WorldWideScience

Sample records for green roof plant

  1. The Green Roof Microbiome: Improving Plant Survival for Ecosystem Service Delivery

    Directory of Open Access Journals (Sweden)

    Roberta Fulthorpe

    2018-02-01

    Full Text Available Plants are key contributors to ecosystem services delivered by green roofs in cities including stormwater capture, temperature regulation, and wildlife habitat. As a result, current research has primarily focused on their growth in relationship to extensive green roof (e.g., substrates <15 cm depth ecosystem services. Green roofs are exposed to a variety of harsh abiotic factors such as intense solar radiation, wind, and isolation from ground-level habitats, making survival exceedingly difficult. Plants in natural habitats benefit from a variety of interactions with fungi and bacteria. These plant-microbial interactions improve mechanisms of survival and productivity; however, many green roof substrates are sterilized prior to installation and lack microbial communities with unstudied consequences for green roof plant health and subsequent survival and performance. In this paper, we present six hypotheses on the positive role of microbes in green roof applications. In natural and experimental systems, microbial interactions have been linked to plant (1 drought tolerance, (2 pathogen protection, (3 nutrient availability, (4 salt tolerance, (5 phytohormone production, and (6 substrate stabilization, all of which are desirable properties of green roof ecosystems. As few studies exist that directly examine these relationships on green roofs, we explore the existing ecological literature on these topics to unravel the mechanisms that could support more complex green roof ecosystem and lead to new insight into the design, performance, and broader applications in green infrastructure.

  2. Plant species richness enhances nitrogen retention in green roof plots.

    Science.gov (United States)

    Johnson, Catherine; Schweinhart, Shelbye; Buffam, Ishi

    2016-10-01

    Vegetated (green) roofs have become common in many cities and are projected to continue to increase in coverage, but little is known about the ecological properties of these engineered ecosystems. In this study, we tested the biodiversity-ecosystem function hypothesis using commercially available green roof trays as replicated plots with varying levels of plant species richness (0, 1, 3, or 6 common green roof species per plot, using plants with different functional characteristics). We estimated accumulated plant biomass near the peak of the first full growing season (July 2013) and measured runoff volume after nearly every rain event from September 2012 to September 2013 (33 events) and runoff fluxes of inorganic nutrients ammonium, nitrate, and phosphate from a subset of 10 events. We found that (1) total plant biomass increased with increasing species richness, (2) green roof plots were effective at reducing storm runoff, with vegetation increasing water retention more than soil-like substrate alone, but there was no significant effect of plant species identity or richness on runoff volume, (3) green roof substrate was a significant source of phosphate, regardless of presence/absence of plants, and (4) dissolved inorganic nitrogen (DIN = nitrate + ammonium) runoff fluxes were different among plant species and decreased significantly with increasing plant species richness. The variation in N retention was positively related to variation in plant biomass. Notably, the increased biomass and N retention with species richness in this engineered ecosystem are similar to patterns observed in published studies from grasslands and other well-studied ecosystems. We suggest that more diverse plantings on vegetated roofs may enhance the retention capacity for reactive nitrogen. This is of importance for the sustained health of vegetated roof ecosystems, which over time often experience nitrogen limitation, and is also relevant for water quality in receiving waters

  3. Plant functional traits predict green roof ecosystem services.

    Science.gov (United States)

    Lundholm, Jeremy; Tran, Stephanie; Gebert, Luke

    2015-02-17

    Plants make important contributions to the services provided by engineered ecosystems such as green roofs. Ecologists use plant species traits as generic predictors of geographical distribution, interactions with other species, and ecosystem functioning, but this approach has been little used to optimize engineered ecosystems. Four plant species traits (height, individual leaf area, specific leaf area, and leaf dry matter content) were evaluated as predictors of ecosystem properties and services in a modular green roof system planted with 21 species. Six indicators of ecosystem services, incorporating thermal, hydrological, water quality, and carbon sequestration functions, were predicted by the four plant traits directly or indirectly via their effects on aggregate ecosystem properties, including canopy density and albedo. Species average height and specific leaf area were the most useful traits, predicting several services via effects on canopy density or growth rate. This study demonstrates that easily measured plant traits can be used to select species to optimize green roof performance across multiple key services.

  4. Performance of dryland and wetland plant species on extensive green roofs.

    Science.gov (United States)

    MacIvor, J Scott; Ranalli, Melissa A; Lundholm, Jeremy T

    2011-04-01

    Green roofs are constructed ecosystems where plants perform valuable services, ameliorating the urban environment through roof temperature reductions and stormwater interception. Plant species differ in functional characteristics that alter ecosystem properties. Plant performance research on extensive green roofs has so far indicated that species adapted to dry conditions perform optimally. However, in moist, humid climates, species typical of wetter soils might have advantages over dryland species. In this study, survival, growth and the performance of thermal and stormwater capture functions of three pairs of dryland and wetland plant species were quantified using an extensive modular green roof system. Seedlings of all six species were germinated in a greenhouse and planted into green roof modules with 6 cm of growing medium. There were 34 treatments consisting of each species in monoculture and all combinations of wet- and dryland species in a randomized block design. Performance measures were survival, vegetation cover and roof surface temperature recorded for each module over two growing seasons, water loss (an estimate of evapotranspiration) in 2007, and albedo and water capture in 2008. Over two seasons, dryland plants performed better than wetland plants, and increasing the number of dryland species in mixtures tended to improve functioning, although there was no clear effect of species or habitat group diversity. All species had survival rates >75 % after the first winter; however, dryland species had much greater cover, an important indicator of green roof performance. Sibbaldiopsis tridentata was the top performing species in monoculture, and was included in the best treatments. Although dryland species outperformed wetland species, planting extensive green roofs with both groups decreased performance only slightly, while increasing diversity and possibly habitat value. This study provides further evidence that plant composition and diversity can

  5. Green roofs

    CSIR Research Space (South Africa)

    Van Wyk, Llewellyn V

    2010-04-01

    Full Text Available , beetles and spiders); and the number of birds that nest in vegetated roofs (including kestrels, swallows, and wagtails). Objective The primary objective of a green roof is to create a living habitat in an otherwise barren environment, hence the use... the negative environmental impacts including plant and insect specie loss. Thus at a philosophical level green roofs support the notion “replace what you displace”. Key ecological issues that can be addressed through green roofs include: Negative effects...

  6. Minimal watering regime impacts on desert adapted green roof plant performance

    Science.gov (United States)

    Kovachich, S.; Pavao-Zuckerman, M.; Templer, S.; Livingston, M.; Stoltz, R.; Smith, S.

    2011-12-01

    Roof tops can cover one-fifth of urban areas and can greatly alter the movement of matter and energy in cities. With traditional roofing methods and materials, roof tops readily absorb heat and as a result, buildings and the surrounding urban area heat to unnaturally high temperatures. It is hypothesized that extensive green roofs would have wide-ranging benefits for arid environments. However, little is known about the cost of water use associated with green roof installations and how to balance energy reduction needs with water costs in this water limited environment. We are conducting a pilot study to test whether a) green roofs with native plants and environmentally-responsible watering regimes will prove successful in arid environments and if b) green roofs provide ecosystem services with responsible water application. Three species of Sonoran Desert natives, Dyssodia pentachaeta (groundcover), Calliandra eriophylla (shrub), and Hesperaloe parviflora (succulent) have been planted in experimental plots [1 m2 model houses and roofs, replicated in triplicate] with two sandy, rocky desert soil mixtures (light mix: 60% expanded shale and heavy mix: organic and sandy mix with 50% shale) at the Biosphere 2 campus near Oracle, Az. The green roofs are watered by two different techniques. The first technique provides "smart watering", the minimal amount of water needed by green roof plants based on precipitation and historical data. The second watering technique is considered heavy and does not take into account environmental conditions. Preliminary data from the experimental plots shows a 30% decrease in daytime roof top temperatures on green roofs and a 10% decrease in interior temperatures in buildings with green roofs. This trend occurs with both watering regimes (heavy and light). This finding suggests that additional irrigation yields no extra heat reduction and energy savings. In order to explain this phenomenon more clearly, we use co-located temperature and

  7. Drought versus heat: What's the major constraint on Mediterranean green roof plants?

    International Nuclear Information System (INIS)

    Savi, Tadeja; Dal Borgo, Anna; Love, Veronica L.; Andri, Sergio; Tretiach, Mauro; Nardini, Andrea

    2016-01-01

    Green roofs are gaining momentum in the arid and semi-arid regions due to their multiple benefits as compared with conventional roofs. One of the most critical steps in green roof installation is the selection of drought and heat tolerant species that can thrive under extreme microclimate conditions. We monitored the water status, growth and survival of 11 drought-adapted shrub species grown on shallow green roof modules (10 and 13 cm deep substrate) and analyzed traits enabling plants to cope with drought (symplastic and apoplastic resistance) and heat stress (root membrane stability). The physiological traits conferring efficiency/safety to the water transport system under severe drought influenced plant water status and represent good predictors of both plant water use and growth rates over green roofs. Moreover, our data suggest that high substrate temperature represents a stress factor affecting plant survival to a larger extent than drought per se. In fact, the major cause influencing seedling survival on shallow substrates was the species-specific root resistance to heat, a single and easy measurable trait that should be integrated into the methodological framework for screening and selection of suitable shrub species for roof greening in the Mediterranean. - Highlights: • The use of hardy shrub species for roof greening should be increased. • We monitored water status of 11 shrub species growing on shallow green roofs. • Species heat and drought tolerance, growth, and survival were studied. • High substrate temperature significantly affected plant survival. • Root resistance to heat could be used as trait for species selection for green roofs.

  8. Green roof Malta

    OpenAIRE

    Gatt, Antoine

    2015-01-01

    In Malta, buildings cover one third of the Island, leaving greenery in the dirt track. Green roofs are one way to bring plants back to urban areas with loads of benefits. Antoine Gatt, who manages the LifeMedGreenRoof project at the University of Malta, tells us more. http://www.um.edu.mt/think/green-roof-malta/

  9. Green roofs; Les toitures vegetalisees

    Energy Technology Data Exchange (ETDEWEB)

    Seghier, C.

    2006-03-15

    Impervious surface coverage keeps spreading in cities. Streets, sidewalks, parking lots and roofs are waterproof, meaning greater amounts of water to channel and treat and higher flood risks during heavy rainfalls. Green roofing can play a key part in addressing this alarming issue. There are three types of green roofs: extensive, semi-intensive and intensive. The extensive green roof technique uses a thin soil covering with a variety of species providing year-round plant coverage. The plants are not necessarily horticultural in which case routine maintenance is minimal. No watering is needed. Usually extensive green roofs create an ecosystem. The semi-intensive green roof technique uses a soil covering of average thickness and serves to create decorative roofing. Although maintenance is moderate, watering is essential. The intensive green roof technique produces a terrace roof garden. Another advantage of green roofs is they increase the life cycle of the sealing. Roof sealing protection may see the span of its life cycle, now at about fifteen years, doubled if the building has a green roof. planning professionals still know very little about green roofing solutions. Yet, green roofing provides unquestionable ecological qualities and thermal and acoustic performance that have proven to be environmentally friendly. Yet France lags behind northern European countries in green roofing. The Germans, Swiss, Austrians, Scandinavians and Dutch have been using the technique for more than twenty years. (A.L.B.)

  10. Drought versus heat: What's the major constraint on Mediterranean green roof plants?

    Energy Technology Data Exchange (ETDEWEB)

    Savi, Tadeja, E-mail: tsavi@units.it [Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127 Trieste (Italy); Dal Borgo, Anna, E-mail: dalborgo.anna@gmail.com [Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127 Trieste (Italy); Love, Veronica L., E-mail: vllove1@sheffield.ac.uk [Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127 Trieste (Italy); Department of Landscape, University of Sheffield, Western Bank, Sheffield, South Yorkshire S10 2TN (United Kingdom); Andri, Sergio, E-mail: s.andri@seic.it [Harpo seic verdepensile, Via Torino 34, 34123 Trieste (Italy); Tretiach, Mauro, E-mail: tretiach@units.it [Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127 Trieste (Italy); Nardini, Andrea, E-mail: nardini@units.it [Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127 Trieste (Italy)

    2016-10-01

    Green roofs are gaining momentum in the arid and semi-arid regions due to their multiple benefits as compared with conventional roofs. One of the most critical steps in green roof installation is the selection of drought and heat tolerant species that can thrive under extreme microclimate conditions. We monitored the water status, growth and survival of 11 drought-adapted shrub species grown on shallow green roof modules (10 and 13 cm deep substrate) and analyzed traits enabling plants to cope with drought (symplastic and apoplastic resistance) and heat stress (root membrane stability). The physiological traits conferring efficiency/safety to the water transport system under severe drought influenced plant water status and represent good predictors of both plant water use and growth rates over green roofs. Moreover, our data suggest that high substrate temperature represents a stress factor affecting plant survival to a larger extent than drought per se. In fact, the major cause influencing seedling survival on shallow substrates was the species-specific root resistance to heat, a single and easy measurable trait that should be integrated into the methodological framework for screening and selection of suitable shrub species for roof greening in the Mediterranean. - Highlights: • The use of hardy shrub species for roof greening should be increased. • We monitored water status of 11 shrub species growing on shallow green roofs. • Species heat and drought tolerance, growth, and survival were studied. • High substrate temperature significantly affected plant survival. • Root resistance to heat could be used as trait for species selection for green roofs.

  11. Decoupling factors affecting plant diversity and cover on extensive green roofs.

    Science.gov (United States)

    MacIvor, J Scott; Margolis, Liat; Puncher, Curtis L; Carver Matthews, Benjamin J

    2013-11-30

    Supplemental irrigation systems are often specified on green roofs to ensure plant cover and growth, both important components of green roof performance and aesthetics. Properties of the growing media environment too can alter the assemblage of plant species able to thrive. In this study we determine how plant cover, above ground biomass and species diversity are influenced by irrigation and growing media. Grass and forb vegetative cover and biomass were significantly greater in organic based growing media but there was no effect of supplemental irrigation, with two warm season grasses dominating in those treatments receiving no supplemental irrigation. On the other hand, plant diversity declined without irrigation in organic media, and having no irrigation in inorganic growing media resulted in almost a complete loss of cover. Sedum biomass was less in inorganic growing media treatments and species dominance shifted when growing media organic content increased. Our results demonstrate that supplemental irrigation is required to maintain plant diversity on an extensive green roof, but not necessarily plant cover or biomass. These results provide evidence that planting extensive green roofs with a mix of plant species can ensure the survival of some species; maintaining cover and biomass when supplemental irrigation is turned off to conserve water, or during extreme drought. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  12. Green Roofs for Stormwater Runoff Control

    Science.gov (United States)

    This project evaluated green roofs as a stormwater management tool. Specifically, runoff quantity and quality from green and flat asphalt roofs were compared. Evapotranspiration from planted green roofs and evaporation from unplanted media roofs were also compared. The influence...

  13. Plant establishment on unirrigated green roof modules in a subtropical climate

    Science.gov (United States)

    Dvorak, Bruce D.; Volder, Astrid

    2012-01-01

    Background and aims The application of green roof technology has become more common in the central, northwestern and eastern USA, and is now being employed across the southern USA as well. However, there is little research in the literature that evaluated plant survival on unirrigated green roofs in subtropical climates that experience frequent drought and heat stress. Here, we summarize the results of a study of plant establishment on a modular green roof in south-central Texas. Methodology Fifteen plant species were field tested in 11.4-cm-deep green roof modules on a four-storey building in College Station, Texas, with irrigation limited to the first several weeks of establishment. Climate data, plant growth and species survival were measured over three growing seasons. Principal results Four species survived growing seasons without any losses: Graptopetalum paraguayense, Malephora lutea, Manfreda maculosa and Phemeranthus calycinus. Six species experienced varying levels of mortality: Bulbine frutescens, Delosperma cooperi, Lampranthus spectabilis, Sedum kamtschaticum, Sedum mexicanum and Nassella tenuissima. Five species had no survivors: Dichondra argentea, Stemodia lanata, Myoporum parvifolium, Sedum moranense and Sedum tetractinum. Conclusions The establishment and survival of several plant species without any mortality suggests that irrigation limited to the first few weeks after planting may be an effective approach on green roofs in spite of the more challenging climatic conditions in the southern USA. Since the climate in south-central Texas had been consistently drier and warmer than normal during the study period, longer-term research on these species is recommended to expand knowledge of establishment requirements for these species under a wider range of conditions, including wetter than normal years.

  14. Leaf and life history traits predict plant growth in a green roof ecosystem.

    Directory of Open Access Journals (Sweden)

    Jeremy Lundholm

    Full Text Available Green roof ecosystems are constructed to provide services such as stormwater retention and urban temperature reductions. Green roofs with shallow growing media represent stressful conditions for plant survival, thus plants that survive and grow are important for maximizing economic and ecological benefits. While field trials are essential for selecting appropriate green roof plants, we wanted to determine whether plant leaf traits could predict changes in abundance (growth to provide a more general framework for plant selection. We quantified leaf traits and derived life-history traits (Grime's C-S-R strategies for 13 species used in a four-year green roof experiment involving five plant life forms. Changes in canopy density in monocultures and mixtures containing one to five life forms were determined and related to plant traits using multiple regression. We expected traits related to stress-tolerance would characterize the species that best grew in this relatively harsh setting. While all species survived to the end of the experiment, canopy species diversity in mixture treatments was usually much lower than originally planted. Most species grew slower in mixture compared to monoculture, suggesting that interspecific competition reduced canopy diversity. Species dominant in mixture treatments tended to be fast-growing ruderals and included both native and non-native species. Specific leaf area was a consistently strong predictor of final biomass and the change in abundance in both monoculture and mixture treatments. Some species in contrasting life-form groups showed compensatory dynamics, suggesting that life-form mixtures can maximize resilience of cover and biomass in the face of environmental fluctuations. This study confirms that plant traits can be used to predict growth performance in green roof ecosystems. While rapid canopy growth is desirable for green roofs, maintenance of species diversity may require engineering of conditions that

  15. Leaf and life history traits predict plant growth in a green roof ecosystem.

    Science.gov (United States)

    Lundholm, Jeremy; Heim, Amy; Tran, Stephanie; Smith, Tyler

    2014-01-01

    Green roof ecosystems are constructed to provide services such as stormwater retention and urban temperature reductions. Green roofs with shallow growing media represent stressful conditions for plant survival, thus plants that survive and grow are important for maximizing economic and ecological benefits. While field trials are essential for selecting appropriate green roof plants, we wanted to determine whether plant leaf traits could predict changes in abundance (growth) to provide a more general framework for plant selection. We quantified leaf traits and derived life-history traits (Grime's C-S-R strategies) for 13 species used in a four-year green roof experiment involving five plant life forms. Changes in canopy density in monocultures and mixtures containing one to five life forms were determined and related to plant traits using multiple regression. We expected traits related to stress-tolerance would characterize the species that best grew in this relatively harsh setting. While all species survived to the end of the experiment, canopy species diversity in mixture treatments was usually much lower than originally planted. Most species grew slower in mixture compared to monoculture, suggesting that interspecific competition reduced canopy diversity. Species dominant in mixture treatments tended to be fast-growing ruderals and included both native and non-native species. Specific leaf area was a consistently strong predictor of final biomass and the change in abundance in both monoculture and mixture treatments. Some species in contrasting life-form groups showed compensatory dynamics, suggesting that life-form mixtures can maximize resilience of cover and biomass in the face of environmental fluctuations. This study confirms that plant traits can be used to predict growth performance in green roof ecosystems. While rapid canopy growth is desirable for green roofs, maintenance of species diversity may require engineering of conditions that favor less

  16. Spatial environmental heterogeneity affects plant growth and thermal performance on a green roof

    Energy Technology Data Exchange (ETDEWEB)

    Buckland-Nicks, Michael; Heim, Amy; Lundholm, Jeremy, E-mail: jlundholm@smu.ca

    2016-05-15

    Green roofs provide ecosystem services, including stormwater retention and reductions in heat transfer through the roof. Microclimates, as well as designed features of green roofs, such as substrate and vegetation, affect the magnitude of these services. Many green roofs are partially shaded by surrounding buildings, but the effects of this within-roof spatial environmental heterogeneity on thermal performance and other ecosystem services have not been examined. We quantified the effects of spatial heterogeneity in solar radiation, substrate depth and other variables affected by these drivers on vegetation and ecosystem services in an extensive green roof. Spatial heterogeneity in substrate depth and insolation were correlated with differential growth, survival and flowering in two focal plant species. These effects were likely driven by the resulting spatial heterogeneity in substrate temperature and moisture content. Thermal performance (indicated by heat flux and substrate temperature) was influenced by spatial heterogeneity in vegetation cover and substrate depth. Areas with less insolation were cooler in summer and had greater substrate moisture, leading to more favorable conditions for plant growth and survival. Spatial variation in substrate moisture (7%–26% volumetric moisture content) and temperature (21 °C–36 °C) during hot sunny conditions in summer could cause large differences in stormwater retention and heat flux within a single green roof. Shaded areas promote smaller heat fluxes through the roof, leading to energy savings, but lower evapotranspiration in these areas should reduce stormwater retention capacity. Spatial heterogeneity can thus result in trade-offs between different ecosystem services. The effects of these spatial heterogeneities are likely widespread in green roofs. Structures that provide shelter from sun and wind may be productively utilized to design higher functioning green roofs and increase biodiversity by providing habitat

  17. Spatial environmental heterogeneity affects plant growth and thermal performance on a green roof

    International Nuclear Information System (INIS)

    Buckland-Nicks, Michael; Heim, Amy; Lundholm, Jeremy

    2016-01-01

    Green roofs provide ecosystem services, including stormwater retention and reductions in heat transfer through the roof. Microclimates, as well as designed features of green roofs, such as substrate and vegetation, affect the magnitude of these services. Many green roofs are partially shaded by surrounding buildings, but the effects of this within-roof spatial environmental heterogeneity on thermal performance and other ecosystem services have not been examined. We quantified the effects of spatial heterogeneity in solar radiation, substrate depth and other variables affected by these drivers on vegetation and ecosystem services in an extensive green roof. Spatial heterogeneity in substrate depth and insolation were correlated with differential growth, survival and flowering in two focal plant species. These effects were likely driven by the resulting spatial heterogeneity in substrate temperature and moisture content. Thermal performance (indicated by heat flux and substrate temperature) was influenced by spatial heterogeneity in vegetation cover and substrate depth. Areas with less insolation were cooler in summer and had greater substrate moisture, leading to more favorable conditions for plant growth and survival. Spatial variation in substrate moisture (7%–26% volumetric moisture content) and temperature (21 °C–36 °C) during hot sunny conditions in summer could cause large differences in stormwater retention and heat flux within a single green roof. Shaded areas promote smaller heat fluxes through the roof, leading to energy savings, but lower evapotranspiration in these areas should reduce stormwater retention capacity. Spatial heterogeneity can thus result in trade-offs between different ecosystem services. The effects of these spatial heterogeneities are likely widespread in green roofs. Structures that provide shelter from sun and wind may be productively utilized to design higher functioning green roofs and increase biodiversity by providing habitat

  18. Plant species and functional group combinations affect green roof ecosystem functions.

    Science.gov (United States)

    Lundholm, Jeremy; Macivor, J Scott; Macdougall, Zachary; Ranalli, Melissa

    2010-03-12

    Green roofs perform ecosystem services such as summer roof temperature reduction and stormwater capture that directly contribute to lower building energy use and potential economic savings. These services are in turn related to ecosystem functions performed by the vegetation layer such as radiation reflection and transpiration, but little work has examined the role of plant species composition and diversity in improving these functions. We used a replicated modular extensive (shallow growing- medium) green roof system planted with monocultures or mixtures containing one, three or five life-forms, to quantify two ecosystem services: summer roof cooling and water capture. We also measured the related ecosystem properties/processes of albedo, evapotranspiration, and the mean and temporal variability of aboveground biomass over four months. Mixtures containing three or five life-form groups, simultaneously optimized several green roof ecosystem functions, outperforming monocultures and single life-form groups, but there was much variation in performance depending on which life-forms were present in the three life-form mixtures. Some mixtures outperformed the best monocultures for water capture, evapotranspiration, and an index combining both water capture and temperature reductions. Combinations of tall forbs, grasses and succulents simultaneously optimized a range of ecosystem performance measures, thus the main benefit of including all three groups was not to maximize any single process but to perform a variety of functions well. Ecosystem services from green roofs can be improved by planting certain life-form groups in combination, directly contributing to climate change mitigation and adaptation strategies. The strong performance by certain mixtures of life-forms, especially tall forbs, grasses and succulents, warrants further investigation into niche complementarity or facilitation as mechanisms governing biodiversity-ecosystem functioning relationships in green

  19. Green Roofs for Stormwater Runoff Control - Abstract

    Science.gov (United States)

    This project evaluated green roofs as a stormwater management tool. Specifically, runoff quantity and quality from green and flat asphalt roofs were compared. Evapotranspiration from planted green roofs and evaporation from unplanted media roofs were also compared. The influence...

  20. Factors Influencing Arthropod Diversity on Green Roofs

    Directory of Open Access Journals (Sweden)

    Bracha Y. Schindler

    2011-01-01

    Full Text Available Green roofs have potential for providing substantial habitat to plants, birds, and arthropod species that are not well supported by other urban habitats. Whereas the plants on a typical green roof are chosen and planted by people, the arthropods that colonize it can serve as an indicator of the ability of this novel habitat to support a diverse community of organisms. The goal of this observational study was to determine which physical characteristics of a roof or characteristics of its vegetation correlate with arthropod diversity on the roof. We intensively sampled the number of insect families on one roof with pitfall traps and also measured the soil arthropod species richness on six green roofs in the Boston, MA area. We found that the number of arthropod species in soil, and arthropod families in pitfall traps, was positively correlated with living vegetation cover. The number of arthropod species was not significantly correlated with plant diversity, green roof size, distance from the ground, or distance to the nearest vegetated habitat from the roof. Our results suggest that vegetation cover may be more important than vegetation diversity for roof arthropod diversity, at least for the first few years after establishment. Additionally, we found that even green roofs that are small and isolated can support a community of arthropods that include important functional groups of the soil food web.

  1. Spatial environmental heterogeneity affects plant growth and thermal performance on a green roof.

    Science.gov (United States)

    Buckland-Nicks, Michael; Heim, Amy; Lundholm, Jeremy

    2016-05-15

    Green roofs provide ecosystem services, including stormwater retention and reductions in heat transfer through the roof. Microclimates, as well as designed features of green roofs, such as substrate and vegetation, affect the magnitude of these services. Many green roofs are partially shaded by surrounding buildings, but the effects of this within-roof spatial environmental heterogeneity on thermal performance and other ecosystem services have not been examined. We quantified the effects of spatial heterogeneity in solar radiation, substrate depth and other variables affected by these drivers on vegetation and ecosystem services in an extensive green roof. Spatial heterogeneity in substrate depth and insolation were correlated with differential growth, survival and flowering in two focal plant species. These effects were likely driven by the resulting spatial heterogeneity in substrate temperature and moisture content. Thermal performance (indicated by heat flux and substrate temperature) was influenced by spatial heterogeneity in vegetation cover and substrate depth. Areas with less insolation were cooler in summer and had greater substrate moisture, leading to more favorable conditions for plant growth and survival. Spatial variation in substrate moisture (7%-26% volumetric moisture content) and temperature (21°C-36°C) during hot sunny conditions in summer could cause large differences in stormwater retention and heat flux within a single green roof. Shaded areas promote smaller heat fluxes through the roof, leading to energy savings, but lower evapotranspiration in these areas should reduce stormwater retention capacity. Spatial heterogeneity can thus result in trade-offs between different ecosystem services. The effects of these spatial heterogeneities are likely widespread in green roofs. Structures that provide shelter from sun and wind may be productively utilized to design higher functioning green roofs and increase biodiversity by providing habitat

  2. GREEN ROOFS — A GROWING TREND

    Science.gov (United States)

    One of the most interesting stormwater control systems under evaluation by EPA are “green roofs”. Green roofs are vegetative covers applied to building roofs to slow, or totally absorb, rainfall runoff during storms. While the concept of over-planted roofs is very ancient, the go...

  3. Habitat template approach for green roofs using a native rocky sea coast plant community in Japan.

    Science.gov (United States)

    Nagase, Ayako; Tashiro-Ishii, Yurika

    2018-01-15

    The present study examined whether it is possible to simulate a local herbaceous coastal plant community on a roof, by studying the natural habitats of rocky sea coast plants and their propagation and performance on a green roof. After studying the natural habitat of coastal areas in Izu peninsula, a germination and cutting transplant study was carried out using herbaceous plants from the Jogasaki sea coast. Many plant species did not germinate at all and the use of cuttings was a better method than direct seeding. The green roof was installed in the spring of 2012 in Chiba city. Thirteen plant species from the Jogasaki sea coast, which were successfully propagated, were planted in three kinds of substrate (15 cm depth): pumice, roof tile and commercial green roof substrate. The water drainage was restricted and a reservoir with 5 cm depth of water underlaid the substrate to simulate a similar growing environment to the sea coast. Volcanic rocks were placed as mulch to create a landscape similar to that on the Jogasaki sea coast. Plant coverage on the green roof was measured every month from June 2012 to October 2014. All plants were harvested and their dry shoot weight was measured in December 2014. The type of substrate did not cause significant differences in plant survival and dry shoot weight. Sea coast plant species were divided into four categories: vigorous growth; seasonal change; disappearing after a few years; limited growth. Understanding the ecology of natural habitats was important to simulating a local landscape using native plant communities on the green roof. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Biochar increases plant growth and alters microbial communities via regulating the moisture and temperature of green roof substrates.

    Science.gov (United States)

    Chen, Haoming; Ma, Jinyi; Wei, Jiaxing; Gong, Xin; Yu, Xichen; Guo, Hui; Zhao, Yanwen

    2018-09-01

    Green roofs have increasingly been designed and applied to relieve environmental problems, such as water loss, air pollution as well as heat island effect. Substrate and vegetation are important components of green roofs providing ecosystem services and benefiting the urban development. Biochar made from sewage sludge could be potentially used as the substrate amendment for green roofs, however, the effects of biochar on substrate quality and plant performance in green roofs are still unclear. We evaluated the effects of adding sludge biochar (0, 5, 10, 15 and 20%, v/v) to natural soil planted with three types of plant species (ryegrass, Sedum lineare and cucumber) on soil properties, plant growth and microbial communities in both green roof and ground ecosystems. Our results showed that sludge biochar addition significantly increased substrate moisture, adjusted substrate temperature, altered microbial community structure and increased plant growth. The application rate of 10-15% sludge biochar on the green roof exerted the most significant effects on both microbial and plant biomass by 63.9-89.6% and 54.0-54.2% respectively. Path analysis showed that biochar addition had a strong effect on microbial biomass via changing the soil air-filled porosity, soil moisture and temperature, and promoted plant growth through the positive effects on microbial biomass. These results suggest that the applications of biochar at an appropriate rate can significantly alter plant growth and microbial community structure, and increase the ecological benefits of green roofs via exerting effects on the moisture, temperature and nutrients of roof substrates. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Plant Communities Suitable for Green Roofs in Arid Regions

    Directory of Open Access Journals (Sweden)

    Rachel Gioannini

    2018-05-01

    Full Text Available In extensive green roof settings, plant communities can be more robust than monocultures. In addition, native plants might be hardier and more ecologically sound choices than non-native plants in green roof systems. The objectives of this research were to (1 compare the performance of plant communities with that of monocultures and (2 compare the growth of natives to non-natives in a simulated green roof setting. We conducted a two-year experiment at an outdoor site in a desert environment using four plant morphological types (groundcover, forb, succulent and grass. Native plants selected were Chrysactinia mexicana, Melampodium leucanthum, Euphorbia antisyphilitica, and Nassella tenuissima, and non-natives were Delosperma nubigenum, Stachys byzantina, Sedum kamtschiaticum and Festuca glauca. Plants were assigned randomly to either monoculture or community and grown in 1 m × 1 m custom-built trays filled with 15 cm of a proprietary blend of 50/20/30 lightweight aggregate/sand/compost (by volume. Native forb, Melampodium, in community had greater coverage for four of the five measurements in the first year over native forb in monoculture and non-native forb regardless of setting. Native forb coverage was also greater than non-native forb for three of the four measurements in year 2, regardless of setting. Coverage of native grass was significantly greater than non-native grasses throughout the experiment. Coverage was also greater for eight of nine measurements for native succulent over non-natives succulent. However, non-native groundcover coverage was significantly greater than native groundcover for seven of nine measurements. On 1 November 2016, relative water content (RWC for succulents (p = 0.0424 was greatest for native Euphorbia in monoculture at 88%. Native Euphorbia also had greater RWC than non-native Sedum on 4 April 2017 (78% and 4 July 2017 (80%. However, non-native Sedum had greater root length (6548 cm, root dry weight (12.1 g

  6. Plant performance on Mediterranean green roofs: interaction of species-specific hydraulic strategies and substrate water relations.

    Science.gov (United States)

    Raimondo, Fabio; Trifilò, Patrizia; Lo Gullo, Maria A; Andri, Sergio; Savi, Tadeja; Nardini, Andrea

    2015-01-20

    Recent studies have highlighted the ecological, economic and social benefits assured by green roof technology to urban areas. However, green roofs are very hostile environments for plant growth because of shallow substrate depths, high temperatures and irradiance and wind exposure. This study provides experimental evidence for the importance of accurate selection of plant species and substrates for implementing green roofs in hot and arid regions, like the Mediterranean area. Experiments were performed on two shrub species (Arbutus unedo L. and Salvia officinalis L.) grown in green roof experimental modules with two substrates slightly differing in their water retention properties, as derived from moisture release curves. Physiological measurements were performed on both well-watered and drought-stressed plants. Gas exchange, leaf and xylem water potential and also plant hydraulic conductance were measured at different time intervals following the last irrigation. The substrate type significantly affected water status. Arbutus unedo and S. officinalis showed different hydraulic responses to drought stress, with the former species being substantially isohydric and the latter one anisohydric. Both A. unedo and S. officinalis were found to be suitable species for green roofs in the Mediterranean area. However, our data suggest that appropriate choice of substrate is key to the success of green roof installations in arid environments, especially if anisohydric species are employed. Published by Oxford University Press on behalf of the Annals of Botany Company.

  7. Green roofs for a drier world: effects of hydrogel amendment on substrate and plant water status.

    Science.gov (United States)

    Savi, Tadeja; Marin, Maria; Boldrin, David; Incerti, Guido; Andri, Sergio; Nardini, Andrea

    2014-08-15

    Climate features of the Mediterranean area make plant survival over green roofs challenging, thus calling for research work to improve water holding capacities of green roof systems. We assessed the effects of polymer hydrogel amendment on the water holding capacity of a green roof substrate, as well as on water status and growth of Salvia officinalis. Plants were grown in green roof experimental modules containing 8 cm or 12 cm deep substrate (control) or substrate mixed with hydrogel at two different concentrations: 0.3 or 0.6%. Hydrogel significantly increased the substrate's water content at saturation, as well as water available to vegetation. Plants grown in 8 cm deep substrate mixed with 0.6% of hydrogel showed the best performance in terms of water status and membrane integrity under drought stress, associated to the lowest above-ground biomass. Our results provide experimental evidence that polymer hydrogel amendments enhance water supply to vegetation at the establishment phase of a green roof. In particular, the water status of plants is most effectively improved when reduced substrate depths are used to limit the biomass accumulation during early growth stages. A significant loss of water holding capacity of substrate-hydrogel blends was observed after 5 months from establishment of the experimental modules. We suggest that cross-optimization of physical-chemical characteristics of hydrogels and green roof substrates is needed to improve long term effectiveness of polymer-hydrogel blends. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. The growth and survival of plants in urban green roofs in a dry climate.

    Science.gov (United States)

    Razzaghmanesh, M; Beecham, S; Kazemi, F

    2014-04-01

    Green roofs as one of the components of water-sensitive urban design have become widely used in recent years. This paper describes performance monitoring of four prototype-scale experimental green roofs in a northern suburb of Adelaide, South Australia, undertaken over a 1-year period. Four species of indigenous Australian ground cover and grass species comprising Carpobrotus rossii, Lomandra longifolia 'Tanika,' Dianella caerula 'Breeze' and Myoporum parvifolium were planted in extensive and intensive green roof configurations using two different growing media. The first medium consisted of crushed brick, scoria, coir fibre and composted organics while the second comprised scoria, composted pine bark and hydro-cell flakes. Plant growth indices including vertical and horizontal growth rate, leaf succulence, shoot and root biomasses, water use efficiency and irrigation regimes were studied during a 12-month period. The results showed that the succulent species, C. rossii, can best tolerate the hot, dry summer conditions of South Australia, and this species showed a 100% survival rate and had the maximum horizontal growth rate, leaf succulence, shoot biomass and water use efficiency. All of the plants in the intensive green roofs with the crushed brick mix media survived during the term of this study. It was shown that stormwater can be used as a source of irrigation water for green roofs during 8 months of the year in Adelaide. However, supplementary irrigation is required for some of the plants over a full annual cycle. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Thermal insulation performance of green roof systems

    Energy Technology Data Exchange (ETDEWEB)

    Celik, Serdar; Morgan, Susan; Retzlaff, William; Once, Orcun [southern Illinois University (United States)], e-mail: scelik@siue.edu, e-mail: smorgan@siue.edu, e-mail: wretzla@siue.edu, e-mail: oonce@siue.edu

    2011-07-01

    With the increasing costs of energy, good building insulation has become increasingly important. Among existing insulation techniques is the green roof system, which consists of covering the roof of a building envelop with plants. The aim of this paper is to assess the impact of vegetation type and growth media on the thermal performance of green roof systems. Twelve different green roof samples were made with 4 different growth media and 3 sedum types. Temperature at the sample base was recorded every 15 minutes for 3 years; the insulation behavior was then analysed. Results showed that the insulation characteristics were achieved with a combination of haydite and sedum sexangulare. This study demonstrated that the choice of growth media and vegetation is important to the green roof system's performance; further research is required to better understand the interactions between growth media and plant roots.

  10. Can green roof act as a sink for contaminants? A methodological study to evaluate runoff quality from green roofs.

    Science.gov (United States)

    Vijayaraghavan, K; Joshi, Umid Man

    2014-11-01

    The present study examines whether green roofs act as a sink or source of contaminants based on various physico-chemical parameters (pH, conductivity and total dissolved solids) and metals (Na, K, Ca, Mg, Al, Fe, Cr, Cu, Ni, Zn, Cd and Pb). The performance of green roof substrate prepared using perlite, vermiculite, sand, crushed brick, and coco-peat, was compared with local garden soil based on improvement of runoff quality. Portulaca grandiflora was used as green roof vegetation. Four different green roof configurations, with vegetated and non-vegetated systems, were examined for several artificial rain events (un-spiked and metal-spiked). In general, the vegetated green roof assemblies generated better-quality runoff with less conductivity and total metal ion concentration compared to un-vegetated assemblies. Of the different green roof configurations examined, P. grandiflora planted on green roof substrate acted as sink for various metals and showed the potential to generate better runoff. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Green roof hydrologic performance and modeling: a review.

    Science.gov (United States)

    Li, Yanling; Babcock, Roger W

    2014-01-01

    Green roofs reduce runoff from impervious surfaces in urban development. This paper reviews the technical literature on green roof hydrology. Laboratory experiments and field measurements have shown that green roofs can reduce stormwater runoff volume by 30 to 86%, reduce peak flow rate by 22 to 93% and delay the peak flow by 0 to 30 min and thereby decrease pollution, flooding and erosion during precipitation events. However, the effectiveness can vary substantially due to design characteristics making performance predictions difficult. Evaluation of the most recently published study findings indicates that the major factors affecting green roof hydrology are precipitation volume, precipitation dynamics, antecedent conditions, growth medium, plant species, and roof slope. This paper also evaluates the computer models commonly used to simulate hydrologic processes for green roofs, including stormwater management model, soil water atmosphere and plant, SWMS-2D, HYDRUS, and other models that are shown to be effective for predicting precipitation response and economic benefits. The review findings indicate that green roofs are effective for reduction of runoff volume and peak flow, and delay of peak flow, however, no tool or model is available to predict expected performance for any given anticipated system based on design parameters that directly affect green roof hydrology.

  12. Developing resilient green roofs in a dry climate.

    Science.gov (United States)

    Razzaghmanesh, M; Beecham, S; Brien, C J

    2014-08-15

    Living roofs are an emerging green infrastructure technology that can potentially be used to ameliorate both climate change and urban heat island effects. There is not much information regarding the design of green roofs for dry climates and so the aim of this study was to develop low maintenance and unfertilized green roofs for a dry climate. This paper describes the effects of four important elements of green roofs namely slope, depth, growing media and plant species and their possible interactions in terms of plant growth responses in a dry climate. Sixteen medium-scale green roofs were set up and monitored during a one year period. This experiment consisted of twelve vegetated platforms and four non-vegetated platforms as controls. The design for the experiment was a split-split-plot design in which the factors Slope (1° and 25°) and Depth (100mm, 300 mm) were randomized to the platforms (main plots). Root depth and volume, average height of plants, final dry biomass and ground cover, relative growth rate, final dry shoot-root ratio, water use efficiency and leaf succulence were studied during a twelve month period. The results showed little growth of the plants in media type A, whilst the growth was significant in both media types B and C. On average, a 90% survival rate of plants was observed. Also the growth indices indicated that some plants can grow efficiently in the harsh environment created by green roofs in a dry climate. The root growth pattern showed that retained water in the drainage layer is an alternative source of water for plants. It was also shown that stormwater can be used as a source of irrigation water for green roofs during six months of the year at the study site. In summary, mild sloping intensive systems containing media type C and planted with either Chrysocephalum apiculatum or Disphyma crassifolium showed the best performance. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Assessment of green roof systems in terms of water and energy balance

    Directory of Open Access Journals (Sweden)

    Mert Ekşi

    2016-01-01

    Full Text Available Green roofs concept term is used for extensive green roofs which are planted with herbaceous plants that can be adapted into changeable environmental conditions on a shallow substrate layer, require minimal maintenance, installed for their benefits to building and urban scale. Main objective of this study is to determine the characteristics of a green roof such as thermal insulation, water holding capacity, runoff characteristics, plant growth and its interaction with environmental factors in Istanbul climate conditions by performing comparative measurements. In this study, a research site (IU Green Roof Research Station was founded to assess water and energy balance of green roofs. Thus, a typical green roof was evaluated in terms of water and energy balance and its interaction with the building and city was determined. energy efficiency of green roof system was 77% higher than reference roof. Temperature fluctuations on green roof section of the roof were 79% lower. In addition, green roof retained 12,8% - 100% of precipitation and delayed runoff up to 23 hours depending on water content of substrate.

  14. Extensive Green Roof Research Program at Colorado State University

    Science.gov (United States)

    In the high elevation, semi-arid climate of Colorado, green roofs have not been scientifically tested. This research examined alternative plant species, media blends, and plant interactions on an existing modular extensive green roof in Denver, Colorado. Six plant species were ev...

  15. Comparative Assessment of Thermal Performance of Existing Roof System and Retrofitted Green Roof System in Istanbul, Turkey

    Directory of Open Access Journals (Sweden)

    Nil TÜRKERİ

    2011-01-01

    Full Text Available Urban heat islands, temperature increase due to climate change and energy consumption due to high summer cooling load are significant issues in Turkey. International studies indicate that the green roof system serves as an energy efficient building technology. However, the thermal performance of green roofs when exposed to local climate conditions is still unknown in Turkey. A research project is being conducted at Istanbul Technical University, in which part of a low-slope existing roof system was retrofitted as an extensive green roof system and the thermal performances of both the existing roof and green roof were monitored in order to make a comparative assessment. Both the green roof and the existing roof were instrumented to measure the temperature profile within the roof systems and the solar reflectance of the roof surfaces. Local meteorological variables were also measured. Results obtained from the field monitoring revealed the following data. Reflected solar radiation from the green roof surface was slightly higher than from the existing roof surface. This was likely to be due to the fact that the plants had not yet covered the entire soil surface area of the green roof. Plants reduced the amount of heat absorbed by the growing medium during daytime through shading and reduced the surface temperature of the green roof. Ceiling temperatures of rooms under the existing roof and green roof indicated that heat transfer to the room beneath the green roof was reduced as well. The green roof reduced the heat gain due to the thermal mass of the soil. This created a buffer against daily fluctuations in temperature and minimized temperature extremes.

  16. Green roofs as a means of pollution abatement

    International Nuclear Information System (INIS)

    Rowe, D. Bradley

    2011-01-01

    Green roofs involve growing vegetation on rooftops and are one tool that can help mitigate the negative effects of pollution. This review encompasses published research to date on how green roofs can help mitigate pollution, how green roof materials influence the magnitude of these benefits, and suggests future research directions. The discussion concentrates on how green roofs influence air pollution, carbon dioxide emissions, carbon sequestration, longevity of roofing membranes that result in fewer roofing materials in landfills, water quality of stormwater runoff, and noise pollution. Suggestions for future directions for research include plant selection, development of improved growing substrates, urban rooftop agriculture, water quality of runoff, supplemental irrigation, the use of grey water, air pollution, carbon sequestration, effects on human health, combining green roofs with complementary related technologies, and economics and policy issues. - Green roofs can help mitigate air pollution, carbon dioxide emissions, sequester carbon, conserve energy, reduce the urban heat island, and improve water quality.

  17. Ecological Impacts of Replacing Traditional Roofs with Green Roofs in Two Urban Areas

    Directory of Open Access Journals (Sweden)

    Timothy Carter

    2008-01-01

    Full Text Available Urban land cover is dominated by impervious surface that degrades both terrestrial and aquatic ecosystems relative to predevelopment conditions. There are significant opportunities for designers of urban landscapes to use alternative land covers that have multiple functions, benefiting both human and nonhuman components of the urban ecosystem. Vegetated (green roofs are one form of alternative land cover that has shown the potential to provide a variety of ecological benefits in urban areas. We evaluated how stormwater retention, building energy and temperature, and rooftop habitat are influenced by the use of green roofs using test plots in Georgia and Massachusetts. Green roofs were shown to recreate part of the predevelopment hydrology through increasing interception, stormwater storage, evaporation, and transpiration on the rooftop and worked extremely well for small storm events. Temperature reductions were found on the green rooftop as compared to an asphalt surface, although other roof technologies that minimize temperatures, such as lighter colored membranes, provide similar benefits. Novel habitat was created on the rooftop, although the extent of this habitat was limited in part by plant survivability and the need for additional water inputs for diverse plant communities to survive. Despite the challenges, the green roof benefits reported here suggest that green roofs can be used effectively as a multifunctional land cover in urban areas.

  18. Drought-avoiding plants with low water use can achieve high rainfall retention without jeopardising survival on green roofs.

    Science.gov (United States)

    Szota, Christopher; Farrell, Claire; Williams, Nicholas S G; Arndt, Stefan K; Fletcher, Tim D

    2017-12-15

    Green roofs are increasingly being used among the suite of tools designed to reduce the volume of surface water runoff generated by cities. Plants provide the primary mechanism for restoring the rainfall retention capacity of green roofs, but selecting plants with high water use is likely to increase drought stress. Using empirically-derived plant physiological parameters, we used a water balance model to assess the trade-off between rainfall retention and plant drought stress under a 30-year climate scenario. We compared high and low water users with either drought avoidance or drought tolerance strategies. Green roofs with low water-using, drought-avoiding species achieved high rainfall retention (66-81%) without experiencing significant drought stress. Roofs planted with other strategies showed high retention (72-90%), but they also experienced >50days of drought stress per year. However, not all species with the same strategy behaved similarly, therefore selecting plants based on water use and drought strategy alone does not guarantee survival in shallow substrates where drought stress can develop quickly. Despite this, it is more likely that green roofs will achieve high rainfall retention with minimal supplementary irrigation if planted with low water users with drought avoidance strategies. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Green Roofs: Federal Energy Management Program (FEMP) Federal Technology Alert

    Energy Technology Data Exchange (ETDEWEB)

    Scholz-Barth, K.; Tanner, S.

    2004-09-01

    In a ''green roof,'' a layer of vegetation (e.g., a roof garden) covers the surface of a roof to provide shade, cooler indoor and outdoor temperatures, and effective storm-water management to reduce runoff. The main components are waterproofing, soil, and plants. There are two basic kinds: intensive and extensive. An intensive green roof often features large shrubs and trees, and it can be expensive to install and maintain. An extensive green roof features shallow soil and low-growing, horizontally spreading plants that can thrive in the alpine conditions of many rooftops. These plants do not require a lot of water or soil, and they can tolerate a significant amount of exposure to the sun and wind. This Federal Technology Alert focuses on the benefits, design, and implementation of extensive green roofs and includes criteria for their use on federal facilities.

  20. [A review of green roof performance towards management of roof runoff].

    Science.gov (United States)

    Chen, Xiao-ping; Huang, Pei; Zhou, Zhi-xiang; Gao, Chi

    2015-08-01

    Green roof has a significant influence on reducing runoff volume, delaying runoff-yielding time, reducing the peak flow and improving runoff quality. This paper addressed the related research around the world and concluded from several aspects, i.e., the definition of green roof of different types, the mechanism how green roof manages runoff quantity and quality, the ability how green roof controls roof runoff, and the influence factors of green roof toward runoff quantity and quality. Afterwards, there was a need for more future work on research of green roof toward roof runoff, i.e., vegetation selection of green roof, efficient construction model selection of green roof, the regulating characteristics of green roof on roof runoff, the value assessment of green roof on roof runoff, analysis of source-sink function of green roof on the water pollutants of roof runoff and the research on the mitigation measures of roof runoff pollution. This paper provided a guideline to develop green roofs aiming to regulating roof runoff.

  1. Numerical simulation of the dual effect of green roof thermal performance

    International Nuclear Information System (INIS)

    Heidarinejad, Ghassem; Esmaili, Arash

    2015-01-01

    Highlights: • Nonlinear and coupled heat and mass transfer equations has been solved in green roof simultaneously. • Plant metabolism (including photosynthesis) has been considered for the first time. • Results indicate that presence of plants mitigate roof heat absorption significantly. • Green roof reduces indoor cooling loads and outdoor heat island effect simultaneously. - Abstract: Green roof is one of technologies applied in reducing energy consumption when cooling of a building is of concern. The heat and mass transfer in green roof is expressed by the complex system of coupled nonlinear differential equations which should be solved with respect to the four elements of air, plants, soil and structure, simultaneously. Numerical solution is applied through finite difference method. Over 40 models among 100 are adopted for the evaluation of thermal, physical and biological parameters in order to achieve best accuracy. Modeling of photosynthesis and plants’ response to environmental change is simulated for the first time in green roof modeling history. Grid independency has been checked for two most challenging regions; plants and soil. The average difference between numerical results and experimental measurements is below 8%, indicating a good agreement. The shading effect of plants and drought of soil layers due to solar radiation are shown. The results, obtained through comparison of green and concrete roofs indicate that the green roof represents 77% reduction in heat flux transmission and 13 K reduction in air temperature at one meter above the roof compared to conventional roof, revealing a significant effect in reducing the energy consumption required for cooling the buildings and urban heat island effect simultaneously.

  2. Multifunctionality is affected by interactions between green roof plant species, substrate depth, and substrate type.

    Science.gov (United States)

    Dusza, Yann; Barot, Sébastien; Kraepiel, Yvan; Lata, Jean-Christophe; Abbadie, Luc; Raynaud, Xavier

    2017-04-01

    Green roofs provide ecosystem services through evapotranspiration and nutrient cycling that depend, among others, on plant species, substrate type, and substrate depth. However, no study has assessed thoroughly how interactions between these factors alter ecosystem functions and multifunctionality of green roofs. We simulated some green roof conditions in a pot experiment. We planted 20 plant species from 10 genera and five families (Asteraceae, Caryophyllaceae, Crassulaceae, Fabaceae, and Poaceae) on two substrate types (natural vs. artificial) and two substrate depths (10 cm vs. 30 cm). As indicators of major ecosystem functions, we measured aboveground and belowground biomasses, foliar nitrogen and carbon content, foliar transpiration, substrate water retention, and dissolved organic carbon and nitrates in leachates. Interactions between substrate type and depth strongly affected ecosystem functions. Biomass production was increased in the artificial substrate and deeper substrates, as was water retention in most cases. In contrast, dissolved organic carbon leaching was higher in the artificial substrates. Except for the Fabaceae species, nitrate leaching was reduced in deep, natural soils. The highest transpiration rates were associated with natural soils. All functions were modulated by plant families or species. Plant effects differed according to the observed function and the type and depth of the substrate. Fabaceae species grown on natural soils had the most noticeable patterns, allowing high biomass production and high water retention but also high nitrate leaching from deep pots. No single combination of factors enhanced simultaneously all studied ecosystem functions, highlighting that soil-plant interactions induce trade-offs between ecosystem functions. Substrate type and depth interactions are major drivers for green roof multifunctionality.

  3. Establishment and performance of an experimental green roof under extreme climatic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Petra M., E-mail: pkklein@ou.edu [School of Meteorology, University of Oklahoma, Norman, OK (United States); Coffman, Reid, E-mail: rcoffma4@kent.edu [College of Architecture and Environmental Design, Kent State University, Kent, OH (United States)

    2015-04-15

    Green roofs alter the surface energy balance and can help in mitigating urban heat islands. However, the cooling of green roofs due to evapotranspiration strongly depends on the climatic conditions, and vegetation type and density. In the Southern Central Plains of the United States, extreme weather events, such as high winds, heat waves and drought conditions pose challenges for successful implementation of green roofs, and likely alter their standard performance. The National Weather Center Experimental Green Roof, an interdisciplinary research site established in 2010 in Norman, OK, aimed to investigate the ecological performance and surface energy balance of green roof systems. Starting in May 2010, 26 months of vegetation studies were conducted and the radiation balance, air temperature, relative humidity, and buoyancy fluxes were monitored at two meteorological stations during April–October 2011. The establishment of a vegetative community trended towards prairie plant dominance. High mortality of succulents and low germination of grasses and herbaceous plants contributed to low vegetative coverage. In this condition succulent diversity declined. Bouteloua gracilis and Delosperma cooperi showed typological dominance in harsh climatic conditions, while Sedum species experienced high mortality. The plant community diversified through volunteers such as Euphorbia maculate and Portulaca maculate. Net radiation measured at a green-roof meteorological station was higher than at a control station over the original, light-colored roofing material. These findings indicate that the albedo of the green roof was lower than the albedo of the original roofing material. The low vegetative coverage during the heat and drought conditions in 2011, which resulted in the dark substrate used in the green roof containers being exposed, likely contributed to the low albedo values. Nevertheless, air temperatures and buoyancy fluxes were often lower over the green roof indicating

  4. Establishment and performance of an experimental green roof under extreme climatic conditions

    International Nuclear Information System (INIS)

    Klein, Petra M.; Coffman, Reid

    2015-01-01

    Green roofs alter the surface energy balance and can help in mitigating urban heat islands. However, the cooling of green roofs due to evapotranspiration strongly depends on the climatic conditions, and vegetation type and density. In the Southern Central Plains of the United States, extreme weather events, such as high winds, heat waves and drought conditions pose challenges for successful implementation of green roofs, and likely alter their standard performance. The National Weather Center Experimental Green Roof, an interdisciplinary research site established in 2010 in Norman, OK, aimed to investigate the ecological performance and surface energy balance of green roof systems. Starting in May 2010, 26 months of vegetation studies were conducted and the radiation balance, air temperature, relative humidity, and buoyancy fluxes were monitored at two meteorological stations during April–October 2011. The establishment of a vegetative community trended towards prairie plant dominance. High mortality of succulents and low germination of grasses and herbaceous plants contributed to low vegetative coverage. In this condition succulent diversity declined. Bouteloua gracilis and Delosperma cooperi showed typological dominance in harsh climatic conditions, while Sedum species experienced high mortality. The plant community diversified through volunteers such as Euphorbia maculate and Portulaca maculate. Net radiation measured at a green-roof meteorological station was higher than at a control station over the original, light-colored roofing material. These findings indicate that the albedo of the green roof was lower than the albedo of the original roofing material. The low vegetative coverage during the heat and drought conditions in 2011, which resulted in the dark substrate used in the green roof containers being exposed, likely contributed to the low albedo values. Nevertheless, air temperatures and buoyancy fluxes were often lower over the green roof indicating

  5. Greenbacks from green roofs: forging a new industry in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Peck, S. W.; Callaghan, C. [Peck and Associates, Toronto, ON (Canada); Bass, B. [Environment Canada, Toronto, ON (Canada); Kuhn, M. [Toronto, ON (Canada)

    1999-03-01

    This report provides a comprehensive review of the qualitative and quantitative benefits of green roof and vertical garden technologies, explains the nature of roof greening and green roof systems, examines the barriers to their more rapid diffusion into Canadian markets, and makes recommendations as to how how these barriers may be overcome. Two basic types of green roof systems, extensive and intensive, are identified. Extensive green roofs are characterized by their low weight, low capital cost and low maintenance. Intensive green roofs, by contrast, are heavier, more costly to establish, require intensive planting and higher maintenance. Both types of green roofs may be further subdivided into accessible or inaccessible. Accessible green roofs are flat, outdoor open spaces intended for use as gardens or terraces, while inaccessible roofs are only accessible for periodic maintenance. 'Vertical gardens' are a type of extensive green roof, characterized by the growing of plants on or up against the facade of buildings. The many benefits of green roof or vertical garden technologies include energy cost savings due to increased insulation and improved protection of the roof membrane, air quality improvements, new employment opportunities for a wide range of people including suppliers of roof membranes and related products, and social benefits such as improved aesthetics, health and horticultural therapy. Barriers to diffusion in Canada have been identified as lack of awareness, lack of incentives to implement, cost implications, lack of technical standards, few existing examples and risks associated with uncertainty. The recommendations to overcome market barriers are intended to address these barriers, i.e. they call for increased efforts to generate awareness through addressing the knowledge availability issue, and through high profile demonstration projects, government-sponsored technology diffusion, financial incentives to overcome cost-based barriers

  6. Digging the New York City Skyline: soil fungal communities in green roofs and city parks.

    Science.gov (United States)

    McGuire, Krista L; Payne, Sara G; Palmer, Matthew I; Gillikin, Caitlyn M; Keefe, Dominique; Kim, Su Jin; Gedallovich, Seren M; Discenza, Julia; Rangamannar, Ramya; Koshner, Jennifer A; Massmann, Audrey L; Orazi, Giulia; Essene, Adam; Leff, Jonathan W; Fierer, Noah

    2013-01-01

    In urban environments, green roofs provide a number of benefits, including decreased urban heat island effects and reduced energy costs for buildings. However, little research has been done on the non-plant biota associated with green roofs, which likely affect their functionality. For the current study, we evaluated whether or not green roofs planted with two native plant communities in New York City functioned as habitats for soil fungal communities, and compared fungal communities in green roof growing media to soil microbial composition in five city parks, including Central Park and the High Line. Ten replicate roofs were sampled one year after planting; three of these roofs were more intensively sampled and compared to nearby city parks. Using Illumina sequencing of the fungal ITS region we found that green roofs supported a diverse fungal community, with numerous taxa belonging to fungal groups capable of surviving in disturbed and polluted habitats. Across roofs, there was significant biogeographical clustering of fungal communities, indicating that community assembly of roof microbes across the greater New York City area is locally variable. Green roof fungal communities were compositionally distinct from city parks and only 54% of the green roof taxa were also found in the park soils. Phospholipid fatty acid analysis revealed that park soils had greater microbial biomass and higher bacterial to fungal ratios than green roof substrates. City park soils were also more enriched with heavy metals, had lower pH, and lower quantities of total bases (Ca, K, and Mg) compared to green roof substrates. While fungal communities were compositionally distinct across green roofs, they did not differentiate by plant community. Together, these results suggest that fungi living in the growing medium of green roofs may be an underestimated component of these biotic systems functioning to support some of the valued ecological services of green roofs.

  7. Digging the New York City Skyline: soil fungal communities in green roofs and city parks.

    Directory of Open Access Journals (Sweden)

    Krista L McGuire

    Full Text Available In urban environments, green roofs provide a number of benefits, including decreased urban heat island effects and reduced energy costs for buildings. However, little research has been done on the non-plant biota associated with green roofs, which likely affect their functionality. For the current study, we evaluated whether or not green roofs planted with two native plant communities in New York City functioned as habitats for soil fungal communities, and compared fungal communities in green roof growing media to soil microbial composition in five city parks, including Central Park and the High Line. Ten replicate roofs were sampled one year after planting; three of these roofs were more intensively sampled and compared to nearby city parks. Using Illumina sequencing of the fungal ITS region we found that green roofs supported a diverse fungal community, with numerous taxa belonging to fungal groups capable of surviving in disturbed and polluted habitats. Across roofs, there was significant biogeographical clustering of fungal communities, indicating that community assembly of roof microbes across the greater New York City area is locally variable. Green roof fungal communities were compositionally distinct from city parks and only 54% of the green roof taxa were also found in the park soils. Phospholipid fatty acid analysis revealed that park soils had greater microbial biomass and higher bacterial to fungal ratios than green roof substrates. City park soils were also more enriched with heavy metals, had lower pH, and lower quantities of total bases (Ca, K, and Mg compared to green roof substrates. While fungal communities were compositionally distinct across green roofs, they did not differentiate by plant community. Together, these results suggest that fungi living in the growing medium of green roofs may be an underestimated component of these biotic systems functioning to support some of the valued ecological services of green roofs.

  8. EPA's Green Roof Research

    Science.gov (United States)

    This is a presentation on the basics of green roof technology. The presentation highlights some of the recent ORD research projects on green roofs and provices insight for the end user as to the benefits for green roof technology. It provides links to currently available EPA re...

  9. Establishment and performance of an experimental green roof under extreme climatic conditions.

    Science.gov (United States)

    Klein, Petra M; Coffman, Reid

    2015-04-15

    Green roofs alter the surface energy balance and can help in mitigating urban heat islands. However, the cooling of green roofs due to evapotranspiration strongly depends on the climatic conditions, and vegetation type and density. In the Southern Central Plains of the United States, extreme weather events, such as high winds, heat waves and drought conditions pose challenges for successful implementation of green roofs, and likely alter their standard performance. The National Weather Center Experimental Green Roof, an interdisciplinary research site established in 2010 in Norman, OK, aimed to investigate the ecological performance and surface energy balance of green roof systems. Starting in May 2010, 26 months of vegetation studies were conducted and the radiation balance, air temperature, relative humidity, and buoyancy fluxes were monitored at two meteorological stations during April-October 2011. The establishment of a vegetative community trended towards prairie plant dominance. High mortality of succulents and low germination of grasses and herbaceous plants contributed to low vegetative coverage. In this condition succulent diversity declined. Bouteloua gracilis and Delosperma cooperi showed typological dominance in harsh climatic conditions, while Sedum species experienced high mortality. The plant community diversified through volunteers such as Euphorbia maculate and Portulaca maculate. Net radiation measured at a green-roof meteorological station was higher than at a control station over the original, light-colored roofing material. These findings indicate that the albedo of the green roof was lower than the albedo of the original roofing material. The low vegetative coverage during the heat and drought conditions in 2011, which resulted in the dark substrate used in the green roof containers being exposed, likely contributed to the low albedo values. Nevertheless, air temperatures and buoyancy fluxes were often lower over the green roof indicating

  10. Green Roofs for Stormwater Management

    Science.gov (United States)

    This project evaluated green roofs as a stormwater management tool. Results indicate that the green roofs are capable of removing 40% of the annual rainfall volume from a roof through retention and evapotranspiration. Rainfall not retained by green roofs is detained, effectively...

  11. Toronto green roof construction standard

    International Nuclear Information System (INIS)

    Aster, D.

    2007-01-01

    Toronto City Council adopted a green roof strategy in February 2006. This paper reviewed the by-law governing the strategy as well as the work in progress to develop minimum standards for the design and construction of green roofs in Toronto. The strategy included a series of recommendations regarding the installation of green roofs on city buildings; a pilot grant program; using the development process to encourage green roofs; and, public education and promotion. It was noted that compared to Europe, the development of standards for green roofs in North America is in its early stages. As an emerging sustainable technology, there currently are no standards incorporated into Ontario's Building Code against which Toronto can measure the design and construction of green roofs. Therefore this paper included an analysis detailing how the recommended design requirements were able to support the City's green roof policy objectives and integrate the performance criteria for green roofs previously established and supported by Toronto City Council. The key policy objectives of the City's green roof strategy were to reduce the urban heat island effect; to address stormwater management implications in terms of quality and quantity; to improve the energy budgets of individual buildings; and, to improve air quality

  12. Green roof systems: a study of public attitudes and preferences in southern Spain.

    Science.gov (United States)

    Fernandez-Cañero, Rafael; Emilsson, Tobias; Fernandez-Barba, Carolina; Herrera Machuca, Miguel Ángel

    2013-10-15

    This study investigates people's preconceptions of green roofs and their visual preference for different green roof design alternatives in relation to behavioral, social and demographical variables. The investigation was performed as a visual preference study using digital images created to represent eight different alternatives: gravel roof, extensive green roof with Sedums not in flower, extensive green roof with sedums in bloom, semi-intensive green roof with sedums and ornamental grasses, semi-intensive green roof with shrubs, intensive green roof planted with a lawn, intensive green roof with succulent and trees and intensive green roof with shrubs and trees. Using a Likert-type scale, 450 respondents were asked to indicate their preference for each digital image. Results indicated that respondents' sociodemographic characteristics and childhood environmental background influenced their preferences toward different green roof types. Results also showed that green roofs with a more careful design, greater variety of vegetation structure, and more variety of colors were preferred over alternatives. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Green roofs: roof system reducing heating and cooling costs

    Directory of Open Access Journals (Sweden)

    Konasova, Sarka

    2016-06-01

    Full Text Available Green roofs are among the passive building systems that contribute to the thermal stability of the rooms under the roof in both summer and winter. Green roofs can provide a significant contribution to the thermal balance of the protected space. Over the past ten years, many studies have been carried out to investigate the energy benefits of green roofs in terms of the energy performance of buildings. These studies show that the installation of vegetated cover can achieve energy savings for both winter heating and summer cooling. The green roof, as a thermal insulation, reduces the amount of building operating energy costs and reduces heat losses. This article summarizes current literature and points to situations in which green roofs can play an important role in saving energy for heating and cooling due to improved thermal insulating function of the roof, in case of extensive vegetation coverage without significant overloading of the roof structure and associated over-dimensioning. It is important to note that these energy savings always depend on the particular climate, the type of building and the availability and the type of roof structure.

  14. Green roofs: potential at LANL

    Energy Technology Data Exchange (ETDEWEB)

    Pacheco, Elena M [Los Alamos National Laboratory

    2009-01-01

    Green roofs, roof systems that support vegetation, are rapidly becoming one of the most popular sustainable methods to combat urban environmental problems in North America. An extensive list of literature has been published in the past three decades recording the ecological benefits of green roofs; and now those benefits have been measured in enumerated data as a means to analyze the costs and returns of green roof technology. Most recently several studies have made substantial progress quantifying the monetary savings associated with storm water mitigation, the lessoning of the Urban Heat Island, and reduction of building cooling demands due to the implementation of green roof systems. Like any natural vegetation, a green roof is capable of absorbing the precipitation that falls on it. This capability has shown to significantly decrease the amount of storm water runoff produced by buildings as well as slow the rate at which runoff is dispensed. As a result of this reduction in volume and velocity, storm drains and sewage systems are relieved of any excess stress they might experience in a storm. For many municipalities and private building owners, any increase in storm water mitigation can result in major tax incentives and revenue that does not have to be spent on extra water treatments. Along with absorption of water, vegetation on green roofs is also capable of transpiration, the process by which moisture is evaporated into the air to cool ambient temperatures. This natural process aims to minimize the Urban Heat Island Effect, a phenomenon brought on by the dark and paved surfaces that increases air temperatures in urban cores. As the sun distributes solar radiation over a city's area, dark surfaces such as bitumen rooftops absorb solar rays and their heat. That heat is later released during the evening hours and the ambient temperatures do not cool as they normally would, creating an island of constant heat. Such excessively high temperatures induce heat

  15. Green roofs : a watertight perspective

    Energy Technology Data Exchange (ETDEWEB)

    Honza, D. [Honza Group Inc., Columbia, MD (United States)]|[Barrett Co., Millington, NJ (United States)

    2005-07-01

    While there is a growing acceptance of the ecological benefits of green roofs, many roofing contractors view green roofs with suspicion. The roofing industry is a high-volume, low-margin cost-driven industry which promotes a minimum standard commodity mentality. Roofing and waterproofing is the largest source of claims against architects and engineers. This paper suggested that architectural firms and engineering firms can reduce many issues associated with roofing problems by investigating and understanding materials, demands of projects, and preparing thorough specifications. Long-term exposure to the sun's rays will impact the chemical make-up of the roofing material, and water can break down the surface molecular structure of the membrane. Daily, yearly and event-related temperature variations can subject membranes to thermal induced stresses. Many roofs leak as a result of abuse during construction. Understanding and anticipating the performance problems of membranes can give green roof designers the ability to address limitations through good design. The membrane for a green roof should have superior abuse resistance; elastic properties, and resistance to long-term wet or saturated environments. Flashings for green roofs must exceed minimum standards. Membranes should be tested for watertightness before components are installed using electronic field vector mapping. Overburden should be installed after the membrane installation is proven to be watertight. It was concluded that higher design standards are required for green roofs, as many traditional roof membranes fail prematurely. A review of widely used membranes in the roofing and waterproofing industry included modified bitumen; built-up roofing; cured synthetic rubber sheets; thermalplastic membranes; self-adhering modified bitumen; and rubberized asphalt. 6 refs., 2 tabs., 6 figs.

  16. Extensive Green Roof Species and Soilless Media Evaluations in Semi-arid Colorado

    Science.gov (United States)

    In the high elevation, semi-arid climate of Colorado, green roofs have not been scientifically tested. This research examined alternative plant species, soilless media blends and plant interactions on an existing, modular-extensive (shallow, 10 cm deep) green roof in Denver, Colo...

  17. Being the first kid on the block : installing a green roof in an emerging market

    Energy Technology Data Exchange (ETDEWEB)

    Zoll, C. [The Green Inst., Minneapolis, MN (United States)

    2005-07-01

    The Green Institute is an organization dedicated to improving the environment and creating employment opportunities in Minneapolis. This paper provided details of the institute's 2004 installation of a green roof system on the Phillips Eco-Enterprise Center, which was built by the institute in 1999. The building design included geo-exchange heating and cooling, an active day-lighting system, and an energy recovery ventilator. Structural support for a green roof was added during construction. While the rooftop structure was initially designed as an intensive green rooftop, the institute eventually decided to create an extensive green roof system combined with a deck area for visitors. The design of the green roof included a circular central gathering area with spokes. A mixture of sedums were planted, as well as plants native to Minnesota river bluff prairies. A variety of species were planted in order to determine which plant varieties would succeed. This paper provided technical details of the green roof's installation, as well as details of the organizational and administrative procedures required to orchestrate the different contractors and volunteers involved in the project. Details of the materials used for the construction of the roof were also included. The rooftop was opened to the public in 2005, and building tenants currently use the green roof for meetings, lunches and breaks. Television news stations have visited the roof, which is also visible to passengers on the Minneapolis light rail transit line. The Green Institute has continued to promote green roof market development in the city with a variety of green roof events, symposiums and workshops. The institute has also been successful in implementing a credit system to reduce stormwater utility fees for buildings with green roofs.

  18. Substrate Composition and Depth Affect Soil Moisture Behavior and Plant-Soil Relationship on Mediterranean Extensive Green Roofs

    Directory of Open Access Journals (Sweden)

    Julie Chenot

    2017-10-01

    Full Text Available The Mediterranean basin is extremely vulnerable to climate change, and one of the areas most impacted by human water demand. Yet the green roofs increasingly created both for aesthetic reasons and to limit pollution and urban runoff are themselves very water-demanding. Successful green roof installation depends on the establishment of the vegetation, and the substrate is the key element: it conserves water, and provides the nutrients and physical support indispensable for plant growth. Since typical Mediterranean plant communities require no maintenance, this study seeks to develop techniques for creating maintenance- and watering-free horizontal green roofs for public or private buildings in a Mediterranean context. The innovative aspect of this study lies in creating two soil mixes, fine elements (clay and silt and coarse elements (pebbles of all sizes, in two different thicknesses, to assess vegetation development. Monitoring of substrate moisture was carried out and coupled with local rainfall measurements during summer and autumn. As expected, substrate moisture is mainly influenced by substrate depth (the deeper, the moister and composition (the finer the particles (clays and silts, the higher the moisture content. Vegetation cover impacts moisture to a lesser extent but is itself affected by the composition and depth of the substrates. These results are subsequently discussed with relation to the issue of sustainable green roofs in Mediterranean climates. Considering applications of our results, for an optimal colonization of a Mediterranean vegetation, a substrate thickness of 15 cm composed mainly of fine elements (75% clay-silt and 25% pebble-sand would be recommended in green roofs.

  19. Cladonia lichens on extensive green roofs: evapotranspiration, substrate temperature, and albedo.

    Science.gov (United States)

    Heim, Amy; Lundholm, Jeremy

    2013-01-01

    Green roofs are constructed ecosystems that provide ecosystem services in urban environments. Shallow substrate green roofs subject the vegetation layer to desiccation and other environmental extremes, so researchers have evaluated a variety of stress-tolerant vegetation types for green roof applications. Lichens can be found in most terrestrial habitats.  They are able to survive extremely harsh conditions, including frequent cycles of desiccation and rehydration, nutrient-poor soil, fluctuating temperatures, and high UV intensities. Extensive green roofs (substrate depth green roofs.  In a modular green roof system, we tested the effect of Cladonia lichens on substrate temperature, water loss, and albedo compared to a substrate-only control. Overall, the Cladonia modules had significantly cooler substrate temperatures during the summer and significantly warmer temperatures during the fall.  Additionally, the Cladonia modules lost significantly less water than the substrate-only control. This implies that they may be able to benefit neighboring vascular plant species by reducing water loss and maintaining favorable substrate temperatures.

  20. Evaluation of Green Roof Plants and Materials for Semi-Arid Climates

    Science.gov (United States)

    Abstract While green roof systems have proven to be highly effective in the evaporative cooling of buildings, reduction of roof top temperatures, protection of roof membranes from solar radiation degradation, reducing stormwater runoff, as well as beautification of the urban roo...

  1. Bugs, bees and spiders : green roof design for rare invertebrates

    Energy Technology Data Exchange (ETDEWEB)

    Gedge, D. [Livingroofs.org, London (United Kingdom); Kadas, G. [Royal Holloway Univ. of London, London (United Kingdom)

    2004-07-01

    The use of green roofs as mitigation technique for biodiversity is particularly relevant for the objectives of the London Biodiversity Partnership, particularly since London is undergoing large-scale regeneration and many of the new developments will be targeted on brownfield land. In 2002 two research projects were undertaken to create a baseline of data on how invertebrates were using the current green roofs in London. The London Biodiversity Partnership's Black Redstart Action Plan conducts research into green roofs to demonstrate how they can be maximized for biodiversity. The Black Redstart Project ensures that green roofs are used in new developments in London where such developments threaten this species. It is one of the country's rarest breeding birds, and is unique in that it is predominantly found in cities, on brownfield sites and post-industrial sites. Three green roof laboratories were established at 2 sites in London to investigate how substrates, substrate depths and planting affects the fauna associated with brownfields and green roofs in London. Although conservationists in London have urged many developers to provide green roofs to help the Black Redstart, there is concern that many of these roofs do no provide the proper support for the species. In some cases roofs are constructed of commercially driven products such as sedum mats that do provide habitat for some rare invertebrates but are not as supportive of a greater diversity of species as they could be due to the design process and a lack of knowledge of green roof technology. It was suggested that there is a need for cooperation between ecologists and Architects in order to achieve the habitat. 18 refs., 6 figs.

  2. Comparing grey water versus tap water and coal ash versus perlite on growth of two plant species on green roofs.

    Science.gov (United States)

    Agra, Har'el; Solodar, Ariel; Bawab, Omar; Levy, Shay; Kadas, Gyongyver J; Blaustein, Leon; Greenbaum, Noam

    2018-08-15

    Green roofs provide important ecosystem services in urban areas. In Mediterranean and other semi-arid climate regions, most perennial plants on green roofs need to be irrigated during the dry season. However, the use of freshwater in such regions is scarce. Therefore, the possibility of using grey water should be examined. Coal ash, produced primarily from the burning of coal in power plants, constitutes an environmental contaminant that should be disposed. One option is to use ash as a growing substrate for plants. Here, we compare the effects of irrigating with grey- versus tap-water and using ash versus perlite as growing substrates in green roofs. The study was conducted in northern Israel in a Mediterranean climate. The design was full factorial with three factors: water-type (grey or tap-water)×substrate-type (coal ash vs perlite)×plant species (Phyla nodiflora, Convolvulus mauritanicus or no-plant). The development of plants and the quality of drainage water along the season, as well as quality of the used substrates were monitored. Both plant species developed well under all the experimental conditions with no effect of water type or substrate type. Under all treatments, both plant species enhanced electrical conductivity (EC) and chemical oxygen demand (COD) of the drainage water. In the summer, EC and COD reached levels that are unacceptable in water and are intended to be reused for irrigation. We conclude that irrigating with grey water and using coal ash as a growth substrate can both be implemented in green roofs. The drainage from tap water as well as from grey water can be further used for irrigating the roof, but for that, COD and EC levels must be lowered by adding a sufficient amount of tap water before reusing. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Portulaca grandiflora as green roof vegetation: Plant growth and phytoremediation experiments.

    Science.gov (United States)

    Vijayaraghavan, K; Arockiaraj, Jesu; Kamala-Kannan, Seralathan

    2017-06-03

    Finding appropriate rooftop vegetation may improve the quality of runoff from green roofs. Portulaca grandiflora was examined as possible vegetation for green roofs. Green roof substrate was found to have low bulk density (360.7 kg/m 3 ) and high water-holding capacity (49.4%), air-filled porosity (21.1%), and hydraulic conductivity (5270 mm/hour). The optimal substrate also supported the growth of P. grandiflora with biomass multiplication of 450.3% and relative growth rate of 0.038. Phytoextraction potential of P. grandiflora was evaluated using metal-spiked green roof substrate as a function of time and spiked substrate metal concentration. It was identified that P. grandiflora accumulated all metals (Al, Cd, Cr, Cu, Fe, Ni, Pb, and Zn) from metal-spiked green roof substrate. At the end of 40 days, P. grandiflora accumulated 811 ± 26.7, 87.2 ± 3.59, 416 ± 15.8, 459 ± 15.6, 746 ± 20.9, 357 ± 18.5, 565 ± 6.8, and 596 ± 24.4 mg/kg of Al, Cd, Cr, Cu, Fe, Ni, Pb and Zn, respectively. Results also indicated that spiked substrate metal concentration strongly influenced metal accumulation property of P. grandiflora with metal uptake increased and accumulation factor decreased with increase in substrate metal concentration. P. grandiflora also showed potential to translocate all the examined metals with translocation factor greater than 1 for Al, Cu, Fe, and Zn, indicating hyperaccumulation property.

  4. Vegetation composition and structure significantly influence green roof performance

    Energy Technology Data Exchange (ETDEWEB)

    Dunnett, N.; Nagase, A.; Booth, R.; Grime, P. [Sheffield Univ., Sheffield (United Kingdom). Dept. of Landscape Architecture

    2005-07-01

    The majority of published literature on green roofs contains little specific information on the contribution of plants to the various functions and properties of green roofs. This paper reviewed previously published material in an attempt to shed light on the role of vegetation composition in green roof systems, with specific reference to hydrology and biodiversity support. Two ongoing experiments at the University of Sheffield were then considered: (1) a comparison of quality and quantity of runoff from different types of vegetation; and (2) a comparison of flowering seasons and biodiversity support of different vegetation. Results of the studies showed that there was no general pattern of variation in runoff that could be related to vegetation complexity or taxonomic composition of the communities. During the winter months, high precipitation quickly saturated the soil and percolate losses were similar for all treatments. In the summer, throughflow losses differed between treatments in relation to the structure of the plant canopy. Differing mechanisms resulted in variations in the volume of percolate that was collected. Lower volumes of percolate were observed in herb-only monocultures of Leontdon hispidus, a species with a high water content. Tap-rooted species were seen to more effectively absorb soil moisture. The biodiversity support study focused on the study of Sedum species and Labiatae species, which suggested that mixed vegetation containing these species had a far greater likelihood of attracting wild bees to support pollination. Results of the studies indicated that green roof vegetation with greater structural and species diversity may provide different benefits than sedum-dominated roots. Further studies are needed to investigate the trade-offs between vegetation types, and green roof functions and performance in order to justify calls for a wider diversity of green roof types. 8 refs., 2 tabs., 1 fig.

  5. Green Roof Potential in Arab Cities

    OpenAIRE

    Attia, Shady

    2014-01-01

    Urban green roofs have long been promoted as an easy and effective strategy for beautifying the built environment and increasing investment opportunity. The building roof is very important because it has a direct impact on thermal comfort and energy conservation in and around buildings. Urban green roofs can help to address the lack of green space in many urban areas. Urban green roofs provides the city with open spaces that helps reduce urban heat island effect and provides the human populat...

  6. Design strategies for integration of green roofs in sustainable housing

    Directory of Open Access Journals (Sweden)

    Avi Friedman

    2015-12-01

    Full Text Available Green roofs are the integration of plant material and its supporting structures in buildings. Such an approach provides a habitat for local flora and fauna, helps manage storm water, reduces heat demand in winter and the cooling load in the summer, enhances the aesthetic values of dwellings, provides the occupants with comfort and amenities and strengthens environmental responsibility. Because roofs represent approximately 40 percent to 50 percent of the surfaces in urban areas, green roofs have an important role in drainage and as a result water management as well. In fact, when a green roof is installed on 50 percent or more of the roof’s surface, it guarantees 2 points and can contribute 7 additional points toward LEED certification - almost 20 percent of the required rating. This paper classifies green roofs and offers strategies for their integration in residential buildings and examines their benefits, construction principles and applications.

  7. Green roofs and the LEED green building rating system

    Energy Technology Data Exchange (ETDEWEB)

    Kula, R. [Sustainable Solutions Inc., Wagoner, OK (United States)

    2005-07-01

    The sustainable building industry is becoming increasingly aware of the host of public and private benefits that green roofs can provide in built environments. In dense urban environments, green roofs function to reduce stormwater runoff, urban heat island effects, and particulate matter (PM) pollution. The emerging green roof industry is now poised to support the efforts of green building networks in North America. This paper discussed the general benefits of green roofs, and their recognition within the Leadership in Energy and Environmental Design (LEED) Green Building Rating System. A case study of Mountain Equipment Co-op's Winnipeg site was presented. The building's green roof was directly responsible for earning 5 credits and contributing to the achievement of an additional 2 credits under the LEEDS certification process. Credits were earned for reduced site disturbance; landscape design to reduce heat islands; and water efficiency. The green roof at the site provided the vast majority of the building's cooling needs through an evaporative cooling trough. A photovoltaic pump was used to feed the building's irrigation system, as well as to pump ground water through cooling valances. It was concluded that the rise of sustainable building practices and the LEED Green Building Rating System will revolutionize the way new buildings are constructed.

  8. Key factors in successful green roof training

    International Nuclear Information System (INIS)

    Seeger, H.; Ansel, W.

    2004-01-01

    The green roof market in Germany has increased significantly in the past 3 decades, reaching a market share of 11 to 14 per cent. Three factors were responsible for the success of the green roof movement in Germany, namely the early introduction of quality standards and guidelines; the scientific investigation of ecological and economic benefits and the development of innovative and reliable technologies. In addition, seminars and workshops targeted at relevant groups encouraged green roof construction. Training courses and seminars proved to be efficient communication tools with the advantage of direct feedback from the participants to address sophisticated green roof problems and to integrate current ecological and economic frameworks. The content of the courses were tailored to the specific needs of the participants. In addition, organizers had considerable knowledge of green roof technology and related disciplines. The green roof guidelines in Germany are based on a range of scientific studies from universities, technical colleges and regional research institutions. These studies explored the technical performance of different green roof constructions and the ecological benefits for people and the environment. The market development in Germany is backed by the development of a wide range of innovative technologies which offer solutions for nearly all green roof issues, such as landscaping of sloped, barrel shaped roofs with low load bearing capacities. The German company ZinCo offers the international market a range of well tested and proven green roof systems for intensive and extensive roofs. Their flexible modular products can be adapted to the needs of different roof constructions and to locally specific climatic conditions. 6 refs., 1 fig

  9. Use of endotrophic mycorhiza and soil microorganisms and vegetation establishment on mineral green roof substrate

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, J. [GeoVerde Inc., Schaffhausen (Switzerland)

    2004-07-01

    Green roofs have the potential to introduce colour and nature into urban and industrial areas. This paper showed how the addition of soil microorganisms into a green roof substrate can help establish vegetation. Microorganisms help the roots exploit essential nutrient and water reserves in the substrate by making them more readily available to the plant. Microorganisms facilitate uniform germination, plant development at the young stage, and prolonged vegetation development on the roof. Soil microorganisms and mycorrhizal fungi can be added directly in to the seed blends. As the products are blended with the seed, they also fulfill the function of a seeding aid. Mycorrhizal and other soil fungi were examined on mineral roof substrates by means of dry and hydroseeding in greenhouse and field tests. Results of this developmental work and experiences from practical applications were presented. It was noted that vegetation on green roof areas must be able to withstand harsh environmental conditions. As such, the challenges include drought that causes water stress, warm and cold temperatures, wind, acid rain and air pollution. This paper also presented details of the following categories of green roof systems. Intensive green roofs are usually referred to as roof gardens. They are constructed over reinforced concrete decks and usually are accessible. Simple intensive green roofs are vegetated with lawns or ground covering plants. Regular maintenance including irrigation, fertilization and mowing is also required. Extensive green roofs are low maintenance and low weight. Growing media is usually composed of purely mineral material or a blend of mineral with a low proportion of organic matter. Substrate is low in nutrient content and the depth . Vegetation usually consists of succulents that require minimal maintenance. The requirements to install each of these types of green roof systems were also presented. 7 refs., 3 tabs.

  10. Establishing green roof infrastructure through environmental policy instruments.

    Science.gov (United States)

    Carter, Timothy; Fowler, Laurie

    2008-07-01

    Traditional construction practices provide little opportunity for environmental remediation to occur in urban areas. As concerns for environmental improvement in urban areas become more prevalent, innovative practices which create ecosystem services and ecologically functional land cover in cities will be in higher demand. Green roofs are a prime example of one of these practices. The past decade has seen the North American green roof industry rapidly expand through international green roof conferences, demonstration sites, case studies, and scientific research. This study evaluates existing international and North American green roof policies at the federal, municipal, and community levels. Green roof policies fall into a number of general categories, including direct and indirect regulation, direct and indirect financial incentives, and funding of demonstration or research projects. Advantages and disadvantages of each category are discussed. Salient features and a list of prompting standards common to successfully implemented green roof strategies are then distilled from these existing policies. By combining these features with data collected from an experimental green roof site in Athens, Georgia, the planning and regulatory framework for widespread green roof infrastructure can be developed. The authors propose policy instruments be multi-faceted and spatially focused, and also propose the following recommendations: (1) Identification of green roof overlay zones with specifications for green roofs built in these zones. This spatial analysis is important for prioritizing areas of the jurisdiction where green roofs will most efficiently function; (2) Offer financial incentives in the form of density credits and stormwater utility fee credits to help overcome the barriers to entry of the new technology; (3) Construct demonstration projects and institutionalize a commitment greening roofs on publicly-owned buildings as an effective way of establishing an educated

  11. Establishing Green Roof Infrastructure Through Environmental Policy Instruments

    Science.gov (United States)

    Carter, Timothy; Fowler, Laurie

    2008-07-01

    Traditional construction practices provide little opportunity for environmental remediation to occur in urban areas. As concerns for environmental improvement in urban areas become more prevalent, innovative practices which create ecosystem services and ecologically functional land cover in cities will be in higher demand. Green roofs are a prime example of one of these practices. The past decade has seen the North American green roof industry rapidly expand through international green roof conferences, demonstration sites, case studies, and scientific research. This study evaluates existing international and North American green roof policies at the federal, municipal, and community levels. Green roof policies fall into a number of general categories, including direct and indirect regulation, direct and indirect financial incentives, and funding of demonstration or research projects. Advantages and disadvantages of each category are discussed. Salient features and a list of prompting standards common to successfully implemented green roof strategies are then distilled from these existing policies. By combining these features with data collected from an experimental green roof site in Athens, Georgia, the planning and regulatory framework for widespread green roof infrastructure can be developed. The authors propose policy instruments be multi-faceted and spatially focused, and also propose the following recommendations: (1) Identification of green roof overlay zones with specifications for green roofs built in these zones. This spatial analysis is important for prioritizing areas of the jurisdiction where green roofs will most efficiently function; (2) Offer financial incentives in the form of density credits and stormwater utility fee credits to help overcome the barriers to entry of the new technology; (3) Construct demonstration projects and institutionalize a commitment greening roofs on publicly-owned buildings as an effective way of establishing an educated

  12. A New Method for Sensing Soil Water Content in Green Roofs Using Plant Microbial Fuel Cells.

    Science.gov (United States)

    Tapia, Natalia F; Rojas, Claudia; Bonilla, Carlos A; Vargas, Ignacio T

    2017-12-28

    Green roofs have many benefits, but in countries with semiarid climates the amount of water needed for irrigation is a limiting factor for their maintenance. The use of drought-tolerant plants such as Sedum species, reduces the water requirements in the dry season, but, even so, in semiarid environments these can reach up to 60 L m -2 per day. Continuous substrate/soil water content monitoring would facilitate the efficient use of this critical resource. In this context, the use of plant microbial fuel cells (PMFCs) emerges as a suitable and more sustainable alternative for monitoring water content in green roofs in semiarid climates. In this study, bench and pilot-scale experiments using seven Sedum species showed a positive relationship between current generation and water content in the substrate. PMFC reactors with higher water content (around 27% vs. 17.5% v / v ) showed larger power density (114.6 and 82.3 μW m -2 vs. 32.5 μW m -2 ). Moreover, a correlation coefficient of 0.95 (±0.01) between current density and water content was observed. The results of this research represent the first effort of using PMFCs as low-cost water content biosensors for green roofs.

  13. Green roofs : a resource manual for municipal policy makers

    Energy Technology Data Exchange (ETDEWEB)

    Lawlor, G.; Currie, B.A.; Doshi, H.; Wieditz, I. [Canada Mortgage and Housing Corp., Ottawa, ON (Canada)

    2006-05-15

    As knowledge of the environmental benefits of green roofs and technology improves, green roofs are quickly gaining acceptance in North America. European jurisdictions have been using green roof technology for stormwater management, to reduce energy use in buildings and to increase amenity space. By reviewing the reasons that municipalities throughout the world have set green roof policies and programs, policy makers can more easily determine which policies suit their needs. This manual provided an overview of international and Canadian green roof policies and programs. It presented information on 12 jurisdictions that demonstrated leadership in green roof policy development. The manual also presented information on an additional 13 jurisdictions with less-developed green roof policies. Activities that were discussed for each of these jurisdictions included: description of jurisdiction; key motivators; green roof policy; process to establish policy; effectiveness; lessons learned; future predictions; and applicability to Canada of international jurisdictions. The manual also provided general information on green roofs such as a definition of green roofs and green roof terminology. Key motivators for green roofs include stormwater runoff control; reduction in urban heat-island effect; reduction in building energy consumption; and air pollution control. refs., tabs., figs.

  14. Green roof stormwater retention: effects of roof surface, slope, and media depth.

    Science.gov (United States)

    VanWoert, Nicholaus D; Rowe, D Bradley; Andresen, Jeffrey A; Rugh, Clayton L; Fernandez, R Thomas; Xiao, Lan

    2005-01-01

    Urban areas generate considerably more stormwater runoff than natural areas of the same size due to a greater percentage of impervious surfaces that impede water infiltration. Roof surfaces account for a large portion of this impervious cover. Establishing vegetation on rooftops, known as green roofs, is one method of recovering lost green space that can aid in mitigating stormwater runoff. Two studies were performed using several roof platforms to quantify the effects of various treatments on stormwater retention. The first study used three different roof surface treatments to quantify differences in stormwater retention of a standard commercial roof with gravel ballast, an extensive green roof system without vegetation, and a typical extensive green roof with vegetation. Overall, mean percent rainfall retention ranged from 48.7% (gravel) to 82.8% (vegetated). The second study tested the influence of roof slope (2 and 6.5%) and green roof media depth (2.5, 4.0, and 6.0 cm) on stormwater retention. For all combined rain events, platforms at 2% slope with a 4-cm media depth had the greatest mean retention, 87%, although the difference from the other treatments was minimal. The combination of reduced slope and deeper media clearly reduced the total quantity of runoff. For both studies, vegetated green roof systems not only reduced the amount of stormwater runoff, they also extended its duration over a period of time beyond the actual rain event.

  15. Green roofs provide habitat for urban bats

    Directory of Open Access Journals (Sweden)

    K.L. Parkins

    2015-07-01

    Full Text Available Understanding bat use of human-altered habitat is critical for developing effective conservation plans for this ecologically important taxon. Green roofs, building rooftops covered in growing medium and vegetation, are increasingly important conservation tools that make use of underutilized space to provide breeding and foraging grounds for urban wildlife. Green roofs are especially important in highly urbanized areas such as New York City (NYC, which has more rooftops (34% than green space (13%. To date, no studies have examined the extent to which North American bats utilize urban green roofs. To investigate the role of green roofs in supporting urban bats, we monitored bat activity using ultrasonic recorders on four green and four conventional roofs located in highly developed areas of NYC, which were paired to control for location, height, and local variability in surrounding habitat and species diversity. We then identified bat vocalizations on these recordings to the species level. We documented the presence of five of nine possible bat species over both roof types: Lasiurus borealis, L. cinereus, L. noctivagans, P. subflavus,andE. fuscus. Of the bat calls that could be identified to the species level, 66% were from L. borealis. Overall levels of bat activity were higher over green roofs than over conventional roofs. This study provides evidence that, in addition to well documented ecosystem benefits, urban green roofs contribute to urban habitat availability for several North American bat species.

  16. Using soil microbial inoculations to enhance substrate performance on extensive green roofs.

    Science.gov (United States)

    Molineux, Chloe J; Gange, Alan C; Newport, Darryl J

    2017-02-15

    Green roofs are increasing in popularity in the urban environment for their contribution to green infrastructure; but their role for biodiversity is not often a design priority. Maximising biodiversity will impact positively on ecosystem services and is therefore fundamental for achieving the greatest benefits from green roofs. Extensive green roofs are lightweight systems generally constructed with a specialised growing medium that tends to be biologically limited and as such can be a harsh habitat for plants to thrive in. Thus, this investigation aimed to enhance the soil functioning with inoculations of soil microbes to increase plant diversity, improve vegetation health/performance and maximise access to soil nutrients. Manipulations included the addition of mycorrhizal fungi and a microbial mixture ('compost tea') to green roof rootzones, composed mainly of crushed brick or crushed concrete. The study revealed that growing media type and depth play a vital role in the microbial ecology of green roofs, with complex relationships between depth and type of substrate and the type of microbial inoculant applied, with no clear pattern being observed. For bait plant measurements (heights, leaf numbers, root/shoot biomass, leaf nutrients), a compost tea may have positive effects on plant performance when grown in substrates of shallower depths (5.5cm), even one year after inoculums are applied. Results from the species richness surveys show that diversity was significantly increased with the application of an AM fungal treatment and that overall, results suggest that brick-based substrate blends are most effective for vegetation performance as are deeper depths (although this varied with time). Microbial inoculations of green roof habitats appeared to be sustainable; they need only be done once for benefits to still been seen in subsequent years where treatments are added independently (not in combination). They seem to be a novel and viable method of enhancing

  17. Hot trends in design : chic sustainability, unique driving factors and boutique green roofs

    Energy Technology Data Exchange (ETDEWEB)

    Velazquez, L.S. [American Society of Landscape Architects, Washington, DC (United States)]|[Greenroofs.com, Alpharetta, GA (United States); Kiers, K. [Greenroofs.com, Alpharetta, GA (United States)

    2007-07-01

    Green roofs are well known for their ecological benefits but less for their architectural usage. Green roofs offer more to the urban landscape than simply ecological, economic and aesthetic attributes of storm water management, temperature and energy reduction, and provision of additional green space. This paper focused on the top ten architectural trends in vegetated rooftop design. It addressed issues regarding client demands for green roofs and questioned if green roofs should be defined solely by their function as an ecological cover. The top ten trends revealed out-of-the ordinary applications, specialty designs and unusual projects on the boards. The paper looked beyond storm water and heat islands, and explored plans for innovative recreation, including a rooftop ski slope in Delft, the Netherlands, and a converted helipad turned into temporary grass tennis court in Dubai. The paper also presented less typical green roof market drivers, such as a doggie green space for a 10-year old, 9-pound Yorkie and a rooftop garden with plants from the Bible as a teaching laboratory for ministers. Other proposed projects that were discussed included plans for rice paddies on rooftop farms in China and the Vancouver Olympic Village with 50 per cent green roof coverage. The top ten list was organized under the following topics: boutique green roofs; sports and recreation; living roofs and living walls; eco resorts, hotels and therapeutic gardens; food on the roof; cutting edge applications; government and big box applications, cool green residences; mega green roofs; and, visionary proposed projects. 77 refs., 77 figs.

  18. Green Roofs

    Energy Technology Data Exchange (ETDEWEB)

    None

    2004-08-01

    A New Technology Demonstration Publication Green roofs can improve the energy performance of federal buildings, help manage stormwater, reduce airborne emissions, and mitigate the effects of urban heat islands.

  19. Creating a marketplace for green roofs in Chicago

    International Nuclear Information System (INIS)

    Vitt Sale, L.; Berkshire, M.

    2004-01-01

    Since 2003, the Chicago Department of Planning and Development has been encouraging city developers to consider installing green roofs on buildings in Chicago, with the belief that this practice results in mitigation of the urban heat island effect, cleaner runoff leaving green roofs, sound attenuation, aesthetic value, oxygen production, and mitigation of carbon dioxide emissions. However, the benefits to developers, which include reduced stormwater runoff, extended roof life and energy savings, in total do not offset the first cost premium of a green roof. Despite this, and with no mandate requiring green roofs, the marketplace is growing. After seeing green roofs on a tour in Europe, the mayor of Chicago encouraged the first design and installation of a 20,300 square foot demonstration green roof in Chicago, and other city-sponsored pilot projects followed shortly after. Since then, the number of green roofs in Chicago has grown to over one million square feet. A map of Chicago showing locations of most of the projects was presented. It was suggested that lower prices for green roofs, higher energy costs and an inclination to invest in long-term strategies would accelerate the market. In an effort to engage the public in dialogue, the Department of Planning and Development held seminars to promote the benefits of green roofs . Participants had many questions about the applicability of green roofs to Chicago, expressing skepticism that Chicago's climate would provide the same benefits as in Europe. Other concerns were expressed regarding the devaluation of property values resulting from placing green roofs on buildings; doubts about roof leaks; maintenance practices; and, bugs and mold. Since the first cost premium of the system remains a question, most participants expressed interest in some kind of incentive program, but remained open-minded if benefits could be proved. 6 figs

  20. Creating a marketplace for green roofs in Chicago

    Energy Technology Data Exchange (ETDEWEB)

    Vitt Sale, L. [Wright and Co. Chicago, IL (United States); Berkshire, M. [City of Chicago, IL (United States)

    2004-07-01

    Since 2003, the Chicago Department of Planning and Development has been encouraging city developers to consider installing green roofs on buildings in Chicago, with the belief that this practice results in mitigation of the urban heat island effect, cleaner runoff leaving green roofs, sound attenuation, aesthetic value, oxygen production, and mitigation of carbon dioxide emissions. However, the benefits to developers, which include reduced stormwater runoff, extended roof life and energy savings, in total do not offset the first cost premium of a green roof. Despite this, and with no mandate requiring green roofs, the marketplace is growing. After seeing green roofs on a tour in Europe, the mayor of Chicago encouraged the first design and installation of a 20,300 square foot demonstration green roof in Chicago, and other city-sponsored pilot projects followed shortly after. Since then, the number of green roofs in Chicago has grown to over one million square feet. A map of Chicago showing locations of most of the projects was presented. It was suggested that lower prices for green roofs, higher energy costs and an inclination to invest in long-term strategies would accelerate the market. In an effort to engage the public in dialogue, the Department of Planning and Development held seminars to promote the benefits of green roofs . Participants had many questions about the applicability of green roofs to Chicago, expressing skepticism that Chicago's climate would provide the same benefits as in Europe. Other concerns were expressed regarding the devaluation of property values resulting from placing green roofs on buildings; doubts about roof leaks; maintenance practices; and, bugs and mold. Since the first cost premium of the system remains a question, most participants expressed interest in some kind of incentive program, but remained open-minded if benefits could be proved. 6 figs.

  1. Rainwater runoff retention on an aged intensive green roof.

    Science.gov (United States)

    Speak, A F; Rothwell, J J; Lindley, S J; Smith, C L

    2013-09-01

    Urban areas are characterised by large proportions of impervious surfaces which increases rainwater runoff and the potential for surface water flooding. Increased precipitation is predicted under current climate change projections, which will put further pressure on urban populations and infrastructure. Roof greening can be used within flood mitigation schemes to restore the urban hydrological balance of cities. Intensive green roofs, with their deeper substrates and higher plant biomass, are able to retain greater quantities of runoff, and there is a need for more studies on this less common type of green roof which also investigate the effect of factors such as age and vegetation composition. Runoff quantities from an aged intensive green roof in Manchester, UK, were analysed for 69 rainfall events, and compared to those on an adjacent paved roof. Average retention was 65.7% on the green roof and 33.6% on the bare roof. A comprehensive soil classification revealed the substrate, a mineral soil, to be in good general condition and also high in organic matter content which can increase the water holding capacity of soils. Large variation in the retention data made the use of predictive regression models unfeasible. This variation arose from complex interactions between Antecedant Dry Weather Period (ADWP), season, monthly weather trends, and rainfall duration, quantity and peak intensity. However, significantly lower retention was seen for high rainfall events, and in autumn, which had above average rainfall. The study period only covers one unusually wet year, so a longer study may uncover relationships to factors which can be applied to intensive roofs elsewhere. Annual rainfall retention for Manchester city centre could be increased by 2.3% by a 10% increase in intensive green roof construction. The results of this study will be of particular interest to practitioners implementing greenspace adaptation in temperate and cool maritime climates. Copyright © 2013

  2. Six aspects to inspirational green roof design

    Energy Technology Data Exchange (ETDEWEB)

    Kiers, H. [SWA Group, Sausalito, CA (United States)

    2004-07-01

    Green roofs have been categorized as a technology that is not initially faster, better or cheaper, and may even under perform established products. However, green roofs have features and values that early adopters are ready to experiment with in small markets, thereby creating awareness of the technology. Termed as disruptive technologies, green roofs can become competitive within the mainstream market against established products. The challenge in green roof construction is to find the correct balance between idealistic principles and leading edge design. This paper presented case studies to examine the following 6 aspects of design fundamentals to the creation of inspirational green roofs: the use of colour; experimentation with materials and technology; incorporation of texture, form, and pattern; definition of space; engagement of vistas; and, principles of bio-regionalism. It was concluded that good design is not enough to lead to widespread green roof implementation. It was emphasized that change will occur primarily because of the benefits acquired through implementation. 11 refs., 7 figs.

  3. Growing substrates for aromatic plant species in green roofs and water runoff quality: pilot experiments in a Mediterranean climate.

    Science.gov (United States)

    Monteiro, Cristina M; Calheiros, Cristina S C; Palha, Paulo; Castro, Paula M L

    2017-09-01

    Green roof technology has evolved in recent years as a potential solution to promote vegetation in urban areas. Green roof studies for Mediterranean climates, where extended drought periods in summer contrast with cold and rainy periods in winter, are still scarce. The present research study assesses the use of substrates with different compositions for the growth of six aromatic plant species - Lavandula dentata, Pelargonium odoratissimum, Helichrysum italicum, Satureja montana, Thymus caespititius and T. pseudolanuginosus, during a 2-year period, and the monitoring of water runoff quality. Growing substrates encompassed expanded clay and granulated cork, in combination with organic matter and crushed eggshell. These combinations were adequate for the establishment of all aromatic plants, allowing their propagation in the extensive system located on the 5th storey. The substrate composed of 70% expanded clay and 30% organic matter was the most suitable, and crushed eggshell incorporation improved the initial plant establishment. Water runoff quality parameters - turbidity, pH, conductivity, NH 4 + , NO 3 - , PO 4 3- and chemical oxygen demand - showed that it could be reused for non-potable uses in buildings. The present study shows that selected aromatic plant species could be successfully used in green roofs in a Mediterranean climate.

  4. Green Roofs: A Part of Green Infrastructure Strategy for Urban Areas

    Science.gov (United States)

    This is a presentation on the basics of green roof technology. The presentation highlights some of the recent ORD research projects on green roofs and provides insight for the end user as to the benefits for green roof technology. It provides links to currently available EPA rep...

  5. Sheffield's Green Roof Forum: a multi-stranded programme of green roof infrastructure development for the UK's greenest city

    International Nuclear Information System (INIS)

    Dunnett, N.

    2006-01-01

    Sheffield, United Kingdom (UK) was the world centre for the steel and cutlery industries. However, those industries have been in decline and the city has been in the process of re-inventing itself over the past 20 years. Sheffield is now known as the UK's greenest city in terms of the amount of woodland, parkland and open spaces within its city limits. The city of Sheffield has also developed a unique partnership approach to promote green roof infrastructure as the most visible and high-profile signal of intent and symbol of low environmental impact building design and construction. This partnership involves Sheffield's Green Roof Forum, comprising the University of Sheffield's multi-disciplinary centre of excellence in green roof research; Sheffield City Council; Groundwork Sheffield, an urban economic and environmental regeneration agency; and city Architects and developers. This partnership meets six times a year to raise the profile of green roofs within the city and region, and to develop strategies to increase the uptake and implementation of green roof infrastructure in the region. This paper discussed the partnership, the Green Room Forum, accomplishments to date in promoting green roofs in the city, and the strategy for the Sheffield region to become a leader in green roof implementation and associated green technologies. The strategy is presented in two parts: consultation and research to identify the nature of market failure and devising methods to overcome that failure. The green roof strategy is being implemented through a program entitled Building Greener, Building Smarter and consists of four inter-linked strands. These strands were discussed in detail and included getting buy-in, demonstrating benefit, establishing the business case, and changing plans and practices. 3 tabs., 1 ref

  6. Thermal Study on Extensive Green Roof Integrated Irrigation in Northwestern Arid Regions of China

    Directory of Open Access Journals (Sweden)

    Yajun Wang

    2017-11-01

    Full Text Available Selection of xerophils and drought tolerant plants is highly crucial in green roof techniques in the drought prone regions of Northwest China. In this study, the thermal performance under the natural conventional climate in summer was analyzed using a self-made simulation experimental platform through comparison of the internal surface temperature with and without green roofs. The distribution frequency of internal surface temperature was investigated by dividing internal surface temperature into several ranges. Statistical analysis showed that the frequency of internal surface temperature lower than 33 °C for green roofs was 91.8%, about 1.09 times higher than that for non-green roofs, and that the sum of internal surface temperature exceeding 35 °C was about one third of that for non-green roofs. The results proved that green roofs have a significant insulation effect. Moreover, the thermal insulation property of green roofs had a strong positive relation with outside temperature. The thermal insulation characteristic was improved as the outdoor temperature increased, additionally, it had a better insulation effect within two hours after irrigation.

  7. Stormwater quality from extensive green roofs in a subtropical region

    Science.gov (United States)

    Onis Pessoa, Jonas; Allasia, Daniel; Tassi, Rutineia; Vaz Viega, Juliana; Fensterseifer, Paula

    2016-04-01

    Green roofs have increasingly become an integral part of urban environments, mainly due to their aesthetic benefits, thermal comfort and efficiency in controlling excess runoff. However, the effects of this emerging technology in the qualitative characteristics of rainwater is still poorly understood. In this study was evaluated the effect of two different extensive green roofs (EGRs) and a traditional roof built with corrugated fiber cement sheets (control roof) in the quality of rainwater, in a subtropical climate area in the city of Santa Maria, in southern Brazil. The principal variant between the two EGRs were the type of plant species, time since construction, soil depth and the substrate characteristics. During the monitoring period of the experiment, between the months of April and December of 2015 fourteen rainfall events were selected for qualitative analysis of water from the three roofs and directly from rainfall. It was analyzed physical (turbidity, apparent color, true color, electrical conductivity, total solids, dissolved solids, suspended solids and temperature), chemical (pH, phosphate, total nitrogen, nitrate, nitrite, chloride, sulfate, BOD, iron and total hardness), heavy metals (copper, zinc, lead and chromium) and microbiological parameters (total coliforms and E. coli). It was also characterized the substrates used in both extensive green roofs. The results showed that the quality of the water drained from EGR s was directly influenced by their substrates (in turn containing significant levels of nutrients, organic matter and some metals). The passage of rainwater through green roofs and control roof resulted in the elevation of pH, allowing the conversion of the slightly acidic rainfall into basic water. Similarly, on both types of roofs occurred an increase of the values of most of the physical, chemical and microbiological parameters compared to rainwater. This same trend was observed for heavy metals, although with a much smaller degree

  8. A zero discharge green roof system and species selection to optimize evapotranspiration and water retention

    Energy Technology Data Exchange (ETDEWEB)

    Compton, J.S.; Whitlow, T.H. [Cornell, Univ., Urban Horticulture Inst., Ithaca, NY (United States). Dept. of Horticulture

    2006-07-01

    Economic benefits must outweigh costs, with or without governmental subsidies or enforcement in order for green roofs to become commonplace in American cities. Municipal advantages to green roofs include stormwater management, environmental quality and an expansion of the native plant palette. These benefits are difficult to quantify monetarily for the owner of the roof, yet greater water evaporation from storm water attenuation has the ability to increase cooling of the building, an economic benefit to the owner. Current green roof design and testing methods fail to explore systems that maximize stormwater retention and evaporative cooling benefits that are often associated with green roofs. This paper presented the results of a study that investigated an alternate approach that optimizes water loss through evapotranspiration using a zero discharge target and plants that tolerate both medium drought and saturation. Species selection emphasizes native species and salt tolerance, which allows the possibility of grey water irrigation. Species studied include spartina alternafiora and solidago canadensis. Plants were studied over a growing season to examine the rates of ET as they relate to weather conditions, growing media composition and saturation levels, and plant species. The study was conducted on top of a four storey school building located in the South Bronx, New York City. In June 2005, a 3,500 square foot extensive green roof was installed. The conference described the site and study in detail followed by a discussion of the results. This includes a discussion of the planting containers, planting mediums, plant materials, data collection, and irrigation trials. It was concluded that further research is needed to test this concept, and to examine the possibility of supplemental irrigation via off-season rainwater catchment or grey water irrigation. 17 refs., 4 figs.

  9. Design and development of green roof substrate to improve runoff water quality: plant growth experiments and adsorption.

    Science.gov (United States)

    Vijayaraghavan, K; Raja, Franklin D

    2014-10-15

    Many studies worldwide have investigated the potential benefits achievable by transforming brown roofs of buildings to green roofs. However, little literature examined the runoff quality/sorption ability of green roofs. As the green roof substrate is the main component to alter the quality of runoff, this investigation raises the possibility of using a mixture of low-cost inorganic materials to develop a green roof substrate. The tested materials include exfoliated vermiculite, expanded perlite, crushed brick and sand along with organic component (coco-peat). Detailed physical and chemical analyses revealed that each of these materials possesses different characteristics and hence a mix of these materials was desirable to develop an optimal green roof substrate. Using factorial design, 18 different substrate mixes were prepared and detailed examination indicated that mix-12 exhibited desirable characteristics of green roof substrate with low bulk density (431 kg/m(3)), high water holding capacity (39.4%), air filled porosity (19.5%), and hydraulic conductivity (4570 mm/h). The substrate mix also provided maximum support to Portulaca grandiflora (380% total biomass increment) over one month of growth. To explore the leaching characteristics and sorption capacity of developed green roof substrate, a down-flow packed column arrangement was employed. High conductivity and total dissolved solids along with light metal ions (Na, K, Ca and Mg) were observed in the leachates during initial stages of column operation; however the concentration of ions ceased during the final stages of operation (600 min). Experiments with metal-spiked deionized water revealed that green roof substrate possess high sorption capacity towards various heavy metal ions (Al, Fe, Cr, Cu, Ni, Pb, Zn and Cd). Thus the developed growth substrate possesses desirable characteristics for green roofs along with high sorption capacity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Probabilistic economic analysis of green roof benefits for policy design

    International Nuclear Information System (INIS)

    Clark, C.; Adriaens, P.; Talbot, B.

    2006-01-01

    The installation costs of green roofs continue to deter widespread use of green roof technology. Analyses of the boundary conditions for the cost differential between a green roof and a conventional roof are usually compared to environmental benefits such as storm water reduction and building energy savings. However, evidence is emerging that green roofs may play a role in urban air quality improvement. This paper discussed a methodology for developing probabilistic ranges of benefits and cost analyses. A probabilistic analysis was conducted to prepare a generalized cost-benefit analysis for application to a range of green roof projects. Environmental benefits of roof greening were quantified on a per unit surface area to assess environmental impact at the building scale. Parameters included conventional and green roof installation costs; storm water fees and fee reductions for green roofs; energy costs due to heat flux and the resultant savings through the installation of a green roof and the additional economic valuation of the public health benefits due to air pollution mitigation. Results were then integrated into an economic model to determine the length of time required for a return on investment in a green roof, assuming that a traditional roof would require replacement after 20 years. A net present value analysis was performed for an average-sized university roof. Results of the study showed that a valuation of environmental benefits can reduce the time required for a return on investment in a moderately priced green roof. While reduced installation costs reduced the time required for a return on investment, optimizing the green roof system for maximum environmental benefit had a greater potential to provide a higher return. It was concluded that the benefit of improved air quality should not be ignored by green roof policy-makers as a valuation tool. 10 refs., 3 tabs., 1 fig

  11. Case studies of green roof policy from Canada

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, S. [Canada Mortgage and Housing Corp., Ottawa, ON (Canada)

    2006-07-01

    In order to overcome environmental, economic, and social challenges, such as stormwater management, heat island effects, reducing energy use in buildings and increasing amenity space, green roof technology has been a key approach used in many European countries and is gaining acceptance throughout North America as knowledge of the environmental benefits and green roof technology grows. While the conditions, benefits and market forces that have driven green roof development in Europe are not identical to Canada's, lessons can be learned from their experiences. Canadian municipalities that are looking to develop and implement green roof policies and programs will need information on how to tailor policies and programs for specific climate conditions, environmental concerns and regulatory realities. In order to provide Canadian municipal decision-makers with an overview of international and local green roof policies and programs, a green roof policy infrastructure manual was recently completed for the Canada Mortgage and Housing Corporation. Decision-makers can be better informed about which policies may be best suited to meet their specific policy needs by reviewing the motivators and other factors behind existing programs around the world. The manual describes green roof policies in each of 12 different jurisdictions from Canada, the United States, Germany, Switzerland, Singapore, and Japan in terms of local green roof motivators and the steps taken along the continuum of establishing policy. This paper described the progress of some Canadian cities that are moving through six phases of establishing appropriate green roof policies and programs. The six phases were introductory and awareness; community engagement; action plan development and implementation; technical research; program and policy development and continuous improvement.

  12. Development of a green roof environmental monitoring and meteorological network in new york city.

    Science.gov (United States)

    Gaffin, Stuart R; Khanbilvardi, Reza; Rosenzweig, Cynthia

    2009-01-01

    Green roofs (with plant cover) are gaining attention in the United States as a versatile new environmental mitigation technology. Interest in data on the environmental performance of these systems is growing, particularly with respect to urban heat island mitigation and stormwater runoff control. We are deploying research stations on a diverse array of green roofs within the New York City area, affording a new opportunity to monitor urban environmental conditions at small scales. We show some green roof systems being monitored, describe the sensor selection employed to study energy balance, and show samples of selected data. These roofs should be superior to other urban rooftops as sites for meteorological stations.

  13. Green roof valuation: a probabilistic economic analysis of environmental benefits.

    Science.gov (United States)

    Clark, Corrie; Adriaens, Peter; Talbot, F Brian

    2008-03-15

    Green (vegetated) roofs have gained global acceptance as a technologythat has the potential to help mitigate the multifaceted, complex environmental problems of urban centers. While policies that encourage green roofs exist atthe local and regional level, installation costs remain at a premium and deter investment in this technology. The objective of this paper is to quantitatively integrate the range of stormwater, energy, and air pollution benefits of green roofs into an economic model that captures the building-specific scale. Currently, green roofs are primarily valued on increased roof longevity, reduced stormwater runoff, and decreased building energy consumption. Proper valuation of these benefits can reduce the present value of a green roof if investors look beyond the upfront capital costs. Net present value (NPV) analysis comparing a conventional roof system to an extensive green roof system demonstrates that at the end of the green roof lifetime the NPV for the green roof is between 20.3 and 25.2% less than the NPV for the conventional roof over 40 years. The additional upfront investment is recovered at the time when a conventional roof would be replaced. Increasing evidence suggests that green roofs may play a significant role in urban air quality improvement For example, uptake of N0x is estimated to range from $1683 to $6383 per metric ton of NOx reduction. These benefits were included in this study, and results translate to an annual benefit of $895-3392 for a 2000 square meter vegetated roof. Improved air quality leads to a mean NPV for the green roof that is 24.5-40.2% less than the mean conventional roof NPV. Through innovative policies, the inclusion of air pollution mitigation and the reduction of municipal stormwater infrastructure costs in economic valuation of environmental benefits of green roofs can reduce the cost gap that currently hinders U.S. investment in green roof technology.

  14. Metal and nutrient dynamics on an aged intensive green roof.

    Science.gov (United States)

    Speak, A F; Rothwell, J J; Lindley, S J; Smith, C L

    2014-01-01

    Runoff and rainfall quality was compared between an aged intensive green roof and an adjacent conventional roof surface. Nutrient concentrations in the runoff were generally below Environmental Quality Standard (EQS) values and the green roof exhibited NO3(-) retention. Cu, Pb and Zn concentrations were in excess of EQS values for the protection of surface water. Green roof runoff was also significantly higher in Fe and Pb than on the bare roof and in rainfall. Input-output fluxes revealed the green roof to be a potential source of Pb. High concentrations of Pb within the green roof soil and bare roof dusts provide a potential source of Pb in runoff. The origin of the Pb is likely from historic urban atmospheric deposition. Aged green roofs may therefore act as a source of legacy metal pollution. This needs to be considered when constructing green roofs with the aim of improving pollution remediation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Metal and nutrient dynamics on an aged intensive green roof

    International Nuclear Information System (INIS)

    Speak, A.F.; Rothwell, J.J.; Lindley, S.J.; Smith, C.L.

    2014-01-01

    Runoff and rainfall quality was compared between an aged intensive green roof and an adjacent conventional roof surface. Nutrient concentrations in the runoff were generally below Environmental Quality Standard (EQS) values and the green roof exhibited NO 3 − retention. Cu, Pb and Zn concentrations were in excess of EQS values for the protection of surface water. Green roof runoff was also significantly higher in Fe and Pb than on the bare roof and in rainfall. Input–output fluxes revealed the green roof to be a potential source of Pb. High concentrations of Pb within the green roof soil and bare roof dusts provide a potential source of Pb in runoff. The origin of the Pb is likely from historic urban atmospheric deposition. Aged green roofs may therefore act as a source of legacy metal pollution. This needs to be considered when constructing green roofs with the aim of improving pollution remediation. -- Highlights: • Runoff from an aged intensive green roof was characterised. • Nutrient levels were not problematic for runoff quality. • High concentrations of Cu, Pb and Zn were found in the runoff. • Soil contamination was a likely source of metals in roof runoff. • Historic Pb atmospheric deposition may be the source of contamination. -- Aged green roofs may act as a store of legacy lead pollution

  16. Comparing wildlife habitat and biodiversity across green roof type

    Energy Technology Data Exchange (ETDEWEB)

    Coffman, R.R. [Oklahoma Univ., Tulsa, OK (United States). Dept. of Landscape Architecture

    2007-07-01

    Green roofs represent restorative practices within human dominated ecosystems. They create habitat, increase local biodiversity, and restore ecosystem function. Cities are now promoting this technology as a part of mitigation for the loss of local habitat, making the green roof necessary in sustainable development. While most green roofs create some form of habitat for local and migratory fauna, some systems are designed to provide specific habitat for species of concern. Despite this, little is actually known about the wildlife communities inhabiting green roofs. Only a few studies have provided broad taxa descriptions across a range of green roof habitats, and none have attempted to measure the biodiversity across green roof class. Therefore, this study examined two different vegetated roof systems representative of North America. They were constructed under alternative priorities such as energy, stormwater and aesthetics. The wildlife community appears to be a result of the green roof's physical composition. Wildlife community composition and biodiversity is expected be different yet comparable between the two general types of green roofs, known as extensive and intensive. This study recorded the community composition found in the two classes of ecoroofs and assessed biodiversity and similarity at the community and group taxa levels of insects, spiders and birds. Renyi family of diversity indices were used to compare the communities. They were further described through indices and ratios such as Shannon's, Simpson's, Sorenson and Morsita's. In general, community biodiversity was found to be slightly higher in the intensive green roof than the extensive green roof. 26 refs., 4 tabs., 4 figs.

  17. Do green roofs cool the air?

    NARCIS (Netherlands)

    Solcerova, A.; van de Ven, F.H.M.; Wang, Mengyu; Rijsdijk, Michiel; van de Giesen, N.C.

    2017-01-01

    Rapid urbanization and an increasing number and duration of heat waves poses a need to mitigate extremely high temperatures. One of the repeatedly suggested measures to moderate the so called urban heat island are green roofs. This study investigates several extensive sedum-covered green roofs in

  18. Phosphate Leaching from Green Roof Substrates—Can Green Roofs Pollute Urban Water Bodies?

    Directory of Open Access Journals (Sweden)

    Agnieszka Karczmarczyk

    2018-02-01

    Full Text Available Green roofs are an effective stormwater measure due to high water retention capacity and the ability of delaying stormwater runoff. However, low importance is still given to the pollutant leaching potential of substrates used in green roof construction. The aim of the study is to estimate the concentrations and loads of P-PO43− in runoff from extensive and intensive substrates. To achieve this goal, several commonly-used fresh substrates were analyzed for P-PO43− leaching potential in different scale experiments, from laboratory batch tests, leaching column experiments, and long-term monitoring of open air green roof containers. The results of the study confirmed that fresh green roof substrates contain phosphorus in significant amounts of 17–145 mg∙P-PO43−/kg and, thus, can contribute to eutrophication of freshwater ecosystems. High correlation between phosphate content estimated by HCl extraction and cumulative load in leachate tests suggests that the batch HCl extraction test can be recommended for the comparison and selection of substrates with low potential P leaching. Volume-weighted mean concentrations and UALs of P-PO43− leaching from fresh substrates were higher in cases of intensive substrates, but there was no clear relationship between substrate type and the observed P-PO43− concentration range. To avoid increasing eutrophication of urban receivers the implementation of P reduction measures is strongly recommended.

  19. Review of plants to mitigate particulate matter, ozone as well as nitrogen dioxide air pollutants and applicable recommendations for green roofs in Montreal, Quebec.

    Science.gov (United States)

    Gourdji, Shannon

    2018-05-28

    In urbanized regions with expansive impervious surfaces and often low vegetation cover, air pollution due to motor vehicles and other combustion sources, is a problem. The poor air quality days in Montreal, Quebec are mainly due to fine particulate matter and ozone. Businesses using wood ovens are a source of particulates. Careful vegetation selection and increased green roof usage can improve air quality. This paper reviews different green roofs and the capability of plants in particulate matter (PM), ozone (O 3 ) as well as nitrogen dioxide (NO 2 ) level reductions. Both the recommended green roof category and plants to reduce these pollutants in Montreal's zone 5 hardiness region are provided. Green roofs with larger vegetation including shrubs and trees, or intensive green roofs, remove air pollutants to a greater extent and are advisable to implement on existing, retrofitted or new buildings. PM is most effectively captured by pines. The small Pinus strobus 'Nana', Pinus mugho var. pumilio, Pinus mugho 'Slowmound' and Pinus pumila 'Dwarf Blue' are good candidates for intensive green roofs. Drought tolerant, deciduous broadleaved trees with low biogenic volatile organic compound emissions including Japanese Maple or Acer palmatum 'Shaina' and 'Mikawa-Yatsubusa' are options to reduce O 3 levels. Magnolias are tolerant to NO 2 and it is important in their metabolic pathways. The small cold-tolerant Magnolia 'Genie' is a good option to remove NO 2 in urban settings and to indirectly reduce O 3 formation. Given the emissions by Montreal businesses' wood ovens, calculations performed based on their respective complex roof areas obtained via Google Earth Pro indicates 88% Pinus mugho var. pumilio roof coverage can annually remove 92.37 kg of PM 10 of which 35.10 kg is PM 2.5 . The removal rates are 4.00 g/m 2 and 1.52 g/m 2 for PM 10 and PM 2.5 , respectively. This paper provides insight to addressing air pollution through urban rooftop greening. Copyright

  20. An environmental cost-benefit analysis of alternative green roofing strategies

    Science.gov (United States)

    Richardson, M.; William, R. K.; Goodwell, A. E.; Le, P. V.; Kumar, P.; Stillwell, A. S.

    2016-12-01

    Green roofs and cool roofs are alternative roofing strategies that mitigate urban heat island effects and improve building energy performance. Green roofs consist of soil and vegetation layers that provide runoff reduction, thermal insulation, and potential natural habitat, but can require regular maintenance. Cool roofs involve a reflective layer that reflects more sunlight than traditional roofing materials, but require additional insulation during winter months. This study evaluates several roofing strategies in terms of energy performance, urban heat island mitigation, water consumption, and economic cost. We use MLCan, a multi-layer canopy model, to simulate irrigated and non-irrigated green roof cases with shallow and deep soil depths during the spring and early summer of 2012, a drought period in central Illinois. Due to the dry conditions studied, periodic irrigation is implemented in the model to evaluate its effect on evapotranspiration. We simulate traditional and cool roof scenarios by altering surface albedo and omitting vegetation and soil layers. We find that both green roofs and cool roofs significantly reduce surface temperature compared to the traditional roof simulation. Cool roof temperatures always remain below air temperature and, similar to traditional roofs, require low maintenance. Green roofs remain close to air temperature and also provide thermal insulation, runoff reduction, and carbon uptake, but might require irrigation during dry periods. Due to the longer lifetime of a green roof compared to cool and traditional roofs, we find that green roofs realize the highest long term cost savings under simulated conditions. However, using longer-life traditional roof materials (which have a higher upfront cost) can help decrease this price differential, making cool roofs the most affordable option due to the higher maintenance costs associated with green roofs

  1. A green roof grant program for Washington DC

    International Nuclear Information System (INIS)

    Johnson, P.A.

    2007-01-01

    The Chesapeake Bay Foundation (CBF) began its green roof demonstration project with $300,000 in funding provided by the DC Water and Sewer Authority. This paper reviewed the history of the project, its goals and early findings. The main objective was to demonstrate the technical, policy and economic feasibility of installing green roofs on commercial buildings in Washington DC and to promote green roofs as a means to manage storm water and improve water quality through the reduction of excessive runoff. The CBF has issued grants for the installation of 7 green roofs varying in size, design, location, and use. The projects included both new and existing structures designed to improve storm-water management in an urban area with significant pollution stress on the adjacent rivers. This paper provided technical, cost, and performance evaluations of each roof. A public outreach segment provided information to decision-makers to encourage more widespread replication of green roof technology throughout the metropolitan area. Much of the District of Columbia is served by a combined sewer system that becomes overloaded and discharges raw sewage into adjacent rivers during even moderately heavy rains. An average of 75 overflow events each year result in 1.5 billion gallons discharged into the Anacostia River. The installation of green roofs on buildings in the combined sewer area would retain storm water during these heavy rains and reduce the amount of overflow discharges. Apartments, as well as commercial and government buildings with mostly flat roofs are the most likely candidates for green roofs. The demonstration roofs are intended to become models, which all building owners could use as a guide for future plans for construction or re-construction to expand green roof coverage in Washington DC. It was emphasized that although such large-scale replication will take time and financial investments, it is achievable given enough political will and commercial awareness of

  2. Theoretical evaluation of thermal and energy performance of tropical green roofs

    International Nuclear Information System (INIS)

    Tsang, S.W.; Jim, C.Y.

    2011-01-01

    The thermal and energy efficiency of tropical green roofs is assessed by a theoretical model to clarify the contribution of underlying factors. The suitability of 1400 high-rise public housing blocks in Hong Kong for rooftop greening was assessed by remote sensing images. Weather and microclimatic-soil monitoring data of an experimental green roof provided the basis for computations. Roof greening prevented a huge amount of solar energy at 43.9 TJ in one summer from penetrating the buildings to bring significant energy saving. Thermal performance of humid-tropical green roofs, with greater latent heat dissipation, is twice more effective than the temperate ones. The energy balance model shows that solar energy absorption by bare and green roofs depends on shortwave rather than longwave radiation. Heat flux into a building indicates a one-day time lag after a sunshine day. With restricted evapotranspiration, bare roofs have more sensible heat and heat storage than green roofs. The bare roof albedo of 0.15, comparing with 0.30 of green roof, renders 75% higher heat storage. Small increase in convection coefficient from 12 to 16 could amplify 24% and 45% of latent heat dissipation respectively for bare and green roofs. Doubling the soil water availability could halve the heat storage of green roofs. -- Highlights: → We developed a theoretical model to calculate the thermal performance of tropical green roofs. → Bare roofs have more sensible heat and heat storage than green roofs. → Latent heat dissipation of tropical green roofs is twice that of temperate counterparts. → Heat flux through the roof into a building demonstrates a one-day time lag after a long sunshine day. → Green roofs can block 43.9 TJ of solar energy penetration into public housing buildings in one summer.

  3. Development of a Green Roof Environmental Monitoring and Meteorological Network in New York City

    Directory of Open Access Journals (Sweden)

    Cynthia Rosenzweig

    2009-04-01

    Full Text Available Green roofs (with plant cover are gaining attention in the United States as a versatile new environmental mitigation technology. Interest in data on the environmental performance of these systems is growing, particularly with respect to urban heat island mitigation and stormwater runoff control. We are deploying research stations on a diverse array of green roofs within the New York City area, affording a new opportunity to monitor urban environmental conditions at small scales. We show some green roof systems being monitored, describe the sensor selection employed to study energy balance, and show samples of selected data. These roofs should be superior to other urban rooftops as sites for meteorological stations.

  4. Green Roofs: Standardization and Quality Control of Processes in Green Construction

    Directory of Open Access Journals (Sweden)

    Korol Elena

    2017-01-01

    Full Text Available The article considers the problems of standardization and quality control of processes in the construction, improvement of integrated safety of buildings and the implementation of innovative green building technologies, the use of national standards as well as international rating systems for green buildings evaluation. This is one of the priority directions in development of the modern construction. The aim of this study is the analysis of the green roof systems and international standards, which were carried out in the green building industry. The authors have studied traditional and innovative solutions of rational using natural resources and energy, the green roof system with integration of supported solar and wind energy collecting and converting devices and of irrigation system. Some studies provide evidence for the benefits of the modular green roof system in urban green space with microclimate differences. This article presents a new research which advances our knowledge of the economic and environmental services provided by the green roof system. Research reported here also considers the analysis of the Russian and international legislation of the quality control of processes in green construction.

  5. Eco-Environmental Factors in Green Roof Application in Indian Cities

    Science.gov (United States)

    Mukherjee, M.

    2014-09-01

    Green-roof is the cost-effective environmental mitigation strategy for urban areas [1]. Its application is limited in India primarily due to inadequate understanding about its cost-benefit analysis and technicalities of its maintenance. Increasing awareness about green roof can alter conservative attitude towards its application. So, this work presents a quantified study on green-roof types, cost and environmental benefits while considering different geo-urban climate scenarios for cities of Kolkata, Mumbai, Chennai and New Delhi. Cost estimation for extensive and intensive green-roof with reference to commonly used roof in urban India is also worked out. Attributes considered for environmental discussion are energy savings related to thermal heat gain through roof, roof-top storm-water drainage and sound attenuation. The comparative study confirms that further focused study on individual cities would identify city-specific objectives for green-roof application; strategies like awareness, capacity building programmes, incentives, demonstration projects etc. can be worked out accordingly for wider application of green-roof in Indian cities.

  6. The influence of dual-substrate-layer extensive green roofs on rainwater runoff quantity and quality.

    Science.gov (United States)

    Wang, Xiaoou; Tian, Yimei; Zhao, Xinhua

    2017-08-15

    This study investigates the ability of dual-substrate-layer extensive green roofs to retain rainwater and reduce pollutant leaching. The substrates in dual-substrate-layer green roofs consist of an upper organic nutrition layer for plant growth and a lower inorganic adsorption layer for water retention and pollutant reduction. One traditional single-substrate-layer extensive green roof was built for comparison with dual-substrate-layer green roofs. During the experimental period, dual-substrate-layer green roofs supported better natural vegetation growth, with coverage exceeding 90%, while the coverage in single-substrate-layer green roof was over 80%. Based on the average retention value of the total rainfall for four types of simulated rains (the total rainfall depth (mm) was 43.2, 54.6, 76.2 and 86.4, respectively), the dual-substrate-layer green roofs, which used the mixture of activated charcoal with perlite and vermiculite as the adsorption substrate, possessed better rainfall retention performance (65.9% and 55.4%) than the single-substrate-layer green roof (52.5%). All of the dual-substrate-layer green roofs appeared to be sinks for organics, heavy metals and all forms of nitrogen in all cases, while acted as sources of phosphorus contaminants in the case of heavy rains. In consideration of the factors of water retention, pollution reduction and service life of the green roof, a mixture of activated charcoal and/or pumice with perlite and vermiculite is recommended as the adsorption substrate. The green roofs were able to mitigate mild acid rain, raising the pH from approximately 5.6 in rainfall to 6.5-7.6 in green roof runoff. No signs of a first flush effect for phosphate, total phosphorus, ammonia nitrogen, nitrate nitrogen, total nitrogen, organics, zinc, lead, chromium, manganese, copper, pH or turbidity were found in the green roof runoff. Cost analysis further proved the practicability of dual-substrate-layer green roofs in retaining rainwater, and

  7. Habitat connectivity and local conditions shape taxonomic and functional diversity of arthropods on green roofs.

    Science.gov (United States)

    Braaker, Sonja; Obrist, Martin Karl; Ghazoul, Jaboury; Moretti, Marco

    2017-05-01

    Increasing development of urban environments creates high pressure on green spaces with potential negative impacts on biodiversity and ecosystem services. There is growing evidence that green roofs - rooftops covered with vegetation - can contribute mitigate the loss of urban green spaces by providing new habitats for numerous arthropod species. Whether green roofs can contribute to enhance taxonomic and functional diversity and increase connectivity across urbanized areas remains, however, largely unknown. Furthermore, only limited information is available on how environmental conditions shape green roof arthropod communities. We investigated the community composition of arthropods (Apidae, Curculionidae, Araneae and Carabidae) on 40 green roofs and 40 green sites at ground level in the city of Zurich, Switzerland. We assessed how the site's environmental variables (such as area, height, vegetation, substrate and connectivity among sites) affect species richness and functional diversity using generalized linear models. We used an extension of co-inertia analysis (RLQ) and fourth-corner analysis to highlight the mechanism underlying community assemblages across taxonomic groups on green roof and ground communities. Species richness was higher at ground-level sites, while no difference in functional diversity was found between green roofs and ground sites. Green roof arthropod diversity increased with higher connectivity and plant species richness, irrespective of substrate depth, height and area of green roofs. The species trait analysis reviewed the mechanisms related to the environmental predictors that shape the species assemblages of the different taxa at ground and roof sites. Our study shows the important contribution of green roofs in maintaining high functional diversity of arthropod communities across different taxonomic groups, despite their lower species richness compared with ground sites. Species communities on green roofs revealed to be characterized

  8. Green Roofs and Green Walls for Biodiversity Conservation: A Contribution to Urban Connectivity?

    Directory of Open Access Journals (Sweden)

    Flavie Mayrand

    2018-03-01

    Full Text Available Green roofs and walls have recently emerged as conservation tools, and they offer promising additional opportunities to enhance biodiversity in cities. However, their ecological conditions remain poorly considered when planning wildlife corridors. To discuss the role of vegetated buildings in landscape connectivity, we reviewed the ecological and technical specificities of green walls and green roofs in light of the key factors concerning urban wildlife (patch size, quality, abundance, and isolation. Green roofs and walls show limited patch sizes, distinct habitat quality at the building scale, and limited redundancy of patch quality within the landscape. We also highlight that the abundance of roof and wall patches is often low. Future research is needed to establish if walls can be vertical corridors for wildlife, thereby reducing the isolation of green roofs. We argue that creating 3D ecological connectivity within the city requires substantial modifications of the design and maintenance of existing green building systems. We suggest that research is needed to integrate the biotic and abiotic characteristics of green buildings to make them more closely resemble those of open green spaces.

  9. MODELING OF STORM WATER RUNOFF FROM GREEN ROOFS

    Directory of Open Access Journals (Sweden)

    Ewa Burszta-Adamiak

    2014-10-01

    Full Text Available Apart from direct measurements, modelling of runoff from green roofs is valuable source of information about effectiveness of this type of structure from hydrological point of view. Among different type of models, the most frequently used are numerical models. They allow to assess the impact of green roofs on decrease and attenuation of runoff, reduction of peak runoff and value of water retention. This paper presents preliminary results of research on computing the rate of runoff from green roofs using GARDENIA model. The analysis has been carried out for selected rainfall events registered during measuring campaign on pilot-scale green roofs. Obtained results are promising and show good fit between observed and simulated runoff.

  10. Mapping the Green Infrastructure potential - and it's water-energy impacts on New York City roof Tops

    Science.gov (United States)

    Engström, Rebecka; Destouni, Georgia; Howells, Mark

    2017-04-01

    Green Roofs have the potential to provide multiple services in cities. Besides acting as carbon sinks, providing noise reduction and decreasing air pollution - without requiring any additional "land-use" in a city (only roof-use), green roofs have a quantifiable potential to reduce direct and indirect energy and water use. They enhance the insulating capacity of a conventional residential roof and thereby decrease both cooling demands in summer and heating demands in winter. The former is further mitigated by the cooling effect of evapotranspiration from the roofs In New York City green roofs are additionally a valuable component of reducing "combined sewer overflows", as these roofs can retain storm water. This can improve water quality in the city's rivers as well as decrease the total volume of water treated in the city's wastewater treatment plants, thereby indirectly reduce energy demands. The impacts of green roofs on NYC's water-energy nexus has been initially studied (Engström et. al, forthcoming). The present study expands that work to more comprehensively investigate the potential of this type of nature-based solution in a dense city. By employing Geographical Information Systems analysis, the roof top area of New York City is analysed and roof space suitable for green roofs of varying types (ranging from extensive to intensive) are mapped and quantified. The total green roof area is then connected with estimates of potential water-energy benefits (and costs) of each type of green roof. The results indicate where green roofs can be beneficially installed throughout the city, and quantifies the related impacts on both water and energy use. These outputs can provide policy makers with valuable support when facing investment decisions in green infrastructure, in a city where there is great interest for these types of nature-based solutions.

  11. Extensive Green Roof Ecological Benefits in Latvia

    OpenAIRE

    Rušenieks, Rihards; Kamenders, Agris

    2013-01-01

    Extensive green roof ecological benefits are studiedin this paper. The research contains a brief explanation aboutgreen roof technology and green roof ecological benefits. Greenroof capability to retain rainwater runoff by accumulating it instorage layers and conducting it back into the atmospherethrough evapotranspiration is studied and modeled. Modeling isdone in Stormwater Management Model 5.0 software. The modelis based on an existing warehouse-type building located in Rigaand hourly Riga...

  12. Sheffield's Green Roof Forum: a multi-stranded programme of green roof infrastructure development for the UK's greenest city

    Energy Technology Data Exchange (ETDEWEB)

    Dunnett, N. [Univ. of Sheffield, Western Bank, Sheffield (United Kingdom). Dept. of Landscape

    2006-07-01

    Sheffield, United Kingdom (UK) was the world centre for the steel and cutlery industries. However, those industries have been in decline and the city has been in the process of re-inventing itself over the past 20 years. Sheffield is now known as the UK's greenest city in terms of the amount of woodland, parkland and open spaces within its city limits. The city of Sheffield has also developed a unique partnership approach to promote green roof infrastructure as the most visible and high-profile signal of intent and symbol of low environmental impact building design and construction. This partnership involves Sheffield's Green Roof Forum, comprising the University of Sheffield's multi-disciplinary centre of excellence in green roof research; Sheffield City Council; Groundwork Sheffield, an urban economic and environmental regeneration agency; and city Architects and developers. This partnership meets six times a year to raise the profile of green roofs within the city and region, and to develop strategies to increase the uptake and implementation of green roof infrastructure in the region. This paper discussed the partnership, the Green Room Forum, accomplishments to date in promoting green roofs in the city, and the strategy for the Sheffield region to become a leader in green roof implementation and associated green technologies. The strategy is presented in two parts: consultation and research to identify the nature of market failure and devising methods to overcome that failure. The green roof strategy is being implemented through a program entitled Building Greener, Building Smarter and consists of four inter-linked strands. These strands were discussed in detail and included getting buy-in, demonstrating benefit, establishing the business case, and changing plans and practices. 3 tabs., 1 ref.

  13. Study on the Thermal Effects and Air Quality Improvement of Green Roof

    Directory of Open Access Journals (Sweden)

    Heng Luo

    2015-03-01

    Full Text Available Heat island phenomenon and air quality deterioration issues are two major problems that have occurred during the process of urbanization, especially in developing countries. A number of measures have been proposed, among which roof greening is considered as a promising one due to its outstanding performance in thermal effects as well as air quality improvement. A self-maintenance system, termed the Green Roof Manager (GRM, which comprises the irrigation and shadowing subsystems, is proposed in this paper, focusing on the automatic and reliable operation of the roof greening system rather than exploiting new plant species. A three month long experiment was set up, resulting in the observation that a 14.7% of, on average, temperature reduction can be achieved in summer after deploying the GRM system. During a 24-hour monitoring experiment the PM2.5 concentrations above the GRM was reduced by up to 14.1% over the bare roof.

  14. Stormwater runoff mitigation and nutrient leaching from a green roof designed to attract native pollinating insects

    Science.gov (United States)

    Fogarty, S.; Grogan, D. S.; Hale, S. R.

    2013-12-01

    A green roof is typically installed for one of two reasons: to mitigate the 'urban heat island' effect, reducing ambient temperatures and creating energy savings, or to reduce both the quantity and intensity of stormwater runoff, which is a major cause of river erosion and eutrophication. The study of green roofs in the United States has focused on commercial systems that use a proprietary expanded shale or clay substrate, along with succulent desert plants (mainly Sedum species). The green roof has the potential not only to provide thermal insulation and reduce storm runoff, but also to reclaim some of the natural habitat that has been lost to the built environment. Of special importance is the loss of habitat for pollinating insects, particularly native bees, which have been in decline for at least two decades. These pollinators are essential for crop production and for the reproduction of at least 65% of wild plants globally. Our study involves the installation of a small (4ft by 4ft), self-designed green roof system built with readily available components from a hardware store. The garden will be filled with a soilless potting mix, combined with 15% compost, and planted with grasses and wildflowers native to the Seacoast, New Hampshire region. Some of the plant species are used by bees for nesting materials, while others provide food in the form of nectar, pollen, and seeds for bees, butterflies, hummingbirds, and granivorous birds. We monitor precipitation on the roof and runoff from the garden on a per storm basis, and test grab samples of runoff for dissolved organic nitrogen and phosphorous. Runoff and nutrient concentration results are compared to a non-vegetated roof surface, and a proprietary Green Grid green roof system. This project is designed to address three main questions of interest: 1) Can these native plant species, which potentially provide greater ecosystem services than Sedum spp. in the form of food and habitat, survive in the conditions on

  15. Performance evaluation on cool roofs for green remodeling

    Science.gov (United States)

    Yun, Yosun; Cho, Dongwoo; Cho, Kyungjoo

    2018-06-01

    Cool roofs refer that maximize heat emission, and minimize the absorption of solar radiation energy, by applying high solar reflectance paints, or materials to roofs or rooftops. The application of cool roofs to existing buildings does not need to take structural issues into consideration, as rooftop greening, is an alternative that can be applied to existing buildings easily. This study installed a cool roofs on existing buildings, and evaluated the performances, using the results to propose certification standards for green remodeling, considering the cool roof-related standards.

  16. An eye for the green top : an independent voice for green roofs in the UK

    Energy Technology Data Exchange (ETDEWEB)

    Frith, M.; Gedge, D. [Livingroofs.org, England (United Kingdom)

    2005-07-01

    Livingroofs.org is a non-profit organization that was established to provide a resource for promoting green roofs in the United Kingdom (UK). Current policies in the UK related to the planning and development of green roofs are a constraint to their uptake. The emerging emphasis on sustainable development is bringing about a revision of planning policies that may make green roofs more desirable. However, green roof design standards are still being developed by a largely unmonitored industry furthering a product with which most people are unfamiliar. This paper reviewed a number of issues that need to be addressed to assist in the wider adoption of green roofs, including increased awareness; an identification of the real benefits of green roofs; guidance and research; planning policies; fiscal incentives; industry standards and codes of practice. Details of the current policy frameworks for construction, urban design and climate change were also outlined. Two specific projects were reviewed to provide an insight into the way in which Livingroofs.org intends to promote green roof technology: a roof owned by the Birmingham city council and a collaboration with a Swiss partner to design a roof for the Komodo Dragon House at the London Zoo. It was concluded that there is now a real likelihood that the widespread adoption of green roofs will occur in the UK within the next 5 years, both in terms of new developments and the vast potential for retro-fitting on existing buildings. 47 refs., 2 tabs.

  17. Comparative life cycle assessment of standard and green roofs.

    Science.gov (United States)

    Saiz, Susana; Kennedy, Christopher; Bass, Brad; Pressnail, Kim

    2006-07-01

    Life cycle assessment (LCA) is used to evaluate the benefits, primarily from reduced energy consumption, resulting from the addition of a green roof to an eight story residential building in Madrid. Building energy use is simulated and a bottom-up LCA is conducted assuming a 50 year building life. The key property of a green roof is its low solar absorptance, which causes lower surface temperature, thereby reducing the heat flux through the roof. Savings in annual energy use are just over 1%, but summer cooling load is reduced by over 6% and reductions in peak hour cooling load in the upper floors reach 25%. By replacing the common flat roof with a green roof, environmental impacts are reduced by between 1.0 and 5.3%. Similar reductions might be achieved by using a white roof with additional insulation for winter, but more substantial reductions are achieved if common use of green roofs leads to reductions in the urban heat island.

  18. The Effect of Medium Cultures on Water Use and Charactristic of Gazania Flowers (Gazania hybrida in Green Roof.

    Directory of Open Access Journals (Sweden)

    Tahereh Bahrami

    2017-09-01

    Full Text Available Introduction: Green roof is one of the newest phenomenons in architecture and urbanism that refers to the sustainable development concepts and it will be usable for increasing landscape design, improving quality of the environment and reduction in energy consumption. Ensure of existing adequate green landscape in urban areas and improving access to natural areas surrounding the cities can help to offset negative effects of urban life. The use of green roof technology in cities is one of advanced techniques of green landscape. A green or living roof is a roof of a building that is partially or completely covered with vegetation and a growing medium on top view of buildings. Green roof layers that considered for roof side consist of protection layer, drainage layer, growing medium and plant layer. Medium layer is the medium culture of green roof that plants are begins to grow in it. This space should enable to save enough minerals and water for conserve of green-roof plants. All kinds of plants can growth on the green roof, but there are some constraints in creative of design because of roots dimension, plant canopy, necessary volume of soil, suitable direction to light, good weather, weight of designed structures, budget of repairing and keeping. Materials and Methods: To evaluate the effect of some culture medium on water consumption, vegetative and reproductive traits of Gazania (Gazania hybrida in condition of green roof a factorial experiment was conducted based on a completely randomized design with nine treatments and three replications in 2014. Treatments were three levels of vermicompost (zero, 5%, and 10% and rice hull (zero, 7, and 14%. Seedlings of plants cultivated in the media mixture of coco peat 15%, perlite 15%, leaf 10%, manure 10%, and filed soil 50%. The container had 60 × 60 ×25 cm dimensions that placed on the roof of greenhouse building with four meters height. The measured traits was number, average, and diameter of

  19. The Effect of Medium Cultures on Water Use and Charactristic of Gazania Flowers (Gazania hybrida in Green Roof.

    Directory of Open Access Journals (Sweden)

    Tahereh Bahrami

    2017-02-01

    Full Text Available Introduction: Green roof is one of the newest phenomenons in architecture and urbanism that refers to the sustainable development concepts and it will be usable for increasing landscape design, improving quality of the environment and reduction in energy consumption. Ensure of existing adequate green landscape in urban areas and improving access to natural areas surrounding the cities can help to offset negative effects of urban life. The use of green roof technology in cities is one of advanced techniques of green landscape. A green or living roof is a roof of a building that is partially or completely covered with vegetation and a growing medium on top view of buildings. Green roof layers that considered for roof side consist of protection layer, drainage layer, growing medium and plant layer. Medium layer is the medium culture of green roof that plants are begins to grow in it. This space should enable to save enough minerals and water for conserve of green-roof plants. All kinds of plants can growth on the green roof, but there are some constraints in creative of design because of roots dimension, plant canopy, necessary volume of soil, suitable direction to light, good weather, weight of designed structures, budget of repairing and keeping. Materials and Methods: To evaluate the effect of some culture medium on water consumption, vegetative and reproductive traits of Gazania (Gazania hybrida in condition of green roof a factorial experiment was conducted based on a completely randomized design with nine treatments and three replications in 2014. Treatments were three levels of vermicompost (zero, 5%, and 10% and rice hull (zero, 7, and 14%. Seedlings of plants cultivated in the media mixture of coco peat 15%, perlite 15%, leaf 10%, manure 10%, and filed soil 50%. The container had 60 × 60 ×25 cm dimensions that placed on the roof of greenhouse building with four meters height. The measured traits was number, average, and diameter of

  20. Experimental analysis of green roof substrate detention characteristics.

    Science.gov (United States)

    Yio, Marcus H N; Stovin, Virginia; Werdin, Jörg; Vesuviano, Gianni

    2013-01-01

    Green roofs may make an important contribution to urban stormwater management. Rainfall-runoff models are required to evaluate green roof responses to specific rainfall inputs. The roof's hydrological response is a function of its configuration, with the substrate - or growing media - providing both retention and detention of rainfall. The objective of the research described here is to quantify the detention effects due to green roof substrates, and to propose a suitable hydrological modelling approach. Laboratory results from experimental detention tests on green roof substrates are presented. It is shown that detention increases with substrate depth and as a result of increasing substrate organic content. Model structures based on reservoir routing are evaluated, and it is found that a one-parameter reservoir routing model coupled with a parameter that describes the delay to start of runoff best fits the observed data. Preliminary findings support the hypothesis that the reservoir routing parameter values can be defined from the substrate's physical characteristics.

  1. Green-Roof Effects on Neighborhood Microclimate and Human Thermal Sensation

    Directory of Open Access Journals (Sweden)

    C. Y. Jim

    2013-01-01

    Full Text Available Green roofs have been recognized as an effective sustainable design tool to mitigate urban heat island (UHI effects. Previous studies have identified green-roof benefits in cooling and energy-conservation at the building scale, with limited exploration of the wider influence on neighborhood microclimate and human thermal comfort (HTC. This paper investigated the impacts of community-scale green-roof installation on air temperature and HTC in five typical residential neighborhoods of subtropical Hong Kong. The microclimate models ENVI-met and RayMan permitted studies of two main green-roof scenarios, namely extensive (EGR and intensive (IGR. Microclimatic monitoring data from a local experimental green-roof site validated the modeling methods. The results verified that green-roof cooling effects were not restricted to rooftops, but extended to the ground to improve neighborhood microclimate. EGR reduced pedestrian-level air temperature by 0.4–0.7 °C, and IGR by 0.5–1.7 °C, with maximum effect in open-set low rise sites. Coverage by building footprints and building height dampened lateral and vertical advection of cool air generated by green roofs. Roof greening also improved notably the rooftop-podium level HTC. Diurnal duration of high heat stress was reduced by 6–9 h for EGR scenarios, and 9–11 h for IGR. The findings indicated that large-scale green-roof installation could bring neighborhood-wide cooling, mitigate urban heat island effect, and furnish more comfortable thermal environment for urban residents.

  2. Effect of surface geometry and insolation on temperature profile of green roof in Saint-Petersburg environment

    Directory of Open Access Journals (Sweden)

    С. А. Игнатьев

    2016-08-01

    Full Text Available The paper addresses an issue of creating an environment favorable for the life in megacities by planting vegetation on the rooftops. It also provides information about rooftop greening practices adopted in other countries. The issues of ‘green roof’ building in climatic conditions of Saint Petersburg and roof vegetation impact on the urban ecosystem are examined. Vegetation composition quality- and quantity-wise has been proposed for the roof under research and a 3D model of this roof reflecting its geometric properties has been developed. A structure of roof covering and substrate qualitative composition is presented. An effect of rooftop geometry on the substrate temperature is explored. The annual substrate temperature and moisture content in different parts of the roof have been analyzed. Results of thermal imaging monitoring and insolation modelling for different parts of green roof surface are presented.

  3. Green roofs and implementing the goals of Smart Growth

    International Nuclear Information System (INIS)

    Loder, A.; Peck, S.W.

    2004-01-01

    Smart Growth is a movement developed by city planners to counteract urban sprawl and inner-city deterioration. This paper explored the use of green roofs as a tangible means to attain the following 4 main goals of Smart Growth: (1) support infill development which refers to the concentration of development in already existing nodes and corridors served by public transit, (2) make cities more liveable, healthy, and environmentally sustainable, (3) create new green space and habitat for biodiversity preservation, and (4) support efficient and green infrastructure. It was suggested that few technologies provide such a wide range of opportunity as green roofs do to generate tangible social, economic and environmental benefits. Roof space represents 15 to 35 per cent of the total land area in a city. In addition to providing stormwater management, green roofs contribute to a reduction of the urban heat island, bringing nature back into the city. It was noted that generating new accessible and inaccessible green space is consistent with the needs and desires or urban dwellers. The extent to which green roofs can provide public benefits depends on the type of design. Green roofs not only cool the buildings they sit upon, but generate cooling for the surrounding area that can result in reduced energy consumption and improvements in air quality. 64 refs., 2 figs

  4. Towards Providing Solutions to the Air Quality Crisis in the Mexico City Metropolitan Area: Carbon Sequestration by Succulent Species in Green Roofs.

    Science.gov (United States)

    Collazo-Ortega, Margarita; Rosas, Ulises; Reyes-Santiago, Jerónimo

    2017-03-31

    In the first months of 2016, the Mexico City Metropolitan Area experienced the worst air pollution crisis in the last decade, prompting drastic short-term solutions by the Mexico City Government and neighboring States. In order to help further the search for long-term sustainable solutions, we felt obliged to immediately release the results of our research regarding the monitoring of carbon sequestration by green roofs. Large-scale naturation, such as the implementation of green roofs, provides a way to partially mitigate the increased carbon dioxide output in urban areas. Here, we quantified the carbon sequestration capabilities of two ornamental succulent plant species, Sedum dendroideum and Sedum rubrotinctum, which require low maintenance, and little or no irrigation. To obtain a detailed picture of these plants' carbon sequestration capabilities, we measured carbon uptake on the Sedum plants by quantifying carbon dioxide exchange and fixation as organic acids, during the day and across the year, on a green roof located in Southern Mexico City. The species displayed their typical CAM photosynthetic metabolism. Moreover, our quantification allowed us to conservatively estimate that a newly planted green roof of Sedum sequesters approximately 180,000,000 ppm of carbon dioxide per year in a green roof of 100 square meters in the short term. The patterns of CAM and carbon dioxide sequestration were highly robust to the fluctuations of temperature and precipitation between seasons, and therefore we speculate that carbon sequestration would be comparable in any given year of a newly planted green roof. Older green roof would require regular trimming to mantain their carbon sink properties, but their carbon sequestration capabilities remain to be quantified. Nevertheless, we propose that Sedum green roofs can be part of the long-term solutions to mitigate the air pollution crisis in the Mexico City Metropolitan area, and other "megacities" with marked seasonal drought.

  5. Composition and Diversity of Avian Communities Using a New Urban Habitat: Green Roofs.

    Science.gov (United States)

    Washburn, Brian E; Swearingin, Ryan M; Pullins, Craig K; Rice, Matthew E

    2016-06-01

    Green roofs on buildings are becoming popular and represent a new component of the urban landscape. Public benefits of green roof projects include reduced stormwater runoff, improved air quality, reduced urban heat island effects, and aesthetic values. As part of a city-wide plan, several green roofs have been constructed at Chicago's O'Hare International Airport (ORD). Like some other landscaping features, green roofs on or near an airport might attract wildlife and thus increase the risk of bird-aircraft collisions. During 2007-2011, we conducted a series of studies to evaluate wildlife use of newly constructed green roofs and traditional (gravel) roofs on buildings at ORD. These green roofs were 0.04-1.62 ha in area and consisted of primarily stonecrop species for vegetation. A total of 188 birds were observed using roofs during this research. Of the birds using green roofs, 66, 23, and 4 % were Killdeer, European Starlings, and Mourning Doves, respectively. Killdeer nested on green roofs, whereas the other species perched, foraged, or loafed. Birds used green roofs almost exclusively between May and October. Overall, avian use of the green roofs was minimal and similar to that of buildings with traditional roofs. Although green roofs with other vegetation types might offer forage or cover to birds and thus attract potentially hazardous wildlife, the stonecrop-vegetated green roofs in this study did not increase the risk of bird-aircraft collisions.

  6. Composition and Diversity of Avian Communities Using a New Urban Habitat: Green Roofs

    Science.gov (United States)

    Washburn, Brian E.; Swearingin, Ryan M.; Pullins, Craig K.; Rice, Matthew E.

    2016-06-01

    Green roofs on buildings are becoming popular and represent a new component of the urban landscape. Public benefits of green roof projects include reduced stormwater runoff, improved air quality, reduced urban heat island effects, and aesthetic values. As part of a city-wide plan, several green roofs have been constructed at Chicago's O'Hare International Airport (ORD). Like some other landscaping features, green roofs on or near an airport might attract wildlife and thus increase the risk of bird-aircraft collisions. During 2007-2011, we conducted a series of studies to evaluate wildlife use of newly constructed green roofs and traditional (gravel) roofs on buildings at ORD. These green roofs were 0.04-1.62 ha in area and consisted of primarily stonecrop species for vegetation. A total of 188 birds were observed using roofs during this research. Of the birds using green roofs, 66, 23, and 4 % were Killdeer, European Starlings, and Mourning Doves, respectively. Killdeer nested on green roofs, whereas the other species perched, foraged, or loafed. Birds used green roofs almost exclusively between May and October. Overall, avian use of the green roofs was minimal and similar to that of buildings with traditional roofs. Although green roofs with other vegetation types might offer forage or cover to birds and thus attract potentially hazardous wildlife, the stonecrop-vegetated green roofs in this study did not increase the risk of bird-aircraft collisions.

  7. Evaluation of green roof as green technology for urban stormwater quantity and quality controls

    International Nuclear Information System (INIS)

    Kok, K H; Sidek, L M; Basri, H; Muda, Z C; Beddu, S; Abidin, M R Z

    2013-01-01

    Promoting green design, construction, reconstruction and operation of buildings has never been more critical than now due to the ever increasing greenhouse gas emissions and rapid urbanizations that are fuelling climate change more quickly. Driven by environmental needs, Green Building Index (GBI) was founded in Malaysia to drive initiative to lead the property industry towards becoming more environment-friendly. Green roof system is one of the assessment criteria of this rating system which is under category of sustainable site planning and management. An extensive green roof was constructed in Humid Tropics Center (HTC) Kuala Lumpur as one of the components for Stormwater Management Ecohydrology (SME) in order to obtain scientific data of the system. This paper evaluates the performance of extensive green roof at Humid Tropics Center with respect to urban heat island mitigation and stormwater quantity and quality controls. Findings indicate that there was a reduction of around 1.5°C for indoor temperature of the building after installation of green roof. Simulations showed that the peak discharge was reduced up to 24% relative to impervious brown roof. The results show an increment of pH and high concentration of phosphate for the runoff generated from the green roof and the runoff water quality ranged between class I and II under INWQS.

  8. Evaluation of green roof as green technology for urban stormwater quantity and quality controls

    Science.gov (United States)

    Kok, K. H.; Sidek, L. M.; Abidin, M. R. Z.; Basri, H.; Muda, Z. C.; Beddu, S.

    2013-06-01

    Promoting green design, construction, reconstruction and operation of buildings has never been more critical than now due to the ever increasing greenhouse gas emissions and rapid urbanizations that are fuelling climate change more quickly. Driven by environmental needs, Green Building Index (GBI) was founded in Malaysia to drive initiative to lead the property industry towards becoming more environment-friendly. Green roof system is one of the assessment criteria of this rating system which is under category of sustainable site planning and management. An extensive green roof was constructed in Humid Tropics Center (HTC) Kuala Lumpur as one of the components for Stormwater Management Ecohydrology (SME) in order to obtain scientific data of the system. This paper evaluates the performance of extensive green roof at Humid Tropics Center with respect to urban heat island mitigation and stormwater quantity and quality controls. Findings indicate that there was a reduction of around 1.5°C for indoor temperature of the building after installation of green roof. Simulations showed that the peak discharge was reduced up to 24% relative to impervious brown roof. The results show an increment of pH and high concentration of phosphate for the runoff generated from the green roof and the runoff water quality ranged between class I and II under INWQS.

  9. Modelling of green roofs' hydrologic performance using EPA's SWMM.

    Science.gov (United States)

    Burszta-Adamiak, E; Mrowiec, M

    2013-01-01

    Green roofs significantly affect the increase in water retention and thus the management of rain water in urban areas. In Poland, as in many other European countries, excess rainwater resulting from snowmelt and heavy rainfall contributes to the development of local flooding in urban areas. Opportunities to reduce surface runoff and reduce flood risks are among the reasons why green roofs are more likely to be used also in this country. However, there are relatively few data on their in situ performance. In this study the storm water performance was simulated for the green roofs experimental plots using the Storm Water Management Model (SWMM) with Low Impact Development (LID) Controls module (version 5.0.022). The model consists of many parameters for a particular layer of green roofs but simulation results were unsatisfactory considering the hydrologic response of the green roofs. For the majority of the tested rain events, the Nash coefficient had negative values. It indicates a weak fit between observed and measured flow-rates. Therefore complexity of the LID module does not affect the increase of its accuracy. Further research at a technical scale is needed to determine the role of the green roof slope, vegetation cover and drying process during the inter-event periods.

  10. Opportunities Green Roofs Can Offer Ghanaians and their Cities

    African Journals Online (AJOL)

    Lone Star College System

    2015-08-17

    Aug 17, 2015 ... rising faster than the daily maximum thereby decreasing the comfort index of city dwellers. Electricity ... also on the rise. Green roofs have ..... by 6%. In Central Florida in the U.S., Cummings et al. .... levels, provision of habitat for animals and plants and .... representation of the Mediterranean Sea. Bull.

  11. Positive effects of vegetation: Urban heat island and green roofs

    International Nuclear Information System (INIS)

    Susca, T.; Gaffin, S.R.; Dell'Osso, G.R.

    2011-01-01

    This paper attempts to evaluate the positive effects of vegetation with a multi-scale approach: an urban and a building scale. Monitoring the urban heat island in four areas of New York City, we have found an average of 2 deg. C difference of temperatures between the most and the least vegetated areas, ascribable to the substitution of vegetation with man-made building materials. At micro-scale, we have assessed the effect of surface albedo on climate through the use of a climatological model. Then, using the CO 2 equivalents as indicators of the impact on climate, we have compared the surface albedo, and the construction, replacement and use phase of a black, a white and a green roof. By our analyses, we found that both the white and the green roofs are less impactive than the black one; with the thermal resistance, the biological activity of plants and the surface albedo playing a crucial role. - Highlights: → The local morphology and the scarcity of vegetation in NYC core determines its UHI. → We introduce the evaluation of the effects of the surface albedo on climate change. → We use it to compare a black roof with a white and a green one. → Surface albedo has a crucial role in the evaluation of the environmental loads of the roofs. → Vegetation has positive effects on both the urban and the building scale. - Vegetation has positive effects both on an urban scale, mitigating the urban heat island effect; and on a building scale, where albedo, thermal insulation and biological activity of plants play a crucial role.

  12. A field study to evaluate the impact of different factors on the nutrient pollutant concentrations in green roof runoff.

    Science.gov (United States)

    Wang, Xiaochen; Zhao, Xinhua; Peng, Chenrui; Zhang, Xinbo; Wang, Jianghai

    2013-01-01

    The objectives of this study are to investigate the impact of different factors on the nutrient pollutant concentrations in green roof runoff and to provide reference data for the engineering design of dual substrate layer green roofs. The data were collected from eight different trays under three kinds of artificial rains. The results showed that except for total phosphorus, dual substrate layer green roofs behaved as a sink for most of the nutrient pollutants (significant at p green roof and the depth of the adsorption substrates. Compared with the influence of the substrates, the influence of the plant density and drainage systems was small.

  13. Pemanfaatan Green Roof sebagai Media Filter Air Hujan di Kota Pontianak

    OpenAIRE

    Uria Karlena Sely Sakong

    2013-01-01

    Penelitian ini bertujuan untuk mempelajari pengaruh green roof terhadap kualitas air hujan di KotaPontianak. Pengaruh tersebut dipelajari dengan cara membandingkan antara kualitas air hujan yang melewatigreen roof dengan kualitas air yang tidak melewati green roof. Penelitian diawali dengan merancang danmembuat model green roof. Pengambilan sampel dilakukan sebanyak empat kali dan diuji di laboratoriumterhadap parameter pH, kekeruhan, Pb terlarut dan E.Col...

  14. Effects of building roof greening on air quality in street canyons

    Science.gov (United States)

    Baik, Jong-Jin; Kwak, Kyung-Hwan; Park, Seung-Bu; Ryu, Young-Hee

    2012-12-01

    Building roof greening is a successful strategy for improving urban thermal environment. It is of theoretical interest and practical importance to study the effects of building roof greening on urban air quality in a systematic and quantitative way. In this study, we examine the effects of building roof greening on air quality in street canyons using a computational fluid dynamics (CFD) model that includes the thermodynamic energy equation and the transport equation of passive, non-reactive pollutants. For simplicity, building roof greening is represented by specified cooling. Results for a simple building configuration with a street canyon aspect ratio of one show that the cool air produced due to building roof greening flows into the street canyon, giving rise to strengthened street canyon flow. The strengthened street canyon flow enhances pollutant dispersion near the road, which decreases pollutant concentration there. Thus, building roof greening improves air quality near the road. The degree of air quality improvement near the road increases as the cooling intensity increases. In the middle region of the street canyon, the air quality can worsen when the cooling intensity is not too strong. Results for a real urban morphology also show that building roof greening improves air quality near roads. The degree of air quality improvement near roads due to building roof greening depends on the ambient wind direction. These findings provide a theoretical foundation for constructing green roofs for the purpose of improving air quality near roads or at a pedestrian level as well as urban thermal environment. Further studies using a CFD model coupled with a photochemistry model and a surface energy balance model are required to evaluate the effects of building roof greening on air quality in street canyons in a more realistic framework.

  15. Nutrient leaching from extensive green roofs with different substrate compositions: a laboratory study.

    Science.gov (United States)

    Zhang, Wei; Zhong, Xing; Che, Wu

    2018-02-01

    To investigate nutrient leaching from extensive green roofs, green roof platforms were established to investigate the effluent quantity and quality during artificial rainfall. When the influent volume reached three times the empty bed volume, for which the cumulative rainfall was around 300 mm, the effluent TP and COD concentrations of green roof platforms filled with peat soil did not tend to stabilize. For a long-term operation, the substrate depths had little significant influence on TN, TP and COD concentrations of the green roof effluents. A normalized cumulative emission process method was proposed to discuss the difference in various pollutant leaching processes. Obvious differences in the leaching process of different contaminants for green roof platforms filled with various substrates were observed. For the green roof filled with modified substrates, the nitrogen and phosphorus pollutant leaching rates were relatively high in the initial stage of green roof operation and the phosphorus leaching rate was higher than that of nitrogen. The green roof is a sink for TN, but not for TP and COD in this study. The outcomes are critical for the selection of green roof substrates and also contribute to green roof maintenance.

  16. Multi-scale monitoring of a remarkable green roof: the Green Wave of Champs-sur-Marne

    Science.gov (United States)

    Stanic, Filip; Versini, Pierre-Antoine; Schertzer, Daniel; Delage, Pierre; Tchiguirinskaia, Ioulia; Cui, Yu-Jun; Baudoin, Genevieve

    2017-04-01

    The installation of green infrastructures on existing or new roofs has become very popular in recent years (more than 2 km2 of green roofs is implemented each year in France) for many reasons. Among all of the green roofs' advantages, those related to storm water management are often pushed forward, since it has been pointed out that urban runoff peak can be significantly reduced and delayed thanks to the green roofs' retention and detention capabilities. Microclimate can also be affected by decreasing the temperature in the surrounding green area. However, dynamic physical processes involved in green roofs are highly non linear and variable. In order to accurately assess their performances, detailed monitoring experiments are required, both in situ and in the lab, so as to better understand the thermo-hydric behaviour of green roofs and to capture the related spatio-temporal variability at different scales. Based on these considerations, the 1 ha area wavy-form green roof of a section of the Bienvenüe building, called the Green Wave, is currently being monitored in Champs-sur-Marne (France), in front of Ecole des Ponts ParisTech. Initiated in the "Blue Green Dream" European project, detailed measurements systems have been implemented for studying all components of the water balance. Among others, a wireless network of water content and temperature sensors has been especially installed for characterizing spatial and temporal variability of infiltration, retention and evapotranspiration processes. In parallel, some laboratory tests have been conducted to better characterize the hydro-mechanical properties of the substrate. Moreover, at the Green Wave scale, some discharge measurements are carried out in the storm-water pipes that are collecting drained water, to determine runoff flow. This talk will present the current monitoring campaigns and analyze the data collected in the Universal Multifractal framework. This work represents the initial stage for developing a

  17. [Influence of the substrate composition in extensive green roof on the effluent quality].

    Science.gov (United States)

    Chen, Yu-Lin; Li, Tian; Gu, Jun-Qing

    2014-11-01

    By monitoring the effluent quality from different green roof assemblies during several artificial rain events, the main pollutant characteristics and the influence of substrate composition in extensive green roof on the effluent quality were studied. Results showed that the main pollutants in the effluent were N, P and COD; with the increase of cumulative rain, the concentrations of pollutants in the effluent decreased, which had obvious leaching effect; The average concentrations of heavy metals in the early effluent from all assemblies reached drinking water standard, including the assemblies using crushed bricks; When garden soil and compost were used as organic matter, the assemblies had serious leaching of nutrient substance. After the accumulated rainfall reached 150 mm, the TN, TP and COD concentrations of effluent were 2.93, 0.73 and 78 mg x L(-1), respectively, which exceeded the Surface water V class limit. By means of application of the Water Treatment Residual, the leaching of TP from green planting soil was decreased by about 60%. The inorganic compound soil had better effluent quality, however we also need to judge whether the substrate could be applied in extensive green roof or not, by analyzing its ability of water quantity reduction and the plant growth situation.

  18. Monitoring of the Green Roofs Installation in Brno-City District, Czech Republic

    Science.gov (United States)

    Rebrova, Tatiana; Beckovsky, David; Selnik, Petr

    2017-12-01

    In spite of the rapidly growing interest to the green roofs, there is insufficient information about their local quantities and areas in Czech Republic as well as in Central Europe. There is a lack of technical information that leads to the further development, application and environmental contribution of green roofs under local climatic conditions. The purpose of the research is to follow the tendency of how the process of green roofs’ popularization is performed in the Czech Republic and to determine basic parameters of the installed green roofs. These parameters include total quantity, area and the most common roof vegetation type (extensive or intensive); how many green roofs were installed over the last years and as a result, how the proportion of the green roofs to the conventional ones is changing. For initial evaluation Brno-City District was chosen as the next stage of university environmental project EnviHUT following the genesis of green roofs under local weather conditions.

  19. Habitat connectivity shapes urban arthropod communities: the key role of green roofs.

    Science.gov (United States)

    Braaker, S; Ghazoul, J; Obrist, M K; Moretti, M

    2014-04-01

    The installation of green roofs, defined here as rooftops with a shallow soil cover and extensive vegetation, has been proposed as a possible measure to mitigate the loss of green space caused by the steady growth of cities. However, the effectiveness of green roofs in supporting arthropod communities, and the extent to which they facilitate connectivity of these communities within the urban environment is currently largely unknown. We investigated the variation of species community composition (beta diversity) of four arthropod groups with contrasting mobility (Carabidae, Araneae, Curculionidae, and Apidae) on 40 green roofs and 40 extensively managed green sites on the ground in the city of Zurich, Switzerland. With redundancy analysis and variation partitioning, we (1) disentangled the relative importance of local environmental conditions, the surrounding land cover composition, and habitat connectivity on species community composition, (2) searched for specific spatial scales of habitat connectivity for the different arthropod groups, and (3) discussed the ecological and functional value of green roofs in cities. Our study revealed that on green roofs community composition of high-mobility arthropod groups (bees and weevils) were mainly shaped by habitat connectivity, while low-mobility arthropod groups (carabids and spiders) were more influenced by local environmental conditions. A similar but less pronounced pattern was found for ground communities. The high importance of habitat connectivity in shaping high-mobility species community composition indicates that these green roof communities are substantially connected by the frequent exchange of individuals among surrounding green roofs. On the other hand, low-mobility species communities on green roofs are more likely connected to ground sites than to other green roofs. The integration of green roofs in urban spatial planning strategies has great potential to enable higher connectivity among green spaces, so

  20. An Insight into the Commercial Viability of Green Roofs in Australia

    Directory of Open Access Journals (Sweden)

    Nicole Tassicker

    2016-06-01

    Full Text Available Construction industries around the world have, in recent history, become increasingly concerned with the sustainability of building practices. Inherently, the development of the built environment results in partial or complete destruction of the natural environment. Advanced European and North American countries have turned to green roofs as a means of sustainable development. Australia, on the other hand, has yet to fully realize the potential of green roof technology. In the first case, an extensive review of green roof literature was undertaken to establish the dominant perspectives and over-riding themes within the established body of international literature. The collection of primary data took the form of qualitative, semi-structured interviews with a range of construction practitioners and green roof experts; landscape architects, consultants and academics. The information gained from the interviews facilitated the primary aim of the paper; to critically analyse the state-of-practice in the Australian green roof industry. Green roofs, despite their proven sustainability benefits and their international success, have experienced a relatively sluggish uptake in the Australian construction industry. With this being said, the Australian green roof industry is considered to have promising potential for the future; should there be legislative changes made in its favour or greater education within the industry. To advance the local industry, it was found that government authorities are required to adapt policy settings to better encourage the use of green roofs, whilst industry bodies are required to host better, more targeted educational programs.

  1. A pilot study to evaluate runoff quantity from green roofs.

    Science.gov (United States)

    Lee, Ju Young; Lee, Min Jung; Han, Mooyoung

    2015-04-01

    The use of green roofs is gaining increased recognition in many countries as a solution that can be used to improve environmental quality and reduce runoff quantity. To achieve these goals, pilot-scale green roof assemblies have been constructed and operated in an urban setting. From a stormwater management perspective, green roofs are 42.8-60.8% effective in reducing runoff for 200 mm soil depth and 13.8-34.4% effective in reducing runoff for 150 mm soil depth. By using Spearman rank correlation analysis, high rainfall intensity was shown to have a negative relationship with delayed occurrence time, demonstrating that the soil media in green roofs do not efficiently retain rainwater. Increasing the number of antecedent dry days can help to improve water retention capacity and delay occurrence time. From the viewpoint of runoff water quality, green roofs are regarded as the best management practice by filtration and adsorption through growth media (soil). Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Spatially dependent biotic and abiotic factors drive survivorship and physical structure of green roof vegetation.

    Science.gov (United States)

    Aloisio, Jason M; Palmer, Matthew I; Giampieri, Mario A; Tuininga, Amy R; Lewis, James D

    2017-01-01

    Plant survivorship depends on biotic and abiotic factors that vary at local and regional scales. This survivorship, in turn, has cascading effects on community composition and the physical structure of vegetation. Survivorship of native plant species is variable among populations planted in environmentally stressful habitats like urban roofs, but the degree to which factors at different spatial scales affect survivorship in urban systems is not well understood. We evaluated the effects of biotic and abiotic factors on survivorship, composition, and physical structure of two native perennial species assemblages, one characterized by a mixture of C 4 grasses and forbs (Hempstead Plains, HP) and one characterized by a mixture of C 3 grasses and forbs (Rocky Summit, RS), that were initially sown at equal ratios of growth forms (5:1:4; grass, N-fixing forb and non-N-fixing forb) in replicate 2-m 2 plots planted on 10 roofs in New York City (New York, USA). Of 24 000 installed plants, 40% survived 23 months after planting. Within-roof factors explained 71% of variation in survivorship, with biotic (species identity and assemblage) factors accounting for 54% of the overall variation, and abiotic (growing medium depth and plot location) factors explaining 17% of the variation. Among-roof factors explained 29% of variation in survivorship and increased solar radiation correlated with decreased survivorship. While growing medium properties (pH, nutrients, metals) differed among roofs there was no correlation with survivorship. Percent cover and sward height increased with increasing survivorship. At low survivorship, cover of the HP assemblage was greater compared to the RS assemblage. Sward height of the HP assemblage was about two times greater compared to the RS assemblage. These results highlight the effects of local biotic and regional abiotic drivers on community composition and physical structure of green roof vegetation. As a result, initial green roof plant

  3. Retention performance of green roofs in representative climates worldwide

    Science.gov (United States)

    Viola, F.; Hellies, M.; Deidda, R.

    2017-10-01

    The ongoing process of global urbanization contributes to an increase in stormwater runoff from impervious surfaces, threatening also water quality. Green roofs have been proved to be innovative stormwater management measures to partially restore natural states, enhancing interception, infiltration and evapotranspiration fluxes. The amount of water that is retained within green roofs depends not only on their depth, but also on the climate, which drives the stochastic soil moisture dynamic. In this context, a simple tool for assessing performance of green roofs worldwide in terms of retained water is still missing and highly desirable for practical assessments. The aim of this work is to explore retention performance of green roofs as a function of their depth and in different climate regimes. Two soil depths are investigated, one representing the intensive configuration and another representing the extensive one. The role of the climate in driving water retention has been represented by rainfall and potential evapotranspiration dynamics. A simple conceptual weather generator has been implemented and used for stochastic simulation of daily rainfall and potential evapotranspiration. Stochastic forcing is used as an input of a simple conceptual hydrological model for estimating long-term water partitioning between rainfall, runoff and actual evapotranspiration. Coupling the stochastic weather generator with the conceptual hydrological model, we assessed the amount of rainfall diverted into evapotranspiration for different combinations of annual rainfall and potential evapotranspiration in five representative climatic regimes. Results quantified the capabilities of green roofs in retaining rainfall and consequently in reducing discharges into sewer systems at an annual time scale. The role of substrate depth has been recognized to be crucial in determining green roofs retention performance, which in general increase from extensive to intensive settings. Looking at the

  4. A field study to evaluate runoff quality from green roofs.

    Science.gov (United States)

    Vijayaraghavan, K; Joshi, U M; Balasubramanian, R

    2012-03-15

    Green (vegetated) roofs are emerging as practical strategies to improve the environmental quality of cities. However, the impact of green roofs on the storm water quality remains a topic of concern to city planners and environmental policy makers. This study investigated whether green roofs act as a source or a sink of various metals (Na, K, Ca, Mg, Al, Fe, Cu, Cd, Pb, Zn, Mn, Cr, Ni, Li and Co), inorganic anions (NO3-, NO2-, PO4(3-), SO4(2-), Cl-, F- and Br-) and cation (NH4+). A series of green roof assemblies were constructed. Four different real rain events and several artificial rain events were considered for the study. Results showed that concentrations of most of the chemical components in runoff were highest during the beginning of rain events and subsided in the subsequent rain events. Some of the important components present in the runoff include Na, K, Ca, Mg, Li, Fe, Al, Cu, NO3-, PO4(3-) and SO4(2-). However, the concentration of these chemical components in the roof runoff strongly depends on the nature of substrates used in the green roof and the volume of rain. Based on the USEPA standards for freshwater quality, we conclude that the green roof used in this study is reasonably effective except that the runoff contains significant amounts of NO3- and PO4(3-). Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Green roofs'retention performances in different climates

    Science.gov (United States)

    Viola, Francesco; Hellies, Matteo; Deidda, Roberto

    2017-04-01

    The ongoing process of global urbanization contributes to increasing stormwater runoff from impervious surfaces, threatening also water quality. Green roofs have been proved to be an innovative stormwater management tool to partially restore natural state, enhancing interception, infiltration and evapotranspiration fluxes. The amount of water that is retained within green roofs depends mainly on both soil properties and climate. The evaluation of the retained water is not trivial since it depends on the stochastic soil moisture dynamics. The aim of this work is to explore performances of green roofs, in terms of water retention, as a function of their depth considering different climate regimes. The role of climate in driving water retention has been mainly represented by rainfall and potential evapotranspiration dynamics, which are simulated by a simple conceptual weather generator at daily time scale. The model is able to describe seasonal (in-phase and counter-phase) and stationary behaviors of climatic forcings. Model parameters have been estimated on more than 20,000 historical time series retrieved worldwide. Exemplifying cases are discussed for five different climate scenarios, changing the amplitude and/or the phase of daily mean rainfall and evapotranspiration forcings. The first scenario represents stationary climates, in two other cases the daily mean rainfall or the potential evapotranspiration evolve sinusoidally. In the latter two cases, we simulated the in-phase or in counter-phase conditions. Stochastic forcings have been then used as an input to a simple conceptual hydrological model which simulate soil moisture dynamics, evapotranspiration fluxes, runoff and leakage from soil pack at daily time scale. For several combinations of annual rainfall and potential evapotranspiration, the analysis allowed assessing green roofs' retaining capabilities, at annual time scale. Provided abacus allows a first approximation of possible hydrological benefits

  6. Impact of green roofs on stormwater quality in a South Australian urban environment.

    Science.gov (United States)

    Razzaghmanesh, M; Beecham, S; Kazemi, F

    2014-02-01

    Green roofs are an increasingly important component of water sensitive urban design systems and can potentially improve the quality of urban runoff. However, there is evidence that they can occasionally act as a source rather than a sink for pollutants. In this study, the water quality of the outflow from both intensive and extensive green roof systems were studied in the city of Adelaide, South Australia over a period of nine months. The aim was to examine the effects of different green roof configurations on stormwater quality and to compare this with runoff from aluminium and asphalt roofs as control surfaces. The contaminant concentrations in runoff from both intensive and extensive green roofs generally decreased during the study period. A comparison between the two types of green roof showed that except for some events for EC, TDS and chloride, the values of the parameters such as pH, turbidity, nitrate, phosphate and potassium in intensive green roof outflows were higher than in the outflows from the extensive green roofs. These concentrations were compared to local, state, national and international water quality guidelines in order to investigate the potential for outflow runoff from green roofs to be reused for potable and non-potable purposes. The study found that green roof outflow can provide an alternative water source for non-potable purposes such as urban landscape irrigation and toilet flushing. © 2013.

  7. Manipulating soil microbial communities in extensive green roof substrates.

    Science.gov (United States)

    Molineux, Chloe J; Connop, Stuart P; Gange, Alan C

    2014-09-15

    There has been very little investigation into the soil microbial community on green roofs, yet this below ground habitat is vital for ecosystem functioning. Green roofs are often harsh environments that would greatly benefit from having a healthy microbial system, allowing efficient nutrient cycling and a degree of drought tolerance in dry summer months. To test if green roof microbial communities could be manipulated, we added mycorrhizal fungi and a microbial mixture ('compost tea') to green roof rootzones, composed mainly of crushed brick or crushed concrete. The study revealed that growing media type and depth play a vital role in the microbial ecology of green roofs. There are complex relationships between depth and type of substrate and the biomass of different microbial groups, with no clear pattern being observed. Following the addition of inoculants, bacterial groups tended to increase in biomass in shallower substrates, whereas fungal biomass change was dependent on depth and type of substrate. Increased fungal biomass was found in shallow plots containing more crushed concrete and deeper plots containing more crushed brick where compost tea (a live mixture of beneficial bacteria) was added, perhaps due to the presence of helper bacteria for arbuscular mycorrhizal fungi (AMF). Often there was not an additive affect of the microbial inoculations but instead an antagonistic interaction between the added AM fungi and the compost tea. This suggests that some species of microbes may not be compatible with others, as competition for limited resources occurs within the various substrates. The overall results suggest that microbial inoculations of green roof habitats are sustainable. They need only be done once for increased biomass to be found in subsequent years, indicating that this is a novel and viable method of enhancing roof community composition. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Performance Analysis of Cool Roof, Green Roof and Thermal Insulation on a Concrete Flat Roof in Tropical Climate

    OpenAIRE

    Zingre, Kishor T.; Yang, Xingguo; Wan, Man Pun

    2015-01-01

    In the tropics, the earth surface receives abundant solar radiation throughout the year contributing significantly to building heat gain and, thus, cooling demand. An effective method that can curb the heat gains through opaque roof surfaces could provide significant energy savings. This study investigates and compares the effectiveness of various passive cooling techniques including cool roof, green roof and thermal insulation for reducing the heat gain through a flat concrete roof in tropic...

  9. Soil-roots Strength Performance of Extensive Green Roof by Using Axonopus Compressus

    Science.gov (United States)

    Yusoff, N. A.; Ramli, M. N.; Chik, T. N. T.; Ahmad, H.; Abdullah, M. F.; Kasmin, H.; Embong, Z.

    2016-07-01

    Green roof technology has been proven to provide potential environmental benefits including improved building thermal performance, removal of air pollution and reduced storm water runoff. Installation of green roof also involved soil element usage as a plant growth medium which creates several interactions between both strands. This study was carried out to investigate the soil-roots strength performance of green roof at different construction period up to 4 months. Axonopus compressus (pearl grass) was planted in a ExE test plot with a designated suitable soil medium. Direct shear test was conducted for each plot to determine the soil shear strength according to different construction period. In addition, some basic geotechnical testing also been carried out. The results showed that the shear strength of soil sample increased over different construction period of 1st, 2nd, 3rd and 4th month with average result 3.81 kPa, 5.55 kPa, 6.05 kPa and 6.48 kPa respectively. Shear strength of rooted soil samples was higher than the soil samples without roots (control sample). In conclusion, increment of soil-roots shear strength was due to root growth over the time. The soil-roots shear strength development of Axonopus compressus can be expressed in a linear equation as: y = 0.851x + 3.345, where y = shear stress and x = time.

  10. Storm water infiltration in a monitored green roof for hydrologic restoration.

    Science.gov (United States)

    Palla, A; Sansalone, J J; Gnecco, I; Lanza, L G

    2011-01-01

    The objectives of this study are to provide detailed information about green roof performance in the Mediterranean climate (retained volume, peak flow reduction, runoff delay) and to identify a suitable modelling approach for describing the associated hydrologic response. Data collected during a 13-month monitoring campaign and a seasonal monitoring campaign (September-December 2008) at the green roof experimental site of the University of Genova (Italy) are presented together with results obtained in quantifying the green roof hydrologic performance. In order to examine the green roof hydrologic response, the SWMS_2D model, that solves the Richards' equation for two-dimensional saturated-unsaturated water flow, has been implemented. Modelling results confirm the suitability of the SWMS_2D model to properly describe the hydrologic response of the green roofs. The model adequately reproduces the hydrographs; furthermore, the predicted soil water content profile generally matches the observed values along a vertical profile where measurements are available.

  11. Green roof and storm water management policies: monitoring experiments on the ENPC Blue Green Wave

    Science.gov (United States)

    Versini, Pierre-Antoine; Gires, Auguste; Fitton, George; Tchiguirinskaia, Ioulia; Schertzer, Daniel

    2015-04-01

    Currently widespread in new urban projects, green roofs have shown a positive impact on urban runoff at the building/parcel scale. Nevertheless, there is no specific policy promoting their implementation neither in Europe nor in France. Moreover they are not taken into account (and usually considered as an impervious area) in the sizing of a retention basin for instance. An interesting example is located in the heart of the Paris-East Cluster for Science and Technology (Champs-sur-Marne, France). Since 2013 a large (1 ha) wavy-form vegetated roof (called bleu green wave) is implemented. Green roof area and impervious areas are connected to a large retention basin, which has been oversized. The blue green wave represents a pioneering site where an initially amenity (decorative) design project has been transformed into a research oriented one. Several measurement campaigns have been conducted to investigate and better understand the hydrological behaviour of such a structure. Rainfall, humidity, wind velocity, water content and temperature have been particularly studied. The data collected are used for several purposes: (i) characterize the spatio-temporal variability of the green roof response, (ii) calibrate and validate a specific model simulating its hydrological behavior. Based on monitoring and modeling results, green roof performances will be quantified. It will be possible to estimate how they can reduce stormwater runoff and how these performances can vary in space and in time depending on green roof configuration, rainfall event characteristics and antecedent conditions. These quantified impacts will be related to regulation rules established by stormwater managers in order to connect the parcel to the sewer network. In the particular case of the building of a retention basin, the integration of green roof in the sizing of the basin will be studied. This work is funded by the European Blue Green Dream project (http://bgd.org.uk/, funded by Climate

  12. Quantitative analysis on the urban flood mitigation effect by the extensive green roof system

    International Nuclear Information System (INIS)

    Lee, J.Y.; Moon, H.J.; Kim, T.I.; Kim, H.W.; Han, M.Y.

    2013-01-01

    Extensive green-roof systems are expected to have a synergetic effect in mitigating urban runoff, decreasing temperature and supplying water to a building. Mitigation of runoff through rainwater retention requires the effective design of a green-roof catchment. This study identified how to improve building runoff mitigation through quantitative analysis of an extensive green-roof system. Quantitative analysis of green-roof runoff characteristics indicated that the extensive green roof has a high water-retaining capacity response to rainfall of less than 20 mm/h. As the rainfall intensity increased, the water-retaining capacity decreased. The catchment efficiency of an extensive green roof ranged from 0.44 to 0.52, indicating reduced runoff comparing with efficiency of 0.9 for a concrete roof. Therefore, extensive green roofs are an effective storm water best-management practice and the proposed parameters can be applied to an algorithm for rainwater-harvesting tank design. -- Highlights: •Urban extensive green roof systems have a synergetic effect in mitigating urban runoff. •These systems are improve runoff mitigation and decentralized urban water management. •These systems have a high water-retaining capacity response to rainfall of less than 20 mm/h. •The catchment efficiency of an extensive green roof ranged from 0.44 to 0.52. -- Extensive green-roofs are an effective storm water best-management practice and the proposed parameters can be applied to mitigate urban runoff

  13. Quantitative analysis on the urban flood mitigation effect by the extensive green roof system.

    Science.gov (United States)

    Lee, J Y; Moon, H J; Kim, T I; Kim, H W; Han, M Y

    2013-10-01

    Extensive green-roof systems are expected to have a synergetic effect in mitigating urban runoff, decreasing temperature and supplying water to a building. Mitigation of runoff through rainwater retention requires the effective design of a green-roof catchment. This study identified how to improve building runoff mitigation through quantitative analysis of an extensive green-roof system. Quantitative analysis of green-roof runoff characteristics indicated that the extensive green roof has a high water-retaining capacity response to rainfall of less than 20 mm/h. As the rainfall intensity increased, the water-retaining capacity decreased. The catchment efficiency of an extensive green roof ranged from 0.44 to 0.52, indicating reduced runoff comparing with efficiency of 0.9 for a concrete roof. Therefore, extensive green roofs are an effective storm water best-management practice and the proposed parameters can be applied to an algorithm for rainwater-harvesting tank design. © 2013 Elsevier Ltd. All rights reserved.

  14. GREEN ROOFS AS A TOOL FOR IMPROVEMENT THE STORMWATER MANAGEMENT IN URBAN AREAS

    Directory of Open Access Journals (Sweden)

    Ewa Burszta-Adamiak

    2014-10-01

    Full Text Available The interest in green roof technologies is increasing due to the many tangible benefits that allow to provide. One of them is the ability to improve stormwater management in urban areas, because construction of green roofs can retain and delay in runoff . Due to the fact that the market of green roofs in Poland is relatively young, there is still a need for research to provide detailed information about green roof hydrologic performance in the national climate conditions. The objective of this study is to present the research results on retention capacity of green roofs, carried out at the Wroclaw University of Life Sciences. The results show that the possibility of water retention is considerably improved at green roofs when antecedent dry weather period lasts longer than one day and the rainfall depth does not exceed 10 mm / day.

  15. Two-dimensional modeling of water and heat fluxes in green roof substrates

    Science.gov (United States)

    Suarez, F. I.; Sandoval, V. P.

    2016-12-01

    Due to public concern towards sustainable development, greenhouse gas emissions and energy efficiency, green roofs have become popular in the last years. Green roofs integrate vegetation into infrastructures to reach additional benefits that minimize negative impacts of the urbanization. A properly designed green roof can reduce environmental pollution, noise levels, energetic requirements or surface runoff. The correct performance of green roofs depends on site-specific conditions and on each component of the roof. The substrate and the vegetation layers strongly influence water and heat fluxes on a green roof. The substrate is an artificial media that has an improved performance compared to natural soils as it provides critical resources for vegetation survival: water, nutrients, and a growing media. Hence, it is important to study the effects of substrate properties on green roof performance. The objective of this work is to investigate how the thermal and hydraulic properties affect the behavior of a green roof through numerical modeling. The substrates that were investigated are composed by: crushed bricks and organic soil (S1); peat with perlite (S2); crushed bricks (S3); mineral soil with tree leaves (S4); and a mixture of topsoil and mineral soil (S5). The numerical model utilizes summer-arid meteorological information to evaluate the performance of each substrate. Results show that the area below the water retention curve helps to define the substrate that retains more water. In addition, the non-linearity of the water retention curve can increment the water needed to irrigate the roof. The heat propagation through the roof depends strongly on the hydraulic behavior, meaning that a combination of a substrate with low thermal conductivity and more porosity can reduce the heat fluxes across the roof. Therefore, it can minimize the energy consumed of an air-conditioner system.

  16. Integrated Modelling and Performance Analysis of Green Roof Technologies in Urban Environments

    Science.gov (United States)

    Liu, Xi; Mijic, Ana; Maksimovic, Cedo

    2014-05-01

    layered soil profile covered with vegetation which can be used to simulate the physical behaviour of different green roof systems in response to rainfall under various climatic conditions. Because it is a physically based model, this model could be generalised to other atmosphere-plant-soil systems. The validity of this mass and energy balance approach will be demonstrated by comparing its outcomes with observations from a green roof experimental site in London, UK.

  17. A two-stage storage routing model for green roof runoff detention.

    Science.gov (United States)

    Vesuviano, Gianni; Sonnenwald, Fred; Stovin, Virginia

    2014-01-01

    Green roofs have been adopted in urban drainage systems to control the total quantity and volumetric flow rate of runoff. Modern green roof designs are multi-layered, their main components being vegetation, substrate and, in almost all cases, a separate drainage layer. Most current hydrological models of green roofs combine the modelling of the separate layers into a single process; these models have limited predictive capability for roofs not sharing the same design. An adaptable, generic, two-stage model for a system consisting of a granular substrate over a hard plastic 'egg box'-style drainage layer and fibrous protection mat is presented. The substrate and drainage layer/protection mat are modelled separately by previously verified sub-models. Controlled storm events are applied to a green roof system in a rainfall simulator. The time-series modelled runoff is compared to the monitored runoff for each storm event. The modelled runoff profiles are accurate (mean Rt(2) = 0.971), but further characterization of the substrate component is required for the model to be generically applicable to other roof configurations with different substrate.

  18. Retention performance of green roofs in three different climate regions

    Science.gov (United States)

    Sims, Andrew W.; Robinson, Clare E.; Smart, Charles C.; Voogt, James A.; Hay, Geoffrey J.; Lundholm, Jeremey T.; Powers, Brandon; O'Carroll, Denis M.

    2016-11-01

    Green roofs are becoming increasingly popular for moderating stormwater runoff in urban areas. This study investigated the impact different climates have on the retention performance of identical green roofs installed in London Ontario (humid continental), Calgary Alberta (semi-arid, continental), and Halifax Nova Scotia (humid, maritime). Drier climates were found to have greater percent cumulative stormwater retention with Calgary (67%) having significantly better percent retention than both London (48%) and Halifax (34%). However, over the same study period the green roof in London retained the greatest depth of stormwater (598 mm), followed by the green roof in Halifax (471 mm) and then Calgary (411 mm). The impact of climate was largest for medium sized storms where the antecedent moisture condition (AMC) at the beginning of a rainfall event governs retention performance. Importantly AMC was a very good predictor of stormwater retention, with similar retention at all three sites for a given AMC, emphasizing that AMC is a relevant indicator of retention performance in any climate. For large rainfall events (i.e., >45 mm) green roof average retention ranged between 16% and 29% in all cities. Overall, drier climates have superior retention due to lower AMC in the media. However, moderate and wet climates still provide substantial total volume reduction benefits.

  19. Green living roof implementation and influences of the soil layer on its properties

    Directory of Open Access Journals (Sweden)

    Dimitrijević Dragana G.

    2016-01-01

    Full Text Available Affected by undeniable climatic change, the temperature of the urban areas rises continually, increasing rapidly the energy problem of cities and amplifying the pollution problems. The thermal stress is increased, thus both the indoor and the outdoor thermal comfort levels are decreased, enhancing the health problems. Green roof implementation in the building envelope is strategy that provides heat island amelioration, thermal comfort for occupants and reduces energy consumption of buildings. Green living roofs are a passive cooling technique, which can stop the incoming solar radiation from reaching the building structure below. In this paper, we assessed the importance of the green roofs in providing environmental and building energy benefits, and brief investigation on the different configuration of the soil layer in the green roof assembly influences to the temperature of the roof surface was presented. Investigation was conducted for first phase of the living roof growth. Four cells were designed in SolidWorks software where the transient thermal study was performed in order to determine differences between the behavior of the conventional roof and three green roof types.

  20. Who governs climate adaptation? Getting green roofs for stormwater retention off the ground

    NARCIS (Netherlands)

    Mees, H.L.P.; Driessen, P.P.J.; Runhaar, H.A.C.; Stamatelos, J.

    2013-01-01

    Green roofs are an innovative solution for urban stormwater management. This paper examines governance arrangements for green roofs as a ‘no-regrets’ climate adaptation measure in five cities. We analysed who governs green roofs, why and with what outcome. Our results show that hierarchical and

  1. Potential Application of Shallow Bed Wetland Roof systems for green urban cities

    Science.gov (United States)

    Bui, X. T.

    2016-12-01

    This study aims to investigate the growth, nutrient uptake, domestic wastewater treatment, green (leaf) area and heat reduction of four shallow subsurface flow wetland roof (WR) systems with four different new local plants. Selected species included Cyperus Javanicus Hot (WR1), Eleusine Indica (L.) Gaertn (WR2), Struchium Sparganophorum (L.) Kuntze (WR3) and Kyllinga Brevifolia Rottb (WR4). These systems were operated during 61 days at hydraulic loading rates of 353 - 403 m3/ha.day. The biomass growth of 4.9-73.7g fresh weight/day, and 0.8-11.4 g dry weight/day were observed. The nutrient accumulation according to dry biomass achieved 0.25-2.14% of total nitrogen (TN) and 0.13-1.07% of total phosphorus (TP). The average COD, TN and TP removal was 61-79%; 54-81% and 62-83%, which corresponding to 27-33 kg COD/ha.day, 10-14 kg TN/ha.day and 0.4-0.5 kg TP/ha.day, respectively. The WR4 system achieved the highest COD and TN removal among the WRs. The TP removal efficiency showed an insignificant difference for the systems. Consequently, the treated water quality complied with the Vietnam standard limits (QCVN 14:2008, level B). The green area of the four plants varied between 63-92 m2 green leaf/m2 WR. The WR4 was the highest green area. Moreover, the results also showed the temperature under the flat roof was 1-3°C lower than that of the ambient air. In summary, wetland roof is a promising technology, which not only owns the effective domestic wastewater treatment capacity, but also contributes to green urban with several above benefits.

  2. [Influence of green roof application on water quantity and quality in urban region].

    Science.gov (United States)

    Wang, Shu-Min; Li, Xing-Yang; Zhang, Jun-Hua; Yu, Hui; Hao, You-Zhi; Yang, Wan-Yi

    2014-07-01

    Green roof is widely used in advanced stormwater management as a major measure now. Taking Huxi catchment in Chongqing University as the study area, the relationships between green roof installation with runoff volume and water quality in urban region were investigated. The results showed that roof greening in the urban region contributed to reducing the runoff volume and pollution load. In addition, the spatial distribution and area of green roof also had effects on the runoff water quality. With the conditions that the roof area was 25% of the total watershed area, rainfall duration was 15 min and rainfall intensity was 14.8 mm x h(-1), the peak runoff and total runoff volume were reduced by 5.3% and 31%, the pollution loads of total suspended solid (TSS), total phosphorus (TP) and total nitrogen (TN) decreased by 40.0%, 31.6% and 29.8%, their peak concentrations decreased by 21.0%, 16.0% and -12.2%, and the EMCs (event mean concentrations) were cut down by 13.1%, 0.9% and -1.7%, respectively, when all impervious roofs were greened in the research area. With the increase of roof greening rate, the reduction rates of TSS and TP concentrations increased, while the reduction rate of TN concentration decreased on the whole. Much more improvement could be obtained with the use of green roofs near the outlet of the watershed.

  3. Hydrological performance of an extensive green roof: a case study from the central Europe (Bustehrad, Czech Republic)

    Science.gov (United States)

    Tománková, Klára; Sněhota, Michal; Jelínková, Vladimíra

    2016-04-01

    Extensive green roofs with a thin growing medium require minimal maintenance, and in general no irrigation. The proper functioning of such systems rests with their structural constituents, especially with the substrate used for planting. An extensive green roof with poorly developed vegetation and with a soil layer of a maximum thickness of 5 cm mixed with local stripped topsoil with crushed bricks and green waste was studied with respect to the hydrological behavior. The substrate classified as loam comprises a significant proportion of very fine particles and thus it is prone to clogging up of soil pores and forming of fissures on the surface. The green roof studied is well equipped for measuring meteorological data including air temperature, wind speed and direction, net radiation, relative humidity, and rainfall intensity. The meteorological information on the site is completed by soil temperature measurement. The 12 m long transect is equipped with eight time domain reflectometry probes (TDR) to monitor soil water content. Soil physical properties (bulk density, porosity, grain size distribution) and soil hydraulic characteristics (soil water retention curve) were obtained. The numerical modeling of transient soil water movement in the green roof substrate was performed using a two-dimensional model based on the Richards' equation. Results were compared with the soil water content data acquired. Six alternative scenarios were formulated to discuss possible improvement of green roof functioning and four selected scenarios were simulated. The study helped us to improve our understanding of the flow processes through the green roof soil system under study. The alternative scenario simulations allowed hydrological assessment of roof construction amendments. The research was realized as a part of the University Centre for Energy Efficient Buildings supported by the EU and with financial support from the Czech Science Foundation under project number 14-10455P.

  4. System for monitoring of green roof performance: use of weighing roof segment and non-invasive visualization

    Science.gov (United States)

    Jelinkova, Vladmira; Dohnal, Michal; Picek, Tomas; Sacha, Jan

    2015-04-01

    Understanding the performance of technogenic substrates for green roofs is a significant task in the framework of sustainable urban planning and water/energy management. The potential retention and detention of the anthropogenic, light weight soil systems and their temporal soil structure changes are of major importance. A green roof test segment was built to investigate the benefits of such anthropogenic systems. Adaptable low-cost system allows long-term monitoring of preferred characteristics. Temperature and water balance measurements complemented with meteorological observations and knowledge of physical properties of the substrates provide basis for detailed analysis of thermal and hydrological regime in green roof systems. The first results confirmed the benefits of green roof systems. The reduction of temperature fluctuations as well as rainfall runoff was significant. Depending on numerous factors such substrate material or vegetation cover the test green roof suppressed the roof temperature amplitude for the period analyzed. The ability to completely prevent (light rainfall events) or reduce and delay (medium and heavy rainfall events) the peak runoff was also analyzed. Special attention is being paid to the assessment of soil structural properties related to possible aggregation/disaggregation, root growth, weather conditions and associated structural changes using non-invasive imaging method. X-ray computed microtomography of undisturbed soil samples (taken from experimental segments) is used for description of pore space geometry, evaluation of surface to volume ratio, additionally for description of cracks and macropores as a product of soil flora and fauna activity. The information from computed tomography imaging will be used for numerical modeling of water flow in variable saturated porous media. The research was realized as a part of the University Centre for Energy Efficient Buildings supported by the EU and with financial support from the Czech

  5. Laboratory Tests of Substrate Physical Properties May Not Represent the Retention Capacity of Green Roof Substrates In Situ

    Directory of Open Access Journals (Sweden)

    Christopher Szota

    2017-11-01

    Full Text Available Green roofs can be used to reduce the volume of polluted stormwater that is generated by cities. Modelling rainfall retention is critical, but green roof water balance models often rely on the physical properties of substrates. In these models, substrate water holding capacity (WHC determines the depth of water which can be stored before runoff is generated; whereas, the permanent wilting point (PWP limits evapotranspiration. The WHC and PWP, as well as plant available water (PAW; where PAW = WHC − PWP, as determined from laboratory tests, may not truly reflect how substrates perform on green roofs. We therefore ran a simulated rainfall experiment on green roof modules to (i compare the rainfall retention of vegetated and non-vegetated substrates with different WHC and PAW, and (ii relate retention to substrate storage capacity, as calculated from laboratory measures of WHC and PAW. We found that the PAW of a substrate is a better indicator of evapotranspiration and retention when compared with WHC. However, we also found that substrates always retained less water than their calculated storage capacity would suggest, most likely being due to their high permeability. Our results indicate that using laboratory-derived measures of WHC and PAW in green roof models may be over-estimating both evapotranspiration and rainfall retention.

  6. The Soil-Root Strength Performance of Alternanthera Ficoidea and Zoysia Japonica as Green Roof Vegetation

    Directory of Open Access Journals (Sweden)

    Abdullah Muhamad Firdaurs

    2017-01-01

    Full Text Available The rise of awareness on environmentalism has demanded that all parties involved in built environment to implement green technology in their construction projects. Great care must be taken when designing a green roof system including the selection of plants and appropriate substrates. This study was performed to investigate the soil-root composite strength of two types of green roof vegetation (A. Ficoidea and Z. Japonica at different growth periods for up to 6 months. Both plants were planted in six plastic plots (45 cm × 29 cm × 13 cm containing a mixture of perlite, vermiculite and organic soil. Every two months, a series of direct shear tests were conducted on a sample from each species to determine the root-soil shear strength. The tests continued until the 6th month. The average results showed that Z. Japonica had higher soil-root shear strength (49.1 kPa compared to A. Ficoidea after two months of growth. In the 4th month however, A. Ficoidea managed to surpass Z. Japonica (28.7 kPa versus 18.5 kPa in terms of shear strength. However, their average peak shear strength decreased sharply compared to the previous month. Lastly, in six months, A. Ficoidea sustained a higher average peak soil shear strength (56.5 kPa compared to Z. Japonica (14.3 kPa. Therefore, it can be concluded that A. Ficoidea may offer a better soil reinforcement than Z. japonica and thus it could potentially be a good choice of green roof vegetation.

  7. Energy and Economic Evaluation of Green Roofs for Residential Buildings in Hot-Humid Climates

    Directory of Open Access Journals (Sweden)

    Abubakar S. Mahmoud

    2017-03-01

    Full Text Available Green roofs may be considered a passive energy saving technology that also offer benefits like environmental friendliness and enhancement of aesthetic and architectural qualities of buildings. This paper examines the energy and economic viability of the green roof technology in the hot humid climate of Saudi Arabia by considering a modern four bedroom residential building in the city of Dhahran as a case study. The base case and green roof modelling of the selected building has been developed with the help of DesignBuilder software. The base case model has been validated with the help of 3-month measured data about the energy consumption without a green roof installed. The result shows that the energy consumption for the base case is 169 kWh/m2 while the energy consumption due to the application of a green roof on the entire roof surface is 110 kWh/m2. For the three investigated green roof options, energy saving is found to be in the range of 24% to 35%. The economic evaluation based on the net present value (NPV approach for 40 years with consideration to other environmental advantages indicates that the benefits of the green roof technology are realized towards the end of the life cycle of the building.

  8. Entire cities could benefit from green roofs : Heleen Mees is investigating how five metropolises are greenifying their roofs

    NARCIS (Netherlands)

    Mees, Heleen

    Rotterdam is making good progress with its creation of green roofs. Heleen Mees, researcher at Utrecht University, drew this conclusion from her research, in which she compared the green roof policy of four different cities with that of Rotterdam. Rotterdam awards grants to those wishing to create a

  9. Green roof impact on the hydrological cycle components

    Science.gov (United States)

    Lamera, Carlotta; Rulli, Maria Cristina; Becciu, Gianfranco; Rosso, Renzo

    2013-04-01

    In the last decades the importance of storm water management in urban areas has increased considerably, due to both urbanization extension and to a greater concern for environment pollution. Traditional storm water control practices, based on the "all to the sewer" attitude, rely on conveyance to route storm water runoff from urban impervious surfaces towards the nearby natural water bodies. In recent years, infiltration facilities are receiving an increasing attention, due to their particular efficiency in restoring a balance in hydrological cycle quite equal to quite pre-urbanization condition. In particular, such techniques are designed to capture, temporarily retain and infiltrate storm water, promote evapotranspiration and harvest water at the source, encouraging in general evaporation, evapotranspiration, groundwater recharge and the re-use of storm water. Green roofs are emerging as an increasingly popular Sustainable Urban Drainage Systems (SUDS) technique for urban storm water management. Indeed, they are able to operate hydrologic control over storm water runoff: they allow a significant reduction of peak flows and runoff volumes collected by drainage system, with a consequent reduction of flooding events and pollution masses discharges by CSO. Furthermore green roofs have a positive influence on the microclimate in urban areas by helping in lower urban air temperatures and mitigate the heat island effect. Last but not least, they have the advantage of improving the thermal insulation of buildings, with significant energy savings. A detailed analysis of the hydrological dynamics, connected both with the characteristics of the climatic context and with the green roof technical design, is essential in order to obtain a full characterization of the hydrologic behavior of a green roof system and its effects on the urban water cycle components. The purpose of this paper is to analysis the hydrological effects and urban benefits of the vegetation cover of a

  10. Determining Thermal Specifications for Vegetated GREEN Roofs in Moderate Winter Climats

    NARCIS (Netherlands)

    Dr. Christoph Maria Ravesloot

    2015-01-01

    Because local weather conditions in moderate climates are changing constantly, heat transfer specifications of substrate and vegetation in vegetated green roofs also change accordingly. Nevertheless, it is assumed that vegetated green roofs can have a positive effect on the thermal performance of

  11. Portland's experience with land use tools to promote green roofs

    International Nuclear Information System (INIS)

    Johnson, M.

    2004-01-01

    In the late 1990s, the City of Portland, Oregon faced environmental challenges that prompted the City to mandate environmentally sensitive development. Several programs were developed in response to these challenges, some of which resulted in the creation of land use policies and incentives that promote green roofs. Zoning code provisions were adopted in 2001 to promote eco-roofs in an effort to reduce stormwater runoff, mitigate urban heat island effects, provide habitat for birds, and improve air quality and energy efficiency. The Central City Fundamental Design Guidelines were also revised to encourage eco-roof development. In 2002, the South Waterfront Plan was created to integrate ecological design into an urban environment through sustainability principles and practices. Land use tools were developed to introduce developers to an approach that reduced energy costs and stormwater costs, while also contributing to a project's marketability. These tools were created with the support of programs and policies such as the CSO (Combined Sewer Overflow) Program; eco-roof research which began in 1995 to determine the stormwater management potential of eco-Green roofs; technical assistance to encourage and highlight sustainable development practices; the Stormwater Management Manual that set standards for the amount and quality of stormwater runoff leaving development sites; the G/Rated Program that offers resources for green building practices; the Green Investment Fund that supports the G/Rated Program; and, the Portland Development Commission Green Building Policy financing tool for earth-friendly designs and materials. 34 refs., 2 figs

  12. A simple rainfall-runoff model for the single and long term hydrological performance of green roofs

    DEFF Research Database (Denmark)

    Locatelli, Luca; Mark, Ole; Mikkelsen, Peter Steen

    Green roofs are being widely implemented for storm water control and runoff reduction. There is need for incorporating green roofs into urban drainage models in order to evaluate their impact. These models must have low computational costs and fine time resolution. This paper aims to develop...... a model of green roof hydrological performance. A simple conceptual model for the long term and single event hydrological performance of green roofs, shows to be capable of reproducing observed runoff measurements. The model has surface and subsurface storage components representing the overall retention...... capacity of the green roof. The runoff from the system is described by the non-linear reservoir method and the storage capacity of the green roof is continuously re-established by evapotranspiration. Runoff data from a green roof in Denmark are collected and used for parameter calibration....

  13. Scaling of economic benefits from green roof implementation in Washington, DC.

    Science.gov (United States)

    Niu, Hao; Clark, Corrie; Zhou, Jiti; Adriaens, Peter

    2010-06-01

    Green roof technology is recognized for mitigating stormwater runoff and energy consumption. Methods to overcome the cost gap between green roofs and conventional roofs were recently quantified by incorporating air quality benefits. This study investigates the impact of scaling on these benefits at the city-wide scale using Washington, DC as a test bed because of the proposed targets in the 20-20-20 vision (20 million ft(2) by 2020) articulated by Casey Trees, a nonprofit organization. Building-specific stormwater benefits were analyzed assuming two proposed policy scenarios for stormwater fees ranging from 35 to 50% reduction for green roof implementation. Heat flux calculations were used to estimate building-specific energy savings for commercial buildings. To assess benefits at the city scale, stormwater infrastructure savings were based on operational savings and size reduction due to reduced stormwater volume generation. Scaled energy infrastructure benefits were calculated using two size reductions methods for air conditioners. Avoided carbon dioxide, nitrogen oxide (NO(x)), and sulfur dioxide emissions were based on reductions in electricity and natural gas consumption. Lastly, experimental and fugacity-based estimates were used to quantify the NO(x) uptake by green roofs, which was translated to health benefits using U.S. Environmental Protection Agency models. The results of the net present value (NPV) analysis showed that stormwater infrastructure benefits totaled $1.04 million (M), while fee-based stormwater benefits were $0.22-0.32 M/y. Energy savings were $0.87 M/y, while air conditioner resizing benefits were estimated at $0.02 to $0.04 M/y and avoided emissions benefits (based on current emission trading values) were $0.09 M-0.41 M/y. Over the lifetime of the green roof (40 years), the NPV is about 30-40% less than that of conventional roofs (not including green roof maintenance costs). These considerable benefits, in concert with current and

  14. Modeling a Hydrologically Optimal Green Roof Media Mixture

    Science.gov (United States)

    Background/Questions/MethodsA key environmental concern in managing urban ecosystems is controlling stormwater runoff to ameliorate pollution problems and sewage overflows. Vegetated green roofs have become an important green infrastructure tool to collect, store, and gradually r...

  15. Evaluation of Green Roof Water Quantity and Quality Performance in an Urban Climate

    Science.gov (United States)

    In this report we present an analysis of water benefits from an array of observed green roof and control (non-vegetated) roof project sites throughout NYC. The projects are located on a variety of building sites and represent a diverse set of available extensive green roof instal...

  16. Thermal and water regime of green roof segments filled with Technosol

    Science.gov (United States)

    Jelínková, Vladimíra; Šácha, Jan; Dohnal, Michal; Skala, Vojtěch

    2016-04-01

    Artificial soil systems and structures comprise appreciable part of the urban areas and are considered to be perspective for number of reasons. One of the most important lies in contribution of green roofs and facades to the heat island effect mitigation, air quality improvement, storm water reduction, etc. The aim of the presented study is to evaluate thermal and water regime of the anthropogenic soil systems during the first months of the construction life cycle. Green roof test segments filled with two different anthropogenic soils were built to investigate the benefits of such systems in the temperate climate. Temperature and water balance measurements complemented with meteorological observations and knowledge of physical properties of the soil substrates provided basis for detailed analysis of thermal and hydrological regime. Water balance of green roof segments was calculated for available vegetation seasons and individual rainfall events. On the basis of an analysis of individual rainfall events rainfall-runoff dependency was found for green roof segments. The difference between measured actual evapotranspiration and calculated potential evapotranspiration was discussed on period with contrasting conditions in terms of the moisture stress. Thermal characteristics of soil substrates resulted in highly contrasting diurnal variation of soils temperatures. Green roof systems under study were able to reduce heat load of the roof construction when comparing with a concrete roof construction. Similarly, received rainfall was significantly reduced. The extent of the rainfall reduction mainly depends on soil, vegetation status and experienced weather patterns. The research was realized as a part of the University Centre for Energy Efficient Buildings supported by the EU and with financial support from the Czech Science Foundation under project number 14-10455P.

  17. The effectiveness of cool and green roofs as urban heat island mitigation strategies

    International Nuclear Information System (INIS)

    Li, Dan; Bou-Zeid, Elie; Oppenheimer, Michael

    2014-01-01

    Mitigation of the urban heat island (UHI) effect at the city-scale is investigated using the Weather Research and Forecasting (WRF) model in conjunction with the Princeton Urban Canopy Model (PUCM). Specifically, the cooling impacts of green roof and cool (white/high-albedo) roof strategies over the Baltimore-Washington metropolitan area during a heat wave period (7 June–10 June 2008) are assessed using the optimal set-up of WRF-PUCM described in the companion paper by Li and Bou-Zeid (2014). Results indicate that the surface UHI effect (defined based on the urban–rural surface temperature difference) is reduced significantly more than the near-surface UHI effect (defined based on urban–rural 2 m air temperature difference) when these mitigation strategies are adopted. In addition, as the green and cool roof fractions increase, the surface and near-surface UHIs are reduced almost linearly. Green roofs with relatively abundant soil moisture have comparable effect in reducing the surface and near-surface UHIs to cool roofs with an albedo value of 0.7. Significant indirect effects are also observed for both green and cool roof strategies; mainly, the low-level advection of atmospheric moisture from rural areas into urban terrain is enhanced when the fraction of these roofs increases, thus increasing the humidity in urban areas. The additional benefits or penalties associated with modifications of the main physical determinants of green or cool roof performance are also investigated. For green roofs, when the soil moisture is increased by irrigation, additional cooling effect is obtained, especially when the ‘unmanaged’ soil moisture is low. The effects of changing the albedo of cool roofs are also substantial. These results also underline the capabilities of the WRF-PUCM framework to support detailed analysis and diagnosis of the UHI phenomenon, and of its different mitigation strategies. (letter)

  18. Cladonia lichens on extensive green roofs: evapotranspiration, substrate temperature, and albedo [v1; ref status: indexed, http://f1000r.es/2ha

    Directory of Open Access Journals (Sweden)

    Amy Heim

    2013-12-01

    Full Text Available Green roofs are constructed ecosystems that provide ecosystem services in urban environments. Shallow substrate green roofs subject the vegetation layer to desiccation and other environmental extremes, so researchers have evaluated a variety of stress-tolerant vegetation types for green roof applications. Lichens can be found in most terrestrial habitats.  They are able to survive extremely harsh conditions, including frequent cycles of desiccation and rehydration, nutrient-poor soil, fluctuating temperatures, and high UV intensities. Extensive green roofs (substrate depth <20cm exhibit these harsh conditions, making lichens possible candidates for incorporation into the vegetation layer on extensive green roofs.  In a modular green roof system, we tested the effect of Cladonia lichens on substrate temperature, water loss, and albedo compared to a substrate-only control. Overall, the Cladonia modules had significantly cooler substrate temperatures during the summer and significantly warmer temperatures during the fall.  Additionally, the Cladonia modules lost significantly less water than the substrate-only control. This implies that they may be able to benefit neighboring vascular plant species by reducing water loss and maintaining favorable substrate temperatures.

  19. [Capacity of extensive green roof to retain rainwater runoff in hot and humid region.

    Science.gov (United States)

    Liu, Ming Xin; Dai, Se Ping; Zhou, Tian Yang; Ruan, Lin; Zhang, Qiao Song

    2017-02-01

    The water logging has become the environmental problem of major cities with the sharp increase of impermeable urban pavement as the contributing cause. Abroad, the green roof has been widely used as a practical measure to intercept rainwater, yet the capacity of green roof to retain rainwater varies with climate conditions. As the hot and humid climate zone features high temperature, humidity and precipitation, it is meaningful to study the capacity of green roof to retain rainwater under such climatic condition. In this research, 3 plat forms were set up in Guangzhou in rainy and hot summer to test the capability of simple green roof to retain rainwater runoff, and the efficiency of green roof to retain rainwater under local climate conditions was worked out based on the meteorological observation and data measurement during the 13-month test period. The results showed that the simple green roof with a substrate thickness of 30, 50 and 70 mm could retain 27.2%, 30.9% and 32.1% of precipitation and reduce the average peak value by 18.9%, 26.2% and 27.7%, respectively. Given an urban built-up area of 1035.01 km 2 in Guangzhou and a roof area percentage of approximately 37.3% and assuming the green roofs with 30 mm-thick substrate were applied within the area, the light, medium and heavy rain could be delayed at 72.8%, 22.6% and 17.4%, respectively. Accordingly, the rainwater retained could reach up to 14317×10 4 m 3 . It suggested the great potential of the simple green roof in retaining rainwater. The research could serve as reference for the hot and humid climate zone to alleviate water logging and visualize sponge city construction.

  20. Assessing the Performance of Large Scale Green Roofs and Their Impact on the Urban Microclimate

    Science.gov (United States)

    Smalls-Mantey, L.; Foti, R.; Montalto, F. A.

    2015-12-01

    In ultra-urban environments green roofs offer a feasible solution to add green infrastructure (GI) in neighborhoods where space is limited. Green roofs offer the typical advantages of urban GI such as stormwater reduction and management while providing direct benefits to the buildings on which they are installed through thermal protection and mitigation of temperature fluctuations. At 6.8 acres, the Jacob K. Javits Convention Center (JJCC) in New York City, hosts the second largest green roof in the United States. Since its installation in August 2013, the Sustainable Water Resource (SWRE) Laboratory at Drexel University has monitored the climate on and around the green roof by means of four weather stations situated on various roof and ground locations. Using two years of fine scale climatic data collected at the JJCC, this study explores the energy balance of a large scale green roof system. Temperature, radiation, evapotranspiration and wind profiles pre- and post- installation of the JJCC green roof were analyzed and compared across monitored locations, with the goal of identifying the impact of the green roof on the building and urban micro-climate. Our findings indicate that the presence of the green roof, not only altered the climatic conditions above the JJCC, but also had a measurable impact on the climatic profile of the areas immediately surrounding it. Furthermore, as a result of the mitigation of roof temperature fluctuations and of the cooling provided during warmer months, an improvement of the building thermal efficiency was contextually observed. Such findings support the installation of GI as an effective practice in urban settings and important in the discussion of key issues including energy conservation measures, carbon emission reductions and the mitigation of urban heat islands.

  1. Experimental evaluation of thermal and energy performance of temperate green roofs: a case study in Beijing

    Science.gov (United States)

    Sun, T.; Institute of Hydrology; Water Resources

    2011-12-01

    An experimental evaluation of thermal and energy performance of temperate green roofs was carried out by thermal and meteorological observation and energy budget modeling using a setup of green roof in Beijing urban area. From both the yearly and daily temperature trends, the green roof could effectively damp down the undulation of roof surface temperature comparing with the conventional one. As an insulating screen, the green roof abated the amplitude of temperature by 9.0 in winter and 9.1 °C in summer, respectively. Under different cloud conditions, the green roof in summer time resulted in decreases in sensible heat and heat flux by 125.3W m-2 and 32.0 W m-2, respectively, on daily average comparing with the conventional one. Based on the energy budget analyses, under an assumptive scenario of 50% roof-greening in Beijing, a total of 34.1 PJ of sensible heat and 8.7 PJ of heat flux would be decreased for a summer period of 90 days. This study demonstrated that green roof, serving as an insulating screen to building top in comparison with the conventional roof, proved thermal improving effect in building scale and high energy saving potential for urban development.

  2. The green roof dilemma - discussion of Francis and Lorimer (2011).

    Science.gov (United States)

    Henry, Alexandre; Frascaria-Lacoste, Nathalie

    2012-08-15

    Urban ecosystems are the most complex mosaics of vegetative land cover that can be found. In a recent paper, Francis and Lorimer (2011) evaluated the reconciliation potential of living roofs and walls. For these authors, these two techniques for habitat improvement have strong potential for urban reconciliation ecology. However they have some ecological and societal limitations such as the physical extreme environmental characteristics, the monetary investment and the cultural perceptions of urban nature. We are interested in their results and support their conclusions. However, for a considerable time, green roofs have been designed to provide urban greenery for buildings and the green roof market has only focused on extensive roof at a restricted scale within cities. Thus, we have strong doubts about the relevance of their use as possible integrated elements of the network. Furthermore, without dynamic progress in research and the implementation of well-thought-out policies, what will be the real capital gain from green roofs with respect to land-use complementation in cities? If we agree with Francis and Lorimer (2011) considering that urban reconciliation ecology between nature and citizens is a current major challenge, then "adaptive collaborative management" is a fundamental requirement. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Cladonia lichens on extensive green roofs: evapotranspiration, substrate temperature, and albedo [v2; ref status: indexed, http://f1000r.es/2v4

    Directory of Open Access Journals (Sweden)

    Amy Heim

    2014-01-01

    Full Text Available Green roofs are constructed ecosystems that provide ecosystem services in urban environments. Shallow substrate green roofs subject the vegetation layer to desiccation and other environmental extremes, so researchers have evaluated a variety of stress-tolerant vegetation types for green roof applications. Lichens can be found in most terrestrial habitats.  They are able to survive extremely harsh conditions, including frequent cycles of desiccation and rehydration, nutrient-poor soil, fluctuating temperatures, and high UV intensities. Extensive green roofs (substrate depth <20cm exhibit these harsh conditions, making lichens possible candidates for incorporation into the vegetation layer on extensive green roofs.  In a modular green roof system, we tested the effect of Cladonia lichens on substrate temperature, water loss, and albedo compared to a substrate-only control. Overall, the Cladonia modules had significantly cooler substrate temperatures during the summer and significantly warmer temperatures during the fall.  Additionally, the Cladonia modules lost significantly less water than the substrate-only control. This implies that they may be able to benefit neighboring vascular plant species by reducing water loss and maintaining favorable substrate temperatures.

  4. Viability of Green Roofs as a Flood Mitigation Element in the Central Region of Chile

    Directory of Open Access Journals (Sweden)

    Daniel Mora-Melià

    2018-04-01

    Full Text Available Population increase and urban development over the last 20 years in Chile have outgrown most rainwater drainage and evacuation systems. Many cities located in the central region suffer from frequent floods in some of their sectors during winter rainfall events. In addition, the lack of green spaces in these cities leads to biodiversity loss, increasing temperatures, greater energy demands, etc. Green roofs offer a solution that can mitigate climate change by reducing the runoff in cities with extensive, highly impermeable areas. This work analyses the installation of green roofs as a potential solution to the sectorial floods suffered by many cities in central Chile. The methodology includes the identification of conflictive sectors in the city of Curicó, hydrological modelling with the Storm Water Management Model (SWMM software, the consideration of different distributions and types of green roof surfaces, and computational simulations to determine the feasibility of green roofs for preventing floods. The results show that, for moderate rainfall events, all studied sectors could avoid flooding if at least 50% of the surrounding area had green roofs (irrespective of the type of green roof. In contrast, in the presence of strong rainfall events, only some semi-extensive and extensive green roofs covering 60% to 95% of the surrounding area, respectively, could prevent flooding.

  5. Modeling Košice Green Roofs Maps

    Science.gov (United States)

    Poorova, Zuzana; Vranayova, Zuzana

    2017-06-01

    The need to house population in urban areas is expected to rise to 66% in 2050, according to United Nations. The replacement of natural permeable green areas with concrete constructions and hard surfaces will be noticed. The densification of existing built-up areas is responsible for the decreasing vegetation, which results in the lack of evapotranspiration cooling the air. Such decreasing vegetation causes urban heat islands. Since roofs and pavements have a very low albedo, they absorb a lot of sunlight. Several studies have shown that natural and permeable surfaces, as in the case of green roofs, can play crucial role in mitigating this negative climate phenomenon and providing higher efficiency for the building, leading to savings. Such as water saving, what is the main idea of this research.

  6. Water quality and quantity investigation of green roofs in a dry climate.

    Science.gov (United States)

    Beecham, S; Razzaghmanesh, M

    2015-03-01

    Low-energy pollutant removal strategies are now being sought for water sensitive urban design. This paper describes investigations into the water quality and quantity of sixteen, low-maintenance and unfertilized intensive and extensive green roof beds. The factors of Slope (1° and 25°), Depth (100 mm and 300 mm), Growing media (type A, type B and type C) and Species (P1, P2 and P3) were randomized according to a split-split plot design. This consisted of twelve vegetated green roof beds and four non-vegetated beds as controls. Stormwater runoff was collected from drainage points that were installed in each area. Samples of run-off were collected for five rainfall events and analysed for water retention capacity and the water quality parameters of NO₂, NO₃, NH₄, PO₄, pH, EC, TDS, Turbidity, Na, Ca, Mg and K. The results indicated significant differences in terms of stormwater water quality and quantity between the outflows of vegetated and non-vegetated systems. The water retention was between 51% and 96% and this range was attributed to the green roof configurations in the experiment. Comparing the quality of rainfall as inflow, and the quality of runoff from the systems showed that green roofs generally acted as a source of pollutants in this study. In the vegetated beds, the intensive green roofs performed better than the extensive beds with regard to outflow quality while in the non-vegetated beds, the extensive beds performed better than intensive systems. This highlights the importance of vegetation in improving water retention capacity as well as the role of vegetation in enhancing pollutant removal in green roof systems. In addition growing media with less organic matter had better water quality performance. Comparison of these results with national and international standards for water reuse confirmed that the green roof outflow was suitable for non-potable uses such as landscape irrigation and toilet flushing. Copyright © 2014 Elsevier Ltd. All

  7. The psychological and physiological stress relief effect of the green roof

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H.; Koshimizu, H. [Meiji Univ., Tokyo (Japan). Dept. of Agriculture

    2007-07-01

    The visual sense influences human psychology and physiology. As such, green gardens in urban environments are touted as being healing gardens that lead to stress relief and improved work efficiency. This paper focused on the visual aspects of such rehabilitation sites. Psychological and physiological experiments were conducted on human response to green roofs in order to quantify the stress relief effect of the green roof scenery. In addition, different green roof designs were tested to determine whether they change the stress relief effect. A 360 degrees panorama photograph of green roofs was shown to 3 male and 3 female students in Meiji University. The experiment was followed by a questionnaire survey based on the semantic differential (SD) method as a psychological evaluation. The SD method is a representative psychological measurement to quantify an image of people for a scene. The changes in heart rate were studied along with blood pressure, and stress degree as a physiological evaluation. The relation between the results of the SD method-based psychological evaluation and the physiological experiment was determined using multiple regression analysis. It was concluded that the stress relief effect can be improved by changing linear scenery to a more curvy one. 15 refs., 4 tabs., 20 figs.

  8. Retrofitted green roofs and walls and improvements in thermal comfort

    Science.gov (United States)

    Feitosa, Renato Castiglia; Wilkinson, Sara

    2017-06-01

    Increased urbanization has led to a worsening in the quality of life for many people living in large cities in respect of the urban heat island effect and increases of indoor temperatures in housing and other buildings. A solution may be to retrofit existing environments to their former conditions, with a combination of green infrastructures applied to existing walls and rooftops. Retrofitted green roofs may attenuate housing temperature. However, with tall buildings, facade areas are much larger compared to rooftop areas, the role of green walls in mitigating extreme temperatures is more pronounced. Thus, the combination of green roofs and green walls is expected to promote a better thermal performance in the building envelope. For this purpose, a modular vegetated system is adopted for covering both walls and rooftops. Rather than temperature itself, the heat index, which comprises the combined effect of temperature and relative humidity is used in the evaluation of thermal comfort in small scale experiments performed in Sydney - Australia, where identical timber framed structures prototypes (vegetated and non-vegetated) are compared. The results have shown a different understanding of thermal comfort improvement regarding heat index rather than temperature itself. The combination of green roof and walls has a valid role to play in heat index attenuation.

  9. Dynamic Simulation of the Green Roofs Impact on Building Energy Performance, Case Study of Antananarivo, Madagascar

    Directory of Open Access Journals (Sweden)

    Hery Tiana Rakotondramiarana

    2015-05-01

    Full Text Available Green roofs improve building energy performance and constitute an alternative to sustainable buildings. A green roof model is dynamically coupled with a building thermal model to assess its energy performance that takes into account the indoor air temperature dynamic changes. Under the climate conditions in Antananarivo, we compared green and conventional roofs. The present study shows that green roofs protect the roof structure under extreme temperature and large temperature fluctuations. For the case of Antananarivo, the amplitude of the temperature fluctuations at the top face of the support is reduced by 28 °C when using green roof. The impact of the green roof on indoor air temperature and energy demand is investigated. The vegetation decreases the maximum indoor air temperature and improves the building thermal comfort during summer days. It has no effect on the minimum indoor air temperature, but additional soil thickness can increase it. In addition, a global sensitivity analysis, which is carried out on the proposed model without considering any specific weather data, allows us to identify the most influential parameters on the energy demand. It has been found that green roofs have almost insignificant thermal impact in insulated buildings; however, their potential prevails over the building envelope and weather characteristics in the case of non-insulated building.

  10. Effect of substrate depth and rain-event history on the pollutant abatement of green roofs

    International Nuclear Information System (INIS)

    Seidl, Martin; Gromaire, Marie-Christine; Saad, Mohamed; De Gouvello, Bernard

    2013-01-01

    This study compares the effectiveness of two different thickness of green roof substrate with respect to nutrient and heavy metal retention and release. To understand and evaluate the long term behaviour of green roofs, substrate columns with the same structure and composition as the green roofs, were exposed in laboratory to artificial rain. The roofs act as a sink for C, N, P, zinc and copper for small rain events if the previous period was principally dry. Otherwise the roofs may behave as a source of pollutants, principally for carbon and phosphorus. Both field and column studies showed an important retention for Zn and Cu. The column showed, however, lower SS, DOC and metal concentrations in the percolate than could be observed in the field even if corrected for run-off. This is most probably due to the difference in exposition history and weathering processes. Highlights: • Extensive roof greening can lead to increased DOC and nutrients runoff. • Studied green roofs retained over 80% of atmospheric heavy metal loads (Zn, Cu, Pb). • Substrate layer thickness had no significant impact on metal retention. • Column experiments showed no decrease in the long term heavy metal retention. -- The green roofs tested, showed variable retention capacity for the common pollutants, but were especially efficient in heavy metals retention, which long-term evolution was evaluated in simultaneous column experiments

  11. Green Roof for Stormwater Management in a Highly Urbanized Area: The Case of Seoul, Korea

    Directory of Open Access Journals (Sweden)

    Muhammad Shafique

    2018-02-01

    Full Text Available Urbanization changes natural pervious surfaces to hard, impervious surfaces such as roads, buildings and roofs. These modifications significantly affect the natural hydrologic cycle by increasing stormwater runoff rates and volume. Under these circumstances, green roofs offer multiple benefits including on-site stormwater management that mimics the natural hydrologic conditions in an urban area. It can retain a large amount of rainwater for a longer time and delay the peak discharge. However, there is very limited research that has been carried out on the retrofitted green roof for stormwater management for South Korean conditions. This study has investigated the performance of retrofitted green roofs for stormwater management in a highly urbanized area of Seoul, the capital city of Korea. In this study, various storm events were monitored and the research results were analyzed to check the performance of the green roof with controlling the runoff in urban areas. Results also allowed us to conclude that the retention mainly depends on the intensity and duration of the rain events. From the analysis, average runoff retention on the green roof was 10% to 60% in different rain events. The application of an extensive green roof provides promising results for stormwater management in the highly urbanized area of Seoul.

  12. Differential substrate subsidence of the EnviHUT project pitched extensive green roof

    Directory of Open Access Journals (Sweden)

    Nečadová Klára

    2017-01-01

    Full Text Available In primary phase of testing building physical characteristics of the EnviHUT project extensive and semi-intensive roofs with 30° inclination occurred exceptional substrate subsidence. An extensive testing field with retaining geocell-system evinced differential subsidence of individual sectors after six months. Measured subsidence of installed substrate reached 40 % subsidence compared to originally designed height (intended layer thickness. Subsequent deformation of geocell-system additionally caused partial slide of substrate to drip edge area. These slides also influenced initial development of stonecrop plants on its surface. Except functional shortages the aesthetical function of the whole construction is influenced by the mentioned problem. The stated paper solves mentioned issues in view of installation method optimization, selection and modification of used roof substrate and in view of modification of geometric and building installed elements retaining system arrangement. Careful adjustment of roof system geometry and enrichment of original substrate fraction allow full functionality from pitched extensive green roof setting up. The modification scheme and its substantiation is a part of this technical study output.

  13. Green roof rainfall-runoff modelling: is the comparison between conceptual and physically based approaches relevant?

    Science.gov (United States)

    Versini, Pierre-Antoine; Tchiguirinskaia, Ioulia; Schertzer, Daniel

    2017-04-01

    Green roofs are commonly considered as efficient tools to mitigate urban runoff as they can store precipitation, and consequently provide retention and detention performances. Designed as a compromise between water holding capacity, weight and hydraulic conductivity, their substrate is usually an artificial media differentiating significantly from a traditional soil. In order to assess green roofs hydrological performances, many models have been developed. Classified into two categories (conceptual and physically based), they are usually applied to reproduce the discharge of a particular monitored green roof considered as homogeneous. Although the resulted simulations could be satisfactory, the question of robustness and consistency of the calibrated parameters is often not addressed. Here, a modeling framework has been developed to assess the efficiency and the robustness of both modelling approaches (conceptual and physically based) in reproducing green roof hydrological behaviour. SWMM and VS2DT models have been used for this purpose. This work also benefits from an experimental setup where several green roofs differentiated by their substrate thickness and vegetation cover are monitored. Based on the data collected for several rainfall events, it has been studied how the calibrated parameters are effectively linked to their physical properties and how they can vary from one green roof configuration to another. Although both models reproduce correctly the observed discharges in most of the cases, their calibrated parameters exhibit a high inconsistency. For a same green roof configuration, these parameters can vary significantly from one rainfall event to another, even if they are supposed to be linked to the green roof characteristics (roughness, residual moisture content for instance). They can also be different from one green roof configuration to another although the implemented substrate is the same. Finally, it appears very difficult to find any

  14. Energy and Economic Evaluation of Green Roofs for Residential Buildings in Hot-Humid Climates

    OpenAIRE

    Abubakar S. Mahmoud; Muhammad Asif; Mohammad A. Hassanain; Mohammad O. Babsail; Muizz O. Sanni-Anibire

    2017-01-01

    Green roofs may be considered a passive energy saving technology that also offer benefits like environmental friendliness and enhancement of aesthetic and architectural qualities of buildings. This paper examines the energy and economic viability of the green roof technology in the hot humid climate of Saudi Arabia by considering a modern four bedroom residential building in the city of Dhahran as a case study. The base case and green roof modelling of the selected building has been developed...

  15. Temporal variations in the potential hydrological performance of extensive green roof systems

    Science.gov (United States)

    De-Ville, Simon; Menon, Manoj; Stovin, Virginia

    2018-03-01

    Existing literature provides contradictory information about variation in potential green roof hydrological performance over time. This study has evaluated a long-term hydrological monitoring record from a series of extensive green roof test beds to identify long-term evolutions and sub-annual (seasonal) variations in potential hydrological performance. Monitoring of nine differently-configured extensive green roof test beds took place over a period of 6 years in Sheffield, UK. Long-term evolutions and sub-annual trends in maximum potential retention performance were identified through physical monitoring of substrate field capacity over time. An independent evaluation of temporal variations in detention performance was undertaken through the fitting of reservoir-routing model parameters. Aggregation of the resulting retention and detention variations permitted the prediction of extensive green roof hydrological performance in response to a 1-in-30-year 1-h summer design storm for Sheffield, UK, which facilitated the comparison of multi and sub-annual hydrological performance variations. Sub-annual (seasonal) variation was found to be significantly greater than long-term evolution. Potential retention performance increased by up to 12% after 5-years, whilst the maximum sub-annual variation in potential retention was 27%. For vegetated roof configurations, a 4% long-term improvement was observed for detention performance, compared to a maximum 63% sub-annual variation. Consistent long-term reductions in detention performance were observed in unvegetated roof configurations, with a non-standard expanded-clay substrate experiencing a 45% reduction in peak attenuation over 5-years. Conventional roof configurations exhibit stable long-term hydrological performance, but are nonetheless subject to sub-annual variation.

  16. The hydrological behaviour of extensive and intensive green roofs in a dry climate.

    Science.gov (United States)

    Razzaghmanesh, M; Beecham, S

    2014-11-15

    This paper presents the results of a hydrological investigation of four medium scale green roofs that were set up at the University of South Australia. In this study, the potential of green roofs as a source control device was investigated over a 2 year period using four medium size green roof beds comprised of two growth media types and two media depths. During the term of this study, 226 rainfall events were recorded and these were representative of the Adelaide climate. In general, there were no statistically significant differences between the rainfall and runoff parameters for the intensive and extensive beds except for peak attenuation and peak runoff delay, for which higher values were recorded in the intensive beds. Longer dry periods generally resulted in higher retention coefficients and higher retention was also recorded in warmer seasons. The average retention coefficient for intensive systems (89%) was higher than for extensive systems (74%). It was shown that rainfall depth, intensity, duration and also average dry weather period between events can change the retention performance and runoff volume of the green roofs. Comparison of green and simulated conventional roofs indicated that the former were able to mitigate the peak of runoff and could delay the start of runoff. These characteristics are important for most source control measures. The recorded rainfall and runoff data displayed a non-linear relationship. Also, the results indicated that continuous time series modelling would be a more appropriate technique than using peak rainfall intensity methods for green roof design and simulation. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. A green roof experimental site in the Mediterranean climate: the storm water quality issue.

    Science.gov (United States)

    Gnecco, Ilaria; Palla, Anna; Lanza, Luca G; La Barbera, Paolo

    2013-01-01

    Since 2007, the University of Genoa has been carrying out a monitoring programme to investigate the hydrologic response of green roofs in the Mediterranean climate by installing a green roof experimental site. In order to assess the influence of green roofs on the storm water runoff quality, water chemistry data have been included in the monitoring programme since 2010, providing rainfall and outflow data. For atmospheric source, the bulk deposition is collected to evaluate the role of the overall atmospheric deposition in storm water runoff quality. For subsurface outflow, a maximum of 24 composite samples are taken on an event basis, thus aiming at a full characterization of the outflow hydrograph. Water chemistry data reveal that the pollutant loads associated with green roof outflow is low; in particular, solids and metal concentrations are lower than values generally observed in storm water runoff from traditional rooftops. The concentration values of chemical oxygen demand, total dissolved solids, Fe, Ca and K measured in the subsurface outflow are significantly higher than those observed in the bulk deposition (p green roof behaviour as a sink/source of pollutants is investigated based on both concentration and mass.

  18. Effectiveness of foam-based and traditional green roofs in reducing nitrogen, phosphorus, organic carbon and suspended solids in urban installations

    Science.gov (United States)

    MacAvoy, S. E.; Mucha, S.; Williamson, G.

    2017-12-01

    While green roofs have well understood benefits for retaining runoff, there is less of a consensus regarding the potential for retaining and absorbing nutrients or suspended solids from roof runoff that would otherwise travel to waterways. Additionally, there are numerous designs, materials and maintenance plans associated with "green" roofs/surfaces that may greatly impact not only their hydrological benefit but also their pollution mitigation potential. Here we examine the NO3, NH4, total organic carbon (TOC), total phosphorus (TP) and total suspended solids (TSS) retention potential from planted and unplanted foam roofs and traditional soil roofs. Direct precipitation, untreated runoff and throughflow from the different roof types were collected for 3 to 11 rain events over a year (depending on roof). Unplanted and traditional roofs reduced TSS by 80% or better relative to runoff. Traditional roofs showed 50% lower TP than runoff or other roof types. TOC was higher than direct precipitation for all treatments, although there were no differences among the treatments themselves. Taken as averages over the 11 events, NO3 and NH4 concentrations were highly variable for runoff and treatments and significant differences were not detected. Preliminary analysis suggests there were no differences between performance of traditional versus foam-based roofs, although a greater sample size is required to be definitive.

  19. Structural changes of green roof growing substrate layer studied by X-ray CT

    Science.gov (United States)

    Jelinkova, Vladimira; Sacha, Jan; Dohnal, Michal; Snehota, Michal

    2017-04-01

    Increasing interest in green infrastructure linked with newly implemented legislation/rules/laws worldwide opens up research potential for field of soil hydrology. A better understanding of function of engineered soils involved in green infrastructure solutions such as green roofs or rain garden is needed. A soil layer is considered as a highly significant component of the aforesaid systems. In comparison with a natural soil, the engineered soil is assumed to be the more challenging case due to rapid structure changes early stages after its build-up. The green infrastructure efficiency depends on the physical and chemical properties of the soil, which are, in the case of engineered soils, a function of its initial composition and subsequent soil formation processes. The project presented in this paper is focused on fundamental processes in the relatively thick layer of engineered soil. The initial structure development, during which the pore geometry is altered by the growth of plant roots, water influx, solid particles translocation and other soil formation processes, is investigated with the help of noninvasive imaging technique  X-ray computed tomography. The soil development has been studied on undisturbed soil samples taken periodically from green roof test system during early stages of its life cycle. Two approaches and sample sizes were employed. In the first approach, undisturbed samples (volume of about 63 cm3) were taken each time from the test site and scanned by X-ray CT. In the second approach, samples (volume of about 630 cm3) were permanently installed at the test site and has been repeatedly removed to perform X-ray CT imaging. CT-derived macroporosity profiles reveal significant temporal changes of soil structure. Clogging of pores by fine particles and fissures development are two most significant changes that would affect the green roof system efficiency. This work has been supported by the Ministry of Education, Youth and Sports within

  20. A modelling study of long term green roof retention performance.

    Science.gov (United States)

    Stovin, Virginia; Poë, Simon; Berretta, Christian

    2013-12-15

    This paper outlines the development of a conceptual hydrological flux model for the long term continuous simulation of runoff and drought risk for green roof systems. A green roof's retention capacity depends upon its physical configuration, but it is also strongly influenced by local climatic controls, including the rainfall characteristics and the restoration of retention capacity associated with evapotranspiration during dry weather periods. The model includes a function that links evapotranspiration rates to substrate moisture content, and is validated against observed runoff data. The model's application to typical extensive green roof configurations is demonstrated with reference to four UK locations characterised by contrasting climatic regimes, using 30-year rainfall time-series inputs at hourly simulation time steps. It is shown that retention performance is dependent upon local climatic conditions. Volumetric retention ranges from 0.19 (cool, wet climate) to 0.59 (warm, dry climate). Per event retention is also considered, and it is demonstrated that retention performance decreases significantly when high return period events are considered in isolation. For example, in Sheffield the median per-event retention is 1.00 (many small events), but the median retention for events exceeding a 1 in 1 yr return period threshold is only 0.10. The simulation tool also provides useful information about the likelihood of drought periods, for which irrigation may be required. A sensitivity study suggests that green roofs with reduced moisture-holding capacity and/or low evapotranspiration rates will tend to offer reduced levels of retention, whilst high moisture-holding capacity and low evapotranspiration rates offer the strongest drought resistance. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. A Mass Balance Model for Designing Green Roof Systems that Incorporate a Cistern for Re-Use

    Directory of Open Access Journals (Sweden)

    Manoj Chopra

    2012-11-01

    Full Text Available Green roofs, which have been used for several decades in many parts of the world, offer a unique and sustainable approach to stormwater management. Within this paper, evidence is presented on water retention for an irrigated green roof system. The presented green roof design results in a water retention volume on site. A first principle mass balance computer model is introduced to assist with the design of these green roof systems which incorporate a cistern to capture and reuse runoff waters for irrigation of the green roof. The model is used to estimate yearly stormwater retention volume for different cistern storage volumes. Additionally, the Blaney and Criddle equation is evaluated for estimation of monthly evapotranspiration rates for irrigated systems and incorporated into the model. This is done so evapotranspiration rates can be calculated for regions where historical data does not exist, allowing the model to be used anywhere historical weather data are available. This model is developed and discussed within this paper as well as compared to experimental results.

  2. Cement blocks with EVA waste for extensive modular green roof: contribution of the components for thermal insulation

    Directory of Open Access Journals (Sweden)

    A. B. DE MELO

    Full Text Available Abstract Green roofs can contribute in many ways to the quality of the environment, being known for reducing the heat transfer to the interior of the buildings. Amongst the available techniques for the execution of this type of covering, the use of light cement blocks which are compatible with the system of extensive modular green roofs is proposed. For the light cement blocks, produced with EVA aggregates (waste from the footwear industry, an additional contribution in the capacity of thermal insulation of the proposed green roof is expected. In the present article, the demonstration of such contribution is intended through measurements carried out in prototypes in hot and humid climates. After characterizing the capacity of thermal insulation of the proposed green roof, with different types of conventional covering as a reference, an additional contribution of the component used in this green roof was identified by making comparisons with measurements collected from another green roof, executed with cement blocks without the presence of the EVA aggregates. In the experiments, external and internal surface temperatures were measured in each of the prototypes' coverings, as well as the air temperatures in the internal and external environments. From the analysis of the data for a typical summer day, it was possible to prove that the proposed green roof presented the lowest temperature ranges, considering the internal air and surface temperatures. The presence of the EVA aggregates in the proposed blocks contributed to the decrease of the internal temperatures.

  3. Surface energy balance of an extensive green roof as quantified by full year eddy-covariance measurements.

    Science.gov (United States)

    Heusinger, Jannik; Weber, Stephan

    2017-01-15

    Green roofs are discussed as a promising type of green infrastructure to lower heat stress in cities. In order to enhance evaporative cooling, green roofs should ideally have similar Bowen ratio (β=sensible heat flux/latent heat flux) characteristics such as rural sites, especially during summer periods with high air temperatures. We use the eddy-covariance (EC) method to quantify the energy balance of an 8600m 2 extensive, non-irrigated green roof at the Berlin Brandenburg Airport, Germany over a full annual cycle. To understand the influence of water availability on green roof-atmosphere energy exchange, we studied dry and wet periods and looked into functional relationships between leaf area, volumetric water content (VWC) of the substrate, shortwave radiation and β. The surface energy balance was dominated by turbulent heat fluxes in comparison to conductive substrate heat fluxes. The Bowen ratio was slightly below unity on average but highly variable due to ambient meteorology and substrate water availability, i.e. β increased to 2 in the summer season. During dry periods mean daytime β was 3, which is comparable to typical values of urban instead of rural sites. In contrast, mean daytime β was 0.3 during wet periods. Following a summer wet period the green roof maximum daily evapotranspiration (ET) was 3.3mm, which is a threefold increase with respect to the mean summer ET. A multiple regression model indicated that the substrate VWC at the present site has to be >0.11m 3 m -3 during summer high insolation periods (>500Wm -2 ) in order to maintain favourable green roof energy partitioning, i.e. mid-day βurban green roofs can be significantly optimised by using sustainable irrigation approaches. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Applications of Extensive Green-roof Systems in Contributing to Sustainable Development in Densely Populated Cities: a Hong Kong Study

    Directory of Open Access Journals (Sweden)

    Xiaoling Zhang

    2011-03-01

    Full Text Available Developed cities such as Hong Kong are usually densely populated. Since the land is limited, high-rise buildings are constructed. When the building height becomes higher, air flow is reduced and heat is trapped among high-rise buildings. Air temperature will be greatly increased and air pollution becomes a serious problem. This creates a walled building problem. To reduce air temperature caused by the wall-effects, various methods have been developed in the previous studies. One typical method is the use of green roof systems. The application of extensive green roofs on the existing building rooftops has been recommended in Hong Kong since 2001. The advantage of this practice is that no additional floor area is required and it can also improve urban greenery. Although a green roof system has been introduced and adopted in Hong Kong since 2001, the emphasis is mainly given to the application of intensive green roofs for podium garden instead of extensive green roofs. It is considered valuable and necessary of the extensive green roofs for the buildings. This paper investigates the current practice of using extensive green roofs in Hong Kong. The constraints in applying extensive green roofs are investigated, which leads to studying the solutions for mitigating these constraints and improving the future development of the implementation.

  5. Do vegetated rooftops attract more mosquitoes? Monitoring disease vector abundance on urban green roofs.

    Science.gov (United States)

    Wong, Gwendolyn K L; Jim, C Y

    2016-12-15

    Green roof, an increasingly common constituent of urban green infrastructure, can provide multiple ecosystem services and mitigate climate-change and urban-heat-island challenges. Its adoption has been beset by a longstanding preconception of attracting urban pests like mosquitoes. As more cities may become vulnerable to emerging and re-emerging mosquito-borne infectious diseases, the knowledge gap needs to be filled. This study gauges the habitat preference of vector mosquitoes for extensive green roofs vis-à-vis positive and negative control sites in an urban setting. Seven sites in a university campus were selected to represent three experimental treatments: green roofs (GR), ground-level blue-green spaces as positive controls (PC), and bare roofs as negative controls (NC). Mosquito-trapping devices were deployed for a year from March 2015 to 2016. Human-biting mosquito species known to transmit infectious diseases in the region were identified and recorded as target species. Generalized linear models evaluated the effects of site type, season, and weather on vector-mosquito abundance. Our model revealed site type as a significant predictor of vector mosquito abundance, with considerably more vector mosquitoes captured in PC than in GR and NC. Vector abundance was higher in NC than in GR, attributed to the occasional presence of water pools in depressions of roofing membrane after rainfall. Our data also demonstrated seasonal differences in abundance. Weather variables were evaluated to assess human-vector contact risks under different weather conditions. Culex quinquefasciatus, a competent vector of diseases including lymphatic filariasis and West Nile fever, could be the most adaptable species. Our analysis demonstrates that green roofs are not particularly preferred by local vector mosquitoes compared to bare roofs and other urban spaces in a humid subtropical setting. The findings call for a better understanding of vector ecology in diverse urban landscapes

  6. ANALYSIS OF WATER RELATIONS OF SUBSTRATES USED IN GREEN ROOF SYSTEMS

    Directory of Open Access Journals (Sweden)

    Anna Baryła

    2014-10-01

    Full Text Available Green roofs, as the restoration of biologically active area, are fairly common and effective method of storm water management in urban areas. Depend on the design of the green roof and the type of substrate, they are able to retain 50–90% of rainwater. The aim of the study was to determine the physicochemical properties of two substrates used in the construction of green roofs (intensive and extensive. Water retention of substrates was compared to water retention of substrates undelined with the drainage layer made from crushed autoclaved aerated concrete. In the experiment, which uses drainage layer, higher drying the top layer of the substrate was observed, which may be related to high water absorption drainage material. The effluent from the substrate using aerated concrete as a drainage layer amounted to an average of 22–51% of the volume of water supplied to the extensive substrate, whereas 19–46% of the volume of water supplied to the intensive substrate. The effluent from the substrate without the drainage layer amounted 40-48% of the volume of water supplied.

  7. Advantages of a Vertical High-Resolution Distributed-Temperature-Sensing System Used to Evaluate the Thermal Behavior of Green Roofs

    Science.gov (United States)

    Hausner, M. B.; Suarez, F. I.; Cousiño, J. A.; Victorero, F.; Bonilla, C. A.; Gironas, J. A.; Vera, S.; Bustamante, W.; Rojas, V.; Leiva, E.; Pasten, P.

    2015-12-01

    Technological innovations used for sustainable urban development, green roofs offer a range of benefits, including reduced heat island effect, rooftop runoff, roof surface temperatures, energy consumption, and noise levels inside buildings, as well as increased urban biodiversity. Green roofs feature layered construction, with the most important layers being the vegetation and the substrate layers located above the traditional roof. These layers provide both insulation and warm season cooling by latent heat flux, reducing the thermal load to the building. To understand and improve the processes driving this thermal energy reduction, it is important to observe the thermal dynamics of a green roof at the appropriate spatial and temporal scales. Traditionally, to observe the thermal behavior of green roofs, a series of thermocouples have been installed at discrete depths within the layers of the roof. Here, we present a vertical high-resolution distributed-temperature-sensing (DTS) system installed in different green roof modules of the Laboratory of Vegetated Infrastructure for Buildings (LIVE -its acronym in Spanish) of the Pontifical Catholic University of Chile. This DTS system allows near-continuous measurement of the thermal profile at spatial and temporal resolutions of approximately 1 cm and 30 s, respectively. In this investigation, the temperature observations from the DTS system are compared with the measurements of a series of thermocouples installed in the green roofs. This comparison makes it possible to assess the value of thermal observations at better spatial and temporal resolutions. We show that the errors associated with lower resolution observations (i.e., from the thermocouples) are propagated in the calculations of the heat fluxes through the different layers of the green roof. Our results highlight the value of having a vertical high-resolution DTS system to observe the thermal dynamics in green roofs.

  8. Water retention and evapotranspiration of green roofs and possible natural vegetation types

    NARCIS (Netherlands)

    Metselaar, K.

    2012-01-01

    Matching vegetation to growing conditions on green roofs is one of the options to increase biodiversity in cities. A hydrological model has been applied to match the hydrological requirements of natural vegetation types to roof substrate parameters and to simulate moisture stress for specific

  9. A novel solar multifunctional PV/T/D system for green building roofs

    International Nuclear Information System (INIS)

    Feng, Chaoqing; Zheng, Hongfei; Wang, Rui; Yu, Xu; Su, Yuehong

    2015-01-01

    Highlights: • A novel transparent roof combines the solar PV/T/D system with green building design. • Novel photovoltaic-thermal roofing design can achieve excellent light control at noon. • The roof has no obvious influence on indoor light intensity in morning and afternoon. • Higher efficiency of solar energy utilization could be achieved with new roofing. - Abstract: A novel transparent roof which is made of solid CPC (Compound Parabolic Concentrator) PV/T/D (Photovoltaic/Thermal/Day lighting) system is presented. It combines the solar PV/T/D system with green building design. The PV/T/D system can achieve excellent light control at noon and adjust the thermal environment in the building, such that high efficiency utilization of solar energy could be achieved in modern architecture. This kind of roof can increase the visual comfort for building occupants; it can also avoid the building interior from overheating and dazzling at noon which is caused by direct sunlight through transparent roof. Optical simulation software is used to track the light path in different incidence angles. CFD (Computational Fluid Dynamics) simulation and steady state experiment have been taken to investigate the thermal characteristic of PV/T/D device. Finally, the PV/T/D experimental system was built; and the PV efficiency, light transmittance and air heating power of the system are tested under real sky conditions

  10. The Perception of Malaysian Architects towards the Implementation of Green Roofs: A Review of Practices, Methodologies and Future Research

    Directory of Open Access Journals (Sweden)

    Zahir M.H. Md.

    2014-01-01

    Full Text Available The implementation of green roofs or vegetated roof as a sustainable tool to mitigate the Urban Heat Island effect is relatively new in Malaysia. Although it has not been tested on an urban scale, many research findings have indicated that green roofs can contribute towards enhancing the environmental and aesthetical quality of the built environment. It was hypothesized that the low application of green roofs in the Malaysian construction industry is due to the lack of awareness, understanding and experience in its benefits especially among building practitioners. As a result, this research was initiated to determine the perception and understanding of Malaysian architects in green roofs implementation issues, as well as to identify their level of acceptance and readiness. This paper reviews practices and different research approaches in understanding the factors that influence architect’s perception towards the implementation of green roofs in the Malaysian construction industry. Architects were chosen as the only respondents due to their intensive involvement in the conceptualisation, planning, design and construction stage of a built environment project. Extensive literature review was conducted to explore past experiences in green roof implementation and to develop the theoretical framework for this research.

  11. Contribution of green roofs and walls to ecosystem services of urban green

    NARCIS (Netherlands)

    Hop, M.E.C.M.; Hiemstra, J.A.

    2012-01-01

    This paper reports a literature review of the large-scale ecosystem services (ESS) which green roofs and walls can provide for cities. A short overview of 17 ESS’s is given. Much research has been done on ESS’s meeting immediate physical human needs and providing long-term physical and socioeconomic

  12. The Hydrological Performance of Lightweight Green Roofs Made From Recycled Waste Materials As the Drainage Layer

    Directory of Open Access Journals (Sweden)

    Afizah Asman Nurul Shahadahtul

    2017-01-01

    Full Text Available Green roofs can be used for promoting infiltration and provide temporary storage spaces. Hence, in urban stormwater structural design, the investigation of the hydrological performance investigation is often required. Thus, this paper presents the results of a hydrological investigation in term of peak flow reduction and green roof’s weight using 0, 2, and 6% slope for three specimens drainage layer in green roofs. Three types of recycled waste are selected for each test bed which is rubber crumbs, palm oil shell, and polyfoam. Another test bed without a drainage layer as a control. The result indicates that rubber crumbs can be used as a stormwater control and runoff reduction while ensuring a good drainage and aeration of the substrate and roofs. From the results obtained shows that rubber crumbs are suitable as a drainage layer and a proposed slope of 6% are suitable for lightweight green roofs.

  13. Water quantity and quality response of a green roof to storm events: Experimental and monitoring observations.

    Science.gov (United States)

    Carpenter, Corey M G; Todorov, Dimitar; Driscoll, Charles T; Montesdeoca, Mario

    2016-11-01

    Syracuse, New York is working under a court-ordered agreement to limit combined sewer overflows (CSO) to local surface waters. Green infrastructure technologies, including green roofs, are being implemented as part of a CSO abatement strategy and to develop co-benefits of diminished stormwater runoff, including decreased loading of contaminants to the wastewater system and surface waters. The objective of this study was to examine the quantity and quality of discharge associated with precipitation events over an annual cycle from a green roof in Syracuse, NY and to compare measurements from this monitoring program with results from a roof irrigation experiment. Wet deposition, roof drainage, and water quality were measured for 87 storm events during an approximately 12 month period over 2011-2012. Water and nutrient (total phosphorus, total nitrogen, and dissolved organic carbon) mass balances were conducted on an event basis to evaluate retention annually and during the growing and non-growing seasons. These results are compared with a hydrological manipulation experiment, which comprised of artificially watering of the roof. Loadings of nutrients were calculated for experimental and actual storms using the concentration of nutrients and the flow data of water discharging the roof. The green roof was effective in retaining precipitation quantity from storm events (mean percent retention 96.8%, SD = 2.7%, n = 87), although the relative fraction of water retained decreased with increases in the size of the event. There was no difference in water retention of the green roof for the growing and non-growing seasons. Drainage waters exhibited high concentration of nutrients during the warm temperature growing season, particularly total nitrogen and dissolved organic carbon. Overall, nutrient losses were low because of the strong retention of water. However, there was marked variation in the retention of nutrients by season due to variations in concentrations in roof

  14. Green roof seasonal variation: comparison of the hydrologic behavior of a thick and a thin extensive system in New York City

    Science.gov (United States)

    Elliott, R. M.; Gibson, R. A.; Carson, T. B.; Marasco, D. E.; Culligan, P. J.; McGillis, W. R.

    2016-07-01

    Green roofs have been utilized for urban stormwater management due to their ability to capture rainwater locally. Studies of the most common type, extensive green roofs, have demonstrated that green roofs can retain significant amounts of stormwater, but have also shown variation in seasonal performance. The purpose of this study is to determine how time of year impacts the hydrologic performance of extensive green roofs considering the covariates of antecedent dry weather period (ADWP), potential evapotranspiration (ET0) and storm event size. To do this, nearly four years of monitoring data from two full-scale extensive green roofs (with differing substrate depths of 100 mm and 31 mm) are analyzed. The annual performance is then modeled using a common empirical relationship between rainfall and green roof runoff, with the addition of Julian day in one approach, ET0 in another, and both ADWP and ET0 in a third approach. Together the monitoring and modeling results confirm that stormwater retention is highest in warmer months, the green roofs retain more rainfall with longer ADWPs, and the seasonal variations in behavior are more pronounced for the roof with the thinner media than the roof with the deeper media. Overall, the ability of seasonal accounting to improve stormwater retention modeling is demonstrated; modification of the empirical model to include ADWP, and ET0 improves the model R 2 from 0.944 to 0.975 for the thinner roof, and from 0.866 to 0.870 for the deeper roof. Furthermore, estimating the runoff with the empirical approach was shown to be more accurate then using a water balance model, with model R 2 of 0.944 and 0.866 compared to 0.975 and 0.866 for the thinner and deeper roof, respectively. This finding is attributed to the difficulty of accurately parameterizing the water balance model.

  15. Simulation of green roof runoff under different substrate depths and vegetation covers by coupling a simple conceptual and a physically based hydrological model.

    Science.gov (United States)

    Soulis, Konstantinos X; Valiantzas, John D; Ntoulas, Nikolaos; Kargas, George; Nektarios, Panayiotis A

    2017-09-15

    In spite of the well-known green roof benefits, their widespread adoption in the management practices of urban drainage systems requires the use of adequate analytical and modelling tools. In the current study, green roof runoff modeling was accomplished by developing, testing, and jointly using a simple conceptual model and a physically based numerical simulation model utilizing HYDRUS-1D software. The use of such an approach combines the advantages of the conceptual model, namely simplicity, low computational requirements, and ability to be easily integrated in decision support tools with the capacity of the physically based simulation model to be easily transferred in conditions and locations other than those used for calibrating and validating it. The proposed approach was evaluated with an experimental dataset that included various green roof covers (either succulent plants - Sedum sediforme, or xerophytic plants - Origanum onites, or bare substrate without any vegetation) and two substrate depths (either 8 cm or 16 cm). Both the physically based and the conceptual models matched very closely the observed hydrographs. In general, the conceptual model performed better than the physically based simulation model but the overall performance of both models was sufficient in most cases as it is revealed by the Nash-Sutcliffe Efficiency index which was generally greater than 0.70. Finally, it was showcased how a physically based and a simple conceptual model can be jointly used to allow the use of the simple conceptual model for a wider set of conditions than the available experimental data and in order to support green roof design. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Design and Development of Low P-Emission Substrate for the Protection of Urban Water Bodies Collecting Green Roof Runoff

    Directory of Open Access Journals (Sweden)

    Agnieszka Karczmarczyk

    2017-10-01

    Full Text Available Urbanization leads to higher phosphorus (P concentration in urban catchments. Among different stormwater retention measures, green roofs are the least efficient in phosphorus retention. Moreover, much research has shown that green roofs act as sources of phosphorus, and they can emit P in significant loads. In this study low P emission green roof substrate was developed based on the proposed step by step procedure for the selection of materials including laboratory tests, column experiments, and the monitoring of the open air green roof model. Developed substrate is the mixture of crushed red brick (35% of volume, crushed limestone (20% of volume, and sand (45% of volume, and is characterized by a bulk density of 1.52 g/cm3, water permeability of 9 mm/min, water capacity of 24.6% of volume, and granulometric composition that meets the Landscaping and Landscape Development Research Society (FLL guidelines. Limestone was added to limit the potential P leaching from crushed red brick and vegetated mate consisted of Sedum album, Sedum acre, Sedum kamtschaticum, Sedum spurium, Sedum reflexum, Sedum sexangulare, Dianthus deltoides, Dianthus carthusianorum, and Thymus vulgaris. The open air model experiment was run for 319 days, from March 2015 to February 2016. The total water runoff from the green roof model amounted to 43.3% of runoff from the reference roof. The only one runoff event polluted with phosphorus was connected with the outflow of melted snow from an unfreezing green roof model.

  17. Trends in the design, construction and operation of green roofs to improve the rainwater quality. State of the art

    Directory of Open Access Journals (Sweden)

    Jair Andrés Morales Mojica

    2017-07-01

    Full Text Available The green roofs appear as technology for the improvement water quality. This article identifies trends in the conditions of design, construction and operation of green roofs, which aim is to improve the quality of rainwater. A literature review was carried out in order to collect 45 original research papers from databases as Scopus, Science Direct, and Redalyc. From the information collected trends in increments and reductions in the concentrations of the main water quality parameters, seasons of the year with the best results, types of green roofs , types of substrate and most common components, construction trends (dimensions, inclination, Materials and layers and vegetation used in these systems have been determined. The results show that green roofs have the ability to neutralize acid rain. Extensive type roofs are the ones most commonly used, due to its characteristics of construction, functionality and low maintenance requirements.

  18. Optimal location selection for the installation of urban green roofs considering honeybee habitats along with socio-economic and environmental effects.

    Science.gov (United States)

    Gwak, Jae Ha; Lee, Bo Kyeong; Lee, Won Kyung; Sohn, So Young

    2017-03-15

    This study proposes a new framework for the selection of optimal locations for green roofs to achieve a sustainable urban ecosystem. The proposed framework selects building sites that can maximize the benefits of green roofs, based not only on the socio-economic and environmental benefits to urban residents, but also on the provision of urban foraging sites for honeybees. The framework comprises three steps. First, building candidates for green roofs are selected considering the building type. Second, the selected building candidates are ranked in terms of their expected socio-economic and environmental effects. The benefits of green roofs are improved energy efficiency and air quality, reduction of urban flood risk and infrastructure improvement costs, reuse of storm water, and creation of space for education and leisure. Furthermore, the estimated cost of installing green roofs is also considered. We employ spatial data to determine the expected effects of green roofs on each building unit, because the benefits and costs may vary depending on the location of the building. This is due to the heterogeneous spatial conditions. In the third step, the final building sites are proposed by solving the maximal covering location problem (MCLP) to determine the optimal locations for green roofs as urban honeybee foraging sites. As an illustrative example, we apply the proposed framework in Seoul, Korea. This new framework is expected to contribute to sustainable urban ecosystems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Green roofs: A possible best management practice for enhancing ...

    African Journals Online (AJOL)

    City expansion typically erodes the natural ability of the locale to perform its ecosystem services. This paper discusses green roofs and their potential benefits for Ghanaian cities in terms of improving environmental quality. Limited analysis shows that daily minimum temperatures of cities like Accra are rising faster than the ...

  20. Hyperspectral Monitoring of Green Roof Vegetation Health State in Sub-Mediterranean Climate: Preliminary Results.

    Science.gov (United States)

    Piro, Patrizia; Porti, Michele; Veltri, Simone; Lupo, Emanuela; Moroni, Monica

    2017-03-23

    In urban and industrial environments, the constant increase of impermeable surfaces has produced drastic changes in the natural hydrological cycle. Decreasing green areas not only produce negative effects from a hydrological-hydraulic perspective, but also from an energy point of view, modifying the urban microclimate and generating, as shown in the literature, heat islands in our cities. In this context, green infrastructures may represent an environmental compensation action that can be used to re-equilibrate the hydrological and energy balance and reduce the impact of pollutant load on receiving water bodies. To ensure that a green infrastructure will work properly, vegetated areas have to be continuously monitored to verify their health state. This paper presents a ground spectroscopy monitoring survey of a green roof installed at the University of Calabria fulfilled via the acquisition and analysis of hyperspectral data. This study is part of a larger research project financed by European Structural funds aimed at understanding the influence of green roofs on rainwater management and energy consumption for air conditioning in the Mediterranean area. Reflectance values were acquired with a field-portable spectroradiometer that operates in the range of wavelengths 350-2500 nm. The survey was carried out during the time period November 2014-June 2015 and data were acquired weekly. Climatic, thermo-physical, hydrological and hydraulic quantities were acquired as well and related to spectral data. Broadband and narrowband spectral indices, related to chlorophyll content and to chlorophyll-carotenoid ratio, were computed. The two narrowband indices NDVI 705 and SIPI turned out to be the most representative indices to detect the plant health status.

  1. THE INFLUENCE THE EXTENSIVE GREEN ROOFS ON THE OUTFLOW RAINWATER TO THE SEWAGE SYSTEM

    Directory of Open Access Journals (Sweden)

    Maciej Mrowiec

    2015-10-01

    Full Text Available In times of rapid urbanization and climate change has drawn more attention to stormwater runoff to sewer systems. The phenomenon of flooding in urban areas have become increasingly common as a result of heavy rains. Sewage systems in such a short time are not able to accept such a large amount of rainwater flowing on the site, which we experience the phenomenon of rainfall flowing down the street in excessive amounts. The problem of such phenomena can be solved by the development of green roof technology. Even in its simplest form that extensive green roof is able to delay outflow, and store in its entirety falling falls on the area. Everything depends on the layers and the size of the roof. The research study presented at two mini green roof, an area of 1.44 m2. Both cases have different layers. One of them has a layer of non-woven filter layer, the substrate and vegetation. The second station is built of layers of drainage, filter layer, a layer of substrate and vegetation. For experimental purposes a rain shower were used for testing, which allows to calibrate the right amount of water at a specified time. In the research of precipitation 10, 15 and 20-minute tested. On the bench number 1 a reduction in the range of 48.9 to 97.5% was achieved. The second experiment stand showed a higher retention capacity ranged from 74.5 to 94.7%. We concluded that the use of extensive green roofs in cities can help reduce storm water runoff from impervious surfaces.

  2. Green Roof Research through EPA's Regional Applied Research Effort - slides

    Science.gov (United States)

    The U.S. Environmental Protection Agency’s (EPA) Regional Applied Research Effort (RARE) allows the Regions of the EPA to choose research projects to be performed in partnership with EPA’s Office of Research and Development (ORD). Over the last decade, several green roof projects...

  3. Quality and seasonal variation of rainwater harvested from concrete, asphalt, ceramic tile and green roofs in Chongqing, China.

    Science.gov (United States)

    Zhang, Qianqian; Wang, Xiaoke; Hou, Peiqiang; Wan, Wuxing; Li, Ruida; Ren, Yufen; Ouyang, Zhiyun

    2014-01-01

    There is an urgent requirement to examine the quality of harvested rainwater for potable and non-potable purposes, based on the type of roofing material. In this study, we examined the effect on the quality of harvested rainwater of conventional roofing materials (concrete, asphalt and ceramic tile roofs) compared with alternative roofing materials (green roof). The results showed that the ceramic tile roof was the most suitable for rainwater-harvesting applications because of the lower concentrations of leachable pollutants. However, in this study, the green roof was not suitable for rainwater harvesting applications. In addition, seasonal trends in water quality parameters showed that pollutants in roof runoff in summer and autumn were lower than those in winter and spring. This study revealed that the quality of harvested rainwater was significantly affected by the roofing material; therefore, local government and urban planners should develop stricter testing programs and produce more weathering resistant roofing materials to allow the harvesting of rainwater for domestic and public uses. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Green-roof as a solution to solve stormwater management issues? Assessment on a long time period at the parcel scale

    Directory of Open Access Journals (Sweden)

    P.-A. Versini

    2014-09-01

    Full Text Available Experimental green-roof rainfall–runoff observations have shown a positive impact on stormwater management at the building scale; with a decrease in the peak discharge and a decrease in runoff volume. This efficiency of green-roofs varies from one rainfall event to another depending on precipitation characteristics and substrate antecedent conditions. Due to this variability, currently, green-roofs are rarely officially used as a regulation tool to manage stormwater. Indeed, regulation rules governing the connection to the stormwater network are usually based on absolute threshold values that always have to be respected: maximum areal flow-rate or minimum retention volume for example. In this context, the aim of this study is to illustrate how a green-roof could represent an alternative to solve stormwater management issues, if the regulation rules were further based on statistics. For this purpose, a modelling scheme has been established at the parcel scale to simulate the hydrological response of several roof configurations: impervious, strictly regulated (in terms of areal flow-rate or retention volume, and covered by different types of green-roof matter. Simulations were carried out on a long precipitation time period (23 years that included a large and heterogeneous set of hydrometeorological conditions. Results obtained for the different roof configurations were compared. Based on the return period of the rainfall event, the probability to respect some regulation rules (defined from real situations was assessed. They illustrate that green-roofs reduce stormwater runoff compared to an impervious roof surface and can guarantee the respect of the regulation rules in most of the cases. Moreover, their implementation can appear more realistic than that of other infrastructures strictly complying with regulations and demanding significant storage capacity.

  5. The green building envelope : Vertical greening

    NARCIS (Netherlands)

    Ottelé, M.

    2011-01-01

    Planting on roofs and façades is one of the most innovative and fastest developing fields of green technologies with respect to the built environment and horticulture. This thesis is focused on vertical greening of structures and to the multi-scale benefits of vegetation. Vertical green can improve

  6. Temperature Control & Comfort Level of Elementary School Building with Green Roof in New Taipei City, Taiwan

    OpenAIRE

    Ying-Ming Su; Mei-Shu Huang

    2015-01-01

    To mitigate the urban heat island effect has become a global issue when we are faced with the challenge of climate change. Through literature review, plant photosynthesis can reduce the carbon dioxide and mitigate the urban heat island effect to a degree. Because there are not enough open space and parks, green roof has become an important policy in Taiwan. We selected elementary school buildings in northern New Taipei City as research subjects since elementary schools ar...

  7. Modelling of green roof hydrological performance for urban drainage applications

    DEFF Research Database (Denmark)

    Locatelli, Luca; Mark, Ole; Mikkelsen, Peter Steen

    2014-01-01

    from 3 different extensive sedum roofs in Denmark. These data consist of high-resolution measurements of runoff, precipitation and atmospheric variables in the period 2010–2012. The hydrological response of green roofs was quantified based on statistical analysis of the results of a 22-year (1989...... return period. Annual runoff volumes were estimated to be 43–68% of the total precipitation. The peak time delay was found to greatly vary from 0 to more than 40 min depending on the type of event, and a general decrease in the time delay was observed for increasing rainfall intensities. Furthermore...

  8. A modelling study of the event-based retention performance of green roof under the hot-humid tropical climate in Kuching.

    Science.gov (United States)

    Chai, C T; Putuhena, F J; Selaman, O S

    2017-12-01

    The influences of climate on the retention capability of green roof have been widely discussed in existing literature. However, knowledge on how the retention capability of green roof is affected by the tropical climate is limited. This paper highlights the retention performance of the green roof situated in Kuching under hot-humid tropical climatic conditions. Using the green roof water balance modelling approach, this study simulated the hourly runoff generated from a virtual green roof from November 2012 to October 2013 based on past meteorological data. The result showed that the overall retention performance was satisfactory with a mean retention rate of 72.5% from 380 analysed rainfall events but reduced to 12.0% only for the events that potentially trigger the occurrence of flash flood. By performing the Spearman rank's correlation analysis, it was found that the rainfall depth and mean rainfall intensity, individually, had a strong negative correlation with event retention rate, suggesting that the retention rate increases with decreased rainfall depth. The expected direct relationship between retention rate and antecedent dry weather period was found to be event size dependent.

  9. Risk assessment by percolation leaching tests of extensive green roofs with fine fraction of mixed recycled aggregates from construction and demolition waste.

    Science.gov (United States)

    López-Uceda, Antonio; Galvín, Adela P; Ayuso, Jesús; Jiménez, José Ramón; Vanwalleghem, Tom; Peña, Adolfo

    2018-03-19

    Extensive green roofs are urban construction systems that provide thermal regulation and sound proofing for the buildings involved, in addition to providing an urban heat island mitigation or water retention. On the other hand, policies towards reduction of energy consumption, a circular economy and sustainability are core in the European Union. Motivated by this, an experimental study was carried out to evaluate the environmental risk assessment according to release levels of polluting elements on leachates of different green roof substrate mixtures based on recycled aggregates from construction and demolition waste through (i) the performance in laboratory of two procedures: compliance and percolation tests and (ii) an upscaled experimental leaching test for long-term on-site prediction. Four plots were built on a building roof and covered with autochthonous Mediterranean plants in Córdoba, South of Spain. As growing substrate, four mixtures were used of a commercial growing substrate with different proportions of a fine mixed recycled aggregate ranging from 0 to 75% by volume. The results show that these mixtures were classified as non-hazardous materials according to legal limits of the Landfill Directive 2003/33/CE. The release levels registered in extensive green roofs were lower compared to the laboratory test data. This shows how laboratory conditions can overestimate the potential pollutant effect of these materials compared to actual conditions.

  10. Habitat connectivity and local conditions shape taxonomic and functional diversity of arthropods on green roofs

    NARCIS (Netherlands)

    Braaker, Sonja; Obrist, Martin Karl; Ghazoul, Jaboury; Moretti, Marco

    2017-01-01

    Increasing development of urban environments creates high pressure on green spaces with potential negative impacts on biodiversity and ecosystem services. There is growing evidence that green roofs – rooftops covered with vegetation – can contribute mitigate the loss of urban green spaces by

  11. Temperature and snowfall trigger alpine vegetation green-up on the world's roof.

    Science.gov (United States)

    Chen, Xiaoqiu; An, Shuai; Inouye, David W; Schwartz, Mark D

    2015-10-01

    Rapid temperature increase and its impacts on alpine ecosystems in the Qinghai-Tibetan Plateau, the world's highest and largest plateau, are a matter of global concern. Satellite observations have revealed distinctly different trend changes and contradicting temperature responses of vegetation green-up dates, leading to broad debate about the Plateau's spring phenology and its climatic attribution. Large uncertainties in remote-sensing estimates of phenology significantly limit efforts to predict the impacts of climate change on vegetation growth and carbon balance in the Qinghai-Tibetan Plateau, which are further exacerbated by a lack of detailed ground observation calibration. Here, we revealed the spatiotemporal variations and climate drivers of ground-based herbaceous plant green-up dates using 72 green-up datasets for 22 herbaceous plant species at 23 phenological stations, and corresponding daily mean air temperature and daily precipitation data from 19 climate stations across eastern and southern parts of the Qinghai-Tibetan Plateau from 1981 to 2011. Results show that neither the continuously advancing trend from 1982 to 2011, nor a turning point in the mid to late 1990s as reported by remote-sensing studies can be verified by most of the green-up time series, and no robust evidence for a warmer winter-induced later green-up dates can be detected. Thus, chilling requirements may not be an important driver influencing green-up responses to spring warming. Moreover, temperature-only control of green-up dates appears mainly at stations with relatively scarce preseason snowfall and lower elevation, while coupled temperature and precipitation controls of green-up dates occur mostly at stations with relatively abundant preseason snowfall and higher elevation. The diversified interactions between snowfall and temperature during late winter to early spring likely determine the spatiotemporal variations of green-up dates. Therefore, prediction of vegetation growth

  12. Application of green blue roof to mitigate heat island phenomena and resilient to climate change in urban areas: A case study from Seoul, Korea

    OpenAIRE

    Shafique Muhammad; Kim Reeho

    2017-01-01

    Green blue roof has the potential to reduce the surface temperature of the building in the urban areas. Green blue roof is a new innovative low impact development (LID) practice that has exhibited an option to mitigate the heat island phenomena in urban area. This is the modified form of green roof that has ability to store rainwater in vegetation, soil layer and increases the evapotranspiration rate which decreases the temperature of an area. For this purpose, green blue roof is installed at...

  13. Component characterization and predictive modeling for green roof substrates optimized to adsorb P and improve runoff quality: A review.

    Science.gov (United States)

    Jennett, Tyson S; Zheng, Youbin

    2018-06-01

    This review is a synthesis of the current knowledge regarding the effects of green roof substrate components and their retentive capacity for nutrients, particularly phosphorus (P). Substrates may behave as either sources or sinks of P depending on the components they are formulated from, and to date, the total P-adsorbing capacity of a substrate has not been quantified as the sum of the contributions of its components. Few direct links have been established among substrate components and their physicochemical characteristics that would affect P-retention. A survey of recent literature presented herein highlights the trends within individual component selection (clays and clay-like material, organics, conventional soil and sands, lightweight inorganics, and industrial wastes and synthetics) for those most common during substrate formulation internationally. Component selection will vary with respect to ease of sourcing component materials, cost of components, nutrient-retention capacity, and environmental sustainability. However, the number of distinct components considered for inclusion in green roof substrates continues to expand, as the desires of growers, material suppliers, researchers and industry stakeholders are incorporated into decision-making. Furthermore, current attempts to characterize the most often used substrate components are also presented whereby runoff quality is correlated to entire substrate performance. With the use of well-described characterization (constant capacitance model) and modeling techniques (the soil assemblage model), it is proposed that substrates optimized for P adsorption may be developed through careful selection of components with prior knowledge of their chemical properties, that may increase retention of P in plant-available forms, thereby reducing green roof fertilizer requirements and P losses in roof runoff. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Vegetation growth parameters and leaf temperature: Experimental results from a six plots green roofs' system

    International Nuclear Information System (INIS)

    Ferrante, Patrizia; La Gennusa, Maria; Peri, Giorgia; Rizzo, Gianfranco; Scaccianoce, Gianluca

    2016-01-01

    The paper provides a contribution for populating database of three physical parameters needed to model energy performance of buildings with green roofs: “coverage ratio” (σ_f), leaf area index (LAI) and leaf temperature (T_f). On purpose, six plant species were investigated experimentally: Phyla nordiflora, Aptenia lancifolia, Mesembryanthenum barbatus, Gazania nivea, Gazania uniflora, and Sedum. Proper ranges of the cited parameters have been found for each species. The here indicated ranges of σ_f values refer to different growth levels of the species in the same lapse of time, that is four months. Single measured LAI values are also reported for the same plants. As for the T_f (upper and lower layer), ranges of revealed temperatures refer to those detected from 10:30 a.m. to 16:30 p.m. of a selected day. Additionally, the dependence of T_f on climatic parameters was investigated. A linear equation resulted the best fitting curve for all experimental T_f data and the corresponding solar radiation data (with autocorrelation coefficients between 0.80 and 0.98). Furthermore, the effect potentially produced on building energy consumption by these species was analyzed using a simulation tool. Estimated cooling energy savings range approximately between 8% and 20% depending on adopted plants. - Highlights: • Green roof modeling requires the knowledge of various physical parameters. • Coverage ratio, leaf area index and leaves temperatures were measured for six species. • A tentative correlation between leaf temperature and climatic parameters was shown. • A correlation between LAI and coverage ratio was checked and discussed. • Potential effects of studied species on building energy consumption were investigated.

  15. Allocation of public and-or private responsibilities. Governance arrangements for green roofs

    NARCIS (Netherlands)

    Mees, H.L.P.

    2012-01-01

    This research was commissioned by Knowledge for Climate, Hotspot Rotterdam Region (http://knowledgeforclimate.climateresearchnetherlands.nl/hotspots/rotterdam-region), and included an international comparison of governance arrangements for the promotion of green roofs as an innovative no-regrets

  16. Can green roofs reduce urban heat stress in vulnerable urban communities: A coupled atmospheric and social modeling approach

    Science.gov (United States)

    Sharma, A.; Woodruff, S.; Budhathoki, M.; Hamlet, A. F.; Fernando, H. J. S.; Chen, F.

    2017-12-01

    Urban areas provide organized, engineered, sociological and economical infrastructure designed to provide a high quality of life, but the implementation and management of urban infrastructure has been a continued challenge. Increasing urbanization, warming climate, as well as anthropogenic heat emissions that accompany urban development generates "stress". This rapidly increasing `urban stress' affects the sustainability of cities, making populations more vulnerable to extreme hazards, such as heat. Cities are beginning to extensively use green roofs as a potential urban heat mitigation strategy. This study explores the potential of green roofs to reduce summertime temperatures in the most vulnerable neighborhoods of the Chicago metropolitan area by combining social vulnerability indices (a function of exposure, sensitivity and adaptive capacity), and temperatures from mesoscale model. Numerical simulations using urbanized version the Advanced Research Weather Research and Forecasting (WRF) model were performed to measure rooftop temperatures, a representative variable for exposure in this study. The WRF simulations were dynamically coupled with a green roof algorithm as a part of urban parameterization within WRF. Specifically, the study examines roof surface temperature with changing green roof fractions and how would they help reduce exposure to heat stress for vulnerable urban communities. This study shows an example of applied research that can directly benefit urban communities and be used by urban planners to evaluate mitigation strategies.

  17. Mosses, a necessary step for perennial plant dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Chiaffredo, M. [MCK Environnement (France); Denayer, F.O. [Faculte des Sciences Pharmaceutiques de Lille, Laboratoire de Botanique et de Cryptogamie (France)

    2004-07-01

    Green roofs have the potential to fulfill the requirements of several important ecological functions such as regulating rainwater; creating surfaces of ecological compensation; reducing the greenhouse effect,; improving air quality and reducing noise pollution. This paper described the advantages of both intensive and extensive green roof systems. Intensive green roofs refer to those in which a real garden is planted with bushes and possibly trees. A significant depth of substrate is needed in intensive green roofs, leading to higher construction and maintenance costs. Extensive green roofs refer to those in which rustic drought resistant plants are planted in only a shallow layer of substrate. Extensive green roofs do not require fertilization or watering and do not require much upkeep. Observations at a terraced and waterproofed roof that was planted 15 years ago showed that mosses and sedum grow well in gravel without human intervention. This paper reviewed the important ecological role that mosses play in terms of carbon fixation, nitrogen fixation, effects on vascular plants, water relations and soil stabilization. It was concluded that mosses are well suited for lands where colonization is particularly difficult. Mosses were shown to be among the first colonizers of mineral soils. Moss mats reduce substrate temperature fluctuations and moisture loss, while contributing to pedogenesis and plant succession. They also grow successfully in harsh environments, and can tolerate repeated cycles of drought and rehydration. 34 refs.

  18. Lightweight Aggregate Made from Dredged Material in Green Roof Construction for Stormwater Management

    Directory of Open Access Journals (Sweden)

    Rui Liu

    2016-07-01

    Full Text Available More than 1.15 million cubic meters (1.5 million cubic yards of sediment require annual removal from harbors and ports along Ohio’s Lake Erie coast. Disposing of these materials into landfills depletes land resources, while open water placement of these materials deteriorates water quality. There are more than 14,000 acres of revitalizing brownfields in Cleveland, U.S., many containing up to 90% impervious surface, which does not allow “infiltration” based stormwater practices required by contemporary site-based stormwater regulation. This study investigates the potential of sintering the dredged material from the Harbor of Cleveland in Lake Erie to produce lightweight aggregate (LWA, and apply the LWA to green roof construction. Chemical and thermal analyses revealed the sintered material can serve for LWA production when preheated at 550 °C and sintered at a higher temperature. Through dewatering, drying, sieving, pellet making, preheating, and sintering with varying temperatures (900–1100 °C, LWAs with porous microstructures are produced with specific gravities ranging from 1.46 to 1.74, and water absorption capacities ranging from 11% to 23%. The water absorption capacity of the aggregate decreases as sintering temperature increases. The LWA was incorporated into the growing media of a green roof plot, which has higher water retention capacity than the conventional green roof system.

  19. Hydrological performance of dual-substrate-layer green roofs using porous inert substrates with high sorption capacities.

    Science.gov (United States)

    Wang, Xiaoou; Tian, Yimei; Zhao, Xinhua; Peng, Chenrui

    2017-06-01

    Given that the common medium in existing green roofs is a single layer composed of organic and inorganic substrates, seven pilot-scale dual-substrate-layer extensive green roofs (G1-G7), which include nutrition and adsorption substrate layers, were constructed in this study. The effectiveness of porous inert substrates (activated charcoal, zeolite, pumice, lava, vermiculite and expanded perlite) used as the adsorption substrate for stormwater retention was investigated. A single-substrate-layer green roof (G8) was built for comparison with G1-G7. Despite the larger total rainfall depth (mm) of six types of simulated rains (43.2, 54.6, 76.2, 87.0, 85.2 and 86.4, respectively), the total percent retention of G1-G7 varied between 14% and 82% with an average of 43%, exhibiting better runoff-retaining capacity than G8 based on the maximum potential rainfall storage depth per unit height of adsorption substrate. Regression analysis showed that there was a logarithmic relationship between cumulative rainfall depth with non-zero runoff and stormwater retention for G1-G4 and a linear relationship for G5-G8. To enhance the water retention capacity and extend the service life of dual-substrate-layer extensive green roofs, the mixture of activated charcoal and/or pumice with expanded perlite and/or vermiculite is more suitable as the adsorption substrate than the mixture containing lava and/or zeolite.

  20. Hydrological performance of extensive green roofs in New York City: observations and multi-year modeling of three full-scale systems

    Science.gov (United States)

    Carson, T. B.; Marasco, D. E.; Culligan, P. J.; McGillis, W. R.

    2013-06-01

    Green roofs can be an attractive strategy for adding perviousness in dense urban environments where rooftops are a high fraction of the impervious land area. As a result, green roofs are being increasingly implemented as part of urban stormwater management plans in cities around the world. In this study, three full-scale green roofs in New York City (NYC) were monitored, representing the three extensive green roof types most commonly constructed: (1) a vegetated mat system installed on a Columbia University residential building, referred to as W118; (2) a built-in-place system installed on the United States Postal Service (USPS) Morgan general mail facility; and (3) a modular tray system installed on the ConEdison (ConEd) Learning Center. Continuous rainfall and runoff data were collected from each green roof between June 2011 and June 2012, resulting in 243 storm events suitable for analysis ranging from 0.25 to 180 mm in depth. Over the monitoring period the W118, USPS, and ConEd roofs retained 36%, 47%, and 61% of the total rainfall respectively. Rainfall attenuation of individual storm events ranged from 3 to 100% for W118, 9 to 100% for USPS, and 20 to 100% for ConEd, where, generally, as total rainfall increased the per cent of rainfall attenuation decreased. Seasonal retention behavior also displayed event size dependence. For events of 10-40 mm rainfall depth, median retention was highest in the summer and lowest in the winter, whereas median retention for events of 0-10 mm and 40 +mm rainfall depth did not conform to this expectation. Given the significant influence of event size on attenuation, the total per cent retention during a given monitoring period might not be indicative of annual rooftop retention if the distribution of observed event sizes varies from characteristic annual rainfall. To account for this, the 12 months of monitoring data were used to develop a characteristic runoff equation (CRE), relating runoff depth and event size, for each

  1. The Influence of Hydrologic Parameters on the Hydraulic Efficiency of an Extensive Green Roof in Mediterranean Area

    Directory of Open Access Journals (Sweden)

    Giuseppina Garofalo

    2016-01-01

    Full Text Available In an urban environment, green roofs represent a sustainable solution for mitigating stormwater volumes and hydrograph peaks. So far, many literature studies have investigated the hydraulic efficiency and the subsurface runoff coefficient of green roofs, showing their strong variability according to several factors, including the characteristics of storm events. Furthermore, only few studies have focused on the hydraulic efficiency of green roofs under Mediterranean climate conditions and defined the influencing hydrological parameters on the subsurface runoff coefficient. Nevertheless, for designing purposes, it is crucial to properly assess the subsurface runoff coefficient of a given green roof under specific climate conditions and its influencing factors. This study intends to, firstly, evaluate the subsurface runoff coefficient at daily and event-time scales for a given green roof, through a conceptual model implemented in SWMM. The model was loaded with both daily and 1-min rainfall data from two Mediterranean climate sites, one in Thessaloniki, Greece and one in Cosenza, Italy, respectively. Then, the most influencing hydrological parameters were examined through a statistical regression analysis. The findings show that the daily subsurface runoff coefficient is 0.70 for both sites, while the event-based one is 0.79 with a standard deviation of 0.23 for the site in Cosenza, Italy. The multiple linear regression analysis revealed that the influencing parameters are the rainfall intensity and antecedent dry weather period with a confidence level of 95%. This study demonstrated that, due to the high variability of the subsurface runoff coefficient, the use of a unique value for design purposes is inappropriate and that a preliminary estimation could be obtained as a function of the total rainfall depth and the antecedent dry weather period by using the validated multi-regression relationship which is site specific.

  2. Green(ing) infrastructure

    CSIR Research Space (South Africa)

    Van Wyk, Llewellyn V

    2014-03-01

    Full Text Available the generation of electricity from renewable sources such as wind, water and solar. Grey infrastructure – In the context of storm water management, grey infrastructure can be thought of as the hard, engineered systems to capture and convey runoff..., pumps, and treatment plants.  Green infrastructure reduces energy demand by reducing the need to collect and transport storm water to a suitable discharge location. In addition, green infrastructure such as green roofs, street trees and increased...

  3. The impact of green roof ageing on substrate characteristics and hydrological performance

    Science.gov (United States)

    De-Ville, Simon; Menon, Manoj; Jia, Xiaodong; Reed, George; Stovin, Virginia

    2017-04-01

    Green roofs contribute to stormwater management through the retention of rainfall and the detention of runoff. However, there is very limited knowledge concerning the evolution of green roof hydrological performance with system age. This study presents a non-invasive technique which allows for repeatable determination of key substrate characteristics over time, and evaluates the impact of observed substrate changes on hydrological performance. The physical properties of 12 green roof substrate cores have been evaluated using non-invasive X-ray microtomography (XMT) imaging. The cores comprised three replicates of two contrasting substrate types at two different ages: unused virgin samples; and 5-year-old samples from existing green roof test beds. Whilst significant structural differences (density, pore and particle sizes, tortuosity) between virgin and aged samples of a crushed brick substrate were observed, these differences did not significantly affect hydrological characteristics (maximum water holding capacity and saturated hydraulic conductivity). A contrasting substrate based upon a light expanded clay aggregate experienced increases in the number of fine particles and pores over time, which led to increases in maximum water holding capacity of 7%. In both substrates, the saturated hydraulic conductivity estimated from the XMT images was lower in aged compared with virgin samples. Comparisons between physically-derived and XMT-derived substrate hydrological properties showed that similar values and trends in the data were identified, confirming the suitability of the non-invasive XMT technique for monitoring changes in engineered substrates over time. The observed effects of ageing on hydrological performance were modelled as two distinct hydrological processes, retention and detention. Retention performance was determined via a moisture-flux model using physically-derived values of virgin and aged maximum water holding capacity. Increased water holding

  4. The impact of extensive green roofs on the improvement of thermal performance for urban areas in Mediterranean climate with reference to the city of Jijel in Algeria

    Science.gov (United States)

    Lehtihet, M. C.; Bouchair, A.

    2018-05-01

    Buildings with dark surfaces, concrete and pavement, needed for the expansion of cities, absorb huge amounts of heat, increasing the mean radiant temperatures of urban areas and offer significant potential for urban heat island (UHI) effect. The purpose of this work is to investigate the impact of green roofs on the improvement of urban heat performance in Mediterranean climate. A field investigation is carried out using two large-scale modules built in the city of Jijel in the north of Algeria. The first is a bare reinforced concrete slab whereas the second is covered with ivy plants. The experimental site, the air and surface temperature parameters and the various measurement points at the level of the modules are chosen. Measurements are performed using thermo-hygrometer, surface sensors and data acquisition apparatus. The results show that green roofs can be a potential mean of improving the thermal performance of the surrounding microclimate and energy performance of buildings in an urban area. The green roof could be an encouraging strategy against urban heat island effect not only for Mediterranean cities but also for other areas.

  5. Toward an operational tool to simulate green roof hydrological impact at the basin scale: a new version of the distributed rainfall-runoff model Multi-Hydro.

    Science.gov (United States)

    Versini, Pierre-Antoine; Gires, Auguste; Tchinguirinskaia, Ioulia; Schertzer, Daniel

    2016-10-01

    Currently widespread in new urban projects, green roofs have shown a positive impact on urban runoff at the building scale: decrease and slow-down of the peak discharge, and decrease of runoff volume. The present work aims to study their possible impact at the catchment scale, more compatible with stormwater management issues. For this purpose, a specific module dedicated to simulating the hydrological behaviour of a green roof has been developed in the distributed rainfall-runoff model (Multi-Hydro). It has been applied on a French urban catchment where most of the building roofs are flat and assumed to accept the implementation of a green roof. Catchment responses to several rainfall events covering a wide range of meteorological situations have been simulated. The simulation results show green roofs can significantly reduce runoff volume and the magnitude of peak discharge (up to 80%) depending on the rainfall event and initial saturation of the substrate. Additional tests have been made to assess the susceptibility of this response regarding both spatial distributions of green roofs and precipitation. It appears that the total area of greened roofs is more important than their locations. On the other hand, peak discharge reduction seems to be clearly dependent on spatial distribution of precipitation.

  6. Green roof soil system affected by soil structural changes: A project initiation

    Science.gov (United States)

    Jelínková, Vladimíra; Dohnal, Michal; Šácha, Jan; Šebestová, Jana; Sněhota, Michal

    2014-05-01

    Anthropogenic soil systems and structures such as green roofs, permeable or grassed pavements comprise appreciable part of the urban watersheds and are considered to be beneficial regarding to numerous aspects (e.g. carbon dioxide cycle, microclimate, reducing solar absorbance and storm water). Expected performance of these systems is significantly affected by water and heat regimes that are primarily defined by technology and materials used for system construction, local climate condition, amount of precipitation, the orientation and type of the vegetation cover. The benefits and potencies of anthropogenic soil systems could be considerably threatened in case when exposed to structural changes of thin top soil layer in time. Extensive green roof together with experimental green roof segment was established and advanced automated monitoring system of micrometeorological variables was set-up at the experimental site of University Centre for Energy Efficient Buildings as an interdisciplinary research facility of the Czech Technical University in Prague. The key objectives of the project are (i) to characterize hydraulic and thermal properties of soil substrate studied, (ii) to establish seasonal dynamics of water and heat in selected soil systems from continuous monitoring of relevant variables, (iii) to detect structural changes with the use of X-ray Computed Tomography, (iv) to identify with the help of numerical modeling and acquired datasets how water and heat dynamics in anthropogenic soil systems are affected by soil structural changes. Achievements of the objectives will advance understanding of the anthropogenic soil systems behavior in conurbations with the temperate climate.

  7. A generic hydrological model for a green roof drainage layer.

    Science.gov (United States)

    Vesuviano, Gianni; Stovin, Virginia

    2013-01-01

    A rainfall simulator of length 5 m and width 1 m was used to supply constant intensity and largely spatially uniform water inflow events to 100 different configurations of commercially available green roof drainage layer and protection mat. The runoff from each inflow event was collected and sampled at one-second intervals. Time-series runoff responses were subsequently produced for each of the tested configurations, using the average response of three repeat tests. Runoff models, based on storage routing (dS/dt = I-Q) and a power-law relationship between storage and runoff (Q = kS(n)), and incorporating a delay parameter, were created. The parameters k, n and delay were optimized to best fit each of the runoff responses individually. The range and pattern of optimized parameter values was analysed with respect to roof and event configuration. An analysis was performed to determine the sensitivity of the shape of the runoff profile to changes in parameter values. There appears to be potential to consolidate values of n by roof slope and drainage component material.

  8. Hydrological performance of extensive green roofs in New York City: observations and multi-year modeling of three full-scale systems

    International Nuclear Information System (INIS)

    Carson, T B; Marasco, D E; Culligan, P J; McGillis, W R

    2013-01-01

    Green roofs can be an attractive strategy for adding perviousness in dense urban environments where rooftops are a high fraction of the impervious land area. As a result, green roofs are being increasingly implemented as part of urban stormwater management plans in cities around the world. In this study, three full-scale green roofs in New York City (NYC) were monitored, representing the three extensive green roof types most commonly constructed: (1) a vegetated mat system installed on a Columbia University residential building, referred to as W118; (2) a built-in-place system installed on the United States Postal Service (USPS) Morgan general mail facility; and (3) a modular tray system installed on the ConEdison (ConEd) Learning Center. Continuous rainfall and runoff data were collected from each green roof between June 2011 and June 2012, resulting in 243 storm events suitable for analysis ranging from 0.25 to 180 mm in depth. Over the monitoring period the W118, USPS, and ConEd roofs retained 36%, 47%, and 61% of the total rainfall respectively. Rainfall attenuation of individual storm events ranged from 3 to 100% for W118, 9 to 100% for USPS, and 20 to 100% for ConEd, where, generally, as total rainfall increased the per cent of rainfall attenuation decreased. Seasonal retention behavior also displayed event size dependence. For events of 10–40 mm rainfall depth, median retention was highest in the summer and lowest in the winter, whereas median retention for events of 0–10 mm and 40 +mm rainfall depth did not conform to this expectation. Given the significant influence of event size on attenuation, the total per cent retention during a given monitoring period might not be indicative of annual rooftop retention if the distribution of observed event sizes varies from characteristic annual rainfall. To account for this, the 12 months of monitoring data were used to develop a characteristic runoff equation (CRE), relating runoff depth and event size, for each

  9. Observation and Estimation of Evapotranspiration from an Irrigated Green Roof in a Rain-Scarce Environment

    Directory of Open Access Journals (Sweden)

    Youcan Feng

    2018-03-01

    Full Text Available While the rain-driven evapotranspiration (ET process has been well-studied in the humid climate, the mixed irrigation and rain-driven ET process is less understood for green roof implementations in dry regions, where empirical observations and model parameterizations are lacking. This paper presents an effort of monitoring and simulating the ET process for an irrigated green roof in a rain-scarce environment. Annual ET rates for three weighing lysimeter test units with non-vegetated, sedums, and grass covers were 2.01, 2.52, and 2.69 mm d−1, respectively. Simulations based on the three Penman–Monteith equation-derived models achieved accuracy within the reported range of previous studies. Compared to the humid climate, the overestimation of high ET rates by existing models is expected to cause a larger error in dry environments, where the enhanced ET process caused by repeated irrigations overlapped with hot, dry conditions often occurs during summer. The studied sedum species did not show significantly lower ET rates than native species, and could not effectively take advantage of the deep moisture storage. Therefore, native species, instead of the shallow-rooted species commonly recommended in humid climates, might be a better choice for green roofs in rain-scarce environments.

  10. Retrofitting Housing with Lightweight Green Roof Technology in Sydney, Australia, and Rio de Janeiro, Brazil

    Directory of Open Access Journals (Sweden)

    Sara Wilkinson

    2015-01-01

    Full Text Available The built environment contributes around half of total greenhouse gas emissions and with 87% of residential buildings that we will have by 2050 already built, it is vital to adopt sustainable retrofitting practices. The question is: what are the viable solutions? One answer may be green roof retrofitting. The environmental benefits include reduced operational carbon emissions, reduced urban heat island effect, increased bio-diversity, housing temperature attenuation and reduced stormwater run-off. The economic benefits are the reduced maintenance costs and lower running costs. The social gain is the creation of spaces where people have access to green areas. However, the barriers to retrofitting include the perceptions of structural adequacy, the risk of water damage, high installation and maintenance costs, as well as access and security issues. Many Australian and Brazilian residential buildings have metal sheet roofs, a lightweight material with poor thermal performance. During the summer, temperatures in Sydney and Rio de Janeiro reach 45 degrees Celsius, and in both cities, rainfall patterns are changing, with more intense downpours. Furthermore, many residential buildings are leased, and currently, tenants are restricted by the modifications that they can perform to reduce running costs and carbon emissions. This research reports on an experiment on two small-scale metal roofs in Sydney and Rio de Janeiro to assess the thermal performance of portable small-scale modules. The findings are that considerable variation in temperature was found in both countries, indicating that green roof retrofitting could lower the cooling energy demand considerably.

  11. The Energy Impact in Buildings of Vegetative Solutions for Extensive Green Roofs in Temperate Climates

    Directory of Open Access Journals (Sweden)

    Benedetta Barozzi

    2016-08-01

    Full Text Available Many bibliographical studies have highlighted the positive effects of green roofs as technological solutions both for new and renovated buildings. The one-year experimental monitoring campaign conducted has investigated, in detail, some aspects related to the surface temperature variation induced by the presence of different types of vegetation compared to traditional finishing systems for flat roofs and their impact from an energy and environmental point of view. The results obtained underlined how an appropriate vegetative solution selection can contribute to a significant reduction of the external surface temperatures (10 °C–20 °C for I > 500 W/m2 and 0 °C–5 °C for I < 500 W/m2, regardless of the season compared to traditional flat roofs. During the winter season, the thermal gradients of the planted surface temperatures are close to zero compared to the floor, except under special improving conditions. This entails a significant reduction of the energy loads from summer air conditioning, and an almost conservative behavior with respect to that from winter heating consumption. The analysis of the inside growing medium temperatures returned a further interesting datum, too: the temperature gradient with respect to surface temperature (annual average 4 °C–9 °C is a function of solar radiation and involves the insulating contribution of the soil.

  12. Green Infrastructure Modeling Toolkit

    Science.gov (United States)

    Green infrastructure, such as rain gardens, green roofs, porous pavement, cisterns, and constructed wetlands, is becoming an increasingly attractive way to recharge aquifers and reduce the amount of stormwater runoff that flows into wastewater treatment plants or into waterbodies...

  13. Effects of Wastes from the Brewing Industry in Lightweight Aggregates Manufactured with Clay for Green Roofs

    Directory of Open Access Journals (Sweden)

    Romina D. Farías

    2017-05-01

    Full Text Available This study investigates the effects of sieved wastes generated from the brewing industry on lightweight aggregates manufactured with clay. Sludge from a wastewater treatment plant, bagasse and diatomaceous earth were used to obtain the samples. These wastes are usually dumped in landfills, but the current increase in restrictions on dumping and interest in improving the environment make our proposal for gaining value from these wastes a significant contribution. Laboratory tests show that the new aggregate has low bulk density and increased water absorption and porosity. The thermographic camera results provide evidence that new aggregates have significant insulating properties and are suitable for use on green roofs.

  14. Effects of Wastes from the Brewing Industry in Lightweight Aggregates Manufactured with Clay for Green Roofs

    Science.gov (United States)

    Farías, Romina D.; Martínez García, Carmen; Cotes Palomino, Teresa; Martínez Arellano, Myriam

    2017-01-01

    This study investigates the effects of sieved wastes generated from the brewing industry on lightweight aggregates manufactured with clay. Sludge from a wastewater treatment plant, bagasse and diatomaceous earth were used to obtain the samples. These wastes are usually dumped in landfills, but the current increase in restrictions on dumping and interest in improving the environment make our proposal for gaining value from these wastes a significant contribution. Laboratory tests show that the new aggregate has low bulk density and increased water absorption and porosity. The thermographic camera results provide evidence that new aggregates have significant insulating properties and are suitable for use on green roofs. PMID:28772892

  15. Performance analysis and experimental study on rainfall water purification with an extensive green roof matrix layer in Shanghai, China.

    Science.gov (United States)

    Guo, Jiankang; Zhang, Yanting; Che, Shengquan

    2018-02-01

    Current research has validated the purification of rainwater by a substrate layer of green roofs to some extent, though the effects of the substrate layer on rainwater purification have not been adequately quantified. The present study set up nine extensive green roof experiment combinations based on the current conditions of precipitation characteristics observed in Shanghai, China. Different rain with pollutants were simulated, and the orthogonal design L9 (33) test was conducted to measure purification performance. The purification influences of the extensive green roof substrate layer were quantitatively analyzed in Shanghai to optimize the thickness, proportion of substrate, and sodium polyacrylate content. The experimental outcomes resulted in ammonium nitrogen (NH 4 + -N), lead (Pb), and zinc (Zn) removal of up to 93.87%, 98.81%, and 94.55% in the artificial rainfall, respectively, and NH 4 + -N, Pb, and Zn event mean concentration (EMC) was depressed to 0.263 mg/L, 0.002 mg/L and 0.018 mg/L, respectively, which were all well below the pollutant concentrations of artificial rainfall. With reference to the rainfall chemical characteristics of Shanghai, a combination of a 200 mm thickness, proportions of 1:1:2 of Loam: Perlite: Cocopeat and 2 g/L sodium polyacrylate content was suggested for the design of an extensive green roof substrate to purify NH 4 + -N, Pb and Zn.

  16. Green Roofs: A feasible tool for environmental management in the hospitality sector of El Rodadero, Santa Marta?

    International Nuclear Information System (INIS)

    Zielinski, Seweryn; Garda Collante, Mario Alberto; Vega Paternina, Juan Carlos

    2012-01-01

    The accelerated urban development generates a series of problems, not only social and economic, but also environmental. The green roofs are one of the new technologies that can be used as a tool for environmental management in buildings. However, there are many barriers that prevent from their implementation on a large scale. This article is based on a detailed review of the experiences and results of many studies on the subject, underlining the benefits of green roofs and demonstrating the limitations for their implementation in the hotel sector of El Rodadero in the city of Santa Marta. The methodology consists of secondary research of studies carried out in different cities, making an emphasis on researches in climatic conditions similar to those in the study area. Additionally, the owners and managers of 18 hotels were interviewed about their opinion on the topic. In result, it was concluded that green roofs can be an effective tool for environmental management if they are implemented on a large scale. However, in the case of El Rodadero it is not feasible, although there is an interest to implement pilot projects that could dissipate the lack of confidence of the local managers.

  17. Garden roof in the southwest for environmental benefits : the School of Public Health

    Energy Technology Data Exchange (ETDEWEB)

    Schaack, K.A. [Roof Consultants Inst., Raleigh, NC (United States). Green Roof Research Committee]|[Roofing Contractors Assoc. of Texas, Pflugerville, TX (United States)]|[Gulf Coast Roof Management Inst., Houston, TX (United States)

    2004-07-01

    . Random watering was performed to help establish the various plants. The progress of the plants was monitored to determine the best suited plants for this application according to weather characteristics of Houston in terms of high humidity, high heat, pollution, and torrential downpours. The primary benefits include heat load reduction, roof membrane protection, and water run-off control. Other benefits provided by this garden roof were better air quality, creating green space, and offering an instrument for education to increase public awareness of green roof technology. 4 tabs., 21 figs.

  18. Economic and environmental evaluation model for selecting the optimum design of green roof systems in elementary schools.

    Science.gov (United States)

    Kim, JiMin; Hong, TaeHoon; Koo, Choong-Wan

    2012-08-07

    Green-roof systems offer various benefits to man and nature, such as establishing ecological environments, improving landscape and air quality, and offering pleasant living environments. This study aimed to develop an optimal-scenario selection model that considers both the economic and the environmental effect in applying GRSs to educational facilities. The following process was carried out: (i) 15 GRSs scenarios were established by combining three soil and five plant types and (ii) the results of the life cycle CO(2) analyses with the GRSs scenarios were converted to an economic value using certified emission reductions (CERs) carbon credits. Life cycle cost (LCC) analyses were performed based on these results. The results showed that when considering only the currently realized economic value, the conventional roof system is superior to the GRSs. However, the LCC analysis that included the environmental value, revealed that compared to the conventional roof system, the following six GRSs scenarios are superior (cost reduction; reduction ratio; in descending order): scenarios 13 ($195,229; 11.0%), 3 ($188,178; 10.6%), 8 ($181,558; 10.3%), 12 ($130,464; 7.4%), 2 ($124,566; 7.0%), and 7 ($113,931; 6.4%). Although the effect is relatively small in terms of cost reduction, environmental value attributes cannot be ignored in terms of the reduction ratio.

  19. Green roof adoption in atlanta, georgia: the effects of building characteristics and subsidies on net private, public, and social benefits.

    Science.gov (United States)

    Mullen, Jeffrey D; Lamsal, Madhur; Colson, Greg

    2013-10-01

    This research draws on and expands previous studies that have quantified the costs and benefits associated with conventional roofs versus green roofs. Using parameters from those studies to define alternative scenarios, we estimate from a private, public, and social perspective the costs and benefits of installing and maintaining an extensive green roof in Atlanta, GA. Results indicate net private benefits are a decreasing function of roof size and vary considerably across scenarios. In contrast, net public benefits are highly stable across scenarios, ranging from $32.49 to $32.90 m(-2). In addition, we evaluate two alternative subsidy regimes: (i) a general subsidy provided to every building that adopts a green roof and (ii) a targeted subsidy provided only to buildings for which net private benefits are negative but net public benefits are positive. In 6 of the 12 general subsidy scenarios the optimal public policy is not to offer a subsidy; in 5 scenarios the optimal subsidy rate is between $20 and $27 m(-2); and in 1 scenario the optimal rate is $5 m(-2). The optimal rate with a targeted subsidy is between $20 and $27 m(-2) in 11 scenarios and no subsidy is optimal in the twelfth. In most scenarios, a significant portion of net public benefits are generated by buildings for which net private benefits are positive. This suggests a policy focused on information dissemination and technical assistance may be more cost-effective than direct subsidy payments.

  20. Green Construction in Building Renovation

    Science.gov (United States)

    Ksit, Barbara; Majcherek, Michał

    2016-06-01

    Modern materials and construction solutions draw more and more attention to ecology and building certification. Among the criteria appearing in revitalization, an important element is bringing plants back into heavily urbanized areas. In its natural form, this is not possible to carry out everywhere, often requiring large amounts of space. Nowadays, however, there are a number of green roofs and green wall systems, allowing "greener" construction without making significant changes in the urban environment. The article includes a presentation and analysis of selected solutions of biological surfaces known as green roofs and green walls, specifying various solutions and their most important features. The case study focuses primarily on material and design solutions, as well as the potential benefits, risks and limitations in their use. Plants structures on the surfaces of vertical and horizontal partitions continue to be a very interesting alternative to take into account when applying for grants, such as LEED or BREEAM certificates.

  1. Proceedings of the 6. annual greening rooftops for sustainable communities conference, awards and trade show

    International Nuclear Information System (INIS)

    2008-01-01

    The purpose of this conference was to increase the awareness of the economic, social, and environmental benefits of green roof infrastructure across North America and to advance market development for green roof products and services. The benefits of green roof systems were demonstrated along with an action plan on how to establish a local green roof industry through research and policy development. Supportive policy options were also introduced. Participants included landscape architects, architects, horticulturalists, urban planners, roofing contractors, building developers, environmental scientists, and policy makers. Those who attended learned the benefits of green roofs on storm water, air quality and urban heat island effects. The construction and maintenance of green roofs for the long-term was discussed along with other topics such as living walls and vertical gardens; selecting plants for peak performance and functionality; and the optimization of energy performance. The conference was divided into 3 broad sessions, notably policy and program development, design, and research. It featured 28 presentations of which 4 have been catalogued separately for inclusion in this database. refs., tabs., figs

  2. Proceedings of the 6. annual greening rooftops for sustainable communities conference, awards and trade show

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    The purpose of this conference was to increase the awareness of the economic, social, and environmental benefits of green roof infrastructure across North America and to advance market development for green roof products and services. The benefits of green roof systems were demonstrated along with an action plan on how to establish a local green roof industry through research and policy development. Supportive policy options were also introduced. Participants included landscape architects, architects, horticulturalists, urban planners, roofing contractors, building developers, environmental scientists, and policy makers. Those who attended learned the benefits of green roofs on storm water, air quality and urban heat island effects. The construction and maintenance of green roofs for the long-term was discussed along with other topics such as living walls and vertical gardens; selecting plants for peak performance and functionality; and the optimization of energy performance. The conference was divided into 3 broad sessions, notably policy and program development, design, and research. It featured 28 presentations of which 4 have been catalogued separately for inclusion in this database. refs., tabs., figs.

  3. Variations of PV Panel Performance Installed over a Vegetated Roof and a Conventional Black Roof

    Directory of Open Access Journals (Sweden)

    Mohammed J. Alshayeb

    2018-05-01

    Full Text Available The total worldwide photovoltaic (PV capacity has been growing from about 1 GW at the beginning of the twenty-first century to over 300 GW in 2016 and is expected to reach 740 GW by 2022. PV panel efficiency is reported by PV manufacturers based on laboratory testing under Standard Testing Condition with a specific temperature of 25 °C and solar irradiation of 1000 W/m2. This research investigated the thermal interactions between the building roof surface and PV panels by examining the differences in PV panel temperature and energy output for those installed over a green roof (PV-Green and those installed over a black roof (PV-Black. A year-long experimental study was conducted over the roof of an educational building with roof mounted PV panels with a system capacity of 4.3 kW to measure PV underside surface temperature (PV-UST, ambient air temperature between PV panel and building roof (PV-AT, and PV energy production (PV-EP. The results show that during the summer the PV-Green consistently recorded lower PV-UST and PV-AT temperatures and more PV-EP than PV-Black. The average hourly PV-EP difference was about 0.045 kWh while the maximum PV-EP difference was about 0.075 kWh, which represents roughly a 3.3% and 5.3% increase in PV-EP. For the entire study period, EP-Green produced 19.4 kWh more energy, which represents 1.4% more than EP-Black.

  4. Building green covering for a sustainable use of energy

    Directory of Open Access Journals (Sweden)

    C.A. Campiotti

    2013-09-01

    Full Text Available Nowadays the growth of the cities increased built and paved areas, energy use and heat generation. The phenomenon of urban warming, called urban heat island, influences negatively outdoor comfort conditions, pollutants concentration, energy demand for air conditioning, as well as increases environmental impact due to the demand of energy generation. A sustainable technology for improving the energy efficiency of buildings is the use of green roofs and walls in order to reduce the energy consumption for conditioning in summer and improve the thermal insulation in winter. The use of green roofs and walls can contribute to mitigate the phenomenon of heat island, the emissions of greenhouse gases, and the storm water runoff affecting human thermal comfort, air quality and energy use of the buildings. Recently, a number of municipalities started to adopt regulations and constructive benefits for renovated and new buildings which incorporate green roofs and walls. The aim of this paper is to describe the green roofs and walls plant technology.

  5. Lick Run: Green Infrastructure in Cincinnati and Beyond

    Science.gov (United States)

    By capturing and redistributing rain water or runoff in plant-soil systems such as green roofs, rain gardens or swales, green infrastructure restores natural hydrologic cycles and reduces runoff from overburdened gray infrastructure. Targeted ecosystem restoration, contaminant fi...

  6. Modelling reduction of urban heat load in Vienna by modifying surface properties of roofs

    Science.gov (United States)

    Žuvela-Aloise, Maja; Andre, Konrad; Schwaiger, Hannes; Bird, David Neil; Gallaun, Heinz

    2018-02-01

    The study examines the potential of urban roofs to reduce the urban heat island (UHI) effect by changing their reflectivity and implementing vegetation (green roofs) using the example of the City of Vienna. The urban modelling simulations are performed based on high-resolution orography and land use data, climatological observations, surface albedo values from satellite imagery and registry of the green roof potential in Vienna. The modelling results show that a moderate increase in reflectivity of roofs (up to 0.45) reduces the mean summer temperatures in the densely built-up environment by approximately 0.25 °C. Applying high reflectivity materials (roof albedo up to 0.7) leads to average cooling in densely built-up area of approximately 0.5 °C. The green roofs yield a heat load reduction in similar order of magnitude as the high reflectivity materials. However, only 45 % of roof area in Vienna is suitable for greening and the green roof potential mostly applies to industrial areas in city outskirts and is therefore not sufficient for substantial reduction of the UHI effect, particularly in the city centre which has the highest heat load. The strongest cooling effect can be achieved by combining the green roofs with high reflectivity materials. In this case, using 50 or 100 % of the green roof potential and applying high reflectivity materials on the remaining surfaces have a similar cooling effect.

  7. Analysis of materials used for Greenhouse roof covering - structure using CFD

    Science.gov (United States)

    Subin, M. C.; Savio Lourence, Jason; Karthikeyan, Ram; Periasamy, C.

    2018-04-01

    Greenhouse is widely used to create a suitable environment for the growth of plant. During summer, high temperatures cause harm to the plant. This work calculates characteristics required to optimize the above-mentioned parameters using different roof structure covering materials for the greenhouse. Moreover, this work also presents a simulation of the cooling and heating system. In addition, a computer model based on Ansys Fluent has been using to predict the temperature profiles inside the greenhouse. Greenhouse roof structure shading may have a time-dependent effect the production, water and nutrient uptake in plants. An experiment was conducted in the emirate of Dubai in United Arab Emirates to discover the impact of different materials in order to have an optimal plant growth zone and yield production. These structures were poly ethylene and poly carbonate sheets of 2 different configurations. Results showed that poly carbonate sheets configuration of optimal thickness has given a high result in terms of yield production. Therefore, there is a need for appropriate material selection of greenhouse roof structure in this area of UAE. Major parameters and properties need to be considered while selecting a greenhouse roof structure are the resistance to solar radiation, weathering, thermal as well as mechanical properties and good abrasion resistance. In the present study, an experiment has been conducted to find out the material suitability of the greenhouse roof structure in terms of developing proper ambient conditions especially to minimize the energy lose by reducing the HVAC and lighting expenses. The configuration verified using the CFD, so it has been concluded that polycarbonate can be safely used in the greenhouse than other roof structure material having white or green colour.

  8. The use of reactive material for limiting P-leaching from green roof substrate.

    Science.gov (United States)

    Bus, Agnieszka; Karczmarczyk, Agnieszka; Baryła, Anna

    2016-01-01

    The aim of the study is to assess the influence of drainage layer made of reactive material Polonite(®) on the water retention and P-PO(4) concentration in runoff. A column experiment was performed for extensive substrate underlined by 2 cm of Polonite(®) layer (SP) and the same substrate without supporting layer as a reference (S). The leakage phosphorus concentration ranged from 0.001 to 0.082 mg P-PO(4)·L(-1), with average value 0.025 P-PO(4)·L(-1) of S experiment and 0.000-0.004 P-PO(4)·L(-1) and 0.001 P-PO(4)·L(-1) of SP experiment, respectively. The 2 cm layer of Polonite(®) was efficient in reducing P outflow from green roof substrate by 96%. The average effluent volumes from S and SP experiments amounted 61.1 mL (5.8-543.3 mL) and 46.4 mL (3.3-473.3 mL) with the average irrigation rate of 175.5 mL (6.3-758.0 mL). The substrate retention ability of S and SP experiments was 65% and 74%, respectively. Provided with reactive materials, green roof layers implemented in urban areas for rain water retention and delaying runoff also work for protection of water quality.

  9. The composition and depth of green roof substrates affect the growth of Silene vulgaris and Lagurus ovatus species and the C and N sequestration under two irrigation conditions.

    Science.gov (United States)

    Ondoño, S; Martínez-Sánchez, J J; Moreno, J L

    2016-01-15

    Extensive green roofs are used to increase the surface area covered by vegetation in big cities, thereby reducing the urban heat-island effect, promoting CO2 sequestration, and increasing biodiversity and urban-wildlife habitats. In Mediterranean semi-arid regions, the deficiency of water necessitates the use in these roofs of overall native plants which are more adapted to drought than other species. However, such endemic plants have been used scarcely in green roofs. For this purpose, we tested two different substrates with two depths (5 and 10 cm), in order to study their suitability with regard to adequate plant development under Mediterranean conditions. A compost-soil-bricks (CSB) (1:1:3; v:v:v) mixture and another made up of compost and bricks (CB) (1:4; v:v) were arranged in two depths (5 and 10 cm), in cultivation tables. Silene vulgaris (Moench) Garcke and Lagurus ovatus L. seeds were sown in each substrate. These experimental units were subjected, on the one hand, to irrigation at 40% of the registered evapotranspiration values (ET0) and, on the other, to drought conditions, during a nine-month trial. Physichochemical and microbiological substrate characteristics were studied, along with the physiological and nutritional status of the plants. We obtained significantly greater plant coverage in CSB at 10 cm, especially for L. ovatus (80-90%), as well as a better physiological status, especially in S. vulgaris (SPAD values of 50-60), under irrigation, whereas neither species could grow in the absence of water. The carbon and nitrogen fixation by the substrate and the aboveground biomass were also higher in CSB at 10 cm, especially under L. ovatus - in which 1.32 kg C m(-2) and 209 g N m(-2) were fixed throughout the experiment. Besides, the enzymatic and biochemical parameters assayed showed that microbial activity and nutrient cycling, which fulfill a key role for plant development, were higher in CSB. Therefore, irrigation of 40% can

  10. Measurement of Thermal Properties of Growing Media for Green Roofs: Assessment of a Laboratory Procedure and Experimental Results

    Directory of Open Access Journals (Sweden)

    Benedetta Barozzi

    2017-10-01

    Full Text Available While the Italian standard UNI 11235:2015 establishes minimum performance criteria, the thermal resistance of the growing medium of green roofs is not included in national regulations. Instead, thermal transmittance limits for roofs are obtained by referring to other stratigraphic layers. In the absence of specific national and international standards for laboratory calculations of the thermal performance of growing media for green roofs, a multi-year laboratory testing campaign was carried out on 8 samples which aimed to define the thermal resistance reference values of growing media as a function of density and water content. Thermal conductivity varies between 0.046–0.179 W/mK for dry samples as a function of density and between 0.046–0.47 W/mK as a function of moisture content. Defining a reference method, laboratory tests and restitution of the output in performance curves, was based on 108 tests carried out according to and deviating from the standard based on both guarded hot plate and heat flow meter methods. The significance of the results has prompted researchers and industrial partners to engage in further investment and ongoing tests in this area, targeting the definition of a standard laboratory method to be presented worldwide.

  11. Monitoring roof beam lateral displacement at the waste isolation pilot plant

    International Nuclear Information System (INIS)

    Terrill, L.J.; Lewis, R.E.

    1996-01-01

    Lateral displacement in the immediate roof beam at the Waste Isolation Pilot Plant (WIPP) is a significant factor in assessment of excavation performance for the design of ground control systems. Information on roof beam lateral displacement, expansion, fracture formation, as well as excavation convergence, is gathered using a variety of manually and remotely read instruments. Visual observations are also used when possible. This paper describes the methods used to measure lateral displacement, or offset, at the WIPP. Offset magnitudes are determined by the degree of occlusion in drillholes that intersect the offset plane. The Borehole Lateral Displacement Sensor (BLDS) was developed for installation at WIPP to monitor offset at a high degree of accuracy at a short reading frequency. Offset measurements have historically been obtained by visual estimation of borehole occlusion. Use of the BLDS will enable relationships between time dependent roof beam lateral displacement and expansion to be established in much shorter periods than is possible using visual observations. The instrument will also allow remote monitoring of roof beam displacement in areas where visual estimations are not possible. Continued monitoring of roof beam displacement, convergence, and expansion, is integral to timely and pertinent assessments of WIPP excavation performance

  12. Monitoring roof beam lateral displacement at the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Terrill, L.J.; Lewis, R.E.

    1996-01-01

    Lateral displacement in the immediate roof beam at the Waste Isolation Pilot Plant (WIPP) is a significant factor in assessment of excavation performance for the design of ground control systems. Information on roof beam lateral displacement, expansion, fracture formation, as well as excavation convergence, is gathered using a variety of manually and remotely read instruments. Visual observations are also used when possible. This paper describes the methods used to measure lateral displacement, or offset, at the WIPP. Offset magnitudes are determined by the degree of occlusion in drillholes that intersect the offset plane. The Borehole Lateral Displacement Sensor (BLDS) was developed for installation at WIPP to monitor offset at a high degree of accuracy at a short reading frequency. Offset measurements have historically been obtained by visual estimation of borehole conclusion. Use of the BLDS will enable relationships between time dependent roof beam lateral displacement and expansion to be established in much shorter periods than is possible using visual observations. The instrument will also allow remote monitoring of roof beam displacement in areas where visual estimations are not possible. Continued monitoring of roof beam displacement, convergence, and expansion, is integral to timely and pertinent assessments of WIPP excavation performance

  13. Investigating and analysing the energy and environmental performance of an experimental green roof system installed in a nursery school building in Athens, Greece

    Energy Technology Data Exchange (ETDEWEB)

    Santamouris, M.; Pavlou, C.; Doukas, P.; Synnefa, A.; Hatzibiros, A. [University of Athens, (Greece). Department of Physics, Division of Applied Physics, Laboratory of Meteorology; Mihalakakou, G. [University of Ioannina, Agrinion (Greece). Department of Environment and Natural Resources Management; Patargias, P. [University of Peloponnesus, Kalamata (Greece). Faculty of Human Sciences and Cultural Studies, Department of History, Archaeology and Cultural Heritage Management

    2007-09-15

    This paper deals with the experimental investigation and analysis of the energy and environmental performance of a green roof system installed in a nursery school building in Athens. The investigation was implemented in two phases. During the first phase, an experimental investigation of the green roof system efficiency was presented and analysed, while in the second one the energy savings was examined through a mathematical approach by calculating both the cooling and heating load for the summer and winter period for the whole building as well as for its top floor. The energy performance evaluation showed a significant reduction of the building's cooling load during summer. This reduction varied for the whole building in the range of 6-49% and for its last floor in the range of 12-87%. Moreover, the influence of the green roof system in the building's heating load was found insignificant, and this can be regarded a great advantage of the system as any interference in the building shell for the reduction of cooling load leads usually to the increase of its heating load. (author)

  14. Sokol Blosser Barrel Aging Cellar : green roofs and LEED{sup TM} buildings in the rural context

    Energy Technology Data Exchange (ETDEWEB)

    Cravens, L.L. [Sera Architects Inc., Portland, OR (United States)

    2004-07-01

    An earth covered structure that stores 900 barrels of wine at the Sokol Blosser Winery located in Yamhill Valley, southeast of Portland, Oregon was presented. The owner's decision to build as sustainably as possible when constructing the barrel aging cellar was reinforced by their involvement in the Oregon Natural Step Network, a non-profit organization that promotes sustainability principles in any endeavor. The sustainable project design solution led by SERA Architects met the winery's requirements for an underground structure capable of storing 900 barrels of wine in three chambers; natural daylight throughout; control over the temperature and humidity; natural ventilation; the use of sustainable materials, and minimal materials; use of local products; preserving the maximum existing open area; and, minimizing construction demolition and waste. The Leadership in Energy and Environmental Design (LEED) criteria for the green building rating system was used to measure the green construction practices. The many benefits of burying the building were identified, namely the cooling system was eliminated, which reduced the cost of the mechanical system, reduced the major draw for energy, and eliminated any use of ozone depleting refrigerants. The roof's waterproofing system was provided by Tremco. Combined with a non-engineered earth cover the manufacturer provided a warranty of 20 years but predicted a 60 year life for the roof. The Roof sandwich structure from top down was described in detail and illustrations were presented. The final calculations indicate a $750 annual energy savings above a traditional space. 6 figs.

  15. Proceedings of the 5. annual international greening rooftops for sustainable communities conference, awards and trade show

    International Nuclear Information System (INIS)

    2007-01-01

    This conference provided a forum to discuss a broad range of benefits associated with green roof construction. In addition to creating green space, green roofs save energy, mitigate the urban heat island effect, clean stormwater runoff, attenuate sound, and provide aesthetic value. Strategies to promote the widespread adoption of green roof technology in North America were presented along with federal policies and standards that support green roof applications. Some timely green roofing topics were also addressed, such as the residential green roof market and urban agriculture. Innovative research programs and demonstration programs were highlighted along with policy developments in countries where green roof technology has been widely implemented. Public outreach, training and education programs were also reviewed. The conference was divided into the following sessions: stormwater policy development; green roofs in Minnesota and Chicago; stormwater management and other benefits of green roofs; greening the green roof system; development of green roof standards and policies; stormwater management and life cycle calculation; stormwater research; overcoming the challenge of the residential green roof market; feasibility and impact assessments of green roof programs; green roof design case studies; energy and thermal performance; urban agriculture and green roofs; green roof policy, incentives and regulations in the City of Minneapolis; innovative uses of green roofs; green roof growing medium and vegetation; green walls and green roof gardens; studies on the benefits of green roofs; and, careers in greening. The conference featured 47 presentations, of which 34 have been catalogued separately for inclusion in this database. refs., tabs., figs

  16. The effect of roofing material on the quality of harvested rainwater.

    Science.gov (United States)

    Mendez, Carolina B; Klenzendorf, J Brandon; Afshar, Brigit R; Simmons, Mark T; Barrett, Michael E; Kinney, Kerry A; Kirisits, Mary Jo

    2011-02-01

    Due to decreases in the availability and quality of traditional water resources, harvested rainwater is increasingly used for potable and non-potable purposes. In this study, we examined the effect of conventional roofing materials (i.e., asphalt fiberglass shingle, Galvalume(®) metal, and concrete tile) and alternative roofing materials (i.e., cool and green) on the quality of harvested rainwater. Results from pilot-scale and full-scale roofs demonstrated that rainwater harvested from any of these roofing materials would require treatment if the consumer wanted to meet United States Environmental Protection Agency primary and secondary drinking water standards or non-potable water reuse guidelines; at a minimum, first-flush diversion, filtration, and disinfection are recommended. Metal roofs are commonly recommended for rainwater harvesting applications, and this study showed that rainwater harvested from metal roofs tends to have lower concentrations of fecal indicator bacteria as compared to other roofing materials. However, concrete tile and cool roofs produced harvested rainwater quality similar to that from the metal roofs, indicating that these roofing materials also are suitable for rainwater harvesting applications. Although the shingle and green roofs produced water quality comparable in many respects to that from the other roofing materials, their dissolved organic carbon concentrations were very high (approximately one order of magnitude higher than what is typical for a finished drinking water in the United States), which might lead to high concentrations of disinfection byproducts after chlorination. Furthermore the concentrations of some metals (e.g., arsenic) in rainwater harvested from the green roof suggest that the quality of commercial growing media should be carefully examined if the harvested rainwater is being considered for domestic use. Hence, roofing material is an important consideration when designing a rainwater catchment. Copyright

  17. GREEN ROOFS AND GREEN WALLS AS INNOVATIVE SOLUTIONS TO IMPROVE THE ENVIRONMENTAL HEALTH OF URBAN AREAS

    Directory of Open Access Journals (Sweden)

    Ilona Małuszyńska

    2014-10-01

    Full Text Available Urban areas are exposed on those originating in various sources, emissions of pollutants that pose a threat to the health of living organisms. The type of pollutant and its toxicity to organisms and mold exposure as well as the frequency of their occurrence in the environment can have a negative impact on living organisms occurring in the area. Another element negatively affecting the environmental health is a rush of individuals and communities to prosperity, which, combined with a weak nervous resistance to stressful situations contributes to the reduction of resistance to disease becoming the scourge of society as bulimia, diabetes and cancer. The tendency to increase building occurring in urban areas and the increasing number of urban dwellers in Europe as well as increasing awareness of the population about the need to protect environmental health, points to the need to seek alternative and innovative solutions for urban greenery. Investments included in that group, the green roofs and green walls, the implementation of which will increase the biologically active surface in the cities, may be an essential element of urban infrastructure that contributes to improving the quality of life of communities living in the city.

  18. Green Construction in Building Renovation

    Directory of Open Access Journals (Sweden)

    Ksit Barbara

    2016-06-01

    Full Text Available Modern materials and construction solutions draw more and more attention to ecology and building certification. Among the criteria appearing in revitalization, an important element is bringing plants back into heavily urbanized areas. In its natural form, this is not possible to carry out everywhere, often requiring large amounts of space. Nowadays, however, there are a number of green roofs and green wall systems, allowing “greener” construction without making significant changes in the urban environment.

  19. Performance evaluation of five Mediterranean species to optimize ecosystem services of green roofs under water-limited conditions.

    Science.gov (United States)

    Azeñas, V; Janner, I; Medrano, H; Gulías, J

    2018-04-15

    Rapid urban growth in Mediterranean cities has become a serious environmental concern. Due to this expansion, which covers adjacent horizontal ground, a critical deficit of green areas has been increasing. Moreover, irrigation is considered an important issue since water is one of the most limiting natural resources all over the world. The main objective of this study was to perform a long-term experiment to assess five Mediterranean species for extensive green roof implementation in Mediterranean-climate conditions. Brachypodium phoenicoides, Crithmum maritimum, Limonium virgatum, Sedum sediforme and Sporobolus pungens were grown in experimental modules under well-watered and water-limited conditions (irrigation at 50% and 25% ET 0 , respectively). Plant growth and cover, relative appearance, color evolution and water use were determined periodically for two years. Shoot and root biomass were quantified at the end of the experimental period. The effects of the irrigation treatments and seasonal changes were assessed to identify the advantages and disadvantages of each species according to their environmental performance. All species survived and showed adequate esthetic performance and plant cover during the experiment. S. sediforme registered the lowest variation of relative appearance along the experiment, the highest biomass production and the lowest water consumption. Nevertheless, B. phoenicoides appeared to be an interesting alternative to S. sediforme, showing high esthetic performance and water consumption throughout the rainy season, suggesting a potential role of this species in stormwater regulation related with runoff reduction. S. pungens performed well in summer but presented poor esthetics during winter. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Plant landscape design and its social service function of Shanghai Qibao GaoXian Roof Garden Market

    Directory of Open Access Journals (Sweden)

    Dai Wenbin

    2017-02-01

    Full Text Available With the rapid development of urban social economy,the original green area of the cities has been decreasing continually. In order to meet the humanistic,natural and economic demands of the urban green space,this paper takes the Shanghai Qibao GaoXian Roof Garden Market as an example further studing the social service functions of the market such as leisure meeting,garden life,flower market,education on nature,festival exhibition and so on.

  1. Effects of leachate from crumb rubber and zinc in green roofs on the survival, growth, and resistance characteristics of Salmonella enterica subsp. enterica serovar Typhimurium.

    Science.gov (United States)

    Crampton, Mollee; Ryan, Allayna; Eckert, Cori; Baker, Katherine H; Herson, Diane S

    2014-05-01

    The use of green roofs is a growing practice worldwide, particularly in densely populated areas. In an attempt to find new methods for recycling crumb rubber, incorporation of crumb rubber into artificial medium for plant growth in green roofs and similar engineered environments has become an attractive option for the recycling of waste tires. Though this approach decreases waste in landfills, there are concerns about the leaching of zinc and other heavy metals, as well as nutrient and organic compounds, into the environment. The present study analyzed the impact of leachate from crumb rubber and zinc on the growth and viability of Salmonella enterica subsp. enterica serovar Typhimurium. Zinc was chosen for further studies since it has been previously implicated with other biological functions, including biofilm formation, motility, and possible cross-resistance to antimicrobial agents. The study showed that Salmonella can colonize crumb rubber and that crumb rubber extract may provide nutrients that are usable by this bacterium. Salmonella strains with reduced susceptibility (SRS) to zinc were obtained after subculturing in increasing concentrations of zinc. The SRS exhibited differences in gene expression of flux pump genes zntA and znuA compared to that of the parent when exposed to 20 mM added zinc. In biofilm formation studies, the SRS formed less biofilm but was more motile than the parental strain.

  2. PREDICTING THERMAL PERFORMANCE OF ROOFING SYSTEMS IN SURABAYA

    Directory of Open Access Journals (Sweden)

    MINTOROGO Danny Santoso

    2015-07-01

    Full Text Available Traditional roofing systems in the developing country likes Indonesia are still be dominated by the 30o, 45o, and more pitched angle roofs; the roofing cover materials are widely used to traditional clay roof tiles, then modern concrete roof tiles, and ceramic roof tiles. In the 90’s decay, shop houses are prosperous built with flat concrete roofs dominant. Green roofs and roof ponds are almost rarely built to meet the sustainable environmental issues. Some tested various roof systems in Surabaya were carried out to observe the roof thermal performances. Mathematical equation model from three references are also performed in order to compare with the real project tested. Calculated with equation (Kabre et al., the 30o pitched concrete-roof-tile, 30o clay-roof-tile, 45o pitched concrete-roof-tile are the worst thermal heat flux coming to room respectively. In contrast, the bare soil concrete roof and roof pond system are the least heat flux streamed onto room. Based on predicted calculation without insulation and cross-ventilation attic space, the roof pond and bare soil concrete roof (greenery roof are the appropriate roof systems for the Surabaya’s climate; meanwhile the most un-recommended roof is pitched 30o or 45o angle with concrete-roof tiles roofing systems.

  3. Resilience of roof-top Plant-Microbial Fuel Cells during Dutch winter

    NARCIS (Netherlands)

    Helder, M.; Strik, D.P.B.T.B.; Timmers, R.A.; Reas, S.M.T.; Hamelers, H.V.M.; Buisman, C.J.N.

    2013-01-01

    The Plant-Microbial Fuel Cell (P-MFC) is in theory a technology that could produce sustainable electricity continuously. We operated two designs of the P-MFC under natural roof-top conditions in the Netherlands for 221 days, including winter, to test its resilience. Current and power densities are

  4. Evaluation and Optimization of a Traditional North-Light Roof on Industrial Plant Energy Consumption

    Energy Technology Data Exchange (ETDEWEB)

    Adriaenssens, Sigrid [Form-Finding Lab, Department of Civil and Environmental Engineering, School of Engineering and Applied Science, Princeton Univ., NJ (United States); Hao Liu [Center for Intelligent and Networked Systems, Department of Automation, Tsinghua National Laboratory for Information Science and Technology, Tsinghua University, Beijing (China); Wahed, Miriam [Form-Finding Lab, Department of Civil and Environmental Engineering, School of Engineering and Applied Science, Princeton Univ., NJ (United States); Qianchuan Zhao [Center for Intelligent and Networked Systems, Department of Automation, Tsinghua National Laboratory for Information Science and Technology, Tsinghua University, Beijing (China)

    2013-04-15

    Increasingly strict energy policies, rising energy prices, and a desire for a positive corporate image currently serve as incentives for multinational corporations to reduce their plants’ energy consumption. This paper quantitatively investigates and discusses the value of a traditional north-light roof using a complete building energy simulation and optimization framework. The findings indicate that the north-light system yields positive building energy performance for several climate zones, including: (i) Humid Subtropical; (ii) Semiarid Continental; (iii) Mediterranean; and (iv) Subtropical Highland. In the Subtropical Highland climate zone, for example, the building energy consumption of a north-light roof is up to 54% less than that of a conventional flat roof. Based on these positive findings, this paper further presents an optimization framework that alters the north-light roof shape to further improve its energy performance. To quantitatively guarantee a high probability of finding satisfactory designs while reducing the computational processing time, ordinal optimization is introduced into the scheme. The Subtropical Highland case study shows further energy building consumption reduction of 26% for an optimized north-light roof shape. The presented evaluation and optimization framework could be used in designing a plant with integrated north-lights roof that aim at energy efficiency while maintaining environmental occupant comfort levels.

  5. ROOF GARDENS AS LANDSCAPING IN MODERN TIMES

    Directory of Open Access Journals (Sweden)

    Vaska Sandeva

    2017-02-01

    Full Text Available As we know we live in a process of industrialization and massive building of residential buildings, both individually and as a collective housing. Given all that happens even with the procedural other things to come up with all this, the country remains less green space that is required for a single environment, so the roof gardens are the best choice for all of this to get a beautiful country. For roof gardens should be given the explanation that, roof gardens, call it beautiful, flat roofs, and with gentle slope, with rich composition intensively maintained and often impose a constructive adaptation of the building and benefits by the architectural beauty, insulation, absorption. Commonly found in urban areas and almost always are placed foliage with not very high growth.

  6. Proceedings of the 3. annual international greening rooftops for sustainable communities conference, awards and trade show

    International Nuclear Information System (INIS)

    2005-01-01

    Green roofs are gaining momentum as a viable technology to support sustainable development in urban areas. Although the green roof industry is well-established in many European countries, the industry has not yet fully emerged in North America. Many municipalities in both the United States and Canada are now exploring the potential of green roofs within urban stormwater and heat island management plans. While there are now green roofs that demonstrate their efficacy in reducing energy consumption and retaining precipitation, a lack of standards and effective policy instruments continues to constrain widespread market penetration. Many building owners and architects are unaware of the positive economic benefits of green roofs. This conference examined ways to improve the uptake of green roof technology in North America. Federal policies and standards supporting green roof technology were reviewed, as well as various initiatives to promote green roofs at the municipal level. Innovative research programs and demonstration programs were examined. Important policy developments in countries where green roof technology has been widely implemented were reviewed. Issues concerning public outreach, training and education were explored. Methods of negotiating with the varied disciplines and contractors involved with the installation of green roofs were investigated. New techniques in quantifying the benefits of green roofs using economic analyses and mathematical models were also presented. The conference was divided into 3 tracks: (1) policy and program development; (2) case studies and design; and (3) research on technical performance benefits. The conference featured 62 presentations, of which 49 have been catalogued separately for inclusion in this database. refs., tabs., figs

  7. C2-C6 background hydrocarbon concentrations monitored at a roof top and green park site, in Dublin City centre.

    Science.gov (United States)

    O'Donoghue, R T; Broderick, B M

    2007-09-01

    A 5 week monitoring campaign was carried out in Dublin City centre, to establish which site gave a more accurate background city centre estimation: a roof-top or green field site. This background represented a conservative estimate of HC exposure in Dublin City centre, useful for quantifying health effects related to this form of pollution and also for establishing a local background relative to the four surrounding main roads when the wind direction is travelling towards each road with the background receptor upwind. Over the entire monitoring campaign, the lowest concentrations and relative standard deviations were observed at the green field site, regardless of time of day or meteorological effects.

  8. Resilience of roof-top Plant-Microbial Fuel Cells during Dutch winter

    International Nuclear Information System (INIS)

    Helder, Marjolein; Strik, David P.B.T.B.; Timmers, Ruud A.; Raes, Sanne M.T.; Hamelers, Hubertus V.M.; Buisman, Cees J.N.

    2013-01-01

    The Plant-Microbial Fuel Cell (P-MFC) is in theory a technology that could produce sustainable electricity continuously. We operated two designs of the P-MFC under natural roof-top conditions in the Netherlands for 221 days, including winter, to test its resilience. Current and power densities are not stable under outdoor conditions. Highest obtained power density was 88 mW m −2 , which is lower than was achieved under lab-conditions (440 mW m −2 ). Cathode potential was in our case dependent on solar radiation, due to algae growth, making the power output dependent on a diurnal cycle. The anode potential of the P-MFC is influenced by temperature, leading to a decrease in electricity production during low temperature periods and no electricity production during frost periods. Due to freezing of the roots, plants did not survive winter and therefore did not regrow in spring. In order to make a sustainable, stable and weather independent electricity production system of the P-MFC attention should be paid to improving cathode stability and cold insulation of anode and cathode. Only when power output of the Plant-Microbial Fuel Cell can be increased under outdoor conditions and plant-vitality can be sustained over winter, it can be a promising sustainable electricity technology for the future. -- Highlights: ► Plant-Microbial Fuel Cells (P-MFCs) produce sustainable electricity under outdoor conditions. ► During frost periods no electricity is produced in P-MFCs. ► Cathodes limit performance of P-MFCs under outdoor conditions. ► Spartina anglica in P-MFCs does not survive on a roof-top during Dutch winter. ► The P-MFC needs optimization of power output to be a promising sustainable electricity technology

  9. Indoor Air Quality and Thermal Conditions in a Primary School with a Green Roof System

    Directory of Open Access Journals (Sweden)

    Nikolaos Barmparesos

    2018-02-01

    Full Text Available This paper presents experimental results from a typical school building in Athens, equipped partly with a green roof system (GRS. Environmental monitoring took place in six classrooms located both under the concrete roof and the GRS sectors as well as in the immediate external environment during the warm and cold periods of a school year. Daily measurements of pollutants CO2, TVOCs (Total Volatile Organic Compound, PM1, PM2.5, and PM10 were performed in selected classes. Moreover, indoor ambient temperature (T and relative humidity (RH measurements were implemented in order to estimate the absolute humidity (AH and assess the indoor environmental conditions. The results highlight that during summer, the GRS reduces temperature in a classroom on the top floor by about 2.8 °C, in comparison with the respective classroom under the concrete roof and that AH remained relatively stable for both classrooms. Amid winter, a reverse behavior occurs only for temperature. Moreover, air exchange rates (AER were calculated by using the CO2 decay method for all of the classrooms. The results demonstrated insufficient ventilation for all experimental sights. Finally, concentrations of PM1, PM2.5 and PM10, were found to be relatively decreased, with average values of 0.79, 3.39, and 27.80 μg m−3. Levels of CO2 and TVOCs were elevated during class hours ranging from 469 to 779 ppm and from 6.63 ppm to 13.33 ppm, respectively, but generally within the respective limits of exposure. The examination of the indoor/outdoor (I/O ratio of air pollutants, demonstrated that the outdoor meteorology affects only PM1 and PM2.5, as PM10 and TVOCs are strongly affected by internal sources and the activities of pupils.

  10. Serpins in plants and green algae

    DEFF Research Database (Denmark)

    Roberts, Thomas Hugh; Hejgaard, Jørn

    2008-01-01

    . Serpins have been found in diverse species of the plant kingdom and represent a distinct clade among serpins in multicellular organisms. Serpins are also found in green algae, but the evolutionary relationship between these serpins and those of plants remains unknown. Plant serpins are potent inhibitors...... of mammalian serine proteinases of the chymotrypsin family in vitro but, intriguingly, plants and green algae lack endogenous members of this proteinase family, the most common targets for animal serpins. An Arabidopsis serpin with a conserved reactive centre is now known to be capable of inhibiting...

  11. Plants as green phones

    NARCIS (Netherlands)

    Soler, R.; Harvey, J.A.; Bezemer, T.M.; Stuefer, J.F.

    2008-01-01

    Plants can act as vertical communication channels or `green phones¿ linking soil-dwelling insects and insects in the aboveground ecosystem. When root-feeding insects attack a plant, the direct defense system of the shoot is activated, leading to an accumulation of phytotoxins in the leaves. The

  12. Parametric study of roof diaphragm stiffness requirements

    International Nuclear Information System (INIS)

    Jones, W.D.; Tenbus, M.A.

    1991-01-01

    A common assumption made in performing a dynamic seismic analysis for a building is that the roof/floor system is open-quotes rigidclose quotes. This assumption would appear to be reasonable for many of the structures found in nuclear power plants, since many of these structures are constructed of heavily reinforced concrete having floor/roof slabs at least two feet in thickness, and meet the code requirements for structural detailing for seismic design. The roofs of many Department of Energy (DOE) buildings at the Oak Ridge Y-12 Plant in Oak Ridge, Tennessee, have roofs constructed of either metal, precast concrete or gypsum plank deck overlaid with rigid insulation, tar and gravel. In performing natural phenomena hazard assessments for one such facility, it was assumed that the existing roof performed first as a flexible diaphragm (zero stiffness) and then, rigid (infinitely stiff). For the flexible diaphragm model it was determined that the building began to experience significant damage around 0.09 g's. For the rigid diaphragm model it was determined that no significant damage was observed below 0.20 g's. A Conceptual Design Report has been prepared for upgrading/replacing the roof of this building. The question that needed to be answered here was, open-quotes How stiff should the new roof diaphragm be in order to satisfy the rigid diaphragm assumption and, yet, be cost effective?close quotes. This paper presents a parametric study of a very simple structural system to show that the design of roof diaphragms needs to consider both strength and stiffness (frequency) requirements. This paper shows how the stiffness of a roof system affects the seismically induced loads in the lateral, vertical load resisting elements of a building and provides guidance in determining how open-quotes rigidclose quotes a roof system should be in order to accomplish a cost effective design

  13. Perfecting on floating roof tanks, especially to storage tanks in a nuclear power plant

    International Nuclear Information System (INIS)

    Marquet, A.

    1987-01-01

    In this invention, the liquid reservoir has a floating roof with a tight connection to its wall by a flexible membrane, forming a space for counterbalancing liquid, and a pressure relief valve for the liquid within the reservoir opening above the counterbalancing liquid. Application for tanks used in nuclear power plant [fr

  14. Proceedings of the 2. annual international greening rooftops for sustainable communities conference, awards and trade show

    International Nuclear Information System (INIS)

    2004-01-01

    This conference provided a forum to discuss the many private and public benefits that can be derived from green roofs. The benefits of green roofs include energy savings, creation of green space, mitigation of the urban heat island effect, cleaner stormwater runoff, sound attenuation, aesthetic value, oxygen production, and mitigation of carbon dioxide emissions. The presentations at this conference addressed a broad range of issues, including strategies to improve the commercialization of green roof technology in North America. Federal policies and standards that support green roof applications were reviewed, along with initiatives that promote green roofs at the municipal level. Innovative research programs and demonstration programs were highlighted along with policy developments in countries where green roof technology has been widely implemented. Public outreach, training and education programs were also reviewed. The conference was divided into the following 3 sessions: (1) policy and program development, (2) case studies and design, and (3) research on technical performance and benefits. The conference featured 53 presentations, of which 43 have been catalogued separately for inclusion in this database. refs., tabs., figs

  15. The potential of building envelope greening to achieve quietness

    NARCIS (Netherlands)

    Van Renterghem, T.; Hornikx, M.C.J.; Forssén, J.; Botteldooren, D.

    2013-01-01

    Reduction of noise is one of the multiple benefits of building envelope greening measures. The potential of wall vegetation systems, green roofs, vegetated low screens at roof edges, and also combinations of such treatments, have been studied by means of combining 2D and 3D full-wave numerical

  16. [Study on spectral detection of green plant target].

    Science.gov (United States)

    Deng, Wei; Zhao, Chun-jiang; He, Xiong-kui; Chen, Li-ping; Zhang, Lu-da; Wu, Guang-wei; Mueller, J; Zhai, Chang-yuan

    2010-08-01

    Weeds grow scatteredly in fields, where many insentient objects exist, for example, withered grasses, dry twig and barriers. In order to improve the precision level of spraying, it is important to study green plant detecting technology. The present paper discussed detecting method of green plant by using spectral recognizing technology, because of the real-time feature of spectral recognition. By analyzing the reflectivity difference between each of the two sides of the "red edge" of the spectrum from plants and surrounding environment, green plant discriminat index (GPDI) is defined as the value which equals the reflectivity ratio at the wavelength of 850 nm divided by the reflectivity ratio at the wavelength of 650 nm. The original spectral data of green plants and the background were measured by using the handhold FieldSpec 3 Spectroradiometer manufactured by ASD Inc. in USA. The spectral data were processed to get the reflectivity of each measured objects and to work out the GPDI thereof as well. The classification model of green plant and its background was built up using decision tree method in order to obtain the threshold of GPDI to distinguish green plants and the background. The threshold of GPDI was chosen as 5.54. The detected object was recognized as green plant when it is GPDI>GPDITH, and vice versa. Through another test, the accuracy rate was verified which was 100% by using the threshold. The authors designed and developed the green plant detector based on single chip microcomputer (SCM) "AT89S51" and photodiode "OPT101" to realize detecting green plants from the background. After passing through two optical filters, the center wavelengths of which are 650 and 850 nm respectively, the reflected light from measured targets was detected by two photodiodes and converted into electrical signals. These analog signals were then converted to digital signals via an analog-to-digital converter (ADS7813) after being amplified by a signal amplifier (OP400

  17. Enmax to buy more green power

    International Nuclear Information System (INIS)

    Anon.

    2000-01-01

    Enmax, Calgary's electric power utility has recently issued a request for proposals to wind and small hydro power producers to supply an additional 30,000 MWh of green energy before the end of this year, and 40,000 MWh per year for the next 10 years. To meet this new demand with wind power, it would be necessary to install an additional 12 MW of new wind capacity. To qualify, a producer must be Ecologo certifiable have facilities built after 1996. The new energy will be used to expand green energy into the commercial energy market, as well as to sign up more residential customers. (Currently there are about 1,000.) Epcor, the Edmonton electric utility currently has 1,700 green energy customers and hopes to have 7,000 by 2005. Currently, it markets green energy generated by Whitecourt Power's wood waste biomass plant, but hopes to augment its supply from small hydro production from an Alberta plant now being installed in a joint venture with Canadian Hydro Developers. Epcor also has a 13.4 kW solar array installed on the roof of its headquarters building which has been recently EcoLogo certified

  18. Prolong Your Roof's Performance: Roof Asset Management.

    Science.gov (United States)

    Teitsma, Jerry

    2001-01-01

    Discusses the roof asset management process for maintaining a roof system's integrity and value in a cost-effective manner. Included is a breakdown of roofing surface characteristics for multiply and single ply roofing systems. (GR)

  19. Эксплуатируемая крыша: кровельное озеленение

    OpenAIRE

    Татаринович, А. В.

    2016-01-01

    The article describes the international experience of roof greening. Two methods of planting were considered. Technology for creating roof greening was analyzed. Advantages and disadvantages of roof greening technology were considered.

  20. Predicting Maps of Green Growth in Košice

    Science.gov (United States)

    Poorova, Zuzana; Vranayova, Zuzana

    2017-10-01

    The paper deals with the changing of the traditional roofs in the city of Košice into green roofs. Possible areas of city housing estates, after taking into account the conditions of each of them (types of buildings, statics of buildings), are listed in the paper. The research is picturing the prediction maps of Košice city from 2017 to 2042 in 5-years interval. The paper is a segment of a dissertation work focusing on changing traditional roofs into green roofs with the aim to retain water, calculate the amount of retained water and show possibilities how to use this water.

  1. Roof Box Shape Streamline Adaptation and the Impact towards Fuel Consumption

    Directory of Open Access Journals (Sweden)

    Abdul Latif M.F.

    2017-01-01

    Full Text Available The fuel price hike is currently a sensational national issue in Malaysia. Since the rationalization of fuel subsidies many were affected especially the middle income family. Vehicle aerodynamic were directly related to the fuel consumption, were extra frontal area result a higher drag force hence higher fuel consumption. Roof box were among the largest contributor to the extra drag, thus the roof box shape rationalization were prominent to reduce the extra drag. The idea of adopting water drop shape to the roof box design shows prominent result. The roof box has been simulated using MIRA virtual wind tunnel modelling via commercial computational fluid dynamic (CFD package. This streamline shape drastically reduce the drag force by 34% resulting to a 1.7% fuel saving compare to the conventional boxy roof box. This is an effort to reduce the carbon foot print for a sustainable green world.

  2. From “Green Building” to Architecture Integrated with Nature: Regeneration principle

    Directory of Open Access Journals (Sweden)

    Victor Logvinov

    2016-08-01

    Full Text Available The article analyses different approaches to ‘green building’ and architecture integrated with nature. It gives definition to the regeneration principle and observes the genesis of world and national experience in roof- and facade greening and ‘hanging gardens’. The article denounces myths and misbeliefs that prevent the wide application of green roofs and facades in Russia.

  3. Impact of Sustainable Cool Roof Technology on Building Energy Consumption

    Science.gov (United States)

    Vuppuluri, Prem Kiran

    Highly reflective roofing systems have been analyzed over several decades to evaluate their ability to meet sustainability goals, including reducing building energy consumption and mitigating the urban heat island. Studies have isolated and evaluated the effects of climate, surface reflectivity, and roof insulation on energy savings, thermal load mitigation and also ameliorating the urban heat island. Other sustainable roofing systems, like green-roofs and solar panels have been similarly evaluated. The motivation for the present study is twofold: the first goal is to present a method for simultaneous evaluation and inter-comparison of multiple roofing systems, and the second goal is to quantitatively evaluate the realized heating and cooling energy savings associated with a white roof system compared to the reduction in roof-top heat flux. To address the first research goal a field experiment was conducted at the International Harvester Building located in Portland, OR. Thermal data was collected for a white roof, vegetated roof, and a solar panel shaded vegetated roof, and the heat flux through these roofing systems was compared against a control patch of conventional dark roof membrane. The second research goal was accomplished using a building energy simulation program to determine the impact of roof area and roof insulation on the savings from a white roof, in both Portland and Phoenix. The ratio of cooling energy savings to roof heat flux reduction from replacing a dark roof with a white roof was 1:4 for the month of July, and 1:5 annually in Portland. The COP of the associated chillers ranges from 2.8-4.2, indicating that the ratio of cooling energy savings to heat flux reduction is not accounted for solely by the COP of the chillers. The results of the building simulation indicate that based on energy savings alone, white roofs are not an optimal choice for Portland. The benefits associated with cooling energy savings relative to a black roof are offset by

  4. Efficacy of integrated green design strategies in meeting green building criteria: A South Africa Study

    CSIR Research Space (South Africa)

    Van Wyk, Llewellyn V

    2010-05-01

    Full Text Available to the use of more efficient sanitary fittings and not using potable water for irrigation purposes; and an enhanced post-construction ecological value for the site. Green building is a recent development in South Africa: a green building council... of the building are 330 millimetres wide consisting of two clay masonry skins and an internal cavity: this has been done to allow the outer skin to go past the face of the 230 millimetre reinforced concrete columns. The roof comprises of an insulated light roof...

  5. Proceedings of the 4. annual international greening rooftops for sustainable communities conference, awards and trade show

    International Nuclear Information System (INIS)

    2006-01-01

    Green roof technologies represent opportunities for significant social, economic and environmental benefits, particularly in urban areas. This conference, awards and trade show provided a forum to discuss the integration of nature with architecture and demonstrated the possibilities of applying advanced green roof technology to residential, institutional, industrial and commercial buildings. Sustainable landscaping principles were reviewed along with methods and techniques of urban ecology. Green roofs have proven to filter polluted air, reduce energy demands, and assist in stormwater management. The additional benefits of green roof technology in urban settings include moderation of the urban heat island effect, creation of green spaces, and preservation of habitat and biodiversity. It was noted that the widespread adoption of green roof technology in North America lags behind Europe due to a lack of effective policy instruments and standards. The conference was divided into the following 3 main sessions: (1) policy and program development, (2) case studies and design, and (3) research on technical performance benefits. The conference featured 40 presentations, of which 36 have been catalogued separately for inclusion in this database. refs., tabs., figs

  6. Plant neurobiology and green plant intelligence : science, metaphors and nonsense

    NARCIS (Netherlands)

    Struik, P.C.; Yin, X.; Meinke, H.B.

    2008-01-01

    This paper analyses the recent debates on the emerging science of plant neurobiology, which claims that the individual green plant should be considered as an intelligent organism. Plant neurobiology tries to use elements from animal physiology as elegant metaphors to trigger the imagination in

  7. The Advancement of Cool Roof Standards in China from 2010 to 2015

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Jing [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Levinson, Ronnen M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-11-01

    Since the initiation of the U.S.-China Clean Energy Research Center-Building Energy Efficiency (CERC-BEE) cool roof research collaboration between the Lawrence Berkeley National Laboratory Heat Island Group and Chinese institutions in 2010, new cool surface credits (insulation trade- offs) have been adopted in Chinese building energy efficiency standards, industry standards, and green building standards. JGJ 75-2012: Design Standard for Energy Efficiency of Residential Buildings in Hot Summer and Warm Winter Zone became the first national level standard to provide cool surface credits. GB/T 50378-2014: Assessment Standard for Green Building is the first national level green building standard that offers points for heat island mitigation. JGJ/T 359-2015: Technical Specification for Application of Architectural Reflective Thermal Insulation Coating is the first industry standard that offers cool coating credits for both public and residential buildings in all hot-summer climates (Hot Summer/Cold Winter, Hot Summer/Warm Winter). As of December 2015, eight provinces or municipalities in hot-summer regions have credited cool surfaces credits in their residential and/or public building design standards; five other provinces or municipalities in hot-summer regions recommend, but do not credit, the use of cool surfaces in their building design standards. Cool surfaces could be further advanced in China by including cool roof credits for residential and public building energy efficiency standards in all hot-summer regions; developing a standardized process for natural exposure and aged-property rating of cool roofing products; and adapting the U.S.-developed laboratory aging process for roofing materials to replicate solar reflectance changes induced by natural exposure in China.

  8. Flat roofs. Dayligth systems, sealing, roof greening, solar engineering, thermal insulation, drainage, monitoring; Flachdaecher. Tageslichtsysteme, Abdichtungstechnik, Dachbegruenung, Solartechnik, Flachdachdaemmung, Entwaesserung, Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Schoenfeldt, Simone von; Bratfisch, Rainer (comps.)

    2010-07-15

    The target of the project is, to lower the costs of the basic constructions and the costs of the static calculation. These costs categories develop when setting up collectors on flat roofs. Cost-optimized solutions are presented beginning with the attachment detail up to the carrying construction. A economical implementation enables. A substantial point of the project is the examination of the load assumptions, particularly the wind load. Result is a modular system, which gives a selection of attachment details depending upon available roof structure and a combination of different carrying constructions co-ordinated with most frequently occurring collector types enables. (orig./GL)

  9. Integrating stormwater and greywater treatment for thermal regulation and the enhancement of biological diversity using mass balance of water as a design criteria

    Energy Technology Data Exchange (ETDEWEB)

    Mankiewicz, P.S.; Simon, D.B. [Gaia Inst., Bronx, NY (United States)

    2007-07-01

    This paper presented green roof projects scheduled for construction in New York City in 2007 which will test the hypothesis that green roof water budgets can favorably impact energy consumption in buildings and in their immediate surroundings. It presented specific methods and applications to move water and partition heat through vegetation to reach complementary goals in both ecology and economics of increasing plant coverage, decreasing urban summer temperature, and eliminating the expense of treating stormwater and greywater through evaporative cooling. A commercial facility will be retrofitted with a green roof and photovoltaic (PV) array as well as a below grade stormwater capture and recycle system. The overall energy efficiency, as well as PV performance, will be enhanced by coupling a green roof with water treatment with photovoltaic energy capture. Condensers for this building will be situated beneath a green roof and next to a vegetated landscape, resulting in cool air that is expected to increase air conditioning efficiencies. The objective is zero stormwater discharge into the combined sewer. The density of plant coverage, the quantity of available water, and the output of crops were studied in detail. The interdependent criteria of thermal partitioning, water loss, leaf area index, and green roof energetics have begun to receive attention because green roof evaluation has begun to focus on the ability of plants to discharge quantities of water into the atmosphere, and because this water movement pathway has large physical chemical impacts on the thermal environment. This paper revealed that green roofs contribute to thermal regulation and energy savings, with a kilowatt usage difference of 20 per cent or greater for black versus green roofs. 26 refs., 2 figs.

  10. Performance of antisolar insulated roof system

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Irshad [Alternative Energy Development Board (AEDB), House No. 1, Main Nazimuddin Road, F-10/4, Islamabad (Pakistan)

    2010-01-15

    Rooms with concrete slab roofs directly exposed to the sun become unbearably hot during summer and very cold during winter. Huge amounts of energy are required to keep them comfortable. Application of thermal insulation on roofs significantly reduces energy required for heating and cooling. The effectiveness of roof insulations may be further enhanced if a layer of antisolar coating is applied on top of the insulation. The antisolar coating reflects most of the incident sunlight and prevents the roof from heating up. This reduces the daily cycles of thermal expansion and contraction which cause cracks in the roof slabs for the rainwater to leak through. The antisolar coating prolongs the useful life of the building structure as well as the life of the insulation that evaporates with heat. The method of application of the antisolar coating has been specially developed to eliminate thermal bridges formed between the edges of the tiles. This report presents the results of an experiment conducted at the Attock Refinery Limited (ARL) Rawalpindi to assess the performance of the antisolar insulated roof system. Record of the room temperature before and after the installation of the system shows a significant reduction in the indoor temperature. The room occupants, who used to experience a very high thermal stress after 10:30 am in spite of the 1.5-ton air conditioner operating in the room, felt much relieved after the installation. They had to turn back the thermostat of the air conditioner and even had to switch it off occasionally. A detailed thermal analysis of the room shows that cost of an antisolar system is paid back in less than a year in the form of savings of energy required for air-conditioning in summer and for gas heating in winter. In addition, the system prevents the addition of 150 kg per year of green house gases to the atmosphere for each square meter of the area covered by the system. It also provides a quieter environment by reducing the operational

  11. Evaluation of Roof Bolting Requirements Based on In-Mine Roof Bolter Drilling

    Energy Technology Data Exchange (ETDEWEB)

    Syd S. Peng

    2005-10-01

    Roof bolting is the most popular method for underground openings in the mining industry, especially in the bedded deposits such as coal. In fact, all U.S. underground coal mine entries are roof-bolted as required by law. However, roof falls still occur frequently in the roof bolted entries. The two possible reasons are: the lack of knowledge of and technology to detect the roof geological conditions in advance of mining, and lack of roof bolting design criteria for modern roof bolting systems. This research is to develop a method for predicting the roof geology and stability condition in real time during roof bolting operation. Based on this information, roof bolting design criteria for modern roof bolting systems will be developed for implementation in real time. For the prediction of roof geology and stability condition in real time, a micro processor was used and a program developed to monitor and record the drilling parameters of roof bolter. These parameters include feed pressure, feed flow (penetration rate), rotation pressure, rotation rate, vacuum pressure, oil temperature of hydraulic circuit, and signals for controlling machine. From the results of a series of laboratory and underground tests so far, feed pressure is found to be a good indicator for identifying the voids/fractures and estimating the roof rock strength. The method for determining quantitatively the location and the size of void/fracture and estimating the roof rock strength from the drilling parameters of roof bolter was developed. Also, a set of computational rules has been developed for in-mine roof using measured roof drilling parameters and implemented in MRGIS (Mine Roof Geology Information System), a software package developed to allow mine engineers to make use of the large amount of roof drilling parameters for predicting roof geology properties automatically. For the development of roof bolting criteria, finite element models were developed for tensioned and fully grouted bolting

  12. Analysis of technical-economic requirements for the construction of a solar power plant on the roof of the business building of the Electrical Engineering Institute 'Nikola Tesla'

    OpenAIRE

    Grbić, Maja; Antić, Radoslav; Ponoćko, Jelena; Mikulović, Jovan; Đurišić, Željko

    2014-01-01

    This paper presents an analysis of the technical-economic requirements for the construction of a solar power plant on the roof of the business building of the Electrical Engineering Institute 'Nikola Tesla' in Belgrade. Calculation of solar irradiation is performed and the conceptual design of the disposition of solar panels on the roof of the building is shown as well as their connections to the inverters. Conditions for connecting the plant to the distribution network are checked and an eco...

  13. The impact of roofing material on building energy performance

    Science.gov (United States)

    Badiee, Ali

    , fenestration, etc. and their thermal insulation energy performance value will not be included this study. Five different UAB campus buildings with the same reinforced concrete structure (RC Structure), each having a different roofing material were selected, surveyed, analyzed, and evaluated in this study. Two primary factors are considered in this evaluation: the energy consumption and utility bills. The data has been provided by the UAB Facilities Management Department and has been monitored from 2007 to 2013 using analysis of variance (ANOVA) and t-test methods. The energy utilities examined in this study involved electricity, domestic water, and natural gas. They were measured separately in four different seasons over a seven-year time period. The building roofing materials consisted of a green roof, a white (reflective) roof, a river rock roof, a concrete paver roof, and a traditional black roof. Results of the tested roofs from this study indicate that the white roof is the most energy efficient roofing material.

  14. Design and performance of a novel innovative roofing system for tropical landed houses

    International Nuclear Information System (INIS)

    Al-Obaidi, Karam M.; Ismail, Mazran; Abdul Rahman, Abdul Malek

    2014-01-01

    indoor temperature under daylight condition was 2.61 °C for the IRS, whereas 4.05 °C for conventional roof. Moreover, the IRS successfully delivered an acceptable range of natural light below 2000 lux (Green Building Index) at daytime with a minimum level of 86% compared with 78% for conventional roofing design. As a result, these findings indicated that the IRS with light materials and without any insulation can separate solar heat from useful natural light under the climatic conditions in Malaysia. The system provides a new design paradigm based on the requirements of the Malaysian Green Building Index

  15. Effect of highly reflective roofing sheet on building thermal loads for a school in Osaka

    Directory of Open Access Journals (Sweden)

    Yuan Jihui

    2017-01-01

    Full Text Available Currently, urban heat island (UHI phenomenon and building energy consumptions are becoming serious. Strategies to mitigate UHI and reduce building energy consumptions are implemented worldwide. In Japan, as an effective means of mitigating UHI and saving energy of buildings, highly reflective (HR and green roofs are increasingly used. In order to evaluate the effect of roofs with high reflection and thermal insulation on the energy conservation of buildings, we investigated the roof solar reflectivity of the subject school in Osaka, in which the HR roofing sheet was installed on the roof from 2010. Thermal loads, including cooling and heating loads of the top floor of school, were calculated using the thermal load calculation software, New HASP/ACLD-β. Comparing the thermal loads after HR roofing sheet installation to previous, the annual thermal load decreased about 25 MJ/m2-year and the cooling load decreased about 112 MJ/m2-year. However, the heating load increased about 87 MJ/m2-year in winter. To minimize the annual thermal load, thermal insulation of the roof was also considered be used together with HR roofing sheet in this study. The results showed that the combination of HR roofing sheet and high thermal insulation is more effective to reduce the annual thermal load.

  16. EVALUATION OF ROOF BOLTING REQUIREMENTS BASED ON IN-MINE ROOF BOLTER DRILLING

    Energy Technology Data Exchange (ETDEWEB)

    Syd S. Peng

    2003-07-15

    Roof bolting is the most popular method for underground openings in the mining industry, especially in the bedded deposits such as coal, potash, salt etc. In fact, all U.S. underground coal mine entries are roof-bolted as required by law. However, roof falls still occur frequently in the roof bolted entries. The two possible reasons are: the lack of knowledge of and technology to detect the roof geological conditions in advance of mining, and lack of roof bolting design criteria for modern roof bolting systems. This research is to develop a method for predicting the roof geology and stability condition in real time during roof bolting operation. Based on such information, roof bolting design criteria for modern roof bolting systems will be developed for implementation in real time. In this quarter, the field, theoretical and programming works have been performed toward achieving the research goals set in the proposal. The selected site and the field testing plan enabled us to test all three aspects of roof geological features. The development of the data interpretation methodologies and the geology mapping computer program have also been preceding well.

  17. Roofing Materials Assessment: Investigation of Five Metals in Runoff from Roofing Materials.

    Science.gov (United States)

    Winters, Nancy; Granuke, Kyle; McCall, Melissa

    2015-09-01

    To assess the contribution of five toxic metals from new roofing materials to stormwater, runoff was collected from 14 types of roofing materials and controls during 20 rain events and analyzed for metals. Many of the new roofing materials evaluated did not show elevated metals concentrations in the runoff. Runoff from several other roofing materials was significantly higher than the controls for arsenic, copper, and zinc. Notably, treated wood shakes released arsenic and copper, copper roofing released copper, PVC roofing released arsenic, and Zincalume® and EPDM roofing released zinc. For the runoff from some of the roofing materials, metals concentrations decreased significantly over an approximately one-year period of aging. Metals concentrations in runoff were demonstrated to depend on a number of factors, such as roofing materials, age of the materials, and climatic conditions. Thus, application of runoff concentrations from roofing materials to estimate basin-wide releases should be undertaken cautiously.

  18. Living on the mall : patterning and place making in the case study of Nouvelle

    Energy Technology Data Exchange (ETDEWEB)

    Gillies-Smith, S.; Ring, H. [Martha Schwartz, Inc., Cambridge, MA (United States)

    2007-07-01

    One of the largest habitable green roofs in the New England area was designed by Martha Schwartz Inc. The green roof spans 1.5 acres of mall rooftop that will be accessible by two connected condominium towers. A condominium complex associated with the expansion of the Natick Mall entitled Nouvelle, offers a new type of housing, in which a private, residential apartment complex adjoins a suburban, upscale indoor shopping mall. There are many new opportunities to use the expansive area of the mall complex roof to function as a productive, multi-use, shared private park. As an art-based landscape architectural practice, the office has adapted bold and graphic qualities as a model for its green roof design. The Nouvelle green roof offers dynamic circulation, enjoyable social space and recreation, intersecting a continuous coverage of patterned sedum and river stone that spans an entire roofscape. The green roof demonstrates an innovative combination of intensive and extensive plantings that create a system of legible and visually pleasing patterning from above. This case study addressed these innovations and implementation challenges within the context of mall architecture and green roof technologies. In addition, it also identified the social uses of roof spaces, and the aesthetics and sustainability of patterning in intensive and extensive planting design.

  19. Analysis of technical-economic requirements for the construction of a solar power plant on the roof of the business building of the Electrical Engineering Institute 'Nikola Tesla'

    Directory of Open Access Journals (Sweden)

    Grbić Maja

    2014-01-01

    Full Text Available This paper presents an analysis of the technical-economic requirements for the construction of a solar power plant on the roof of the business building of the Electrical Engineering Institute 'Nikola Tesla' in Belgrade. Calculation of solar irradiation is performed and the conceptual design of the disposition of solar panels on the roof of the building is shown as well as their connections to the inverters. Conditions for connecting the plant to the distribution network are checked and an economic analysis of the project is performed.

  20. Accelerating Planted Green Ash Establishment on an Abandoned Soybean Field

    Science.gov (United States)

    John W. Groninger; Didier A. Babassana

    2002-01-01

    Planted green ash seedlings exhibit high survival rates on most bottomland sites that have recently come out of row crop production, making this species a popular choice for afforestation. Sub-optimal growth of planted hardwood tree species, including green ash, often delays the realization of many of the economic and environmental benefits that are used to justify the...

  1. Evolution of green plants as deduced from 5S rRNA sequences.

    Science.gov (United States)

    Hori, H; Lim, B L; Osawa, S

    1985-02-01

    We have constructed a phylogenic tree for green plants by comparing 5S rRNA sequences. The tree suggests that the emergence of most of the uni- and multicellular green algae such as Chlamydomonas, Spirogyra, Ulva, and Chlorella occurred in the early stage of green plant evolution. The branching point of Nitella is a little earlier than that of land plants and much later than that of the above green algae, supporting the view that Nitella-like green algae may be the direct precursor to land plants. The Bryophyta and the Pteridophyta separated from each other after emergence of the Spermatophyta. The result is consistent with the view that the Bryophyta evolved from ferns by degeneration. In the Pteridophyta, Psilotum (whisk fern) separated first, and a little later Lycopodium (club moss) separated from the ancestor common to Equisetum (horsetail) and Dryopteris (fern). This order is in accordance with the classical view. During the Spermatophyta evolution, the gymnosperms (Cycas, Ginkgo, and Metasequoia have been studied here) and the angiosperms (flowering plants) separated, and this was followed by the separation of Metasequoia and Cycas (cycad)/Ginkgo (maidenhair tree) on one branch and various flowering plants on the other.

  2. Using Remote Sensing to Quantify Roof Albedo in Seven California Cities

    Science.gov (United States)

    Ban-Weiss, G. A.; Woods, J.; Millstein, D.; Levinson, R.

    2013-12-01

    Cool roofs reflect sunlight and therefore can reduce cooling energy use in buildings. Further, since roofs cover about 20-25% of cities, wide spread deployment of cool roofs could mitigate the urban heat island effect and partially counter urban temperature increases associated with global climate change. Accurately predicting the potential for increasing urban albedo using reflective roofs and its associated energy use and climate benefits requires detailed knowledge of the current stock of roofs at the city scale. Until now this knowledge has been limited due to a lack of availability of albedo data with sufficient spatial coverage, spatial resolution, and spectral information. In this work we use a novel source of multiband aerial imagery to derive the albedos of individual roofs in seven California cities: Los Angeles, Long Beach, San Diego, Bakersfield, Sacramento, San Francisco, and San Jose. The radiometrically calibrated, remotely sensed imagery has high spatial resolution (1 m) and four narrow (less than 0.1 μm wide) band reflectances: blue, green, red, and near-infrared. To derive the albedo of roofs in each city, we first locate roof pixels within GIS building outlines. Next we use laboratory measurements of the solar spectral reflectances of 190 roofing products to empirically relate solar reflectance (albedo) to reflectances in the four narrow bands; the root-mean-square of the residuals for the albedo prediction is 0.016. Albedos computed from remotely sensed reflectances are calibrated to ground measurements of roof albedo in each city. The error (both precision and accuracy) of albedo values is presented for each city. The area-weighted mean roof albedo (× standard deviation) for each city ranges from 0.17 × 0.08 (Los Angeles) to 0.29 × 0.15 (San Diego). In each city most roofs have low albedo in the range of 0.1 to 0.3. Roofs with albedo greater than 0.4 comprise less than 3% of total roofs and 7% of total roof area in each city. The California

  3. The Role of Green Infrastructure Solutions in Urban Flood Risk Management

    OpenAIRE

    Soz, Salman Anees; Kryspin-Watson, Jolanta; Stanton-Geddes, Zuzana

    2016-01-01

    This Knowledge Note explores the role of green infrastructure solutions in urban flood risk management. Green infrastructure solutions represent an approach that focuses on using natural processes for managing wet weather impacts while delivering environmental, social, and economic benefits. Green infrastructure solutions, such as wetlands, bioshields, buffer zones, green roofing, street s...

  4. Leading effect of visual plant characteristics for functional uses of green spaces

    Directory of Open Access Journals (Sweden)

    Beyza Şat Güngör

    2016-07-01

    Full Text Available Plant materials have the ability to lead the people’s functional use purposes with their visual characteristics. In this study, we examined whether the functional use follows the plant materials’ visual characteristics like a big size tree’s shade use. As visual characteristics of the plants; size, texture, color, and planting design basics are considered. Six urban green spaces determined for this experimental field study in the center of Kırklareli Province, and then a site survey implemented to determine apparent visual characteristics of the plants and matched functional uses with their visual characteristics. Five functional use types determined according to the visual plant characteristics (sitting and resting, pedestrian transition, meeting point, walking and recreational uses. Best representing four photos of each green space’s plant materials are used in photo questionnaires. 89 photo questionnaires were conducted. Five functional use type options indicated in the questionnaire for each green space and one of the options were coinciding with the visual plant characteristics of that green space according to the site survey results. For the analyses of questionnaires; SPSS 17 statistical packages were used. As result; the hypothesis was confirmed by coinciding statistical analyses results with the site survey results.

  5. Selection of powered roof support for weak coal roof

    Energy Technology Data Exchange (ETDEWEB)

    Ramayya, M.S.V.; Sudhakar, L. [Singareni Collieries Co. Ltd., Kothagudem (India)

    2002-04-01

    Singareni Collieries Company Ltd (SCCL) introduced mechanised longwall mining in 1983. The first few faces were worked with conventional and immediate forward supports (IFS), with capacities in the range of 360 to 450 t. These under capacity supports increased from abutment loads and there was breakage of roof in front of the supports which resulted in closure of powered roof supports, followed by face cavities. The cavities were more frequent and were difficult to negotiate especially in case of IFS supports. Subsequently, support capacity was increased at Padmavati Khani (PVK) mine and at GDK.10a and GKD.9LFP Inclines where the roof is composed of weak, coal, shale and clay. Problems related to failure of hydraulics/legs etc., which are repairable have occurred; though the problems are not totally eliminated, there was definite improvement in strata control with these higher capacity supports. Monitoring of supports was conducted all through the working of longwall panels. The data generated while working these longwall faces were analysed to study the suitability of other types of powered roof supports, namely 2 legged shield supports/4 legged supports for improved strata control. The analysis and practical experiences suggest that in weak, coaly, shale and clay roofs 2 legged shield supports offer better roof control. 4 refs., 4 figs.

  6. 30 CFR 75.205 - Installation of roof support using mining machines with integral roof bolters.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Installation of roof support using mining... Roof Support § 75.205 Installation of roof support using mining machines with integral roof bolters. When roof bolts are installed by a continuous mining machine with intregal roof bolting equipment: (a...

  7. Brownfields Tabor Commons Green Jobs Training Program

    Science.gov (United States)

    This training curriculum is designed to inform entry level tradeswomen about the green job opportunities in areas such as deconstruction, weatherization, eco or solar roofing, stormwater systems and more.

  8. 40 CFR 65.45 - External floating roof converted into an internal floating roof.

    Science.gov (United States)

    2010-07-01

    ... External floating roof converted into an internal floating roof. The owner or operator who elects to... 40 Protection of Environment 15 2010-07-01 2010-07-01 false External floating roof converted into an internal floating roof. 65.45 Section 65.45 Protection of Environment ENVIRONMENTAL PROTECTION...

  9. Between green and grey

    NARCIS (Netherlands)

    Jeanet Kullberg

    2016-01-01

    Original title: Tussen groen en grijs Taking cuttings is cool. Growing vegetables is all the rage. Green oases can now be found scattered throughout Dutch towns and cities: community gardens and roof gardens where residents can go to relax and enjoy themselves, improve the appearance of their

  10. Urban greening: environmentalism or marketable aesthetics

    Directory of Open Access Journals (Sweden)

    Dominic Bowd

    2015-11-01

    Full Text Available In recent decades, urban greening has been conceptualized, and subsequently marketed, as a way of making cities more sustainable. Urban greening has been actualized in large global cities, regional centers, and also in many cities in the Global South, where it has been touted as a potential solution to the urban heat island (UHI effect and as a way of reducing carbon dioxide (CO2 emissions. This involves planting street trees and installing curbside gardens, bioswales, green walls, green roofs, and the redevelopment of former industrial zones into urban parklands. This paper questions the assumption that this “greening” of the city must necessarily lead to positive environmental impacts. While such infrastructure itself might be constructed with environmental principles in mind, wider questions concerning the production of such landscapes, and the consumption-orientated lifestyles of those who inhabit these urban landscapes, are seldom considered. Moreover, green aesthetics and environmental sustainability are not always as mutually inclusive as the concepts might suggest, as aesthetics are often a dominating influence in the process of planning green urban environments. This review reorients the focus on the way in which the UHI effect and CO2 emissions have been framed by utilizing Foucault's (1980 “regimes of truth,” where environmental issues are contextualized within the “colonised lifeworld” of free-market forces. This review suggests that for sustainability to be achieved in urban contexts, the process of urban greening must move beyond quick techno-fixes through engagement in the co-production of knowledge.

  11. Climate change in urban areas. Green and water storage in relation to soils

    International Nuclear Information System (INIS)

    Dirven-van Breemen, E.M.; Claessens, J.W.; Hollander, A.

    2011-08-01

    One of the possible effects of climate change in urban areas is an increased frequency of periods of extreme heat and extreme rainfall events. Public green areas provide shadow and therefore have a cooling effect during periods of extreme heat. Sufficient water storage capacity of the soil may reduce the overburdening of the public water system during extreme rainfall events. Governments do well by taking measures for climate-proofing of their towns. Also citizens may contribute to these climate issues. Governments and citizens should realize that investing in climate-proofing of their towns at this moment will pay off in the future. These are the outcomes of an inventory carried out by the National Institute for Public Health and the Environment, RIVM, ordered by the ministry of Infrastructure and the Environment. With measures for public green areas and water storage capacity local governments should link with other policy areas like infrastructure, public health, safety and sustainability. An example of more public green is a green infrastructure like parks and public gardens. An other advantage of public green is the unsealed soil; that is the soil not covered by roads, buildings, etc. The presence of unsealed soil increases the possibility for water infiltration. For favorable water storage local governments may construct wadis that prevent public water systems for being overburdened by extreme rainfall events. A wadi is a lowering of the surface level mostly covered with plants. During heavy rainfall the wadi is flooded, due to rainwater from the roofs of the surrounding buildings which drains away to the wadi. Citizens may construct green roofs or city gardens with unsealed soil. To promote this, subsidies for private initiatives are an additional boost. [nl

  12. Effects of roof and rainwater characteristics on copper concentrations in roof runoff.

    Science.gov (United States)

    Bielmyer, Gretchen K; Arnold, W Ray; Tomasso, Joseph R; Isely, Jeff J; Klaine, Stephen J

    2012-05-01

    Copper sheeting is a common roofing material used in many parts of the world. However, copper dissolved from roof sheeting represents a source of copper ions to watersheds. Researchers have studied and recently developed a simple and efficient model to predict copper runoff rates. Important input parameters include precipitation amount, rain pH, and roof angle. We hypothesized that the length of a roof also positively correlates with copper concentration (thus, runoff rates) on the basis that runoff concentrations should positively correlate with contact time between acidic rain and the copper sheet. In this study, a novel system was designed to test and model the effects of roof length (length of roof from crown to the drip edge) on runoff copper concentrations relative to rain pH and roof angle. The system consisted of a flat-bottom copper trough mounted on an apparatus that allowed run length and slope to be varied. Water of known chemistry was trickled down the trough at a constant rate and sampled at the bottom. Consistent with other studies, as pH of the synthetic rainwater decreased, runoff copper concentrations increased. At all pH values tested, these results indicated that run length was more important in explaining variability in copper concentrations than was the roof slope. The regression equation with log-transformed data (R(2) = 0.873) accounted for slightly more variability than the equation with untransformed data (R(2) = 0.834). In log-transformed data, roof angle was not significant in predicting copper concentrations.

  13. IMPROVED ROOF STABILIZATION TECHNOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    M.A. Ebadian, Ph.D.

    1999-01-01

    Many U.S. Department of Energy (DOE) remediation sites have performed roof repair and roof replacement to stabilize facilities prior to performing deactivation and decommissioning (D&D) activities. This project will review the decision criteria used by these DOE sites, along with the type of repair system used for each different roof type. Based on this information, along with that compiled from roofing experts, a decision-making tool will be generated to aid in selecting the proper roof repair systems. Where appropriate, innovative technologies will be reviewed and applied to the decision-making tool to determine their applicability. Based on the results, applied research and development will be conducted to develop a method to repair these existing roofing systems, while providing protection for the D and D worker in a cost-efficient manner.

  14. IMPROVED ROOF STABILIZATION TECHNOLOGIES

    International Nuclear Information System (INIS)

    Ebadian, M.A.

    1999-01-01

    Many U.S. Department of Energy (DOE) remediation sites have performed roof repair and roof replacement to stabilize facilities prior to performing deactivation and decommissioning (D and D) activities. This project will review the decision criteria used by these DOE sites, along with the type of repair system used for each different roof type. Based on this information, along with that compiled from roofing experts, a decision-making tool will be generated to aid in selecting the proper roof repair systems. Where appropriate, innovative technologies will be reviewed and applied to the decision-making tool to determine their applicability. Based on the results, applied research and development will be conducted to develop a method to repair these existing roofing systems, while providing protection for the D and D worker in a cost-efficient manner

  15. Solar radiation on domed roofs

    Energy Technology Data Exchange (ETDEWEB)

    Faghih, Ahmadreza K.; Bahadori, Mehdi N. [School of Mechanical Engineering, Sharif University of Technology, Tehran (Iran)

    2009-11-15

    Solar radiation received and absorbed by four domed roofs was estimated and compared with that of a flat roof. The domed roofs all had the same base areas, and equal to that of the flat roof. One of the roofs considered was the dome of the St. Peter's Church in Rome. Compared with the other roofs considered, this dome had a higher aspect ratio. It was found that all domed roofs received more solar radiation than the flat roof. Considering glazed tiles to cover a selected dome in Iran and the dome of the St. Peter's Church, it was found that the solar radiation absorbed by these roofs is reduced appreciably. In the case of the dome of St. Peter's Church, the amount of radiation absorbed was roughly equal to that absorbed by the comparable flat roof in the warm months. In the case of the glazed reference dome located in Yazd, Iran (a city with very high solar radiation), the radiation absorbed was less than that of flat roof at all times. In addition to aesthetics, this may be a reason for employing glazed tiles to cover the domes of all mosques, shrines, and other large buildings in Iran. (author)

  16. Renovation of Roof Structure

    DEFF Research Database (Denmark)

    Kjærbye, Per Oluf H

    1997-01-01

    A 30 year old not-watertight roof based on wooden boards with roofing felt have been changed to a pitched structure with cementos plates. At the same time more thermal insulation has been placed.......A 30 year old not-watertight roof based on wooden boards with roofing felt have been changed to a pitched structure with cementos plates. At the same time more thermal insulation has been placed....

  17. Green Team Hosts Plant Swap to Encourage Gardening | Poster

    Science.gov (United States)

    By Carolynne Keenan, Contributing Writer What started out as a way for Howard Young, Ph.D., to thin out his garden last fall turned into the NCI at Frederick Green Team’s Plant Swap. The group held its Fall Plant Swap on October 24, encouraging all members of the Fort Detrick community to pick up a free plant or swap a plant of theirs for another. “Those who love to garden

  18. Norwegian Pitched Roof Defects

    Directory of Open Access Journals (Sweden)

    Lars Gullbrekken

    2016-06-01

    Full Text Available The building constructions investigated in this work are pitched wooden roofs with exterior vertical drainpipes and wooden load-bearing system. The aim of this research is to further investigate the building defects of pitched wooden roofs and obtain an overview of typical roof defects. The work involves an analysis of the building defect archive from the research institute SINTEF Building and Infrastructure. The findings from the SINTEF archive show that moisture is a dominant exposure factor, especially in roof constructions. In pitched wooden roofs, more than half of the defects are caused by deficiencies in design, materials, or workmanship, where these deficiencies allow moisture from precipitation or indoor moisture into the structure. Hence, it is important to increase the focus on robust and durable solutions to avoid defects both from exterior and interior moisture sources in pitched wooden roofs. Proper design of interior ventilation and vapour retarders seem to be the main ways to control entry from interior moisture sources into attic and roof spaces.

  19. Inventory of Green Spaces and Woody Plants in the Urban Landscape in Ariogala

    Directory of Open Access Journals (Sweden)

    Lina Straigytė

    2012-12-01

    Full Text Available Background and Purpose: Regulation of urban greenery design, management and protection was approved in 2008 in Lithuania after the Green Space Law was passed, allowing protection of public green spaces and woody plants. Protection of these resources first requires an inventory, and we have created a digital database that will help in management of urban green spaces. Material and Methods: An inventory of green spaces and woody plants was conducted in the public urban territory of Ariogala, using GIS technology. A digital cartographic database was created using ArcGis 9.1 software. Results and Conclusion: Most of the woody plants in the survey area are deciduous trees, and the survey results highlighted the major green space management problems. Often, planted trees grow under power lines, and their crowns touch the power cables. Near blocks of flats, trees are often in the wrong place-planted too close to buildings, trees shade windows and their roots heave pavers and penetrate building foundations. According to the inventory, street trees sustain the most damage, most commonly showing injuries on their trunks and roots. Leaves of Aesculus hipocastanum L. show massive damage from Cameraria ohridella Deschka & Dimić, and Tilia cordata Mill. are damaged by Cercospora microsora Sacc. T. cordata is a favourite city tree, but is susceptible to infestation and when damaged appears unsightly, ending its vegetation period very early. The inventory of green spaces also showed that there are sufficient public parks.

  20. Plants as green phones: Novel insights into plant-mediated communication between below- and above-ground insects.

    Science.gov (United States)

    Soler, Roxina; Harvey, Jeffrey A; Bezemer, T Martijn; Stuefer, Josef F

    2008-08-01

    Plants can act as vertical communication channels or 'green phones' linking soil-dwelling insects and insects in the aboveground ecosystem. When root-feeding insects attack a plant, the direct defense system of the shoot is activated, leading to an accumulation of phytotoxins in the leaves. The protection of the plant shoot elicited by root damage can impair the survival, growth and development of aboveground insect herbivores, thereby creating plant-based functional links between soil-dwelling insects and insects that develop in the aboveground ecosystem. The interactions between spatially separated insects below- and aboveground are not restricted to root and foliar plant-feeding insects, but can be extended to higher trophic levels such as insect parasitoids. Here we discuss some implications of plants acting as communication channels or 'green phones' between root and foliar-feeding insects and their parasitoids, focusing on recent findings that plants attacked by root-feeding insects are significantly less attractive for the parasitoids of foliar-feeding insects.

  1. Are Wave and Tidal Energy Plants New Green Technologies?

    Science.gov (United States)

    Douziech, Mélanie; Hellweg, Stefanie; Verones, Francesca

    2016-07-19

    Wave and tidal energy plants are upcoming, potentially green technologies. This study aims at quantifying their various potential environmental impacts. Three tidal stream devices, one tidal range plant and one wave energy harnessing device are analyzed over their entire life cycles, using the ReCiPe 2008 methodology at midpoint level. The impacts of the tidal range plant were on average 1.6 times higher than the ones of hydro-power plants (without considering natural land transformation). A similar ratio was found when comparing the results of the three tidal stream devices to offshore wind power plants (without considering water depletion). The wave energy harnessing device had on average 3.5 times higher impacts than offshore wind power. On the contrary, the considered plants have on average 8 (wave energy) to 20 (tidal stream), or even 115 times (tidal range) lower impact than electricity generated from coal power. Further, testing the sensitivity of the results highlighted the advantage of long lifetimes and small material requirements. Overall, this study supports the potential of wave and tidal energy plants as alternative green technologies. However, potential unknown effects, such as the impact of turbulence or noise on marine ecosystems, should be further explored in future research.

  2. Opportunities and Benefits of Green Balconies and Terraces in Urban Conditions

    Directory of Open Access Journals (Sweden)

    Mladenović Emina

    2017-12-01

    Full Text Available This study tested the hypothesis that a third dimension of urban gardening, in the form of green terraces and balconies, is of immense importance to the public well-being, mitigating climate changes and contributing to a more pleasant life in highly urbanized zones. By means of a concise questionnaire, a total of 82 respondents of different age groups (20-70 years of age were surveyed about their opinion on green terraces, balconies, and roofs, i.e. the plants and flowers they incorporate. The fieldwork and survey responses facilitated the design of ten different spaces in various conditions. The results obtained enabled the selection of plants which could be used in given conditions, depending on wind, insolation, shade, ground levels, precipitation, etc. A total of three different terraces (out of ten and three different balconies (out of ten were enrolled in the study. The research results indicate that ten minutes of gardening could reduce stress levels and restore the positive energy of residents. An increase in the overall plant diversity exerts positive aesthetic and ecological effects. Inner-city areas are often sparsely vegetated, devoid of plants, and densely built-up, thus terraces and balconies have the potential to be retrofitted with suitable greenery.

  3. Green Team Readies for Spring with Plant Swap | Poster

    Science.gov (United States)

    By Carolynne Keenan, Contributing Writer Those looking for a cost-effective way to spruce up their yards this spring can stop by the National Cancer Institute at Frederick Green Team’s booth during the Spring Research Festival (SRF) on May 7 and 8. Pick up a free plant, donate overgrown plants from your yard, or swap for a new plant. Everyone is invited to participate in the swap, whether you have plants to donate or not.

  4. Heat transfer capability of solar radiation in colored roof and influence on room thermal comfort

    Science.gov (United States)

    Syuhada, Ahmad; Maulana, Muhammad Ilham

    2018-02-01

    Colored zinc is the most widely used by people in Indonesia as the roof of the building. Each color has different heat absorption capability, the higher the absorption capacity of a roof will cause high room temperature. A high temperature in the room will cause the room is not thermally comfortable for activity. Lack of public knowledge about the ability of each color to absorb heat can cause errors in choosing the color of the roof of the building so that it becomes uncomfortable regarding thermal comfort. This study examined how big the ability of each color in influencing the heat absorption on the roof of the zinc. The purpose of this study is to examine which colors are the lowest to absorb radiation heat. This research used theexperimental method. Data collected by measuring the temperature of the environment above and below the colored tin roof, starting at 11:00 am until 15:00 pm. The zinc roofs tested in this study are zinc black, red zinc, green zinc, blue zinc, brown zinc, maroon zinc, orange zinc, zinc gray, zinc color chrome and zinc white color. The study results show that black and blackish colors will absorb more heat than other colors. While the color white or close to whitish color will absorb a slight heat.

  5. Leaf Roof - Designing Luminescent Solar Concentrating PV Roof Tiles

    NARCIS (Netherlands)

    Reinders, Angelina H.M.E.; Doudart de la Gree, G.; Papadopoulos, A..; Rosemann, A.; Debije, M.G.; Cox, M.; Krumer, Zachar

    2016-01-01

    The Leaf Roof project on the design features of PV roof tiles using Luminescent Solar Concentrator (LSC) technology [1] has resulted in a functional prototype. The results are presented in the context of industrial product design with a focus on the aesthetic aspects of LSCs [2]. This paper outlines

  6. Aircraft-crash-protected steel reactor building roof structure for the European market

    International Nuclear Information System (INIS)

    Posta, B.A.; Kadar, I.; Rao, A.S.

    1996-01-01

    This paper recommends the use of all steel roof structures for the reactor building of European Boiling Water Reactor (BWR) plants. This change would make the advanced US BWR designs more compatible with European requirements. Replacement of the existing concrete roof slab with a sufficiently thick steel plate would eliminate the concrete spelling resulting from a postulated aircraft crash, potentially damaging the drywell head or the spent fuel pool

  7. Insect and avian fauna presence on the Ford assembly plant ecoroof

    Energy Technology Data Exchange (ETDEWEB)

    Coffman, R.R. [Ohio State Univ., Columbus, OH (United States). Dept. of Horticulture; Davis, G. [Ohio State Univ., Columbus, OH (United States). Dept. of Entomology

    2005-07-01

    This paper presented the results of a single season descriptive study of the insect and avian fauna present on a green roof installed at the Ford Motor Company's River Rouge assembly plant in Dearborn, Michigan. The study was part of a larger project investigating the similarities and differences between green roofs and terrestrial urban landscapes. Sweep netting was used to collect the insects, which were then placed in killing jars, separated, identified and stored. Invertebrates were identified and confirmed by entomology and arachnology taxonomic specialists. Bird observation times coincided with the insect sweeps, and data were recorded a total of 4 times during a period of 4 weeks. The study identified 29 insect species, 7 spider species, and 2 bird species. Winged insect families included flies, beetles, wasps, grasshoppers, plant bugs and leaf hoppers. Several types of spider and several species of birds were also observed. Findings supported the general assumption that ecoroofs create habitat. It was concluded that more studies are needed to better comprehend the behavior of invertebrate species and birds, as well as the population dynamics and community structure of the ecosystem. Future ecoroof community ecology studies may include varied collection methods and seasonal distribution of collection times. 10 refs., 4 tabs., 5 figs.

  8. Green County Nuclear Power Plant. License application

    International Nuclear Information System (INIS)

    1975-07-01

    The Green County reactor, a PWR to be supplied by Babcock and Wilcox, will be a baseload generating facility planned to provide for mass transit and other public agency electrical needs. The plant is scheduled for completion by 1983 and will have a generating capacity of about 1200 MW(e). (FS)

  9. Rainwater harvesting and green area retention potential detection using commercial unmanned aerial vehicles

    Science.gov (United States)

    Kamnik, Rok; Grajfoner, Blanka; Butyrin, Andrey; Nekrep Perc, Matjaz

    2017-10-01

    The objective of this work is to use simple photogrammetry to evaluate rainwater harvesting and green area retention potential in Maribor, Slovenia city centre. Several sources of remote sensing data have been described and a field test with semi-professional drone was performed by means of computer evaluation of rainwater harvesting and green area retention potential. Some of the most important design parameters for rainwater harvesting systems as roof area and slope and available green areas were identified and evaluated. The results have shown that even semi-professional low budget drones can be successfully used for mapping areas of interest. The results of six-minute flight over twelve hectares of Maribor city centre were comparable with professional results of plane remote sensing. Image segmentation from orthomosaic together with elevation model has been used to detect roofs and green areas.

  10. Photovoltaic roof construction

    Energy Technology Data Exchange (ETDEWEB)

    Hawley, W.W.

    1980-02-26

    In a batten-seam roof construction employing at least one photovoltaic cell module, the electrical conduits employed with the at least one photovoltaic cell module are disposed primarily under the battens of the roof.

  11. Development of green belt for Heavy Water Plant (Manuguru) (Paper No. 4.4)

    International Nuclear Information System (INIS)

    Sharma, R.N.; Wagh, K.S.; Ranade, G.N.; Mulgund, D.T.

    1992-01-01

    There has been an awakening worldwide regarding environmental degradation. So there is an urgent need of a policy on conservation of ecology while planning projects. Provision for suitable tree plantation as a green belt around a chemical industrial plant is a proven remedy to minimise the impact of gaseous effluents in addition to retain a green cover in the area. This paper describes the steps taken at Heavy Water Plant, Manuguru for providing green belt from a very early stage of execution of the project. (author)

  12. POTENSI PENGEMBANGAN TEKNOLOGI ROOF GARDEN DI KAWASAN MAMPANG PRAPATAN DAN SEKITARNYA, JAKARTA SELATAN (Development Potential of Roof Garden Technology in Mampang Prapatan Area and Surroundings, South Jakarta

    Directory of Open Access Journals (Sweden)

    Sitti Sarifa Kartika Kinasih

    2013-11-01

    , which has complex environmental issues. This study aims to get the facts how large the potency on ecological, economic, aesthetic, and social benefits that can be achieved by the Mampang Prapatan area with the widespread application of the roof garden; investigate the perceptions of stakeholders in Mampang Prapatan area and its surrounding about roof garden; as well as to ascertain the facts about the opportunities and challenges in its implementation. The research method was carried out by using the benefits projection analysis of Quick Bird 2010 imagery in Mampang Prapatan area, then conducting inductive descriptive analysis of existing condition and stakeholders perception toward the implementation of a roof garden, and literature study. The results of this study indicate that the benefits obtained according to benefits projection analysis of this research area delineated block with 416,380 m2 of land area can give benefits i.e: ecologically (be able to made reduction of energy consumption that is 50.75 times than the usual used by; made reduction of approximately 8,956 kg to 89,563 kg of impurities air; being habitat of 597,088 plants; and absorb rainwater as many as 5,105,102 liters per year; economically (can produce 1,378 kg of mochi rice; aesthetically can reduce the noise about 10 dB and 40 dB and also will be able to provide 203 aesthetically pleasing areas; socially it will be add 203 community areas on the delineated block Mampang Prapatan road. The zone which the most potential to give benefits is zone B trade and service (could change existing green open space from 10.84% into 28.15% and there are 8 structure in zone B that have used roof garden technology. Stakeholders perception analized by 5 concepts has been proved very positive and supporting. Chances for applying roof garden technology in Mampang Prapatan and its surrounding area is much larger than the existing challenges, and solutions to these challenges has been given by informants.

  13. The influence of green areas and roof albedos on air temperatures during extreme heat events in Berlin, Germany

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, Sebastian; Grossmann-Clarke, Susanne [Potsdam Institute for Climate Impact Research, Potsdam (Germany)

    2013-04-15

    The mesoscale atmospheric model COSMO-CLM (CCLM) with the Double Canyon Effect Parametrization Scheme (DCEP) is applied to investigate possible adaption measures to extreme heat events (EHEs) for the city of Berlin, Germany. The emphasis is on the effects of a modified urban vegetation cover and roof albedo on near-surface air temperatures. Five EHEs with a duration of 5 days or more are identified for the period 2000 to 2009. A reference simulation is carried out for each EHE with current vegetation cover, roof albedo and urban canopy parameters (UCPs), and is evaluated with temperature observations from weather stations in Berlin and its surroundings. The derivation of the UCPs from an impervious surface map and a 3-D building data set is detailed. Characteristics of the simulated urban heat island for each EHE are analysed in terms of these UCPs. In addition, six sensitivity runs are examined with a modified vegetation cover of each urban grid cell by -25%, 5% and 15%, with a roof albedo increased to 0.40 and 0.65, and with a combination of the largest vegetation cover and roof albedo, respectively. At the weather stations' grid cells, the results show a maximum of the average diurnal change in air temperature during each EHE of 0.82 K and -0.48 K for the -25% and 15% vegetation covers, -0.50 K for the roof albedos of 0.65, and -0.63 K for the combined vegetation and albedo case. The largest effects on the air temperature are detected during midday. (orig.)

  14. Performance of irrigated green corn cultivars in different plant populations at sowing

    Directory of Open Access Journals (Sweden)

    José C. Soares Neto

    Full Text Available ABSTRACT This study aimed to evaluate the yield of green corn hybrids grown under irrigation in different plant populations at sowing. The assay was carried out in the experimental area located in the city of Arapiraca, Alagoas State, Brazil, from November 2015 to January 2016. A randomized complete block design (RCBD was used, in a 2 x 5 factorial scheme with four replicates. A double- and a single-cross hybrid (AG 1051 and BM 3061, which are suitable for green corn production, were cultivated in five spacings between plants at sowing (15.0, 17.5, 20.0, 22.5 and 25.0 cm. The characteristics photosynthetic rate (PR, ear length with rusk (HEL and without husk (UEL, husked ear weight (HEW, unhusked ear weight (UEW, percentage of marketable ears (%ME and weight of husk (HW were evaluated. The double- and single-cross hybrids AG 1051 and BM 3061 showed green ears with commercial standard. The cultivar BM 3061 showed the best results for most of the characteristics related to the performance of green corn (PR, HEL, UEL, UEW, HEW, %ME. The spacing of 17.5 cm between plants at sowing was the most indicated for irrigated green corn cultivation.

  15. Design of evaporative-cooling roof for decreasing air temperatures in buildings in the humid tropics

    Science.gov (United States)

    Kindangen, Jefrey I.; Umboh, Markus K.

    2017-03-01

    This subject points to assess the benefits of the evaporative-cooling roof, particularly for buildings with corrugated zinc roofs. In Manado, many buildings have roofed with corrugated zinc sheets; because this material is truly practical, easy and economical application. In general, to achieve thermal comfort in buildings in a humid tropical climate, people applying cross ventilation to cool the air in the room and avoid overheating. Cross ventilation is a very popular path to achieve thermal comfort; yet, at that place are other techniques that allow reducing the problem of excessive high temperature in the room in the constructions. This study emphasizes applications of the evaporative-cooling roof. Spraying water on the surface of the ceiling has been executed on the test cell and the reuse of water after being sprayed and cooled once more by applying a heat exchanger. Initial results indicate a reliable design and successfully meet the target as an effective evaporative-cooling roof technique. Application of water spraying automatic and cooling water installations can work optimally and can be an optimal model for the cooling roof as one of the green technologies. The role of heat exchangers can lower the temperature of the water from spraying the surface of the ceiling, which has become a hot, down an average of 0.77° C. The mass flow rate of the cooling water is approximately 1.106 kg/h and the rate of heat flow is around 515 Watt, depend on the site.

  16. The properties degradation of exposed GFRP roof

    Science.gov (United States)

    Zainudin, Mohammad; Diharjo, Kuncoro; Kaavessina, Mujtahid; Setyanto, Djoko

    2018-02-01

    There is much consideration of roof selection as a protector of a building against the outside weather, such as lightweight, strong stiff, corrosion resistant and guarantee for the availability of products. Based on these considerations, glass fiber reinforced polymer (GFRP) roof is a roof which can fulfill the requirement. The objective of this research is to investigate the degradation of physical and mechanical properties of GFRP roof exposed in outside weather. This GFRP roof composite was produced using a sheet molding compound (SMC) supplied by PT Intec Persada, Tangerang, Indonesia. There are two kinds GFRP roofs evaluated in this research that are GFRP roof exposed within 7 years and new GFRP roof that has not been exposed. The GFRP roofs were cut manually for preparing the specimens for hardness test, tensile test, SEM and FTIR test. The results show that the GFRP roof exposed within 7 years had the degradation of properties compared to the new GFRP roof. The exposed GFRP roof had lower strength and hardness compared to the new GFRP roof. The SEM observation indicates that exposed GFRP roof had the debonding of fiber on the surface, and in contrast, there are no debonding of fiber in the new GFRP roof surface. It can be recommended that the exposed GFRP roof may be repaired to enhance its performance and can re-increase its properties using the coating.

  17. Leaf Roof – designing luminescent solar concentrating PV roof tiles

    NARCIS (Netherlands)

    Reinders, A.H.M.E.; Doudart de la Grée, G.C.H.; Papadopoulos, A.; Rosemann, A.L.P.; Debije, M.G.; Cox, M.G.D.M.; Krumer, Z.

    2016-01-01

    The Leaf Roof project on the design features of PV roof tiles using Luminescent Solar Concentrator (LSC) technology has resulted in a functional prototype . The results are presented in the context of industrial product design with a focus on the aesthetic aspects of LSCs. This paper outlines the

  18. Roof instability characteristics and pre-grouting of the roof caving zone in residual coal mining

    Science.gov (United States)

    Zhao, Tong; Liu, Changyou

    2017-12-01

    Abandoned roadways and roof caving zones are commonly found in residual coal, and can destroy the integrity of the coal seam and roof. Resulting from mining-induced stress, continuous collapse and fracture instability in roof caving zones (RCZs) jeopardize the safety and efficiency of residual coal mining. Based on the engineering geology conditions of remining face 3101 in Shenghua Mine, the roof fracture and instability features of the RCZ were analyzed through physical simulation, theoretical analysis, and field measurements. In this case, influenced by the RCZ, the main roof across the RCZ fractured and rotated towards the goaf, greatly increasing the working resistance, and crushing the supports. The sudden instability of the coal pillars weakened its support of the main roof, thus resulting in long-key blocks across the RCZ and hinged roof structures, which significantly decreased the stability of the underlying immediate roof. This study establishes a mechanical model for the interactions between the surrounding rock and the supports in the RCZ, determines the reasonable working resistance, and examines the use of pre-grouting solidification restoration technology (PSRT) to solidify the RCZ and reinforce the coal pillars—thus increasing their bearing capacity. Field measurements revealed no roof flaking, inhomogeneous loading or support crushing, indicating that the PSRT effectively controlled the surrounding rock of the RCZ.

  19. A novel technique for the production of cool colored concrete tile and asphalt shingle roofing products

    Energy Technology Data Exchange (ETDEWEB)

    Levinson, Ronnen; Akbari, Hashem; Berdahl, Paul [Heat Island Group, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Wood, Kurt; Skilton, Wayne; Petersheim, Jerry [Arkema, Inc., Philadelphia, PA (United States)

    2010-06-15

    The widespread use of solar-reflective roofing materials can save energy, mitigate urban heat islands and slow global warming by cooling the roughly 20% of the urban surface that is roofed. In this study we created prototype solar-reflective nonwhite concrete tile and asphalt shingle roofing materials using a two-layer spray coating process intended to maximize both solar reflectance and factory-line throughput. Each layer is a thin, quick-drying, pigmented latex paint based on either acrylic or a poly(vinylidene fluoride)/acrylic blend. The first layer is a titanium dioxide rutile white basecoat that increases the solar reflectance of a gray-cement concrete tile from 0.18 to 0.79, and that of a shingle surfaced with bare granules from 0.06 to 0.62. The second layer is a ''cool'' color topcoat with weak near-infrared (NIR) absorption and/or strong NIR backscattering. Each layer dries within seconds, potentially allowing a factory line to pass first under the white spray, then under the color spray. We combined a white basecoat with monocolor topcoats in various shades of red, brown, green and blue to prepare 24 cool colored prototype tiles and 24 cool colored prototypes shingles. The solar reflectances of the tiles ranged from 0.26 (dark brown; CIELAB lightness value L{sup *}=29) to 0.57 (light green; L{sup *}=76); those of the shingles ranged from 0.18 (dark brown; L{sup *}=26) to 0.34 (light green; L{sup *}=68). Over half of the tiles had a solar reflectance of at least 0.40, and over half of the shingles had a solar reflectance of at least 0.25. (author)

  20. Solgreen 'Kraftwerk 1' PV plant in Zurich - Final report; Solgreen Kraftwerk 1 Zuerich - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, J.; Stettler, S.

    2008-04-15

    The 'Solgreen Kraftwerk 1' PV plant was built in Zurich, in June 2001. The Solgreen system optimizes the integration of photovoltaic modules on green flat roofs by using the ground substrate in a double function for both; as soil substrate for the vegetation and as a foundation for the modules mounting structure. The project's main goal was to test the suitability of the Solgreen system. Furthermore, the interacting influences of the roof vegetation and the photovoltaic system were examined scientifically over a 5 year period by an external expert. 12 sample areas were covered with different substrates and different seeds were used on the roof during the test period. Ecosystem diversity amounted to 140 different breeds of plants as well as insects and animals. The modules led to a higher structural diversity on the roof by creating shaded areas and different water distribution. Saplings mainly growing in low vegetation density areas, caused shading on modules and had to be removed. Mulleins were an additional shading problem on one of the rooftops; leading to a measurable energy reduction. For future installations of this type, a low substrate height in front of the modules and seeds which produce low growing plants can reduce such shading problems. This photovoltaic system's technical performance was higher compared to the average system's performance in Zurich. Visual controls of the system showed almost no soiling of the PV modules, primarily due to the frameless modules, but maybe also due to the plants' air cleaning effect. (author)

  1. Realistic roofs over a rectilinear polygon

    KAUST Repository

    Ahn, Heekap

    2013-11-01

    Given a simple rectilinear polygon P in the xy-plane, a roof over P is a terrain over P whose faces are supported by planes through edges of P that make a dihedral angle π/4 with the xy-plane. According to this definition, some roofs may have faces isolated from the boundary of P or even local minima, which are undesirable for several practical reasons. In this paper, we introduce realistic roofs by imposing a few additional constraints. We investigate the geometric and combinatorial properties of realistic roofs and show that the straight skeleton induces a realistic roof with maximum height and volume. We also show that the maximum possible number of distinct realistic roofs over P is ((n-4)(n-4)/4 /2⌋) when P has n vertices. We present an algorithm that enumerates a combinatorial representation of each such roof in O(1) time per roof without repetition, after O(n4) preprocessing time. We also present an O(n5)-time algorithm for computing a realistic roof with minimum height or volume. © 2013 Elsevier B.V.

  2. Run-off from roofing materials

    International Nuclear Information System (INIS)

    Roed, J.

    1985-01-01

    In order to find the runn-off from roof material, a roof has been constructed with two different slopes (30 deg. and 45 deg.). 7 Be and 137 Cs have been used as tracers. Considering new roof material, the pollution removed by run-off processes has been shown to be very different for various roof materials. The pollution is much more easily removed from silicon-treated material than from porous red-tile roof material. Cesium is removed more easily than beryllium. The content of cesium in old roof materials is greater in red-tile than in other less porous roof materials. However, the measured removal from new material does not correspond to the amount accumulated in the old. This could be explained by weathering and by saturation effects. The last effect is probably the more important. The measurements on old material indicate a removal of 44-86% of cesium pollution by run-off, whereas the measurement on new material showed a removal of only 31-50%. It has been demonstrated that the pollution concentration in run-off water could be very different from that in rainwater

  3. Improved roof stabilization technologies

    International Nuclear Information System (INIS)

    Ebadian, M.A.

    1998-01-01

    Decontamination and decommissioning (D and D) activities require that personnel have access to all areas of structures, some of which are more than 40 years old. In many cases, these structures have remained in a standby condition for up to 10 years; few preventative maintenance activities have been performed on them because of lack of funding or a defined future plan of action. This situation has led to deteriorated building conditions, resulting in potential personnel safety hazards. In addition, leaky roofs allow water to enter the buildings, which can cause the spread of contamination and increase building deterioration, worsening the already unsafe working conditions. To ensure worker safety and facilitate building dismantlement, the assessment of roof stabilization techniques applicable to US Department of Energy (DOE) structures has become an important issue. During Fiscal year 1997 (FY97), a comprehensive reliability-based model for the structural stabilization analysis of roof system in complex structures was developed. The model consists of three major components: a material testing method, a deterministic structural computer model, and a reliability-based optimization, and probabilistic analyses of roof structures can be implemented. Given site-specific needs, this model recommends the most appropriate roof stabilization system. This model will give not only an accurate evaluation of the existing roof system in complex structures, but it will also be a reliable method to aid the decision-making process. This final report includes in its appendix a Users' Manual for the Program of Deterministic and Reliability Analysis of Roof Structures

  4. Industrial wastes of the cities of Baku and Sumgait and their effect on green plantings

    Energy Technology Data Exchange (ETDEWEB)

    Amirov, R O; Ismaylov, A R

    1969-01-01

    Baku and Sumgait had large oil production and chemical industries. Investigations showed that injury in green planting depended essentially on the nature of the waste products. Air polluted with SO/sub 2/, chlorine, and fluorine compounds produced dark brown bumps on the leaves. As the distance from the industries increased, the frequency and the intensity of the injuries decreased. Some of the ornamental species were beter adjusted and had a greater resistance. The establishment and development of green plantings were important for combating air pollution and for the sanitary well-being of the industrial area. Plans of landscaping of industrial enterprises included green plantings directly on the territory of the enterprises as well as in areas surrounding them in a radius of 150-500 m. Green shelter belts were needed for protection of the strong northern winds. The selection of plants was made considering their gas resistance, their drought resistance, as well as the plants' ability to grow in solonchak-solonets, clayey, and clayey loam soils characteristic for the Apsheron Peninsula. Trees and bushes were planted by the trench method. Irrigation with waste water was avoided.

  5. Characteristic roofing slates from Spain: Mormeau and Los Molinos

    Science.gov (United States)

    Cardenes Van den Eynde, Victor; Cnudde, Veerle; Cnudde, Jean Pierre

    2014-05-01

    Characteristic roofing slates from Spain: Mormeau and Los Molinos Cardenes1, V., Cnudde1, V., Cnudde1, J.P. 1 Department of Geology and Soil Science, Ghent University, Krijgslaan 281, S8, 9000 Ghent, Belgium. The world's major roofing slate outcrops are found in the NW of Spain, in the Ordovician terrains of the domain of the Truchas Syncline. In this remote area, slate was quarried since ancient times for the use of the inhabitants of the region. Half of a century ago, an industrialization process took place in this area, which began to produce high quality roofing slate for many buildings from Japan to the USA, and especially in Europe. Since then, Spanish slate roofing has been widely used for new buildings and also for restoration of historical buildings. This work revises the occurrence and characteristics of the two most representative grey slate varieties from the Truchas Syncline, Mormeau, a fine-grained slate, and Los Molinos, also a grey slate with a slightly coarser grain. Both slates have a very similar aspect, but Mormeau slate have some iron sulphides on its composition that sometimes forms oxidation spots. Mormeau beds are found at the Middle-Upper Ordovician age Casaio Formation, while Los Molinos beds are located at the Rozadais Formation, of age Upper Ordovician, defined as formation just for the Truchas Syncline domain. Both slates have a high degree of homogeneity on their constructive characteristics, with a typical composition of quartz, mica and chlorites, and a metamorphic degree corresponding to the green schists facies. This work revises the history and characteristics of both slates, that can be considered as lithotypes that can be used as a reference during the prospection of new slate outcrops worldwide. The presented varieties of slate are proposed for their inclusion as Global Heritage Stones.

  6. Measured Energy Savings from the Application of Reflective Roofs in 3 AT and T Regeneration Buildings; FINAL

    International Nuclear Information System (INIS)

    Akbari, Hashen; Rainer, Leo

    2000-01-01

    Energy use and environmental parameters were monitored in three AT and T regeneration buildings during the summer of 2000. These buildings are constructed with concrete and are about 14.9 m2 (160 f2; 10x16 ft)in size. The buildings were initially monitored for about 1 1/2 months to establish a base condition. Then, the roofs of the buildings were painted with a white coating and the monitoring was continued. The original roof reflectances were about 26 percent; after the application of roof coatings the reflectivities increased to about 72 percent. In two of these buildings, we monitored savings of about 0.5kWh per day (8.6 kWh/m2[0.8 kWh/ft2]). The third building showed a reduction in air-conditioning energy use of about 13kWh per day. These savings probably resulted from the differences in the performance (EER) of the two dissimilar AC units in this building. The estimated annual savings for two of the buildings are about 125kWh per year; at a cost of dollar 0.1/kWh, savings are about dollar 12.5 per year. Obviously, it costs significantly more than this amount to coat the roofs with reflective coating, particularly because of the remote location of the buildings. However, since the prefabricated roofs are already painted green at the factory, painting them with white (reflective) color would bring no additional cost. Hence the payback time for having reflective roofs is nil, and the reflective roofs save an accumulated 370kWh over 30 years of the life of the roof

  7. 30 CFR 75.204 - Roof bolting.

    Science.gov (United States)

    2010-07-01

    ... accessories addressed in ASTM F432-95, “Standard Specification for Roof and Rock Bolts and Accessories,” the.... (4) In each roof bolting cycle, the actual torque or tension of the first tensioned roof bolt... during each roof bolting cycle shall be tested during or immediately after the first row of bolts has...

  8. The governance of urban green spaces in selected EU-cities : Policies, Practices, Actors, Topics

    NARCIS (Netherlands)

    Buizer, I.M.; Elands, B.H.M.; Mattijssen, T.J.M.; Jagt, A.P.N.; Ambrose, B.; Geroházi, E.; Santos, E.

    2015-01-01

    In a time of continuing urbanization, there is an increasing focus on developing attractive and healthy urban environments. Green spaces, ranging from woodlands and parks to allotment gardens and green roofs, provide a range of ecosystem services that contribute to better cities (Lovell and Taylor,

  9. Run-off from roofs

    International Nuclear Information System (INIS)

    Roed, J.

    1985-01-01

    In order to find the run-off from roof material a roof has been constructed with two different slopes (30 deg C and 45 deg C). Beryllium-7 and caesium-137 has been used as tracers. Considering new roof material the pollution removed by runoff processes has been shown to be very different for various roof materials. The pollution is much more easily removed from silicon-treated material than from porous red-tile roof material. Caesium is removed more easily than beryllium. The content of caesium in old roof materials is greater in red-tile than in other less-porous materials. However, the measured removal from new material does not correspond to the amount accumulated in the old. This could be explained by weathering and by saturation effects. This last effect is probably the more important. The measurements on old material indicates a removal of 44-86% of the caesium pollution by run-off, whereas the measurement on new showed a removal of only 31-50%. It has been demonstrated that the pollution concentration in the run-off water could be very different from that in rainwater. The work was part of the EEC Radiation Protection Programme and done under a subcontract with Association Euratom-C.E.A. No. SC-014-BIO-F-423-DK(SD) under contract No. BIO-F-423-81-F. (author)

  10. Can narrow-bandwidth light from UV-A to green alter secondary plant metabolism and increase Brassica plant defenses against aphids?

    Science.gov (United States)

    Neugart, Susanne; Schreiner, Monika; Wu, Sasa; Poehling, Hans-Michael

    2017-01-01

    Light of different wavelengths is essential for plant growth and development. Short-wavelength radiation such as UV can shift the composition of flavonoids, glucosinolates, and other plant metabolites responsible for enhanced defense against certain herbivorous insects. The intensity of light-induced, metabolite-based resistance is plant- and insect species-specific and depends on herbivore feeding guild and specialization. The increasing use of light-emitting diodes (LEDs) in horticultural plant production systems in protected environments enables the creation of tailor-made light scenarios for improved plant cultivation and induced defense against herbivorous insects. In this study, broccoli (Brassica oleracea var. italica) plants were grown in a climate chamber under broad spectra photosynthetic active radiation (PAR) and were additionally treated with the following narrow-bandwidth light generated with LEDs: UV-A (365 nm), violet (420 nm), blue (470 nm), or green (515 nm). We determined the influence of narrow-bandwidth light on broccoli plant growth, secondary plant metabolism (flavonol glycosides and glucosinolates), and plant-mediated light effects on the performance and behavior of the specialized cabbage aphid Brevicoryne brassicae. Green light increased plant height more than UV-A, violet, or blue LED treatments. Among flavonol glycosides, specific quercetin and kaempferol glycosides were increased under violet light. The concentration of 3-indolylmethyl glucosinolate in plants was increased by UV-A treatment. B. brassicae performance was not influenced by the different light qualities, but in host-choice tests, B. brassicae preferred previously blue-illuminated plants (but not UV-A-, violet-, or green-illuminated plants) over control plants. PMID:29190278

  11. Can narrow-bandwidth light from UV-A to green alter secondary plant metabolism and increase Brassica plant defenses against aphids?

    Directory of Open Access Journals (Sweden)

    Ole Rechner

    Full Text Available Light of different wavelengths is essential for plant growth and development. Short-wavelength radiation such as UV can shift the composition of flavonoids, glucosinolates, and other plant metabolites responsible for enhanced defense against certain herbivorous insects. The intensity of light-induced, metabolite-based resistance is plant- and insect species-specific and depends on herbivore feeding guild and specialization. The increasing use of light-emitting diodes (LEDs in horticultural plant production systems in protected environments enables the creation of tailor-made light scenarios for improved plant cultivation and induced defense against herbivorous insects. In this study, broccoli (Brassica oleracea var. italica plants were grown in a climate chamber under broad spectra photosynthetic active radiation (PAR and were additionally treated with the following narrow-bandwidth light generated with LEDs: UV-A (365 nm, violet (420 nm, blue (470 nm, or green (515 nm. We determined the influence of narrow-bandwidth light on broccoli plant growth, secondary plant metabolism (flavonol glycosides and glucosinolates, and plant-mediated light effects on the performance and behavior of the specialized cabbage aphid Brevicoryne brassicae. Green light increased plant height more than UV-A, violet, or blue LED treatments. Among flavonol glycosides, specific quercetin and kaempferol glycosides were increased under violet light. The concentration of 3-indolylmethyl glucosinolate in plants was increased by UV-A treatment. B. brassicae performance was not influenced by the different light qualities, but in host-choice tests, B. brassicae preferred previously blue-illuminated plants (but not UV-A-, violet-, or green-illuminated plants over control plants.

  12. Three-dimensional analysis of AP600 standard plant shield building roof

    International Nuclear Information System (INIS)

    Greimann, L.; Fanous, F.; Safar, S.; Khalil, A.; Bluhm, D.

    1999-01-01

    The AP600 passive containment vessel is surrounded by a concrete cylindrical shell covered with a truncated conical roof. This roof supports the passive containment cooling system (PCS) annular tank, shield plate and other nonstructural attachments. When the shield building is subjected to different loading combinations as defined in the Standard Review Plan (SRP), some of the sections in the shield building could experience forces in excess of their design values. This report summarized the three-dimensional finite element analysis that was conducted to review the adequacy of the proposed Westinghouse shield building design. The ANSYS finite element software was utilized to analyze the Shield Building Roof (SBR) under dead, snow, wind, thermal and seismic loadings. A three-dimensional model that included a portion of the shield building cylindrical shell, the conical roof and its attachments, the eccentricities at the cone-cylinder connection and at the compression ring and the PCS tank was developed. Mesh sensitivity studies were conducted to select appropriate element size in the cylinder, cone, near air intakes and in the vicinity of the eccentricities. Also, a study was carried out to correctly idealize the water-structure interaction in the PCS tank. Response spectrum analysis was used to calculate the internal forces at different sections in the SBR under Safe Shutdown Earthquake (SSE). Forty-nine structural modes and twenty sloshing modes were used. Two horizontal components of the SSE together with a vertical component were used. Modal stress resultants were combined taking into account the effects of closely spaced modes. The three earthquake directions were combined by the Square Root of the Sum Squares method. Two load combinations were studied. The load combination that included dead, snow, fluid, thermal and seismic loads was selected to be the most critical. Interaction diagrams for critical sections were developed and used to check the design

  13. Estimating the energy independence of a municipal wastewater treatment plant incorporating green energy resources

    International Nuclear Information System (INIS)

    Chae, Kyu-Jung; Kang, Jihoon

    2013-01-01

    Highlights: • We estimated green energy production in a municipal wastewater treatment plant. • Engineered approaches in mining multiple green energy resources were presented. • The estimated green energy production accounted for 6.5% of energy independence in the plant. • We presented practical information regarding green energy projects in water infrastructures. - Abstract: Increasing energy prices and concerns about global climate change highlight the need to improve energy independence in municipal wastewater treatment plants (WWTPs). This paper presents methodologies for estimating the energy independence of a municipal WWTP with a design capacity of 30,000 m 3 /d incorporating various green energy resources into the existing facilities, including different types of 100 kW photovoltaics, 10 kW small hydropower, and an effluent heat recovery system with a 25 refrigeration ton heat pump. It also provides guidance for the selection of appropriate renewable technologies or their combinations for specific WWTP applications to reach energy self-sufficiency goals. The results showed that annual energy production equal to 107 tons of oil equivalent could be expected when the proposed green energy resources are implemented in the WWTP. The energy independence, which was defined as the percent ratio of green energy production to energy consumption, was estimated to be a maximum of 6.5% and to vary with on-site energy consumption in the WWTP. Implementing green energy resources tailored to specific site conditions is necessary to improve the energy independence in WWTPs. Most of the applied technologies were economically viable primarily because of the financial support under the mandatory renewable portfolio standard in Korea

  14. Analysis of the impact of thermal resistance of the roof on the performance of photovoltaic roof tiles

    Directory of Open Access Journals (Sweden)

    Kurz Dariusz

    2017-01-01

    Full Text Available The paper explores the issues related to the impact of thermal resistance of the roof on the electrical parameters of photovoltaic roof tiles. The methodology of determination of the thermal resistance and thermal transmittance factor was presented in accordance with the applicable legal regulations and standards. A test station was presented for the purpose of measurement of the parameters of photovoltaic roof tiles depending on the structure of the roof substrate. Detailed analysis of selected building components as well as their impact on the design thermal resistance factor and thermal transmittance factor was carried out. Results of our own studies, which indicated a relation between the type of the roof structure and the values of the electricity generated by photovoltaic tiles, were presented. Based on the calculations, it was concluded that the generated outputs in the respective constructions differ by maximum 6%. For cells with the highest temperature, the performance of the PV roof tiles on the respective roof constructions fell within the range between 0.4% and 1.2% (depending on the conducted measurement and amounted to 8.76% (in reference to 9.97% for roof tiles with the lowest temperature.

  15. IDENTIFYING ROOF FALL PREDICTORS USING FUZZY CLASSIFICATION

    International Nuclear Information System (INIS)

    Bertoncini, C. A.; Hinders, M. K.

    2010-01-01

    Microseismic monitoring involves placing geophones on the rock surfaces of a mine to record seismic activity. Classification of microseismic mine data can be used to predict seismic events in a mine to mitigate mining hazards, such as roof falls, where properly bolting and bracing the roof is often an insufficient method of preventing weak roofs from destabilizing. In this study, six months of recorded acoustic waveforms from microseismic monitoring in a Pennsylvania limestone mine were analyzed using classification techniques to predict roof falls. Fuzzy classification using features selected for computational ease was applied on the mine data. Both large roof fall events could be predicted using a Roof Fall Index (RFI) metric calculated from the results of the fuzzy classification. RFI was successfully used to resolve the two significant roof fall events and predicted both events by at least 15 hours before visual signs of the roof falls were evident.

  16. Effects of near ultraviolet and green radiations on plant growth

    Energy Technology Data Exchange (ETDEWEB)

    Klein, R.M.; Edsall, P.C.; Gentile, A.C.

    1965-01-01

    Selective removal of near ultraviolet and green wavelengths from white light permitted enhanced growth of marigold, tomato, corn, and Impatiens plants, Chlamydomonas cells and the mycelium of Sordaria. Additions of near ultraviolet and green radiations caused repressions in the growth of marigold and Sordaria. These wavelengths do not alter the oxidative mechanisms of mitochondria, intact algal cells or marigold leaf tissues. The capacity for chlorophyll and carotenoid synthesis by Euglena cells was unaffected by these wavelengths. 23 references, 2 figures, 4 tables.

  17. Demonstration of energy savings of cool roofs

    Energy Technology Data Exchange (ETDEWEB)

    Konopacki, S.; Gartland, L.; Akbari, H. [Lawrence Berkeley National Lab., CA (United States). Environmental Energy Technologies Div.; Rainer, L. [Davis Energy Group, Davis, CA (United States)

    1998-06-01

    Dark roofs raise the summertime air-conditioning demand of buildings. For highly-absorptive roofs, the difference between the surface and ambient air temperatures can be as high as 90 F, while for highly-reflective roofs with similar insulative properties, the difference is only about 20 F. For this reason, cool roofs are effective in reducing cooling energy use. Several experiments on individual residential buildings in California and Florida show that coating roofs white reduces summertime average daily air-conditioning electricity use from 2--63%. This demonstration project was carried out to address some of the practical issues regarding the implementation of reflective roofs in a few commercial buildings. The authors monitored air-conditioning electricity use, roof surface temperature, plenum, indoor, and outdoor air temperatures, and other environmental variables in three buildings in California: two medical office buildings in Gilroy and Davis and a retail store in San Jose. Coating the roofs of these buildings with a reflective coating increased the roof albedo from an average of 0.20--0.60. The roof surface temperature on hot sunny summer afternoons fell from 175 F--120 F after the coating was applied. Summertime average daily air-conditioning electricity use was reduced by 18% (6.3 kWh/1000ft{sup 2}) in the Davis building, 13% (3.6 kWh/1000ft{sup 2}) in the Gilroy building, and 2% (0.4 kWh/1000ft{sup 2}) in the San Jose store. In each building, a kiosk was installed to display information from the project in order to educate and inform the general public about the environmental and energy-saving benefits of cool roofs. They were designed to explain cool-roof coating theory and to display real-time measurements of weather conditions, roof surface temperature, and air-conditioning electricity use. 55 figs., 15 tabs.

  18. 30 CFR 75.206 - Conventional roof support.

    Science.gov (United States)

    2010-07-01

    ... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Roof Support § 75.206 Conventional roof support. (a) Except in anthracite mines using non-mechanized mining systems, when conventional roof support... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Conventional roof support. 75.206 Section 75...

  19. Advanced Energy Efficient Roof System

    Energy Technology Data Exchange (ETDEWEB)

    Jane Davidson

    2008-09-30

    Energy consumption in buildings represents 40 percent of primary U.S. energy consumption, split almost equally between residential (22%) and commercial (18%) buildings.1 Space heating (31%) and cooling (12%) account for approximately 9 quadrillion Btu. Improvements in the building envelope can have a significant impact on reducing energy consumption. Thermal losses (or gains) from the roof make up 14 percent of the building component energy load. Infiltration through the building envelope, including the roof, accounts for an additional 28 percent of the heating loads and 16 percent of the cooling loads. These figures provide a strong incentive to develop and implement more energy efficient roof systems. The roof is perhaps the most challenging component of the building envelope to change for many reasons. The engineered roof truss, which has been around since 1956, is relatively low cost and is the industry standard. The roof has multiple functions. A typical wood frame home lasts a long time. Building codes vary across the country. Customer and trade acceptance of new building products and materials may impede market penetration. The energy savings of a new roof system must be balanced with other requirements such as first and life-cycle costs, durability, appearance, and ease of construction. Conventional residential roof construction utilizes closely spaced roof trusses supporting a layer of sheathing and roofing materials. Gypsum board is typically attached to the lower chord of the trusses forming the finished ceiling for the occupied space. Often in warmer climates, the HVAC system and ducts are placed in the unconditioned and otherwise unusable attic. High temperature differentials and leaky ducts result in thermal losses. Penetrations through the ceilings are notoriously difficult to seal and lead to moisture and air infiltration. These issues all contribute to greater energy use and have led builders to consider construction of a conditioned attic. The

  20. Orbital roof encephalocele mimicking a destructive neoplasm.

    Science.gov (United States)

    Alsuhaibani, Adel H; Hitchon, Patrick W; Smoker, Wendy R K; Lee, Andrew G; Nerad, Jeffrey A

    2011-01-01

    The purpose of this case report is to report an orbital roof encephalocele mimicking a destructive orbital neoplasm. Orbital roof encephalocele is uncommon but can mimic neoplasm. One potential mechanism for the orbital roof destruction is a post-traumatic "growing orbital roof fracture." The growing fracture has been reported mostly in children but can occur in adults. Alternative potential etiologies for the encephalocele are discussed, including Gorham syndrome. Orbital roof encephalocele is uncommon in adults, and the findings can superficially resemble an orbital neoplasm. Radiographic and clinical features that might suggest the correct diagnosis include a prior history of trauma, overlying frontal lobe encephalomalacia without significant mass effect or edema, and an orbital roof defect. The "growing fracture" mechanism may be a potential explanation for the orbital roof destruction in some cases.

  1. Plant Origin of Green Propolis: Bee Behavior, Plant Anatomy and Chemistry

    Directory of Open Access Journals (Sweden)

    Érica Weinstein Teixeira

    2005-01-01

    Full Text Available Propolis, a honeybee product, has gained popularity as a food and alternative medicine. Its constituents have been shown to exert pharmacological effects, such as anti-microbial, anti-inflammatory and anticancer. Shoot apices of Baccharis dracunculifolia (alecrim plant, Asteraceae have been pointed out as sources of resin for green propolis. The present work aimed (i to observe the collecting behavior of bees, (ii to test the efficacy of histological analysis in studies of propolis botanical origin and (iii to compare the chemistries of alecrim apices, resin masses and green propolis. Bee behavior was observed, and resin and propolis were microscopically analyzed by inclusion in methacrylate. Ethanol extracts of shoot apices, resin and propolis were analyzed by gas chromatography/mass spectroscopy. Bees cut small fragments from alecrim apices, manipulate and place the resulting mass in the corbiculae. Fragments were detected in propolis and identified as alecrim vestiges by detection of alecrim structures. Prenylated and non-prenylated phenylpropanoids, terpenoids and compounds from other classes were identified. Compounds so far unreported for propolis were identified, including anthracene derivatives. Some compounds were found in propolis and resin mass, but not in shoot apices. Differences were detected between male and female apices and, among apices, resin and propolis. Alecrim apices are resin sources for green propolis. Chemical composition of alecrim apices seems to vary independently of season and phenology. Probably, green propolis composition is more complex and unpredictable than previously assumed.

  2. Collaborative active roof design

    NARCIS (Netherlands)

    Quanjel, E.M.C.J.

    2008-01-01

    Roofs play an essential role in buildings. Their value and impact often significantly surpass the cost ratio they represent in the total investment cost of the building. Traditionally, roofs have a protecting function and their basic design has changed little over hundreds of years. Nowadays

  3. 30 CFR 75.213 - Roof support removal.

    Science.gov (United States)

    2010-07-01

    ... mining experience shall perform permanent roof support removal work. (b) Prior to the removal of... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Roof support removal. 75.213 Section 75.213... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Roof Support § 75.213 Roof support removal. (a)(1) All...

  4. Decision Guide for Roof Slope Selection

    Energy Technology Data Exchange (ETDEWEB)

    Sharp, T.R.

    1988-01-01

    This decision guide has been written for personnel who are responsible for the design, construction, and replacement of Air Force roofs. It provides the necessary information and analytical tools for making prudent and cost-effective decisions regarding the amount of slope to provide in various roofing situations. Because the expertise and experience of the decision makers will vary, the guide contains both basic slope-related concepts as well as more sophisticated technical data. This breadth of information enables the less experienced user to develop an understanding of roof slope issues before applying the more sophisticated analytical tools, while the experienced user can proceed directly to the technical sections. Although much of this guide is devoted to the analysis of costs, it is not a cost-estimating document. It does, however, provide the reader with the relative costs of a variety of roof slope options; and it shows how to determine the relative cost-effectiveness of different options. The selection of the proper roof slope coupled with good roof design, a quality installation, periodic inspection, and appropriate maintenance and repair will achieve the Air Force's objective of obtaining the best possible roofing value for its buildings.

  5. Green Roof Research through EPA's Regional Applied Research Effort

    Science.gov (United States)

    ABSTRACT The U.S. Environmental Protection Agency’s (EPA) Regional Applied Research Effort (RARE) allows the Regions of the EPA to choose research projects to be performed in partnership with EPA’s Office of Research and Development (ORD). Over the last decade, several green roo...

  6. Installation of a Roof Mounted Photovoltaic System

    Science.gov (United States)

    Lam, M.

    2015-12-01

    In order to create a safe and comfortable environment for students to learn, a lot of electricity, which is generated from coal fired power plants, is used. Therefore, ISF Academy, a school in Hong Kong with approximately 1,500 students, will be installing a rooftop photovoltaic (PV) system with 302 solar panels. Not only will these panels be used to power a classroom, they will also serve as an educational opportunity for students to learn about the importance of renewable energy technology and its uses. There were four different options for the installation of the solar panels, and the final choice was made based on the loading capacity of the roof, considering the fact that overstressing the roof could prove to be a safety hazard. Moreover, due to consideration of the risk of typhoons in Hong Kong, the solar panel PV system will include concrete plinths as counterweights - but not so much that the roof would be severely overstressed. During and after the installation of the PV system, students involved would be able to do multiple calculations, such as determining the reduction of the school's carbon footprint. This can allow students to learn about the impact renewable energy can have on the environment. Another project students can participate in includes measuring the efficiency of the solar panels and how much power can be produced per year, which in turn can help with calculate the amount of money saved per year and when we will achieve economic parity. In short, the installation of the roof mounted PV system will not only be able to help save money for the school but also provide learning opportunities for students studying at the ISF Academy.

  7. Green Algae and the Origins of Multicellularity in the Plant Kingdom

    Science.gov (United States)

    Umen, James G.

    2014-01-01

    The green lineage of chlorophyte algae and streptophytes form a large and diverse clade with multiple independent transitions to produce multicellular and/or macroscopically complex organization. In this review, I focus on two of the best-studied multicellular groups of green algae: charophytes and volvocines. Charophyte algae are the closest relatives of land plants and encompass the transition from unicellularity to simple multicellularity. Many of the innovations present in land plants have their roots in the cell and developmental biology of charophyte algae. Volvocine algae evolved an independent route to multicellularity that is captured by a graded series of increasing cell-type specialization and developmental complexity. The study of volvocine algae has provided unprecedented insights into the innovations required to achieve multicellularity. PMID:25324214

  8. Generating realistic roofs over a rectilinear polygon

    KAUST Repository

    Ahn, Heekap

    2011-01-01

    Given a simple rectilinear polygon P in the xy-plane, a roof over P is a terrain over P whose faces are supported by planes through edges of P that make a dihedral angle π/4 with the xy-plane. In this paper, we introduce realistic roofs by imposing a few additional constraints. We investigate the geometric and combinatorial properties of realistic roofs, and show a connection with the straight skeleton of P. We show that the maximum possible number of distinct realistic roofs over P is ( ⌊(n-4)/4⌋ (n-4)/2) when P has n vertices. We present an algorithm that enumerates a combinatorial representation of each such roof in O(1) time per roof without repetition, after O(n 4) preprocessing time. We also present an O(n 5)-time algorithm for computing a realistic roof with minimum height or volume. © 2011 Springer-Verlag.

  9. Demonstrating leadership inside and out : green building project trains employees, educates clients

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-01-15

    This article described a full-scale green renovation project undertaken by a construction management firm in Newton, Massachusetts. Chapman Construction and Design began renovating its own office building in late 2007 and completed it in September 2008. The firm set out to achieve LEED Platinum certification from the United States Green Building Council. The project involved energy saving modifications to its mechanical systems; replacing plumbing fixtures with high efficiency alternatives to reduce water consumption by at least 40 per cent; installing skylights and additional windows to allow more natural light into the interior space; salvaging doors, lighting, metal studs and masonry whenever possible; and using sustainable products such as recyclable carpets, tiles and low-VOC paint. The main feature of the renovation was a new 47 kW (DC) photovoltaic (PV) solar power array installed on the rooftop. The PV array includes 208 panels and a SunPower SPR-225 system that produces 55,000 kWh of clean power per year. This grid connected system will supply 90 per cent of the company's electricity needs. During times of peak production, excess power will be sent back to the utility. This article also described the 3 different roofing systems upon which the PV system was installed. All of the roofing systems were manufactured by the Firestone Building Products Company and included an innovative and highly reflective white thermoplastic polyolefin (TPO) single-ply roofing system; a RubberGard EPDM roofing system that was coated with Firestone's white AcryliTop coating which exceeds Energy Star requirements for energy efficiency; and a 1.5 mm Firestone UltraPly TPO membrane. The easy to install roofing systems were designed to prolong the service life of the roof and reflect solar radiation. 1 ref., 2 figs.

  10. Heat Island Compendium

    Science.gov (United States)

    Heat islands can be mitigated through measures like planting trees and vegetation, installing green roofs and cool roofs, and using cool pavements. The compendium describes all of these strategies and shows how communities around the country are being used

  11. Optimization of Energy Efficiency and Conservation in Green Building Design Using Duelist, Killer-Whale and Rain-Water Algorithms

    Science.gov (United States)

    Biyanto, T. R.; Matradji; Syamsi, M. N.; Fibrianto, H. Y.; Afdanny, N.; Rahman, A. H.; Gunawan, K. S.; Pratama, J. A. D.; Malwindasari, A.; Abdillah, A. I.; Bethiana, T. N.; Putra, Y. A.

    2017-11-01

    The development of green building has been growing in both design and quality. The development of green building was limited by the issue of expensive investment. Actually, green building can reduce the energy usage inside the building especially in utilization of cooling system. External load plays major role in reducing the usage of cooling system. External load is affected by type of wall sheathing, glass and roof. The proper selection of wall, type of glass and roof material are very important to reduce external load. Hence, the optimization of energy efficiency and conservation in green building design is required. Since this optimization consist of integer and non-linear equations, this problem falls into Mixed-Integer-Non-Linear-Programming (MINLP) that required global optimization technique such as stochastic optimization algorithms. In this paper the optimized variables i.e. type of glass and roof were chosen using Duelist, Killer-Whale and Rain-Water Algorithms to obtain the optimum energy and considering the minimal investment. The optimization results exhibited the single glass Planibel-G with the 3.2 mm thickness and glass wool insulation provided maximum ROI of 36.8486%, EUI reduction of 54 kWh/m2·year, CO2 emission reduction of 486.8971 tons/year and reduce investment of 4,078,905,465 IDR.

  12. Antibody Production in Plants and Green Algae.

    Science.gov (United States)

    Yusibov, Vidadi; Kushnir, Natasha; Streatfield, Stephen J

    2016-04-29

    Monoclonal antibodies (mAbs) have a wide range of modern applications, including research, diagnostic, therapeutic, and industrial uses. Market demand for mAbs is high and continues to grow. Although mammalian systems, which currently dominate the biomanufacturing industry, produce effective and safe recombinant mAbs, they have a limited manufacturing capacity and high costs. Bacteria, yeast, and insect cell systems are highly scalable and cost effective but vary in their ability to produce appropriate posttranslationally modified mAbs. Plants and green algae are emerging as promising production platforms because of their time and cost efficiencies, scalability, lack of mammalian pathogens, and eukaryotic posttranslational protein modification machinery. So far, plant- and algae-derived mAbs have been produced predominantly as candidate therapeutics for infectious diseases and cancer. These candidates have been extensively evaluated in animal models, and some have shown efficacy in clinical trials. Here, we review ongoing efforts to advance the production of mAbs in plants and algae.

  13. Cost Effectiveness of Precast Reinforced Concrete Roof Slabs

    Science.gov (United States)

    Parskiy, N. D.; Molodtsov, M. V.; Molodtsova, V. E.

    2017-11-01

    Engineers always seek to free interior space from intermediate supporting elements. Nowadays plants, being at the forefront of technology, produce a new generation of exclusive patented prefabricated reinforced concrete elements with a high load-bearing capacity, excellent heat resistance characteristics combined with the aesthetics and beauty. It is a system of Seagull Gabbiano prestressed roof slabs for the spans of 12m - 40m. The article shows the advantages of the Seagull slabs over conventional precast reinforced concrete and metal roof trusses. It also gives the analysis of the technical and economic indices of design and construction of a building with the Seagull slabs depending on the size of spans to cover. The use of structural systems with increased spans allows for the modern buildings and structures of prefabricated reinforced concrete with enhanced functionality and aesthetics alongside with a wide range of planning solutions.

  14. PV ready roofing systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The integration of PV technology into roofs of houses has become very popular in the United States, Japan, Germany and The Netherlands. There could be a considerable market in the UK for these systems, given the large number of houses that are projected to be built in the next 10 years, and taking account of increased awareness of energy issues. A significant proportion of the market share of annual installed PV is for solar PV systems installed into homes (currently 15%), this is expected to rise to 23% (900MW) by 2010. The grid connected roof and building mounted facade systems represent the fastest growing market for PV systems in Europe. In conclusion, therefore, innovative approached for fixing PV technology onto roofs have been identified for both domestic roofs and for the commercial sector. With reference to production methodologies within the roofing industry, both approaches should be capable of being designed with PV-ready connections suitable for fixing PV modules at a later date. This will help overcome the key barriers of cost of installation, skills required and the lack of retrofit potential. Based on the results of this project, Sustainable Energy together with PV Systems are keen to take forward the full research and development of PV-ready systems for both the domestic and commercial sectors.

  15. Green plant bug from South Texas gets a common name - the "verde plant" bug

    Science.gov (United States)

    Some cotton producers from south Texas and the Gulf Coast regions have been unfortunate over the last few years because they have had to deal with a green plant bug, Creontiades signatus, that will feed on cotton fruit. The insect was initially, and erroneously, thought to be Creontiades dilutus, an...

  16. Mobilization and distribution of lead originating from roof dust and wet deposition in a roof runoff system.

    Science.gov (United States)

    Yu, Jianghua; Yu, Haixia; Huang, Xiaogu

    2015-12-01

    In this research, the mobilization and distribution of lead originating in roof dust and wet deposition were investigated within a roof dust-rooftop-runoff system. The results indicated that lead from roof dust and wet deposition showed different transport dynamics in runoff system and that this process was significantly influenced by the rainfall intensity. Lead present in the roof dust could be easily washed off into the runoff, and nearly 60 % of the total lead content was present in particulate form. Most of the lead from the roof dust was transported during the late period of rainfall; however, the lead concentration was higher for several minutes at the rainfall beginning. Even though some of the lead from wet deposition, simulated with a standard isotope substance, was adsorbed onto adhered roof dust and/or retained on rooftop in runoff system, most of it (50-82 %) remained as dissolved lead in the runoff for rainfall events of varying intensity. Regarding the distribution of lead in the runoff system, the results indicated that it could be carried in the runoff in dissolved and particulate form, be adsorbed to adhered roof dust, or remain on the rooftop because of adsorption to the roof material. Lead from the different sources showed different distribution patterns that were also related to the rainfall intensity. Higher rainfall intensity resulted in a higher proportion of lead in the runoff and a lower proportion of lead remaining on the rooftop.

  17. EVALUATION OF ROOF BOLTING REQUIREMENTS BASED ON IN-MINE ROOF BOLTER DRILLING

    Energy Technology Data Exchange (ETDEWEB)

    Syd S. Peng

    2005-01-15

    In this quarter, the field, theoretical and programming works have been performed toward achieving the research goals set in the proposal. The main accomplishments in this quarter included: (1) one more field test has been conducted in an underground coal mine, (2) optimization studies of the control parameters have been conducted, (3) method to use torque to thrust ratio as indicator of rock relative hardness has also been explored, and (4) about 98% of the development work for the roof geology mapping program, MRGIS, has completed, (5) A real time roof geology mapping system for roof bolters in limestone mine, including a special version of the geology mapping program and hardware, has already been verified to perform very well in underground production condition.

  18. Perspectives of roof bolt use in the Kuzbass

    Energy Technology Data Exchange (ETDEWEB)

    Shirokov, A P

    1983-10-01

    Use of roof bolting for strata control in mine roadways and underground chambers in Kuzbass mines is discussed. Use of roof bolting in the Kuzbass is increasing. In 1982 roof bolting was used in 50% of workings driven in the basin; in 15 coal mines roof bolting was the predominant method for strata control. Use of roof bolting rather than timber props permitted advance rate of mine drivage in the Kuzbass to be increased by 1.5-2.0 times. Interaction between roof bolts and rock strata is analyzed. The following bolt types are considered: timber roof bolts, steel expansion shell bolts and thread bar bolts. Bolt design is shown, along with methods for roof bolt installation in roadways and chambers. Roof bolting during level, inclined or steep seam mining, for strata control at junctions of working faces with gate roads, at junctions of 2 roadways, in coal chutes, in hydraulic mines, during thick seam slicing with hardening stowing and longwall mining with hydraulic stowing is analyzed. Effects of roof bolting on strata control efficiency in steep coal mines employing AShchM systems are evaluated.

  19. Sustainability of thermoplastic vinyl roofing membrane systems

    Energy Technology Data Exchange (ETDEWEB)

    Graveline, S. P. [Sika Sanarfil, Canton, (United States)

    2010-07-01

    The International Council for Research and Innovation in Building and Construction (CIB-RILEM) has developed a framework for sustainable roofing based on a series of tenets divided into three key areas: preservation of the environment, conservation of energy, and extended roof life. This paper investigated the sustainability of thermoplastic vinyl roof membranes using these guidelines and the relevant tenets for roof system selection. Several tenets provided alternatives for minimizing the burden on the environment using non-renewable raw materials, conserving energy with thermal insulation, and extending the lifespan of all roof components by using long lasting membranes. A life cycle assessment was carried out to provide a quantitative framework for assessing the sustainability of roofing materials. It was found that the PVC membrane systems had a lesser impact on the environment than other competing systems.

  20. The use of aluminum dome tank roofs

    International Nuclear Information System (INIS)

    Morovich, G.L.

    1992-01-01

    Since the late 1970's the aluminum dome tank roof has gained wide usage for both new and retrofit applications. The increased application for the structure results from a need for maintenance reduction, environmental considerations, concern for product quality and economics. The American Petroleum Institute (API) has approved Standard API 650, Appendix G - Structurally Supported Aluminum Dome Roofs for publication. The aluminum dome was originally used as weather cover for retrofiting external floating roof tanks. The roof was considered for the reduction of maintenance related to draining water from the external floating roofs and problems resulting from freezing of drain lines and snow accumulation. This paper reports that environmental concerns have expanded the value of aluminum dome roofs. Rainwater bypassing the seals of an external floating roof became classified as a hazardous material requiring special and expensive disposal procedures. The marketing terminal facilities typically do not have the capacity for proper treatment of contaminated bottom water. With new fuel additives being water soluble, water contamination not only created a hazardous waste disposal problem, but resulted in reduced product quality

  1. Water quality function of an extensive vegetated roof.

    Science.gov (United States)

    Todorov, Dimitar; Driscoll, Charles T; Todorova, Svetoslava; Montesdeoca, Mario

    2018-06-01

    In this paper we present the results of a four-year study of water quality in runoff from an extensive, sedum covered, vegetated roof on an urban commercial building. Monitoring commenced seven months after the roof was constructed, with the first growing season. Stormwater drainage quality function of the vegetated roof was compared to a conventional (impermeable, high-albedo) membrane roof in addition to paired measurements of wet and bulk depositions at the study site. We present concentrations and fluxes of nutrients and major solutes. We discuss seasonal and year-to-year variation in water quality of drainage from the vegetated roof and how it compares with atmospheric deposition and drainage from the impermeable roof. Drainage waters from the vegetated roof exhibited a high concentration of nutrients compared to atmospheric deposition, particularly during the warm temperature growing season. However, nutrient losses were generally low because of the strong retention of water by the vegetated roof. There was marked variation in the retention of nutrients by season due to variations in concentrations in drainage from the vegetated roof. The vegetated roof was a sink of nitrogen, total phosphorus and chloride, and a source of phosphate and dissolved inorganic and organic carbon. Chloride exhibited elevated inputs and leaching during the winter. The drainage from the vegetated and impermeable roofs met the United States Environmental Protection Agency freshwater standards for all parameters, except for total phosphorus. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. The Ecology and Evolution of Constructed Ecosystems as Green Infrastructure

    Directory of Open Access Journals (Sweden)

    Jeremy eLundholm

    2015-09-01

    Full Text Available Green infrastructure consists of ecosystems that provide valuable services to urban areas. Constructed ecosystems, including green roofs, bioretention systems, constructed wetlands and bioreactors are artificial, custom-built components of green infrastructure that are becoming more common in cities. Small size, strong spatial boundaries, ecological novelty and the role of human design characterize all constructed ecosystems, influencing their functions and interactions with other urban ecosystems. Here I outline the relevance of ecology and evolution in understanding the functioning of constructed ecosystems. In turn, a research focus on the distinctive aspects of constructed ecosystems can contribute to fundamental science.

  3. Development of test method for evaluating root resistance of pavement used for roof garden caused by thickening growth of root

    Energy Technology Data Exchange (ETDEWEB)

    Ishihara, Saori; Tanaka, Kyoji [Tokyo Institute of Technology, Tokyo, (Japan)

    2010-07-01

    The growth of roots of plants can damage roof garden components, such as pavements. This paper developed a test method for evaluating the resistance of pavement used in roof gardens to damage from a thickening growth of roots. The study assessed the behaviour of plant roots and evaluated the force of root growth subjected to hypertrophy. A system to measure the enlargement force of roots was designed and used for measurements over a period of 8 months on a cherry blossom of 21 years growth. The enlargement force was approximately 440 N/cm. A mechanical simulated root was designed and used to carry out experimental tests on asphalt pavements. The tests results demonstrated the viability of simulated root for evaluation of root resistances in pavements and various components of roof gardens.

  4. Tool to address green roof widespread implementation effect in flood characteristics for water management planning

    Directory of Open Access Journals (Sweden)

    R. Tassi

    2015-06-01

    Full Text Available In the last decades, new approaches were adopted to manage stormwater as close to its source as possible through technologies and devices that preserve and recreate natural landscape features. Green Roofs (GR are examples of these devices that are also incentivized by city's stormwater management plans. Several studies show that GR decreases on-site runoff from impervious surfaces, however, the analysis of the effect of widespread implementation of GR in the flood characteristics at the urban basin scale in subtropical areas are little discussed, mainly because of the absence of data. Thereby, this paper shows results related to the monitoring of an extensive modular GR under subtropical weather conditions, the development of a rainfall–runoff model based on the modified Curve Number (CN and SCS Triangular Unit Hydrograph (TUH methods and the analysis of large-scale impact of GR by modelling different basins. The model was calibrated against observed data and showed that GR absorbed almost all the smaller storms and reduced runoff even during the most intense rainfall. The overall CN was estimated in 83 (consistent with available literature with the shape of hydrographs well reproduced. Large-scale modelling (in basins ranging from 0.03 ha to several square kilometers showed that the widespread use of GRs reduced peak flows (volumes around 57% (48% at source and 38% (32% at the basin scale. Thus, this research validated a tool for the assessment of structural management measures (specifically GR to address changes in flood characteristics in the city's water management planning. From the application of this model it was concluded that even if the efficiency of GR decreases as the basin scale increase they still provide a good option to cope with urbanization impact.

  5. Stimulation effects of γ-irradiation combined with colchicine on callus formation and green plant regeneration in rice anther culture

    International Nuclear Information System (INIS)

    Jin Wei; Chen Qiufang; Wang Cailian; Lu Yimei

    1999-09-01

    The ability of callus formation and green plant regeneration was very different for various rice types and varieties in rice anther culture. It was quite effective that rice anthers were irradiated with 10-40 Gy of γ-rays after 30 d incubation on induction medium and calli were treated on differentiation medium contained 10-75 mg/L of colchicine for increase of callus formation and green plant regeneration. Among these treatments, 10 Gy of γ-rats was the best for callus formation, and 20 Gy of γ-rays or 30 mg/L of colchicine was the most favourable for green plant regeneration. The simulation effect of 20 Gy of γ-irradiation combined with 30 mg/L of colchicine on green plant regeneration was much better than that of their separate use in rice anther culture

  6. Biopesticide effect of green compost against fusarium wilt on melon plants.

    Science.gov (United States)

    Ros, M; Hernandez, M T; Garcia, C; Bernal, A; Pascual, J A

    2005-01-01

    The biopesticide effect of four green composts against fusarium wilt in melon plants and the effect of soil quality in soils amended with composts were assayed. The composts consisted of pruning wastes, with or without addition of coffee wastes (3/1 and 4/1, dry wt/dry wt) or urea (1000/1, dry wt/dry wt). In vitro experiments suggested the biopesticide effect of the composts against Fusarium oxysporum, while only the compost of pine bark and urea (1000/1dry wt/dry wt) had an abiotic effect. Melon plant growth with composts and F. oxysporum was one to four times greater than in the non-amended soil, although there was no significant decrease in the level of the F. oxysporum in the soil. The addition of composts to the soil also improved its biological quality, as assessed by microbiological and biochemical parameters: ATP and hydrolases involved in the P (phosphatase), C (beta-glucosidase) and N (urease) cycles. Green composts had greater beneficial characteristics, improved plant growth and controlled fusarium wilt in melon plants. These composts improve the soil quality of semi-arid agricultural soils. Biotic and abiotic factors from composts have been tested as responsible of their biopesticide activity against fusarium wilt.

  7. What land covers are effective in mitigating a heat island in urban building rooftop?

    Science.gov (United States)

    Lee, S.; Ryu, Y.

    2014-12-01

    Since the 20th century, due to the rapid urbanization many urban environment problems have got blossomed and above all heat island has been recognized as an important issue. There are several causes of urban heat island, but land cover change occupies the largest portion of them. Owing to urban expansion, vegetation is changed into asphalt pavements and concrete buildings, which reduces latent heat flux. To mitigate the problems, people enlarge vegetation covers such as planting street trees, making rooftop gardens and constructing parks or install white roofs that feature high albedo on a building. While the white roofs reflect about 70% of solar radiation and absorb less radiation, vegetation has low albedo but cools the air through transpiration and fixes carbon dioxide through photosynthesis. There are some studies concerning which one is more effective to mitigate heat island between the green roof and white roof. This study compares the green roof and white roof and additionally considers carbon fixation that has not been treated in other studies. Furthermore, this study ascertains an efficiency of solar-cell panel that is used for building roof recently. The panel produces electric power but has low albedo which could warm the air. The experiment is conducted at the rooftop in Seoul, Korea and compares green roof (grass), white roof (painted cover), black roof (solar panel) and normal painted roof. Surface temperature and albedo are observed for the four roof types and incoming shortwave, outgoing longwave and carbon flux are measured in green roof solely. In the case of solar panels, the electricity generation is calculated from the incoming radiation. We compute global warming potentials for the four roof types and test which roof type is most effective in reducing global warming potential.

  8. Recovery in the soil-plant system of nitrogen from green manure applied on cabbage crop

    International Nuclear Information System (INIS)

    Araujo, Ednaldo da Silva; Guerra, Jose Guilherme Marinho; Espindola, Jose Antonio Azevedo; Urquiaga, Segundo; Boddey, Robert Michael; Alves, Bruno Jose Rodrigues; Martelleto, Luiz Aurelio Peres

    2011-01-01

    The objective of this work was to determine, in the soil-plant system, the recovery efficiency of N derived from green manure applied on cabbage (Brassica oleracea) crop. The experiment was divided into two stages: the first one consisted of the straw production of jack bean (Canavalia ensiformis), velvet bean (Mucuna cinereum), and sorghum (Sorghum bicolor), in substrate enriched with 15 N. The second stage consisted of the application of 15 N-labeled green manure on the cabbage beds. Treatments consisted of: fresh residues of jack bean; fresh residues of velvet bean; fresh residues of sorghum; mixture of residues of jack bean, velvet bean, and sorghum at 1:1:1; and control without green manure addition. The N recovery in the soil plant system was influenced by the green manure species used, and the recovery efficiency of the N derived from the green manure legumes varied from 9 to 16%. The jack bean treatment shows a greater recovery efficiency of nitrogen and, therefore, the best synchrony of N supply, by straw decomposition, with the cabbage crop demand. (author)

  9. Green synthesis of gold nanoparticles using plant extract: Mini-review

    Directory of Open Access Journals (Sweden)

    Reza Teimuri-mofrad

    2017-01-01

    Full Text Available In this review, we examine the greenest nanoparticles of zero-valent metals, metal oxides and metal salts, with emphasis on recent developments routes. Products from nature or those derived from natural products, such as extracts of several plants or parts of plants, tea, coffee, banana, simple amino acids, as well as wine, table sugar and glucose, have been used as reductants and as capping agents during the present synthesis method. Polyphenols found in plant material often play a key role in the processes mentioned here. The techniques involved are generally one-pot processes, environmentally friendly and simple. Green synthesis of gold nanoparticles using several extracts and spices extracts was conducted, in which aqueous extracts HAuCl4.3H2O reduce to Au° has establishing themselves in specific crystal phase. Synthesized nanoparticles were confirmed by the color change of auric chloride which is yellow. The growth of nanoparticles was monitored by the behavior of surface Plasmon using UV-Vis spectroscopy; also the pH was determined meanwhile. Moreover, this approach is not only of a green rapid synthesis kind and considered as a better alternative to chemical synthesis, but also found to be effective for large scale synthesis of gold nanoparticles.

  10. Research on the compressive strength of a passenger vehicle roof

    Science.gov (United States)

    Zhao, Guanglei; Cao, Jianxiao; Liu, Tao; Yang, Na; Zhao, Hongguang

    2017-05-01

    To study the compressive strength of a passenger vehicle roof, this paper makes the simulation test on the static collapse of the passenger vehicle roof and analyzes the stress and deformation of the vehicle roof under pressure in accordance with the Roof Crush Resistance of Passenger Cars (GB26134-2010). It studies the optimization on the major stressed parts, pillar A, pillar B and the rail of roof, during the static collapse process of passenger vehicle roof. The result shows that the thickness of pillar A and the roof rail has significant influence on the compressive strength of the roof while that of pillar B has minor influence on the compressive strength of the roof.

  11. Roof Moisture Surveys: Current State Of The Technology

    Science.gov (United States)

    Tobiasson, Wayne

    1983-03-01

    Moisture is the big enemy of compact roofing systems. Non-destructive nuclear, capacitance and infrared methods can all find wet insulation in such roofs but a few core samples are needed for verification. Nuclear and capacitance surveys generate quantitative results at grid points but examine only a small portion of the roof. Quantitative results are not usually provided by infrared scanners but they can rapidly examine every square inch of the roof. Being able to find wet areas when they are small is an important advantage. Prices vary with the scope of the investigation. For a particular scope, the three techniques are often cost-competitive. The limitations of each technique are related to the people involved as well as the equipment. When the right people are involved, non-destructive surveys are a very effective method for improving the long-term performance and reducing the life-cycle costs of roofing systems. Plans for the maintenance, repair or replacement of a roof should include a roof moisture survey.

  12. Recycling Roof Tile Waste Material for Wall Cover Tiles

    Directory of Open Access Journals (Sweden)

    Ambar Mulyono

    2014-02-01

    Full Text Available Prior research on roof tile waste treatment has attempted to find the appropriate technology to reuse old roof tile waste by  create  wall  cladding  materials  from  it.  Through  exploration  and  experimentation,  a  treatment  method  has  been discovered  to  transform  the  tile  fragments  into  artificial  stone  that  resembles  the  shape  of  coral.  This  baked  clay artificial stone material is then processed as a decorative element for vertical surfaces that are not load-bearing, such as on the interior and exterior walls of a building. Before applying the fragments as wall tiles, several steps must be taken: 1  Blunting,  which  changes  the  look  of  tile  fragments  using  a  machine  created  specifically  to  blunt  the  roof-tile fragment  edges,  2  Closing  the  pores  of  the  blunted  fragments  as  a  finishing  step  that  can  be  done  with  a  transparent coat or a solid color of paint, 3 Planting the transformed roof-tile fragments on a prepared tile body made of concrete. In this study, the second phase is done using the method of ceramics glazing at a temperature of 700 °C. The finishing step is the strength of this product because it produces a rich color artificial pebble.

  13. Potential of some aquatic plants for removal of arsenic from wastewater by green technology

    Directory of Open Access Journals (Sweden)

    Mohammed Barznji Dana A.

    2015-03-01

    Full Text Available Phytoremediation or green technology is counted among the successful and effective biological contaminated water treatment techniques. Basically, the concept of this green, cost-effective, simple, environmentally nondisruptive method consists in using plants and microbiological processes to reduce contaminants in the ecosystem. Different species from aquatic plants (emerged, free-floating, and submerged have been studied to mitigate toxic contaminants such as arsenic, cadmium, chromium, copper, lead, mercury, zinc, etc. Arsenic is one of the most severe toxic elements; it is widely distributed in the environment, usually found in combination with chloride, oxygen, sulphur and metal ions as a result of mineral dissolution from sedimentary or volcanic rocks and the dilution of geothermal water. The effluents from both industrial and agricultural sectors are also regarded as sources to contaminate water. From the accumulation point of view, several aquatic plants have been mentioned as good arsenic accumulators and their performance is evaluated using the green technology method. These include Spirodela polyrhiza, Wolffia globosa, Lemna gibba, L. minor, Eichhornia crassipes, Azolla caroliniana, Azolla filiculoides, Azolla pinnata, Ceratophyllum demersum and Pistia stratiotes. The up-to-date information illustrated in this review paper generates knowledge about the ability of some common aquatic plants around the globe to remediate arsenic from contaminated water.

  14. Thermal performance of an innovative roof component

    Energy Technology Data Exchange (ETDEWEB)

    Dimoudi, A. [Department of Environmental Engineering, Democritus University of Thrace, Vassilisis Sofias 12, 67 100 Xanthi (Greece); Lykoudis, S. [Institute for Environmental Research and Sustainable Development, National Observatory of Athens, I. Metaxa and B. Pavlou, 152 36 Penteli (Greece); Androutsopoulos, A. [Buildings Department, Division of Energy Efficiency, Centre for Renewable Energy Sources (CRES), 19th km Marathonos Aven., 190 09 Pikermi (Greece)

    2006-11-15

    In this paper, the thermal performance of a ventilated roof component is investigated during the winter period. The ventilated roof component consists of a conventional roof structure - reinforced concrete with a layer of thermal insulation - an air gap that allows the movement of the ambient air and an external layer made of a prefabricated concrete slab. The experimental results of the ventilated roof component during the winter period are presented and its thermal performance is analysed. The effect of key construction parameters like the height of the air gap and the use of a radiant barrier in the air gap is also investigated. Analysis of the results showed that the performance of a ventilated roof component is comparable to a conventional structure during winter. The ventilated component is shown to be in compliance with Greek regulatory requirements in terms of U-value. (author)

  15. The potential of young, green finger-jointed Eucalyptus grandis ...

    African Journals Online (AJOL)

    Drying will occur naturally while the lumber is fixed within the roof truss structure. The objectives of this study were (1) to investigate the strength and stiffness variation of the finger-jointed E. grandis product in both the green and dry state for different age and dimension lumber, (2) to investigate the variation in density, warp ...

  16. Influence of roof motion in LMFBR containment loading studies

    International Nuclear Information System (INIS)

    Potter, R.; Lancefield, M.J.; Sidoli, J.E.A.; Broadhouse, B.J.; Green, R.S.

    1982-01-01

    Following an HCDA the reactor roof may be threatened by coolant impact. Recent trends in CDFR roof design suggest that roof movement during the impact process may reduce the roof loading as a result of the fluid-structure interaction. The paper describes analytic studies of the phenomena, extensions to the SEURBNUK containment code to the roof flexibility and fluid-structure coupling, and results of experiments which confirm the reduced impulse and provide validation of the mathematical modelling

  17. Evaluation of heavy metal pollution in water wells and soil using common leafy green plant indicators in the Al-Kharj region, Saudi Arabia.

    Science.gov (United States)

    Al-Hammad, Bushra Ahmed; Abd El-Salam, Magda Magdy

    2016-06-01

    This study was performed to determine the levels of eight heavy metals in irrigation well water and soil and to assess the suitability of some leafy green plants that are commonly cultivated in the Al-Kharj region, Saudi Arabia, for human consumption using an atomic absorption spectrometer. The mean concentrations of metals ranged from 0.0001 to 0.436 mg/L in well water and from 0.248 to 164.52 mg/kg in soil. The heavy metal concentrations showed significant differences among the different leafy green plants studied. Parsley (4.98 mg/kg) exhibited higher levels of Pb than other leafy green plants, whereas mallow (0.097 mg/kg) revealed greater amounts of Cd than other plants. All of the leafy green plants retained essential metals (Cu, Zn, Fe and Mn) more than the toxic metals (Pb and Cd). The levels of some of the metals in the leafy green plants were found to meet the FAO/WHO-recommended limits. The monitoring of heavy metals in leafy green plants must be continued because these plants are the main source of food for humans in many parts of the world and are considered to be bio-indicators for environmental pollution.

  18. Roof assembly

    CSIR Research Space (South Africa)

    De Villiers, A

    2010-01-01

    Full Text Available The objective of this chapter is to provide sustainability criteria for roof system design that can be used by planners, designers and developers as a planning, design and development guide for sustainable building projects....

  19. Framework for Climate Change Mitigation and Adaption in Cities by Utilizing Green Infrastructure

    DEFF Research Database (Denmark)

    Prapaspongsa, Trakarn; Davidson, Cliff I.; Jindal, Ranjina

    infrastructure frameworks with indicators from green building rating systems (LEED 2009, BCA Green Mark 4.0, CASBEE, and TREES-NC 1.0). The climate change mitigation and adaptation framework addresses benefits from applying different GI technologies as well as limitations in existing rating systems and the green......Climate change has threatened global security of ecosystems, human health and natural resources. These threats have increased demand for various mitigation technology solutions as well as effective strategies for adapting to anticipated impacts. Green infrastructure (GI) technologies such as green...... roofs and urban forestry are viewed as ones of the best climate adaptation strategies in cities. This study aims to develop a framework for climate change mitigation and adaptation (CCMA) in cities by using green infrastructure technologies. The framework is established by integrating existing green...

  20. Impact- and earthquake- proof roof structure

    International Nuclear Information System (INIS)

    Shohara, Ryoichi.

    1990-01-01

    Building roofs are constituted with roof slabs, an earthquake proof layer at the upper surface thereof and an impact proof layer made of iron-reinforced concrete disposed further thereover. Since the roofs constitute an earthquake proof structure loading building dampers on the upper surface of the slabs by the concrete layer, seismic inputs of earthquakes to the buildings can be moderated and the impact-proof layer is formed, to ensure the safety to external conditions such as earthquakes or falling accidents of airplane in important facilities such as reactor buildings. (T.M.)

  1. A Case Study of Effective Support Working Resistance and Roof Support Technology in Thick Seam Fully-Mechanized Face Mining with Hard Roof Conditions

    Directory of Open Access Journals (Sweden)

    Wei-bin Guo

    2017-06-01

    Full Text Available This paper presents the engineering geological properties and roof control tecnology for a thick coal seam fully-mechanized face mining with hard roof conditions (THC at the Jinhuagong Coal Mine (JCM, northwest China. The effective support working resistance and appropriate roof control technology are two critical factors for safe and productive mining in the THC. The load-estimate-method (LOEM is the effective method to determine the support working resistance for normal working conditions (the mining height less than 3.5 m. In order to prevent support crushing accidents from happening and to ensure the safety and high-efficiency in the THC, the LOEM was modified based on the structure of the overlying strata in the THC. The strata which can form the voussoir beam structure in normal working conditions and will break in the form of cantilever beam in the THC is defined as the key strata in the immediate roof. Therefore, the hanging length of the key strata in the immediate roof was considered in the LOEM. Furthermore, a method for calculating the hanging length of the key strata in the immediate roof and its influencing factors were proposed using cantilever beam theory analysis of the structure of the overlying strata. Moreover, in order to fully fill the goaf area with caving roof to reduce the energy accumulation of main roof movement, it was decided to apply destress blasting technique (DEBT at the JCM to control the large hanging length of the hard roof, so as to reduce the impact of the hard main roof movement on the working face. The key technique parameters of the roof caving borehole were also proposed. The obtained results demonstrated that the theoretical analysis is reasonable, and the chosen support type and the DEBT could meet the roof control requirements. The THC has achieved safety and high-efficiency mining.

  2. Evolution of Flat Roofs

    Directory of Open Access Journals (Sweden)

    Şt. Vasiliu

    2009-01-01

    Full Text Available Roofs are constructive subassembles that are located at the top of buildings, which toghether with perimetral walls and some elements of the infrastructure belongs to the subsystem elements that close the building. Roofs must meet resistance requirements to mechanical action, thermal insulating, waterproofing and acoustic, fire resistance, durability, economy and aesthetics. The man saw the need to build roofs from the oldest ancient times. Even if the design of buildings has an empirical character, are known and are preserved until today constructions that are made in antiquity, by the Egyptians, Greeks and Romans with architectural achievements, worthy of admiration and in present time. General composition of civil construction has been influenced throughout the evolution of construction history by the level of production forces and properties of building materials available in every historical epoch. For over five millennia, building materials were stone, wood and ceramic products (concrete was used by theRomans only as filling material.

  3. Plants as green as phones: Novel insights into plant-mediated communication between below- and above-ground insects

    NARCIS (Netherlands)

    Soler Gamborena, R.; Harvey, J.A.; Bezemer, T.M.; Stuefer, J.F.

    2008-01-01

    can act as vertical communication channels or ‘green phones’ linking soil-dwelling insects and insects in the aboveground ecosystem. When root-feeding insects attack a plant, the direct defense system of the shoot is activated, leading to an accumulation of phytotoxins in the leaves. The protection

  4. Software for roof defects recognition on aerial photographs

    Science.gov (United States)

    Yudin, D.; Naumov, A.; Dolzhenko, A.; Patrakova, E.

    2018-05-01

    The article presents information on software for roof defects recognition on aerial photographs, made with air drones. An areal image segmentation mechanism is described. It allows detecting roof defects – unsmoothness that causes water stagnation after rain. It is shown that HSV-transformation approach allows quick detection of stagnation areas, their size and perimeters, but is sensitive to shadows and changes of the roofing-types. Deep Fully Convolutional Network software solution eliminates this drawback. The tested data set consists of the roofing photos with defects and binary masks for them. FCN approach gave acceptable results of image segmentation in Dice metric average value. This software can be used in inspection automation of roof conditions in the production sector and housing and utilities infrastructure.

  5. Integral design of active energy roofs

    NARCIS (Netherlands)

    Quanjel, E.M.C.J.

    2006-01-01

    A wide variety of new products, such as photovoltaic (PV) systems and solar collectors, roof lights, ventilation devices, insulation and safety devices, is finding its way into the roofing industry. As a result many problems occurred, resulting in poor quality, unsafe working conditions and high

  6. Fuel consumption impacts of auto roof racks

    International Nuclear Information System (INIS)

    Chen, Yuche; Meier, Alan

    2016-01-01

    The after-market roof rack is one of the most common components attached to a vehicle for carrying over-sized items, such as bicycles and skis. It is important to understand these racks’ fuel consumption impacts on both individual vehicles and the national fleet because they are widely used. We estimate the national fuel consumption impacts of roof racks using a bottom-up approach. Our model incorporates real-world data and vehicle stock information to enable assessing fuel consumption impacts for several categories of vehicles, rack configurations, and usage conditions. In addition, the model draws on two new data-gathering techniques, on-line forums and crowd-sourcing. The results show that nationwide, roof racks are responsible for 0.8‰ of light duty vehicle fuel consumption in 2015, corresponding to 100 million gallons of gasoline per year. Sensitivity analyses show that results are most sensitive to the fraction of vehicles with installed roof racks but carrying no equipment. The aerodynamic efficiency of typical roof racks can be greatly improved and reduce individual vehicle fuel consumption; however, government policies to minimize extensive driving with empty racks—if successful—could save more fuel nationally. - Highlights: •First estimate of national energy impacts of auto roof racks—about 1‰. •A bottom-up approach reveals details of the fuel consumption penalty caused by racks. •Two novel data collection techniques, on-line forums and crowd-sourcing, improve estimate. •Technical and behavioral policies could significantly cut fuel penalties from roof racks.

  7. Hinged roof timber

    Energy Technology Data Exchange (ETDEWEB)

    Shestov, P I; Golub, A G; Yefremov, V I

    1980-08-07

    A hinged roof timer is suggested which includes a beam with prong and loop on the end which have openings in the form of ring slits for the distance wedges and round for the pins. In this case the opening of the distance wedge in the ring is arranged in relation to the opening for the pin closer to the end of the beam, and in the prong, in the opposite order. In order to improve the operating quality by guaranteeing active support of the cantilever roof timber without increasing its overall dimensions for the height of the opening for the distance wedge in the prong and the ring, beams are arranged axisymmetrically to the longitudinal axis.

  8. TASK 2.5.7 FIELD EXPERIMENTS TO EVALUATE COOL-COLORED ROOFING

    Energy Technology Data Exchange (ETDEWEB)

    Miller, William A [ORNL; Cherry, Nigel J [ORNL; Allen, Richard Lowell [ORNL; Childs, Phillip W [ORNL; Atchley, Jerald Allen [ORNL; Ronnen, Levinson [Lawrence Berkeley National Laboratory (LBNL); Akbari, Hashem [Lawrence Berkeley National Laboratory (LBNL); Berhahl, Paul [Lawrence Berkeley National Laboratory (LBNL)

    2010-03-01

    Aesthetically pleasing dark roofs can be formulated to reflect like a highly reflective white roof in the near infrared portion of the solar spectrum. New paint pigments increase the near infrared reflectance of exterior finishes by minimizing the absorption of near-infrared radiation (NIR). The boost in the NIR reflectance drops the surface temperatures of roofs and walls, which in turn reduces cooling-energy use and provides savings for the homeowner and relief for the utilities. In moderate and hot climates, a roof surface with high solar reflectance and high thermal emittance was shown by Akbari et al. (2004) and by Parker and Sherwin (1998) to reduce the exterior temperature and produce savings in comfort cooling. The new cool color pigments can potentially reduce emissions of carbon dioxide, which in turn reduces metropolitan heat buildup and urban smog. The pigments can also help conserve water resources otherwise used to clean and process fuel consumed by fossil-fuel driven power plants. Cool roofs also result in a lower ambient temperature that further decreases the need for air conditioning, retards smog formation, and improves thermal comfort. Parker, Sonne and Sherwin (2002) demonstrated that white barrel and white flat tiles reduced cooling energy consumption by 22% of the base load used by an adjacent and identical home having direct nailed dark shingles. Part of the savings was due to the reflectance of the white tiles; however, another part was due to the mass of the tile and to the venting occurring within the double batten installation. With, Cherry and Haig (2009) have studied the influence of the thermal mass and batten space ventilation and have found that, referenced to an asphalt shingle system, it can be equivalent to an additional 28 points of solar reflectivity. The double batten arrangement has wooden counter battens laid vertically (soffit-to-ridge) against the roof deck, and then the conventional battens are laid horizontally across the

  9. The Self-Drying Concept for Flat Roofs

    DEFF Research Database (Denmark)

    Korsgaard, Vagn; Bunch-Nielsen, Tommy; Rode, Carsten

    1996-01-01

    ways. From the interior by diffusion and convection. During construction from moist materials or rain. Later on, rain water may enter through leaks in the roofing.From laboratory experiment, computer calculations and practical experience it is concluded, that the Self-Drying Roof concept works for both...... cold- and warm deck roof systems in climate zones where a vapor retarder is needed, if the traditional water proof vapor retarder is substituted by a water permeable vapor retarder....

  10. The Geometric Theory of Roof Reflector Resonators

    Science.gov (United States)

    1976-12-01

    reflector, if properly oriented, (The terms "roof-top prism ," "right-angle prism ," and - incorrectly - " Porro prism " are encountered in .the literature...Q-switch prisms ) in laser resonators have been infrequent compared to the attention given spherical mirrors. This chapter summarizes the relevant...designator (Refs 42 and 43). In one experiment, a 900 roof prism was tested in a resonator with a 70% reflecting filat mirror. Thus, in Fig. 2, the right roof

  11. Realistic roofs over a rectilinear polygon

    KAUST Repository

    Ahn, Heekap; Bae, Sangwon; Knauer, Christian; Lee, Mira; Shin, Chansu; Vigneron, Antoine E.

    2013-01-01

    Given a simple rectilinear polygon P in the xy-plane, a roof over P is a terrain over P whose faces are supported by planes through edges of P that make a dihedral angle π/4 with the xy-plane. According to this definition, some roofs may have faces

  12. Aerodynamic Improvements to Cargo Carrying Rail Cars due to Roof Modifications

    Science.gov (United States)

    Condie, Robert; Maynes, Daniel

    2012-11-01

    The aerodynamic drag associated with the transport of commodities by rail is becoming increasingly important as the cost of diesel fuel increases. We provide an assessment of the influence of the roof structure on aerodynamic performance of two dissimilar rail cars, namely automobile carrying cars and coal carrying cars. Currently, the roof material for automobile carrying rail cars is corrugated steel, with the corrugation aligned perpendicular to the direction of travel. Coal cars are currently left uncovered for loading convenience and on the return leg from the power plant are empty. Aerodynamic drag data have been obtained through wind tunnel testing on 1/29 scale models to understand the savings that may be realized by judicious modification to the tops of both these car types. For the automobile-carrying cars, testing is performed for the corrugated and smooth roof configurations. This modification alone has the potential of reducing the car drag coefficient by nominally 25%. A broader study is performed for the coal cars, with data being acquired for coal filled models, empty models, and several cover prototype configurations. The results reveal that implementation of a cover may yield reductions in the aerodynamic drag for both coal filled (nominally 7%) and empty coal cars (nominally 30%).

  13. Wind loads on solar energy roofs

    NARCIS (Netherlands)

    Geurts, C.P.W.; Bentum, C.A. van

    2007-01-01

    This paper presents an overview of the wind loads on roofs, equipped with solar energy products, so called Active Roofs. Values given in this paper have been based on wind tunnel and full scale measurements, carried out at TNO, and on an interpretation of existing rules and guidelines. The results

  14. Global models for the biomechanics of green plants: 1

    International Nuclear Information System (INIS)

    Bestman, A.R.

    1990-12-01

    The paper considers the biomechanics of green plants for Reynolds number flow in the stem. In particular, it is assumed that the stem is cylindrical and the flow fully-developed. So that if the aspect ratio is defined as the ratio of the stem radius to its length, then when the aspect ratio is small analytical solutions have been developed for the concentration, temperature and the axial velocity. The process of translocation and transpiration are discussed quantitatively. (author). 4 refs, 2 figs

  15. Cool roofs and the influence on the energy consumption under Danish conditions

    DEFF Research Database (Denmark)

    Brandt, Erik; Bunch-Nielsen, Tommy; Juhl, Lasse

    Experience from countries in warm climates has shown that the color of the roofing material has a significant effect on the energy consumption of the building. Especially changing from black to white roofing material provides reduction in energy consumption. The investigated roofs have been...... with a moderate amount of thermal insulation. The Danish Roofing Advisory Board in Denmark has conducted an analysis of the effects of roofing color on buildings energy consumption under Danish conditions i.e. with a colder climate and with a larger amount of thermal insulation. An experiment was performed...... in order to study the effects of the roofing color on the temperature distribution in a roof structure. The studied roof specimens were flat roofs covered with roofing felt in different colors. Temperatures have been measured in the roofing felt as well as in the middle and the bottom of the structure...

  16. Cool metal roofing tested for energy efficiency and sustainability

    Energy Technology Data Exchange (ETDEWEB)

    Miller, W.A.; Desjarlais, A. [Oak Ridge National Laboratory, Oakridge, TN (United States); Parker, D.S. [Florida Solar Energy Center, Cocoa, FL (United States); Kriner, S. [Metal Construction Association, Glenview, IL (United States)

    2004-07-01

    A 3 year field study was conducted in which temperature, heat flow, reflectance and emittance field data were calculated for 12 different painted and unpainted metal roofs exposed to weathering at an outdoor test facility at Oak Ridge National Laboratory in Oakridge, Tennessee. In addition, the Florida Solar Energy Center tested several Habitat for Humanity homes during one summer in Fort Myers, Florida. The objective was to determine how cooling and heating energy loads in a building are affected by the solar reflectance and infrared emittance of metal roofs. The Habitat for Humanities houses had different roofing systems which reduced the attic heat gain. White reflective roofs were shown to reduce cooling energy needs by 18 to 26 per cent and peak demand by 28 to 35 per cent. High solar reflectance and high infrared emittance roofs incur surface temperatures that are about 3 degrees C warmer than the ambient air temperature. A dark absorptive roof exceeds the ambient air temperature by more than 40 degrees C. It hot climates, a high solar reflectance and high infrared emittance roof can reduce the air conditioning load and reduce peak energy demands on the utility. It was concluded that an informed decision of the roof surface properties of reflectance and emittance can significantly reduce energy costs for homeowners and builders in hot climates. 7 refs., 2 tabs., 7 figs.

  17. Photovoltaic roofing tile systems

    Science.gov (United States)

    Melchior, B.

    The integration of photovoltaic (PV) systems in architecture is discussed. A PV-solar roofing tile system with polymer concrete base; PV-roofing tile with elastomer frame profiles and aluminum profile frames; contact technique; and solar cell modules measuring technique are described. Field tests at several places were conducted on the solar generator, electric current behavior, battery station, electric installation, power conditioner, solar measuring system with magnetic bubble memory technique, data transmission via telephone modems, and data processing system. The very favorable response to the PV-compact system proves the commercial possibilities of photovoltaic integration in architecture.

  18. Load test of the 3701U Building roof deck and support structure

    International Nuclear Information System (INIS)

    McCoy, R.M.

    1994-01-01

    The 3701U Building roof area was load tested according to the approved load-test procedure. The 3701U Building is located in the 300 Area of the Hanford Site and has the following characteristics: Roof deck--metal decking supported by steel purlins; Roof membrane--tar and gravel; Roof slope--flat (<10 deg); and Roof elevation--height of about 12.5 ft. The 3701U Building was visited in August 1992 for a visual inspection, but because of insulation an inspection could not be performed. The building was revisited in March 1994 for the purpose of writing this test report. Because the roof could not be inspected, a test was determined to be the best way to qualify the roof for personnel access. The test procedure called for the use of a remotely-controlled robot. The conclusions are that the roof has been qualified for 500-lb total roof load and that the ''No Roof Access'' signs can be changed to ''Roof Access Restricted'' signs

  19. Chemical composition of water from roofs in Gdansk, Poland

    International Nuclear Information System (INIS)

    Tsakovski, Stefan; Tobiszewski, Marek; Simeonov, Vasil; Polkowska, Zaneta; Namiesnik, Jacek

    2010-01-01

    This study deals with the assessment of roof runoff waters from the region of Gdansk collected during the winter season (2007/2008). The chemical analysis includes 16 chemical variables: major ions, PAHs and PCBs measured at 3 sampling sites for 6-14 rain events. Although the data set is of limited volume the statistical data treatment using self-organizing maps (SOM) reveals the main factors controlling roof runoff water quality even for a data set with small dimension. This effort for explanation of the identified factors by the possible emission sources of the urban environment and air-particulate formation seems to be very reliable. Additionally to the roof runoff water quality factors the rain events patterns are found: 'background' group of events and groups formally named 'PAHs', 'PCBs' and 'air-borne particles' - dominated events. The SOM classification results give an opportunity to uncover the role of roof 'impact' on the runoff waters. Rain runoff water quality is described by four latent factors and the 'roof' impact is uncovered. - Identification of the urban roof runoff water quality factors and 'roof' impact by self-organizing map classification.

  20. Multi functional roof structures of the energy efficient buildings

    Directory of Open Access Journals (Sweden)

    Krstić Aleksandra

    2006-01-01

    Full Text Available Modern architectural concepts, which are based on rational energy consumption of buildings and the use of solar energy as a renewable energy source, give the new and significant role to the roofs that become multifunctional structures. Various energy efficient roof structures and elements, beside the role of protection, provide thermal and electric energy supply, natural ventilation and cooling of a building, natural lighting of the indoor space sunbeam protection, water supply for technical use, thus according to the above mentioned functions, classification and analysis of such roof structures and elements are made in this paper. The search for new architectural values and optimization in total energy balance of a building or the likewise for the urban complex, gave to roofs the role of "climatic membranes". Contemporary roof forms and materials clearly exemplify their multifunctional features. There are numerous possibilities to achieve the new and attractive roof design which broadens to the whole construction. With such inducement, this paper principally analyze the configuration characteristics of the energy efficient roof structures and elements, as well as the visual effects that may be achieved by their application.

  1. Weathering of Roofing Materials-An Overview

    Energy Technology Data Exchange (ETDEWEB)

    Berdahl, Paul; Akbari, Hashem; Levinson, Ronnen; Miller, William A.

    2006-03-30

    An overview of several aspects of the weathering of roofing materials is presented. Degradation of materials initiated by ultraviolet radiation is discussed for plastics used in roofing, as well as wood and asphalt. Elevated temperatures accelerate many deleterious chemical reactions and hasten diffusion of material components. Effects of moisture include decay of wood, acceleration of corrosion of metals, staining of clay, and freeze-thaw damage. Soiling of roofing materials causes objectionable stains and reduces the solar reflectance of reflective materials. (Soiling of non-reflective materials can also increase solar reflectance.) Soiling can be attributed to biological growth (e.g., cyanobacteria, fungi, algae), deposits of organic and mineral particles, and to the accumulation of flyash, hydrocarbons and soot from combustion.

  2. Structural assessment of roof decking using visual inspection methods

    International Nuclear Information System (INIS)

    Giller, R.A.; McCoy, R.M.; Wagenblast, G.R.

    1993-01-01

    The Hanford Site has approximately 1,100 buildings, some of which date back to the early 1940s. The roof on these buildings provides a weather resisting cover as well as the load resisting structure. Past experience has been that these roof structures may have structural modifications, the weather resisting membrane may have been replaced several times, and the members may experience some type of material degradation. This material degradation has progressed to cause the collapse of some roof deck members. The intent of the Hanford Site Central Engineering roof assessment effort is to provide an expedient structural assessment of the large number of buildings at the Hanford Site. This assessment is made by qualified structural inspectors following the open-quotes Preliminary Assessmentclose quotes procedures given in the American Society of Civil Engineers (ASCE) Standard ASCE 11-90. This roof assessment effort does not provide a total qualification of the roof for the design or in-place loads. This inspection does provide a reasonable estimate of the roof loading capacity to determine if personnel access restrictions are needed. A document search and a visual walkdown inspection provide the initial screening to identify modifications and components having questionable structural integrity. The structural assessment consists of baseline dead and live load stress calculations of all roofing components based on original design material strengths. The results of these assessments are documented in a final report which is retrievable in a form that future inspections will have comparative information

  3. Structural assessment of roof decking using visual inspection methods

    International Nuclear Information System (INIS)

    Giller, R.A.; McCoy, R.M.; Wagenblast, G.R.

    1993-10-01

    The Hanford Site has approximately 1,100 buildings, some of which date back to the early 1940s. The roof on these buildings provides a weather resisting cover as well as the load resisting structure. Past experience has been that these roof structures may have structural modifications, the weather resisting membrane may have been replaced several times, and the members may experience some type of material degradation. This material degradation has progressed to cause the collapse of some roof deck members. The intent of the Hanford Site Central Engineering roof assessment effort is to provide an expedient structural assessment of the large number of buildings at the Hanford Site. This assessment is made by qualified structural inspectors following the open-quotes Preliminary Assessment close-quote procedures given in the American Society of Civil Engineers (ASCE) Standard ASCE 11-90. This roof assessment effort does not provide a total qualification of the roof for the design or in-place loads. This inspection does provide a reasonable estimate of the roof loading capacity to determine if personnel access restrictions are needed. A document search and a visual walkdown inspection provide the initial screening to identify modifications and components having questionable structural integrity. The structural assessment consists of baseline dead and live load stress calculations of all roofing components based on original design material strengths. The results of these assessments are documented in a final report which is retrievable form that future inspections will have comparative information

  4. Origin of land plants: Do conjugating green algae hold the key?

    Directory of Open Access Journals (Sweden)

    Melkonian Michael

    2011-04-01

    Full Text Available Abstract Background The terrestrial habitat was colonized by the ancestors of modern land plants about 500 to 470 million years ago. Today it is widely accepted that land plants (embryophytes evolved from streptophyte algae, also referred to as charophycean algae. The streptophyte algae are a paraphyletic group of green algae, ranging from unicellular flagellates to morphologically complex forms such as the stoneworts (Charales. For a better understanding of the evolution of land plants, it is of prime importance to identify the streptophyte algae that are the sister-group to the embryophytes. The Charales, the Coleochaetales or more recently the Zygnematales have been considered to be the sister group of the embryophytes However, despite many years of phylogenetic studies, this question has not been resolved and remains controversial. Results Here, we use a large data set of nuclear-encoded genes (129 proteins from 40 green plant taxa (Viridiplantae including 21 embryophytes and six streptophyte algae, representing all major streptophyte algal lineages, to investigate the phylogenetic relationships of streptophyte algae and embryophytes. Our phylogenetic analyses indicate that either the Zygnematales or a clade consisting of the Zygnematales and the Coleochaetales are the sister group to embryophytes. Conclusions Our analyses support the notion that the Charales are not the closest living relatives of embryophytes. Instead, the Zygnematales or a clade consisting of Zygnematales and Coleochaetales are most likely the sister group of embryophytes. Although this result is in agreement with a previously published phylogenetic study of chloroplast genomes, additional data are needed to confirm this conclusion. A Zygnematales/embryophyte sister group relationship has important implications for early land plant evolution. If substantiated, it should allow us to address important questions regarding the primary adaptations of viridiplants during the

  5. Stade. Decommissioning and dismantling of the nuclear power plant - from the nuclear power plant to the green lawn. 3. ed.

    International Nuclear Information System (INIS)

    2008-01-01

    The nuclear power plant Stade (KKS) was shutdown in 2003 and is being dismantled since 2005. The contribution covers the following issues: What means decommissioning and dismantling? What was the reason for decommissioning? What experiences on the dismantling of nuclear power plants are available? What is the dismantling procedure? What challenges for the power plant personal result from dismantling? What happens with the deconstruction material? What happens with the resulting free area (the ''green lawn'')? What is the legal frame work for dismantling?

  6. Improving the durability of flat roof constructions

    DEFF Research Database (Denmark)

    Rudbeck, Claus Christian; Svendsen, Sv Aa Højgaard

    1999-01-01

    of the system, thereby making it easier to detect leaks faster. When a leak is detected, the membrane is repaired locally. In order to remove water which has already entered the insulation, an air gap or a system of air channels between the deck and the insulation is subjected to forced ventilation with outdoor...... air. When the water is removed, the ventilation is stopped, and the roofing construction can continue to function as intended.Roofing systems where trapped moisture can be removed are cost-effective compared to traditional roofing insulation systems, and as leakage can be treated, they have a longer...

  7. A Review of Methods for the Manufacture of Residential Roofing Materials

    Energy Technology Data Exchange (ETDEWEB)

    Akbari, Hashem; Levinson, Ronnen; Berdahl, Paul

    2003-06-01

    Shingles, tiles, and metal products comprise over 80% (by roof area) of the California roofing market (54-58% fiberglass shingle, 8-10% concrete tile, 8-10% clay tile, 7% metal, 3% wood shake, and 3% slate). In climates with significant demand for cooling energy, increasing roof solar reflectance reduces energy consumption in mechanically cooled buildings, and improves occupant comfort in non-conditioned buildings. This report examines methods for manufacturing fiberglass shingles, concrete tiles, clay tiles, and metal roofing. The report also discusses innovative methods for increasing the solar reflectance of these roofing materials. We have focused on these four roofing products because they are typically colored with pigmented coatings or additives. A better understanding of the current practices for manufacturing colored roofing materials would allow us to develop cool colored materials creatively and more effectively.

  8. Effects of roof tile permeability on the thermal performance of ventilated roofs. Analysis of annual performance

    Energy Technology Data Exchange (ETDEWEB)

    D' Orazio, M.; Di Perna, C.; Principi, P.; Stazi, A. [DACS, Universita politecnica delle Marche, 60100 Ancona (Italy)

    2008-07-01

    This paper shows the results of the second part of an experimental study aimed at analysing the effects of roof tile permeability on the thermal performances of ventilation ducts. Ventilation ducts under the layer of tiles are typically used in south European countries to limit the energy load during the summer period. The results of the first part of the study, carried out by analysing 14 different types of roof, proved that the air permeability of the layer of tiles determines a certain amount of heat to be released, in addition to the release connected with the stack effect, in ventilation ducts which have the same characteristics but are perfectly airtight. However, the study did not completely resolve some issues since it was carried out on a model roof (6 m x 1.5 m) with devices to raise the layer of tiles and to create the ventilation duct but without those building elements which are present in real roofs and are used to stop insects and small animals from entering the ventilation duct. These elements narrow the inlet and outlet and consequently cause important reductions in pressure. Moreover, the measurements were based on data collected for limited periods of time during the summer season. So as to eliminate any possible uncertainty from the results of the research, the study continued with the creation of a model building on which five types of ventilated roof with different cross sections of the ventilation duct were analysed. The results show that the presence of air permeable layers and elements to protect the ventilation duct eliminate any differences in performance which were due to the cross section of the ventilation duct. (author)

  9. Effects of Solar Photovoltaic Panels on Roof Heat Transfer

    Science.gov (United States)

    Dominguez, A.; Klessl, J.; Samady, M.; Luvall, J. C.

    2010-01-01

    Building Heating, Ventilation and Air Conditioning (HVAC) is a major contributor to urban energy use. In single story buildings with large surface area such as warehouses most of the heat enters through the roof. A rooftop modification that has not been examined experimentally is solar photovoltaic (PV) arrays. In California alone, several GW in residential and commercial rooftop PV are approved or in the planning stages. With the PV solar conversion efficiency ranging from 5-20% and a typical installed PV solar reflectance of 16-27%, 53-79% of the solar energy heats the panel. Most of this heat is then either transferred to the atmosphere or the building underneath. Consequently solar PV has indirect effects on roof heat transfer. The effect of rooftop PV systems on the building roof and indoor energy balance as well as their economic impacts on building HVAC costs have not been investigated. Roof calculator models currently do not account for rooftop modifications such as PV arrays. In this study, we report extensive measurements of a building containing a flush mount and a tilted solar PV array as well as exposed reference roof. Exterior air and surface temperature, wind speed, and solar radiation were measured and thermal infrared (TIR) images of the interior ceiling were taken. We found that in daytime the ceiling surface temperature under the PV arrays was significantly cooler than under the exposed roof. The maximum difference of 2.5 C was observed at around 1800h, close to typical time of peak energy demand. Conversely at night, the ceiling temperature under the PV arrays was warmer, especially for the array mounted flat onto the roof. A one dimensional conductive heat flux model was used to calculate the temperature profile through the roof. The heat flux into the bottom layer was used as an estimate of the heat flux into the building. The mean daytime heat flux (1200-2000 PST) under the exposed roof in the model was 14.0 Watts per square meter larger than

  10. Multi-layer planting as a strategy of greening the transitional space in high-rise buildings: A review

    Science.gov (United States)

    Prihatmanti, Rani; Taib, Nooriati

    2018-03-01

    The issues regarding the rapid development in the urban have resulted in the increasing number of infrastructure built, including the high-rise buildings to accommodate the urban dwellers. Lack of greeneries due to the land limitation in the urban area has increased the surface radiation as well as the air temperature that leads to the Urban Heat Island (UHI) phenomena. Where urban land is limited, growing plants vertically could be a solution. Plants, which are widely known as one of the sustainability elements in the built environment could be integrated in building as a part of urban faming by growing edible plant species. This is also to address the food security issue in the urban as well as high-density cities. Since space is limited, the function of transitional space could be optimized for the green space. This paper explores the strategy of greening transitional space in the high-rise setting. To give a maximum impact in a limited space, multi-layer planting concept could be introduced. This concept is believed that multiple layers of plants could modify the microclimate, as well as the radiation to the building, compare to single layer plant. In addition to that, the method selected also determines the efficacy of the vertical greeneries. However, there are many other limitations related to the multi-layer planting method if installed in a transitional space that needs to be further studied. Despite its limitations, the application of vertical greeneries with multi-layer planting concept could be a promising solution for greening the limited space as well as improving the thermal comfort in the high-rise building.

  11. U-value measurements on a roof window

    DEFF Research Database (Denmark)

    Duer, Karsten

    1998-01-01

    This report describes the results of the U-value measurements performed on a roof window. The work is as a part of the development of an ISO/CEN standard measuring procedure for roof windows.The measurements have been performed using the procedures given in ISO 12567 draft version 1998...

  12. Flat roofs, a grey area; Grauzone Flachdach

    Energy Technology Data Exchange (ETDEWEB)

    Riedel, Anja

    2012-11-01

    The boom of low-ballast assembly systems for flat roofs is going on. Solar assembly racks are set up directly on the sealing foil without fastening bolts. But what happens in case of water ingress? And what should be done to prevent damage to the roof cover? (orig.)

  13. Generating realistic roofs over a rectilinear polygon

    KAUST Repository

    Ahn, Heekap; Bae, Sangwon; Knauer, Christian; Lee, Mira; Shin, Chansu; Vigneron, Antoine E.

    2011-01-01

    Given a simple rectilinear polygon P in the xy-plane, a roof over P is a terrain over P whose faces are supported by planes through edges of P that make a dihedral angle π/4 with the xy-plane. In this paper, we introduce realistic roofs by imposing

  14. Bio deterioration behaviour in different colour roofing tiles (red and straw coloured)

    International Nuclear Information System (INIS)

    Guzulla, M. F.; Sanchez, E.; Gonzalez, J. M.; Orduna, M.

    2014-01-01

    Bio colonization of building materials is a critical problem for the durability of constructions. Industrial experience shows that straw coloured roofing tiles are more prone to colonization than red roofing tiles, even having similar characteristics. The aim of this work is to explain the difference of bio colonization between different colour roofing tiles. The chemical composition of the surface of straw coloured and red roofing tiles, the phase composition and the microstructure of the roofing tiles were determined by WD-XRF, XRD and SEM-EDX, respectively. The pore size distribution was carried out by Hg porosimetry. The solubility was studied by determining the soluble salts (Ca, Mg, Na, K, Cl and SO 4 2-) by ICP-OES and ionic chromatography. Roofing tile bio receptivity was evaluated by determining fluorescence intensity using a pulse amplitude- modulated (PAM) fluoro meter, and cyanobacteria Oscillator sp. The results obtained show higher concentration of calcium and sulphur in straw coloured roofing tiles surface, and higher solubility than red roofing tiles. Moreover, according to the results obtained in bio receptivity assays, straw coloured roofing tiles are more prone to colonization than red roofing tiles, so, there is a relationship between surface properties of roofing tiles and bio colonization, as it is observed in industrial products. (Author)

  15. Development of Clay Tile Coatings for Steep-Sloped Cool Roofs

    OpenAIRE

    Pisello, Anna; Cotana, Franco; Nicolini, Andrea; Brinchi, Lucia

    2013-01-01

    Most of the pitched roofs of existing buildings in Europe are covered by non-white roofing products, e.g., clay tiles. Typical, cost effective, cool roof solutions are not applicable to these buildings due to important constraints deriving from: (i) the owners of homes with roofs visible from the ground level; (ii) the regulation about the preservation of the historic architecture and the minimization of the visual environment impact, in particular in historic centers. In this perspective, th...

  16. Soft Roof Failure Mechanism and Supporting Method for Gob-Side Entry Retaining

    Directory of Open Access Journals (Sweden)

    Hongyun Yang

    2015-10-01

    Full Text Available To study the soft roof failure mechanism and the supporting method for a gateway in a gently inclined coal seam with a dip angle of 16° kept for gob-side entry retaining, and through the methodology of field investigation and numerical and analytical modeling, this paper analyzed the stress evolution law of roof strata at the working face end and determined that the sharp horizontal stress unloading phenomenon along the coal wall side did not appear after the working face advanced. Conversely, the horizontal stress along the gob side instantly decreased and the tensile stress produced, and the vertical stress in the central part of the roof had a higher reduction magnitude as well. An in-depth study indicates that the soft roof of the working face end subsided and seriously separated due to the effect of the front abutment pressure and the roof hanging length above the gob line, as well as certain other factors, including the rapid unloading of the lateral stress, tension and shear on the lower roof rock layer and dynamic disturbance. Those influencing factors also led to rapid crack propagation on a large scale and serious fracturing in the soft roof of the working face end. However, in the gob stress stabilized zone, the soft roof in the gob-side entry retaining has a shearing failure along the filling wall inside affected by the overburden pressure, rock bulking pressure, and roof gravity. To maintain the roof integrity, decrease the roof deformation, and enable the control of the working face end soft roof and the stabilization of the gob-side entry retaining roof, this study suggests that the preferred bolt installation angle for the soft roof situation is 70° based on the rock bolt extrusion strengthening theory.

  17. Wind loads on stand-off photovoltaic systems on pitched roofs

    NARCIS (Netherlands)

    Geurts, C.P.W.; Blackmore, P.A.

    2013-01-01

    Stand-off photovoltaic systems are a popular measure for retrofitting of existing pitched roofs. Panels are generally mounted parallel to the existing roof coverings, usually roofing tiles. Full scale and wind tunnel experiments have been performed to determine the net uplift loads on these systems,

  18. Fourier analysis of conductive heat transfer for glazed roofing materials

    Energy Technology Data Exchange (ETDEWEB)

    Roslan, Nurhana Lyana; Bahaman, Nurfaradila; Almanan, Raja Noorliyana Raja; Ismail, Razidah [Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia); Zakaria, Nor Zaini [Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia)

    2014-07-10

    For low-rise buildings, roof is the most exposed surface to solar radiation. The main mode of heat transfer from outdoor via the roof is conduction. The rate of heat transfer and the thermal impact is dependent on the thermophysical properties of roofing materials. Thus, it is important to analyze the heat distribution for the various types of roofing materials. The objectives of this paper are to obtain the Fourier series for the conductive heat transfer for two types of glazed roofing materials, namely polycarbonate and polyfilled, and also to determine the relationship between the ambient temperature and the conductive heat transfer for these materials. Ambient and surface temperature data were collected from an empirical field investigation in the campus of Universiti Teknologi MARA Shah Alam. The roofing materials were installed on free-standing structures in natural ventilation. Since the temperature data are generally periodic, Fourier series and numerical harmonic analysis are applied. Based on the 24-point harmonic analysis, the eleventh order harmonics is found to generate an adequate Fourier series expansion for both glazed roofing materials. In addition, there exists a linear relationship between the ambient temperature and the conductive heat transfer for both glazed roofing materials. Based on the gradient of the graphs, lower heat transfer is indicated through polyfilled. Thus polyfilled would have a lower thermal impact compared to polycarbonate.

  19. Numerical analysis on thermal performance of roof contained PCM of a single residential building

    International Nuclear Information System (INIS)

    Li, Dong; Zheng, Yumeng; Liu, Changyu; Wu, Guozhong

    2015-01-01

    Highlights: • Thermal performance of different roofs in cold area of China are investigated. • Effects of five different conditions on thermal performance of roofs are analyzed. • Delay time of temperatures peak in PCM roofs are beyond 3 h than common roof. - Abstract: The phase change material (PCM) applied in the roof can decrease the building energy consumption and improve the thermal comfort by enhancing the thermal energy storage capacity of building envelope. In the present work, the thermal performance of different kinds of roofs with and without PCM in Northeast and cold area of China, i.e. common roof and PCM roofs, have been investigated numerically. This study also explored the influencing factors of thermal behavior of the roofs, such as solar radiation intensity, transition temperature and latent heat of PCM, roof slope, PCM layer thickness, and absorption coefficients of external roof surface. The results show that the PCM roofs effect on the temperature delay in the room is very strong and the delay time of temperatures peak of base layer in PCM roofs are beyond 3 h than common roof. The effect of transition temperature and latent heat of PCM on the thermal performance of roofs is relatively weak, compared with the roof slope, PCM layer thickness and absorption coefficients of external roof surface

  20. Computational Identification Raises a Riddle for Distribution of Putative NACHT NTPases in the Genome of Early Green Plants.

    Science.gov (United States)

    Arya, Preeti; Acharya, Vishal

    2016-01-01

    NACHT NTPases and AP-ATPases belongs to STAND (signal transduction ATPases with numerous domain) P-loop NTPase class, which are known to be involved in defense signaling pathways and apoptosis regulation. The AP-ATPases (also known as NB-ARC) and NACHT NTPases are widely spread throughout all kingdoms of life except in plants, where only AP-ATPases have been extensively studied in the scenario of plant defense response against pathogen invasion and in hypersensitive response (HR). In the present study, we have employed a genome-wide survey (using stringent computational analysis) of 67 diverse organisms viz., archaebacteria, cyanobacteria, fungi, animalia and plantae to revisit the evolutionary history of these two STAND P-loop NTPases. This analysis divulged the presence of NACHT NTPases in the early green plants (green algae and the lycophyte) which had not been previously reported. These NACHT NTPases were known to be involved in diverse functional activities such as transcription regulation in addition to the defense signaling cascades depending on the domain association. In Chalmydomonas reinhardtii, a green algae, WD40 repeats found to be at the carboxyl-terminus of NACHT NTPases suggest probable role in apoptosis regulation. Moreover, the genome of Selaginella moellendorffii, an extant lycophyte, intriguingly shows the considerable number of both AP-ATPases and NACHT NTPases in contrast to a large repertoire of AP-ATPases in plants and emerge as an important node in the evolutionary tree of life. The large complement of AP-ATPases overtakes the function of NACHT NTPases and plausible reason behind the absence of the later in the plant lineages. The presence of NACHT NTPases in the early green plants and phyletic patterns results from this study raises a quandary for the distribution of this STAND P-loop NTPase with the apparent horizontal gene transfer from cyanobacteria.

  1. Metaphysical green

    OpenAIRE

    Earon, Ofri

    2011-01-01

    “Sensation of Green is about the mental process like touching, seeing, hearing, or smelling, resulting from the immediate stimulation of landscape forms, plants, trees, wind and water. Sensation of Green triggers a feeling of scale, cheerfulness, calmness and peace. The spatial performance of Sensation of Green is created by a physical interaction between the language of space and the language of nature” The notion of Sensation of Green was developed through a previous study ‘Learning from th...

  2. Field Testing Unvented Roofs with Asphalt Shingles in Cold and Hot-Humid Climates

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, Kohta [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lstiburek, Joseph W. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-09-01

    Insulating roofs with dense-pack cellulose (instead of spray foam) has moisture risks, but is a lower cost approach. If moisture risks could be addressed, buildings could benefit from retrofit options, and the ability to bring HVAC systems within the conditioned space. Test houses with unvented roof assemblies were built to measure long-term moisture performance, in the Chicago area (5A) and the Houston area (2A). The Chicago-area test bed had seven experimental rafter bays, including a control vented compact roof, and six unvented roof variants with cellulose or fiberglass insulation. The interior was run at 50% RH. All roofs except the vented cathedral assembly experienced wood moisture contents and RH levels high enough to constitute failure. Disassembly at the end of the experiment showed that the unvented fiberglass roofs had wet sheathing and mold growth. In contrast, the cellulose roofs only had slight issues, such as rusted fasteners and sheathing grain raise. The Houston-area roof was an unvented attic insulated with spray-applied fiberglass. Most ridges and hips were built with a diffusion vent detail, capped with vapor permeable roof membrane. Some ridge sections were built as a conventional unvented roof, as a control. In the control unvented roofs, roof peak RHs reached high levels in the first winter; as exterior conditions warmed, RHs quickly fell. In contrast, the diffusion vent roofs had drier conditions at the roof peak in wintertime, but during the summer, RHs and MCs were higher than the unvented roof (albeit in the safe range).

  3. Releasability of asbestos fibers from weathered roof cement.

    Science.gov (United States)

    Oberta, Andrew F; Poye, Lee; Compton, Steven P

    2018-03-26

    Chrysotile asbestos fibers were added to roofing products, including roof cement, for several decades. The fibers were described as "encapsulated" and therefore incapable of being released, an assertion that is disproved by the study reported herein. Three test panels of roof cement from the original container were exposed to ambient weathering in 2015 and 2016. Two panels were then sampled using the ASTM D5755 microvacuum method. Sampling revealed a light brown sub-layer under the dark brown surface layer, both of which crumbled and became friable during sampling. Analysis of the microvacuum samples with transmission electron microscopy showed that the material on the two panels contained 4,432,000 and 3,320,000 asbestos structures per cm² with nearly all of the structures consisting of fibers less than 5 µm long. Energy dispersive spectrometry determined that none of the fibers reported were coated with asphalt. The presence of free fibers were confirmed by direct examination of the surfaces of the panels and of dust released from handling the panels via scanning electron microscopy. This study confirmed the releasability of uncoated asbestos fibers from dried roof cement that was indicated in two previous studies published in 2007 and 2010. These results suggest that the finding of the 5th Circuit Court in 1997 that uncoated airborne asbestos fibers cannot be released from roof cement, and therefore do not present a potential exposure by inhalation, was erroneous in retrospect. Theexemption of roof cement from regulation under the Occupational Safety and Health Administration Construction Industry Standard for asbestos by the Court should not be relied on by employers of workers who remove weathered asbestos-containing roof cement, and precautions should be taken against exposure to airborne asbestos fibers during this work.

  4. Polyurethane adhesives in flat roofs

    Directory of Open Access Journals (Sweden)

    Bogárová Markéta

    2017-01-01

    Full Text Available It is necessary to stabilize individual layers of flat roofs, mainly because of wind suction. Apart from anchoring and surcharge, these layers can be secured by bonding. At present gluing is an indispensable and widely used stabilization method. On our market we can found many types of adhesives, most widely used are based on polyurethane. This paper focuses on problematic about stabilization thermal insulation from expanded polystyrene to vapor barrier from bitumen. One of the main issues is to calculate the exact amount of adhesive, which is required to guarantee the resistance against wind suction. In this problematic we can not find help neither in technical data sheets provided by the manufactures. Some of these data sheets contain at least information about amount of adhesive depending on location in roof plane and building height, but they do not specify the strength of such connection. It was therefore resorted to select several representatives polyurethane adhesives and their subsequent testing on specimens simulating the flat roof segment. The paper described the test methodology and results for two types of polyurethane adhesives.

  5. National construction, Denmark. Flat roofs

    Energy Technology Data Exchange (ETDEWEB)

    Rode, C

    1995-04-01

    The Paris meeting of IEA Annex 24 (held in the spring of 1991) declared a set of typical building constructions, the Heat, Air and Moisture characteristics of which should be dealt with as part of the Annex work. Each type of construction was assigned to one or more countries as their National Construction, and it has been the responsibility of each country to prepare a report on what may be regarded as common knowledge in the country on the hygrothermal behaviour of their construction. This knowledge is in part due to experimental work carried out by research bodies in the countries, and due to experience form practice. This report has two main sections: Section 2 gives a general overview of the design of the most common variants of flat roofs and common knowledge reported for such roofs. Section 3 gives an account of research projects carried out in Denmark on flat roofs to analyze their hygrothermal performance. Whenever possible, an emphasis will be put on the hygrothermal consequences of thermally insulating such constructions. (EG) 19 refs.

  6. Inclusion of cool roofs in nonresidential Title 24 prescriptive requirements

    Energy Technology Data Exchange (ETDEWEB)

    Levinson, Ronnen; Akbari, Hashem; Konopacki, Steve; Bretz, Sarah

    2002-12-15

    Roofs that have high solar reflectance (high ability to reflect sunlight) and high thermal emittance (high ability to radiate heat) tend to stay cool in the sun. The same is true of low-emittance roofs with exceptionally high solar reflectance. Substituting a cool roof for a noncool roof tends to decrease cooling electricity use, cooling power demand, and cooling-equipment capacity requirements, while slightly increasing heating energy consumption. Cool roofs can also lower the ambient air temperature in summer, slowing ozone formation and increasing human comfort. DOE-2.1E building energy simulations indicate that use of a cool roofing material on a prototypical California nonresidential building with a low-sloped roof yields average annual cooling energy savings of approximately 300 kWh/1000 ft2 [3.2 kWh/m2], average annual natural gas deficits of 4.9 therm/1000 ft2 [5.6 MJ/m2], average source energy savings of 2.6 MBTU/1000 ft2 [30 MJ/m2], and average peak power demand savings of 0. 19 kW/1000 ft2 [2.1 W/m2]. The 15-year net present value (NPV) of energy savings averages $450/1000 ft2 [$4.90/m2] with time dependent valuation (TDV), and $370/1000 ft2 [$4.00/m2] without TDV. When cost savings from downsizing cooling equipment are included, the average total savings (15-year NPV + equipment savings) rises to $550/1000 ft2 [$5.90/m2] with TDV, and to $470/1000 ft2 [$5.00/m2] without TDV. Total savings range from 0.18 to 0.77 $/ft2 [1.90 to 8.30 $/m2] with TDV, and from 0.16 to 0.66 $/ft2 [1.70 to 7.10 $/m2] without TDV, across California's 16 climate zones. The typical cost premium for a cool roof is 0.00 to 0.20 $/ft2 [0.00 to 2.20 $/m2]. Cool roofs with premiums up to $0.20/ft2 [$2.20/m2] are expected to be cost effective in climate zones 2 through 16; those with premiums not exceeding $0.18/ft2 [$1.90/m2] are expected to be also cost effective in climate zone 1. Hence, this study recommends that the year-2005 California building energy efficiency code (Title

  7. Inclusion of cool roofs in nonresidential Title 24 prescriptive requirements

    International Nuclear Information System (INIS)

    Levinson, Ronnen; Akbari, Hashem; Konopacki, Steve; Bretz, Sarah

    2005-01-01

    Roofs that have high solar reflectance (high ability to reflect sunlight) and high thermal emittance (high ability to radiate heat) tend to stay cool in the sun. The same is true of low-emittance roofs with exceptionally high solar reflectance. Substituting a cool roof for a non-cool roof tends to decrease cooling electricity use, cooling power demand, and cooling-equipment capacity requirements, while slightly increasing heating energy consumption. Cool roofs can also lower citywide ambient air temperature in summer, slowing ozone formation and increasing human comfort. DOE-2.1E building energy simulations indicate that use of a cool roofing material on a prototypical California nonresidential (NR) building with a low-sloped roof yields average annual cooling energy savings of approximately 3.2 kW h/m 2 (300 kW h/1000 ft 2 ), average annual natural gas deficits of 5.6 MJ/m 2 (4.9 therm/1000 ft 2 ), average annual source energy savings of 30 MJ/m 2 (2.6 MBTU/1000 ft 2 ), and average peak power demand savings of 2.1 W/m 2 (0.19 kW/1000 ft 2 ). The 15-year net present value (NPV) of energy savings averages $4.90/m 2 ($450/1000 ft 2 ) with time-dependent valuation (TDV), and $4.00/m 2 ($370/1000 ft 2 ) without TDV. When cost savings from downsizing cooling equipment are included, the average total savings (15-year NPV+equipment savings) rises to $5.90/m 2 ($550/1000 ft 2 ) with TDV, and to $5.00/m 2 ($470/1000 ft 2 ) without TDV. Total savings range from 1.90 to 8.30 $/m 2 (0.18-0.77 $/ft 2 ) with TDV, and from 1.70 to 7.10 $/m 2 (0.16-0.66 $/ft 2 ) without TDV, across California's 16 climate zones. The typical cost premium for a cool roof is 0.00-2.20 $/m 2 (0.00-0.20 $/ft 2 ). Cool roofs with premiums up to $2.20/m 2 ($0.20/ft 2 ) are expected to be cost effective in climate zones 2-16; those with premiums not exceeding $1.90/m 2 ($0.18/ft 2 ) are expected to be also cost effective in climate zone 1. Hence, this study recommends that the year-2005 California

  8. EXTRACTION OF ROOF LINES FROM HIGH-RESOLUTION IMAGES BY A GROUPING METHOD

    Directory of Open Access Journals (Sweden)

    A. P. Dal Poz

    2016-06-01

    Full Text Available This paper proposes a method for extracting groups of straight lines that represent roof boundaries and roof ridgelines from highresolution aerial images using corresponding Airborne Laser Scanner (ALS roof polyhedrons as initial approximations. The proposed method is based on two main steps. First, straight lines that are candidates to represent roof ridgelines and roof boundaries of a building are extracted from the aerial image. Second, a group of straight lines that represent roof boundaries and roof ridgelines of a selected building is obtained through the optimization of a Markov Random Field (MRF-based energy function using the genetic algorithm optimization method. The formulation of this energy function considers several attributes, such as the proximity of the extracted straight lines to the corresponding projected ALS-derived roof polyhedron and the rectangularity (extracted straight lines that intersect at nearly 90°. Experimental results are presented and discussed in this paper.

  9. Residential roof condition assessment system using deep learning

    Science.gov (United States)

    Wang, Fan; Kerekes, John P.; Xu, Zhuoyi; Wang, Yandong

    2018-01-01

    The emergence of high resolution (HR) and ultra high resolution (UHR) airborne remote sensing imagery is enabling humans to move beyond traditional land cover analysis applications to the detailed characterization of surface objects. A residential roof condition assessment method using techniques from deep learning is presented. The proposed method operates on individual roofs and divides the task into two stages: (1) roof segmentation, followed by (2) condition classification of the segmented roof regions. As the first step in this process, a self-tuning method is proposed to segment the images into small homogeneous areas. The segmentation is initialized with simple linear iterative clustering followed by deep learned feature extraction and region merging, with the optimal result selected by an unsupervised index, Q. After the segmentation, a pretrained residual network is fine-tuned on the augmented roof segments using a proposed k-pixel extension technique for classification. The effectiveness of the proposed algorithm was demonstrated on both HR and UHR imagery collected by EagleView over different study sites. The proposed algorithm has yielded promising results and has outperformed traditional machine learning methods using hand-crafted features.

  10. 30 CFR 75.209 - Automated Temporary Roof Support (ATRS) systems.

    Science.gov (United States)

    2010-07-01

    ... of temporary support shall be used, as specified in the roof control plan, when— (1) Mining... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Automated Temporary Roof Support (ATRS) systems... COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Roof Support § 75.209...

  11. Solar energy from the roof of the indoor baths

    International Nuclear Information System (INIS)

    Lainsecq, M. de

    2000-01-01

    This article describes the solar heating installation on the roof of the indoor pool in Lenk, Switzerland. This combined plant, which also provides heating for an adjacent open-air pool in summer, uses unglazed high-grade steel absorbers instead of the plastic absorbers normally used for open-air swimming pools. The factors that influenced the choice of the absorber are discussed and figures are presented on the energetic and financial characteristics of the installation. The innovative nature of the installation, which produces large volumes of medium-temperature water and features an innovative method of financing, is described

  12. EVALUATION OF ROOF BOLTING REQUIREMENTS BASED ON IN-MINE ROOF BOLTER DRILLING

    Energy Technology Data Exchange (ETDEWEB)

    Syd S. Peng

    2005-04-15

    In this quarter, the field, theoretical and programming works have been performed toward achieving the research goals set in the proposal. The main accomplishments in this quarter included: (1) one more field test has been conducted in an underground coal mine, (2) optimization studies of the control parameters have been conducted, (3) the relationship among feed pressure, penetration rate and rotation rate seems to be a good indicator for estimating rock strength when both penetration rate and rotation rate are controlled or kept constant, (4) the empirical equations for eliminating the machine effect on drilling parameters were developed and verified, and (5) a real time roof geology mapping system for roof bolters in limestone mine, including a special version of the geology mapping program and hardware, performs very well in underground production condition.

  13. Hydrological Performance of LECA-Based Roofs in Cold Climates

    Directory of Open Access Journals (Sweden)

    Vladimír Hamouz

    2018-03-01

    Full Text Available Rooftops represent a considerable part of the impervious fractions of urban environments. Detaining and retaining runoff from vegetated rooftops can be a significant contribution to reducing the effects of urbanization, with respect to increased runoff peaks and volumes from precipitation events. However, in climates with limited evapotranspiration, a non-vegetated system is a convenient option for stormwater management. A LECA (lightweight expanded clay aggregate-based roof system was established in the coastal area of Trondheim, Norway in 2016. The roof structure consists of a 200 mm-thick layer of LECA® lightweight aggregate, covered by a concrete pavement. The retention in the LECA-based roof was estimated at 9%, which would be equivalent to 0.27 mm/day for the entire period. The LECA-based configuration provided a detention performance for a peak runoff reduction of 95% (median and for a peak delay of 1 h and 15 min (median, respectively. The relatively high moisture levels in the LECA-based roof did not affect the detention performance. Rooftop retrofitting as a form of source control may contribute to a change in runoff characteristics from conventional roofs. This study of the LECA-based roof configuration presents data and performance indicators for stormwater urban planners with regard to water detention capability.

  14. Adsorption of *sp134*Cs onto two different types of roof materials

    International Nuclear Information System (INIS)

    Quenild, C.; Tveten, U.

    1983-01-01

    The report relates to a subproject under a Nordic project called ''Large reactor accidents - consequences and mitigating actions''. Natural decontamination of two types of roof material, typical of Norwegian and Swedish buildings, was examined. The roofs were contaminated with *sp134*Cs. After two days with 7 mm precipitation, the remaining activity on the tar-paper roof was 97% and on the steel roof 29%. After 8 months the remaining activity was 61% on the tar-paper roof and 22% on the steel roof. In spring *sp134*Cs was spread upon an 8 cm thick layer of fresh snow on an additional tar-paper roof. After 3 montsh and 191 mm precipitation the remaining activity was 59%. All results are based upon *sp134*Cs in collected run-off water.(Auth.)

  15. Field Testing Unvented Roofs with Asphalt Shingles in Cold and Hot-Humid Climates

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, Kohta [Building Science Corporation, Westford, MA (United States); Lstiburek, Joseph W. [Building Science Corporation, Westford, MA (United States)

    2015-09-01

    Test houses with unvented roof assemblies were built to measure long-term moisture performance, in the Chicago area (5A) and the Houston area (2A). The Chicago-area test bed had seven experimental rafter bays, including a control vented compact roof, and six unvented roof variants with cellulose or fiberglass insulation. The interior was run at 50% RH. The Houston-area roof was an unvented attic insulated with spray-applied fiberglass. Most ridges and hips were built with a diffusion vent detail, capped with vapor permeable roof membrane. In contrast, the diffusion vent roofs had drier conditions at the roof peak in wintertime, but during the summer, RHs and MCs were higher than the unvented roof (albeit in the safe range).

  16. Monitoring the Energy-Use Effects of Cool Roofs on California Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Akbari, Hashem; Levinson, Ronnen; Konopaki, Steve; Rainer, Leo

    2004-07-01

    Solar-reflective roofs stay cooler in the sun than solar-absorptive roofs. Such ''cool'' roofs achieve lower surface temperatures that reduce heat conduction into the building and the building's cooling load. The California Energy Commission has funded research in which Lawrence Berkeley National Laboratory (LBNL) has measured the electricity use and peak demand in commercial buildings to document savings from implementing the Commission's Cool Roofs program. The study seeks to determine the savings achieved by cool roofs by monitoring the energy use of a carefully selected assortment of buildings participating in the Cool Roofs program. Measurements were needed because the peak savings resulting from the application of cool roofs on different types of buildings in the diverse California climate zones have not been well characterized to date. Only a few occupancy categories (e.g., office and retail buildings) have been monitored before this, and those were done under a limited number of climatic conditions. To help rectify this situation, LBNL was tasked to select the buildings to be monitored, measure roof performance before and after replacing a hot roof by a cool roof, and document both energy and peak demand savings resulting from installation of cool roofs. We monitored the effects of cool roofs on energy use and environmental parameters in six California buildings at three different sites: a retail store in Sacramento; an elementary school in San Marcos (near San Diego); and a 4-building cold storage facility in Reedley (near Fresno). The latter included a cold storage building, a conditioning and fruit-palletizing area, a conditioned packing area, and two unconditioned packing areas (counted as one building).

  17. Bamboo Fibre Reinforced Cement Used as a Roofing Sheet | Alade ...

    African Journals Online (AJOL)

    Bamboo fibre roofing sheet was able to withstand an average load of 51Kg, which is above the minimum required strength of 50kg. Comparatively, Asbestos roofing sheets and coconut fibre roofing sheets of similar dimensions had failure loads of 104.65Kg and 79Kg respectively. When immersed in water, bamboo fibre ...

  18. Greening and “un”greening Adelaide, South Australia

    Directory of Open Access Journals (Sweden)

    Guy M. Robinson

    2015-06-01

    Full Text Available The original design for Adelaide, the capital city of the state of South Australia, incorporated a green belt (known as the Park Lands around the city centre, itself laid out on a one square mile (2.59 km2 grid and including five large public squares. The Park Lands provided a barrier to urban sprawl and covered approximately 9.31 km2, of which 1.53 km2 has been used subsequently for cultural institutions, railways, cemeteries, sporting facilities and other constructions. In addressing issues of greening pertaining to Adelaide, the Park Lands and its management represents a core element in the evolving history of the city's growth. This paper will consider some of the contradictions within this growth, examining the changing attitudes of government and the populace to the Park Lands and also to the increasing sprawl of the city. It can be argued that this sprawl has been antithetical to maintenance of biodiversity and principles of “greening”, not only during the main phase of expansion in the 1960s and 1970s but also in recent years when planned development on prime farmland and other “green” areas is contributing to problems for provision of transport infrastructure and generally reducing capacity for sustainability. The potential for conflict between the desire to maintain biodiversity versus protection for the growing number of people moving into bushfire risk areas is just one of several examples of problems arising as a result of a relaxed attitude to low-density expansion. In examining these problems the paper will present maps of the changing footprint of Adelaide and will elaborate new “greening” initiatives that include green roofs, new systems of water harvesting, community-supported agriculture and schemes directly aimed at creating low-carbon living. A consistent theme will be the contradictions within plans for the city between greening and “un”greening.

  19. Framing Failures in Wood-Frame Hip Roofs under Extreme Wind Loads

    Directory of Open Access Journals (Sweden)

    Sarah A. Stevenson

    2018-02-01

    Full Text Available Wood-frame residential roof failures are among the most common and expensive types of wind damage. Hip roofs are commonly understood to be more resilient during extreme wind in relation to gable roofs. However, inspection of damage survey data from recent tornadoes has revealed a previously unstudied failure mode in which hip roofs suffer partial failure of the framing structure. In the current study, evidence of partial framing failures and statistics of their occurrence are explored and discussed, while the common roof design and construction practice are reviewed. Two-dimensional finite element models are developed to estimate the element-level load effects on hip roof trusses and stick-frame components. The likelihood of failure in each member is defined based on relative demand-to-capacity ratios. Trussed and stick-frame structures are compared to assess the relative performance of the two types of construction. The present analyses verify the common understanding that toenailed roof-to-wall connections are likely to be the most vulnerable elements in the structure of a wood-frame hip roof. However, the results also indicate that certain framing members and connections display significant vulnerability under the same wind uplift, and the possibility of framing failure is not to be discounted. Furthermore, in the case where the roof-to-wall connection uses hurricane straps, certain framing members and joints become the likely points of failure initiation. The analysis results and damage survey observations are used to expand the understanding of wood-frame residential roof failures, as they relate to the Enhanced Fujita Scale and provide assessment of potential gaps in residential design codes.

  20. Wind Tunnel Tests for Wind Pressure Distribution on Gable Roof Buildings

    Science.gov (United States)

    2013-01-01

    Gable roof buildings are widely used in industrial buildings. Based on wind tunnel tests with rigid models, wind pressure distributions on gable roof buildings with different aspect ratios were measured simultaneously. Some characteristics of the measured wind pressure field on the surfaces of the models were analyzed, including mean wind pressure, fluctuating wind pressure, peak negative wind pressure, and characteristics of proper orthogonal decomposition results of the measured wind pressure field. The results show that extremely high local suctions often occur in the leading edges of longitudinal wall and windward roof, roof corner, and roof ridge which are the severe damaged locations under strong wind. The aspect ratio of building has a certain effect on the mean wind pressure coefficients, and the effect relates to wind attack angle. Compared with experimental results, the region division of roof corner and roof ridge from AIJ2004 is more reasonable than those from CECS102:2002 and MBMA2006.The contributions of the first several eigenvectors to the overall wind pressure distributions become much bigger. The investigation can offer some basic understanding for estimating wind load distribution on gable roof buildings and facilitate wind-resistant design of cladding components and their connections considering wind load path. PMID:24082851

  1. Distributions of imidacloprid, imidacloprid-olefin and imidacloprid-urea in green plant tissues and roots of rapeseed (Brassica napus) from artificially contaminated potting soil.

    Science.gov (United States)

    Seifrtova, Marcela; Halesova, Tatana; Sulcova, Klara; Riddellova, Katerina; Erban, Tomas

    2017-05-01

    Imidacloprid-urea is the primary imidacloprid soil metabolite, whereas imidacloprid-olefin is the main plant-relevant metabolite and is more toxic to insects than imidacloprid. We artificially contaminated potting soil and used quantitative UHPLC-QqQ-MS/MS to determine the imidacloprid, imidacloprid-olefin and imidacloprid-urea distributions in rapeseed green plant tissues and roots after 4 weeks of exposure. In soil, the imidacloprid/imidacloprid-urea molar ratios decreased similarly after the 250 and 2500 µg kg -1 imidacloprid treatments. The imidacloprid/imidacloprid-urea molar ratios in the root and soil were similar, whereas in the green plant tissue, imidacloprid-urea increased more than twofold compared with the root. Although imidacloprid-olefin was prevalent in the green plant tissues, with imidacloprid/imidacloprid-olefin molar ratios of 2.24 and 1.47 for the 250 and 2500 µg kg -1 treatments respectively, it was not detected in the root. However, imidacloprid-olefin was detected in the soil after the 2500 µg kg -1 imidacloprid treatment. Significant proportions of imidacloprid-olefin and imidacloprid-urea in green plant tissues were demonstrated. The greater imidacloprid supply increased the imidacloprid-olefin/imidacloprid molar ratio in the green plant tissues. The absence of imidacloprid-olefin in the root excluded its retransport from leaves. The similar imidacloprid/imidacloprid-urea ratios in the soil and root indicated that the root serves primarily for transporting these substances. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  2. New typologies for active roofs; An integral approach

    NARCIS (Netherlands)

    Zeiler, W.; Quanjel, E.M.C.J.; Borsboom, W.; Spoorenberg, H.

    2006-01-01

    A wide variety of new products, such as photovoltaic (PV) systems and solar collectors, roof lights, ventilation devices, insulation and safety devices, is finding its way into the roofing industry. As a result many problems occurred, resulting in poor quality, unsafe working conditions and high

  3. New typologies for active roofs; an integral approach

    NARCIS (Netherlands)

    Quanjel, E.M.C.J.; Borsboom, W.A.; Spoorenberg, H.H.R.

    2006-01-01

    A wide variety of new products, such as photovoltaic (PV) systems and solar collectors, roof lights, ventilation devices, insulation and safety devices, is finding its way into the roofing industry. As a result many problems occurred, resulting in poor quality, unsafe working conditions and high

  4. Plant Extract Synthesized PLA Nanoparticles for Controlled and Sustained Release of Quercetin: A Green Approach

    Science.gov (United States)

    Yadav, Sudesh Kumar

    2012-01-01

    Background Green synthesis of metallic nanoparticles (NPs) has been extensively carried out by using plant extracts (PEs) which have property of stabilizers/ emulsifiers. To our knowledge, there is no comprehensive study on applying a green approach using PEs for fabrication of biodegradable PLA NPs. Conventional methods rely on molecules like polyvinyl alcohol, polyethylene glycol, D-alpha-tocopheryl poly(ethylene glycol 1000) succinate as stabilizers/emulsifiers for the synthesis of such biodegradable NPs which are known to be toxic. So, there is urgent need to look for stabilizers which are biogenic and non-toxic. The present study investigated use of PEs as stabilizers/emulsifiers for the fabrication of stable PLA NPs. Synthesized PLA NPs through this green process were explored for controlled release of the well known antioxidant molecule quercetin. Methodology/Principal Findings Stable PLA NPs were synthesized using leaf extracts of medicinally important plants like Syzygium cumini (1), Bauhinia variegata (2), Cedrus deodara (3), Lonicera japonica (4) and Eleaocarpus sphaericus (5). Small and uniformly distributed NPs in the size range 70±30 nm to 143±36 nm were formed with these PEs. To explore such NPs for drugs/ small molecules delivery, we have successfully encapsulated quercetin a lipophilic molecule on a most uniformly distributed PLA-4 NPs synthesized using Lonicera japonica leaf extract. Quercetin loaded PLA-4 NPs were observed for slow and sustained release of quercetin molecule. Conclusions This green approach based on PEs mediated synthesis of stable PLA NPs pave the way for encapsulating drug/small molecules, nutraceuticals and other bioactive ingredients for safer cellular uptake, biodistribution and targeted delivery. Hence, such PEs synthesized PLA NPs would be useful to enhance the therapeutic efficacy of encapsulated small molecules/drugs. Furthermore, different types of plants can be explored for the synthesis of PLA as well as other

  5. Single-sided natural ventilation through a centre-pivot roof window

    DEFF Research Database (Denmark)

    Iqbal, Ahsan; Nielsen, Peter V.; Gunner, Amalie

    2014-01-01

    The characteristics of centre pivot roof windows for wind driven single-sided ventilation has not been studied before. These types of windows are dominating roof windows in Europe. Knowledge of flow characteristics of this kind of window is essential for accurate designing of natural ventilation...... systems. In this study, numerical methods were used to characterise a centre-pivot roof window for wind-driven single-sided ventilation. A 1:20 scale model house of the Energy Flex House (Denmark) was used in this study. The roof slope was 36o. It was found that the single-sided ventilation through...

  6. Roof Integrated Solar Absorbers: The Measured Performance of ''Invisible'' Solar Collectors: Preprint

    International Nuclear Information System (INIS)

    Colon, C. J.; Merrigan, T.

    2001-01-01

    The Florida Solar Energy Center (FSEC), with the support of the National Renewable Energy Laboratory, has investigated the thermal performance of solar absorbers that are an integral, yet indistinguishable, part of a building's roof. The first roof-integrated solar absorber (RISA) system was retrofitted into FSEC's Flexible Roof Facility in Cocoa, Florida, in September 1998. This ''proof-of-concept'' system uses the asphalt shingle roof surface and the plywood decking under the shingles as an unglazed solar absorber. Data was gathered for a one-year period on the system performance. In Phase 2, two more RISA prototypes were constructed and submitted for testing. The first used the asphalt shingles on the roof surface with the tubing mounted on the underside of the plywood decking. The second prototype used metal roofing panels over a plywood substrate and placed the polymer tubing between the plywood decking and the metal roofing. This paper takes a first look at the thermal performance results for the ''invisible'' solar absorbers that use the actual roof surface of a building for solar heat collection

  7. Typology of Retractable Roof Structures in Stadiums and Sports Halls

    Directory of Open Access Journals (Sweden)

    Andrej Mahovič

    2015-10-01

    Full Text Available Retractable roof structures are one of the four fundamental systems (in addition to the playing area, stands and facade in a stadium and sports hall. The roof protects users against various weather conditions and creates optimum circumstances for carrying out different activities. Stadiums and sports halls with retractable roof structures can host a greater variety of activities, improve the quality of their implementation and the quality of visitors’ experience, and affect the perception and experience of people using or observing such buildings. A retractable roof structure allows for natural lighting and ventilation of the venue, gives optimal conditions for grass growth on the playing field, and reduces costs of use and maintenance of the building. Different typologies of movement of roof structures (frequency of opening and closing, design of the structure, and methods of movement are categorised in terms of their architectural and structural design. Application of different retractable roof systems worldwide is indicator of their effectiveness and efficiency, and is basis for use of movement also in other fundamental systems of stadiums and sports halls. Research and identification of characteristics of retractable roof structures lead to the design of new moving systems that can with the application of the moving principle change the purpose of movable elements or assume the characteristics of other fundamental systems.

  8. Potential benefits of cool roofs on commercial buildings. Conserving energy, saving money, and reducing emission of greenhouse gases and air pollutants

    International Nuclear Information System (INIS)

    Levinson, R.; Akbari, H.

    2010-01-01

    .58 billion square meters of commercial building conditioned roof area in the USA would yield an annual cooling energy saving of 10.4 TWh; an annual heating energy penalty of 133 million therms; and an annual energy cost saving of USD 735 million. It would also offer an annual CO2 reduction of 6.23 Mt, offsetting the annual CO2 emissions of 1.20 million typical cars or 25.4 typical peak power plants; an annual NOx reduction of 9.93 kt, offsetting the annual NOx emissions of 0.57 million cars or 65.7 peak power plants; an annual SO2 reduction of 25.6 kt, offsetting the annual SO2 emissions of 815 peak power plants; and an annual Hg reduction of 126 kg.

  9. Systems of Vegetal Façade and Green Roofs used as a Sustainable Option in Architecture

    OpenAIRE

    Chanampa, Mariana; Vidal Rivas, Pilar; Alonso Ojembarrena, Javier; Olivieri, Francesca

    2010-01-01

    Green architecture contributes not only in reducing the building’s thermal loads but also in reducing the effects of the urban heat island in densely built-up areas in a hardly natural environment. The current green systems are built in situ/on site and are very expensive, hence the need to create industrialized prevegetated systems which improve the buildings’ energy savings and reduce the times of construction works. The present paper describes three green systems for façades (gabion façade...

  10. Load test of the 277W Building high bay roof deck and support structure

    International Nuclear Information System (INIS)

    McCoy, R.M.

    1994-01-01

    The 277W Building high bay roof area was load tested according to the approved load-test procedure, WHC-SD-GN-TP-30015, Revision 1. The 277W Building is located in the 200 West Area of the Hanford Site and has the following characteristics: roof deck -- wood decking supported by 4 x 14 timber purlins; roof membrane -- tar and gravel; roof slope -- flat (<10 deg); and roof elevation -- maximum height of about 63 ft. The 227W Building was visited in March 1994 for a visual inspection. During this inspection, cracked areas were visible in the decking, but it was not possible to determine whether these cracks extended completely through the decking, which is 2-in. thick. The building was revisited in March 1994 for the purpose of writing this test report. Because the roof requires personnel access, a test was determined to be the best way to qualify the roof. The conclusions are that the roof has been qualified for 500-lb total roof load and that the ''No Roof Access'' signs can be changed to ''Roof Access Restricted'' signs

  11. No greens in the forest? Note on the limited consumption of greens in the Amazon

    Directory of Open Access Journals (Sweden)

    Esther Katz

    2012-12-01

    Full Text Available The consumption of greens is reported as being very minor among Amazonian Indians. The authors of this article present a new review of this subject, based on fieldwork with Amerindians and other populations in different parts of the Brazilian Amazon and French Guiana. Written sources on Brazilian, Peruvian, Columbian and Venezuelan Amazon were also reviewed. The consumption of cultivated, semi-cultivated and wild species of greens was taken into account here, as the data specific to wild greens is very scarce. It is confirmed that greens are not commonly eaten among native Amazonians and that some ethnic groups do not consume them at all. The consumed species are usually young shoots of weeds or cassava leaves. Common in the Belém region are some specific aromatic plants, which have been diffused to other parts of the Amazon, together with introduced plants such as kale and coriander. Migrants from Northeastern Brazil settled in the Amazon consume some cultivated greens, especially aromatic plants. Maroons are the ones who use more greens in their diet. Native Amazonian people, who supplement agriculture with game and fish, follow a hunter-gatherer pattern, preferring wild fruit and tubers to greens.

  12. An analysis of roof bolter fatalities and injuries in U.S. mining

    Science.gov (United States)

    Sammarco, J.J.; Podlesny, A.; Rubinstein, E.N.; Demich, B.

    2017-01-01

    Roof bolting typically follows the extraction of a commodity to help keep the roof from collapsing. During 2004 to 2013, roof bolter operators had the highest number of machinery-related injuries, accounting for 64.7 percent, at underground coal mines. This paper analyzes U.S. roof bolter fatal and nonfatal lost-time injury data at underground work locations for all commodities from 2004 through 2013 and determines risk indices for six roof bolting tasks. For fatal and nonfatal incidences combined, the roof bolting tasks in order of the highest to lowest risk index were bolting, handling of materials, setting the temporary roof support (TRS), drilling, tramming, and traversing. For fatalities, the roof bolting tasks in order of the highest to lowest risk index were handling of materials, setting the TRS, bolting, drilling, traversing, and tramming. Age was found to be a significant factor. Severity of injury, indicated by days lost, was found to increase with increasing age as well as with increasing experience, largely due to the confounding of age and experience. The operation of the roof bolting machine used in underground mining should be a research priority given the high frequency and severity of incidents. The results also suggest that temporal factors may exist, so additional research is warranted to better understand these factors and potentially develop interventions. This research provides a data-driven foundation from which future research can be conducted for safety interventions to reduce the frequency and severity of incidences involving the roof bolter activities of bolting, handling of materials, and setting the TRS. PMID:28845099

  13. A guidebook for insulated low-slope roof systems. IEA Annex 19, Low-slope roof systems: International Energy Agency Energy Conservation in Buildings and Community Systems Programme

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    Low-slope roof systems are common on commercial and industrial buildings and, to a lesser extent, on residential buildings. Although insulating materials have nearly always been a component of low-slope roofs, the amount of insulation used has increased in the past two decades because of escalation of heating and cooling costs and increased awareness of the need for energy conservation. As the amount of insulation has increased, the demand has intensified for design, installation, and maintenance information specifically for well-insulated roofs. Existing practices for design, installation, and maintenance of insulated roofs have evolved from experience. Typically, these practices feature compromises due to the different properties of materials making up a given roof system. Therefore, they should be examined from time to time to ensure that they are appropriate as new materials continue to enter the market and as the data base on existing systems expands. A primary purpose of this International Energy Agency (IEA) study is to assess current roofing insulation practices in the context of an accumulating data base on performance.

  14. Producing superhydrophobic roof tiles

    International Nuclear Information System (INIS)

    Carrascosa, Luis A M; Facio, Dario S; Mosquera, Maria J

    2016-01-01

    Superhydrophobic materials can find promising applications in the field of building. However, their application has been very limited because the synthesis routes involve tedious processes, preventing large-scale application. A second drawback is related to their short-term life under outdoor conditions. A simple and low-cost synthesis route for producing superhydrophobic surfaces on building materials is developed and their effectiveness and their durability on clay roof tiles are evaluated. Specifically, an organic–inorganic hybrid gel containing silica nanoparticles is produced. The nanoparticles create a densely packed coating on the roof tile surface in which air is trapped. This roughness produces a Cassie–Baxter regime, promoting superhydrophobicity. A surfactant, n-octylamine, was also added to the starting sol to catalyze the sol–gel process and to coarsen the pore structure of the gel network, preventing cracking. The application of ultrasound obviates the need to use volatile organic compounds in the synthesis, thereby making a ‘green’ product. It was also demonstrated that a co-condensation process effective between the organic and inorganic species is crucial to obtain durable and effective coatings. After an aging test, high hydrophobicity was maintained and water absorption was completely prevented for the roof tile samples under study. However, a transition from a Cassie–Baxter to a Wenzel state regime was observed as a consequence of the increase in the distance between the roughness pitches produced by the aging of the coating. (paper)

  15. Impact of height and shape of building roof on air quality in urban street canyons

    Science.gov (United States)

    Yassin, Mohamed F.

    2011-09-01

    A building's roof shape and roof height play an important role in determining pollutant concentrations from vehicle emissions and its complex flow patterns within urban street canyons. The impact of the roof shape and height on wind flow and dispersion of gaseous pollutants from vehicle exhaust within urban canyons were investigated numerically using a Computational Fluid Dynamics (CFD) model. Two-dimensional flow and dispersion of gaseous pollutants were analyzed using standard κ- ɛ turbulence model, which was numerically solved based on Reynolds Averaged Navier-Stokes (RANS) equations. The diffusion fields in the urban canyons were examined with three roof heights ( Z H/ H = 0.17, 0.33 and 0.5) and five roof shapes: (1) flat-shaped roof, (2) slanted-shaped roof, (3) downwind wedge-shaped roof, (4) upwind wedge-shaped roof, and (5) trapezoid-shaped roof. The numerical model was validated against the wind tunnels results in order to optimize the turbulence model. The numerical simulations agreed reasonably with the wind tunnel results. The results obtained indicated that the pollutant concentration increased as the roof height decreases. It also decreased with the slanted and trapezoid-shaped roofs but increased with the flat-shaped roof. The pollutant concentration distributions simulated in the present work, indicated that the variability of the roof shapes and roof heights of the buildings are important factors for estimating air quality within urban canyons.

  16. Block survey of wall covered with plant in the city of Tokyo [Japan] and evaluation of thermal environment of wall greening system

    International Nuclear Information System (INIS)

    Shibuya, K.; Soh, Y.; Satoh, S.

    2007-01-01

    There were 384 (8877 square m) walls which covered with plant on 10 square km in the city of Tokyo, and the green wall rate in the city of Tokyo was 0.88%. Vines, for example Parthenocissus tricuspidata and Hedera helix, were widely used. The factor of thinking better of the landscape in urban area was one of the easily management of plants. The three wall greening systems, a wall covered with hanging climbers and two types of self-contained living wall, mitigated the thermal environment. However its degree can be depended on the greening method and the greenery occupancy rate of wall

  17. Disruption of Ethylene Responses by Turnip mosaic virus Mediates Suppression of Plant Defense against the Green Peach Aphid Vector.

    Science.gov (United States)

    Casteel, Clare L; De Alwis, Manori; Bak, Aurélie; Dong, Haili; Whitham, Steven A; Jander, Georg

    2015-09-01

    Plants employ diverse responses mediated by phytohormones to defend themselves against pathogens and herbivores. Adapted pathogens and herbivores often manipulate these responses to their benefit. Previously, we demonstrated that Turnip mosaic virus (TuMV) infection suppresses callose deposition, an important plant defense induced in response to feeding by its aphid vector, the green peach aphid (Myzus persicae), and increases aphid fecundity compared with uninfected control plants. Further, we determined that production of a single TuMV protein, Nuclear Inclusion a-Protease (NIa-Pro) domain, was responsible for changes in host plant physiology and increased green peach aphid reproduction. To characterize the underlying molecular mechanisms of this phenomenon, we examined the role of three phytohormone signaling pathways, jasmonic acid, salicylic acid, and ethylene (ET), in TuMV-infected Arabidopsis (Arabidopsis thaliana), with or without aphid herbivory. Experiments with Arabidopsis mutants ethylene insensitive2 and ethylene response1, and chemical inhibitors of ET synthesis and perception (aminoethoxyvinyl-glycine and 1-methylcyclopropene, respectively), show that the ET signaling pathway is required for TuMV-mediated suppression of Arabidopsis resistance to the green peach aphid. Additionally, transgenic expression of NIa-Pro in Arabidopsis alters ET responses and suppresses aphid-induced callose formation in an ET-dependent manner. Thus, disruption of ET responses in plants is an additional function of NIa-Pro, a highly conserved potyvirus protein. Virus-induced changes in ET responses may mediate vector-plant interactions more broadly and thus represent a conserved mechanism for increasing transmission by insect vectors across generations. © 2015 American Society of Plant Biologists. All Rights Reserved.

  18. Generation of data base for on-line fatigue life monitoring of Indian nuclear power plant components: Part I - Generation of Green's functions for end fitting

    International Nuclear Information System (INIS)

    Mukhopadhyay, N.K.; Dutta, B.K.; Kushwaha, H.S.

    1994-01-01

    Green's function technique is the heart of the on- line fatigue monitoring methodology. The plant transients are converted to stress and temperature response using this technique. To implement this methodology in a nuclear power plant, Green's functions are to be generated in advance. For structures of complex geometries, Green's functions are to be stored in a data base to convert on-line, the plant data to temperature/stress response, using a personal computer. End fitting, end shield, pressurizer, steam generator tube sheet are few such components of PHWR where fatigue monitoring is needed. In the present paper, Green's functions are generated for end fitting of a 235 MWe Indian PHWR using finite element method. End fitting has been analysed using both 3-D and 2-D (axisymmetric) finite element models. Temperature and stress Green's functions are generated at few critical locations using the code ABAQUS. (author). 10 refs., 11 figs

  19. 40 CFR 65.44 - External floating roof (EFR).

    Science.gov (United States)

    2010-07-01

    ... they are closed. (iii) Except for automatic bleeder vents, rim space vents, roof drains, and leg... and rim space vents shall be equipped with a gasket. (v) Each roof drain that empties into the stored... shall be designed to extend into the stored liquid and the other end shall extend a minimum vertical...

  20. Experimental study on foam coverage on simulated longwall roof

    Science.gov (United States)

    Reed, W.R.; Zheng, Y.; Klima, S.; Shahan, M.R.; Beck, T.W.

    2018-01-01

    Testing was conducted to determine the ability of foam to maintain roof coverage in a simulated longwall mining environment. Approximately 27 percent of respirable coal mine dust can be attributed to longwall shield movement, and developing controls for this dust source has been difficult. The application of foam is a possible dust control method for this source. Laboratory testing of two foam agents was conducted to determine the ability of the foam to adhere to a simulated longwall face roof surface. Two different foam generation methods were used: compressed air and blower air. Using a new imaging technology, image processing and analysis utilizing ImageJ software produced quantifiable results of foam roof coverage. For compressed air foam in 3.3 m/s (650 fpm) ventilation, 98 percent of agent A was intact while 95 percent of agent B was intact on the roof at three minutes after application. At 30 minutes after application, 94 percent of agent A was intact while only 20 percent of agent B remained. For blower air in 3.3 m/s (650 fpm) ventilation, the results were dependent upon nozzle type. Three different nozzles were tested. At 30 min after application, 74 to 92 percent of foam agent A remained, while 3 to 50 percent of foam agent B remained. Compressed air foam seems to remain intact for longer durations and is easier to apply than blower air foam. However, more water drained from the foam when using compressed air foam, which demonstrates that blower air foam retains more water at the roof surface. Agent A seemed to be the better performer as far as roof application is concerned. This testing demonstrates that roof application of foam is feasible and is able to withstand a typical face ventilation velocity, establishing this technique’s potential for longwall shield dust control. PMID:29563765