WorldWideScience

Sample records for green light pulses

  1. Green lights

    DEFF Research Database (Denmark)

    Fisker, Peter Kielberg

    This study investigates the effect of drought on economic activity globally using remote sensing data. In particular, predicted variation in greenness is correlated with changes in the density of artificial light observed at night on a grid of 0.25 degree latitude-longitude pixels. I define drought...... as greenness estimated by lagged variation in monthly rainfall and temperature. This definition of drought performs well in identifying self-reported drought events since 2000 compared with measures of drought that do not take greenness into account, and the subsequent analysis indicates that predicted...... variation in greenness is positively associated with year-on-year changes in luminosity: If a unit of observation experiences a predicted variation in greenness that lies 1 standard deviation below the global mean, on average 1.5 - 2.5 light pixels out of 900 are extinguished that year. Finally, an attempt...

  2. Further investigations into pulsed optically stimulated luminescence from feldspars using blue and green light

    International Nuclear Information System (INIS)

    Ankjaergaard, C.; Jain, M.; Kalchgruber, R.; Lapp, T.; Klein, D.; McKeever, S.W.S.; Murray, A.S.; Morthekai, P.

    2009-01-01

    The purpose of this paper is to investigate characteristics of luminescence signals resulting from pulsed optical stimulation of feldspars and thereby to understand the underlying processes giving rise to the signal. Fourteen different feldspar specimens were investigated using time-resolved optically stimulated luminescence (TR-OSL), and these signals can be mathematically described as a sum of 4 exponential components (a, b, c, d). The slowest component, d, increases with the duration of the light pulse as expected from the exponential model. The stimulation temperature dependence experiment suggests that the TR-OSL signal decay is governed by the recombination process and not by the excited state lifetime. Furthermore data from the TR-OSL signal dependence on stimulation time and preheat temperature suggest that the recombination process may not be a sum of exponentials, although the model cannot be rejected definitively.

  3. 1,213 Cases of Treatment of Facial Acne Using Indocyanine Green and Intense Pulsed Light in Asian Skin

    Directory of Open Access Journals (Sweden)

    Kui Young Park

    2015-01-01

    Full Text Available Background. Photodynamic therapy (PDT has been used for acne, with various combinations of photosensitizers and light sources. Objective. We evaluated the effectiveness and safety of indocyanine green (ICG and intense pulsed light (IPL in the treatment of acne. Materials and Methods. A total of 1,213 patients with facial acne were retrospectively reviewed. Patients received three or five treatments of ICG and IPL at two-week intervals. Clinical response to treatment was assessed by comparing pre- and posttreatment clinical photographs and patient satisfaction scores. Results. Marked to excellent improvement was noted in 483 of 1,213 (39.8% patients, while minimal to moderate improvement was achieved in the remaining 730 (60.2% patients. Patient satisfaction scores revealed that 197 (16.3% of 1,213 patients were highly satisfied, 887 (73.1% were somewhat satisfied, and 129 (10.6% were unsatisfied. There were no significant side effects. Conclusion. These results suggest that PDT with ICG and IPL can be effectively and safely used in the treatment of acne.

  4. Further investigations into pulsed optically stimulated luminescence from feldspars using blue and green light

    DEFF Research Database (Denmark)

    Ankjærgaard, Christina; Jain, Mayank; Kalchgruber, R.

    2009-01-01

    The purpose of this paper is to investigate characteristics of luminescence signals resulting from pulsed optical stimulation of feldspars and thereby to understand the underlying processes giving rise to the signal. Fourteen different feldspar specimens were investigated using time-resolved opti......The purpose of this paper is to investigate characteristics of luminescence signals resulting from pulsed optical stimulation of feldspars and thereby to understand the underlying processes giving rise to the signal. Fourteen different feldspar specimens were investigated using time...... suggests that the TR-OSL signal decay is governed by the recombination process and not by the excited state lifetime. Furthermore data from the TR-OSL signal dependence on stimulation time and preheat temperature suggest that the recombination process may not be a sum of exponentials, although the model...... cannot be rejected definitively....

  5. Green lights program in China

    Energy Technology Data Exchange (ETDEWEB)

    Dadi, Zhuo; Hong, Liu [Beijing Energy Efficiency Center (China)

    1996-12-31

    In China`s 9th 5-year plan (1996-2000), the Chinese government has placed high priority on energy conservation. The China Green Lights Program (CGLP) is listed as one of the key projects of energy conservation. The basic strategy of the CGLP is to mobilise all of the potential contributors to participate in the program, and to use market signals and supplementary non-market instruments to facilitate its implementation. Governmental funds and loans will be used as seed money to attract private participation in the program. The program contains the following elements: (1) Information dissemination to educate the public on the economic and other values of the program and to provide CGLP information to increase consumer awareness and, as a result, increase the demand for energy-efficient lighting systems. (2) Development of standards and codes for lighting systems, establishment of product specifications, and enforcement of product standards. (3) Development of quality certification and labelling system to provide assurances to consumers that the products they are purchasing will meet their performance and cost saving expectations. (4) Highlighted support and financing for production technology development and production capacity expansion. (5) Demonstration and pilot projects to boost consumer confidence in green lighting systems and to demonstrate new production technologies and processes. (6) International co-operation to expand the international exchange and absorb advanced technology and experience for implementation of the China Green Lights Program.

  6. Pulse shaping using a spatial light modulator

    CSIR Research Space (South Africa)

    Botha, N

    2009-07-01

    Full Text Available Femtosecond pulse shaping can be done by different kinds of pulse shapers, such as liquid crystal spatial light modulators (LC SLM), acousto optic modulators (AOM) and deformable and movable mirrors. A few applications where pulse shaping...

  7. GreenLight Model 960.

    Science.gov (United States)

    Fernandes, Richard; Carey, Conn; Hynes, James; Papkovsky, Dmitri

    2013-01-01

    The importance of food safety has resulted in a demand for a more rapid, high-throughput method for total viable count (TVC). The industry standard for TVC determination (ISO 4833:2003) is widely used but presents users with some drawbacks. The method is materials- and labor-intensive, requiring multiple agar plates per sample. More importantly, the method is slow, with 72 h typically required for a definitive result. Luxcel Biosciences has developed the GreenLight Model 960, a microtiter plate-based assay providing a rapid high-throughput method of aerobic bacterial load assessment through analysis of microbial oxygen consumption. Results are generated in 1-12 h, depending on microbial load. The mix and measure procedure allows rapid detection of microbial oxygen consumption and equates oxygen consumption to microbial load (CFU/g), providing a simple, sensitive means of assessing the microbial contamination levels in foods (1). As bacteria in the test sample grow and respire, they deplete O2, which is detected as an increase in the GreenLight probe signal above the baseline level (2). The time required to reach this increase in signal can be used to calculate the CFU/g of the original sample, based on a predetermined calibration. The higher the initial microbial load, the earlier this threshold is reached (1).

  8. Synthesis of green TiO{sub 2}/ZnO/CdS hybrid nano-catalyst for efficient light harvesting using an elegant pulsed laser ablation in liquids method

    Energy Technology Data Exchange (ETDEWEB)

    Gondal, M.A., E-mail: magondal@kfupm.edu.sa [Laser Research Group, Physics Department & Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Ilyas, A.M.; Fasasi, T.A.; Dastageer, M.A. [Laser Research Group, Physics Department & Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Seddigi, Z.S. [Department of Environmental Health, Faculty of Public Health and Health Informatics, Umm Al-Qura University, 21955 Makkah (Saudi Arabia); Qahtan, T.F.; Faiz, M.; Khattak, G.D. [Laser Research Group, Physics Department & Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2015-12-01

    Graphical abstract: - Highlights: • Facile strategy for synthesis of green catalyst (TiO{sub 2}/ZnO/CdS) was developed. • Clean synthesis of green catalyst was done using pulsed laser ablation in liquids. • Synthesized composite size ranges between 10 and 40 nm confirmed by HRTEM studies. • Enhanced improvement was noticed in the carriers transport in the visible region. • Visible region absorption opens door to many applications for solar energy harvesting. - Abstract: The main limitation on the applications of TiO{sub 2} as a photocatalyst is its large band gap (3.2 eV) which limits its absorption only to the ultraviolet region of the solar spectrum. To overcome this problem, a facile strategy for clean synthesis of a nanocomposite green catalyst of zinc oxide (ZnO), titanium dioxide (TiO{sub 2}) and cadmium sulphide (CdS) was developed using pulsed laser ablation in liquids (PLAL) technique for the first time to the best of our knowledge. The main aim of addition of ZnO is to reduce the electron–hole recombination in the TiO{sub 2} while CdS is used to increase the light harvesting efficiency of TiO{sub 2} in the visible spectral region. The absorption spectrum of the TiO{sub 2}/ZnO/CdS composite obtained from the UV–vis spectrophotometer exhibits strong absorption in the visible region as compared to the pure TiO{sub 2} whose absorption band lies around 380 nm which is in the UV-region. The morphology of the composite quantum dots was also investigated using high resolution TEM technique which shows that the synthesized composite size ranges between 10 and 40 nm. These nanocomposites have demosntarted noticible improvement in the carriers transport in the visible region which could enhance its efficiency for many applications in the visible region especially for energy harvesting using solar radiations.

  9. Slow-light pulses in moving media

    International Nuclear Information System (INIS)

    Fiurasek, J.; Leonhardt, U.; Parentani, R.

    2002-01-01

    Slow light in moving media reaches a counterintuitive regime when the flow speed of the medium approaches the group velocity of light. Pulses can penetrate a region where a counterpropagating flow exceeds the group velocity. When the counterflow slows down, pulses are reflected

  10. Green Light for Nocturnally Migrating Birds

    Directory of Open Access Journals (Sweden)

    Hanneke Poot

    2008-12-01

    Laboratory experiments have shown the magnetic compass to be wavelength dependent: migratory birds require light from the blue-green part of the spectrum for magnetic compass orientation, whereas red light (visible long-wavelength disrupts magnetic orientation. We designed a field study to test if and how changing light color influenced migrating birds under field conditions. We found that nocturnally migrating birds were disoriented and attracted by red and white light (containing visible long-wavelength radiation, whereas they were clearly less disoriented by blue and green light (containing less or no visible long-wavelength radiation. This was especially the case on overcast nights. Our results clearly open perspective for the development of bird-friendly artificial lighting by manipulating wavelength characteristics. Preliminary results with an experimentally developed bird-friendly light source on an offshore platform are promising. What needs to be investigated is the impact of bird-friendly light on other organisms than birds.

  11. Proportional green time scheduling for traffic lights

    NARCIS (Netherlands)

    P. Kovacs; Le, T. (Tung); R. Núñez Queija (Rudesindo); Vu, H. (Hai); N. Walton

    2016-01-01

    textabstractWe consider the decentralized scheduling of a large number of urban traffic lights. We investigate factors determining system performance, in particular, the length of the traffic light cycle and the proportion of green time allocated to each junction. We study the effect of the length

  12. Yellow light for green scheme

    International Nuclear Information System (INIS)

    Morch, Stein

    2004-01-01

    The article asserts that there could be an investment boom for wind, hydro and bio power in a common Norwegian-Swedish market scheme for green certificates. The Swedish authorities are ready, and the Norwegian government is preparing a report to the Norwegian Parliament. What are the ambitions of Norway, and will hydro power be included? A green certificate market common to more countries have never before been established and requires the solution of many challenging problems. In Sweden, certificate support is expected to promote primarily bioenergy, wind power and small-scale hydro power. In Norway there is an evident potential for wind power, and more hydro power can be developed if desired

  13. Chinese aquaculture in light of green growth

    OpenAIRE

    Leilei Zou; Shuolin Huang

    2015-01-01

    Over China’s long history of aquaculture development, great achievements have been made by enhancing aquaculture as the major contributor to aquatic products supply, while lessons have also been learnt that aquaculture has been developing at the cost of environment. Priority is now given to the aquaculture development in the light of green growth, which attaches importance to both environment protection and high productivity. To sustain Chinese aquaculture in a green-growth manner, polices ch...

  14. Interaction between two stopped light pulses

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yi-Hsin, E-mail: yhchen920@gmail.com; Lee, Meng-Jung, E-mail: yhchen920@gmail.com; Hung, Weilun, E-mail: yhchen920@gmail.com; Yu, Ite A., E-mail: yu@phys.nthu.edu.tw [Department of Physics and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Chen, Ying-Cheng [Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan and Department of Physics and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Chen, Yong-Fan [Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan (China)

    2014-03-05

    The efficiency of a nonlinear optical process is proportional to the interaction time. We report a scheme of all-optical switching based on two motionless light pulses via the effect of electromagnetically induced transparency. One pulse was stopped as the stationary light pulse (SLP) and the other was stopped as stored light. The time of their interaction via the medium can be prolonged and, hence, the optical nonlinearity is greatly enhanced. Using a large optical density (OD) of 190, we achieved a very long interaction time of 6.9 μs. This can be analogous to the scheme of trapping light pulses by an optical cavity with a Q factor of 8×10{sup 9}. With the approach of using moving light pulses in the best situation, a switch can only be activated at 2 photons per atomic absorption cross section. With the approach of employing a SLP and a stored light pulse, a switch at only 0.56 photons was achieved and the efficiency is significantly improved. Moreover, the simulation results are in good agreement with the experimental data and show that the efficiency can be further improved by increasing the OD of the medium. Our work advances the technology in quantum information manipulation utilizing photons.

  15. Interaction between two stopped light pulses

    International Nuclear Information System (INIS)

    Chen, Yi-Hsin; Lee, Meng-Jung; Hung, Weilun; Yu, Ite A.; Chen, Ying-Cheng; Chen, Yong-Fan

    2014-01-01

    The efficiency of a nonlinear optical process is proportional to the interaction time. We report a scheme of all-optical switching based on two motionless light pulses via the effect of electromagnetically induced transparency. One pulse was stopped as the stationary light pulse (SLP) and the other was stopped as stored light. The time of their interaction via the medium can be prolonged and, hence, the optical nonlinearity is greatly enhanced. Using a large optical density (OD) of 190, we achieved a very long interaction time of 6.9 μs. This can be analogous to the scheme of trapping light pulses by an optical cavity with a Q factor of 8×10 9 . With the approach of using moving light pulses in the best situation, a switch can only be activated at 2 photons per atomic absorption cross section. With the approach of employing a SLP and a stored light pulse, a switch at only 0.56 photons was achieved and the efficiency is significantly improved. Moreover, the simulation results are in good agreement with the experimental data and show that the efficiency can be further improved by increasing the OD of the medium. Our work advances the technology in quantum information manipulation utilizing photons

  16. Light pulse shapes from plastic scintillators

    International Nuclear Information System (INIS)

    Moszynski, M.; Bengtson, B.

    1977-01-01

    A detailed study of the light pulse shape from the binary NE 111 and the ternary Pilot U, Naton 136, KL 236, NE 102A, NE 104 and NE 110 plastic scintillators was performed by the single photon method using XP 1021 and C 31024 photomultipliers. The analysis of the shape of the light pulses determined experimentally for several samples of different dimensions gave the following conclusions. The original light pulse shape from the binary NE 111 scintillator, as measured with a 5 mm thick polished sample is described analytically by the convolution integral of a Gaussian and an exponential function. The Gaussian function may reflect a deexcitation of several higher levels of the solvent molecules excited by nuclear particles preceding an intermolecular energy transfer in the scintillator. It may introduce a rather important limitation of the speed of plastic scintillators as the standard deviation of the Gaussian function is equal to 0.2 ns. The light pulse shape from the ternary plastics is described by the convolution integral of a Gaussian and two exponential functions. The Gaussian function presents the rate of energy transfer from nuclear particles to the primary solute as in the binary plastics. The exponential functions describe the energy transfer from the primary solute to the wavelength shifter and the final emission of the light. (Auth.)

  17. Period and pulse duration with "strobe" lights

    Science.gov (United States)

    Birriel, Jennifer

    2016-01-01

    Strobe lights have traditionally been discussed in The Physics Teacher in the context of stop action strobe photography. During the Halloween season most department and hardware stores sell inexpensive, compact "strobe" lights (although these can be found online year round). These lights generally sell for under 10 and usually employ LED lights. Most such devices have a rotary switch to adjust the rate at which the LED bulbs flash. This rotary switch is not calibrated—i.e., it has no markings to indicate the rate, but in general the greater the rotation of the switch from the off position, the faster the rate of flashing. We show how these simple devices can be used with a light sensor to study both the frequency of flashing and the duration of the light pulse. We briefly discuss if these devices are truly strobe lights.

  18. Establishing a green lights revolving fund

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    The report details the experiences of the City of Houston in establishing a Green Lights Revolving Fund. It provides examples of key documents and guidelines which can be used in other jurisdictions to establish an internal revolving fund to provide continuing monies through recapture of cost savings for an ongoing program of energy improvements in governmental facilities. It provides guidelines on how to establish a continuing source of funds for governmental facility energy improvements. The report provides background information on the ongoing energy improvement programs in the City of Houston, including its participation in the Environmental Protection Agency`s Green Lights Program. It reviews the steps required to establish a Green Lights Revolving Fund, including the administrative, legal, budgetary, accounting, interdepartmental, mayoral, and governing body approvals and actions needed to create a self-sustaining revolving fund devoted to energy improvements. The report also describes two funding sources in addition to the grant seed funds which were used to increase the initial funds available in the Green Lights Revolving Fund. It provides sample documents for modification and use in other jurisdictions that want to use similar funding sources. It reports the initial project submission and selection procedure and criteria, and provides a transferable project application kit based on the criteria specified. It also details a sample repayment memorandum of understanding between departments, which can be used in other governments. Other transferable products provided in the report are sample energy audit summaries which were conducted by qualified, independent staff to determine the accuracy of the departmental project costs and savings payback calculations.

  19. Long-pulse Supercontinuum Light Sources

    DEFF Research Database (Denmark)

    Moselund, Peter M.

    A Supercontinuum (SC) is a broad spectrum generated from a narrow light source through non-linear effects. This thesis describes SC generation based on 1064 nm ps pulses in PCF fibres. We investigate how the SC spectrum can be modified and intensity noise reduced by feeding back part of the SC...

  20. Green light emitting curcumin dye in organic solvents

    Science.gov (United States)

    Mubeen, Mohammad; Deshmukh, Abhay D.; Dhoble, S. J.

    2018-05-01

    In this modern world, the demand for the white light emission has increased because of its wide applications in various display and lighting devices, sensors etc. This white light can be produced by mixing red, green and blue lights. Thus this green light can be produced from the plant extract i.e., Turmeric. Curcumin is the essential element present in turmeric to generate the green light. The Photoluminescence (PL) emission is observed at 540 nm at 380nm excitation. This method of generating green light is very simple, cost effective and efficient when compared to other methods.

  1. Green Lighting. Energy-efficient integrated lighting systems - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Linhart, F.; Scartezzini, J.-L.

    2009-10-15

    The objective of the Green Lighting project was to develop a High Performance Integrated Lighting System, based on advanced technologies for day- and electric lighting, achieving a Lighting Power Density (LPD) that does not exceed 3 W/m{sup 2}. The project has revealed that Anidolic Daylighting Systems (ADS) are an ideal basis for High Performance Integrated Lighting Systems. Not only are they able to provide adequate illumination (i.e. sufficiently high illuminance) in office rooms during large fractions of normal office hours, under various sky conditions and over the entire year, but they are also highly appreciated by office occupants at the condition that glare control mechanisms are available. Complementary electric lighting is, however, still necessary to back up the ADS at times when there is insufficient daylight flux available. It was shown during this project, that the most interesting trade-offs between energy-efficiency and visual comfort are obtained by using a combination of ceiling-mounted directly emitting luminaires with very high optical efficiencies for ambient lighting and portable desk lamps for temporary task lighting. The most appropriate lamps for the ceiling-mounted luminaires are currently highly efficient fluorescent tubes, but white LED tubes can be considered a realistic option for the future. The most suitable light sources for desk lamps for temporary task lighting are Compact Fluorescent Lamps (CFLs) and white LED light bulbs. Based on the above-mentioned technologies, a High Performance Integrated Lighting System with a very low LPD has been developed over the last three years. The system has been set up in an office room of the LESO solar experimental building located on the EPFL campus; it has been tested intensively during a Post-Occupancy Evaluation (POE) study involving twenty human subjects. This study has revealed that the subjects' performance and subjective visual comfort was improved by the new system, compared to

  2. Unconventional Use of Intense Pulsed Light

    OpenAIRE

    Piccolo, D.; Di Marcantonio, D.; Crisman, G.; Cannarozzo, G.; Sannino, M.; Chiricozzi, A.; Chimenti, S.

    2014-01-01

    According to the literature, intense pulsed light (IPL) represents a versatile tool in the treatment of some dermatological conditions (i.e., pigmentation disorders, hair removal, and acne), due to its wide range of wavelengths. The authors herein report on 58 unconventional but effective uses of IPL in several cutaneous diseases, such as rosacea (10 cases), port-wine stain (PWS) (10 cases), disseminated porokeratosis (10 cases), pilonidal cyst (3 cases), seborrheic keratosis (10 cases), hype...

  3. China Green Lights Program: A Review and Recommendations; TOPICAL

    International Nuclear Information System (INIS)

    Lin, Jiang

    1999-01-01

    This report reviews the development of China's Green Lights Program in the last two years, and discusses the remaining barriers to the widespread adoption of efficient lighting technologies in China: chiefly quality, high initial costs, and lack of accurate information. A variety of policy options are recommended for the future expansion of China's Green Lights Program

  4. China Green Lights Program: A Review and Recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jiang

    1999-06-10

    This report reviews the development of China's Green Lights Program in the last two years, and discusses the remaining barriers to the widespread adoption of efficient lighting technologies in China: chiefly quality, high initial costs, and lack of accurate information. A variety of policy options are recommended for the future expansion of China's Green Lights Program.

  5. Plasma devices for focusing extreme light pulses

    International Nuclear Information System (INIS)

    Fuchs, J.; Gonoskov, A.A.; Nakatsutsumi, M.; Nazarov, W.; Quere, F.; Sergeev, A.M.; Yan, X.Q.

    2014-01-01

    Since the inception of the laser, there has been a constant push toward increasing the laser peak intensity, as this has lead to opening the exploration of new territories, and the production of compact sources of particles and radiation with unprecedented characteristics. However, increasing the peak laser intensity is usually performed by enhancing the produced laser properties, either by lowering its duration or increasing its energy, which involves a great level of complexity for the laser chain, or comes at great cost. Focusing tightly is another possibility to increase the laser intensity, but this comes at the risk of damaging the optics with target debris, as it requires their placement in close proximity to the interaction region. Plasma devices are an attractive, compact alternative to tightly focus extreme light pulses and further increase the final laser intensity. (authors)

  6. Side effects from intense pulsed light

    DEFF Research Database (Denmark)

    Thaysen-Petersen, Daniel; Erlendsson, Andres M; Nash, J F

    2017-01-01

    BACKGROUND AND OBJECTIVE: Intense pulsed light (IPL) is a mainstream treatment for hair removal. Side effects after IPL are known, but risk factors remain to be investigated. The objective of this study was to assess the contribution of skin pigmentation, fluence level, and ultraviolet radiation...... stacking of 46 J/cm2. Areas were subsequently randomized to no UVR or single solar-simulated UVR exposure of 3 Standard Erythema Dose at 30 minutes or 24 hours after IPL. Each area had a corresponding control, resulting in 15 treatment sites. Follow-up visits were scheduled up to 4 weeks after IPL. Outcome...... measures were: (i) blinded clinical skin reactions; (ii) objectively measured erythema and pigmentation; (iii) pain measured by visual analog scale (VAS); (iv) histology (H&E, Fontana-Masson); and (v) mRNA-expression of p53. RESULTS: Fifteen subjects with FST II-IV completed the protocol. IPL induced...

  7. Light sheet microscopy reveals more gradual light attenuation in light green versus dark green soybean leaves

    Science.gov (United States)

    Light wavelengths preferentially absorbed by chlorophyll (chl) often display steep absorption gradients. This oversaturates photosynthesis in upper chloroplasts and deprives lower chloroplasts of blue and red light, causing a steep gradient in carbon fixation. Reducing chl content could create a mor...

  8. Slow light pulse propagation in dispersive media

    DEFF Research Database (Denmark)

    Nielsen, Torben Roland; Mørk, Jesper; Lavrinenko, Andrei

    2009-01-01

    broadening or break-up of the pulse may be observed. The transition from linear to nonlinear pulse propagation is quantified in terms of the spectral width of the pulse. To cite this article: T.R. Nielsen et al., C. R. Physique 10 (2009). (C) 2009 Academie des sciences. Published by Elsevier Masson SAS. All...... rights reserved....

  9. Interactive green street enhancement using light dependent sensors and actuators

    NARCIS (Netherlands)

    Wouters, Ivo; Chen, W.; Oorschot, van B.; Smeenk, W.

    2008-01-01

    We propose and demonstrate a design of an interactive green street facility using light dependent sensors and actuators for enhancing the social cohesion of people. We show that electronics and green design can have positive effect on social interaction in a neighbourhood by a design example, called

  10. Unconventional Use of Intense Pulsed Light

    Directory of Open Access Journals (Sweden)

    D. Piccolo

    2014-01-01

    Full Text Available According to the literature, intense pulsed light (IPL represents a versatile tool in the treatment of some dermatological conditions (i.e., pigmentation disorders, hair removal, and acne, due to its wide range of wavelengths. The authors herein report on 58 unconventional but effective uses of IPL in several cutaneous diseases, such as rosacea (10 cases, port-wine stain (PWS (10 cases, disseminated porokeratosis (10 cases, pilonidal cyst (3 cases, seborrheic keratosis (10 cases, hypertrophic scar (5 cases and keloid scar (5 cases, Becker’s nevus (2 cases, hidradenitis suppurativa (2 cases, and sarcoidosis (1 case. Our results should suggest that IPL could represent a valid therapeutic support and option by providing excellent outcomes and low side effects, even though it should be underlined that the use and the effectiveness of IPL are strongly related to the operator’s experience (acquired by attempting at least one specific course on the use of IPL and one-year experience in a specialized centre. Moreover, the daily use of these devices will surely increase clinical experience and provide new information, thus enhancing long-term results and improving IPL effectiveness.

  11. Unconventional use of intense pulsed light.

    Science.gov (United States)

    Piccolo, D; Di Marcantonio, D; Crisman, G; Cannarozzo, G; Sannino, M; Chiricozzi, A; Chimenti, S

    2014-01-01

    According to the literature, intense pulsed light (IPL) represents a versatile tool in the treatment of some dermatological conditions (i.e., pigmentation disorders, hair removal, and acne), due to its wide range of wavelengths. The authors herein report on 58 unconventional but effective uses of IPL in several cutaneous diseases, such as rosacea (10 cases), port-wine stain (PWS) (10 cases), disseminated porokeratosis (10 cases), pilonidal cyst (3 cases), seborrheic keratosis (10 cases), hypertrophic scar (5 cases) and keloid scar (5 cases), Becker's nevus (2 cases), hidradenitis suppurativa (2 cases), and sarcoidosis (1 case). Our results should suggest that IPL could represent a valid therapeutic support and option by providing excellent outcomes and low side effects, even though it should be underlined that the use and the effectiveness of IPL are strongly related to the operator's experience (acquired by attempting at least one specific course on the use of IPL and one-year experience in a specialized centre). Moreover, the daily use of these devices will surely increase clinical experience and provide new information, thus enhancing long-term results and improving IPL effectiveness.

  12. Propagation of coherent light pulses with PHASE

    Science.gov (United States)

    Bahrdt, J.; Flechsig, U.; Grizzoli, W.; Siewert, F.

    2014-09-01

    The current status of the software package PHASE for the propagation of coherent light pulses along a synchrotron radiation beamline is presented. PHASE is based on an asymptotic expansion of the Fresnel-Kirchhoff integral (stationary phase approximation) which is usually truncated at the 2nd order. The limits of this approximation as well as possible extensions to higher orders are discussed. The accuracy is benchmarked against a direct integration of the Fresnel-Kirchhoff integral. Long range slope errors of optical elements can be included by means of 8th order polynomials in the optical element coordinates w and l. Only recently, a method for the description of short range slope errors has been implemented. The accuracy of this method is evaluated and examples for realistic slope errors are given. PHASE can be run either from a built-in graphical user interface or from any script language. The latter method provides substantial flexibility. Optical elements including apertures can be combined. Complete wave packages can be propagated, as well. Fourier propagators are included in the package, thus, the user may choose between a variety of propagators. Several means to speed up the computation time were tested - among them are the parallelization in a multi core environment and the parallelization on a cluster.

  13. Pollution prevention initiatives at US EPA: 'Green Lights'

    International Nuclear Information System (INIS)

    Lawson, J.; Kwartin, R.

    1991-01-01

    US EPA is initiating a pollution prevention approach to supplement its historic command-control, regulatory approach to environmental protection. EPA believes polllution prevention, where applicable and possible, represents a quicker, less expensive and even profitable strategy for environmental protection. Most clearly, energy-efficiency provides an opportunity to prevent significant amounts of pollution related to the inefficeint generation and use of electricity. EPA's first energy productivity and pollution prevention program is Green Lights. Beyond its own merits, Green Lights will also provide important experience to EPA as it develops its Green Machines program to accelerate the market for efficient appliances and equipment

  14. Finger blood content, light transmission, and pulse oximetry errors.

    Science.gov (United States)

    Craft, T M; Lawson, R A; Young, J D

    1992-01-01

    The changes in light emitting diode current necessary to maintain a constant level of light incident upon a photodetector were measured in 20 volunteers at the two wavelengths employed by pulse oximeters. Three states of finger blood content were assessed; exsanguinated, hyperaemic, and normal. The changes in light emitting diode current with changes in finger blood content were small and are not thought to represent a significant source of error in saturation as measured by pulse oximetry.

  15. Manipulating the retrieved width of stored light pulses

    International Nuclear Information System (INIS)

    Chen Yongfan; Wang Shihhao; Wang Changyi; Yu, Ite A.

    2005-01-01

    We have systematically studied the method proposed by Patnaik et al. [Phys. Rev. A 69, 035803 (2004)] that manipulates the retrieval of stored light pulses. The measured probe pulse width of the retrieval is inversely proportional to the intensity of the reading field. We also show that the method does not introduce any phase shift or jump into the retrieved pulses. Our study demonstrates that the distortion at the output of the light storage can be corrected by manipulating the retrieval process and the phase information of the stored pulses can remain intact during the process

  16. Intense Pulsed Light (IPL) in Aesthetic Dermatology

    Science.gov (United States)

    Pytras, B.; Drozdowski, P.; Zub, K.

    2011-08-01

    Introduction. Newer and newer technologies have been widely developed in recent years due to increasing need for aesthetic medicine procedures. Less invasive methods of skin imperfection and time-related lesions removal, IPL (Intense Pulse Light) being one of them, are gaining more and more interest. The shorter the "downtime" for the patient is and the more efficient the procedure results, the more popular the method becomes. Materials and methods_Authors analyse the results of treatment of a 571 patients-group (501 women and 70 men) aged 5-72 years in the period: October 2006-August 2010. IPL™ Quantum (Lumenis Ltd.) device with 560 nm. cut-off filter was used. Results. The results were regarded as: very good, good or satisfying (%):Skin photoaging symptomes 37/40/23, Isolated facial dyschromia 30/55/25, Isolated facial erythema 62/34/4, Lower limbs teleangiectasia 12/36/52, Keratosis solaris on hands 100/-/-. Approximately half of the patients developed transitory erythema and 25%- transitory, mild, circumscribed oedema. Following undesirable effects were noted: skin thermal irritation (6,1% of the patients) and skin hypopigmentation (2% of the patients). Discussion. Results and post-treatment management proposed by authors are similar to those reported by other authors. Conclusions. Treatment results of the 571-patients group prove IPL to be a very efficient method of non-ablative skin rejuvenation. It turned out effective also in lower limbs teleangiectasia treatment. It presents low risk of transitory and mild side effects. Futhermore, with short or no downtime, it is well-tolerated by the patients.

  17. Slow light and pulse propagation in semiconductor waveguides

    DEFF Research Database (Denmark)

    Hansen, Per Lunnemann

    This thesis concerns the propagation of optical pulses in semiconductor waveguide structures with particular focus on methods for achieving slow light or signal delays. Experimental pulse propagation measurements of pulses with a duration of 180 fs, transmitted through quantum well based waveguide...... structures, are presented. Simultaneous measurements of the pulse transmission and delay are measured as a function of input pulse energy for various applied electrical potentials. Electrically controlled pulse delay and advancement are demonstrated and compared with a theoretical model. The limits...... of the model as well as the underlying physical mechanisms are analysed and discussed. A method to achieve slow light by electromagnetically induced transparency (EIT) in an inhomogeneously broadened quantum dot medium is proposed. The basic principles of EIT are assessed and the main dissimilarities between...

  18. Green light drives leaf photosynthesis more efficiently than red light in strong white light: revisiting the enigmatic question of why leaves are green.

    Science.gov (United States)

    Terashima, Ichiro; Fujita, Takashi; Inoue, Takeshi; Chow, Wah Soon; Oguchi, Riichi

    2009-04-01

    The literature and our present examinations indicate that the intra-leaf light absorption profile is in most cases steeper than the photosynthetic capacity profile. In strong white light, therefore, the quantum yield of photosynthesis would be lower in the upper chloroplasts, located near the illuminated surface, than that in the lower chloroplasts. Because green light can penetrate further into the leaf than red or blue light, in strong white light, any additional green light absorbed by the lower chloroplasts would increase leaf photosynthesis to a greater extent than would additional red or blue light. Based on the assessment of effects of the additional monochromatic light on leaf photosynthesis, we developed the differential quantum yield method that quantifies efficiency of any monochromatic light in white light. Application of this method to sunflower leaves clearly showed that, in moderate to strong white light, green light drove photosynthesis more effectively than red light. The green leaf should have a considerable volume of chloroplasts to accommodate the inefficient carboxylation enzyme, Rubisco, and deliver appropriate light to all the chloroplasts. By using chlorophylls that absorb green light weakly, modifying mesophyll structure and adjusting the Rubisco/chlorophyll ratio, the leaf appears to satisfy two somewhat conflicting requirements: to increase the absorptance of photosynthetically active radiation, and to drive photosynthesis efficiently in all the chloroplasts. We also discuss some serious problems that are caused by neglecting these intra-leaf profiles when estimating whole leaf electron transport rates and assessing photoinhibition by fluorescence techniques.

  19. Migratory bats respond to artificial green light with positive phototaxis.

    Directory of Open Access Journals (Sweden)

    Christian C Voigt

    Full Text Available Artificial light at night is spreading worldwide at unprecedented rates, exposing strictly nocturnal animals such as bats to a novel anthropogenic stressor. Previous studies about the effect of artificial light on bats focused almost exclusively on non-migratory species, yet migratory animals such as birds are known to be largely affected by light pollution. Thus, we conducted a field experiment to evaluate if bat migration is affected by artificial light at night. In late summer, we presented artificial green light of 520 nm wavelength to bats that were migrating south along the shoreline of the Baltic Sea. Using a light on-off treatment, we observed that the activity of Pipistrellus nathusii and P. pygmaeus, the two most abundant migratory species at our site, increased by more than 50% in the light-on compared to the light-off treatment. We observed an increased number of feeding buzzes during the light-on compared to the light-off treatment for P. nathusii. However, feeding activity was low in general and did not increase disproportionately during the light-on treatment in relation to the overall echolocation call activity of bats. Further, P. nathusii were attracted towards the green light at a distance of about 23 m, which is way beyond the echolocation detection range for insects of Nathusius' bats. We therefore infer that migratory bats were not attracted to artificial green light because of high insect densities, but instead by positive phototaxis. We conclude that artificial light at night may potentially impact bat migration in a yet unrecognized way.

  20. Adaptation of light-harvesting functions of unicellular green algae to different light qualities.

    Science.gov (United States)

    Ueno, Yoshifumi; Aikawa, Shimpei; Kondo, Akihiko; Akimoto, Seiji

    2018-05-28

    Oxygenic photosynthetic organisms perform photosynthesis efficiently by distributing captured light energy to photosystems (PSs) at an appropriate balance. Maintaining photosynthetic efficiency under changing light conditions requires modification of light-harvesting and energy-transfer processes. In the current study, we examined how green algae regulate their light-harvesting functions in response to different light qualities. We measured low-temperature time-resolved fluorescence spectra of unicellular green algae Chlamydomonas reinhardtii and Chlorella variabilis cells grown under different light qualities. By observing the delayed fluorescence spectra, we demonstrated that both types of green algae primarily modified the associations between light-harvesting chlorophyll protein complexes (LHCs) and PSs (PSII and PSI). Under blue light, Chlamydomonas transferred more energy from LHC to chlorophyll (Chl) located far from the PSII reaction center, while energy was transferred from LHC to PSI via different energy-transfer pathways in Chlorella. Under green light, both green algae exhibited enhanced energy transfer from LHCs to both PSs. Red light induced fluorescence quenching within PSs in Chlamydomonas and LHCs in Chlorella. In Chlorella, energy transfer from PSII to PSI appears to play an important role in balancing excitation between PSII and PSI.

  1. Carcinogenesis related to intense pulsed light and UV exposure

    DEFF Research Database (Denmark)

    Hedelund, L; Lerche, C; Wulf, H C

    2006-01-01

    This study examines whether intense pulsed light (IPL) treatment has a carcinogenic potential itself or may influence ultraviolet (UV)-induced carcinogenesis. Secondly, it evaluates whether UV exposure may influence IPL-induced side effects. Hairless, lightly pigmented mice (n=144) received three...

  2. Laser and intense pulsed light hair removal technologies

    DEFF Research Database (Denmark)

    Haedersdal, M; Beerwerth, F; Nash, J F

    2011-01-01

    Light-based hair removal (LHR) is one of the fastest growing, nonsurgical aesthetic cosmetic procedures in the United States and Europe. A variety of light sources including lasers, e.g. alexandrite laser (755 nm), pulsed diode lasers (800, 810 nm), Nd:YAG laser (1064 nm) and broad-spectrum intense...

  3. Light-pulse atom interferometric device

    Science.gov (United States)

    Biedermann, Grant; McGuinness, Hayden James Evans; Rakholia, Akash; Jau, Yuan-Yu; Schwindt, Peter; Wheeler, David R.

    2016-03-22

    An atomic interferometric device useful, e.g., for measuring acceleration or rotation is provided. The device comprises at least one vapor cell containing a Raman-active chemical species, an optical system, and at least one detector. The optical system is conformed to implement a Raman pulse interferometer in which Raman transitions are stimulated in a warm vapor of the Raman-active chemical species. The detector is conformed to detect changes in the populations of different internal states of atoms that have been irradiated by the optical system.

  4. Amplitude and phase control of attosecond light pulses

    International Nuclear Information System (INIS)

    Lopez-Martens, Rodrigo; Varju, Katalin; Johnsson, Per; Mauritsson, Johan; Persson, Anders; Svanberg, Sune; Wahlstroem, Claes-Goeran; L'Huillier, Anne; Mairesse, Yann; Salieres, Pascal; Gaarde, Mette B.; Schafer, Kenneth J.

    2005-01-01

    We report the generation, compression, and delivery on target of ultrashort extreme-ultraviolet light pulses using external amplitude and phase control. Broadband harmonic radiation is first generated by focusing an infrared laser with a carefully chosen intensity into a gas cell containing argon atoms. The emitted light then goes through a hard aperture and a thin aluminum filter that selects a 30-eV bandwidth around a 30-eV photon energy and synchronizes all of the components, thereby enabling the formation of a train of almost Fourier-transform-limited single-cycle 170 attosecond pulses. Our experiment demonstrates a practical method for synthesizing and controlling attosecond waveforms

  5. Generation of an incident focused light pulse in FDTD.

    Science.gov (United States)

    Capoğlu, Ilker R; Taflove, Allen; Backman, Vadim

    2008-11-10

    A straightforward procedure is described for accurately creating an incident focused light pulse in the 3-D finite-difference time-domain (FDTD) electromagnetic simulation of the image space of an aplanatic converging lens. In this procedure, the focused light pulse is approximated by a finite sum of plane waves, and each plane wave is introduced into the FDTD simulation grid using the total-field/scattered-field (TF/SF) approach. The accuracy of our results is demonstrated by comparison with exact theoretical formulas.

  6. SiPM response to long and intense light pulses

    Energy Technology Data Exchange (ETDEWEB)

    Vinogradov, S., E-mail: Sergey.Vinogradov@liverpool.ac.uk [University of Liverpool and Cockcroft Institute, Sci-Tech Daresbury, Keckwick Lane, Warrington WA4 4AD (United Kingdom); P.N. Lebedev Physical Institute of the Russian Academy of Sciences, 119991 Leninskiy prospekt 53, Moscow (Russian Federation); Arodzero, A. [Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139 (United States); RadiaBeam Technologies Inc., 1717 Stewart St., Santa Monica, CA 90404 (United States); Lanza, R.C. [Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139 (United States); Welsch, C.P. [University of Liverpool and Cockcroft Institute, Sci-Tech Daresbury, Keckwick Lane, Warrington WA4 4AD (United Kingdom)

    2015-07-01

    Recently Silicon Photomultipliers (SiPMs) have become well recognized as the detector of choice for various applications which demand good photon number resolution and time resolution of short weak light pulses in the nanosecond time scale. In the case of longer and more intensive light pulses, SiPM performance gradually degrades due to dark noise, afterpulsing, and non-instant cell recovering. Nevertheless, SiPM benefits are expected to overbalance their drawbacks in applications such as X-ray cargo inspection using Scintillation-Cherenkov detectors and accelerator beam loss monitoring with Cherenkov fibres, where light pulses of a microsecond time scale have to be detected with good amplitude and timing resolution in a wide dynamic range of 10{sup 5}–10{sup 6}. This report is focused on transient characteristics of a SiPM response on a long rectangular light pulse with special attention to moderate and high light intensities above the linear dynamic range. An analytical model of the transient response and an initial consideration of experimental results in comparison with the model are presented.

  7. The pulsed light inactivation of veterinary relevant microbial biofilms ...

    African Journals Online (AJOL)

    Results show that both Cryptosporidium and Giardia attach to biofilms in large numbers (100-1000 oo/cysts) in as little as 72 hours. Pulsed light successfully inactivated all test species (Listeria, Salmonella, Bacillus, Escherichia) in planktonic and biofilm form with an increase in inactivation for every increase in UV dose.

  8. Red light crossing, transportation time and attitudes in crossing with intelligent green light for pedestrians

    DEFF Research Database (Denmark)

    Øhlenschlæger, Rasmus; Tønning, Charlotte; Andersen, Camilla Sloth

    2018-01-01

    In order to increase mobility and promote modal shift to walking, intersections in the city of Aarhus, Denmark, have been equipped with intelligent management of green light for pedestrians. This allows adjustment of green time based on radar detection of pedestrians in the crossing...... and prolongation of the green time for the pedestrians if required. The effect is examined in a before/after study of a two-stage pedestrian crossing with a centre refuge island in an intersection of four-lane roads. The data consists of responses from an on-site questionnaire including 72+53 individuals and 266...

  9. Current indications and new applications of intense pulsed light.

    Science.gov (United States)

    González-Rodríguez, A J; Lorente-Gual, R

    2015-06-01

    Intense pulsed light (IPL) systems have evolved since they were introduced into medical practice 20 years ago. Pulsed light is noncoherent, noncollimated, polychromatic light energy emitted at different wavelengths that target specific chromophores. This selective targeting capability makes IPL a versatile therapy with many applications, from the treatment of pigmented or vascular lesions to hair removal and skin rejuvenation. Its large spot size ensures a high skin coverage rate. The nonablative nature of IPL makes it an increasingly attractive alternative for patients unwilling to accept the adverse effects associated with other procedures, which additionally require prolonged absence from work and social activities. In many cases, IPL is similar to laser therapy in effectiveness, and its versatility, convenience, and safety will lead to an expanded range of applications and possibilities in coming years. Copyright © 2014 Elsevier España, S.L.U. and AEDV. All rights reserved.

  10. Focusing of atoms with spatially localized light pulses

    International Nuclear Information System (INIS)

    Helseth, Lars Egil

    2002-01-01

    We theoretically study the focusing of atoms using strongly localized light pulses. It is shown that when inhomogenously polarized light is focused at high angular apertures, one may obtain useful potentials for atom focusing. Here we analyze the case of pulsed light potentials for red- and blue-detuned focusings of atoms. In particular, we show that the atomic beam aperture must be stopped considerably down in order to reduce the sidelobes of the atomic density, which is similar to the situation often encountered in conventional optics. It is suggested that an annular aperture in front of the atomic beam could be useful for increasing the resolution, at the cost of a lower atomic density

  11. The efficiency of photovoltaic cells exposed to pulsed laser light

    Science.gov (United States)

    Lowe, R. A.; Landis, G. A.; Jenkins, P.

    1993-01-01

    Future space missions may use laser power beaming systems with a free electron laser (FEL) to transmit light to a photovoltaic array receiver. To investigate the efficiency of solar cells with pulsed laser light, several types of GaAs, Si, CuInSe2, and GaSb cells were tested with the simulated pulse format of the induction and radio frequency (RF) FEL. The induction pulse format was simulated with an 800-watt average power copper vapor laser and the RF format with a frequency-doubled mode-locked Nd:YAG laser. Averaged current vs bias voltage measurements for each cell were taken at various optical power levels and the efficiency measured at the maximum power point. Experimental results show that the conversion efficiency for the cells tested is highly dependent on cell minority carrier lifetime, the width and frequency of the pulses, load impedance, and the average incident power. Three main effects were found to decrease the efficiency of solar cells exposed to simulated FEL illumination: cell series resistance, LC 'ringing', and output inductance. Improvements in efficiency were achieved by modifying the frequency response of the cell to match the spectral energy content of the laser pulse with external passive components.

  12. Electrical pulse burnout testing of light-emitting diodes

    International Nuclear Information System (INIS)

    Kalma, A.H.; Fischer, C.J.

    1975-01-01

    Electrical pulse burnout thresholds were measured in GaAs, GaAsP, and GaP light-emitting diodes (LEDs) by studying the degradation in light output and the change in I-V characteristics both during the pulse and in the steady state. Pulse widths ranging from a few hundred nsec to 100 μsec were used. Light output degradation was the most sensitive parameter and was used to determine the thresholds. Just above threshold, damage is caused by an increase in generation-recombination current in the space-charge retion. This current is non-radiative and the light output drops, but the damage is not catastrophic. At higher power, the junction burns through and shunt resistance paths are formed which more drastically degrade the light output. The experimental data match reasonably with the theoretical Wunsch--Bell/Tasca model if a burnout area of 1 / 10 the junction area is assumed. Both the adiabatic term (At -1 ) and the heat flow term (Bt - /sup 1 / 2 /) contribute in all devices, and the equilibrium term (C) contributes in some GaAsP devices. The scatter in the data for GaAs devices is greater than that for GaAsP devices, apparently because the former types have a significant fraction of mavericks with lower-than-normal thresholds. The use of LEDs to examine electrical pulse burnout is advantageous because the light output is quite sensitive to damage and the combined measurement of optical and electrical properties provides additional information about the mechanisms involved

  13. Road crossing behavior under traffic light conflict: Modulating effects of green light duration and signal congruency.

    Science.gov (United States)

    Lange, Florian; Haiduk, Michael; Boos, Moritz; Tinschert, Peter; Schwarze, Anke; Eggert, Frank

    2016-10-01

    A large number of pedestrians and cyclists regularly ignore the traffic lights to cross the road illegally. In a recent analysis, illegal road crossing behavior has been shown to be enhanced in the presence of incongruent stimulus configurations. Pedestrians and cyclists are more likely to cross against a red light when exposed to an irrelevant conflicting green light. Here, we present experimental and observational data on the factors moderating the risk associated with incongruent traffic lights. In an observational study, we demonstrated that the conflict-related increase in illegal crossing rates is reduced when pedestrian and cyclist green light periods are long. In a laboratory experiment, we manipulated the color of the irrelevant signals to expose participants to different degrees of incongruency. Results revealed that individuals' performance gradually varied as a function of incongruency, suggesting that the negative impact of a conflicting green light can be reduced by slightly adjusting its color. Our findings highlight that the observation of real-world behavior at intersections and the experimental analysis of psychological processes under controlled laboratory conditions can complement each other in identifying risk factors of risky road crossing behavior. Based on this combination, our study elaborates on promising measures to improve safety at signalized intersections. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Luminescence from potassium feldspars stimulated by infrared and green light

    DEFF Research Database (Denmark)

    Duller, G.A.T.; Bøtter-Jensen, L.

    1993-01-01

    A series of experiments are reported which investigate stimulated luminescence from potassium feldspar. The aim is to provide a basic phenomenological description of the response of the material to stimulation by heat, infrared radiation (875 DELTA 80 nm) and a green light wavelength band from 5 15...... to 560 nm. Two conclusions are drawn: firstly it is suggested that the majority of the trapped charge responsible for the infrared stimulated luminescence signal does not give rise to a thermoluminescence signal, and secondly that a large traction of the two optically stimulated luminescence signals...

  15. OPTIMALISASI EDITING GREEN SCREEN MENGGUNAKAN TEKNIK LIGHTING PADA CHROMA KEY

    Directory of Open Access Journals (Sweden)

    Arin Yuli Astuti

    2016-10-01

    Full Text Available In the film world greenscreen or bluescreen is already widely in use as a background making technology . Utilization of this technology is very great because filmmakers can imagine changing the background to the shape or the desired atmosphere without having to perform image capture directly to the location . Chroma key is a technique for combining two images made with a video camera as well , in which a background color of an image to remove (made transparent , was replaced by another image behind it. Deficiencies that exist in the chroma key is that at the time of editing of the hair . Here the author tries to do research on how to minimize the weaknesses mengilangkan edge portion of hair at the time of editing green screen by optimizing lighting / lighting .

  16. Green light may improve diagnostic accuracy of nailfold capillaroscopy with a simple digital videomicroscope.

    Science.gov (United States)

    Weekenstroo, Harm H A; Cornelissen, Bart M W; Bernelot Moens, Hein J

    2015-06-01

    Nailfold capillaroscopy is a non-invasive and safe technique for the analysis of microangiopathologies. Imaging quality of widely used simple videomicroscopes is poor. The use of green illumination instead of the commonly used white light may improve contrast. The aim of the study was to compare the effect of green illumination with white illumination, regarding capillary density, the number of microangiopathologies, and sensitivity and specificity for systemic sclerosis. Five rheumatologists have evaluated 80 images; 40 images acquired with green light, and 40 images acquired with white light. A larger number of microangiopathologies were found in images acquired with green light than in images acquired with white light. This results in slightly higher sensitivity with green light in comparison with white light, without reducing the specificity. These findings suggest that green instead of white illumination may facilitate evaluation of capillaroscopic images obtained with a low-cost digital videomicroscope.

  17. Sensitivity evaluation of the green alga Chlamydomonas reinhardtii to uranium by pulse amplitude modulated (PAM) fluorometry.

    Science.gov (United States)

    Herlory, Olivier; Bonzom, Jean-Marc; Gilbin, Rodolphe

    2013-09-15

    Although ecotoxicological studies tend to address the toxicity thresholds of uranium in freshwaters, there is a lack of information on the effects of the metal on physiological processes, particularly in aquatic plants. Knowing that uranium alters photosynthesis via impairment of the water photo-oxidation process, we determined whether pulse amplitude modulated (PAM) fluorometry was a relevant tool for assessing the impact of uranium on the green alga Chlamydomonas reinhardtii and investigated how and to what extent uranium hampered photosynthetic performance. Photosynthetic activity and quenching were assessed from fluorescence induction curves generated by PAM fluorometry, after 1 and 5h of uranium exposure in controlled conditions. The oxygen-evolving complex (OEC) of PSII was identified as the primary action site of uranium, through alteration of the water photo-oxidation process as revealed by F0/Fv. Limiting re-oxidation of the plastoquinone pool, uranium impaired the electron flux between the photosystems until almost complete inhibition of the PSII quantum efficiency ( [Formula: see text] , EC50=303 ± 64 μg UL(-1) after 5h of exposure) was observed. Non-photochemical quenching (qN) was identified as the most sensitive fluorescence parameter (EC50=142 ± 98 μg UL(-1) after 5h of exposure), indicating that light energy not used in photochemistry was dissipated in non-radiative processes. It was shown that parameters which stemmed from fluorescence induction kinetics are valuable indicators for evaluating the impact of uranium on PSII in green algae. PAM fluorometry provided a rapid and reasonably sensitive method for assessing stress response to uranium in microalgae. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Green Fluorescent Organic Light Emitting Device with High Luminance

    Directory of Open Access Journals (Sweden)

    Ning YANG

    2014-06-01

    Full Text Available In this work, we fabricated the small molecule green fluorescent bottom-emission organic light emitting device (OLED with the configuration of glass substrate/indium tin oxide (ITO/Copper Phthalocyanine (CuPc 25 nm/ N,N’-di(naphthalen-1-yl-N,N’-diphenyl-benzidine (NPB 45 nm/ tris(8-hydroxyquinoline aluminium (Alq3 60 nm/ Lithium fluoride (LiF 1 nm/Aluminum (Al 100 nm where CuPc and NPB are the hole injection layer and the hole transport layer, respectively. CuPc is introduced in this device to improve carrier injection and efficiency. The experimental results indicated that the turn-on voltage is 2.8 V with a maximum luminance of 23510 cd/m2 at 12 V. The maximum current efficiency and power efficiency are 4.8 cd/A at 100 cd/m2 and 4.2 lm/W at 3 V, respectively. The peak of electroluminance (EL spectrum locates at 530 nm which is typical emission peak of green light. In contrast, the maximum current efficiency and power efficiency of the device without CuPc are only 4.0 cd/A at 100 mA/cm2 and 4.2 lm/W at 3.6 V, respectively.

  19. Efficiency optimization of green phosphorescent organic light-emitting device

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jung Soo; Jeon, Woo Sik; Yu, Jae Hyung [Department of Information Display, Kyung Hee University, Dongdaemoon-gu, Seoul 130-701 (Korea, Republic of); Pode, Ramchandra, E-mail: rbpode@khu.ac.k [Department of Physics, Kyung Hee University, Dongdaemoon-gu, Seoul 130-701 (Korea, Republic of); Kwon, Jang Hyuk, E-mail: jhkwon@khu.ac.k [Department of Information Display, Kyung Hee University, Dongdaemoon-gu, Seoul 130-701 (Korea, Republic of)

    2011-03-01

    Using a narrow band gap host of bis[2-(2-hydroxyphenyl)-pyridine]beryllium (Bepp{sub 2}) and green phosphorescent Ir(ppy){sub 3} [fac-tris(2-phenylpyridine) iridium III] guest concentration as low as 2%, high efficiency phosphorescent organic light-emitting diode (PHOLED) is realized. Current and power efficiencies of 62.5 cd/A (max.), 51.0 lm/W (max.), and external quantum efficiency (max.) of 19.8% are reported in this green PHOLED. A low current efficiency roll-off value of 10% over the brightness of 10,000 cd/m{sup 2} is noticed in this Bepp{sub 2} single host device. Such a high efficiency is obtained by the optimization of the doping concentration with the knowledge of the hole trapping and the emission zone situations in this host-guest system. It is suggested that the reported device performance is suitable for applications in high brightness displays and lighting.

  20. Blood volume measurement with indocyanine green pulse spectrophotometry: dose and site of dye administration

    NARCIS (Netherlands)

    Germans, Menno R.; de Witt Hamer, Philip C.; van Boven, Leonard J.; Zwinderman, Koos A. H.; Bouma, Gerrit J.

    2010-01-01

    (1) To determine the optimal administration site and dose of indocyanine green (ICG) for blood volume measurement using pulse spectrophotometry, (2) to assess the variation in repeated blood volume measurements for patients after subarachnoid hemorrhage and (3) to evaluate the safety and efficacy of

  1. PLZT light transmittance memory driven with an asymmetric voltage pulse

    International Nuclear Information System (INIS)

    Inoue, Kazuhiko; Morita, Takeshi

    2010-01-01

    PLZT is a ferroelectric electro-optic material, which has been operated with a constant voltage supply to keep a certain optical property. In this study, we propose an optical transmittance memory effect by controlling the domain conditions. The keypoint is to use an asymmetric voltage pulse. In the positive direction, a sufficiently-large voltage is applied to align the polarization directions. After this operation, a relatively small light transmittance is memorized even after removing the electric field. On the other hand, in the negative direction, the amplitude of the voltage is adjusted to the coercive electric field. In this condition, the domain structure is almost the same as the depolarization state. With this voltage supply, the maximum light transmittance can be kept after removing the electric field. Using these voltage operations, the PLZT can obtain two light transmittance states depending on the domain structure. This memory effect should be useful for innovative optical scanners or shutters in the future.

  2. Carcinogenesis related to intense pulsed light and UV exposure

    DEFF Research Database (Denmark)

    Hedelund, L; Lerche, C; Wulf, H C

    2006-01-01

    This study examines whether intense pulsed light (IPL) treatment has a carcinogenic potential itself or may influence ultraviolet (UV)-induced carcinogenesis. Secondly, it evaluates whether UV exposure may influence IPL-induced side effects. Hairless, lightly pigmented mice (n=144) received three...... observation period. Side effects were evaluated clinically. No tumors appeared in untreated control mice or in just IPL-treated mice. Skin tumors developed in UV-exposed mice independently of IPL treatments. The time it took for 50% of the mice to first develop skin tumor ranged from 47 to 49 weeks...... in preoperative UV-exposed mice (p=0.94) and from 22 to 23 weeks in pre- and postoperative UV-exposed mice (p=0.11). IPL rejuvenation of lightly pigmented skin did not induce pigmentary changes (p=1.00). IPL rejuvenation of UV-pigmented skin resulted in an immediate increased skin pigmentation and a subsequent...

  3. γ-glutamyl transpeptidase 1 specifically suppresses green-light avoidance via GABAA receptors in Drosophila.

    Science.gov (United States)

    Liu, Jiangqu; Gong, Zhefeng; Liu, Li

    2014-08-01

    Drosophila larvae innately show light avoidance behavior. Compared with robust blue-light avoidance, larvae exhibit relatively weaker green-light responses. In our previous screening for genes involved in larval light avoidance, compared with control w(1118) larvae, larvae with γ-glutamyl transpeptidase 1 (Ggt-1) knockdown or Ggt-1 mutation were found to exhibit higher percentage of green-light avoidance which was mediated by Rhodopsin6 (Rh6) photoreceptors. However, their responses to blue light did not change significantly. By adjusting the expression level of Ggt-1 in different tissues, we found that Ggt-1 in malpighian tubules was both necessary and sufficient for green-light avoidance. Our results showed that glutamate levels were lower in Ggt-1 null mutants compared with controls. Feeding Ggt-1 null mutants glutamate can normalize green-light avoidance, indicating that high glutamate concentrations suppressed larval green-light avoidance. However, rather than directly, glutamate affected green-light avoidance indirectly through GABA, the level of which was also lower in Ggt-1 mutants compared with controls. Mutants in glutamate decarboxylase 1, which encodes GABA synthase, and knockdown lines of the GABAA receptor, both exhibit elevated levels of green-light avoidance. Thus, our results elucidate the neurobiological mechanisms mediating green-light avoidance, which was inhibited in wild-type larvae. © 2014 International Society for Neurochemistry.

  4. Fast light pulse measurements and temporal fluctuations in photomultipliers

    International Nuclear Information System (INIS)

    Miehe, J.A.; Sipp, B.

    1975-01-01

    This paper reviews the results on time fluctuations in high gain first dynode photomultipliers used in single photon timing experiments; the theoretical analysis of the measurement of the shape of light pulses is recalled and the previously obtained results concerning time dispersion in the photocathode, first dynode space are discussed. In addition, the influence of the variations of the electron transit time in the multiplier on the time resolution curves of the detector is examined: the curves obtained by leading-edge triggering of the anodic pulse show a strong dependence on the threshold level of the discriminator. A single-photoelectron timing resolution of 270ps is measured using a low leading edge discrimination [fr

  5. Imaging Electron Dynamics with Ultrashort Light Pulses: A Theory Perspective

    Directory of Open Access Journals (Sweden)

    Daria Popova-Gorelova

    2018-02-01

    Full Text Available A wide range of ultrafast phenomena in various atomic, molecular and condense matter systems is governed by electron dynamics. Therefore, the ability to image electronic motion in real space and real time would provide a deeper understanding of such processes and guide developments of tools to control them. Ultrashort light pulses, which can provide unprecedented time resolution approaching subfemtosecond time scale, are perspective to achieve real-time imaging of electron dynamics. This task is challenging not only from an experimental view, but also from a theory perspective, since standard theories describing light-matter interaction in a stationary regime can provide erroneous results in an ultrafast case as demonstrated by several theoretical studies. We review the theoretical framework based on quantum electrodynamics, which has been shown to be necessary for an accurate description of time-resolved imaging of electron dynamics with ultrashort light pulses. We compare the results of theoretical studies of time-resolved nonresonant and resonant X-ray scattering, and time- and angle-resolved photoelectron spectroscopy and show that the corresponding time-resolved signals encode analogous information about electron dynamics. Thereby, the information about an electronic system provided by these time-resolved techniques is different from the information provided by their time-independent analogues.

  6. Laser and intense pulsed light hair removal technologies

    DEFF Research Database (Denmark)

    Haedersdal, M; Beerwerth, F; Nash, J F

    2011-01-01

    devices have been sold directly to consumers for treatment in the home. In this review, we outline the principles underlying laser and IPL technologies and undertake an evidence-based assessment of the short- and long-term efficacy of the different devices available to the practising dermatologist...... pulsed light (IPL, 590-1200 nm), are available and used widely for such procedures in dermatological/clinical settings under proper supervision. Patient selection and appropriate fluence settings are managed by professionals to maximize efficacy while minimizing adverse events. In the past 5 years, LHR...

  7. Dissipative light-bullets in the filamentation of femtosecond pulses

    International Nuclear Information System (INIS)

    Porras, M.A.; Gonzalo, I.

    2010-01-01

    Complete text of publication follows. With the growing interest in filamentation in solid and liquid media, the regime of filamentation with anomalous dispersion is receiving more attention. In this work we show that basics aspects of the filament dynamics in this regime can be explained in terms of a novel type of light-bullet, which is not of solitary or of conical types, but a wave-packet that maximizes the energy dissipation into the medium while remaining localized and stationary in propagation. We first show that a nonlinear optical medium at a given carrier wave length at which dispersion is anomalous, supports 'dissipative' light-bullets, i.e., waves localized in space and time and that propagate without change as a result of a balance between nonlinear compression and nonlinear absorption. Among them, the particular dissipative light-bullet with the highest possible dissipation is unique in a given medium, in the sense that all its properties are fixed by the properties of the medium at the carrier wave length. In this light-bullet, self-focusing continuously transports energy towards the pulse center by an amount that just compensates for the nonlinear losses. Figure 1(a) shows the radial profiles of the dissipative light-bullets that maximizes energy dissipation for several orders of multi-photon absorption responsible for the nonlinear losses. We have also found that this dissipative light-bullet tends to be spontaneously formed in the filamentary dynamics in media with anomalous dispersion. Figure 1(b) shows the peak intensity, the total energy and losses of a pulse that undergoes self-focusing and filamentation in an ideal medium with only Kerr nonlinearity and multi-photon absorption. This simple model reproduces the particularly long filament 'segments' and the 'burst' observed in experiments and in more accurate simulations. The peak intensity in the filament is identical to that of the dissipative light-bullet with maximum dissipation, and the

  8. Western Pacific Regional Green Light Committee: progress and way forward

    Directory of Open Access Journals (Sweden)

    T. Islam

    2015-03-01

    Full Text Available The Western Pacific Regional Green Light Committee (rGLC WPR was established in 2011 to promote the rational scale-up of programmatic management of drug-resistant tuberculosis (PMDT. We reflect on its achievements, consider the challenges faced, and explore its potential future role. Achievements include the supervision and support of national PMDT action plans, increased local ownership, contextualized guidance, and a strong focus on regional capacity building, as well as a greater awareness of regional challenges. Future rGLC activities should include (1 advocacy for high-level political commitment; (2 monitoring, evaluation, and supervision; (3 technical support and contextualized guidance; and (4 training, capacity building, and operational research. Regional activities require close collaboration with both national and global efforts, and should be an important component of the new Global Drug-resistant TB Initiative.

  9. Structural studies on serum albumins under green light irradiation.

    Science.gov (United States)

    Comorosan, Sorin; Polosan, Silviu; Popescu, Irinel; Ionescu, Elena; Mitrica, Radu; Cristache, Ligia; State, Alina Elena

    2010-10-01

    This paper presents two new experimental results: the protective effect of green light (GL) on ultraviolet (UV) denaturation of proteins, and the effect of GL on protein macromolecular structures. The protective effect of GL was revealed on two serum albumins, bovine (BSA) and human (HSA), and recorded by electrophoresis, absorption, and circular dichroism spectra. The effect of GL irradiation on protein structure was recorded by using fluorescence spectroscopy and electrophoresis. These new effects were modeled by quantum-chemistry computation using Gaussian 03 W, leading to good fit between theoretical and experimental absorption and circular dichroism spectra. A mechanism for these phenomena is suggested, based on a double-photon absorption process. This nonlinear effect may lead to generation of long-lived Rydberg macromolecular systems, capable of long-range interactions. These newly suggested systems, with macroscopic quantum coherence behaviors, may block the UV denaturation processes.

  10. Light Dependent Resistance as a Sensor in Spectroscopy Setups Using Pulsed Light and Compared with Electret Microphones

    Directory of Open Access Journals (Sweden)

    Daniel Acosta-Avalos

    2006-05-01

    Full Text Available Light-dependent resistances (LDR are cheap light sensors. A less known lightdetector is the electret microphone, whose electret membrane functions as a perfectabsorber, but only detects pulsed light. The aim of this study was to analyze the use of aLDR and an electret microphone as a light sensor in an optical spectroscopy system usingpulsed light. A photoacoustic spectroscopy setup was used, substituting the photoacousticchamber by the light sensor proposed. The absorption spectra of two different liquids wereanalyzed. The results obtained allow the recommendation of the LDR as the first choice inthe construction of cheap homemade pulsed light spectroscopy systems.

  11. Sensitivity evaluation of the green alga Chlamydomonas reinhardtii to uranium by pulse amplitude modulated (PAM) fluorometry

    International Nuclear Information System (INIS)

    Herlory, Olivier; Bonzom, Jean-Marc; Gilbin, Rodolphe

    2013-01-01

    Highlights: •Our study addressed the toxicity thresholds of uranium on microalgae using PAM fluorometry. •The oxygen-evolving complex (OEC) of PSII was identified as the primary action site of uranium. •Uranium impaired the electron flux between the photosystems until almost complete inhibition. •Non-photochemical quenching was identified as the most sensitive fluorescence parameter. •PAM fluorometry provided a rapid and reasonably sensitive method for assessing stress response. -- Abstract: Although ecotoxicological studies tend to address the toxicity thresholds of uranium in freshwaters, there is a lack of information on the effects of the metal on physiological processes, particularly in aquatic plants. Knowing that uranium alters photosynthesis via impairment of the water photo-oxidation process, we determined whether pulse amplitude modulated (PAM) fluorometry was a relevant tool for assessing the impact of uranium on the green alga Chlamydomonas reinhardtii and investigated how and to what extent uranium hampered photosynthetic performance. Photosynthetic activity and quenching were assessed from fluorescence induction curves generated by PAM fluorometry, after 1 and 5 h of uranium exposure in controlled conditions. The oxygen-evolving complex (OEC) of PSII was identified as the primary action site of uranium, through alteration of the water photo-oxidation process as revealed by F 0 /F v . Limiting re-oxidation of the plastoquinone pool, uranium impaired the electron flux between the photosystems until almost complete inhibition of the PSII quantum efficiency (F ′ q /F ′ m , EC 50 = 303 ± 64 μg U L −1 after 5 h of exposure) was observed. Non-photochemical quenching (qN) was identified as the most sensitive fluorescence parameter (EC 50 = 142 ± 98 μg U L −1 after 5 h of exposure), indicating that light energy not used in photochemistry was dissipated in non-radiative processes. It was shown that parameters which stemmed from

  12. Sensitivity evaluation of the green alga Chlamydomonas reinhardtii to uranium by pulse amplitude modulated (PAM) fluorometry

    Energy Technology Data Exchange (ETDEWEB)

    Herlory, Olivier, E-mail: olivier.herlory@gmail.com [IRSN-Laboratoire d’Ecotoxicologie des Radionucléides, Centre de Cadarache, BP3, 13115 Saint Paul lez Durance (France); Bonzom, Jean-Marc, E-mail: jean-marc.bonzom@irsn.fr [IRSN-Laboratoire d’Ecotoxicologie des Radionucléides, Centre de Cadarache, BP3, 13115 Saint Paul lez Durance (France); Gilbin, Rodolphe, E-mail: rodolphe.gilbin@irsn.fr [IRSN-Laboratoire de Biogéochimie, Biodisponibilité et Transferts des Radionucléides, Centre de Cadarache, BP3, 13115 Saint Paul lez Durance (France)

    2013-09-15

    Highlights: •Our study addressed the toxicity thresholds of uranium on microalgae using PAM fluorometry. •The oxygen-evolving complex (OEC) of PSII was identified as the primary action site of uranium. •Uranium impaired the electron flux between the photosystems until almost complete inhibition. •Non-photochemical quenching was identified as the most sensitive fluorescence parameter. •PAM fluorometry provided a rapid and reasonably sensitive method for assessing stress response. -- Abstract: Although ecotoxicological studies tend to address the toxicity thresholds of uranium in freshwaters, there is a lack of information on the effects of the metal on physiological processes, particularly in aquatic plants. Knowing that uranium alters photosynthesis via impairment of the water photo-oxidation process, we determined whether pulse amplitude modulated (PAM) fluorometry was a relevant tool for assessing the impact of uranium on the green alga Chlamydomonas reinhardtii and investigated how and to what extent uranium hampered photosynthetic performance. Photosynthetic activity and quenching were assessed from fluorescence induction curves generated by PAM fluorometry, after 1 and 5 h of uranium exposure in controlled conditions. The oxygen-evolving complex (OEC) of PSII was identified as the primary action site of uranium, through alteration of the water photo-oxidation process as revealed by F{sub 0}/F{sub v}. Limiting re-oxidation of the plastoquinone pool, uranium impaired the electron flux between the photosystems until almost complete inhibition of the PSII quantum efficiency (F{sup ′}{sub q}/F{sup ′}{sub m}, EC{sub 50} = 303 ± 64 μg U L{sup −1} after 5 h of exposure) was observed. Non-photochemical quenching (qN) was identified as the most sensitive fluorescence parameter (EC{sub 50} = 142 ± 98 μg U L{sup −1} after 5 h of exposure), indicating that light energy not used in photochemistry was dissipated in non-radiative processes. It was shown

  13. The Use of Light-Emitting Diodes (LEDs) as Green and Red/Far-Red Light Sources in Plant Physiology.

    Science.gov (United States)

    Jackson, David L.; And Others

    1985-01-01

    The use of green, red, and far-red light-emitting diodes (LEDs) as light sources for plant physiological studies is outlined and evaluated. Indicates that LED lamps have the advantage over conventional light sources in that they are lightweight, low-cost, portable, easily constructed, and do not require color filters. (Author/DH)

  14. Bright green light treatment of depression for older adults [ISRCTN69400161

    Directory of Open Access Journals (Sweden)

    Knickerbocker Nancy C

    2005-11-01

    Full Text Available Abstract Background Bright white light has been successfully used for the treatment of depression. There is interest in identifying which spectral colors of light are the most efficient in the treatment of depression. It is theorized that green light could decrease the intensity duration of exposure needed. Late Wake Treatment (LWT, sleep deprivation for the last half of one night, is associated with rapid mood improvement which has been sustained by light treatment. Because spectral responsiveness may differ by age, we examined whether green light would provide efficient antidepressant treatment in an elder age group. Methods We contrasted one hour of bright green light (1,200 Lux and one hour of dim red light placebo ( Results The protocol was completed by 33 subjects who were 59 to 80 years old. Mood improved on average 23% for all subjects, but there were no significant statistical differences between treatment and placebo groups. There were negligible adverse reactions to the bright green light, which was well tolerated. Conclusion Bright green light was not shown to have an antidepressant effect in the age group of this study, but a larger trial with brighter green light might be of value.

  15. Pulse radiolysis based on a femtosecond electron beam and a femtosecond laser light with double-pulse injection technique

    International Nuclear Information System (INIS)

    Yang Jinfeng; Kondoh, Takafumi; Kozawa, Takahiro; Yoshida, Youichi; Tagawa, Seiichi

    2006-01-01

    A new pulse radiolysis system based on a femtosecond electron beam and a femtosecond laser light with oblique double-pulse injection was developed for studying ultrafast chemical kinetics and primary processes of radiation chemistry. The time resolution of 5.2 ps was obtained by measuring transient absorption kinetics of hydrated electrons in water. The optical density of hydrated electrons was measured as a function of the electron charge. The data indicate that the double-laser-pulse injection technique was a powerful tool for observing the transient absorptions with a good signal to noise ratio in pulse radiolysis

  16. Pulsing blue light through closed eyelids: effects on acute melatonin suppression and phase shifting of dim light melatonin onset.

    Science.gov (United States)

    Figueiro, Mariana G; Plitnick, Barbara; Rea, Mark S

    2014-01-01

    Circadian rhythm disturbances parallel the increased prevalence of sleep disorders in older adults. Light therapies that specifically target regulation of the circadian system in principle could be used to treat sleep disorders in this population. Current recommendations for light treatment require the patients to sit in front of a bright light box for at least 1 hour daily, perhaps limiting their willingness to comply. Light applied through closed eyelids during sleep might not only be efficacious for changing circadian phase but also lead to better compliance because patients would receive light treatment while sleeping. Reported here are the results of two studies investigating the impact of a train of 480 nm (blue) light pulses presented to the retina through closed eyelids on melatonin suppression (laboratory study) and on delaying circadian phase (field study). Both studies employed a sleep mask that provided narrowband blue light pulses of 2-second duration every 30 seconds from arrays of light-emitting diodes. The results of the laboratory study demonstrated that the blue light pulses significantly suppressed melatonin by an amount similar to that previously shown in the same protocol at half the frequency (ie, one 2-second pulse every minute for 1 hour). The results of the field study demonstrated that blue light pulses given early in the sleep episode significantly delayed circadian phase in older adults; these results are the first to demonstrate the efficacy and practicality of light treatment by a sleep mask aimed at adjusting circadian phase in a home setting.

  17. Pulsed Light Accelerated Crosslinking versus Continuous Light Accelerated Crosslinking: One-Year Results

    Directory of Open Access Journals (Sweden)

    Cosimo Mazzotta

    2014-01-01

    Full Text Available Purpose. To compare functional results in two cohorts of patients undergoing epithelium-off pulsed (pl-ACXL and continuous light accelerated corneal collagen crosslinking (cl-ACXL with dextran-free riboflavin solution and high-fluence ultraviolet A irradiation. Design. It is a prospective, comparative, and interventional clinical study. Methods. 20 patients affected by progressive keratoconus were enrolled in the study. 10 eyes of 10 patients underwent an epithelium-off pl-ACXL by the KXL UV-A source (Avedro Inc., Waltham, MS, USA with 8 minutes (1 sec. on/1 sec. off of UV-A exposure at 30 mW/cm2 and energy dose of 7.2 J/cm2; 10 eyes of 10 patients underwent an epithelium-off cl-ACXL at 30 mW/cm2 for 4 minutes. Riboflavin 0.1% dextran-free solution was used for a 10-minutes corneal soaking. Patients underwent clinical examination of uncorrected distance visual acuity and corrected distance visual acuity (UDVA and CDVA, corneal topography and aberrometry (CSO EyeTop, Florence, Italy, corneal OCT optical pachymetry (Cirrus OCT, Zeiss Meditec, Jena, Germany, endothelial cells count (I-Conan Non Co Robot, and in vivo scanning laser confocal microscopy (Heidelberg, Germany at 1, 3, 6, and 12 months of follow-up. Results. Functional results one year after cl-ACXL and pl-ACXL demonstrated keratoconus stability in both groups. Functional outcomes were found to be better in epithelium-off pulsed light accelerated treatment together with showing a deeper stromal penetration. No endothelial damage was recorded during the follow-up in both groups. Conclusions. The study confirmed that oxygen represents the main driver of collagen crosslinking reaction. Pulsed light treatment optimized intraoperative oxygen availability improving postoperative functional outcomes compared with continuous light treatment.

  18. Electroluminescence dependence of the simplified green light organic light emitting diodes on in situ thermal treatment

    Energy Technology Data Exchange (ETDEWEB)

    Mu, Haichuan, E-mail: hcmu@ecust.edu.cn [Department of Physics, School of Science, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237 (China); Rao, Lu [Department of Physics, School of Science, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237 (China); Li, Weiling; Wei, Bin [Key Laboratory of Advanced Display and System Applications, Ministry of Education, School of Mechanics Engineering and Automation, Shanghai University, 149 Yanchang Road, Shanghai 200072 (China); Wang, Keke; Xie, Haifen [Department of Physics, School of Science, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237 (China)

    2015-12-01

    Highlights: • In-situ thermal treating the organic tri-layer (CBP/CBP:Ir(ppy){sub 3}/TPBi) of the green light PHOLED under various temperatures during the organic materials evaporation. • Investigating the effect of in situ thermal treatment on the electroluminescence (EL) performance of the green light PHOLED with tri-layer structures. • Provide an easy and practical way to improve the EL performance of the OLEDs without major modification of the organic materials and OLEDs structures required. - Abstract: Simplified multilayer green light phosphorescent organic light emitting diodes (PHOLED) with the structure of ITO/MoO{sub 3}(1 nm)/CBP(20 nm)/CBP:Ir(ppy){sub 3} (1 wt%) (15 nm)/TPBi(60 nm)/LiF(0.5 nm)/Al were fabricated via thermal evaporation and in situ thermal treatment (heating the OLED substrates to certain temperatures during the thermal evaporation of the organic materials) was performed. The effect of the in situ thermal treatment on the electroluminescence (EL) performance of the PHOLED was investigated. It was found that the OLED exhibited strong EL dependence on the thermal treatment temperatures, and their current efficiency was improved with the increasing temperature from room temperature (RT) to 69 °C and deteriorated with the further increasing temperature to 105 °C. At the brightness of 1000 cd/m{sup 2}, over 80% improvement of the current efficiency at the optimal thermal treatment temperature of 69 °C (64 cd/A) was demonstrated compared to that at RT (35 cd/A). Meanwhile, the tremendous influences of the in situ thermal treatment on the morphology of the multilayer CBP/CBP:Ir(ppy){sub 3}/TPBi were also observed. At the optimal thermal treatment temperature of 69 °C, the improvement of the EL performance could be ascribed to the enhancement of the electron and hole transporting in the CBP:Ir(ppy){sub 3} emitting layer, which suppressed the triplets self-quenching interactions and promoted the charge balance and excitons formation. The

  19. Comparative Study Between Intense Pulsed Light IPLAND Pulsed Dye Laser In The Treatment Of Striae Distensae

    International Nuclear Information System (INIS)

    El-Khalafawy, Gh.M.K.A.

    2013-01-01

    Pulsed dye laser (PDL) and Intense Pulsed Light (IPL) have been used to treat Striae Distensae (SD). Thirty patients with age ranging from 14 - 42 years were included in this study. Twenty patients were treated on one side of their bodies with PDL and on the other side with IPL while seven patients were treated on both sides by IPL and three patients were treated on both sides by PDL for five sessions with four weeks interval between sessions. Skin biopsies were stained with H and E, Masson Trichrome, Orcein, Alcian blue and anti-collagen I Α1. After both PDL and IPL treatments striae width was decreased and the texture was improved in a highly significant manners where P value was 0.001. Collagen expression was increased in a highly significant manner and P values were <0.001 and 0.004 after PDL and IPL treatments respectively. However, PDL induced expression of collagen I in a highly significant manner compared to the treatment with IPL where P values were <0.001 and 0.193 respectively. Striae rubra gave a superior response with either PDL or IPL compared to striae alba which was evaluated clinically by the width, color and texture, although the histological changes could not verify this consequence. Both PDL and IPL can enhance the clinical picture of striae through collagen stimulation therapeutic modalities

  20. Resonant scattering of green light enabled by Ag@TiO2 and its application in a green light projection screen.

    Science.gov (United States)

    Ye, Yiyang; Chen, Tupei; Zhen, Juyuan; Xu, Chen; Zhang, Jun; Li, Huakai

    2018-02-01

    The ability to selectively scatter green light is essential for an RGB transparent projection display, and this can be achieved by a silver-core, titania-shell nanostructure (Ag@TiO 2 ), based on the metallic nanoparticle's localized surface plasmon resonance. The ability to selectively scatter green light is shown in a theoretical design, in which structural optimization is included, and is then experimentally verified by characterization of a transparent film produced by dispersing such nanoparticles in a polymer matrix. A visual assessesment indicates that a high-quality green image can be clearly displayed on the transparent film. For completeness, a theoretical design for selective scattering of red light based on Ag@TiO 2 is also shown.

  1. Construction and temporal behaviour study of multi RLC intense light pulses for dermatological applications.

    Science.gov (United States)

    Hamoudi, Walid K; Ismail, Raid A; Shakir, Hussein A

    2017-10-01

    Driving a flash lamp in an intense pulsed light system requires a high-voltage DC power supply, capacitive energy storage and a flash lamp triggering unit. Single, double, triple and quadruple-mesh discharge and triggering circuits were constructed to provide intense light pulses of variable energy and time durations. The system was treated as [Formula: see text] circuit in some cases and [Formula: see text] circuit in others with a light pulse profile following the temporal behaviour of the exciting current pulse. Distributing the energy delivered to one lamp onto a number of LC meshes permitted longer current pulses, and consequently increased the light pulse length. Positive results were obtained when using the system to treat skin wrinkles.

  2. Generation of 46 W green-light by frequency doubling of 96 W picosecond unpolarized Yb-doped fiber amplifier

    Science.gov (United States)

    Qi, Yaoyao; Yu, Haijuan; Zhang, Jingyuan; Zhang, Ling; He, Chaojian; Lin, Xuechun

    2018-05-01

    We demonstrated a high efficiency and high average power picosecond green light source based on SHG (second harmonic generation) of an unpolarized ytterbium-doped fiber amplifier chain. Using single-pass frequency doubling in two temperature-tuned type-I phase-matching LBO crystals, we were able to generate 46 W, >70 ps pulses at 532 nm from a fundamental beam at 1064 nm, whose output is 96 W, 4.8 μJ, with a repetition frequency of 20 MHz and nearly diffraction limited. The optical conversion efficiency was ∼48% in a highly compact design. To the best of our knowledge, this is the first reported on ps green source through SHG of an unpolarized fiber laser with such a high output and high efficiency.

  3. Effects of dispersion and longitudinal chromatic aberration on the focusing of isodiffracting pulsed Gaussian light beam

    International Nuclear Information System (INIS)

    Deng Dongmei; Guo Hong; Han Dingan; Liu Mingwei; Li Changfu

    2005-01-01

    Taking into account the dispersion and the longitudinal chromatic aberration (LCA) of the material of the lens, focusing of isodiffracting pulsed Gaussian light beam through single lens is analyzed. The smaller the cycle number of the isodiffracting pulsed Gaussian light beam is, the higher the order of the material dispersion should be considered

  4. Moving picture recording and observation of femtosecond light pulse propagation using a rewritable holographic material

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Seiji; Takimoto, Tetsuya; Tosa, Kazuya; Kakue, Takashi [Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo, Kyoto 606-8585 (Japan); Awatsuji, Yasuhiro, E-mail: awatsuji@kit.ac.jp [Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo, Kyoto 606-8585 (Japan); Nishio, Kenzo [Advanced Technology Center, Kyoto Institute of Technology, Matsugasaki, Sakyo, Kyoto 606-8585 (Japan); Ura, Shogo [Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo, Kyoto 606-8585 (Japan); Kubota, Toshihiro [Kubota Holography Laboratory, Corporation, Nishihata 34-1-609, Ogura, Uji 611-0042 (Japan)

    2011-08-01

    We succeeded in recording and observing femtosecond light pulse propagation as a form of moving picture by means of light-in-flight recording by holography using a rewritable holographic material, for the first time. We used a femtosecond pulsed laser whose center wavelength and duration were 800 nm and {approx}120 fs, respectively. A photo-conductor plastic hologram was used as a rewritable holographic material. The femtosecond light pulse was collimated and obliquely incident to the diffuser plate. The behavior of the cross-section between the collimated femtosecond light pulse and the diffuser plate was recorded on the photo-conductor plastic hologram. We experimentally obtained a spatially and temporally continuous moving picture of the femtosecond light pulse propagation for 58.3 ps. Meanwhile, we also investigated the rewritable performance of the photo-conductor plastic hologram. As a result, we confirmed that ten-time rewriting was possible for a photo-conductor plastic hologram.

  5. Pulsing blue light through closed eyelids: effects on acute melatonin suppression and phase shifting of dim light melatonin onset

    Directory of Open Access Journals (Sweden)

    Figueiro MG

    2014-12-01

    Full Text Available Mariana G Figueiro, Barbara Plitnick, Mark S Rea Lighting Research Center, Rensselaer Polytechnic Institute, Troy, NY, USA Abstract: Circadian rhythm disturbances parallel the increased prevalence of sleep disorders in older adults. Light therapies that specifically target regulation of the circadian system in principle could be used to treat sleep disorders in this population. Current recommendations for light treatment require the patients to sit in front of a bright light box for at least 1 hour daily, perhaps limiting their willingness to comply. Light applied through closed eyelids during sleep might not only be efficacious for changing circadian phase but also lead to better compliance because patients would receive light treatment while sleeping. Reported here are the results of two studies investigating the impact of a train of 480 nm (blue light pulses presented to the retina through closed eyelids on melatonin suppression (laboratory study and on delaying circadian phase (field study. Both studies employed a sleep mask that provided narrowband blue light pulses of 2-second duration every 30 seconds from arrays of light-emitting diodes. The results of the laboratory study demonstrated that the blue light pulses significantly suppressed melatonin by an amount similar to that previously shown in the same protocol at half the frequency (ie, one 2-second pulse every minute for 1 hour. The results of the field study demonstrated that blue light pulses given early in the sleep episode significantly delayed circadian phase in older adults; these results are the first to demonstrate the efficacy and practicality of light treatment by a sleep mask aimed at adjusting circadian phase in a home setting. Keywords: circadian phase, dim light melatonin onset, light through closed eyelids, blue light, sleep

  6. Pump-beam-instability limits to Raman-gain-doublet ''fast-light'' pulse propagation

    International Nuclear Information System (INIS)

    Stenner, Michael D.; Gauthier, Daniel J.

    2003-01-01

    We investigate the behavior of a system for generating ''fast-light'' pulses in which a bichromatic Raman pumping beam is used to generate optical gain at two frequencies and a region of anomalous dispersion between them. It is expected that increasing the gain will increase the pulse advancement. However, as the gain increases, the pumping field becomes increasingly distorted, effectively limiting the pulse advancement. We observe as much as 12% of the input pump power converted to orthogonal polarization, broadening of the initially bichromatic pump field (25 MHz initial frequency separation) to more than 2.5 GHz, and a temporal collapse of the pump beam into an erratic train of sub-500-ps pulses. The instability is attributed to the combined effects of the cross modulation instability and stimulated Raman scattering. Extreme distortion of an injected pulse that should (absent the instability) experience an advancement of 21% of its width is observed. We conclude that the fast-light pulse advancement is limited to just a few percent of the pulse width using this pulse advancement technique. The limitation imposed by the instability is important because careful study of the information velocity in fast-light pulses requires that pulse advancement be large enough to distinguish the velocities of different pulse features. Possible methods for achieving pulse advancement by avoiding the distortion caused by the instability are discussed

  7. Rational Design of a Green-Light-Mediated Unimolecular Platform for Fast Switchable Acidic Sensing.

    Science.gov (United States)

    Zhou, Yunyun; Zou, Qi; Qiu, Jing; Wang, Linjun; Zhu, Liangliang

    2018-02-01

    A controllable sensing ability strongly connects to complex and precise events in diagnosis and treatment. However, imposing visible light into the molecular-scale mediation of sensing processes is restricted by the lack of structural relevance. To address this critical challenge, we present the rational design, synthesis, and in vitro studies of a novel cyanostyryl-modified azulene system for green-light-mediated fast switchable acidic sensing. The advantageous features of the design include a highly efficient green-light-driven Z/E-isomerization (a quantum yield up to 61.3%) for fast erasing chromatic and luminescent expressions and a superior compatibility with control of ratiometric protonation. Significantly, these merits of the design enable the development of a microfluidic system to perform a green-light-mediated reusable sensing function toward a gastric acid analyte in a miniaturized platform. The results may provide new insights for building future integrated green materials.

  8. Sensitivity of Seven Diverse Species to Blue and Green Light: Interactions with Photon Flux.

    Directory of Open Access Journals (Sweden)

    M Chase Snowden

    Full Text Available Despite decades of research, the effects of spectral quality on plant growth, and development are not well understood. Much of our current understanding comes from studies with daily integrated light levels that are less than 10% of summer sunlight thus making it difficult to characterize interactions between light quality and quantity. Several studies have reported that growth is increased under fluorescent lamps compared to mixtures of wavelengths from LEDs. Conclusions regarding the effect of green light fraction range from detrimental to beneficial. Here we report the effects of eight blue and green light fractions at two photosynthetic photon fluxes (PPF; 200 and 500 μmol m-2 s-1; with a daily light integral of 11.5 and 29 mol m-2 d-1 on growth (dry mass, leaf expansion, stem and petiole elongation, and whole-plant net assimilation of seven diverse plant species. The treatments included cool, neutral, and warm white LEDs, and combinations of blue, green and/or red LEDs. At the higher PPF (500, increasing blue light in increments from 11 to 28% reduced growth in tomato, cucumber, and pepper by 22, 26, and 14% respectively, but there was no statistically significant effect on radish, soybean, lettuce or wheat. At the lower PPF (200, increasing blue light reduced growth only in tomato (41%. The effects of blue light on growth were mediated by changes in leaf area and radiation capture, with minimal effects on whole-plant net-assimilation. In contrast to the significant effects of blue light, increasing green light in increments from 0 to 30% had a relatively small effect on growth, leaf area and net assimilation at either low or high PPF. Surprisingly, growth of three of the seven species was not reduced by a treatment with 93% green light compared to the broad spectrum treatments. Collectively, these results are consistent with a shade avoidance response associated with either low blue or high green light fractions.

  9. Generating shaped femtosecond pulses in the far infrared using a spatial light modulator and difference frequency generation

    CSIR Research Space (South Africa)

    Botha, N

    2010-08-31

    Full Text Available Femtosecond pulse shaping can be done by different kinds of pulse shapers, such as liquid crystal spatial light modulators (LC SLM), acousto optic modulators (AOM) and deformable and movable mirrors. A few applications where pulse shaping...

  10. Thermographic analysis of photodynamic therapy with intense pulsed light and needle-free injection photosensitizer delivery: an animal study

    Science.gov (United States)

    Requena, Michelle B.; Stringasci, Mirian D.; Pratavieira, Sebastião.; Vollet-Filho, José Dirceu; de Nardi, Andrigo B.; Escobar, Andre; da Rocha, Rozana W.; Bagnato, Vanderlei S.; de Menezes, Priscila F. C.

    2018-02-01

    The photodynamic therapy (PDT) is a therapeutic modality that depends mostly on photosensitizer (PS), light and molecular oxygen species. However, there are still technical limitations in clinical PDT that are under constant development, particularly concerning PS and light delivery. Intense Pulsed Light (IPL) sources are systems able to generate pulses of high energy with polychromatic light. IPL is a technique mainly used in the cosmetic area to perform various skin treatments for therapeutic and aesthetic applications. The goals of this study were to determine temperature variance during the application of IPL in porcine skin model, and the PDT effects using this light source with PS delivery by a commercial high pressure, needle-free injection system. The PSs tested were Indocyanine Green (ICG) and Photodithazine (PDZ), and the results showed an increase bellow 10 °C in the skin surface using a thermographic camera to measure. In conclusion, our preliminary study demonstrated that IPL associated with needle-free injection PS delivery could be a promising alternative to PDT.

  11. Phototherapy with blue and green mixed-light is as effective against unconjugated jaundice as blue light and reduces oxidative stress in the Gunn rat model.

    Science.gov (United States)

    Uchida, Yumiko; Morimoto, Yukihiro; Uchiike, Takao; Kamamoto, Tomoyuki; Hayashi, Tamaki; Arai, Ikuyo; Nishikubo, Toshiya; Takahashi, Yukihiro

    2015-07-01

    Phototherapy using blue light-emitting diodes (LED) is effective against neonatal jaundice. However, green light phototherapy also reduces unconjugated jaundice. We aimed to determine whether mixed blue and green light can relieve jaundice with minimal oxidative stress as effectively as either blue or green light alone in a rat model. Gunn rats were exposed to phototherapy with blue (420-520 nm), filtered blue (FB; 440-520 nm without 1.00), respectively. Blue plus green phototherapy is as effective as blue phototherapy and it attenuates irradiation-induced oxidative stress. Combined blue and green spectra might be effective against neonatal hyperbilirubinemia. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Effect of the light spectrum of various substrates for inkjet printed conductive structures sintered with intense pulsed light

    International Nuclear Information System (INIS)

    Weise, Dana; Mitra, Kalyan Yoti; Ueberfuhr, Peter; Baumann, Reinhard R.

    2015-01-01

    In this work, the novel method of intense pulsed light (IPL) sintering of a nanoparticle silver ink is presented. Various patterns are printed with the Inkjet technology on two flexible foils with different light spectra. One is a clear Polyethylenterephthalat [PET] foil and the second is a light brownish Polyimide [PI] foil. The samples are flashed with different parameters regarding to pulse intensity and pulse length. Microscopic images are indicating the impact of the flashing parameters and the different light spectra of the substrates on the sintered structures. Sheet and line resistance are measured and the conductivity is calculated. A high influence of the property of the substrate with respect to light absorption and thermal conductivity on the functionality of printed conductive structures could be presented. With this new method of IPL sintering, highly conductive inkjet printed silver patterns could be manufactured within milliseconds on flexible polymeric foils without damaging the substrate

  13. Bright green light treatment of depression for older adults [ISRCTN69400161

    OpenAIRE

    Loving, Richard T; Kripke, Daniel F; Knickerbocker, Nancy C; Grandner, Michael A

    2005-01-01

    Abstract Background Bright white light has been successfully used for the treatment of depression. There is interest in identifying which spectral colors of light are the most efficient in the treatment of depression. It is theorized that green light could decrease the intensity duration of exposure needed. Late Wake Treatment (LWT), sleep deprivation for the last half of one night, is associated with rapid mood improvement which has been sustained by light treatment. Because spectral respons...

  14. Green synthesis of selenium nanoparticles by excimer pulsed laser ablation in water

    OpenAIRE

    O. Van Overschelde; G. Guisbiers; R. Snyders

    2013-01-01

    Pure selenium nanoparticles were successfully synthesized by Liquid Phase - Pulsed Laser Ablation (LP-PLA) in de-ionized water. Excimer laser (248 nm) operating at low fluence (F ∼ 1 J/cm2) was used to generate colloidal solutions of selenium nanoparticles. The obtained selenium nanoparticles were characterized by UV-visible spectroscopy, Raman spectroscopy, Dynamic Light Scattering, and Transmission Electron Microscopy. We describe the multi-modal size distributions generated and use the cen...

  15. Solar Lighting Technologies for Highway Green Rest Areas in China: Energy Saving Economic and Environmental Evaluation

    Directory of Open Access Journals (Sweden)

    Xiaochun Qin

    2015-01-01

    Full Text Available In this paper, taking Lushan West Sea highway green rest area in Jiangxi Province of China as the case study, the suitable types, applicability, advantages, and effective methods of solar lighting technologies for highway rest area were determined based on the analysis of characteristics of highway green rest area. It was proved that solar lighting technologies including the natural light guidance system, solar LED lighting, and maximizing natural light penetration were quite suitable for highway rest area in terms of lighting effects and energy and economic efficiency. The illuminance comparison of light guidance system with electrical lighting was made based on the on-site experiment. Also, the feasibility of natural light guidance system was well verified in terms of the lighting demand of the visitor centre in the rest area by the illuminance simulation analysis. The evaluation of the energy saving, economic benefits, and environmental effects of solar lighting technologies for highway rest area was, respectively, made in detail. It was proved that the application of solar technology for green lighting of highway rest facilities not only could have considerable energy saving capacity and achieve high economic benefits, but also make great contributions to the reduction of environment pollution.

  16. Light storage in a doped solid enhanced by feedback-controlled pulse shaping

    International Nuclear Information System (INIS)

    Beil, F.; Buschbeck, M.; Heinze, G.; Halfmann, T.

    2010-01-01

    We report on experiments dealing with feedback-controlled pulse shaping to optimize the efficiency of light storage by electromagnetically induced transparency (EIT) in a Pr 3+ :Y 2 SiO 5 crystal. A learning loop in combination with an evolutionary algorithm permits the automatic determination of optimal temporal profiles of intensities and frequencies in the driving laser pulses (i.e., the probe and coupling pulses). As a main advantage, the technique finds optimal solutions even in the complicated multilevel excitation scheme of a doped solid, involving large inhomogeneous broadening. The learning loop experimentally determines optimal temporal intensity profiles of the coupling pulses for a given probe pulse. The optimized intensity pulse shapes enhance the light-storage efficiency in the doped solid by a factor of 2. The learning loop also determines a fast and efficient preparation pulse sequence, which serves to optically prepare the crystal prior to light-storage experiments. The optimized preparation sequence is 5 times faster than standard preparation sequences. Moreover, the optimized preparation sequence enhances the optical depth in the medium by a factor of 5. As a consequence, the efficiency of light storage also increases by another factor of 3. Our experimental data clearly demonstrate the considerable potential of feedback-controlled pulse shaping, applied to EIT-driven light storage in solid media.

  17. Cherenkov light as a source of photochemical reactions in irradiated solutions of nitrile of malachite green

    Energy Technology Data Exchange (ETDEWEB)

    Stuglik, Z; Grodkowski, J

    1986-10-01

    Experimental data on photochemical activity of Cherenkov light are presented. Malachite green leucocyanide was used to detect the photochemical effects. The G value of Cherenkov light from the region 200-330 nm (number of quanta formed per 100 eV absorbed energy of ionizing radiation) in ethanol was estimated to be in the range of 0.0027-0.049. 14 references.

  18. Cherenkov light as a source of photochemical reactions in irradiated solutions of nitrile of malachite green

    International Nuclear Information System (INIS)

    Stuglik, Z.; Grodkowski, J.

    1986-01-01

    Experimental data on photochemical activity of Cherenkov light are presented. Malachite green leucocyanide was used to detect the photochemical effects. The G value of Cherenkov light from the region 200-330 nm (number of quanta formed per 100 eV absorbed energy of ionizing radiation) in ethanol was estimated to be in the range of 0.0027-0.049. (author)

  19. Blue and Green Light-Induced Phototropism in Arabidopsis thaliana and Lactuca sativa L. Seedlings 1

    Science.gov (United States)

    Steinitz, Benjamin; Ren, Zhangling; Poff, Kenneth L.

    1985-01-01

    Exposure time-response curves for blue and green light-induced phototropic bending in hypocotyls of Arabidopsis thaliana (L.) Heynh. and Lactuca sativa L. seedlings are presented. These seedlings show significant phototropic sensitivity up to 540 to 550 nanometers. Since wave-lengths longer than 560 nanometers do not induce phototropic bending, it is suggested that the response to 510 to 550 nanometers light is mediated by the specific blue light photoreceptor of phototropism. We advise care in the use of green `safelights' for studies of phototropism. PMID:16664021

  20. Ultra Stable, Industrial Green Tailored Pulse Fiber Laser with Diffraction-limited Beam Quality for Advanced Micromachining

    International Nuclear Information System (INIS)

    Deladurantaye, P; Roy, V; Desbiens, L; Drolet, M; Taillon, Y; Galarneau, P

    2011-01-01

    We report on a novel pulsed fiber laser platform providing pulse shaping agility at high repetition rates and at a wavelength of 532 nm. The oscillator is based on the direct modulation of a seed laser diode followed by a chain of fiber amplifiers. Advanced Large Mode Area (LMA) fiber designs as well as proprietary techniques to mitigate non-linear effects enable output energy per pulse up to 100 μJ at 1064 nm with diffraction-limited beam quality and narrow line widths suitable for efficient frequency conversion. Ultra stable pulses with tailored pulse shapes were demonstrated in the green region of the spectrum at repetition rates higher than 200 kHz. Pulse durations between 2.5 ns and 640 ns are available, as well as pulse to pulse dynamic shape selection at repetition rates up to 1 MHz. The pulse energy stability at 532 nm is better than ± 1.5%, 3σ, over 10 000 pulses. Excellent beam characteristics were obtained. The M 2 parameter is lower than 1.05, the beam waist astigmatism and beam waist asymmetry are below 10% and below 8% respectively, with high stability over time. We foresee that the small spot size, high repetition rate and pulse tailoring capability of this platform will provide advantages to practitioners who are developing novel, advanced processes in many industrially important applications.

  1. Repetitive pulse accelerator technology for light ion inertial confinement fusion

    International Nuclear Information System (INIS)

    Buttram, M.T.

    1985-01-01

    This paper will overview the technologies being studied for a repetitively pulsed ICF accelerator. As presently conceived, power is supplied by rotating machinery providing 16 MJ in 1 ms. The generator output is transformed to 3 MV, then switched into a pulse compression system using laser triggered spark gaps. These must be synchronized to about 1 ns. Pulse compression is performed with saturable inductor switches, the output being 40 ns, 1.5 MV pulses. These are transformed to 30 MV in a self-magnetically insulated cavity adder structure. Space charge limited ion beams are drawn from anode plasmas with electron counter streaming being magnetically inhibited. The ions are ballistically focused into the entrances of guiding discharge channels for transport to the pellet. The status of component development from the prime power to the ion source will be reviewed

  2. Exposing broiler eggs to green, red and white light during incubation.

    Science.gov (United States)

    Archer, G S

    2017-07-01

    Previous work has shown that exposing broiler eggs to white light during incubation can improve hatchability and post-hatch animal welfare. It was hypothesized that due to how different wavelengths of light can affect avian physiology differently, and how pigmented eggshells filter light that different monochromatic wavelengths would have differential effects on hatchability and post-hatch animal welfare indicators. To determine, we incubated chicken eggs (n=6912) under either no light (dark), green light, red light or white light; the light level was 250 lux. White and red light were observed to increase hatch of fertile (P0.05). Fear response of during isolation and tonic immobility was reduced (P0.05) from dark incubated broilers. All light incubated broilers had lower (Phatchery efficiency and post-hatch animal welfare at the same time.

  3. Repetitive pulse accelerator technology for light ion inertial confinement fusion

    International Nuclear Information System (INIS)

    Buttram, M.T.

    1985-01-01

    Successful ignition of an inertial confinement fusion (ICF) pellet is calculated to require that several megajoules of energy be deposited in the pellet's centimeter-sized shell within 10 ns. This implies a driver power of several hundreds of terawatts and power density around 100 TW/cm 2 . The Sandia ICF approach is to deposit the energy with beams of 30 MV lithium ions. The first accelerator capable of producing these beams (PBFA II, 100 TW) will be used to study beam formation and target physics on a single pulse basis. To utilize this technology for power production, repetitive pulsing at rates that may be as high as 10 Hz will be required. This paper will overview the technologies being studied for a repetitively pulsed ICF accelerator. As presently conceived, power is supplied by rotating machinery providing 16 MJ in 1 ms. The generator output is transformed to 3 MV, then switched into a pulse compression system using laser triggered spark gaps. These must be synchronized to about 1 ns. Pulse compression is performed with saturable inductor switches, the output being 40 ns, 1.5 MV pulses. These are transformed to 30 MV in a self-magnetically insulated cavity adder structure. Space charge limited ion beams are drawn from anode plasmas with electron counter streaming being magnetically inhibited. The ions are ballistically focused into the entrances of guiding discharge channels for transport to the pellet. The status of component development from the prime power to the ion source will be reviewed

  4. Photocathode fatigue of L-24 PM head due to high intensity light pulses

    International Nuclear Information System (INIS)

    Bailey, K.F.

    1980-01-01

    The sensitivity of radiation detectors which utilizes photomultipliers was determined after exposing the multiplier phototubes to high intensity light pulses. Test results found that generally less than a 5% change was found

  5. High-power pulsed light ion beams for applications in fusion- and matter research

    International Nuclear Information System (INIS)

    Bluhm, H.; Karow, H.U.; Rusch, D.; Zieher, K.W.

    1982-01-01

    The foundations of ultrahigh-power pulse techniques are described together with the two pulse generators KALIF (Karlsruhe Light lion Facility) and Pollux of the INR. The physical principles and diagnostics of ion beam production are discussed as well as possible applications in the field of fusion research. (orig./HT) [de

  6. Can pulsed xenon ultraviolet light systems disinfect aerobic bacteria in the absence of manual disinfection?

    Science.gov (United States)

    Jinadatha, Chetan; Villamaria, Frank C; Ganachari-Mallappa, Nagaraja; Brown, Donna S; Liao, I-Chia; Stock, Eileen M; Copeland, Laurel A; Zeber, John E

    2015-04-01

    Whereas pulsed xenon-based ultraviolet light no-touch disinfection systems are being increasingly used for room disinfection after patient discharge with manual cleaning, their effectiveness in the absence of manual disinfection has not been previously evaluated. Our study indicates that pulsed xenon-based ultraviolet light systems effectively reduce aerobic bacteria in the absence of manual disinfection. These data are important for hospitals planning to adopt this technology as adjunct to routine manual disinfection. Published by Elsevier Inc.

  7. Lethal photosensitization of wound-associated microbes using indocyanine green and near-infrared light

    DEFF Research Database (Denmark)

    Omar, Ghada Said Mohammed; Wilson, Michael; Nair, Sean P.

    2008-01-01

    Background: The increase in resistance to antibiotics among disease-causing bacteria necessitates the development of alternative antimicrobial approaches such as the use of light-activated antimicrobial agents (LAAAs). Light of an appropriate wavelength activates the LAAA to produce cytotoxic...... of the bacteria. Conclusion: These findings imply that indocyanine green in combination with light from a nearinfrared laser may be an effective means of eradicating bacteria from wounds and burns....

  8. Pulse radiolysis of malachite green leucocyanide in alcoholic solvents, the influence of oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Grodkowski, J; Stuglik, Z; Wieczorek, G [Institute of Nuclear Chemistry and Technology, Warsaw (Poland)

    1992-04-01

    The solutions of malachite green leucocyanide (MGCN) in methanol, n-propanol and 2-propanol were investigated using pulse radiolysis. In the presence of oxygen, MG{sup +}-carbonium ions were radiolytically formed in two different time steps. The yield of MG{sup +} in the slower process was dependent on oxygen concentration and was proportional to the yield of intermediate MG radicals. The yield of MG was about ten times higher in 2-propanol than in methanol and n-propanol solutions. The reactants responsible for MG oxidation to MG{sup +} were RO{sub 2}, hydroxyalkylperoxyl radicals derived from alcohols. The rate constant for MG reaction with RO{sub 2} were estimated as (6.5{+-}1) x 10{sup 8}M{sup -1}s{sup -1}. The molar extinction coefficient of MG was calculated. (author).

  9. Pulse radiolysis of malachite green leucocyanide in alcoholic solvents, the influence of oxygen

    International Nuclear Information System (INIS)

    Grodkowski, J.; Stuglik, Z.; Wieczorek, G.

    1992-01-01

    The solutions of malachite green leucocyanide (MGCN) in methanol, n-propanol and 2-propanol were investigated using pulse radiolysis. In the presence of oxygen, MG + -carbonium ions were radiolytically formed in two different time steps. The yield of MG + in the slower process was dependent on oxygen concentration and was proportional to the yield of intermediate MG radicals. The yield of MG was about ten times higher in 2-propanol than in methanol and n-propanol solutions. The reactants responsible for MG oxidation to MG + were RO 2 , hydroxyalkylperoxyl radicals derived from alcohols. The rate constant for MG reaction with RO 2 were estimated as (6.5±1) x 10 8 M -1 s -1 . The molar extinction coefficient of MG was calculated. (author)

  10. Spectral effects of light-emitting diodes on plant growth and development: The importance of green and blue light

    Science.gov (United States)

    Cope, K. R.; Bugbee, B.

    2011-12-01

    Light-emitting diodes (LEDs) are an emerging technology for plant growth lighting. Due to their narrow spectral output, colored LEDs provide many options for studying the spectral effects of light on plants. Early on, efficient red LEDs were the primary focus of photobiological research; however, subsequent studies have shown that normal plant growth and development cannot be achieved under red light without blue light supplementation. More recent studies have shown that red and blue (RB) LEDs supplemented with green light increase plant dry mass. This is because green light transmits more effectively through the leaf canopy than red and blue light, thus illuminating lower plant leaves and increasing whole-plant photosynthesis. Red, green and blue (RGB) light can be provided by either a conventional white light source (such as fluorescent lights), a combination of RGB LEDs, or from recently developed white LEDs. White LEDs exceed the efficiency of fluorescent lights and have a comparable broad spectrum. As such, they have the potential to replace fluorescent lighting for growth-chamber-based crop production both on Earth and in space. Here we report the results of studies on the effects of three white LED types (warm, neutral and cool) on plant growth and development compared to combinations of RB and RGB LEDs. Plants were grown under two constant light intensities (200 and 500 μmol m-2 s-1). Temperature, environmental conditions and root-zone environment were uniformly maintained across treatments. Phytochrome photoequilbria and red/far-red ratios were similar among treatments and were comparable to conventional fluorescent lights. Blue light had a significant effect on both plant growth (dry mass gain) and development (dry mass partitioning). An increase in the absolute amount (μmol m-2 s-1) of blue light from 0-80 μmol m-2 s-1 resulted in a decrease in stem elongation, independent of the light intensity. However, an increase in the relative amount (%) of blue

  11. Pulsed electric field pretreatment of rapeseed green biomass (stems) to enhance pressing and extractives recovery.

    Science.gov (United States)

    Yu, X; Gouyo, T; Grimi, N; Bals, O; Vorobiev, E

    2016-01-01

    The objective of this study was to investigate the effects of pulsed electric field (PEF) pretreatment on the valorization of extractives (proteins and polyphenols) from rapeseed green biomass (stems) by pressing. The effect of pressure, electric field strength and pulse number on the juice expression yield, total polyphenols and total proteins content in the expressed juices were studied. Experiments conducted under optimal conditions (E = 8 kV/cm, tPEF = 2 ms, P = 10 bar) permitted to increase the juice expressed yield from 34% to 81%. Significant increases in total polyphenols content (0.48 vs. 0.10 g GAE/100g DM), in total proteins content (0.14 vs. 0.07 g BSA/100g DM) and in consolidation coefficient (9.0 × 10(-8) vs. 2.2 × 10(-8)m(2)/s) were also observed after PEF pretreatment. The recovered press cake was well dehydrated with an increase of dry matter content from 8.8% to 53.0%. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Green synthesis of selenium nanoparticles by excimer pulsed laser ablation in water

    Directory of Open Access Journals (Sweden)

    O. Van Overschelde

    2013-10-01

    Full Text Available Pure selenium nanoparticles were successfully synthesized by Liquid Phase - Pulsed Laser Ablation (LP-PLA in de-ionized water. Excimer laser (248 nm operating at low fluence (F ∼ 1 J/cm2 was used to generate colloidal solutions of selenium nanoparticles. The obtained selenium nanoparticles were characterized by UV-visible spectroscopy, Raman spectroscopy, Dynamic Light Scattering, and Transmission Electron Microscopy. We describe the multi-modal size distributions generated and use the centrifugation method to isolate the smallest nanoparticles (∼60 nm in diameter.

  13. Effect of Interface Nanotexture on Light Extraction of InGaN-Based Green Light Emitting Diodes

    International Nuclear Information System (INIS)

    Yao-Bo, Pan; Sheng-Li, Qi; Hao, Fang; Guo-Yi, Zhang; Mao-Sheng, Hao

    2010-01-01

    We report the enhancement of the light extraction of InGaN-based green light emitting diodes (LEDs) via the interface nanotexturing. The texture consists of high-density nanocraters on the surface of a sapphire substrate with an in situ etching. The width of nanocraters is about 0.5 μm and the depth is around 0.1 μm. It is demonstrated that the LEDs with interface texture exhibit about a 27% improvement in luminance intensity, compared with standard LEDs. High power InGaN-based green LEDs are obtained by using the interface nanotexture. An optical ray-tracing simulation is performed to investigate the effect of interface nanotexture on light extraction. (cross-disciplinary physics and related areas of science and technology)

  14. Speckle noise reduction on a laser projection display via a broadband green light source.

    Science.gov (United States)

    Yu, Nan Ei; Choi, Ju Won; Kang, Heejong; Ko, Do-Kyeong; Fu, Shih-Hao; Liou, Jiun-Wei; Kung, Andy H; Choi, Hee Joo; Kim, Byoung Joo; Cha, Myoungsik; Peng, Lung-Han

    2014-02-10

    A broadband green light source was demonstrated using a tandem-poled lithium niobate (TPLN) crystal. The measured wavelength and temperature bandwidth were 6.5 nm and 100 °C, respectively, spectral bandwidth was 36 times broader than the periodically poled case. Although the conversion efficiency was smaller than in the periodic case, the TPLN device had a good figure of merit owing to the extremely large bandwidth for wavelength and temperature. The developed broadband green light source exhibited speckle noise approximately one-seventh of that in the conventional approach for a laser projection display.

  15. Effect of nonlinear crystal thickness on the parameters of the autocorrelator of femtosecond light pulses

    International Nuclear Information System (INIS)

    Masalov, Anatolii V; Chudnovsky, Aleksandr V

    2004-01-01

    It is shown that the finite thickness of the second-harmonic crystal distorts the results of measurements in nonlinear autocorrelators intended for measuring the durations and fields of femtosecond light pulses mainly due to dispersive broadening (or compression) of the pulses being measured, as well as due to the group velocity mismatch between the fundamental and sum-frequency pulses. The refractive index dispersion of the crystal, scaled by half its thickness, distorts the pulse duration to a certain extent depending on its initial chirp and thus determines the width of the energy distribution recorded in the autocorrelator. As the crystal thickness increases, the group velocity mismatch leads to a transformation of the recorded distribution from the correlation function of intensity to the squared modulus of the field correlation function. In the case of Gaussian pulses, such a transformation does not affect significantly the recorded distribution. Errors of pulse duration measurements are estimated. (nonlinear optical phenomena)

  16. Light electric transformer to transform the size of particles contained in a gas flow into electrical pulses

    Energy Technology Data Exchange (ETDEWEB)

    Berber, V.A.; Zolotenko, V.A.; Naguev, E.N.; Pavlov, V.V.; Sokolov, V.E.; Syromyatnikov, A.N.; Eremenko, A.I.

    1979-08-09

    The equipment measures the air dust. The aerosol flow is hence irradiated with a convergent light bundle. Using mirrors and mechanically operable screens, it is possible to divert part of the light onto a photo receiver to produce electric pulses of the dispersly composed aerosols and another part onto a former for standardized light pulses. The accuracy of the measurement is increased by the stability of the standardized light pulses.

  17. Pulsed Light Stimulation Increases Boundary Preference and Periodicity of Episodic Motor Activity in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Shuang Qiu

    Full Text Available There is considerable interest in the therapeutic benefits of long-term sensory stimulation for improving cognitive abilities and motor performance of stroke patients. The rationale is that such stimulation would activate mechanisms of neural plasticity to promote enhanced coordination and associated circuit functions. Experimental approaches to characterize such mechanisms are needed. Drosophila melanogaster is one of the most attractive model organisms to investigate neural mechanisms responsible for stimulation-induced behaviors with its powerful accessibility to genetic analysis. In this study, the effect of chronic sensory stimulation (pulsed light stimulation on motor activity in w1118 flies was investigated. Flies were exposed to a chronic pulsed light stimulation protocol prior to testing their performance in a standard locomotion assay. Flies responded to pulsed light stimulation with increased boundary preference and travel distance in a circular arena. In addition, pulsed light stimulation increased the power of extracellular electrical activity, leading to the enhancement of periodic electrical activity which was associated with a centrally-generated motor pattern (struggling behavior. In contrast, such periodic events were largely missing in w1118 flies without pulsed light treatment. These data suggest that the sensory stimulation induced a response in motor activity associated with the modifications of electrical activity in the central nervous system (CNS. Finally, without pulsed light treatment, the wild-type genetic background was associated with the occurrence of the periodic activity in wild-type Canton S (CS flies, and w+ modulated the consistency of periodicity. We conclude that pulsed light stimulation modifies behavioral and electrophysiological activities in w1118 flies. These data provide a foundation for future research on the genetic mechanisms of neural plasticity underlying such behavioral modification.

  18. The role of lasers and intense pulsed light technology in dermatology

    Science.gov (United States)

    Husain, Zain; Alster, Tina S

    2016-01-01

    The role of light-based technologies in dermatology has expanded dramatically in recent years. Lasers and intense pulsed light have been used to safely and effectively treat a diverse array of cutaneous conditions, including vascular and pigmented lesions, tattoos, scars, and undesired hair, while also providing extensive therapeutic options for cosmetic rejuvenation and other dermatologic conditions. Dermatologic laser procedures are becoming increasingly popular worldwide, and demand for them has fueled new innovations and clinical applications. These systems continue to evolve and provide enhanced therapeutic outcomes with improved safety profiles. This review highlights the important roles and varied clinical applications that lasers and intense pulsed light play in the dermatologic practice. PMID:26893574

  19. Adult Tea Green Leafhoppers, Empoasca onukii (Matsuda), Change Behaviors under Varying Light Conditions.

    Science.gov (United States)

    Shi, Longqing; Vasseur, Liette; Huang, Huoshui; Zeng, Zhaohua; Hu, Guiping; Liu, Xin; You, Minsheng

    2017-01-01

    Insect behaviors are often influenced by light conditions including photoperiod, light intensity, and wavelength. Understanding pest insect responses to changing light conditions may help with developing alternative strategies for pest control. Little is known about the behavioral responses of leafhoppers (Hemiptera: Cicadellidae) to light conditions. The behavior of the tea green leafhopper, Empoasca onukii Matsuda, was examined when exposed to different light photoperiods or wavelengths. Observations included the frequency of locomotion and cleaning activities, and the duration of time spent searching. The results suggested that under normal photoperiod both female and male adults were generally more active in darkness (i.e., at night) than in light. In continuous darkness (DD), the locomotion and cleaning events in Period 1 (7:00-19:00) were significantly increased, when compared to the leafhoppers under normal photoperiod (LD). Leafhoppers, especially females, changed their behavioral patterns to a two day cycle under DD. Under continuous illumination (continuous quartz lamp light, yellow light at night, and green light at night), the activities of locomotion, cleaning, and searching were significantly suppressed during the night (19:00-7:00) and locomotion activities of both females and males were significantly increased during the day (7:00-19:00), suggesting a shift in circadian rhythm. Our work suggests that changes in light conditions, including photoperiod and wavelength, can influence behavioral activities of leafhoppers, potentially affecting other life history traits such as reproduction and development, and may serve as a method for leafhopper behavioral control.

  20. The role of lasers and intense pulsed light technology in dermatology

    Directory of Open Access Journals (Sweden)

    Husain Z

    2016-02-01

    Full Text Available Zain Husain,1 Tina S Alster1,2 1Department of Dermatology, Georgetown University Hospital, 2Washington Institute of Dermatologic Laser Surgery, Washington, DC, USA Abstract: The role of light-based technologies in dermatology has expanded dramatically in recent years. Lasers and intense pulsed light have been used to safely and effectively treat a diverse array of cutaneous conditions, including vascular and pigmented lesions, tattoos, scars, and undesired hair, while also providing extensive therapeutic options for cosmetic rejuvenation and other dermatologic conditions. Dermatologic laser procedures are becoming increasingly popular worldwide, and demand for them has fueled new innovations and clinical applications. These systems continue to evolve and provide enhanced therapeutic outcomes with improved safety profiles. This review highlights the important roles and varied clinical applications that lasers and intense pulsed light play in the dermatologic practice. Keywords: laser, intense pulsed light, treatment, dermatology, technology

  1. High-luminosity blue and blue-green gallium nitride light-emitting diodes.

    Science.gov (United States)

    Morkoç, H; Mohammad, S N

    1995-01-06

    Compact and efficient sources of blue light for full color display applications and lighting eluded and tantalized researchers for many years. Semiconductor light sources are attractive owing to their reliability and amenability to mass manufacture. However, large band gaps are required to achieve blue color. A class of compound semiconductors formed by metal nitrides, GaN and its allied compounds AIGaN and InGaN, exhibits properties well suited for not only blue and blue-green emitters, but also for ultraviolet emitters and detectors. What thwarted engineers and scientists from fabricating useful devices from these materials in the past was the poor quality of material and lack of p-type doping. Both of these obstacles have recently been overcome to the point where highluminosity blue and blue-green light-emitting diodes are now available in the marketplace.

  2. Effect of green light spectra on the reduction of retinal damage and stress in goldfish, Carassius auratus

    International Nuclear Information System (INIS)

    Song, Jin Ah; Kim, Na Na; Choi, Young Jae; Choi, Cheol Young

    2016-01-01

    We investigated the effect of light spectra on retinal damage and stress in goldfish using green (530 nm) and red (620 nm) light emitting diodes (LEDs) at three intensities each (0.5, 1.0, and 1.5 W/m"2). We measured the change in the levels of plasma cortisol and H_2O_2 and expression and levels of caspase-3. The apoptotic response of green and red LED spectra was assessed using the terminal transferase dUTP nick end labeling (TUNEL) assay. Stress indicator (cortisol and H_2O_2) and apoptosis-related genes (caspase-3) decreased in green light, but increased in red light with higher light intensities over time. The TUNEL assay revealed that more apoptotic cells were detected in outer nuclear layers after exposure to red LED over time with the increase in light intensity, than the other spectra. These results indicate that green light efficiently reduces retinal damage and stress, whereas red light induces it. Therefore, red light-induced retina damage may induce apoptosis in goldfish retina. -- Highlights: •Green light efficiently reduces retinal damage and stress. •Green spectra reduce caspase production and apoptosis. •Red light-induced retina damage may induce apoptosis in goldfish retina. •The retina of goldfish recognizes green spectra as a stable environment.

  3. Effect of green light spectra on the reduction of retinal damage and stress in goldfish, Carassius auratus

    Energy Technology Data Exchange (ETDEWEB)

    Song, Jin Ah; Kim, Na Na; Choi, Young Jae; Choi, Cheol Young, E-mail: choic@kmou.ac.kr

    2016-07-22

    We investigated the effect of light spectra on retinal damage and stress in goldfish using green (530 nm) and red (620 nm) light emitting diodes (LEDs) at three intensities each (0.5, 1.0, and 1.5 W/m{sup 2}). We measured the change in the levels of plasma cortisol and H{sub 2}O{sub 2} and expression and levels of caspase-3. The apoptotic response of green and red LED spectra was assessed using the terminal transferase dUTP nick end labeling (TUNEL) assay. Stress indicator (cortisol and H{sub 2}O{sub 2}) and apoptosis-related genes (caspase-3) decreased in green light, but increased in red light with higher light intensities over time. The TUNEL assay revealed that more apoptotic cells were detected in outer nuclear layers after exposure to red LED over time with the increase in light intensity, than the other spectra. These results indicate that green light efficiently reduces retinal damage and stress, whereas red light induces it. Therefore, red light-induced retina damage may induce apoptosis in goldfish retina. -- Highlights: •Green light efficiently reduces retinal damage and stress. •Green spectra reduce caspase production and apoptosis. •Red light-induced retina damage may induce apoptosis in goldfish retina. •The retina of goldfish recognizes green spectra as a stable environment.

  4. Using Pre-TMIn Treatment to Improve the Optical Properties of Green Light Emitting Diodes

    Directory of Open Access Journals (Sweden)

    Bing Xu

    2014-01-01

    Full Text Available We investigated the effects of pre-TMIn treatment on the optical properties of green light emitting diodes (LEDs. Although pre-TMIn treatment did not affect the epitaxial structure of quantum wells, it significantly improved the quality of the surface morphology relative to that of the untreated sample. Indium cluster can be seen by high-resolution transmission electron microscopy (HR-TEM, which is the explanation for the red-shift of photoluminescence (PL. Time-resolved photoluminescence measurements indicated that the sample prepared with pre-TMIn treatment had a shorter radiative decay time. As a result, the light output power of the treated green LED was higher than that of the conventional untreated one. Thus, pre-TMIn treatment appears to be a simple and efficient means of improving the performance of green LEDs.

  5. Growth and maturation of Penaeus indicus under blue and green light

    African Journals Online (AJOL)

    growth of the penaeid prawn Penaeus indicus was tested by comparing dim green ... light quantity and quality. tank size and/or handling stress. It was decided to ... Three circular, temperature-controlled 8000 e (2,8 m diameter) glass ... of eggs and nauplii in the water. Occasional ..... Penaeus vannamei Boone. J. expo mar.

  6. Excitation of random intense single-cycle light-pulse chains in optical fiber

    International Nuclear Information System (INIS)

    Ding, Y C; Zhang, F L; Gao, J B; Chen, Z Y; Lin, C Y; Yu, M Y

    2014-01-01

    Excitation of intense periodic single-cycle light pulses in a stochastic background arising from continuous wave stimulated Brillouin scattering (SBS) in a long optical fiber with weak optical feedback is found experimentally and modeled theoretically. Such intense light-pulse chains occur randomly and the optical feedback is a requirement for their excitation. The probability of these forms, among the large number of experimental output signals with identifiable waveforms, appearing is only about 3%, with the remainder exhibiting regular SBS characteristics. It is also found that pulses with low period numbers appear more frequently and the probability distribution for their occurrence in terms of the pulse power is roughly L-shaped, like that for rogue waves. The results from a three-wave-coupling model for SBS including feedback phase control agree well qualitatively with the observed phenomena. (paper)

  7. Pulsed, all solid-state light source in the visible spectral region based on non-linear cavity dumping

    DEFF Research Database (Denmark)

    Tidemand-Lichtenberg, Peter; Andersen, Martin; Johansson, Sandra

    We propose a novel generic approach for generation of pulsed light in the visible spectrum, based on SFG between the high circulating intra-cavity power of a high finesse CW laser and a single-passed pulsed laser.......We propose a novel generic approach for generation of pulsed light in the visible spectrum, based on SFG between the high circulating intra-cavity power of a high finesse CW laser and a single-passed pulsed laser....

  8. Green grasses as light harvesters in dye sensitized solar cells

    Science.gov (United States)

    Shanmugam, Vinoth; Manoharan, Subbaiah; Sharafali, A.; Anandan, Sambandam; Murugan, Ramaswamy

    2015-01-01

    Chlorophylls, the major pigments presented in plants are responsible for the process of photosynthesis. The working principle of dye sensitized solar cell (DSSC) is analogous to natural photosynthesis in light-harvesting and charge separation. In a similar way, natural dyes extracted from three types of grasses viz. Hierochloe Odorata (HO), Torulinium Odoratum (TO) and Dactyloctenium Aegyptium (DA) were used as light harvesters in dye sensitized solar cells (DSSCs). The UV-Vis absorption spectroscopy, Fourier transform infrared (FT-IR), and liquid chromatography-mass spectrometry (LC-MS) were used to characterize the dyes. The electron transport mechanism and internal resistance of the DSSCs were investigated by the electrochemical impedance spectroscopy (EIS). The performance of the cells fabricated with the grass extract shows comparable efficiencies with the reported natural dyes. Among the three types of grasses, the DSSC fabricated with the dye extracted from Hierochloe Odorata (HO) exhibited the maximum efficiency. LC-MS investigations indicated that the dominant pigment present in HO dye was pheophytin a (Pheo a).

  9. Green grasses as light harvesters in dye sensitized solar cells.

    Science.gov (United States)

    Shanmugam, Vinoth; Manoharan, Subbaiah; Sharafali, A; Anandan, Sambandam; Murugan, Ramaswamy

    2015-01-25

    Chlorophylls, the major pigments presented in plants are responsible for the process of photosynthesis. The working principle of dye sensitized solar cell (DSSC) is analogous to natural photosynthesis in light-harvesting and charge separation. In a similar way, natural dyes extracted from three types of grasses viz. Hierochloe Odorata (HO), Torulinium Odoratum (TO) and Dactyloctenium Aegyptium (DA) were used as light harvesters in dye sensitized solar cells (DSSCs). The UV-Vis absorption spectroscopy, Fourier transform infrared (FT-IR), and liquid chromatography-mass spectrometry (LC-MS) were used to characterize the dyes. The electron transport mechanism and internal resistance of the DSSCs were investigated by the electrochemical impedance spectroscopy (EIS). The performance of the cells fabricated with the grass extract shows comparable efficiencies with the reported natural dyes. Among the three types of grasses, the DSSC fabricated with the dye extracted from Hierochloe Odorata (HO) exhibited the maximum efficiency. LC-MS investigations indicated that the dominant pigment present in HO dye was pheophytin a (Pheo a). Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Techniques and training with GreenLight HPS120-W laser therapy of the prostate: Position paper

    NARCIS (Netherlands)

    Muir, Gordon; Gomez Sancha, Fernando; Bachmann, Alexander; Choi, Benjamin; Collins, Edward; de la Rosette, Jean; Reich, Oliver; Tabatabaei, Shahin; Woo, Henry

    2008-01-01

    We report the technical recommendations of the International GreenLight User Group on photoselective vaporization of the prostate in men with benign prostatic hyperplasia using the GreenLight HPS system (American Medical Systems, Minnetonka, Minnesota, USA). This high-power system employs a 120-W

  11. Controlled light localisation and nonlinear-optical interactions of short laser pulses in holey fibres

    International Nuclear Information System (INIS)

    Fedotov, Andrei B; Zheltikov, Aleksei M; Golovan', Leonid A; Kashkarov, Pavel K; Tarasevitch, A P; Podshivalov, Alexey A; Alfimov, Mikhail V; Ivanov, Anatoliy A; Beloglazov, V I; Haus, J W; Linde, D von der

    2001-01-01

    The influence of the structure of holey-fibre cladding on the effective waveguide mode area and the spectral broadening of femtosecond pulses of titanium-sapphire and forsterite lasers is experimentally studied. These experiments demonstrate that the increase in the air-filling fraction of the holey-fibre cladding may substantially enhance the spectral broadening of laser pulses due to the increase in the degree of light localisation in the fibre core. (femtosecond technologies)

  12. Efficacy of intense pulse light therapy and tripple combination cream versus intense pulse light therapy and tripple combination cream alone in epidermal melasma treatment

    International Nuclear Information System (INIS)

    Shakeeb, N.; Noor, S.M.; Paracha, M.M.; Ullah, G.

    2018-01-01

    Objective:To compare the efficacy of intense pulse light therapy (IPL) and triple combination cream (TCC) versus intense pulse light therapy and triple combination cream alone in epidermal melasma treatment, downgrading MASI score to more than 10. Study Design:Randomized controlled trial. Place and Duration of Study:Dermatology Department, Lady Reading Hospital, Peshawar, from August 2014 to January 2015. Methodology:Patients of 18-45 years were included in the study with Fitzpatrick skin type II-V. Sample of 96 patients was divided in to three groups of 32 each, through consecutive (non-probability) sampling method. Detailed history was taken, Woods Lamp Examination done, and melasma area and severity index (MASI) score was calculated. TCC had to be applied daily at night for two months by group A patients while group B was consigned for IPL therapy fortnightly, and those in group C were given both for two months. Efficacy was compared by recalculating MASI score at treatment end as well as at follow-up after 4 weeks, using Chi-square test with significance at p < 0.05. Results:Male and female patients were 10 (31.2%) and 22 (68.8%) in group A, 7 (21.9%) and 25 (78.1%) in group B, while in group C were 12 (37.5%) and 20 (62.5%). The average age was 28.70 +8.70 years. MASI score reduction was achieved in 22 (68.8%) patients in group A; whereas, in 20 (62.5%) and 30(93.8%) patients in group B and C, respectively. Efficacy-wise distribution was significant (p=0.009). Conclusion:Intense pulse light therapy and triple combination cream are more efficacious in epidermal melasma treatment than intense pulse light therapy and triple combination cream alone. (author)

  13. A simple sub-nanosecond ultraviolet light pulse generator with high repetition rate and peak power.

    Science.gov (United States)

    Binh, P H; Trong, V D; Renucci, P; Marie, X

    2013-08-01

    We present a simple ultraviolet sub-nanosecond pulse generator using commercial ultraviolet light-emitting diodes with peak emission wavelengths of 290 nm, 318 nm, 338 nm, and 405 nm. The generator is based on step recovery diode, short-circuited transmission line, and current-shaping circuit. The narrowest pulses achieved have 630 ps full width at half maximum at repetition rate of 80 MHz. Optical pulse power in the range of several hundreds of microwatts depends on the applied bias voltage. The bias voltage dependences of the output optical pulse width and peak power are analysed and discussed. Compared to commercial UV sub-nanosecond generators, the proposed generator can produce much higher pulse repetition rate and peak power.

  14. A broadband Soleil-Babinet compensator for ultrashort light pulses

    Science.gov (United States)

    Xu, Shixiang; Ma, Yingkun; Cai, Yi; Lu, Xiaowei; Zeng, Xuanke; Chen, Hongyi; Li, Jingzhen

    2013-12-01

    This letter reports a novel design for a broadband Soleil-Babinet compensator including two pairs of optical wedges plus one plate. According to our birefringent dispersion compensation model, we can eliminate the first-order birefringent phase retardation (BPR) dispersion by using three different birefringent crystals. Our results show a Soleil-Babinet compensator based on a MgF2/ADP/KDP combination can work from 0° to 360° phase compensation with the maximal residual BPR less than 6° within the spectral region from 0.65 to 0.95 μm. The residual BPR of the compensator increases monotonically with the spectral deviation from the designed central wavelength, so our compensator is very suitable to be used for broadband laser pulses with most of their energies around the central wavelengths.

  15. A broadband Soleil–Babinet compensator for ultrashort light pulses

    International Nuclear Information System (INIS)

    Xu, Shixiang; Ma, Yingkun; Cai, Yi; Lu, Xiaowei; Zeng, Xuanke; Chen, Hongyi; Li, Jingzhen

    2013-01-01

    This letter reports a novel design for a broadband Soleil–Babinet compensator including two pairs of optical wedges plus one plate. According to our birefringent dispersion compensation model, we can eliminate the first-order birefringent phase retardation (BPR) dispersion by using three different birefringent crystals. Our results show a Soleil–Babinet compensator based on a MgF 2 /ADP/KDP combination can work from 0° to 360° phase compensation with the maximal residual BPR less than 6° within the spectral region from 0.65 to 0.95 μm. The residual BPR of the compensator increases monotonically with the spectral deviation from the designed central wavelength, so our compensator is very suitable to be used for broadband laser pulses with most of their energies around the central wavelengths. (letter)

  16. Light reflection from crystal platelets in iridophores determines green or brown skin coloration in Takydromus lizards.

    Science.gov (United States)

    Kuriyama, Takeo; Esashi, Jyunko; Hasegawa, Masami

    2017-04-01

    Brown and green are the most commonly imitated colors in prey animals because both colors occur in a range of habitats. Many researchers have evaluated survival with respect to background color matching, but the pigment cell mechanisms underlying such coloration are not known. Dorsal coloration of East Asian Takydromus lizards has shifted from green to brown or from brown to green on multiple occasions during the diversification of the genus, thus giving us an opportunity to examine the cellular mechanisms of background color matching. Brown and green skin were found to differ with respect to the morphological characteristics of iridophores, with different thicknesses of the reflecting platelets and the cytoplasmic spacing between platelets, despite a shared vertical arrangement of pigment cells, i.e., xanthophores in the upper layer, iridophores in the middle layer, and melanophores at the bottom of the dermal layer, among the different Takydromus lizards. Iridophores of brown skin reflected longer wavelengths of light than those of green skin, which may be attributed to the thicker platelets and longer distances between platelets in brown skin. We discuss the potential role of genetic and intracellular mechanisms explaining the thickness and orientation of the light-reflecting platelets of iridophores in Takydromus lizards. Copyright © 2016 Elsevier GmbH. All rights reserved.

  17. The retardation by gamma irradiation of greening in potatoes exposed to fluorescent lighting

    International Nuclear Information System (INIS)

    Beyers, M.

    1981-01-01

    The optimum gamma irradiation treatments for the inhibition of greening of unwashed Up-to-Date potatoes exposed to continuous fluorescent lighting were 0,15 and 0,20 kGy. The 0,15 and 0,20 kGy treated potatoes took 8,7 and 10,3 d longer respectively than the controls for 50% of the potatoes to turn green. The results were verified by chlorophyll determinations. The solanine content of the γ-irradiated potatoes did not differ significantly from that of the controls during the period of exposure. Gamma irradiated tubers which were removed from continuous fluorescent lighting after 7 d to 'household' conditions of daylight and fluorescent light alternated with darkness maintained the quality of day 7 for at least another 16 d. Factors such as washing, packaging, display temperature, post-irradiation pre-illumination storage and cultivar differences did not detract from the effectiveness of γ-irradiation in retarding the greening of potatoes. A comparison of γ-irradiation with dipping inedible oil showed the latter treatment to be more effective than irradiation in inhibiting greening but the treatment caused serious rotting. No difference in the taste or colour of irradiated and nonirradiated potatoes cooked in various ways could be detected [af

  18. The light ion pulsed power induction accelerator for ETF

    International Nuclear Information System (INIS)

    Mazarakis, M.G.; Olson, R.E.; Olson, C.L.; Smith, D.L.; Bennett, L.F.

    1994-01-01

    Our Engineering Test Facility (ETF) driver concept is based on HERMES III and RHEPP technologies. Actually, it is a scaled-down version of the LMF design incorporating repetition rate capabilities of up to 10 Hz CW. The preconceptual design presented here provides 200-TW peak power to the ETF target during 10 ns, equal to 2-MJ total ion beam energy. Linear inductive voltage addition driving a self-magnetically insulated transmission line (MITL) is utilized to generate the 36-MV peak voltage needed for lithium ion beams. The ∼ 3-MA ion current is achieved by utilizing many accelerating modules in parallel. Since the current per module is relatively modest (∼300 kA), two-stage or one-stage extraction diodes can be utilized for the generation of singly charged lithium ions. The accelerating modules are arranged symmetrically around the fusion chamber in order to provide uniform irradiation onto the ETF target. In addition, the modules are fired in a programmed sequence in order to generate the optimum power pulse shape onto the target. This design utilizes RHEPP accelerator modules as the principal power source

  19. Formation of an intermediate radical cation in the nanosecond pulse radiolysis of malachite green leucocyanide in organic solvents

    International Nuclear Information System (INIS)

    Grodkowski, J.; Bobrowski, K.; Mehnert, R.; Brede, O.

    1989-01-01

    The malachite green leucocyanide (MGCN) was irradiated in argon or oxygen saturated solutions of n-butyl chloride, 1.2-DCE, CCl 4 and acetone with 13 ns electron pulses. Two species with absorption maxima at 620 and 480 nm were observed. The latter was attributed to the malachite green leucocyanide radical cation (MGCN +radical ) and the former to the known carbonium ion of malachite green dye (MG + ). Observation of the consecutive charge transfer via the schemes: DCE +radical → BPh +radical → MGCN +radical and DCE +radical → MGCN +radical → TMPD +radical , allowed to estimate the ionization potential of MGCN molecule in the range 6.9 eV MGCN +radical radical cation is located in the ''aniline'' part of the molecule. (author)

  20. Formation of an intermediate radical cation in the nanosecond pulse radiolysis of malachite green leucocyanide in organic solvents

    Energy Technology Data Exchange (ETDEWEB)

    Grodkowski, J; Bobrowski, K; Mehnert, R; Brede, O

    1989-01-01

    The malachite green leucocyanide (MGCN) was irradiated in argon or oxygen saturated solutions of n-butyl chloride, 1.2-DCE, CCl/sub 4/ and acetone with 13 ns electron pulses. Two species with absorption maxima at 620 and 480 nm were observed. The latter was attributed to the malachite green leucocyanide radical cation (MGCN/sup +radical/) and the former to the known carbonium ion of malachite green dye (MG/sup +/). Observation of the consecutive charge transfer via the schemes: DCE/sup +radical/ -> BPh/sup +radical/ -> MGCN/sup +radical/ and DCE/sup +radical/ -> MGCN/sup +radical/ -> TMPD/sup +radical/, allowed to estimate the ionization potential of MGCN molecule in the range 6.9 eV < Ip/sub MGCN/ < 8.27 eV. Presented results and literature data suggest that positive charge in MGCN/sup +radical/ radical cation is located in the ''aniline'' part of the molecule. (author).

  1. Lasers and intense pulsed light (IPL) association with cancerous lesions.

    Science.gov (United States)

    Ash, Caerwyn; Town, Godfrey; Whittall, Rebecca; Tooze, Louise; Phillips, Jaymie

    2017-11-01

    The development and use of light and lasers for medical and cosmetic procedures has increased exponentially over the past decade. This review article focuses on the incidence of reported cases of skin cancer post laser or IPL treatment. The existing evidence base of over 25 years of laser and IPL use to date has not raised any concerns regarding its long-term safety with only a few anecdotal cases of melanoma post treatment over two decades of use; therefore, there is no evidence to suggest that there is a credible cancer risk. Although laser and IPL technology has not been known to cause skin cancer, this does not mean that laser and IPL therapies are without long-term risks. Light therapies and lasers to treat existing lesions and CO 2 laser resurfacing can be a preventative measure against BCC and SCC tumour formation by removing photo-damaged keratinocytes and encouraged re-epithelisation from stem cells located deeper in the epidermis. A review of the relevant literature has been performed to address the issue of long-term IPL safety, focussing on DNA damage, oxidative stress induction and the impact of adverse events.

  2. Light Intensity and Carbon Dioxide Availability Impact Antioxidant Activity in Green Onions (Allium fistulosumm L)

    Science.gov (United States)

    Levine, Lanfang; Bisbee, Patricia; Pare, Paul

    The prospect of long-duration manned space missions poses many challenges, including the development of a sustainable life support system and effective methods of space-radiation protection. To mitigate the risk of increased space-radiation, functional foods rich in antioxidant properties such as green onions are of particular interest. However it has yet to be established whether antioxidant properties can be preserved or enhanced in space environment where carbon dioxide, lighting intensity, gravity and pressure differ from which plants have acclimated to on earth. In this study, green onions (Allium fistulosumm L. cultivar Kinka) rich in antioxidant flavonoids are used as a model system to investigate variations in antioxidant capacity with plants grown under varying light intensities and CO2 concentrations. The antioxidant potential is determined using both radical cation scavenging and oxygen radical absorbance assays. For all light intensities assayed, antioxidant potential in water extract of green onions per gram biomass declined with CO2 increases up to 1200 ppm, and then leveled off with further CO2 increase to 4000 ppm. This inverse carbon dioxide versus antioxidant activity correlation suggests lower accumulation rates for water soluble antioxidant compounds compared to total biomass under increasing CO2 concentrations. The effect of increasing atmospheric CO2 concentration on antioxidant activity of ethanol extracts were light intensity dependent. The implications of these findings are discussed in the context of traditional plant antioxidants including vitamin C and the major onion flavonoid quercetin.

  3. Improvement of quantum efficiency in green light-emitting diodes with pre-TMIn flow treatment

    International Nuclear Information System (INIS)

    Lee, Ya-Ju; Chen, Yi-Ching; Lu, Tien-Chang

    2011-01-01

    The effects of pre-trimethlyindium (TMIn) flow on the improved electrical characteristics and highly stable temperature properties of InGaN green light-emitting diodes (LEDs) are discussed. For the LED sample with a pre-TMIn flow treatment, the tunnelling of injected carriers associated with threading defects is significantly reduced, which promotes the diffusion-recombination of injected carriers, as well as the overall emission efficiency of the LED. In addition, the pre-TMIn flow treatment evidently reduces the dependence of external quantum efficiency on temperature and efficiency droop of green LEDs. As a result, we conclude that the pre-TMIn flow treatment is a promising scheme for the improvement of output performance of InGaN-based green LEDs.

  4. Triphenylsilane-substituted arenes as host materials for use in green phosphorescent organic light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jwajin; Lee, Kum Hee; Kim, Young Seok; Lee, Hyun Woo [Department of Chemistry, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Lee, Ho Won [Department of Information Display, Hongik University, Seoul 121-791 (Korea, Republic of); Kim, Young Kwan, E-mail: kimyk@hongik.ac.kr [Department of Information Display, Hongik University, Seoul 121-791 (Korea, Republic of); Yoon, Seung Soo, E-mail: ssyoon@skku.edu [Department of Chemistry, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2016-03-15

    We demonstrated triphenylsilane-substituted arenes (1–4) as host materials for green phosphorescent organic light-emitting diodes. Particularly, a device using 9,9-dimethyl-2-(triphenylsilyl)-7-[4-(triphenylsilyl)phenyl]-9H-fluorene (compound 4) as the host material with the green phosphorescence dopant bis[2-(1,1′,2′,1′′-terphen-3-yl)pyridinato-C,N]iridium(III) (acetylacetonate) showed the efficient green emission with an external quantum efficiency of 4.64%, a power efficiency of 7.2 lm/W and luminous efficiency of 16.6 cd/A at 20 mA/cm{sup 2}, respectively, with the Commission International de L’Eclairage chromaticity coordinates of (0.33, 0.59) at 8.0 V.

  5. Quantum Noise Reduction with Pulsed Light in Optical Fibers.

    Science.gov (United States)

    Bergman, Keren

    Optical fibers offer considerable advantages over bulk nonlinear media for the generation of squeezed states. This thesis reports on experimental investigations of reducing quantum noise by means of squeezing in nonlinear fiber optic interferometers. Fibers have low insertion loss which allows for long interaction lengths. High field intensities are easily achieved in the small cores of single mode fibers. Additionally, the nonlinear process employed is self phase modulation or the Kerr effect, whose broad band nature requires no phase matching and can be exploited with ultra-short pulses of high peak intensity. All these advantageous features of fibers result in easily obtained large nonlinear phase shifts and subsequently large squeezing parameters. By the self phase modulation process a correlation is produced between the phase and amplitude fluctuations of the optical field. The attenuated or squeezed quadrature has a lower noise level than the initial level associated with the coherent state field before propagation. The resulting reduced quantum noise quadrature can be utilized to improve the sensitivity of a phase measuring instrument such as an interferometer. Because the Kerr nonlinearity is a degenerate self pumping process, the squeezed noise is at the same frequency as the pump field. Classical pump noise can therefore interfere with the desired measurement of the quantum noise reduction. The most severe noise process is the phase noise caused by thermally induced index modulation of the fiber. This noise termed Guided Acoustic Wave Brillouin Scattering, or GAWBS, by previous researchers is studied and analyzed. Experiments performed to overcome GAWBS successfully with several schemes are described. An experimental demonstration of an interferometric measurement with better sensitivity than the standard quantum limit is described. The results lead to new understandings into the limitations of quantum noise reduction that can be achieved in the

  6. Passivation of organic light emitting diode anode grid lines by pulsed Joule heating

    NARCIS (Netherlands)

    Janka, M.; Gierth, R.; Rubingh, J.E.; Abendroth, M.; Eggert, M.; Moet, D.J.D.; Lupo, D.

    2015-01-01

    We report the self-aligned passivation of a current distribution grid for an organic light emitting diode (OLED) anode using a pulsed Joule heating method to align the passivation layer accurately on the metal grid. This method involves passing an electric current through the grid to cure a polymer

  7. The intense pulsed light systems : new treatment possibilities for vascular, pigmented lesions and hair removal

    NARCIS (Netherlands)

    C.A. Schroeter (Careen)

    2004-01-01

    textabstractGiven all of the differences in between laser and IPLS devices and the need for additional information in IPLS treatment applications, the aim of this study was to evaluate new treatment possibilities using Intense Pulsed Light Sources and to address the following questions: 1. What

  8. Effect of Pulsed Ultraviolet Light and High Hydrostatic Pressure on the Antigenicity of Almond Protein Extracts.

    Science.gov (United States)

    The efficacy of pulsed ultraviolet light (PUV) and high hydrostatic pressure (HHP) on reducing the IgE binding to the almond extracts, was studied using SDS-PAGE, Western Blot, and ELISA probed with human plasma containing IgE antibodies to almond allergens, and a polyclonal antibody against almond ...

  9. Green synthetic strategy of BCNO nanostructure and phosphor-based light – Emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Yue [The Quartermaster Research Institute of General Logistics Department, Beijing 100010 (China); Yuan, Bo [Chemical Defense Institute of China, Beijing 100010 (China); Zhang, Dongjiu [Key Laboratory of Space Launching Site Reliability Technology, Hainan 570100 (China); Ma, Tian; Huang, Xiancong [The Quartermaster Research Institute of General Logistics Department, Beijing 100010 (China); Chu, Zengyong [College of Science, National University of Defense Technology, Changsha 410073 (China); Lai, Kan [The Quartermaster Research Institute of General Logistics Department, Beijing 100010 (China)

    2016-11-15

    BCNO phosphor has been paid much attention due to their unique physical, electronic and optical properties. Here we have successfully obtained BCNO nano-particle phosphor by microwave treating from boric acid, urea, and glucose at low temperatures and in short reaction time. Glucose decomposed into graphene quantum dots (GQDs), which facilitated the formation of hexagonal boron nitride (h-BN). Through our method, GQDs domains were uniformly incorporated into h-BN, leading to the formation of BCNO and decrease of bandgap. BCNO demonstrated excellent performance in light emitting diodes (LEDs) with green and blue light. We envision that this BCNO phosphor will enable the next generation blue and green LED devices due to the easiness of large scale fabrication at an economic cost.

  10. The optoelectronic chameleon - GaN-based light emitters from the UV to green

    Energy Technology Data Exchange (ETDEWEB)

    Kneissl, Michael [Institut fuer Festkoerperphysik, Technische Universitaet Berlin (Germany)

    2008-07-01

    Group III-nitrides have evolved into one of the most versatile and important semiconductor materials for optoelectronic devices. GaN-based blue, green and white light emitting diodes have already entered many parts of everyday life and violet lasers are expected to be following soon. However, considering the extraordinary electronic properties and the wide spectral range that is accessible through nitride materials, it appears that it we have just touched the tip of the iceberg. We discuss some of the new fields of research for InAlGaN materials and devices and review progress in the development of near and deep ultraviolet light emitting diodes, as well as growth and optical properties of InN and indium rich InGaN alloys for emitter in the blue-green spectral range and beyond.

  11. Green synthetic strategy of BCNO nanostructure and phosphor-based light – Emitting diodes

    International Nuclear Information System (INIS)

    Kang, Yue; Yuan, Bo; Zhang, Dongjiu; Ma, Tian; Huang, Xiancong; Chu, Zengyong; Lai, Kan

    2016-01-01

    BCNO phosphor has been paid much attention due to their unique physical, electronic and optical properties. Here we have successfully obtained BCNO nano-particle phosphor by microwave treating from boric acid, urea, and glucose at low temperatures and in short reaction time. Glucose decomposed into graphene quantum dots (GQDs), which facilitated the formation of hexagonal boron nitride (h-BN). Through our method, GQDs domains were uniformly incorporated into h-BN, leading to the formation of BCNO and decrease of bandgap. BCNO demonstrated excellent performance in light emitting diodes (LEDs) with green and blue light. We envision that this BCNO phosphor will enable the next generation blue and green LED devices due to the easiness of large scale fabrication at an economic cost.

  12. Pulsed-ultrasound tagging of light in living tissues

    Science.gov (United States)

    Lev, Aner; Rubanov, E.; Pomerantz, Ami; Sfez, Bruno G.

    2004-07-01

    Ultrasound can be used in order to locally modulate, or tag, light in a turbid medium. This tagging process is made possible due to the extreme sensitivity of laser speckle distribution to minute changes within the medium. This hybrid technique presents several advantages compared to all-optical tomographic techniques, in that the image resolution is fixed by the ultrasound focus diameter. To our best knowledge, only in vitro experiments have been performed, either on tissue-like phantoms or meat. However a strong difference exists between these sample and living tissues. In living tissues, different kind of liquids flow through the capillaries, strongly reducing the sspeckle autocorrelation time. We have performed experiments on both mice and humans, showing that the autocorrelation time is much shorter than what was previously thought. We show however that it is possible to obtain signal with acceptable signal to noise ratio down to a few cm depth. We will also discuss the origin and characteristics of the speckle noise.

  13. Near infrared and extreme ultraviolet light pulses induced modifications of ultrathin Co films

    Directory of Open Access Journals (Sweden)

    Jan Kisielewski

    2017-05-01

    Full Text Available We report on comparative study of magnetic properties of Pt/Co/Pt trilayers after irradiation with different light sources. Ultrathin Pt/Co/Pt films were deposited by molecular beam epitaxy technique on sapphire (0001 substrates. Pt buffers were grown at room temperature (RT and at 750°C (high temperature, HT. The samples were irradiated with a broad range of light energy densities (up to film ablation using two different single pulse irradiation sources: (i 40 fs laser with 800 nm wavelength and (ii 3 ns laser-plasma source of extreme ultraviolet (EUV with the most intense emission centered at 11 nm. The light pulse-driven irreversible structural and as a consequence, magnetic modifications were investigated using polar magneto-optical Kerr effect-based microscopy and atomic and magnetic force microscopies. The light pulse-induced transitions from the out-of-plane to in-plane magnetization state, and from in-plane to out-of-plane, were observed for both types of samples and irradiation methods. Diagrams of the magnetic states as a function of the Co layer thickness and energy density of the absorbed femtosecond pulses were constructed for the samples with both the RT and HT buffers. The energy density range responsible for the creation of the out-of-plane magnetization was wider for the HT than for RT buffer. This is correlated with the higher (for HT crystalline quality and much smoother Pt/Co surface deduced from the X-ray diffraction studies. Submicrometer magnetic domains were observed in the irradiated region while approaching the out-of-plane magnetization state. Changes of Pt/Co/Pt structures are discussed for both types of light pulses.

  14. Attempts to use pulsed light as an emerging technology for inactivation of mould naturally present on rye

    Directory of Open Access Journals (Sweden)

    NICOLETA ARON MAFTEI

    2011-12-01

    Full Text Available Pulsed light technology was used to inactivate moulds, naturally present on rye. The experiments were performed on samples containing 3.5·104 CFU/g and 4.3·103 CFU/g. Treatments of different duration (5, 10, 15, 20, 30, and 40 pulses at intensity of 0.4 J·cm-2 per pulse were applied and mould inactivation was evaluated. Besides confirming the utilisation of pulsed light as decontamination method for cereals, this work contributes with new information regarding the effects of the spectral range of pulsed light, proving that the whole UV range of the spectrum accounts for the lethal effect against moulds. This research supports pulsed light as emerging technology in food preservation.

  15. Long-pulsed Nd: YAG laser and intense pulse light-755 nm for idiopathic facial hirsutism: A comparative study

    Directory of Open Access Journals (Sweden)

    Arpit Shrimal

    2017-01-01

    Full Text Available Background: Hirsutism means excessive terminal hair growth in a female in male pattern distribution. Perception of hirsutism is subjective. Permanent laser hair reduction is a slow process taking many sessions and tracking of improvement parameters is tedious. Hence, a lot of confusion still exists regarding the type of laser most beneficial for treatment. Aim: The aim of this study was to compare the effectiveness and safety profile of long-pulsed Nd: YAG laser (1064 nm and intense pulse light (IPL-755 nm in management of idiopathic facial hirsutism. Settings and Design: Open-labelled, randomly allocated experimental study. Subjects and Methods: The study included 33 cases of idiopathic facial hirsutism. Patients were randomly divided into Group A, treated with long-pulsed Nd: YAG laser and Group B, treated with IPL-755 for a total of six sessions at 1 month interval. Statistical Analysis: Chi-square test was used in Medcalc® version 9.0 and the test of significance was taken to be P75% reduction in hair after six sessions in Group A was seen in fourteen (93.33% out of fifteen patients, whereas in Group B, it was seen only in three (16.66% out of eighteen patients. In Group A, erythema was seen in 26.67%, perifollicular edema and hyperpigmentation in 13.33% each. In Group B, erythema was seen in 50% patients, perifollicular edema in 16.67% and hyperpigmentation in 38.89% patients. Conclusions: Long-pulsed Nd: YAG Laser (1064 nm is better than IPL-755 nm in terms of safety and effectiveness in the management of idiopathic facial hirsutism.

  16. Development of Colletotrichum gloeosporioides isolated from green pepper in different culture media, temperatures, and light regimes

    Directory of Open Access Journals (Sweden)

    Mello Alexandre Furtado Silveira

    2004-01-01

    Full Text Available Control of anthracnose in green pepper involves the use of resistant varieties and/or fungicides. The selection of varieties and efficient products demands great amounts of conidia as inoculum. It is thus necessary to optimize the production of Colletotrichum gloeosporioides conidia in the laboratory, establishing the best conditions for fungus development. The present study aimed at determining the most favorable culture media, temperature, and light conditions for the production of fungus inoculum. The fungus was isolated from green pepper fruits (Capsicum annuum L. and transferred to four culture media (PDA, oat, filtered pepper extract, and autoclaved pepper extract, under different temperatures (15, 20, 25, 30, and 35ºC and light conditions (24h dark, and 24h light. Colony growth was evaluated after 7 and 12 days of incubation. No differences were found between the culture media. However, the greatest number of conidia was obtained from colonies grown in oat medium at 25ºC. Temperatures of 20 and 25ºC were the most favorable for colony growth and sporulation. Higher sporulation was obtained under incubation in constant light. Cultivation of C. gloeosporioides in oat medium, at 25ºC, and constant light is recommended.

  17. GREEN LIGHT EMITTING TRICOMPONENT LUMINOPHORS OF 2-NAPHTHOL FOR CONSTRUCTION OF ORGANIC LIGHT EMITTING DEVICES

    OpenAIRE

    K. G. MANE , P. B. NAGORE , DR. S. R. PUJARI

    2018-01-01

    This article presents a previous study and incredible progress in basic theoretical modeling, and working for organic light-emitting devices (OLEDs) including preparation and characteristic studies of Organo- Luminescent Materials by conventional solid state reaction technique.

  18. Characteristics of ultraviolet light and radicals formed by pulsed discharge in water

    Science.gov (United States)

    Sun, Bing; Kunitomo, Shinta; Igarashi, Chiaki

    2006-09-01

    In this investigation, the ultraviolet light characteristics and OH radical properties produced by a pulsed discharge in water were studied. For the plate-rod reactor, it was found that the ultraviolet light energy has a 3.2% total energy injected into the reactor. The ultraviolet light changed with the peak voltage and electrode distance. UV characteristics in tap water and the distilled water are given. The intensity of the OH radicals was the highest for the 40 mm electrode distance reactor. In addition, the properties of hydrogen peroxide and ozone were also studied under arc discharge conditions. It was found that the OH radicals were in the ground state and the excited state when a pulsed arc discharge was used. The ozone was produced by the arc discharge even if the oxygen gas is not bubbled into the reactor. The ozone concentration produces a maximum value with treatment time.

  19. Characteristics of ultraviolet light and radicals formed by pulsed discharge in water

    Energy Technology Data Exchange (ETDEWEB)

    Sun Bing [Dalian Maritime University, College of Environment, 1st Linghai Road, Dalian (China); Kunitomo, Shinta [Ebara Corporation, 1-6-27, Konan, Minato-ku 108-8480 (Japan); Igarashi, Chiaki [Ebara Research Co. Ltd, 2-1, Honfujisawa 4-chome, Fujisawa 251-8502 (Japan)

    2006-09-07

    In this investigation, the ultraviolet light characteristics and OH radical properties produced by a pulsed discharge in water were studied. For the plate-rod reactor, it was found that the ultraviolet light energy has a 3.2% total energy injected into the reactor. The ultraviolet light changed with the peak voltage and electrode distance. UV characteristics in tap water and the distilled water are given. The intensity of the OH radicals was the highest for the 40 mm electrode distance reactor. In addition, the properties of hydrogen peroxide and ozone were also studied under arc discharge conditions. It was found that the OH radicals were in the ground state and the excited state when a pulsed arc discharge was used. The ozone was produced by the arc discharge even if the oxygen gas is not bubbled into the reactor. The ozone concentration produces a maximum value with treatment time.

  20. Pulsed operation of high-power light emitting diodes for imaging flow velocimetry

    International Nuclear Information System (INIS)

    Willert, C; Klinner, J; Moessner, S; Stasicki, B

    2010-01-01

    High-powered light emitting diodes (LED) are investigated for possible uses as light sources in flow diagnostics, in particular, as an alternative to laser-based illumination in particle imaging flow velocimetry in side-scatter imaging arrangements. Recent developments in solid state illumination resulted in mass-produced LEDs that provide average radiant power in excess of 10 W. By operating these LEDs with short duration, pulsed currents that are considerably beyond their continuous current damage threshold, light pulses can be generated that are sufficient to illuminate and image micron-sized particles in flow velocimetry. Time-resolved PIV measurements in water at a framing rate of 2kHz are presented. The feasibility of LED-based PIV measurements in air is also demonstrated

  1. Sub-nanosecond light-pulse generation with waveguide-coupled carbon nanotube transducers

    Directory of Open Access Journals (Sweden)

    Felix Pyatkov

    2017-01-01

    Full Text Available Carbon nanotubes (CNTs have recently been integrated into optical waveguides and operated as electrically-driven light emitters under constant electrical bias. Such devices are of interest for the conversion of fast electrical signals into optical ones within a nanophotonic circuit. Here, we demonstrate that waveguide-integrated single-walled CNTs are promising high-speed transducers for light-pulse generation in the gigahertz range. Using a scalable fabrication approach we realize hybrid CNT-based nanophotonic devices, which generate optical pulse trains in the range from 200 kHz to 2 GHz with decay times below 80 ps. Our results illustrate the potential of CNTs for hybrid optoelectronic systems and nanoscale on-chip light sources.

  2. Phase delaying the human circadian clock with a single light pulse and moderate delay of the sleep/dark episode: no influence of iris color.

    Science.gov (United States)

    Canton, Jillian L; Smith, Mark R; Choi, Ho-Sun; Eastman, Charmane I

    2009-07-17

    Light exposure in the late evening and nighttime and a delay of the sleep/dark episode can phase delay the circadian clock. This study assessed the size of the phase delay produced by a single light pulse combined with a moderate delay of the sleep/dark episode for one day. Because iris color or race has been reported to influence light-induced melatonin suppression, and we have recently reported racial differences in free-running circadian period and circadian phase shifting in response to light pulses, we also tested for differences in the magnitude of the phase delay in subjects with blue and brown irises. Subjects (blue-eyed n = 7; brown eyed n = 6) maintained a regular sleep schedule for 1 week before coming to the laboratory for a baseline phase assessment, during which saliva was collected every 30 minutes to determine the time of the dim light melatonin onset (DLMO). Immediately following the baseline phase assessment, which ended 2 hours after baseline bedtime, subjects received a 2-hour bright light pulse (~4,000 lux). An 8-hour sleep episode followed the light pulse (i.e. was delayed 4 hours from baseline). A final phase assessment was conducted the subsequent night to determine the phase shift of the DLMO from the baseline to final phase assessment.Phase delays of the DLMO were compared in subjects with blue and brown irises. Iris color was also quantified from photographs using the three dimensions of red-green-blue color axes, as well as a lightness scale. These variables were correlated with phase shift of the DLMO, with the hypothesis that subjects with lighter irises would have larger phase delays. The average phase delay of the DLMO was -1.3 +/- 0.6 h, with a maximum delay of ~2 hours, and was similar for subjects with blue and brown irises. There were no significant correlations between any of the iris color variables and the magnitude of the phase delay. A single 2-hour bright light pulse combined with a moderate delay of the sleep/dark episode

  3. Phase delaying the human circadian clock with a single light pulse and moderate delay of the sleep/dark episode: no influence of iris color

    Directory of Open Access Journals (Sweden)

    Choi Ho-Sun

    2009-07-01

    Full Text Available Abstract Background Light exposure in the late evening and nighttime and a delay of the sleep/dark episode can phase delay the circadian clock. This study assessed the size of the phase delay produced by a single light pulse combined with a moderate delay of the sleep/dark episode for one day. Because iris color or race has been reported to influence light-induced melatonin suppression, and we have recently reported racial differences in free-running circadian period and circadian phase shifting in response to light pulses, we also tested for differences in the magnitude of the phase delay in subjects with blue and brown irises. Methods Subjects (blue-eyed n = 7; brown eyed n = 6 maintained a regular sleep schedule for 1 week before coming to the laboratory for a baseline phase assessment, during which saliva was collected every 30 minutes to determine the time of the dim light melatonin onset (DLMO. Immediately following the baseline phase assessment, which ended 2 hours after baseline bedtime, subjects received a 2-hour bright light pulse (~4,000 lux. An 8-hour sleep episode followed the light pulse (i.e. was delayed 4 hours from baseline. A final phase assessment was conducted the subsequent night to determine the phase shift of the DLMO from the baseline to final phase assessment. Phase delays of the DLMO were compared in subjects with blue and brown irises. Iris color was also quantified from photographs using the three dimensions of red-green-blue color axes, as well as a lightness scale. These variables were correlated with phase shift of the DLMO, with the hypothesis that subjects with lighter irises would have larger phase delays. Results The average phase delay of the DLMO was -1.3 ± 0.6 h, with a maximum delay of ~2 hours, and was similar for subjects with blue and brown irises. There were no significant correlations between any of the iris color variables and the magnitude of the phase delay. Conclusion A single 2-hour bright light

  4. Lethal photosensitization of wound-associated microbes using indocyanine green and near-infrared light

    Directory of Open Access Journals (Sweden)

    Wilson Michael

    2008-07-01

    Full Text Available Abstract Background The increase in resistance to antibiotics among disease-causing bacteria necessitates the development of alternative antimicrobial approaches such as the use of light-activated antimicrobial agents (LAAAs. Light of an appropriate wavelength activates the LAAA to produce cytotoxic species which can then cause bacterial cell death via loss of membrane integrity, lipid peroxidation, the inactivation of essential enzymes, and/or exertion of mutagenic effects due to DNA modification. In this study, the effect of the LAAA indocyanine green excited with high or low intensity light (808 nm from a near-infrared laser (NIR on the viability of Staphylococcus aureus, Streptococcus pyogenes and Pseudomonas aeruginosa was investigated. Results All species were susceptible to killing by the LAAA, the bactericidal effect being dependent on both the concentration of indocyanine green and the light dose. Indocyanine green photosensitization using both high (1.37 W cm-2 and low (0.048 W cm-2 intensity NIR laser light was able to achieve reductions of 5.6 log10 (>99.99% and 6.8 log10 (>99.99% in the viable counts of Staph. aureus and Strep. pyogenes (using starting concentrations of 106–107 CFU ml-1. Kills of 99.99% were obtained for P. aeruginosa (initial concentration 108–109 CFU ml-1 photosensitized by the high intensity light (1.37 W cm-2; while a kill of 80% was achieved using low intensity irradiation (0.07 W cm-2. The effects of L-tryptophan (a singlet oxygen scavenger and deuterium oxide (as an enhancer of the life span of singlet oxygen on the survival of Staph. aureus was also studied. L-tryptophan reduced the proportion of Staph. aureus killed; whereas deuterium oxide increased the proportion killed suggesting that singlet oxygen was involved in the killing of the bacteria. Conclusion These findings imply that indocyanine green in combination with light from a near-infrared laser may be an effective means of eradicating bacteria

  5. Organic light-emitting diodes with direct contact-printed red, green, blue, and white light-emitting layers

    Science.gov (United States)

    Chen, Sun-Zen; Peng, Shiang-Hau; Ting, Tzu-Yu; Wu, Po-Shien; Lin, Chun-Hao; Chang, Chin-Yeh; Shyue, Jing-Jong; Jou, Jwo-Huei

    2012-10-01

    We demonstrate the feasibility of using direct contact-printing in the fabrication of monochromatic and polychromatic organic light-emitting diodes (OLEDs). Bright devices with red, green, blue, and white contact-printed light-emitting layers with a respective maximum luminance of 29 000, 29 000, 4000, and 18 000 cd/m2 were obtained with sound film integrity by blending a polymeric host into a molecular host. For the red OLED as example, the maximum luminance was decreased from 29 000 to 5000 cd/m2 as only the polymeric host was used, or decreased to 7000 cd/m2 as only the molecular host was used. The markedly improved device performance achieved in the devices with blended hosts may be attributed to the employed polymeric host that contributed a good film-forming character, and the molecular host that contributed a good electroluminescence character.

  6. Generation of Attosecond Light Pulses from Gas and Solid State Media

    Directory of Open Access Journals (Sweden)

    Stefanos Chatziathanasiou

    2017-03-01

    Full Text Available Real-time observation of ultrafast dynamics in the microcosm is a fundamental approach for understanding the internal evolution of physical, chemical and biological systems. Tools for tracing such dynamics are flashes of light with duration comparable to or shorter than the characteristic evolution times of the system under investigation. While femtosecond (fs pulses are successfully used to investigate vibrational dynamics in molecular systems, real time observation of electron motion in all states of matter requires temporal resolution in the attosecond (1 attosecond (asec = 10−18 s time scale. During the last decades, continuous efforts in ultra-short pulse engineering led to the development of table-top sources which can produce asec pulses. These pulses have been synthesized by using broadband coherent radiation in the extreme ultraviolet (XUV spectral region generated by the interaction of matter with intense fs pulses. Here, we will review asec pulses generated by the interaction of gas phase media and solid surfaces with intense fs IR laser fields. After a brief overview of the fundamental process underlying the XUV emission form these media, we will review the current technology, specifications and the ongoing developments of such asec sources.

  7. Generating picosecond x-ray pulses in synchrotron light sources using dipole kickers

    Directory of Open Access Journals (Sweden)

    W. Guo

    2007-02-01

    Full Text Available The duration of the x-ray pulse generated at a synchrotron light source is typically tens of picoseconds. Shorter pulses are highly desired by the users. In electron storage rings, the vertical beam size is usually orders of magnitude less than the bunch length due to radiation damping; therefore, a shorter pulse can be obtained by slitting the vertically tilted bunch. Zholents proposed tilting the bunch using rf deflection. We found that tilted bunches can also be generated by a dipole magnet kick. A vertical tilt is developed after the kick in the presence of nonzero chromaticity. The tilt was successfully observed and a 4.2-ps pulse was obtained from a 27-ps electron bunch at the Advanced Photon Source. Based on this principle, we propose a short-pulse generation scheme that produces picosecond x-ray pulses at a repetition rate of 1–2 kHz, which can be used for pump-probe experiments.

  8. Synthesis and characterization of yellow and green light emitting novel polymers containing carbazole and electroactive moieties

    International Nuclear Information System (INIS)

    Aydın, Aysel; Kaya, İsmet

    2012-01-01

    Graphical abstract: The homopolymer of 1,5-bis(3,6-di(thiophen-3-yl)-9H-carbazol-9-yl)pentane and the copolymer with EDOT of 1,2-bis(2-(3,6-di(thiophen-3-yl)-9H-carbazol-9-yl)ethoxy)ethane were synthesized via electrochemical reaction on indium tin oxide (ITO)-coated glass plate. The obtained polymeric compounds were investigated as fluorescence properties in solution form. The synthesized polymers showed good fluorescence property indicating tunable light emission with green and yellow colors. This shows that these polymers could be used in production of new polymeric light emitting diodes (PLED)s for green and yellow color emissions. - Abstract: The compounds 1,5-bis(3,6-di(thiophen-3-yl)-9H-carbazol-9-yl)pentane (B1) and 1,2-bis(2-(3,6-di(thiophen-3-yl)-9H-carbazol-9-yl)ethoxy)ethane (B2) were synthesized via Ullmann and Suzuki couplings. Additionally, the homopolymers and copolymers of these compounds with 3,4-ethylenedioxythiophene (EDOT) and thiophene (Th) were synthesized and coated onto an ITO-glass surface via electrochemical oxidative polymerization. The spectroelectrochemical and electrochromic properties of these compounds were also investigated. The switching ability of these polymers was measured as the percent transmittance (%T) at their point of maximum contrast. The solid state electrical conductivities of the polymeric films coated onto the ITO-glass surface were measured via the four point probe technique using an electrometer. The compounds were characterized by FT-IR and NMR, and their thermal stabilities were determined via TG measurements. Fluorescence measurements were performed using DMSO solutions, and the synthesized polymers emitted both green and yellow colors based on the tuning of the excitation wavelength, which indicates that these polymers could be used to produce new polymeric light emitting diodes (PLEDs) with green and yellow emissions.

  9. Red light walking, transportation time and attitudes in crossing with intelligent green light for pedestrians

    DEFF Research Database (Denmark)

    Tønning, Charlotte; Agerholm, Niels; Andersen, Camilla Sloth

    registration, 72+53 interviewed persons, and what will be extracted from the literature review. Based on the collected data, it will be studied, if the share of red light walking will be reduced. Also, the transportation time including any waiting time will be calculated for the two periods. Furthermore......, the attitude and experiences with this traffic signals will be measured. It is the hypotheses that red light walking will be reduced and that the overall transportation time for pedestrians will be reduced due to a more applicable and dynamic traffic signal system. Likewise, it is expected that the pedestrian...

  10. Fish with red fluorescent eyes forage more efficiently under dim, blue-green light conditions.

    Science.gov (United States)

    Harant, Ulrike Katharina; Michiels, Nicolaas Karel

    2017-04-20

    Natural red fluorescence is particularly conspicuous in the eyes of some small, benthic, predatory fishes. Fluorescence also increases in relative efficiency with increasing depth, which has generated speculation about its possible function as a "light organ" to detect cryptic organisms under bluish light. Here we investigate whether foraging success is improved under ambient conditions that make red fluorescence stand out more, using the triplefin Tripterygion delaisi as a model system. We repeatedly presented 10 copepods to individual fish (n = 40) kept under a narrow blue-green spectrum and compared their performance with that under a broad spectrum with the same overall brightness. The experiment was repeated for two levels of brightness, a shaded one representing 0.4% of the light present at the surface and a heavily shaded one with about 0.01% of the surface brightness. Fish were 7% more successful at catching copepods under the narrow, fluorescence-friendly spectrum than under the broad spectrum. However, this effect was significant under the heavily shaded light treatment only. This outcome corroborates previous predictions that fluorescence may be an adaptation to blue-green, heavily shaded environments, which coincides with the opportunistic biology of this species that lives in the transition zone between exposed and heavily shaded microhabitats.

  11. The effect of intense light pulses on the sensory quality and instrumental color of meat from different animal breeds

    OpenAIRE

    Tomašević I.

    2015-01-01

    Intense light pulses (ILP) are an emerging processing technology, which has a potential to decontaminate food products. The light generated by ILP lamps consists of a continuum broadband spectrum from deep UV to the infrared, especially rich in UV range below 400 nm, which is germicidal. Evaluation of the effect of intense light pulses (ILP) on sensory quality of meat, game and poultry was performed using two kinds of red meat (beef and pork), two kinds of ...

  12. Degradation of malachite green on Pd/WO3 photocatalysts under simulated solar light

    International Nuclear Information System (INIS)

    Liu Yonggang; Ohko, Yoshihisa; Zhang Ruiqin; YangYingnan; Zhang Zhenya

    2010-01-01

    The photocatalytic degradation of malachite green (MG) dye molecules in aqueous solution was investigated by using palladium (Pd) modified tungsten trioxide (WO 3 ) under simulated solar light. The optimum values for Pd content vs. WO 3 and catalyst concentration in solution for MG (5.0 μmol L -1 ) degradation were 0.5 wt.% and 150 mg L -1 , respectively. The MG concentration change followed the pseudo first order kinetics of the Langmuir-Hinshelwood model. Since MG was also degraded under visible light (λ > 470 nm), which was not absorbed by WO 3 , the mechanism involved both the photocatalytic degradation and self-sensitized degradation of MG. Pd modified WO 3 would be useful as an efficient tool for the decolorization of wastewater under solar light.

  13. Gating circuit for single photon-counting fluorescence lifetime instruments using high repetition pulsed light sources

    International Nuclear Information System (INIS)

    Laws, W.R.; Potter, D.W.; Sutherland, J.C.

    1984-01-01

    We have constructed a circuit that permits conventional timing electronics to be used in single photon-counting fluorimeters with high repetition rate excitation sources (synchrotrons and mode-locked lasers). Most commercial time-to-amplitude and time-to-digital converters introduce errors when processing very short time intervals and when subjected to high-frequency signals. This circuit reduces the frequency of signals representing the pulsed light source (stops) to the rate of detected fluorescence events (starts). Precise timing between the start/stop pair is accomplished by using the second stop pulse after a start pulse. Important features of our design are that the circuit is insensitive to the simultaneous occurrence of start and stop signals and that the reduction in the stop frequency allows the start/stop time interval to be placed in linear regions of the response functions of commercial timing electronics

  14. Complete elimination of nonlinear light-matter interactions with broadband ultrafast laser pulses

    DEFF Research Database (Denmark)

    Shu, Chuan-Cun; Dong, Daoyi; Petersen, Ian R.

    2017-01-01

    optical effects, however, the probability of pure single-photon absorption is usually very low, which is particularly pertinent in the case of strong ultrafast laser pulses with broad bandwidth. Here we demonstrate theoretically a counterintuitive coherent single-photon absorption scheme by eliminating...... nonlinear interactions of ultrafast laser pulses with quantum systems. That is, a completely linear response of the system with respect to the spectral energy density of the incident light at the transition frequency can be obtained for all transition probabilities between 0 and 100% in multilevel quantum...... systems. To that end, a multiobjective optimization algorithm is developed to find an optimal spectral phase of an ultrafast laser pulse, which is capable of eliminating all possible nonlinear optical responses while maximizing the probability of single-photon absorption between quantum states. This work...

  15. Preparation and performance optimization of TPBISi green-light organic luminescent material devices

    Directory of Open Access Journals (Sweden)

    Zheng Huajing

    2017-01-01

    Full Text Available The Study analyzed and tested the absorption spectrum, photoluminescence spectrum, and device’s electroluminescence spectrum of a new silole material. The device with Silol as an emitting layer, emitted green-light whose structure is ITO/NPB/2,2,3,3-tetraphenyl-4,4-bisthienylsilole(TPBTSi/Alq3/Mg: A by improvement of preparation technology and optimization of thin film. It reaches the maximum luminescence of 11290.2 cd/m2, the maximum luminous efficiency of 0.84 lm/W, luminescence spectrum of 516 nm, chromaticity diagram CIE coordinate of(0.275, 0.4568 when voltage is 15V. All of the above is the green characteristic spectrum of TPBTSi.

  16. Red light for Green Paper: The EU policy on energy efficiency

    International Nuclear Information System (INIS)

    Nilsson, Mats

    2007-01-01

    The EU Green Paper on energy efficiency calls for action to decrease energy use and thus achieve increased competitiveness, fulfil the environmental targets and increase security of supply. In this comment, we examine the role the EU Commission suggest that energy efficiency, and policies supporting energy efficiency, takes. The policies and the suggestions are qualitatively elaborated upon in the light of the goal of a common European electricity market. We suggest that the rationales for the energy efficiency measures are weak, and that the suggested goals of increased competitiveness, environmental targets, and security of supply are best reached with the direct measures especially designed for each goal. Some of the energy efficiency measures may counter-act other direct policies. Further, The Green Paper measures may prove detrimental to the European Electricity market insofar as the policies suggested could lead to a policy fatigue among the electricity consumers

  17. Generation of single-frequency tunable green light in a coupled ring tapered diode laser cavity

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Petersen, Paul Michael

    2013-01-01

    in the broad wavelength range from 1049 nm to 1093 nm and the beam propagation factor is improved from M2 = 2.8 to below 1.1. The laser frequency is automatically locked to the cavity resonance frequency using optical feedback. Furthermore, we show that this adaptive external cavity approach leads to efficient......We report the realization of a tapered diode laser operated in a coupled ring cavity that significantly improves the coherence properties of the tapered laser and efficiently generates tunable light at the second harmonic frequency. The tapered diode laser is tunable with single-frequency output...... frequency doubling. More than 500 mW green output power is obtained by placing a periodically poled LiNbO3 crystal in the external cavity. The single frequency green output from the laser system is tunable in the 530 nm to 533 nm range limited by the LiNbO3 crystal. The optical to optical conversion...

  18. Corneal Resistance to Keratolysis After Collagen Crosslinking With Rose Bengal and Green Light.

    Science.gov (United States)

    Fadlallah, Ali; Zhu, Hong; Arafat, Samer; Kochevar, Irene; Melki, Samir; Ciolino, Joseph B

    2016-12-01

    The purpose of this study was to evaluate the resistance to degradation by collagenase A of corneas that have been crosslinked with Rose Bengal and green light (RGX). The ex vivo crosslinking procedure was performed on enucleated rabbit corneas. Corneas were deepithelialized after applying 30% alcohol. Corneas were stained with Rose Bengal (RB, 0.1%) for 2 minutes and then exposed to green light (532 nm) at 0.25 W/cm2 for times to deliver doses of 50, 100, 150, or 200 J/cm2 (n = 5 per group). Five corneas were pretreated with riboflavin solution (0.1% riboflavin) for 15 minutes and irradiated with ultraviolet A (UVA) light (370 nm, 3 mW/cm2) for 30 minutes. Five corneas underwent only de-epithelialization and were otherwise untreated. Five corneas were stained with RB without light exposure. The central corneas of each group was removed with a 8.5-mm trephine and incubated at 37°C in 0.3% collagenase A solution. Time to dissolution of each cornea was compared across treatments. Corneas treated with RGX were treated with light fluences of 50, 100, 150, and 200 J/cm2; these corneas dissolved completely at 8.3 ± 1.2, 11.1 ± 1.4, 12.4 ± 1.7, and 15.7 ± 1.8 hours, respectively. Corneas treated by riboflavin and UVA light dissolved at 15.7 ± 1.7 hours, and nontreated corneas dissolved at 6.1 ± 1.3 hours. Corneas treated with only RB (no green light) dissolved at 9.3 ± 1.7 hours. Compared with the untreated corneas, all of the RB groups and the riboflavin-UVA-treated group of corneas degraded statistically significantly slower than untreated corneas (P < 0.05). Crosslinking with RGX increased corneal resistance to digestion by collagenase comparable to that produced by riboflavin and UVA treatment.

  19. Studying Intense Pulsed Light Method Along With Corticosteroid Injection in Treating Keloid Scars

    OpenAIRE

    Shamsi Meymandi, Simin; Rezazadeh, Azadeh; Ekhlasi, Ali

    2014-01-01

    Background: Results of various studies suggest that the hypertrophic and keloid scars are highly prevalent in the general population and are irritating both physically and mentally. Objective: Considering the variety of existing therapies, intense pulsed light (IPL) method along with corticosteroid injection was evaluated in treating these scars. Materials and Methods: 86 subjects were included in this clinical trial. Eight sessions of therapeutic intervention were done with IPL along with co...

  20. Photodynamic Therapy Activated by Intense Pulsed Light in the Treatment of Nonmelanoma Skin Cancer

    Directory of Open Access Journals (Sweden)

    Domenico Piccolo

    2018-02-01

    Full Text Available Photodynamic therapy (PDT with topical 5-aminolevulinic acid (ALA or methyl aminolevulinate (MAL has proven to be a highly effective conservative method for the treatment of actinic keratosis (AK, Bowen’s disease (BD, and superficial basal cell carcinoma (sBCC. PDT is traditionally performed in association with broad-spectrum continuous-wave light sources, such as red or blue light. Recently, intense pulsed light (IPL devices have been investigated as an alternative light source for PDT in the treatment of nonmelanoma skin cancers (NMSC. We herein report our observational findings in a cohort of patients with a diagnosis of AK, sBCC, and BD that is treated with MAL-PDT using IPL, as well as we review published data on the use of IPL-PDT in NMSC.

  1. Enhancement of mosquito trapping efficiency by using pulse width modulated light emitting diodes

    OpenAIRE

    Liu, Yu-Nan; Liu, Yu-Jen; Chen, Yi-Chian; Ma, Hsin-Yi; Lee, Hsiao-Yi

    2017-01-01

    In this study, a light-driving bug zapper is presented for well controlling the diseases brought by insects, such as mosquitoes. In order to have the device efficient to trap the insect pests in off-grid areas, pulse width modulated light emitting diodes (PWM-LED) combined with a solar power module are proposed and implemented. With specific PWM electric signals to drive the LED, it is found that no matter what the ability of catching insects or the consumed power efficiency can be enhanced t...

  2. Highly efficient green light harvesting from Mg doped ZnO nanoparticles: Structural and optical studies

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Sarla, E-mail: mail2sarlasharma@gmail.com [Department of Physics, University of Rajasthan, Jaipur 302055 (India); Vyas, Rishi [Department of Physics, Malaviya National Institute of Technology, Jaipur 302017 (India); Sharma, Neha [Department of Physics, University of Rajasthan, Jaipur 302055 (India); Singh, Vidyadhar [Okinawa Institute of Science and Technology, Graduate University, Okinawa 9040495 (Japan); Singh, Arvind [Department of Physics, Institute of Chemical Technology, Mumbai 400 019 (India); Kataria, Vanjula; Gupta, Bipin Kumar [National Physical Laboratory (CSIR), New Delhi 110012 (India); Vijay, Y.K. [Department of Physics, University of Rajasthan, Jaipur 302055 (India)

    2013-03-05

    Graphical abstract: Demonstration of highly efficient green light emission harvesting from Mg doped ZnO nanoparticles were synthesized via facile wet chemical route with an average particle size ∼15 nm. The resulted nanoparticles exhibit intense green emission peaking at 530 nm upon 325 nm excitation. The photoluminescence (PL) intensity of visible emission depends upon the doping concentration of Mg. The PL intensity was found maximum up to 4% doping of Mg and beyond it exhibits a decrees in emission. The obtained highly luminescent green emission of ZnO nanoparticle would be an ultimate choice for next generation optoelectronics device materials. Highlights: ► Zn{sub 1−x}Mg{sub x}O nanoparticles were prepared by mechanochemical processing. ► High blue emission intensity was observed contrary to previous reports. ► Blue emission is suggested to be originating from the high density of defects. ► Defect density in as-milled condition is very high resulting in high emission. ► Mg promoted non-radiative recombination and lowered intensities. -- Abstract: Highly efficient green light emission was observed from Mg doped ZnO nanoparticles synthesized via facile wet chemical route with an average particle size ∼15 nm. The XRD analysis confirmed the growth of wurtzite phase of ZnO nanoparticles. Moreover, the optical properties of these nanoparticles were investigated by different spectroscopic techniques. The resulted nanoparticles exhibit intense green emission peaking at 530 nm (2.34 eV) upon 325 nm (3.81 eV) excitation. The photoluminescence (PL) intensity of visible emission depends upon the doping concentration of Mg. The PL intensity was found maximum up to 4% doping of Mg, and beyond it exhibits a decrees in emission. Furthermore, by varying the band gap from 3.50 to 3.61 eV, the PL spectra showed a near band edge (NBE) emission at wavelength around 370 nm (3.35 eV) and a broad deep level emission in the visible region. The obtained highly

  3. Effect of pulsed laser light in patients with dry eye syndrome.

    Science.gov (United States)

    Guilloto Caballero, S; García Madrona, J L; Colmenero Reina, E

    2017-11-01

    The objective of this study was to determine the clinical benefits of pulsed light therapy for the treatment of Dry Eye Syndrome (DES) due to the decrease in aqueous tear production (aqueous deficient DES) and/or excessive tear evaporation (evaporative DES) due to Meibomian Gland Dysfunction (MGD). A study was conducted on 72 eyes corresponding to 36 patients with DES. Out of these 72 eyes, 60 underwent refractive surgery (48 with femtosecond laser, 6 were operated with a mechanical microkeratome, and 6 with refractive photo-keratectomy[RPK], 6 treated with phacoemulsification, and 6 with no previous surgical treatment. Pulsed laser light (Intense Pulsed Light Regulated [IRPL ® ]) was use to stimulate the secretion of the Meibomian glands during 4 sessions, one every 15 days. Patients with aqueous deficient DES did not show any improvement. Eyes with no previous surgery and those treated with phacoemulsification and PRK had a favourable outcome. On the other hand, less conclusive results were observed in the eyes treated with excimer laser. This treatment could be very helpful to treat evaporative DES produced by MGD. On the other hand, it is not helpful for those cases related to an isolated damage in the aqueous phase, or the mucin phase. Copyright © 2017 Sociedad Española de Oftalmología. Publicado por Elsevier España, S.L.U. All rights reserved.

  4. High light bio-fortification stimulatesde novosynthesis ofresveratrol inDiplotaxis tenuifolia(wild rocket micro-greens

    Directory of Open Access Journals (Sweden)

    Bianke Loedolff

    2017-11-01

    Full Text Available Background: Brassica vegetables and leafy greens are consumed globally due to their health promoting phytochemicals. Diplotaxis tenuifolia (wild rocket or arugula is a popular Brassica leafy green, with a diverse range of phytochemicals (in mature plants. Immature plants (micro-greens, 2-4 true leaves accumulate phytochemicals up to 10 times more than plants grown to maturity. Although plants accumulate phytochemicals ubiquitously, environmental stimuli can further enhance this phenomenon of accumulation, which is part of a global stress mechanism in plants. In this study, we describe a simple method toward the bio-fortification of a wild rocket micro-green system, via environmental manipulation (using high light. Objective: To establish a high light-induced bio-fortification strategy to augment the accumulation of bio-active compounds in Brassica micro-greens (wild rocket, with the purpose of developing a ‘designer’ micro-green melange (functional food product containing a diverse range of bio-active (disease preventative compounds. Results: High light stimulated wild rocket micro-greens to achieve a significant increase of known phytochemicals (documented in relevant Brassica leafy greens. Furthermore, undocumented phytochemicals (resveratrol, catechin, epicatechin, and kaempferol, among others also accumulated to adequate concentrations. Plant extracts from bio-fortified micro-greens displayed increased anti-oxidant capacity (up to 3-fold, when compared to control, a key component in future cancer cell research. Conclusion: The use of high light resulted in successful bio-fortification of wild rocket micro-greens, evidenced by the accumulation of previously undocumented polyphenols (such as resveratrol, catechin and epicatechin and improved anti-oxidant capacity.

  5. Long Wavelength Electromagnetic Light Bullets Generated by a 10.6 micron CO2 Ultrashort Pulsed Source

    Science.gov (United States)

    2016-11-29

    AFRL-AFOSR-VA-TR-2016-0365 Long Wavelength Electromagnetic Light Bullets Generated by a 10.6 micron CO2 Ultrashort Pulsed Source Jerome Moloney...SUBTITLE "Long Wavelength Electromagnetic Light Bullets Generated by a 10.6 micron CO2 Ultrashort Pulsed Source 5a. CONTRACT NUMBER FA9550-15-1-0272 5b...Wavelength Electromagnetic Light Bullets Generated by a 10 µm CO2 Ultrashort Pulsed Source Grant/Contract Number AFOSR assigned control number. It must

  6. Measuring the pulse of urban green infrastructure: vegetation dynamics across residential landscapes

    Science.gov (United States)

    Vegetation can be an important component of urban green infrastructure. Its structure is a complex result of the socio-ecological milieu and management decisions, and it can influence numerous ecohydrological processes such as stormwater interception and evapotranspiration. Despi...

  7. A Green, Safe, Multi-Pulse Solid Motor (MPM) for CubeSats, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Today's CubeSats lack storable, green, safe propulsion options for complex science missions that may involve large Delta-V changes, proximity operations, and...

  8. Monitoring of transient cavitation induced by ultrasound and intense pulsed light in presence of gold nanoparticles.

    Science.gov (United States)

    Sazgarnia, Ameneh; Shanei, Ahmad; Shanei, Mohammad Mahdi

    2014-01-01

    One of the most important challenges in medical treatment is invention of a minimally invasive approach in order to induce lethal damages to cancer cells. Application of high intensity focused ultrasound can be beneficial to achieve this goal via the cavitation process. Existence of the particles and vapor in a liquid decreases the ultrasonic intensity threshold required for cavitation onset. In this study, synergism of intense pulsed light (IPL) and gold nanoparticles (GNPs) has been investigated as a means of providing nucleation sites for acoustic cavitation. Several approaches have been reported with the aim of cavitation monitoring. We conducted the experiments on the basis of sonochemiluminescence (SCL) and chemical dosimetric methods. The acoustic cavitation activity was investigated by determining the integrated SCL signal acquired over polyacrylamide gel phantoms containing luminol in the presence and absence of GNPs in the wavelength range of 400-500 nm using a spectrometer equipped with cooled charged coupled devices (CCD) during irradiation by different intensities of 1 MHz ultrasound and IPL pulses. In order to confirm these results, the terephthalic acid chemical dosimeter was utilized as well. The SCL signal recorded in the gel phantoms containing GNPs at different intensities of ultrasound in the presence of intense pulsed light was higher than the gel phantoms without GNPs. These results have been confirmed by the obtained data from the chemical dosimetry method. Acoustic cavitation in the presence of GNPs and intense pulsed light has been suggested as a new approach designed for decreasing threshold intensity of acoustic cavitation and improving targeted therapeutic effects. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. A green-light-emitting, spontaneously blinking fluorophore based on intramolecular spirocyclization for dual-colour super-resolution imaging.

    Science.gov (United States)

    Uno, Shin-Nosuke; Kamiya, Mako; Morozumi, Akihiko; Urano, Yasuteru

    2017-12-19

    We have developed the first green-light-emitting, spontaneously blinking fluorophore (SBF), HEtetTFER. In combination with our near-infrared-light-emitting SBF (HMSiR), HEtetTFER allows dual-colour single-molecule localization microscopy (SMLM) in buffer solution without any additive and without photoactivation.

  10. Microsensor Studies of Oxygen and Light-Distribution in the Green Macroalga Codium Fragile

    DEFF Research Database (Denmark)

    LASSEN, C.; BEBOUT, LE; PAERL, HW

    1994-01-01

    to multiple scattering in the medullary tissue. The constant intensity of visible light below 0.2 mm was thus a result of the combined effects of absorption and backscattering from the medulla. The oxygen exchange between the alga and the surrounding water was diffusion-limited with a steep O-2 gradient......Scalar irradiance, oxygen concentration, and oxygenic photosynthesis were measured at 0.1 mm spatial resolution within the tissue of the siphonous green macroalga Codium fragile subsp. tomentosoides (van Goer) Silva by fiber-optic scalar irradiance microsensors and oxygen microelectrodes......, The scalar irradiance of visible light was strongly attenuated in the outer 0.2 mm of the tissue but was nearly constant for the subsequent 1.0 mm of photosynthetic tissue. Far-red scalar irradiance at 750 nm increased below the tissue surface to a maximum of 200% of incident irradiance at 1.2 mm depth due...

  11. A Green, Safe, Dual-pulse Solid Motor for CubeSat Orbit Changing, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Small satellites such as CubeSats are in need of responsive propulsion, but are limited due to their size. Though single pulse, AP/HTPB fueled solid rocket motors...

  12. Parametric generation of high-energy 14.5-fs light pulses at 1.5 mum.

    Science.gov (United States)

    Nisoli, M; Stagira, S; De Silvestri, S; Svelto, O; Valiulis, G; Varanavicius, A

    1998-04-15

    High-energy light pulses that are tunable from 1.1 to 2.6 mum, with a duration as short as 14.5 fs were generated in a type II phase-matching beta-BaB(2)O(4) traveling-wave parametric converter pumped by 18-fs pulses obtained from a Ti:sapphire laser with chirped-pulse amplification, followed by a hollow-fiber compressor.

  13. Origins of efficient green light emission in phase-separated InGaN quantum wells

    International Nuclear Information System (INIS)

    Lai, Y-L; Liu, C-P; Lin, Y-H; Hsueh, T-H; Lin, R-M; Lyu, D-Y; Peng, Z-X; Lin, T-Y

    2006-01-01

    Green-light-emitting InGaN/GaN multiple quantum wells (MQWs) with high luminescent efficiency were grown by metalorganic chemical vapour deposition (MOCVD). The microstructure of the sample was studied by high-resolution transmission electron microscopy (HRTEM) and high-resolution x-ray diffraction, while its optical behaviour was analysed in great detail by a variety of photoluminescence methods. Two InGaN-related peaks that were clearly found in the photoluminescence (PL) spectrum are assigned to quasi-quantum dots (516 nm) and the InGaN matrix (450 nm), respectively, due to a strong phase separation observed by HRTEM. Except for the strong indium aggregation regions (511 meV of Stokes shift), slight composition fluctuations were also observed in the InGaN matrix, which were speculated from an 'S-shaped' transition and a Stokes shift of 341 meV. Stronger carrier localization and an internal quantum efficiency of the dot-related emission (21.5%), higher than the InGaN-matrix related emission (7.5%), was demonstrated. Additionally, a shorter lifetime and 'two-component' PL decay were found for the low-indium-content regions (matrix). Thus, the carrier transport process within quantum wells is suggested to drift from the low-In-content matrix to the high-In-content dots, resulting in the enhanced luminescence efficiency of the green light emission

  14. Adhesion characteristics of VO2 ink film sintered by intense pulsed light for smart window

    Science.gov (United States)

    Youn, Ji Won; Lee, Seok-Jae; Kim, Kwang-Seok; Kim, Dae Up

    2018-05-01

    Progress in the development of energy-efficient coatings on glass has led to the research of smart windows that can modulate solar energy in response to an external stimulus like light, heat, or electricity. Thermochromic smart windows have attracted great interest because they provide highly visible transparency and intelligently controllable solar heat. VO2 has been widely used as coating material for thermochromism owing to its reversible metal-to-insulator transition near room temperature. However, unstable crystalline phases and expensive fabrication processes of VO2 films limit their facile application in smart windows. To overcome these restrictions, we manufactured nanoinks based on VO2 nanoparticles and fabricated films using spin coating and intense pulsed light (IPL) sintering on a quartz substrate. We examined adhesion between the VO2 nanoink films and the quartz substrate by varying the applied voltages and the number of pulses. The average adhesion of thin films increased to 83 and 108 N/m as the applied voltage during IPL sintering increased from 1400 to 2000 V. By increasing the number of pulses from 5 to 20, the adhesive strength increased from 83 to 94 N/m at 1400 V, and decreased from 108 to 96 N/m at 2000 V voltage.

  15. Extremely short light pulses: generation; diagnostics, and application in attosecond spectroscopy

    International Nuclear Information System (INIS)

    Iakovlev, V.

    2003-06-01

    The scope of the thesis includes the design of chirped mirrors, as well as theoretical investigations in the fields of high-harmonic generation and laser-dressed Auger decay, the unifying aspect being the presence of extremely short light pulses and physical processes taking place on a femtosecond scale. The main results of the research are the following: 1) It was shown that efficient global optimization of chirped mirrors is possible with an adapted version of the memetic algorithm (also known as hybrid genetic algorithm). 2) The analysis of high-harmonic spectra generated by a few-cycle laser pulse can reveal the electric field of the pulse in the vicinity of its envelope peak. The method developed for this purpose can also be regarded as a method to measure the carrier-envelope phase of laser pulses, which is more robust and has a larger range of applicability compared to the simple analysis of the cut-off region of high-harmonic spectra. 3) A quantum theory of time-resolved Auger spectroscopy was developed. Based on the essential states method, closed-form expressions for probability amplitudes were derived. The theory lays the foundation for the interpretation of experiments that probe electronic motion during atomic excitation, deexcitation, and ionization. (author)

  16. Improving the efficiency of a fluorescent Xe dielectric barrier light source using short pulse excitation

    International Nuclear Information System (INIS)

    Beleznai, Sz; Mihajlik, G; Richter, P; Maros, I; Balazs, L

    2008-01-01

    Operation of a Xe dielectric barrier discharge lamp producing 147-172 nm VUV radiation is investigated both theoretically and experimentally. Xe gas pressure varies between 100 and 300 mbar, and the glass body of the lamp is coated with LAP (green) phosphor to convert radiation into the visible part of the spectrum. Simulation results predict improved discharge efficiencies reaching 67% when excited by a fast rise-time, short pulse (∼200 ns) driving waveform. In this case most power deposited into the plasma efficiently produces Xe 2 * excimers, while other energy dissipation processes (ion heating, e-Xe elastic collision) are kept at a low rate. Simulation and experimental results are compared in terms of discharge efficacy and show good agreement. A lamp efficacy value as high as 80 lm W -1 is demonstrated experimentally

  17. Corneal Crosslinking With Rose Bengal and Green Light: Efficacy and Safety Evaluation.

    Science.gov (United States)

    Zhu, Hong; Alt, Clemens; Webb, Robert H; Melki, Samir; Kochevar, Irene E

    2016-09-01

    To evaluate crosslinking of cornea in vivo using green light activation of Rose Bengal (RGX) and assess potential damaging effects of the green light on retina and iris. Corneas of Dutch belted rabbits were de-epithelialized, then stained with Rose Bengal and exposed to green light, or not further treated. Corneal stiffness was measured by uniaxial tensiometry. Re-epithelialization was assessed by fluorescein fluorescence. Keratocytes were counted on hematoxylin and eosin (H&E)-stained sections, and iris cell damage was assessed by lactate dehydrogenase staining. Thermal effects on the blood-retinal barrier (BRB) were assessed by fluorescein angiography and those on photoreceptors, retinal pigment epithelium (RPE), and choriocapillaris by light microscopy and transmission electron microscopy. RGX (10-min irradiation; 150 J/cm) increased corneal stiffness 1.9-fold on day 1 (1.25 ± 0.21 vs. 2.38 ± 0.59 N/mm; P = 0.036) and 2.8-fold compared with controls on day 28 (1.70 ± 0.74 vs. 4.95 ± 1.86 N/mm; P = 0.003). Keratocytes decreased only in the anterior stroma on day 1 (24.0 ± 3.0 vs. 3.67 ± 4.73, P = 0.003) and recovered by day 28 (37.7 ± 8.9 vs. 34.5 ± 2.4, P = 0.51). Iris cells were not thermally damaged. No evidence of BRB breakdown was detected on days 1 or 28. Retina from RGX-treated eyes seemed normal with RPE cells showing intact nuclei shielded apically by melanosomes, morphologically intact photoreceptor outer segments, normal outer nuclear layer thickness, and choriocapillaris containing intact erythrocytes. The substantial corneal stiffening produced by RGX together with the lack of significant effects on keratocytes and no evidence for retina or iris damage suggest that RGX-initiated corneal crosslinking may be a safe, rapid, and effective treatment.

  18. High-power CW and long-pulse lasers in the green wavelength regime for copper welding

    Science.gov (United States)

    Pricking, Sebastian; Huber, Rudolf; Klausmann, Konrad; Kaiser, Elke; Stolzenburg, Christian; Killi, Alexander

    2016-03-01

    We report on industrial high-power lasers in the green wavelength regime. By means of a thin disk oscillator and a resonator-internal nonlinear crystal for second harmonic generation we are able to extract up to 8 kW pulse power in the few-millisecond range at a wavelength of 515 nm with a duty cycle of 10%. Careful shaping and stabilization of the polarization and spectral properties leads to a high optical-to-optical efficiency larger than 55%. The beam parameter product is designed and measured to be below 5 mm·mrad which allows the transport by a fiber with a 100 μm core diameter. The fiber and beam guidance optics are adapted to the green wavelength, enabling low transmission losses and stable operation. Application tests show that this laser is perfectly suited for copper welding due to the superior absorption of the green wavelength compared to IR, which allows us to produce weld spots with an unprecedented reproducibility in diameter and welding depth. With an optimized set of parameters we could achieve a splatter-free welding process of copper, which is crucial for welding electronic components. Furthermore, the surface condition does not influence the welding process when the green wavelength is used, which allows to skip any expensive preprocessing steps like tin-coating. With minor changes we could operate the laser in cw mode and achieved up to 1.7 kW of cw power at 515 nm with a beam parameter product of 2.5 mm·mrad. These parameters make the laser perfectly suitable for additional applications such as selective laser melting of copper.

  19. Case histories of intense pulsed light phototherapy in dermatology - the HPPL™ and IFL™ technologies

    Directory of Open Access Journals (Sweden)

    Alessandro Martella

    2017-06-01

    Full Text Available The intense pulsed light (IPL and laser technologies are widely used for skin rejuvenation and for treating several dermatological disorders such as skin dyschromia and acne, and for non-ablative dermal remodeling of rhytides and hypertrophic scars. Technological evolution is rapid. The High Power Pulsed Light™ [HPPL™] and Incoherent Fast Light™ technologies [IFL™, Novavision Group S.p.A., 20826 Misinto (MB, Italy] are recent innovations in the field of IPL technologies; IFL™ is a further evolution of the already advanced HPPL™ system. The paper presents a selection of case histories of dermatological lesions treated with the HPPL™ and IFL™ technologies. All study materials were appropriately peer-reviewed for ethical problems.

  20. Annealing characteristics of SiO2-Si structures after incoherent light pulse processing

    International Nuclear Information System (INIS)

    Sieber, N.; Klabes, R.; Voelskow, M.; Fenske, F.

    1982-01-01

    The behaviour of oxide charges and interface charges in boron implanted and non-implanted SiO 2 -Si structures as well as the electrical activation of the dopants by the action of incoherent light pulses was studied. Depth profiles of electrically active boron ions are presented for different annealing conditions as measured by the pulsed C-V method. It can be concluded that exposure of MOS structures to intense radiation of flash lamps does not increase the fixed charge and the fast state density at the SiO 2 -Si interface if optimal annealing conditions (energy densities) are employed. Low dose boron implanted silicon can be electrically activated without diffusion or segregation of dopants

  1. Modulating emission intensity of GaN-based green light emitting diodes on c-plane sapphire

    International Nuclear Information System (INIS)

    Du, Chunhua; Ma, Ziguang; Zhou, Junming; Lu, Taiping; Jiang, Yang; Jia, Haiqiang; Liu, Wuming; Chen, Hong

    2014-01-01

    The asymmetric dual-wavelength (green/blue) coupled InGaN/GaN multiple quantum wells were proposed to modulate the green emission intensity. Electroluminescent measurements demonstrate the conspicuous increment of the green light intensity by decreasing the coupled barrier thickness. This was partly attributed to capture of more carriers when holes tunnel across the thinner barrier from the blue quantum wells, as a hole reservoir, to the green quantum wells. While lower effective barrier height of the blue quantum wells benefits improved hole transportation from p-GaN to the active region. Efficiency droop of the green quantum wells was partially alleviated due to the enhanced injection efficiency of holes

  2. Design and fabrication of adjustable red-green-blue LED light arrays for plant research

    Directory of Open Access Journals (Sweden)

    Kenitz J Dustin

    2005-08-01

    Full Text Available Abstract Background Although specific light attributes, such as color and fluence rate, influence plant growth and development, researchers generally cannot control the fine spectral conditions of artificial plant-growth environments. Plant growth chambers are typically outfitted with fluorescent and/or incandescent fixtures that provide a general spectrum that is accommodating to the human eye and not necessarily supportive to plant development. Many studies over the last several decades, primarily in Arabidopsis thaliana, have clearly shown that variation in light quantity, quality and photoperiod can be manipulated to affect growth and control developmental transitions. Light emitting diodes (LEDs has been used for decades to test plant responses to narrow-bandwidth light. LEDs are particularly well suited for plant growth chambers, as they have an extraordinary life (about 100,000 hours, require little maintenance, and use negligible energy. These factors render LED-based light strategies particularly appropriate for space-biology as well as terrestrial applications. However, there is a need for a versatile and inexpensive LED array platform where individual wavebands can be specifically tuned to produce a series of light combinations consisting of various quantities and qualities of individual wavelengths. Two plans are presented in this report. Results In this technical report we describe the practical construction of tunable red-green-blue LED arrays to support research in plant growth and development. Two light fixture designs and corresponding circuitry are presented. The first is well suited for a laboratory environment for use in a finite area with small plants, such as Arabidopsis. The second is expandable and appropriate for growth chambers. The application of these arrays to early plant developmental studies has been validated with assays of hypocotyl growth inhibition/promotion and phototropic curvature in Arabidopsis seedlings

  3. green

    Directory of Open Access Journals (Sweden)

    Elena Grigoryeva

    2011-02-01

    Full Text Available The “green” topic follows the “youngsters”, which is quite natural for the Russian language.Traditionally these words put together sound slightly derogatory. However, “green” also means fresh, new and healthy.For Russia, and for Siberia in particular, “green” architecture does sound new and fresh. Forced by the anxious reality, we are addressing this topic intentionally. The ecological crisis, growing energy prices, water, air and food deficits… Alexander Rappaport, our regular author, writes: “ It has been tolerable until a certain time, but under transition to the global civilization, as the nature is destroyed, and swellings of megapolises expand incredibly fast, the size and the significance of all these problems may grow a hundredfold”.However, for this very severe Siberian reality the newness of “green” architecture may turn out to be well-forgotten old. A traditional Siberian house used to be built on principles of saving and environmental friendliness– one could not survive in Siberia otherwise.Probably, in our turbulent times, it is high time to fasten “green belts”. But we should keep from enthusiastic sticking of popular green labels or repainting of signboards into green color. We should avoid being drowned in paper formalities under “green” slogans. And we should prevent the Earth from turning into the planet “Kin-dza-dza”.

  4. INACTIVATION OF PATHOGENIC BACTERIA USING PULSED UV-LIGHT AND ITS APPLICATION IN WATER DISINFECTION AND QUALITY CONTROL

    Directory of Open Access Journals (Sweden)

    M. K. Sharifi-Yazdi H. Darghahi

    2006-09-01

    Full Text Available The lethality of pulsed ultra-violet (UV rich light for the inactivation of pathogenic bacteria has been investigated. A low pressure xenon filled flash lamps that produced UV intensities have been used. The pulsed operation of the system enable the release of electrical energy stored in the capacitor into the flash lamp within a short time and produces the high current and high peak power required for emitting the intense UV flash. The flash frequency was adjusted to one pulse per second. Several types of bacteria were investigated for their susceptibility to pulsed UV illumination. The treated bacterial populations were reduced and determined by direct viable counts. Among the tested bacteria Pseudomonas aeruginosa was the most susceptible to the pulsed UV- light with a 8 log10 cfu/ml reduction after 11 pulses, while the spores of Bacillus megaterium was the most resistant and only 4 log10 cfu/ml reduction achieved after 50 pulses of illumination. The results of this study demonstrated that pulsed UV- light technology could be used as an effective method for the inactivation, of pathogenic bacteria in different environments such as drinking water.

  5. Self-compression of spatially limited laser pulses in a system of coupled light-guides

    Science.gov (United States)

    Balakin, A. A.; Litvak, A. G.; Mironov, V. A.; Skobelev, S. A.

    2018-04-01

    The self-action features of wave packets propagating in a 2D system of equidistantly arranged fibers are studied analytically and numerically on the basis of the discrete nonlinear Schrödinger equation. Self-consistent equations for the characteristic scales of a Gaussian wave packet are derived on the basis of the variational approach, which are proved numerically for powers P beams become filamented, and their amplitude is limited due to the nonlinear breaking of the interaction between neighboring light-guides. This makes it impossible to collect a powerful wave beam in a single light-guide. Variational analysis shows the possibility of the adiabatic self-compression of soliton-like laser pulses in the process of 3D self-focusing on the central light-guide. However, further increase of the field amplitude during self-compression leads to the development of longitudinal modulation instability and the formation of a set of light bullets in the central fiber. In the regime of hollow wave beams, filamentation instability becomes predominant. As a result, it becomes possible to form a set of light bullets in optical fibers located on the ring.

  6. P1-12: Different Double-Pulse Distinguishability Among the Luminance Opponency, the Red-Green Opponency, and the Blue-Yellow Opponency

    Directory of Open Access Journals (Sweden)

    Lin Shi

    2012-10-01

    Full Text Available The inter-stimuli-interval (ISI thresholds of double pulses discrimination were measured to investigate the temporal distinguishability of double pulses of the luminance opponency, the red-green opponency, and the blue-yellow opponency. Double pulses were presented randomly in one of four quadrants, defined by a central fixation cross on a CRT display controlled by the real time sequencer (RTS of the VSG system in 42-bit color mode calibrated with less than 3% display error rate of the 1931 CIE luminance and chromatic coordinate. Each pulse was of duration 6.7 msec and included a Gaussian patch with gradation of tristimulus values from the peak to the background in equal-energy-white (the luminance opponency or isoluminance (the red-green and the blue-yellow opponency configuration. Eleven observers were asked to report the number of pulses (one or two observed while ISI was adjusted by a psi method. Psychometric functions were estimated using the cumulative distribution function of the extreme value distribution. The threshold was the ISI value corresponding with the rate of 63.21% correct answer. Significant differences were found among ISI thresholds of the luminance, blue-yellow, and red-green opponency. Results supported that the temporal distinguishability of double pulses of the luminance opponency, the red-green opponency, and the blue-yellow opponency were significantly different. The difference can be explained by the impulse response functions (IRF with various first peak time among the luminance opponency, the red-green opponency, and the blue-yellow opponency.

  7. Visible Light Induced Green Transformation of Primary Amines to Imines Using a Silicate Supported Anatase Photocatalyst

    Directory of Open Access Journals (Sweden)

    Sifani Zavahir

    2015-01-01

    Full Text Available Catalytic oxidation of amine to imine is of intense present interest since imines are important intermediates for the synthesis of fine chemicals, pharmaceuticals, and agricultural chemicals. However, considerable efforts have been made to develop efficient methods for the oxidation of secondary amines to imines, while little attention has until recently been given to the oxidation of primary amines, presumably owing to the high reactivity of generated imines of primary amines that are easily dehydrogenated to nitriles. Herein, we report the oxidative coupling of a series of primary benzylic amines into corresponding imines with dioxygen as the benign oxidant over composite catalysts of TiO2 (anatase-silicate under visible light irradiation of λ > 460 nm. Visible light response of this system is believed to be as a result of high population of defects and contacts between silicate and anatase crystals in the composite and the strong interaction between benzylic amine and the catalyst. It is found that tuning the intensity and wavelength of the light irradiation and the reaction temperature can remarkably enhance the reaction activity. Water can also act as a green medium for the reaction with an excellent selectivity. This report contributes to the use of readily synthesized, environmentally benign, TiO2 based composite photocatalyst and solar energy to realize the transformation of primary amines to imine compounds.

  8. Visible light induced green transformation of primary amines to imines using a silicate supported anatase photocatalyst.

    Science.gov (United States)

    Zavahir, Sifani; Zhu, Huaiyong

    2015-01-26

    Catalytic oxidation of amine to imine is of intense present interest since imines are important intermediates for the synthesis of fine chemicals, pharmaceuticals, and agricultural chemicals. However, considerable efforts have been made to develop efficient methods for the oxidation of secondary amines to imines, while little attention has until recently been given to the oxidation of primary amines, presumably owing to the high reactivity of generated imines of primary amines that are easily dehydrogenated to nitriles. Herein, we report the oxidative coupling of a series of primary benzylic amines into corresponding imines with dioxygen as the benign oxidant over composite catalysts of TiO2 (anatase)-silicate under visible light irradiation of λ > 460 nm. Visible light response of this system is believed to be as a result of high population of defects and contacts between silicate and anatase crystals in the composite and the strong interaction between benzylic amine and the catalyst. It is found that tuning the intensity and wavelength of the light irradiation and the reaction temperature can remarkably enhance the reaction activity. Water can also act as a green medium for the reaction with an excellent selectivity. This report contributes to the use of readily synthesized, environmentally benign, TiO2 based composite photocatalyst and solar energy to realize the transformation of primary amines to imine compounds.

  9. Carbon Nano-particle Synthesized by Pulsed Arc Discharge Method as a Light Emitting Device

    Science.gov (United States)

    Ahmadi, Ramin; Ahmadi, Mohamad Taghi; Ismail, Razali

    2018-04-01

    Owing to the specific properties such as high mobility, ballistic carrier transport and light emission, carbon nano-particles (CNPs) have been employed in nanotechnology applications. In the presented work, the CNPs are synthesized by using the pulsed arc discharge method between two copper electrodes. The rectifying behaviour of produced CNPs is explored by assuming an Ohmic contact between the CNPs and the electrodes. The synthesized sample is characterized by electrical investigation and modelling. The current-voltage (I-V) relationship is investigated and bright visible light emission from the produced CNPs was measured. The electroluminescence (EL) intensity was explored by changing the distance between two electrodes. An incremental behaviour on EL by a resistance gradient and distance reduction is identified.

  10. Enhancement of mosquito trapping efficiency by using pulse width modulated light emitting diodes

    Science.gov (United States)

    Liu, Yu-Nan; Liu, Yu-Jen; Chen, Yi-Chian; Ma, Hsin-Yi; Lee, Hsiao-Yi

    2017-01-01

    In this study, a light-driving bug zapper is presented for well controlling the diseases brought by insects, such as mosquitoes. In order to have the device efficient to trap the insect pests in off-grid areas, pulse width modulated light emitting diodes (PWM-LED) combined with a solar power module are proposed and implemented. With specific PWM electric signals to drive the LED, it is found that no matter what the ability of catching insects or the consumed power efficiency can be enhanced thus. It is demonstrated that 40% of the UV LED consumed power and 25.9% of the total load power consumption can be saved, and the trapped mosquitoes are about 250% increased when the PWM method is applied in the bug zapper experiments.

  11. Interactive effects of copper oxide nanoparticles and light to green alga Chlamydomonas reinhardtii

    Energy Technology Data Exchange (ETDEWEB)

    Cheloni, Giulia; Marti, Elodie; Slaveykova, Vera I., E-mail: vera.slaveykova@unige.ch

    2016-01-15

    Highlights: • Comparable stability of CuO-NP suspensions under different light conditions. • UVR* inhibits growth, bleaches chlorophyll fluorescence and damages membrane. • Below 1 mg L{sup −1} CuO-NPs do not attenuate light in algal suspension. • SNL enhances significantly the effect of 0.8 mg L{sup −1} CuO-NPs on microalgae. • Synergistic interactions between UVR* and CuO-NPs. - Abstract: The present study explores the effect of light with different spectral composition on the stability of CuO-nanoparticle (CuO-NP) dispersions and their effects to green alga Chlamydomonas reinhardtii. The results showed that simulated natural light (SNL) and light with enhanced UVB radiation (UVR*) do not affect the dissolution of CuO-NPs as compared to light irradiation conditions typically used in laboratory incubator (INC). Comparable values of ζ-potential and hydrodynamic size during 24 h were found under all studied conditions. Concentrations of CuO-NPs below 1 mg L{sup −1} do not attenuate the light penetration in the algal suspensions in comparison with NP-free system. Exposure to a combination of 8 μg L{sup −1} or 0.8 mg L{sup −1} CuO-NPs and INC or SNL has no significant effect on the algal growth inhibition, algal fluorescence and membrane integrity under short-term exposure. However, an enhancement of the percentage of cells experiencing oxidative stress was observed upon exposure to 0.8 mg L{sup −1} CuO-NPs and SNL for 4 and 8 h. Combination of UVR* and 0.8 mg L{sup −1} CuO-NPs resulted in synergistic effects for all biological endpoints. Despite the photocatalytic properties of CuO-NPs no significant increase in abiotic reactive oxygen species (ROS) production under simulated solar radiation was observed suggesting that the synergistic effect observed might be correlated to other factors than CuO-NP-mediated ROS photoproduction. Tests performed with CuSO{sub 4} confirmed the important role of dissolution as toxicity driving force for lower

  12. Intense pulsed light, near infrared pulsed light, and fractional laser combination therapy for skin rejuvenation in Asian subjects: a prospective multi-center study in China.

    Science.gov (United States)

    Tao, Li; Wu, Jiaqiang; Qian, Hui; Lu, Zhong; Li, Yuanhong; Wang, Weizhen; Zhao, Xiaozhong; Tu, Ping; Yin, Rui; Xiang, Leihong

    2015-09-01

    Ablative skin rejuvenation therapies have limitations for Asian people, including post-inflammatory hyperpigmentation and long down time. Non-ablative lasers are safer but have limited efficacy. This study is to investigate the safety and efficacy of a combination therapy consisting of intense pulsed light (IPL), near infrared (NIR) light, and fractional erbium YAG (Er:YAG) laser for skin rejuvenation in Asian people. This study recruited 113 subjects from six sites in China. Subjects were randomly assigned to a full-face group, who received combination therapy, and split-face groups, in which one half of the face received combination therapy and the other half received IPL monotherapy. Each subject received five treatment sessions during a period of 90 days. Subjects were followed up at 1 and 3 months post last treatment. Three months after last treatment, the full-face group (n = 57) had a global improvement rate of 29 % and 29 % for wrinkles, 32 % for skin texture, 33 % for pigment spots, 28 % for pore size, respectively. For patients in the split-face groups (n = 54), monotherapy side had a global improvement rate of 23 % and 20 % for wrinkles, 27 % for skin texture, 25 % for pigment spots, 25 % for pore size, respectively. Both combination therapy and monotherapy resulted in significant improvements at the follow-up visits compared to baseline (P < 0.001). Combination therapy showed significantly greater improvements compared to monotherapy at two follow-up visits (P < 0.05). Combination therapy is a safe and more effective strategy than IPL monotherapy for skin rejuvenation in Asian people.

  13. Non-BPS D-branes in light-cone Green-Schwarz formalism

    International Nuclear Information System (INIS)

    Mukhopadhyay, Partha

    2005-01-01

    Non-BPS D-branes are difficult to describe covariantly in a manifestly supersymmetric formalism. For definiteness we concentrate on type-IIB string theory in flat background in light-cone Green-Schwarz formalism. We study both the boundary state and the boundary conformal field theory descriptions of these D-branes with manifest SO(8) covariance and go through various consistency checks. We analyze Sen's original construction of non-BPS D-branes given in terms of an orbifold boundary conformal field theory. We also directly study the relevant world-sheet theory by deriving the open string boundary condition from the covariant boundary state. Both these methods give the same open string spectrum which is consistent with the boundary state, as required by the world-sheet duality. The boundary condition found in the second method is given in terms of bi-local fields that are quadratic in Green-Schwarz fermions. We design a special 'doubling trick' suitable to handle such boundary conditions and prescribe rules for computing all possible correlation functions without boundary insertions. This prescription has been tested by computing disk one-point functions of several classes of closed string states and comparing the results with the boundary state computation. (author)

  14. Representation-free description of light-pulse atom interferometry including non-inertial effects

    Energy Technology Data Exchange (ETDEWEB)

    Kleinert, Stephan, E-mail: stephan.kleinert@uni-ulm.de [Institut für Quantenphysik and Center for Integrated Quantum Science and Technology (IQST), Universität Ulm, Albert-Einstein-Allee 11, D-89081 Ulm (Germany); Kajari, Endre; Roura, Albert [Institut für Quantenphysik and Center for Integrated Quantum Science and Technology (IQST), Universität Ulm, Albert-Einstein-Allee 11, D-89081 Ulm (Germany); Schleich, Wolfgang P. [Institut für Quantenphysik and Center for Integrated Quantum Science and Technology (IQST), Universität Ulm, Albert-Einstein-Allee 11, D-89081 Ulm (Germany); Texas A& M University Institute for Advanced Study (TIAS), Institute for Quantum Science and Engineering (IQSE) and Department of Physics and Astronomy, Texas A& M University College Station, TX 77843-4242 (United States)

    2015-12-30

    Light-pulse atom interferometers rely on the wave nature of matter and its manipulation with coherent laser pulses. They are used for precise gravimetry and inertial sensing as well as for accurate measurements of fundamental constants. Reaching higher precision requires longer interferometer times which are naturally encountered in microgravity environments such as drop-tower facilities, sounding rockets and dedicated satellite missions aiming at fundamental quantum physics in space. In all those cases, it is necessary to consider arbitrary trajectories and varying orientations of the interferometer set-up in non-inertial frames of reference. Here we provide a versatile representation-free description of atom interferometry entirely based on operator algebra to address this general situation. We show how to analytically determine the phase shift as well as the visibility of interferometers with an arbitrary number of pulses including the effects of local gravitational accelerations, gravity gradients, the rotation of the lasers and non-inertial frames of reference. Our method conveniently unifies previous results and facilitates the investigation of novel interferometer geometries.

  15. iPhone 4s photoplethysmography: which light color yields the most accurate heart rate and normalized pulse volume using the iPhysioMeter Application in the presence of motion artifact?

    Directory of Open Access Journals (Sweden)

    Kenta Matsumura

    Full Text Available Recent progress in information and communication technologies has made it possible to measure heart rate (HR and normalized pulse volume (NPV, which are important physiological indices, using only a smartphone. This has been achieved with reflection mode photoplethysmography (PPG, by using a smartphone's embedded flash as a light source and the camera as a light sensor. Despite its widespread use, the method of PPG is susceptible to motion artifacts as physical displacements influence photon propagation phenomena and, thereby, the effective optical path length. Further, it is known that the wavelength of light used for PPG influences the photon penetration depth and we therefore hypothesized that influences of motion artifact could be wavelength-dependant. To test this hypothesis, we made measurements in 12 healthy volunteers of HR and NPV derived from reflection mode plethysmograms recorded simultaneously at three different spectral regions (red, green and blue at the same physical location with a smartphone. We then assessed the accuracy of the HR and NPV measurements under the influence of motion artifacts. The analyses revealed that the accuracy of HR was acceptably high with all three wavelengths (all rs > 0.996, fixed biases: -0.12 to 0.10 beats per minute, proportional biases: r =  -0.29 to 0.03, but that of NPV was the best with green light (r = 0.791, fixed biases: -0.01 arbitrary units, proportional bias: r = 0.11. Moreover, the signal-to-noise ratio obtained with green and blue light PPG was higher than that of red light PPG. These findings suggest that green is the most suitable color for measuring HR and NPV from the reflection mode photoplethysmogram under motion artifact conditions. We conclude that the use of green light PPG could be of particular benefit in ambulatory monitoring where motion artifacts are a significant issue.

  16. Single nanowire green InGaN/GaN light emitting diodes

    Science.gov (United States)

    Zhang, Guogang; Li, Ziyuan; Yuan, Xiaoming; Wang, Fan; Fu, Lan; Zhuang, Zhe; Ren, Fang-Fang; Liu, Bin; Zhang, Rong; Tan, Hark Hoe; Jagadish, Chennupati

    2016-10-01

    Single nanowire (NW) green InGaN/GaN light-emitting diodes (LEDs) were fabricated by top-down etching technology. The electroluminescence (EL) peak wavelength remains approximately constant with an increasing injection current in contrast to a standard planar LED, which suggests that the quantum-confined Stark effect is significantly reduced in the single NW device. The strain relaxation mechanism is studied in the single NW LED using Raman scattering analysis. As compared to its planar counterpart, the EL peak of the NW LED shows a redshift, due to electric field redistribution as a result of changes in the cavity mode pattern after metallization. Our method has important implication for single NW optoelectronic device applications.

  17. Efficient red, green, blue and white organic light-emitting diodes with same exciplex host

    Science.gov (United States)

    Chang, Chih-Hao; Wu, Szu-Wei; Huang, Chih-Wei; Hsieh, Chung-Tsung; Lin, Sung-En; Chen, Nien-Po; Chang, Hsin-Hua

    2016-03-01

    Recently, exciplex had drawn attention because of its potential for efficient electroluminescence or for use as a host in organic light-emitting diodes (OLEDs). In this study, four kinds of hole transport material/electron transport material combinations were examined to verify the formation of exciplex and the corresponding energy bandgaps. We successfully demonstrated that the combination of tris(4-carbazoyl-9-ylphenyl)amine (TCTA) and 3,5,3‧,5‧-tetra(m-pyrid-3-yl)phenyl[1,1‧]biphenyl (BP4mPy) could form a stable exciplex emission with an adequate energy gap. Using exciplex as a host in red, green, and blue phosphorescent OLEDs with an identical trilayer architecture enabled effective energy transfer from exciplex to emitters, achieving corresponding efficiencies of 8.8, 14.1, and 15.8%. A maximum efficiency of 11.3% and stable emission was obtained in white OLEDs.

  18. The ``battle of gold'' under the light of green economics: a case study from Greece

    Science.gov (United States)

    Damigos, D.; Kaliampakos, D.

    2006-05-01

    Mining firms stimulate local and national economies but this comes at a certain cost. In the light of increasing public concern, external costs of environmental degradation and social disruption are no longer of pure academic interest. The assessment of mining projects on the grounds of sustainable development is critical in order to decide whether the exploitation of mineral resources is socially desirable. In practice, few steps have been taken towards this end. In this paper, a case study is illustrated that provides the means for evaluating the social worthiness of mining projects. The analysis, which is the first of its kind in Greece, deals with a major problem of the mining industry: the gold debate on the grounds of green economics. The assessment is based on the social cost benefit approach. Well-established techniques (e.g. benefit transfer) and innovative approaches have been adopted to overcome various practical problems

  19. Effect of intense pulsed light on immature burn scars: A clinical study

    Directory of Open Access Journals (Sweden)

    Arindam Sarkar

    2014-01-01

    Full Text Available Introduction: As intense pulsed light (IPL is widely used to treat cutaneous vascular malformations and also used as non-ablative skin rejunuvation to remodel the skin collagen. A study has been undertaken to gauze the effect of IPL on immature burn scars with regard to vascularity, pliability and height. Materials and Methods: This study was conducted between June 2013 and May 2014, among patients with immature burn scars that healed conservatively within 2 months. Photographic evidence of appearance of scars and grading and rating was done with Vancouver Scar Scale parameters. Ratings were done for both case and control scar after the completion of four IPL treatment sessions and were compared. Results: Out of the 19 cases, vascularity, pliability and height improved significantly (P < 0.05 in 13, 14 and 11 scars respectively following IPL treatment. Conclusions: Intense pulsed light was well-tolerated by patients, caused good improvement in terms of vascularity, pliability, and height of immature burn scar.

  20. Pulsed Ultraviolet Light Reduces Immunoglobulin E Binding to Atlantic White Shrimp (Litopenaeus setiferus Extract

    Directory of Open Access Journals (Sweden)

    Si-Yin Chung

    2011-06-01

    Full Text Available Pulsed ultraviolet light (PUV, a novel food processing and preservation technology, has been shown to reduce allergen levels in peanut and soybean samples. In this study, the efficacy of using PUV to reduce the reactivity of the major shrimp allergen, tropomyosin (36-kDa, and to attenuate immunoglobulin E (IgE binding to shrimp extract was examined. Atlantic white shrimp (Litopenaeus setiferus extract was treated with PUV (3 pulses/s, 10 cm from light source for 4 min. Tropomyosin was compared in the untreated, boiled, PUV-treated and [boiled+PUV]-treated samples, and changes in the tropomyosin levels were determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE. IgE binding of the treated extract was analyzed via immunoblot and enzyme-linked immunosorbent assay (ELISA using pooled human plasma containing IgE antibodies against shrimp allergens. Results showed that levels of tropomyosin and IgE binding were reduced following PUV treatment. However, boiling increased IgE binding, while PUV treatment could offset the increased allergen reactivity caused by boiling. In conclusion, PUV treatment reduced the reactivity of the major shrimp allergen, tropomyosin, and decreased the IgE binding capacity of the shrimp extract.

  1. Gigabit-per-second white light-based visible light communication using near-ultraviolet laser diode and red-, green-, and blue-emitting phosphors

    KAUST Repository

    Lee, Changmin; Shen, Chao; Cozzan, Clayton; Farrell, Robert M.; Speck, James S.; Nakamura, Shuji; Ooi, Boon S.; DenBaars, Steven P.

    2017-01-01

    Data communication based on white light generated using a near-ultraviolet (NUV) laser diode (LD) pumping red-, green-, and blue-emitting (RGB) phosphors was demonstrated for the first time. A III-nitride laser diode (LD) on a semipolar (2021

  2. Electromagnetically induced transparency and nonlinear pulse propagation in a combined tripod and Λ atom-light coupling scheme

    International Nuclear Information System (INIS)

    Hamedi, H R; Ruseckas, J; Juzeliūnas, G

    2017-01-01

    We consider propagation of a probe pulse in an atomic medium characterized by a combined tripod and Lambda (Λ) atom-light coupling scheme. The scheme involves three atomic ground states coupled to two excited states by five light fields. It is demonstrated that dark states can be formed for such an atom-light coupling. This is essential for formation of the electromagnetically induced transparency (EIT) and slow light. In the limiting cases the scheme reduces to conventional Λ- or N -type atom-light couplings providing the EIT or absorption, respectively. Thus, the atomic system can experience a transition from the EIT to the absorption by changing the amplitudes or phases of control lasers. Subsequently the scheme is employed to analyze the nonlinear pulse propagation using the coupled Maxwell–Bloch equations. It is shown that a generation of stable slow light optical solitons is possible in such a five-level combined tripod and Λ atomic system. (paper)

  3. Green LED as an Effective Light Source for Curing Acrylate-Based Dental Resins in Combination with Irgacure 784

    Directory of Open Access Journals (Sweden)

    Katalin Bukovinszky

    2018-01-01

    Full Text Available Low intensity green light emitting diodes (LED were shown to be an effective light source to induce the photopolymerization of an acrylate-based photocurable dental restorative resin mixture of bisphenol A glycerolate dimethacrylate (BisGMA, triethylene glycol dimethacrylate (TEGDMA, and diurethane dimethacrylate (UDMA, in combination with fluorinated diaryl titanocene (Irgacure 784. Dental matrices were prepared by the LED light source at different intensities. The mechanical properties, such as Vickers microhardness, compressive strength, diametric tensile strength, flexural strength, and E-modulus of the created samples, were investigated. The kinetics of the photopolymerization was followed by Raman spectroscopy and conversion values were determined. It was found that, despite its narrow-emission range centered at a wavelength of 531 nm, the green LED light source is suitable for the preparation of dental matrices with good mechanical properties and high conversion values.

  4. Effects of 530 nm green light on refractive status, melatonin, MT1 receptor, and melanopsin in the guinea pig.

    Science.gov (United States)

    Wang, Fei; Zhou, Jiaqi; Lu, Yi; Chu, Renyuan

    2011-02-01

    To investigate (i) the effect of monochromatic light on inhibiting induction of light-induced melatonin and (ii) the roles of melanopsin and MT1 receptor in light-induced myopia in the guinea pig. Forty-eight guinea pigs were randomly distributed into three treatment groups: white-light (control), green-light (530 nm), and blue-light (480 nm) groups. Levels of pineal gland melatonin were measured twice daily--10:00 a.m. and 10:00 p.m.--10 days after initial light treatment. Thirty additional guinea pigs were also assigned to these groups and treated similarly. For these latter animals, refractive status, ocular length, and vitreous depth were measured before and after light treatment. Eight weeks after light treatment, retinal and sceral levels of melanopsin, melatonin receptor type (MT) 1, and mRNA protein were determined by Western blotting, real-time polymerase chain reaction (RT-PCR), and immunohistochemistry. The level of pineal gland melatonin in the green-light group was significantly higher than that in the blue-light group. Biometric measurements showed that guinea pigs in the green-light group had a somewhat myopic refractive status. Expressions of retinal melanopsin mRNA and protein were significantly higher in the blue-light group and lower in the green-light group when compared to controls. Conversely, expressions of MT1 receptor mRNA and protein in retina and sclera were significantly higher in the green-light group and lower in the blue-light group when compared to controls. Green light appears to suppress induction of melatonin production. In addition, 530 nm of green light is involved in the development of myopia. In the guinea pig, MT1 receptor and melanopsin appear to play roles in the development of myopia induced by 530 nm of light.

  5. Influence of Green, Red and Blue Light Emitting Diodes on Multiprotein Complex Proteins and Photosynthetic Activity under Different Light Intensities in Lettuce Leaves (Lactuca sativa L.

    Directory of Open Access Journals (Sweden)

    Sowbiya Muneer

    2014-03-01

    Full Text Available The objective of this study was to investigate the response of light emitting diodes (LEDs at different light intensities (70 and 80 for green LEDs, 88 and 238 for red LEDs and 80 and 238 μmol m−2 s−1 for blue LEDs at three wavelengths in lettuce leaves. Lettuce leaves were exposed to (522 nm, red (639 nm and blue (470 nm LEDs of different light intensities. Thylakoid multiprotein complex proteins and photosynthetic metabolism were then investigated. Biomass and photosynthetic parameters increased with an increasing light intensity under blue LED illumination and decreased when illuminated with red and green LEDs with decreased light intensity. The expression of multiprotein complex proteins including PSII-core dimer and PSII-core monomer using blue LEDs illumination was higher at higher light intensity (238 μmol m−2 s−1 and was lowered with decreased light intensity (70–80 μmol m−2 s−1. The responses of chloroplast sub-compartment proteins, including those active in stomatal opening and closing, and leaf physiological responses at different light intensities, indicated induced growth enhancement upon illumination with blue LEDs. High intensity blue LEDs promote plant growth by controlling the integrity of chloroplast proteins that optimize photosynthetic performance in the natural environment.

  6. Micro and nano-structured green gallium indium nitride/gallium nitride light-emitting diodes

    Science.gov (United States)

    Stark, Christoph J. M.

    Light-emitting diodes (LEDs) are commonly designed and studied based on bulk material properties. In this thesis different approaches based on patterns in the nano and micrometer length scale range are used to tackle low efficiency in the green spectral region, which is known as “green gap”. Since light generation and extraction are governed by microscopic processes, it is instructive to study LEDs with lateral mesa sizes scaled to the nanometer range. Besides the well-known case of the quantum size effect along the growth direction, a continuous lateral scaling could reveal the mechanisms behind the purported absence of a green gap in nanowire LEDs and the role of their extraction enhancement. Furthermore the possibility to modulate strain and piezoelectric polarization by post growth patterning is of practical interest, because the internal electric fields in conventional wurtzite GaN LEDs cause performance problems. A possible alternative is cubic phase GaN, which is free of built-in polarization fields. LEDs on cubic GaN could show the link between strong polarization fields and efficiency roll-off at high current densities, also known as droop. An additional problem for all nitride-based LEDs is efficient light extraction. For a planar GaN LED only roughly 8% of the generated light can be extracted. Novel lightextraction structures with extraction-favoring geometry can yield significant increase in light output power. To investigate the effect of scaling the mesa dimension, micro and nano-sized LED arrays of variable structure size were fabricated. The nano-LEDs were patterned by electron beam lithography and dry etching. They contained up to 100 parallel nano-stripe LEDs connected to one common contact area. The mesa width was varied over 1 μm, 200 nm, and 50 nm. These LEDs were characterized electrically and optically, and the peak emission wavelength was found to depend on the lateral structure size. An electroluminescence (EL) wavelength shift of 3 nm

  7. A comparison study of Riboflavin/UV-A and Rose-Bengal/Green light cross-linking of the rabbit corneas using optical coherence elastography

    Science.gov (United States)

    Li, Jiasong; Singh, Manmohan; Han, Zhaolong; Vantipalli, Srilatha; Liu, Chih-Hao; Wu, Chen; Raghunathan, Raksha; Kazemi, Tina; Twa, Michael D.; Larin, Kirill V.

    2016-03-01

    The biomechanical properties of the cornea are critical factors which determine its health and subsequent visual acuity. Keratoconus is a structural degeneration of the cornea which can diminish vision quality. Riboflavin/UV-A corneal collagen cross-linking (UV-CXL) is an emerging treatment that increases the stiffness of the cornea and improves its ability to resist further degeneration. While UV-CXL has shown great promise for effective therapy of the keratoconus, there are concerns associated with the UV irradiation, such as keratocyte cytotoxicity. Rose-bengal/green light corneal collagen cross-linking (RGX) has been proposed as an alternative to UV-CXL. Because of the high absorbance of the rose-bengal dye at green wavelengths, the treatment time is significantly shorter than with UV-CXL. Moreover, because green light is used in lieu of UV irradiation, there are no cytotoxic side-effects. In this study, noncontact optical coherence elastography (OCE) was used to compare the outcomes of UV-CXL and RGX treatment in rabbit cornea. Low-amplitude (micrometer scale) elastic waves were induced by a focused air-pulse loading system. The elastic wave propagation was then imaged by a phase-stabilized swept source OCE (PhS-SSOCE) system. The changes in the viscoelasticity of the corneas were quantified by a previously developed modified Rayleigh Lamb frequency model. The depth-resolved micro-scale phase-velocity distribution in the cornea was used to reveal the depth-wise heterogeneity before and after both cross-linking techniques. Our results show that UV-CXL and RGX increased the stiffness of the corneas by ~54% and ~5% while reducing the viscosity by ~42% and ~17%, respectively. The depth-wise phase velocities showed that UV-CXL affected the anterior ~1/3 of the corneas, while RGX only affected the anterior ~1/7 of the corneas.

  8. Amphibious fluorescent carbon dots: one-step green synthesis and application for light-emitting polymer nanocomposites.

    Science.gov (United States)

    Zhou, Li; He, Benzhao; Huang, Jiachang

    2013-09-21

    A facile and green approach for the synthesis of amphibious fluorescent carbon dots (CDs) from natural polysaccharide is reported. Light-emitting polymer nanocomposites with excellent optical performance can be easily prepared by incorporation of the amphibious CDs into the polymer matrix.

  9. Enhanced Emission Efficiency of Size-Controlled InGaN/GaN Green Nanopillar Light-Emitting Diodes

    DEFF Research Database (Denmark)

    Ou, Yiyu; Iida, Daisuke; Fadil, Ahmed

    2016-01-01

    Nanopillar InGaN/GaN green light-emitting diode (LED) arrays were fabricated by self-assembled Au nanoparticles patterning and dry etching process. Structure size and density of the nanopillar arrays have been modified by varying the Au film thickness in the nanopatterning process. Fabricated...

  10. Antioxidant properties of green tea extract protect reduced fat soft cheese against oxidation induced by light exposure

    DEFF Research Database (Denmark)

    Huvaere, Kevin André Jurgen; Nielsen, Jacob Holm; Bakman, Mette

    2011-01-01

    The effect of two different antioxidants, EDTA and green tea extract (GTE), used individually or in combination, on the light-induced oxidation of reduced fat soft cheeses (0.2 and 6% fat) was investigated. In samples with 0.2% fat, lipid hydroperoxides as primary lipid oxidation products were...

  11. Intense pulsed light vs. long-pulsed dye laser treatment of telangiectasia after radiotherapy for breast cancer: a randomized split-lesion trial of two different treatments

    DEFF Research Database (Denmark)

    Nymann, P.; Hedelund, L.; Hædersdal, Merete

    2009-01-01

    Background Chronic radiodermatitis is a common sequela of treatment for breast cancer and potentially a psychologically distressing factor for the affected women. Objectives To evaluate the efficacy and adverse effects of treatments with a long-pulsed dye laser (LPDL) vs. intense pulsed light (IPL......); the interventions were randomly assigned to left/right or upper/lower halves. Primary end-points were reduction in telangiectasia, patient satisfaction and preferred treatment. Secondary end-points were pain and adverse effects. Efficacy was registered by blinded photographic evaluations 3 months after the final...

  12. Enhancement of efficiencies for tandem green phosphorescent organic light-emitting devices with a p-type charge generation layer

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Byung Soo; Jeon, Young Pyo; Lee, Dae Uk; Kim, Tae Whan, E-mail: twk@hanayng.ac.kr

    2014-10-15

    The operating voltage of the tandem green phosphorescent organic light-emitting device with a 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile layer was improved by 3% over that of the organic light-emitting device with a molybdenum trioxide layer. The maximum brightness of the tandem green phosphorescent organic light-emitting device at 21.9 V was 26,540 cd/m{sup 2}. The dominant peak of the electroluminescence spectra for the devices was related to the fac-tris(2-phenylpyridine) iridium emission. - Highlights: • Tandem OLEDs with CGL were fabricated to enhance their efficiency. • The operating voltage of the tandem OLED with a HAT-CN layer was improved by 3%. • The efficiency and brightness of the tandem OLED were 13.9 cd/A and 26,540 cd/m{sup 2}. • Efficiency of the OLED with a HAT-CN layer was lower than that with a MoO{sub 3} layer. - Abstract: Tandem green phosphorescent organic light-emitting devices with a 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile or a molybdenum trioxide charge generation layer were fabricated to enhance their efficiency. Current density–voltage curves showed that the operating voltage of the tandem green phosphorescent organic light-emitting device with a 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile layer was improved by 3% over that of the corresponding organic light-emitting device with a molybdenum trioxide layer. The efficiency and the brightness of the tandem green phosphorescent organic light-emitting device were 13.9 cd/A and 26,540 cd/m{sup 2}, respectively. The current efficiency of the tandem green phosphorescent organic light-emitting device with a 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile layer was lower by 1.1 times compared to that of the corresponding organic light-emitting device with molybdenum trioxide layer due to the decreased charge generation and transport in the 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile layer resulting from triplet–triplet exciton annihilation.

  13. Monochromatic green light induces an aberrant accumulation of geranylgeranyled chlorophylls in plants.

    Science.gov (United States)

    Materová, Zuzana; Sobotka, Roman; Zdvihalová, Barbora; Oravec, Michal; Nezval, Jakub; Karlický, Václav; Vrábl, Daniel; Štroch, Michal; Špunda, Vladimír

    2017-07-01

    Light quality is an important environmental factor affecting the biosynthesis of photosynthetic pigments whose production seems to be affected not only quantitatively but also qualitatively. In this work, we set out to identify unusual pigment detected in leaves of barley (Hordeum vulgare L.) and explain its presence in plants grown under monochromatic green light (GL; 500-590 nm). The chromatographic analysis (HPLC-DAD) revealed that a peak belonging to this unknown pigment is eluted between chlorophyll (Chl) a and b. This pigment exhibited the same absorption spectrum and fluorescence excitation and emission spectra as Chl a. It was negligible in control plants cultivated under white light of the same irradiance (photosynthetic photon flux density of 240 μmol m -2  s -1 ). Mass spectrometry analysis of this pigment (ions m/z = 889 [M-H] - ; m/z = 949 [M+acetic acid-H] - ) indicates that it is Chl a with a tetrahydrogengeranylgeraniol side chain (containing two double bonds in a phytyl side chain; Chl a THGG ), which is an intermediate in Chl a synthesis. In plants grown under GL, the proportion of Chl a THGG to total Chl content rose to approximately 8% and 16% after 7 and 14 days of cultivation, respectively. Surprisingly, plants cultivated under GL exhibited drastically increased concentration of the enzyme geranylgeranyl reductase, which is responsible for the reduction of phytyl chain double bonds in the Chl synthesis pathway. This indicates impaired activity of this enzyme in GL-grown plants. A similar effect of GL on Chl synthesis was observed for distinct higher plant species. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  14. Green leaf volatiles and oxygenated metabolite emission bursts from mesquite branches following light-dark transitions.

    Science.gov (United States)

    Jardine, K; Barron-Gafford, G A; Norman, J P; Abrell, L; Monson, R K; Meyers, K T; Pavao-Zuckerman, M; Dontsova, K; Kleist, E; Werner, C; Huxman, T E

    2012-09-01

    Green leaf volatiles (GLVs) are a diverse group of fatty acid-derived compounds emitted by all plants and are involved in a wide variety of developmental and stress-related biological functions. Recently, GLV emission bursts from leaves were reported following light-dark transitions and hypothesized to be related to the stress response while acetaldehyde bursts were hypothesized to be due to the 'pyruvate overflow' mechanism. In this study, branch emissions of GLVs and a group of oxygenated metabolites (acetaldehyde, ethanol, acetic acid, and acetone) derived from the pyruvate dehydrogenase (PDH) bypass pathway were quantified from mesquite plants following light-dark transitions using a coupled GC-MS, PTR-MS, and photosynthesis system. Within the first minute after darkening following a light period, large emission bursts of both C(5) and C(6) GLVs dominated by (Z)-3-hexen-1-yl acetate together with the PDH bypass metabolites are reported for the first time. We found that branches exposed to CO(2)-free air lacked significant GLV and PDH bypass bursts while O(2)-free atmospheres eliminated the GLV burst but stimulated the PDH bypass burst. A positive relationship was observed between photosynthetic activity prior to darkening and the magnitude of the GLV and PDH bursts. Photosynthesis under (13)CO(2) resulted in bursts with extensive labeling of acetaldehyde, ethanol, and the acetate but not the C(6)-alcohol moiety of (Z)-3-hexen-1-yl acetate. Our observations are consistent with (1) the "pyruvate overflow" mechanism with a fast turnover time (3 h) responsible for the C(6) alcohol moiety of (Z)-3-hexen-1-yl acetate via the 13-lipoxygenase pathway. We conclude that our non-invasive method may provide a new valuable in vivo tool for studies of acetyl-CoA and fatty acid metabolism in plants at a variety of spatial scales.

  15. Using high-power light emitting diodes for photoacoustic imaging

    DEFF Research Database (Denmark)

    Hansen, R. S.

    2011-01-01

    for the experiment consists of a 3mm high x 5mm wide slice of green colored gelatine overlaid by a 3cm layer of colorless gelatine. The light pulses from the LED is focused on the green gelatine. The photoacoustic response from the green gelatine is detected by a single transducer on the opposite (top) surface...

  16. Nocturnal Light Pulses Lower Carbon Dioxide Production Rate without Affecting Feed Intake in Geese

    Directory of Open Access Journals (Sweden)

    De-Jia Huang

    2016-03-01

    Full Text Available This study was conducted to investigate the effect of nocturnal light pulses (NLPs on the feed intake and metabolic rate in geese. Fourteen adult Chinese geese were penned individually, and randomly assigned to either the C (control or NLP group. The C group was exposed to a 12L:12D photoperiod (12 h light and 12 h darkness per day, whereas the NLP group was exposed to a 12L:12D photoperiod inserted by 15-min lighting at 2-h intervals in the scotophase. The weight of the feed was automatically recorded at 1-min intervals for 1 wk. The fasting carbon dioxide production rate (CO2 PR was recorded at 1-min intervals for 1 d. The results revealed that neither the daily feed intake nor the feed intakes during both the daytime and nighttime were affected by photoperiodic regimen, and the feed intake during the daytime did not differ from that during the nighttime. The photoperiodic treatment did not affect the time distribution of feed intake. However, NLPs lowered (p<0.05 the mean and minimal CO2 PR during both the daytime and nighttime. Both the mean and minimal CO2 PR during the daytime were significantly higher (p<0.05 than those during the nighttime. We concluded that NLPs lowered metabolic rate of the geese, but did not affect the feed intake; both the mean and minimal CO2 PR were higher during the daytime than during the nighttime.

  17. A new method for multi-channel Fabry-Perot spectroscopy of light pulses in the nanosecond regime

    International Nuclear Information System (INIS)

    Behn, R.

    1975-01-01

    The demand for powerful multichannel spectrometers raised, e.g., in laser scattering plasma diagnostics, gave rise to the question if it would not be possible to avoid the light losses occuring in the use of multichannel Fabry-Perot spectrometers. These losses can be avoided with the technique presented here. The reflected light is collected and fed back to the interferometer at a different angle. It can thus be recovered for registration in another spectral channel. This method is particularly suitable for the investigation of short light pulses. A spectrum can thus be scanned step by step with full utilization of the transit time of the light pulse. In addition to light recovery, there is another advantage in that only one detector is used for multichannel analysis, thus eliminating calibration problems. In the annex to the report, emission spectres of different dye laser versions are presented and explained. (orig./GG) [de

  18. High Mobility Flexible Amorphous IGZO Thin-Film Transistors with a Low Thermal Budget Ultra-Violet Pulsed Light Process.

    Science.gov (United States)

    Benwadih, M; Coppard, R; Bonrad, K; Klyszcz, A; Vuillaume, D

    2016-12-21

    Amorphous, sol-gel processed, indium gallium zinc oxide (IGZO) transistors on plastic substrate with a printable gate dielectric and an electron mobility of 4.5 cm 2 /(V s), as well as a mobility of 7 cm 2 /(V s) on solid substrate (Si/SiO 2 ) are reported. These performances are obtained using a low temperature pulsed light annealing technique. Ultraviolet (UV) pulsed light system is an innovative technique compared to conventional (furnace or hot-plate) annealing process that we successfully implemented on sol-gel IGZO thin film transistors (TFTs) made on plastic substrate. The photonic annealing treatment has been optimized to obtain IGZO TFTs with significant electrical properties. Organic gate dielectric layers deposited on this pulsed UV light annealed films have also been optimized. This technique is very promising for the development of amorphous IGZO TFTs on plastic substrates.

  19. Temporal reflectance from a light pulse irradiated medium embedded with highly scattering cores

    International Nuclear Information System (INIS)

    Hsu Peifeng; Lu Xiaodong

    2007-01-01

    This paper presents a new approach to utilize ultrashort pulsed laser for optical diagnostics with numerical simulations. The method is based on the use of ultrafast pulses with a pulsewidth selected according to the probed medium's radiative property and/or size. Our previous work in nonhomogeneous media has shown that the resulting time-resolved reflectance signal will have a unique characteristic: it will show a direct correlation of ballistic photon travel time and interface location, which is in between different layers or nonhomogeneous regions. The premise is based on utilizing the medium's structural information carried by the ballistic and snake photons without being masked by the diffuse photons. In this study, the space-time correlation is further explored in the case of minimally scattered photons from a large scattering coefficient core region embedded within a less-scattering medium. Time-resolved reflectance signals of the single scattering core and multiple scattering cores within a three-dimensional medium demonstrate the concept and illustrate the additional effect due to the scattered photons from the core region. A unique temporal signal profile's correlation at various detector positions with respect to the scattering core is explained in detail. The result has important implications. This approach will lead to a much simpler and more precise determination of the probed medium's composition or structure. Due to the large computational requirement to obtain the physical details of the light pulse propagation inside highly scattering multi-dimensional media, the reverse Monte-Carlo method is used. The potential applications of the method include non-destructive diagnostics, optical imaging, and remote sensing of underwater objects

  20. Photodegradation of Malachite Green by Nanostructured Bi2WO6 Visible Light-Induced Photocatalyst

    OpenAIRE

    Yijie Chen; Yaqin Zhang; Chen Liu; Aimin Lu; Weihua Zhang

    2012-01-01

    Bi2WO6 photocatalyst was first utilized to degrade malachite green. The effects of the concentration of malachite green, the pH value, and the concentration of Bi2WO6 on the photocatalytic efficiency were investigated. This study presents a strategy to eliminate highly toxic and persistent dyes such as malachite green.

  1. Porous silicon photonic devices using pulsed anodic etching of lightly doped silicon

    International Nuclear Information System (INIS)

    Escorcia-Garcia, J; Sarracino MartInez, O; Agarwal, V; Gracia-Jimenez, J M

    2009-01-01

    The fabrication of porous silicon photonic structures using lightly doped, p-type, silicon wafers (resistivity: 14-22 Ω cm) by pulsed anodic etching is reported. The optical properties have been found to be strongly dependent on the duty cycle and frequency of the applied current. All the interfaces of the single layered samples were digitally analysed by calculating the mean interface roughness (R m ). The interface roughness was found to be maximum for the sample with direct current. The use of a duty cycle above 50%, in a certain range of frequencies, is found to reduce the interface roughness. The optical properties of some microcavities and rugate filters are investigated from the optimized parameters of the duty cycle and frequency, using the current densities of 10, 90 and 150 mA cm -2 .

  2. The stability of vacuum phototriodes to varying light pulse loads and long term changes in response.

    CERN Document Server

    Hobson, Peter

    2012-01-01

    Mesh anode Vacuum Phototriodes (VPTs) are radiation resistant, single gain-stage photomultipliers which are designed to operate in a strong quasi-axial magnetic field. These VPTs are used in the endcap electromagnetic calorimeter of the CMS experiment at the CERN LHC to detect scintillation light from lead tungstate crystals. Short term dynamic response changes occur because of pulse rate variations during normal LHC operation cycles. Over the longer term the effect of increasing integrated charge taken from the photocathode causes an overall degradation of response. We have investigated these effects over time periods exceeding two years of simulated operation and discuss the implications for the long term performance of the VPTs in CMS.

  3. Fabrication of Elemental Copper by Intense Pulsed Light Processing of a Copper Nitrate Hydroxide Ink.

    Science.gov (United States)

    Draper, Gabriel L; Dharmadasa, Ruvini; Staats, Meghan E; Lavery, Brandon W; Druffel, Thad

    2015-08-05

    Printed electronics and renewable energy technologies have shown a growing demand for scalable copper and copper precursor inks. An alternative copper precursor ink of copper nitrate hydroxide, Cu2(OH)3NO3, was aqueously synthesized under ambient conditions with copper nitrate and potassium hydroxide reagents. Films were deposited by screen-printing and subsequently processed with intense pulsed light. The Cu2(OH)3NO3 quickly transformed in less than 100 s using 40 (2 ms, 12.8 J cm(-2)) pulses into CuO. At higher energy densities, the sintering improved the bulk film quality. The direct formation of Cu from the Cu2(OH)3NO3 requires a reducing agent; therefore, fructose and glucose were added to the inks. Rather than oxidizing, the thermal decomposition of the sugars led to a reducing environment and direct conversion of the films into elemental copper. The chemical and physical transformations were studied with XRD, SEM, FTIR and UV-vis.

  4. Studying intense pulsed light method along with corticosteroid injection in treating keloid scars.

    Science.gov (United States)

    Shamsi Meymandi, Simin; Rezazadeh, Azadeh; Ekhlasi, Ali

    2014-02-01

    Results of various studies suggest that the hypertrophic and keloid scars are highly prevalent in the general population and are irritating both physically and mentally. Considering the variety of existing therapies, intense pulsed light (IPL) method along with corticosteroid injection was evaluated in treating these scars. 86 subjects were included in this clinical trial. Eight sessions of therapeutic intervention were done with IPL along with corticosteroid intralesional injection using 450 to 1200 NM filter, Fluence 30-40 J/cm2, pulse duration of 2.1-10 ms and palsed delay 10-40 ms with an interval of three weeks. To specify the recovery consequences and complication rate and to determine features of the lesion, the criteria specified in the study of Eroll and Vancouver scar scale were used. The level of clinical improvement, color improvement and scar height was 89.1%, 88.8% and 89.1% respectively. The incidence of complications (1 telangiectasia case, 7 hyperpigmentation cases and 2 atrophy cases) following treatment with IPL was 11.6%. Moreover, the participants' satisfaction with IPL method was 88.8%. This study revealed that a combined therapy (intralesional corticosteroid injection + IPL) increases the recovery level of hypertrophic and keloid scars. It was also demonstrated that this method had no significant side effect and patients were highly satisfied with this method.

  5. Efficiency Drop in Green InGaN /GaN Light Emitting Diodes: The Role of Random Alloy Fluctuations

    Science.gov (United States)

    Auf der Maur, Matthias; Pecchia, Alessandro; Penazzi, Gabriele; Rodrigues, Walter; Di Carlo, Aldo

    2016-01-01

    White light emitting diodes (LEDs) based on III-nitride InGaN /GaN quantum wells currently offer the highest overall efficiency for solid state lighting applications. Although current phosphor-converted white LEDs have high electricity-to-light conversion efficiencies, it has been recently pointed out that the full potential of solid state lighting could be exploited only by color mixing approaches without employing phosphor-based wavelength conversion. Such an approach requires direct emitting LEDs of different colors, including, in particular, the green-yellow range of the visible spectrum. This range, however, suffers from a systematic drop in efficiency, known as the "green gap," whose physical origin has not been understood completely so far. In this work, we show by atomistic simulations that a consistent part of the green gap in c -plane InGaN /GaN -based light emitting diodes may be attributed to a decrease in the radiative recombination coefficient with increasing indium content due to random fluctuations of the indium concentration naturally present in any InGaN alloy.

  6. Seeing green bacteria in a new light: genomics-enabled studies of the photosynthetic apparatus in green sulfur bacteria and filamentous anoxygenic phototrophic bacteria

    DEFF Research Database (Denmark)

    Frigaard, Niels-Ulrik; Bryant, Donald A

    2004-01-01

    Based upon their photosynthetic nature and the presence of a unique light-harvesting antenna structure, the chlorosome, the photosynthetic green bacteria are defined as a distinctive group in the Bacteria. However, members of the two taxa that comprise this group, the green sulfur bacteria...... (Chlorobi) and the filamentous anoxygenic phototrophic bacteria ("Chloroflexales"), are otherwise quite different, both physiologically and phylogenetically. This review summarizes how genome sequence information facilitated studies of the biosynthesis and function of the photosynthetic apparatus...... a and carotenoid biosynthesis enzymes, gene cluster analysis in Cfx. aurantiacus, and gene inactivation studies in Chl. tepidum. Based on these results, BChl a and BChl c biosynthesis is similar in the two organisms, whereas carotenoid biosynthesis differs significantly. In agreement with its facultative anaerobic...

  7. [KTP (green light) laser for the treatment of benign prostatic hyperplasia. Preliminary evaluation].

    Science.gov (United States)

    Coz, Fernando; Domenech, Alfredo

    2007-09-01

    Photoselective vaporization of benign prostatic hyperplasia (BPH) is a minimally invasive technique, consisting of vaporization of prostatic tissue by KTP green light laser with a power of 80 W. The purpose of this study was to describe our experience with this technique. KTP laser photoselective vaporization was performed in 18 patients, with lower obstructive uropathy secondary to benign prostatic hyperplasia at Santiago Military hospital from December 2005. Preoperative characteristics, postoperative results and complications were recorded. Mean prostatic volume was 55 cc (range: 24 to 78). Mean operating time was 83 minutes (range: 40 to 120). In sixteen patients, the Foley catheter was removed before 24 hours. The mean preoperative AUA score was 22 and decreased to 11.4 after 30 days. The mean maximum preoperative urine flow rate was 9 ml/s and increased to 18.2; 22.1; 22.5; 25.3 and 27.2 ml/s on days 1, 7, 14, 21 and 30, respectively. Only minor complications were observed: delayed removal of the Foley catheter (11.1%), dysuria (16.6%) and late haematuria (11.1%). KTP laser photoselective vaporization of BPH is a safe technique, that is easy to learn, with good short-term functional results, associated with low complication rate.

  8. Circular dichroism measured on single chlorosomal light-harvesting complexes of green photosynthetic bacteria

    KAUST Repository

    Furumaki, Shu

    2012-12-06

    We report results on circular dichroism (CD) measured on single immobilized chlorosomes of a triple mutant of green sulfur bacterium Chlorobaculum tepidum. The CD signal is measured by monitoring chlorosomal bacteriochlorphyll c fluorescence excited by alternate left and right circularly polarized laser light with a fixed wavelength of 733 nm. The excitation wavelength is close to a maximum of the negative CD signal of a bulk solution of the same chlorosomes. The average CD dissymmetry parameter obtained from an ensemble of individual chlorosomes was gs = -0.025, with an intrinsic standard deviation (due to variations between individual chlorosomes) of 0.006. The dissymmetry value is about 2.5 times larger than that obtained at the same wavelength in the bulk solution. The difference can be satisfactorily explained by taking into account the orientation factor in the single-chlorosome experiments. The observed distribution of the dissymmetry parameter reflects the well-ordered nature of the mutant chlorosomes. © 2012 American Chemical Society.

  9. Efficient green phosphorescent tandem organic light emitting diodes with solution processable mixed hosts charge generating layer

    Energy Technology Data Exchange (ETDEWEB)

    Talik, N.A.; Yeoh, K.H.; Ng, C.Y.B [Low Dimensional Research Center, Department of Physics, University Malaya, 50603 Kuala Lumpur (Malaysia); ItraMAS Corporation. Sdn. Bhd., 542A-B Mukim 1, Lorong Perusahaan Baru 2, Kawasan Perindustrian, Perai 13600, Penang (Malaysia); Yap, B.K. [Center of Microelectronic and Nanotechnology Engineering (CeMNE), College of Engineering, Universiti Tenaga Nasional, Jln. Uniten-Ikram, 4300 Kajang, Selangor (Malaysia); Woon, K.L., E-mail: ph7klw76@um.edu.my [Low Dimensional Research Center, Department of Physics, University Malaya, 50603 Kuala Lumpur (Malaysia)

    2014-10-15

    A novel solution processable charge generating layer (CGL) that consists of 1,4,5,8,9,11-hexaazatriphenylene hexacarbonitrile (HATCN{sub 6})/Poly(N-vinylcarbazole) (PVK): 1,1-bis-(4-bis(4-tolyl)-aminophenyl) cyclohexene (TAPC) for a tandem green phosphorescent organic light emitting diode (PHOLED) is demonstrated. The use of orthogonal solvent to dissolve HATCN{sub 6} and PVK:TAPC is the key to overcome the interface erosion problem for the solution processed CGL. The current efficiency of the 2 wt% TAPC mixed with PVK is the highest at 24.2 cd/A, which is more than three-folds higher than that of the single device at 1000 cd/m{sup 2}. - Highlights: • A solution processable tandem OLED is built using a novel charge generating layer. • HATCN{sub 6} and PVK:TAPC are shown to be effective charge generating layers. • The turn on voltages for tandem devices are almost similar to single unit. • 2 wt% TAPC blended with PVK exhibits three-folds increase in efficiency.

  10. Green laser induced foveal cyst sustained in a recreational laser light show

    Directory of Open Access Journals (Sweden)

    Rukiye Aydin

    2017-04-01

    Full Text Available We report the case of a 9-year-old boy complained of visual loss in his right eye after watching green laser light show being hit by a ray of a laser at shopping center before five days ago. The laser had a maximum power rating of 30 mW (US Food and Drug Administration class IIIB. Best-corrected visual acuity in his right eye was 0.2 with Snellen at 5 days after the injury. Dilated fundoscopic examination demonstrated a macular hole appearance in the right eye. Spectral domain optical coherence tomography (OCT, Spectralis, Heidelberg Engineering, Heidelberg, Germany demonstrates a steep fovea contour, a thickening of the macular edges, intraretinal cysts, disruption of the photoreceptor inner segment/outer segment layer and macular pseudohole formation. Central foveal thickness (515 µm was increased. Two months after the injury, the patient's visual acuity improved to 0.9 in the right eye without any ocular treatment. Spectral domain OCT revealed the closure of the macular hole with the resolution of the cystic spaces. At 6-months follow-up, visual function had fully recovered and macular assessment was normal.

  11. Circular dichroism measured on single chlorosomal light-harvesting complexes of green photosynthetic bacteria

    KAUST Repository

    Furumaki, Shu; Yabiku, Yu; Habuchi, Satoshi; Tsukatani, Yusuke; Bryant, Donald A.; Vá cha, Martin

    2012-01-01

    We report results on circular dichroism (CD) measured on single immobilized chlorosomes of a triple mutant of green sulfur bacterium Chlorobaculum tepidum. The CD signal is measured by monitoring chlorosomal bacteriochlorphyll c fluorescence excited by alternate left and right circularly polarized laser light with a fixed wavelength of 733 nm. The excitation wavelength is close to a maximum of the negative CD signal of a bulk solution of the same chlorosomes. The average CD dissymmetry parameter obtained from an ensemble of individual chlorosomes was gs = -0.025, with an intrinsic standard deviation (due to variations between individual chlorosomes) of 0.006. The dissymmetry value is about 2.5 times larger than that obtained at the same wavelength in the bulk solution. The difference can be satisfactorily explained by taking into account the orientation factor in the single-chlorosome experiments. The observed distribution of the dissymmetry parameter reflects the well-ordered nature of the mutant chlorosomes. © 2012 American Chemical Society.

  12. Low driving voltage blue, green, yellow, red and white organic light-emitting diodes with a simply double light-emitting structure.

    Science.gov (United States)

    Zhang, Zhensong; Yue, Shouzhen; Wu, Yukun; Yan, Pingrui; Wu, Qingyang; Qu, Dalong; Liu, Shiyong; Zhao, Yi

    2014-01-27

    Low driving voltage blue, green, yellow, red and white phosphorescent organic light-emitting diodes (OLEDs) with a common simply double emitting layer (D-EML) structure are investigated. Our OLEDs without any out-coupling schemes as well as n-doping strategies show low driving voltage, e.g. white OLED, respectively. This work demonstrates that the low driving voltages and high efficiencies can be simultaneously realized with a common simply D-EML structure.

  13. Ultra-low power anti-crosstalk collision avoidance light detection and ranging using chaotic pulse position modulation approach

    International Nuclear Information System (INIS)

    Hao Jie; Gong Ma-li; Du Peng-fei; Lu Bao-jie; Zhang Fan; Zhang Hai-tao; Fu Xing

    2016-01-01

    A novel concept of collision avoidance single-photon light detection and ranging (LIDAR) for vehicles has been demonstrated, in which chaotic pulse position modulation is applied on the transmitted laser pulses for robust anti-crosstalk purposes. Besides, single-photon detectors (SPD) and time correlated single photon counting techniques are adapted, to sense the ultra-low power used for the consideration of compact structure and eye safety. Parameters including pulse rate, discrimination threshold, and number of accumulated pulses have been thoroughly analyzed based on the detection requirements, resulting in specified receiver operating characteristics curves. Both simulation and indoor experiments were performed to verify the excellent anti-crosstalk capability of the presented collision avoidance LIDAR despite ultra-low transmitting power. (paper)

  14. High-Wattage Pulsed Irradiation of Linearly Polarized Near-Infrared Light to Stellate Ganglion Area for Burning Mouth Syndrome

    Directory of Open Access Journals (Sweden)

    Yukihiro Momota

    2014-01-01

    Full Text Available The purpose of this study was to apply high-wattage pulsed irradiation of linearly polarized near-infrared light to the stellate ganglion area for burning mouth syndrome (BMS and to assess the efficacy of the stellate ganglion area irradiation (SGR on BMS using differential time-/frequency-domain parameters (D parameters. Three patients with BMS received high-wattage pulsed SGR; the response to SGR was evaluated by visual analogue scale (VAS representing the intensity of glossalgia and D parameters used in heart rate variability analysis. High-wattage pulsed SGR significantly decreased the mean value of VAS in all cases without any adverse event such as thermal injury. D parameters mostly correlated with clinical condition of BMS. High-wattage pulsed SGR was safe and effective for the treatment of BMS; D parameters are useful for assessing efficacy of SGR on BMS.

  15. Mechanism of redox reactions induced by light and electron pulse in solutions of mixed ligand iron(II) complex cyanides

    International Nuclear Information System (INIS)

    Horvath, A.; Szoeke, J.; Wojnarovits, L.

    1991-01-01

    Redox reactions induced by light and electron pulse have been studied in aqueous solutions of mixed ligand iron(II) complex cyanides. The short lived intermediates have been identified by time resolved specroscopy, the results of detailed kinetic analysis have been discussed. (author) 6 refs.; 3 figs.; 2 tabs

  16. Degradation kinetics of aflatoxin B1 and B2 in filter paper and rough rice by using pulsed light irradiation

    Science.gov (United States)

    Rough rice is susceptible to contamination by aflatoxins, which are highly toxic, mutagenic and carcinogenic compounds. To develop aflatoxin degradation technology for rice with the use of pulsed light (PL) treatment, the objective of this study was to investigate the degradation characters of aflat...

  17. Pulsed-light inactivation of pathogenic and spoilage bacteria on cheese surface.

    Science.gov (United States)

    Proulx, J; Hsu, L C; Miller, B M; Sullivan, G; Paradis, K; Moraru, C I

    2015-09-01

    Cheese products are susceptible to postprocessing cross-contamination by bacterial surface contamination during slicing, handling, or packaging, which can lead to food safety issues and significant losses due to spoilage. This study examined the effectiveness of pulsed-light (PL) treatment on the inactivation of the spoilage microorganism Pseudomonas fluorescens, the nonenterohemorrhagic Escherichia coli ATCC 25922 (nonpathogenic surrogate of Escherichia coli O157:H7), and Listeria innocua (nonpathogenic surrogate of Listeria monocytogenes) on cheese surface. The effects of inoculum level and cheese surface topography and the presence of clear polyethylene packaging were evaluated in a full factorial experimental design. The challenge microorganisms were grown to early stationary phase and subsequently diluted to reach initial inoculum levels of either 5 or 7 log cfu/slice. White Cheddar and process cheeses were cut into 2.5×5 cm slices, which were spot-inoculated with 100 µL of bacterial suspension. Inoculated cheese samples were exposed to PL doses of 1.02 to 12.29 J/cm(2). Recovered survivors were enumerated by standard plate counting or the most probable number technique, as appropriate. The PL treatments were performed in triplicate and data were analyzed using a general linear model. Listeria innocua was the least sensitive to PL treatment, with a maximum inactivation level of 3.37±0.2 log, followed by P. fluorescens, with a maximum inactivation of 3.74±0.8 log. Escherichia coli was the most sensitive to PL, with a maximum reduction of 5.41±0.1 log. All PL inactivation curves were nonlinear, and inactivation reached a plateau after 3 pulses (3.07 J/cm(2)). The PL treatments through UV-transparent packaging and without packaging consistently resulted in similar inactivation levels. This study demonstrates that PL has strong potential for decontamination of the cheese surface. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc

  18. Effects of 24-epibrassinolide and green light on plastid gene transcription and cytokinin content of barley leaves

    Czech Academy of Sciences Publication Activity Database

    Efimova, N.V.; Vaňková, Radomíra; Kusnetsov, V.; Litvinovskaya, R. P.; Zlobin, Y.L.; Dobrev, Petre; Vedenicheva, N.P.; Savchuk, A. L.; Karnachuk, R. A.; Kudryakova, N.V.; Kuznetsov, V. D.

    2017-01-01

    Roč. 120, APR (2017), s. 32-40 ISSN 0039-128X Institutional support: RVO:61389030 Keywords : lupinus-luteus cotyledons * arabidopsis-thaliana * de-etiolation * abscisic-acid * brassinosteroid biosynthesis * plant development * hormonal balance * mutant * expression * growth * Brassinosteroids * Cytokinin * Gene expression * Green light * Hordeum vulgare * Transcription Subject RIV: EF - Botanics OBOR OECD: Plant sciences, botany Impact factor: 2.282, year: 2016

  19. Optimization of sensitometric properties of blue and green light sensitive dental radiographic films employing an automatic processor

    OpenAIRE

    Suchetha N Malleshi; Karthikeya Patil; Mahima V Guledgud

    2011-01-01

    Background: Accurate film processing is of paramount importance in acquiring a good diagnostic radiograph. Radiographic films show variations in densities and contrast, with changes in processing conditions, and also film type, all of which are interdependent. Therefore, this research was conducted to recognize the effect of time and temperature variations of automatic processor on the sensitometric properties of blue and green light sensitive screen films. The study also aimed to note the ef...

  20. Optimization of sensitometric properties of blue and green light sensitive dental radiographic films employing an automatic processor

    Directory of Open Access Journals (Sweden)

    Suchetha N Malleshi

    2011-01-01

    Full Text Available Background: Accurate film processing is of paramount importance in acquiring a good diagnostic radiograph. Radiographic films show variations in densities and contrast, with changes in processing conditions, and also film type, all of which are interdependent. Therefore, this research was conducted to recognize the effect of time and temperature variations of automatic processor on the sensitometric properties of blue and green light sensitive screen films. The study also aimed to note the effect on sensitometric properties when mismatch occurred when using between the screen and film belonging to different manufacturers. Materials and Methods: Sixty green light sensitive and 60 blue light sensitive spectrally matched screen film combinations were used in the study. However, the films and the intensifying screens employed belonged to different manufacturers. These films were exposed to five different exposure times and subsequently processed in an automatic processor, using two different protocols. Initially, at constant processing time of 2.5 min, five different processing temperatures were employed. Later, maintaining constant processing temperature of 35°C and five different processing times were engaged. Density, contrast and speed were calculated, using H and D curve. Results: Results revealed increasing density, contrast and speed values with increasing processing times and temperatures of both green and blue sensitive films. Conclusion: This investigation clearly establishes the possibility of obtaining optimal sensitometric properties, despite using intensifying screens and films of different manufacturers, if spectral match is ensured.

  1. Generation of electromagnetic pulses from plasma channels induced by femtosecond light strings

    OpenAIRE

    Cheng, Chung-Chieh; Wright, E. M.; Moloney, J. V.

    2000-01-01

    We present a model that elucidates the physics underlying the generation of an electromagnetic pulse from a femtosecond laser induced plasma channel. The radiation pressure force from the laser pulse spatially separates the ionized electrons from the heavier ions and the induced dipole moment subsequently oscillates at the plasma frequency and radiates an electromagnetic pulse.

  2. A train of blue light pulses delivered through closed eyelids suppresses melatonin and phase shifts the human circadian system

    Directory of Open Access Journals (Sweden)

    Figueiro MG

    2013-10-01

    Full Text Available Mariana G Figueiro, Andrew Bierman, Mark S ReaLighting Research Center, Rensselaer Polytechnic Institute, Troy, NY, USAAbstract: A model of circadian phototransduction was published in 2005 to predict the spectral sensitivity of the human circadian system to narrow-band and polychromatic light sources by combining responses to light from the spectral-opponent “blue” versus “yellow” cone bipolar pathway with direct responses to light by the intrinsically photosensitive retinal ganglion cells. In the model, depolarizing “blue” responses, but not hyperpolarizing “yellow” responses, from the “blue” versus “yellow” pathway are combined with the intrinsically photosensitive retinal ganglion cell responses. Intrinsically photosensitive retinal ganglion cell neurons are known to be much slower to respond to light than the cone pathway, so an implication of the model is that periodic flashes of “blue” light, but not “yellow” light, would be effective for stimulating the circadian system. A within-subjects study was designed to test the implications of the model regarding retinal exposures to brief flashes of light. The study was also aimed at broadening the foundation for clinical treatment of circadian sleep disorders by delivering flashing light through closed eyelids while people were asleep. In addition to a dark control night, the eyelids of 16 subjects were exposed to three light-stimulus conditions in the phase delay portion of the phase response curve while they were asleep: (1 2-second flashes of 111 W/m2 of blue (λmax ≈ 480 nm light once every minute for 1 hour, (2 131 W/m2 of green (λmax ≈ 527 nm light, continuously on for 1 hour, and (3 2-second flashes of the same green light once every minute for 1 hour. Inferential statistics showed that the blue flash light-stimulus condition significantly delayed circadian phase and significantly suppressed nocturnal melatonin. The results of this study further our

  3. Evidence for dark repair of far ultraviolet light damage in the blue-green alga, Gloeocapsa alpicola

    International Nuclear Information System (INIS)

    Williams, E.; Lambert, J.; O'Brien, P.; Houghton, J.A.

    1979-01-01

    The inactivating effect of far UV light on the unicellular blue-green alga Gloeocapsa alpicola could be totally reversed by exposure to blue light immediately after irradiation. However, if the irradiated cells were held in the dark before exposure to blue light, reversal became progressively less efficient, and almost disappeared after 60-80 h holding. Caffeine and acriflavine inhibited loss of photoreversibility, suggesting an involvement of excision functions. Chloramphenicol and rifampicin slightly increased the rate of loss of photoreversibility, indicating that inducible functions play only a minor role. Split UV dose experiments indicated that light-dependent repair remained operational during dark liquid holding. These results provide preliminary evidence for dark repair in G. alpicola. (author)

  4. Pulse oximeter using a gain-modulated avalanche photodiode operated in a pseudo lock-in light detection mode

    Science.gov (United States)

    Miyata, Tsuyoshi; Iwata, Tetsuo; Araki, Tsutomu

    2006-01-01

    We propose a reflection-type pulse oximeter, which employs two pairs of a light-emitting diode (LED) and a gated avalanche photodiode (APD). One LED is a red one with an emission wavelength λ = 635 nm and the other is a near-infrared one with that λ = 945 nm, which are both driven with a pulse mode at a frequency f (=10 kHz). Superposition of a transistor-transistor-logic (TTL) gate pulse on a direct-current (dc) bias, which is set so as not exceeding the breakdown voltage of each APD, makes the APD work in a gain-enhanced operation mode. Each APD is gated at a frequency 2f (=20 kHz) and its output signal is fed into a laboratory-made lock-in amplifier that works in synchronous with the pulse modulation signal of each LED at a frequency f (=10 kHz). A combination of the gated APD and the lock-in like signal detection scheme is useful for the reflection-type pulse oximeter thanks to the capability of detecting a weak signal against a large background (BG) light.

  5. Cu ion ink for a flexible substrate and highly conductive patterning by intensive pulsed light sintering.

    Science.gov (United States)

    Wang, Byung-Yong; Yoo, Tae-Hee; Song, Yong-Won; Lim, Dae-Soon; Oh, Young-Jei

    2013-05-22

    Direct printing techniques that utilize nanoparticles to mitigate environmental pollution and reduce the processing time of the routing and formation of electrodes have received much attention lately. In particular, copper (Cu) nanoink using Cu nanoparticles offers high conductivity and can be prepared at low cost. However, it is difficult to produce homogeneous nanoparticles and ensure good dispersion within the ink. Moreover, Cu particles require a sintering process over an extended time at a high temperature due to high melting temperature of Cu. During this process, the nanoparticles oxidize quickly in air. To address these problems, the authors developed a Cu ion ink that is free of Cu particles or any other impurities. It consequently does not require separate dispersion stability. In addition, the developed ink is environmentally friendly and can be sintered even at low temperatures. The Cu ion ink was sintered on a flexible substrate using intense pulsed light (IPL), which facilitates large-area, high-speed calcination at room temperature and at atmospheric pressures. As the applied light energy increases, the Cu2O phase diminishes, leaving only the Cu phase. This is attributed to the influence of formic acid (HCOOH) on the Cu ion ink. Only the Cu phase was observed above 40 J cm(-2). The Cu-patterned film after sintering showed outstanding electrical resistivity in a range of 3.21-5.27 μΩ·cm at an IPL energy of 40-60 J cm(-2). A spiral-type micropattern with a line width of 160 μm on a PI substrate was formed without line bulges or coffee ring effects. The electrical resistivity was 5.27 μΩ·cm at an energy level of 40.6 J cm(-2).

  6. Long-pulsed dye laser versus intense pulsed light for photodamaged skin: A randomized split-face trial with blinded response evaluation

    DEFF Research Database (Denmark)

    Jorgensen, G.F.; Hedelund, L.; Haedersdal, M.

    2008-01-01

    Objective: In a randomized controlled split-face trial to evaluate efficacy and adverse effects from rejuvenation with long-pulsed dye laser (LPDL) versus intense pulsed light (IPL). Materials and Methods: Twenty female volunteers with Fitzpatrick skin types I-III, classes I-II rhytids......, and symmetrical split-face photodamage were included in the study. Subjects received a series of three treatments at 3-week intervals with half-face LPDL (V-beam Perfecta, 595 nm, Candela Laser Corporation) and half-face IPL (Ellipse Flex, Danish Dermatologic Development); the interventions being randomly...... assigned to left and right sides. Primary end-points were telangiectasias, irregular pigmentation and preferred treatment. Secondary end-points were skin texture, rhytids, pain, and adverse effects. Efficacy was evaluated by patient self-assessments and by blinded clinical on-site and photographic...

  7. Increased light-use efficiency in northern terrestrial ecosystems indicated by CO 2 and greening observations: INCREASE IN NH LIGHT USE EFFICIENCY

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Rebecca T. [Science and Solutions for a Changing Planet DTP, Imperial College London, London UK; AXA Chair Programme in Biosphere and Climate Impacts, Department of Life Sciences, Imperial College London, London UK; Department of Physics, Imperial College London, London UK; Prentice, Iain Colin [AXA Chair Programme in Biosphere and Climate Impacts, Department of Life Sciences, Imperial College London, London UK; Grantham Institute: Climate Change and the Environment, Imperial College London, London UK; Graven, Heather [Department of Physics, Imperial College London, London UK; Grantham Institute: Climate Change and the Environment, Imperial College London, London UK; Ciais, Philippe [Laboratoire des Sciences du Climat et de l' Environnement, Saint-Aubin France; Fisher, Joshua B. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena California USA; Hayes, Daniel J. [School of Forest Resources, University of Maine, Orono Maine USA; Huang, Maoyi [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland Washington USA; Huntzinger, Deborah N. [School of Earth Sciences and Environmental Sustainability, Northern Arizona University, Flagstaff Arizona USA; Ito, Akihiko [Center for Global Environmental Research, National Institute for Environmental Studies, Tsukuba Japan; Jain, Atul [Department of Atmospheric Sciences, University of Illinois at Urbana-Champaign, Urbana Illinois USA; Mao, Jiafu [Climate Change Science Institute and Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge Tennessee USA; Michalak, Anna M. [Department of Global Ecology, Carnegie Institution for Science, Stanford California USA; Peng, Shushi [Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing China; Poulter, Benjamin [Department of Ecology, Montana State University, Bozeman Montana USA; Ricciuto, Daniel M. [Climate Change Science Institute and Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge Tennessee USA; Shi, Xiaoying [Climate Change Science Institute and Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge Tennessee USA; Schwalm, Christopher [Woods Hole Research Center, Falmouth Massachusetts USA; Tian, Hanqin [International Center for Climate and Global Change Research, School of Forestry and Wildlife Sciences, Auburn University, Auburn Alabama USA; Zeng, Ning [Department of Atmospheric and Oceanic Science and Earth System Science Interdisciplinary Center, University of Maryland, College Park Maryland USA

    2016-11-04

    Observations show an increasing amplitude in the seasonal cycle of CO2 (ASC) north of 45°N of 56 ± 9.8% over the last 50 years and an increase in vegetation greenness of 7.5–15% in high northern latitudes since the 1980s. However, the causes of these changes remain uncertain. Historical simulations from terrestrial biosphere models in the Multiscale Synthesis and Terrestrial Model Intercomparison Project are compared to the ASC and greenness observations, using the TM3 atmospheric transport model to translate surface fluxes into CO2 concentrations. We find that the modeled change in ASC is too small but the mean greening trend is generally captured. Modeled increases in greenness are primarily driven by warming, whereas ASC changes are primarily driven by increasing CO2. We suggest that increases in ecosystem-scale light use efficiency (LUE) have contributed to the observed ASC increase but are underestimated by current models. We highlight potential mechanisms that could increase modeled LUE.

  8. Intense Pulsed Light: Friend or Foe? Molecular Evidence to Clarify Doubts.

    Science.gov (United States)

    Ferreira, Liliana; Vitorino, Rui; Neuparth, Maria João; Rodrigues, David; Gama, Adelina; Faustino-Rocha, Ana I; Ferreira, Rita; Oliveira, Paula A

    2018-02-01

    Intense pulsed light (IPL) has been extensively applied in the field of dermatology and aesthetics; however, the long-term consequences of its use are poorly unknown, and to the best of our knowledge there is no study on the effect of IPL in neoplastic lesions. In order to better understand the molecular mechanisms underlying IPL application in the skin, we used an animal model of carcinogenesis obtained by chemical induction with 12-dimethylbenz(a)anthracene (DMBA) and 12-O-tetradecanoylphorbol-13-acetate (TPA). Institute of Cancer Research (ICR) mice were administered DMBA and/or TPA and treated with IPL. Skin was evaluated by histopathology and 2DE-blot-MS/MS analysis. Our data evidenced an inflammatory response and a metabolic remodeling of skin towards a glycolytic phenotype after chronic exposure to IPL, which was accomplished by increased oxidative stress and susceptibility to apoptosis. These alterations induced by IPL were more notorious in the DMBA sensitized skin. Keratins and metabolic proteins seem to be the more susceptible to oxidative modifications that might result in loss of function, contributing for the histological changes observed in treated skin. Data highlight the deleterious impact of IPL on skin phenotype, which justifies the need for more experimental studies in order to increase our understanding of the IPL long-term safety. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  9. Light ion beam experiments with pinch reflex diodes on KfK's pulse generator KALIF

    International Nuclear Information System (INIS)

    Bluhm, H.; Buth, L.; Bohnel, K.; Harke, W.; Hoppe, P.; Karow, H.U.; Rusch, D.; Schulken, H.; Singer, J.

    1985-01-01

    The authors report on intense LI beam experiments currently performed with pinch reflex ion diodes on 2 ohms/1.4 TW-pulse generator KALIF (Karlsruhe Light Ion Facility). The goals of this work are the generation of highly focussed LI beams of well-defined ion composition, and the undertaking of beam-target experiments. The experimental studies with axial 6 cm phi-pinch reflex proton diodes have been aiming at the focussing characteristics of the diode, and at the ion species composition of the beam. Experiments have been performed using different diode geometries (anode/cathode/beam window foil shapes), and different anode return current paths, respectively. A variety of diagnostique techniques have been used in these studies: Electron pinch phenomena in the diode are observed by static and by gated X-ray cameras. Beam diagnostiques is based on measuring in the vacuum feed the electric parameters of the diode (electron and ion currents, diode voltage) on probing the ion composition and ion energy in the beam (by use of a Thomson Parabola spectrometer), and on the investigation of the beam focus (by use of different techniques: shadow box analysis, α-pin hole imaging, nuclear activation methods). Measurements of beam stopping power of ion beam-heated thin targets are underway using a streaked ion energy-spectrometer. The results obtained so far in these experimental efforts are presented

  10. Pulsed neutron intensity from rectangular shaped light water moderator with fast-neutron reflector

    International Nuclear Information System (INIS)

    Kiyanagi, Yoshiaki; Iwasa, Hirokatsu

    1982-01-01

    With a view to enhancing the thermal-neutron intensity obtained from a pulsed neutron source, an experimental study has been made to determine the optimum size of a rectangular shaped light water moderator provided with fast neutron reflector of beryllium oxide or graphite, and decoupled thermal-neutronically by means of Cd sheet. The optimum dimensions for the moderator are derived for the neutron emission surface and the thickn ess, for the cases in which the neutron-producing target is placed beneath the moderator (''wing geometry'') or immediately behind the moderator (''slab geometry''). The major conclusions drawn from the experimental results are as follows. The presence of the Cd decoupler inserted between the moderator and reflector prevent the enhancement of thermal-neutron emission time gained by the provision of reflector. With a graphite reflector about 14 cm thick, (a) the optimum area of emission surface would be 25 x 25 cm 2 for wing geometry and still larger for slab geometry, and (b) the optimum moderator thickness would be 5.5 cm for slab geometry and 8.5 cm for wing geometry. It is thus concluded that a higher neutron emission intensity can be obtained with slab than with wing geometry provided that a large emission surface can be adopted for the moderator. (author)

  11. Intense pulsed light therapy for the treatment of evaporative dry eye disease.

    Science.gov (United States)

    Vora, Gargi K; Gupta, Preeya K

    2015-07-01

    Evaporative dry eye disease is one of the most common types of dry eye. It is often the result of chronic meibomian gland dysfunction (MGD) and associated ocular rosacea. Evaporative dry eye and MGD significantly reduce patient's quality of life. Traditional treatments, such as artificial tears, warm compresses, and medications, such as topical cyclosporine, azithromycin, and oral doxycycline, provide some relief; however, many patients still suffer from dry eye symptoms. Intense pulsed light (IPL) therapy, which has been used extensively in dermatology to treat chronic skin conditions, is a relatively new treatment in ophthalmology for patients with evaporative dry eye disease. There are very few studies published on the use of IPL in patients with dry eye disease. The present review describes the theoretical mechanisms of IPL treatment of MGD and ocular rosacea. Personal clinical experience and recently presented data are reported as well. IPL therapy has promising results for evaporative dry eye patients. There are statistically significant improvements in clinical exam findings of dry eye disease. More importantly, patients report subjective improvement in their symptoms. More research is needed in this area to help understand the mechanism of dry eye disease and how it can be effectively treated.

  12. Outcomes of intense pulsed light therapy for treatment of evaporative dry eye disease.

    Science.gov (United States)

    Gupta, Preeya K; Vora, Gargi K; Matossian, Cynthia; Kim, Michelle; Stinnett, Sandra

    2016-08-01

    To determine the clinical outcomes of intense pulsed light (IPL) therapy for the treatment of evaporative dry eye disease (DED). Multicentre cohort study. Patients with a diagnosis of meibomian gland dysfunction (MGD) and dry eye presenting to the ophthalmology clinic at either the Duke Eye Center, Durham, NC, or Matossian Eye Associates' private practice in Pennington, NJ, and Doylestown, PA. Clinical data were reviewed from 100 patients with diagnosis of MGD and DED who underwent IPL therapy from September 2012 through December 2014 at 1 of 2 centres (Duke Eye Center or Matossian Eye Associates). Demographics, clinical history, examination findings (eyelid and facial vascularity, eyelid margin edema, meibomian gland oil flow, and quality score-all graded on a scale of 0 to 4), tear break up time (TBUT), and ocular surface disease index (OSDI) scoring data were collected from each visit. On average, patients underwent 4 IPL sessions. There was significant decrease in scoring of lid margin edema (mean = -0.3; range -1.5 to 0), facial telangiectasia (mean = -0.7; range -2.5 to 0), lid margin vascularity (mean = -1.2; range -2.5 to 0), meibum viscosity (mean = -1.1; range -3 to 0), and OSDI score (mean = -9.6), all with p treatment for patients with evaporative DED. Copyright © 2016 Canadian Ophthalmological Society. Published by Elsevier Inc. All rights reserved.

  13. Light curve and pulse profile of the x-ray pulsar Vela X-1

    International Nuclear Information System (INIS)

    Nagase, Fumiaki; Hayakawa, Satio; Makino, Fumiyoshi; Sato, Naohisa; Makishima, Kazuo.

    1983-01-01

    The following properties of the X-ray binary pulsar Vela X-1 are presented by reference to its observations in March 1980. The light curve shows a high state and a low state in the first and second halves of an orbital period, respectively, but they may rather be defined as a soft state and hard state, respectively, since the intensity above 9 keV does not appreciably change between these two states. The energy spectra in these states indicate the presence of circumstellar absorption. The pulse profiles at high (9-22 keV) and low (1-9 keV) energies are different, indicating the absorption by cold matter which is probably in the accretion column. The absorber which is responsible for the soft and hard states is attributed to the stellar wind whose flow pattern is consistent with that obtained from optical absorption spectra. The orbital period is obtained by a combined analysis of X-ray data since 1972. No appreciable change of the period gives a constraint on the dynamical behavior of the binary system. (author)

  14. Treatment of hypertrophic scars and keloids using intense pulsed light (IPL).

    Science.gov (United States)

    Erol, O Onur; Gurlek, Ali; Agaoglu, Galip; Topcuoglu, Ela; Oz, Hayat

    2008-11-01

    Keloids and hypertrophic scars are extremely disturbing to patients, both physically and psychologically. This study prospectively assessed the safety and efficacy of intense pulsed light (IPL) on scars originating from burns, trauma, surgery, and acne. Hypertrophic scars in 109 patients, originating from surgical incisions (n = 55), traumatic cuts (traffic accidents) (n = 24), acne scars (n = 6), keloids (n = 5), and burns (n = 19), were treated using an IPL Quantum device. Treatment was administered at 2-4-week intervals, and patients received an average of 8 treatments (range = 6-24). Using digital photographs, Changes in scar appearance were assessed by two physicians who were blinded to the study patients and treatments. The photographs were graded on a scale of 0 to 4 (none, minimal, moderate, good, excellent) for improvement in overall clinical appearance and reduction in height, erythema, and hardness. An overall clinical improvement in the appearance of scars and reductions in height, erythema, and hardness were seen in the majority of the patients (92.5%). Improvement was excellent in 31.2% of the patients, good in 25.7%, moderate in 34%, and minimal in 9.1%. Over half the patients had good or excellent improvement. In the preventive IPL treatment group, 65% had good to excellent improvement in clinical appearance. Patient satisfaction was very high. This study suggests that IPL is effective not only in improving the appearance of hypertrophic scars and keloids regardless of their origin, but also in reducing the height, redness, and hardness of scars.

  15. The Retrospective Evaluation of the Efficacy and Safety of IPL (Intense Pulse Light in Hair Removal

    Directory of Open Access Journals (Sweden)

    İlgen Ertam

    2012-06-01

    Full Text Available Background and Design: There are numerous therapeutic methods for hair removal with various success rates. The aim of this study was to evaluate the efficacy of Intense Pulse Light (IPL method for hair removal.Materials and Methods: Ninety patients, who applied for their unwanted hair, were included in the study. IPL was applied to the face, neck, axillary areas, bikini line, sternal area, periareolar areas, and upper and lower extremities. An IPL device (L900 A&M, France was used for hair removal. The results were evaluated according to the clinical improvement (0-25%, 25-50%, 50-75%, 75% and more and patients? satisfaction (very satisfied, satisfied, less satisfied, not satisfied. All results were analyzed using Chi-square test and statistical analysis was performed by SPSS 15.0 for Windows. Results: There were eighty-eight female (97.8% and two male (2.2% patients. The mean age of the patients was 33.62±11.11 (15- 55 years. 13.3% of patients had polycystic ovary syndrome. The mean number of treatments was 6.5 (min-max= 2-11. 53.2% of patients had 50-75% clinical response and 53.2% of patients were satisfied. There were no side effects except mild erythema. Conclusion: We observed that IPL for hair removal was safe and moderately effective in our patients.

  16. Intense pulsed light for photo-rejuvenation and freckles of middle eastern skin

    International Nuclear Information System (INIS)

    El Bedewi, A.F.

    2003-01-01

    Facial ageing is a gradual process which could be due to intrinsic and extrinsic causes and it ultimately results in the appearance of activity induced tissue ptosis, wrinkles, epidermal and dermal artoply, dryness, senile lentigo, flushing, telangiectasia and enlarged pores. Moreover, freckles are frequently seen on the face and other sun exposed areas and it is characterized with incrreased melanin in the epidermis. Intense Pulsed Light (IPL)is the latest technology for selective photo-thermolysis as a non-ablative photo-rejuvenation. Thirty-four patients of age ranging between 35- 70 years with skin type ranging between III-V with or without freckles were treated with 3-5 sessions of IPL. Three weeks intervals were considered between every two succesive session. Irradiation wavelength was controlled using cutoff filters ranging from 535 to 580 nmwith a fluence of 25-35 j/cm-2. Significant improvement was demonstrated after 6 months by computerized image analysis compared with the baseline. IPL was found to be effective and saf treatment for fine wrinkles, facial freckles, telangiectasia, flushing as well as post-inflammatory hyper-pigmentation with a high satisfactory level and a relatively afew adverse effects

  17. Statistical Analysis of Coherent Ultrashort Light Pulse CDMA With Multiple Optical Amplifiers Using Additive Noise Model

    Science.gov (United States)

    Jamshidi, Kambiz; Salehi, Jawad A.

    2005-05-01

    This paper describes a study of the performance of various configurations for placing multiple optical amplifiers in a typical coherent ultrashort light pulse code-division multiple access (CULP-CDMA) communication system using the additive noise model. For this study, a comprehensive performance analysis was developed that takes into account multiple-access noise, noise due to optical amplifiers, and thermal noise using the saddle-point approximation technique. Prior to obtaining the overall system performance, the input/output statistical models for different elements of the system such as encoders/decoders,star coupler, and optical amplifiers were obtained. Performance comparisons between an ideal and lossless quantum-limited case and a typical CULP-CDMA with various losses exhibit more than 30 dB more power requirement to obtain the same bit-error rate (BER). Considering the saturation effect of optical amplifiers, this paper discusses an algorithm for amplifiers' gain setting in various stages of the network in order to overcome the nonlinear effects on signal modulation in optical amplifiers. Finally, using this algorithm,various configurations of multiple optical amplifiers in CULP-CDMA are discussed and the rules for the required optimum number of amplifiers are shown with their corresponding optimum locations to be implemented along the CULP-CDMA system.

  18. Comparison of the effect of diode laser versus intense pulsed light in axillary hair removal.

    Science.gov (United States)

    Ormiga, Patricia; Ishida, Cleide Eiko; Boechat, Alvaro; Ramos-E-Silva, Marcia

    2014-10-01

    Devices such as diode laser and intense pulsed light (IPL) are in constant development aiming at permanent hair removal, but there are few comparative studies between these technologies. The objective was to comparatively assess axillary hair removal performed by diode laser and IPL and to obtain parameters of referred pain and evolution response for each method. A comparative prospective, double-blind, and randomized study of axillary hair removal performed by the diode laser and IPL was conducted in 21 females. Six sessions were held with application of the diode laser in one axilla and the IPL in the other, with intervals of 30 days and follow-up of 6 months after the last session. Clinical photographs and digital dermoscopy for hair counts in predefined and fixed fields of the treated areas were performed before, 2 weeks after the sixth session, and 6 months after the end of treatment. A questionnaire to assess the pain was applied. The number of hair shafts was significantly reduced with the diode laser and IPL. The diode laser was more effective, although more painful than the IPL. No serious, adverse, or permanent effects were observed with both technologies. Both diode laser and the IPL are effective, safe, and able to produce lasting results in axillary hair removal.

  19. Reverse Monte Carlo simulations of light pulse propagation in nonhomogeneous media

    International Nuclear Information System (INIS)

    Lu Xiaodong; Hsu Peifeng

    2005-01-01

    This paper presents a follow-up study of our previous work on the reverse Monte Carlo solution of transient radiation transport in the homogeneous media. In this study, the method is extended to consider nonhomogeneous media, which exist in many practical problems. The transport process of ultra-short light pulse propagation inside the non-emitting, absorbing, and anisotropically scattering multi-layer media is studied. Although only one-dimensional geometry is treated here, the method is applicable and easy to extend to multi-dimensional geometries. In multi-layer media, the time-resolved reflectance exhibits a direct correlation between the signal magnitude and the travel time to the layer interface if the ballistic photons encounter a strongly scattering layer. Furthermore, it is found that even with a symmetric radiative property distribution in a three-layer medium, the reflectance and transmittance signals do not converge at long time when the mid-layer is optically thick. The long time slope of the temporal signal does not provide the specificity required for an inverse analysis parameter as stipulated by earlier studies

  20. The ARGOS laser system: green light for ground layer adaptive optics at the LBT

    Science.gov (United States)

    Raab, Walfried; Rabien, Sebastian; Gässler, Wolfgang; Esposito, Simone; Barl, Lothar; Borelli, Jose; Daysenroth, Matthias; Gemperlein, Hans; Kulas, Martin; Ziegleder, Julian

    2014-07-01

    We report on the development of the laser system of ARGOS, the multiple laser guide star adaptive optics system for the Large Binocular Telescope (LBT). The system uses a total of six high powered, pulsed Nd:YAG lasers frequency-doubled to a wavelength of 532 nm to generate a set of three guide stars above each of the LBT telescopes. The position of each of the LGS constellations on sky as well as the relative position of the individual laser guide stars within this constellation is controlled by a set of steerable mirrors and a fast tip-tilt mirror within the laser system. The entire opto-mechanical system is housed in two hermetically sealed and thermally controlled enclosures on the SX and DX side of the LBT telescope. The laser beams are propagated through two refractive launch telescopes which focus the beams at an altitude of 12 km, creating a constellation of laser guide stars around a 4 arcminute diameter circle by means of Rayleigh scattering. In addition to the GLAO Rayleigh beacon system, ARGOS has also been designed for a possible future upgrade with a hybrid sodium laser - Rayleigh beacon combination, enabling diffraction limited operation. The ARGOS laser system was successfully installed at the LBT in April 2013. Extensive functional tests have been carried out and have verified the operation of the systems according to specifications. The alignment of the laser system with respect to the launch telescope was carried out during two more runs in June and October 2013, followed by the first propagation of laser light on sky in November 2013.

  1. Comparison of male and female emerald ash borer (Coleoptera: Buprestidae) responses to phoebe oil and (Z)-3-hexanol lures in light green prism traps

    Science.gov (United States)

    Gary G. Grant; Therese M. Poland; Tina Ciaramitaro; D. Barry Lyons; Gene C. Jones

    2011-01-01

    We conducted trapping experiments for the emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae) in Michigan, USA, and Ontario, Canada, to compare unbaited light green sticky prism traps with traps baited with phoebe oil, (Z)-3-hexenol (Z3-6:OH), or blends of other green leaf volatiles (GLVs) with Z3-6:OH. Traps were placed in the...

  2. Introduction of Red-Green-Blue Fluorescent Dyes into a Metal-Organic Framework for Tunable White Light Emission.

    Science.gov (United States)

    Wen, Yuehong; Sheng, Tianlu; Zhu, Xiaoquan; Zhuo, Chao; Su, Shaodong; Li, Haoran; Hu, Shengmin; Zhu, Qi-Long; Wu, Xintao

    2017-10-01

    The unique features of the metal-organic frameworks (MOFs), including ultrahigh porosities and surface areas, tunable pores, endow the MOFs with special utilizations as host matrices. In this work, various neutral and ionic guest dye molecules, such as fluorescent brighteners, coumarin derivatives, 4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran (DCM), and 4-(p-dimethylaminostyryl)-1-methylpyridinium (DSM), are encapsulated in a neutral MOF, yielding novel blue-, green-, and red-phosphors, respectively. Furthermore, this study introduces the red-, green-, and blue-emitting dyes into a MOF together for the first time, producing white-light materials with nearly ideal Commission International ed'Eclairage (CIE) coordinates, high color-rendering index values (up to 92%) and quantum yields (up to 26%), and moderate correlated color temperature values. The white light is tunable by changing the content or type of the three dye guests, or the excitation wavelength. Significantly, the introduction of blue-emitting guests in the methodology makes the available MOF host more extensive, and the final white-light output more tunable and high-quality. Such strategy can be widely adopted to design and prepare white-light-emitting materials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Ultrapure Green Light-Emitting Diodes Using Two-Dimensional Formamidinium Perovskites: Achieving Recommendation 2020 Color Coordinates.

    Science.gov (United States)

    Kumar, Sudhir; Jagielski, Jakub; Kallikounis, Nikolaos; Kim, Young-Hoon; Wolf, Christoph; Jenny, Florian; Tian, Tian; Hofer, Corinne J; Chiu, Yu-Cheng; Stark, Wendelin J; Lee, Tae-Woo; Shih, Chih-Jen

    2017-09-13

    Pure green light-emitting diodes (LEDs) are essential for realizing an ultrawide color gamut in next-generation displays, as is defined by the recommendation (Rec.) 2020 standard. However, because the human eye is more sensitive to the green spectral region, it is not yet possible to achieve an ultrapure green electroluminescence (EL) with a sufficiently narrow bandwidth that covers >95% of the Rec. 2020 standard in the CIE 1931 color space. Here, we demonstrate efficient, ultrapure green EL based on the colloidal two-dimensional (2D) formamidinium lead bromide (FAPbBr 3 ) hybrid perovskites. Through the dielectric quantum well (DQW) engineering, the quantum-confined 2D FAPbBr 3 perovskites exhibit a high exciton binding energy of 162 meV, resulting in a high photoluminescence quantum yield (PLQY) of ∼92% in the spin-coated films. Our optimized LED devices show a maximum current efficiency (η CE ) of 13.02 cd A -1 and the CIE 1931 color coordinates of (0.168, 0.773). The color gamut covers 97% and 99% of the Rec. 2020 standard in the CIE 1931 and the CIE 1976 color space, respectively, representing the "greenest" LEDs ever reported. Moreover, the device shows only a ∼10% roll-off in η CE (11.3 cd A -1 ) at 1000 cd m -2 . We further demonstrate large-area (3 cm 2 ) and ultraflexible (bending radius of 2 mm) LEDs based on 2D perovskites.

  4. Fabrication and evaluation of green-light emitting Ta2O5:Er, Ce co-sputtered thin films

    Directory of Open Access Journals (Sweden)

    K. Miura

    2015-01-01

    Full Text Available Erbium and cerium co-doped tantalum-oxide (Ta2O5:Er, Ce thin films were fabricated using radio-frequency co-sputtering of Ta2O5, Er2O3, and CeO2 for the first time. Enhanced green-light emission due to Er3+ that seems to be sensitized by Ce3+ was observed from the film annealed at 900 °C for 20 min. From XRD measurements of the films, the β-Ta2O5 (orthorhombic, δ-Ta2O5 (hexagonal, and (201 Ta2O5 phases seem to be very important for obtaining green PL from them. Such Ta2O5:Er, Ce co-sputtered films can be used as high-refractive-index materials of autocloned photonic crystals that can be applied to novel green-light-emitting devices, and they will also be used as multi-functional coating films that can work both as anti-reflection and down-conversion films for realizing high-efficiency silicon solar cells.

  5. Response of YBa2Cu3O7-δ grain-boundary junctions to short light pulses

    International Nuclear Information System (INIS)

    Kaplan, S.B.; Chi, C.C.; Chaudhari, P.; Dimos, D.; Gross, R.; Gupta, A.; Koren, G.

    1991-01-01

    The electrical response of a single YBa 2 Cu 3 O 7-δ grain-boundary junction to visible light pulses was measured. Using an autocorrelation technique with picosecond laser pulses, no fast voltage transients were observed with the junction biased just above its critical current. Apparently, there are no relaxation times in the range of 7 ps to 14 ns. Using direct time-domain measurement with nanosecond pulses, three types of junction response were recorded: a nonexponential decay of 11 μs (90 to 10 % time) at temperatures near T c ; an inverse-time dependence of the order of 0.3 μs (100 to 50 % time) in the temperature range of 4.2 to 15 K; and an exponential decay time of 0.15 μs with the sample immersed in superfluid helium

  6. Design of a bolometer for total-energy measurement of the linear coherent light source pulsed X-ray laser

    International Nuclear Information System (INIS)

    Friedrich, S.; Li, L.; Ott, L.L.; Kolgani, Rajeswari M.; Yong, G.J.; Ali, Z.A.; Drury, O.B.; Ables, E.; Bionta, R.M.

    2006-01-01

    We are developing a cryogenic bolometer to measure the total energy of the linear coherent light source (LCLS) free electron X-ray laser to be built at the Stanford Linear Accelerator Center. The laser will produce ultrabright X-ray pulses in the energy range between 0.8 and 8 keV with ∼10 12 photons per ∼200 fs pulse at a repeat interval of 8 ms, and will be accompanied by a halo of spontaneous undulator radiation. The bolometer is designed to determine the total energy of each laser pulse to within (1- x ) Sr x MnO 3 sensor array at the metal-insulator transition, where the composition x is adjusted to produce the desired transition temperature. We discuss design considerations and material choices, and present numerical simulations of the thermal response

  7. Green thunderstorms

    Science.gov (United States)

    Gallagher, Frank Woolsey, III

    Many people around the world have observed green light apparently emanating from severe thunderstorms, but until recently there has been no scientific study of the phenomenon. Green thunderstorms have been observed from time to time in association with deep convection or severe weather events. Some skeptics who have not personally observed a green thunderstorm suggest that they are some kind of illusion. The existence of green thunderstorms has been objectively demonstrated by recording spectra of light from thunderstorms using a handheld spectrophotometer. During the spring and summer of 1995 and the spring of 1996 numerous storms were observed and spectra of the light emanating from these storms were recorded. Observations were made both at the ground and aboard research aircraft. Furthermore, time series of spectra were recorded as the observed color of some storms changed from dark blue to a bluish-green. Several hypotheses have been advanced to explain the occurrence of green light in connection with severe storms. Fankhauser gave some observational support to the belief that green light from thunderstorms is possible and believed that the source of the light is from the blue sky penetrating thin regions in the clouds. Fraser believes that light from the setting sun, in combination with the process of scattering by atmospheric molecules, creates the green light associated with severe weather and the thunderstorm acts only as a black backdrop. Unfortunately, no cloud illuminated by the sun is black and the green airlight produced by the Fraser theory is in reality overwhelmed by light reflected by the cloud. Often the unusual coloration has been attributed to hail or to reflection of light from foliage on the ground. The quantitative measurements made during the observation period fail to support these assumptions. We have observed thunderstorms to be green over ground that was not green and we have observed blue thunderstorms over ground that was green

  8. An Ocean Acidification Acclimatised Green Tide Alga Is Robust to Changes of Seawater Carbon Chemistry but Vulnerable to Light Stress.

    Directory of Open Access Journals (Sweden)

    Guang Gao

    Full Text Available Ulva is the dominant genus in the green tide events and is considered to have efficient CO2 concentrating mechanisms (CCMs. However, little is understood regarding the impacts of ocean acidification on the CCMs of Ulva and the consequences of thalli's acclimation to ocean acidification in terms of responding to environmental factors. Here, we grew a cosmopolitan green alga, Ulva linza at ambient (LC and elevated (HC CO2 levels and investigated the alteration of CCMs in U. linza grown at HC and its responses to the changed seawater carbon chemistry and light intensity. The inhibitors experiment for photosynthetic inorganic carbon utilization demonstrated that acidic compartments, extracellular carbonic anhydrase (CA and intracellular CA worked together in the thalli grown at LC and the acquisition of exogenous carbon source in the thalli could be attributed to the collaboration of acidic compartments and extracellular CA. Contrastingly, when U. linza was grown at HC, extracellular CA was completely inhibited, acidic compartments and intracellular CA were also down-regulated to different extents and thus the acquisition of exogenous carbon source solely relied on acidic compartments. The down-regulated CCMs in U. linza did not affect its responses to changes of seawater carbon chemistry but led to a decrease of net photosynthetic rate when thalli were exposed to increased light intensity. This decrease could be attributed to photodamage caused by the combination of the saved energy due to the down-regulated CCMs and high light intensity. Our findings suggest future ocean acidification might impose depressing effects on green tide events when combined with increased light exposure.

  9. Pulsed lasers versus continuous light sources in capillary electrophoresis and fluorescence detection studies: Photodegradation pathways and models

    International Nuclear Information System (INIS)

    Boutonnet, Audrey; Morin, Arnaud; Petit, Pierre; Vicendo, Patricia; Poinsot, Véréna; Couderc, François

    2016-01-01

    Pulsed lasers are widely used in capillary electrophoresis (CE) studies to provide laser induced fluorescence (LIF) detection. Unfortunately pulsed lasers do not give linear calibration curves over a wide range of concentrations. While this does not prevent their use in CE/LIF studies, the non-linear behavior must be understood. Using 7-hydroxycoumarin (7-HC) (10–5000 nM), Tamra (10–5000 nM) and tryptophan (1–200 μM) as dyes, we observe that continuous lasers and LEDs result in linear calibration curves, while pulsed lasers give polynomial ones. The effect is seen with both visible light (530 nm) and with UV light (355 nm, 266 nm). In this work we point out the formation of byproducts induced by pulsed laser upon irradiation of 7-HC. Their separation by CE using two Zeta LIF detectors clearly shows that this process is related to the first laser detection. All of these photodegradation products can be identified by an ESI-/MS investigation and correspond to at least two 7HC dimers. By using the photodegradation model proposed by Heywood and Farnsworth (2010) and by taking into account the 7-HC results and the fact that in our system we do not have a constant concentration of fluorophore, it is possible to propose a new photochemical model of fluorescence in LIF detection. The model, like the experiment, shows that it is difficult to obtain linear quantitation curves with pulsed lasers while UV-LEDs used in continuous mode have this advantage. They are a good alternative to UV pulsed lasers. An application involving the separation and linear quantification of oligosaccharides labeled with 2-aminobezoic acid is presented using HILIC and LED (365 nm) induced fluorescence. - Highlights: • No linear calibration curves are obtained in CE/Pulsed-LIF detection. • Photodegradation and photodimerisation are responsible of this non linearity. • A mathematical model of this phenomenon is presented. • 7 hydroxycoumarin in CE/LIF is used to verify the

  10. Red, green, blue and white light upconversion emission in Yb3+/Tm3+/Ho3+ co-doped tellurite glasses

    International Nuclear Information System (INIS)

    Desirena, H; De la Rosa, E; Meza, O; Salas, P

    2011-01-01

    Several Yb 3+ /Tm 3+ /Ho 3+ co-doped transparent TeO 2 -ZnO-Na 2 O-Yb 2 O 3 -Ho 2 O 3 -Tm 2 O 3 glasses were prepared and luminescence properties were characterized. Simultaneous red, green and blue (RGB) emission were obtained after excitation at 970 nm. Colour emission was tuned from multicolour to white light with colour coordinate (0.32, 0.33) matching very well with the white reference (0.33, 0.33). Changes in colour emission were obtained by varying the intensity ratios between RGB bands that are strongly concentration dependent because of the interaction of co-dopants. The colour tunability, high quality of white light and high intensity of the emitted signal make these transparent glasses excellent candidates for applications in solid-state lighting.

  11. Novel system for pulse radiolysis with multi-angle light scattering detection (PR-MALLS) - concept, construction and first tests

    Science.gov (United States)

    Kadlubowski, S.; Sawicki, P.; Sowinski, S.; Rokita, B.; Bures, K. D.; Rosiak, J. M.; Ulanski, P.

    2018-01-01

    Time-resolved pulse radiolysis, utilizing short pulses of high-energy electrons from accelerators, is an effective method for rapidly generating free radicals and other transient species in solution. Combined with fast time-resolved spectroscopic detection (typically in the ultraviolet/visible/near-infrared), it is invaluable for monitoring the reactivity of species subjected to radiolysis on timescales ranging from picoseconds to seconds. When used for polymer solutions, pulse radiolysis can be coupled with light-scattering detection, creating a powerful tool for kinetic and mechanistic analysis of processes like degradation or cross-linking of macromolecules. Changes in the light scattering intensity (LSI) of polymer solutions are indicative of alterations in the molecular weight and/or in the radius of gyration, i.e., the dimensions and shape of the macromolecules. In addition to other detection methods, LSI technique provides a convenient tool to study radiation-induced alterations in macromolecules as a function of time after the pulse. Pulse radiolysis systems employing this detection mode have been so far constructed to follow light scattered at a single angle (typically the right angle) to the incident light beam. Here we present an advanced pulse radiolysis & multi-angle light-scattering-intensity system (PR-MALLS) that has been built at IARC and is currently in the phase of optimization and testing. Idea of its design and operation is described and preliminary results for radiation-induced degradation of pullulan as well as polymerization and crosslinking of poly(ethylene glycol) diacrylate are presented. Implementation of the proposed system provides a novel research tool, which is expected to contribute to the expansion of knowledge on free-radical reactions in monomer- and polymer solutions, by delivering precise kinetic data on changes in molecular weight and size, and thus allowing to formulate or verify reaction mechanisms. The proposed method is

  12. Efficient blue-green and green electroluminescent devices obtained by doping iridium complexes into hole-block material as supplementary light-emitting layer

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Liang [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Zheng, Youxuan, E-mail: yxzheng@mail.nju.edu.cn [State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China); Deng, Ruiping; Feng, Jing; Song, Mingxing; Hao, Zhaomin [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Zhang, Hongjie, E-mail: hongjie@ciac.jl.cn [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Zuo, Jinglin; You, Xiaozeng [State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China)

    2014-04-15

    In this work, organic electroluminescent (EL) devices with dominant and supplementary light-emitting layers (EMLs) were designed to further improve the EL performances of two iridium{sup III}-based phosphorescent complexes, which have been reported to provide EL devices with slow EL efficiency roll-off. The widely used hole-block material 2,2′,2''-(1,3,5-Benzinetriyl)-tris(1-phenyl-1-H-benzimidazole) (TPBi) was selected as host material to construct the supplementary EML. Compared with single-EML devices, double-EMLs devices showed higher EL efficiencies, higher brightness, and lower operation voltage attributed to wider recombination zone and better balance of carriers. In addition, the insertion of supplementary EML is instrumental in facilitating carriers trapping, thus improving the color purity. Finally, high performance blue-green and green EL devices with maximum current efficiencies of 35.22 and 90.68 cd/A, maximum power efficiencies of 26.36 and 98.18 lm/W, and maximum brightness of 56,678 and 112,352 cd/m{sup 2}, respectively, were obtained by optimizing the doping concentrations. Such a device design strategy extends the application of a double EML device structure and provides a chance to simplify device fabrication processes. -- Highlights: • Electroluminescent devices with supplementary light-emitting layer were fabricated. • Doping concentrations and thicknesses were optimized. • Better balance of holes and electrons causes the enhanced efficiency. • Improved carrier trapping suppresses the emission of host material.

  13. Sol-Gel Synthesis and Luminescence of Green Light Emitting Phosphors Zn2SiO4/Mn2+

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Mn2+ doped Zn2SiO4 phosphors were synthesized by sol-gel method, and the influence of zinc source, Mn2+ dopant concentration and annealing temperature were investigated. Results show that zinc nitrate based precursor with strong green emission intensities is better than zinc acetate based precursor. The intensity of green light emission reaches a peak at 254 nm when the Mn2+ dopant concentration is about 5%( molar percentage). Structural details of the phosphors were examined through X-ray diffractometry, thermogravimetric and differential thermal analysis. The result indicates that they are both rhombohedral structures, which remain amorphous below 700 ℃and crystallize completely around 1 000℃. The luminescent properties of Zn2SiO4/Mn2+ phosphors were characterized by excitation and emission spectra.

  14. A novel water-assisted pulsed light processing for decontamination of blueberries.

    Science.gov (United States)

    Huang, Yaoxin; Chen, Haiqiang

    2014-06-01

    Sample heating and shadowing effect have limited the application of pulsed light (PL) technology for decontamination of fresh produce. In this study, a novel setup using water-assisted PL processing was developed to overcome these limitations. Blueberries inoculated with Escherichia coli O157:H7 or Salmonella were either treated with PL directly (dry PL treatment) or immersed in agitated water during the PL treatment (wet PL treatment) for 5-60 s. Although both pathogens were effectively inactivated by the dry PL treatments, the appearance of the blueberries was adversely affected and a maximum temperature of 64.8 °C on the blueberry surface was recorded. On the other hand, the visual appearance of blueberries remained unchanged after wet PL treatments and sample heating was significantly reduced. The wet PL treatments were more effective than chlorine washing on inactivating both pathogens. After a 60-s wet PL treatment, the populations of E. coli O157:H7 inoculated on calyx and skin of blueberries were reduced by 3.0 and >5.8 log CFU/g, respectively. Salmonella on blueberry calyx and skin was reduced by 3.6 and >5.9 log CFU/g, respectively. No viable bacterial cells were recovered from the water used in the wet PL treatments, demonstrating that this setup could prevent the risk of cross-contamination during fresh produce washing. Our results suggest that this new water-assisted PL treatment could be a potential non-chemical alternative (residue free) to chlorine washing since it is both more effective and environmentally friendly than chlorine washing. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Effectiveness of Intense Pulsed Light treatment in solar lentigo: a retrospective study

    Directory of Open Access Journals (Sweden)

    İlgen Ertam

    2014-03-01

    Full Text Available Intense Pulsed Light (IPL; is a light system of 500-1200 nm wavelength which is used for the treatment of hair removal, hyperpigmentation, non-ablative skin resurfacing and superficial vascular lesions. The mechanism of action is thought to be the focal epidermal coagulation due to selective photothermolysis in the epidermal keratinocytes and melanocytes. A variety of laser systems can be used in the treatment of lsolar entigo. The aim of this study is to investigate the effectiveness of IPL in solar lentigo. Materials and Methods: The archives of Cosmetology Unit retrospectively reviewed for the patients with the diagnosis of solar lentigo from March 2007 to November 2010. There were 139 files of patients who were diagnosed as solar lentigo clinically and dermoscopically and treated by IPL (L900 a & m IPL. Informed consent was taken from all patients. Among them, 42 patients who had come to controls regularly and had photographed before and after treatment included into the study. Results: A total of 52 lesions of 42 female and 1 male patient included into the study. Patients’ mean age was 42±9.6 years, ranging between 33 to 88. Of the lesions, 27 lesions(51.9% were on cheek, 7 lesions (13.5% were on zygoma, 6 lesions (11.5% were on chin, 4 lesions (7.7% were on hands, 4 lesions (7.7% were on forehead, 2 lesions(3.8% were on nose, 2 lesions (3.8% were on forearm. The mean number of sessions was 3.28 ranging between 1 and 7. After treatment, improvement was over 75% in 57,7% lesions, 50-75% in 17.3% of the lesions, 25-50% in 17.3% of the lesions, under 25% in 7.7% of the lesions. Conclusion: According to the results of our work, IPL can be accepted as an effective, cheap and safety method in terms of its side effects in treatment of solar lentigo.

  16. The Sensory Quality of Meat, Game, Poultry, Seafood and Meat Products as Affected by Intense Light Pulses: A Systematic Review

    OpenAIRE

    Tomasevic, Igor; Rajkovic, Andreja

    2015-01-01

    The effect of intense light pulses (ILP) on sensory quality of 16 different varieties of meat, meat products, game, poultry and seafood are reviewed. Changes induced by ILP are animal species, type of meat product and fluences applied dependent. ILP significantly deteriorates sensory quality of cooked meat products. It causes less change in the sensory properties of dry cured than cooked meat products while fermented sausage is least affected. The higher fluence applied significantly changes ...

  17. Localisation of light and spectral broadening of femtosecond laser pulses in a fibre with a minimal-microstructure cladding

    International Nuclear Information System (INIS)

    Zheltikov, Aleksei M; Zhou, Ping; Temnov, V V; Tarasevitch, A P; Linde, D von der; Kondrat'ev, Yu N; Shevandin, V S; Dukel'skii, K V; Khokhlov, A V; Bagayev, S N; Smirnov, Valerii B

    2002-01-01

    Microstructure optical fibres with a cladding consisting of a single cycle of air holes and the minimum core diameter of 1 μm have been fabricated and studied. Guided modes supported by this fibre are characterised by a high light localisation degree and display the C 6ν point-group spatial symmetry of the transverse field distribution. A high refractive index step between the core and the cladding in the created fibres strongly confines the light field in the fibre core. The spectral broadening of low-power femtosecond laser pulses in the fibre of this type is experimentally studied. (nonlinear optical phenomena)

  18. Efficient fluorescent red, green, and blue organic light-emitting devices with a blue host of spirobifluorene derivative

    Energy Technology Data Exchange (ETDEWEB)

    Lee, R.-H. [Department of Chemical and Material Engineering, National Yunlin University of Science and Technology, Yunlin 640, Taiwan (China)], E-mail: lerongho@yuntech.edu.tw; Huang, Y.-W.; Wang, Y.-Y. [Department of Chemical and Material Engineering, National Yunlin University of Science and Technology, Yunlin 640, Taiwan (China); Chang, H.-Y. [EChem Hightech CO., LTD, Hsin-Chu Industrial Park, Hu-Kou, Hsin-Chu, Taiwan (China)

    2008-06-02

    Efficient fluorescent blue, green, and red (RGB) organic light-emitting devices (OLEDs) were fabricated using a blue host material of pyrimidine-containing spirobifluorene derivative 2,7-bis[2-(4-tert-butylphenyl)pyrimidine-5-yl]-9,9'-spirobifluorene (TBPSF) doped with blue dye perylene, green dye 10-(2-benzothiazolyl)-1,1,7,7-tetramethyl-2,3,6,7-tetrahydro-1H,5H, 11H-benzo[l] pyrano[6,7,8-ij] quinolizin-11-one (C545T), and red dye 4-(dicyanomethylene)-2-t-butyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl) -4H-pyran (DCJTB), respectively. The brightness and current efficiency of the perylene doped blue device reached 10117 cd/m{sup 2} and 2.97 cd/A. Green emission of the C545T doped device reached 8500 cd/m{sup 2} and 13.0 cd/A. Red emission of the DCJTB doped device can be as high as 9000 cd/m{sup 2} and 2.0 cd/A, respectively. High color purity of the blue (Commission Internationale de L'Eclairage (CIE{sub x,y}) coordinates (CIE, x = 0.27, y = 0.24)), green (CIE, x = 0.19, y = 0.63) and red (CIE, x = 0.62, y = 0.37) emissions were achieved for RGB dyes doped TBPSF OLEDs. High brightness, large current efficiency, and good color purity of TBPSF-based RGB OLEDs were obtained by the configuration optimization device, such as inserting the hole and electron-injection materials, and suitable dopant content and light emitting layer thickness.

  19. Long-pulsed Nd:YAG laser vs. intense pulsed light for hair removal in dark skin: a randomized controlled trial.

    Science.gov (United States)

    Ismail, S A

    2012-02-01

    Although several lasers meet the wavelength criteria for selective follicular destruction, the treatment of darker skin phototypes is particularly challenging because absorption of laser energy by the targeted hairs is compromised by an increased concentration of epidermal melanin. To compare satisfaction level, safety and effectiveness of a long-pulsed Nd:YAG laser and intense pulsed light (IPL) in axillary hair reduction in subjects with dark skin. The study design was a within-patient, right-left, assessor-blinded, comparison of long-pulsed Nd:YAG laser and IPL. Fifty women (skin phototypes IV-VI) volunteered for removal of axillary hair. Five sessions at 4- to 6-week intervals were performed. Hair counts at both sides were compared at baseline and 6months after the last session. Final overall evaluations were performed by subjects and clinician at the end of the study. Satisfaction was scored for both devices. Thirty-nine women completed the study. At 6months, the decrease in hair counts on the laser side (79·4%, Pvs. pretreatment) was significantly (Pvs. pretreatment). Only temporary adverse effects were reported at both sides. Higher pain scores and more inflammation were reported with Nd:YAG laser; however, it was preferred by 29 volunteers (74%). Volunteers reported higher satisfaction score with Nd:YAG laser (PDark skin can be treated by both systems safely and effectively; however, long-pulsed (1064 nm) Nd:YAG laser is more effective as reported by both subjects and clinician. © 2011 The Authors. BJD © 2011 British Association of Dermatologists.

  20. Photosynthetic Properties and Potentials for Improvement of Photosynthesis in Pale Green Leaf Rice under High Light Conditions

    Directory of Open Access Journals (Sweden)

    Junfei Gu

    2017-06-01

    Full Text Available Light is the driving force of plant growth, providing the energy required for photosynthesis. However, photosynthesis is also vulnerable to light-induced damage caused by the production of reactive oxygen species (ROS. Plants have therefore evolved various protective mechanisms such as non-photochemical quenching (NPQ to dissipate excessively absorbed solar energy as heat; however, photoinhibition and NPQ represent a significant loss in solar energy and photosynthetic efficiency, which lowers the yield potential in crops. To estimate light capture and light energy conversion in rice, a genotype with pale green leaves (pgl and a normally pigmented control (Z802 were subjected to high (HL and low light (LL. Chlorophyll content, light absorption, chloroplast micrographs, abundance of light-harvesting complex (LHC binding proteins, electron transport rates (ETR, photochemical and non-photochemical quenching, and generation of ROS were subsequently examined. Pgl had a smaller size of light-harvesting chlorophyll antenna and absorbed less photons than Z802. NPQ and the generation of ROS were also low, while photosystem II efficiency and ETR were high, resulting in improved photosynthesis and less photoinhibition in pgl than Z802. Chlorophyll synthesis and solar conversion efficiency were higher in pgl under HL compared to LL treatment, while Z802 showed an opposite trend due to the high level of photoinhibition under HL. In Z802, excessive absorption of solar energy not only increased the generation of ROS and NPQ, but also exacerbated the effects of increases in temperature, causing midday depression in photosynthesis. These results suggest that photosynthesis and yield potential in rice could be enhanced by truncated light-harvesting chlorophyll antenna size.

  1. Photosynthetic Properties and Potentials for Improvement of Photosynthesis in Pale Green Leaf Rice under High Light Conditions

    Science.gov (United States)

    Gu, Junfei; Zhou, Zhenxiang; Li, Zhikang; Chen, Ying; Wang, Zhiqin; Zhang, Hao; Yang, Jianchang

    2017-01-01

    Light is the driving force of plant growth, providing the energy required for photosynthesis. However, photosynthesis is also vulnerable to light-induced damage caused by the production of reactive oxygen species (ROS). Plants have therefore evolved various protective mechanisms such as non-photochemical quenching (NPQ) to dissipate excessively absorbed solar energy as heat; however, photoinhibition and NPQ represent a significant loss in solar energy and photosynthetic efficiency, which lowers the yield potential in crops. To estimate light capture and light energy conversion in rice, a genotype with pale green leaves (pgl) and a normally pigmented control (Z802) were subjected to high (HL) and low light (LL). Chlorophyll content, light absorption, chloroplast micrographs, abundance of light-harvesting complex (LHC) binding proteins, electron transport rates (ETR), photochemical and non-photochemical quenching, and generation of ROS were subsequently examined. Pgl had a smaller size of light-harvesting chlorophyll antenna and absorbed less photons than Z802. NPQ and the generation of ROS were also low, while photosystem II efficiency and ETR were high, resulting in improved photosynthesis and less photoinhibition in pgl than Z802. Chlorophyll synthesis and solar conversion efficiency were higher in pgl under HL compared to LL treatment, while Z802 showed an opposite trend due to the high level of photoinhibition under HL. In Z802, excessive absorption of solar energy not only increased the generation of ROS and NPQ, but also exacerbated the effects of increases in temperature, causing midday depression in photosynthesis. These results suggest that photosynthesis and yield potential in rice could be enhanced by truncated light-harvesting chlorophyll antenna size. PMID:28676818

  2. The Effects of Brazilian Green Propolis against Excessive Light-Induced Cell Damage in Retina and Fibroblast Cells

    Directory of Open Access Journals (Sweden)

    Hiromi Murase

    2013-01-01

    Full Text Available Background. We investigated the effects of Brazilian green propolis and its constituents against white light- or UVA-induced cell damage in mouse retinal cone-cell line 661W or human skin-derived fibroblast cells (NB1-RGB. Methods. Cell damage was induced by 3,000lx white light for 24 h or 4/10 J/cm2 UVA exposure. Cell viability was assessed by Hoechst33342 and propidium iodide staining or by tetrazolium salt (WST-8 cell viability assay. The radical scavenging activity of propolis induced by UVA irradiation in NB1-RGB cells was measured using a reactive-oxygen-species- (ROS- sensitive probe CM-H2DCFDA. Moreover, the effects of propolis on the UVA-induced activation of p38 and extracellular signal-regulated kinase (ERK were examined by immunoblotting. Results. Treatment with propolis and two dicaffeoylquinic acids significantly inhibited the decrease in cell viability induced by white light in 661W. Propolis and its constituents inhibited the decrease in cell viability induced by UVA in NB1-RGB. Moreover, propolis suppressed the intracellular ROS production by UVA irradiation. Propolis also inhibited the levels of phosphorylated-p38 and ERK by UVA irradiation. Conclusion. Brazilian green propolis may become a major therapeutic candidate for the treatment of AMD and skin damage induced by UV irradiation.

  3. Effects of melatonin and green-wavelength LED light on the physiological stress and immunity of goldfish, Carassius auratus, exposed to high water temperature.

    Science.gov (United States)

    Jung, Seo Jin; Kim, Na Na; Choi, Young Jae; Choi, Ji Yong; Choi, Young-Ung; Heo, Youn Seong; Choi, Cheol Young

    2016-10-01

    This study investigated the effects of increasing water temperature (22-30 °C) on the physiological stress response and immunity of goldfish, Carassius auratus, and the ability of green light-emitting diode (LED) irradiation or melatonin injections to mitigate this temperature-induced stress. To evaluate the effects of either green-wavelength LED light or melatonin on stress in goldfish, we measured plasma triiodothyronine (T3), thyroxine (T4), and thyroid hormone receptor (TR) mRNA expression; plasma cortisol and glucose; and immunoglobulin M (IgM) and lysozyme mRNA expression. The thyroid hormone activities, TR mRNA expression, and plasma cortisol and glucose were higher in goldfish exposed to high-temperature water, but were lower after exposure to melatonin or green-wavelength LED light. Lysozyme mRNA expression and plasma IgM activity and protein expression were lower after exposure to high water temperatures and higher after melatonin or green-wavelength LED light treatments. Therefore, high water temperature induced stress and decreased immunity; however, green-wavelength LED light and melatonin treatments mitigated the effects of stress and enhanced immunity. The benefits of melatonin decreased with time, whereas those of green-wavelength LED treatment did not.

  4. Efficient generation of 3.9 W of diffraction-limited green light with spectrally combined tapered diode lasers

    DEFF Research Database (Denmark)

    Müller, André; Jensen, Ole Bjarlin; Andersen, Peter E.

    We propose an efficient concept increasing the power of diode laser systems in the visible spectral range. In comparison with second harmonic generation of single emitters, spectral beam combining with subsequent sum-frequency generation enhances the available power significantly. Combining two...... 1060 nm tapered diode lasers, we achieve a 2.5-3.2 fold increase of green light with a maximum power of 3.9 Watts in a diffraction-limited beam. At this level, diode lasers have a high application potential, for example, within the biomedical field. In order to enhance the power even further, our...

  5. Self-reflection of extremely short light pulses in nonlinear optical waveguides

    Science.gov (United States)

    Kurasov, Alexander E.; Kozlov, Sergei A.

    2004-07-01

    An equation describing the generation of reflected radiation during the propagation of high-intensity extremely short pulses in a nonlinear optical waveguide is derived. The phenomena taking place during the strong self-inducted changes of the temporal structure of the forward wave are studied. It is shown that the duration of the backward pulse is much greater than the duration of the forward pulse and that the main part of the energy of the backward wave is carried by lower frequencies than the central frequency of the forward wave.

  6. Human phase response curve to a 1 h pulse of bright white light

    Science.gov (United States)

    St Hilaire, Melissa A; Gooley, Joshua J; Khalsa, Sat Bir S; Kronauer, Richard E; Czeisler, Charles A; Lockley, Steven W

    2012-01-01

    The phase resetting response of the human circadian pacemaker to light depends on the timing of exposure and is described by a phase response curve (PRC). The current study aimed to construct a PRC for a 1 h exposure to bright white light (∼8000 lux) and to compare this PRC to a dim background light PRC. These data were also compared to a previously completed 6.7 h bright white light PRC and a dim background light PRC constructed under similar conditions. Participants were randomized for exposure to 1 h of either bright white light (n= 18) or dim background light (n= 18) scheduled at 1 of 18 circadian phases. Participants completed constant routine (CR) procedures in dim light (light exposure to assess circadian phase. Phase shifts were calculated as the difference in timing of dim light melatonin onset (DLMO) during pre- and post-stimulus CRs. Exposure to 1 h of bright white light induced a Type 1 PRC with a fitted peak-to-trough amplitude of 2.20 h. No discernible PRC was observed in the dim background light PRC. The fitted peak-to-trough amplitude of the 1 h bright light PRC was ∼40% of that for the 6.7 h PRC despite representing only 15% of the light exposure duration, consistent with previous studies showing a non-linear duration–response function for the effects of light on circadian resetting. PMID:22547633

  7. Comparison of UV-C and Pulsed UV Light Treatments for Reduction of Salmonella, Listeria monocytogenes, and Enterohemorrhagic Escherichia coli on Eggs.

    Science.gov (United States)

    Holck, Askild L; Liland, Kristian H; Drømtorp, Signe M; Carlehög, Mats; McLEOD, Anette

    2018-01-01

    Ten percent of all strong-evidence foodborne outbreaks in the European Union are caused by Salmonella related to eggs and egg products. UV light may be used to decontaminate egg surfaces and reduce the risk of human salmonellosis infections. The efficiency of continuous UV-C (254 nm) and pulsed UV light for reducing the viability of Salmonella Enteritidis, Listeria monocytogenes, and enterohemorrhagic Escherichia coli on eggs was thoroughly compared. Bacterial cells were exposed to UV-C light at fluences from 0.05 to 3.0 J/cm 2 (10 mW/cm 2 , for 5 to 300 s) and pulsed UV light at fluences from 1.25 to 18.0 J/cm 2 , resulting in reductions ranging from 1.6 to 3.8 log, depending on conditions used. Using UV-C light, it was possible to achieve higher reductions at lower fluences compared with pulsed UV light. When Salmonella was stacked on a small area or shielded in feces, the pulsed UV light seemed to have a higher penetration capacity and gave higher bacterial reductions. Microscopy imaging and attempts to contaminate the interior of the eggs with Salmonella through the eggshell demonstrated that the integrity of the eggshell was maintained after UV light treatments. Only minor sensory changes were reported by panelists when the highest UV doses were used. UV-C and pulsed UV light treatments appear to be useful decontamination technologies that can be implemented in continuous processing.

  8. Economic versus belief-based models: Shedding light on the adoption of novel green technologies

    International Nuclear Information System (INIS)

    Girod, Bastien; Mayer, Sebastian; Nägele, Florian

    2017-01-01

    Understanding the determinants for the adoption of novel green consumer technologies is important to effectively foster their diffusion. Energy and environmental science literature often takes an approach based on economic variables such as objectively measureable household and technology characteristics. Increasingly, also subjective variables based on personal belief are considered. On the basis of a survey about the intention to adopt an exemplary novel green consumer technology (intelligent thermostats), we contribute to the clarification of the explanatory power of these two approaches. We first compare the economic model to the belief-based model and second, investigate how beliefs about the green technology are influenced by personal environmental norms and innovativeness. Our evaluation shows that the belief-based model explains considerably higher variance in the intention to adopt. Thereby the perceived hedonic satisfaction, usefulness, habit and facilitating conditions reveal as key determinants. Moreover, environmental norms show lower impact than personal innovativeness. In the discussion we consolidate these findings and point to the risk of omitted variable bias when selectively including belief-based variables in adoption models. Our findings suggest that policies can effectively accelerate the early market diffusion of green consumer technologies by incentivizing retailers to introduce and market such technologies. - Highlights: • Adoption of a green consumer technology (energy-saving thermostats) is evaluated. • Subjective beliefs about the technology show higher impact than objective measures. • Key beliefs relate to pleasure, usefulness, habits and facilitating conditions. • Personal innovativeness is more relevant for adoption than environmental norms. • Isolated use of belief-based adoption determinants can lead to omitted variable bias.

  9. An informal teaching of light and lasers through the CSIR-NLC PULSE programme

    CSIR Research Space (South Africa)

    Shikwambana, L

    2012-07-01

    Full Text Available The PULSE programme of the CSIR relates to the public understanding of laser science and engineering and the awareness of laser science and engineering to schools and tertiary institutions....

  10. Synthesis, Photoluminescence Behavior of Green Light Emitting Tb(III) Complexes and Mechanistic Investigation of Energy Transfer Process.

    Science.gov (United States)

    Bala, Manju; Kumar, Satish; Devi, Rekha; Khatkar, Avni; Taxak, V B; Boora, Priti; Khatkar, S P

    2018-06-04

    A series of five new terbium(III) ion complexes with 4,4-difluoro-1-phenylbutane-1,3-dione (HDPBD) and anciliary ligands was synthesized. The composition and properties of complexes were analyzed by elemental analysis, IR, NMR, powder X-ray diffaraction, TG-DTG and photoluminescence spectroscopy. These complexes exhibited ligand sensitized green emission at 546 nm associated with 5 D 4  →  7 F 5 transitions of terbium ion in the emission spectra. The photoluminescence study manifested that the organic ligands act as antenna and facilitate the absorbed energy to emitting levels of Tb(III) ion efficiently. The enhanced luminescence intensity and decay time of ternary C2-C5 complexes observed due to synergistic effect of anciliary ligands. The CIE color coordinates of complexes came under the green region of chromaticity diagram. The mechanistic investigation of intramolecular energy transfer in the complexes was discussed in detail. These terbium(III) complexes can be thrivingly used as one of the green component in light emitting material and in display devices. Graphical Abstract Illustrate the sensitization process of the Tb ion and intramolecular energy transfer process in the Tb 3+ complex.

  11. Intense pulsed light annealing of copper zinc tin sulfide nanocrystal coatings

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Bryce A.; Smeaton, Michelle A.; Holgate, Collin S.; Trejo, Nancy D.; Francis, Lorraine F., E-mail: francis@umn.edu; Aydil, Eray S., E-mail: aydil@umn.edu [Department of Chemical Engineering and Materials Science, University of Minnesota, 151 Amundson Hall, 421 Washington Avenue SE, Minneapolis, Minnesota 55455 (United States)

    2016-09-15

    A promising method for forming the absorber layer in copper zinc tin sulfide [Cu{sub 2}ZnSnS{sub 4} (CZTS)] thin film solar cells is thermal annealing of coatings cast from dispersions of CZTS nanocrystals. Intense pulsed light (IPL) annealing utilizing xenon flash lamps is a potential high-throughput, low-cost, roll-to-roll manufacturing compatible alternative to thermal annealing in conventional furnaces. The authors studied the effects of flash energy density (3.9–11.6 J/cm{sup 2}) and number of flashes (1–400) during IPL annealing on the microstructure of CZTS nanocrystal coatings cast on molybdenum-coated soda lime glass substrates (Mo-coated SLG). The annealed coatings exhibited cracks with two distinct linear crack densities, 0.01 and 0.2 μm{sup −1}, depending on the flash intensity and total number of flashes. Low density cracking (0.01 μm{sup −1}, ∼1 crack per 100 μm) is caused by decomposition of CZTS at the Mo-coating interface. Vapor decomposition products at the interface cause blisters as they escape the coating. Residual decomposition products within the blisters were imaged using confocal Raman spectroscopy. In support of this hypothesis, replacing the Mo-coated SLG substrate with quartz eliminated blistering and low-density cracking. High density cracking is caused by rapid thermal expansion and contraction of the coating constricted on the substrate as it is heated and cooled during IPL annealing. Finite element modeling showed that CZTS coatings on low thermal diffusivity materials (i.e., SLG) underwent significant differential heating with respect to the substrate with rapid rises and falls of the coating temperature as the flash is turned on and off, possibly causing a build-up of tensile stress within the coating prompting cracking. Use of a high thermal diffusivity substrate, such as a molybdenum foil (Mo foil), reduces this differential heating and eliminates the high-density cracking. IPL annealing in presence of sulfur

  12. Analysis of dominant carrier recombination mechanisms depending on injection current in InGaN green light emitting diodes

    International Nuclear Information System (INIS)

    Kim, Kyu-Sang; Han, Dong-Pyo; Kim, Hyun-Sung; Shim, Jong-In

    2014-01-01

    Two kinds of green InGaN light emitting diodes (LEDs) have been investigated in order to understand the different slopes in logarithmic light output power-current (L-I) curves. Through the analysis of the carrier rate equation and by considering the carrier density-dependent the injection efficiency into quantum wells, the slopes of the logarithmic L-I curves can be more rigorously understood. The low current level, two as the tunneling current is initially dominant. The high current level beyond the peak of the external quantum efficiency (EQE) diminishes below one as the carrier overflow becomes dominant. In addition, the normalized carrier injection efficiency can be obtained by analyzing the slopes of the logarithmic L-I curves. The carrier injection efficiency decreases after the EQE peak of the InGaN LEDs, determined from the analysis of the slopes of the logarithmic L-I curves

  13. The effect of pulse rate on VPT response and the use of an LED light to improve stability

    CERN Document Server

    Dawn, Elizabeth Leslie

    2009-01-01

    The Endcap Electromagnetic Calorimeter of the CMS detector at the LHC uses vacuum phototriodes (VPTs), which operate in the full 3.8T magnetic field of the experiment, to detect the scintillation light from the lead tungstate crystals. Initial measurements of the variation in response of VPTs, induced by sudden changes in the illuminating light pulse rate, prompted the inclusion of a dedicated stability pulser based on light emitting diodes (LEDs). The response of production VPTs, under simulated LHC operating conditions, has been investigated in three independent studies: in-situ tests with the installed endcaps at CERN, and separate VPT studies by groups at the University of Virginia, USA and Brunel University, UK. In this work, results are presented which demonstrate the expected stability of the VPTs during normal LHC operation, with a proposed regime for operating the stability pulser to minimise variations in response.

  14. Effect of a novel low-energy pulsed-light device for home-use hair removal.

    Science.gov (United States)

    Alster, Tina S; Tanzi, Elizabeth L

    2009-03-01

    Removal of unwanted hair is the most popular skin treatment worldwide. Over the past decade, various lasers and light sources for epilation have been advocated for use in an office setting, although most people continue to treat unwanted hair with a variety of temporary physical methods (e.g., waxing, shaving) in a home setting, presumably due to cost and convenience factors. To evaluate the safety and efficacy of a low-energy pulsed-light device intended for home-use hair removal. Twenty women (skin phototypes I-IV) with dark terminal hair in nonfacial sites (axilla, forearms, inguinal region, legs) self-administered three treatments at 2-week intervals using a handheld intense-pulsed-light device. Matched untreated skin sites were also studied. Hair counts and clinical photographs were obtained pretreatment and at 1, 3, and 6 months after the third treatment. Side effects and patient satisfaction scores were recorded. All patients showed a positive clinical response to treatment, with reduction of unwanted hair. No reduction of hair was noted in untreated matched areas. Hair counts were reduced 37.8% to 53.6% 6 months after the three treatments. Skin region influenced clinical response, with lower legs exhibiting greater hair reduction than arms and inguinal and axillary areas. Mild erythema was experienced in 25% of patients, but no other side effects or complications were encountered. Patient satisfaction scores were high, with all patients stating that they would purchase the device for future home use. CONCLUSIONS Low-energy pulsed light can be applied safely and effectively for at-home hair removal in a variety of nonfacial locations and skin phototypes I-IV.

  15. Spin-resolved photoelectron spectroscopy using femtosecond extreme ultraviolet light pulses from high-order harmonic generation

    Energy Technology Data Exchange (ETDEWEB)

    Plötzing, M.; Adam, R., E-mail: r.adam@fz-juelich.de; Weier, C.; Plucinski, L.; Schneider, C. M. [Forschungszentrum Jülich GmbH, Peter Grünberg Institut (PGI-6), 52425 Jülich (Germany); Eich, S.; Emmerich, S.; Rollinger, M.; Aeschlimann, M. [University of Kaiserslautern and Research Center OPTIMAS, 67663 Kaiserslautern (Germany); Mathias, S. [Georg-August-Universität Göttingen, I. Physikalisches Institut, 37077 Göttingen (Germany)

    2016-04-15

    The fundamental mechanism responsible for optically induced magnetization dynamics in ferromagnetic thin films has been under intense debate since almost two decades. Currently, numerous competing theoretical models are in strong need for a decisive experimental confirmation such as monitoring the triggered changes in the spin-dependent band structure on ultrashort time scales. Our approach explores the possibility of observing femtosecond band structure dynamics by giving access to extended parts of the Brillouin zone in a simultaneously time-, energy- and spin-resolved photoemission experiment. For this purpose, our setup uses a state-of-the-art, highly efficient spin detector and ultrashort, extreme ultraviolet light pulses created by laser-based high-order harmonic generation. In this paper, we present the setup and first spin-resolved spectra obtained with our experiment within an acquisition time short enough to allow pump-probe studies. Further, we characterize the influence of the excitation with femtosecond extreme ultraviolet pulses by comparing the results with data acquired using a continuous wave light source with similar photon energy. In addition, changes in the spectra induced by vacuum space-charge effects due to both the extreme ultraviolet probe- and near-infrared pump-pulses are studied by analyzing the resulting spectral distortions. The combination of energy resolution and electron count rate achieved in our setup confirms its suitability for spin-resolved studies of the band structure on ultrashort time scales.

  16. Three-dimensional light distribution near the focus of a tightly focused beam of few-cycle optical pulses

    International Nuclear Information System (INIS)

    Romallosa, Kristine Marie; Bantang, Johnrob; Saloma, Caesar

    2003-01-01

    Via the Richards-Wolf vector diffraction theory, we analyze the three-dimensional intensity distribution of the focal volume that is produced by a strongly focused 750-nm beam of ultrafast, Gaussian-shaped optical pulses (10 -9 s≥ pulse width τ≥1 fs=10 -15 s). Knowledge of the three-dimensional distribution near focus is essential in determining the diffraction-limited resolution of an optical microscope. The optical spectrum of a short pulse is characterized by side frequencies about the carrier frequency. The effect of spectral broadening on the focused intensity distribution is evaluated via the Linfoot's criteria of fidelity, structural content, and correlation quality and with reference to a 750-nm cw focused beam. Different values are considered for τ and numerical aperture of the focusing lens (0.1≤X NA ≤1.2). At X NA =0.8, rapid deterioration of the focused intensity distribution is observed at τ=1.2 fs. This happens because a 750-nm optical pulse with τ=1.2 fs has an associated coherence length of 359.7 nm which is less than the Nyquist sampling interval of 375 nm that is required to sample 750 nm sinusoid without loss of information. The ill-effects of spectral broadening is weaker in two-photon excitation microscope than in its single-photon counterpart for the same focusing lens and light source

  17. Remarkable photo-catalytic degradation of malachite green by nickel doped bismuth selenide under visible light irradiation

    International Nuclear Information System (INIS)

    Kulsi, Chiranjit; Ghosh, Amrita; Mondal, Anup; Kargupta, Kajari; Ganguly, Saibal; Banerjee, Dipali

    2017-01-01

    Highlights: • Bi_2Se_3 and Ni doped Bi_2Se_3 were synthesized by solvothermal approach. • Presence of nickel was confirmed by X-ray photoelectron spectroscopy (XPS) measurement. • Complete degradation of malachite green (MG) dye was achieved by Ni doped Bi_2Se_3 with H_2O_2. • Remarkable photo-catalytic degradation by doped bismuth selenide has been explained. • Scavenger tests show degradation of MG is mainly dominated by ·OH oxidation process. - Abstract: Bismuth selenide (Bi_2Se_3) and nickel (Ni) doped Bi_2Se_3 were prepared by a solvothermal approach to explore the photo-catalytic performance of the materials in degradation of malachite green (MG). The presence of nickel was confirmed by X-ray photoelectron spectroscopy (XPS) measurement in doped Bi_2Se_3. The results showed that the nickel doping played an important role in microstructure and photo-catalytic activity of the samples. Nickel doped Bi_2Se_3 sample exhibited higher photo-catalytic activity than that of the pure Bi_2Se_3 sample under visible-light irradiation. The photo-catalytic degradation followed first-order reaction kinetics. Fast degradation kinetics and complete (100% in 5 min of visible light irradiation) removal of MG was achieved by nickel doped Bi_2Se_3 in presence of hydrogen peroxide (H_2O_2) due to modification of band gap energies leading to suppression of photo-generated electron-hole recombination.

  18. Interactive influence of leaf age, light intensity, and girdling on green ash foliar chemistry and emerald ash borer development.

    Science.gov (United States)

    Chen, Yigen; Poland, Therese M

    2009-07-01

    Biotic and abiotic environmental factors affect plant nutritional quality and defensive compounds that confer plant resistance to herbivory. Influence of leaf age, light availability, and girdling on foliar nutrition and defense of green ash (Fraxinus pennsylvanica Marsh) was examined in this study. Longevity of the emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), adults reared on green ash foliage subjected to these factors was assayed. Mature leaves generally were more nutritious with greater amino acids and a greater ratio of protein to non-structural carbohydrate (P:C) than young leaves, in particular when trees were grown in shade. On the other hand, mature leaves had lower amounts of trypsin and chymotrypsin inhibitors, and total phenolics compared to young leaves. Lower defense of mature leaves alone, or along with higher nutritional quality may lead to increased survival and longevity of emerald ash borer feeding on mature leaves. Sunlight reduced amino acids and P:C ratio, irrespective of leaf age and girdling, and elevated total protein of young foliage, but not protein of mature leaves. Sunlight also dramatically increased all investigated defensive compounds of young, but not mature leaves. Girdling reduced green ash foliar nutrition, especially, of young leaves grown in shade and of mature leaves grown in sun. However emerald ash borer performance did not differ when fed leaves from trees grown in sun or shade, or from girdled or control trees. One explanation is that emerald ash borer reared on lower nutritional quality food may compensate for nutrient deficiency by increasing its consumption rate. The strong interactions among leaf age, light intensity, and girdling on nutrition and defense highlight the need for caution when interpreting data without considering possible interactions.

  19. Comparative evaluation of long pulse Alexandrite laser and intense pulsed light systems for pseudofolliculitis barbae treatment with one year of follow up.

    Science.gov (United States)

    Leheta, Tahra M

    2009-01-01

    Existing remedies for controlling pseudofolliculitis barbae (PFB) are sometimes helpful; however the positive effects are often short lived. The only definitive cure for PFB is permanent removal of the hair follicle. Our aim was to compare the efficacy of the Alexandrite laser with the intense pulsed light system in the treatment of PFB and to follow up the recurrence. Twenty male patients seeking laser hair removal for the treatment of PFB were enrolled in this study. One half of the face was treated with the long-pulse Alexandrite laser and the other half was treated with the IPL system randomly. The treatment outcome and any complications were observed and followed up for one year. All patients exhibited a statistically significant decrease in the numbers of papules. Our results showed that the Alexandrite-treated side needed seven sessions to reach about 80% improvement, while the IPL-treated side needed 10-12 sessions to reach about 50% improvement. During the one year follow up period, the Alexandrite-treated side showed recurrence in very minimal areas, while the IPL-treated side showed recurrence in bigger areas. Our results showed that both systems might improve PFB but Alexandrite laser was more effective at reducing PFB than IPL.

  20. High-power LED light sources for optical measurement systems operated in continuous and overdriven pulsed modes

    Science.gov (United States)

    Stasicki, Bolesław; Schröder, Andreas; Boden, Fritz; Ludwikowski, Krzysztof

    2017-06-01

    The rapid progress of light emitting diode (LED) technology has recently resulted in the availability of high power devices with unprecedented light emission intensities comparable to those of visible laser light sources. On this basis two versatile devices have been developed, constructed and tested. The first one is a high-power, single-LED illuminator equipped with exchangeable projection lenses providing a homogenous light spot of defined diameter. The second device is a multi-LED illuminator array consisting of a number of high-power LEDs, each integrated with a separate collimating lens. These devices can emit R, G, CG, B, UV or white light and can be operated in pulsed or continuous wave (CW) mode. Using an external trigger signal they can be easily synchronized with cameras or other devices. The mode of operation and all parameters can be controlled by software. Various experiments have shown that these devices have become a versatile and competitive alternative to laser and xenon lamp based light sources. The principle, design, achieved performances and application examples are given in this paper.

  1. Analysis of chromatic dispersion compensation by measuring time domain optical spectrum distribution of light pulse; Hikari pulse chu no hacho jikan bunpu sokutei ni yoru bunsan hosho gijutsu no hyokaho

    Energy Technology Data Exchange (ETDEWEB)

    Saito, M.; Kurono, M. [Central Research Institute of Electric Power Industry, Tokyo (Japan)

    1997-05-01

    A large number of single mode fibers (SMF) for 1.3 {mu}m light are installed in electric power communication facilities. On the other hand, light of 1.5 {mu}m band is being used more in the capacity increasing technology to minimize transmission loss. If this is applied to the current SMF, waveform distortion is generated due to wavelength dispersion, thus the transmission speed and distance are limited. In order to evaluate quantitatively the effects of a wavelength dispersion compensating technology, a method was developed to derive time change in each wavelength component in light pulse. No sufficient wavelength separation is possible if permeation bandwidth of a wavelength filter is wider than the wavelength width of the light pulse. Therefore, a method was developed to derive time change in the wavelength components in the light pulse from small difference in the measured light waveforms after transmission when the central wavelength of a wavelength variable filter is varied. It was possible from comparing the method to derive the wavelength dispersion amount and the dispersion compensation amount. Since the method reveals simultaneously the distribution of strength against wavelength and time contained in light pulse, the method is advantageous in elucidating compensation limit and causes for compensation errors. The effectiveness of the method was verified by a 1.5-{mu}m light transmission test. 14 refs., 26 figs., 2 tabs.

  2. Profile of Green Consumers in Romania in Light of Sustainability Challenges and Opportunities

    Directory of Open Access Journals (Sweden)

    Teodora Roman

    2015-05-01

    Full Text Available Sustainability and responsible consumption are now the policies of companies interested in preserving a good reputation. If in the past, sustainability was an issue present only in the corporate social responsibility campaigns developed by companies; nowadays, this aspect has become a key element that has been proven to influence the purchasing behavior of consumers. The existence of policies and strategies in the area of sustainability does not necessarily mean their being put into practice as long as people, who make these objectives attainable, are not aware of them. The present paper aims to explore the green consumption of Romanian consumers, which would indicate whether the concern for environmental problems is then translated into an appropriate behavior; in other words, whether “words become facts”. At the same time, this paper analyzes the extent to which the “green trend” has gained popularity in Romania, how involved the Romanian consumers are with environmental issues and the behaviors they adopt in order to mitigate the impact on the ecosystem. However, there are differences between individual opinions on green consumption and the actual behavior adopted in trying to ameliorate this issue.

  3. Investigation of critical inter-related factors affecting the efficacy of pulsed light for inactivating clinically relevant bacterial pathogens.

    Science.gov (United States)

    Farrell, H P; Garvey, M; Cormican, M; Laffey, J G; Rowan, N J

    2010-05-01

    To investigate critical electrical and biological factors governing the efficacy of pulsed light (PL) for the in vitro inactivation of bacteria isolated from the clinical environment. Development of this alternative PL decontamination approach is timely, as the incidence of health care-related infections remains unacceptably high. Predetermined cell numbers of clinically relevant Gram-positive and Gram-negative bacteria were inoculated separately on agar plates and were flashed with lamp discharge energy (range 3.2-20 J per pulse), the amount of pulsing applied (range 0-60 pulses) and the distance between light source and treatment surface (range 8-20 cm) used. Greater decontamination levels were achieved using a combination of higher lamp discharge energies, increased number of pulses and shorter distances between treatment surface and the xenon light source. Levels of microbial sensitivity also varied depending on the population type, size and age of cultures treated. Production of pigment pyocynanin and alginate slime in mucoid strains of Pseudomonas aeruginosa afforded some protection against lethal action of PL; however, this was evident only by using a combination of reduced amount of pulsing at the lower lamp discharge energies tested. A clear pattern was observed where Gram-positive bacterial pathogens were more resistant to cidal effects of PL compared to Gram negatives. While negligible photoreactivation of PL-treated bacterial strains occurred after full pulsing regimes at the different lamp discharge energies tested, some repair was evident when using a combination of reduced pulsing at the lower lamp discharge energies. Strains harbouring genes for multiple resistances to antibiotics were not significantly more resistant to PL treatments. Slight temperature rises (lamp discharge energies. Presence of organic matter on treatment surface did not significantly affect PL decontamination efficacy, nor did growth of PL-treated bacteria on selective agar

  4. Preparing isolated vibrational wave packets with light-induced molecular potentials by chirped laser pulses

    Science.gov (United States)

    Vatasescu, Mihaela

    2012-05-01

    We consider a specific wave packet preparation arising from the control of tunneling in the 0g-(6s,6p3/2) double well potential of a Cs2 cold molecule with chirped laser pulses. Such a possibility to manipulate the population dynamics in the 0g-(6s,6p3/2) potential appears in a pump-dump scheme designed to form cold molecules by photoassociation of two cold cesium atoms. The initial population in the 0g-(6s,6p3/2) double well is a wave packet prepared in the outer well at large interatomic distances (94 a0) by a photoassociation step with a first chirped pulse, being a superposition of several vibrational states whose energies surround the energy of a tunneling resonance. Our present work is focused on a second delayed chirped pulse, coupling the 0g-(6s,6p3/2) surface with the a3Σu+(6s,6s) one in the zone of the double well barrier (15 a0) and creating deeply bound cold molecules in the a3Σu+(6s,6s) state. We explore the parameters choice (intensity, duration, chirp rate and sign) for this second pulse, showing that picoseconds pulses with a negative chirp can lead to trapping of population in the inner well in strongly bound vibrational states, out of the resonant tunneling able to transfer it back to the outer well.

  5. Complex {PT}-symmetric extensions of the nonlinear ultra-short light pulse model

    Science.gov (United States)

    Yan, Zhenya

    2012-11-01

    The short pulse equation u_{xt}=u+\\frac{1}{2}(u^2u_x)_x is PT symmetric, which arises in nonlinear optics for the ultra-short pulse case. We present a family of new complex PT-symmetric extensions of the short pulse equation, i[(iu_x)^{\\sigma }]_t=au+bu^m+ic[u^n(iu_x)^{\\epsilon }]_x \\,\\, (\\sigma ,\\, \\epsilon ,\\,a,\\,b,\\,c,\\,m,\\,n \\in {R}), based on the complex PT-symmetric extension principle. Some properties of these equations with some chosen parameters are studied including the Hamiltonian structures and exact solutions such as solitary wave solutions, doubly periodic wave solutions and compacton solutions. Our results may be useful to understand complex PT-symmetric nonlinear physical models. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Quantum physics with non-Hermitian operators’.

  6. A simple, rapid and green method based on pulsed potentiostatic electrodeposition of reduced graphene oxide on glass carbon electrode for sensitive voltammetric detection of sophoridine

    International Nuclear Information System (INIS)

    Wang, Fei; Wu, Yanju; Lu, Kui; Gao, Lin; Ye, Baoxian

    2014-01-01

    Graphical abstract: A simple, rapid and green method, based on graphene nanosheets directly deposited onto a glassy carbon electrode by pulsed potentiostatic reduction of a graphene oxide colloidal solution, to build sensitive voltammetric sensor for the determination of sophoridine was presented. - Highlights: • A simple, rapid and green method to build sensitive voltammetric sensor was presented. • The proposed sensor has a high electrochemical sensitivity for determination of sophoridine. • The proposed sensor exhibited an excellent selectivity. - Abstract: A simple, rapid and green method was described for sensitive voltammetric detection of sophoridine based on graphene nanosheets directly deposited onto a glassy carbon electrode (GCE) by pulsed potentiostatic reduction of a graphene oxide (GO) colloidal solution. The resulting electrodes (PP-ERGO/GCE) were characterized by electrochemical methods and scanning electron microscopy. Moreover, the electrochemical behaviors of sophoridine at the modified electrode were investigated in detail by cyclic voltammetry (CV), chronoamperometry (CA) and chronocoulometry (CC). Compared with the bare GCE and the preparation of reduced graphene oxide (RGO) films by potentiostatic method (PM) modified GCE, PP-ERGO/GCE could intensively enhance the oxidation peak currents and decrease the overpotential of sophoridine. Under the selected conditions, the modified electrode showed a linear voltammetric response to sophoridine within the concentration range of 8.0 × 10 −7 ∼ 1.0 × 10 −4 mol L −11 , with the detection limit of 2.0 × 10 −7 mol L −1 . And, the method was also applied to detect sophoridine in spiked human urine with wonderful satisfactory

  7. Intense pulsed light treatment for dry eye disease due to meibomian gland dysfunction; a 3-year retrospective study.

    Science.gov (United States)

    Toyos, Rolando; McGill, William; Briscoe, Dustin

    2015-01-01

    The purpose of this study was to determine the clinical benefits of intense-pulsed-light therapy for the treatment of dry-eye disease caused by meibomian gland dysfunction (MGD). MGD is the leading cause of evaporative dry eye disease. It is currently treated with a range of methods that have been shown to be only somewhat effective, leading to the need for advanced treatment options. A retrospective noncomparative interventional case series was conducted with 91 patients presenting with severe dry eye syndrome. Treatment included intense-pulsed-light therapy and gland expression at a single outpatient clinic over a 30-month study. Pre/post tear breakup time data were available for a subset of 78 patients. For all patients, a specially developed technique for the treatment of dry eye syndrome was applied as a series of monthly treatments until there was adequate improvement in dry eye syndrome symptoms by physician judgment, or until patient discontinuation. Primary outcomes included change in tear breakup time, self-reported patient satisfaction, and adverse events. Physician-judged improvement in dry eye tear breakup time was found for 68 of 78 patients (87%) with seven treatment visits and four maintenance visits on average (medians), and 93% of patients reported post-treatment satisfaction with degree of dry eye syndrome symptoms. Adverse events, most typically redness or swelling, were found for 13% of patients. No serious adverse events were found. Although preliminary, study results of intense-pulsed-light therapy treatment for dry eye syndrome caused by meibomian gland dysfunction are promising. A multisite clinical trial with a larger sample, treatment comparison groups, and randomized controlled trials is currently underway.

  8. System responses to equal doses of photosynthetically usable radiation of blue, green, and red light in the marine diatom Phaeodactylum tricornutum.

    Directory of Open Access Journals (Sweden)

    Kristin Collier Valle

    Full Text Available Due to the selective attenuation of solar light and the absorption properties of seawater and seawater constituents, free-floating photosynthetic organisms have to cope with rapid and unpredictable changes in both intensity and spectral quality. We have studied the transcriptional, metabolic and photo-physiological responses to light of different spectral quality in the marine diatom Phaeodactylum tricornutum through time-series studies of cultures exposed to equal doses of photosynthetically usable radiation of blue, green and red light. The experiments showed that short-term differences in gene expression and profiles are mainly light quality-dependent. Transcription of photosynthesis-associated nuclear genes was activated mainly through a light quality-independent mechanism likely to rely on chloroplast-to-nucleus signaling. In contrast, genes encoding proteins important for photoprotection and PSII repair were highly dependent on a blue light receptor-mediated signal. Changes in energy transfer efficiency by light-harvesting pigments were spectrally dependent; furthermore, a declining trend in photosynthetic efficiency was observed in red light. The combined results suggest that diatoms possess a light quality-dependent ability to activate photoprotection and efficient repair of photodamaged PSII. In spite of approximately equal numbers of PSII-absorbed quanta in blue, green and red light, the spectral quality of light is important for diatom responses to ambient light conditions.

  9. Design and optimization of a volume-phase holographic grating for simultaneous use with red, green, and blue light using unpolarized light.

    Science.gov (United States)

    Mahamat, Adoum H; Narducci, Frank A; Schwiegerling, James

    2016-03-01

    Volume-phase holographic (VPH) gratings have been designed for use in many areas of science and technology, such as optical communication, optical imaging, and astronomy. In this paper, the design of a volume-phase holographic grating, simultaneously optimized to operate in the red, green, and blue wavelengths, is presented along with a study of its fabrication tolerances. The grating is optimized to produce 98% efficiency at λ=532  nm and at least 75% efficiency in the region between 400 and 700 nm, when the incident light is unpolarized. The optimization is done for recording in dichromated gelatin with a thickness of 12 μm, an average refractive index of 1.5, and a refractive index modulation of 0.022.

  10. Response of bats to light with different spectra: light-shy and agile bat presence is affected by white and green, but not red light

    NARCIS (Netherlands)

    Spoelstra, K.; van Grunsven, Roy H. A.; Ramakers, J.J.C.; Ferguson, Kim B.; Raap, Thomas; Donners, Maurice; Veenendaal, Elmar M.; Visser, Marcel E.

    Artificial light at night has shown a remarkable increase over the past decades. Effects are reported for many species groups, and include changes in presence, behaviour, physiology and life-history traits. Among these, bats are strongly affected, and how bat species react to light is likely to vary

  11. Generation of shock fronts in the interaction of short pulses of intense laser light in supercritical plasma

    International Nuclear Information System (INIS)

    Lopez V, V.E.; Ondarza R, R.

    2004-01-01

    The investigation of the laser interaction with plasma has been carried out mainly in laboratories of Europe, Japan and United States during the last decades. This studies concern the propagation of intense light laser in a non homogeneous plasma, the radiation absorption and the generation of suprathermal electrons, among others. Numerical simulations made by Denavit, for radiation pulses for up of 10 20 W/cm 2 on solid targets, have allowed to observe the generation of ionic crash fronts with high propagation speeds. In this work it is expanded the study of this effect through algorithms of particles simulation. (Author)

  12. Density of phonon states in the light-harvesting complex II of green plants

    CERN Document Server

    Pieper, J K; Irrgang, K D; Renger, G

    2002-01-01

    In photosynthetic antenna complexes, the coupling of electronic transitions to low-frequency vibrations of the protein matrix (phonons) plays an essential role in light absorption and ultra-fast excitation energy transfer (EET). The model calculations presented here indicate that inelastic neutron scattering experiments provide invaluable information on the phonon density of states for light-harvesting complex II, which may permit a consistent interpretation of contradictory results from high-resolution optical spectroscopy. (orig.)

  13. New theoretical approaches to atomic and molecular dynamics triggered by ultrashort light pulses on the atto- to picosecond time scale

    International Nuclear Information System (INIS)

    Pabst, Stefan Ulf

    2013-04-01

    The concept of atoms as the building blocks of matter has existed for over 3000 years. A revolution in the understanding and the description of atoms and molecules has occurred in the last century with the birth of quantum mechanics. After the electronic structure was understood, interest in studying the dynamics of electrons, atoms, and molecules increased. However, time-resolved investigations of these ultrafast processes were not possible until recently. The typical time scale of atomic and molecular processes is in the picosecond to attosecond realm. Tremendous technological progress in recent years makes it possible to generate light pulses on these time scales. With such ultrashort pulses, atomic and molecular dynamics can be triggered, watched, and controlled. Simultaneously, the need rises for theoretical models describing the underlying mechanisms. This doctoral thesis focuses on the development of theoretical models which can be used to study the dynamical behavior of electrons, atoms, and molecules in the presence of ultrashort light pulses. Several examples are discussed illustrating how light pulses can trigger and control electronic, atomic, and molecular motions. In the first part of this work, I focus on the rotational motion of asymmetric molecules, which happens on picosecond and femtosecond time scales. Here, the aim is to align all three axes of the molecule as well as possible. To investigate theoretically alignment dynamics, I developed a program that can describe alignment motion ranging from the impulsive to the adiabatic regime. The asymmetric molecule SO 2 is taken as an example to discuss strategies of optimizing 3D alignment without the presence of an external field (i.e., field-free alignment). Field-free alignment is particularly advantageous because subsequent experiments on the aligned molecule are not perturbed by the aligning light pulse. Wellaligned molecules in the gas phase are suitable for diffraction experiments. From the

  14. New theoretical approaches to atomic and molecular dynamics triggered by ultrashort light pulses on the atto- to picosecond time scale

    Energy Technology Data Exchange (ETDEWEB)

    Pabst, Stefan Ulf

    2013-04-15

    The concept of atoms as the building blocks of matter has existed for over 3000 years. A revolution in the understanding and the description of atoms and molecules has occurred in the last century with the birth of quantum mechanics. After the electronic structure was understood, interest in studying the dynamics of electrons, atoms, and molecules increased. However, time-resolved investigations of these ultrafast processes were not possible until recently. The typical time scale of atomic and molecular processes is in the picosecond to attosecond realm. Tremendous technological progress in recent years makes it possible to generate light pulses on these time scales. With such ultrashort pulses, atomic and molecular dynamics can be triggered, watched, and controlled. Simultaneously, the need rises for theoretical models describing the underlying mechanisms. This doctoral thesis focuses on the development of theoretical models which can be used to study the dynamical behavior of electrons, atoms, and molecules in the presence of ultrashort light pulses. Several examples are discussed illustrating how light pulses can trigger and control electronic, atomic, and molecular motions. In the first part of this work, I focus on the rotational motion of asymmetric molecules, which happens on picosecond and femtosecond time scales. Here, the aim is to align all three axes of the molecule as well as possible. To investigate theoretically alignment dynamics, I developed a program that can describe alignment motion ranging from the impulsive to the adiabatic regime. The asymmetric molecule SO{sub 2} is taken as an example to discuss strategies of optimizing 3D alignment without the presence of an external field (i.e., field-free alignment). Field-free alignment is particularly advantageous because subsequent experiments on the aligned molecule are not perturbed by the aligning light pulse. Wellaligned molecules in the gas phase are suitable for diffraction experiments. From the

  15. Modification of solid surface by intense pulsed light-ion and metal-ion beams

    Science.gov (United States)

    Nakagawa, Y.; Ariyoshi, T.; Hanjo, H.; Tsutsumi, S.; Fujii, Y.; Itami, M.; Okamoto, A.; Ogawa, S.; Hamada, T.; Fukumaru, F.

    1989-03-01

    Metal surfaces of Al, stainless-steel and Ti were bombarded with focused intense pulsed proton and carbon ion beams (energy ˜ 80 keV, current density ≲ 1000 A/cm 2, pulse width ˜ 300 ns). Thin titanium carbide layers were produced by carbon-ion irradiation on the titanium surface. The observed molten surface structures and recrystallized layer (20 μm depth) indicated that the surfaces reached high temperatures as a result of the irradiation. The implantation of intense pulsed metal ion beams (Al +, ˜ 20 A/cm 2) with simultaneous deposition of anode metal vapor on Ti and Fe made a mixed layer of AlTi and AlFe of about 0.5 μm depth. Ti and B multilayered films evaporated on glass substrates were irradiated by intense pulsed proton beams of relatively lower current density (10-200 A/cm 2). Ti films containing B atoms above 10 at.% were obtained. When the current density was about 200 A/cm 2 diffraction peaks of TiB 2 appeared.

  16. Changes of plasma growth hormone, insulin-like growth factors-I, thyroid hormones, and testosterone concentrations in embryos and broiler chickens incubated under monochromatic green light

    Directory of Open Access Journals (Sweden)

    Lin Zhang

    2014-07-01

    Full Text Available Previous studies showed that monochromatic green light stimuli during embryogenesis accelerated posthatch body weight and pectoral muscle growth of broilers. In this experiment, we further investigated whether the regulation of broiler embryonic or posthatch growth by green light stimulus during incubation is associated with the changes of some important hormones at different ages of embryos and broiler chickens. Fertile broiler eggs (Arbor Acres, n=880 were pre-weighed and randomly assigned 1 of 2 incubation treatment groups: i dark condition (control group, and ii monochromatic green light group (560 nm. The monochromatic lighting systems sourced from light-emitting diode lamps were equalised at the intensity of 15 lux (lx at eggshell level. The dark condition was set as a commercial control from day one until hatching. After hatch, 120 day-old male chicks from each group were housed under white light with an intensity of 30 lx at bird-head level. Compared with the dark condition, chicks incubated under the green light showed significantly higher growth hormone (GH levels from 19 d of embryogenesis (E19 to 5 d of posthatch (H5, and higher plasma insulinlike growth factor (IGF-I levels from both E17 to E19 and H3 to H35. No significant differences were found in plasma thyroxine, triiodothyronine, and testosterone in embryos or hatched birds between the 2 groups. These results indicate that somatotropic axis hormones (GH and IGF-I may be the most important contributor to chicken growth promoted by green light stimuli during embryogenesis.

  17. One pot light assisted green synthesis, storage and antimicrobial activity of dextran stabilized silver nanoparticles.

    Science.gov (United States)

    Hussain, Muhammad Ajaz; Shah, Abdullah; Jantan, Ibrahim; Tahir, Muhammad Nawaz; Shah, Muhammad Raza; Ahmed, Riaz; Bukhari, Syed Nasir Abbas

    2014-12-03

    Green synthesis of nanomaterials finds the edge over chemical methods due to its environmental compatibility. Herein, we report green synthesis of silver nanoparticles (Ag NPs) mediated with dextran. Dextran was used as a stabilizer and capping agent to synthesize Ag NPs using silver nitrate (AgNO3) under diffused sunlight conditions. UV-vis spectra of as synthesized Ag nanoparticles showed characteristic surface plasmon band in the range from ~405-452 nm. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) studies showed spherical Ag NPs in the size regime of ~50-70 nm. Face centered cubic lattice of Ag NPs was confirmed by powder X-ray diffraction (PXRD). FT-IR spectroscopy confirmed that dextran not only acts as reducing agent but also functionalizes the surfaces of Ag NPs to make very stable dispersions. Moreover, on drying, the solution of dextran stabilized Ag NPs resulted in the formation of thin films which were found stable over months with no change in the plasmon band of pristine Ag NPs. The antimicrobial assay of the as synthesized Ag NPs showed remarkable activity. Being significantly active against microbes, the Ag NPs can be explored for antimicrobial medical devices.

  18. A computational model for heterogeneous heating during pulsed laser irradiation of polymers doped with light-absorbing microparticles

    DEFF Research Database (Denmark)

    Marla, Deepak; Zhang, Yang; Jabbaribehnam, Mirmasoud

    2016-01-01

    characteristics. This work presents a study based on a computational model of laser heating of polymer doped with light-absorbing microparticles accounting for the heterogeneous nature of heating. The work aims at gaining a fundamental insight into the nature of the heating process and to understand the role......Doping of polymers with light-absorbing microparticles to increase their optical properties is a commonly used pre-treatment technique in laser processing of polymers. The presence of these particles plays an important role during laser heating of the polymer that influences its surface...... of microparticles. The results suggest that apart from the laser intensity and pulse duration, the properties of the microparticles including their size and distribution also play an important role during the laser heating of polymers....

  19. Pulsed laser light forces cancer cells to absorb anticancer drugs--the role of water in nanomedicine.

    Science.gov (United States)

    Sommer, Andrei P; Zhu, Dan; Mester, Adam R; Försterling, Horst-Dieter

    2011-06-01

    Anticancer drugs executing their function intracellularly enter cancer cells via diffusive processes. Complementary to these slow processes, cells can be forced to incorporate drugs by convection - a more efficient transport process. Transmembrane convection is induced by moderately intense pulsed laser light (or light emitting diodes) changing the structure of nanoscopic water layers in cells. This is a fundamental difference with the method of photodynamic therapy. In a model system we demonstrate that a total irradiation time of one minute is sufficient to completely inhibit proliferation of cancer cells. Transmembrane convection protects healthy cells from extended chemotherapy exposure, could be exploited to overcome multidrug resistance, and is a promising new tool in a variety of therapies as well as in skin rejuvenation.

  20. Pulsed vs. CW low level light therapy on osteoarticular signs and symptoms in limited scleroderma (CREST syndrome)

    Science.gov (United States)

    Barolet, Daniel

    2012-03-01

    Limited cutaneous systemic sclerosis (lcSSc) was formerly known as CREST syndrome in reference to the associated clinical features: Calcinosis, Raynaud's phenomenon, Esophageal dysfunction, Sclerodactyly, and Telangiectasias. The transforming growth factor beta (TGF-β) has been identified has a major player in the pathogenic process, while low level light therapy (LLLT) has been shown to modulate this cytokine superfamily. This case study was conducted to assess the efficacy of 940nm using microsecond domain pulsing and continuous wave mode (CW) on osteoarticular signs and symptoms associated with lcSSc. The patient was treated two to three times a week for 13 weeks, using a sequential pulsing mode on one elbow, and a CW mode on the other. Efficacy assessments included inflammation, symptoms, pain, and health scales, patient satisfaction, clinical global impression, and adverse effects monitoring. Significant functional and morphologic improvements were observed after LLLT, with best results seen with the pulsing mode. No significant adverse effects were noted. Two mechanisms of action may be at play. The 940nm wavelength provides inside-out heating possibly vasodilating capillaries which in turn increases catabolic processes leading to a reduction of in situ calcinosis. LLLT may also improve symptoms by triggering a cascade of cellular reactions, including the modulation of inflammatory mediators.

  1. Design of a bolometer for total-energy measurement of the linear coherent light source pulsed X-ray laser

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, S. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore CA 94550 (United States)]. E-mail: Friedrich1@llnl.gov; Li, L. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore CA 94550 (United States); Ott, L.L. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore CA 94550 (United States); Kolgani, Rajeswari M. [Department of Physics, Geosciences and Astronomy, Towson University, 8000 York Avenue, Towson MD 21252 (United States); Yong, G.J. [Department of Physics, Geosciences and Astronomy, Towson University, 8000 York Avenue, Towson MD 21252 (United States); Ali, Z.A. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore CA 94550 (United States); Drury, O.B. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore CA 94550 (United States); Ables, E. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore CA 94550 (United States); Bionta, R.M. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore CA 94550 (United States)

    2006-04-15

    We are developing a cryogenic bolometer to measure the total energy of the linear coherent light source (LCLS) free electron X-ray laser to be built at the Stanford Linear Accelerator Center. The laser will produce ultrabright X-ray pulses in the energy range between 0.8 and 8 keV with {approx}10{sup 12} photons per {approx}200 fs pulse at a repeat interval of 8 ms, and will be accompanied by a halo of spontaneous undulator radiation. The bolometer is designed to determine the total energy of each laser pulse to within <0.1%, taking into account thermal and mechanical stress to prevent melting in the LCLS beam due to its high energy density. We propose to use a magnetoresistive Nd{sub (1-} {sub x} {sub )}Sr {sub x} MnO{sub 3} sensor array at the metal-insulator transition, where the composition x is adjusted to produce the desired transition temperature. We discuss design considerations and material choices, and present numerical simulations of the thermal response.

  2. Sharp green electroluminescence from 1H-pyrazolo[3,4-b]quinoline-based light-emitting diodes

    Science.gov (United States)

    Tao, Y. T.; Balasubramaniam, E.; Danel, A.; Jarosz, B.; Tomasik, P.

    2000-09-01

    A multilayer organic light-emitting diode was fabricated using a fluorescent compound {6-N,N-diethylamino-1-methyl-3-phenyl-1H-pyrazolo[3,4-b]quinoline} (PAQ-NEt2) doped into the hole-transporting layer of NPB {4,4'-bis[N-(1-naphthyl-1-)-N-phenyl-amino]-biphenyl}, with the TPBI {2,2',2″-(1,3,5-phenylene)tris[1-phenyl-1H-benzimidazole]} as an electrontransporting material. At 16% PAQ-NEt2 doping concentration, the device gave a sharp, bright, and efficient green electroluminescence (EL) peaked at around 530 nm. The full width at half maximum of the EL is 60 nm, which is 60% of the green emission from typical NPB/AlQ [where AlQ=tris(8-hydroxyquinoline) aluminum] device. For the same concentration, a maximum luminance of 37 000 cd/m2 was obtained at 10.0 V and the maximum power, luminescence, and external quantum efficiencies were obtained 4.2 lm/W, 6.0 cd/A, and 1.6%, respectively, at 5.0 V.

  3. Plasmon enhanced green GaN light-emitting diodes - Invited paper

    DEFF Research Database (Denmark)

    Ou, Haiyan; Fadil, Ahmed; Iida, Daisuke

    in spectral design, more compact etc. TheIII-nitride (GaN, InNetc.) semiconductors are attracting a lot of research effort because the combination of both could emit light with wavelength range from UV to infrared. Basically one material platform could provide all the solutions to light sources.However huge...... nanosphere lithography. For both cases, emission enhancement is demonstrated. For periodic Ag nanoparicles, aphotoluminescence enhancement of 2.7 is observed with a nanodisk diameter of 330 nm.It is found that an optimalpitch exists for a given particle size.For the random Ag nanoparticles,low temperature...

  4. Reduced-droop green III-nitride light-emitting diodes utilizing GaN tunnel junction

    Science.gov (United States)

    Alhassan, Abdullah I.; Young, Erin C.; Alyamani, Ahmed Y.; Albadri, Abdulrahman; Nakamura, Shuji; DenBaars, Steven P.; Speck, James S.

    2018-04-01

    We report the fabrication of low-droop high-efficiency green c-plane light-emitting diodes (LEDs) utilizing GaN tunnel junction (TJ) contacts. The LED epitaxial layers with a top p-GaN layer were grown by metal organic chemical vapor deposition and an n++-GaN layer was deposited by molecular beam epitaxy to form a TJ. The TJ LEDs were then compared with equivalent LEDs having a tin-doped indium oxide (ITO) contact. The TJ LEDs exhibited a higher performance and a lower efficiency droop than did the ITO LEDs. At 35 A/cm2, the external quantum efficiencies for the TJ and ITO LEDs were 31.2 and 27%, respectively.

  5. Shedding light on disulfide bond formation: engineering a redox switch in green fluorescent protein

    DEFF Research Database (Denmark)

    Østergaard, H.; Henriksen, A.; Hansen, Flemming G.

    2001-01-01

    To visualize the formation of disulfide bonds in living cells, a pair of redox-active cysteines was introduced into the yellow fluorescent variant of green fluorescent protein. Formation of a disulfide bond between the two cysteines was fully reversible and resulted in a >2-fold decrease...... in the intrinsic fluorescence. Inter conversion between the two redox states could thus be followed in vitro as well as in vivoby non- invasive fluorimetric measurements. The 1.5 Angstrom crystal structure of the oxidized protein revealed a disulfide bond- induced distortion of the beta -barrel, as well...... the physiological range for redox-active cysteines. In the cytoplasm of Escherichia coli, the protein was a sensitive probe for the redox changes that occur upon disruption of the thioredoxin reductive pathway....

  6. Evaluation of the Safety and Effectiveness of Intense Pulsed Light in the Treatment of Meibomian Gland Dysfunction

    Directory of Open Access Journals (Sweden)

    Xiaodan Jiang

    2016-01-01

    Full Text Available Purpose. This study aims to explore the safety and efficacy of a novel treatment-intense pulsed light (IPL in MGD eyes. Methods. This study is a prospective and open label study. Forty eyes of 40 MGD patients were recruited in the study and received 4 consecutive IPL treatments on day 1, day 15, day 45, and day 75. Ten ocular surface symptoms were evaluated with a subjective face score at every visit. Best spectacle corrected visual acuity, intraocular pressure (IOP, conjunctival injection, upper and lower tear meniscus height (TMH, tear break-up time (TBUT, corneal staining, lid margin and meibomian gland assessments, and meibography were also recorded at every visit, as well as the adverse effects on the eye and ocular surface. Results. Significant improvements were observed in single and total ocular surface symptom scores, TBUT, and conjunctival injection at all the visits after the initial IPL treatment (P<0.05. Compared to baseline, the signs of eyelid margin, meibomian gland secretion quality, and expressibility were significantly improved at every visit after treatments. There was no regional and systemic threat observed in any patient. Conclusion. Intense pulsed light (IPL therapy is a safe and efficient treatment in relieving symptoms and signs of MGD eyes.

  7. Temperature, Crystalline Phase and Influence of Substrate Properties in Intense Pulsed Light Sintering of Copper Sulfide Nanoparticle Thin Films.

    Science.gov (United States)

    Dexter, Michael; Gao, Zhongwei; Bansal, Shalu; Chang, Chih-Hung; Malhotra, Rajiv

    2018-02-02

    Intense Pulsed Light sintering (IPL) uses pulsed, visible light to sinter nanoparticles (NPs) into films used in functional devices. While IPL of chalcogenide NPs is demonstrated, there is limited work on prediction of crystalline phase of the film and the impact of optical properties of the substrate. Here we characterize and model the evolution of film temperature and crystalline phase during IPL of chalcogenide copper sulfide NP films on glass. Recrystallization of the film to crystalline covellite and digenite phases occurs at 126 °C and 155 °C respectively within 2-7 seconds. Post-IPL films exhibit p-type behavior, lower resistivity (~10 -3 -10 -4  Ω-cm), similar visible transmission and lower near-infrared transmission as compared to the as-deposited film. A thermal model is experimentally validated, and extended by combining it with a thermodynamic approach for crystal phase prediction and via incorporating the influence of film transmittivity and optical properties of the substrate on heating during IPL. The model is used to show the need to a-priori control IPL parameters to concurrently account for both the thermal and optical properties of the film and substrate in order to obtain a desired crystalline phase during IPL of such thin films on paper and polycarbonate substrates.

  8. Impact of High-Power Pulsed Light on Microbial Contamination, Health Promoting Components and Shelf Life of Strawberries

    Directory of Open Access Journals (Sweden)

    Irina Buchovec

    2013-01-01

    Full Text Available The aim of this work is to evaluate the impact of high-power pulsed light (HPPL on the microbial control and nutritional properties of strawberries. Berries were treated with HPPL and afterwards analyzed in terms of microbial contamination, shelf life extension, antioxidant capacity, firmness, total phenolic, total anthocyanin and ascorbic acid content, and colour. Results indicate that the decontamination of strawberries by HPPL was significant compared to control. Naturally distributed mesophilic bacteria on the surface of strawberries were inactivated by 2.2 log, and inoculated Bacillus cereus and Listeria monocytogenes were inactivated by 1.5 and 1.1 log, respectively. Yeasts/microfungi distributed on the surface of strawberries were inactivated by 1 log. The shelf life of treated strawberries was extended by 2 days. The increase of temperature on the surface of fruit never exceeded 42 °C. No significantly important differences were observed in total phenolic, total anthocyanin and ascorbic acid content, and antioxidant capacity of strawberry fruits before and after pulsed light treatment. Moreover, no impact on the strawberry colour or firmness was found after HPPL treatment. In conclusion, HPPL is fast, effective, non-thermal and environmentally friendly technique which can be applied for microbial control of strawberries.

  9. Intense, broadband, pulsed I-R source at the National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Williams, G.P.

    1984-01-01

    We describe a broadband (1 μm to 1 mm) synchrotron radiation infrared source, pulsed each 20 to 180 nseconds and delivering about 10 15 photons/sec/1% bandpass into f10 optics. The source size is diffraction limited. This source is thus 100 to 1000 times brighter than a 2000 0 K black body, very stable and capable of being used for calibration

  10. GreenLight laser vs diode laser vaporization of the prostate: 3-year results of a prospective nonrandomized study.

    Science.gov (United States)

    Guo, Sanwei; Müller, Georg; Bonkat, Gernot; Püschel, Heike; Gasser, Thomas; Bachmann, Alexander; Rieken, Malte

    2015-04-01

    Laser vaporization of the prostate is one of the alternatives to transurethral resection of the prostate. Short-term studies report a comparable outcome after laser vaporization with the 532 nm 120-W GreenLight high-performance system (HPS) laser and the 980 nm 200 W high-intensity diode (diode) laser. In this study, we analyzed the intermediate-term results of both techniques. From January 2007 to January 2008, 112 consecutive patients with symptomatic benign prostate enlargement were nonrandomly assigned to treatment with the GreenLight laser or the diode laser. Perioperative parameters, postoperative functional outcome, complications, and the reoperation rate at 3 years were analyzed. Improvement of voiding symptoms (International Prostate Symptom Score, quality-of-life) and micturition parameters (maximum flow rate, postvoid residual volume) showed no significant difference between the HPS group and the diode group. A significantly higher reoperation rate was observed in the diode group in comparison to the HPS group (37.5% vs 8.9%, p=0.0003) due to obstructive necrotic tissue (16.1% vs 0%, p=0.0018), bladder neck stricture (16.1% vs 1.8%, p=0.008), and persisting or recurrent adenoma (5.4% vs 7.1%, p=0.70), respectively. Both lasers lead to comparable improvement of voiding parameters and micturition symptoms. Treatment with the 200 W diode laser led to a significantly higher reoperation rate, which might be attributed to a higher degree of coagulation necrosis. Thus, a careful clinical application of this diode laser type is warranted.

  11. Gigabit-per-second white light-based visible light communication using near-ultraviolet laser diode and red-, green-, and blue-emitting phosphors

    KAUST Repository

    Lee, Changmin

    2017-07-12

    Data communication based on white light generated using a near-ultraviolet (NUV) laser diode (LD) pumping red-, green-, and blue-emitting (RGB) phosphors was demonstrated for the first time. A III-nitride laser diode (LD) on a semipolar (2021) substrate emitting at 410 nm was used for the transmitter. The measured modulation bandwidth of the LD was 1 GHz, which was limited by the avalanche photodetector. The emission from the NUV LD and the RGB phosphor combination measured a color rendering index (CRI) of 79 and correlated color temperature (CCT) of 4050 K, indicating promise of this approach for creating high quality white lighting. Using this configuration, data was successfully transmitted at a rate of more than 1 Gbps. This NUV laser-based system is expected to have lower background noise from sunlight at the LD emission wavelength than a system that uses a blue LD due to the rapid fall off in intensity of the solar spectrum in the NUV spectral region.

  12. Gigabit-per-second white light-based visible light communication using near-ultraviolet laser diode and red-, green-, and blue-emitting phosphors.

    Science.gov (United States)

    Lee, Changmin; Shen, Chao; Cozzan, Clayton; Farrell, Robert M; Speck, James S; Nakamura, Shuji; Ooi, Boon S; DenBaars, Steven P

    2017-07-24

    Data communication based on white light generated using a near-ultraviolet (NUV) laser diode (LD) pumping red-, green-, and blue-emitting (RGB) phosphors was demonstrated for the first time. A III-nitride laser diode (LD) on a semipolar (2021¯)  substrate emitting at 410 nm was used for the transmitter. The measured modulation bandwidth of the LD was 1 GHz, which was limited by the avalanche photodetector. The emission from the NUV LD and the RGB phosphor combination measured a color rendering index (CRI) of 79 and correlated color temperature (CCT) of 4050 K, indicating promise of this approach for creating high quality white lighting. Using this configuration, data was successfully transmitted at a rate of more than 1 Gbps. This NUV laser-based system is expected to have lower background noise from sunlight at the LD emission wavelength than a system that uses a blue LD due to the rapid fall off in intensity of the solar spectrum in the NUV spectral region.

  13. May the variable magnetic field and pulse red light induce synergy effects in respiratory burst of neutrophils in vitro?

    International Nuclear Information System (INIS)

    Nawrocka - Bogusz, H; Jaroszyk, F

    2011-01-01

    We investigated the effect of the red light (R) (630 nm), magnetic field (MF) and magnetic field combined with the red light (MF+R) upon reactive oxygen species (ROS) production by neutrophils in vitro. The object of the research was hydrogen peroxide (H 2 O 2 ) formation during neutrophils respiratory burst or within steady-state. Blood from healthy volunteers was used for the purpose of the study. Flow cytometry method, using transformation of DCFH-DA (2'7'-dichlorofluorescin diacetate) to the fluorescent DCF (2'7'-dichlorofluorescin), was used for estimation of hydrogen peroxide production. The variable magnetic field of ELF range of the mean induction equals 26.7(μT), the red light at the energy density of 1.17(J/cm 2 ) and their combination were applied for 30 minutes each. The fundamental frequency of pulses was 180÷ 195 Hz. A statistically significant decrease of H 2 O 2 production by neutrophils was observed. The level of the decrease was in the range of 10-30% and was dependent on the kind of applied physical factors and whether neutrophils were stimulated or not. The observation showed that the variable magnetic field combined with red light do not induce the synergy effect.

  14. Prospects for high-gain, high yield NIF targets driven by 2w (green) light

    International Nuclear Information System (INIS)

    Suter, L J; Glenzer, S; Haan, S; Hammel, B; Manes, K; Meezan, N; Moody, J; Spaeth, M; Oades, K; Stevenson, M

    2003-01-01

    A laser ablation/ionization mass spectrometer system is described for the direct analysis of solids, particles, and fibers. The system uses a quadrupole ion trap operated in an ion-storage (IS) mode, coupled with a reflectron time-of-flight mass spectrometer (TOF-MS). The sample is inserted radially into the ring electrode and an imaging system allows direct viewing and selected analysis of the sample. Measurements identified trace contaminants of Ag, Sn, and Sb in a Pb target with single laser-shot experiments. Resolution (m/Δm) of 1500 and detection limits of approximately 10 pg have been achieved with a single laser pulse. The system configuration and related operating principles for accurately measuring low concentrations of isotopes are described

  15. Dry etching characteristics of GaN for blue/green light-emitting diode fabrication

    International Nuclear Information System (INIS)

    Baik, K.H.; Pearton, S.J.

    2009-01-01

    The etch rates, surface morphology and sidewall profiles of features formed in GaN/InGaN/AlGaN multiple quantum well light-emitting diodes by Cl 2 -based dry etching are reported. The chlorine provides an enhancement in etch rate of over a factor of 40 relative to the physical etching provided by Ar and the etching is reactant-limited until chlorine gas flow rates of at least 50 standard cubic centimeters per minute. Mesa sidewall profile angle control is possible using a combination of Cl 2 /Ar plasma chemistry and SiO 2 mask. N-face GaN is found to etch faster than Ga-face surfaces under the same conditions. Patterning of the sapphire substrate for improved light extraction is also possible using the same plasma chemistry

  16. Tailoring the Energy Landscape in Quasi-2D Halide Perovskites Enables Efficient Green-Light Emission

    KAUST Repository

    Quan, Li Na; Zhao, Yongbiao; Garcí a de Arquer, F. Pelayo; Sabatini, Randy; Walters, Grant; Voznyy, Oleksandr; Comin, Riccardo; Li, Yiying; Fan, James Z.; Tan, Hairen; Pan, Jun; Yuan, Mingjian; Bakr, Osman; Lu, Zhenghong; Kim, Dong Ha; Sargent, Edward H.

    2017-01-01

    Organo-metal halide perovskites are a promising platform for optoelectronic applications in view of their excellent charge-transport and bandgap tunability. However, their low photoluminescence quantum efficiencies, especially in low-excitation regimes, limit their efficiency for light emission. Consequently, perovskite light-emitting devices are operated under high injection, a regime under which the materials have so far been unstable. Here we show that, by concentrating photoexcited states into a small subpopulation of radiative domains, one can achieve a high quantum yield, even at low excitation intensities. We tailor the composition of quasi-2D perovskites to direct the energy transfer into the lowest-bandgap minority phase and to do so faster than it is lost to nonradiative centers. The new material exhibits 60% photoluminescence quantum yield at excitation intensities as low as 1.8 mW/cm2, yielding a ratio of quantum yield to excitation intensity of 0.3 cm2/mW; this represents a decrease of 2 orders of magnitude in the excitation power required to reach high efficiency compared with the best prior reports. Using this strategy, we report light-emitting diodes with external quantum efficiencies of 7.4% and a high luminescence of 8400 cd/m2.

  17. Tailoring the Energy Landscape in Quasi-2D Halide Perovskites Enables Efficient Green-Light Emission

    KAUST Repository

    Quan, Li Na

    2017-05-10

    Organo-metal halide perovskites are a promising platform for optoelectronic applications in view of their excellent charge-transport and bandgap tunability. However, their low photoluminescence quantum efficiencies, especially in low-excitation regimes, limit their efficiency for light emission. Consequently, perovskite light-emitting devices are operated under high injection, a regime under which the materials have so far been unstable. Here we show that, by concentrating photoexcited states into a small subpopulation of radiative domains, one can achieve a high quantum yield, even at low excitation intensities. We tailor the composition of quasi-2D perovskites to direct the energy transfer into the lowest-bandgap minority phase and to do so faster than it is lost to nonradiative centers. The new material exhibits 60% photoluminescence quantum yield at excitation intensities as low as 1.8 mW/cm2, yielding a ratio of quantum yield to excitation intensity of 0.3 cm2/mW; this represents a decrease of 2 orders of magnitude in the excitation power required to reach high efficiency compared with the best prior reports. Using this strategy, we report light-emitting diodes with external quantum efficiencies of 7.4% and a high luminescence of 8400 cd/m2.

  18. (Carbon and hydrogen metabolism of green algae in light and dark)

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    The focus of this project was the elucidation of anaerobic metabolism in ecuaryotic green algae, chlamydomonas reinhardii. Chlamydomonas is a versatile organism that can grow under disparate conditions such as fresh water lakes and sewage ponds. The cell an photoassimilate CO{sub 2} aerobically and anaerobically, the latter after adaptation'' to a hydrogen metabolism. It can recall the knallgas or oxyhydrogen reaction and utilize hydrogen the simplest of all reducing agents for the dark assimilation of CO{sub 2} by the photosynthetic carbon reduction cycle. The dark reduction with hydrogen lies on the border line between autotrophic and heterotrophic carbon assimilation. Both autotrophic and heterotrophic bacteria are known in which molecular hydrogen can replace either inorganic or organic hydrogen donors. Here the dark reduction of CO{sub 2} acquires a particular importance since it occurs in the same cell that carries on photoreduction and photosynthesis. We will demonstrate here that the alga chloroplast possesses a respiratory capacity. It seems likely that Chlamydomonas may have retained the chloroplastic respiratory pathway because of the selective advantage provided to the algae under a wide range of environmental conditions that the cells experience in nature. The ability to cycle electrons and poise the reduction level of the photosynthetic apparatus under aerobic and microaerobic conditions could allow more efficient CO{sub 2} fixation and enhanced growth under unfavorable conditions or survival under more severe conditions.

  19. UV light induced photodegradation of malachite green on TiO2 nanoparticles

    International Nuclear Information System (INIS)

    Chen, C.C.; Lu, C.S.; Chung, Y.C.; Jan, J.L.

    2007-01-01

    The photodegradation of malachite green (MG), a cationic triphenylmethane dye, is examined both under different pH values and amounts of TiO 2 . After 15 W UV-365 nm irradiation for 4 h, ca. 99.9% of MG was degraded with addition of 0.5 g L -1 TiO 2 to solutions containing 50 mg L -1 of the MG dye. The HPLC-PDA-ESI-MS technique was used to obtain a better understanding on the mechanistic details of this TiO 2 -assisted photodegradation of the MG dye with UV irradiation. Five intermediates of the process were separated, identified, and characterized for the first time. The results indicated that the N-de-methylation degradation of MG dye took place in a stepwise manner to yield mono-, di-, tri-, and tetra-N-de-methylated MG species generated during the processes. Under acidic conditions, the results indicated that the photodegradation mechanism is favorable to cleavage of the whole conjugated chromophore structure of the MG dye. Under basic conditions, the results showed that the photodegradation mechanism is favorable to a formation of a series of N-de-methylated intermediates of the MG dye

  20. Photodegradation of malachite green dye catalyzed by Keggin-type polyoxometalates under visible-light irradiation: Transition metal substituted effects

    Science.gov (United States)

    Liu, Chun-Guang; Zheng, Ting; Liu, Shuang; Zhang, Han-Yu

    2016-04-01

    In the present paper, Keggin-type polyoxometalates (POMs) (NH4)3[PW12O40] and its mono-transition-metal-substituted species (NH4)5[{PW11O39}MII(H2O)] (M = Mn, Fe, Co, Ni, Cu, Zn) have been synthesized and used as photocatalyst to activate O2 for the degradation of dye molecule under visible-light irradiation. Because of the strong adsorption on the surface of POM catalyst, malachite green (MG) molecule was employed as a molecular probe to test their photocatalytic activity. The photodegradation study shows that introduction of transition metal ion leads to an increase in the degradation of MG in the following order: Mn < Fe < Co < [PW12O40]3- < Ni < Cu < Zn, which indicates that the photocatalytic activity of these POMs is sensitive to the transition metal substituted effects. Electronic structure analysis based on the density functional theory calculations shows that a moderate decrease of oxidizing ability of POM catalyst may improve the photocatalytic activity in the degradation of dye molecule under visible-light irradiation. Meanwhile, intermediate products about the photocatalytic oxidation of MG molecule were proposed on the basis of gas chromatograph mass spectrometer analysis.

  1. Remarkable photo-catalytic degradation of malachite green by nickel doped bismuth selenide under visible light irradiation

    Science.gov (United States)

    Kulsi, Chiranjit; Ghosh, Amrita; Mondal, Anup; Kargupta, Kajari; Ganguly, Saibal; Banerjee, Dipali

    2017-01-01

    Bismuth selenide (Bi2Se3) and nickel (Ni) doped Bi2Se3 were prepared by a solvothermal approach to explore the photo-catalytic performance of the materials in degradation of malachite green (MG). The presence of nickel was confirmed by X-ray photoelectron spectroscopy (XPS) measurement in doped Bi2Se3. The results showed that the nickel doping played an important role in microstructure and photo-catalytic activity of the samples. Nickel doped Bi2Se3 sample exhibited higher photo-catalytic activity than that of the pure Bi2Se3 sample under visible-light irradiation. The photo-catalytic degradation followed first-order reaction kinetics. Fast degradation kinetics and complete (100% in 5 min of visible light irradiation) removal of MG was achieved by nickel doped Bi2Se3 in presence of hydrogen peroxide (H2O2) due to modification of band gap energies leading to suppression of photo-generated electron-hole recombination.

  2. Phase-resolved pulse propagation through metallic photonic crystal slabs: plasmonic slow light

    Science.gov (United States)

    Schönhardt, Anja; Nau, Dietmar; Bauer, Christina; Christ, André; Gräbeldinger, Hedi; Giessen, Harald

    2017-03-01

    We characterized the electromagnetic field of ultra-short laser pulses after propagation through metallic photonic crystal structures featuring photonic and plasmonic resonances. The complete pulse information, i.e. the envelope and phase of the electromagnetic field, was measured using the technique of cross-correlation frequency resolved optical gating. In good agreement, measurements and scattering matrix simulations show a dispersive behaviour of the spectral phase at the position of the resonances. Asymmetric Fano-type resonances go along with asymmetric phase characteristics. Furthermore, the spectral phase is used to calculate the dispersion of the sample and possible applications in dispersion compensation are investigated. Group refractive indices of 700 and 70 and group delay dispersion values of 90 000 fs2 and 5000 fs2 are achieved in transverse electric and transverse magnetic polarization, respectively. The behaviour of extinction and spectral phase can be understood from an intuitive model using the complex transmission amplitude. An associated depiction in the complex plane is a useful approach in this context. This method promises to be valuable also in photonic crystal and filter design, for example, with regards to the symmetrization of the resonances. This article is part of the themed issue 'New horizons for nanophotonics'.

  3. Atomic and molecular dynamics triggered by ultrashort light pulses on the atto- to picosecond time scale

    Science.gov (United States)

    Pabst, Stefan

    2013-04-01

    Time-resolved investigations of ultrafast electronic and molecular dynamics were not possible until recently. The typical time scale of these processes is in the picosecond to attosecond realm. The tremendous technological progress in recent years made it possible to generate ultrashort pulses, which can be used to trigger, to watch, and to control atomic and molecular motion. This tutorial focuses on experimental and theoretical advances which are used to study the dynamics of electrons and molecules in the presence of ultrashort pulses. In the first part, the rotational dynamics of molecules, which happens on picosecond and femtosecond time scales, is reviewed. Well-aligned molecules are particularly suitable for angle-dependent investigations like x-ray diffraction or strong-field ionization experiments. In the second part, the ionization dynamics of atoms is studied. The characteristic time scale lies, here, in the attosecond to few-femtosecond regime. Although a one-particle picture has been successfully applied to many processes, many-body effects do constantly occur. After a broad overview of the main mechanisms and the most common tools in attosecond physics, examples of many-body dynamics in the attosecond world (e.g., in high-harmonic generation and attosecond transient absorption spectroscopy) are discussed.

  4. Enhanced light scattering in Si nanostructures produced by pulsed laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Sberna, P. M.; Scapellato, G. G.; Boninelli, S.; Miritello, M.; Crupi, I.; Bruno, E.; Privitera, V.; Simone, F.; Mirabella, S. [MATIS IMM-CNR and Dipartimento di Fisica e Astronomia, Università di Catania, via S. Sofia 64, 95123 Catania (Italy); Piluso, N. [IMM-CNR, VIII strada 5, 95121 Catania (Italy)

    2013-11-25

    An innovative method for Si nanostructures (NS) fabrication is proposed, through nanosecond laser irradiation (λ = 532 nm) of thin Si film (120 nm) on quartz. Varying the laser energy fluences (425–1130 mJ/cm{sup 2}) distinct morphologies of Si NS appear, going from interconnected structures to isolated clusters. Film breaking occurs through a laser-induced dewetting process. Raman scattering is enhanced in all the obtained Si NS, with the largest enhancement in interconnected Si structures, pointing out an increased trapping of light due to multiple scattering. The reported method is fast, scalable and cheap, and can be applied for light management in photovoltaics.

  5. Optical coherence tomography imaging of telangiectasias during intense pulsed light treatment

    DEFF Research Database (Denmark)

    Ring, Hans Christian; Mogensen, Mette; Banzhaf, Christina

    2013-01-01

    Vascular malformations commonly occur in the facial region, and can be associated with significant stigma and embarrassment. Studies have shown that even recommended light-based treatments do not always result in complete clearance. This indicates the need for more accurate pre-treatment assessment...... the vessels, which may indicate edema or insufficient coagulation. (2) Hyperreflective signals within the lumen of the vessels, compatible with the expected irreversible microthrombus formation in the vessels. OCT imaging is capable of real-time assessment of tissue damage during light and laser treatment...

  6. Can narrow-bandwidth light from UV-A to green alter secondary plant metabolism and increase Brassica plant defenses against aphids?

    Science.gov (United States)

    Neugart, Susanne; Schreiner, Monika; Wu, Sasa; Poehling, Hans-Michael

    2017-01-01

    Light of different wavelengths is essential for plant growth and development. Short-wavelength radiation such as UV can shift the composition of flavonoids, glucosinolates, and other plant metabolites responsible for enhanced defense against certain herbivorous insects. The intensity of light-induced, metabolite-based resistance is plant- and insect species-specific and depends on herbivore feeding guild and specialization. The increasing use of light-emitting diodes (LEDs) in horticultural plant production systems in protected environments enables the creation of tailor-made light scenarios for improved plant cultivation and induced defense against herbivorous insects. In this study, broccoli (Brassica oleracea var. italica) plants were grown in a climate chamber under broad spectra photosynthetic active radiation (PAR) and were additionally treated with the following narrow-bandwidth light generated with LEDs: UV-A (365 nm), violet (420 nm), blue (470 nm), or green (515 nm). We determined the influence of narrow-bandwidth light on broccoli plant growth, secondary plant metabolism (flavonol glycosides and glucosinolates), and plant-mediated light effects on the performance and behavior of the specialized cabbage aphid Brevicoryne brassicae. Green light increased plant height more than UV-A, violet, or blue LED treatments. Among flavonol glycosides, specific quercetin and kaempferol glycosides were increased under violet light. The concentration of 3-indolylmethyl glucosinolate in plants was increased by UV-A treatment. B. brassicae performance was not influenced by the different light qualities, but in host-choice tests, B. brassicae preferred previously blue-illuminated plants (but not UV-A-, violet-, or green-illuminated plants) over control plants. PMID:29190278

  7. Can narrow-bandwidth light from UV-A to green alter secondary plant metabolism and increase Brassica plant defenses against aphids?

    Directory of Open Access Journals (Sweden)

    Ole Rechner

    Full Text Available Light of different wavelengths is essential for plant growth and development. Short-wavelength radiation such as UV can shift the composition of flavonoids, glucosinolates, and other plant metabolites responsible for enhanced defense against certain herbivorous insects. The intensity of light-induced, metabolite-based resistance is plant- and insect species-specific and depends on herbivore feeding guild and specialization. The increasing use of light-emitting diodes (LEDs in horticultural plant production systems in protected environments enables the creation of tailor-made light scenarios for improved plant cultivation and induced defense against herbivorous insects. In this study, broccoli (Brassica oleracea var. italica plants were grown in a climate chamber under broad spectra photosynthetic active radiation (PAR and were additionally treated with the following narrow-bandwidth light generated with LEDs: UV-A (365 nm, violet (420 nm, blue (470 nm, or green (515 nm. We determined the influence of narrow-bandwidth light on broccoli plant growth, secondary plant metabolism (flavonol glycosides and glucosinolates, and plant-mediated light effects on the performance and behavior of the specialized cabbage aphid Brevicoryne brassicae. Green light increased plant height more than UV-A, violet, or blue LED treatments. Among flavonol glycosides, specific quercetin and kaempferol glycosides were increased under violet light. The concentration of 3-indolylmethyl glucosinolate in plants was increased by UV-A treatment. B. brassicae performance was not influenced by the different light qualities, but in host-choice tests, B. brassicae preferred previously blue-illuminated plants (but not UV-A-, violet-, or green-illuminated plants over control plants.

  8. Effects of shock waves, ultraviolet light, and electric fields from pulsed discharges in water on inactivation of Escherichia coli.

    Science.gov (United States)

    Sun, Bing; Xin, Yanbin; Zhu, Xiaomei; Gao, Zhiying; Yan, Zhiyu; Ohshima, Takayuki

    2018-04-01

    In this work, the bacterial inactivation effects of shock waves, ultraviolet (UV) light, and electric field produced by high-voltage pulsed discharge in liquid with needle-plate configurations were studied. The contributions of each effect on the bacterial killing ratio in the discharge process were obtained individually by modifying reactor type and usage of glass, quartz, and black balloons. The results showed that the location from the discharge center axis significantly influenced the effects of shock waves and electric fields, although the effect of UV light was not affected by the location in the reactor. The effects of shock waves and electric fields were improved by decreasing the distance from the discharge center axis. Under this experimental condition, the effects of shock waves, UV light, and electric fields produced by discharges on bacterial inactivation were approximately 36.1%, 30.8%, 12.7%, respectively. Other contributions seemed to be due to activated species. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. More than a century of Grain for Green Program is expected to restore soil carbon stock on alpine grassland revealed by field {sup 13}C pulse labeling

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qi; Chen, Dongdong; Zhao, Liang [Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, Qinghai (China); Yang, Xue [Department of Education of Qinghai Province, Xining 810008, Qinghai (China); Xu, Shixiao [Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, Qinghai (China); Zhao, Xinquan, E-mail: xqzhao@nwipb.cas.cn [Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, Qinghai (China); Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 10041, Sichuan (China)

    2016-04-15

    Anthropogenic changes in land use/cover have altered the vegetation, soil, and carbon (C) cycling on the Qinghai–Tibetan Plateau (QTP) over the last ~ 50 years. As a result, the Grain for Green Program (GfGP) has been widely implemented over the last 10 years to mitigate the impacts of cultivation. To quantify the effects of the GfGP on C partitioning and turnover rates at the ecosystem scale, an in situ {sup 13}C pulse labeling experiment was conducted on natural and GfGP grasslands in an agro-pastoral ecotone in the Lake Qinghai region on the QTP. We found that there were significant differences in the C stocks of all the considered pools in both the natural and GfGP grasslands, with higher CO{sub 2} uptake rates in the GfGP grassland than that in the natural grassland. Partitioning of photoassimilate (% of recovered {sup 13}C) in C pools of both grasslands was similar 25 days after labeling, except in the roots of the 0–15 and 5–15 cm soil layer. Soil organic C (SOC) sequestration rate in the GfGP grassland was 11.59 ± 1.89 g C m{sup −2} yr{sup −1} significantly greater than that in the natural grassland. The results confirmed that the GfGP is an efficient approach for grassland restoration and C sequestration. However, it will take more than a century (119.19 ± 20.26 yr) to restore the SOC stock from the current cropland baseline level to the approximate level of natural grassland. We suggest that additional measures are needed in the selection of suitable plant species for vegetation restoration, and in reasonable grazing management. - Highlights: • Grain for Green Project initiated in 1999 converts cropland to grassland/shrubland. • Impact of Grain for Green on carbon cycling on Qinghai–Tibetan Plateau is unknown. • Effects on carbon partitioning and turnover were accessed by {sup 13}CO{sub 2} pulse labeling. • Different mass of {sup 13}C in excess, similar {sup 13}C partitioning are shown in grasslands. • Soil organic carbon of

  10. More than a century of Grain for Green Program is expected to restore soil carbon stock on alpine grassland revealed by field "1"3C pulse labeling

    International Nuclear Information System (INIS)

    Li, Qi; Chen, Dongdong; Zhao, Liang; Yang, Xue; Xu, Shixiao; Zhao, Xinquan

    2016-01-01

    Anthropogenic changes in land use/cover have altered the vegetation, soil, and carbon (C) cycling on the Qinghai–Tibetan Plateau (QTP) over the last ~ 50 years. As a result, the Grain for Green Program (GfGP) has been widely implemented over the last 10 years to mitigate the impacts of cultivation. To quantify the effects of the GfGP on C partitioning and turnover rates at the ecosystem scale, an in situ "1"3C pulse labeling experiment was conducted on natural and GfGP grasslands in an agro-pastoral ecotone in the Lake Qinghai region on the QTP. We found that there were significant differences in the C stocks of all the considered pools in both the natural and GfGP grasslands, with higher CO_2 uptake rates in the GfGP grassland than that in the natural grassland. Partitioning of photoassimilate (% of recovered "1"3C) in C pools of both grasslands was similar 25 days after labeling, except in the roots of the 0–15 and 5–15 cm soil layer. Soil organic C (SOC) sequestration rate in the GfGP grassland was 11.59 ± 1.89 g C m"−"2 yr"−"1 significantly greater than that in the natural grassland. The results confirmed that the GfGP is an efficient approach for grassland restoration and C sequestration. However, it will take more than a century (119.19 ± 20.26 yr) to restore the SOC stock from the current cropland baseline level to the approximate level of natural grassland. We suggest that additional measures are needed in the selection of suitable plant species for vegetation restoration, and in reasonable grazing management. - Highlights: • Grain for Green Project initiated in 1999 converts cropland to grassland/shrubland. • Impact of Grain for Green on carbon cycling on Qinghai–Tibetan Plateau is unknown. • Effects on carbon partitioning and turnover were accessed by "1"3CO_2 pulse labeling. • Different mass of "1"3C in excess, similar "1"3C partitioning are shown in grasslands. • Soil organic carbon of cropland will be restored to natural

  11. Comment on ''Generation of Electromagnetic Pulses from Plasma Channels Induced by Femtosecond Light Strings''

    International Nuclear Information System (INIS)

    Shvets, Gennady; Kaganovich, Igor; Startsev, Edward

    2002-01-01

    In a recent Letter, Cheng et al. calculated/predicted several new effects: that (a) fraction of the short laser pulse momentum can be imparted to plasma electrons via collisional damping of the laser, thereby exciting a long-lived (longer than an oscillation period) plasma wave, which (b) gives rise to a spatially uniform dipole moment of a plasma, which (c) emits far-field narrow-band radiation at the plasma frequency omega subscript ''p'' over the recombination time of the plasma. We claim that the calculation of the effect (a) is in error and the predicted effects (b,c) do not occur as described. In fact, predicted narrow-band emission at omega subscript ''p'' would not occur even if the momentum transfer and the dipole excitation were calculated correctly

  12. Characterization of FBK SiPMs under illumination with very fast light pulses

    Energy Technology Data Exchange (ETDEWEB)

    Tarolli, A., E-mail: tarolli@fbk.e [Fondazione Bruno Kessler (FBK), Trento (Italy); Dalla Betta, G.-F. [University of Trento and INFN, Trento (Italy); Melchiorri, M.; Piazza, A.; Pancheri, L.; Piemonte, C.; Zorzi, N. [Fondazione Bruno Kessler (FBK), Trento (Italy)

    2010-05-21

    A characterization of the response of SiPMs and SPADs produced at FBK-IRST Trento stimulated with fast laser pulses is presented. The tests were aimed at studying both the intrinsic timing proprieties (of SiPMs and SPADs) using the time-correlated single-photon counting technique and the dynamic range (of SiPMs). Measurements were carried out on devices with different cell size, namely, from 40x40 to 100x100 {mu}m{sup 2}. Concerning the timing resolution, all the devices exhibit a value less than 150 psec FWHM. The dynamic range of SiPMs shows a response linearity which is in line with the theory describing these devices.

  13. Characterization of FBK SiPMs under illumination with very fast light pulses

    International Nuclear Information System (INIS)

    Tarolli, A.; Dalla Betta, G.-F.; Melchiorri, M.; Piazza, A.; Pancheri, L.; Piemonte, C.; Zorzi, N.

    2010-01-01

    A characterization of the response of SiPMs and SPADs produced at FBK-IRST Trento stimulated with fast laser pulses is presented. The tests were aimed at studying both the intrinsic timing proprieties (of SiPMs and SPADs) using the time-correlated single-photon counting technique and the dynamic range (of SiPMs). Measurements were carried out on devices with different cell size, namely, from 40x40 to 100x100 μm 2 . Concerning the timing resolution, all the devices exhibit a value less than 150 psec FWHM. The dynamic range of SiPMs shows a response linearity which is in line with the theory describing these devices.

  14. Still waiting for the green light on Taiwan's units 7 and 8

    International Nuclear Information System (INIS)

    Lin, E.

    1992-01-01

    Taiwan Power Company (Taipower) is the only utility supplying electricity to Taiwan. In 1991, six nuclear units shared 28% of the total installed capacity (5144MWe out of 18 382MWe), but produced 38% of the total electricity (33 878TWh out of 89 129TWh), with a 7% increase over 1990. The weighted average capacity factor reached a record high of 78.32%. Compared with 1990's weighted average capacity factor of 72.94%, the annual performance in 1991 reveals that Taipower nuclear power plants are in better shape than they were before. The major improvement efforts in 1992 will focus on shortening the duration of outages and enforcing safety culture training. This article also briefly describes existing and projected waste management plants and comments on the project to build two 1000MWe Light Water Reactor plants at Yenliao which are tentatively scheduled for commercial operation in 2000. (Author)

  15. Green bright squeezed light from a cw periodically poled KTP second harmonic generator

    DEFF Research Database (Denmark)

    Andersen, Ulrik Lund; Buchhave, Preben

    2002-01-01

    We present the experimental observation of bright amplitude squeezed light from a singly resonant second harmonic generator (SHG) based on a periodically poled potassium titanyl phosphate (KTP) crystal. Contrary to conventional SHG, the interacting waves in this device couple efficiently using qu...... reduction is greater than what could be expected using normal birefringence phase matched KTP with the same experimental parameters. Excellent agreement between experiment and theory is found. (C)2002 Optical Society of America....... quasi phase matching (QPM) and more importantly QPM allows access to higher valued elements of the nonlinear tensor than is possible under the constraint of birefringence phase matching. We observe a noise reduction of 13% below the shot noise limit in the generated second harmonic field. This noise...

  16. Transfer from blue light or green light to white light partially reverses changes in ocular refraction and anatomy of developing guinea pigs.

    Science.gov (United States)

    Qian, Yi-Feng; Liu, Rui; Dai, Jin-Hui; Chen, Min-Jie; Zhou, Xing-Tao; Chu, Ren-Yuan

    2013-09-26

    Relative to the broadband white light (BL), postnatal guinea pigs develop myopia in a monochromic middle-wavelength light (ML, 530 nm) environment and develop hyperopia in a monochromic short-wavelength light (SL, 430 nm) environment. We investigated whether transfer from SL or ML to BL leads to recuperation of ocular refraction and anatomy of developing guinea pigs. Two-week-old guinea pigs were given (a) SL for 20 weeks, (b) SL recuperation (SLR, SL for 10 weeks then BL for 10 weeks), (c) ML for 20 weeks, (d) ML recuperation (MLR, ML for 10 weeks then BL for 10 weeks), or (e) BL for 20 weeks. Two weeks after transfer from ML to BL (MLR group), ocular refraction increased from 1.95 ± 0.35 D to 2.58 ± 0.24 D, and vitreous length decreased from 3.48 ± 0.06 mm to 3.41 ± 0.06 mm. Two weeks after transfer from SL to BL (SLR group), ocular refraction decreased from 5.65 ± 0.61 D to 4.33 ± 0.49 D, and vitreous length increased from 3.18 ± 0.07 mm to 3.26 ± 0.11 mm. The MLR and SLR groups had final ocular refractions that were significantly different from those of the ML and SL groups at 20 weeks (ML vs. MLR: p < 0.0001; SL vs. SLR: p < 0.0001) but were still significantly different from the BL group (BL vs. MLR: p = 0.0120; BL vs. SLR: p = 0.0010). These results suggest that recuperation was not complete after return to BL for 10 weeks.

  17. Roll-to-roll-compatible, flexible, transparent electrodes based on self-nanoembedded Cu nanowires using intense pulsed light irradiation

    Science.gov (United States)

    Zhong, Zhaoyang; Woo, Kyoohee; Kim, Inhyuk; Hwang, Hyewon; Kwon, Sin; Choi, Young-Man; Lee, Youngu; Lee, Taik-Min; Kim, Kwangyoung; Moon, Jooho

    2016-04-01

    Copper nanowire (Cu NW)-based flexible transparent conductive electrodes (FTCEs) have been investigated in detail for use in various applications such as flexible touch screens, organic photovoltaics and organic light-emitting diodes. In this study, hexadecylamine (HDA) adsorbed onto the surface of NWs is changed into polyvinylpyrrolidone (PVP) via a ligand exchange process; the high-molecular-weight PVP enables high dispersion stability. Intense pulsed light (IPL) irradiation is used to remove organic species present on the surface of the NWs and to form direct connections between the NWs rapidly without any atmospheric control. NWs are self-nanoembedded into a plastic substrate after IPL irradiation, which results in a smooth surface, strong NW/substrate adhesion, excellent mechanical flexibility and enhanced oxidation stability. Moreover, Cu NW FTCEs with high uniformities are successfully fabricated on a large area (150 mm × 200 mm) via successive IPL irradiation that is synchronized with the motion of the sample stage. This study demonstrates the possibility of roll-to-roll-based, large-scale production of low-cost, high-performance Cu NW-based FTCEs.Copper nanowire (Cu NW)-based flexible transparent conductive electrodes (FTCEs) have been investigated in detail for use in various applications such as flexible touch screens, organic photovoltaics and organic light-emitting diodes. In this study, hexadecylamine (HDA) adsorbed onto the surface of NWs is changed into polyvinylpyrrolidone (PVP) via a ligand exchange process; the high-molecular-weight PVP enables high dispersion stability. Intense pulsed light (IPL) irradiation is used to remove organic species present on the surface of the NWs and to form direct connections between the NWs rapidly without any atmospheric control. NWs are self-nanoembedded into a plastic substrate after IPL irradiation, which results in a smooth surface, strong NW/substrate adhesion, excellent mechanical flexibility and enhanced

  18. The effect of pulsed IR-light on the rheological parameters of blood in vitro.

    Science.gov (United States)

    Nawrocka-Bogusz, Honorata; Marcinkowska-Gapińska, Anna

    2014-01-01

    In this study we attempted to assess the effect of light of 855 nm wavelength (IR-light) on the rheological parameters of blood in vitro. As an anticoagulant, heparin was used. The source of IR-light was an applicator connected to the special generator--Viofor JPS®. The blood samples were irradiated for 30 min. During the irradiation the energy density was growing at twelve-second intervals starting from 1.06 J/cm2 to 8.46 J/cm2, then the energy density dropped to the initial value; the process was repeated cyclically. The study of blood viscosity was carried out with a Contraves LS40 oscillatory-rotational rheometer, with a decreasing shearing rate from 100 to 0.01 s⁻¹ over 5 min (flow curve) and applying constant frequency oscillations f=0.5 Hz with decreasing shear amplitude ˙γ0 (viscoelasticity measurements). The analysis of the results of rotational measurements was based on the assessment of hematocrit, plasma viscosity, whole blood viscosity at four selected shear rates and on the basis of the numerical values of parameters from Quemada's rheological model: k0 (indicating red cell aggregability), k∞ (indicating red cell rigidity) and ˙γc (the value of the shear rate for which the rouleaux formation begins). In oscillatory experiments we estimated viscous and elastic components of the complex blood viscosity in the same groups of patients. We observed a decrease of the viscous component of complex viscosity (η') at ˙γ0=0.2 s⁻¹, while other rheological parameters, k0, k∞, and relative blood viscosity at selected shear rates showed only a weak tendency towards smaller values after irradiation. The IR-light effect on the rheological properties of blood in vitro turned out to be rather neutral in the studied group of patients.

  19. Advanced Oxidation of Tartrazine and Brilliant Blue with Pulsed Ultraviolet Light Emitting Diodes

    OpenAIRE

    Scott, Robert; Mudimbi, Patrick; Miller, Michael E.; Magnuson, Matthew; Willison, Stuart; Phillips, Rebecca; Harper, Willie F.

    2017-01-01

    This study investigated the effect of ultraviolet light-emitting diodes (UVLEDs) coupled with hydrogen peroxide as an advanced oxidation process (AOP) for the degradation of two test chemicals. Brilliant Blue FCF consistently exhibited greater degradation than tartrazine, with 83% degradation after 300 minutes at the 100% duty cycle compared with only 17% degradation of tartrazine under the same conditions. These differences are attributable to the structural properties of the compounds. Duty...

  20. Bridging “green gap” of LEDs: Giant light output enhancement and directional control of LEDs via embedded nano-void photonic crystals

    KAUST Repository

    Tsai, Yu-Lin; Liu, Che-Yu; Krishnan, Chirenjeevi; Lin, Da-Wei; Chu, You-Chen; Chen, Tzu-Pei; Shen, Tien-Lin; Kao, Tsung-Sheng; Charlton, Martin; Yu, Peichen; Lin, Chien-Chung; Kuo, Hao-Chung; He, Jr-Hau

    2015-01-01

    Green LEDs do not show the same level of performance as their blue and red cousins, greatly hindering the solid-state lighting development, which is so-called “green gap”. In this work, nano-void photonic crystals (NVPCs) were fabricated to embed within the GaN/InGaN green LEDs by using epitaxial lateral overgrowth (ELO) and nano-sphere lithography techniques. The NVPCs act as an efficient scattering back-reflector to outcouple the guided and downward photons, which not only boosting light extraction efficiency of LEDs with an enhancement of 78% but also collimating the view angle of LEDs from 131.5゜to 114.0゜. This could be because the highly scattering nature of NVPCs which reduce the interference giving rise to Fabry-Perot resonance. Moreover, due to the threading dislocation suppression and strain relief by the NVPCs, the internal quantum efficiency was increased by 25% and droop behavior was reduced from 37.4% to 25.9%. The enhancement of light output power can be achieved as high as 151% at a driving current of 350 mA. Giant light output enhancement and directional control via NVPCs points the way towards a promising avenue of solid-state lighting.

  1. Effects of melatonin injection or green-wavelength LED light on the antioxidant system in goldfish (Carassius auratus) during thermal stress.

    Science.gov (United States)

    Jung, Seo Jin; Choi, Young Jae; Kim, Na Na; Choi, Ji Yong; Kim, Bong-Seok; Choi, Cheol Young

    2016-05-01

    We tested the mitigating effects of melatonin injections or irradiation from green-wavelength light-emitting diodes (LEDs) on goldfish (Carassius auratus) exposed to thermal stress (high water temperature, 30 °C). The effects of the two treatments were assessed by measuring the expression and activity levels of the antioxidant enzymes, superoxide dismutase and catalase, plasma hydrogen peroxide, lipid hydroperoxide, and lysozyme. In addition, a comet assay was conducted to confirm that high water temperature damaged nuclear DNA. The expression and activity of the antioxidant enzymes, plasma hydrogen peroxide, and lipid hydroperoxide were significantly higher after exposure to high temperature and were significantly lower in fish that received melatonin or LED light than in those that received no mitigating treatment. Plasma lysozyme was significantly lower after exposure to high temperature and was significantly higher after exposure to melatonin or LED light. The comet assay revealed that thermal stress caused a great deal of damage to nuclear DNA; however, treatment with melatonin or green-wavelength LED light prevented a significant portion of this damage from occurring. These results indicate that, although high temperatures induce oxidative stress and reduce immune system strength in goldfish, both melatonin and green-wavelength LED light inhibit oxidative stress and boost the immune system. LED treatment increased the antioxidant and immune system activity more significantly than did melatonin treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Bridging “green gap” of LEDs: Giant light output enhancement and directional control of LEDs via embedded nano-void photonic crystals

    KAUST Repository

    Tsai, Yu-Lin

    2015-11-23

    Green LEDs do not show the same level of performance as their blue and red cousins, greatly hindering the solid-state lighting development, which is so-called “green gap”. In this work, nano-void photonic crystals (NVPCs) were fabricated to embed within the GaN/InGaN green LEDs by using epitaxial lateral overgrowth (ELO) and nano-sphere lithography techniques. The NVPCs act as an efficient scattering back-reflector to outcouple the guided and downward photons, which not only boosting light extraction efficiency of LEDs with an enhancement of 78% but also collimating the view angle of LEDs from 131.5゜to 114.0゜. This could be because the highly scattering nature of NVPCs which reduce the interference giving rise to Fabry-Perot resonance. Moreover, due to the threading dislocation suppression and strain relief by the NVPCs, the internal quantum efficiency was increased by 25% and droop behavior was reduced from 37.4% to 25.9%. The enhancement of light output power can be achieved as high as 151% at a driving current of 350 mA. Giant light output enhancement and directional control via NVPCs points the way towards a promising avenue of solid-state lighting.

  3. Dynamic generation and coherent control of beating stationary light pulses by a microwave coupling field in five-level cold atoms

    Science.gov (United States)

    Bao, Qian-Qian; Zhang, Yan; Cui, Cui-Li; Meng, Shao-Ying; Fang, You-Wei; Tian, Xue-Dong

    2018-04-01

    We propose an efficient scheme for generating and controlling beating stationary light pulses in a five-level atomic sample driven into electromagnetically induced transparency condition. This scheme relies on an asymmetrical procedure of light storage and retrieval tuned by two counter-propagating control fields where an additional coupling field, such as the microwave field, is introduced in the retrieval stage. A quantum probe field, incident upon such an atomic sample, is first transformed into spin coherence excitation of the atoms and then retrieved as beating stationary light pulses exhibiting a series of maxima and minima in intensity due to the alternative constructive and destructive interference. It is convenient to control the beating stationary light pulses just by manipulating the intensity and detuning of the additional microwave field. This interesting phenomenon involves in fact the coherent manipulation of dark-state polaritons and could be explored to achieve the efficient temporal splitting of stationary light pulses and accurate measurement of the microwave intensity.

  4. Using the Transient Response of WO3 Nanoneedles under Pulsed UV Light in the Detection of NH3 and NO2

    Directory of Open Access Journals (Sweden)

    Oriol Gonzalez

    2018-04-01

    Full Text Available Here we report on the use of pulsed UV light for activating the gas sensing response of metal oxides. Under pulsed UV light, the resistance of metal oxides presents a ripple due to light-induced transient adsorption and desorption phenomena. This methodology has been applied to tungsten oxide nanoneedle gas sensors operated either at room temperature or under mild heating (50 °C or 100 °C. It has been found that by analyzing the rate of resistance change caused by pulsed UV light, a fast determination of gas concentration is achieved (ten-fold improvement in response time. The technique is useful for detecting both oxidizing (NO2 and reducing (NH3 gases, even in the presence of different levels of ambient humidity. Room temperature operated sensors under pulsed UV light show good response towards ammonia and nitrogen dioxide at low power consumption levels. Increasing their operating temperature to 50 °C or 100 °C has the effect of further increasing sensitivity.

  5. Synthesis and green electrophosphorescence of a novel cyclometalated iridium complex in polymer light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Wu Lilan [Department of Chemistry, National Cheng Kung University, Tainan, Taiwan 70101 (China); Tsai Sunghao [Institute of Electro-Optical Science and Engineering, National Cheng Kung University, Tainan, Taiwan 70101 (China); Guo Tzungfang [Institute of Electro-Optical Science and Engineering, National Cheng Kung University, Tainan, Taiwan 70101 (China); Yang Chenghsien [Carbon Nanocapsules Research Department, Nano-Powder and Thin Film Technology Center, ITRI South, Tainan, Taiwan 709 (China)]. E-mail: jasonyang0606@yahoo.com.tw; Sun, I-W. [Department of Chemistry, National Cheng Kung University, Tainan, Taiwan 70101 (China)]. E-mail: iwsun@mail.ncku.edu.tw

    2007-10-15

    Abstact: In this paper, we synthesized a new complex bis(dibenzo[f,h]quinolinato-N,C {sup 2'}) iridium(III) acetylactonate ((DBQ){sub 2}Ir(acac)) having a longer conjugate system than bis(2-phenylpyridinato-N,C {sup 2'}) iridium(III) acetylacetonate ((PPY){sub 2}Ir(acac)). Interestingly (DBQ){sub 2}Ir(acac) emits at the same wavelength as (photoluminescence of 530 nm) (PPY){sub 2}Ir(acac). A high-efficiency electrophosphorescent polymer light-emitting diodes was constructed by using (DBQ){sub 2}Ir(acac) as the dopant, and a blend of poly(vinylcarbazole) (PVK) with 2-tert-butylphenyl-5-biphenyl-1,3,4-oxadiazol (PBD) as the host material. The electroluminescence efficiency of 9.5 cd/A is reported for the device doped with 3 wt% of (DBQ){sub 2}Ir(acac). In this device, the emission from the PVK or PBD host was effectively inhibited with the using (DBQ){sub 2}Ir(acac) . Emission from the dopant molecules in such devices involve localization of the injected electron and hole on the metal-organic center. This can occur by a variety of mechanisms, including Foerster and Dexter energy transfer from the host transport material to the dopant, and direct trapping of both electrons and holes on the metal-organic center.

  6. The influence of bubble populations generated under windy conditions on the blue-green light transmission in the upper ocean: An exploratory approach

    Science.gov (United States)

    Wang, Chengan; Tan, Jianyu; Lai, Qingzhi

    2016-12-01

    The “blue-green window” in the ocean plays an important role in functions such as communication between vessels, underwater target identification, and remote sensing. In this study, the transmission process of blue-green light in the upper ocean is analyzed numerically using the Monte Carlo method. First, the effect of total number of photons on the numerical results is evaluated, and the most favorable number is chosen to ensure accuracy without excessive costs for calculation. Then, the physical and mathematical models are constructed. The rough sea surface is generated under windy conditions and the transmission signals are measured in the far field. Therefore, it can be conceptualized as a 1D slab with a rough boundary surface. Under windy conditions, these bubbles form layers that are horizontally homogeneous and decay exponentially with depth under the influence of gravity. The effects of bubble populations on the process of blue-green light transmission at different wind speeds, wavelengths, angle of incidence and chlorophyll-a concentrations are studied for both air-incident and water-incident cases. The results of this study indicate that the transmission process of blue-green light is significantly influenced by bubbles under high wind-speed conditions.

  7. 3.5 W of diffraction-limited green light at 515 nm from SHG of a single-frequency tapered diode laser

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Hansen, Anders Kragh; Müller, André

    2017-01-01

    Multi-Watt efficient compact green laser sources are required for a number of applications e.g. within biophotonics, laser pumping and laser displays. We present generation of 3.5 W of diffraction-limited green light at 515 nm by second harmonic generation (SHG) of a tapered diode laser, itself...... yielding more than 9 W at 1030 nm. SHG is performed in single pass through a cascade of two nonlinear crystals with re-focusing and dispersion compensating optics between the two nonlinear crystals. The laser is single-frequency and the output power is stabilized to better than ±0.4%....

  8. Achieving minimum-error discrimination of an arbitrary set of laser-light pulses

    Science.gov (United States)

    da Silva, Marcus P.; Guha, Saikat; Dutton, Zachary

    2013-05-01

    Laser light is widely used for communication and sensing applications, so the optimal discrimination of coherent states—the quantum states of light emitted by an ideal laser—has immense practical importance. Due to fundamental limits imposed by quantum mechanics, such discrimination has a finite minimum probability of error. While concrete optical circuits for the optimal discrimination between two coherent states are well known, the generalization to larger sets of coherent states has been challenging. In this paper, we show how to achieve optimal discrimination of any set of coherent states using a resource-efficient quantum computer. Our construction leverages a recent result on discriminating multicopy quantum hypotheses [Blume-Kohout, Croke, and Zwolak, arXiv:1201.6625]. As illustrative examples, we analyze the performance of discriminating a ternary alphabet and show how the quantum circuit of a receiver designed to discriminate a binary alphabet can be reused in discriminating multimode hypotheses. Finally, we show that our result can be used to achieve the quantum limit on the rate of classical information transmission on a lossy optical channel, which is known to exceed the Shannon rate of all conventional optical receivers.

  9. Sliding Mode Pulsed Averaging IC Drivers for High Brightness Light Emitting Diodes

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Anatoly Shteynberg, PhD

    2006-08-17

    This project developed new Light Emitting Diode (LED) driver ICs associated with specific (uniquely operated) switching power supplies that optimize performance for High Brightness LEDs (HB-LEDs). The drivers utilize a digital control core with a newly developed nonlinear, hysteretic/sliding mode controller with mixed-signal processing. The drivers are flexible enough to allow both traditional microprocessor interface as well as other options such as “on the fly” adjustment of color and brightness. Some other unique features of the newly developed drivers include • AC Power Factor Correction; • High power efficiency; • Substantially fewer external components should be required, leading to substantial reduction of Bill of Materials (BOM). Thus, the LED drivers developed in this research : optimize LED performance by increasing power efficiency and power factor. Perhaps more remarkably, the LED drivers provide this improved performance at substantially reduced costs compared to the present LED power electronic driver circuits. Since one of the barriers to market penetration for HB-LEDs (in particular “white” light LEDs) is cost/lumen, this research makes important contributions in helping the advancement of SSL consumer acceptance and usage.

  10. Gross and microscopic findings in patients submitted to nonablative full-face resurfacing using intense pulsed light: a preliminary study.

    Science.gov (United States)

    Hernández-Pérez, Enrique; Ibiett, Erick Valencia

    2002-08-01

    Intense pulsed light (IPL) is a noncoherent, nonlaser, filtered flashlamp emitting a broadband visible light that has been shown to be effective in photoepilation, as well as in a number of vascular and pigmented lesions of the skin. Their efficacy has also been reported recently in the treatment of photodamaged facial skin. In the last condition, however, there are few studies showing the clinical and microscopic changes produced by IPL. To assess the gross and microscopic changes that occur in photodamaged skin submitted to nonablative full-face resurfacing (NAFFR) using IPL. Five women were submitted to five NAFFR sessions using IPL, one every 2 weeks. Skin biopsies and photographs were taken on all of the patients before the first procedure and after the last one, as well as weekly clinical assessment. Data concerning skin features (wrinkles, oiliness, thickness, dilated pores, and general appearance) were all assessed. Microscopic improvement of the aging features in the epidermis and dermis were all assessed. For the statistical analysis a t test for small samples was used. All the patients showed clinical and microscopic improvement in every one of the parameters assessed. The t test for small samples showed a statistically significant difference (P Facial photodamage was clinically and microscopically improved using IPL. Use of IPL as a rejuvenating method seems to be promising, with minimal side effects, a wide safety margin, and minimal downtime.

  11. Use of invisible near infrared light fluorescence with indocyanine green and methylene blue in urology. Part 2.

    Science.gov (United States)

    Polom, Wojciech; Markuszewski, Marcin; Rho, Young Soo; Matuszewski, Marcin

    2014-01-01

    In the second part of this paper, concerning the use of invisible near infrared light (NIR) fluorescence with indocyanine green (ICG) and methylene blue (MB) in urology, other possible uses of this new technique will be presented. In kidney transplantation, this concerns allograft perfusion and real time NIR-guided angiography; moreover, perfusion angiography of tissue flaps, NIRF visualization of ureters, NIR-guided visualization of urinary calcifications, NIRF in male infertility and semen quality assessment. In this part, we have also analysed cancer targeting and imaging fluorophores as well as cost benefits associated with the use of these new techniques. PubMed and Medline databases were searched for ICG and MB use in urological settings, along with data published in abstracts of urological conferences. Although NIR-guided ICG and MB are still in their initial phases, there have been significant developments in a few more major domains of urology, including 1) kidney transplantation: kidney allograft perfusion and vessel reconstruction; 2) angiography perfusion of tissue flaps; 3) visualization of ureters; 4) visualization of urinary calcifications; and 5) NIRF in male infertility and semen quality assessment. Near infrared technology in urology is at its early stages. More studies are needed to assess the true potential and limitations of the technology. Initial studies show that this pioneering tool may influence various aspects of urology.

  12. Improvement of ITO properties in green-light-emitting devices by using N2:O2 plasma treatment

    Science.gov (United States)

    Jeon, Hyeonseong; Kang, Seongjong; Oh, Hwansool

    2016-01-01

    Plasma treatment reduces the roughness of the indium-tin-oxide (ITO) interface in organic light emitting diodes (OLEDs). Oxygen gas is typically used in the plasma treatment of conventional OLED devices. However, in this study, nitrogen and oxygen gases were used for surface treatment to improve the properties of ITO. To investigate the improvements resulting from the use of nitrogen and oxygen plasma treatment, fabricated green OLED devices. The device's structure was ITO (600 Å) / α-NPD (500 Å) / Alq3:NKX1595 (400 Å:20 Å,5%) / LiF / Al:Li (10 Å:1000 Å). The plasma treatment was performed in a capacitive coupled plasma (CCP) type plasma treatment chamber similar to that used in the traditional oxygen plasma treatment. The results of this study show that the combined nitrogen/oxygen plasma treatment increases the lifetime, current density, and brightness of the fabricated OLED while decreasing the operating voltage relative to those of OLEDs fabricated using oxygen plasma treatment.

  13. Broadband 2D electronic spectrometer using white light and pulse shaping: noise and signal evaluation at 1 and 100 kHz.

    Science.gov (United States)

    Kearns, Nicholas M; Mehlenbacher, Randy D; Jones, Andrew C; Zanni, Martin T

    2017-04-03

    We have developed a broad bandwidth two-dimensional electronic spectrometer that operates shot-to-shot at repetition rates up to 100 kHz using an acousto-optic pulse shaper. It is called a two-dimensional white-light (2D-WL) spectrometer because the input is white-light supercontinuum. Methods for 100 kHz data collection are studied to understand how laser noise is incorporated into 2D spectra during measurement. At 100 kHz, shot-to-shot scanning of the delays and phases of the pulses in the pulse sequence produces a 2D spectrum 13-times faster and with the same signal-to-noise as using mechanical stages and a chopper. Comparing 100 to 1 kHz repetition rates, data acquisition time is decreased by a factor of 200, which is beyond the improvement expected by the repetition rates alone due to reduction in 1/f noise. These improvements arise because shot-to-shot readout and modulation of the pulse train at 100 kHz enables the electronic coherences to be measured faster than the decay in correlation between laser intensities. Using white light supercontinuum for the pump and probe pulses produces high signal-to-noise spectra on samples with optical densities 200 nm bandwidth.

  14. The effects of sodium in ITO by pulsed laser deposition on organic light-emitting diodes

    International Nuclear Information System (INIS)

    Yong, Thian Khok; Kee, Yeh Yee; Tan, Sek Sean; Siew, Wee Ong; Tou, Teck Yong; Yap, Seong Shan

    2010-01-01

    The depth profile of ITO on glass was measured by the time-of-flight secondary ion mass spectroscopy (TOFSIMS) which revealed high sodium (Na) ion concentration at the ITO surface as well as at the ITO-glass interface as a result of out diffusion with substrate heating. Effects of Na ions on the performance of organic light-emitting diode (OLED) were studied by etching away a few tens of nanometers off the ITO surface with a dilute aquaregia solution of HNO 3 :HCl:H 2 O. A single-layer, molecularly doped ITO/(PVK+TPD+Alq 3 )/Al OLEDs were fabricated on bare and etched ITO samples. Although the removal of a 10-nm layer of ITO surface increased the voltage range, brightness, and lifetime, it was insufficient to correlate these improvements with solely to the Na ion reduction without considering the surface roughness. (orig.)

  15. The effects of sodium in ITO by pulsed laser deposition on organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Yong, Thian Khok [Multimedia University, Faculty of Engineering, Cyberjaya, Selangor (Malaysia); Universiti Tunku Abdul Rahman, Faculty of Engineering and Science, Kuala Lumpur (Malaysia); Kee, Yeh Yee; Tan, Sek Sean; Siew, Wee Ong; Tou, Teck Yong [Multimedia University, Faculty of Engineering, Cyberjaya, Selangor (Malaysia); Yap, Seong Shan [Multimedia University, Faculty of Engineering, Cyberjaya, Selangor (Malaysia); Norwegian University of Science and Technology, Department of Physics, Trondheim (Norway)

    2010-12-15

    The depth profile of ITO on glass was measured by the time-of-flight secondary ion mass spectroscopy (TOFSIMS) which revealed high sodium (Na) ion concentration at the ITO surface as well as at the ITO-glass interface as a result of out diffusion with substrate heating. Effects of Na ions on the performance of organic light-emitting diode (OLED) were studied by etching away a few tens of nanometers off the ITO surface with a dilute aquaregia solution of HNO{sub 3}:HCl:H{sub 2}O. A single-layer, molecularly doped ITO/(PVK+TPD+Alq{sub 3})/Al OLEDs were fabricated on bare and etched ITO samples. Although the removal of a 10-nm layer of ITO surface increased the voltage range, brightness, and lifetime, it was insufficient to correlate these improvements with solely to the Na ion reduction without considering the surface roughness. (orig.)

  16. Advanced Oxidation of Tartrazine and Brilliant Blue with Pulsed Ultraviolet Light Emitting Diodes.

    Science.gov (United States)

    Scott, Robert; Mudimbi, Patrick; Miller, Michael E; Magnuson, Matthew; Willison, Stuart; Phillips, Rebecca; Harper, Willie F

    2017-01-01

      This study investigated the effect of ultraviolet light-emitting diodes (UVLEDs) coupled with hydrogen peroxide as an advanced oxidation process (AOP) for the degradation of two test chemicals. Brilliant Blue FCF consistently exhibited greater degradation than tartrazine, with 83% degradation after 300 minutes at the 100% duty cycle compared with only 17% degradation of tartrazine under the same conditions. These differences are attributable to the structural properties of the compounds. Duty cycle was positively correlated with the first-order rate constants (k) for both chemicals but, interestingly, negatively correlated with the normalized first-order rate constants (k/duty cycle). Synergistic effects of both hydraulic mixing and LED duty cycle were manifested as novel oscillations in the effluent contaminant concentration. Further, LED output and efficiency were dependent upon duty cycle and less efficient over time perhaps due to heating effects on semiconductor performance.

  17. Novel green-emitting Na2CaPO4F:Eu2+ phosphors for near-ultraviolet white light-emitting diodes

    International Nuclear Information System (INIS)

    Huang, Chien-Hao; Chen, Yen-Chi; Kuo, Te-Wen; Chen, Teng-Ming

    2011-01-01

    In this study, green-emitting Na 2 CaPO 4 F:Eu 2+ phosphors were synthesized by solid-state reactions. The excitation spectra of the phosphors showed a broad hump between 250 and 450 nm; the spectra match well with the near-ultraviolet (NUV) emission spectra of light-emitting diodes (LEDs). The emission spectrum showed an intense broad emission band centered at 506 nm. White LEDs were fabricated by integrating a 390 nm NUV chip comprising blue-emitting BaMgAl 10 O 17 :Eu 2+ , green-emitting Na 2 CaPO 4 F:0.02 Eu 2+ , and red-emitting CaAlSiN 3 :Eu 2+ phosphors into a single package; the white LEDs exhibited white light with a correlated color temperature of 5540 K, a color-rendering index of 90.75, and color coordinates (0.332, 0.365) close to those of ideal white light. - Highlights: → Novel green-emitting Na 2 CaPO 4 F:Eu 2+ phosphors were synthesized by solid-state reactions in this research. → White LEDs were fabricated by integrating a 390 nm NUV chip comprising blue-emitting BaMgAl 10 O 17 :Eu 2+ , green-emitting Na 2 CaPO 4 F:0.02Eu 2+ , and red-emitting CaAlSiN 3 :Eu 2+ phosphors into a single package. → The white LEDs exhibited white light with a correlated color temperature of 5540 K, a color-rendering index of 90.75, and color coordinates (0.332, 0.365) close to those of ideal white light.

  18. Reverse leakage current characteristics of InGaN/GaN multiple quantum well ultraviolet/blue/green light-emitting diodes

    Science.gov (United States)

    Zhou, Shengjun; Lv, Jiajiang; Wu, Yini; Zhang, Yuan; Zheng, Chenju; Liu, Sheng

    2018-05-01

    We investigated the reverse leakage current characteristics of InGaN/GaN multiple quantum well (MQW) near-ultraviolet (NUV)/blue/green light-emitting diodes (LEDs). Experimental results showed that the NUV LED has the smallest reverse leakage current whereas the green LED has the largest. The reason is that the number of defects increases with increasing nominal indium content in InGaN/GaN MQWs. The mechanism of the reverse leakage current was analyzed by temperature-dependent current–voltage measurement and capacitance–voltage measurement. The reverse leakage currents of NUV/blue/green LEDs show similar conduction mechanisms: at low temperatures, the reverse leakage current of these LEDs is attributed to variable-range hopping (VRH) conduction; at high temperatures, the reverse leakage current of these LEDs is attributed to nearest-neighbor hopping (NNH) conduction, which is enhanced by the Poole–Frenkel effect.

  19. Generation of 3.5 W of diffraction-limited green light from SHG of a single tapered diode laser in a cascade of nonlinear crystals

    DEFF Research Database (Denmark)

    Hansen, Anders Kragh; Jensen, Ole Bjarlin; Sumpf, Bernd

    2014-01-01

    Many applications, e.g., within biomedicine stand to benefit greatly from the development of diode laser-based multi- Watt efficient compact green laser sources. The low power of existing diode lasers in the green area (about 100 mW) means that the most promising approach remains nonlinear...... frequency conversion of infrared tapered diode lasers. Here, we describe the generation of 3.5 W of diffraction-limited green light from SHG of a single tapered diode laser, itself yielding 10 W at 1063 nm. This SHG is performed in single pass through a cascade of two PPMgO:LN crystals with re...... power of 3.5 W corresponds to a power enhancement greater than 2 compared to SHG in each of the crystals individually and is the highest visible output power generated by frequency conversion of a single diode laser. Such laser sources provide the necessary pump power for biophotonics applications...

  20. Volume holographic storage and multiplexing in blends of PMMA and a block methacrylic azopolymer, using 488 nm light pulses in the range of 100 ms to 1 s

    DEFF Research Database (Denmark)

    Forcen, Patricia; Oriol, Luis; Sanchez, Carlos

    2008-01-01

    Blends of polymethylmethacrylate (PMMA) and diblock methacrylic azopolymers have been investigated for holographic storage with short light pulses. Transmission electron microscopy measurements show that the dilution of the block copolymer in PMMA changes the microstructure from a lamellar to a s...

  1. Rapid measurement of indocyanine green retention by pulse spectrophotometry: a validation study in 70 patients with Child-Pugh A cirrhosis before hepatectomy for hepatocellular carcinoma.

    Science.gov (United States)

    Cheung, Tan To; Chan, See Ching; Chok, Kenneth S H; Chan, Albert C Y; Yu, Wan Ching; Poon, Ronnie T P; Lo, Chung Mau; Fan, Sheung Tat

    2012-06-01

    The indocyanine green (ICG) retention test is the most popular liver function test for selecting patients for major hepatectomy. Traditionally, it is done using spectrophotometry with serial blood sampling. The newly-developed pulse spectrophotometry is a faster alternative, but its accuracy on Child-Pugh A cirrhotic patients undergoing hepatectomy for hepatocellular carcinoma has not been well documented. This study aimed to assess the accuracy of the LiMON(®), one of the pulse spectrophotometry systems, in measuring preoperative ICG retention in these patients and to devise an easy formula for conversion of the results so that they can be compared with classical literature records where ICG retention was measured by the traditional method. We measured the liver function of 70 Child-Pugh A cirrhotic patients before hepatectomy for hepatocellular carcinoma from September 2008 to January 2009. ICG retention at 15 minutes measured by traditional spectrophotometry (ICGR15) was compared with ICG retention at 15 minutes measured by the LiMON (ICGR15(L)). The median ICGR15 was 14.7% (5.6%-32%) and the median ICGR15(L) was 10.4% (1.2%-28%). The mean difference between them was -4.3606. There was a strong correlation between ICGR15 and ICGR15(L) (correlation coefficient, 0.844; 95% confidence interval, 0.762-0.899). The following formula was devised: ICGR15=1.16XICGR15(L)+2.73. The LiMON provides a fast and repeatable way to measure ICG retention at 15 minutes, but with constant underestimation of the real value. Therefore, when comparing results obtained by traditional spectrophotometry and the LiMON, adjustment of results from the latter is necessary, and this can be done with a simple mathematical calculation using the above formula.

  2. Theoretical study of relativistic corrections induced by an ultra-short and intense light pulse in matter

    International Nuclear Information System (INIS)

    Hinschberger Schreiber, Yannick

    2012-01-01

    This thesis focuses on the relativistic corrections induced by an ultra-short and intense light pulse in condensed matter. It is part of the new theme of the coherent ultra-fast demagnetization of ferromagnetic systems induced by a femtosecond laser pulse [Nature, 5, 515 (2009)] [1]. A relativistic coupling between spins and photons has been proposed to explain the experimental results obtained in [1]. The first part of this work focuses on the nonrelativistic limit of the Dirac's formalism. By means of the Foldy-Wouthuysen transformation the nonrelativistic approximation of the external-electromagnetic-field Dirac equation to fifth order in powers of 1/m is obtained. Generalizing this result we postulate a general expression of the direct spin-field electronic Hamiltonian valid at any order in 1/m. A similar work is performed on a two-interacting electrons system described with the Breit Hamiltonian, whose the diagonalization at third order in 1/m illustrates an original coupling between the spin, the coulomb interaction and the time-dependent external electromagnetic field. In a second part, a classical model is developed for modeling ultrafast nonlinear coherent magneto-optical experiments performed on ferromagnetic thin films. Theoretical predictions of the Faraday rotation angles are compared to available experimental values and give meaningful insights about the physical mechanisms underlying the observed coherent magneto-optical phenomena. The crucial role played by the spin-orbit mechanism resulting from the direct interaction between the external electric field of the laser and the electron spins of the sample is underlined. (author) [fr

  3. Synergetic effect of green tea on polymer gel dosimeter and determination of optimal wavelength to choose light source for optical computed tomography

    Directory of Open Access Journals (Sweden)

    Sathiya Raj

    2016-03-01

    Full Text Available Purpose: The ultimate aim of this study is to observe the effect of Green tea as a co-antioxidant in PAGAT gel dosimeter and evaluate the appropriate light source for scanning the PAGAT and NIPAM polymer gel.Methods: Both PAGAT (Poly Acrylamide Gelatin Tetrakis hydroxyl phosphonium chloride and NIPAM (N-Isopropyl acrylamide gel were prepared in normoxic condition. The green tea extract (GTE was prepared and tested only on PAGAT. Co-60 teletherapy machine has been used for irradiation purpose, and the gel samples were scanned using UV-Visible spectrophotometer. Water equivalency of the gel has been tested in terms of their electron density, effective atomic number and Ratio of oxygen and hydrogen (O/H. We have used NIST XCOM database to test the water equivalency.Results: In this study we found that the GTE added to the gel do not respond to the given doses. By adding sugar we can enhance the sensitivity of the gel. Further investigations are required to use Green tea as a co antioxidant concentration of THPC (Tetrakis hydroxymethyl phosphonium chloride. The optimal wavelength with different region for scanning the PAGAT is 450 to 480 nm (Blue region, for NIPAM it is 540 nm and 570 nm (Green and yellow region. The PAGAT and NIPAM showed better sensitivity at 510 nm. Both gels have their effective atomic number closer to water (NIPAM-7.2, PAGAT-7.379.Conclusion: As per our results, we concluded that GTE alone is not an effective co-antioxidant for polymer gels. When the GTE is combined with sugar and THPC, it protects the gel from pre-polymerization. This study strongly suggests that the blue light is an optimal source for scanning the PAGAT and green to yellow light for NIPAM gel. Though both gels were considered as water equivalent, the PAGAT is equivalent to water and the temporal stability of this gel is higher than NIPAM.

  4. Bluish-green color emitting Ba2Si3O8:Eu2+ ceramic phosphors for white light-emitting diodes.

    Science.gov (United States)

    Xiao, F; Xue, Y N; Zhang, Q Y

    2009-10-15

    This paper reports on the structural and optical properties of Eu(2+) activated Ba(2)Si(3)O(8) ceramic phosphors synthesized by a sol-gel method. The ceramic phosphors have been characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM) and fluorescence measurements. The structural characterization results suggest that the as-prepared phosphors are of single phase monoclinic Ba(2)Si(3)O(8) with rod-like morphology. A broad excitation band ranging from 300 to 410 nm matches well with the ultraviolet (UV) radiation of light-emitting diodes (LEDs). Upon 380 nm UV light excitation, these phosphors emit bluish-green emission centered at 500 nm with color coordination (x=0.25, y=0.40). All the obtained results indicate that the Ba(2)Si(3)O(8):Eu(2+) ceramic phosphors are promising bluish-green candidates for the phosphor-converted white LEDs.

  5. Self-assembly of natural light-harvesting bacteriochlorophylls of green sulfur photosynthetic bacteria in silicate capsules as stable models of chlorosomes.

    Science.gov (United States)

    Saga, Yoshitaka; Akai, Sho; Miyatake, Tomohiro; Tamiaki, Hitoshi

    2006-01-01

    Naturally occurring bacteriochlorophyll(BChl)s-c, -d, and -e from green sulfur photosynthetic bacteria were self-assembled in an aqueous solution in the presence of octadecyltriethoxysilane and tetraethoxysilane, followed by polycondensation of the alkoxysilanes by incubation for 50 h at 25 degrees C. The resulting BChl self-assemblies in silicate capsules exhibited visible absorption and circular dichroism spectra similar to the corresponding natural light-harvesting systems (chlorosomes) of green sulfur bacteria. Dynamic light scattering measurements indicated that the silicate capsules had an average hydrodynamic diameter of several hundred nanometers. BChl self-aggregates in silicate capsules were significantly stable to a nonionic surfactant Triton X-100, which was apt to decompose the BChl aggregates to their monomeric form, compared with conventional micelle systems. BChls in silicate capsules were more tolerant to demetalation of the central magnesium under acidic conditions than the natural systems.

  6. Photonics at the frontiers. Generation of few-cycle light pulses via NOPCPA and real-time probing of charge transfer in hybrid photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, Daniel

    2011-11-11

    In the first part of this thesis the methodics of the non-collinear, optically parametric amplification of chirped light pulses (NOPCPA) for the generation of few-cycle light pulses in the visible (Vis) and near infrared (NIR) with of 5-8 fs half-width are essential further developed. Fundamental parametric influences, like the existence of a parametrically induced phase and the generation of optically parametric fluorescence (OPF), are studied both by theoretical analyses and numerical simulations and by concrete experiments. Experimentally in the framework of this thesis fwe-cycle light pulses with a pulse width of 7.9 fs, 130 mJ energy, at 805 nm central wavelength and a very high seed-pulse-limited prepulse contrast of 11 and 8 orders of magnitude are reached at 30 ps and approximately 3 ps. One the one hand it has been succeeded to accelerate with the broad-band pulse amplifier quasi-monoenergetic electrons with energies of up to 50 MeV. For this the light pulse is focussed to relativistic intensities of several W/cm{sup 2} in a helium gas jet. On the other hand XUV light was produced up to the 20th harmonic of the generated light pulse from the broad-band pulse amplifier by its sub-cycle interaction with solid surfaces. In the framework of this thesis furthermore new, extended concepts for still broader-band NOPCPA over one octave were developed and characterized, which contain the application of two pump pulses in one NOPCPA stage and the application of two different pump wavelength in two subsequent NOPCPA stages. In the second part of this thesis broad-band white-light spectra and by means of NOPCPA spectrally tunable light pulses are applied in order to realize a transient absorption spectrometer with multichannel detection. This new excitation-query construction combines a very broad-band UV-Vis-NIR query with a high time resolution of 40 fs and high sensitivity for the transient change of the optical density of less than 10{sup -4}. By this it has in

  7. Optofluidic technology for monitoring rotifer Brachionus calyciflorus responses to regular light pulses

    Science.gov (United States)

    Cartlidge, Rhys; Campana, Olivia; Nugegoda, Dayanthi; Wlodkowic, Donald

    2016-12-01

    Behavioural alterations can occur as a result of a toxicant exposure at concentrations significantly lower than lethal effects that are commonly measured in acute toxicity testing. The use of alternating light and dark photoperiods to test phototactic responses of aquatic invertebrates in the presence of environmental contaminants provides an attractive analytical avenue. Quantification of phototactic responses represents a sublethal endpoint that can be employed as an early warning signal. Despite the benefits associated with the assessment of these endpoints, there is currently a lack of automated and miniaturized bioanalytical technologies to implement the development of toxicity testing with small aquatic species. In this study we present a proof-of-concept microfluidic Lab-on-a-Chip (LOC) platform for the assessment of rotifer swimming behavior in the presence of the toxicant copper sulfate. The device was designed to assess impact of toxicants at sub-lethal concentrations on freshwater crustacean Brachionus calyciflorus, testing behavioral endpoints such as animal swimming distance, speed and acceleration. The LOC device presented in this work enabled straightforward caging of microscopic crustaceans as well as non-invasive analysis of rapidly swimming animals in a focal plane of a video-microscopy system. The chip-based technology was fabricated using a new photolithography method that enabled formation of thick photoresist layers with minimal distortion. Photoresist molds were then employed for replica molding of LOC devices with poly(dimethylsiloxane) (PDMS) elastomer. The complete bioanalytical system consisted of: (i) microfluidic PDMS chip-based device; (ii) peristaltic microperfusion pumping manifold; (iii) miniaturized CMOS camera for video data acquisition; and (iv) video analysis software algorithms for quantification of changes in swimming behaviour of B. calyciflorus in response to reference toxicants.

  8. Relativistic motion of charged particles in the interaction of short pulses of intense laser light with plasma

    International Nuclear Information System (INIS)

    Gomez R, F.

    2004-01-01

    τ of the electron that per se is an invariant, it is proportional to a certain interval dη. In the chapter 3 it will see that the movement analysis of the charged particles in the electromagnetic field presents serious mathematical difficulties, where the integration of the movement equations results extraordinarily complex and it can only be integrated in most of the cases by numerical means. We will present the procedure used for the deduction of the equations of motion of a charged particle in the interaction of a laser light pulse and a homogeneous magnetic field in arbitrary direction, with the addition of an harmonic term of force. In this chapter it is not sought to make a meticulous discussion of the involved physics and only we will present the algebraic procedure. In the chapter 4 we will present the integration method of the Lorentz force, and we will obtain the exact solution for the case of a pulse of a plane wave elliptically polarized of arbitrary amplitude spreading along an external magnetic field. The solution method will allow to decrease the solutions to the case in which we have an infinite waves train reported by Ondarza (10) and so the corresponding solutions will be obtained reported in the literature by other authors. The main contribution in this part will be the one of obtaining an exact solution for the problem of the interaction of an electromagnetic pulse, modulated by a form of gaussian type, and a charged particle. The above-mentioned approaches in acceptable measure to real situations in well-known experiments. It will be found that when the form of the pulse is introduced to modulate the electromagnetic field, an amplification of the resonance zone in the solutions appears. Such resonance depends of the external magnetic field that fixes by turns the cyclotron frequency, and of the number of optical cycles that compose the encircling one that modulates the pulse form. In the chapter 5 it will see the case of small oscillations free of

  9. From green architecture to architectural green

    DEFF Research Database (Denmark)

    Earon, Ofri

    2011-01-01

    that describes the architectural exclusivity of this particular architecture genre. The adjective green expresses architectural qualities differentiating green architecture from none-green architecture. Currently, adding trees and vegetation to the building’s facade is the main architectural characteristics...... they have overshadowed the architectural potential of green architecture. The paper questions how a green space should perform, look like and function. Two examples are chosen to demonstrate thorough integrations between green and space. The examples are public buildings categorized as pavilions. One......The paper investigates the topic of green architecture from an architectural point of view and not an energy point of view. The purpose of the paper is to establish a debate about the architectural language and spatial characteristics of green architecture. In this light, green becomes an adjective...

  10. Green's dyadic approach of the self-stress on a dielectric-diamagnetic cylinder with non-uniform speed of light

    International Nuclear Information System (INIS)

    Cavero-Pelaez, I; Milton, K A

    2006-01-01

    We present a Green's dyadic formulation to calculate the Casimir energy for a dielectric-diamagnetic cylinder with the speed of light differing inside and outside. Although the result is in general divergent, special cases are meaningful. It is pointed out how the self-stress on a purely dielectric cylinder vanishes through second order in the deviation of the permittivity from its vacuum value, in agreement with the result calculated from the sum of van der Waals forces

  11. Apparent dissociation of photoperiodic time measurement between vernal migration and breeding under dim green light conditions in Gambel's white-crowned sparrow Zonotrichia leucophrys gambelii

    Directory of Open Access Journals (Sweden)

    Gang WANG, Marilyn RAMENOFSKY, John C. WINGFIELD

    2013-06-01

    Full Text Available In seasonally breeding birds, the annual cycle of photoperiod is a principal environmental cue for temporal arrangement of different life-history stages, such as migration and breeding. In the past, most research has focused on the mechanisms of photoperiodic control of breeding with less attention paid to migration. In Gambel’s white-crowned sparrow Zonotrichia leucophrys gambelii (GWCS, photoreceptors for induction of breeding are known to reside in the basal hypothalamus. However, it is unknown whether the sites of photoperiodic reception for vernal migration are the same as those for breeding. Therefore, we hypothesized that they may be controlled separately. In this study, we exposed photosensitive GWCSs to low-penetration green light (wavelength at 510 nm under a regime of 1 lux during the day and <0.1 lux at night, and switched the photoperiodic conditions from short day (10 h daytime to long day (18 h daytime. The results showed that the experimental birds developed traits associated with vernal migration including mass increase, fat deposition and migratory restlessness behavior when transferred from short day to long day green light cycles, while control birds maintained continuously on short day green light conditions did not express any migration related characteristics. Neither experimental nor control groups showed gonadal recrudescence under either green light cycles. In support of our hypothesis, we were able to apparently dissociate the photoperiodic responses regulating vernal migration and breeding, which suggests separate mechanisms of photoperiodic time measurement. Such distinct photoperiodic mechanisms may drive the fine-tuned temporal arrangement of the two life history stages [Current Zoology 59 (3: 349–359, 2013].

  12. Lighting.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1992-09-01

    Since lighting accounts for about one-third of the energy used in commercial buildings, there is opportunity to conserve. There are two ways to reduce lighting energy use: modify lighting systems so that they used less electricity and/or reduce the number of hours the lights are used. This booklet presents a number of ways to do both. Topics covered include: reassessing lighting levels, reducing lighting levels, increasing bulb & fixture efficiency, using controls to regulate lighting, and taking advantage of daylight.

  13. Solution processed multilayer red, green and blue phosphorescent organic light emitting diodes using carbazole dendrimer as a host

    International Nuclear Information System (INIS)

    Hasan, Zainal Abidin; Woon, Kai Lin; Wong, Wah Seng; Ariffin, Azhar; Chen, Show-An

    2017-01-01

    4, 4'-bis(3,6-bis(3, 6-ditert-pentyl-carbazol-9-yl)carbazol-9-yl)-2,2'-dimethylbiphenyl, a novel carbazole dendrimer, has been synthesized. This compound shows an excellent thermal stability with a high glass transition temperature of 283 °C and decomposition temperature of 487 °C. Density functional theory is used to investigate the frontier orbitals. It was found that the Highest Occupied Molecular Orbital and the Lowest Unoccupied Molecular Orbital levels of 4, 4'-bis(3,6-bis(3, 6-ditert-pentyl-carbazol-9-yl)carbazol-9-yl)-2,2'-dimethylbiphenyl are nearly degenerate to the next highest or lowest frontier orbitals. The electron rich outer dendrons along with Highest Occupied Molecular Orbital level of 5.24 eV as determined from cyclic voltammetry makes 4, 4'-bis(3,6-bis(3,6-ditert-pentyl-carbazol-9-yl)carbazol-9-yl)-2, 2'-dimethylbiphenyl a good hole transporting material. This compound also shows a triplet energy of 2.83 eV. Solution processable multilayer red, green and blue phosphorescent organic light emitting diodes are fabricated having 4, 4'-bis(3,6-bis(3,6-ditert-pentyl-carbazol-9-yl) carbazol-9-yl)-2,2'-dimethylbiphenyl as a hole transporting host. It was found that the CIE-coordinates remain constant within a wide range of brightness.

  14. Efficacy of intense pulsed light therapy in the treatment of facial acne vulgaris: Comparison of two different fluences

    Directory of Open Access Journals (Sweden)

    Monika V Patidar

    2016-01-01

    Full Text Available Background: Acne vulgaris is the most common disease of the skin affecting adolescents and young adults causing psychological distress. The combination of antibiotic resistance, adverse effects of topical and systemic anti acne medications and desire for high tech approaches have all led to new enthusiasm for light based acne treatment. Intense pulse light (IPL therapy has three modes of action in acne vulgaris i.e., photochemical, photo thermal and photo immunological. Aims: (1 to study efficacy of IPL therapy in facial acne vulgaris. (2 To compare two fluences - one normal and other subnormal on right and left side of face respectively. Methods: (Including settings and design and statistical analysis used. Total 45 patients in age group 16 to 28 years with inflammatory facial acne vulgaris were included in prospective study. Baseline data for each patient was recorded. All patients were given 4 sittings of IPL at 2 weeks interval and were followed for 2 months every 2 weeks. Fluence used was 35J/cm2 on right and 20J/cm2 on left side. Percentage reduction in lesion count was calculated at each sitting and follow up and graded as mild (0-25%, moderate (26-50%, good (51-75% and excellent (76-100%. Side effects were noted. The results were analysed using Mann-Whitney Test. Results: On right side, excellent results were achieved in 10(22%, good in 22(49% and moderate in 13(29% patients. On left side excellent were results achieved in 7(15%, good in 19(42% and moderate in 16(43% patients. There was no statically significant difference noted in efficacy of two fluences used in treatment of facial acne vulgaris. Conclusions: IPL is a effective and safe option for inflammatory acne vulgaris with minimal reversible side effects. Subnormal fluence is as effective as normal fluence in Indian skin.

  15. Fluorescent minerals - A potential source of UV protection and visible light for the growth of green algae and cyanobacteria in extreme cosmic environments

    Science.gov (United States)

    Omairi, Tareq; Wainwright, Milton

    2015-07-01

    We propose that green algae (Chlorella variabilis and Dunaliella tertiolecta) and cyanobacteria (Synechococcus elongatus and Nostoc commune) can grow inside fluorescent rock minerals which convert damaging UV light to visible light, thereby allowing these organisms to survive and thrive in UV-rich environments without (or with limited) visible light, which would otherwise be inimical to them. The four microorganisms were incubated inside fluorescent rocks composed of fluorite, calcite and pyrite. The resultant growth was then measured following exposure to UV radiation, with the use of optical density and measurement of chlorophyll concentration. Results show that the microorganisms were shielded from harmful UV in these semi-transparent rocks, while at the same time benefiting from the fact that the minerals converted UV to visible light; this have been shown by a statistically significant increase in their growth, which although lower than when the cells were incubated in sunlight, was significantly higher than in controls incubated in the dark.

  16. Electroplex as a New Concept of Universal Host for Improved Efficiency and Lifetime in Red, Yellow, Green, and Blue Phosphorescent Organic Light-Emitting Diodes.

    Science.gov (United States)

    Song, Wook; Lee, Jun Yeob; Cho, Yong Joo; Yu, Hyeonghwa; Aziz, Hany; Lee, Kang Mun

    2018-02-01

    A new concept of host, electroplex host, is developed for high efficiency and long lifetime phosphorescent organic light-emitting diodes by mixing two host materials generating an electroplex under an electric field. A carbazole-type host and a triazine-type host are selected as the host materials to form the electroplex host. The electroplex host is found to induce light emission through an energy transfer process rather than charge trapping, and universally improves the lifetime of red, yellow, green, and blue phosphorescent organic light-emitting diodes by more than four times. Furthermore, the electroplex host shows much longer lifetime than a common exciplex host. This is the first demonstration of using the electroplex as the host of high efficiency and long lifetime phosphorescent organic light-emitting diodes.

  17. Nanoscale Imaging of Light-Matter Coupling Inside Metal-Coated Cavities with a Pulsed Electron Beam.

    Science.gov (United States)

    Moerland, Robert J; Weppelman, I Gerward C; Scotuzzi, Marijke; Hoogenboom, Jacob P

    2018-05-02

    Many applications in (quantum) nanophotonics rely on controlling light-matter interaction through strong, nanoscale modification of the local density of states (LDOS). All-optical techniques probing emission dynamics in active media are commonly used to measure the LDOS and benchmark experimental performance against theoretical predictions. However, metal coatings needed to obtain strong LDOS modifications in, for instance, nanocavities, are incompatible with all-optical characterization. So far, no reliable method exists to validate theoretical predictions. Here, we use subnanosecond pulses of focused electrons to penetrate the metal and excite a buried active medium at precisely defined locations inside subwavelength resonant nanocavities. We reveal the spatial layout of the spontaneous-emission decay dynamics inside the cavities with deep-subwavelength detail, directly mapping the LDOS. We show that emission enhancement converts to inhibition despite an increased number of modes, emphasizing the critical role of optimal emitter location. Our approach yields fundamental insight in dynamics at deep-subwavelength scales for a wide range of nano-optical systems.

  18. The Role of NADPH Oxidase in the Inhibition of Trichophyton rubrum by 420-nm Intense Pulsed Light

    Directory of Open Access Journals (Sweden)

    Hao Huang

    2018-01-01

    Full Text Available Objectives: To evaluate the effect of intense pulsed light (IPL on Trichophyton rubrum and investigate its mechanism of action.Methods: The viability of fungi treated with IPL alone and with IPL combined with an NADPH oxidase inhibitor (DPI pretreatment was determined by MTT assays. The reactive oxygen species (ROS were quantified with a DCFH-DA fluorescent probe. Malondialdehyde (MDA content and superoxide dismutase (SOD and glutathione peroxidase (GSH-Px activities were determined by commercial kits. The transcription of the Nox gene was quantified using quantitative real-time PCR (qRT-PCR analysis, and micromorphology was observed using scanning electron microscopy (SEM. In addition, fungal keratinase activity was detected by measuring dye release from keratin azure.Results: The growth declined with statistical significance after 6 h of treatment (P < 0.001. The ROS and MDA content increased after IPL treatment, whereas the SOD and GSH-Px activity decreased. Nox gene expression was upregulated, and the micromorphology was damaged. Keratinase activity decreased. Fungi that received DPI pretreatment exhibited contrasting outcomes.Conclusion: We found that 420-nm IPL significantly inhibited the growth and pathogenicity of T. rubrum in vitro. A suggested mechanism involves Nox as a factor that mediates 420-nm IPL-induced oxidative damage of T. rubrum.

  19. Deposition of Bacillus subtilis spores using an airbrush-spray or spots to study surface decontamination by pulsed light.

    Science.gov (United States)

    Levy, Caroline; Bornard, Isabelle; Carlin, Frédéric

    2011-02-01

    Microbial contamination on surfaces of food processing equipment is a major concern in industries. A new method to inoculate a single-cell layer (monolayer) of microorganisms onto polystyrene was developed, using a deposition with an airbrush. A homogeneous dispersion of Bacillus subtilis DSM 402 spores sprayed on the surface was observed using both plate count and scanning electron microscopy. No clusters were found, even with high spore concentrations (10(7) spores/inoculated surface). A monolayer of microorganisms was also obtained after deposition of 10 μL droplets containing 3×10(4) spores/spot on polystyrene disks, but not with a higher spore concentration. Pulsed light (PL) applied to monolayers of B. subtilis spores allowed log reductions higher than 6. As a consequence of clusters formation in spots of 10 μL containing more than 3×10(5) spores, log reductions obtained by PL were significantly lower. The comparative advantages of spot and spray depositions were discussed. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Improvement of Lambert-Beer law dynamic range by the use of temporal gates on transmitted light pulse through a scattering medium

    International Nuclear Information System (INIS)

    Yoshino, Hironori; Wada, Kenji; Horinaka, Hiromichi; Cho, Yoshio; Umeda, Tokuo; Osawa, Masahiko.

    1995-01-01

    The Lambert-Beer law holding for pulsed lights transmitted through a scattering medium was examined using a streak camera. The Lambert-Beer law dynamic range is found to be limited by floor levels that are caused by scattered photons and are controllable by the use of a temporal gate on the transmitted pulse. The dynamic range improvement obtained for a scattering medium of 2.8 cm -1 scattering coefficient of a thickness of 80 mm by a temporal gate of 60 ps was as much as 50 dB and the Lambert-Beer law dynamic rang reached to 140 dB. (author)

  1. Lighting

    Data.gov (United States)

    Federal Laboratory Consortium — Lighting Systems Test Facilities aid research that improves the energy efficiency of lighting systems. • Gonio-Photometer: Measures illuminance from each portion of...

  2. Coherent generation and dynamic manipulation of double stationary light pulses in a five-level double-tripod system of cold atoms

    International Nuclear Information System (INIS)

    Bao Qianqian; Zhang Xiaohang; Gao Junyan; Zhang Yan; Cui Cuili; Wu Jinhui

    2011-01-01

    We study a five-level double-tripod system of cold atoms for efficiently manipulating the dynamic propagation and evolution of a quantum probe field by modulating four classical control fields. Our numerical results show that it is viable to transform the quantum probe field into a pair of two-color stationary light pulses mutually coupled through two wave packets of atomic spin coherence. The pair of stationary light pulses can be released either from the sample entrance and exit synchronously or just from the sample exit with a controlled time delay. In addition, the two-color stationary light pulses are immune to the fast decay originating from the higher-order Fourier components of atomic spin and optical coherence, and may exhibit the quantum limited beating signals with their characteristic frequency determined by detunings of the four classical control fields. These results could be explored to design novel photonic devices, such as optical routing, beam splitter, and beat generator, for manipulating a quantum light field.

  3. Coherent generation and dynamic manipulation of double stationary light pulses in a five-level double-tripod system of cold atoms

    Energy Technology Data Exchange (ETDEWEB)

    Bao Qianqian; Zhang Xiaohang; Gao Junyan; Zhang Yan; Cui Cuili; Wu Jinhui [College of Physics, Jilin University, Changchun 130012 (China)

    2011-12-15

    We study a five-level double-tripod system of cold atoms for efficiently manipulating the dynamic propagation and evolution of a quantum probe field by modulating four classical control fields. Our numerical results show that it is viable to transform the quantum probe field into a pair of two-color stationary light pulses mutually coupled through two wave packets of atomic spin coherence. The pair of stationary light pulses can be released either from the sample entrance and exit synchronously or just from the sample exit with a controlled time delay. In addition, the two-color stationary light pulses are immune to the fast decay originating from the higher-order Fourier components of atomic spin and optical coherence, and may exhibit the quantum limited beating signals with their characteristic frequency determined by detunings of the four classical control fields. These results could be explored to design novel photonic devices, such as optical routing, beam splitter, and beat generator, for manipulating a quantum light field.

  4. Effect of incubation temperature and pH on the recovery of Bacillus weihenstephanensis spores after exposure to a peracetic acid-based disinfectant or to pulsed light.

    Science.gov (United States)

    Trunet, C; Mtimet, N; Mathot, A-G; Postollec, F; Leguérinel, I; Couvert, O; Carlin, F; Coroller, L

    2018-04-12

    The recovery at a range of incubation temperatures and pH of spores of Bacillus weihenstephanensis KBAB4 exposed to a peracetic acid-based disinfectant (PABD) or to pulsed light was estimated. Spores of B. weihenstephanensis were produced at 30 °C and pH 7.00, at 30 °C and pH 5.50, or at 12 °C and pH 7.00. The spores were treated with a commercial peracetic acid-based disinfectant at 80 mg·mL -1 for 0 to 200 min at 18 °C or by pulsed light at fluences ranging between 0.4 and 2.3 J·cm -2 for pulsed light treatment. After each treatment, the spores were incubated on nutrient agar at 12 °C, 30 °C or 37 °C, or at pH 5.10, 6.00 or 7.40. Incubation temperature during recovery had a significant impact only near the recovery limits, beyond which surviving spores previously exposed to a PABD or to pulsed light were not able to form colonies. In contrast, a decrease in pH of the recovery nutrient agar had a progressive impact on the ability of spores to form colonies. The time to first log reduction after PABD treatment was 29.5 ± 0.7 min with recovery at pH 7.40, and was tremendously shortened 5.1 ± 0.2 min with recovery at pH 5.10. Concerning the fluence necessary for the first log reduction, it was 1.5 times higher when the spores were recovered at pH 6.00 compared to a recovery at pH 5.10. The impact of recovery temperature and pH can be described with a mathematical model using cardinal temperature and pH as parameters. These effects of temperature and pH on recovery of Bacillus weihenstephanensis spores exposed to a disinfectant combining peracetic acid and hydrogen peroxide, or pulsed light are similar, although these treatments are of different natures. Sporulation temperature or pH did not impact resistance to the peracetic acid-based disinfectant or pulsed light. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. High solar-light photocatalytic activity of using Cu3Se2/rGO nanocomposites synthesized by a green co-precipitation method

    Science.gov (United States)

    Nouri, Morteza; Saray, Abdolali Moghaddam; Azimi, H. R.; Yousefi, Ramin

    2017-11-01

    Current work presents a facile, cost-effective, and green method to synthesize copper selenide nanostructures and copper selenide/graphene nanocomposites. The products were synthesized by a co-precipitation method by glycine amino acid as a green surfactant and graphene oxide (GO) sheets as a graphene source. X-ray diffraction patterns (XRD) of the products indicated that the products were Cu2Se3 with tetragonal phase. Fourier transform infrared (FTIR) spectroscopy and the XRD patterns indicated that the GO sheets were changed into reduced GO (rGO) during the synthesis process. Scanning and transmission electron microscopy (SEM and TEM) images showed the nanoparticles (NPs) that were decorated on rGO sheets had the significantly smaller size in compared to the pristine NPs. UV-vis results revealed that, the absorption peak of the products were in the visible region with a band-gap value between 1.85 eV and 1.95 eV. Finally, the products were applied as photocatalytic materials to remove Methylene Blue (MB) dye under solar-light and visible-light irradiation conditions. It was observed; the rGO had a significant role in enhancing the photocatalytic performance of the products and Cu2Se3/rGO (15%) could degrade more than 91% and 73% of MB only during 1 h under solar-light and visible-light sources, respectively.

  6. Modulation of the electroluminescence emission from ZnO/Si NCs/p-Si light-emitting devices via pulsed excitation

    Science.gov (United States)

    López-Vidrier, J.; Gutsch, S.; Blázquez, O.; Hiller, D.; Laube, J.; Kaur, R.; Hernández, S.; Garrido, B.; Zacharias, M.

    2017-05-01

    In this work, the electroluminescence (EL) emission of zinc oxide (ZnO)/Si nanocrystals (NCs)-based light-emitting devices was studied under pulsed electrical excitation. Both Si NCs and deep-level ZnO defects were found to contribute to the observed EL. Symmetric square voltage pulses (50-μs period) were found to notably enhance EL emission by about one order of magnitude. In addition, the control of the pulse parameters (accumulation and inversion times) was found to modify the emission lineshape, long inversion times (i.e., short accumulation times) suppressing ZnO defects contribution. The EL results were discussed in terms of the recombination dynamics taking place within the ZnO/Si NCs heterostructure, suggesting the excitation mechanism of the luminescent centers via a combination of electron impact, bipolar injection, and sequential carrier injection within their respective conduction regimes.

  7. Synthesis, crystal structure and photoluminescence study of green light emitting bis(1[(4-butylphenylimino]methyl naphthalen-2-ol Ni(II complex

    Directory of Open Access Journals (Sweden)

    M. Srinivas

    2016-09-01

    Full Text Available Synthetically feasible and cost effective Ni(II complex phosphor (4 as green organic light emitting diode (OLED was prepared by using Schiff base 1-[(4-butylphenylimino]methyl naphthalen-2-ol (3. The single crystals of Ni(II complex were grown from chloroform and hexane (1:1 v/v solution. The green crystals of the complex were characterized by using single crystal XRD studies and were evaluated for their photophysical properties. From the Diffused Reflectance Spectrum of the complex, the measured band gap energy was found to be 1.83 eV and the PL spectrum of the complex showed emission peak at 519 nm. The excitation peaks at 519 nm were appeared at 394 nm and 465 nm. The Commission Internationale De L'Eclairage (CIE chromaticity diagram indicated that, the complex exhibit green color. Hence, Ni(II complex (4 could be a promising green OLED for developing strong electroluminescent materials for flat panel display applications.

  8. Light

    DEFF Research Database (Denmark)

    Prescott, N.B.; Kristensen, Helle Halkjær; Wathes, C.M.

    2004-01-01

    This chapter presents the effect of artificial light environments (light levels, colour, photoperiod and flicker) on the welfare of broilers in terms of vision, behaviour, lameness and mortality......This chapter presents the effect of artificial light environments (light levels, colour, photoperiod and flicker) on the welfare of broilers in terms of vision, behaviour, lameness and mortality...

  9. Helping 'light green' consumers walk the talk. Results of a behavioural intervention survey in the Swiss electricity market

    International Nuclear Information System (INIS)

    Litvine, Dorian; Wuestenhagen, Rolf

    2011-01-01

    While many consumer surveys show very positive attitudes towards renewable energy, the share of consumers actually purchasing green electricity is still in the single-digit percent range in most countries. What can be done to help consumers with positive attitudes towards green electricity to 'walk the talk', i.e. to behave consistently with their preferences? We developed a psychological model based on the theory of planned behaviour (TPB) to design a large-scale behavioural intervention survey with 1163 Swiss electricity consumers. Our results show that by providing information targeted at the key factors influencing the intention to purchase green electricity, namely attitudes towards purchase, social norms and perceived behavioural control, a significant increase in green electricity market share can be achieved. Our results show that price is not the only barrier to purchasing green electricity, and that information to increase the perceived benefit of buying green electricity as well as targeted communication to overcome inertia among retail electricity consumers are equally important factors. (author)

  10. Reds are more important than greens: how UK supermarket shoppers use the different information on a traffic light nutrition label in a choice experiment.

    Science.gov (United States)

    Scarborough, Peter; Matthews, Anne; Eyles, Helen; Kaur, Asha; Hodgkins, Charo; Raats, Monique M; Rayner, Mike

    2015-12-12

    Colour coded front-of-pack nutrition labelling ('traffic light labelling') has been recommended for use in the UK since 2006. The voluntary scheme is used by all the major retailers and some manufacturers. It is not clear how consumers use these labels to make a single decision about the relative healthiness of foods. Our research questions were: Which of the four nutrients on UK traffic light labels (total fat, saturated fat, sugar and salt) has the most influence on decisions? Do green lights or red lights have a greater influence? Are there age and gender differences in how people use the colour and nutrient information? We recruited participants from a UK supermarket chain membership list to conduct an online choice experiment in May 2014. We analysed data using multilevel logisitic models with food choices (n = 3321) nested in individuals (n = 187) as the unit of analysis. A food with more reds was 11.4 (95% confidence intervals: 10.3, 12.5) times less likely to be chosen as healthy, whereas a food with more greens was 6.1 (5.6, 6.6) times more likely to be chosen as healthy. Foods with better colours on saturated fat and salt were 7.3 (6.7, 8.0) and 7.1 (6.5, 7.8) times more likely to be chosen as healthy - significantly greater than for total fat (odds ratio 4.8 (4.4, 5.3)) and sugar (5.2 (4.7, 5.6)). Results were broadly similar for different genders and age groups. We found that participants were more concerned with avoiding reds than choosing greens, and that saturated fat and salt had a greater influence on decisions regarding healthiness than total fat and sugar. This could influence decisions about food reformulation and guidance on using nutrition labelling.

  11. Analysis of Cytokine Levels in Tears and Clinical Correlations After Intense Pulsed Light Treating Meibomian Gland Dysfunction.

    Science.gov (United States)

    Liu, Ruixing; Rong, Bei; Tu, Ping; Tang, Yun; Song, Wenjing; Toyos, Rolando; Toyos, Melissa; Yan, Xiaoming

    2017-11-01

    To investigate the change from baseline of inflammatory markers in tears of dry eye disease (DED) subjects owing to meibomian gland dysfunction (MGD) after intense pulsed light (IPL) treatment and meibomian gland expression (MGE) compared to sham treatment, and the correlations with ocular surface parameters. Randomized, double-masked, controlled study. Those randomized into the active treatment arm received 3 consecutive treatments (14∼16 J/cm 2 ) approximately 4 weeks apart in the periocular region. Control eyes received 3 treatments in the same intervals of 0 J/cm 2 . Tear samples in all eyes were collected and analyzed at baseline, week 12, and/or week 4 for interleukin (IL)-17A, IL-6, and prostaglandin E2 (PGE2). The correlations between cytokines and ocular surface parameters were analyzed before and after IPL treatment. All of the inflammatory markers declined in value compared to baselines. IL-17A and IL-6 showed statistically significant decreases compared to sham treatment at each measured time point. PGE2 showed statistically significant decreases compared to sham at week 12. Results showed that the expressions of IL-17A and IL-6 correlated well with ocular surface parameters of the lower eyelid before IPL. The changed values of IL-6 and PGE2 in tears correlated with the changed values of partial ocular surface parameters after IPL treatment in study eyes, respectively. The study results suggest that IPL can significantly reduce inflammatory markers in tears of patients suffering with DED owing to MGD after IPL treatment. These findings indicate that IL-17A and IL-6 play roles in the pathogenesis of DED owing to MGD, and the reduction of the inflammatory factors is consistent with the improvement of partial clinical symptoms and signs. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Comparing Two Methods of Cryotherapy and Intense Pulsed Light with Triamcinolone Injection in the Treatment of Keloid and Hypertrophic Scars: A Clinical Trial

    OpenAIRE

    Meymandi, Simin Shamsi; Moosazadeh, Mahmood; Rezazadeh, Azadeh

    2016-01-01

    Objectives Keloid and hypertrophic scars are abnormal manifestations of wounds that occur following skin injuries in the form of local proliferation of fibroblasts and increased production of collagen. There are several ways to cure these scars; treatment must be selected based on the nature of the scars. In this clinical trial, two methods?cryotherapy and intense pulsed light (IPL)?are compared in the treatment of scars, and the results are presented in terms of improvement level, complicati...

  13. High-Efficiency Intracavity Continuous-Wave Green-Light Generation by Quasiphase Matching in a Bulk Periodically Poled MgO:LiNbO3 Crystal

    Directory of Open Access Journals (Sweden)

    Shaowei Chu

    2008-01-01

    Full Text Available 908 mW of green light at 532 nm were generated by intracavity quasiphase matching in a bulk periodically poled MgO:LiNbO3 (PPMgLN crystal. A maximum optical-to-optical conversion efficiency of 33.5% was obtained from a 0.5 mm thick, 10 mm long, and 5 mol% MgO:LiNbO3 crystal with an end-pump power of 2.7 W at 808 nm. The temperature bandwidth between the intracavity and single-pass frequency doubling was found to be different for the PPMgLN. Reliability and stability of the green laser were evaluated. It was found that for continuous operation of 100 hours, the output stability was better than 97.5% and no optical damage was observed.

  14. Synthesis of Won-WX2 (n=2.7, 2.9; X=S, Se) Heterostructures for Highly Efficient Green Quantum Dot Light-Emitting Diodes

    KAUST Repository

    Han, Shikui

    2017-07-04

    Preparation of two-dimensional (2D) heterostructures is important not only fundamentally, but also technologically for applications in electronics and optoelectronics. Herein, we report a facile colloidal method for the synthesis of WOn -WX2 (n=2.7, 2.9; X=S, Se) heterostructures by sulfurization or selenization of WOn nanomaterials. The WOn -WX2 heterostructures are composed of WO2.9 nanoparticles (NPs) or WO2.7 nanowires (NWs) grown together with single- or few-layer WX2 nanosheets (NSs). As a proof-of-concept application, the WOn -WX2 heterostructures are used as the anode interfacial buffer layer for green quantum dot light-emitting diodes (QLEDs). The QLED prepared with WO2.9 NP-WSe2 NS heterostructures achieves external quantum efficiency (EQE) of 8.53 %. To our knowledge, this is the highest efficiency in the reported green QLEDs using inorganic materials as the hole injection layer.

  15. Efficient concept for generation of diffraction-limited green light by sum-frequency generation of spectrally combined tapered diode lasers

    DEFF Research Database (Denmark)

    Müller, André; Jensen, Ole Bjarlin; Hasler, Karl-Heinz

    2012-01-01

    In order to increase the power of visible diode laser systems in an efficient manner, we propose spectral beam combining with subsequent sum-frequency generation. We show that this approach, in comparison with second harmonic generation of single emitters, can enhance the available power signific......In order to increase the power of visible diode laser systems in an efficient manner, we propose spectral beam combining with subsequent sum-frequency generation. We show that this approach, in comparison with second harmonic generation of single emitters, can enhance the available power...... significantly. By combining two distributed Bragg reflector tapered diode lasers we achieve a 2.5–3.2 fold increase in power and a maximum of 3.9 W of diffraction-limited green light. At this power level, green diode laser systems have a high application potential, e.g., within the biomedical field. Our concept...

  16. Topical application of green and white tea extracts provides protection from solar-simulated ultraviolet light in human skin.

    Science.gov (United States)

    Camouse, Melissa M; Domingo, Diana Santo; Swain, Freddie R; Conrad, Edward P; Matsui, Mary S; Maes, Daniel; Declercq, Lieve; Cooper, Kevin D; Stevens, Seth R; Baron, Elma D

    2009-06-01

    Tea polyphenols have been found to exert beneficial effects on the skin via their antioxidant properties. We sought to determine whether topical application of green tea or white tea extracts would prevent simulated solar radiation-induced oxidative damages to DNA and Langerhans cells that may lead to immune suppression and carcinogenesis. Skin samples were analysed from volunteers or skin explants treated with white tea or green tea after UV irradiation. In another group of patients, the in vivo immune protective effects of green and white tea were evaluated using contact hypersensitivity to dinitrochlorobenzene. Topical application of green and white tea offered protection against detrimental effects of UV on cutaneous immunity. Such protection is not because of direct UV absorption or sunscreen effects as both products showed a sun protection factor of 1. There was no significant difference in the levels of protection afforded by the two agents. Hence, both green tea and white tea are potential photoprotective agents that may be used in conjunction with established methods of sun protection.

  17. High-efficiency green phosphorescent organic light-emitting diodes with double-emission layer and thick N-doped electron transport layer

    Energy Technology Data Exchange (ETDEWEB)

    Nobuki, Shunichiro, E-mail: shunichiro.nobuki.nb@hitachi.com [Hitachi Research Laboratory, Hitachi Ltd., 7-1-1 Omika-cho, Hitachi-city, Ibaraki 319-1292 (Japan); Wakana, Hironori; Ishihara, Shingo [Hitachi Research Laboratory, Hitachi Ltd., 7-1-1 Omika-cho, Hitachi-city, Ibaraki 319-1292 (Japan); Mikami, Akiyoshi [Dept. of Electrical Engineering, Kanazawa Institute of Technology, 7-1 Ohgigaoka, Nonoichimachi, Ishikawa 921-8501 (Japan)

    2014-03-03

    We have developed green phosphorescent organic light-emitting diodes (OLEDs) with high external quantum efficiency of 59.7% and power efficiency of 243 lm/W at 2.73 V at 0.053 mA/cm{sup 2}. A double emission layer and a thick n-doped electron transport layer were adopted to improve the exciton recombination factor. A high refractive index hemispherical lens was attached to a high refractive index substrate for extracting light trapped inside the substrate and the multiple-layers of OLEDs to air. Additionally, we analyzed an energy loss mechanism to clarify room for the improvement of our OLEDs including the charge balance factor. - Highlights: • We developed high efficiency green phosphorescent organic light-emitting diode (OLED). • Our OLED had external quantum efficiency of 59.7% and power efficiency of 243 lm/W. • A double emission layer and thick n-doped electron transport layer were adopted. • High refractive index media (hemispherical lens and substrate) were also used. • We analyzed an energy loss mechanism to clarify the charge balance factor of our OLED.

  18. High efficiency green/yellow and red InGaN/AlGaN nanowire light-emitting diodes grown by molecular beam epitaxy

    Directory of Open Access Journals (Sweden)

    M.R. Philip

    2017-06-01

    Full Text Available We report on the achievement of high efficiency green, yellow, and red InGaN/AlGaN dot-in-a-wire nanowire light-emitting diodes grown on Si(111 by molecular beam epitaxy. The peak emission wavelengths were altered by varying the growth conditions, including the substrate temperature, and In/Ga flux ratio. The devices demonstrate relatively high (>40% internal quantum efficiency at room temperature, relative to that measured at 5 K. Moreover, negligible blue-shift in peak emission spectrum associated with no efficiency droop was measured when injection current was driven up to 556 A/cm2.

  19. 1.5 W green light generation by single-pass second harmonic generation of a single-frequency tapered diode laser

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Andersen, Peter E.; Sumpf, Bernd

    2009-01-01

    More than 1.5 W of green light at 531 nm is generated by singlepass second harmonic generation in periodically poled MgO:LiNbO3. The pump laser is a high power tapered laser with a distributed Bragg reflector etched in the ridge section of the laser to provide wavelength selectivity. The output...... power of the single-frequency tapered laser is 9.3 W in continuous wave operation. A conversion efficiency of 18.5 % was achieved in the experiments....

  20. U.S. and European ALMA Partners Sign Agreement Green Light for World's Most Powerful Radio Observatory

    Science.gov (United States)

    2003-02-01

    clusters, and the detection of organic and other molecules in space. The ALMA partners will construct the telescope at an altitude of 16,500 feet in the Atacama Desert in the Chilean Andes. This unique site is perhaps the best location on Earth to study millimeter and sub-millimeter light because these wavelengths are absorbed by moisture in the atmosphere. "Astronomers will have a pristine view of that portion of the electromagnetic spectrum from the ALMA site," said Colwell. ALMA is a joint project between Europe and North America. In Europe, ESO is leading on behalf of its ten member countries and Spain. In North America, the NSF executes the project through the National Radio Astronomy Observatory (NRAO), which is operated under cooperative agreement by Associated Universities, Inc. (AUI). The National Research Council of Canada will partner with the NSF in the North American endeavor. "The NRAO is very pleased to have the leading role in this project on behalf of the North American partners," said Dr. Fred K.Y. Lo, director of the NRAO in Charlottesville, Virginia. "ALMA will be one of astronomy's premier tools for studying the Universe," said Nobel Laureate Riccardo Giacconi, president of AUI. "The entire astronomical community is anxious to have the unprecedented power and resolution that ALMA will provide." The President of the ESO Council, Professor Piet van der Kruit, agrees: "ALMA heralds a breakthrough in sub-millimeter and millimeter astronomy, allowing some of the most penetrating studies of the Universe ever made. It is safe to predict that there will be exciting scientific surprises when ALMA enters into operation." By signing this agreement, ESO and the NSF give the green light for the joint construction of the ALMA telescope, which will cost approximately $552 million U.S. (in FY 2000 dollars). To oversee the construction and management of ALMA, a joint ALMA Board has been established by the partners. This board met for the first time on February 24

  1. Dynamical behavior of psb gene transcripts in greening wheat seedlings. I. Time course of accumulation of the pshA through psbN gene transcripts during light-induced greening.

    Science.gov (United States)

    Kawaguchi, H; Fukuda, I; Shiina, T; Toyoshima, Y

    1992-11-01

    The time course of the accumulation of the transcripts from 13 psb genes encoding a major part of the proteins composing photosystem II during light-induced greening of dark-grown wheat seedlings was examined focusing on early stages of plastid development (0.5 h through 72 h). The 13 genes can be divided into three groups. (1) The psbA gene is transcribed as a single transcript of 1.3 kb in the dark-grown seedlings, but its level increases 5- to 7-fold in response to light due to selective increase in RNA stability as well as in transcription activity. (2) The psbE-F-L-J operon, psbM and psbN genes are transcribed as a single transcript of 1.1 kb, two transcripts of 0.5 and 0.7 kb and a single transcript of 0.3 kb, respectively, in the dark-grown seedlings. The levels of accumulation of every transcript remain unchanged or rather decrease during plastid development under illumination. (3) The psbK-I-D-C gene cluster and psbB-H operon exhibit fairly complicated northern hybridization patterns during the greening process. When a psbC or psbD gene probe was used for northern hybridization, five transcripts differing in length were detected in the etioplasts from 5-day old dark-grown seedlings. After 2 h illumination, two new transcripts of different length appeared. Light induction of new transcripts was also observed in the psbB-H operon.

  2. High potential oxidation-reduction titration of absorbance changes induced by pulsed laser and continuous light in chromatophores of photosynthesizing bacteria Rhodospirillum rubrum and Ectothiorhodospira shaposhnikovii

    International Nuclear Information System (INIS)

    Remennikov, S.M.; Chamorovsky, S.K.; Kononenko, A.A.; Venediktov, P.S.; Rubin, A.B.

    1975-01-01

    The photoreactions, activated both by pulsed laser and continuous light were studied in the membranes of isolated bacterial chromatophores poised at different oxidation-reduction potentials over a range of +200 mV to +500 mV. In Rhodospirillum rubrum a midpoint potential of oxidation-reduction curves for the laser-induced positive absorbance changes centred around 430 nm and carotenoid red shifts coincides with that for continuous light-induced absorbance changes, bleaching at 865 nm and blue shift at 800 nm, of the photosynthetic reaction centre bacteriochlorophyll. In Ectothiorhodospira shaposhnikovii the photosynthetic reaction centre bacteriochlorophyll, its photooxidation can be seen as light-induced absorbance changes, bleaching at 890 nm, blue shift at 800 nm and broad band appearance near 440 nm, has a midpoint oxidation-reduction potential of +390 mV at pH 7.4. The analysis of the oxidation-reduction titration curves for the high-potential c-type cytochrome absorbance changes induced both by pulsed laser and continuous light allowed to show that at least two haems of this cytochrome with a midpoint potential of +290 mV (pH 7.4), associated with each reaction centre bacteriochlorophyll, can donate electrons to the oxidized pigment directly

  3. Relativistic dynamics of an electron in a pulse of laser light with propagation along of an external magnetic field

    International Nuclear Information System (INIS)

    Gomez, F.; Ondarza, R.

    2003-01-01

    The exact solution for the movement of a charged particle in the interaction of an electromagnetic pulse elliptically polarized spreading along a static and homogeneous magnetic field is obtained starting from the equation of force. The solution method allows to solve, in terms of the phase, the trajectory of an accelerated particle by a pulse of arbitrary width and modulated by an encircling in Gaussian form. The reported solutions in this work have diverse applications in the laser-plasma interaction physics. (Author)

  4. Health-friendly high-quality white light using violet-green-red laser and InGaN nanowires-based true yellow nanowires light-emitting diodes

    KAUST Repository

    Janjua, Bilal

    2017-02-16

    White light based on blue laser - YAG: Ce phosphor has the advantage of implementing solid-state lighting and optical wireless communications combined-functionalities in a single lamp. However, the blue light was found to disrupt melatonin production, and therefore the human circadian rhythm in general; while the yellow phosphor is susceptible to degradation by laser irradiation and also lack tunability in color rendering index (CRI). In this investigation, by using a violet laser, which has 50% less impact on circadian response, as compared to blue light, and an InGaN-quantum-disks nanowires-based light-emitting diode (NWs-LED), we address both issues simultaneously. The white light is therefore generated using violet-green-red lasers, in conjunction with a yellow NWs-LED realized using molecular beam epitaxy technique, on titanium-coated silicon substrates. Unlike the conventional quantum-well-based LED, the NWs-LED showed efficiency-droop free behavior up to 9.8 A/cm with peak output power of 400 μW. A low turn-on voltage of ∼2.1 V was attributed to the formation of conducting titanium nitride layer at NWs nucleation site and improved fabrication process in the presence of relatively uniform height distribution. The 3D quantum confinement and the reduced band bending improve carriers-wavefunctions overlap, resulting in an IQE of ∼39 %. By changing the relative intensities of the individual color components, CRI of >85 was achieved with tunable correlated color temperature (CCT), thus covering the desired room lighting conditions. Our architecture provides important considerations in designing smart solid-state lighting while addressing the harmful effect of blue light.

  5. Health-friendly high-quality white light using violet-green-red laser and InGaN nanowires-based true yellow nanowires light-emitting diodes

    Science.gov (United States)

    Janjua, Bilal; Ng, Tien K.; Zhao, Chao; Anjum, Dalaver H.; Prabaswara, Aditya; Consiglio, Giuseppe Bernardo; Shen, Chao; Ooi, Boon S.

    2017-02-01

    White light based on blue laser - YAG: Ce3+ phosphor has the advantage of implementing solid-state lighting and optical wireless communications combined-functionalities in a single lamp. However, the blue light was found to disrupt melatonin production, and therefore the human circadian rhythm in general; while the yellow phosphor is susceptible to degradation by laser irradiation and also lack tunability in color rendering index (CRI). In this investigation, by using a violet laser, which has 50% less impact on circadian response, as compared to blue light, and an InGaN-quantum-disks nanowires-based light-emitting diode (NWs-LED), we address both issues simultaneously. The white light is therefore generated using violet-green-red lasers, in conjunction with a yellow NWs-LED realized using molecular beam epitaxy technique, on titanium-coated silicon substrates. Unlike the conventional quantum-well-based LED, the NWs-LED showed efficiency-droop free behavior up to 9.8 A/cm2 with peak output power of 400 μW. A low turn-on voltage of 2.1 V was attributed to the formation of conducting titanium nitride layer at NWs nucleation site and improved fabrication process in the presence of relatively uniform height distribution. The 3D quantum confinement and the reduced band bending improve carriers-wavefunctions overlap, resulting in an IQE of 39 %. By changing the relative intensities of the individual color components, CRI of >85 was achieved with tunable correlated color temperature (CCT), thus covering the desired room lighting conditions. Our architecture provides important considerations in designing smart solid-state lighting while addressing the harmful effect of blue light.

  6. The impact of trench defects in InGaN/GaN light emitting diodes and implications for the “green gap” problem

    Energy Technology Data Exchange (ETDEWEB)

    Massabuau, F. C.-P., E-mail: fm350@cam.ac.uk; Oehler, F.; Pamenter, S. K.; Thrush, E. J.; Kappers, M. J.; Humphreys, C. J.; Oliver, R. A. [Department of Materials Science and Metallurgy, University of Cambridge, 22 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Davies, M. J.; Dawson, P. [Photon Science Institute, School of Physics and Astronomy, Alan Turing Building, University of Manchester, Manchester M13 9PL (United Kingdom); Kovács, A.; Dunin-Borkowski, R. E. [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich GmbH, Leo-Brandt- Straße, D-52425 Jülich (Germany); Williams, T.; Etheridge, J. [Monash Centre for Electron Microscopy, Monash University, Clayton Campus, VIC 3800 (Australia); Hopkins, M. A.; Allsopp, D. W. E. [Department of Electronic and Electrical Engineering, University of Bath, Bath BA2 7AY (United Kingdom)

    2014-09-15

    The impact of trench defects in blue InGaN/GaN light emitting diodes (LEDs) has been investigated. Two mechanisms responsible for the structural degradation of the multiple quantum well (MQW) active region were identified. It was found that during the growth of the p-type GaN capping layer, loss of part of the active region enclosed within a trench defect occurred, affecting the top-most QWs in the MQW stack. Indium platelets and voids were also found to form preferentially at the bottom of the MQW stack. The presence of high densities of trench defects in the LEDs was found to relate to a significant reduction in photoluminescence and electroluminescence emission efficiency, for a range of excitation power densities and drive currents. This reduction in emission efficiency was attributed to an increase in the density of non-radiative recombination centres within the MQW stack, believed to be associated with the stacking mismatch boundaries which form part of the sub-surface structure of the trench defects. Investigation of the surface of green-emitting QW structures found a two decade increase in the density of trench defects, compared to its blue-emitting counterpart, suggesting that the efficiency of green-emitting LEDs may be strongly affected by the presence of these defects. Our results are therefore consistent with a model that the “green gap” problem might relate to localized strain relaxation occurring through defects.

  7. The impact of trench defects in InGaN/GaN light emitting diodes and implications for the “green gap” problem

    International Nuclear Information System (INIS)

    Massabuau, F. C.-P.; Oehler, F.; Pamenter, S. K.; Thrush, E. J.; Kappers, M. J.; Humphreys, C. J.; Oliver, R. A.; Davies, M. J.; Dawson, P.; Kovács, A.; Dunin-Borkowski, R. E.; Williams, T.; Etheridge, J.; Hopkins, M. A.; Allsopp, D. W. E.

    2014-01-01

    The impact of trench defects in blue InGaN/GaN light emitting diodes (LEDs) has been investigated. Two mechanisms responsible for the structural degradation of the multiple quantum well (MQW) active region were identified. It was found that during the growth of the p-type GaN capping layer, loss of part of the active region enclosed within a trench defect occurred, affecting the top-most QWs in the MQW stack. Indium platelets and voids were also found to form preferentially at the bottom of the MQW stack. The presence of high densities of trench defects in the LEDs was found to relate to a significant reduction in photoluminescence and electroluminescence emission efficiency, for a range of excitation power densities and drive currents. This reduction in emission efficiency was attributed to an increase in the density of non-radiative recombination centres within the MQW stack, believed to be associated with the stacking mismatch boundaries which form part of the sub-surface structure of the trench defects. Investigation of the surface of green-emitting QW structures found a two decade increase in the density of trench defects, compared to its blue-emitting counterpart, suggesting that the efficiency of green-emitting LEDs may be strongly affected by the presence of these defects. Our results are therefore consistent with a model that the “green gap” problem might relate to localized strain relaxation occurring through defects.

  8. Asymmetry of light absorption upon propagation of focused femtosecond laser pulses with spatiotemporal coupling through glass materials

    Science.gov (United States)

    Zhukov, Vladimir P.; Bulgakova, Nadezhda M.

    2017-05-01

    Ultrashort laser pulses are usually described in terms of temporal and spatial dependences of their electric field, assuming that the spatial dependence is separable from time dependence. However, in most situations this assumption is incorrect as generation of ultrashort pulses and their manipulation lead to couplings between spatial and temporal coordinates resulting in various effects such as pulse front tilt and spatial chirp. One of the most intriguing spatiotemporal coupling effects is the so-called "lighthouse effect", the phase front rotation with the beam propagation distance [Akturk et al., Opt. Express 13, 8642 (2005)]. The interaction of spatiotemporally coupled laser pulses with transparent materials have interesting peculiarities, such as the effect of nonreciprocal writing, which can be used to facilitate microfabrication of photonic structures inside optical glasses. In this work, we make an attempt to numerically investigate the influence of the pulse front tilt and the lighthouse effect on the absorption of laser energy inside fused silica glass. The model, which is based on nonlinear Maxwell's equations supplemented by the hydrodynamic equations for free electron plasma, is applied. As three-dimensional solution of such a problem would require huge computational resources, a simplified two-dimensional model has been proposed. It has enabled to gain a qualitative insight into the features of propagation of ultrashort laser pulses with the tilted front in the regimes of volumetric laser modification of transparent materials, including directional asymmetry upon direct laser writing in glass materials.

  9. Generation of shock fronts in the interaction of the short pulses of intense laser light in supercritical plasma

    International Nuclear Information System (INIS)

    Lopez V, V.E.

    2004-01-01

    The plasma is the state of the matter but diffused in the nature. The sun and the stars big heaps of hot plasma can be considered. The external surface of the terrestrial atmosphere this recovered by a layer of plasma. All gassy discharge (lightning spark arch etc.) this related with the formation of plasma. This way, 99 percent of our environment this formed almost of plasma. It is denominated plasma to the ionized gas in the one which all or most of the atoms have lost one or several of the electrons that belonged him, becoming positive ions and free electrons. In the plasma certain physical characteristics exist as for their behavior like they are the collective movements the quasi neutrality, the Debye length, the uncertainty etc. All these behaviors make that the study of the plasma is complex. For this they exist technical of numeric simulation joined to the technological advance of big computers of more capacity and prosecution speed. The simulation techniques of particles are those where a numeric code is built based on a model or theory of a system that it is wanted to investigate. This way through the simulation the results are compared with those theoretical predictions based on an analytic model. The applications of the physics of the plasma are multiple however we focus ourselves in the interaction laser-plasma. Both finish decades of investigation in the interaction of lasers with plasma they have been carried out in laboratories of Europe, Japan, United States. This studies concern the propagation of intense light laser in dense plasma homogeneous, the radiation absorption in cold plasma and problems related with the generation of suprathermal electrons among others. Other areas of the physics of the plasma-laser interaction that it has been considerable attention is the broadly well-known field as parametric uncertainties induced instabilities by the light and that they include the dispersions for example stimulated Raman and Brillouin being able to

  10. Green perovskite light emitting diodes based on the ITO/Al2O3/CsPbBr3 heterojunction structure

    Science.gov (United States)

    Zhuang, Shiwei; Ma, Xue; Hu, Daqiang; Dong, Xin; Zhang, Yuantao; Zhang, Baolin

    2018-03-01

    Perovskite light emitting diodes (PeLEDs) now emerge as a promising new optoelectronic application field for these amazing semiconductors. For the purpose of investigating the device structures and light emission mechanisms of PeLEDs, we have fabricated green PeLEDs based on the ITO/Al2O3/CsPbBr3 heterojunction structure. The emission layer inorganic perovskite CsPbBr3 film with small grain sizes (∼28.9 nm) was prepared using a two-step method. The device exhibits a typical rectification behavior with turn-on voltage of ∼6 V. The EL emission band is narrow with the FWHM of ∼25 nm. The peak EQE of the device was ∼0.09%. The working mechanism of the device is also discussed. The result of the present work provides a feasible innovation idea of PeLEDs fabrication and great potentials for the development of perovskite based LEDs.

  11. Pulsed versus continuous wave low-level light therapy on osteoarticular signs and symptoms in limited scleroderma (CREST syndrome): a case report

    Science.gov (United States)

    Barolet, Daniel

    2014-11-01

    Limited cutaneous systemic sclerosis (lcSSc) was formerly known as CREST syndrome in reference to the associated clinical features: calcinosis, Raynaud's phenomenon, esophageal dysfunction, sclerodactyly, and telangiectasias. The transforming growth factor beta has been identified as a major player in the pathogenic process, where low-level light therapy (LLLT) has been shown to modulate this cytokine superfamily. This case study was conducted to assess the efficacy of 940 nm using millisecond pulsing and continuous wave (CW) modes on osteoarticular signs and symptoms associated with lcSSc. The patient was treated two to three times a week for 13 weeks using a sequential pulsing mode on one elbow and a CW mode on the other. Efficacy assessments included inflammation, symptoms, pain, health scales, patient satisfaction, clinical global impression, and adverse effects monitoring. Considerable functional and morphologic improvements were observed after LLLT, with the best results seen with the pulsing mode. No adverse effects were noted. Pulsed LLLT represents a treatment alternative for osteoarticular signs and symptoms in limited scleroderma (CREST syndrome).

  12. Green Thunderstorms Observed.

    Science.gov (United States)

    Gallagher, Frank W., III; Beasley, William H.; Bohren, Craig F.

    1996-12-01

    Green thunderstorms have been observed from time to time in association with deep convection or severe weather events. Often the green coloration has been attributed to hail or to reflections of light from green foliage on the ground. Some skeptics who have not personally observed a green thunderstorm do not believe that green thunderstorms exist. They suggest that the green storms may be fabrications by excited observers. The authors have demonstrated the existence of green thunderstorms objectively using a spectrophotometer. During the spring and summer of 1995 the authors observed numerous storms and recorded hundreds of spectra of the light emanating corn these storms. It was found that the subjective judgment of colors can vary somewhat between observers, but the variation is usually in the shade of green. The authors recorded spectra of green and nongreen thunderstorms and recorded spectral measurements as a storm changed its appearance from dark blue to a bluish green. The change in color is gradual when observed from a stationary position. Also, as the light from a storm becomes greener, the luminance decreases. The authors also observed and recorded the spectrum of a thunderstorm during a period of several hours as they flew in an aircraft close to a supercell that appeared somewhat green. The authors' observations refute the ground reflection hypothesis and raise questions about explanations that require the presence of hail.

  13. Synthesis and characterization of pure and Li⁺ activated Alq₃ complexes for green and blue organic light emitting diodes and display devices.

    Science.gov (United States)

    Bhagat, S A; Borghate, S V; Kalyani, N Thejo; Dhoble, S J

    2014-08-01

    Pure and Li(+)-doped Alq3 complexes were synthesized by simple precipitation method at room temperature, maintaining the stoichiometric ratio. These complexes were characterized by X-ray diffraction, ultraviolet-visible absorption and Fourier transform infrared and photoluminescence (PL) spectra. X-ray diffraction analysis reveals the crystalline nature of the synthesized complexes, while Fourier transform infrared spectroscopy confirm the molecular structure, the completion of quinoline ring formation and presence of quinoline structure in the metal complex. Ultraviolet-visible and PL spectra revealed that Li(+) activated Alq3 complexes exhibit the highest intensity in comparison to pure Alq3 phosphor. Thus, Li(+) enhances PL emission intensity when doped into Alq3 phosphor. The excitation spectra lie in the range of 383-456 nm. All the synthesized complexes other than Liq give green emission, while Liq gives blue emission with enhanced intensity. Thus, he synthesized phosphors are the best suitable candidates for green- and blue-emitting organic light emitting diode, PL liquid-crystal display and solid-state lighting applications. Copyright © 2013 John Wiley & Sons, Ltd.

  14. The photocatalytic degradation of methylene blue by green semiconductor films that is induced by irradiation by a light-emitting diode and visible light.

    Science.gov (United States)

    Yang, Chih-Chi; Doong, Ruey-An; Chen, Ku-Fan; Chen, Giin-Shan; Tsai, Yung-Pin

    2018-01-01

    This study develops a low-energy rotating photocatalytic contactor (LE-RPC) that has Cu-doped TiO 2 films coated on stainless-steel rotating disks, to experimentally evaluate the efficiency of the degradation and decolorization of methylene blue (MB) under irradiation from different light sources (visible 430 nm, light-emitting diode [LED] 460 nm, and LED 525 nm). The production of hydroxyl radicals is also examined. The experimental results show that the photocatalytic activity of TiO 2 that is doped with Cu 2+ is induced by illumination with visible light and an LED. More than 90% of methylene blue at a 10 mg/L concentration is degraded after illumination by visible light (430 nm) for 4 hr at 20 rpm. This study also demonstrates that the quantity of hydroxyl radicals produced is directly proportional to the light energy intensity. The greater the light energy intensity, the greater is the number of hydroxyl radicals produced. The CuO-doped anatase TiO 2 powder was successfully synthesized in this study by a sol-gel method. The catalytic abilities of the stainless-steel film were enhanced in the visible light regions. This study has successfully modified the nano-photocatalytic materials to drop band gap and has also successfully fixed the nano-photocatalytic materials on a substratum to effectively treat dye wastewater in the range of visible light. The results can be useful to the development of a low-energy rotating photocatalytic contactor for decontamination purposes.

  15. Switching waves dynamics in optical bistable cavity-free system at femtosecond laser pulse propagation in semiconductor under light diffraction

    Science.gov (United States)

    Trofimov, Vyacheslav A.; Egorenkov, Vladimir A.; Loginova, Maria M.

    2018-02-01

    We consider a propagation of laser pulse in a semiconductor under the conditions of an occurrence of optical bistability, which appears due to a nonlinear absorption of the semiconductor. As a result, the domains of high concentration of free charged particles (electrons and ionized donors) occur if an intensity of the incident optical pulse is greater than certain intensity. As it is well-known, that an optical beam must undergo a diffraction on (or reflection from) the domains boundaries. Usually, the beam diffraction along a coordinate of the optical pulse propagation does not take into account by using the slowly varying envelope approximation for the laser pulse interaction with optical bistable element. Therefore, a reflection of the beam from the domains with abrupt boundary does not take into account under computer simulation of the laser pulse propagation. However, the optical beams, reflected from nonhomogeneities caused by the domains of high concentration of free-charged particles, can essentially influence on a formation of switching waves in a semiconductor. We illustrate this statement by computer simulation results provided on the base of nonlinear Schrödinger equation and a set of PDEs, which describe an evolution of the semiconductor characteristics (concentrations of free-charged particles and potential of an electric field strength), and taking into account the longitudinal and transverse diffraction effects.

  16. Fluorescent minerals--A potential source of UV protection and visible light for the growth of green algae and cyanobacteria in extreme cosmic environments.

    Science.gov (United States)

    Omairi, Tareq; Wainwright, Milton

    2015-07-01

    We propose that green algae (Chlorella variabilis and Dunaliella tertiolecta) and cyanobacteria (Synechococcus elongatus and Nostoc commune) can grow inside fluorescent rock minerals which convert damaging UV light to visible light, thereby allowing these organisms to survive and thrive in UV-rich environments without (or with limited) visible light, which would otherwise be inimical to them. The four microorganisms were incubated inside fluorescent rocks composed of fluorite, calcite and pyrite. The resultant growth was then measured following exposure to UV radiation, with the use of optical density and measurement of chlorophyll concentration. Results show that the microorganisms were shielded from harmful UV in these semi-transparent rocks, while at the same time benefiting from the fact that the minerals converted UV to visible light; this have been shown by a statistically significant increase in their growth, which although lower than when the cells were incubated in sunlight, was significantly higher than in controls incubated in the dark. Copyright © 2015 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  17. The effects of pulse cycloheximide treatments on the light-induced recovery of mitotic divisions in antheridial filaments of Chara vulgaris

    Directory of Open Access Journals (Sweden)

    Maria Kwiatkowska

    2014-01-01

    Full Text Available Within the proliferative period of spermatogenesis in Chara vulgaris, the progression throughout successive cell divisions in antheridial filaments is greatly influenced by changes in photoperiodic conditions. The extended (4-day period of total darkness brings about cell cycle arrest in the early G2 phase. The recovery of mitosis requires about 20 hours of exposition to light. In the present study, a series of 8 pulse incubations of plants in cycloheximide (Cx; 2.5 mg/I, 2.5 h each pulse were performed within the period elapsing till the resumption of mitotic divisions. Depending on the time of treatment, the effects induced by Cx vary considerably. Within the first 10 hs of exposition to light, incubations with Cx result in the delays of mitoses; within the period between the 10th and the 17th h, mitotic divisions become blocked, and, following the 17.5 h of light-induced recovery, no influence of Cx is noticed on mitotic activity, as compared with the untreaed control plants. The obtained results provide a starting point for the characteristic of proteins synthesized during the G2 phase and a preliminary study on those mechanisms, which become engaged in the regulation of the G1-deficient cell cycle evidenced in antheridial filaments of Chara.

  18. Light

    CERN Document Server

    Robertson, William C

    2003-01-01

    Why is left right and right left in the mirror? Baffled by the basics of reflection and refraction? Wondering just how the eye works? If you have trouble teaching concepts about light that you don t fully grasp yourself, get help from a book that s both scientifically accurate and entertaining with Light. By combining clear explanations, clever drawings, and activities that use easy-to-find materials, this book covers what science teachers and parents need to know to teach about light with confidence. It uses ray, wave, and particle models of light to explain the basics of reflection and refraction, optical instruments, polarization of light, and interference and diffraction. There s also an entire chapter on how the eye works. Each chapter ends with a Summary and Applications section that reinforces concepts with everyday examples. Whether you need a deeper understanding of how light bends or a good explanation of why the sky is blue, you ll find Light more illuminating and accessible than a college textbook...

  19. Ultrastable, high efficiency picosecond green light generation using K3B6O10Br series nonlinear optical crystals

    Science.gov (United States)

    Hou, Z. Y.; Xia, M. J.; Wang, L. R.; Xu, B.; Yan, D. X.; Meng, L. P.; Liu, L. J.; Xu, D. G.; Zhang, L.; Wang, X. Y.; Li, R. K.; Chen, C. T.

    2017-09-01

    Two perovskite-structure K3B6O10Br1-x Cl x (x  =  0 and 0.5) series nonlinear optical crystals were thoroughly investigated for their picosecond 532 nm laser pulses abilities and high power outputs were achieved via second harmonic generation (SHG) technique for the first time. SHG conversion efficiency of 57.3% with a 13.2 mm length K3B6O10Br (KBB) crystal was achieved using a laser source of pulse repetition rate of 10 Hz and pulse width of 25 ps, which is the highest conversion efficiency of ps visible laser based on KBB crystal. And by employing an 80 MHz, 10 ps fundamental laser beam, maximum power outputs of 12 W with K3B6O10Br0.5Cl0.5 (KBBC) and 11.86 W with KBB crystals were successfully demonstrated. Furthermore, the standard deviation jitters of the average power outputs are less than 0.6% and 1.17% by KBB and KBBC, respectively, showing ultrastable power stabilities favorable for practical applications. In addition, the other optical parameters including acceptance angle and temperature bandwidth were also investigated.

  20. Light-emitting diodes - Their potential in biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, Naichia Gary; Wu, Chia-Hao [College of Applied Sciences, MingDao University, 369 Wen-Hua Road, Peetou, Changhua 52345 (China); Cheng, Ta Chih [Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, 1 Hseuh-Fu Rd., Nei-Pu Hsiang, Pingtung 91201 (China)

    2010-10-15

    The rapid development of high brightness light-emitting diodes (LEDs) makes feasible the use of LEDs, among other light sources (such as laser, intense pulse light and other incoherent light systems), for medical treatment and light therapy. This paper provides a general review on red, green, blue, ultraviolet LED applications in photo rejuvenation and medical treatments of a variety of physical abnormalities, as well as the relief of stress, circadian rhythm disorders, and seasonal affective disorder. The review, concentrated in the papers published after 1990, intends to show that LEDs are well qualified to succeed its more energy demanding counterparts in the named areas and beyond. (author)

  1. EDITORIAL: Optical mammography: Imaging and characterization of breast lesions by pulsed near-infrared laser light (OPTIMAMM)

    Science.gov (United States)

    Hebden, Jeremy C.; Rinneberg, Herbert

    2005-06-01

    The Commission of the European Union (EU) conceived its Fifth Framework Programme (FP5) to identify the priorities for the European Union's research, technological development and demonstration activities for the period 1998-2002. By encouraging collaborative research between groups in different member countries, FP5 was intended to help solve problems the EU is facing and respond to major socio-economic challenges. The programme focused on a number of objectives and areas combining technological, industrial, economic, social and cultural aspects. A specific call was made, under its `Quality of Life and Management of Living Resources' section, for proposals which aim to explore improvements in non-invasive methods of imaging for early diagnosis and clinical evaluation of disease. Among the projects successfully funded under the FP5 programme was one entitled `Optical mammography: Imaging and characterization of breast lesions by pulsed near-infrared laser light', known by its acronym OPTIMAMM. The project involved a consortium of nine partners, comprising ten applied science and clinical research groups based in six EU countries, with overall administration and management provided by the Physikalisch-Technische Bundesanstalt, Berlin, Germany. The broad aim of the OPTIMAMM project was to combine multi-disciplinary basic (physics, engineering, mathematics, computer science) and clinical (oncology, histology) research to assess the diagnostic potential of time-domain optical and photoacoustic mammography as novel, non-invasive imaging modalities for the detection and clinical evaluation of breast lesions. Funding for the project, at a total cost of about 1.67 MEuro, began in December 2000 for a period of three years, although a zero-cost extension was granted to enable the ongoing project activities to continue until the end of May 2004. The importance of developing new tools for the detection and diagnosis of breast disease is evident from the very high incidence and

  2. On the assessment of the productivity of suspension cultures of unicellular green algae at defined light conditions

    Energy Technology Data Exchange (ETDEWEB)

    Seiss, U; Borns, E; Boehm, H

    1985-01-01

    A description is given of the possibility of a comparison of the production between different suspension cultures of microalgae at equal and defined light conditions. For this, a variant of the turbidostat technique is used by which with the acid of a phototransistor and the filter combination of red filter/opal glass filter a chlorophyll-equivalent signal is applied for control. The equal light conditions are compared and set by the preparation of the respective absorption profiles. From this one can derive the mean level of irradiation within the suspension cultures and use it as the reference value for the light conditions. By this technique it is possible to set equal light conditions in suspension cultures independent of the given cell sizes, cell shapes and dry matter contents.

  3. Metaphysical green

    DEFF Research Database (Denmark)

    Earon, Ofri

    2011-01-01

    to adapt to urban environment. It explores the potential of Sensation of Green in the city. The paper questions whether the Sensation of Green could introduce a new spectrum of greens, beside the real green. It develops the term of metaphysical green – does green have to be green or can it be only...

  4. Light field driven streak-camera for single-shot measurements of the temporal profile of XUV-pulses from a free-electron laser; Lichtfeld getriebene Streak-Kamera zur Einzelschuss Zeitstrukturmessung der XUV-Pulse eines Freie-Elektronen Lasers

    Energy Technology Data Exchange (ETDEWEB)

    Fruehling, Ulrike

    2009-10-15

    The Free Electron Laser in Hamburg (FLASH) is a source for highly intense ultra short extreme ultraviolet (XUV) light pulses with pulse durations of a few femtoseconds. Due to the stochastic nature of the light generation scheme based on self amplified spontaneous emission (SASE), the duration and temporal profile of the XUV pulses fluctuate from shot to shot. In this thesis, a THz-field driven streak-camera capable of single pulse measurements of the XUV pulse-profile has been realized. In a first XUV-THz pump-probe experiment at FLASH, the XUV-pulses are overlapped in a gas target with synchronized THz-pulses generated by a new THz-undulator. The electromagnetic field of the THz light accelerates photoelectrons produced by the XUV-pulses with the resulting change of the photoelectron momenta depending on the phase of the THz field at the time of ionisation. This technique is intensively used in attosecond metrology where near infrared streaking fields are employed for the temporal characterisation of attosecond XUV-Pulses. Here, it is adapted for the analysis of pulse durations in the few femtosecond range by choosing a hundred times longer far infrared streaking wavelengths. Thus, the gap between conventional streak cameras with typical resolutions of hundreds of femtoseconds and techniques with attosecond resolution is filled. Using the THz-streak camera, the time dependent electric field of the THz-pulses was sampled in great detail while on the other hand the duration and even details of the time structure of the XUV-pulses were characterized. (orig.)

  5. Green light emitting nanostructures of Tb3+ doped LaOF prepared via ultrasound route applicable in display devices

    Science.gov (United States)

    Suresh, C.; Nagabhushana, H.; Basavaraj, R. B.; Prasad, B. Daruka

    2017-05-01

    For the first time Tb3+ (1-5 mol %) doped LaOF nanophosphors using Aloe vera (AV) leaves extract as bio-surfactant were synthesized by facile ultrasound supported sonochemical route at relatively high temperature (700°C) and short duration of 3h. The powder X-ray diffraction (PXRD) profiles of LaOF nanophosphors showed tetragonal structure. The morphological features of LaOF with effect of Sonication time and concentration of bio-surfactant were studied by scanning electron microscope (SEM). The particle size were estimated from transmission electron microscope (TEM) image was found to be in the range of 20-30 nm. The characteristic photoluminescence emission peaks at 487, 541, 586 and 620 nm in green region corresponding to 5D4→7Fj (j=6, 5, 4, 3) transitions of Tb3+ were observed. The LaOF: Tb3+ nanophosphors exhibit green luminescence with better chromaticity coordinates, colour purity and higher intensity under low-voltage electron beam excitation were observed by Commission International De I'Eclairage (CIE) along with colour correlated temperature (CCT). All results indicate that these obtained nanophosphors have potential applications in field emission display device.

  6. The radiofrequency frontier: a review of radiofrequency and combined radiofrequency pulsed-light technology in aesthetic medicine.

    Science.gov (United States)

    Sadick, Neil; Sorhaindo, Lian

    2005-05-01

    Radiofrequency (RF) and combined RF light source technologies have established themselves as safe and effective treatment modalities for several dermatologic procedures, including skin tightening, hair and leg vein removal, acne scarring, skin rejuvenation, and wrinkle reduction. This article reviews the technology, clinical applications, and recent advances of RF and combined RF light/laser source technologies in aesthetic medicine.

  7. Cost-effectiveness analysis at 2 years of surgical treatment of benign prostatic hyperplasia by photoselective vaporization of the prostate with GreenLight-Photo vaporization 120 W versus transurethral resection of the prostate.

    Science.gov (United States)

    Benejam-Gual, J M; Sanz-Granda, A; García-Miralles Grávalos, R; Severa-Ruíz de Velasco, A; Pons-Viver, J

    2014-05-01

    Transurethral resection of the prostate is the gold standard of surgical treatment of lower urinary tract symptoms associated to benign prostate hyperplasia. The new Green Light Photovaporization has been shown to be an alternative that is as effective for this condition as the transurethral resection of the prostate. To compare the efficiency of Green Light Photovaporization 120 W versus transurethral resection of the prostate in the treatment of benign prostate hyperplasia (BPH) in a 2-year time horizon from the perspective of the Spanish health service perspective. A cost utility analysis was performed retrospectively with the data from 98 patients treated sequentially with transurethral resection of the prostate (n: 50) and Green Light Photovaporization 120 W (n: 48). A Markov model was designed to estimate the cost (2012€) and results (quality adjusted life years) in a 2-year time horizon. The total cost associated to Green Light Photovaporization 120 W treatment was less (3,377€; 95% CI: 3,228; 3,537) than that of the transurethral resection of the prostate (3,770€; 95% CI: 3,579; 3,945). The determining factor of the cost was the surgical phase (difference: -450€; 95% CI: -625; -158) because admission to hospital after surgery was not necessary with the GreenLight-PhotoVaporization. Surgical treatment of BPH patients with GreenLight-PhotoVaporization 120 W is more efficient than transurethral resection of the prostate in the surgical treatment of benign prostate hyperplasia as it has similar effectiveness and lower cost (-393€; 95% CI: -625; -158). Copyright © 2013 AEU. Published by Elsevier Espana. All rights reserved.

  8. An efficient visible and UV-light-activated B-N-codoped TiO{sub 2} photocatalytic film for solar depollution prepared via a green method

    Energy Technology Data Exchange (ETDEWEB)

    Xu Qingchi; Zhang Yan; He Ziming [Nanyang Technological University, School of Chemical and Biomedical Engineering (Singapore); Loo, Say Chye Joachim, E-mail: joachimloo@ntu.edu.sg [Nanyang Technological University, School of Materials Science and Engineering (Singapore); Tan, Timothy Thatt Yang, E-mail: tytan@ntu.edu.sg [Nanyang Technological University, School of Chemical and Biomedical Engineering (Singapore)

    2012-08-15

    This work reports an efficient visible and UV-light-activated boron and nitrogen codoped TiO{sub 2} porous film prepared via a 'green' and direct coating approach. Such photocatalyst is highly promising for solar depollution application due to its efficient photocatalytic activities in both visible and UV spectrum. The preparation method avoids the use of organic solvents, which are usually more expensive and hazardous compared with water. Using stearic acid as the model organic pollutant, the visible-light photocatalytic activity of optimized porous B-N-codoped TiO{sub 2} film (p-3B-N-TiO{sub 2}) is 3 times higher than that of porous N-doped TiO{sub 2} (p-N-TiO{sub 2}) film, while its UV photocatalytic activity is almost double that of p-N-TiO{sub 2} film and comparable to that of porous TiO{sub 2}. The enhancement in photocatalytic activity is attributed to higher surface area due to the porous structure, improved visible-light absorption attributed to interstitially substituted boron atoms, and coexistence of boron and nitrogen dopants which may reduce Ti{sup 3+} recombination centers.

  9. Growth and characterization of ZnCdMgSe-based green light emitters and distributed Bragg reflectors towards II-VI based semiconductor disk lasers

    International Nuclear Information System (INIS)

    De Jesus, Joel; Gayen, Swapan K.; Garcia, Thor A.; Tamargo, Maria C.; Kartazaev, Vladimir; Jones, Brynmor E.; Schlosser, Peter J.; Hastie, Jennifer E.

    2015-01-01

    We report the structural and optical properties of molecular beam epitaxy grown II-VI semiconductor multiple quantum well (MQW) structures and distributed Bragg reflector (DBR) on InP substrates for application in developing optically-pumped semiconductor disk lasers (SDLs) operating in the green spectral range. One sample was grown directly on an InP substrate with an InGaAs buffer layer, while another had a 5-period ZnCdMgSe-based DBR grown on the InGaAs/InP substrate. X-ray diffraction and scanning electron microscopy measurements revealed sharp superlattice peaks and abrupt layer interfaces, while steady-state photoluminescence measurements demonstrated surface emission between 540-570 nm. Under pulsed excitation both samples exhibited features of amplified spontaneous emission (ASE) or stimulated emission, accompanied by luminescence lifetime shortening. The sample with the DBR showed higher surface luminescence and the onset of ASE at lower pump power. To further explore the design and performance of a ZnCdMgSe-based DBR, a 20-period DBR was grown and a reflectivity of 83% was obtained at ∝560 nm. We estimate that a DBR with ∝40 periods would be needed for optimal performance in a SDL using these materials. These results show the potential of II-VI MQW structures on InP substrates for the development of SDLs operational in the green-yellow wavelength range. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Light

    CERN Document Server

    Ditchburn, R W

    1963-01-01

    This classic study, available for the first time in paperback, clearly demonstrates how quantum theory is a natural development of wave theory, and how these two theories, once thought to be irreconcilable, together comprise a single valid theory of light. Aimed at students with an intermediate-level knowledge of physics, the book first offers a historical introduction to the subject, then covers topics such as wave theory, interference, diffraction, Huygens' Principle, Fermat's Principle, and the accuracy of optical measurements. Additional topics include the velocity of light, relativistic o

  11. Photocatalytic performance of Sn-doped TiO2 nanostructured thin films for photocatalytic degradation of malachite green dye under UV and VIS-lights

    International Nuclear Information System (INIS)

    Sayilkan, F.; Asiltuerk, M.; Tatar, P.; Kiraz, N.; Sener, S.; Arpac, E.; Sayilkan, H.

    2008-01-01

    Sn-doped and undoped nano-TiO 2 particles have been synthesized by hydrotermal process without acid catalyst at 225 deg. C in 1 h. Nanostructure-TiO 2 based thin films, contain at different solid ratio of TiO 2 in coating, have been prepared on glass surfaces by spin-coating technique. The structure, surface morphology and optical properties of the thin films and the particles have been investigated by element analysis and XRD, BET and UV/VIS/NIR techniques. The photocatalytic performance of the films was tested for degradation of malachite green dye in solution under UV and VIS-lights. The results showed that the hydrothermally synthesized nano-TiO 2 particles are fully anatase crystalline form and are easily dispersed in water, the coated surfaces have nearly super-hydrophilic properties and, the doping of transition metal ion efficiently improved the photocatalytic performance of the TiO 2 thin film. The results also proved that malachite green is decomposed catalytically due to the pseudo first-order reaction kinetics

  12. STAY-GREEN and Chlorophyll Catabolic Enzymes Interact at Light-Harvesting Complex II for Chlorophyll Detoxification during Leaf Senescence in Arabidopsis[C][W

    Science.gov (United States)

    Sakuraba, Yasuhito; Schelbert, Silvia; Park, So-Yon; Han, Su-Hyun; Lee, Byoung-Doo; Andrès, Céline Besagni; Kessler, Felix; Hörtensteiner, Stefan; Paek, Nam-Chon

    2012-01-01

    During leaf senescence, plants degrade chlorophyll to colorless linear tetrapyrroles that are stored in the vacuole of senescing cells. The early steps of chlorophyll breakdown occur in plastids. To date, five chlorophyll catabolic enzymes (CCEs), NONYELLOW COLORING1 (NYC1), NYC1-LIKE, pheophytinase, pheophorbide a oxygenase (PAO), and red chlorophyll catabolite reductase, have been identified; these enzymes catalyze the stepwise degradation of chlorophyll to a fluorescent intermediate, pFCC, which is then exported from the plastid. In addition, STAY-GREEN (SGR), Mendel’s green cotyledon gene encoding a chloroplast protein, is required for the initiation of chlorophyll breakdown in plastids. Senescence-induced SGR binds to light-harvesting complex II (LHCII), but its exact role remains elusive. Here, we show that all five CCEs also specifically interact with LHCII. In addition, SGR and CCEs interact directly or indirectly with each other at LHCII, and SGR is essential for recruiting CCEs in senescing chloroplasts. PAO, which had been attributed to the inner envelope, is found to localize in the thylakoid membrane. These data indicate a predominant role for the SGR-CCE-LHCII protein interaction in the breakdown of LHCII-located chlorophyll, likely to allow metabolic channeling of phototoxic chlorophyll breakdown intermediates upstream of nontoxic pFCC. PMID:22366162

  13. Electrical, spectral and optical performance of yellow-green and amber micro-pixelated InGaN light-emitting diodes

    Science.gov (United States)

    Gong, Z.; Liu, N. Y.; Tao, Y. B.; Massoubre, D.; Xie, E. Y.; Hu, X. D.; Chen, Z. Z.; Zhang, G. Y.; Pan, Y. B.; Hao, M. S.; Watson, I. M.; Gu, E.; Dawson, M. D.

    2012-01-01

    Micro-pixelated InGaN LED arrays operating at 560 and 600 nm, respectively, are demonstrated for what the authors believe to be the first time. Such devices offer applications in areas including bioinstrumentation, visible light communications and optoelectronic tweezers. The devices reported are based on new epitaxial structures, retaining conventional (0 0 0 1) orientation, but incorporating electron reservoir layers which enhance the efficiency of radiative combination in the active regions. A measured output optical power density up to 8 W cm-2 (4.4 W cm-2) has been achieved from a representative pixel of the yellow-green (amber) LED array, substantially higher than that from conventional broad-area reference LEDs fabricated from the same wafer material. Furthermore, these micro-LEDs can sustain a high current density, up to 4.5 kA cm-2, before thermal rollover. A significant blueshift of the emission wavelength with increasing injection current is observed, however. This blueshift saturates at 45 nm (50 nm) for the yellow-green (amber) LED array, and numerical simulations have been used to gain insight into the responsible mechanisms in this microstructured format of device. In the relatively low-current-density regime (screening of the piezoelectric field by the injected carriers and the band-filling effect, whereas in the high-current regime, it is mainly due to band-filling. Further development of the epitaxial wafer material is expected to improve the current-dependent spectral stability.

  14. Consequences of the magnetic field, sonic and radiofrequency waves and intense pulsed light on the labeling of blood constituents with technetium-99m

    International Nuclear Information System (INIS)

    Meyer, Patricia Froes; Costa, Iris do Ceu Clara; Brandao-Neto, Jose; Medeiros, Aldo da Cunha; Bonelli, Ludmila

    2007-01-01

    Sources of magnetic field, radiofrequency and audible sonic waves and pulsed light have been used in physiotherapy to treat different disorders. In nuclear medicine, blood constituents(Bl-Co) are labeled with technetium-99m ( 99m Tc) are used. This study evaluated the consequences of magnetic field, radiofrequency and audible sonic waves and intense pulsed light sources on the labeling of Bl-Co with 99m Tc. Blood from Wistar rats was exposed to the cited sources. The labeling of Bl-Co with 99m Tc was performed. Blood not exposed to the physical agents was used(controls). Data showed that the exposure to the different studied sources did not alter significantly (p>0.05) the labeling of Bl-Co. Although the results were obtained with animals, the data suggest that no alteration on examinations performed with Bl-Co labeled with 99m Tc after exposition to the cited agents. The biological consequences associated with these agents would be not capable to interfere with some properties of the Bl-Co. (author)

  15. Consequences of the magnetic field, sonic and radiofrequency waves and intense pulsed light on the labeling of blood constituents with technetium-99m

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Patricia Froes; Costa, Iris do Ceu Clara; Brandao-Neto, Jose; Medeiros, Aldo da Cunha [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Programa de Pos-graduacao em Ciencias da Saude; Santos-Filho, Sebastiao David; Adenilson de Souza da Fonseca; Bernardo-Filho, Mario [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). Inst. de Biologia Roberto Alcantara Gomes. Lab. de Radiofarmacia Experimental; Ariel Ronzio, Oscar [Universidad de Buenos Aires (Argentina); Bonelli, Ludmila [Universidade Salgado de Oliveira, Belo Horizonte, MG (Brazil)

    2007-09-15

    Sources of magnetic field, radiofrequency and audible sonic waves and pulsed light have been used in physiotherapy to treat different disorders. In nuclear medicine, blood constituents(Bl-Co) are labeled with technetium-99m ({sup 99m}Tc) are used. This study evaluated the consequences of magnetic field, radiofrequency and audible sonic waves and intense pulsed light sources on the labeling of Bl-Co with {sup 99m}Tc. Blood from Wistar rats was exposed to the cited sources. The labeling of Bl-Co with {sup 99m}Tc was performed. Blood not exposed to the physical agents was used(controls). Data showed that the exposure to the different studied sources did not alter significantly (p>0.05) the labeling of Bl-Co. Although the results were obtained with animals, the data suggest that no alteration on examinations performed with Bl-Co labeled with {sup 99m}Tc after exposition to the cited agents. The biological consequences associated with these agents would be not capable to interfere with some properties of the Bl-Co. (author)

  16. Dynamic View on Nanostructures: A Technique for Time Resolved Optical Luminescence Using Synchrotron Light Pulses at SRC, APS, and CLS

    International Nuclear Information System (INIS)

    Heigl, F.; Jurgensen, A.; Zhou, X.-T.; Lam, S.; Murphy, M.; Ko, J.Y.P.; Sham, T.K.; Rosenberg, R.A.; Gordon, R.; Brewe, D.; Regier, T.; Armelao, L.

    2007-01-01

    We present an experimental technique using the time structure of synchrotron radiation to study time resolved X-ray excited optical luminescence. In particular we are taking advantage of the bunched distribution of electrons in a synchrotron storage ring, giving short x-ray pulses (10-10 2 picoseconds) which are separated by non-radiating gaps on the nano- to tens of nanosecond scale - sufficiently wide to study a broad range of optical decay channels observed in advanced nanostructured materials.

  17. Light dark matter candidates in intense laser pulses II: the relevance of the spin degrees of freedom

    Energy Technology Data Exchange (ETDEWEB)

    Villalba-Chávez, S.; Müller, C. [Institut für Theoretische Physik I, Heinrich-Heine-Universität DüsseldorfUniversitätsstr. 1, 40225 Düsseldorf (Germany)

    2016-02-03

    Optical searches assisted by the field of a laser pulse might allow for exploring a variety of not yet detected dark matter candidates such as hidden-photons and scalar minicharged particles. These hypothetical degrees of freedom may be understood as a natural consequence of extensions of the Standard Model incorporating a hidden U(1)-gauge sector. In this paper, we study the effects induced by both candidates on the propagation of a probe electromagnetic wave in the vacuum polarized by a long laser pulse of moderate intensity, this way complementing our previous study [http://dx.doi.org/10.1007/JHEP06(2015)177]. We describe how the absence of a spin in the scalar charged carriers modifies the photon-paraphoton oscillations as compared with a fermionic minicharge model. In particular, we find that the regime close to their lowest threshold mass might provide the most stringent upper limit for minicharged scalars. The pure-laser based experiment investigated here could allow for excluding a sector in the parameter space of the particles which has not been experimentally ruled out by setups driven by dipole magnets. We explain how the sign of the ellipticity and rotation of the polarization plane acquired by a probe photon — in combination with their dependencies on the pulse parameters — can be exploited to elucidate the quantum statistics of the charge carriers.

  18. InGaN/GaN multilayer quantum dots yellow-green light-emitting diode with optimized GaN barriers.

    Science.gov (United States)

    Lv, Wenbin; Wang, Lai; Wang, Jiaxing; Hao, Zhibiao; Luo, Yi

    2012-11-07

    InGaN/GaN multilayer quantum dot (QD) structure is a potential type of active regions for yellow-green light-emitting diodes (LEDs). The surface morphologies and crystalline quality of GaN barriers are critical to the uniformity of InGaN QD layers. While GaN barriers were grown in multi-QD layers, we used improved growth parameters by increasing the growth temperature and switching the carrier gas from N2 to H2 in the metal organic vapor phase epitaxy. As a result, a 10-layer InGaN/GaN QD LED is demonstrated successfully. The transmission electron microscopy image shows the uniform multilayer InGaN QDs clearly. As the injection current increases from 5 to 50 mA, the electroluminescence peak wavelength shifts from 574 to 537 nm.

  19. Green Synthesis and Characterization of SmVO4 Nanoparticles in the Presence of Carbohydrates As Capping Agents with Investigation of Visible-Light Photocatalytic Properties

    Science.gov (United States)

    Eghbali-Arani, Mohammad; Sobhani-Nasab, Ali; Rahimi-Nasrabadi, Mehdi; Pourmasoud, Saeid

    2018-03-01

    SmVO4 nanoparticles were synthesized through a fast and simple procedure (green method). The effects of three parameters including temperature, type of capping agent, and concentration on the size and morphology behavior of SmVO4 nanoparticles were explored. The analysis of SmVO4 nanoparticles was performed through some techniques including, Fourier transform infrared spectroscopy, x-ray diffraction, energy dispersive x-ray microanalysis, scanning electron microscopy, transmission electron microscopy, thermogravimetry, differential thermal analysis, ultraviolet-visible spectroscopy, and vibrating sample magnetometers. The study of photocatalytic behaviour of the SmVO4 nanoparticles in various conditions has been carried out. The impacts of different factors such as dosage, grain size, and kind of pollutant (methylene blue = MB and methyl orange = MO) on the photocatalytic property of SmVO4 nanoparticles were assessed. The photocatalytic activities of SmVO4 catalysts were studied for the degradation of dye under visible light (λ > 400 nm).

  20. Four-photon parametric light scattering of ultrashort laser pulses in water in case of weak self-phase modulation

    International Nuclear Information System (INIS)

    Babenko, V A; Sychev, Andrei A

    2009-01-01

    The hyper-Raman scattering (HRS) of light in water is detected reliably by the active spectroscopy method of coherent light scattering, in particular, by the method of four-photon parametric light scattering in a medium in which HRS is a 'signal' wave in the parametric process involving simultaneously two high-power laser photons and IR photons of an 'idler' wave. Hyper-Raman scattering by libration vibrations of water molecules, which virtually cannot be detected by conventional methods of Raman scattering, was observed. (nonlinear optical phenomena)

  1. Green(ing) infrastructure

    CSIR Research Space (South Africa)

    Van Wyk, Llewellyn V

    2014-03-01

    Full Text Available the generation of electricity from renewable sources such as wind, water and solar. Grey infrastructure – In the context of storm water management, grey infrastructure can be thought of as the hard, engineered systems to capture and convey runoff..., pumps, and treatment plants.  Green infrastructure reduces energy demand by reducing the need to collect and transport storm water to a suitable discharge location. In addition, green infrastructure such as green roofs, street trees and increased...

  2. Development of olfactory epithelium and associated structures in the green iguana, Iguana iguana—light and scanning electron microscopic study

    Directory of Open Access Journals (Sweden)

    Olga Sapoznikov

    2016-12-01

    Full Text Available The ontogenesis of the nasal cavity has been described in many mammalian species. The situation is different with reptiles, despite the fact that they have become relatively common as pets. In this study we focused on the ontogenesis of the olfactory epithelium, as well as other types of epithelia in the nasal cavity of pre-hatched green iguanas (Iguana iguana. Collection of samples began from day 67 of incubation and continued every four days until hatching. Microscopic examination revealed that significant morphological changes in the nasal cavity began approximately at day 91 of ontogenesis. Approximately at this same stage, the nasal cavity epithelium began to differentiate. The cavity was divided into two compartments by a cartilaginous disc. The ventral compartment bulged rostrally and eventually opened up into the external environment. Three clearly demarcated areas of epithelium in the nasal cavity were visible at day 107.

  3. Development of olfactory epithelium and associated structures in the green iguana, Iguana iguana-light and scanning electron microscopic study.

    Science.gov (United States)

    Sapoznikov, Olga; Cizek, Petr; Tichy, Frantisek

    2016-01-01

    The ontogenesis of the nasal cavity has been described in many mammalian species. The situation is different with reptiles, despite the fact that they have become relatively common as pets. In this study we focused on the ontogenesis of the olfactory epithelium, as well as other types of epithelia in the nasal cavity of pre-hatched green iguanas ( Iguana iguana ). Collection of samples began from day 67 of incubation and continued every four days until hatching. Microscopic examination revealed that significant morphological changes in the nasal cavity began approximately at day 91 of ontogenesis. Approximately at this same stage, the nasal cavity epithelium began to differentiate. The cavity was divided into two compartments by a cartilaginous disc. The ventral compartment bulged rostrally and eventually opened up into the external environment. Three clearly demarcated areas of epithelium in the nasal cavity were visible at day 107.

  4. Development of olfactory epithelium and associated structures in the green iguana, Iguana iguana—light and scanning electron microscopic study

    Science.gov (United States)

    Cizek, Petr; Tichy, Frantisek

    2016-01-01

    The ontogenesis of the nasal cavity has been described in many mammalian species. The situation is different with reptiles, despite the fact that they have become relatively common as pets. In this study we focused on the ontogenesis of the olfactory epithelium, as well as other types of epithelia in the nasal cavity of pre-hatched green iguanas (Iguana iguana). Collection of samples began from day 67 of incubation and continued every four days until hatching. Microscopic examination revealed that significant morphological changes in the nasal cavity began approximately at day 91 of ontogenesis. Approximately at this same stage, the nasal cavity epithelium began to differentiate. The cavity was divided into two compartments by a cartilaginous disc. The ventral compartment bulged rostrally and eventually opened up into the external environment. Three clearly demarcated areas of epithelium in the nasal cavity were visible at day 107. PMID:27920949

  5. Green tide deactivation with layered-structure cuboids of Ag/CaTiO3 under UV light

    International Nuclear Information System (INIS)

    Lee, Soo-Wohn; Lozano-Sánchez, L.M.; Rodríguez-González, V.

    2013-01-01

    Graphical abstract: Synergic reasons such as mass transfer, morphology, biocide properties, UV-A photoresponse, and electron trapping that reduce recombination on Ag/CaTiO 3 nanocomposites, have the potential for the generation of reactive radicals that promote the fatal irreversible deactivation of Tetraselmis suecica algae in 12 min under UV-A irradiation. -- Highlights: • An alternative to deactivate harmful green tide is proposed by employing Ag/CaTiO 3 . • Particles of perovskite-like have rectangular prisms morphology with AgNPs ∼13 nm. • The cuboids achieve complete inactivation of Tetraselmis suecica algae in 12 min. • AgNPs functionalization induce fatal irreversible damages on the algae surface. -- Abstract: In this work, an alternative to deactivate noxious green tide Tetraselmis suecica in the short-term is proposed by employing Perovskite-like cube-shaped, crystalline CaTiO 3 semiconductors functionalized with atomic silver nanoparticles. CaTiO 3 was prepared by a microwave-assisted hydrothermal method and then Ag 0 NPs (1 wt% of CaTiO 3 ), were added by the photoreduction method. The XRD results show that crystalline CaTiO 3 has an orthorhombic unit cell with a Perovskite-like structure. Images obtained by FESEM and HRTEM microscopies show well-faceted CaTiO 3 rectangular prismatic morphology functionalizated with silver nanoparticles ∼13.5 nm. XPS and EDS-FESEM has confirmed the composition of CaTiO 3 and silver occurring mainly as reduced metal. The UV inactivation of noxious T. suecica with Ag/CaTiO 3 nanocomposites formed on bare materials results in complete deactivation of the algae in 12 min. The direct contact between harmful algae and Ag/CaTiO 3 nanocomposite is necessary to deactivate the algae and inhibits algae viability

  6. Multicenter study on costs associated with two surgical procedures: GreenLight XPS 180 W versus the gold standard transurethral resection of the prostate.

    Science.gov (United States)

    Benejam-Gual, J M; Sanz-Granda, A; Budía, A; Extramiana, J; Capitán, C

    2014-01-01

    To analyze the costs associated with two surgical procedures for lower urinary tract symptoms secondary to benign prostatic hyperplasia: GreenLight XPS 180¦W versus the gold standard transurethral resection of the prostate. A multicenter, retrospective cost study was carried out from the National Health Service perspective, over a 3-month time period. Costs were broken down into pre-surgical, surgical and post-surgical phases. Data were extracted from records of patients operated sequentially, with IPSS=15, Qmax=15 mL/seg and a prostate volume of 40-80mL, adding only direct healthcare costs (€, 2013) associated with the procedure and management of complications. A total of 79 patients sequentially underwent GL XPS (n: 39) or TURP (n: 40) between July and October, 2013. Clinical outcomes were similar (94.9% and 92.5%, GL XPS and TURP, respectively) without significant differences (P=.67). The average direct cost per patient was reduced by €114 in GL XPS versus TURP patients; the cost was higher in the surgical phase with GL XPS (difference: €1,209; P<.001) but was lower in the post-surgical phase (difference: €-1,351; P<.001). The GreenLight XPS 180-W laser system is associated with a reduction in costs with respect to transurethral resection of prostate in the surgical treatment of LUTS secondary to PBH. This reduction is due to a shorter inpatient length of stay that offsets the cost of the new technology. Copyright © 2013 AEU. Published by Elsevier Espana. All rights reserved.

  7. The effect of colour light on production of zooids in 10 strains of the green chlorococcal alga Scenedesmus obliquus

    Czech Academy of Sciences Publication Activity Database

    Cepák, Vladislav; Přibyl, Pavel

    2006-01-01

    Roč. 6, - (2006), s. 127-133 ISSN 1213-3434 R&D Projects: GA ČR(CZ) GA204/03/1113 Institutional research plan: CEZ:AV0Z60050516 Keywords : colour light * Scenedesmus * life cycle Subject RIV: EF - Botanics

  8. Contrasting impacts of light reduction on sediment biogeochemistry in deep- and shallow-water tropical seagrass assemblages (Green Island, Great Barrier Reef).

    Science.gov (United States)

    Schrameyer, Verena; York, Paul H; Chartrand, Kathryn; Ralph, Peter J; Kühl, Michael; Brodersen, Kasper Elgetti; Rasheed, Michael A

    2018-05-01

    Seagrass meadows increasingly face reduced light availability as a consequence of coastal development, eutrophication, and climate-driven increases in rainfall leading to turbidity plumes. We examined the impact of reduced light on above-ground seagrass biomass and sediment biogeochemistry in tropical shallow- (∼2 m) and deep-water (∼17 m) seagrass meadows (Green Island, Australia). Artificial shading (transmitting ∼10-25% of incident solar irradiance) was applied to the shallow- and deep-water sites for up to two weeks. While above-ground biomass was unchanged, higher diffusive O 2 uptake (DOU) rates, lower O 2 penetration depths, and higher volume-specific O 2 consumption (R) rates were found in seagrass-vegetated sediments as compared to adjacent bare sand (control) areas at the shallow-water sites. In contrast, deep-water sediment characteristics did not differ between bare sand and vegetated sites. At the vegetated shallow-water site, shading resulted in significantly lower hydrogen sulphide (H 2 S) levels in the sediment. No shading effects were found on sediment biogeochemistry at the deep-water site. Overall, our results show that the sediment biogeochemistry of shallow-water (Halodule uninervis, Syringodium isoetifolium, Cymodocea rotundata and C. serrulata) and deep-water (Halophila decipiens) seagrass meadows with different species differ in response to reduced light. The light-driven dynamics of the sediment biogeochemistry at the shallow-water site could suggest the presence of a microbial consortium, which might be stimulated by photosynthetically produced exudates from the seagrass, which becomes limited due to lower seagrass photosynthesis under shaded conditions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Numerical analysis of the electrical and the optical properties of green phosphorescent organic light-emitting diodes

    International Nuclear Information System (INIS)

    Hwang, Young Wook; Lee, Hyeon Gi; Won, Tae Young

    2014-01-01

    In this paper, we report a theoretical study on the electrical-optical properties of phosphorescent organic light-emitting diodes (PHOLEDs). Our simulation reveals that the refractive index of each material plays a crucial role in the emission characteristics and that the barrier height at the interface significantly influences the behavior of charge transport as well as the generation of excitons. The calculated transient profiles indicate that the carrier recombination in the PHOLEDs takes place mainly at the interface between the emitting layer and the hole transport layer after 8 μs. In the case of high index of refraction, the simulation result via modal analysis implies a possibility for improving the light extraction by increasing the substrate mode. As the thickness of each layer has been altered, we observe that the chromaticity of the device changes periodically.

  10. The effect of light color on the nucleocytoplasmic and chloroplast cycle of the green chlorococcal alga Scenedesmus obliquus

    Czech Academy of Sciences Publication Activity Database

    Cepák, Vladislav; Přibyl, Pavel; Vítová, Milada

    2006-01-01

    Roč. 51, č. 4 (2006), s. 342-348 ISSN 0015-5632 R&D Projects: GA ČR(CZ) GA204/03/1113; GA MŠk(CZ) 1M0571 Institutional research plan: CEZ:AV0Z60050516; CEZ:AV0Z50200510 Keywords : color lights * cell cycle * Scenedesmus Subject RIV: EF - Botanics Impact factor: 0.963, year: 2006

  11. Synthesis and optical study of green light emitting polymer coated CdSe/ZnSe core/shell nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, S.K., E-mail: surya@pu.ac.in [Department of Physics, Center of Advanced Study in Physics, Panjab University, Chandigarh 160 014 (India); Sharma, Mamta [Department of Physics, Center of Advanced Study in Physics, Panjab University, Chandigarh 160 014 (India)

    2013-05-15

    Highlights: ► Synthesis of Polymer coated core CdSe and CdSe/ZnSe core/shell NCs. ► From TEM image, the spherical nature of CdSe and CdSe/ZnSe is obtained. ► Exhibiting green band photoemission peak at 541 nm and 549 nm for CdSe core and CdSe/ZnSe core/shell NCs. ► The shell thickness has been calculated by using superposition of quantum confinement energy model. - Abstract: CdSe/ZnSe Core/Shell NCs dispersed in PVA are synthesized by chemical method at room temperature. This is characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), UV/Vis spectra and photoluminescence spectroscopy (PL). TEM image shows the spherical nature of CdSe/ZnSe core/shell NCs. The red shift of absorption and emission peak of CdSe/ZnSe core/shell NCs as compared to CdSe core confirmed the formation of core/shell. The superposition of quantum confinement energy model is used for calculation of thickness of ZnSe shell.

  12. Investigations, Experiments, and Implications for using existing Pulse Magnets for 'TOPOFF' Operation at the Advanced Light Source

    International Nuclear Information System (INIS)

    Stover, Gregory D.; Baptiste, Kenneth Michael; Barry, Walter; Gath, William; Julian, James; Kwiatkowski, Slawomir; Prestemon, Soren; Schlueter, Ross; Shuman, Derek; Steier, Christoph

    2005-01-01

    ALS top-off mode of operation will require injection of the electron beam from the Booster Ring into the Storage Ring at the full ALS energy level of 1.9 GeV. Currently the Booster delivers a beam at 1.5 GeV to the Storage Ring where it is then ramped to the full energy and stored for the user operation. The higher Booster beam energy will require the pulse magnets in the Booster and Storage Rings to operate at proportionally higher magnetic gap fields. Our group studied and tested the possible design and installation modifications required to operate the magnets and drivers at ''top-off'' levels. Our results and experiments show that with minor electrical modifications all the existing pulse magnet systems can be used at the higher energy levels, and the increased operational stresses should have a negligible impact on magnet reliability. Furthermore, simple electrical modifications to the storage ring thick septum will greatly reduce the present level of septum stray leakage fields into the storage ring beam

  13. Ag@graphene oxide nanocomposite as an efficient visible-light plasmonic photocatalyst for the degradation of organic pollutants: A facile green synthetic approach

    International Nuclear Information System (INIS)

    Haldorai, Yuvaraj; Kim, Byung-Keuk; Jo, Youl-Lae; Shim, Jae-Jin

    2014-01-01

    We report a simple and effective supercritical route to decorate silver nanoparticles (Ag NPs) on graphene oxide (GO) using a commonly available and non-toxic glucose as a reducing agent. Transmission electron microscopy and energy-dispersive X-ray analysis confirmed that Ag NPs of size around 8–20 nm were coated on the GO surface under optimized experimental condition. Ag NPs on the GO surface were predominantly spherical in shape and well dispersed. The experimental results proved that the as-synthesized GO/Ag nanocomposite could be used as a highly efficient photocatalyst for the degradation of Rhodamine 123 dye and acetaldehyde under visible-light irradiation. The degradation results indicated that the photocatalytic performance of nanocomposite was greatly enhanced owing to the improved adsorption performance and separation efficiency of photo-generated carriers. The nanocomposite maintains a high level activity even after four times of recycle. Furthermore, the nanocomposite exhibited excellent antibacterial activity against gram-positive and gram-negative microorganisms. - Highlights: • Visible-light driven reusable photocatalyst. • Efficient degradation of Rhodamine 123 dye and acetaldehyde. • Excellent antibacterial activity. • Green synthetic approach using supercritical fluid. • New field of sustainable nanotechnology

  14. Effects of multiple interruptions with trimethylindium-treatment in the InGaN/GaN quantum well on green light emitting diodes

    Science.gov (United States)

    Qiao, Liang; Ma, Zi-Guang; Chen, Hong; Wu, Hai-Yan; Chen, Xue-Fang; Yang, Hao-Jun; Zhao, Bin; He, Miao; Zheng, Shu-Wen; Li, Shu-Ti

    2016-10-01

    In this study, the influence of multiple interruptions with trimethylindium (TMIn)-treatment in InGaN/GaN multiple quantum wells (MQWs) on green light-emitting diode (LED) is investigated. A comparison of conventional LEDs with the one fabricated with our method shows that the latter has better optical properties. Photoluminescence (PL) full-width at half maximum (FWHM) is reduced, light output power is much higher and the blue shift of electroluminescence (EL) dominant wavelength becomes smaller with current increasing. These improvements should be attributed to the reduced interface roughness of MQW and more uniformity of indium distribution in MQWs by the interruptions with TMIn-treatment. Project supported by the National Natural Science Foundation of China (Grant Nos. 11204360 and 61210014), the Science and Technology Planning Projects of Guangdong Province, China (Grant Nos. 2014B050505020, 2015B010114007, and 2014B090904045), the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20134407110008), the Guangzhou Municipal Science and Technology Project of Guangdong Province, China (Grant No. 2016201604030027), and the Zhongshan Science and Technology Project of Guangdong Province, China (Grant No. 2013B3FC0003).

  15. Fabrication of Ag-decorated BiOBr-mBiVO4 dual heterojunction composite with enhanced visible light photocatalytic performance for degradation of malachite green

    Science.gov (United States)

    Regmi, Chhabilal; Dhakal, Dipesh; Kim, Tae-Ho; Yamaguchi, Takutaro; Wohn Lee, Soo

    2018-04-01

    A visible light active Ag-decorated BiVO4-BiOBr dual heterojunction photocatalyst was prepared using a facile hydrothermal method, followed by the photodeposition of Ag. The photocatalytic activity of the synthesized samples was investigated by monitoring the change in malachite green (MG) concentration upon visible light irradiation. The synthesized sample was highly effective for the degradation of non-biodegradable MG. The enhanced activity observed was ascribed to the efficient separation and transfer of charge carriers across the dual heterojunction structure as verified by photoluminescence measurements. The removal of MG was primarily initiated by hydroxyl radicals and holes based on scavenger’s effect. To gain insight into the degradation mechanism, both high performance liquid chromatography and high resolution-quantitative time of flight, electrospray ionization mass spectrometry measurements during the degradation process were carried out. The degradation primarily followed the hydroxylation and N-demethylation process. A possible reaction pathway is proposed on the basis of all the information obtained under various experimental conditions.

  16. CNT supported Mn-doped ZnO nanoparticles: simple synthesis and improved photocatalytic activity for degradation of malachite green dye under visible light

    Science.gov (United States)

    Mohamed, R. M.; Shawky, Ahmed

    2018-03-01

    Hexagonal ZnO nanoparticles doped with Mn and supported with a minor amount of carbon nanotubes (CNTs) were synthesized through a simple coprecipitation-ultrasonication process with high yield. The effect of Mn doping, as well as CNTs addition on structure, surface morphology and texture, optical and electronic properties, was studied. We found that just 1% Mn doping and 1% CNT addition on ZnO showed the best crystallinity, highest surface area, improved visible light absorption, and a lowest estimated band gap of 2.6 eV with minimum charge recombination as revealed from photoluminescence spectra. The application of the optimum composition of the synthesized sample for the photodegradation of malachite green dye showed enhanced photocatalytic activity > 95% under visible light irradiation within 120 min at a minimum dosage of 0.1 g L-1 without any using of hole scavenger or changing the pH. This work highlighting the humble preparation procedure and develops photocatalysis research for real industrial applications.

  17. Highly Simplified Tandem Organic Light-Emitting Devices Incorporating a Green Phosphorescence Ultrathin Emitter within a Novel Interface Exciplex for High Efficiency.

    Science.gov (United States)

    Xu, Ting; Zhou, Jun-Gui; Huang, Chen-Chao; Zhang, Lei; Fung, Man-Keung; Murtaza, Imran; Meng, Hong; Liao, Liang-Sheng

    2017-03-29

    Herein we report a novel design philosophy of tandem OLEDs incorporating a doping-free green phosphorescent bis[2-(2-pyridinyl-N)phenyl-C](acetylacetonato)iridium(III) (Ir(ppy) 2 (acac)) as an ultrathin emissive layer (UEML) into a novel interface-exciplex-forming structure of 1,1-bis[(di-4-tolylamino)phenyl]cyclohexane (TAPC) and 1,3,5-tri(p-pyrid-3-yl-phenyl)benzene (TmPyPB). Particularly, relatively low working voltage and remarkable efficiency are achieved and the designed tandem OLEDs exhibit a peak current efficiency of 135.74 cd/A (EQE = 36.85%) which is two times higher than 66.2 cd/A (EQE = 17.97%) of the device with a single emitter unit. This might be one of the highest efficiencies of OLEDs applying ultrathin emitters without light extraction. Moreover, with the proposed structure, the color gamut of the displays can be effectively increased from 76% to 82% NTSC if the same red and blue emissions as those in the NTSC are applied. A novel form of harmonious fusion among interface exciplex, UEML, and tandem structure is successfully realized, which sheds light on further development of ideal OLED structure with high efficiency, simplified fabrication, low power consumption, low cost, and improved color gamut, simultaneously.

  18. Kinetics of polymer degradation in solution. 6. Laser flash photolysis and pulse radiolysis studies of polymethylvinylketone in solution using the light scattering detection method

    Energy Technology Data Exchange (ETDEWEB)

    Lindenau, D; Beavan, S W; Beck, G; Schnabel, W [Hahn-Meitner-Institut fuer Kernforschung Berlin G.m.b.H. (Germany, F.R.)

    1977-01-01

    Polymethylvinylketone (PMVK) was irradiated in solution with 2 ..mu..s pulses of 15 MeV electrons or with 15 ns flashes of 262 nm light. The change of the intensity of the light scattered by the solution (LSI) after the irradiation was measured. For the radiolysis experiments, a main chain scission process tausub(1/2) (decr) approximately 20 ..mu..s) and a subsequent crosslinking process (tausub(1/2) (incr) approximately 0.4 sec) could be discriminated. The LSI change pertaining to the main chain degradation was found to be due to disentanglement diffusion, whereas the LSI change pertaining to the crosslinking process could be correlated to a chemical reaction. The rate constant for combination of lateral macroradicals in acetone solution was estimated as 2 k/sub 2/ - (4.5 +- 1.5)10/sup 6/ M/sup -1/ sec/sup -1/. Stationary irradiation with /sup 60/Co-..gamma..-rays showed that PMVK is predominantly crosslinked to form a macrogel when irradiated in the solid state or in solution at concentrations greater than 100 g/l. At lower concentrations, microgel formation occurred. Photolysis of PMVK in solution yielded only main chain degradation. The LSI change was found to be due to disentanglement diffusion as during radiolysis. It was concluded that the same mechanism for main chain rupture is operative as in radiolysis. Stationary irradiations with uv light (lambda > 260 nm ) resulted in main chain degradation; no indication of crosslinking was obtained.

  19. SHINING LIGHT ON MERGING GALAXIES. I. THE ONGOING MERGER OF A QUASAR WITH A 'GREEN VALLEY' GALAXY

    International Nuclear Information System (INIS)

    Da Silva, Robert L.; Xavier Prochaska, J.; Rosario, David; Tumlinson, Jason; Tripp, Todd M.

    2011-01-01

    Serendipitous observations of a pair z = 0.37 interacting galaxies (one hosting a quasar) show a massive gaseous bridge of material connecting the two objects. This bridge is photoionized by the quasar (QSO), revealing gas along the entire projected 38 h -1 70 kpc sightline connecting the two galaxies. The emission lines that result give an unprecedented opportunity to study the merger process at this redshift. We determine the kinematics, ionization parameter (log U ∼ -2.5 ± 0.03), column density (N H,perpendicular ∼ 10 21 cm -2 ), metallicity ([M/H] ∼ - 0.20 ± 0.15), and mass (∼10 8 M sun ) of the gaseous bridge. We simultaneously constrain properties of the QSO host (M DM > 8.8 x 10 11 M sun ) and its companion galaxy (M DM > 2.1 x 10 11 M sun ; M * ∼ 2 x 10 10 M sun ; stellar burst age = 300-800 Myr; SFR ∼6 M sun yr -1 ; and metallicity 12 + log (O/H) = 8.64 ± 0.2). The general properties of this system match the standard paradigm of a galaxy-galaxy merger caught between first and second passages while one of the galaxies hosts an active quasar. The companion galaxy lies in the so-called green valley, with a stellar population consistent with a recent starburst triggered during the first passage of the merger and has no discernible active galactic nucleus activity. In addition to providing case studies of quasars associated with galaxy mergers, quasar/galaxy pairs with QSO-photoionized tidal bridges such as this one offer unique insights into the galaxy properties while also distinguishing an important and inadequately understood phase of galaxy evolution.

  20. Process evaluation of the Living Green, Healthy and Thrifty (LiGHT) web-based child obesity management program: combining health promotion with ecology and economy.

    Science.gov (United States)

    Jogova, Maria; Song, Joshua Eun-Soo; Campbell, Audrey Clare; Warbuton, Darren; Warshawski, Tom; Chanoine, Jean-Pierre

    2013-04-01

    To conduct a process evaluation of the Living Green, Healthy and Thrifty (LiGHT) program, a novel virtual child obesity management program that combines health promotion with ecology and economy (Phase 1). We carried out a mixed methods process evaluation involving qualitative and quantitative data collection in 3 phases: among 3 child-parent units, (group 1) that informed program development; 9 child-parent units (group 2) that tested the draft program and further aided program refinement; and 17 child-parent units (group 3) for a 4-week pilot of the program. In the program pilot, we assessed participants' knowledge and readiness to change pre- and postintervention and explored perceptions of the program. Participants generally felt that the online format for program delivery was convenient and accessible, the content was practical, and the integration of health-environment-economy was well received. Many parents also appreciated the involvement of the family. However, the lack of visual appeal and overabundance of text was identified as a challenge, and children/youth in particular requested assurance that their personal information (e.g. weight) was not seen by their parents. The online method of program delivery holds the unique challenge of requiring special efforts to create a sense of personal connection and community. The presence of a "Way-finder" to assist participants and discussion boards/forums are potential solutions. The LiGHT online weight management program offers an accessible, convenient weight management resource that children and families appreciate for its availability, broader educational scope, and practicality. Outcome evaluation of LiGHT will be carried out in Phase 2 of the project. Copyright © 2013 Canadian Diabetes Association. Published by Elsevier Inc. All rights reserved.