonstrate the general applicability of the method, we simulate the sedimentation of a

  13. A fast platform for simulating semi-flexible fiber suspensions applied to cell mechanics

    Science.gov (United States)

    Nazockdast, Ehssan; Rahimian, Abtin; Zorin, Denis; Shelley, Michael

    2017-01-01

    We present a novel platform for the large-scale simulation of three-dimensional fibrous structures immersed in a Stokesian fluid and evolving under confinement or in free-space in three dimensions. One of the main motivations for this work is to study the dynamics of fiber assemblies within biological cells. For this, we also incorporate the key biophysical elements that determine the dynamics of these assemblies, which include the polymerization and depolymerization kinetics of fibers, their interactions with molecular motors and other objects, their flexibility, and hydrodynamic coupling. This work, to our knowledge, is the first technique to include many-body hydrodynamic interactions (HIs), and the resulting fluid flows, in cellular assemblies of flexible fibers. We use non-local slender body theory to compute the fluid-structure interactions of the fibers and a second-kind boundary integral formulation for other rigid bodies and the confining boundary. A kernel-independent implementation of the fast multipole method is utilized for efficient evaluation of HIs. The deformation of the fibers is described by nonlinear Euler-Bernoulli beam theory and their polymerization is modeled by the reparametrization of the dynamic equations in the appropriate non-Lagrangian frame. We use a pseudo-spectral representation of fiber positions and implicit time-stepping to resolve large fiber deformations, and to allow time-steps not excessively constrained by temporal stiffness or fiber-fiber interactions. The entire computational scheme is parallelized, which enables simulating assemblies of thousands of fibers. We use our method to investigate two important questions in the mechanics of cell division: (i) the effect of confinement on the hydrodynamic mobility of microtubule asters; and (ii) the dynamics of the positioning of mitotic spindle in complex cell geometries. Finally to demonstrate the general applicability of the method, we simulate the sedimentation of a cloud of

  14. Electrochemical testing of suspension plasma sprayed solid oxide fuel cell electrolytes

    Science.gov (United States)

    Waldbillig, D.; Kesler, O.

    Electrochemical performance of metal-supported plasma sprayed (PS) solid oxide fuel cells (SOFCs) was tested for three nominal electrolyte thicknesses and three electrolyte fabrication conditions to determine the effects of electrolyte thickness and microstructure on open circuit voltage (OCV) and series resistance (R s). The measured OCV values were approximately 90% of the Nernst voltages, and electrolyte area specific resistances below 0.1 Ω cm 2 were obtained at 750 °C for electrolyte thicknesses below 20 μm. Least-squares fitting was used to estimate the contributions to R s of the YSZ bulk material, its microstructure, and the contact resistance between the current collectors and the cells. It was found that the 96% dense electrolyte layers produced from high plasma gas flow rate conditions had the lowest permeation rates, the highest OCV values, and the smallest electrolyte-related voltage losses. Optimal electrolyte thicknesses were determined for each electrolyte microstructure that would result in the lowest combination of OCV loss and voltage loss due to series resistance for operating voltages of 0.8 V and 0.7 V.

  15. Cell suspension culture-mediated incorporation of the rice bel gene into transgenic cotton.

    Directory of Open Access Journals (Sweden)

    Liping Ke

    Full Text Available Cotton plants engineered for resistance to the herbicides, glyphosate or glufosinate have made a considerable impact on the production of the crop worldwide. In this work, embryogenic cell cultures derived from Gossypium hirsutum L. cv Coker 312 hypocotyl callus were transformed via Agrobacterium tumefaciens with the rice cytochrome P450 gene, CYP81A6 (bel. In rice, bel has been shown to confer resistance to both bentazon and sulfanylurea herbicides. Transformed cells were selected on a liquid medium supplemented alternately or simultaneously with kanamycin (50mg/L and bentazon (4.2 µmol. A total of 17 transgenic cotton lines were recovered, based on the initial resistance to bentazon and on PCR detection of the bel transgene. Bel integration into the cotton genome was confirmed by Southern blot and expression of the transgene was verified by RT-PCR. In greenhouse and experimental plot trials, herbicide (bentazon tolerance of up to 1250 mg/L was demonstrated in the transgenic plants. Transgenic lines with a single copy of the bel gene showed normal Mendelian inheritance of the characteristic. Importantly, resistance to bentazon was shown to be stably incorporated in the T1, T2 and T3 generations of self-fertilised descendents and in plants outcrossed to another upland cotton cultivar. Engineering resistance to bentazon in cotton through the heterologous expression of bel opens the possibility of incorporating this trait into elite cultivars, a strategy that would give growers a more flexible alternative to weed management in cotton crops.

  16. Application of Pectin From Rauvolfia serpentina (L.) Benth to the Cryopreservation of Human Leucocyte Cell Suspensions.

    Science.gov (United States)

    Zaitseva, O O; PoleZhaeva, T V; Khudvakov, A N; Solomina, O N; Golovchenko, V V

      BACKGROUND: Due to their valuable medicinal properties and high physiological activity, plant polysaccharides are currently being extensively studied. The present study aims to investigate rauwolfian (pectin for Rauvolfia serpentina) supplementation on human leukocytes cryopreservation. We determined the сharacteristics of leukocytes undergoing freezing with pectin at different temperatures. Donor leukocytes were frozen under the protection of comprehensive cryoprotectant solution and stored in electrical freezers (-20C, -40C, -80C). A regular decrease of all values starting from a higher temperature (-20С) through to the lower temperature (-80С) was identified. The study showed that pectin rauwolfian stimulated both the oxygen-independent and the oxygen-dependent killer response. We also found that the oxygen-dependent neutrophil killer effect was reduced as the storage temperature was lowered. It was determined that the LPO levels in the cells with added pectin-containing solutions remained the same before freezing, while their antioxidant activity positively increased, which is beneficial for neutrophils for their further freezing to -20C, -40C and -80C. The results of the study make it possible to assume that rauwolfian, a pectin extracted from Rauvolfia serpentina, has an exocellular protectant effect as part of cryopreservative solution on human white blood cells stored at different low temperatures. The versatility of the substance is probably due to the degree of the macromolecule branching, in particular, the structure of carbohydrate side chains, which contain a large number of hydroxyl groups.

  17. Cytotoxicity of Labruscol, a New Resveratrol Dimer Produced by Grapevine Cell Suspensions, on Human Skin Melanoma Cancer Cell Line HT-144

    Directory of Open Access Journals (Sweden)

    Laetitia Nivelle

    2017-11-01

    Full Text Available A new resveratrol dimer (1 called labruscol, has been purified by centrifugal partition chromatography of a crude ethyl acetate stilbene extract obtained from elicited grapevine cell suspensions of Vitis labrusca L. cultured in a 14-liter stirred bioreactor. One dimensional (1D and two dimensional (2D nuclear magnetic resonance (NMR analyses including 1H, 13C, heteronuclear single-quantum correlation (HSQC, heteronuclear multiple bond correlation (HMBC, and correlation spectroscopy (COSY as well as high-resolution electrospray ionisation mass spectrometry (HR-ESI-MS were used to characterize this compound and to unambiguously identify it as a new stilbene dimer, though its relative stereochemistry remained unsolved. Labruscol was recovered as a pure compound (>93% in sufficient amounts (41 mg to allow assessment of its biological activity (cell viability, cell invasion and apoptotic activity on two different cell lines, including one human skin melanoma cancer cell line HT-144 and a healthy human dermal fibroblast (HDF line. This compound induced almost 100% of cell viability inhibition in the cancer line at a dose of 100 μM within 72 h of treatment. However, at all tested concentrations and treatment times, resveratrol displayed an inhibition of the cancer line viability higher than that of labruscol in the presence of fetal bovine serum. Both compounds also showed differential activities on healthy and cancer cell lines. Finally, labruscol at a concentration of 1.2 μM was shown to reduce cell invasion by 40%, although no similar activity was observed with resveratrol. The cytotoxic activity of this newly-identified dimer is discussed.

  18. Bioelectricity generation and microcystins removal in a blue-green algae powered microbial fuel cell

    International Nuclear Information System (INIS)

    Yuan Yong; Chen Qing; Zhou Shungui; Zhuang Li; Hu Pei

    2011-01-01

    Bioelectricity production from blue-green algae was examined in a single chamber tubular microbial fuel cell (MFC). The blue-green algae powered MFC produced a maximum power density of 114 mW/m 2 at a current density of 0.55 mA/m 2 . Coupled with the bioenergy generation, high removal efficiencies of chemical oxygen demand (COD) and nitrogen were also achieved in MFCs. Over 78.9% of total chemical oxygen demand (TCOD), 80.0% of soluble chemical oxygen demand (SCOD), 91.0% of total nitrogen (total-N) and 96.8% ammonium-nitrogen (NH 3 -N) were removed under closed circuit conditions in 12 days, which were much more effective than those under open circuit and anaerobic reactor conditions. Most importantly, the MFC showed great ability to remove microcystins released from blue-green algae. Over 90.7% of MC-RR and 91.1% of MC-LR were removed under closed circuit conditions (500 Ω). This study showed that the MFC could provide a potential means for electricity production from blue-green algae coupling algae toxins removal.

  19. Pathology of experimental Ebola virus infection in African green monkeys. Involvement of fibroblastic reticular cells.

    Science.gov (United States)

    Davis, K J; Anderson, A O; Geisbert, T W; Steele, K E; Geisbert, J B; Vogel, P; Connolly, B M; Huggins, J W; Jahrling, P B; Jaax, N K

    1997-08-01

    Ebola virus has been responsible for explosive lethal outbreaks of hemorrhagic fever in both humans and nonhuman primates. Previous studies showed a predilection of Ebola virus for cells of the mononuclear phagocyte system and endothelial cells. To examine the distribution of lesions and Ebola virus antigen in the tissues of six adult male African green monkeys (Cercopithecus aethiops) that died 6 to 7 days after intraperitoneal inoculation of Ebola-Zaire (Mayinga) virus. Tissues were examined histologically, immunohistochemically, and ultrastructurally. A major novel finding of this study was that fibroblastic reticular cells were immunohistochemically and ultrastructurally identified as targets of Ebola virus infection. The role of Ebola virus-infected fibroblastic reticular cells in the pathogenesis of Ebola hemorrhagic fever warrants further investigation. This is especially important because of recent observations indicating that fibroblastic reticular cells, along with the reticular fibers they produce, maximize the efficiency of the immune response.

  20. Singlet Oxygen Sensor Green: Photochemical Behavior in Solution and in a Mammalian Cell

    DEFF Research Database (Denmark)

    Gollmer, Anita; Arnbjerg, Jacob; Blaikie, Frances Helen

    2011-01-01

    The development of efficient and selective luminescent probes for reactive oxygen species, particularly for singlet molecular oxygen, is currently of great importance. In this study, the photochemical behavior of Singlet Oxygen Sensor Green® (SOSG), a commercially available fluorescent probe...... of the reaction between SOSG and singlet oxygen is, itself, an efficient singlet oxygen photosensitizer. Second, SOSG appears to efficiently bind to proteins which, in turn, can influence uptake by a cell as well as behavior in the cell. As such, incorrect use of SOSG can yield misleading data on yields...

  1. Relations between fluxes and concentrations of Na in cell suspensions of Acer pseudoplatanus

    International Nuclear Information System (INIS)

    Pennarun, A.-M.

    1978-01-01

    Taking in account the data provided by preliminary compartmental analysis, the net influxes of 24 Na measured in Acer cells after a short loading period (45 minutes) followed by a short wash (1 minute) represent the influx across the plasmalemma (phi sub(0c)) and, after a long loading period (4 hours) followed by a long wash (2 hours) represent the quasi-steady influx from the external solution to the vacuole (phi sub(0v). At flux equilibrium and when the external Na concentration is high enough, the other unidirectional fluxes - phi sub(c0), phi sub(cv) and phi sub(vc) - can be determined from these measurements. This method was used to study the variation of Na flux in terms of the external concentrations and the resulting internal concentrations. The kinetics obtained confirm the active nature of the efflux phi sub(vc) across the tonoplast according to the conclusions given by the application of the USSING-TEORELL criterion to the results of compartmental analysis. On the contrary, they suggest a passive character for the efflux phi sub(c0) accross the plasmalemma which could be considered as active according to the USSING-TEORELL criterion. The contradiction could be eliminated by taking into consideration the important underestimation of the Na activity coefficient in the cytoplasm, due to the neglecting of water binding [fr

  2. Effects of 60Co γ-rays irradiation on cell growth and alkaloid accumulation of protocorm-like bodies in suspension cultures from Dendrobium huoshanense

    International Nuclear Information System (INIS)

    Hong Sali; Jin Qing; Huang Bei; Cai Yongping; Lin Yi

    2009-01-01

    Protocorm-like bodies (PLBs) in suspension cultures from Dendrobium huoshanense were irradiated by 60 Co γ-rays at doses of 5, 10, 20 and 30Gy, and alkaloid accumulation of PLBs was studied. The results showed that 60 Co γ-rays irradiation could improve the alkaloid content of PLBs, and the suitable dose was 10Gy. The fresh weight of 10Gy irradiated PLBs was 26.54g/flask, and the alkaloid content was 0.035% on the 36th day. The medium pH and electric conductivity of 10Gy irradiated PLBs changed slightly during the suspension culture period. The results suggested such cultural environment was suitable for PLBs growth continuely. Results also showed that 60 Co γ-rays irradiation could increase the activities of POD, SOD, CAT, PAL and decrease the activity of PPO, these were responsible for the improvement of cell growth and alkaloid accumulation in PLBs. (authors)

  3. Toxin- and cadmium-induced cell death events in tomato suspension cells resemble features of hypersensitive response

    NARCIS (Netherlands)

    Iakimova, E.T.; Woltering, E.J.; Yordanova, Z.P.

    2007-01-01

    Elicitors of different origin (fumonisin B1, fungal toxin), camptothecin (alkaloid from Camptotheca acuminata), mastoparan (wasp venom) and the heavy metal (cadmium) were tested for their ability to induce programmed cell death (PCD) in a model system of tomato cell culture, line MsK8. By employing

  4. Biosynthesis of schwertmannite by Acidithiobacillus ferrooxidans cell suspensions under different pH condition

    Energy Technology Data Exchange (ETDEWEB)

    Liao Yuehua [Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095 (China); Zhou Lixiang [Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095 (China)], E-mail: lxzhou@njau.edu.cn; Liang Jianru; Xiong Huixin [Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095 (China)

    2009-01-01

    Oxidation of FeSO{sub 4} solution with initial pH in the range of 1.40-3.51 by Acidithiobacillus ferrooxidans LX5 cell at 26 deg. C and subsequent precipitation of resulting Fe(III) were investigated in the present study. Results showed that the oxidation rate of Fe(II) was around 1.2-3.9 mmol l{sup -1} h{sup -1}. X-ray diffraction (XRD) indicated that the formed precipitates were composed of natrojarosite with schwertmannite when the initial pH was 3.51, while only schwertmannite was produced when initial pH was in the range of 1.60-3.44 and no precipitate occurred when initial pH {<=} 1.40. Scanning electron microscope (SEM) analyses showed that precipitates formed in solution with initial pH 3.51 were spherical particles of about 0.4 {mu}m in diameter and had a smooth surface, whereas precipitates in solution with initial pH {<=} 3.44 were spherical particles of approximately 1.0 {mu}m in diameter, having specific sea-urchin morphology. Specific surface area of the precipitates varied from 3.42 to 23.45 m{sup 2} g{sup -1}. X-ray fluorescence analyses revealed that schwertmannite formed in solution with initial pH in the range of 2.00-3.44 had similar elemental composition and could be expressed as Fe{sub 8}O{sub 8}(OH){sub 4.42}(SO{sub 4}){sub 1.79,} whereas Fe{sub 8}O{sub 8}(OH){sub 4.36}(SO{sub 4}){sub 1.82} and Fe{sub 8}O{sub 8}(OH){sub 4.29}(SO{sub 4}){sub 1.86} as its chemical formula when the initial pH was 1.80 and 1.60, respectively.

  5. The chemopreventive properties and therapeutic modulation of green tea polyphenols in oral squamous cell carcinoma.

    Science.gov (United States)

    Lee, Ui-Lyong; Choi, Sung-Weon

    2011-01-01

    Chemoprevention is a relatively novel and promising approach for controlling cancer that uses specific natural products or synthetic agents to suppress, reverse, or prevent premalignancy before transformation into invasive cancer. Oral cavity squamous cell carcinoma (OCSCC) represents a large, worldwide health burden with approximately 274,000 cases diagnosed annually worldwide. Smoking and alcohol consumption are major inducers of OCSCC. Recently, the human papilloma virus was also shown to potentially be an etiologic factor. Due to its easily identifiable risk factors and the presence of premalignant regions, oral cancer makes a good candidate for chemoprevention. Green tea is the most widely consumed beverage in the world, and it has received considerable attention because of its abundant, scientifically proven, beneficial effects on human health. In this review, we discuss the role of green tea in oral cancer chemoprevention with regard to the multiple molecular mechanisms proposed in various in vitro, in vivo, and clinical trials.

  6. New cell line development for antibody-producing Chinese hamster ovary cells using split green fluorescent protein

    Directory of Open Access Journals (Sweden)

    Kim Yeon-Gu

    2012-05-01

    Full Text Available Abstract Background The establishment of high producer is an important issue in Chinese hamster ovary (CHO cell culture considering increased heterogeneity by the random integration of a transfected foreign gene and the altered position of the integrated gene. Fluorescence-activated cell sorting (FACS-based cell line development is an efficient strategy for the selection of CHO cells in high therapeutic protein production. Results An internal ribosome entry site (IRES was introduced for using two green fluorescence protein (GFP fragments as a reporter to both antibody chains, the heavy chain and the light chain. The cells co-transfected with two GFP fragments showed the emission of green fluorescence by the reconstitution of split GFP. The FACS-sorted pool with GFP expression had a higher specific antibody productivity (qAb than that of the unsorted pool. The qAb was highly correlated with the fluorescence intensity with a high correlation coefficient, evidenced from the analysis of median GFP and qAb in individual selected clones. Conclusions This study proved that the fragment complementation for split GFP could be an efficient indication for antibody production on the basis of high correlation of qAb with reconstitution of GFP. Taken together, we developed an efficient FACS-based screening method for high antibody-producing CHO cells with the benefits of the split GFP system.

  7. Green tea extract selectively targets nanomechanics of live metastatic cancer cells

    International Nuclear Information System (INIS)

    Cross, Sarah E; Gimzewski, James K; Jin Yusheng; Lu Qingyi; Rao Jianyu

    2011-01-01

    Green tea extract (GTE) is known to be a potential anticancer agent (Yang et al 2009 Nat. Rev. Cancer 9 429-39) with various biological activities (Lu et al 2005 Clin. Cancer Res. 11 1675-83; Yang et al 1998 Carcinogenesis 19 611-6) yet the precise mechanism of action is still unclear. The biomechanical response of GTE treated cells taken directly from patient's body samples was measured using atomic force microscopy (AFM) (Binnig et al 1986 Phys. Rev. Lett. 56 930). We found significant increase in stiffness of GTE treated metastatic tumor cells, with a resulting value similar to untreated normal mesothelial cells, whereas mesothelial cell stiffness after GTE treatment is unchanged. Immunofluorescence analysis showed an increase in cytoskeletal-F-actin in GTE treated tumor cells, suggesting GTE treated tumor cells display mechanical, structural and morphological features similar to normal cells, which appears to be mediated by annexin-I expression, as determined by siRNA analysis of an in vitro cell line model. Our data indicates that GTE selectively targets human metastatic cancer cells but not normal mesothelial cells, a finding that is significantly advantageous compared to conventional chemotherapy agents.

  8. Targeting of histamine producing cells by EGCG: a green dart against inflammation?

    Science.gov (United States)

    Melgarejo, Esther; Medina, Miguel Angel; Sánchez-Jiménez, Francisca; Urdiales, José Luis

    2010-09-01

    The human body is made of some 250 different cell types. From them, only a small subset of cell types is able to produce histamine. They include some neurons, enterochromaffin-like cells, gastrin-containing cells, mast cells, basophils, and monocytes/macrophages, among others. In spite of the reduced number of these histamine-producing cell types, they are involved in very different physiological processes. Their deregulation is related with many highly prevalent, as well as emergent and rare diseases, mainly those described as inflammation-dependent pathologies, including mastocytosis, basophilic leukemia, gastric ulcer, Crohn disease, and other inflammatory bowel diseases. Furthermore, oncogenic transformation switches some non-histamine-producing cells to a histamine producing phenotype. This is the case of melanoma, small cell lung carcinoma, and several types of neuroendocrine tumors. The bioactive compound epigallocatechin-3-gallate (EGCG), a major component of green tea, has been shown to target histamine-producing cells producing great alterations in their behavior, with relevant effects on their proliferative potential, as well as their adhesion, migration, and invasion potentials. In fact, EGCG has been shown to have potent anti-inflammatory, anti-tumoral, and anti-angiogenic effects and to be a potent inhibitor of the histamine-producing enzyme, histidine decarboxylase. Herein, we review the many specific effects of EGCG on concrete molecular targets of histamine-producing cells and discuss the relevance of these data to support the potential therapeutic interest of this compound to treat inflammation-dependent diseases.

  9. Photodynamic actions of indocyanine green and trypan blue on human lens epithelial cells in vitro.

    Science.gov (United States)

    Melendez, Robert F; Kumar, Neeru; Maswadi, Saher M; Zaslow, Kenneth; Glickmank, Randolph D

    2005-07-01

    The purpose of this study was to evaluate the toxicity and photodynamic activity of indocyanine green (ICG) and trypan blue (TryB) on cultured human lensepithelial cells (LECs). Experimental study. Lens epithelial cell viability was assessed after treatment with ICG and TryB concentrations ranging from 0.025 to 5.0 mg/ml, and exposure to 806 nm diode laser. At ICG concentrations below 0.5 mg/ml, there was > or =75% cell viability; at higher ICG concentrations there was dose-dependent cytotoxicity in addition to loss of cellular viability due to ICG photosensitization. TryB had little cytotoxicity to the LECs: >80% cells were viable irrespective of the dye concentration or laser treatment. These data indicate that ICG may have application as a photosensitizer in the selective eradication of residual LECs after cataract surgery to reduce the incidence of posterior capsule opacification.

  10. A zeta potential value determines the aggregate's size of penta-substituted [60]fullerene derivatives in aqueous suspension whereas positive charge is required for toxicity against bacterial cells.

    Science.gov (United States)

    Deryabin, Dmitry G; Efremova, Ludmila V; Vasilchenko, Alexey S; Saidakova, Evgeniya V; Sizova, Elena A; Troshin, Pavel A; Zhilenkov, Alexander V; Khakina, Ekaterina A; Khakina, Ekaterina E

    2015-08-08

    The cause-effect relationships between physicochemical properties of amphiphilic [60]fullerene derivatives and their toxicity against bacterial cells have not yet been clarified. In this study, we report how the differences in the chemical structure of organic addends in 10 originally synthesized penta-substituted [60]fullerene derivatives modulate their zeta potential and aggregate's size in salt-free and salt-added aqueous suspensions as well as how these physicochemical characteristics affect the bioenergetics of freshwater Escherichia coli and marine Photobacterium phosphoreum bacteria. Dynamic light scattering, laser Doppler micro-electrophoresis, agarose gel electrophoresis, atomic force microscopy, and bioluminescence inhibition assay were used to characterize the fullerene aggregation behavior in aqueous solution and their interaction with the bacterial cell surface, following zeta potential changes and toxic effects. Dynamic light scattering results indicated the formation of self-assembled [60]fullerene aggregates in aqueous suspensions. The measurement of the zeta potential of the particles revealed that they have different surface charges. The relationship between these physicochemical characteristics was presented as an exponential regression that correctly described the dependence of the aggregate's size of penta-substituted [60]fullerene derivatives in salt-free aqueous suspension from zeta potential value. The prevalence of DLVO-related effects was shown in salt-added aqueous suspension that decreased zeta potential values and affected the aggregation of [60]fullerene derivatives expressed differently for individual compounds. A bioluminescence inhibition assay demonstrated that the toxic effect of [60]fullerene derivatives against E. coli cells was strictly determined by their positive zeta potential charge value being weakened against P. phosphoreum cells in an aquatic system of high salinity. Atomic force microscopy data suggested that the

  11. Cell Wall Structure of Coccoid Green Algae as an Important Trade-Off Between Biotic Interference Mechanisms and Multidimensional Cell Growth.

    Science.gov (United States)

    Dunker, Susanne; Wilhelm, Christian

    2018-01-01

    Coccoid green algae can be divided in two groups based on their cell wall structure. One group has a highly chemical resistant cell wall (HR-cell wall) containing algaenan. The other group is more susceptible to chemicals (LR-cell wall - Low resistant cell wall). Algaenan is considered as important molecule to explain cell wall resistance. Interestingly, cell wall types (LR- and HR-cell wall) are not in accordance with the taxonomic classes Chlorophyceae and Trebouxiophyceae, which makes it even more interesting to consider the ecological function. It was already shown that algaenan helps to protect against virus, bacterial and fungal attack, but in this study we show for the first time that green algae with different cell wall properties show different sensitivity against interference competition with the cyanobacterium Microcystis aeruginosa . Based on previous work with co-cultures of M. aeruginosa and two green algae ( Acutodesmus obliquus and Oocystis marssonii ) differing in their cell wall structure, it was shown that M. aeruginosa could impair only the growth of the green algae if they belong to the LR-cell wall type. In this study it was shown that the sensitivity to biotic interference mechanism shows a more general pattern within coccoid green algae species depending on cell wall structure.

  12. Labeling RNAs in Live Cells Using Malachite Green Aptamer Scaffolds as Fluorescent Probes.

    Science.gov (United States)

    Yerramilli, V Siddartha; Kim, Kyung Hyuk

    2018-03-16

    RNAs mediate many different processes that are central to cellular function. The ability to quantify or image RNAs in live cells is very useful in elucidating such functions of RNA. RNA aptamer-fluorogen systems have been increasingly used in labeling RNAs in live cells. Here, we use the malachite green aptamer (MGA), an RNA aptamer that can specifically bind to malachite green (MG) dye and induces it to emit far-red fluorescence signals. Previous studies on MGA showed a potential for the use of MGA for genetically tagging other RNA molecules in live cells. However, these studies also exhibited low fluorescence signals and high background noise. Here we constructed and tested RNA scaffolds containing multiple tandem repeats of MGA as a strategy to increase the brightness of the MGA aptamer-fluorogen system as well as to make the system fluoresce when tagging various RNA molecules, in live cells. We demonstrate that our MGA scaffolds can induce fluorescence signals by up to ∼20-fold compared to the basal level as a genetic tag for other RNA molecules. We also show that our scaffolds function reliably as genetically encoded fluorescent tags for mRNAs of fluorescent proteins and other RNA aptamers.

  13. A New Method for Sensing Soil Water Content in Green Roofs Using Plant Microbial Fuel Cells.

    Science.gov (United States)

    Tapia, Natalia F; Rojas, Claudia; Bonilla, Carlos A; Vargas, Ignacio T

    2017-12-28

    Green roofs have many benefits, but in countries with semiarid climates the amount of water needed for irrigation is a limiting factor for their maintenance. The use of drought-tolerant plants such as Sedum species, reduces the water requirements in the dry season, but, even so, in semiarid environments these can reach up to 60 L m -2 per day. Continuous substrate/soil water content monitoring would facilitate the efficient use of this critical resource. In this context, the use of plant microbial fuel cells (PMFCs) emerges as a suitable and more sustainable alternative for monitoring water content in green roofs in semiarid climates. In this study, bench and pilot-scale experiments using seven Sedum species showed a positive relationship between current generation and water content in the substrate. PMFC reactors with higher water content (around 27% vs. 17.5% v / v ) showed larger power density (114.6 and 82.3 μW m -2 vs. 32.5 μW m -2 ). Moreover, a correlation coefficient of 0.95 (±0.01) between current density and water content was observed. The results of this research represent the first effort of using PMFCs as low-cost water content biosensors for green roofs.

  14. Determining the effects of green chemistry synthesized Ag-nisin nanoparticle on macrophage cells.

    Science.gov (United States)

    Moein, Masood; Imani Fooladi, Abbas Ali; Mahmoodzadeh Hosseini, Hamideh

    2018-01-01

    Bacteriocins are low molecular weight substances produced through post transcriptional changes. These molecules are easily degraded in mammalian gut by proteolytic enzymes especially protease. Nisin is a peptide with 34 aa and its structure contains a pentacyclic lanthionine and 4 beta metyllanthionine residues. Different formulations have been designed for nisin. Since "green synthesis" is a progressive method to prepare anti-microbial and anti-cancer compounds, this study aimed at green synthesis of nisin metal compounds to be used lower concentration still exerting nisin effects. For this purpose, a 1 mg/ml nisin solution was added to a 1 mM silver nitrate solution and incubated to synthesis nano Ag-nisin, then the optical density of new solution was detected using UV spectroscopy. To determine biomolecules in the Ag-nisin solution, the FTIR method was employed. The size and morphology of Ag-nisin was measured by TEM. The toxicity, inflammatory cytokines production, and intracellular ROS quantity was evaluated using MTT, ELISA and flow-cytometry. XRD pattern indicated the silver crystals in Ag-nisin solution. In addition, FTRI findings showed that the carbonyl groups of amino acid are potently able to bind to metal nanoparticles, cover, and prevent them from particle agglomeration. Treating macrophage cells with 10, 25, 50 and 100 μg/ml of Ag-nisin had no significant effect on the cell viability and intracellular ROS quantity compared to the control group. In addition, different concentrations of Ag-nisin had no effect on the IL-10 and TNF-α levels but caused an increased level of IL-12 in comparison with the control group. In the current study, for the first time, green synthesize was used to prepare Ag-nisin particles. The synthesized nanoparticle is able to induce inflammatory activity via increasing IL-12 without any change in the TNF-α level in macrophage cells. Copyright © 2017. Published by Elsevier Ltd.

  15. IR-FEL-induced green fluorescence protein (GFP) gene transfer into plant cell

    CERN Document Server

    Awazu, K; Tamiya, E

    2002-01-01

    A Free Electron Laser (FEL) holds potential for various biotechnological applications due to its characteristics such as flexible wavelength tunability, short pulse and high peak power. We could successfully introduce the Green Fluorescent Protein (GFP) gene into tobacco BY2 cells by IR-FEL laser irradiation. The irradiated area of the solution containing BY2 cells and plasmid was about 0.1 mm sup 2. FEL irradiation at a wavelength of 5.75 and 6.1 mu m, targeting absorption by the ester bond of the lipid and the amide I bond of the protein, respectively, was shown to cause the introduction of the fluorescent dye into the cell. On the other hand, transient expression of the GFP fluorescence was only observed after irradiation at 5.75 mu m. The maximum transfer efficiency was about 0.5%.

  16. Singlet Oxygen Sensor Green: Photochemical Behavior in Solution and in a Mammalian Cell

    DEFF Research Database (Denmark)

    Gollmer, Anita; Arnbjerg, Jacob; Blaikie, Frances Helen

    2011-01-01

    The development of efficient and selective luminescent probes for reactive oxygen species, particularly for singlet molecular oxygen, is currently of great importance. In this study, the photochemical behavior of Singlet Oxygen Sensor Green® (SOSG), a commercially available fluorescent probe...... for singlet oxygen, was examined. Despite published claims to the contrary, the data presented herein indicate that SOSG can, in fact, be incorporated into a living mammalian cell. However, for a number of reasons, caution must be exercised when using SOSG. First, it is shown that the immediate product...... of the reaction between SOSG and singlet oxygen is, itself, an efficient singlet oxygen photosensitizer. Second, SOSG appears to efficiently bind to proteins which, in turn, can influence uptake by a cell as well as behavior in the cell. As such, incorrect use of SOSG can yield misleading data on yields...

  17. Inhibition of protease activity by antisense RNA improves recombinant protein production in Nicotiana tabacum cv. Bright Yellow 2 (BY-2) suspension cells.

    Science.gov (United States)

    Mandal, Manoj K; Fischer, Rainer; Schillberg, Stefan; Schiermeyer, Andreas

    2014-08-01

    Recombinant proteins produced in plant suspension cultures are often degraded by endogenous plant proteases when secreted into the medium, resulting in low yields. To generate protease-deficient tobacco BY-2 cell lines and to retrieve the sequence information, we cloned four different protease cDNAs from tobacco BY-2 cells (NtAP, NtCP, NtMMP1, and NtSP), which represent the major catalytic classes. The simultaneous expression of antisense RNAs against these endogenous proteases led to the establishment of cell lines with reduced levels of endogenous protease expression and activity at late stages of the cultivation cycle. One of the cell lines showing reduced proteolytic activity in the culture medium was selected for the expression of the recombinant full-length IgG1(κ) antibody 2F5, recognizing the gp41 surface protein of HIV-1. This cell line showed significantly reduced degradation of the 2F5 heavy chain, resulting in four-fold higher accumulation of the intact antibody heavy chain when compared to transformed wild type cells expressing the same antibody. N-terminal sequencing data revealed that the antibody has two cleavage sites within the CDR-H3 and one site at the end of the H4-framework region. These cleavage sites are found to be vulnerable to serine proteases. The data provide a basis for further improvement of plant cells for the production of recombinant proteins in plant cell suspension cultures. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. [Metabolism of carbohydrates in the cells of green sulphur bacteria Chlorobium limicola Ya-2002].

    Science.gov (United States)

    Horishnyĭ, M B; Hudz', S P; Hnatush, S O

    2009-01-01

    The nature of carbohydrates that accumulate in the cells of photosynthetic green sulphur bacteria of Chlorobium limicola Ya-2002 has been investigated. It is shown by infra-red spectrometry, that carbohydrates accumulated in the cells of bacteria are identical (by 90-95%) to glycogen of the bull liver. Exogenous glucose, saccharose, maltose, did not stimulate formation of glycogen. Growth of glycogen level in the cells of bacteria was observed at addition of acetate or piruvate in the conditions of bacteria cultivation in the light and in the presence CO2 and H2S in the environment. Washed cells of C. limicola Ya-2002 did not use glucose of the environment neither in the conditions of illumination nor in darkness, however acetate and piruvate are actively used in the light. During incubation of the washed cells in darkness the level of glycogen fell down approximately three times. Its amount during cells incubation in the light did not change. The decline of glycogen level in cells during their incubation in darkness was accompanied by piling up of carbonic acids in the environment acetate prevailing among them.

  19. Effect of sucrose and methyl jasmonate on biomass and anthocyanin production in cell suspension culture of Melastoma malabathricum (Melastomaceae

    Directory of Open Access Journals (Sweden)

    Koay Suan See

    2011-06-01

    Full Text Available Melastoma malabathricum, belongs to the Melastomaceae family, is an important medicinal plant widely distributed from Madagascar to Australia, that is used in traditional remedies for the treatment of variousailments. Besides its medicinal properties, it has been identified as a potential source of anthocyanin production.The present study was carried out to investigate the effect of sucrose and methyl jasmonate and feeding time oncell biomass yield and anthocyanin production in cell suspension culture of M. malabathricum. Addition of differentconcentrations of sucrose into the cell culture of M. malabathricum influenced cell biomass and pigment accumulation. The addition of methyl jasmonate was found to have no effect on cell biomass but the presence of higher amount (12.5-50mg/L had caused a reduction in anthocyanin production and accumulation. MS medium supplemented with 30g/L sucrose and 3.5 mg/L of MeJA added on cero day and 3rd day produced high fresh cell mass at the end of nine days of culture but did not support the production of anthocyanins. However, cells cultured in the medium supplemented with 45g/L sucrose without MeJA showed the highest pigment content (0.69±0.22Cv/g-FCM. The cells cultured in MS medium supplemented with 30 g/L sucrose with 3.5mg/L MeJA added on the 3rd and 6th day of culture, showed the lowest pigment content (0.37-0.40Cv/g-FCM. This study indicated that MeJA was not necessary but sucrose was needed for the enhancement of cell growth and anthocyanin production in M. malabathricum cell cultures. Rev. Biol. Trop. 59 (2: 597-606. Epub 2011 June 01.elastoma malabathricum pertenece a la familia de las melastomáceas, es una planta medicinal importante ampliamente distribuida desde Madagascar hasta Australia, que se utiliza en remedios tradicionales para el tratamiento de diversas dolencias. Además de sus propiedades medicinales, se ha identificado como una fuente potencial de producción de antocianinas. En esta

  20. Chemical compatibility and properties of suspension plasma-sprayed SrTiO3-based anodes for intermediate-temperature solid oxide fuel cells

    Science.gov (United States)

    Zhang, Shan-Lin; Li, Cheng-Xin; Li, Chang-Jiu

    2014-10-01

    La-doped strontium titanate (LST) is a promising, redox-stable perovskite material for direct hydrocarbon oxidation anodes in intermediate-temperature solid oxide fuel cells (IT-SOFCs). In this study, nano-sized LST and Sm-doped ceria (SDC) powders are produced by the sol-gel and glycine-nitrate processes, respectively. The chemical compatibility between LST and electrolyte materials is studied. A LST-SDC composite anode is prepared by suspension plasma spraying (SPS). The effects of annealing conditions on the phase structure, microstructure, and chemical stability of the LST-SDC composite anode are investigated. The results indicate that the suspension plasma-sprayed LST-SDC anode has the same phase structure as the original powders. LST exhibits a good chemical compatibility with SDC and Mg/Sr-doped lanthanum gallate (LSGM). The anode has a porosity of ∼40% with a finely porous structure that provides high gas permeability and a long three-phase boundary for the anode reaction. Single cells assembled with the LST-SDC anode, La0.8Sr0.2Ga0.8Mg0.2O3 electrolyte, and La0.8Sr0.2CoO3-SDC cathode show a good performance at 650-800 °C. The annealing reduces the impedances due to the enhancement in the bonding between the particles in the anode and interface of anode and LSGM electrolyte, thus improving the output performance of the cell.

  1. Selection of variants with high levels of biotin from cultured green Lavandula vera cells irradiated with gamma rays

    International Nuclear Information System (INIS)

    Watanabe, K.; Yamada, Y.

    1982-01-01

    Cultured green Lavandula vera cells were irradiated with various dosages of gamma rays which increased the variation in the amount of free biotin produced by the cell clones. Variant sublines containing much more free biotin than the original line were obtained by repeated selection. The effectiveness of gamma rays for the induction of the variant sublines is described

  2. Green biosynthesis of biocompatible CdSe quantum dots in living Escherichia coli cells

    International Nuclear Information System (INIS)

    Yan, Zhengyu; Qian, Jing; Su, Yilong; Ai, Xiaoxia; Wu, Shengmei; Gu, Yueqing

    2014-01-01

    A green and efficient biosynthesis method to prepare fluorescence-tunable biocompatible cadmium selenide quantum dots using Escherichia coli cells as biological matrix was proposed. Decisive factors in biosynthesis of cadmium selenide quantum dots in a designed route in Escherichia coli cells were elaborately investigated, including the influence of the biological matrix growth stage, the working concentration of inorganic reactants, and the co-incubation duration of inorganic metals to biomatrix. Ultraviolet-visible, photoluminescence, and inverted fluorescence microscope analysis confirmed the unique optical properties of the biosynthesized cadmium selenide quantum dots. The size distribution of the nanocrystals extracted from cells and the location of nanocrystals foci in vivo were also detected seriously by transmission electron microscopy. A surface protein capping layer outside the nanocrystals was confirmed by Fourier transform infrared spectroscopy measurements, which were supposed to contribute to reducing cytotoxicity and maintain a high viability of cells when incubating with quantum dots at concentrations as high as 2 μM. Cell morphology observation indicated an effective labeling of living cells by the biosynthesized quantum dots after a 48 h co-incubation. The present work demonstrated an economical and environmentally friendly approach to fabricating highly fluorescent quantum dots which were expected to be an excellent fluorescent dye for broad bio-imaging and labeling. (papers)

  3. Green tea polyphenol tailors cell adhesivity of RGD displaying surfaces: multicomponent models monitored optically.

    Science.gov (United States)

    Peter, Beatrix; Farkas, Eniko; Forgacs, Eniko; Saftics, Andras; Kovacs, Boglarka; Kurunczi, Sandor; Szekacs, Inna; Csampai, Antal; Bosze, Szilvia; Horvath, Robert

    2017-02-10

    The interaction of the anti-adhesive coating, poly(L-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG) and its Arg-Gly-Asp (RGD) functionalized form, PLL-g-PEG-RGD, with the green tea polyphenol, epigallocatechin-gallate (EGCg) was in situ monitored. After, the kinetics of cellular adhesion on the EGCg exposed coatings were recorded in real-time. The employed plate-based waveguide biosensor is applicable to monitor small molecule binding and sensitive to sub-nanometer scale changes in cell membrane position and cell mass distribution; while detecting the signals of thousands of adhering cells. The combination of this remarkable sensitivity and throughput opens up new avenues in testing complicated models of cell-surface interactions. The systematic studies revealed that, despite the reported excellent antifouling properties of the coatings, EGCg strongly interacted with them, and affected their cell adhesivity in a concentration dependent manner. Moreover, the differences between the effects of the fresh and oxidized EGCg solutions were first demonstrated. Using a semiempirical quantumchemical method we showed that EGCg binds to the PEG chains of PLL-g-PEG-RGD and effectively blocks the RGD sites by hydrogen bonds. The calculations supported the experimental finding that the binding is stronger for the oxidative products. Our work lead to a new model of polyphenol action on cell adhesion ligand accessibility and matrix rigidity.

  4. EDITORIAL: Colloidal suspensions Colloidal suspensions

    Science.gov (United States)

    Petukhov, Andrei; Kegel, Willem; van Duijneveldt, Jeroen

    2011-05-01

    Special issue in honour of Henk Lekkerkerker's 65th birthday Professor Henk N W Lekkerkerker is a world-leading authority in the field of experimental and theoretical soft condensed matter. On the occasion of his 65th birthday in the summer of 2011, this special issue celebrates his many contributions to science. Henk Lekkerkerker obtained his undergraduate degree in chemistry at the University of Utrecht (1968) and moved to Calgary where he received his PhD in 1971. He moved to Brussels as a NATO fellow at the Université Libre de Bruxelles and was appointed to an assistant professorship (1974), an associate professorship (1977) and a full professorship (1980) in physical chemistry at the Vrije Universiteit Brussel. In 1985 he returned to The Netherlands to take up a professorship at the Van 't Hoff Laboratory, where he has been ever since. He has received a series of awards during his career, including the Onsager Medal (1999) of the University of Trondheim, the Bakhuys Roozeboom Gold Medal (2003) of the Royal Dutch Academy of Arts and Sciences (KNAW), the ECIS-Rhodia European Colloid and Interface Prize (2003), and the Liquid Matter Prize of the European Physical Society (2008). He was elected a member of KNAW in 1996, was awarded an Academy Chair position in 2005, and has held several visiting lectureships. Henk's work focuses on phase transitions in soft condensed matter, and he has made seminal contributions to both the theoretical and experimental aspects of this field. Here we highlight three major themes running through his work, and a few selected publications. So-called depletion interactions may lead to phase separation in colloid-polymer mixtures, and Henk realised that the partitioning of polymer needs to be taken into account to describe the phase behaviour correctly [1]. Colloidal suspensions can be used as model fluids, with the time- and length-scales involved leading to novel opportunities, notably the direct observation of capillary waves at a

  5. Development of an optimized tetracycline-inducible expression system to increase the accumulation of interleukin-10 in tobacco BY-2 suspension cells.

    Science.gov (United States)

    Bortesi, Luisa; Rademacher, Thomas; Schiermeyer, Andreas; Schuster, Flora; Pezzotti, Mario; Schillberg, Stefan

    2012-07-11

    Plant cell suspension cultures can be used for the production of valuable pharmaceutical and industrial proteins. When the recombinant protein is secreted into the culture medium, restricting expression to a defined growth phase can improve both the quality and quantity of the recovered product by minimizing proteolytic activity. Temporal restriction is also useful for recombinant proteins whose constitutive expression affects cell growth and viability, such as viral interleukin-10 (vIL-10). We have developed a novel, tetracycline-inducible system suitable for tobacco BY-2 suspension cells which increases the yields of vIL-10. The new system is based on a binary vector that is easier to handle than conventional vectors, contains an enhanced inducible promoter and 5'-UTR to improve yields, and incorporates a constitutively-expressed visible marker gene to allow the rapid and straightforward selection of the most promising transformed clones. Stable transformation of BY-2 cells with this vector, without extensive optimization of the induction conditions, led to a 3.5 fold increase in vIL-10 levels compared to constitutive expression in the same host. We have developed an effective and straightforward molecular farming platform technology that improves both the quality and the quantity of recombinant proteins produced in plant cells, particularly those whose constitutive expression has a negative impact on plant growth and development. Although we tested the platform using vIL-10 produced in BY-2 cells, it can be applied to other host/product combinations and is also useful for basic research requiring strictly controlled transgene expression.

  6. The Effect of Plant Growth Regulators and Different Explants on the Response of Tissue Culture and Cell Suspension Cultures of German Chamomile (Matricaria chamomilla L.

    Directory of Open Access Journals (Sweden)

    L. Koohi,

    2014-07-01

    Full Text Available German chamomile (Matricaria chamomilla L. is one of the most important medicinal plants that its essential oils used in different medicinal industries. In this study which was carried out in 2013 growing season at the Faculty of Agricultural Sciences of the University of Mohaghegh Ardabili, the in vitro response of leaf and hypocotyl explants of German Chamomile in B5 medium supplemented with different levels of plant growth regulators including 2,4-D, naphthalene acetic acid (NAA, kinetin and 6-benzylaminopurine (BAP were investigated in a factorial experiment based on completely randomized design (CRD.In addition, cell suspension cultures were established and characterized. Hypocotyl and leaf explants exhibited cell proliferation and produced callus within 1-2 weeks. The highest fresh weight of the callus (264.1 mg was produced by leaf explants in the medium supplemented with 0.5 mg/l 2,4-D and 1 mg/l BAP. However, the leaf explants cultured on medium containing 1.5 mg/l 2,4-D showed the lowest cell proliferation and callus yield (40.42 mg. The highest percentage of root induction from leaf explants (58.73% was observed on the medium containing 4 mg/l 2,4-D and 1 mg/l Kin, and from hypocotyl explants (48.61% was observed on medium supplemented with 1.5 mg/l NAA. The 42.22% of calli derived from hypocotyl explants on B5 medium supplemented with 4 mg/l NAA and 3 mg/l BAP, were friable. Cell suspension cultures of German chamomile were established by transferring of hypocotyl-derived friable calli into the MS medium supplemented with 1.5 mg/l 2,4-D and 1 mg/l kinetin. The growth curve of cell proliferations started 4 days after culture and continued to grow until day 13th, where the cells entered stationary phase.

  7. Cell death in the unicellular green alga Micrasterias upon H2O2 induction

    Science.gov (United States)

    Darehshouri, Anza; Affenzeller, Matthias; Lütz-Meindl, Ursula

    2010-01-01

    In the present study we investigate whether the unicellular green alga Micrasterias denticulata is capable of executing programmed cell death (PCD) upon experimental induction and by which morphological, molecular and physiological hallmarks it is characterized. This is particularly interesting as unicellular fresh water green algae growing in shallow bog ponds are exposed to extreme environmental conditions and the capability to perform PCD may provide an important strategy to guarantee survival of the population. The theoretically “immortal” alga Micrasterias is an ideal object for such investigations as it has served as a cell biological model system since many years and details on its growth properties, physiology and ultrastructure throughout the cell cycle are well known. Treatment with low concentrations of H2O2 known to induce PCD in other organisms resulted in severe ultrastructural changes of organelles as observed in TEM. These include deformation and partly disintegration of mitochondria, abnormal dilatation of cisternal rims of dictyosomes, the occurrence of multivesicular bodies, an increase in the number of ER compartments and slight condensation of chromatin. Additionally, a statistically significant increase in caspase-3-like activity could be detected which was abrogated by a caspase-3 inhibitor. Photosynthetic activity measured by fast chlorophyll fluorescence decreased as a consequence of H2O2 exposure whereas pigment composition, except of a reduction in carotenoids, was the same as in untreated controls. TUNEL positive staining and ladder-like degradation of DNA, both frequently regarded as PCD hallmark in higher plants could only be detected in dead Micrasterias cells. PMID:18950431

  8. Serum Proteins Enhance Dispersion Stability and Influence the Cytotoxicity and Dosimetry of ZnO Nanoparticles in Suspension and Adherent Cancer Cell Models

    Science.gov (United States)

    Anders, Catherine B.; Chess, Jordan J.; Wingett, Denise G.; Punnoose, Alex

    2015-11-01

    Agglomeration and sedimentation of nanoparticles (NPs) within biological solutions is a major limitation in their use in many downstream applications. It has been proposed that serum proteins associate with the NP surface to form a protein corona that limits agglomeration and sedimentation. Here, we investigate the effect of fetal bovine serum (FBS) proteins on the dispersion stability, dosimetry, and NP-induced cytotoxicity of cationic zinc oxide nanoparticles (nZnO) synthesized via forced hydrolysis with a core size of 10 nm. Two different in vitro cell culture models, suspension and adherent, were evaluated by comparing a phosphate buffered saline (PBS) nZnO dispersion (nZnO/PBS) and an FBS-stabilized PBS nZnO dispersion (nZnO - FBS/PBS). Surface interactions of FBS on nZnO were analyzed via spectroscopic and optical techniques. Fourier transformed infrared spectroscopy (FTIR) confirmed the adsorption of negatively charged protein components on the cationic nZnO surface through the disappearance of surfaced-adsorbed carboxyl functional groups and the subsequent detection of vibrational modes associated with the protein backbone of FBS-associated proteins. Further confirmation of these interactions was noted in the isoelectric point shift of the nZnO from the characteristic pH of 9.5 to a pH of 6.1. In nZnO - FBS/PBS dispersions, the FBS reduced agglomeration and sedimentation behaviors to impart long-term improvements (>24 h) to the nZnO dispersion stability. Furthermore, mathematical dosimetry models indicate that nZnO - FBS/PBS dispersions had consistent NP deposition patterns over time unlike unstable nZnO/PBS dispersions. In suspension cell models, the stable nZnO - FBS/PBS dispersion resulted in a ~33 % increase in the NP-induced cytotoxicity for both Jurkat leukemic and Hut-78 lymphoma cancer cells. In contrast, the nZnO - FBS/PBS dispersion resulted in 49 and 71 % reductions in the cytotoxicity observed towards the adherent breast (T-47D) and prostate

  9. Serum Proteins Enhance Dispersion Stability and Influence the Cytotoxicity and Dosimetry of ZnO Nanoparticles in Suspension and Adherent Cancer Cell Models.

    Science.gov (United States)

    Anders, Catherine B; Chess, Jordan J; Wingett, Denise G; Punnoose, Alex

    2015-12-01

    Agglomeration and sedimentation of nanoparticles (NPs) within biological solutions is a major limitation in their use in many downstream applications. It has been proposed that serum proteins associate with the NP surface to form a protein corona that limits agglomeration and sedimentation. Here, we investigate the effect of fetal bovine serum (FBS) proteins on the dispersion stability, dosimetry, and NP-induced cytotoxicity of cationic zinc oxide nanoparticles (nZnO) synthesized via forced hydrolysis with a core size of 10 nm. Two different in vitro cell culture models, suspension and adherent, were evaluated by comparing a phosphate buffered saline (PBS) nZnO dispersion (nZnO/PBS) and an FBS-stabilized PBS nZnO dispersion (nZnO - FBS/PBS). Surface interactions of FBS on nZnO were analyzed via spectroscopic and optical techniques. Fourier transformed infrared spectroscopy (FTIR) confirmed the adsorption of negatively charged protein components on the cationic nZnO surface through the disappearance of surfaced-adsorbed carboxyl functional groups and the subsequent detection of vibrational modes associated with the protein backbone of FBS-associated proteins. Further confirmation of these interactions was noted in the isoelectric point shift of the nZnO from the characteristic pH of 9.5 to a pH of 6.1. In nZnO - FBS/PBS dispersions, the FBS reduced agglomeration and sedimentation behaviors to impart long-term improvements (>24 h) to the nZnO dispersion stability. Furthermore, mathematical dosimetry models indicate that nZnO - FBS/PBS dispersions had consistent NP deposition patterns over time unlike unstable nZnO/PBS dispersions. In suspension cell models, the stable nZnO - FBS/PBS dispersion resulted in a ~33 % increase in the NP-induced cytotoxicity for both Jurkat leukemic and Hut-78 lymphoma cancer cells. In contrast, the nZnO - FBS/PBS dispersion resulted in 49 and 71 % reductions in the cytotoxicity observed towards the adherent breast (T-47D) and prostate

  10. Effect of Green Tea Extract on T cell Mediated Hypersensitivity Reaction in BALB/c Mice Exposed to Gamma Irradiation

    International Nuclear Information System (INIS)

    Hashim, A.M.; Ismail Al-kadey, M.M.I.; Shabon, M.H.; Hussien, S.M.

    2010-01-01

    Gamma radiation is widely used in the treatment of malignant neoplasms. However, it deprives the host immune function which may retard tumor rejection by the immune response. The main purpose of the present study is to test the ability of green tea dry extract to restore the T cell hypersensitivity reaction in gamma irradiated BALB/c mice. It aims also to elucidate the possible mechanism of action of ionizing radiation and green tea dry extract in the immune function. Four groups of BALB/c mice, each of ten, have been used in each experiment. The first group served as a control, the second group received green tea dry extract and the third group was exposed to 2 Gy gamma irradiation, while the fourth group received green tea dry extract before and after gamma irradiation. The following parameters were determined, the contact sensitivity reaction by the mouse ear swelling response, local dendritic cell migration, local lymph node weight, lymphocyte proliferation, spleen and thymus weight with their lymphocyte count. The effect of gamma irradiation and green tea dry extract on the elicitation phase of contact sensitivity was also determined. Data from the present study showed that gamma irradiation caused a significant decrease of the mouse ear swelling response and retarded dendritic cell migration. They also showed a significant decline in the lymphocytes proliferation in lymph node draining the contact sensitizer application. Total body exposure to 2 Gy gamma irradiation induced marked decline of thymus weight and thymocyte count, while it reduced spleen weight and spleenocyte count to a lesser extent. Exposure to gamma irradiation enhanced the elicitation phase of contact sensitivity. Administration of green tea dry extract partially preserved the contact sensitivity response to oxazolone in gamma irradiated BALB/c mice. It markedly minimized the enhancement of the elicitation phase of ear swelling. In conclusion, the present study heralds a beneficial role of

  11. Incomplete ovariosalpingectomy and subsequent malignant granulosa cell tumor in a female green iguana (Iguana iguana).

    Science.gov (United States)

    Cruz Cardona, Janice A; Conley, Kenneth J; Wellehan, James F X; Farina, Lisa L; Origgi, Francesco C; Wamsley, Heather L

    2011-07-15

    A 9-year-old spayed female green iguana (Iguana iguana) was evaluated because of a distended coelom and weight loss. History included a single episode of egg binding and subsequent bilateral ovariosalpingectomy. Physical examination revealed a mass within the coelomic cavity. Ultrasonography revealed a large, irregular mass with hypoechoic regions and coelomic effusion. Clinicopathologic derangements included heterophilia, monocytosis, lymphopenia, basophilia, hypocholesterolemia, hypoproteinemia, and hypercalcemia. Results of cytologic evaluation of the mass were suggestive of malignant epithelial neoplasia, but neoplastic cells were not found in the effusion. An ovarian tumor was suspected on the basis of clinical signs, clinicopathologic findings, and results of cytologic evaluation of the mass. Surgical exploration revealed a large left ovary, a normal-appearing contralateral ovary, and a mass in the fat body, all of which were removed and submitted for histologic examination. The histologic diagnosis was granulosa cell tumor with metastasis to the fat body. The patient died 11 months after evaluation, and disseminated granulosa cell tumor was confirmed at necropsy; histologic examination at that time also identified systemic mastocytosis. Granulosa cell tumors are uncommon in reptiles, and this was the first granulosa cell tumor described antemortem cytologically, histologically, and ultrastructurally in an iguana. Findings in this iguana underscored concerns associated with incomplete oophorectomy of iguanas; cytologic and histopathologic findings were similar to those observed in other domestic animals. Oophorectomy should be considered as an alternative to standard ovariosalpingectomy to avoid potential complications in pet reptiles, and use of microsurgical instruments and vascular clips is advised.

  12. Implications of Green Tea and Its Constituents in the Prevention of Cancer via the Modulation of Cell Signalling Pathway

    Science.gov (United States)

    Rahmani, Arshad H.; Al shabrmi, Fahad M.; Allemailem, Khaled S.; Aly, Salah M.; Khan, Masood A.

    2015-01-01

    Green tea is commonly used as a beverage worldwide, especially in China, Japan, Morocco, and Saudi Arabia. Green tea and its constituents have been considered very effective in the prevention and treatment of various diseases. It contains a variety of catechins, which show a pivotal role in the modulation of biological activities and also act as chemopreventive agents. Earlier studies have confirmed that green tea and its chief constituent epigallocatechin gallate (EGCG) have a potential role in the management of cancer through the modulation of cell signaling pathways. In this review, we focused on the beneficial effects of green tea and its constituents in the cancer prevention and treatment and its impact on modulation of molecular pathways. PMID:25977926

  13. Green synthesis of zero valent colloidal nanosilver targeting A549 lung cancer cell: In vitro cytotoxicity

    Directory of Open Access Journals (Sweden)

    Minakshi Jha

    2018-06-01

    Full Text Available An eco-friendly green approach was proposed to synthesise stable, cytotoxic colloidal silver nanoparticles (AgNPs using Momordica charantia (M. charantia fruit extract. Bioinspired green method adopted for fabrication of AgNPs because of easy, fast, low-cost and benign bioprocess. Phytocomponents played the crucial role in capping, stabilisation and inherent cytotoxic potential of colloidal nanosilver. The physiochemical, crystalline, optical and morphological properties of AgNPs were characterized using UV-vis, FT-IR, XRD, SEM, TEM, EDX and AFM. FT-IR reveals the presence of carbonyl, methyl, polyphenol (flavonoid, primary and secondary amine (protein, carboxyl group, ester as major functional groups over the surface of nanomaterials. Mechanistic pathway for formation and stabilisation of colloidal nanosilver has been discussed. Average crystalline size of AgNPs was found to be 12.55 nm from XRD. TEM shows AgNPs nanosphere with size range 1–13.85 nm. Consistency in spherical morphology was also confirmed through Atomic Force Microscopy (AFM. AFM measurement provided image Rq value 3.62, image Ra 2.47, roughness Rmax 36.4 nm, skewness 1.99 and kurtosis 9.87. The SRB assay revealed substantial in vitro noticeable anti-cancer activity of colloidal nanosilver on A549 and HOP-62 human lung cancer cells in a dose dependent manner with IC50 value of 51.93 µg/ml and 76.92 µg/ml. In addition, M. charantia capped AgNPs were found to be more biocompatible in comparison to M. charantia FE. Our study demonstrated the integration of green chemistry principle in nanomaterials fabrication and focused on the potential use of M. charantia fruit extract as an efficient precursor for biocompatible AgNPs anodrug formulation with improved cytotoxic applications. Keywords: M. charantia, Silver nanoparticles, TEM, Anticancer activity, A549, HOP-62

  14. Green Synthesis and Antimicrobial Activities of Silver Nanoparticles using Cell Free-Extracts of Enterococcus species

    Directory of Open Access Journals (Sweden)

    Iyabo C. OLADIPO

    2017-06-01

    Full Text Available Cell-free extracts of six strains of Enterococcus species obtained from fermented foods were used for the green synthesis of silver nanoparticles (AgNPs, which was characterized by UV-Vis spectroscopy, Fourier-transform infrared spectroscopy (FTIR and transmission electron microscopy (TEM. The biosynthesized AgNPs were dark brown in colour having surface plasmon resonance in the range of 420-442 nm. The spherical shaped AgNPs had sizes of 4-55 nm, whose formations were facilitated by proteins as indicated by the presence of peaks 1,635-1,637 and 3,275-3,313 cm-1 in the FTIR spectra. The energy dispersive x-ray (EDX showed prominent presence of silver in the AgNPs colloidal solution, while the selected area electron diffraction was typified by the face-centred crystalline nature of silver. The particles inhibited the growth of multi-drug resistant clinical isolates of Escherichia coli, Klebsiella pneumoniae and Proteus vulgaris, and also potentiated the activities of ampicillin, ciprofloxacin and cefuroxime in the AgNPs-antibiotic synergy studies. In addition, the prospective relevance of the particles as nanopreservative in paints was demonstrated with the inhibition of growth of Staphylococcus aureus, Pseudomonas aeruginosa, Aspergillus niger and A. flavus in AgNPs-paint admixture. This report further demonstrates the green synthesis of AgNPs by strains of Enterococcus species.

  15. Refractive Index Sensing of Green Fluorescent Proteins in Living Cells Using Fluorescence Lifetime Imaging Microscopy

    Science.gov (United States)

    van Manen, Henk-Jan; Verkuijlen, Paul; Wittendorp, Paul; Subramaniam, Vinod; van den Berg, Timo K.; Roos, Dirk; Otto, Cees

    2008-01-01

    We show that fluorescence lifetime imaging microscopy (FLIM) of green fluorescent protein (GFP) molecules in cells can be used to report on the local refractive index of intracellular GFP. We expressed GFP fusion constructs of Rac2 and gp91phox, which are both subunits of the phagocyte NADPH oxidase enzyme, in human myeloid PLB-985 cells and showed by high-resolution confocal fluorescence microscopy that GFP-Rac2 and GFP-gp91phox are targeted to the cytosol and to membranes, respectively. Frequency-domain FLIM experiments on these PLB-985 cells resulted in average fluorescence lifetimes of 2.70 ns for cytosolic GFP-Rac2 and 2.31 ns for membrane-bound GFP-gp91phox. By comparing these lifetimes with a calibration curve obtained by measuring GFP lifetimes in PBS/glycerol mixtures of known refractive index, we found that the local refractive indices of cytosolic GFP-Rac2 and membrane-targeted GFP-gp91phox are ∼1.38 and ∼1.46, respectively, which is in good correspondence with reported values for the cytosol and plasma membrane measured by other techniques. The ability to measure the local refractive index of proteins in living cells by FLIM may be important in revealing intracellular spatial heterogeneities within organelles such as the plasma and phagosomal membrane. PMID:18223002

  16. Green tea polyphenol epigallocatechin-3-gallate differentially modulates oxidative stress in PC12 cell compartments

    International Nuclear Information System (INIS)

    Raza, Haider; John, Annie

    2005-01-01

    Tea polyphenols have been reported to be potent antioxidants and beneficial in oxidative stress related diseases. Prooxidant effects of tea polyphenols have also been reported in cell culture systems. In the present study, we have studied oxidative stress in the subcellular compartments of PC12 cells after treatment with different concentrations of the green tea polyphenol, epigallocatechin-3-gallate (EGCG). We have demonstrated that EGCG has differentially affected the production of reactive oxygen species (ROS), glutathione (GSH) metabolism and cytochrome P450 2E1 activity in the different subcellular compartments in PC12 cells. Our results have shown that although the cell survival was not inhibited by EGCG, there was, however, an increased DNA breakdown and activation of apoptotic markers, caspase 3 and poly- (ADP-ribose) polymerase (PARP) at higher concentrations of EGCG treatment. Our results suggest that the differential effects of EGCG might be related to the alterations in oxidative stress, GSH pools and CYP2E1 activity in different cellular compartments. These results may have implications in determining the chemopreventive therapeutic use of tea polyphenols in vivo

  17. Mechanisms of inhibition by fluoride of urease activities of cell suspensions and biofilms of Staphylococcus epidermidis, Streptococcus salivarius, Actinomyces naeslundii and of dental plaque.

    Science.gov (United States)

    Barboza-Silva, E; Castro, A C D; Marquis, R E

    2005-12-01

    Fluoride is known to be a potent inhibitor of bacterial ureases and can also act in the form of hydrofluoric acid as a transmembrane proton conductor to acidify the cytoplasm of intact cells with possible indirect, acid inhibition of urease. Our research objectives were to assess the inhibitory potencies of fluoride for three urease-positive bacteria commonly found in the mouth and to determine the relative importance of direct and indirect inhibition of ureases for overall inhibition of intact cells or biofilms. The experimental design involved intact bacteria in suspensions, mono-organism biofilms, cell extracts, and dental plaque. Standard enzymatic assays for ammonia production from urea were used. We found that ureolysis by cells in suspensions or mono-organism biofilms of Staphylococcus epidermidis, Streptococcus salivarius or Actinomyces naeslundii was inhibited by fluoride at plaque levels of 0.1-0.5 mm in a pH-dependent manner. The results of experiments with the organic weak acids indomethacin and capric acid, which do not directly inhibit urease enzyme, indicated that weak-acid effects leading to cytoplasmic acidification are also involved in fluoride inhibition. However, direct fluoride inhibition of urease appeared to be the major mechanism for reduction in ureolytic activity in acid environments. Results of experiments with freshly harvested supragingival dental plaque indicated responses to fluoride similar to those of S. salivarius with pH-dependent fluoride inhibition and both direct and indirect inhibition of urease. Fluoride can act to diminish alkali production from urea by oral bacteria through direct and indirect mechanisms.

  18. Blue-Green Algae

    Science.gov (United States)

    ... that taking a specific blue-green algae product (Super Blue-Green Algae, Cell Tech, Klamath Falls, OR) ... system. Premenstrual syndrome (PMS). Depression. Digestion. Heart disease. Memory. Wound healing. Other conditions. More evidence is needed ...

  19. Establecimiento de un cultivo de celulas en suspensión de Eucalyptus cinérea Establishment of cell suspension culture of Eucalyptus cinerea

    Directory of Open Access Journals (Sweden)

    Arias Zabala Mario

    2002-06-01

    Full Text Available Se desarrolla un protocolo para la obtención y establecimiento de suspensiones celulares de E. cinerea. La concentración de las hormonas 2,4 D Y BAP tienen un efecto significativo en la formación de callos friables de E. cinerea, obteniendo una respuesta periódica en la formación de callos friables con respecto a la concentración de las hormonas. Puede obtenerse hasta un 90% de formación de callos friables con varias combinaciones hormonales; primero, con concentraciones alrededor de 3,0 mg/L de 2,4 D Y 1,0 mg/L de BAp, y segundo, alrededor de 6,0 mg/L de 2,4 D Y1,0 mg/L de BAP. A partir de los callos anteriores, se obtienen suspensiones celulares con un activo crecimiento celular, con tiempos de duplicación entre cuatro y siete días, y alcanzando densidades celulares de 15 g células secas/L. Las suspensiones de E. cinerea ofrecen una herramienta importante para la propagación de esta especie vía embriogénesis somática, estudio de biorreactores, producción de metabolitos secundarios y procesos de biotransformación.A protocol is developed for obtaining and establishment of E. cinerea cell suspension. The concentration of hormones 2,4 D and BAP have a significant effect in the formation of friable callus of E. cinerea, obtaining a periodic answer in the formation of friable callus with regard to hormones concentration. It can be obtained until 90% of formation of friable callus in several hormone combinations, first with concentrations around 3,0 mg/L of 2,4 D and 1,0 mg/L of BAP; and second, around 6,0 mgIL of 2,4 D and 1,0 mg/L of BAP. Using the last callus, cell suspensions are obtained with an active cellular growth, with times of duplication between 4 and 7 days and obtaining cell densities of 15 g of dry cells/L. The suspensions of E. cinerea offer an important tool for the propagation of this specie by somatic embryogenesis, bioreactors study, production of secondary metabolites and biotransformation processes.

  20. Particle Suspension Mechanisms - Supplemental Material

    Energy Technology Data Exchange (ETDEWEB)

    Dillon, M B

    2011-03-03

    This supplemental material provides a brief introduction to particle suspension mechanisms that cause exfoliated skin cells to become and remain airborne. The material presented here provides additional context to the primary manuscript and serves as background for designing possible future studies to assess the impact of skin cells as a source of infectious aerosols. This introduction is not intended to be comprehensive and interested readers are encouraged to consult the references cited.

  1. The correlation between uptake of methyl green and Feulgen staining intensity of cell nuclei. An image analysis study

    DEFF Research Database (Denmark)

    Lyon, H; Schulte, E; Hoyer, P E

    1989-01-01

    were stored in the computer, making it possible to measure the same cells in the Feulgen-restained sections. Image analysis gave results which invalidate the sequential methods as opposed to the simultaneous method. Mean optical densities were significantly increased for both dyes with the simultaneous...... method after formaldehyde fixation as compared to Carnoy fixation. The quantitative correlation of Methyl Green and DNA in the simultaneous technique was found to parallel exactly that of the Feulgen stain. In conclusion, the simultaneous Methyl Green-Pyronin technique is recommended while the sequential......Paraffin sections of rat tissue fixed in either formaldehyde solution (3.6% w/v) or in Carnoy's fluid were stained using standardized Methyl Green-Pyronin procedures with the dyes used either simultaneously or in sequence. The sections were evaluated for the uptake of the two dyes by cell nuclei...

  2. A green lead hydrometallurgical process based on a hydrogen-lead oxide fuel cell.

    Science.gov (United States)

    Pan, Junqing; Sun, Yanzhi; Li, Wei; Knight, James; Manthiram, Arumugam

    2013-01-01

    The automobile industry consumed 9 million metric tons of lead in 2012 for lead-acid batteries. Recycling lead from spent lead-acid batteries is not only related to the sustainable development of the lead industry, but also to the reduction of lead pollution in the environment. The existing lead pyrometallurgical processes have two main issues, toxic lead emission into the environment and high energy consumption; the developing hydrometallurgical processes have the disadvantages of high electricity consumption, use of toxic chemicals and severe corrosion of metallic components. Here we demonstrate a new green hydrometallurgical process to recover lead based on a hydrogen-lead oxide fuel cell. High-purity lead, along with electricity, is produced with only water as the by-product. It has a >99.5% lead yield, which is higher than that of the existing pyrometallurgical processes (95-97%). This greatly reduces lead pollution to the environment.

  3. Cell division arrest by gamma-irradiation in photoautotrophic suspension culture of Euphorbia characias: maintenance of photosynthetic capacity and overaccumulation of sucrose

    International Nuclear Information System (INIS)

    Chagvardieff, P.; Dimon, B.; Carrier, P.; Triantaphylides, C.

    1989-01-01

    Gamma-irradiation (250 Gy) applied to photoautotrophic cell suspensions of Euphorbia characias L. in the exponential growth phase led to the arrest of cell division and to a subsequent overaccumulation of sucrose and dry matter. From the fourth day of culture, the chlorophyll content and gross photosynthesis were not depressed by gamma-treatment nor by sugar accumulation. In both cultures, no difference was observed between oxygen uptake in the light at CO 2 saturating concentration and in the dark, suggesting that no change in energy-dissipative reactions took place after irradiation. A slight increase in oxygen uptake in both light and dark was observed in irradiated cells during the first four days. However, in the absence of limiting factors, the photosynthetic capacities of the dividing and irradiated non-dividing photoautotrophic cells were identical but higher than that of the non-dividing cells in the stationary growth phase. This suggests that gamma-irradiation arrests cell division by a mechanism different to that occurring in stationary-phase cultures. This may be of value in investigating the metabolism of secondary products. (author)

  4. Enhanced production of vanillin flavour metabolites by precursor feeding in cell suspension cultures of Decalepis hamiltonii Wight & Arn., in shake flask culture.

    Science.gov (United States)

    Matam, Pradeep; Parvatam, Giridhar; Shetty, Nandini P

    2017-12-01

    The flavour rich tuberous roots of Decalepis hamiltonii are known for its edible and medicinal use and have become endangered due to commercial over-exploitation. Besides 2-Hydroxy-4-methoxy benzaldehyde (2H4MB), other flavour metabolites in tuberous roots include vanillin, 4-Methoxy Cinnamic acid derivatives, aromatic alcohols etc. So far, there are no reports on the pathway of 2H4MB biosynthesis nor there is an organized work on biotransformation using normal and cell suspension cultures for obtaining these metabolites using precursors. The main aim of the study is to develop a method for enhanced production of flavour attributing metabolites through ferulic acid (FA) feeding to the D. hamiltonii callus culture medium. Biomass of D. hamiltonii cell suspension cultures was maximum (200.38 ± 1.56 g/l) by 4th week. Maximum production of 2H4MB was recorded on 4th week (0.08 ± 0.01 mg/100 g dry weight) as quantified by HPLC. Addition of 0.1-1.5 mM ferulic acid as precursor in the culture medium showed significant ( p  vanillin, 2H4MB, vanillic acid, ferulic acid were of 0.1 ± 0.02 mg/100 g, 0.44 ± 0.01 mg/100 g, 0.52 ± 0.04 mg/100 g, 0.18 ± 0.02 mg/100 g DW respectively in 4 weeks of cultured cells supplemented with 1 mM ferulic acid as a precursor. The results indicate that, substantial increase in the levels of flavour metabolites in D. hamiltonii callus suspension culture was achieved. This would be having implications in biosynthesis of respective vanilla flavour attributing metabolites at very high levels for their large scale production.

  5. The archetype enhancer of simian virus 40 DNA is duplicated during virus growth in human cells and rhesus monkey kidney cells but not in green monkey kidney cells

    International Nuclear Information System (INIS)

    O'Neill, Frank J.; Greenlee, John E.; Carney, Helen

    2003-01-01

    Archetype SV40, obtained directly from its natural host, is characterized by a single 72-bp enhancer element. In contrast, SV40 grown in cell culture almost invariably exhibits partial or complete duplication of the enhancer region. This distinction has been considered important in studies of human tumor material, since SV40-associated tumor isolates have been described having a single enhancer region, suggesting natural infection as opposed to possible contamination by laboratory strains of virus. However, the behavior of archetypal SV40 in cultured cells has never been methodically studied. In this study we reengineered nonarchetypal 776-SV40 to contain a single 72-bp enhancer region and used this reengineered archetypal DNA to transfect a number of simian and human cell lines. SV40 DNA recovered from these cells was analyzed by restriction endonuclease analysis, PCR, and DNA sequencing. Reengineered archetype SV40 propagated in green monkey TC-7 or BSC-1 kidney cells remained without enhancer region duplication even after extensive serial virus passage. Archetype SV40 grown in all but one of the rhesus or human cell lines initially appeared exclusively archetypal. However, when virus from these cell types was transferred to green monkey cells, variants with partial enhancer duplication appeared after as little as a single passage. These findings suggest (1) that virus with a single 72-bp enhancer may persist in cultured cells of simian and human origin; (2) that variants with partially duplicated enhancer regions may arise within cell lines in quantities below limits of detection; (3) that these variants may enjoy a selective advantage in cell types other than those from which they arose (e.g., green monkey kidney cells); and (4) that certain cell lines may support a selective growth advantage for the variants without supporting their formation. Our data indicate that enhancer duplication may also occur in human as well as rhesus kidney cells. Thus, detection of

  6. Benchmarking Various Green Fluorescent Protein Variants in Bacillus subtilis, Streptococcus pneumoniae, and Lactococcus lactis for Live Cell Imaging

    NARCIS (Netherlands)

    Overkamp, Wout; Beilharz, Katrin; Weme, Ruud Detert Oude; Solopova, Ana; Karsens, Harma; Kovacs, Akos T.; Kok, Jan; Kuipers, Oscar P.; Veening, Jan-Willem

    2013-01-01

    Green fluorescent protein (GFP) offers efficient ways of visualizing promoter activity and protein localization in vivo, and many different variants are currently available to study bacterial cell biology. Which of these variants is best suited for a certain bacterial strain, goal, or experimental

  7. Spatio-temporal study of phytoplankton cell viability in a eutrophic reservoir using SYTOX Green nucleic acid stain

    Czech Academy of Sciences Publication Activity Database

    Rychtecký, Pavel; Znachor, Petr; Nedoma, Jiří

    2014-01-01

    Roč. 740, č. 1 (2014), s. 177-189 ISSN 0018-8158 R&D Projects: GA ČR(CZ) GAP504/11/2177; GA ČR(CZ) GAP504/11/2182 Institutional support: RVO:60077344 Keywords : phytoplankton * reservoir * cell death * SYTOX Green Subject RIV: DA - Hydrology ; Limnology Impact factor: 2.275, year: 2014

  8. Estrogen response of MCF-7 cells grown on diverse substrates and in suspension culture: promotion of morphological heterogeneity, modulation of progestin receptor induction; cell-substrate interactions on collagen gels.

    Science.gov (United States)

    Pourreau-Schneider, N; Berthois, Y; Mittre, H; Charpin, C; Jacquemier, J; Martin, P M

    1984-12-01

    In this study we observed the incidence of hormone sensitivity in the response of MCF-7 cells to estrogen stimulation when the cells were cultured in different contact environments (hydrophilic plastic, bovine corneal extracellular matrix, type I collagen and in suspension culture). The major purpose was to describe the influence of cell to cell and cell to substrate contacts on the morphological response to estrogen treatment. However, other parameters including growth and induction of progestin receptor were also explored, keeping in mind that the MCF-7 cell line, although representative of normal mammary epithelium in that it contains a similar hormone receptivity, was selected in vitro from a metastatic population in a pleural effusion. Although substrate conditions did not modify growth enhancement by estrogens, progestin receptor levels were significantly higher in three-dimensional spheroid cultures in which cell to cell contacts were optimal due to elimination of basal contact. A careful morphological survey of large surfaces lead to an objective opinion of the overall effect of the hormone treatment on the non-cloned cell line in which a marked heterogeneity in the response of individual cells was observed. In terms of morphofunctional differentiation, the edification of acini with dense microvillus coating was best in suspension culture. When sections were made perpendicular to the plane of cultures on collagen gel rafts two other phenomena were noted: decrease in intercellular junctions, resulting in reduced cell to cell cohesion, and accumulation biodegradation products in the collagen lattice. This suggested a hormone-mediated interaction between the metastatic cells and the fibrillar substrate, collagen I, one of the major constituents of tissue stroma. This estrogen response might be related to the metastatic phenotype and must be distinct from their hormone sensitivity in terms of growth and differentiation since hormone receptivity is generally

  9. Glutamine synthetase activity in solanaceous cell suspensions accumulating alkaloids or not. {sup 13}C NMR and enzymatic assay; Activite de la glutamine synthetase dans des suspensions cellulaires de solanacees productrices ou non d'alcaloides. RMN du {sup 13}C et dosage enzymatique

    Energy Technology Data Exchange (ETDEWEB)

    Mesnard, F.; Marty, D.; Monti, J.P. [Faculte de Pharmacie, 80 - Amiens (France). Laboratoire de Biophysique, Groupe de Recherche des Biomolecules: micro-environnement et Metabolisme; Gillet-Manceau, F.; Fliniaux, M.A. [Faculte de Pharmacie, 80 - Amiens (France). Laboratoire de Phytotechnologie

    1999-09-01

    The metabolism of labelled pyruvate followed by {sup 13}C NMR and the measure of glutamine synthetase (GS) showed, according to previous results, a high activity of this enzyme in suspension cells of Nicotiana plumbaginifolia. This activity could derive glutamate from the alkaloidsynthesizing pathways. However, a recent work showed that the rate of the GS gene transcription was inversely proportional to the Gln/Glu ratio. The measures of Gln and Glu concentrations in Nicotiana plumbaginifolia cells revealed that high GS activity correlates with the weak value of Gln/Glu ratio. Therefore, the hypothesis of GS dysfunction for the non-biosynthesis of alkaloids in N. plumbaginifolia suspension cells can be discarded. This conclusion is strengthened by the results obtained when using a GS inhibitor. (author)

  10. The age-dependent epigenetic and physiological changes in an Arabidopsis T87 cell suspension culture during long-term cultivation

    International Nuclear Information System (INIS)

    Kwiatkowska, Aleksandra; Zebrowski, Jacek; Oklejewicz, Bernadetta; Czarnik, Justyna; Halibart-Puzio, Joanna; Wnuk, Maciej

    2014-01-01

    Highlights: • A decrease in proliferation rate during long-term cultivation of Arabidopsis cells. • Age-dependent increase in senescence-associated gene expression in Arabidopsis cells. • Age-related increase in DNA methylation, H3K9me2, and H3K27me3 in Arabidopsis cells. • High potential of photosynthetic efficiency of long-term cultured Arabidopsis cells. - Abstract: Plant cell suspension cultures represent good model systems applicable for both basic research and biotechnological purposes. Nevertheless, it is widely known that a prolonged in vitro cultivation of plant cells is associated with genetic and epigenetic instabilities, which may limit the usefulness of plant lines. In this study, the age-dependent epigenetic and physiological changes in an asynchronous Arabidopsis T87 cell culture were examined. A prolonged cultivation period was found to be correlated with a decrease in the proliferation rate and a simultaneous increase in the expression of senescence-associated genes, indicating that the aging process started at the late growth phase of the culture. In addition, increases in the heterochromatin-specific epigenetic markers, i.e., global DNA methylation, H3K9 dimethylation, and H3K27 trimethylation, were observed, suggesting the onset of chromatin condensation, a hallmark of the early stages of plant senescence. Although the number of live cells decreased with an increase in the age of the culture, the remaining viable cells retained a high potential to efficiently perform photosynthesis and did not exhibit any symptoms of photosystem II damage

  11. The age-dependent epigenetic and physiological changes in an Arabidopsis T87 cell suspension culture during long-term cultivation

    Energy Technology Data Exchange (ETDEWEB)

    Kwiatkowska, Aleksandra, E-mail: A.Kwiatkows@gmail.com [Department of Botany, University of Rzeszow, Kolbuszowa (Poland); Zebrowski, Jacek [Department of Plant Physiology, University of Rzeszow, Kolbuszowa (Poland); Oklejewicz, Bernadetta [Department of Genetics, University of Rzeszow, Kolbuszowa (Poland); Czarnik, Justyna [Department of Botany, University of Rzeszow, Kolbuszowa (Poland); Halibart-Puzio, Joanna [Department of Plant Physiology, University of Rzeszow, Kolbuszowa (Poland); Wnuk, Maciej [Department of Genetics, University of Rzeszow, Kolbuszowa (Poland)

    2014-05-02

    Highlights: • A decrease in proliferation rate during long-term cultivation of Arabidopsis cells. • Age-dependent increase in senescence-associated gene expression in Arabidopsis cells. • Age-related increase in DNA methylation, H3K9me2, and H3K27me3 in Arabidopsis cells. • High potential of photosynthetic efficiency of long-term cultured Arabidopsis cells. - Abstract: Plant cell suspension cultures represent good model systems applicable for both basic research and biotechnological purposes. Nevertheless, it is widely known that a prolonged in vitro cultivation of plant cells is associated with genetic and epigenetic instabilities, which may limit the usefulness of plant lines. In this study, the age-dependent epigenetic and physiological changes in an asynchronous Arabidopsis T87 cell culture were examined. A prolonged cultivation period was found to be correlated with a decrease in the proliferation rate and a simultaneous increase in the expression of senescence-associated genes, indicating that the aging process started at the late growth phase of the culture. In addition, increases in the heterochromatin-specific epigenetic markers, i.e., global DNA methylation, H3K9 dimethylation, and H3K27 trimethylation, were observed, suggesting the onset of chromatin condensation, a hallmark of the early stages of plant senescence. Although the number of live cells decreased with an increase in the age of the culture, the remaining viable cells retained a high potential to efficiently perform photosynthesis and did not exhibit any symptoms of photosystem II damage.

  12. Light and Fungal Elicitor Induce 3-Deoxy-d-arabino-Heptulosonate 7-Phosphate Synthase mRNA in Suspension Cultured Cells of Parsley (Petroselinum crispum L.) 1

    Science.gov (United States)

    Henstrand, John M.; McCue, Kent F.; Brink, Kent; Handa, Avtar K.; Herrmann, Klaus M.; Conn, Eric E.

    1992-01-01

    Light and fungal elicitor induce mRNA encoding 3-deoxy-d-arabino-heptulosonate 7-phosphate (DAHP) synthase in suspension cultured cells of parsley (Petroselinum crispum L.). The kinetics and dose response of mRNA accumulation were similar for DAHP synthase and phenylalanine ammonia-lyase (PAL). Six micrograms of elicitor from Phytophthora megasperma f. glycinia gave a detectable induction within 1 hour. Induction of DAHP synthase and PAL mRNAs by light was transient, reaching maximal levels at 4 hours and returning to pretreatment levels after 24 hours. Our data suggest that either light or fungal elicitor transcriptionally activate DAHP synthase. A coordinate regulation for key enzymes in the synthesis of primary and secondary metabolites is indicated. ImagesFigure 1 PMID:16668708

  13. Purification and biochemical characterization of NpABCG5/NpPDR5, a plant pleiotropic drug resistance transporter expressed in Nicotiana tabacum BY-2 suspension cells.

    Science.gov (United States)

    Toussaint, Frédéric; Pierman, Baptiste; Bertin, Aurélie; Lévy, Daniel; Boutry, Marc

    2017-05-04

    Pleiotropic drug resistance (PDR) transporters belong to the ABCG subfamily of ATP-binding cassette (ABC) transporters and are involved in the transport of various molecules across plasma membranes. During evolution, PDR genes appeared independently in fungi and in plants from a duplication of a half-size ABC gene. The enzymatic properties of purified PDR transporters from yeast have been characterized. This is not the case for any plant PDR transporter, or, incidentally, for any purified plant ABC transporter. Yet, plant PDR transporters play important roles in plant physiology such as hormone signaling or resistance to pathogens or herbivores. Here, we describe the expression, purification, enzymatic characterization and 2D analysis by electron microscopy of NpABCG5/NpPDR5 from Nicotiana plumbaginifolia , which has been shown to be involved in the plant defense against herbivores. We constitutively expressed NpABCG5/NpPDR5, provided with a His-tag in a homologous system: suspension cells from Nicotiana tabacum (Bright Yellow 2 line). NpABCG5/NpPDR5 was targeted to the plasma membrane and was solubilized by dodecyl maltoside and purified by Ni-affinity chromatography. The ATP-hydrolyzing specific activity (27 nmol min -1  mg -1 ) was stimulated seven-fold in the presence of 0.1% asolectin. Electron microscopy analysis indicated that NpABCG5/NpPDR5 is monomeric and with dimensions shorter than those of known ABC transporters. Enzymatic data (optimal pH and sensitivity to inhibitors) confirmed that plant and fungal PDR transporters have different properties. These data also show that N. tabacum suspension cells are a convenient host for the purification and biochemical characterization of ABC transporters. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  14. Prontonic ceramic membrane fuel cells with layered GdBaCo{sub 2}O{sub 5+x} cathode prepared by gel-casting and suspension spray

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Bin; Zhang, Shangquan; Zhang, Linchao; Bi, Lei; Ding, Hanping; Liu, Xingqin; Gao, Jianfeng; Meng, Guangyao [Department of Materials Science and Engineering, University of Science and Technology of China (USTC), Hefei 230026 (China)

    2008-03-01

    In order to develop a simple and cost-effective route to fabricate protonic ceramic membrane fuel cells (PCMFCs) with layered GdBaCo{sub 2}O{sub 5+x} (GBCO) cathode, a dense BaZr{sub 0.1}Ce{sub 0.7}Y{sub 0.2}O{sub 3-{delta}} (BZCY7) electrolyte was fabricated on a porous anode by gel-casting and suspension spray. The porous NiO-BaZr{sub 0.1}Ce{sub 0.7}Y{sub 0.2}O{sub 3-{delta}} (NiO-BZCY7) anode was directly prepared from metal oxide (NiO, BaCO{sub 3}, ZrO{sub 2}, CeO{sub 2} and Y{sub 2}O{sub 3}) by a simple gel-casting process. A suspension of BaZr{sub 0.1}Ce{sub 0.7}Y{sub 0.2}O{sub 3-{delta}} powders synthesized by gel-casting was then employed to deposit BaZr{sub 0.1}Ce{sub 0.7}Y{sub 0.2}O{sub 3-{delta}} (BZCY7) thin layer by pressurized spray process on NiO-BZCY7 anode. The bi-layer with 10 {mu}m dense BZCY7 electrolyte was obtained by co-sintering at 1400 C for 5 h. With layered GBCO cathode synthesized by gel-casting on the bi-layer, single cells were assembled and tested with H{sub 2} as fuel and the static air as oxidant. An open-circuit potential of 0.98 V, a maximum power density of 266 mW cm{sup -2}, and a low polarization resistance of the electrodes of 0.16 {omega} cm{sup 2} was achieved at 700 C. (author)

  15. In Vitro Osteogenic Potential of Green Fluorescent Protein Labelled Human Embryonic Stem Cell-Derived Osteoprogenitors

    Directory of Open Access Journals (Sweden)

    Intekhab Islam

    2016-01-01

    Full Text Available Cellular therapy using stem cells in bone regeneration has gained increasing interest. Various studies suggest the clinical utility of osteoprogenitors-like mesenchymal stem cells in bone regeneration. However, limited availability of mesenchymal stem cells and conflicting evidence on their therapeutic efficacy limit their clinical application. Human embryonic stem cells (hESCs are potentially an unlimited source of healthy and functional osteoprogenitors (OPs that could be utilized for bone regenerative applications. However, limited ability to track hESC-derived progenies in vivo greatly hinders translational studies. Hence, in this study, we aimed to establish hESC-derived OPs (hESC-OPs expressing green fluorescent protein (GFP and to investigate their osteogenic differentiation potential in vitro. We fluorescently labelled H9-hESCs using a plasmid vector encoding GFP. The GFP-expressing hESCs were differentiated into hESC-OPs. The hESC-OPsGFP+ stably expressed high levels of GFP, CD73, CD90, and CD105. They possessed osteogenic differentiation potential in vitro as demonstrated by increased expression of COL1A1, RUNX2, OSTERIX, and OPG transcripts and mineralized nodules positive for Alizarin Red and immunocytochemical expression of osteocalcin, alkaline phosphatase, and collagen-I. In conclusion, we have demonstrated that fluorescently labelled hESC-OPs can maintain their GFP expression for the long term and their potential for osteogenic differentiation in vitro. In future, these fluorescently labelled hESC-OPs could be used for noninvasive assessment of bone regeneration, safety, and therapeutic efficacy.

  16. Application of green chemistry techniques to prepare electrocatalysts for direct methanol fuel cells.

    Science.gov (United States)

    Shimizu, Kenichi; Wang, Joanna S; Wai, Chien M

    2010-03-25

    A series of green techniques for synthesizing carbon nanotube-supported platinum nanoparticles and their high electrocatalytic activity toward methanol fuel cell applications are reported. The techniques utilize either the supercritical fluid carbon dioxide or water as a medium for depositing platinum nanoparticles on surfaces of multiwalled or single-walled carbon nanotubes. The catalytic properties of the carbon nanotubes-supported Pt nanoparticle catalysts prepared by four different techniques are compared for anodic oxidation of methanol and cathodic reduction of oxygen using cyclic voltammetry. One technique using galvanic exchange of Pt(2+) in water with zerovalent iron present on the surfaces of as-grown single-walled carbon nanotubes produces a Pt catalyst that shows an unusually high catalytic activity for reduction of oxygen but a negligible activity for oxidation of methanol. This fuel-selective catalyst may have a unique application as a cathode catalyst in methanol fuel cells to alleviate the problems caused by crossover of methanol through the polymer electrolyte membrane.

  17. Impact of noncovalent interactions between apple condensed tannins and cell walls on their transfer from fruit to juice: studies in model suspensions and application.

    Science.gov (United States)

    Le Bourvellec, Carine; Le Quere, Jean-Michel; Renard, Catherine M G C

    2007-09-19

    The adsorption of procyanidins (condensed tannins) on cell-wall material was quantified by bringing into contact solutions of procyanidins and suspensions of cell-wall material. A model was developed on the basis of the Langmuir isotherm formulation and a factorial experimental design. The parameters that influenced the adsorption were the concentration and molecular weight of the procyanidins, the ionic strength of the solution, the temperature, and the apple cell-wall concentration. The model was applied to partitioning of procyanidins from apple between juice and mash. The parameters to be taken into account are the composition of the apples and, specifically, (i) the concentration and molecular weight of the procyanidins, (ii) their acidity and pH as a determinant of the ionic strength, and (iii) their cell-wall content and the temperature at pressing. To estimate the ability of the model to relate procyanidin concentrations in the juice to their concentration in the apple, apples of three varieties of widely different procyanidin compositions were pressed in conditions that prevent oxidation. In these conditions, yields in the juice were >80% for phenolic acids or catechin monomers but <50% for procyanidins, with the lowest rates obtained for the higher polymers in accordance with the model.

  18. Fracture in Kaolinite clay suspensions

    Science.gov (United States)

    Kosgodagan Acharige, Sebastien; Jerolmack, Douglas J.; Arratia, Paulo E.

    2017-11-01

    Clay minerals are involved in many natural (landslides, river channels) and industrial processes (ceramics, cosmetics, oil recovery). They are plate shaped charged colloids and exhibit different flow properties than simpler colloids when suspended in a liquid such as thixotropy and shear-banding. kaolinite platelets are non-swelling, meaning that the stacks formed by the platelets do not have water layers, and thus the suspension does not have a sol-gel transition. However, it has been shown that kaolinite suspensions possesses a non-zero yield stress even at low concentrations, indicating that the particles arrange themselves in a structure through attractive interactions. Here, we experimentally investigate the sedimentation of kaolinite suspensions in a Hele-Shaw cell. The sedimentation of these dilute suspensions can display solid behavior like fracture, revealed in cross-polarized light, which is linked to the failure of the weakly-bonded structure (typical yield stress 10-2 Pa). By changing the interaction potential of the particles (by sonication or introducing salts), we show through these sedimentation experiments, how the fracture pattern can be avoided. Research was sponsored by the Army Research Laboratory and was accomplished under Grant Number 569074.

  19. Metaphysical green

    DEFF Research Database (Denmark)

    Earon, Ofri

    2011-01-01

    to adapt to urban environment. It explores the potential of Sensation of Green in the city. The paper questions whether the Sensation of Green could introduce a new spectrum of greens, beside the real green. It develops the term of metaphysical green – does green have to be green or can it be only...

  20. Sucrose-enhanced biosynthesis of medicinally important antioxidant secondary metabolites in cell suspension cultures of Artemisia absinthium L.

    Science.gov (United States)

    Ali, Mohammad; Abbasi, Bilal Haider; Ahmad, Nisar; Ali, Syed Shujait; Ali, Shahid; Ali, Gul Shad

    2016-12-01

    Natural products are gaining tremendous importance in pharmaceutical industry and attention has been focused on the applications of in vitro technologies to enhance yield and productivity of such products. In this study, we investigated the accumulation of biomass and antioxidant secondary metabolites in response to different carbohydrate sources (sucrose, maltose, fructose and glucose) and sucrose concentrations (1, 3, 5, 7 and 9 %). Moreover, the effects of 3 % repeated sucrose feeding (day-12, -18 and -24) were also investigated. The results showed the superiority of disaccharides over monosaccharides for maximum biomass and secondary metabolites accumulation. Comparable profiles for maximum biomass were observed in response to sucrose and maltose and initial sucrose concentrations of 3 and 5 %. Maximum total phenolic and total flavonoid contents were displayed by cultures treated with sucrose and maltose; however, initial sucrose concentrations of 5 and 7 % were optimum for both classes of metabolites, respectively. Following 3 % extra sucrose feeding, cultures fed on day-24 (late-log phase) showed higher biomass, total phenolic and total flavonoid contents as compared to control cultures. Highest antioxidant activity was exhibited by maltose-treated cultures. Moreover, sucrose-treated cultures displayed positive correlation of antioxidant activity with total phenolics and total flavonoids production. This work describes the stimulatory role of disaccharides and sucrose feeding strategy for higher accumulation of phenolics and flavonoids, which could be potentially scaled up to bioreactor level for the bulk production of these metabolites in suspension cultures of A. absinthium.

  1. Determination of tenogenic differentiation in human mesenchymal stem cells by terahertz waves for measurement of the optical property of cellular suspensions

    International Nuclear Information System (INIS)

    Morita, Yasuyuki; Azuchi, Kosuke; Ju, Yang; Suzuki, Satoshi; Xu, Baiyao; Yamamoto, Shuhei

    2014-01-01

    Technology for identifying stem cell-to-tenocyte differentiation that is non-contact and non-destructive in vitro is essential in tissue engineering. It has been found that expression of various RNA and proteins produced by differentiated cells is elevated when human bone marrow mesenchymal stem cells (hBMSCs) differentiate into tenocytes. Also, such biomolecules have absorption bands in the terahertz range. Thus, we attempted to evaluate whether terahertz waves could be used to distinguish hBMSC-to-tenocyte differentiation. Terahertz time-domain spectroscopy (THz-TDS) using femtosecond laser pulses was used for terahertz measurements. HBMSCs differentiated into tenocytes with mechanical stimulation: 10% cyclical uniaxial stretching at 1 Hz for 24 or 48 h. Cellular suspensions before and after differentiation were measured with terahertz waves. Complex refractive index, consisting of a refractive index (real) and an extinction coefficient (imaginary) obtained from the transmitted terahertz signals, was evaluated before and after differentiation at 1.0 THz. As a result, the THz-TDS system enabled discrimination of hBMSC-to-tenocyte differentiation due to the marked contrast in optical parameter before and after differentiation. This is the first report of the potential of a THz-TDS system for the detection of tenogenic differentiation using a non-contact and non-destructive in vitro technique. (paper)

  2. Determination of tenogenic differentiation in human mesenchymal stem cells by terahertz waves for measurement of the optical property of cellular suspensions

    Science.gov (United States)

    Morita, Yasuyuki; Azuchi, Kosuke; Ju, Yang; Suzuki, Satoshi; Xu, Baiyao; Yamamoto, Shuhei

    2014-06-01

    Technology for identifying stem cell-to-tenocyte differentiation that is non-contact and non-destructive in vitro is essential in tissue engineering. It has been found that expression of various RNA and proteins produced by differentiated cells is elevated when human bone marrow mesenchymal stem cells (hBMSCs) differentiate into tenocytes. Also, such biomolecules have absorption bands in the terahertz range. Thus, we attempted to evaluate whether terahertz waves could be used to distinguish hBMSC-to-tenocyte differentiation. Terahertz time-domain spectroscopy (THz-TDS) using femtosecond laser pulses was used for terahertz measurements. HBMSCs differentiated into tenocytes with mechanical stimulation: 10% cyclical uniaxial stretching at 1 Hz for 24 or 48 h. Cellular suspensions before and after differentiation were measured with terahertz waves. Complex refractive index, consisting of a refractive index (real) and an extinction coefficient (imaginary) obtained from the transmitted terahertz signals, was evaluated before and after differentiation at 1.0 THz. As a result, the THz-TDS system enabled discrimination of hBMSC-to-tenocyte differentiation due to the marked contrast in optical parameter before and after differentiation. This is the first report of the potential of a THz-TDS system for the detection of tenogenic differentiation using a non-contact and non-destructive in vitro technique.

  3. Both phenolic and non-phenolic green tea fractions inhibit migration of cancer cells

    Science.gov (United States)

    Green tea consumption is associated with chemoprevention of many cancer types. Fresh tea leaves are rich in polyphenolic catechins, which can constitute up to 30% of the dry leaf weight. While the polyphenols of green tea have been well investigated, it is still largely unknown, whether or not non-p...

  4. Effects of cell suspension and cell·free culture filtrate of Pseudomonas aeruginosa in the control of root rot-root kont disease complex of tomato (Lycopersicon esculentum Mill.

    Directory of Open Access Journals (Sweden)

    I. A. Siddiqui

    2013-12-01

    Full Text Available The plant growth-promoting rhizobacterium Pseudomonas aeruginosa strain IE-6 was tested for antagonistic activity towards Meloidogyne javanica, the root-knot nematode and soilbome root-infecting fungi viz., Macrophomina phaseolina, Fusarium solani and Rhizoctonia solani under laboratory and greenhouse conditions. Cell-free culture filtrate of the bacterium caused significant reduction in egg hatching of M.javanica and inhibited radial growth of fungi in vitro. Cell-free culture filtrate also caused lyses in mycelium of F.solani. Under greenhouse conditions, soil drenches with the aqueous cell suspension or cell-free culture resulted in a considerable reduction in nematode population densities in soil and subsequent root-knot development due to M.javanica. In addition to nematode control, rhizobacterium application also inhibited root-infection caused by soilborne root~infecting fungi with significant enhancement of growth of tomato seedlings.

  5. Green synthesis of graphene and its cytotoxic effects in human breast cancer cells

    Directory of Open Access Journals (Sweden)

    Gurunathan S

    2013-03-01

    Full Text Available Sangiliyandi Gurunathan, Jae Woong Han, Vasuki Eppakayala, Jin-Hoi Kim Department of Animal Biotechnology, Konkuk University, Seoul, South Korea Background: This paper describes an environmentally friendly (“green” approach for the synthesis of soluble graphene using Bacillus marisflavi biomass as a reducing and stabilizing agent under mild conditions in aqueous solution. In addition, the study reported here investigated the cytotoxicity effects of graphene oxide (GO and bacterially reduced graphene oxide (B-rGO on the inhibition of cell viability, reactive oxygen species (ROS generation, and membrane integrity in human breast cancer cells. Methods: The reduction of GO was characterized by ultraviolet–visible spectroscopy. Size distribution was analyzed by dynamic light scattering. Further, X-ray diffraction and high-resolution scanning electron microscopy were used to investigate the crystallinity of graphene and the morphologies of prepared graphene, respectively. The formation of defects further supports the bio-functionalization of graphene, as indicated in the Raman spectrum of B-rGO. Surface morphology and the thickness of the GO and B-rGO were analyzed using atomic force microscopy, while the biocompatibility of GO and B-rGO were investigated using WST-8 assays on MCF-7 cells. Finally, cellular toxicity was evaluated by ROS generation and membrane integrity assays. Results: In this study, we demonstrated an environmentally friendly, cost-effective, and simple method for the preparation of water-soluble graphene using bacterial biomass. This reduction method avoids the use of toxic reagents such as hydrazine and hydrazine hydrate. The synthesized soluble graphene was confirmed using various analytical techniques. Our results suggest that both GO and B-rGO exhibit toxicity to MCF-7 cells in a dose-dependent manner, with a dose > 60 µg/mL exhibiting obvious cytotoxicity effects, such as decreasing cell viability, increasing ROS

  6. Noncytotoxic orange and red/green derivatives of DsRed-Express2 for whole-cell labeling

    Directory of Open Access Journals (Sweden)

    Glick Benjamin S

    2009-04-01

    Full Text Available Abstract Background Whole-cell labeling is a common application of fluorescent proteins (FPs, but many red and orange FPs exhibit cytotoxicity that limits their use as whole-cell labels. Recently, a tetrameric red FP called DsRed-Express2 was engineered for enhanced solubility and was shown to be noncytotoxic in bacterial and mammalian cells. Our goal was to create derivatives of this protein with different spectral properties. Results Building on previous studies of DsRed mutants, we created two DsRed-Express2 derivatives: E2-Orange, an orange FP, and E2-Red/Green, a dual-color FP with both red and green emission. We show that these new FPs retain the low cytotoxicity of DsRed-Express2. In addition, we show that these new FPs are useful as second or third colors for flow cytometry and fluorescence microscopy. Conclusion E2-Orange and E2-Red/Green will facilitate the production of healthy, stably fluorescent cell lines and transgenic organisms for multi-color labeling studies.

  7. Controllable synthesis of green and blue fluorescent carbon nanodots for pH and Cu(2+) sensing in living cells.

    Science.gov (United States)

    Shi, Lihong; Li, Yanyan; Li, Xiaofeng; Zhao, Bo; Wen, Xiangping; Zhang, Guomei; Dong, Chuan; Shuang, Shaomin

    2016-03-15

    We report a controllable strategy for fabrication of green and blue fluorescent carbon nanodots (CDs), and demonstrate their applications for pH and Cu(2+) sensing in living cells. Green and blue fluorescent CDs have been synthesized by hydrothermal method and pyrolysis of leeks, respectively, providing an easy way for the production of CDs without the request of tedious synthetic methodology or the use of toxic/expensive solvents and starting materials. Green fluorescent CDs (G-CDs) exhibit high tolerance to pH values and external cations. Blue fluorescent CDs (B-CDs) can be applied to pH and Cu(2+) sensing. The linear range of Cu(2+) detection is 0.01-10.00 μM and the detection limit is 0.05 μM. For pH detection, there is a good linearity in the pH range of 3.5-10.0. The linear and rapid response of B-CDs to Cu(2+) and pH is valuable for Cu(2+) and pH sensing in living cells. Confocal fluorescent imaging of human cervical carcinoma cells indicates that B-CDs could visualize Cu(2+) and pH fluctuations in living cells with negligible autofluorescence. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Antihepatic Fibrosis Effect of Active Components Isolated from Green Asparagus (Asparagus officinalis L.) Involves the Inactivation of Hepatic Stellate Cells.

    Science.gov (United States)

    Zhong, Chunge; Jiang, Chunyu; Xia, Xichun; Mu, Teng; Wei, Lige; Lou, Yuntian; Zhang, Xiaoshu; Zhao, Yuqing; Bi, Xiuli

    2015-07-08

    Green asparagus (Asparagus officinalis L.) is a vegetable with numerous nutritional properties. In the current study, a total of 23 compounds were isolated from green asparagus, and 9 of these compounds were obtained from this genus for the first time. Preliminary data showed that the ethyl acetate (EtOAc)-extracted fraction of green asparagus exerted a stronger inhibitory effect on the growth of t-HSC/Cl-6 cells, giving an IC50 value of 45.52 μg/mL. The biological activities of the different compounds isolated from the EtOAc-extracted fraction with respect to antihepatic fibrosis were investigated further. Four compounds, C3, C4, C10, and C12, exhibited profound inhibitory effect on the activation of t-HSC/Cl-6 cells induced by TNF-α. The activation t-HSC/Cl-6 cells, which led to the production of fibrotic matrix (TGF-β1, activin C) and accumulation of TNF-α, was dramatically decreased by these compounds. The mechanisms by which these compounds inhibited the activation of hepatic stellate cells appeared to be associated with the inactivation of TGF-β1/Smad signaling and c-Jun N-terminal kinases, as well as the ERK phosphorylation cascade.

  9. Effect of mercuric chloride on cellular morphology and acid phosphatase of tissue culture cells cultivated in suspension

    Energy Technology Data Exchange (ETDEWEB)

    Li, M F; Traxler, G S

    1974-01-01

    Cells exposed to HgCl/sub 2/ (0.5 mg/liter) increased dramatically in size and stained poorly with May-Grunwald Giemsa stain and exhibited incompleteness in cell division. When the cell DNA was stained by the Feulgen technique, many multinucleated cells were apparent in the cultures treated with HgCl/sub 2/. Additionally, enlargement and alteration of the nucleoli were evident. Electron-micrographs of the experimental cells revealed that microvilli, ribosomes, mitochondria, and endoplasmic reticula were abundant in the control cells, but in contrast a scarcity of these organelles was observed together with notable cytoplasmic vacuolation in the HgCl/sub 2/-treated cells. In addition the nucleolini of the treated cells were enlarged and had begun to fuse, producing a mulberry appearance. Electronmicroscopic detection of acid phosphatase activity in the cells indicated that the periplasmic enzyme activity was present in control cells, but not in the cells exposed to HgCl/sub 2/. The possible reaction of Hg/sup + +/ with deoxyribonucleic acid and disulfides is discussed with respect to the observed cytopathic effect and impaired enzyme activity. 10 references, 5 figures.

  10. Targeted imaging of ovarian cancer cells using viral nanoparticles doped with indocyanine green

    Science.gov (United States)

    Guerrero, Yadir; Bahmani, Baharak; Jung, Bonsu; Vullev, Valentine; Kundra, Vikas; Anvari, Bahman

    2013-03-01

    Our group has constructed a new type of viral nanoparticles (VNPs) from genome-depleted plant infecting brome mosaic virus (BMV) that encapsulates the FDA-approved near infrared (NIR) indocyanine green (ICG)[1]. We refer to these VNPs as optical viral ghosts (OVGs) since the constructs lack the genomic content of wild-type BMV. One of our areas of interest is the application of OVGs for real-time intraoperative NIR fluorescence imaging of small peritoneal ovarian tumor nodules. We target human epidermal growth factor receptor-2 (HER-2) expression in ovarian cancer as a biomarker associated with ovarian cancer, since its over-expression is linked to the disease's progression to death. We functionalize the OVGs with anti-HER-2 monoclonal antibodies using reductive amination methods. We used fluorescence imaging to visualize the SKOV-3 cells (high HER-2 expression) after incubation with free ICG, OVGs, and functionalized OVGs. Our results suggest the possibility of using anti-HER2 conjugated OVGs in conjunction with cytoreductive surgery to detect small tumor nodules (<5cm) which currently are not excised during surgery.

  11. Suspension trauma; Le traumatisme de suspension

    Energy Technology Data Exchange (ETDEWEB)

    Trudel, S. [Le Centre de sante et de services sociaux du rocher Perce, Chandler, PQ (Canada)

    2010-07-01

    This presentation discussed the precautions that should be taken to avoid falls from wind turbines or transmission towers. Suspension trauma was explained by a medical doctor in terms of physiology and the body's normal circulation and the elements that disturb normal physiology when in suspension. The trauma occurs following a fall, which carries the risk of 1or more disorders, such as massive hemorrhage, high cardiac pulse, and constriction of blood vessels. Nausea, vertigo, cardiac arrhythmia and sweating occur 15 to 20 minutes following the fall. The presentation emphasized the importance of having qualified personnel at the site and wearing proper harnesses and equipment that supports the neck. figs.

  12. Influence of culture medium supplementation of tobacco NT1 cell suspension cultures on the N-glycosylation of human secreted alkaline phosphatase.

    Science.gov (United States)

    Becerra-Arteaga, Alejandro; Shuler, Michael L

    2007-08-15

    We report for the first time that culture conditions, specifically culture medium supplementation with nucleotide-sugar precursors, can alter significantly the N-linked glycosylation of a recombinant protein in plant cell culture. Human secreted alkaline phosphatase produced in tobacco NT1 cell suspension cultures was used as a model system. Plant cell cultures were supplemented with ammonia (30 mM), galactose (1 mM) and glucosamine (10 mM) to improve the extent of N-linked glycosylation. The highest levels of cell density and active extracellular SEAP in supplemented cultures were on average 260 g/L and 0.21 U/mL, respectively, compared to 340 g/L and 0.4 U/mL in unsupplemented cultures. The glycosylation profile of SEAP produced in supplemented cultures was determined via electrospray ionization mass spectrometry with precursor ion scanning and compared to that of SEAP produced in unsupplemented cultures. In supplemented and unsupplemented cultures, two biantennary complex-type structures terminated with one or two N-acetylglucosamines and one paucimannosidic glycan structure comprised about 85% of the SEAP glycan pool. These three structures contained plant-specific xylose and fucose residues and their relative abundances were affected by each supplement. High mannose structures (6-9 mannose residues) accounted for the remaining 15% glycans in all cases. The highest proportion (approximately 66%) of a single complex-type biantennary glycan structure terminated in both antennae by N- acetylglucosamine was obtained with glucosamine supplementation versus only 6% in unsupplemented medium. This structure is amenable for in vitro modification to yield a more human-like glycan and could serve as a route to plant cell culture produced therapeutic glycoproteins. (c) 2007 Wiley Periodicals, Inc.

  13. Antagonism of phenanthrene cytotoxicity for human embryo lung fibroblast cell line HFL-I by green tea polyphenols

    Energy Technology Data Exchange (ETDEWEB)

    Mei Xin [Department of Tea Science, Zhejiang University, Hangzhou 310029 (China); Key Laboratory of Horticultural Plant Growth Development and Biotechnology of Ministry of Agriculture, Zhejiang University, Hangzhou 310029 (China); Wu Yuanyuan; Mao Xiao [Department of Tea Science, Zhejiang University, Hangzhou 310029 (China); Tu Youying, E-mail: youytu@zju.edu.c [Department of Tea Science, Zhejiang University, Hangzhou 310029 (China)

    2011-01-15

    Polycyclic aromatic hydrocarbons (PAHs) have been detected in some commercial teas around the world and pose a threat to tea consumers. However, green tea polyphenols (GTP) possess remarkable antioxidant and anticancer effects. In this study, the potential of GTP to block the toxicity of the model PAH phenanthrene was examined in human embryo lung fibroblast cell line HFL-I. Both GTP and phenanthrene treatment individually caused dose-dependent inhibition of cell growth. A full factorial design experiment demonstrated that the interaction of phenanthrene and GTP significantly reduced growth inhibition. Using the median effect method showed that phenanthrene and GTP were antagonistic when the inhibitory levels were less than about 50%. Apoptosis and cell cycle detection suggested that only phenanthrene affected cell cycle significantly and caused cell death; GTP lowered the mortality of HFL-I cells exposed to phenanthrene; However, GTP did not affect modulation of the cell cycle by phenanthrene. - Green tea polyphenols antagonised cytotoxicity of a low-ring PAH phenanthrene.

  14. DNA Damage during G2 Phase Does Not Affect Cell Cycle Progression of the Green Alga Scenedesmus quadricauda

    Science.gov (United States)

    Vítová, Milada; Bišová, Kateřina; Zachleder, Vilém

    2011-01-01

    DNA damage is a threat to genomic integrity in all living organisms. Plants and green algae are particularly susceptible to DNA damage especially that caused by UV light, due to their light dependency for photosynthesis. For survival of a plant, and other eukaryotic cells, it is essential for an organism to continuously check the integrity of its genetic material and, when damaged, to repair it immediately. Cells therefore utilize a DNA damage response pathway that is responsible for sensing, reacting to and repairing damaged DNA. We have studied the effect of 5-fluorodeoxyuridine, zeocin, caffeine and combinations of these on the cell cycle of the green alga Scenedesmus quadricauda. The cells delayed S phase and underwent a permanent G2 phase block if DNA metabolism was affected prior to S phase; the G2 phase block imposed by zeocin was partially abolished by caffeine. No cell cycle block was observed if the treatment with zeocin occurred in G2 phase and the cells divided normally. CDKA and CDKB kinases regulate mitosis in S. quadricauda; their kinase activities were inhibited by Wee1. CDKA, CDKB protein levels were stabilized in the presence of zeocin. In contrast, the protein level of Wee1 was unaffected by DNA perturbing treatments. Wee1 therefore does not appear to be involved in the DNA damage response in S. quadricauda. Our results imply a specific reaction to DNA damage in S. quadricauda, with no cell cycle arrest, after experiencing DNA damage during G2 phase. PMID:21603605

  15. DNA damage during G2 phase does not affect cell cycle progression of the green alga Scenedesmus quadricauda.

    Directory of Open Access Journals (Sweden)

    Monika Hlavová

    Full Text Available DNA damage is a threat to genomic integrity in all living organisms. Plants and green algae are particularly susceptible to DNA damage especially that caused by UV light, due to their light dependency for photosynthesis. For survival of a plant, and other eukaryotic cells, it is essential for an organism to continuously check the integrity of its genetic material and, when damaged, to repair it immediately. Cells therefore utilize a DNA damage response pathway that is responsible for sensing, reacting to and repairing damaged DNA. We have studied the effect of 5-fluorodeoxyuridine, zeocin, caffeine and combinations of these on the cell cycle of the green alga Scenedesmus quadricauda. The cells delayed S phase and underwent a permanent G2 phase block if DNA metabolism was affected prior to S phase; the G2 phase block imposed by zeocin was partially abolished by caffeine. No cell cycle block was observed if the treatment with zeocin occurred in G2 phase and the cells divided normally. CDKA and CDKB kinases regulate mitosis in S. quadricauda; their kinase activities were inhibited by Wee1. CDKA, CDKB protein levels were stabilized in the presence of zeocin. In contrast, the protein level of Wee1 was unaffected by DNA perturbing treatments. Wee1 therefore does not appear to be involved in the DNA damage response in S. quadricauda. Our results imply a specific reaction to DNA damage in S. quadricauda, with no cell cycle arrest, after experiencing DNA damage during G2 phase.

  16. Antagonism of phenanthrene cytotoxicity for human embryo lung fibroblast cell line HFL-I by green tea polyphenols

    International Nuclear Information System (INIS)

    Mei Xin; Wu Yuanyuan; Mao Xiao; Tu Youying

    2011-01-01

    Polycyclic aromatic hydrocarbons (PAHs) have been detected in some commercial teas around the world and pose a threat to tea consumers. However, green tea polyphenols (GTP) possess remarkable antioxidant and anticancer effects. In this study, the potential of GTP to block the toxicity of the model PAH phenanthrene was examined in human embryo lung fibroblast cell line HFL-I. Both GTP and phenanthrene treatment individually caused dose-dependent inhibition of cell growth. A full factorial design experiment demonstrated that the interaction of phenanthrene and GTP significantly reduced growth inhibition. Using the median effect method showed that phenanthrene and GTP were antagonistic when the inhibitory levels were less than about 50%. Apoptosis and cell cycle detection suggested that only phenanthrene affected cell cycle significantly and caused cell death; GTP lowered the mortality of HFL-I cells exposed to phenanthrene; However, GTP did not affect modulation of the cell cycle by phenanthrene. - Green tea polyphenols antagonised cytotoxicity of a low-ring PAH phenanthrene.

  17. Green(ing) infrastructure

    CSIR Research Space (South Africa)

    Van Wyk, Llewellyn V

    2014-03-01

    Full Text Available the generation of electricity from renewable sources such as wind, water and solar. Grey infrastructure – In the context of storm water management, grey infrastructure can be thought of as the hard, engineered systems to capture and convey runoff..., pumps, and treatment plants.  Green infrastructure reduces energy demand by reducing the need to collect and transport storm water to a suitable discharge location. In addition, green infrastructure such as green roofs, street trees and increased...

  18. Transient gene expression in serum-free suspension-growing mammalian cells for the production of foot-and-mouth disease virus empty capsids.

    Directory of Open Access Journals (Sweden)

    Ana Clara Mignaqui

    Full Text Available Foot-and-mouth disease (FMD is a highly contagious disease of cloven-hoofed animals. It produces severe economic losses in the livestock industry. Currently available vaccines are based on inactivated FMD virus (FMDV. The use of empty capsids as a subunit vaccine has been reported to be a promising candidate because it avoids the use of virus in the vaccine production and conserves the conformational epitopes of the virus. In this report, we explored transient gene expression (TGE in serum-free suspension-growing mammalian cells for the production of FMDV recombinant empty capsids as a subunit vaccine. The recombinant proteins produced, assembled into empty capsids and induced protective immune response against viral challenge in mice. Furthermore, they were recognized by anti-FMDV bovine sera. By using this technology, we were able to achieve expression levels that are compatible with the development of a vaccine. Thus, TGE of mammalian cells is an easy to perform, scalable and cost-effective technology for the production of a recombinant subunit vaccine against FMDV.

  19. Green synthesis of selenium nanoparticles using Acinetobacter sp. SW30: optimization, characterization and its anticancer activity in breast cancer cells

    Directory of Open Access Journals (Sweden)

    Wadhwani SA

    2017-09-01

    Full Text Available Sweety A Wadhwani,1 Mahadeo Gorain,2 Pinaki Banerjee,2 Utkarsha U Shedbalkar,3 Richa Singh,1 Gopal C Kundu,2 Balu A Chopade1,4 1Department of Microbiology, Savitribai Phule Pune University, 2Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Center for Cell Science, Savitribai Phule Pune University Campus, Pune, 3Department of Biochemistry, The Institute of Science, Mumbai, 4Dr Babasaheb Ambedkar Marathwada University, Aurangabad, Maharashtra, India Abstract: The aim of this study was to synthesize selenium nanoparticles (SeNPs using cell suspension and total cell protein of Acinetobacter sp. SW30 and optimize its synthesis by studying the influence of physiological and physicochemical parameters. Also, we aimed to compare its anticancer activity with that of chemically synthesized SeNPs in breast cancer cells. Cell suspension of Acinetobacter sp. SW30 was exposed to various physiological and physicochemical conditions in the presence of sodium selenite to study their effects on the synthesis and morphology of SeNPs. Breast cancer cells (4T1, MCF-7 and noncancer cells (NIH/3T3, HEK293 were exposed to different concentrations of SeNPs. The 18 h grown culture with 2.7×109 cfu/mL could synthesize amorphous nanospheres of size 78 nm at 1.5 mM and crystalline nanorods at above 2.0 mM Na2SeO3 concentration. Polygonal-shaped SeNPs of average size 79 nm were obtained in the supernatant of 4 mg/mL of total cell protein of Acinetobacter sp. SW30. Chemical SeNPs showed more anticancer activity than SeNPs synthesized by Acinetobacter sp. SW30 (BSeNPs, but they were found to be toxic to noncancer cells also. However, BSeNPs were selective against breast cancer cells than chemical ones. Results suggest that BSeNPs are a good choice of selection as anticancer agents. Keywords: comparison, selective, 4T1, MCF7

  20. Phenylalanine and tyrosine levels are rate-limiting factors in production of health promoting metabolites in Vitis vinifera cv. Gamay Red cell suspension.

    Science.gov (United States)

    Manela, Neta; Oliva, Moran; Ovadia, Rinat; Sikron-Persi, Noga; Ayenew, Biruk; Fait, Aaron; Galili, Gad; Perl, Avichai; Weiss, David; Oren-Shamir, Michal

    2015-01-01

    Environmental stresses such as high light intensity and temperature cause induction of the shikimate pathway, aromatic amino acids (AAA) pathways, and of pathways downstream from AAAs. The induction leads to production of specialized metabolites that protect the cells from oxidative damage. The regulation of the diverse AAA derived pathways is still not well understood. To gain insight on that regulation, we increased AAA production in red grape Vitis vinifera cv. Gamay Red cell suspension, without inducing external stress on the cells, and characterized the metabolic effect of this induction. Increased AAA production was achieved by expressing a feedback-insensitive bacterial form of 3-deoxy- D-arabino-heptulosonate 7-phosphate synthase enzyme (AroG (*)) of the shikimate pathway under a constitutive promoter. The presence of AroG(*) protein led to elevated levels of primary metabolites in the shikimate and AAA pathways including phenylalanine and tyrosine, and to a dramatic increase in phenylpropanoids. The AroG (*) transformed lines accumulated up to 20 and 150 fold higher levels of resveratrol and dihydroquercetin, respectively. Quercetin, formed from dihydroquercetin, and resveratrol, are health promoting metabolites that are induced due to environmental stresses. Testing the expression level of key genes along the stilbenoids, benzenoids, and phenylpropanoid pathways showed that transcription was not affected by AroG (*). This suggests that concentrations of AAAs, and of phenylalanine in particular, are rate-limiting in production of these metabolites. In contrast, increased phenylalanine production did not lead to elevated concentrations of anthocyanins, even though they are also phenylpropanoid metabolites. This suggests a control mechanism of this pathway that is independent of AAA concentration. Interestingly, total anthocyanin concentrations were slightly lower in AroG(*) cells, and the relative frequencies of the different anthocyanins changed as well.

  1. Phenylalanine and tyrosine levels are rate-limiting factors in production of health promoting metabolites in Vitis vinifera cv. Gamay Red cell suspension

    Directory of Open Access Journals (Sweden)

    Neta eManela

    2015-07-01

    Full Text Available Environmental stresses such as high light intensity and temperature cause induction of the shikimate pathway, aromatic amino acids (AAA pathways, and of pathways downstream from AAAs. The induction leads to production of specialized metabolites that protect the cells from oxidative damage. The regulation of the diverse AAA derived pathways is still not well understood. To gain insight on that regulation, we increased AAA production in red grape Vitis vinifera cv. Gamay Red cell suspension, without inducing external stress on the cells, and characterized the metabolic effect of this induction. Increased AAA production was achieved by expressing a feedback-insensitive bacterial form of 3-deoxy- D-arabino-heptulosonate 7-phosphate synthase enzyme (AroG* of the shikimate pathway under a constitutive promoter. The presence of AroG* protein led to elevated levels of primary metabolites in the shikimate and AAA pathways including phenylalanine and tyrosine, and to a dramatic increase in phenylpropanoids. The AroG* transformed lines accumulated up to 20 and 150 fold higher levels of resveratrol and dihydroquercetin, respectively. Quercetin, formed from dihydroquercetin, and resveratrol, are health promoting metabolites that are induced due to environmental stresses. Testing the expression level of key genes along the stilbenoids, benzenoids and phenylpropanoid pathways showed that transcription was not affected by AroG*. This suggests that concentrations of AAAs, and of phenylalanine in particular, are rate-limiting in production of these metabolites. In contrast, increased phenylalanine production did not lead to elevated concentrations of anthocyanins, even though they are also phenylpropanoid metabolites. This suggests a control mechanism of this pathway that is independent of AAA concentration. Interestingly, total anthocyanin concentrations were slightly lower in AroG* cells, and the relative frequencies of the different anthocyanins changed as

  2. How Streptomyces anulatus Primes Grapevine Defenses to Cope with Gray Mold: A Study of the Early Responses of Cell Suspensions

    Directory of Open Access Journals (Sweden)

    Parul Vatsa-Portugal

    2017-06-01

    Full Text Available Gray mold, caused by Botrytis cinerea, is one of the most destructive diseases of grapevine and is controlled with an intense application of fungicides. As alternatives to chemicals, beneficial microbes may promote plant health by stimulating the plant’s immune system. An actinomycete, Streptomyces anulatus S37, has been screened from the rhizosphere microbiome of healthy Vitis vinifera on the basis of its ability to promote grapevine growth and to induce resistance against various phytopathogens, including B. cinerea. However, molecular mechanisms involved locally after direct perception of these bacteria by plant cells still remain unknown. This study focuses on local defense events induced in grapevine cells during interactions with S. anulatus S37 before and after pathogen challenge. We demonstrated that S. anulatus S37 induced early responses including oxidative burst, extracellular alkalinization, activation of protein kinases, induction of defense gene expression and phytoalexin accumulation, but not the programmed cell death. Interestingly, upon challenge with the B. cinerea, the S. anulatus S37 primed grapevine cells for enhanced defense reactions with a decline in cell death. In the presence of the EGTA, a calcium channel inhibitor, the induced oxidative burst, and the protein kinase activity were inhibited, but not the extracellular alkalinization, suggesting that Ca2+ may also contribute upstream to the induced defenses. Moreover, desensitization assays using extracellular pH showed that once increased by S. anulatus S37, cells became refractory to further stimulation by B. cinerea, suggesting that grapevine cells perceive distinctly beneficial and pathogenic microbes.

  3. Human adipose stem cells maintain proliferative, synthetic and multipotential properties when suspension cultured as self-assembling spheroids

    International Nuclear Information System (INIS)

    Kapur, S K; Wang, X; Shang, H; Yun, S; Li, X; Feng, G; Khurgel, M; Katz, A J

    2012-01-01

    Adipose-derived stromal/stem cells (ASCs) have been gaining recognition as an extremely versatile cell source for tissue engineering. The usefulness of ASCs in biofabrication is further enhanced by our demonstration of the unique properties of these cells when they are cultured as three-dimensional cellular aggregates or spheroids. As described herein, three-dimensional formulations, or self-assembling ASC spheroids develop their own extracellular matrix that serves to increase the robustness of the cells to mechanical stresses. The composition of the extracellular matrix can be altered based on the external environment of the spheroids and these constructs can be grown in a reproducible manner and to a consistent size. The spheroid formulation helps preserve the viability and developmental plasticity of ASCs even under defined, serum-free media conditions. For the first time, we show that multiple generations of adherent ASCs produced from these spheroids retain their ability to differentiate into multiple cell/tissue types. These demonstrated properties support the idea that culture-expanded ASCs are an excellent candidate cellular material for ‘organ printing’—the approach of developing complex tissue structures from a standardized cell ‘ink’ or cell formulation. (paper)

  4. Construction of a plasmid coding for green fluorescent protein tagged cathepsin L and data on expression in colorectal carcinoma cells

    Directory of Open Access Journals (Sweden)

    Tripti Tamhane

    2015-12-01

    Full Text Available The endo-lysosomal cysteine cathepsin L has recently been shown to have moonlighting activities in that its unexpected nuclear localization in colorectal carcinoma cells is involved in cell cycle progression (Tamhane et al., 2015 [1]. Here, we show data on the construction and sequence of a plasmid coding for human cathepsin L tagged with an enhanced green fluorescent protein (phCL-EGFP in which the fluorescent protein is covalently attached to the C-terminus of the protease. The plasmid was used for transfection of HCT116 colorectal carcinoma cells, while data from non-transfected and pEGFP-N1-transfected cells is also shown. Immunoblotting data of lysates from non-transfected controls and HCT116 cells transfected with pEGFP-N1 and phCL-EGFP, showed stable expression of cathepsin L-enhanced green fluorescent protein chimeras, while endogenous cathepsin L protein amounts exceed those of hCL-EGFP chimeras. An effect of phCL-EGFP expression on proliferation and metabolic states of HCT116 cells at 24 h post-transfection was observed.

  5. Effects of Tannic Acid, Green Tea and Red Wine on hERG Channels Expressed in HEK293 Cells.

    Directory of Open Access Journals (Sweden)

    Xi Chu

    Full Text Available Tannic acid presents in varying concentrations in plant foods, and in relatively high concentrations in green teas and red wines. Human ether-à-go-go-related gene (hERG channels expressed in multiple tissues (e.g. heart, neurons, smooth muscle and cancer cells, and play important roles in modulating cardiac action potential repolarization and tumor cell biology. The present study investigated the effects of tannic acid, green teas and red wines on hERG currents. The effects of tannic acid, teas and red wines on hERG currents stably transfected in HEK293 cells were studied with a perforated patch clamp technique. In this study, we demonstrated that tannic acid inhibited hERG currents with an IC50 of 3.4 μM and ~100% inhibition at higher concentrations, and significantly shifted the voltage dependent activation to more positive potentials (Δ23.2 mV. Remarkably, a 100-fold dilution of multiple types of tea (green tea, oolong tea and black tea or red wine inhibited hERG currents by ~90%, and significantly shifted the voltage dependent activation to more positive potentials (Δ30.8 mV and Δ26.0 mV, respectively. Green tea Lung Ching and red wine inhibited hERG currents, with IC50 of 0.04% and 0.19%, respectively. The effects of tannic acid, teas and red wine on hERG currents were irreversible. These results suggest tannic acid is a novel hERG channel blocker and consequently provide a new mechanistic evidence for understanding the effects of tannic acid. They also revealed the potential pharmacological basis of tea- and red wine-induced biology activities.

  6. Effects of Tannic Acid, Green Tea and Red Wine on hERG Channels Expressed in HEK293 Cells

    Science.gov (United States)

    Xu, Bingyuan; Li, Wenya; Lin, Yue; Sun, Xiaorun; Ding, Chunhua; Zhang, Xuan

    2015-01-01

    Tannic acid presents in varying concentrations in plant foods, and in relatively high concentrations in green teas and red wines. Human ether-à-go-go-related gene (hERG) channels expressed in multiple tissues (e.g. heart, neurons, smooth muscle and cancer cells), and play important roles in modulating cardiac action potential repolarization and tumor cell biology. The present study investigated the effects of tannic acid, green teas and red wines on hERG currents. The effects of tannic acid, teas and red wines on hERG currents stably transfected in HEK293 cells were studied with a perforated patch clamp technique. In this study, we demonstrated that tannic acid inhibited hERG currents with an IC50 of 3.4 μM and ~100% inhibition at higher concentrations, and significantly shifted the voltage dependent activation to more positive potentials (Δ23.2 mV). Remarkably, a 100-fold dilution of multiple types of tea (green tea, oolong tea and black tea) or red wine inhibited hERG currents by ~90%, and significantly shifted the voltage dependent activation to more positive potentials (Δ30.8 mV and Δ26.0 mV, respectively). Green tea Lung Ching and red wine inhibited hERG currents, with IC50 of 0.04% and 0.19%, respectively. The effects of tannic acid, teas and red wine on hERG currents were irreversible. These results suggest tannic acid is a novel hERG channel blocker and consequently provide a new mechanistic evidence for understanding the effects of tannic acid. They also revealed the potential pharmacological basis of tea- and red wine-induced biology activities. PMID:26625122

  7. Green synthesis of nitrogen-doped carbon dots from lotus root for Hg(II) ions detection and cell imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Dan; Shang, Shaoming, E-mail: smshang@jiangnan.edu.cn; Yu, Qin; Shen, Jie

    2016-12-30

    Graphical abstract: Fluorescent nitrogen-doped carbon dots were synthesized by a facile, green, and fast microwave method, using lotus root as carbon source. These nitrogen-doped carbon dots can be used for Hg{sup 2+} detection and cell imaging. - Highlights: • A green, fast strategy for synthesizing carbon dots was established. • A simple, sensitive, selective and wide linear range sensing of Hg{sup 2+} was developed. • The sensor system was demonstrated to detect Hg{sup 2+} in environmental water sample. • The carbon dots could serve for multicolor fluorescence bioimaging. - Abstract: Herein, a facile, green, and fast method was developed in the synthesis of fluorescent nitrogen-doped carbon dots (CDs) with nitrogen content of 5.23%, using one-pot microwave treatment of lotus root (LR), without using any other surface passivation agents. The results show that these LR-CDs (with an average diameter of 9.41 nm) possess many outstanding features and have a high quantum yield of 19.0%. We further demonstrated applications of LR-CDs as probes for heavy metal ion detection. The LR-CDs exhibit captivating sensitivity and selectivity toward Hg{sup 2+} with a linear range from 0.1 to 60.0 μM and a detection limit of 18.7 nM. Eventually, the LR-CDs were applied for multicolor cell imaging, demonstrating their potential toward diverse applications.

  8. Nano-hydroxyapatite colloid suspension coated on chemically modified porous silicon by cathodic bias: a suitable surface for cell culture

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, Alejandra [Escuela de Quimica, Universidad de Costa Rica, 2060 (Costa Rica); Centro de Electroquimica y Energia Quimica de la Universidad de Costa Rica (CELEQ), Universidad de Costa Rica, 2060 (Costa Rica); Gonzalez, Jerson [Escuela de Quimica, Universidad de Costa Rica, 2060 (Costa Rica); Garcia-Pineres, Alfonso [Escuela de Quimica, Universidad de Costa Rica, 2060 (Costa Rica); Centro de Investigacion en Biologia Celular y Molecular (CIBCM), Universidad de Costa Rica, 2060 (Costa Rica); Montero, Mavis L. [Escuela de Quimica, Universidad de Costa Rica, 2060 (Costa Rica); Centro de Electroquimica y Energia Quimica de la Universidad de Costa Rica (CELEQ), Universidad de Costa Rica, 2060 (Costa Rica); Centro de Ciencia e Ingenieria en Materiales (CICIMA), Universidad de Costa Rica, 2060 (Costa Rica)

    2011-06-15

    The properties of porous silicon make it an interesting material for biological applications. However, porous silicon is not an appropriate surface for cell growth. Surface modification is an alternative that could afford a bioactive material. In this work, we report a method to yield materials by modification of the porous silicon surface with hydroxyapatite of nanometric dimensions, produced using an electrochemical process and coated on macroporous silicon substrates by cathodic bias. The chemical nature of the calcium phosphate deposited on the substrates after the experimental process and the amount of cell growth on these surfaces were characterized. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Dissection of cis-regulatory element architecture of the rice oleosin gene promoters to assess abscisic acid responsiveness in suspension-cultured rice cells.

    Science.gov (United States)

    Kim, Sol; Lee, Soo-Bin; Han, Chae-Seong; Lim, Mi-Na; Lee, Sung-Eun; Yoon, In Sun; Hwang, Yong-Sic

    2017-08-01

    Oleosins are the most abundant proteins in the monolipid layer surrounding neutral storage lipids that form oil bodies in plants. Several lines of evidence indicate that they are physiologically important for the maintenance of oil body structure and for mobilization of the lipids stored inside. Rice has six oleosin genes in its genome, the expression of all of which was found to be responsive to abscisic acid (ABA) in our examination of mature embryo and aleurone tissues. The 5'-flanking region of OsOle5 was initially characterized for its responsiveness to ABA through a transient expression assay system using the protoplasts from suspension-cultured rice cells. A series of successive deletions and site-directed mutations identified five regions critical for the hormonal induction of its promoter activity. A search for cis-acting elements in these regions deposited in a public database revealed that they contain various promoter elements previously reported to be involved in the ABA response of various genes. A gain-of-function experiment indicated that multiple copies of all five regions were sufficient to provide the minimal promoter with a distinct ABA responsiveness. Comparative sequence analysis of the short, but still ABA-responsive, promoters of OsOle genes revealed no common modular architecture shared by them, indicating that various distinct promoter elements and independent trans-acting factors are involved in the ABA responsiveness of rice oleosin multigenes. Copyright © 2017 Elsevier GmbH. All rights reserved.

  10. Photolabeling of tonoplast from sugar beet cell suspensions by [3H]5-(N-methyl-N-isobutyl)-amiloride, an inhibitor of the vacuolar Na+/H+ antiport

    International Nuclear Information System (INIS)

    Barkla, B.J.; Charuk, J.H.M.; Blumwald, E.; Cragoe, E.J. Jr.

    1990-01-01

    The effects of 5-(N-methyl-N-isobutyl)-amiloride (MIA), an amiloride analog, was tested on the Na + /H + antiport activity of intact vacuoles and tonoplast vesicles isolated from sugar beet (Beta vulgaris L.) cell suspension cultures. MIA inhibited Na + /H + exchange in a competitive manner with a K i of 2.5 and 5.9 micromolar for ΔpH-dependent 22 Na + influx in tonoplast vesicles and Na + -dependent H + efflux in intact vacuoles, respectively. Scatchard analysis of the binding of [ 3 H]MIA to tonoplast membranes revealed a high affinity binding component with a K d of 1.3 micromolar. The close relationship between the dissociation constant value obtained and the constants of inhibition for MIA obtained by fluorescence quenching and isotope exchange suggests that the high affinity component represents a class of sites associated with the tonoplast Na + /H + antiport. Photolabeling of the tonoplast with [ 3 H]MIA revealed two sets of polypeptides with a different affinity to amiloride and its analog

  11. Photolabeling of tonoplast from sugar beet cell suspensions by [h]5-(N-methyl-N-isobutyl)-amiloride, an inhibitor of the vacuolar na/h antiport.

    Science.gov (United States)

    Barkla, B J; Charuk, J H; Cragoe, E J; Blumwald, E

    1990-07-01

    The effects of 5-(N-methyl-N-isobutyl)-amiloride (MIA), an amiloride analog, was tested on the Na(+)/H(+) antiport activity of intact vacuoles and tonoplast vesicles isolated from sugar beet (Beta vulgaris L.) cell suspension cultures. MIA inhibited Na(+)/H(+) exchange in a competitive manner with a K(i) of 2.5 and 5.9 micromolar for DeltapH-dependent (22)Na(+) influx in tonoplast vesicles and Na(+)-dependent H(+) efflux in intact vacuoles, respectively. Scatchard analysis of the binding of [(3)H]MIA to tonoplast membranes revealed a high affinity binding component with a K(d) of 1.3 micromolar. The close relationship between the dissociation constant value obtained and the constants of inhibition for MIA obtained by fluorescence quenching and isotope exchange suggests that the high affinity component represents a class of sites associated with the tonoplast Na(+)/H(+) antiport. Photolabeling of the tonoplast with [(3)H]MIA revealed two sets of polypeptides with a different affinity to amiloride and its analog.

  12. Photolabeling of Tonoplast from Sugar Beet Cell Suspensions by [3H]5-(N-Methyl-N-Isobutyl)-Amiloride, an Inhibitor of the Vacuolar Na+/H+ Antiport 1

    Science.gov (United States)

    Barkla, Bronwyn J.; Charuk, Jeffrey H. M.; Cragoe, Edward J.; Blumwald, Eduardo

    1990-01-01

    The effects of 5-(N-methyl-N-isobutyl)-amiloride (MIA), an amiloride analog, was tested on the Na+/H+ antiport activity of intact vacuoles and tonoplast vesicles isolated from sugar beet (Beta vulgaris L.) cell suspension cultures. MIA inhibited Na+/H+ exchange in a competitive manner with a Ki of 2.5 and 5.9 micromolar for ΔpH-dependent 22Na+ influx in tonoplast vesicles and Na+-dependent H+ efflux in intact vacuoles, respectively. Scatchard analysis of the binding of [3H]MIA to tonoplast membranes revealed a high affinity binding component with a Kd of 1.3 micromolar. The close relationship between the dissociation constant value obtained and the constants of inhibition for MIA obtained by fluorescence quenching and isotope exchange suggests that the high affinity component represents a class of sites associated with the tonoplast Na+/H+ antiport. Photolabeling of the tonoplast with [3H]MIA revealed two sets of polypeptides with a different affinity to amiloride and its analog. Images Figure 7 PMID:16667602

  13. Use of 15N reverse gradient two-dimensional nuclear magnetic resonance spectroscopy to follow metabolic activity in Nicotiana plumbaginifolia cell-suspension cultures.

    Science.gov (United States)

    Mesnard, F; Azaroual, N; Marty, D; Fliniaux, M A; Robins, R J; Vermeersch, G; Monti, J P

    2000-02-01

    Nitrogen metabolism was monitored in suspension cultured cells of Nicotiana plumbaginifolia Viv. using nuclear magnetic resonance (NMR) spectroscopy following the feeding of (15NH4)2SO4 and K15NO3. By using two-dimensional 15N-1H NMR with heteronuclear single-quantum-coherence spectroscopy and heteronuclear multiple-bond-coherence spectroscopy sequences, an enhanced resolution of the incorporation of 15N label into a range of compounds could be detected. Thus, in addition to the amino acids normally observed in one-dimensional 15N NMR (glutamine, aspartate, alanine), several other amino acids could be resolved, notably serine, glycine and proline. Furthermore, it was found that the peak normally assigned to the non-protein amino-acid gamma-aminobutyric acid in the one-dimensional 15N NMR spectrum was resolved into a several components. A peak of N-acetylated compounds was resolved, probably composed of the intermediates in arginine biosynthesis, N-acetylglutamate and N-acetylornithine and, possibly, the intermediate of putrescine degradation into gamma-aminobutyric acid, N-acetylputrescine. The occurrence of 15N-label in agmatine and the low detection of labelled putrescine indicate that crucial intermediates of the pathway from glutamate to polyamines and/or the tobacco alkaloids could be monitored. For the first time, labelling of the peptide glutathione and of the nucleotide uridine could be seen.

  14. Monitoring of phytopathogenic Ralstonia solanacearum cells using green fluorescent protein-expressing plasmid derived from bacteriophage phiRSS1.

    Science.gov (United States)

    Kawasaki, Takeru; Satsuma, Hideki; Fujie, Makoto; Usami, Shoji; Yamada, Takashi

    2007-12-01

    A green fluorescent protein (GFP)-expressing plasmid was constructed from a filamentous bacteriophage phiRSS1 that infects the phytopathogen Ralstonia solanacearum. This plasmid designated as pRSS12 (4.7 kbp in size) consists of an approximately 2248 bp region of the phiRSS1 RF DNA, including ORF1-ORF3 and the intergenic region (IG), and a Km cassette in addition to the GFP gene. It was easily introduced by electroporation and stably maintained even without selective pressure in strains of R. solanacearum of different races and biovars. Strong green fluorescence emitted from pRSS12-transformed bacterial cells was easily monitored in tomato tissues (stem, petiole, and root) after infection as well as from soil samples. These results suggest that pRSS12 can serve as an easy-to-use GFP-tagging tool for any given strain of R. solanacearum in cytological as well as field studies.

  15. The necrotroph Botrytis cinerea induces a non-host type II resistance mechanism in Pinus pinaster suspension-cultured cells.

    Science.gov (United States)

    Azevedo, Herlânder; Lino-Neto, Teresa; Tavares, Rui Manuel

    2008-03-01

    Models of non-host resistance have failed to account for the pathogenicity of necrotrophic agents. During the interaction of Pinus pinaster (maritime pine) with the non-host necrotrophic pathogen Botrytis cinerea, the generation and scavenging of reactive oxygen species (ROS) and the induction of the hypersensitive response (HR) were analyzed. Elicitation of maritime pine suspended cells with B. cinerea spores resulted in the biphasic induction of ROS. The phase I oxidative burst was dependent on calcium influx, while the phase II oxidative burst also depended on NADPH oxidase, protein kinase activity, and de novo transcription and protein synthesis. A decline was observed in catalase (CAT) and superoxide dismutase (SOD) activity, together with the down-regulation of Fe-Sod1, chlCu, Zn-Sod1 and csApx1, suggesting a coordinated response towards a decrease in the ROS-scavenging capacity of maritime pine cells during challenge. Following the second oxidative burst, programmed cell death events characteristic of the HR were observed. The results suggest the ROS-mediated and cell-breach-independent activation of Type II non-host resistance during the P. pinaster-B. cinerea interaction.

  16. Determination of specific growth stages of plant cell suspension cultures by monitoring conductivity changes in the medium.

    Science.gov (United States)

    Hahlbrock, K; Ebel, J; Oaks, A; Auden, J; Liersch, M

    1974-03-01

    Conductivity changes in the medium of cultured soybean (Glycine max L.) cells were shown to be strictly correlated with nitrate uptake and growth of the cultures. A continuous record of the conductivity was used as a simple and reliable method of determining specific growth stages and concomitant peaks in the activities of nitrate reductase and phenylalanine ammonia-lyase.

  17. Development and characterization of enhanced green fluorescent protein and luciferase expressing cell line for non-destructive evaluation of tissue engineering constructs.

    NARCIS (Netherlands)

    Blum, J.S.; Temenoff, J.S.; Park, H.; Jansen, J.A.; Mikos, A.G.; Barry, M.A.

    2004-01-01

    This study investigates the utility of genetically modified cells developed for the qualitative and quantitative non-destructive evaluation of cells on biomaterials. The Fisher rat fibroblastic cell line has been genetically modified to stably express the reporter genes enhanced green fluorescence

  18. Rheology of organoclay suspension

    CSIR Research Space (South Africa)

    Hato, MJ

    2011-05-01

    Full Text Available The authors have studied the rheological properties of clay suspensions in silicone oil, where clay surfaces were modified with three different types of surfactants. Dynamic oscillation measurements showed a plateau-like behavior for all...

  19. Hydropneumatic suspension systems

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Wolfgang

    2011-07-01

    Hydropneumatic suspensions systems combine the excellent properties of gas springs with the favourable damping properties of hydraulic fluids. The advantages of these systems are particularly appropriate for automotive applications, such as passenger cars, trucks and agricultural equipment. In this book, Dr. Bauer provides an extensive overview of hydropneumatic suspension systems. Starting with a comparison of different types of suspension systems, the author subsequently describes the theoretical background associated with spring and damping characteristics of hydropneumatic systems and furthermore explains the design of the most important system components. Additionally he gives an overview of level control systems and various special functions. Finally the technology is illustrated by design examples and the outlook for future hydropneumatic suspensions is discussed. (orig.)

  20. Suspension Trauma / Orthostatic Intolerance

    Science.gov (United States)

    ... Suspension Trauma/Orthostatic Intolerance Safety and Health Information Bulletin SHIB 03-24-2004, updated 2011 This Safety ... the harness, the environmental conditions, and the worker's psychological state all may increase the onset and severity ...

  1. Aesthetically Pleasing Conjugated Polymer: Fullerene Blends for Blue-Green Solar Cells Via Roll-to-Roll Processing

    DEFF Research Database (Denmark)

    Amb, Chad M.; Craig, Michael R.; Koldemir, Unsal

    2012-01-01

    as a thin-film deposition technique due its convenience. We report on the significant differences between the spin-coating of laboratory solar cells and slot-die coating of a blue-green colored, low bandgap polymer (PGREEN). This is one of the first demonstrations of slot-die-coated polymer solar cells OPVs......The practical application of organic photovoltaic (OPV) cells requires high throughput printing techniques in order to attain cells with an area large enough to provide useful amounts of power. However, in the laboratory screening of new materials for OPVs, spin-coating is used almost exclusively...... not utilizing poly(3-hexylthiophene):(6,6)-phenyl-C61-butyric acid methyl ester (PCBM) blends as a light absorbing layer. Through synthetic optimization, we show that strict protocols are necessary to yield polymers which achieve consistent photovoltaic behavior. We fabricated spin-coated laboratory scale OPV...

  2. The Mystical Suspension

    Directory of Open Access Journals (Sweden)

    Héctor Santiesteban Oliva

    2016-11-01

    Full Text Available Mistical suspension, silence, time, absolute, ontology, ineffability, aletheiaIn the mystical ecstasy there is a sensorial and intellectual suspension when contemplating the absolute, the ontological Being. Silence is not only significant: it is revealing. The greatest expression of experience inner silence . The word is insufficient when the ontological reality is revealed. Revelation or truth , the Greek concept of aletheia, takes on greater significance in that transcendental experience. It is also suspended phenomenological time and remains eternity open.

  3. Mesenchymal stromal cell secretomes are modulated by suspension time, delivery vehicle, passage through catheter, and exposure to adjuvants.

    Science.gov (United States)

    Parsha, Kaushik; Mir, Osman; Satani, Nikunj; Yang, Bing; Guerrero, Waldo; Mei, Zhuyong; Cai, Chunyan; Chen, Peng R; Gee, Adrian; Hanley, Patrick J; Aronowski, Jaroslaw; Savitz, Sean I

    2017-01-01

    Extensive animal data indicate that mesenchymal stromal cells (MSCs) improve outcome in stroke models. Intra-arterial (IA) injection is a promising route of delivery for MSCs. Therapeutic effect of MSCs in stroke is likely based on the broad repertoire of secreted trophic and immunomodulatory cytokines produced by MSCs. We determined the differential effects of exposing MSCs to different types of clinically relevant vehicles, and/or different additives and passage through a catheter relevant to IA injections. MSCs derived from human bone marrow were tested in the following vehicles: 5% albumin (ALB), 6% Hextend (HEX) and 40% dextran (DEX). Each solution was tested (i) alone, (ii) with low-dose heparin, (iii) with 10% Omnipaque, or (iv) a combination of heparin and Omnipaque. Cells in vehicles were collected directly or passed through an IA catheter, and MSC viability and cytokine release profiles were assessed. Cell viability remained above 90% under all tested conditions with albumin being the highest at 97%. Viability was slightly reduced after catheter passage or exposure to heparin or Omnipaque. Catheter passage had little effect on MSC cytokine secretion. ALB led to increased release of angiogenic factors such as vascular endothelial growth factor compared with other vehicles, while HEX and DEX led to suppression of pro-inflammatory cytokines such as interleukin-6. However, when these three vehicles were subjected to catheter passage and/or exposure to additives, the cytokine release profile varied depending on the combination of conditions to which MSCs were exposed. Exposure of MSCs to certain types of vehicles or additives changes the profile of cytokine secretion. The activation phenotype of MSCs may therefore be affected by the vehicles used for these cells or the exposure to the adjuvants used in their administration. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  4. The preparation of steatite suspension for spray drying

    Science.gov (United States)

    Jirousek, L.; Spicak, K.

    1983-01-01

    Liquifying agents were investigated for preparation of highly concentrated steatite suspensions which are to be spray-dried. Organic additives for improving the molding properties and strength of green compacts are described. Demands on properties of the spray-dried granules are defined with regard to shrinkage of the molded compacts.

  5. Evidence for the involvement of tetrahydrofolate in the demethylation of nicotine by Nicotiana plumbaginifolia cell-suspension cultures.

    Science.gov (United States)

    Mesnard, François; Roscher, Albrecht; Garlick, Andrew P; Girard, Sandrine; Baguet, Evelyne; Arroo, Randolf R J; Lebreton, Jacques; Robins, Richard J; Ratcliffe, GeorgeR

    2002-04-01

    The conversion of nicotine to nornicotine by Nicotiana plumbaginifolia Viv. cells was investigated by analysing the redistribution of label during feeding experiments with (R,S)-[2H- methyl]nicotine, (R,S)-[13C- methyl]nicotine and (R,S)-[14C- methyl]nicotine, and the results show that the N-methyl group of nicotine can be recycled into primary metabolism. Nuclear magnetic resonance (NMR) analysis of ethanolic extracts of cells grown in the presence of (R,S)-[13C- methyl]nicotine, using 1H-13C correlation spectroscopy (HMQC, HMBC), revealed the presence of [3-13C]serine and [13C- methyl]methionine. Label was also identified in a cysteinyl derivative and in several methoxylated compounds, but no evidence was obtained with either NMR or ion-trap mass spectrometry for the presence of any intermediate between nicotine and nornicotine. However, experiments with (R,S)-[14C- methyl]nicotine indicated that 70-75% of the metabolised label was released as carbon dioxide. These results are consistent with a pathway in which the oxidative hydrolysis of the nicotine methyl produces an unstable intermediate, N'-hydroxymethylnornicotine, that breaks down spontaneously to nornicotine and formaldehyde, with the formaldehyde being metabolised either directly to formate and carbon dioxide, or through the tetrahydrofolate-mediated pathways of one-carbon metabolism. However since the key intermediate, N-hydroxymethylnornicotine, could not be detected, the possibility of a direct methyl group transfer to tetrahydrofolate cannot be excluded.

  6. Phagocytosis in phosphate chromium (III) suspensions

    International Nuclear Information System (INIS)

    Cruz-Arencibia, Jorge; Fano Machín, Yoiz; Cruz-Morales, Ahmed; Tamayo Fuente, Radamés; Morín-Zorrilla, José

    2015-01-01

    Phagocytosis in vivo and in vitro of a suspension of chromic phosphate (III) labeled with 51 Cr and 32 P is studied. The radioactive particles dispersed in a media of 2 % gelatin in acetate buffer pH 4-4.5 have a predominant size of 0.8 μm and 5 μm. According with biodistribution experiments in rats after 30 minutes near the 80 % of radioactivity is registered in the liver, probably associated with phagocytosis of the particles by liver Kupffer cells. Is also showed that the suspension particles are phagocytized in vitro by mouse peritoneal macrophages. This facts indicate that the studied suspension have appropriate characteristics to be used in radiosynoviorthesis according to the principal action mechanism described for this procedure, particles phagocytosis by cells present in the inflamed synovium. (author)

  7. Towards green loyalty: the influences of green perceived risk, green image, green trust and green satisfaction

    Science.gov (United States)

    Chrisjatmiko, K.

    2018-01-01

    The paper aims to present a comprehensive framework for the influences of green perceived risk, green image, green trust and green satisfaction to green loyalty. The paper also seeks to account explicitly for the differences in green perceived risk, green image, green trust, green satisfaction and green loyalty found among green products customers. Data were obtained from 155 green products customers. Structural equation modeling was used in order to test the proposed hypotheses. The findings show that green image, green trust and green satisfaction has positive effects to green loyalty. But green perceived risk has negative effects to green image, green trust and green satisfaction. However, green perceived risk, green image, green trust and green satisfaction also seems to be a good device to gain green products customers from competitors. The contributions of the paper are, firstly, a more complete framework of the influences of green perceived risk, green image, green trust and green satisfaction to green loyalty analyses simultaneously. Secondly, the study allows a direct comparison of the difference in green perceived risk, green image, green trust, green satisfaction and green loyalty between green products customers.

  8. Red and green algal origin of diatom membrane transporters: insights into environmental adaptation and cell evolution.

    Directory of Open Access Journals (Sweden)

    Cheong Xin Chan

    Full Text Available Membrane transporters (MTs facilitate the movement of molecules between cellular compartments. The evolutionary history of these key components of eukaryote genomes remains unclear. Many photosynthetic microbial eukaryotes (e.g., diatoms, haptophytes, and dinoflagellates appear to have undergone serial endosymbiosis and thereby recruited foreign genes through endosymbiotic/horizontal gene transfer (E/HGT. Here we used the diatoms Thalassiosira pseudonana and Phaeodactylum tricornutum as models to examine the evolutionary origin of MTs in this important group of marine primary producers. Using phylogenomics, we used 1,014 diatom MTs as query against a broadly sampled protein sequence database that includes novel genome data from the mesophilic red algae Porphyridium cruentum and Calliarthron tuberculosum, and the stramenopile Ectocarpus siliculosus. Our conservative approach resulted in 879 maximum likelihood trees of which 399 genes show a non-lineal history between diatoms and other eukaryotes and prokaryotes (at the bootstrap value ≥70%. Of the eukaryote-derived MTs, 172 (ca. 25% of 697 examined phylogenies have members of both red/green algae as sister groups, with 103 putatively arising from green algae, 19 from red algae, and 50 have an unresolved affiliation to red and/or green algae. We used topology tests to analyze the most convincing cases of non-lineal gene history in which red and/or green algae were nested within stramenopiles. This analysis showed that ca. 6% of all trees (our most conservative estimate support an algal origin of MTs in stramenopiles with the majority derived from green algae. Our findings demonstrate the complex evolutionary history of photosynthetic eukaryotes and indicate a reticulate origin of MT genes in diatoms. We postulate that the algal-derived MTs acquired via E/HGT provided diatoms and other related microbial eukaryotes the ability to persist under conditions of fluctuating ocean chemistry, likely

  9. The Neuroprotective Effects of Brazilian Green Propolis on Neurodegenerative Damage in Human Neuronal SH-SY5Y Cells

    Directory of Open Access Journals (Sweden)

    Junjun Ni

    2017-01-01

    Full Text Available Oxidative stress and synapse dysfunction are the major neurodegenerative damage correlated to cognitive impairment in Alzheimer’s disease (AD. We have found that Brazilian green propolis (propolis improves the cognitive functions of mild cognitive impairment patients living at high altitude; however, mechanism underlying the effects of propolis is unknown. In the present study, we investigated the effects of propolis on oxidative stress, expression of brain-derived neurotrophic factor (BDNF, and activity-regulated cytoskeleton-associated protein (Arc, the critical factors of synapse efficacy, using human neuroblastoma SH-SY5Y cells. Pretreatment with propolis significantly ameliorated the hydrogen peroxide- (H2O2- induced cytotoxicity in SH-SY5Y cells. Furthermore, propolis significantly reduced the H2O2-generated reactive oxygen species (ROS derived from mitochondria and 8-oxo-2′-deoxyguanosine (8-oxo-dG, the DNA oxidative damage marker but significantly reversed the fibrillar β-amyloid and IL-1β-impaired BDNF-induced Arc expression in SH-SY5Y cells. Furthermore, propolis significantly upregulated BDNF mRNA expression in time- and dose-dependent manners. In addition, propolis induced Arc mRNA and protein expression via phosphoinositide-3 kinase (PI3K. These observations strongly suggest that propolis protects from the neurodegenerative damage in neurons through the properties of various antioxidants. The present study provides a potential molecular mechanism of Brazilian green propolis in prevention of cognitive impairment in AD as well as aging.

  10. In vitro biology of fibropapilloma-associated turtle herpesvirus and host cells in Hawaiian green turtles (Chelonia mydas)

    Science.gov (United States)

    Work, Thierry M.; Dagenais, Julie; Balazs, George H.; Schumacher, Joanne; Lewis, Teresa D.; Leong, Jo-Ann C.; Casey, Rufina N.; Casey, James W.

    2009-01-01

    Fibropapillomatosis (FP) of green turtles has a global distribution and causes debilitating tumours of the skin and internal organs in several species of marine turtles. FP is associated with a presently non-cultivable alphaherpesvirus Chelonid fibropapilloma-associated herpesvirus (CFPHV). Our aims were to employ quantitative PCR targeted to pol DNA of CFPHV to determine (i) if DNA sequesters by tumour size and/or cell type, (ii) whether subculturing of cells is a viable strategy for isolating CFPHV and (iii) whether CFPHV can be induced to a lytic growth cycle in vitro using chemical modulators of replication (CMRs), temperature variation or co-cultivation. Additional objectives included determining whether non-tumour and tumour cells behave differently in vitro and confirming the phenotype of cultured cells using cell-type-specific antigens. CFPHV pol DNA was preferentially concentrated in dermal fibroblasts of skin tumours and the amount of viral DNA per cell was independent of tumour size. Copy number of CFPHV pol DNA per cell rapidly decreased with cell doubling of tumour-derived fibroblasts in culture. Attempts to induce viral replication in known CFPHV-DNA-positive cells using temperature or CMR failed. No significant differences were seen in in vitro morphology or growth characteristics of fibroblasts from tumour cells and paired normal skin, nor from CFPHV pol-DNA-positive intestinal tumour cells. Tumour cells were confirmed as fibroblasts or keratinocytes by positive staining with anti-vimentin and anti-pancytokeratin antibodies, respectively. CFPHV continues to be refractory to in vitro cultivation.

  11. Role of dissolved oxygen on the degradation mechanism of Reactive Green 19 and electricity generation in photocatalytic fuel cell.

    Science.gov (United States)

    Lee, Sin-Li; Ho, Li-Ngee; Ong, Soon-An; Wong, Yee-Shian; Voon, Chun-Hong; Khalik, Wan Fadhilah; Yusoff, Nik Athirah; Nordin, Noradiba

    2018-03-01

    In this study, a membraneless photocatalytic fuel cell with zinc oxide loaded carbon photoanode and platinum loaded carbon cathode was constructed to investigate the impact of dissolved oxygen on the mechanism of dye degradation and electricity generation of photocatalytic fuel cell. The photocatalytic fuel cell with high and low aeration rate, no aeration and nitrogen purged were investigated, respectively. The degradation rate of diazo dye Reactive Green 19 and the electricity generation was enhanced in photocatalytic fuel cell with higher dissolved oxygen concentration. However, the photocatalytic fuel cell was still able to perform 37% of decolorization in a slow rate (k = 0.033 h -1 ) under extremely low dissolved oxygen concentration (approximately 0.2 mg L -1 ) when nitrogen gas was introduced into the fuel cell throughout the 8 h. However, the change of the UV-Vis spectrum indicates that the intermediates of the dye could not be mineralized under insufficient dissolved oxygen level. In the aspect of electricity generation, the maximum short circuit current (0.0041 mA cm -2 ) and power density (0.00028 mW cm -2 ) of the air purged photocatalytic fuel cell was obviously higher than that with nitrogen purging (0.0015 mA cm -2 and 0.00008 mW cm -2 ). Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Hybrid superconducting magnetic suspensions

    International Nuclear Information System (INIS)

    Tixador, P.; Hiebel, P.; Brunet, Y.; Chaud, X.; Gautier-Picard, P.

    1996-01-01

    Superconductors, especially high T c ones, are the most attractive materials to design stable and fully passive magnetic suspensions which have to control five degrees of freedom. The hybrid superconducting magnetic suspensions present high performances and a simple cooling mode. They consist of a permanent magnet bearing, stabilized by a suitable magnet-superconductor structure. Several designs are given and compared in terms of forces and stiffnesses. The design of the magnet bearing plays an important part. The superconducting magnetic bearing participates less in levitation but must provide a high stabilizing stiffness. This is achieved by the magnet configuration, a good material in term of critical current density and field cooling. A hybrid superconducting suspension for a flywheel is presented. This system consists of a magnet thrust bearing stabilized by superconductors interacting with an alternating polarity magnet structure. First tests and results are reported. Superconducting materials are magnetically melt-textured YBaCuO

  13. Production of "Green Natural Gas" Using Solid Oxide Electrolysis Cells (SOEC): Status of Technology and Costs

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg; Jensen, Søren Højgaard; Ebbesen, Sune Dalgaard

    2012-01-01

    energy sources only. Also dimethyl ether (DME = (CH3)2O), which might be called Liquefied Green Gas, LGG, in analogy to Liquefied Petroleum Gas, LPG, because DME has properties similar to LPG. It further gives a short review of the state of the art of electrolysis in general and SOEC in particular......This paper gives arguments in favour of using green natural gas (GNG) as storage media for the intermittent renewable energy sources. GNG is here defined as being CH4, i.e. methane, often called synthetic natural gas or substitute natural gas (SNG), produced using renewable or at least CO2 neutral....... Production of synthesis gas (H2 + CO) from CO2 and H2O using SOEC technology is evaluated. GNG and LGG can be produced from synthesis gas (or short: syngas) by means of well established commercially available catalysis technology. Finally, estimations of costs and efficiencies are presented and the relative...

  14. Transcriptional analysis of cell growth and morphogenesis in the unicellular green alga Micrasterias (Streptophyta, with emphasis on the role of expansin

    Directory of Open Access Journals (Sweden)

    Leliaert Frederik

    2011-09-01

    Full Text Available Abstract Background Streptophyte green algae share several characteristics of cell growth and cell wall formation with their relatives, the embryophytic land plants. The multilobed cell wall of Micrasterias denticulata that rebuilds symmetrically after cell division and consists of pectin and cellulose, makes this unicellular streptophyte alga an interesting model system to study the molecular controls on cell shape and cell wall formation in green plants. Results Genome-wide transcript expression profiling of synchronously growing cells identified 107 genes of which the expression correlated with the growth phase. Four transcripts showed high similarity to expansins that had not been examined previously in green algae. Phylogenetic analysis suggests that these genes are most closely related to the plant EXPANSIN A family, although their domain organization is very divergent. A GFP-tagged version of the expansin-resembling protein MdEXP2 localized to the cell wall and in Golgi-derived vesicles. Overexpression phenotypes ranged from lobe elongation to loss of growth polarity and planarity. These results indicate that MdEXP2 can alter the cell wall structure and, thus, might have a function related to that of land plant expansins during cell morphogenesis. Conclusions Our study demonstrates the potential of M. denticulata as a unicellular model system, in which cell growth mechanisms have been discovered similar to those in land plants. Additionally, evidence is provided that the evolutionary origins of many cell wall components and regulatory genes in embryophytes precede the colonization of land.

  15. Magnetic Suspension Technology Workshop

    International Nuclear Information System (INIS)

    Keckler, C.R.; Groom, N.J.; Britcher, C.P.

    1993-01-01

    In order to identify the state of magnetic suspension technology in such areas as rotating systems, pointing of experiments or subsystems, payload isolation, and superconducting materials, a workshop on Magnetic Suspension Technology was held at the Langley Research Center in Hampton, Virginia, on 2-4 Feb. 1988. The workshop included five technical sessions in which a total of 24 papers were presented. The technical sessions covered the areas of pointing, isolation, and measurement, rotating systems, modeling and control, and superconductors. A list of attendees is provided. Separate abstracts have been prepared for articles from this report

  16. Improving brightness and photostability of green and red fluorescent proteins for live cell imaging and FRET reporting.

    Science.gov (United States)

    Bajar, Bryce T; Wang, Emily S; Lam, Amy J; Kim, Bongjae B; Jacobs, Conor L; Howe, Elizabeth S; Davidson, Michael W; Lin, Michael Z; Chu, Jun

    2016-02-16

    Many genetically encoded biosensors use Förster resonance energy transfer (FRET) to dynamically report biomolecular activities. While pairs of cyan and yellow fluorescent proteins (FPs) are most commonly used as FRET partner fluorophores, respectively, green and red FPs offer distinct advantages for FRET, such as greater spectral separation, less phototoxicity, and lower autofluorescence. We previously developed the green-red FRET pair Clover and mRuby2, which improves responsiveness in intramolecular FRET reporters with different designs. Here we report the engineering of brighter and more photostable variants, mClover3 and mRuby3. mClover3 improves photostability by 60% and mRuby3 by 200% over the previous generation of fluorophores. Notably, mRuby3 is also 35% brighter than mRuby2, making it both the brightest and most photostable monomeric red FP yet characterized. Furthermore, we developed a standardized methodology for assessing FP performance in mammalian cells as stand-alone markers and as FRET partners. We found that mClover3 or mRuby3 expression in mammalian cells provides the highest fluorescence signals of all jellyfish GFP or coral RFP derivatives, respectively. Finally, using mClover3 and mRuby3, we engineered an improved version of the CaMKIIα reporter Camuiα with a larger response amplitude.

  17. Effect of COOH-functionalized SWCNT addition on the electrical and photovoltaic characteristics of Malachite Green dye based photovoltaic cells

    International Nuclear Information System (INIS)

    Chakraborty, S.; Manik, N. B.

    2014-01-01

    We report the effect of COOH-functionalized single walled carbon nanotubes (COOH-SWCNT) on the electrical and photovoltaic characteristics of Malachite Green (MG) dye based photovoltaic cells. Two different types of photovoltaic cells were prepared, one with MG dye and another by incorporating COOH-SWCNT with this dye. Cells were characterized through different electrical and photovoltaic measurements including photocurrent measurements with pulsed radiation. From the dark current—voltage (I–V) characteristic results, we observed a certain transition voltage (V th ) for both the cells beyond which the conduction mechanism of the cells change sharply. For the MG dye, V th is 3.9 V whereas for COOH-SWCNT mixed with this dye, V th drops to 2.7 V. The device performance improves due to the incorporation of COOH-SWCNT. The open circuit voltage and short circuit current density change from 4.2 to 97 mV and from 108 to 965 μA/cm 2 respectively. Observations from photocurrent measurements show that the rate of growth and decay of the photocurrent are quite faster in the presence of COOH-SWCNT. This observation indicates a faster charge separation processes due to the incorporation of COOH-SWCNT in the MG dye cells. The high aspect ratio of COOH-SWCNT allows efficient conduction pathways for the generated charge carriers. (semiconductor devices)

  18. The vacuolar transport of aleurain-GFP and 2S albumin-GFP fusions is mediated by the same pre-vacuolar compartments in tobacco BY-2 and Arabidopsis suspension cultured cells.

    Science.gov (United States)

    Miao, Yansong; Li, Kwun Yee; Li, Hong-Ye; Yao, Xiaoqiang; Jiang, Liwen

    2008-12-01

    Soluble proteins reach vacuoles because they contain vacuolar sorting determinants (VSDs) that are recognized by vacuolar sorting receptor (VSR) proteins. Pre-vacuolar compartments (PVCs), defined by VSRs and GFP-VSR reporters in tobacco BY-2 cells, are membrane-bound intermediate organelles that mediate protein traffic from the Golgi apparatus to the vacuole in plant cells. Multiple pathways have been demonstrated to be responsible for vacuolar transport of lytic enzymes and storage proteins to the lytic vacuole (LV) and the protein storage vacuole (PSV), respectively. However, the nature of PVCs for LV and PSV pathways remains unclear. Here, we used two fluorescent reporters, aleurain-GFP and 2S albumin-GFP, that represent traffic of lytic enzymes and storage proteins to LV and PSV, respectively, to study the PVC-mediated transport pathways via transient expression in suspension cultured cells. We demonstrated that the vacuolar transport of aleurain-GFP and 2S albumin-GFP was mediated by the same PVC populations in both tobacco BY-2 and Arabidopsis suspension cultured cells. These PVCs were defined by the seven GFP-AtVSR reporters. In wortmannin-treated cells, the vacuolated PVCs contained the mRFP-AtVSR reporter in their limiting membranes, whereas the soluble aleurain-GFP or 2S albumin-GFP remained in the lumen of the PVCs, indicating a possible in vivo relationship between receptor and cargo within PVCs.

  19. Biological and Mechanistic Characterization of Novel Prodrugs of Green Tea Polyphenol Epigallocatechin Gallate Analogs in Human Leiomyoma Cell Lines.

    Science.gov (United States)

    Ahmed, Reda Saber Ibrahim; Liu, Gang; Renzetti, Andrea; Farshi, Pershang; Yang, Huanjie; Soave, Claire; Saed, Ghassan; El-Ghoneimy, Ashraf Ahmed; El-Banna, Hossny Awad; Foldes, Robert; Chan, Tak-Hang; Dou, Q Ping

    2016-10-01

    Uterine fibroids (leiomyomas) are very common benign tumors grown on the smooth muscle layer of the uterus, present in up to 75% of reproductive-age women and causing significant morbidity in a subset of this population. Although the etiology and biology of uterine fibroids are unclear, strong evidence supports that cell proliferation, angiogenesis and fibrosis are involved in their formation and growth. Currently the only cure for uterine fibroids is hysterectomy; the available alternative therapies have limitations. Thus, there is an urgent need for developing a novel strategy for treating this condition. The green tea polyphenol epigallocatechin gallate (EGCG) inhibits the growth of uterine leiomyoma cells in vitro and in vivo, and the use of a green tea extract (containing 45% EGCG) has demonstrated clinical activity without side effects in women with symptomatic uterine fibroids. However, EGCG has a number of shortcomings, including low stability, poor bioavailability, and high metabolic transformations under physiological conditions, presenting challenges for its development as a therapeutic agent. We developed a prodrug of EGCG (Pro-EGCG or 1) which shows increased stability, bioavailability and biological activity in vivo as compared to EGCG. We also synthesized prodrugs of EGCG analogs, compounds 2a and 4a, in order to potentially reduce their susceptibility to methylation/inhibition by catechol-O-methyltransferase. Here, we determined the effect of EGCG, Pro-EGCG, and 2a and 4a on cultured human uterine leiomyoma cells, and found that 2a and 4a have potent antiproliferative, antiangiogenic, and antifibrotic activities. J. Cell. Biochem. 117: 2357-2369, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  20. Compressible Fluid Suspension Performance Testing

    National Research Council Canada - National Science Library

    Hoogterp, Francis

    2003-01-01

    ... compressible fluid suspension system that was designed and installed on the vehicle by DTI. The purpose of the tests was to evaluate the possible performance benefits of the compressible fluid suspension system...

  1. Increased chemopreventive effect by combining arctigenin, green tea polyphenol and curcumin in prostate and breast cancer cells

    Science.gov (United States)

    Wang, Piwen; Wang, Bin; Chung, Seyung; Wu, Yanyuan; Henning, Susanne M.; Vadgama, Jaydutt V.

    2014-01-01

    The low bioavailability of most flavonoids limits their application as anti-carcinogenic agents in humans. A novel approach of treatment with a mixture of bioactive compounds that share molecular anti-carcinogenic targets may enhance the effect on these targets at low concentrations of individual compound, thereby overcoming the limitations of reduced bioavailability. We therefore investigated whether a combination of three natural products arctigenin (Arc), a novel anti-inflammatory lignan from the seeds of Arctium lappa, green tea polyphenol (−)-epigallocatechin gallate (EGCG) and curcumin (Cur) increases the chemopreventive potency of individual compounds. LNCaP prostate cancer and MCF-7 breast cancer cells were treated with 2–4 mg/L (about 5–10μM) Cur, 1μM Arc and 40μM EGCG alone or in combination for 48h. In both cell lines treatment with the mixture of Cur, Arc and EGCG synergistically increased the antiproliferative effect. In LNCaP cells both Arc and EGCG increased the pro-apoptotic effect of Cur. Whereas in MCF-7 cells Arc increased the cell apoptosis of Cur while EGCG enhanced cell cycle arrest of Cur at G0/G1 phase. The strongest effects on cell cycle arrest and apoptosis were achieved by combining all three compounds in both cell lines. The combination treatment significantly increased the ratio of Bax to Bcl-2 proteins, decreased the activation of NFκB, PI3K/Akt and Stat3 pathways and cell migration compared to individual treatment. These results warrant in vivo studies to confirm the efficacy of this novel regimen by combining Arc and EGCG with Cur to enhance chemoprevention in both prostate and breast cancer. PMID:25243063

  2. Multiobjective suspension control problem

    NARCIS (Netherlands)

    Jager, de A.G.

    1995-01-01

    The paper describes a (controller) design problem in the field of suspension systems for transport vehicles. A ten degrees-of-freedom model for a tractor-semitrailer vehicle is presented, using parameters derived from a real vehicle, which should be used for design and verification purposes. Road

  3. The role of bone marrow-derived cells in bone fracture repair in a green fluorescent protein chimeric mouse model

    International Nuclear Information System (INIS)

    Taguchi, Kazuhiro; Ogawa, Rei; Migita, Makoto; Hanawa, Hideki; Ito, Hiromoto; Orimo, Hideo

    2005-01-01

    We investigated the role of bone marrow cells in bone fracture repair using green fluorescent protein (GFP) chimeric model mice. First, the chimeric model mice were created: bone marrow cells from GFP-transgenic C57BL/6 mice were injected into the tail veins of recipient wild-type C57BL/6 mice that had been irradiated with a lethal dose of 10 Gy from a cesium source. Next, bone fracture models were created from these mice: closed transverse fractures of the left femur were produced using a specially designed device. One, three, and five weeks later, fracture lesions were extirpated for histological and immunohistochemical analyses. In the specimens collected 3 and 5 weeks after operation, we confirmed calluses showing intramembranous ossification peripheral to the fracture site. The calluses consisted of GFP- and osteocalcin-positive cells at the same site, although the femur consisted of only osteocalcin-positive cells. We suggest that bone marrow cells migrated outside of the bone marrow and differentiated into osteoblasts to make up the calluses

  4. effect of natural blue-green algal cells lysis on freshwater quality

    African Journals Online (AJOL)

    Compaq

    released into water due to algal cells lysis was performed by placing samples in two ... Keywords; Algae, cells lysis, Fatty acids, gas chromatography time-of-flight mass spectrometry, water quality ... Factors such as municipal and industrial.

  5. The Genome Landscape of the African Green Monkey Kidney-Derived Vero Cell Line

    OpenAIRE

    Osada, Naoki; Kohara, Arihiro; Yamaji, Toshiyuki; Hirayama, Noriko; Kasai, Fumio; Sekizuka, Tsuyoshi; Kuroda, Makoto; Hanada, Kentaro

    2014-01-01

    Continuous cell lines that originate from mammalian tissues serve as not only invaluable tools for life sciences, but also important animal cell substrates for the production of various types of biological pharmaceuticals. Vero cells are susceptible to various types of microbes and toxins and have widely contributed to not only microbiology, but also the production of vaccines for human use. We here showed the genome landscape of a Vero cell line, in which 25,877 putative protein-coding genes...

  6. EFECTO ANTIALIMENTARIO DE LOS EXTRACTOS DE SUSPENSIONES CELULARES DE Azadirachta indica SOBRE Spodoptera frugiperda J. E. Smith EN CONDICIONES DE LABORATORIO ANTIFEEDANT EFFECT OF CELL SUSPENSION EXTRACTS OF Azadirachta indica ON Spodoptera frugiperda J. E. Smith UNDER LABORATORY CONDITIONS

    Directory of Open Access Journals (Sweden)

    Jacqueline Capataz Tafur

    2007-06-01

    Full Text Available Los extractos de neem (Azadirachta indica y sus ingredientes activos como la azadiractina, presentan acción antialimentaria e inhibición del desarrollo de muchos insectos. El objetivo de este estudio fue examinar el efecto antialimentario de los extractos de suspensiones celulares de neem elicitadas a diferentes condiciones de luz y temperatura. Los extractos fueron aplicados en discos de hojas de maíz y sometidas a bioensayos en larvas de segundo instar de Spodoptera frugiperda J. E. Smith (Lepidptera: Noctuidae. Los extractos intracelulares y del medio de cultivo de las suspensiones celulares de A. indica mostraron efecto biológico sobre larvas de S. frugiperda L2, con valores del 100 % de índice antialimentario para los extractos intracelulares de suspensiones de A. indica elicitadas a 15 °C y oscuridad, y del 39,3% para extractos extracelulares (medio de cultivo de suspensiones elicitadas a 35 °C y oscuridad.Extracts of neem (Azadirachta indica and their active ingredients as azadirachtin, present an action and inhibition of the development of many insects. In this study, the antifeedant effect of cell suspension extracts elicited to different conditions of light and temperature was examined. The extracts were applied in corn leaves disks and submitted to bioassays in larvae of second instar of Spodoptera frugiperda J. E. Smith (Lepidoptera: Noctuidae. The intracellular extracts and the culture media (supernatant of the cell suspensions of A. indica showed a biological effect on larvae of S. frugiperda L2, with values of the 100 % of antifeeding index for the intracellular extracts of cells elicited to 15 °C and darkness, and 39,3% of antifeeding index for extracellular extracts (medium of cultivation of elicited suspensions to 35°C , and darkness.

  7. Study of cell-differentiation and assembly of photosynthetic proteins during greening of etiolated Zea mays leaves using confocal fluorescence microspectroscopy at liquid-nitrogen temperature.

    Science.gov (United States)

    Shibata, Yutaka; Katoh, Wataru; Tahara, Yukari

    2013-04-01

    Fluorescence microspectroscopy observations were used to study the processes of cell differentiation and assemblies of photosynthesis proteins in Zea mays leaves under the greening process. The observations were done at 78K by setting the sample in a cryostat to avoid any undesired progress of the greening process during the measurements. The lateral and axial spatial resolutions of the system were 0.64μm and 4.4μm, respectively. The study revealed the spatial distributions of protochlorophyllide (PChld) in both the 632-nm-emitting and 655-nm-emitting forms within etiolated Zea mays leaves. The sizes of the fluorescence spots attributed to the former were larger than those of the latter, validating the assignment of the former and latter to the prothylakoid and prolamellar bodies, respectively. In vivo microspectroscopy observations of mature Zea mays leaves confirmed the different photosystem II (PS I)/photosystem I (PS II) ratio between the bundle sheath (BS) and mesophyll (MS) cells, which is specific for C4-plants. The BS cells in Zea mays leaves 1h after the initiation of the greening process tended to show fluorescence spectra at shorter wavelength side (at around 679nm) than the MS cells (at around 682nm). The 679-nm-emitting chlorophyll-a form observed mainly in the BS cells was attributed to putative precursor complexes to PS I. The BS cells under 3-h greening showed higher relative intensities of the PS I fluorescence band at around 735nm, suggesting the reduced PS II amount in the BS cells in this greening stage. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Studies on Cytotoxic Activity against HepG-2 Cells of Naphthoquinones from Green Walnut Husks of Juglans mandshurica Maxim.

    Science.gov (United States)

    Zhou, Yuanyuan; Yang, Bingyou; Jiang, Yanqiu; Liu, Zhaoxi; Liu, Yuxin; Wang, Xiaoli; Kuang, Haixue

    2015-08-26

    Twenty-seven naphthoquinones and their derivatives, including four new naphthalenyl glucosides and twenty-three known compounds, were isolated from green walnut husks, which came from Juglans mandshurica Maxim. The structures of four new naphthalenyl glucosides were elucidated based on extensive spectroscopic analyses. All of these compounds were evaluated for their cytotoxic activities against the growth of human cancer cells lines HepG-2 by MTT [3-(4,5-dimethylthiazo l-2-yl)-2,5 diphenyl tetrazolium bromide] assay. The results were shown that most naphthoquinones in an aglycone form exhibited better cytotoxicity in vitro than naphthalenyl glucosides with IC50 values in the range of 7.33-88.23 μM. Meanwhile, preliminary structure-activity relationships for these compounds were discussed.

  9. Phytochrome-mediated responses of cells and protoplasts of green calli obtained from the leaves of a CAM plant.

    Science.gov (United States)

    Mricha, A; Brulfert, J; Pierre, J N; Queiroz, O

    1990-04-01

    Green callus obtained from leaves of the CAM-inducible plant Kalanchoe blossfeldiana cv. Montezuma has previously been shown to perform C3-type photosynthesis under 16-h days and to shift to crassulacean acid metabolism (CAM) under 9-h days. The utilization of photoperiodic regimes (i.e. night interruptions by 30 min red light) established that CAM induction in the callus was under the control of phytochrome, as shown by measurements of CAM criteria: phosphoenolpyruvate carboxylase activity and malic acid pools. Short-term responsiveness of the callus cells to phytochrome modulations by monochromatic radiations was also established by the rapid changes observed in the diameter of the callus-derived protoplasts. These results provide further evidence that whole plant correlations are not necessary for phytochrome operativity.

  10. Cell growth and protein synthesis of unicellular green alga Chlamydomonas in heavy water

    International Nuclear Information System (INIS)

    Ishida, M.R.

    1983-01-01

    The effects of heavy water on the cell growth and protein synthesis of the photoautotrophically growing Chlamydomonas cells were studied. The growth rate of the cells is inversely proportional to the concentrations of heavy water. The cells can barely live in 90% heavy water, but they die in 99.85% heavy water within a few days. Incorporation of 14 Cleucine into cells is markedly stimulated by heavy water of various concentrations between 30 and 99.85% in the case of the short time incubation. Contrary to this, in the long time incubation as several days, heavy water inhibits the protein synthesis. Such two modes of the protein synthetic activities are dependent upon the incubation time of the cells grown photoautotrophically in the heavy water media. (author)

  11. Navigating the plant cell: intracellular transport logistics in the green kingdom.

    Science.gov (United States)

    Geitmann, Anja; Nebenführ, Andreas

    2015-10-01

    Intracellular transport in plant cells occurs on microtubular and actin arrays. Cytoplasmic streaming, the rapid motion of plant cell organelles, is mostly driven by an actin-myosin mechanism, whereas specialized functions, such as the transport of large cargo or the assembly of a new cell wall during cell division, are performed by the microtubules. Different modes of transport are used, fast and slow, to either haul cargo over long distances or ascertain high-precision targeting, respectively. Various forms of the actin-specific motor protein myosin XI exist in plant cells and might be involved in different cellular functions. © 2015 Geitmann and Nebenführ. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  12. Distribution and Spectroscopy of Green Fluorescent Protein and Acyl-CoA: Cholesterol Acytransferase in Sf21 Insect Cells

    Science.gov (United States)

    Richmond, R. C.; Mahtani, H.; Lu, X.; Chang, T. Y.; Malak, H.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Acyl-CoA: cholesterol acyltransferase (ACAT) is thought to significantly participate in the pathway of cholesterol esterification that underlies the pathology of artherosclerosis. This enzyme is a membrane protein known to be preferentially bound within the endoplasmic reticulum of mammalian cells, from which location it esterifies cholesterol derived from low density lipoprotein. Cultures of insect cells were separately infected with baculovirus containing the gene for green fluroescent protein (GFP) and with baculovirus containing tandem genes for GFP and ACAT. These infected cultures expressed GFP and the fusion protein GCAT, respectively, with maximum expression occurring on the fourth day after infection. Extraction of GFP- and of GCAT-expressing cells with urea and detergent resulted in recovery of fluorescent protein in aqueous solution. Fluorescence spectra at neutral pH were identical for both GFP and GCAT extracts in aqueous solution, indicating unperturbed tertiary structure for the GFP moiety within GCAT. In a cholesterol esterification assay, GCAT demonstrated ACAT activity, but with less efficiency compared to native ACAT. It was hypothesized that the membrane protein ACAT would lead to differences in localization of GCAT compared to GFP within the respective expressing insect cells. The GFP marker directly and also within the fusion protein GCAT was accordingly used as the intracellular probe that was fluorescently analyzed by the new biophotonics technique of hyperspectral imaging. In that technique, fluorescence imaging was obtained from two dimensional arrays of cells, and regions of interest from within those images were then retrospectively analyzed for the emission spectra that comprises the image. Results of hyperspectral imaging of insect cells on day 4 postinfection showed that GCAT was preferentially localized to the cytoplasm of these cells compared to GFP. Furthermore, the emission spectra obtained for the localized GCAT displayed a peak

  13. Green tea epigallocatechin-3-gallate modulates differentiation of naive CD4+ T cells into specific lineage effector cells

    Science.gov (United States)

    CD4+ T helper (Th) subsets Th1, Th9, and Th17 cells are implicated in inducing autoimmunity whereas regulatory T cells (Treg) have a protective effect. We previously showed that epigallocatechin-3-gallate (EGCG) attenuated experimental autoimmune encephalomyelitis (EAE) and altered CD4+ T cell subpo...

  14. The Genome Landscape of the African Green Monkey Kidney-Derived Vero Cell Line

    Science.gov (United States)

    Osada, Naoki; Kohara, Arihiro; Yamaji, Toshiyuki; Hirayama, Noriko; Kasai, Fumio; Sekizuka, Tsuyoshi; Kuroda, Makoto; Hanada, Kentaro

    2014-01-01

    Continuous cell lines that originate from mammalian tissues serve as not only invaluable tools for life sciences, but also important animal cell substrates for the production of various types of biological pharmaceuticals. Vero cells are susceptible to various types of microbes and toxins and have widely contributed to not only microbiology, but also the production of vaccines for human use. We here showed the genome landscape of a Vero cell line, in which 25,877 putative protein-coding genes were identified in the 2.97-Gb genome sequence. A homozygous ∼9-Mb deletion on chromosome 12 caused the loss of the type I interferon gene cluster and cyclin-dependent kinase inhibitor genes in Vero cells. In addition, an ∼59-Mb loss of heterozygosity around this deleted region suggested that the homozygosity of the deletion was established by a large-scale conversion. Moreover, a genomic analysis of Vero cells revealed a female Chlorocebus sabaeus origin and proviral variations of the endogenous simian type D retrovirus. These results revealed the genomic basis for the non-tumourigenic permanent Vero cell lineage susceptible to various pathogens and will be useful for generating new sub-lines and developing new tools in the quality control of Vero cells. PMID:25267831

  15. A flow cytometry-optimized assay using an SOS-green fluorescent protein (SOS-GFP) whole-cell biosensor for the detection of genotoxins in complex environments

    DEFF Research Database (Denmark)

    Norman, Anders; Hansen, Lars H.; Sørensen, Søren Johannes

    2006-01-01

    /mL, and proved far more sensitive than a previously published assay using the same biosensor strain. By applying the SOS-green fluorescent protein (GFP) whole-cell biosensor directly to soil microcosms we were also able to evaluate both the applicability and sensitivity of a biosensor based on SOS...

  16. Green fluorescent protein-mtalin causes defects in actin organization and cell expansion in Arabidopsis and inhibits actin depolymerizing factor's actin depolymerizing activity in vitro

    NARCIS (Netherlands)

    Ketelaar, T.; Anthony, R.G.; Hussey, P.J.

    2004-01-01

    Expression of green fluorescent protein (GFP) linked to an actin binding domain is a commonly used method for live cell imaging of the actin cytoskeleton. One of these chimeric proteins is GFP-mTalin (GFP fused to the actin binding domain of mouse talin). Although it has been demonstrated that

  17. Green Tourism

    OpenAIRE

    Hasan, Ali

    2014-01-01

    Green tourism is defined as environmentally friendly tourism activities with various focuses and meanings. In a broad term, green tourism is about being an environmentally friendly tourist or providing environmentally friendly tourist services. The green tourism concept would be highly appealing to tourism enterprises and operators owing to increasing governmental pressure to improve environmental performance by adopting effective and tangible environmental management techniques. Green to...

  18. Metaphysical green

    OpenAIRE

    Earon, Ofri

    2011-01-01

    “Sensation of Green is about the mental process like touching, seeing, hearing, or smelling, resulting from the immediate stimulation of landscape forms, plants, trees, wind and water. Sensation of Green triggers a feeling of scale, cheerfulness, calmness and peace. The spatial performance of Sensation of Green is created by a physical interaction between the language of space and the language of nature” The notion of Sensation of Green was developed through a previous study ‘Learning from th...

  19. Evidence for land plant cell wall biosynthetic mechanisms in charophyte green algae

    DEFF Research Database (Denmark)

    Mikkelsen, Maria Dalgaard; Harholt, Jesper; Ulvskov, Peter

    2014-01-01

    in CGA is currently unknown, as no genomes are available, so this study sought to give insight into the evolution of the biosynthetic machinery of CGA through an analysis of available transcriptomes. METHODS: Available CGA transcriptomes were mined for cell wall biosynthesis GTs and compared with GTs...... to colonize land. These cell walls provide support and protection, are a source of signalling molecules, and provide developmental cues for cell differentiation and elongation. The cell wall of land plants is a highly complex fibre composite, characterized by cellulose cross-linked by non......-cellulosic polysaccharides, such as xyloglucan, embedded in a matrix of pectic polysaccharides. How the land plant cell wall evolved is currently unknown: early-divergent chlorophyte and prasinophyte algae genomes contain a low number of glycosyl transferases (GTs), while land plants contain hundreds. The number of GTs...

  20. Particle interactions in concentrated suspensions

    International Nuclear Information System (INIS)

    Mondy, L.A.; Graham, A.L.; Abbott, J.R.; Brenner, H.

    1993-01-01

    An overview is presented of research that focuses on slow flows of suspensions in which colloidal and inertial effects are negligibly small. The authors describe nuclear magnetic resonance imaging experiments to quantitatively measure particle migration occurring in concentrated suspensions undergoing a flow with a nonuniform shear rate. These experiments address the issue of how the flow field affects the microstructure of suspensions. In order to understand the local viscosity in a suspension with such a flow-induced, spatially varying concentration, one must know how the viscosity of a homogeneous suspension depends on such variables as solids concentration and particle orientation. The authors suggest the technique of falling ball viscometry, using small balls, as a method to determine the effective viscosity of a suspension without affecting the original microstructure significantly. They also describe data from experiments in which the detailed fluctuations of a falling ball's velocity indicate the noncontinuum nature of the suspension and may lead to more insights into the effects of suspension microstructure on macroscopic properties. Finally, they briefly describe other experiments that can be performed in quiescent suspensions (in contrast to the use of conventional shear rotational viscometers) in order to learn more about boundary effects in concentrated suspensions

  1. DNA damage in male gonad cells of Green mussel (Perna viridis) upon exposure to tobacco products

    Digital Repository Service at National Institute of Oceanography (India)

    Nagarajappa; Ganguly, A.; Goswami, U.

    DNA damage (determined by the Comet Assay) and the occurrence of deformed nuclei were measured as endpoints of genotoxicity in male gonad cells of the marine mussel (Perna viridis). Upon exposure of the organism to varying concentrations...

  2. Templated green synthesis of plasmonic silver nanoparticles in onion epidermal cells suitable for surface-enhanced Raman and hyper-Raman scattering

    DEFF Research Database (Denmark)

    Palanco, Marta Espina; Mogensen, Klaus Bo; Guehlke, Marina

    2016-01-01

    We report fast and simple green synthesis of plasmonic silver nanoparticles in the epidermal cells of onions after incubation with AgNO3 solution. The biological environment supports the generation of silver nanostructures in two ways. The plant tissue delivers reducing chemicals for the initial...... for one-and two-photon-excited spectroscopy such as surface enhanced Raman scattering (SERS) and surface enhanced hyper-Raman scattering (SEHRS). Our studies demonstrate a templated green preparation of enhancing plasmonic nanoparticles and suggest a new route to deliver silver nanoparticles as basic...... building blocks of plasmonic nanosensors to plants by the uptake of solutions of metal salts....

  3. Rheological properties of ceramic nanopowders in aqueous and nonaqueous suspensions

    International Nuclear Information System (INIS)

    Tomaszewski, H.; Loiko, E.M.

    2003-01-01

    The potential for ceramic nanocomposites to offer significantly enhanced mechanical properties is generally known since the first work of Niihara published in 1991. However achieving these properties needs carefully done colloidal processing, because ceramic nanopowders are naturally prone to agglomeration. The work presented here is concerned with the processing of zirconia/alumina nanocomposites via aqueous and alumina silicon carbide nanocomposites via nonaqueous colloidal route. The effect of pH of aqueous alumina and zirconia suspensions on properties of suspension and centrifuged green bodies was studied. A correlation between surface electric charge of grains (zeta potential)and agglomerate size, viscosity of suspension and porosity of green compacts was found. In the case of nonaqueous route alumina and silicon carbide suspensions in iso-propanol were investigated. Electrostatic surface charge of grains was changed by addition of chloroacetic acid and determined indirectly by the mass of powder deposited on electrode during electrophoresis. Different behaviour of SiC nanopowder than of alumina was observed and mechanism of charge creation is proposed on the base of DLVO theory. The effect of grain charge on preventing agglomeration on the silicon carbide powder is presented on micrographs of sintered nanocomposites. (author)

  4. MUCUNA PRURIENS - IMPROVEMENT OF THE BIOTECHNOLOGICAL PRODUCTION OF THE ANTI-PARKINSON DRUG L-DOPA BY PLANT-CELL SELECTION

    NARCIS (Netherlands)

    PRAS, N; WOERDENBAG, HJ; BATTERMAN, S; VISSER, JF; VANUDEN, W

    1993-01-01

    Routinely grown cell suspension cultures of Mucuna pruriens L. (Fabaceae) were able to endogenously accumulate the anti-Parkinson drug L-dihydroxyphenylalanine (L-dopa) in the range between 0.2 and 2% on a dry weight (DW) basis. The green colour that developed in light-exposed cultures, appeared to

  5. Metaphysical green

    DEFF Research Database (Denmark)

    Earon, Ofri

    2011-01-01

    example is a tiny Danish summer house from 1918 . The second example is ‘House before House’ , in Tokyo. The third example is a prefabricated house ‘CHU’ . The analysis evaluates the characteristics of diverse tones of green – from green image to green sensation. The analysis is based on the original...... of Sensation of Green is created by a physical interaction between the language of space and the language of nature” The notion of Sensation of Green was developed through a previous study ‘Learning from the Summer House’ investigating the unique architectural characteristics of the Danish summer houses...... the Sensation of Green? Three existing examples are agents to this discussion. The first example is a Danish summer house. The other two are international urban examples. While the summer house articulates the original meaning of Sensation of Green, the urban examples illustrate its urban context. The first...

  6. Green Approach To Synthesize Crystalline Nanoscale ZnII-Coordination Polymers: Cell Growth Inhibition and Immunofluorescence Study.

    Science.gov (United States)

    Mukherjee, Somali; Ganguly, Sumi; Manna, Krishnendu; Mondal, Sanchaita; Mahapatra, Supratim; Das, Debasis

    2018-04-02

    Five new coordination polymers (CPs) namely, [{Zn(μ 2 -H 2 O) 0.5 (5N 3 -IPA)(2,2'-bpe)}] ∞ (1), [{Zn(μ 2 -H 2 O) 0.5 (5N 3 -IPA)(1,10-phen)}] ∞ (2), [{Zn(5N 3 -IPA)(1,2-bpe)}] ∞ (3), [{Zn(5N 3 -IPA)(1,2-bpey)}] ∞ (4), and [{Zn(H 2 O)(5N 3 -IPA)(4,4'-tme)}(H 2 O) 0.5 ] ∞ (5) (5N 3 -H 2 IPA = 5-azidoisophthalic acid, 2,2'-bpe= 2,2'-bipyridine, 1,10-phen = 1,10-phenanthroline, 1,2-bpe = 1,2-bis(4-pyridyl)ethane, 1,2-bpey = 1,2-bis(4-pyridyl)ethylene, 4,4'-tme = 4,4'-trimethylenedipyridine), have been synthesized based on a mixed ligand approach adopting a solvothermal technique. Depending upon the intrinsic structural flexibility of the bis-pyridyl coligands, interesting structural topologies have also been observed in the resulting CPs: Sra SrAl2 type topology for 3 and a 3-fold interpenetrated dmp topology for 4. A green hand grinding technique has been implemented to reduce the particle size of the CPs to generate nanoscale CPs (NCPs). SEM studies of NCPs reveal the formation of square and spherical particles for NCP 1 and 2, respectively, and nano rod for NCP 3, 4, and 5. Remarkably, when scaled down to nano range all the NCPs retain their crystalline nature. The cytotoxic activity of the NCPs (1-5) has been studied using human colorectal carcinoma cells (HCT 116). Significant cell death is observed for NCP 2, which is further corroborated by cell growth inhibition study. The observed cell death is likely to be due to mitochondrial-assisted apoptosis as is evident from immunofluorescence study.

  7. Combined Enzymatic and Mechanical Cell Disruption and Lipid Extraction of Green Alga Neochloris oleoabundans

    Science.gov (United States)

    Wang, Dongqin; Li, Yanqun; Hu, Xueqiong; Su, Weimin; Zhong, Min

    2015-01-01

    Microalgal biodiesel is one of the most promising renewable fuels. The wet technique for lipids extraction has advantages over the dry method, such as energy-saving and shorter procedure. The cell disruption is a key factor in wet oil extraction to facilitate the intracellular oil release. Ultrasonication, high-pressure homogenization, enzymatic hydrolysis and the combination of enzymatic hydrolysis with high-pressure homogenization and ultrasonication were employed in this study to disrupt the cells of the microalga Neochloris oleoabundans. The cell disruption degree was investigated. The cell morphology before and after disruption was assessed with scanning and transmission electron microscopy. The energy requirements and the operation cost for wet cell disruption were also estimated. The highest disruption degree, up to 95.41%, assessed by accounting method was achieved by the combination of enzymatic hydrolysis and high-pressure homogenization. A lipid recovery of 92.6% was also obtained by the combined process. The combined process was found to be more efficient and economical compared with the individual process. PMID:25853267

  8. Combined Enzymatic and Mechanical Cell Disruption and Lipid Extraction of Green Alga Neochloris oleoabundans

    Directory of Open Access Journals (Sweden)

    Dongqin Wang

    2015-04-01

    Full Text Available Microalgal biodiesel is one of the most promising renewable fuels. The wet technique for lipids extraction has advantages over the dry method, such as energy-saving and shorter procedure. The cell disruption is a key factor in wet oil extraction to facilitate the intracellular oil release. Ultrasonication, high-pressure homogenization, enzymatic hydrolysis and the combination of enzymatic hydrolysis with high-pressure homogenization and ultrasonication were employed in this study to disrupt the cells of the microalga Neochloris oleoabundans. The cell disruption degree was investigated. The cell morphology before and after disruption was assessed with scanning and transmission electron microscopy. The energy requirements and the operation cost for wet cell disruption were also estimated. The highest disruption degree, up to 95.41%, assessed by accounting method was achieved by the combination of enzymatic hydrolysis and high-pressure homogenization. A lipid recovery of 92.6% was also obtained by the combined process. The combined process was found to be more efficient and economical compared with the individual process.

  9. Administrative license suspension: Does length of suspension matter?

    Science.gov (United States)

    Fell, James C; Scherer, Michael

    2017-08-18

    Administrative license revocation (ALR) laws, which provide that the license of a driver with a blood alcohol concentration at or over the illegal limit is subject to an immediate suspension by the state department of motor vehicles, are an example of a traffic law in which the sanction rapidly follows the offense. The power of ALR laws has been attributed to how swiftly the sanction is applied, but does the length of suspension matter? Our objectives were to (a) determine the relationship of the ALR suspension length to the prevalence of drinking drivers relative to sober drivers in fatal crashes and (b) estimate the extent to which the relationship is associated to the general deterrent effect compared to the specific deterrent effect of the law. Data comparing the impact of ALR law implementation and ALR law suspension periods were analyzed using structural equation modeling techniques on the ratio of drinking drivers to nondrinking drivers in fatal crashes from the Fatality Analysis Reporting System (FARS). States with an ALR law with a short suspension period (1-30 days) had a significantly lower drinking driver ratio than states with no ALR law. States with a suspension period of 91-180 days had significantly lower ratios than states with shorter suspension periods, while the three states with suspension lengths of 181 days or longer had significantly lower ratios than states with shorter suspension periods. The implementation of any ALR law was associated with a 13.1% decrease in the drinking/nondrinking driver fatal crash ratio but only a 1.8% decrease in the intoxicated/nonintoxicated fatal crash ratio. The ALR laws and suspension lengths had a significant general deterrent effect, but no specific deterrent effect. States might want to keep (or adopt) ALR laws for their general deterrent effects and pursue alternatives for specific deterrent effects. States with short ALR suspension periods should consider lengthening them to 91 days or longer.

  10. Sweet chemistry: a green way for obtaining selenium nanoparticles active against cancer cells

    International Nuclear Information System (INIS)

    Vieira, Adriana P.; Stein, Erika M.; Ferreira, Ana Maria D.C.; Colepicolo, Pio; Andreguetti, Daniel X.; Cebrián-Torrejón, Gerardo; Doménech-Carbó, Antonio

    2017-01-01

    We present an environment friendly synthesis of selenium nanoparticles and the study of their cytotoxic activity against uterine sarcoma cancer and fibroblasts cells. Amorphous selenium (a-SeNPs) and trigonal selenium (t-SeNPs) were synthesized using D-fructose as the reducing agent and characterized by high-resolution transmission electron microscopy (HRTEM), energy dispersive X-ray spectroscopy (EDX), powder X-ray diffraction analysis (XRD), inductively coupled plasma optical emission spectrometry (ICP OES), dynamic light scattering (DLS) to obtain zeta potential values and cyclic voltammetry (CV). Particularly, a-SeNPs presented high toxicity toward the resistant cancer cell line MES-SA/Dx5 and its parental MES-SA line. However, they are not toxic against P4 fibroblast cells in comparative studies. (author)

  11. Sweet chemistry: a green way for obtaining selenium nanoparticles active against cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Adriana P.; Stein, Erika M.; Ferreira, Ana Maria D.C.; Colepicolo, Pio, E-mail: apiresvieira@gmail.com [Universidade de São Paulo (USP), São Paulo-SP (Brazil); Andreguetti, Daniel X.; Cebrián-Torrejón, Gerardo; Doménech-Carbó, Antonio [Departament de Química Analítica, Facultat de Química, Universitat de València, Valencia (Spain)

    2017-07-01

    We present an environment friendly synthesis of selenium nanoparticles and the study of their cytotoxic activity against uterine sarcoma cancer and fibroblasts cells. Amorphous selenium (a-SeNPs) and trigonal selenium (t-SeNPs) were synthesized using D-fructose as the reducing agent and characterized by high-resolution transmission electron microscopy (HRTEM), energy dispersive X-ray spectroscopy (EDX), powder X-ray diffraction analysis (XRD), inductively coupled plasma optical emission spectrometry (ICP OES), dynamic light scattering (DLS) to obtain zeta potential values and cyclic voltammetry (CV). Particularly, a-SeNPs presented high toxicity toward the resistant cancer cell line MES-SA/Dx5 and its parental MES-SA line. However, they are not toxic against P4 fibroblast cells in comparative studies. (author)

  12. Development and characterization of a green fluorescent protein-based rat cell bioassay system for detection of AH receptor ligands

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Bin; Denison, M. [California Univ., Davis, CA (United States). Dept. of Environmental Toxicology

    2004-09-15

    Proper epidemiological, risk assessment and exposure analysis of TCDD and related HAHs requires accurate measurements of these chemicals both in the species of interest and in various exposure matrices (i.e. biological, environmental, food and feed). While high-resolution instrumental analysis techniques are established for these chemicals, these procedures are very costly, time-consuming and are impractical for large scale sampling studies. Accordingly, numerous bioanalytical methods have been developed for the detection of these chemicals in extracts from a variety of matrices, the majority of which take the advantage of the ability of these chemicals to activate one or more aspects of the AhR-dependent mechanism of action. One of the most sensitive bioassay systems developed to date is the so-called CALUX (Chemically Activated Luciferase Expression) assay, which is based on novel recombinant cell lines that contain a stably transfected dioxin (AhR)-responsive firefly luciferase gene. Treatment of these cells with TCDD and related HAHs and polycyclic aromatic hydrocarbons (PAHs), as well as other AhR ligands, results in induction of reporter gene expression in a time-, dose-, AhR-, and chemical-specific manner. The level of reporter gene expression correlates with the total concentration of the TCDD-like AhR inducers (agonists) present in the sample. Although the firefly luciferase reporter gene contributes to the high degree of sensitivity of the assay, it also has limitations with respect to our need for a rapid and inexpensive bioassay for high-throughput screening analysis. Accordingly, we previously developed a stably transfected murine cell line containing an AhRresponsive enhanced green fluorescent protein (EGFP) reporter gene. This cell line provided us with a high-throughput cell bioassay system for identification and characterization of AhR agonists and antagonists. Here we have extended these studies and describe the development, optimization, and

  13. Air-drying of cells, the novel conditions for stimulated synthesis of triacylglycerol in a Green Alga, Chlorella kessleri.

    Directory of Open Access Journals (Sweden)

    Takuma Shiratake

    Full Text Available Triacylglycerol is used for the production of commodities including food oils and biodiesel fuel. Microalgae can accumulate triacylglycerol under adverse environmental conditions such as nitrogen-starvation. This study explored the possibility of air-drying of green algal cells as a novel and simple protocol for enhancement of their triacylglycerol content. Chlorella kessleri cells were fixed on the surface of a glass fibre filter and then subjected to air-drying with light illumination. The dry cell weight, on a filter, increased by 2.7-fold in 96 h, the corresponding chlorophyll content ranging from 1.0 to 1.3-fold the initial one. Concomitantly, the triacylglycerol content remarkably increased to 70.3 mole% of fatty acids and 15.9% (w/w, relative to total fatty acids and dry cell weight, respectively, like in cells starved of nitrogen. Reduction of the stress of air-drying by placing the glass filter on a filter paper soaked in H2O lowered the fatty acid content of triacylglycerol to 26.4 mole% as to total fatty acids. Moreover, replacement of the H2O with culture medium further decreased the fatty acid content of triacylglycerol to 12.2 mole%. It thus seemed that severe dehydration is required for full induction of triacylglycerol synthesis, and that nutritional depletion as well as dehydration are crucial environmental factors. Meanwhile, air-drying of Chlamydomonas reinhardtii cells increased the triacylglycerol content to only 37.9 mole% of fatty acids and 4.8% (w/w, relative to total fatty acids and dry cell weight, respectively, and a marked decrease in the chlorophyll content, on a filter, of 33%. Air-drying thus has an impact on triacylglycerol synthesis in C. reinhardtii also, however, the effect is considerably limited, owing probably to instability of the photosynthetic machinery. This air-drying protocol could be useful for the development of a system for industrial production of triacylglycerol with appropriate selection of the

  14. Green synthesis of silver nanoparticles using Ganoderma neo-japonicum Imazeki: a potential cytotoxic agent against breast cancer cells

    Science.gov (United States)

    Gurunathan, Sangiliyandi; Raman, Jegadeesh; Malek, Sri Nurestri Abd; John, Priscilla A; Vikineswary, Sabaratnam

    2013-01-01

    Background Silver nanoparticles (AgNPs) are an important class of nanomaterial for a wide range of industrial and biomedical applications. AgNPs have been used as antimicrobial and disinfectant agents due their detrimental effect on target cells. The aim of our study was to determine the cytotoxic effects of biologically synthesized AgNPs using hot aqueous extracts of the mycelia of Ganoderma neo-japonicum Imazeki on MDA-MB-231 human breast cancer cells. Methods We developed a green method for the synthesis of water-soluble AgNPs by treating silver ions with hot aqueous extract of the mycelia of G. neo-japonicum. The formation of AgNPs was characterized by ultraviolet-visible absorption spectroscopy, X-ray diffraction, dynamic light scattering, and transmission electron microscopy. Furthermore, the toxicity of synthesized AgNPs was evaluated using a series of assays: such as cell viability, lactate dehydrogenase leakage, reactive oxygen species generation, caspase 3, DNA laddering, and terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick-end labeling in human breast cancer cells (MDA-MB-231). Results The ultraviolet-visible absorption spectroscopy results showed a strong resonance centered on the surface of AgNPs at 420 nm. The X-ray diffraction analysis confirmed that the synthesized AgNPs were single-crystalline, corresponding with the result of transmission electron microscopy. Treatment of MDA-MB-231 breast cancer cells with various concentrations of AgNPs (1–10 μg/mL) for 24 hours revealed that AgNPs could inhibit cell viability and induce membrane leakage in a dose-dependent manner. Cells exposed to AgNPs showed increased reactive oxygen species and hydroxyl radical production. Furthermore, the apoptotic effects of AgNPs were confirmed by activation of caspase 3 and DNA nuclear fragmentation. Conclusion The results indicate that AgNPs possess cytotoxic effects with apoptotic features and suggest that the reactive oxygen species generated by

  15. Correlation between structure and rheological properties of suspension of nanosized powders

    Energy Technology Data Exchange (ETDEWEB)

    Tabellion, J.; Clasen, R. [Saarland Univ., Saarbruecken (Germany). Dept. of Powder Technology; Reinshagen, J.; Oberacker, R.; Hoffmann, M.J. [Karlsruhe Univ. (Germany). Inst. for Ceramics in Mechanical Engineering

    2002-07-01

    Since the properties of a ceramic green body and compact produced thereof are strongly influenced by the properties of the suspension used, controlling structure and properties of a suspension is a very important issue in ceramic manufacturing. Macroscopically, the rheological properties of a suspension are the key parameters that influence the behaviour during the shaping process. The rheological behaviour of aqueous suspensions of nanosized fumed silica (DEGUSSA, Aerosil OX50) with different amounts of OX50 (10 to 50 wt.%) was measured over a pH-range from 1 to 13 by means of rotational viscosimetry. A distinct maximum of the viscosity was observed for a pH of about 7 to 8, independent of the solid content of the suspensions. Since the rheological behaviour of the suspensions could not be explained by the {zeta}-Potential measured for OX50, the suspensions were investigated by means of so-called cryo-SEM characterization. A droplet of the suspension is quench-frozen in subcooled nitrogen (-210 C), prepared and the water is sublimed at -90 C. Thus it was possible to visualize the agglomerate structure of the primary OX50-particles within the suspensions. (orig.)

  16. The Effectivity of Green Coconut Water To Reduce Mercury Level In The Blood And To Improve Blood Profiles And Liver Cells Appearance (Study In Sprague Dawley Rats)

    Science.gov (United States)

    Abdulrzag, Ehmeeda M.; Nur Kristina, Tri; Suwondo, Ari; Sunoko, Henna Rya

    2018-02-01

    When people are exposed to mercury chloride, it can produce a variety of health effects in the blood and liver. Coconut water contains Zn, Fe, Vit. C, Vit B11, Vit. B6, and Se to reduce mercury chloride level in the blood and improve blood profile and liver cells. Aim of this study was to analysis the effect of green coconut water supplementation in overcoming the toxic effect of Hg chlorid in the blood and liver of Sprague dawley rats exposed to Hg chloride. Samples were randomly about 36 animals rats exposed to HgCl2 through forced feeding by 20 mg/kgBW sondage per day for 14 days, which divided into control group, and intervention groups were given fresh green coconut water in each by 6, 8, and 10 mL/kgBW for intervention 7 and 17 days. The result of this study showed that there is a significant effect and the decrease in mercury levels in the blood. There is no significant affect on the hemoglobin level, hematocrit level and platelet count with the treatment of green coconut water in the mice with exposure Hg. There is no significant effect between treatments using green coconut water with SGPT levels; there is a decrease in SGPT levels at the increasing number of doses of green coconut water and the length of treatment.

  17. Co-cultivation of Green Microalgae and Methanotrophic Bacteria for Single Cell Protein Production from Wastewater

    DEFF Research Database (Denmark)

    Rasouli, Zahra; Valverde Pérez, Borja; D'Este, Martina

    2017-01-01

    microalgae – as a means to recover nutrients from industrial wastewater and upcycle them to feed grade single cell protein. Results demonstrated that both algae and bacteria could remove or assimilate most of the organic carbon present in the wastewater. However, their growth stopped before nutrients...

  18. Greening London's black cabs: a study of driver's preferences for fuel cell taxis

    International Nuclear Information System (INIS)

    Mourato, Susana; Saynor, Bob; Hart, David

    2004-01-01

    Road transport accounts for about a quarter of all carbon emissions in the UK, highlighting the need for low carbon alternatives to current fuels and vehicles. Running on hydrogen and virtually emissions-free, fuel cell vehicles are considered to be one of the most promising ways of reducing transport-related emissions. Understanding the user benefits of fuel cell vehicles and the determinants of demand is essential for their successful penetration. This contingent valuation study investigates the preferences of London taxi drivers for driving emissions-free hydrogen fuel cell taxis, both in the short term as part of a pilot project, and in the longer term if production line fuel cell taxis become available. The results show that willingness to pay to participate in a pilot project seems to be driven mostly by drivers' expectation of personal financial gains. In contrast, however, environmental considerations are found to affect taxi drivers' longer-term vehicle purchasing decisions. The results also reveal that driving hydrogen-fuelled vehicles does not seem to raise safety concerns amongst taxi drivers

  19. Green synthesis of silver nanoparticles using Pimpinella anisum seeds: antimicrobial activity and cytotoxicity on human neonatal skin stromal cells and colon cancer cells

    Directory of Open Access Journals (Sweden)

    AlSalhi MS

    2016-09-01

    Full Text Available Mohamad S AlSalhi,1,2 Sandhanasamy Devanesan,1,2 Akram A Alfuraydi,3 Radhakrishnan Vishnubalaji,4 Murugan A Munusamy,3 Kadarkarai Murugan,5 Marcello Nicoletti,6 Giovanni Benelli7 1Research Chair in Laser Diagnosis of Cancers, 2Department of Physics and Astronomy, 3Department of Botany and Microbiology, College of Science, 4Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia; 5Division of Entomology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, India; 6Department of Environmental Biology, Sapienza University of Rome, Rome, 7Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy Background: The present study focused on a simple and eco-friendly method for the synthesis of silver nanoparticles (AgNPs with multipurpose anticancer and antimicrobial activities. Materials and methods: We studied a green synthesis route to produce AgNPs by using an aqueous extract of Pimpinella anisum seeds (3 mM. Their antimicrobial activity and cytotoxicity on human neonatal skin stromal cells (hSSCs and colon cancer cells (HT115 were assessed. Results: A biophysical characterization of the synthesized AgNPs was realized: the morphology of AgNPs was determined by transmission electron microscopy, energy dispersive spectroscopy, X-ray powder diffraction, and ultraviolet-vis absorption spectroscopy. Transmission electron microscopy showed spherical shapes of AgNPs of P. anisum seed extracts with a 3.2 nm minimum diameter and average diameter ranging from 3.2 to 16 nm. X-ray powder diffraction highlighted the crystalline nature of the nanoparticles, ultraviolet-vis absorption spectroscopy was used to monitor their synthesis, and Fourier transform infrared spectroscopy showed the main reducing groups from the seed extract. Energy dispersive spectroscopy was used to confirm the presence of elemental silver. We evaluated the antimicrobial potential

  20. Algal tests with soil suspensions and elutriates: A comparative evaluation for PAH contaminated soils

    DEFF Research Database (Denmark)

    Baun, Anders; Justesen, Kasper Bo; Nyholm, Niels

    2002-01-01

    An algal growth inhibition test procedure with soil suspensions is proposed and evaluated for PAH-contaminated soil. The growth rate reduction of the standard freshwater green alga Pseudokirchneriella subcapitata (formerly known as Selenastrum capricornutum) was used as the toxicity endpoint......, and was quantified by measuring the fluorescence of solvent-extracted algal pigments. No growth rate reduction was detected for soil contents up to 20 g/l testing five non-contaminated Danish soils. Comparative testing with PAH-contaminated soil elutriates and soil suspensions showed that the suspensions had...

  1. Characteristics of cytomixis in the pollen mother cells of green manure crop Sesbania cannabina

    OpenAIRE

    Kumar, Girjesh; Srivastava, Nitisha

    2013-01-01

    Cytomixis has been reported in many plant species, but there is no published report in Sesbania cannabina spp. The cytological stability of any plant is an important consideration in view of its extensive use in genetics and plant breeding programmes. Present study reveals the occurrence of inter PMC (pollen mother cell) transfer of chromatin material. During present investigation, it was found that out of different doses of gamma rays + ethylmethane sulfonate, the highest dose displayed the ...

  2. Cell-cycle regulation in green algae dividing by multiple fission

    Czech Academy of Sciences Publication Activity Database

    Bišová, Kateřina; Zachleder, Vilém

    2014-01-01

    Roč. 65, č. 10 (2014), s. 2585-2602 ISSN 0022-0957 R&D Projects: GA ČR M200201205; GA MŠk LH12145 Grant - others:Centre for Algal Biotechnologies (Algatech)(CZ) CZ.1.05/2.1.00/03.0110 Institutional support: RVO:61388971 Keywords : cell cycle * regulation * growth * light Subject RIV: EE - Microbiology, Virology Impact factor: 5.526, year: 2014

  3. Green Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Collison, Melanie

    2011-05-15

    Green chemistry is the science of chemistry used in a way that will not use or create hazardous substances. Dr. Rui Resendes is working in this field at GreenCentre Canada, an offshoot of PARTEQ Innovations in Kingston, Ontario. GreenCentre's preliminary findings suggest their licensed product {sup S}witchable Solutions{sup ,} featuring 3 classes of solvents and a surfactant, may be useful in bitumen oil sands extraction.

  4. Green roofs

    CSIR Research Space (South Africa)

    Van Wyk, Llewellyn V

    2010-04-01

    Full Text Available , beetles and spiders); and the number of birds that nest in vegetated roofs (including kestrels, swallows, and wagtails). Objective The primary objective of a green roof is to create a living habitat in an otherwise barren environment, hence the use... the negative environmental impacts including plant and insect specie loss. Thus at a philosophical level green roofs support the notion “replace what you displace”. Key ecological issues that can be addressed through green roofs include: Negative effects...

  5. Rapid green synthesis of ZnO nanoparticles using a hydroelectric cell without an electrolyte

    Science.gov (United States)

    Shah, Jyoti; Kumar Kotnala, Ravinder

    2017-09-01

    In this study, zinc oxide (ZnO) nanoparticles were synthesized using a novel environmentally friendly hydroelectric cell without an electrolyte or external current source. The hydroelectric cell comprised a nanoporous Li substituted magnesium ferrite pellet in contact with two electrodes, with zinc as the anode and silver as an inert cathode. The surface unsaturated cations and oxygen vacancies in the nanoporous ferrite dissociated water molecules into hydronium and hydroxide ions when the hydroelectric cell was dipped into deionized water. Hydroxide ions migrated toward the zinc electrode to form zinc hydroxide and the hydronium ions were evolved as H2 gas at the silver electrode. The zinc hydroxide collected as anode mud was converted into ZnO nanoparticles by heating at 250 °C. Structural analysis using Raman spectroscopy indicated the good crystallinity of the ZnO nanoparticles according to the presence of a high intensity E2-(high) mode. The nanoparticle size distribution was 5-20 nm according to high resolution transmission electron microscopy. An indirect band gap of 2.75 eV was determined based on the Tauc plot, which indicated the existence of an interstitial cation level in ZnO. Near band edge and blue emissions were detected in photoluminescence spectral studies. The blue emissions obtained from the ZnO nanoparticles could potentially have applications in blue lasers and LEDs. The ZnO nanoparticles synthesized using this method had a high dielectric constant value of 5 at a frequency of 1 MHz, which could be useful for fabricating nano-oscillators. This facile, clean, and cost-effective method obtained a significant yield of 0.017 g for ZnO nanoparticles without applying an external current source.

  6. Cytotoxicity of Triterpenes from Green Walnut Husks of Juglans mandshurica Maxim in HepG-2 Cancer Cells.

    Science.gov (United States)

    Zhou, Yuanyuan; Yang, Bingyou; Liu, Zhaoxi; Jiang, Yanqiu; Liu, Yuxin; Fu, Lei; Wang, Xiaoli; Kuang, Haixue

    2015-10-22

    Among the classes of identified natural products, triterpenoids, one of the largest families, have been studied extensively for their diverse structures and variety of biological activities, including antitumor effects. In the present study, a phytochemical study of the green walnut husks of Juglans mandshurica Maxim led to the isolation of a new dammarane triterpene, 12β, 20(R), 24(R)-trihydroxydammar-25-en-3-one (6), together with sixteen known compounds, chiefly from chloroform and ethyl acetate extracts. According to their structural characteristics, these compounds were divided into dammarane-type, oleanane- and ursane-type. Dammarane-type triterpenoids were isolated for the first time from the Juglans genus. As part of our continuing search for biologically active compounds from this plant, all of these compounds were also evaluated for their cytotoxic activities against the growth of human cancer cells lines HepG-2 by the MTT assay. The results were shown that 20(S)-protopanaxadiol, 2α,3β,23-trihydroxyolean-12-en-28-oic acid and 2α,3β,23-trihydroxyurs-12-en-28-oic acid exhibited better cytotoxicity in vitro with IC50 values of 10.32±1.13, 16.13±3.83, 15.97±2.47 μM, respectively. Preliminary structure-activity relationships for these compounds were discussed.

  7. Green synthesis of Co{sub 3}O{sub 4} nanoparticles and their applications in thermal decomposition of ammonium perchlorate and dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, J.K. [Department of Chemistry, Deen Dayal Upadhyay Gorakhpur University, Gorakhpur (India); Srivastava, Pratibha, E-mail: author.pratibhas1980@gmail.com [Department of Chemistry, Deen Dayal Upadhyay Gorakhpur University, Gorakhpur (India); Singh, Gurdip [Department of Chemistry, Deen Dayal Upadhyay Gorakhpur University, Gorakhpur (India); Akhtar, M. Shaheer [New & Renewable Energy Material Development Center (NewREC), Chonbuk National University, Jeonbuk (Korea, Republic of); Ameen, S. [Energy Materials & Surface Science Laboratory, Solar Energy Research Center, School of Chemical Engineering, Chonbuk National University, Jeonju 561-756 (Korea, Republic of)

    2015-03-15

    Graphical abstract: - Highlights: • Co{sub 3}O{sub 4} NPs were synthesized from the leaves extract of plant Calotropis gigantea. • Green synthesis of Co{sub 3}O{sub 4} NPs is a cost effective and eco-friendly route. • Faster thermal decomposition of AP occurred in presence of the green synthesized Co{sub 3}O{sub 4} NPs. • A high burning rate of CSP was observed. • Green synthesized Co{sub 3}O{sub 4} NPs displays the good electrocatalytic activity to reduction of I{sub 3}{sup −} to I{sup −} ions. - Abstract: In this paper, we report on the green synthesis of cobalt oxide nanoparticles (Co{sub 3}O{sub 4} NPs) using leaves extract of plant Calotropis gigantea and characterize by X-ray diffraction (XRD), UV–vis spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX). The green synthesized Co{sub 3}O{sub 4} NPs showed excellent catalytic effect on the thermal decomposition of ammonium perchlorate (AP) and burning rate of composite solid propellants (CSPs). Kinetics of slow and rapid thermal decomposition has been investigated by isoconversional and ignition delay methods, respectively. Moreover, the electrocatalytic performance of green synthesized Co{sub 3}O{sub 4} NPs in dye-sensitized solar cells (DSSC) has also been evaluated. The cyclic voltametry measurement shows good electrocatalytic activity of Co{sub 3}O{sub 4} NPs toward the reduction of I{sub 3}{sup −} to I{sup −} ions.

  8. Scaffold preferences of mesenchymal stromal cells and adipose-derived stem cells from green fluorescent protein transgenic mice influence the tissue engineering of bone.

    Science.gov (United States)

    Wittenburg, Gretel; Flade, Viktoria; Garbe, Annette I; Lauer, Günter; Labudde, Dirk

    2014-05-01

    We have analysed the growth and differentiation of mesenchymal stromal cells (MSC) from bone marrow, and of adipose derived stem cells (ASC) from murine abdominal fat tissue, of green fluorescent protein (GFP) transgenic animals grown directly on two types of hydroxyapatite ceramic bone substitutes. BONITmatrix® and NanoBone® have specific mechanical and physiochemical properties such as porosity and an inner surface that influence cellular growth. Both MSC and ASC were separately seeded on 200mg of each biomaterial and cultured for 3 weeks under osteogenic differentiation conditions. The degree of mineralisation was assessed by alizarin red dye and the specific alkaline phosphatase activity of the differentiated cells. The morphology of the cells was examined by scanning electron microscopy and confocal microscopy. The osteoblastic phenotype of the cells was confirmed by analysing the expression of bone-specific genes (Runx2, osteocalcin, osteopontin, and osteonectin) by semiquantitative reverse transcriptase polymerase chain reaction (PCR). Comparison of BONITmatrix® and NanoBone® showed cell type-specific preferences in terms of osteogenic differentiation. MSC-derived osteoblast-like cells spread optimally on the surface of NanoBone® but not BONITmatrix® granules. In contrast BONITmatrix® granules conditioned the growth of osteoblast-like cells derived from ASC. The osteoblastic phenotype of the cultured cells on all matrices was confirmed by specific gene expression. Our results show that the in vitro growth and osteogenic differentiation of murine MSC or ASC of GFP transgenic mice are distinctly influenced by the ceramic substratum. While NanoBone® granules support the proliferation and differentiation of murine MSC isolated from bone marrow, the growth of murine ASC is supported by BONITmatrix® granules. NanoBone® is therefore recommended for use as scaffold in tissue engineering that requires MSC, whereas ASC can be combined with BONITmatrix® for

  9. Green thunderstorms

    Science.gov (United States)

    Gallagher, Frank Woolsey, III

    Many people around the world have observed green light apparently emanating from severe thunderstorms, but until recently there has been no scientific study of the phenomenon. Green thunderstorms have been observed from time to time in association with deep convection or severe weather events. Some skeptics who have not personally observed a green thunderstorm suggest that they are some kind of illusion. The existence of green thunderstorms has been objectively demonstrated by recording spectra of light from thunderstorms using a handheld spectrophotometer. During the spring and summer of 1995 and the spring of 1996 numerous storms were observed and spectra of the light emanating from these storms were recorded. Observations were made both at the ground and aboard research aircraft. Furthermore, time series of spectra were recorded as the observed color of some storms changed from dark blue to a bluish-green. Several hypotheses have been advanced to explain the occurrence of green light in connection with severe storms. Fankhauser gave some observational support to the belief that green light from thunderstorms is possible and believed that the source of the light is from the blue sky penetrating thin regions in the clouds. Fraser believes that light from the setting sun, in combination with the process of scattering by atmospheric molecules, creates the green light associated with severe weather and the thunderstorm acts only as a black backdrop. Unfortunately, no cloud illuminated by the sun is black and the green airlight produced by the Fraser theory is in reality overwhelmed by light reflected by the cloud. Often the unusual coloration has been attributed to hail or to reflection of light from foliage on the ground. The quantitative measurements made during the observation period fail to support these assumptions. We have observed thunderstorms to be green over ground that was not green and we have observed blue thunderstorms over ground that was green

  10. Magnetorheological suspension electromagnetic brake

    International Nuclear Information System (INIS)

    Bica, Ioan

    2004-01-01

    The magnetorheological suspension (MRS) brake is of the monoblock type. The main part of the electromagnetic brake is an electromagnet, between whose poles two MRS disks are placed. For distances between disks of 0.65x10 -3 m±10%, revolutions of the electric motor, coupled to the electromagnetic brake, ranging between 200 and 1600 rev/min and braking powers of up to 85 W, there are no differences in revolutions between the disks of the electromagnetic brake. For fixed revolutions of the electric motor, the revolution of the parallel disk can be modified continuously by means of the intensity of the magnetic field. In all cases, the quantity of MRS is of 0.35x10 -3 kg

  11. An in-vitro studies on green synthesis of gold nanoparticles against pathogens and cancer cells

    Directory of Open Access Journals (Sweden)

    V. Ramesh

    2015-11-01

    Full Text Available Nanotechnology is a most promising field for generating new applications in medicine. It is imperative to integrate nanoscience and medicine. The present investigation is highly warranted to through more light upon the gold nanoparticles reduced from gold salt through the active principle of medicinal plant. The special emphasis of investigation is the active principle along with gold nanoparticles against for cancer cells. The 70 - 90 nm sized particles were synthesized by using Diospyros ferrea and this confirmed by SEM. These gold nanoparticles showed a characteristic absorption peak at 540 nm in UV spectra. The possibility of protein as a stabilizing material in gold nanoparticles is revealed by FTIR analysis. Remarkably, as a result of wide screening on the application of newly synthesized gold nanoparticles their anticancer potential has been discovered using MTT assay. The antimicrobial activity of AuNPs showed effective against bacteria than the fungal strains.

  12. Egg white-mediated green synthesis of silver nanoparticles with excellent biocompatibility and enhanced radiation effects on cancer cells

    Directory of Open Access Journals (Sweden)

    Lu RQ

    2012-04-01

    Full Text Available Renquan Lu1, Dapeng Yang2, Daxiang Cui2, Zhongyang Wang3, Lin Guo11Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, 2Department of Bio-Nano-Science and Engineering, National Key Laboratory of Nano/Micro Fabrication Technology, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Institute of Micro-Nano Science and Technology, Shanghai Jiao Tong University, Shanghai, 3College of Chemistry and Chemical Engineering, Yantai University, Shan Dong Province, People's Republic of ChinaAbstract: A simple, cost-effective, and environmentally friendly approach to the aqueous-phase synthesis of silver (Ag nanoparticles was demonstrated using silver nitrate (AgNO3 and freshly extracted egg white. The bio-conjugates were characterized by UV-visible spectroscopy, transmission electron microscopy, Fourier transform infrared spectrometry, and dynamic light scattering. These results indicated that biomolecule-coated Ag nanoparticles are predominantly spherical in shape with an average size of 20 nm. The proteins of egg white, which have different functional groups, played important roles in reducing Ag+ and maintaining product attributes such as stability and dispersity. In vitro cytotoxicity assays showed that these Ag-protein bio-conjugates showed good biocompatibility with mouse fibroblast cell lines 3T3. Furthermore, X-ray irradiation tests on 231 tumor cells suggested that the biocompatible Ag-protein bio-conjugates enhanced the efficacy of irradiation, and thus may be promising candidates for use during cancer radiation therapy.Keywords: green chemistry, biosynthesis, egg white, Ag nanoparticles, X-ray irradiation

  13. A simple route to prepare stable hydroxyapatite nanoparticles suspension

    International Nuclear Information System (INIS)

    Han Yingchao; Wang Xinyu; Li Shipu

    2009-01-01

    A simple ultrasound assisted precipitation method with addition of glycosaminoglycans (GAGs) is proposed to prepare stable hydroxyapatite (HAP) nanoparticles suspension from the mixture of Ca(H 2 PO 4 ) 2 solution and Ca(OH) 2 solution. The product was characterized by XRD, FT-IR, TEM, HRTEM and particle size, and zeta potential analyzer. TEM observation shows that the suspension is composed of 10-20 nm x 20-50 nm short rod-like and 10-30 nm similar spherical HAP nanoparticles. The number-averaged particle size of stable suspension is about 30 nm between 11.6 and 110.5 nm and the zeta potential is -60.9 mV. The increase of stability of HAP nanoparticles suspension mainly depends on the electrostatic effect and steric effect of GAGs. The HAP nanoparticles can be easily transported into the cancer cells and exhibit good potential as gene or drug carrier system.

  14. Mentha arvensis (Linn.-mediated green silver nanoparticles trigger caspase 9-dependent cell death in MCF7 and MDA-MB-231 cells

    Directory of Open Access Journals (Sweden)

    Banerjee PP

    2017-04-01

    Full Text Available Prajna Paramita Banerjee,1 Arindam Bandyopadhyay,1 Singapura Nagesh Harsha,2 Rudragoud S Policegoudra,3 Shelley Bhattacharya,4 Niranjan Karak,2 Ansuman Chattopadhyay1 1Molecular Genetics Laboratory, Department of Zoology, Visva-Bharati, Santiniketan, West Bengal, 2Advanced Polymer and Nanomaterial Laboratory, Department of Chemical Sciences, Center for Polymer Science and Technology, Tezpur University, Napaam, 3Division of Pharmaceutical Technology, Defence Research Laboratory, Tezpur, Assam, 4Environmental Toxicology Laboratory, Department of Zoology, Visva-Bharati, Santiniketan, West Bengal, India Introduction: Leaf extract of Mentha arvensis or mint plant was used as reducing agent for the synthesis of green silver nanoparticles (GSNPs as a cost-effective, eco-friendly process compared to that of chemical synthesis. The existence of nanoparticles was characterized by ultraviolet–visible spectrophotometry, dynamic light scattering, Fourier transform infrared spectroscopy, X-ray diffraction, energy-dispersive X-ray analysis, atomic-force microscopy and transmission electron microscopy analyses, which ascertained the formation of spherical GSNPs with a size range of 3–9 nm. Anticancer activities against breast cancer cell lines (MCF7 and MDA-MB-231 were studied and compared with those of chemically synthesized (sodium borohydride [NaBH4]-mediated silver nanoparticles (CSNPs. Materials and methods: Cell survival of nanoparticle-treated and untreated cells was studied by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT assay. Cell-cycle analyses were carried out using fluorescence-activated cell sorting. Cell morphology was observed by fluorescence microscopy. Expression patterns of PARP1, P53, P21, Bcl2, Bax and cleaved caspase 9 as well as caspase 3 proteins in treated and untreated MCF7 and MDA-MB-231 cells were studied by Western blot method. Results: MTT assay results showed that Mentha arvensis-mediated GSNPs

  15. Behaviorally Green

    DEFF Research Database (Denmark)

    Sunstein, Cass; Reisch, Lucia A.

    2016-01-01

    of suggestion, inertia, and loss aversion. If well-chosen, green defaults are likely to have large effects in reducing the economic and environmental harms associated with various products and activities. Such defaults may or may not be more expensive to consumers. In deciding whether to establish green...

  16. Green Tea

    Science.gov (United States)

    ... and cancer. Green tea is consumed as a beverage. It is also sold in liquid extracts, capsules, and tablets and is sometimes used in topical products (intended to be applied to the skin). How Much Do We Know? Although many studies have been done on green tea and its ...

  17. Protection of dystrophic muscle cells with polyphenols from green tea correlates with improved glutathione balance and increased expression of 67LR, a receptor for (-)-epigallocatechin gallate

    OpenAIRE

    Dorchies OM Wagner S Buetler TM Ruegg UT

    2009-01-01

    Duchenne muscular dystrophy (DMD) is a fatal muscle wasting disease caused by the absence of the protein dystrophin. Because oxidative stress contributes to the pathogenesis of DMD we investigated if a green tea polyphenol blend (GTP) and its major polyphenol ( ) epigallocatechin gallate (EGCg) could protect muscle cell primary cultures from oxidative damage induced by hydrogen peroxide (H(2)O(2)) in the widely used mdx mouse model. On line fluorimetric measurements using an H(2)O(2) sensitiv...

  18. Characteristics of cytomixis in the pollen mother cells of green manure crop Sesbania cannabina

    Directory of Open Access Journals (Sweden)

    Girjesh Kumar

    2013-09-01

    Full Text Available Cytomixis has been reported in many plant species, but there is no published report in Sesbania cannabina spp. The cytological stability of any plant is an important consideration in view of its extensive use in genetics and plant breeding programmes. Present study reveals the occurrence of inter PMC (pollen mother cell transfer of chromatin material. During present investigation, it was found that out of different doses of gamma rays + ethylmethane sulfonate, the highest dose displayed the highest instances of cytomixis. In present investigation, the phenomenon of cytomixis can be observed between 2 to 10 PMCs. During male meiosis, it occurs through narrow and broad cytoplasmic channels or through direct contact between PMCs from early prophase to late telophase stage. However, the frequency of its occurrence during late meiotic stages is rather low. It elucidates that in Sesbania cannabina, induced cytomixis results into possible sources for production of aneuploids and polyploids. This may be further useful in plant breeding programmes to improve genotypic and phenotypic characters of Sesbania cannabina.

  19. Green consumerism

    DEFF Research Database (Denmark)

    de Groot, Judith I.M.; Schuitema, Geertje; Garson, Carrie Lee

    and biospheric values influence the importance of such ‘green’ product characteristics on purchasing intentions. In two within-subjects full-factorial experimental studies (N = 100 and N = 107), we found that purchase intentions of products were only steered by green characteristics if prices were low...... and the brand was familiar. Green product characteristics did not influence purchase intentions at all when these proself product characteristics were not fulfilled (i.e., high prices and unfamiliar brands). The importance of proself and green product characteristics on purchasing intentions was also......Our presentation will focus on the influence of product characteristics and values on green consumerism. Although generally a majority of consumers support the idea of purchasing green products, we argue, based on social dilemma theory, that proself product characteristics and egoistic...

  20. Green lights

    DEFF Research Database (Denmark)

    Fisker, Peter Kielberg

    This study investigates the effect of drought on economic activity globally using remote sensing data. In particular, predicted variation in greenness is correlated with changes in the density of artificial light observed at night on a grid of 0.25 degree latitude-longitude pixels. I define drought...... as greenness estimated by lagged variation in monthly rainfall and temperature. This definition of drought performs well in identifying self-reported drought events since 2000 compared with measures of drought that do not take greenness into account, and the subsequent analysis indicates that predicted...... variation in greenness is positively associated with year-on-year changes in luminosity: If a unit of observation experiences a predicted variation in greenness that lies 1 standard deviation below the global mean, on average 1.5 - 2.5 light pixels out of 900 are extinguished that year. Finally, an attempt...

  1. Identification of a progenitor cell population destined to form fracture fibrocartilage callus in Dickkopf-related protein 3-green fluorescent protein reporter mice.

    Science.gov (United States)

    Mori, Yu; Adams, Douglas; Hagiwara, Yusuke; Yoshida, Ryu; Kamimura, Masayuki; Itoi, Eiji; Rowe, David W

    2016-11-01

    Fracture healing is a complex biological process involving the proliferation of mesenchymal progenitor cells, and chondrogenic, osteogenic, and angiogenic differentiation. The mechanisms underlying the proliferation and differentiation of mesenchymal progenitor cells remain unclear. Here, we demonstrate Dickkopf-related protein 3 (Dkk3) expression in periosteal cells using Dkk3-green fluorescent protein reporter mice. We found that proliferation of mesenchymal progenitor cells began in the periosteum, involving Dkk3-positive cell proliferation near the fracture site. In addition, Dkk3 was expressed in fibrocartilage cells together with smooth muscle α-actin and Col3.6 in the early phase of fracture healing as a cell marker of fibrocartilage cells. Dkk3 was not expressed in mature chondrogenic cells or osteogenic cells. Transient expression of Dkk3 disappeared in the late phase of fracture healing, except in the superficial periosteal area of fracture callus. The Dkk3 expression pattern differed in newly formed type IV collagen positive blood vessels and the related avascular tissue. This is the first report that shows Dkk3 expression in the periosteum at a resting state and in fibrocartilage cells during the fracture healing process, which was associated with smooth muscle α-actin and Col3.6 expression in mesenchymal progenitor cells. These fluorescent mesenchymal lineage cells may be useful for future studies to better understand fracture healing.

  2. Astaxanthin-producing green microalga Haematococcus pluvialis: from single cell to high value commercial products

    Directory of Open Access Journals (Sweden)

    Md. Mahfuzur Rahman Shah

    2016-04-01

    Full Text Available Many species of microalgae have been used as source of nutrient rich food, feed and health promoting compounds. Among the commercially important microalgae, Haematococcus pluvialis is the richest source of natural astaxanthin which is considered as super anti-oxidant. Natural astaxanthin produced by H. pluvialis has significantly greater antioxidant capacity than the synthetic one. Astaxanthin has important applications in the nutraceuticals, cosmetics, food, and aquaculture industries. Thanks to many researches it is now evident, that astaxanthin can significantly reduce free radicals and oxidative stress and help human body maintain a healthy state. With extraordinary potency and increase in demand, astaxanthin is one of the high-value microalgal products of the future. Thus, this comprehensive review summarizes the most important aspects of the biology, biochemical composition, biosynthesis and astaxanthin accumulation in the cells of H. pluvialis and its wide range of applications for humans and animals. In this paper, important and recent developments ranging from cultivation, harvest and postharvest bio-processing technologies to metabolic control and genetic engineering are reviewed in detail, focusing on biomass and astaxanthin production from this biotechnologically important microalga. Simultaneously, critical bottlenecks and major challenges in commercial scale production; current and prospective global market of H. pluvialis derived astaxanthin are also presented in a critical manner. A new biorefinery concept for H. pluvialis has been also suggested to guide towards economically sustainable approach for microalgae cultivation and processing. This report could serve as a useful guide to present current status of knowledge in the field and highlight key areas for future development of H. pluvialis astaxanthin technology and its large scale commercial implementation.

  3. Cytotoxicity of magnetic nanoparticles derived from green chemistry against human cells

    Science.gov (United States)

    Hanumandla, Pranitha

    The core-shelled Fe3O4 magnetic nanoparticles (MNPs) have been extensively investigated by the researchers due to their diversified applications. Recently, the study on the toxicity of nanomaterials has been drawn increasing attention to reduce or mitigate the environmental hazards and health risk. The objectives of this thesis are three fold: 1) prepare series functionalized Fe3O4 MNPs and optimize the synthesis variables of; 2) characterize their nanostructures using the state-of-the-art instrumental techniques; and 3) evaluate their cytotoxicity by measurement of nitrogen monoxide (NO) release, reactive oxygen species (ROS) and single oxygen species (SOS) generation. In order to prepare the crystalline Fe3O4 MNPs, a cost-effective and user-friendly wet chemistry (Sol-Gel) method was used. Two Indian medicinal plants were extracted to derive the active chemicals, which were used to functionalize the Fe3O 4 MNPs. The results indicated that the Fe3O4 MNPs were well-indexed with the standard inverse spinel structure (PDF 65-3107, a=8.3905A, α = 90°). The particle's sizes varied from 6-10 nm with the Fe3O 4 MNPs acting as cores and medicinal extracts as shell. The active chemical components extracted from two Hygrophila auriculata/ Chlorophytum borivilianum are fatty acid, Saponins, sterols, carbohydrates and amino acids, which are in agreement with the reported data. Toxicological evaluations of MNPs indicated that the Fe3O4 MNPs functionalized with Hygrophila auriculata/ Chlorophytum borivilianum extract prepared at room temperature were toxic to the cells when compared to the control, and act in a mechanism similar to the actions of hydrogen peroxide (H2O2). These functionalized MNPs, which were prepared at 100 ° C, displayed similar mechanism of action to the anticancer drug (SN-38). It was also found that the MNPs prepared at lower temperatures are less toxic and showed similar mechanism of action as the sodium nitrite (NaNO 2).

  4. Improving brightness and photostability of green and red fluorescent proteins for live cell imaging and FRET reporting

    OpenAIRE

    Bajar, Bryce T.; Wang, Emily S.; Lam, Amy J.; Kim, Bongjae B.; Jacobs, Conor L.; Howe, Elizabeth S.; Davidson, Michael W.; Lin, Michael Z.; Chu, Jun

    2016-01-01

    Many genetically encoded biosensors use F?rster resonance energy transfer (FRET) to dynamically report biomolecular activities. While pairs of cyan and yellow fluorescent proteins (FPs) are most commonly used as FRET partner fluorophores, respectively, green and red FPs offer distinct advantages for FRET, such as greater spectral separation, less phototoxicity, and lower autofluorescence. We previously developed the green-red FRET pair Clover and mRuby2, which improves responsiveness in intra...

  5. Efficient Approach for Improving the Performance of Nonhalogenated Green Solvent-Processed Polymer Solar Cells via Ternary-Blend Strategy.

    Science.gov (United States)

    Kranthiraja, Kakaraparthi; Aryal, Um Kanta; Sree, Vijaya Gopalan; Gunasekar, Kumarasamy; Lee, Changyeon; Kim, Minseok; Kim, Bumjoon J; Song, Myungkwan; Jin, Sung-Ho

    2018-04-10

    The ternary-blend approach has the potential to enhance the power conversion efficiencies (PCEs) of polymer solar cells (PSCs) by providing complementary absorption and efficient charge generation. Unfortunately, most PSCs are processed with toxic halogenated solvents, which are harmful to human health and the environment. Herein, we report the addition of a nonfullerene electron acceptor 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3- d:2',3'- d']- s-indaceno[1,2- b:5,6- b']dithiophene (ITIC) to a binary blend (poly[4,8-bis(2-(4-(2-ethylhexyloxy)3-fluorophenyl)-5-thienyl)benzo[1,2- b:4,5- b']dithiophene- alt-1,3-bis(4-octylthien-2-yl)-5-(2-ethylhexyl)thieno[3,4- c]pyrrole-4,6-dione] (P1):[6,6]-phenyl-C 71 -butyric acid methyl ester (PC 71 BM), PCE = 8.07%) to produce an efficient nonhalogenated green solvent-processed ternary PSC system with a high PCE of 10.11%. The estimated wetting coefficient value (0.086) for the ternary blend suggests that ITIC could be located at the P1:PC 71 BM interface, resulting in efficient charge generation and charge transport. In addition, the improved current density, sustained open-circuit voltage and PCE of the optimized ternary PSCs were highly correlated with their better external quantum efficiency response and flat-band potential value obtained from the Mott-Schottky analysis. In addition, the ternary PSCs also showed excellent ambient stability over 720 h. Therefore, our results demonstrate the combination of fullerene and nonfullerene acceptors in ternary blend as an efficient approach to improve the performance of eco-friendly solvent-processed PSCs with long-term stability.

  6. Nanostructured zinc oxide photoelectrodes by green routes M-SILAR and electrodeposition for dye sensitized solar cell

    Science.gov (United States)

    Gaikwad, M. A.; Suryawanshi, M. P.; Maldar, P. S.; Dongale, T. D.; Moholkar, A. V.

    2018-04-01

    Surfactant-free, ultrasound assisted modified successive ionic layer adsorption and reaction (M-SILAR) method and home-made microcontroller based low-cost potentiostat system are employed to prepare zinc oxide (ZnO) nanostructure based thin films. The comparison between physicochemical as well as photoelectrochemical (PEC) properties of the nanostructures prepared via two different template free, simplistic and cost-effective green routes have been discussed in detail. X-ray diffraction and Raman analysis confirm the formation of phase pure ZnO with the hexagonal crystal structure. Surface morphology significantly affects the physicochemical as well as PEC properties of ZnO thin films. Nanorods (NRs) and nanosheets (NSs) based ZnO thin films sensitized with N3 dye have been directly used as photoelectrodes in the dye-sensitized solar cell (DSSC). The power conversion efficiency (PCE) of 0.59% is achieved with Jsc of 4.04 mA/cm2 and Voc of 0.44 V for the DSSC in which the M-SILAR deposited 1-D ZnO NRs based thin film is used as the photoanode. While relatively less PCE of 0.29% with Jsc of 2.53 mA/cm2 and Voc of 0.36 V is obtained for DSSC prepared using electrodeposited 2-D ZnO NSs. In the NSs like 2-D surface morphology, the presence of multiple grain boundaries are acted as traps for the diffusing electrons, which reduces the electron mobility through it.

  7. Water-mediated green synthesis of PbS quantum dot and its glutathione and biotin conjugates for non-invasive live cell imaging

    Science.gov (United States)

    Vijaya Bharathi, M.; Maiti, Santanu; Sarkar, Bidisha; Ghosh, Kaustab; Paira, Priyankar

    2018-03-01

    This study addresses the cellular uptake of nanomaterials in the field of bio-applications. In the present study, we have synthesized water-soluble lead sulfide quantum dot (PbS QD) with glutathione and 3-MPA (mercaptopropionic acid) as the stabilizing ligand using a green approach. 3-MPA-capped QDs were further modified with streptavidin and then bound to biotin because of its high conjugation efficiency. Labelling and bio-imaging of cells with these bio-conjugated QDs were evaluated. The bright red fluorescence from these types of QDs in HeLa cells makes these materials suitable for deep tissue imaging.

  8. Controlling active cabin suspensions in commercial vehicles

    NARCIS (Netherlands)

    Evers, W.J.E.; Besselink, I.J.M.; Teerhuis, A.P.; Knaap, van der A.C.M.; Nijmeijer, H.

    2009-01-01

    The field of automotive suspensions is changing. Semi-active and active suspensions are starting to become viable options for vehicle designers. Suspension design for commercial vehicles is especially interesting given its potential. An active cabin suspension for a heavy-duty truck is considered,

  9. Screening of antagonistic bacteria against the green mold disease (Trichoderma harzianum Rifai of Grey Oyster Mushroom (Pleurotus pulmonarius (Fr. Quel.

    Directory of Open Access Journals (Sweden)

    Nualsri, C.

    2005-01-01

    Full Text Available A total of 174 strains of bacteria antagonistic against the green mold (Trichoderma harzianum, isolated from cultivating bags and fruiting bodies of the mushrooms, were screened for effects on mushroom mycelia and ability to control the green mold disease. Twenty-eight of them promoted the primodia formation of the Pleurotus pulmonarius mycelia on agar plates. Twenty-two isolates were selected and further tested in a mushroom house. Cell suspension of each isolate was prepared and sprayed onto the spawn surface of P. pulmonarius. Fifteen isolates shortened the times required from watering to 2nd and 3rd flushing and increased yield of the basidiocarps by 1.1-34.3% over 30 days. Six isolates of bacteria which showed an inhibitory effect against T. harzianum, enhanced primordia formation and increased yield of P. pulmonarius were selected and used for control testing in a cultivation house. The suspension of each isolate was sprayed onto the spawn surface immediately after exposure to the air in the mushroom house, followed by spore suspension of T. harzianum two days later. The number of infected bags was counted at 30 days after inoculation and the cumulative yield was compared after 60 days. The results showed that bacteria isolate B012-022 was highly effective in suppressing the green mold disease.Only 6.7% of the cultivating bags were found to be infected by T. harzianum when bacteria isolate B012-022 was applied. Cumulative yield obtained from 900 g of 94% sawdust + 5% rice bran + 1% Ca(OH2 was 300.0 g/bag after 60 days, 71.1% higher than the bags infected by the green mold and without bacterial spraying. Identification of the six bacterial isolates showed all to be Bacillus spp.

  10. "Point de suspension"

    CERN Multimedia

    2004-01-01

    CERN - Globe of Science and Innovation 20 and 21 October Acrobatics, mime, a cappella singing, projections of images, a magical setting... a host of different tools of a grandeur matching that of the Universe they relate. A camera makes a massive zoom out to reveal the multiple dimensions of Nature. Freeze the frame: half way between the infinitesimally small and the infinitesimally large, a man suspends his everyday life (hence the title "Point de Suspension", which refers to the three dots at the end of an uncompleted sentence) to take a glimpse of the place he occupies in the great history of the Universe. An unusual perspective on what it means to be a human being... This wondrous show in the Globe of Science and Innovation, specially created by the Miméscope* company for the official ceremony marking CERN's fiftieth anniversary, is a gift from the Government of the Republic and Canton of Geneva, which also wishes to share this moment of wonder with the local population. There will be three perfo...

  11. "Point de suspension"

    CERN Multimedia

    2004-01-01

    http://www.cern.ch/cern50/ CERN - Globe of Science and Innovation 20 and 21 October Acrobatics, mime, a cappella singing, projections of images, a magical setting... a host of different tools of a grandeur matching that of the Universe they relate. A camera makes a massive zoom out to reveal the multiple dimensions of Nature. Freeze the frame: half way between the infinitesimally small and the infinitesimally large, a man suspends his everyday life (hence the title "Point de Suspension", which refers to the three dots at the end of an uncompleted sentence) to take a glimpse of the place he occupies in the great history of the Universe. An unusual perspective on what it means to be a human being... This wondrous show in the Globe of Science and Innovation, specially created by the Miméscope* company for the official ceremony marking CERN's fiftieth anniversary, is a gift from the Government of the Republic and Canton of Geneva, which also wishes to share this moment of wonder with the local pop...

  12. "Point de suspension"

    CERN Multimedia

    2004-01-01

    CERN - Globe of Science and Innovation 20 and 21 October Acrobatics, mime, a cappella singing, projections of images, a magical setting... a host of different tools of a grandeur matching that of the Universe they relate. A camera makes a massive zoom out to reveal the multiple dimensions of Nature. Freeze the frame: half way between the infinitesimally small and the infinitesimally large, a man suspends his everyday life (hence the title "Point de Suspension", which refers to the three dots at the end of an uncompleted sentence) to take a glimpse of the place he occupies in the great history of the Universe. An unusual perspective on what it means to be a human being... This spectacle in the Globe of Science and Innovation, specially created by the Miméscope* company for the official ceremony marking CERN's fiftieth anniversary, is a gift from the Government of the Republic and Canton of Geneva, which also wishes to share this moment of wonder with the local population. There will be three performances for...

  13. Green synthesis of NiO nanoparticles using Moringa oleifera extract and their biomedical applications: Cytotoxicity effect of nanoparticles against HT-29 cancer cells.

    Science.gov (United States)

    Ezhilarasi, A Angel; Vijaya, J Judith; Kaviyarasu, K; Maaza, M; Ayeshamariam, A; Kennedy, L John

    2016-11-01

    Green protocols for the synthesis of nickel oxide nanoparticles using Moringa oleifera plant extract has been reported in the present study as they are cost effective and ecofriendly, moreover this paper records that the nickel oxide (NiO) nanoparticles prepared from green method shows better cytotoxicity and antibacterial activity. The NiO nanoparticles were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), High resolution transmission electron microscopy (HRTEM), Energy dispersive X-ray analysis (EDX), and Photoluminescence spectroscopy (PL). The formation of a pure nickel oxide phase was confirmed by XRD and FTIR. The synthesized NiO nanoparticles was single crystalline having face centered cubic phase and has two intense photoluminescence emissions at 305.46nm and 410nm. The formation of nano- and micro-structures was confirmed by HRTEM. The in-vitro cytotoxicity and cell viability of human cancer cell HT-29 (Colon Carcinoma cell lines) and antibacterial studies against various bacterial strains were studied with various concentrations of nickel oxide nanoparticles prepared from Moringa oleifera plant extract. MTT assay measurements on cell viability and morphological studies proved that the synthesized NiO nanoparticles posses cytotoxic activity against human cancer cells and the various zones of inhibition (mm), obtained revealed the effective antibacterial activity of NiO nanoparticles against various Gram positive and Gram negative bacterial pathogens. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Green Engineering

    Science.gov (United States)

    Green Engineering is the design, commercialization and use of processes and products that are feasible and economical while reducing the generation of pollution at the source and minimizing the risk to human health and the environment.

  15. Green Roofs

    Energy Technology Data Exchange (ETDEWEB)

    None

    2004-08-01

    A New Technology Demonstration Publication Green roofs can improve the energy performance of federal buildings, help manage stormwater, reduce airborne emissions, and mitigate the effects of urban heat islands.

  16. Going Green

    Centers for Disease Control (CDC) Podcasts

    This podcast is for a general audience and provides information on how to recycle, re-use, and restore. It also covers the benefits of “Going Green" on the environment, health, and social interaction.

  17. Green lasers

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin

    2010-01-01

    Well over a dozen papers at this year's Photonics West meeting in San Francisco boasted improvements in harmonic generation to produce visible laser beams, most of them in the green spectral range......Well over a dozen papers at this year's Photonics West meeting in San Francisco boasted improvements in harmonic generation to produce visible laser beams, most of them in the green spectral range...

  18. Green Nudging

    OpenAIRE

    Evans, Nicholas; Eickers, Stephanie; Geene, Leonie; Todorovic, Marijana; Villmow, Annika; Forschungsstelle für Umweltpolitik (FFU), Freie Universität Berlin

    2018-01-01

    Traditional environmental policy instruments have not always proven successful in fostering environmentally friendly behaviour. The question remains: how can policymakers tackle the attitude-behaviour gap when it comes to pro-environmental choices and sustainable lifestyles? One solution that has emerged is green nudging, a new and potentially promising policy tool born of behavioural economics and experimental psychology. This paper contributes to the current discussion surrounding green nud...

  19. GreenSynFuels. Economical and technological statement regarding integration and storage of renewable energy in the energy sector by production of green synthetic fuels for utilization in fuel cells. Final project report

    Energy Technology Data Exchange (ETDEWEB)

    Lebaek, J. (Danish Technological Institute, Aarhus (Denmark)); Boegild Hansen, J. (Haldor Topsoee, Kgs. Lyngby (Denmark)); Mogensen, Mogens (Technical Univ. of Denmark, Risoe National Lab. for Sustainable Energy, Roskilde (Denmark)) (and others)

    2011-03-15

    The purpose of the project is to select and validate technology concepts for the establishment of a Danish production of green synthetic fuels primarily for fuel cells. The feasibility of the selected concepts is assessed trough a techno-economical calculation, which includes mass and energy balances and economics including CAPEX and OPEX assessments. It is envisioned by the project partners that a production of green synthetic fuels, such as methanol, can 1) bring stability to a future electricity grid with a high share of renewable energy, 2) replace fossil fuels in the transport sector, and 3) boost Danish green technology export. In the project, two technology concepts were derived through carefully considerations and plenum discussions by the project group members: Concept 1): Methanol/DME Synthesis based on Electrolysis assisted Gasification of Wood. Concept 2): Methanol/DME synthesis based on biogas temporarily stored in the natural gas network. Concept 1) is clearly the most favored by the project group and is therefore analyzed for its techno-economic feasibility. Using mass and energy balances the technical perspectives of the concept were investigated, along with an economic breakdown of the CAPEX and OPEX cost of the methanol production plant. The plant was technically compared to a traditional methanol production plant using gasified biomass. The project group has decided to focus on large scale plants, as the scale economics favor large scale plants. Therefore, the dimensioning input of the concept 1) plant is 1000 tons wood per day. This is truly a large scale gasification plant; however, in a methanol synthesis context the plant is not particularly large. The SOEC electrolyzer unit is dimensioned by the need of hydrogen to balance the stoichiometric ratio of the methanol synthesis reaction, which will result in 141 MW installed SOEC. The resulting methanol output is 1,050 tons methanol per day. In comparison to a traditional methanol synthesis plant

  20. Enhanced green fluorescent protein is a nearly ideal long-term expression tracer for hematopoietic stem cells, whereas DsRed-express fluorescent protein is not.

    Science.gov (United States)

    Tao, Wen; Evans, Barbara-Graham; Yao, Jing; Cooper, Scott; Cornetta, Kenneth; Ballas, Christopher B; Hangoc, Giao; Broxmeyer, Hal E

    2007-03-01

    Validated gene transfer and expression tracers are essential for elucidating functions of mammalian genes. Here, we have determined the suitability and unintended side effects of enhanced green fluorescent protein (EGFP) and DsRed-Express fluorescent protein as expression tracers in long-term hematopoietic stem cells (HSCs). Retrovirally transduced mouse bone marrow cells expressing either EGFP or DsRed-Express in single or mixed dual-color cell populations were clearly discerned by flow cytometry and fluorescence microscopy. The results from in vivo competitive repopulation assays demonstrated that EGFP-expressing HSCs were maintained nearly throughout the lifespan of the transplanted mice and retained long-term multilineage repopulating potential. All mice assessed at 15 months post-transplantation were EGFP positive, and, on average, 24% total peripheral white blood cells expressed EGFP. Most EGFP-expressing recipient mice lived at least 22 months. In contrast, Discosoma sp. red fluorescent protein (DsRed)-expressing donor cells dramatically declined in transplant-recipient mice over time, particularly in the competitive setting, in which mixed EGFP- and DsRed-expressing cells were cotransplanted. Moreover, under in vitro culture condition favoring preservation of HSCs, purified EGFP-expressing cells grew robustly, whereas DsRed-expressing cells did not. Therefore, EGFP has no detectable deteriorative effects on HSCs, and is nearly an ideal long-term expression tracer for hematopoietic cells; however, DsRed-Express fluorescent protein is not suitable for these cells.

  1. A green approach toward quinoxalines and bis-quinoxalines and their biological evaluation against A431, human skin cancer cell lines.

    Science.gov (United States)

    Bandyopadhyay, Debasish; Cruz, Jessica; Morales, Liza D; Arman, Hadi D; Cuate, Erica; Lee, Young S; Banik, Bimal K; Kim, Dae J

    2013-08-01

    The objective of this study was to develop a practical green procedure to synthesize quinoxalines and bis-quinoxalines and evaluate their inhibitory effects on the viability of A431 human epidermoid carcinoma cells. A series of quinoxaline and bis-quinoxaline derivatives have been designed and synthesized following a microwave-assisted and bismuth nitrate-catalyzed eco-friendly route. A detailed comparison has been made between microwave-induced protocol with the reactions occurred at room temperature. The structure of the compounds have been elucidated by various spectroscopic methods and finally confirmed by x-ray crystallographic analyses. Two quinoxaline derivatives, compounds 6 and 12 have demonstrated inhibitory effects on the viability of A431 human epidermoid carcinoma cells when compared with HaCaT nontumorigenic human keratinocyte cells. Notably, compound 6 inhibits Stat3 phosphorylation/activation in A431 skin cancer cells.

  2. GREEN-FC. Decentralized biogas conversion on modular plants for the utilization of biogenic energy sources by means of fuel cells; GREEN-FC. Dezentrale Biogaskonversion ueber modulare Anlagen zur Nutzung biogener Energietraeger durch Brennstoffzellen

    Energy Technology Data Exchange (ETDEWEB)

    Birth, Torsten [Fraunhofer-Einrichtung fuer Fabrikbetrieb und -Automatisierung (IFF), Magdeburg (Germany); Heineken, Wolfram; He, Ling

    2013-10-01

    About 60% of the world's annual demand (500 bm{sup 3}) of hydrogen is provided by the reforming of fossil fuels. Regarding the limitation of fossil resources, the production of H{sub 2} from biogas becomes increasingly important. The GREEN-FC prototype for biogas conversion to hydrogen for fuel cells includes five modules: gas supply, gas purification, gas reforming, gas utilization and post-combustion. Operation parameters of the entire system have been optimized in order to maximize the H{sub 2} yield while limiting the CO content to avoid poisoning the HT-PEMFC. A replacement of modules is possible such that alternative reactors for biogas conversion and the further use of this concept can be studied. (orig.)

  3. Epigallocathechin gallate, polyphenol present in green tea, inhibits stem-like characteristics and epithelial-mesenchymal transition in nasopharyngeal cancer cell lines

    Directory of Open Access Journals (Sweden)

    Lin Chien-Hung

    2012-10-01

    Full Text Available Abstract Background Previous studies have demonstrated that the consumption of green tea inhibits the growth of various cancers. Most cancers are believed to be initiated from and maintained by a small population of cancer stem-like cells (CSC or tumor-initiating cells (TIC that are responsible for tumor relapse and chemotherapeutic resistance. Although epigallocathechin gallate (EGCG, the most abundant catechin in green tea, has been reported to induce growth inhibition and apoptosis in some cancer cells, its effect on CSC is undefined. In this study, we enriched CSC by the sphere formation, and provided an efficient model for further experiments. Using this method, we examined the effects of EGCG regulating the nasopharyngeal carcinoma (NPC CSC and attempted to elucidate the possible mechanisms. Methods NPC TW01 and TW06 cell lines were enriched by sphere formation and characterized their phenotypical properties, such as invasion capacity, epithelial-mesenchymal transition (EMT and gene expression were analyzed by quantitative real-time reverse transcription polymerase chain reaction (q-RT-PCR. EGCG-induced growth inhibition in the parental and sphere-derived cells was determined by MTT and bromodeoxyuridine (BrdU assay. EGCG-induced apoptosis was analyzed by flow cytometry with Annexin V and PI staining. The effects of EGCG on sphere-derived cell tumorigenicity, migration and invasion were determined by soft agar assay, wound healing, and cell invasion assay. The alternation of protein expression regulated by EGCG on these sphere-derived cells was assessed by immunofluorescence staining and western blot. Results NPC sphere-derived cells grown in serum-free non-adherent culture showed increased expression of stem cell markers and EMT markers compared to parental cells grown in conventional culture. Although EGCG induced growth inhibition and apoptosis in the parental cells in a dose-dependent manner, it was not as effective against spheres

  4. Sucrose metabolizing enzymes in cell suspension cultures of Bauhinia forficata, Curcuma zedoaria and Phaseolus vulgaris Enzimas do metabolismo da sacarose em cultura celular de Bauhinia forficata, Curcuma zedoaria e Phaseolus vulgaris

    Directory of Open Access Journals (Sweden)

    Marcia Ometto de Mello

    2001-09-01

    Full Text Available The objective of this work was to study the activity of sucrose metabolizing enzymes in extracts of cell suspension cultures of Bauhinia forficata Link, Curcuma zedoaria Roscoe and Phaseolus vulgaris L. Invertase pathway was identified in the three studied species. Sucrose synthase pathway was also responsible for sucrose metabolism in Curcuma zedoaria and Phaseolus vulgaris cells. Activity values higher than 300 nmol min-1 mg-1 of protein were found for acid and neutral invertases, UDPglucose pyrophosphorylase and phosphoglucomutase in the cell extract of the three plant species. Sucrose synthase showed low activity in Bauhinia forficata cells. As sucrose concentration in the culture medium decreased, sucrose synthase activity increased in C. zedoaria and P. vulgaris cells. The glycolytic enzymes activity gradually reduced at the end of the culture period, when carbohydrate was limited.O objetivo deste trabalho foi estudar as enzimas do metabolismo da sacarose em culturas de célula em suspensão de Bauhinia forficata Link, Curcuma zedoaria Roscoe e Phaseolus vulgaris L. A via da invertase foi identificada nas três espécies estudadas. A via da sacarose sintase também foi responsável pelo metabolismo da sacarose em células de Curcuma zedoaria e Phaseolus vulgaris. Foram encontradas atividades maiores que 300 nmol min-1 mg-1 de proteína das enzimas invertase ácida e alcalina, UDPglicose pirofosforilase e fosfoglicomutase no extrato celular das três espécies de plantas. A sacarose sintase mostrou atividade baixa nas células de Bauhinia forficata. À medida que a concentração de sacarose no meio de cultura diminuiu, a atividade da sacarose sintase aumentou em células de Curcuma zedoaria e Phaseolus vulgaris. Ao final do período de cultura, quando os carboidratos se tornaram limitantes, as atividades das enzimas glicolíticas reduziram-se gradualmente.

  5. Alamethicin permeabilizes the plasma membrane and mitochondria but not the tonoplast in tobacco (Nicotiana tabacum L. cv Bright Yellow) suspension cells

    DEFF Research Database (Denmark)

    Matic, S.; Geisler, D.A.; Møller, I.M.

    2005-01-01

    remained intact, as indicated by an unaffected tonoplast proton gradient. Low-flux permeabilization of plasma membranes and mitochondria at moderate AlaM concentrations was reversible and did not affect cell vigour. Higher AlaM concentrations induced cell death. After the addition of catalase that removes...... concentrations. Possible uses and limitations of this method for plant cell research are discussed.......The ion channel-forming peptide AlaM (alamethicin) is known to permeabilize isolated mitochondria as well as animal cells. When intact tobacco (Nicotiana tabacum L.) Bright Yellow-2 cells were treated with AlaM, the cells became permeable for low-molecular-mass molecules as shown by induced leakage...

  6. Physiological responses of suspension cultures of Catharanthus roseus to aluminum: changes in polyamines and inorganic ions

    Science.gov (United States)

    Xinhua Zhou; Rakesh Minocha; Subhash C. Minocha

    1995-01-01

    The effects of aluminum (Al) treatment on polyamines were studied using suspension cultures of Madagascar periwinkle [Catharanthus roseus (L.) G. Don]. The addition of A1 (0.2, 0.5, 1.0 mM) to the suspension cultures caused a significant increase in putrescine within 24h only in freshly transferred cells. By contrast, Al treatment reduced putrescine...

  7. Anti-proliferative and differentiation-inducing activities of the green tea catechin epigallocatechin-3-gallate (EGCG) on the human eosinophilic leukemia EoL-1 cell line.

    Science.gov (United States)

    Lung, H L; Ip, W K; Wong, C K; Mak, N K; Chen, Z Y; Leung, K N

    2002-12-06

    A novel approach for the treatment of leukemia is the differentiation therapy in which immature leukemia cells are induced to attain a mature phenotype when exposed to differentiation inducers, either alone or in combinations with other chemotherapeutic or chemopreventive drugs. Over the past decade, numerous studies indicated that green tea catechins (GTC) could suppress the growth and induce apoptosis on a number of human cancer cell lines. However, the differentiation-inducing activity of GTC on human tumors remains poorly understood. In the present study, the effect of the major GTC epigallocatechin-3-gallate (EGCG) on the proliferation and differentiation of a human eosinophilc leukemic cell line, EoL-1, was examined. Our results showed that EGCG suppressed the proliferation of the EoL-1 cells in a dose-dependent manner, with an estimated IC(50) value of 31.5 microM. On the other hand, EGCG at a concentration of 40 microM could trigger the EoL-1 cells to undergo morphological differentiation into mature eosinophil-like cells. Using RT-PCR and flow cytometry, it was found that EGCG upregulated the gene and protein expression of two eosinophil-specific granule proteins, the major basic protein (MBP) and eosinophil peroxidase (EPO), in EoL-1 cells. Taken together, our findings suggest that EGCG can exhibit anti-leukemic activity on a human eosinophilic cell line EoL-1 by suppressing the proliferation and by inducing the differentiation of the leukemia cells.

  8. Processing of strontium-doped lanthanum manganite suspensions for cathode production of the solid oxide fuel cell; Processamento das suspensoes de manganito de lantanio dopado com estroncio para fabricacao do catodo da celula a combustivel de oxido solido

    Energy Technology Data Exchange (ETDEWEB)

    Chiba, R.; Vargas, R.A.; Andreoli, M.; Seo, E.S.M. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Ciencia e Tecnologia de Materiais. Lab. de SOFC - Insumos e Componentes

    2008-07-01

    The ceramic material, strontium-doped lanthanum manganite (La{sub 0,85}Sr{sub 0,15}MnO{sub 3} - LSM), has been used as cathode in Solid Oxide Fuel Cells (SOFCs). The cathode attainment as component of the SOFCs has been studied for diverse routes of synthesis and thin films forming in Yttria-stabilized zirconia (ZrO{sub 2}/Y{sub 2}O{sub 3} - YSZ) electrolyte. In this work, the LSM was synthesized by the citrate technique and deposited in YSZ substrate using the forming technique wet powder spraying. Rheological studies of suspensions and chemical, physical and microstructural characterizations of LSM powders were made, aiming at the deposition for thin films formation until 50 mum. The half unit cells LSM/YSZ sintered were characterized by scanning electron microscopy, for verification of porosity and adherence. In this sense, this work is a contribution for production of porous cathode using the forming technique wet powder spraying in the SOFCs. (author)

  9. Immunohistochemistry of connexin 43 throughout anterior pituitary gland in a transgenic rat with green fluorescent protein-expressing folliculo-stellate cells.

    Science.gov (United States)

    Horiguchi, Kotaro; Fujiwara, Ken; Kouki, Tom; Kikuchi, Motoshi; Yashiro, Takashi

    2008-12-01

    Folliculo-stellate (FS) cells in the anterior pituitary gland have been speculated to possess multifunctional properties. Because gap junctions (GJ) have been identified between FS cells, FS cells may be interconnected electrophysiologically by GJ and serve as signal transmission networks to modulate hormone release in the anterior pituitary gland. But whether GJ are localized among FS cells from the pars tuberalis through the pars distalis is unclear. The S100b-GFP transgenic rat has recently been generated, which expresses green fluorescent protein (GFP) specifically in FS cells in the anterior pituitary. This model is expected to be a powerful tool for studies of FS cells. The purpose of the present paper was therefore to examine the localization of GJ on connexin 43 immunohistochemistry throughout the anterior pituitary gland of S100b-GFP rats under confocal laser microscopy. The localization patterns of FS cells was also observed in primary culture of anterior pituitary cells and the question of whether GJ between FS cells are reconstructed in vitro was investigated. In vivo studies showed that GJ were present specifically between FS cells from the pars tuberalis to the pars distalis in the anterior pituitary gland. The appearance of FS cells was distinguished into two types, with localization of GJ differing between types. In vitro, it was observed for the first time that FS cells in primary culture could be categorized into two types. In vivo localization of GJ between FS cells was reconstructed in vitro. These morphological observations are consistent with the hypothesis that FS cells form an electrophysiological network throughout the anterior pituitary for signal transmission.

  10. Green technology meets ecotoxicology

    Directory of Open Access Journals (Sweden)

    Kristina Radošević

    2016-01-01

    Full Text Available By applying concept and principles of green chemistry into different technological processes, green technologies are developed. The environmental and economic benefits of “green” approach is achieved through several directions, such as the use of renewable raw materials, creation of economic efficiency, the use of alternative reaction conditions, as well as the application of non-conventional solvents. From the point view of green chemistry, alternative solvents, in order to be a “green“ substitution to hazardous organic solvents, should be: non-volatile, non-flammable, stabile, synthesized by an environmentally friendly procedure, nontoxic and biodegradable. The toxic impact of all newly synthesized chemicals, such as alternative solvents, could be determined by methods and techniques of ecotoxicology. Ecotoxicology, an interdisciplinary scientific field, can serve as a way of monitoring the greenness of the processes. In vivo and in vitro experiments are used to study the effects of chemicals on different levels of organizations, from molecules to communities and ecosystem. The usage of in vitro methods is encouraged by a scientific community and regulatory agencies as an alternative to in vivo studies in order to reduce the number of laboratory animals used in the toxicological studies. Therefore, in this paper we gave a brief overview on the usage of animal cell cultures within the field of green chemistry and technology.

  11. Green banking

    Directory of Open Access Journals (Sweden)

    Maja Drobnjaković

    2013-06-01

    Full Text Available There is an urgent need to march towards “low - carbon economy”. Global challenges of diminishing fossil fuel reserves, climate change, environmental management and finite natural resources serving an expanding world population - these reasons mean that urgent action is required to transition to solutions which minimize environmental impact and are sustainable. We are at the start of the low - carbon revolution and those that have started on their low - carbon journey already are seeing benefits such as new markets and customers, improved economic, social and environmental performance, and reduced bills and risks. Green investment banks offer alternative financial services: green car loans, energy efficiency mortgages, alternative energy venture capital, eco - savings deposits and green credit cards. These items represent innovative financial products.

  12. Nutrient and Total Polyphenol Contents of Dark Green Leafy Vegetables, and Estimation of Their Iron Bioaccessibility Using the In Vitro Digestion/Caco-2 Cell Model

    Directory of Open Access Journals (Sweden)

    Francis Kweku Amagloh

    2017-07-01

    Full Text Available Dark green leafy vegetables (DGLVs are considered as important sources of iron and vitamin A. However, iron concentration may not indicate bioaccessibility. The objectives of this study were to compare the nutrient content and iron bioaccessibility of five sweet potato cultivars, including three orange-fleshed types, with other commonly consumed DGLVs in Ghana: cocoyam, corchorus, baobab, kenaf and moringa, using the in vitro digestion/Caco-2 cell model. Moringa had the highest numbers of iron absorption enhancers on an “as-would-be-eaten” basis, β-carotene (14169 μg/100 g; p < 0.05 and ascorbic acid (46.30 mg/100 g; p < 0.001, and the best iron bioaccessibility (10.28 ng ferritin/mg protein. Baobab and an orange-fleshed sweet potato with purplish young leaves had a lower iron bioaccessibility (6.51 and 6.76 ng ferritin/mg protein, respectively compared with that of moringa, although these three greens contained similar (p > 0.05 iron (averaging 4.18 mg/100 g and β-carotene levels. The ascorbic acid concentration of 25.50 mg/100 g in the cooked baobab did not enhance the iron bioaccessibility. Baobab and the orange-fleshed sweet potato with purplish young leaves contained the highest levels of total polyphenols (1646.75 and 506.95 mg Gallic Acid Equivalents/100 g, respectively; p < 0.001. This suggests that iron bioaccessibility in greens cannot be inferred based on the mineral concentration. Based on the similarity of the iron bioaccessibility of the sweet potato leaves and cocoyam leaf (a widely-promoted “nutritious” DGLV in Ghana, the former greens have an added advantage of increasing the dietary intake of provitamin A.

  13. Green synthesis of silver nanoparticles from aqueous leaf extract of Pomegranate (Punica granatum) and their anticancer activity on human cervical cancer cells

    Science.gov (United States)

    Sarkar, Sonia; Kotteeswaran, Venkatesan

    2018-06-01

    Plants contain different important phytochemicals that can be used as a potential treatment for various ailments including cancer. The green synthesis of silver nanoparticles from the extract of different plant parts has gained a wide range of engrossment among the researchers due to its unique optical and structural property. The aim of this study is green synthesis of silver nanoparticles from the aqueous leaf extract of pomegranate (Punica granatum) and to investigate its anticancer activity on human cervical cancer cells (HeLa). The synthesis of silver nanoparticle was depicted by the colour change from golden yellowish to dark brownish, UV-visible spectral analysis gave a characteristic surface plasmon absorption peak at . Further morphological characterization was done by Zeta potential where the size analysis was depicted to be 46.1 nm and zeta potential as . Fourier transform infrared spectroscopy (FTIR) inferred 3 intense sharp peaks at , , , confirmed the presence of flavonoids and polyphenols. The scanning electron microscopy (SEM) analysis with energy diffraction spectroscopy (EDS) confirmed the presence of silver nanoparticles with size ranged from to . X-ray diffraction (XRD) confirmed the crystallographic nature of silver. The cell proliferation activity of nanoparticles was tested by 3, ‑4, 5 dimethylthiazol-2,5 diphenyl tetrazolium bromide (MTT) assay where the inhibitory concentration () was found at inhibiting of HeLa cell line. The anticancer activity of nanoparticles was determined by lactate dehydrogenase (LDH) assay where showed of cytotoxicity. Furthermore, the anticancer property of nanoparticles was confirmed by the DNA fragmentation assay.

  14. Chlorogenic acid complex (CGA7, standardized extract from green coffee beans exerts anticancer effects against cultured human colon cancer HCT-116 cells

    Directory of Open Access Journals (Sweden)

    K. Gouthamchandra

    2017-09-01

    Full Text Available Coffee is commonly consumed beverage in the world and it has been suggested to have beneficial effect. Chlorogenic acids (CGAs are main ingredient of coffee beans which has been extensively used in nutraceuticals and medicine. Recently, various therapeutic effects of chlorogenic acids have been investigated. However, there are limited studies to investigate its anticancer properties. In the present study, we have used chlorogenic acid complex (CGA7 a decaffeinated water soluble green coffee bean extract to evaluate its cytotoxic effect on human and mouse cancer cell lines by using different approaches. From our results we found CGA7 treatment induces cell death in a dose and time dependent manner in different cancer cell lines. Further, CGA7 induced apoptosis was characterized by DNA fragmentation, PARP-1 cleavage, caspase-9 activation, and down regulation of Bcl-2, an anti-apoptotic protein and up regulation of pro-apoptotic protein BAX. Overall findings indicated that CGA7 complex a potent anticancer molecule found in green coffee beans could be a safe bioactive ingredient for prevention of cancer.

  15. Green times

    International Nuclear Information System (INIS)

    Hasenclever, W.D.; Hasenclever, C.

    1982-01-01

    The authors, founding members of the ''Green Party'' have in mind to make a very personal contribution to a better understanding of the present political situation which, although it seems to have reached a deadlock, still offers positive chances and prospects. New approaches in policy are mentioned which may help to overcome the present state of resignation of many adolescents and adults. Among other things, they describe themselves setting out for new pathways, the ''Greens'' in Parliament, prospect for the future, opportunities of the ecologically oriented economic policy. Finally, they call upon the reader to think and develop further under the motto ''What we all can do''. (HSCH) [de

  16. Comparative Assessment of Nuclear and Nucleolar Cytochemical Parameters of Oral Epithelial Cells in Smokers and Non-Smokers by Methyl Green-Pyronin Staining

    Directory of Open Access Journals (Sweden)

    Shahrzad Adhami

    2012-09-01

    Full Text Available Introduction: A strong relationship exists between cigarette smoking and the development of oral squamous cell carcinoma. Smoking can significantly increase cellular proliferation. Nevertheless, there is little reference in literature to the cytological assessment of oral mucosa in this respect. Methods: Changes in nuclear and neucleolar cytomorphometric parameters such as diameter, surface, number and color intensity, in cytologic smears which were collected from normal buccal mucosa of 30 cigarette smokers and 30 non smokers, using methyl green-pyronin staining were studied. Results: Our findings attested to smoking as significant inductive factor in cytochemistry as well as morphologic changes. Conclusion: This technique is a valuable tool.

  17. Observation of antioxidant activity of leaves, callus and suspension ...

    African Journals Online (AJOL)

    GREGORY

    2011-12-16

    Dec 16, 2011 ... Antioxidant activity and phenolic compound was found in Justicia gendarussa via total phenolic content (TPC) and α,α-diphenyl-β-pycrilhydrazil hydrate (DPPH) radical scavenging assays. The assays were applied on aqueous and methanolic extracts of leaves, callus culture and cell suspension culture.

  18. Fabrication of Yttria stabilized zirconia thin films on poroussubstrates for fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Leming, Andres [Univ. of California, Berkeley, CA (United States)

    2003-06-16

    A process for the deposition of yttria stabilized zirconia (YSZ) films, on porous substrates, has been developed. These films have possible applications as electrolyte membranes in fuel cells. The films were deposited from colloidal suspensions through the vacuum infiltration technique. Films were deposited on both fully sintered and partially sintered substrates. A critical cracking thickness for the films was identified and strategies are presented to overcome this barrier. Green film density was also examined, and a method for improving green density by changing suspension pH and surfactant was developed. A dependence of film density on film thickness was observed, and materials interactions are suggested as a possible cause. Non-shorted YSZ films were obtained on co-fired substrates, and a cathode supported solid oxide fuel cell was constructed and characterized.

  19. Active Control of Suspension Bridges

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    In this paper some recent research on active control of very long suspension bridges, is presented. The presentation is based on research work at Aalborg University, Denmark. The active control system is based on movable flaps attached to the bridge girder. Wind load on bridges with or without...... flaps attached to the girder is briefly presented. A simple active control system is discussed. Results from wind tunnel experiments with a bridge section show that flaps can be used effectively to control bridge girder vibrations. Flutter conditions for suspension bridges with and without flaps...

  20. Generation of functional cardiomyocytes from rat embryonic and induced pluripotent stem cells using feeder-free expansion and differentiation in suspension culture.

    Science.gov (United States)

    Dahlmann, Julia; Awad, George; Dolny, Carsten; Weinert, Sönke; Richter, Karin; Fischer, Klaus-Dieter; Munsch, Thomas; Leßmann, Volkmar; Volleth, Marianne; Zenker, Martin; Chen, Yaoyao; Merkl, Claudia; Schnieke, Angelika; Baraki, Hassina; Kutschka, Ingo; Kensah, George

    2018-01-01

    The possibility to generate cardiomyocytes from pluripotent stem cells in vitro has enormous significance for basic research, disease modeling, drug development and heart repair. The concept of heart muscle reconstruction has been studied and optimized in the rat model using rat primary cardiovascular cells or xenogeneic pluripotent stem cell derived-cardiomyocytes for years. However, the lack of rat pluripotent stem cells (rPSCs) and their cardiovascular derivatives prevented the establishment of an authentic clinically relevant syngeneic or allogeneic rat heart regeneration model. In this study, we comparatively explored the potential of recently available rat embryonic stem cells (rESCs) and induced pluripotent stem cells (riPSCs) as a source for cardiomyocytes (CMs). We developed feeder cell-free culture conditions facilitating the expansion of undifferentiated rPSCs and initiated cardiac differentiation by embryoid body (EB)-formation in agarose microwell arrays, which substituted the robust but labor-intensive hanging drop (HD) method. Ascorbic acid was identified as an efficient enhancer of cardiac differentiation in both rPSC types by significantly increasing the number of beating EBs (3.6 ± 1.6-fold for rESCs and 17.6 ± 3.2-fold for riPSCs). These optimizations resulted in a differentiation efficiency of up to 20% cTnTpos rPSC-derived CMs. CMs showed spontaneous contractions, expressed cardiac markers and had typical morphological features. Electrophysiology of riPSC-CMs revealed different cardiac subtypes and physiological responses to cardio-active drugs. In conclusion, we describe rPSCs as a robust source of CMs, which is a prerequisite for detailed preclinical studies of myocardial reconstruction in a physiologically and immunologically relevant small animal model.

  1. Evaluation of an mRNA lipofection procedure for human dendritic cells and induction of cytotoxic T lymphocytes against enhanced green fluorescence protein.

    Science.gov (United States)

    Okano, Kozue; Fukui, Mikiko; Suehiro, Yutaka; Hamanaka, Yuichiro; Imai, Kohzoh; Hinoda, Yuji

    2003-01-01

    We utilized an mRNA lipofection procedure in human dendritic cells (DCs) and attempted to induce cytotoxic T lymphocytes (CTLs) against enhanced green fluorescence protein (EGFP). EGFP mRNA was transfected into phytohemagglutinin (PHA)-stimulated lymphocytes or adherent peripheral blood mononuclear cell-derived DCs using a liposomal reagent. Lipofection efficiency was measured by flow cytometry. In PHA-stimulated lymphocytes, increasing concentrations of liposome or mRNA increased EGFP expression levels by up to 64.4%, but caused a decrease in cell viability. A similar trend was also observed in DCs. For 70% DC viability, the concentration of liposomes was 24 microl/ml, and the mRNA concentration was 6 microg/ml. Under these conditions, ELISPOT and (51)Cr release assays were performed on CD8+ T cells stimulated twice with EGFP mRNA-transfected DCs. The number of interferon-gamma-producing cells was increased when the CD8+ T cells were cocultured for 24 h with PHA-stimulated lymphocytes transfected with EGFP mRNA. The level of specific lysis of EGFP mRNA-transfected DCs also increased to approximately 80%, with an effector to target ratio of 40:1. These data suggest that EGFP is immunogenic for human T cells, confirming that our lipofection procedure may be of use for inducing specific CTLs. Copyright 2003 S. Karger AG, Basel

  2. Modulation of mesenchymal stem cell behavior by nano- and micro-sized β-tricalcium phosphate particles in suspension and composite structures

    Science.gov (United States)

    Smoak, Mollie; Hogan, Katie; Kriegh, Lisa; Chen, Cong; Terrell, LeKeith B.; Qureshi, Ammar T.; Todd Monroe, W.; Gimble, Jeffrey M.; Hayes, Daniel J.

    2015-04-01

    Interest has grown in the use of microparticles and nanoparticles for modifying the mechanical and biological properties of synthetic bone composite structures. Micro- and nano-sized calcium phosphates are of interest for their osteoinductive behavior. Engineered composites incorporating polymers and ceramics, such as poly-l-lactic acid (PLLA) and beta-tricalcium phosphate (β-TCP), for bone tissue regeneration have been well investigated for their proliferative and osteoinductive abilities. Only limited research has been done to investigate the effects of different sizes of β-TCP particles on human mesenchymal stromal cell behavior. As such, the aim of this study was to investigate the modulations of human adipose-derived stem cell (hASCs) behavior within cell/particle and cell/composite systems as functions of particle size, concentration, and exposure time. The incorporation of nanoscale calcium phosphate resulted in improved mechanical properties and osteogenic behavior within the scaffold compared to the microscale calcium phosphate additives. Particle exposure results indicate that cytotoxicity on hASCs correlates inversely with particle size and increases with the increasing exposure time and particle concentration. Composites with increasing β-TCP content, whether microparticles or nanoparticles, were less toxic than colloidal micro- and nano-sized β-TCP particles directly supplied to hASCs. The difference in viability observed as a result of varying exposure route is likely related to the increased cell-particle interactions in the direct exposure compared to the particles becoming trapped within the scaffold/polymer matrix.

  3. Effects of gamma irradiation on the plasma membrane of suspension-cultured apple cells. Rapid irreversible inhibition of H+-ATPase activity

    International Nuclear Information System (INIS)

    Dong, C.-Z.; Montillet, J.-L.; Triantaphylides, C.

    1994-01-01

    The effects of ionizing radiation, used in post-harvest treatment of fruit and vegetables. were investigated on cultured apple cells (Pyrus malus L. cv. Royal Red) on a short-term period. Irradiation (2 kGy) induced an increase of passive ion effluxes from cells and a decrease of cell capacity to regulate external pH. These alterations are likely due to effects on plasma membrane structure and function and were further investigated by studying the effects of irradiation on plasma membrane H + -ATPase activity. Plasma membrane-enriched vesicles were prepared and the H + -ATPase activity was characterized. Irradiation of the vesicles induced a dose dependent inhibition of H + -ATPase activity. The loss of enzyme activity was immediate, even at low doses (0.5 kGy), and was not reversed by the addition of 2mM dithiothreitol. This inhibition may be the result of an irreversible oxidation of enzyme sulfhydryl moieties and/or the result of changes induced within the lipid bilayer affecting the membrane-enzyme interactions. Further analysis of the H + -ATPase activity was carried out on vesicles obtained from irradiated cells confirming the previous results. In vivo recovery of activity was not observed within 5 h following the treatment, thus explaining the decrease of cell capacity to regulate external pH. This rapid irreversible inhibition of the plasma membrane H + -ATPase must be considered as one of the most important primary biochemical events occurring in irradiated plant material. (author)

  4. Going Green

    Science.gov (United States)

    Witkowsky, Kathy

    2009-01-01

    Going green saves money and can even make money. Sustainable practices promote better health, less absenteeism, and more productivity. They also attract students, who are paying increasing attention to schools' environmental policies. Beyond being the smart thing to do, administrators at the University of Washington say repeatedly, it's the right…

  5. Buying Green

    Science.gov (United States)

    Layng, T. V. Joe

    2010-01-01

    In "Buying Green," Joe Layng recognizes that, like all choices we make, our decisions as consumers are more likely to be influenced by their short-term consequences for us as individuals (price, quality) than they are by their long-term consequences for society (environmental impact). He believes that the equation can be tilted in favor of greener…

  6. Green pioneers.

    Science.gov (United States)

    Trueland, Jennifer

    The government has set tough targets for the NHS in England to reduce its carbon footprint. In this article, nurses and managers at Nottinghamshire Healthcare NHS Trust explain how a programme of 'greening' initiatives - including a trial of electric cars for community staff - have slashed the trust's CO2 output.

  7. Automatically Green

    DEFF Research Database (Denmark)

    Sunstein, Cass R.; Reisch, Lucia

    2014-01-01

    reasons include the power of suggestion; inertia and procrastination; and loss aversion. If well-chosen, green defaults are likely to have large effects in reducing the economic and environmental harms associated with various products and activities. Such defaults may or may not be more expensive...

  8. Automatically Green

    DEFF Research Database (Denmark)

    Sunstein, Cass R.; Reisch, Lucia

    reasons include the power of suggestion; inertia and procrastination; and loss aversion. If well-chosen, green defaults are likely to have large effects in reducing the economic and environmental harms associated with various products and activities. Such defaults may or may not be more expensive...

  9. Going Green

    Centers for Disease Control (CDC) Podcasts

    2008-04-18

    This podcast is for a general audience and provides information on how to recycle, re-use, and restore. It also covers the benefits of “Going Green" on the environment, health, and social interaction.  Created: 4/18/2008 by National Center for Environmental Health (NCEH), ATSDR.   Date Released: 5/8/2008.

  10. Toxicity of Nickel Oxide Nanoparticles on a Freshwater Green Algal Strain of Chlorella vulgaris

    Directory of Open Access Journals (Sweden)

    Abdallah Oukarroum

    2017-01-01

    Full Text Available A freshwater microalga strain of Chlorella vulgaris was used to investigate toxic effects induced by nickel oxide nanoparticles (NiO-NPs in suspension. Algal cells were exposed during 96 h to 0–100 mg L−1 of NiO-NPs and analyzed by flow cytometry. Physicochemical characterization of nanoparticles in tested media showed a soluble fraction (free Ni2+ of only 6.42% for 100 mg L−1 of NiO-NPs, indicating the low solubility capacity of these NPs. Toxicity analysis showed cellular alterations which were related to NiO-NPs concentration, such as inhibition in cell division (relative cell size and granularity, deterioration of the photosynthetic apparatus (chlorophyll synthesis and photochemical reactions of photosynthesis, and oxidative stress (ROS production. The change in cellular viability demonstrated to be a very sensitive biomarker of NiO-NPs toxicity with EC50 of 13.7 mg L−1. Analysis by TEM and X-ray confirmed that NiO-NPs were able to cross biological membranes and to accumulate inside algal cells. Therefore, this study provides a characterization of both physicochemical and toxicological properties of NiO-NPs suspensions in tested media. The use of the freshwater strain of C. vulgaris demonstrated to be a sensitive bioindicator of NiO-NPs toxicity on the viability of green algae.

  11. Extraction and Characterization of Extracellular Proteins and Their Post-Translational Modifications from Arabidopsis thaliana Suspension Cell Cultures and Seedlings: A Critical Review

    Directory of Open Access Journals (Sweden)

    Mina Ghahremani

    2016-09-01

    Full Text Available Proteins secreted by plant cells into the extracellular space, consisting of the cell wall, apoplastic fluid, and rhizosphere, play crucial roles during development, nutrient acquisition, and stress acclimation. However, isolating the full range of secreted proteins has proven difficult, and new strategies are constantly evolving to increase the number of proteins that can be detected and identified. In addition, the dynamic nature of the extracellular proteome presents the further challenge of identifying and characterizing the post-translational modifications (PTMs of secreted proteins, particularly glycosylation and phosphorylation. Such PTMs are common and important regulatory modifications of proteins, playing a key role in many biological processes. This review explores the most recent methods in isolating and characterizing the plant extracellular proteome with a focus on the model plant Arabidopsis thaliana, highlighting the current challenges yet to be overcome. Moreover, the crucial role of protein PTMs in cell wall signalling, development, and plant responses to biotic and abiotic stress is discussed.

  12. Visualization of phosphatidylinositol 4,5-bisphosphate in the plasma membrane of suspension-cultured tobacco BY-2 cells and whole Arabidopsis seedlings

    NARCIS (Netherlands)

    Leeuwen, van W.; Vermeer, J.E.M.; Gadella, T.W.J.; Munnik, T.

    2007-01-01

    Phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P-2] is an important signalling lipid in mammalian cells, where it functions as a second-messenger precursor in response to agonist-dependent activation of phospholipase C (PLC) but also operates as a signalling molecule on its own. Much of the

  13. Uptake of 13C-glucose by cell suspensions of carrot (Daucus carota) measured by in vivo NMR: Cycling of triose, pentose- and hexose-phosphates

    NARCIS (Netherlands)

    Krook, J.; Vreugdenhil, D.; Dijkema, C.; Plas, van der L.H.W.

    2000-01-01

    After a lag phase of 2 days, batch-grown cells of carrot (Daucus carota L.) cv. Flakkese entered the exponential growth phase and started to accumulate sucrose and hexoses. Short-term feeding 13C-glucose in this period resulted in only minor labelling of sucrose or fructose. CO2 production from

  14. Four-Wheel Vehicle Suspension System

    Science.gov (United States)

    Bickler, Donald B.

    1990-01-01

    Four-wheel suspension system uses simple system of levers with no compliant components to provide three-point suspension