WorldWideScience

Sample records for green leaf volatile

  1. Green Leaf Volatile Emissions during High Temperature and Drought Stress in a Central Amazon Rainforest.

    Science.gov (United States)

    Jardine, Kolby J; Chambers, Jeffrey Q; Holm, Jennifer; Jardine, Angela B; Fontes, Clarissa G; Zorzanelli, Raquel F; Meyers, Kimberly T; de Souza, Vinicius Fernadez; Garcia, Sabrina; Gimenez, Bruno O; Piva, Luani R de O; Higuchi, Niro; Artaxo, Paulo; Martin, Scot; Manzi, Antônio O

    2015-09-15

    Prolonged drought stress combined with high leaf temperatures can induce programmed leaf senescence involving lipid peroxidation, and the loss of net carbon assimilation during early stages of tree mortality. Periodic droughts are known to induce widespread tree mortality in the Amazon rainforest, but little is known about the role of lipid peroxidation during drought-induced leaf senescence. In this study, we present observations of green leaf volatile (GLV) emissions during membrane peroxidation processes associated with the combined effects of high leaf temperatures and drought-induced leaf senescence from individual detached leaves and a rainforest ecosystem in the central Amazon. Temperature-dependent leaf emissions of volatile terpenoids were observed during the morning, and together with transpiration and net photosynthesis, showed a post-midday depression. This post-midday depression was associated with a stimulation of C₅ and C₆ GLV emissions, which continued to increase throughout the late afternoon in a temperature-independent fashion. During the 2010 drought in the Amazon Basin, which resulted in widespread tree mortality, green leaf volatile emissions (C₆ GLVs) were observed to build up within the forest canopy atmosphere, likely associated with high leaf temperatures and enhanced drought-induced leaf senescence processes. The results suggest that observations of GLVs in the tropical boundary layer could be used as a chemical sensor of reduced ecosystem productivity associated with drought stress.

  2. WRKY40 and WRKY6 act downstream of the green leaf volatile E-2-hexenal in Arabidopsis

    NARCIS (Netherlands)

    Mirabella, R.; Rauwerda, H.; Allmann, S.; Scala, A.; Spyropoulou, E.A.; de Vries, M.; Boersma, M.R.; Breit, T.M.; Haring, M.A.; Schuurink, R.C.

    Plants are known to be responsive to volatiles, but knowledge about the molecular players involved in transducing their perception remains scarce. We study the response of Arabidopsis thaliana to E-2-hexenal, one of the green leaf volatiles (GLV) that is produced upon wounding, herbivory or

  3. Green Leaf Volatiles: A Plant’s Multifunctional Weapon against Herbivores and Pathogens

    Science.gov (United States)

    Scala, Alessandra; Allmann, Silke; Mirabella, Rossana; Haring, Michel A.; Schuurink, Robert C.

    2013-01-01

    Plants cannot avoid being attacked by an almost infinite number of microorganisms and insects. Consequently, they arm themselves with molecular weapons against their attackers. Plant defense responses are the result of a complex signaling network, in which the hormones jasmonic acid (JA), salicylic acid (SA) and ethylene (ET) are the usual suspects under the magnifying glass when researchers investigate host-pest interactions. However, Green Leaf Volatiles (GLVs), C6 molecules, which are very quickly produced and/or emitted upon herbivory or pathogen infection by almost every green plant, also play an important role in plant defenses. GLVs are semiochemicals used by insects to find their food or their conspecifics. They have also been reported to be fundamental in indirect defenses and to have a direct effect on pests, but these are not the only roles of GLVs. These volatiles, being probably one of the fastest weapons exploited, are also able to directly elicit or prime plant defense responses. Moreover, GLVs, via crosstalk with phytohormones, mostly JA, can influence the outcome of the plant’s defense response against pathogens. For all these reasons GLVs should be considered as co-protagonists in the play between plants and their attackers. PMID:23999587

  4. Green leaf volatiles: biosynthesis, biological functions and their applications in biotechnology.

    Science.gov (United States)

    ul Hassan, Muhammad Naeem; Zainal, Zamri; Ismail, Ismanizan

    2015-08-01

    Plants have evolved numerous constitutive and inducible defence mechanisms to cope with biotic and abiotic stresses. These stresses induce the expression of various genes to activate defence-related pathways that result in the release of defence chemicals. One of these defence mechanisms is the oxylipin pathway, which produces jasmonates, divinylethers and green leaf volatiles (GLVs) through the peroxidation of polyunsaturated fatty acids (PUFAs). GLVs have recently emerged as key players in plant defence, plant-plant interactions and plant-insect interactions. Some GLVs inhibit the growth and propagation of plant pathogens, including bacteria, viruses and fungi. In certain cases, GLVs released from plants under herbivore attack can serve as aerial messengers to neighbouring plants and to attract parasitic or parasitoid enemies of the herbivores. The plants that perceive these volatile signals are primed and can then adapt in preparation for the upcoming challenges. Due to their 'green note' odour, GLVs impart aromas and flavours to many natural foods, such as vegetables and fruits, and therefore, they can be exploited in industrial biotechnology. The aim of this study was to review the progress and recent developments in research on the oxylipin pathway, with a specific focus on the biosynthesis and biological functions of GLVs and their applications in industrial biotechnology. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  5. The lipoxygenase metabolic pathway in plants: potential for industrial production of natural green leaf volatiles

    Directory of Open Access Journals (Sweden)

    Gigot, C.

    2010-01-01

    Full Text Available Lipoxygenase enzymatic pathway is a widely studied mechanism in the plant kingdom. Combined actions of three enzymes: lipase, lipoxygenase (LOX and hydroperoxide lyase (HPL convert lipidic substrates such as C18:2 and C18:3 fatty acids into short chain volatiles. These reactions, triggered by cell membrane disruptions, produce compounds known as Green Leaf Volatiles (GLVs which are C6 or C9-aldehydes and alcohols. These GLVs are commonly used as flavors to confer a fresh green odor of vegetable to food products. Therefore, competitive biocatalytic productions have been developed to meet the high demand in these natural flavors. Vegetable oils, chosen for their lipidic acid profile, are converted by soybean LOX and plant HPL into natural GLVs. However this second step of the bioconversion presents low yield due to the HPL instability and the inhibition by its substrate. This paper will shortly describe the different enzymes involved in this bioconversion with regards to their chemical and enzymatic properties. Biotechnological techniques to enhance their production potentialities will be discussed along with their implication in a complete bioprocess, from the lipid substrate to the corresponding aldehydic or alcoholic flavors.

  6. Orchids mimic green-leaf volatiles to attract prey-hunting wasps for pollination.

    Science.gov (United States)

    Brodmann, Jennifer; Twele, Robert; Francke, Wittko; Hölzler, Gerald; Zhang, Qing-He; Ayasse, Manfred

    2008-05-20

    An outstanding feature of orchids is the diversity of their pollination systems [1]. Most remarkable are those species that employ chemical deceit for the attraction of pollinators [2]. The orchid Epipactis helleborine is a typical wasp flower, exhibiting physiological and morphological adaptations for the attraction of pollinating social wasps [3]. As noted by Darwin [1], this species is almost entirely overlooked by other potential pollinators, despite a large nectar reward. Therefore, the mechanism for the attraction of pollinating social wasps was something of a mystery. By using a combination of behavioral experiments, electrophysiological investigations, and chemical analyses, we demonstrate for the first time that the flowers of E. helleborine and E. purpurata emit green-leaf volatiles (GLVs), which are attractive to foragers of the social wasps Vespula germanica and V. vulgaris. GLVs, emitted by damaged plant tissues, are known to guide parasitic wasps to their hosts [4]. Several E. helleborine GLVs that induced response in the antennae of wasps were also emitted by cabbage leaves infested with caterpillars (Pieris brassicae), which are common prey items for wasps [5]. This is the first example in which GLVs have been implicated in chemical mimicry for the attraction of pollinating insects.

  7. Aqueous Oxidation of Green Leaf Volatiles as a Source of Secondary Organic Aerosol

    Science.gov (United States)

    Richards-Henderson, N. K.; Hansel, A.; Pham, A. T.; Vempati, H. S.; Valsaraj, K. T.; Anastasio, C.

    2013-12-01

    Vegetation emits volatile oxygenated hydrocarbons - the green leaf volatiles (GLVs) - which are formed from the biochemical conversion of linoleic and linolenic acids within plant cells. Stress or damage to vegetation can significantly elevate emission fluxes of these compounds, some of which are fairly water soluble. Aqueous-phase reactions of the GLVs with photochemically generated oxidants - such as hydroxyl radical (OH), singlet oxygen (1O2) and excited triplet states of organic compounds (3C*) _ might then form low-volatility products that can act as secondary organic aerosol (SOA). In order to determine if GLVs can be a significant source of secondary organic carbon in fogwater, studies of GLVs in laboratory solutions are needed to elucidate the oxidation kinetics and the corresponding SOA mass yields. In this study we are determining the second-order rate constants, and SOA mass yields, for five GLVs (cis-3-hexen-1-ol, cis-3-hexenylacetate, methyl salicylate, methyl jasmonate, and 2-methyl-3-butene-2-ol) reacting with OH,1O2 and 3C*. Experiments are performed at relevant fog water pHs, temperatures, and oxidant concentrations. Rate constants are determined using a relative rate approach in which the decay of GLVs and reference compounds are monitored as function of time by HPLC. The capacity of GLVs to form aqueous SOA was determined by following the formation of their decomposition products with HPLC-UV/DAD and HPLC-ESI/MS. SOA mass yields are measured gravimetrically from laboratory solutions containing atmospherically relevant concentrations of photooxidants and GLVs, and irradiated with simulated sunlight. We will use our results to assess the potential contribution of aqueous GLV reactions as a source of SOA in cloudy or foggy atmospheres.

  8. Olfactory responses of Plutella xylostella natural enemies to host pheromone, larval frass, and green leaf cabbage volatiles.

    Science.gov (United States)

    Reddy, G V P; Holopainen, J K; Guerrero, A

    2002-01-01

    The parasitoids Trichogramma chilonis (Hymenoptera: Trichogrammatidae) and Cotesia plutellae (Hymenoptera: Braconidae), and the predator Chrysoperla carnea (Neuroptera: Chrysopidae), are potential biological control agents for the diamondback moth, Plutella xylostella (Lepidoptera: Yponomeutidae). We present studies on the interactions between these bioagents and various host-associated volatiles using a Y olfactometer. T chilonis was attracted to a synthetic pheromone blend (Z11-16:Ald, Z11-16:Ac, and Z11-16:OH in a 1:1:0.01 ratio), to Z11-16:Ac alone, and to a 1:1 blend of Z11-16:Ac and Z11-16:Ald. C. plutellae responded to the blend and to Z11-16:Ac and Z11-16:Ald. Male and female C. carnea responded to the blend and to a 1:1 blend of the major components of the pheromone, although no response was elicited by single compounds. Among the four host larval frass volatiles tested (dipropyl disulfide, dimethyl disulfide, allyl isothiocyanate, and dimethyl trisulfide), only allyl isothiocyanate elicited significant responses in the parasitoids and predator, but C. plutellae and both sexes of C. carnea did respond to all four volatiles. Among the green leaf volatiles of cabbage (Brassica oleracea subsp. capitata), only Z3-6:Ac elicited significant responses from T. chilonis, C. plutellae, and C. carnea, but C. plutellae also responded to E2-6:Ald and Z3-6:OH. When these volatiles were blended with the pheromone, the responses were similar to those elicited by the pheromone alone, except for C. carnea males, which had an increased response. The effect of temperature on the response of the biological agents to a mixture of the pheromone blend and Z3-6:Ac was also studied. T. chilonis was attracted at temperatures of 25-35 degrees C, while C. plutellae and C. carnea responded optimally at 30-35 degrees C and 20-25 degrees C, respectively. These results indicate that the sex pheromone and larval frass volatiles from the diamondback moth, as well as volatile compounds from

  9. Reactive oxidation products promote secondary organic aerosol formation from green leaf volatiles

    Directory of Open Access Journals (Sweden)

    J. F. Hamilton

    2009-06-01

    Full Text Available Green leaf volatiles (GLVs are an important group of chemicals released by vegetation which have emission fluxes that can be significantly increased when plants are damaged or stressed. A series of simulation chamber experiments has been conducted at the European Photoreactor in Valencia, Spain, to investigate secondary organic aerosol (SOA formation from the atmospheric oxidation of the major GLVs cis-3-hexenylacetate and cis-3-hexen-1-ol. Liquid chromatography-ion trap mass spectrometry was used to identify chemical species present in the SOA. Cis-3-hexen-1-ol proved to be a more efficient SOA precursor due to the high reactivity of its first generation oxidation product, 3-hydroxypropanal, which can hydrate and undergo further reactions with other aldehydes resulting in SOA dominated by higher molecular weight oligomers. The lower SOA yields produced from cis-3-hexenylacetate are attributed to the acetate functionality, which inhibits oligomer formation in the particle phase. Based on observed SOA yields and best estimates of global emissions, these compounds may be calculated to be a substantial unidentified global source of SOA, contributing 1–5 TgC yr−1, equivalent to around a third of that predicted from isoprene. Molecular characterization of the SOA, combined with organic mechanistic information, has provided evidence that the formation of organic aerosols from GLVs is closely related to the reactivity of their first generation atmospheric oxidation products, and indicates that this may be a simple parameter that could be used in assessing the aerosol formation potential for other unstudied organic compounds in the atmosphere.

  10. Effect of extraction time on antioxidants and bioactive volatile components of green tea (Camellia sinensis, using GC/MS

    Directory of Open Access Journals (Sweden)

    Mudasir Ahmad

    2015-12-01

    Full Text Available Two green tea types, leaf grade and sanding, were extracted at different time intervals: 20, 40, and 120 min at a constant temperature of 50°C. The extracts were analyzed by GC/MS technique. The major compounds identified were myristic acid, palmitic acid, stearic acid, oleic acid, 1H-purine-2,6-dione, caffeine, linoleic acid, diethyl ester, and 1H-purine-6-amine. Stearic acid, palmitic acid, linoleic acid, and myristic acid were more abundantly present in the leaf-grade variety than sanding. However, some levels of acetic acid, cyclobutanol, hexadecanoic acid, octadecanoic acid, 9-octadecenoic acid, and caffeine were also found in both the tea types. Most of the volatile compounds were detected between 20–40-min time of extraction. The 40-min time of extraction also showed the maximum content of polyphenols and antioxidants in both the tea types. Thus, 40 min was suggested as the most suitable time for maximum extraction of bioactive volatiles, antioxidants, and polyphenols from green tea.

  11. Evaluation of γ-radiation on green tea odor volatiles

    International Nuclear Information System (INIS)

    Fanaro, G.B.; Duarte, R.C.; Araujo, M.M.; Purgatto, E.; Villavicencio, A.L.C.H.

    2011-01-01

    The aim of this study was to evaluate the gamma radiation effects on green tea odor volatiles in green tea at doses of 0, 5, 10, 15 and 20 kGy. The volatile organic compounds were extracted by hydrodistillation and analyzed by GC/MS. The green tea had a large influence on radiation effects, increasing the identified volatiles in relation to control samples. The dose of 10 kGy was responsible to form the majority of new odor compounds following by 5 and 20 kGy. However, the dose of 5 kGy was the dose that degraded the majority of volatiles in non-irradiated samples, following by 20 kGy. The dose of 15 kGy showed has no effect on odor volatiles. The gamma radiation, at dose up to 20 kGy, showed statistically no difference between irradiated and non irradiated green tea on odors compounds.

  12. Volatile and non-volatile compounds in green tea affected in harvesting time and their correlation to consumer preference.

    Science.gov (United States)

    Kim, Youngmok; Lee, Kwang-Geun; Kim, Mina K

    2016-10-01

    Current study was designed to find out how tea harvesting time affects the volatile and non-volatile compounds profiles of green tea. In addition, correlation of instrumental volatile and non-volatile compounds analyses to consumer perception were analyzed. Overall, earlier harvested green tea had stronger antioxidant capacity (~61.0%) due to the polyphenolic compounds from catechin (23,164 mg/L), in comparison to later harvested green teas (11,961 mg/L). However, high catechin content in green tea influenced negatively the consumer likings of green tea, due to high bitterness (27.6%) and astringency (13.4%). Volatile compounds drive consumer liking of green tea products were also identified, that included linalool, 2,3-methyl butanal, 2-heptanone, (E,E)-3,5-Octadien-2-one. Finding from current study are useful for green tea industry as it provide the difference in physiochemical properties of green tea harvested at different intervals.

  13. Molecular modeling of the green leaf volatile methyl salicylate on atmospheric air/water interfaces.

    Science.gov (United States)

    Liyana-Arachchi, Thilanga P; Hansel, Amie K; Stevens, Christopher; Ehrenhauser, Franz S; Valsaraj, Kalliat T; Hung, Francisco R

    2013-05-30

    Methyl salicylate (MeSA) is a green leaf volatile (GLV) compound that is emitted in significant amounts by plants, especially when they are under stress conditions. GLVs can then undergo chemical reactions with atmospheric oxidants, yielding compounds that contribute to the formation of secondary organic aerosols (SOAs). We investigated the adsorption of MeSA on atmospheric air/water interfaces at 298 K using thermodynamic integration (TI), potential of mean force (PMF) calculations, and classical molecular dynamics (MD) simulations. Our molecular models can reproduce experimental results of the 1-octanol/water partition coefficient of MeSA. A deep free energy minimum was found for MeSA at the air/water interface, which is mainly driven by energetic interactions between MeSA and water. At the interface, the oxygenated groups in MeSA tend to point toward the water side of the interface, with the aromatic group of MeSA lying farther away from water. Increases in the concentrations of MeSA lead to reductions in the height of the peaks in the MeSA-MeSA g(r) functions, a slowing down of the dynamics of both MeSA and water at the interface, and a reduction in the interfacial surface tension. Our results indicate that MeSA has a strong thermodynamic preference to remain at the air/water interface, and thus chemical reactions with atmospheric oxidants are more likely to take place at this interface, rather than in the water phase of atmospheric water droplets or in the gas phase.

  14. Composition of the volatile fraction of a sample of Brazilian green propolic and its phytotoxic activity.

    Science.gov (United States)

    Fernandes-Silva, Caroline C; Lima, Carolina A; Negri, Giuseppina; Salatino, Maria L F; Salatino, Antonio; Mayworm, Marco A S

    2015-12-01

    Propolis is a resinous material produced by honeybees, containing mainly beeswax and plant material. Despite the wide spectrum of biological activity of propolis, to our knowledge no studies have been carried out about phytotoxic properties of Brazilian propolis and its constituents. The aims of this study were to analyze the chemical composition and to evaluate the phytotoxic activity of the volatile fraction of a sample of Brazilian green propolis. Main constituents are the phenylpropanoid 3-prenylcinnamic acid allyl ester (26.3%) and the sesquiterpene spathulenol (23.4%). Several other sesquiterpenes and phenylpropanoids, in addition to linalool and α-terpineol (monoterpenes), were also detected. The activity of solutions of the volatile fraction at 1.0, 0.5 and 0.1% was tested on lettuce seeds and seedlings. The solution at 1% inhibited completely the seed germination and solutions at 0.1 and 0.5% reduced the germination rate index. The solution at 0.5% reduced the growth of the hypocotyl-radicle axis and the development of the cotyledon leaf. The chemical composition of the volatile fraction of this Brazilian green propolis is different from those previously described, and these results may contribute to a better understanding about the chemical variations in propolis. The volatile fraction of Brazilian green propolis influences both germination of seed lettuce and the growth of its seedlings, showing an phytotoxic potential. © 2014 Society of Chemical Industry.

  15. Biotic and abiotic factors affect green ash volatile production and emerald ash borer adult feeding preference.

    Science.gov (United States)

    Chen, Yigen; Poland, Therese M

    2009-12-01

    The emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), is an exotic woodborer first detected in 2002 in Michigan and Ontario and is threatening the ash resource in North America. We examined the effects of light exposure and girdling on green ash (Fraxinus pennsylvanica Marsh) volatile production, and effects of light exposure, girdling, and leaf age on emerald ash borer adult feeding preferences and phototaxis. Green ash seedlings grown under higher light exposure had lower amounts of three individual volatile compounds, (Z)-3-hexenol, (E)-beta-ocimene, and (Z,E)-alpha-farnesene, as well as the total amount of six detected volatile compounds. Girdling did not affect the levels of these volatiles. Emerald ash borer females preferred mature leaves, leaves from girdled trees, and leaves grown in the sun over young leaves, leaves from nongirdled trees, and leaves grown in the shade, respectively. These emerald ash borer preferences were most likely because of physical, nutritional, or biochemical changes in leaves in response to the different treatments. Emerald ash borer females and males showed positive phototaxis in laboratory arenas, a response consistent with emerald ash borer preference for host trees growing in sunlight.

  16. Enhanced attraction of Plutella xylostella (Lepidoptera: Plutellidae) to pheromone-baited traps with the addition of green leaf volatiles.

    Science.gov (United States)

    Li, Pengyan; Zhu, Junwei; Qin, Yuchuan

    2012-08-01

    Diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), is one of the most serious pests of Brassicaceae crops worldwide. Electrophysiological and behavioral responses of P. xylostella to green leaf volatiles (GLVs) alone or together with its female sex pheromone were investigated in laboratory and field. GLVs 1-hexanol and (Z)-3-hexen-1-ol elicited strong electroantennographic responses from unmated male and female P. xylostella, whereas (Z)-3-hexenyl acetate only produced a relatively weak response. The behavioral responses of unmated moths to GLVs were further tested in Y-tube olfactometer experiments. (E)-2-Hexenal, (Z)-3-hexen-1-ol, and (Z)-3-hexenyl acetate induced attraction of males, reaching up to 50%, significantly higher than the response to the unbaited control arm. In field experiments conducted in 2008 and 2009, significantly more moths were captured in traps baited with synthetic sex pheromone with either (Z)-3-hexenyl acetate alone or a blend of (Z)-3-hexenyl acetate, (Z)-3-hexen-1-ol, and (E)-2-hexenal compared with sex pheromone alone and other blend mixtures. These results demonstrated that GLVs could be used to enhance the attraction of P. xylostella males to sex pheromone-baited traps.

  17. Impact of heat stress on the emissions of monoterpenes, sesquiterpenes, phenolic BVOC and green leaf volatiles from several tree species

    Science.gov (United States)

    Kleist, E.; Mentel, T. F.; Andres, S.; Bohne, A.; Folkers, A.; Kiendler-Scharr, A.; Rudich, Y.; Springer, M.; Tillmann, R.; Wildt, J.

    2012-07-01

    Changes in the biogenic volatile organic compound (BVOC) emissions from European beech, Palestine oak, Scots pine, and Norway spruce exposed to heat stress were measured in a laboratory setup. In general, heat stress decreased the de novo emissions of monoterpenes, sesquiterpenes and phenolic BVOC. Decreasing emission strength with heat stress was independent of the tree species and whether the de novo emissions being constitutive or induced by biotic stress. In contrast, heat stress induced emissions of green leaf volatiles. It also amplified the release of monoterpenes stored in resin ducts of conifers probably due to heat-induced damage of these resin ducts. The increased release of monoterpenes could be strong and long lasting. But, despite of such strong monoterpene emission pulses, the net effect of heat stress on BVOC emissions from conifers can be an overall decrease. In particular during insect attack on conifers the plants showed de novo emissions of sesquiterpenes and phenolic BVOC which exceeded constitutive monoterpene emissions from pools. The heat stress induced decrease of these de novo emissions was larger than the increased release caused by damage of resin ducts. We project that global change induced heat waves may cause increased BVOC emissions only in cases where the respective areas are predominantly covered with conifers that do not emit high amounts of sesquiterpenes and phenolic BVOC. Otherwise the overall effect of heat stress will be a decrease in BVOC emissions.

  18. Early transcriptome analyses of Z-3-Hexenol-treated zea mays revealed distinct transcriptional networks and anti-herbivore defense potential of green leaf volatiles.

    Directory of Open Access Journals (Sweden)

    Jurgen Engelberth

    Full Text Available Green leaf volatiles (GLV, which are rapidly emitted by plants in response to insect herbivore damage, are now established as volatile defense signals. Receiving plants utilize these molecules to prime their defenses and respond faster and stronger when actually attacked. To further characterize the biological activity of these compounds we performed a microarray analysis of global gene expression. The focus of this project was to identify early transcriptional events elicited by Z-3-hexenol (Z-3-HOL as our model GLV in maize (Zea mays seedlings. The microarray results confirmed previous studies on Z-3-HOL -induced gene expression but also provided novel information about the complexity of Z-3-HOL -induced transcriptional networks. Besides identifying a distinct set of genes involved in direct and indirect defenses we also found significant expression of genes involved in transcriptional regulation, Ca(2+-and lipid-related signaling, and cell wall reinforcement. By comparing these results with those obtained by treatment of maize seedlings with insect elicitors we found a high degree of correlation between the two expression profiles at this early time point, in particular for those genes related to defense. We further analyzed defense gene expression induced by other volatile defense signals and found Z-3-HOL to be significantly more active than methyl jasmonate, methyl salicylate, and ethylene. The data presented herein provides important information on early genetic networks that are activated by Z-3-HOL and demonstrates the effectiveness of this compound in the regulation of typical plant defenses against insect herbivores in maize.

  19. Formation of adventitious roots on green leaf cuttings of Phaseolus vulgaris L.

    NARCIS (Netherlands)

    Oppenoorth, Johanna Margriet

    1980-01-01

    n this thesis the development of adventitious roots on green leaf cuttings of Phaseolus vulgaris L. is studies. The use of green leaf cuttings has the advantage that the leaf blade provides the developing roots inthe petiole with all the nutrients required, a disadvantage is that the composition of

  20. Green leaf volatiles and oxygenated metabolite emission bursts from mesquite branches following light-dark transitions.

    Science.gov (United States)

    Jardine, K; Barron-Gafford, G A; Norman, J P; Abrell, L; Monson, R K; Meyers, K T; Pavao-Zuckerman, M; Dontsova, K; Kleist, E; Werner, C; Huxman, T E

    2012-09-01

    Green leaf volatiles (GLVs) are a diverse group of fatty acid-derived compounds emitted by all plants and are involved in a wide variety of developmental and stress-related biological functions. Recently, GLV emission bursts from leaves were reported following light-dark transitions and hypothesized to be related to the stress response while acetaldehyde bursts were hypothesized to be due to the 'pyruvate overflow' mechanism. In this study, branch emissions of GLVs and a group of oxygenated metabolites (acetaldehyde, ethanol, acetic acid, and acetone) derived from the pyruvate dehydrogenase (PDH) bypass pathway were quantified from mesquite plants following light-dark transitions using a coupled GC-MS, PTR-MS, and photosynthesis system. Within the first minute after darkening following a light period, large emission bursts of both C(5) and C(6) GLVs dominated by (Z)-3-hexen-1-yl acetate together with the PDH bypass metabolites are reported for the first time. We found that branches exposed to CO(2)-free air lacked significant GLV and PDH bypass bursts while O(2)-free atmospheres eliminated the GLV burst but stimulated the PDH bypass burst. A positive relationship was observed between photosynthetic activity prior to darkening and the magnitude of the GLV and PDH bursts. Photosynthesis under (13)CO(2) resulted in bursts with extensive labeling of acetaldehyde, ethanol, and the acetate but not the C(6)-alcohol moiety of (Z)-3-hexen-1-yl acetate. Our observations are consistent with (1) the "pyruvate overflow" mechanism with a fast turnover time (3 h) responsible for the C(6) alcohol moiety of (Z)-3-hexen-1-yl acetate via the 13-lipoxygenase pathway. We conclude that our non-invasive method may provide a new valuable in vivo tool for studies of acetyl-CoA and fatty acid metabolism in plants at a variety of spatial scales.

  1. EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies), 2013. Scientific Opinion on the substantiation of a health claim related to a combination of red spinach, green spinach, red chicory, green chicory, green leaf chard, red leaf chard, red Swiss chard, golden Swiss chard

    DEFF Research Database (Denmark)

    Tetens, Inge

    related to a combination of red spinach, green spinach, red chicory, green chicory, green leaf chard, red leaf chard, red Swiss chard, golden Swiss chard and white Swiss chard and protection of blood lipids from oxidative damage. The food that is the subject of the health claim, a combination...... of the following frozen vegetables: red spinach (Spinacia oleracea L.), green spinach (Spinacia oleracea L.), red chicory (Cichorium intybus L.), green chicory (Cichorium intybus L.), green leaf chard (Beta vulgaris L. var. cicla), red leaf chard (Beta vulgaris L. var. cicla), red Swiss chard (Beta vulgaris L. var...... conclusions could be drawn for the scientific substantiation of the claim were provided by the applicant. The Panel concludes that a cause and effect relationship has not been established between consumption of a combination of red spinach, green spinach, red chicory, green chicory, green leaf chard, red leaf...

  2. EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies), 2013. Scientific Opinion on the substantiation of a health claim related to a combination of red spinach, green spinach, red chicory, green chicory, green leaf chard, red leaf chard, red Swiss chard, golden Swiss chard

    DEFF Research Database (Denmark)

    Tetens, Inge

    related to a combination of red spinach, green spinach, red chicory, green chicory, green leaf chard, red leaf chard, red Swiss chard, golden Swiss chard and white Swiss chard and maintenance of normal blood cholesterol concentration. The food that is the subject of the health claim, a combination of red...... spinach (Spinacia oleracea L.), green spinach (Spinacia oleracea L.), red chicory (Cichorium intybus L.), green chicory (Cichorium intybus L.), green leaf chard (Beta vulgaris L. var. cicla), red leaf chard (Beta vulgaris L. var. cicla), red Swiss chard (Beta vulgaris L. var. cicla), golden Swiss chard...... for the scientific substantiation of the claim were provided by the applicant. The Panel concludes that a cause and effect relationship has not been established between consumption of a combination of red spinach, green spinach, red chicory, green chicory, green leaf chard, red leaf chard, red Swiss chard, golden...

  3. Sensory and Instrumental Flavor Changes in Green Tea Brewed Multiple Times

    Science.gov (United States)

    Lee, Jeehyun; Chambers, Delores; Chambers, Edgar

    2013-01-01

    Green teas in leaf form are brewed multiple times, a common selling point. However, the flavor changes, both sensory and volatile compounds, of green teas that have been brewed multiple times are unknown. The objectives of this study were to determine how the aroma and flavor of green teas change as they are brewed multiple times, to determine if a relationship exists between green tea flavors and green tea volatile compounds, and to suggest the number of times that green tea leaves can be brewed. The first and second brews of the green tea samples provided similar flavor intensities. The third and fourth brews provided milder flavors and lower bitterness and astringency when measured using descriptive sensory analysis. In the brewed liquor of green tea mostly linalool, nonanal, geraniol, jasmone, and β-ionone volatile compounds were present at low levels (using gas chromatography-mass spectrometry). The geraniol, linalool, and linalool oxide compounds in green tea may contribute to the floral/perfumy flavor. Green teas in leaf form may be brewed up to four times: the first two brews providing stronger flavor, bitterness, and astringency whereas the third and fourth brews will provide milder flavor, bitterness, and astringency. PMID:28239138

  4. Irreversible impacts of heat on the emissions of monoterpenes, sesquiterpenes, phenolic BVOC and green leaf volatiles from several tree species

    Directory of Open Access Journals (Sweden)

    E. Kleist

    2012-12-01

    Full Text Available Climate change will induce extended heat waves to parts of the vegetation more frequently. High temperatures may act as stress (thermal stress on plants changing emissions of biogenic volatile organic compounds (BVOCs. As BVOCs impact the atmospheric oxidation cycle and aerosol formation, it is important to explore possible alterations of BVOC emissions under high temperature conditions. Applying heat to European beech, Palestine oak, Scots pine, and Norway spruce in a laboratory setup either caused the well-known exponential increases of BVOC emissions or induced irreversible changes of BVOC emissions. Considering only irreversible changes of BVOC emissions as stress impacts, we found that high temperatures decreased the de novo emissions of monoterpenes, sesquiterpenes and phenolic BVOC. This behaviour was independent of the tree species and whether the de novo emissions were constitutive or induced by biotic stress.

    In contrast, application of thermal stress to conifers amplified the release of monoterpenes stored in resin ducts of conifers and induced emissions of green leaf volatiles. In particular during insect attack on conifers, the plants showed de novo emissions of sesquiterpenes and phenolic BVOCs, which exceeded constitutive monoterpene emissions from pools. The heat-induced decrease of de novo emissions was larger than the increased monoterpene release caused by damage of resin ducts. For insect-infested conifers the net effect of thermal stress on BVOC emissions could be an overall decrease.

    Global change-induced heat waves may put hard thermal stress on plants. If so, we project that BVOC emissions increase is more than predicted by models only in areas predominantly covered with conifers that do not emit high amounts of sesquiterpenes and phenolic BVOCs. Otherwise overall effects of high temperature stress will be lower increases of BVOC emissions than predicted by algorithms that do

  5. Behavioral responses of the diamondback moth, Plutella xylostella, to green leaf volatiles of Brassica oleracea subsp. capitata.

    Science.gov (United States)

    Reddy, G V; Guerrero, A

    2000-12-01

    Green leaf volatiles (GLVs) from Brassica oleracea subsp. capitata L. have been identified as 1-hexanol, (Z)-3-hexen-1-ol, 1-hexen-3-ol, hexanal, (E)-2-hexenal, hexyl acetate, and (Z)-3-hexenyl acetate, by their mass spectra and retention times in comparison with authentic samples. No isothiocyanates were found in the extract. The activity of these chemicals has been determined on mated and unmated males and females of the diamondback moth (DBM) Plutella xylostella in the laboratory (wind tunnel) and in the field. On unmated males, mixtures of (Z)-3-hexenyl acetate, (E)-2-hexenal, and (Z)-3-hexen-1-ol with the pheromone induced attractant/arresting behavior in 80-100% of the males tested, significantly higher than the effect induced by the pheromone alone. On mated males and unmated females the effect of the GLVs alone or in combination with the pheromone was poor, while on mated females these compounds elicited upwind flight and arresting behavior in 40-60% of the females assayed. There was no synergism when these chemicals were mixed with the pheromone. In the field, (Z)-3-hexenyl acetate, the most active GLV in laboratory tests, when mixed with the pheromone in 1:1 ratio, enhanced 6-7-fold the number of females and 20-30% the number of males caught by traps over those baited with the pheromone alone. Our results indicate that the enhancement of the attraction of both males and females of the DBM to traps baited with pheromone blended with the relatively inexpensive and environmentally safe (Z)-3-hexenyl acetate may be important for future control strategies of the pest.

  6. Identification of leaf volatiles from olive (Olea europaea) and their possible role in the ovipositional preferences of olive fly, Bactrocera oleae (Rossi) (Diptera: Tephritidae).

    Science.gov (United States)

    Malheiro, Ricardo; Casal, Susana; Cunha, Sara C; Baptista, Paula; Pereira, José Alberto

    2016-01-01

    The olive fly, Bactrocera oleae (Rossi), is a monophagous pest that displays an oviposition preference among cultivars of olive (Olea europaea L.). To clarify the oviposition preference, the olive leaf volatiles of three olive cultivars (Cobrançosa, Madural and Verdeal Transmontana) were assessed by headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC/MS) at six different periods of olive fruit maturation and degrees of infestation. A total of 39 volatiles were identified, mainly esters and alcohols, with a minor percentage of aldehydes, ketones and terpenic compounds, including sesquiterpenes. At sampling dates with higher degrees of infestation, cv. Cobrançosa had, simultaneously, significantly lower infestation degrees and higher volatile amounts than the other two cultivars, with a probable deterrent effect for oviposition. The green leaf volatiles (GLVs) (Z)-3-hexen-1-ol and (Z)-3-hexen-1-ol acetate) were the main compounds identified in all cultivars, together with toluene. The abundance of GLVs decreased significantly throughout maturation, without significant differences among cultivars, while toluene showed a general increase and positive correlation with olive fly infestation levels. The results obtained could broaden our understanding of the roles of various types and amounts of olive volatiles in the environment, especially in olive fly host selection and cultivar preference. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Sulfur volatiles in guava (Psidium guajava L.) leaves: possible defense mechanism.

    Science.gov (United States)

    Rouseff, Russell L; Onagbola, Ebenezer O; Smoot, John M; Stelinski, Lukasz L

    2008-10-08

    Volatiles from crushed and intact guava leaves (Psidium guajava L.) were collected using static headspace SPME and determined using GC-PFPD, pulsed flame photometric detection, and GC-MS. Leaf volatiles from four common citrus culitvars were examined similarly to determine the potential component(s) responsible for guava's protective effect against the Asian citrus psyllid (Diaphorina citri Kuwayama), which is the insect vector of Huanglongbing (HLB) or citrus greening disease. Seven sulfur volatiles were detected: hydrogen sulfide, sulfur dioxide, methanethiol, dimethyl sulfide (DMS), dimethyl disulfide (DMDS), methional, and dimethyl trisulfide (DMTS). Identifications were based on matching linear retention index values on ZB-5, DB-Wax, and PLOT columns and MS spectra in the case of DMDS and DMS. DMDS is an insect toxic, defensive volatile produced only by wounded guava but not citrus leaves and, thus, may be the component responsible for the protective effect of guava against the HLB vector. DMDS is formed immediately after crushing, becoming the major headspace volatile within 10 min. Forty-seven additional leaf volatiles were identified from LRI and MS data in the crushed guava leaf headspace.

  8. Differential Contribution of Jasmine Floral Volatiles to the Aroma of Scented Green Tea

    Directory of Open Access Journals (Sweden)

    Jian-Xia Shen

    2017-01-01

    Full Text Available Tea volatiles’ generation and retention over manufacturing processes are crucial for tea quality. In this study, floral volatile adsorption and retention in green tea scented with Jasminum sambac flowers were examined over the scenting process. Out of 34 enhanced volatiles in the scented tea, β-ionone, β-linalool, indole, and methyl anthranilate were the most potent odorants with 5.1–45.2-fold higher odor activity values than the corresponding controls in the nonscented tea. Scenting efficiencies for the floral volatiles retained in the scented tea (the percentage of volatile abundance over its corresponding amount in jasmine flowers ranged from 0.22% for α-farnesene to 75.5% for β-myrcene. Moreover, due to additional rounds of heat treatment for scented green tea manufacturing, some volatiles such as carotenoid-derived geraniol and β-ionone and lipid-derived (Z-jasmone were heat-enhanced and others such as nonanal were heat-desorbed in the scented green tea. Our study revealed that dynamic volatile absorption and desorption collectively determined tea volatile retention and tea aroma. Our findings may have a great potential for practical improvement of tea aroma.

  9. Green light drives leaf photosynthesis more efficiently than red light in strong white light: revisiting the enigmatic question of why leaves are green.

    Science.gov (United States)

    Terashima, Ichiro; Fujita, Takashi; Inoue, Takeshi; Chow, Wah Soon; Oguchi, Riichi

    2009-04-01

    The literature and our present examinations indicate that the intra-leaf light absorption profile is in most cases steeper than the photosynthetic capacity profile. In strong white light, therefore, the quantum yield of photosynthesis would be lower in the upper chloroplasts, located near the illuminated surface, than that in the lower chloroplasts. Because green light can penetrate further into the leaf than red or blue light, in strong white light, any additional green light absorbed by the lower chloroplasts would increase leaf photosynthesis to a greater extent than would additional red or blue light. Based on the assessment of effects of the additional monochromatic light on leaf photosynthesis, we developed the differential quantum yield method that quantifies efficiency of any monochromatic light in white light. Application of this method to sunflower leaves clearly showed that, in moderate to strong white light, green light drove photosynthesis more effectively than red light. The green leaf should have a considerable volume of chloroplasts to accommodate the inefficient carboxylation enzyme, Rubisco, and deliver appropriate light to all the chloroplasts. By using chlorophylls that absorb green light weakly, modifying mesophyll structure and adjusting the Rubisco/chlorophyll ratio, the leaf appears to satisfy two somewhat conflicting requirements: to increase the absorptance of photosynthetically active radiation, and to drive photosynthesis efficiently in all the chloroplasts. We also discuss some serious problems that are caused by neglecting these intra-leaf profiles when estimating whole leaf electron transport rates and assessing photoinhibition by fluorescence techniques.

  10. Lethal concentration of carbofuran to brown planthopper (Nilaparvata lugens) and green leaf-hopper (Nephotettix virecence)

    International Nuclear Information System (INIS)

    Kuswadi, A.N.; Sumatra, M.; Anwar, E.; Soekarna, D.

    1988-01-01

    An oral toxicity test of carbofuran to brown planthopper and green leaf-hopper using sucrose solution as feed given to the hopper through a membrane feeding system was conducted in the laboratory, pure carbofuran was dilute in the feeding solution. The 50 percent lethal concentration (LC-50) of this insecticide to adult and nymph of brown planthopper were 0.21 and 0.43 ppm, respectively, while those to adult and nymph of green leaf-hopper were 0.43 and 0.58 ppm. The LC 90 were 0.56 an 0.90 ppm to adult and nymph of brown planthopper, and 1.20 and 1.60 ppm to adult and nymph of green leaf-hopper, respectively. The brown planthopper was found to be more susceptible than the nymph. When carbofuran was applied to rice plant, this insecticide was accumulated more in the leaf than in the stem, so that green leaf-hopper got more toxicity than the brown planthopper. (authors). 5 refs, 7 figs

  11. Adsorption of malachite green dye from aqueous solution on the bamboo leaf ash

    Science.gov (United States)

    Kuntari, Priwidyanjati, Dessyntha Anggiani

    2017-12-01

    Bamboo leaf ash has been developed as an adsorbent material for removal malachite green from aqueous solution. Adsorption parameters have studied are contact time and initial pH. The effect of contact time and pH were examined in the batch adsorption processes. The physicochemical characters of bamboo leaf ash were investigated by using X-Ray Diffraction (XRD) and FT-IR spectroscopy. Malachite green concentration was determined by UV-Vis spectrophotometer. FT-IR spectrogram of bamboo leaf ash shows that typical fingerprint of adsorbent material with Si-O-Si or Al-O-Al group. The X-ray diffractograms of bamboo leaf ash show that adsorbent material has a highly amorphous nature. The percentage of adsorption was showed raised with increasing contact time. The optimum removal of malachite green when the initial dye concentration, initial pH, weight of adsorbent and contact time was 20 mg/L, 7, 0.25 g and 75 minutes respectively.

  12. Aqueous-phase oxidation of green leaf volatiles by hydroxyl radical as a source of SOA: Product identification from methyl jasmonate and methyl salicylate oxidation

    Science.gov (United States)

    Hansel, Amie K.; Ehrenhauser, Franz S.; Richards-Henderson, Nicole K.; Anastasio, Cort; Valsaraj, Kalliat T.

    2015-02-01

    Green leaf volatiles (GLVs) are a group of biogenic volatile organic compounds (BVOCs) released into the atmosphere by vegetation. BVOCs produce secondary organic aerosol (SOA) via gas-phase reactions, but little is known of their aqueous-phase oxidation as a source of SOA. GLVs can partition into atmospheric water phases, e.g., fog, mist, dew or rain, and be oxidized by hydroxyl radicals (˙OH). These reactions in the liquid phase also lead to products that have higher molecular weights, increased polarity, and lower vapor pressures, ultimately forming SOA after evaporation of the droplet. To examine this process, we investigated the aqueous, ˙OH-mediated oxidation of methyl jasmonate (MeJa) and methyl salicylate (MeSa), two GLVs that produce aqueous-phase SOA. High performance liquid chromatography/electrospray ionization mass spectrometry (HPLC-ESI-MS) was used to monitor product formation. The oxidation products identified exhibit higher molecular mass than their parent GLV due to either dimerization or the addition of oxygen and hydroxyl functional groups. The proposed structures of potential products are based on mechanistic considerations combined with the HPLC/ESI-MS data. Based on the structures, the vapor pressure and the Henry's law constant were estimated with multiple methods (SPARC, SIMPOL, MPBPVP, Bond and Group Estimations). The estimated vapor pressures of the products identified are significantly (up to 7 orders of magnitude) lower than those of the associated parent compounds, and therefore, the GLV oxidation products may remain as SOA after evaporation of the water droplet. The contribution of the identified oxidation products to SOA formation is estimated based on measured HPLC-ESI/MS responses relative to previous aqueous SOA mass yield measurements.

  13. Estimation of leaf area index in cereal crops using red-green images

    DEFF Research Database (Denmark)

    Kirk, Kristian; Andersen, Hans Jørgen; Thomsen, Anton G

    2009-01-01

    A new method for estimating the leaf area index (LAI) in cereal crops based on red-green images taken from above the crop canopy is introduced. The proposed method labels pixels into vegetation and soil classes using a combination of greenness and intensity derived from the red and green colour b...

  14. Price volatility and banking in green certificate markets

    DEFF Research Database (Denmark)

    Amundsen, Eirik Schrøder; Baldursson, Fridrik M.; Mortensen, Jørgen Birk

    2006-01-01

    the paper shows that the introduction of banking of GCs may reduce price volatility considerably and lead to increased social surplus. Banking lowers average prices and is therefore not necessarily to the benefit of 'green producers'. Prooposed price bounds on GC-prices will reduce the importance of banking...

  15. The leaf volatile constituents of Isatis tinctoria by Solid-Phase Microextraction and Gas chromatography/Mass Spectrometry.

    Science.gov (United States)

    Condurso, Cettina; Verzera, Antonella; Romeo, Vincenza; Ziino, Marisa; Trozzi, Alessandra; Ragusa, Salvatore

    2006-08-01

    The leaf volatile constituents of Isatis tinctoria L. (Brassicaceae) have been studied by Solid-Phase Microextraction and Gas chromatography/Mass Spectrometry (SPME/GC-MS). Seventy components were fully characterized by mass spectra, linear retention indices, and injection of standards; the average composition (ppm) as single components and classes of substances is reported. Aliphatic hydrocarbons, acids, alcohols, aldehydes and esters, aromatic aldehydes, esters and ethers, furans, isothiocyanates and thiocyanates, sulfurated compounds, nitriles, terpenes and sesquiterpenes were identified. Leaf volatiles in Isatis tinctoria L. were characterized by a high amount of isothiocyanates which accounted for about 40 % of the total volatile fraction. Isothiocyanates are important and characteristic flavour compounds in Brassica vegetables and the cancer chemo-protective attributes are recently responsible for their growing interest.

  16. Degradation products of citrus volatile organic compounds (VOCs) acting as phagostimulants that increase probing behavior of Asian citrus psyllid

    Science.gov (United States)

    Volatile phytochemicals play a role in orientation by phytophagous insects. We studied antennal and behavioral responses of the Asian citrus psyllid, Diaphorina citri Kuwayama, vector of the citrus greening disease pathogen. Little or no response to citrus leaf volatiles was detected by electroanten...

  17. Evaluation of Volatile Species in Green Monopropellant Project

    Science.gov (United States)

    Greene, Benjamin

    2015-01-01

    NASA is interested in green monopropellants to replace hydrazine in reaction control systems (RCSs). Some current NASA programs require reduced vapor pressure and low toxicity monopropellant (green) and superior performance (specific impulse and density) formulations. Earlier vapor phase studies of a candidate green monopropellant at the NASA White Sands Test Facility (WSTF) showed the presence of a volatile species that warranted further investigation. The purpose of this study was to further characterize the volatile species and to evaluate it. The evaluation was with respect to whether the volatile species was an impurity or how it is formed, and to use that information to examine whether its presence as an impurity can be eliminated during formulation. The evaluation also considered whether formation of the volatile impurity could be prevented while not compromising the propellant. To reduce variables associated with evaluation of the propellant formulation as a whole, a precursor to one of the individual components in the propellant formulation was subjected to a NASA Standard 6001B Flammability, Off-gassing, and Compatibility Requirements and Test Procedures "Determination of Off-gassed Products (Test 7)". Testing took place in the NASA WSTF Molecular Desorption and Analysis Laboratory. One gram of the precursor was placed in a flask within a specimen container. After thermal conditioning for 72 +/- 1 h at 50 +/- 3 deg C (122 +/- 5 deg F), the atmosphere inside the specimen container was analyzed for off-gassed compounds by cryotrap gas chromatography-mass spectrometry (GC-MS) and fixed sample loop GC-flame ionization detection (GC-FID). The specimen container used was glass to minimize potential catalytic surfaces. The identification of compounds was difficult due to the complexity of the vapor phase concentrations and overlapping chromatographic peaks and mass spectra. However, eleven compounds were specifically identified and five compounds or classes of

  18. BREEAM Green Leaf Eco-rating Program

    International Nuclear Information System (INIS)

    2001-01-01

    The environmental performance of buildings is measured for several reasons, the main one being that it can help owners decide where to invest their retrofit dollars to maximize the energy performance of their building and reduce operating costs. The buildings constructed in the 1950s and 1960s in North America are reaching obsolescence and will require major retrofits to improve their energy efficiency, particularly in the area of mechanical equipment. In addition to reducing operating costs, better maintenance and environmental management of buildings can also address issues such as comfort, health, indoor air quality and productivity. In order to accurately measure the environmental performance of a building, it is necessary to develop a comprehensive measuring and benchmarking tool that would allow occupants to compare the buildings' performance with others. In this pilot study, 6 high-rise multi-residential buildings were assessed for environmental performance using the BREEAM Green Leaf assessment method. The methodology originated in Canada and was developed by ECD Energy, Environment Canada and Terra Choice. It combines the BREEAM set of environmental issues with the Green Leaf Eco-Rating technique. The method covers occupant health, energy efficiency, resource efficiency, environmental responsibility and affordability. Operation and management issues are also taken into consideration. The buildings used in this study were located in various locations, ranging from inner city housing to city/suburban areas. 2 tabs., 17 figs

  19. Green synthesis of CuO nanoparticles using Cassia auriculata leaf ...

    African Journals Online (AJOL)

    Purpose: To undertake green synthesis of copper oxide nanoparticles (CuO NPs) using Cassia auriculata leaf extract ... Several methods are available for CuO NP preparation ... reader. Characterization .... would be important targets in current.

  20. Application of radiation technology to develop green tea leaf as a natural resource for the cosmetic industry

    International Nuclear Information System (INIS)

    Byun, Myung Woo; Jo, Cheorun; Lee, Ju Woon; Jo, Sung Kee; Kim, Kwan Soo

    2004-01-01

    The irradiation of natural resources such as green tea leaf, persimmon leaf, licorice root and stolon or Lonicera japonica improved the color of the extract, resulting in a higher applicability without any adverse change to the beneficial functions such as the inhibitory effects of oxidation, melanin hyperpigmentation on the skin, and others. To investigate the application of irradiated natural resources for a real cosmetic composition, the physiological activities of irradiated green tea leaf extract powder dissolved in butylene glycol and ethanol were compared to a commercial green tea extract product. Furthermore, a cream lotion was manufactured using the powder and the physiological activities were compared. Results showed that the irradiation of the green tea leaf extract and the freeze-dried powder from the extract had the same physiological activities as the commercial product in a cosmetic composition

  1. Estimation of leaf area index in cereal crops using red–green images

    DEFF Research Database (Denmark)

    Nielsen, Kristian Kirk; Andersen, Hans Jørgen; Thomsen, Anton

    2009-01-01

    A new method for estimating the leaf area index (LAI) in cereal crops based on red–green images taken from above the crop canopy is introduced. The proposed method labels pixels into vegetation and soil classes using a combination of greenness and intensity derived from the red and green colour b....... Conclusions Acknowledgements Appendix. Modelling the correlation between greenness and brightness References   Fig. 1. Simulated image of a vegetation canopy (left), with distribution of pixel greenness and brightness (right). View Within Article...

  2. Antidepressant-like effects of young green barley leaf (Hordeum vulgare L.) in the mouse forced swimming test.

    Science.gov (United States)

    Yamaura, Katsunori; Nakayama, Noriyuki; Shimada, Maki; Bi, Yuanyuan; Fukata, Hideki; Ueno, Koichi

    2012-01-01

    Young green barley leaf is one of the richest sources of antioxidants and has been widely consumed for health management in Japan. In this study, we examined whether oral administration of young green barley leaf has an antidepressant effect on the forced swimming test in mice. Mice were individually forced to swim in an open cylindrical container, one hour after oral administration of young green barley leaf (400 or 1000 mg / kg) or imipramine (100 mg / kg). Expression of mRNA for nerve growth factor (NGF), brain-derived neurotrophic factor, and glucocorticoid receptor in the brain was analyzed using real-time quantitative polymerase chain reaction (PCR). There was a significant antidepressant-like effect in the forced swimming test; both 400 and 1000 mg / kg young green barley leaves, as well as the positive control imipramine (100 mg / kg), reduced the immobility duration compared to the vehicle group. The expression of mRNA for NGF detected in the hippocampus immediately after the last swimming test was higher than that in the non-swimming group (Nil). Oral administration of imipramine suppressed this increase to the level of the Nil group. Young green barley leaf (400 and 1000 mg / kg) also showed a moderate decrease in the expression of mRNA for NGF, in a dose-dependent manner. Oral administration of young green barley leaf is able to produce an antidepressant-like effect in the forced swimming test. Consequently it is possible that the antidepressant-like effects of the young green barley leaf are, at least in part, mediated by an inhibition of the increase in the hippocampus levels of NGF.

  3. Simple luminosity normalization of greenness, yellowness and redness/greenness for comparison of leaf spectral profiles in multi-temporally acquired remote sensing images.

    Science.gov (United States)

    Doi, Ryoichi

    2012-09-01

    Observation of leaf colour (spectral profiles) through remote sensing is an effective method of identifying the spatial distribution patterns of abnormalities in leaf colour, which enables appropriate plant management measures to be taken. However, because the brightness of remote sensing images varies with acquisition time, in the observation of leaf spectral profiles in multi-temporally acquired remote sensing images, changes in brightness must be taken into account. This study identified a simple luminosity normalization technique that enables leaf colours to be compared in remote sensing images over time. The intensity values of green and yellow (green+red) exhibited strong linear relationships with luminosity (R2 greater than 0.926) when various invariant rooftops in Bangkok or Tokyo were spectralprofiled using remote sensing images acquired at different time points. The values of the coefficient and constant or the coefficient of the formulae describing the intensity of green or yellow were comparable among the single Bangkok site and the two Tokyo sites, indicating the technique's general applicability. For single rooftops, the values of the coefficient of variation for green, yellow, and red/green were 16% or less (n=6-11), indicating an accuracy not less than those of well-established remote sensing measures such as the normalized difference vegetation index. After obtaining the above linear relationships, raw intensity values were normalized and a temporal comparison of the spectral profiles of the canopies of evergreen and deciduous tree species in Tokyo was made to highlight the changes in the canopies' spectral profiles. Future aspects of this technique are discussed herein.

  4. Trapping female Pandemis limitata (Lepidoptera: Tortricidae) moths with mixtures of acetic acid, benzenoid apple leaf volatiles, and sex pheromones

    Science.gov (United States)

    Pandemis limitata (Robinson) is one of several leaf-feeding caterpillar pests of commercial tree-fruit crops in British Columbia. Recent discovery that European Pandemis spp. are attracted to lures containing acetic acid (AA) and caterpillar-induced benzenoid apple leaf volatiles, 2-phenylethanol a...

  5. Expanded separation technique for chlorophyll metabolites in Oriental tobacco leaf using non aqueous reversed phase chromatography.

    Science.gov (United States)

    Ishida, Naoyuki

    2011-08-26

    An improved separation method for chlorophyll metabolites in Oriental tobacco leaf was developed. While Oriental leaf still gives the green color even after the curing process, little attention has been paid to the detailed composition of the remaining green pigments. This study aimed to identify the green pigments using non aqueous reversed phase chromatography (NARPC). To this end, liquid chromatograph (LC) equipped with a photo diode array detector (DAD) and an atmospheric pressure chemical ionization/mass spectrometer (APCI/MSD) was selected, because it is useful for detecting low polar non-volatile compounds giving green color such as pheophytin a. Identification was based on the wavelength spectrum, mass spectrum and retention time, comparing the analytes in Oriental leaf with the commercially available and synthesized components. Consequently, several chlorophyll metabolites such as hydroxypheophytin a, solanesyl pheophorbide a and solanesyl hydroxypheophorbide a were newly identified, in addition to typical green pigments such as chlorophyll a and pheophytin a. Chlorophyll metabolites bound to solanesol were considered the tobacco specific components. NARPC expanded the number of detectable low polar chlorophyll metabolites in Oriental tobacco leaf. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Leaf and life history traits predict plant growth in a green roof ecosystem.

    Directory of Open Access Journals (Sweden)

    Jeremy Lundholm

    Full Text Available Green roof ecosystems are constructed to provide services such as stormwater retention and urban temperature reductions. Green roofs with shallow growing media represent stressful conditions for plant survival, thus plants that survive and grow are important for maximizing economic and ecological benefits. While field trials are essential for selecting appropriate green roof plants, we wanted to determine whether plant leaf traits could predict changes in abundance (growth to provide a more general framework for plant selection. We quantified leaf traits and derived life-history traits (Grime's C-S-R strategies for 13 species used in a four-year green roof experiment involving five plant life forms. Changes in canopy density in monocultures and mixtures containing one to five life forms were determined and related to plant traits using multiple regression. We expected traits related to stress-tolerance would characterize the species that best grew in this relatively harsh setting. While all species survived to the end of the experiment, canopy species diversity in mixture treatments was usually much lower than originally planted. Most species grew slower in mixture compared to monoculture, suggesting that interspecific competition reduced canopy diversity. Species dominant in mixture treatments tended to be fast-growing ruderals and included both native and non-native species. Specific leaf area was a consistently strong predictor of final biomass and the change in abundance in both monoculture and mixture treatments. Some species in contrasting life-form groups showed compensatory dynamics, suggesting that life-form mixtures can maximize resilience of cover and biomass in the face of environmental fluctuations. This study confirms that plant traits can be used to predict growth performance in green roof ecosystems. While rapid canopy growth is desirable for green roofs, maintenance of species diversity may require engineering of conditions that

  7. Leaf and life history traits predict plant growth in a green roof ecosystem.

    Science.gov (United States)

    Lundholm, Jeremy; Heim, Amy; Tran, Stephanie; Smith, Tyler

    2014-01-01

    Green roof ecosystems are constructed to provide services such as stormwater retention and urban temperature reductions. Green roofs with shallow growing media represent stressful conditions for plant survival, thus plants that survive and grow are important for maximizing economic and ecological benefits. While field trials are essential for selecting appropriate green roof plants, we wanted to determine whether plant leaf traits could predict changes in abundance (growth) to provide a more general framework for plant selection. We quantified leaf traits and derived life-history traits (Grime's C-S-R strategies) for 13 species used in a four-year green roof experiment involving five plant life forms. Changes in canopy density in monocultures and mixtures containing one to five life forms were determined and related to plant traits using multiple regression. We expected traits related to stress-tolerance would characterize the species that best grew in this relatively harsh setting. While all species survived to the end of the experiment, canopy species diversity in mixture treatments was usually much lower than originally planted. Most species grew slower in mixture compared to monoculture, suggesting that interspecific competition reduced canopy diversity. Species dominant in mixture treatments tended to be fast-growing ruderals and included both native and non-native species. Specific leaf area was a consistently strong predictor of final biomass and the change in abundance in both monoculture and mixture treatments. Some species in contrasting life-form groups showed compensatory dynamics, suggesting that life-form mixtures can maximize resilience of cover and biomass in the face of environmental fluctuations. This study confirms that plant traits can be used to predict growth performance in green roof ecosystems. While rapid canopy growth is desirable for green roofs, maintenance of species diversity may require engineering of conditions that favor less

  8. A facile and green preparation of reduced graphene oxide using Eucalyptus leaf extract

    Science.gov (United States)

    Li, Chengyang; Zhuang, Zechao; Jin, Xiaoying; Chen, Zuliang

    2017-11-01

    In this paper, a green and facile synthesis of reduced graphene oxide (GO) by Eucalyptus leaf extract (EL-RGO) was investigated, which was characterized with ultraviolet-visible spectroscopy (UV), Raman spectroscopy, X-ray diffraction (XRD), scanning electron microscope (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and Thermal gravimetric analysis (TG). Eucalyptus leaf extract also play both reducing and capping stabilizing agents prepared EL-RGO as shown a good stability and electrochemical properties. This approach could provide an alternative method to prepare EL-RGO in large-scale production. Moreover, the good electrochemical property and biocompatibility can be used in various applications. In addition, the merit of this study is that both the oxidized products and the reducing agents are environmental friendly by green reduction.

  9. Volatile constituents and biological activities of the leaf and root of Echinacea species from South Africa

    Directory of Open Access Journals (Sweden)

    M. Nyalambisa

    2017-03-01

    It is concluded that root and leaf of this Echinacea species contain volatile oils which varied in their yield and chemical compositions. The essential root oil is non-toxic orally and it demonstrated significant anti-inflammatory and analgesic activities in laboratory animals.

  10. Estimating the total leaf area of the green dwarf coconut tree (Cocos nucifera L.

    Directory of Open Access Journals (Sweden)

    Sousa Elias Fernandes de

    2005-01-01

    Full Text Available Leaf area has significant effect on tree transpiration, and its measurement is important to many study areas. This work aimed at developing a non-destructive, practical, and empirical method to estimate the total leaf area of green dwarf coconut palms (Cocos nucifera L. in plantations located at the northern region of Rio de Janeiro state, Brazil. A mathematical model was developed to estimate total leaf area values (TLA as function of the average lengths of the last three leaf raquis (LR3, and of the number of leaves in the canopy (NL. The model has satisfactory degree of accuracy for agricultural engineering purposes.

  11. PROTEOMIC PROFILE REVEALS THE DIVERSITY AND COMPLEXITY OF LEAF PROTEINS IN SPINACH (BETA VULGARIS VAR. ALL GREEN

    Directory of Open Access Journals (Sweden)

    Sudip Ghosh

    2016-06-01

    Full Text Available Leaf is a source organ that serves dual function in photosynthesis and transpiration. As a primary interface between plant and ecosystem, it performs a range of biological processes from carbon assimilation and metabolite partitioning to plant productivity. Basic features of the leaf functionality are conserved in angiosperms exhibiting common and unique characteristics. Spinach has been the model crop for studying leaf function, primarily photosynthesis. It is a reservoir of several hundreds of primary and secondary biomolecules. To better understand the molecular basis for photochemical reaction and metabolic partitioning, we developed leaf proteome of Indian spinach (Beta vulgaris var. all green. LC-ESI-MS/MS analysis identified 639 proteins exhibiting discrete molecular features and functions, including photosynthesis, transpiration, gaseous exchange, transport, redox status, cell defense, and floral induction besides the presence of proteins with unknown function. This represents the first comprehensive foliage proteome of green leafy vegetable. Together, this work provides important insights into the molecular networks underlying spinach leaf biological processes.

  12. Effect of supplemental ultraviolet radiation on the concentration of phytonutrients in green and red leaf lettuce (Lactuca sativa) cultivars

    Science.gov (United States)

    Britz, Steven; Caldwell, Charles; Mirecki, Roman; Slusser, James; Gao, Wei

    2005-08-01

    Eight cultivars each of red and green leaf lettuce were raised in a greenhouse with supplemental UV radiation, either UV-A (wavelengths greater than ca. 315 nm) or UV-A+UV-B (wavelengths greater than ca. 290 nm; 6.4 kJ m-2 daily biologically effective UV-B), or no supplemental UV (controls). Several phytonutrients were analyzed in leaf flours to identify lines with large differences in composition and response to UV-B. Red leaf lettuce had higher levels of phenolic acid esters, flavonols and anthocyanins than green lines. Both green and red lines exposed to UV-B for 9 days showed 2-3-fold increases in flavonoids compared to controls, but only 45% increases in phenolic acid esters, suggesting these compounds may be regulated by different mechanisms. There were large differences between cultivars in levels of phenolic compounds under control conditions and also large differences in UV-B effects. Among red varieties, cv. Galactic was notable for high levels of phenolics and a large response to UV-B. Among green varieties, cvs. Black-Seeded Simpson and Simpson Elite had large increases in phenolics with UV-B exposure. Photosynthetic pigments were also analyzed. Green leaf lettuce had high levels of pheophytin, a chlorophyll degradation product. Total chlorophylls (including pheophytin) were much lower in green compared to red varieties. Lutein, a carotenoid, was similar for green and red lines. Total chlorophylls and lutein increased 2-fold under supplemental UV-B in green lines but decreased slightly under UV-B in red lines. Lettuce appears to be a valuable crop to use to study phytochemical-environment interactions.

  13. Biogenic volatile organic compound emissions from senescent maize leaves and a comparison with other leaf developmental stages

    Science.gov (United States)

    Mozaffar, A.; Schoon, N.; Bachy, A.; Digrado, A.; Heinesch, B.; Aubinet, M.; Fauconnier, M.-L.; Delaplace, P.; du Jardin, P.; Amelynck, C.

    2018-03-01

    Plants are the major source of Biogenic Volatile Organic Compounds (BVOCs) which have a large influence on atmospheric chemistry and the climate system. Therefore, understanding of BVOC emissions from all abundant plant species at all developmental stages is very important. Nevertheless, investigations on BVOC emissions from even the most widespread agricultural crop species are rare and mainly confined to the healthy green leaves. Senescent leaves of grain crop species could be an important source of BVOCs as almost all the leaves senesce on the field before being harvested. For these reasons, BVOC emission measurements have been performed on maize (Zea mays L.), one of the most cultivated crop species in the world, at all the leaf developmental stages. The measurements were performed in controlled environmental conditions using dynamic enclosures and proton transfer reaction mass spectrometry (PTR-MS). The main compounds emitted by senescent maize leaves were methanol (31% of the total cumulative BVOC emission on a mass of compound basis) and acetic acid (30%), followed by acetaldehyde (11%), hexenals (9%) and m/z 59 compounds (acetone/propanal) (7%). Important differences were observed in the temporal emission profiles of the compounds, and both yellow leaves during chlorosis and dry brown leaves after chlorosis were identified as important senescence-related BVOC sources. Total cumulative BVOC emissions from senescent maize leaves were found to be among the highest for senescent Poaceae plant species. BVOC emission rates varied strongly among the different leaf developmental stages, and senescent leaves showed a larger diversity of emitted compounds than leaves at earlier stages. Methanol was the compound with the highest emissions for all the leaf developmental stages and the contribution from the young-growing, mature, and senescent stages to the total methanol emission by a typical maize leaf was 61, 13, and 26%, respectively. This study shows that BVOC

  14. Leaf development and photosynthetic properties of three tropical tree species with delayed greening

    NARCIS (Netherlands)

    Cai, Z.Q.; Slot, M.; Fan, Z.X.

    2005-01-01

    Leaf developmental patterns were characterized for three tropical tree species with delayed greening. Changes in the pigment contents, photosynthetic capacity, stomata development, photosystem 2 efficiency, rate of energy dissipation, and the activity of partial protective enzymes were followed in

  15. The stem and leaf super green mutant induced by 60Co γ-rays irradiation

    International Nuclear Information System (INIS)

    Wei Yubo; Liang Naiting; Buhaliqiem; Zhang Yinbao

    2003-01-01

    Super green gene mutant was developed from population of M 2 generation after the dry seeds of rice Huazhiwu from Japan with good quality and resistance to cold had been irradiated with 50 Gy 60 Co γ-ray. The leaf, sheath, panicle axis and petiole of mutant was characterized by deeply green, and did not turn yellow after maturing date. The chlorophyll content in straw is 2.2 times higher than that in common straw. The results of raising livestock showed that horse, donkey and sheep had evident selectivity to the green straw

  16. Climatic factors directly impact the volatile organic compound fingerprint in green Arabica coffee bean as well as coffee beverage quality.

    Science.gov (United States)

    Bertrand, B; Boulanger, R; Dussert, S; Ribeyre, F; Berthiot, L; Descroix, F; Joët, T

    2012-12-15

    Coffee grown at high elevations fetches a better price than that grown in lowland regions. This study was aimed at determining whether climatic conditions during bean development affected sensory perception of the coffee beverage and combinations of volatile compounds in green coffee. Green coffee samples from 16 plots representative of the broad range of climatic variations in Réunion Island were compared by sensory analysis. Volatiles were extracted by solid phase micro-extraction and the volatile compounds were analysed by GC-MS. The results revealed that, among the climatic factors, the mean air temperature during seed development greatly influenced the sensory profile. Positive quality attributes such as acidity, fruity character and flavour quality were correlated and typical of coffees produced at cool climates. Two volatile compounds (ethanal and acetone) were identified as indicators of these cool temperatures. Among detected volatiles, most of the alcohols, aldehydes, hydrocarbons and ketones appeared to be positively linked to elevated temperatures and high solar radiation, while the sensory profiles displayed major defects (i.e. green, earthy flavour). Two alcohols (butan-1,3-diol and butan-2,3-diol) were closely correlated with a reduction in aromatic quality, acidity and an increase in earthy and green flavours. We assumed that high temperatures induce accumulation of these compounds in green coffee, and would be detected as off-flavours, even after roasting. Climate change, which generally involves a substantial increase in average temperatures in mountainous tropical regions, could be expected to have a negative impact on coffee quality. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Determination of volatile compounds in four commercial samples of Japanese green algae using solid phase microextraction gas chromatography mass spectrometry.

    Science.gov (United States)

    Yamamoto, Masayoshi; Baldermann, Susanne; Yoshikawa, Keisuke; Fujita, Akira; Mase, Nobuyuki; Watanabe, Naoharu

    2014-01-01

    Green algae are of great economic importance. Seaweed is consumed fresh or as seasoning in Japan. The commercial value is determined by quality, color, and flavor and is also strongly influenced by the production area. Our research, based on solid phase microextraction gas chromatography mass spectrometry (SPME-GC-MS), has revealed that volatile compounds differ intensely in the four varieties of commercial green algae. Accordingly, 41 major volatile compounds were identified. Heptadecene was the most abundant compound from Okayama (Ulva prolifera), Tokushima (Ulva prolifera), and Ehime prefecture (Ulva linza). Apocarotenoids, such as ionones, and their derivatives were prominent volatiles in algae from Okayama (Ulva prolifera) and Tokushima prefecture (Ulva prolifera). Volatile, short chained apocarotenoids are among the most potent flavor components and contribute to the flavor of fresh, processed algae, and algae-based products. Benzaldehyde was predominant in seaweed from Shizuoka prefecture (Monostroma nitidum). Multivariant statistical analysis (PCA) enabled simple discrimination of the samples based on their volatile profiles. This work shows the potential of SPME-GC-MS coupled with multivariant analysis to discriminate between samples of different geographical and botanical origins and form the basis for development of authentication methods of green algae products, including seasonings.

  18. Characterization of the volatile components in green tea by IRAE-HS-SPME/GC-MS combined with multivariate analysis.

    Science.gov (United States)

    Yang, Yan-Qin; Yin, Hong-Xu; Yuan, Hai-Bo; Jiang, Yong-Wen; Dong, Chun-Wang; Deng, Yu-Liang

    2018-01-01

    In the present work, a novel infrared-assisted extraction coupled to headspace solid-phase microextraction (IRAE-HS-SPME) followed by gas chromatography-mass spectrometry (GC-MS) was developed for rapid determination of the volatile components in green tea. The extraction parameters such as fiber type, sample amount, infrared power, extraction time, and infrared lamp distance were optimized by orthogonal experimental design. Under optimum conditions, a total of 82 volatile compounds in 21 green tea samples from different geographical origins were identified. Compared with classical water-bath heating, the proposed technique has remarkable advantages of considerably reducing the analytical time and high efficiency. In addition, an effective classification of green teas based on their volatile profiles was achieved by partial least square-discriminant analysis (PLS-DA) and hierarchical clustering analysis (HCA). Furthermore, the application of a dual criterion based on the variable importance in the projection (VIP) values of the PLS-DA models and on the category from one-way univariate analysis (ANOVA) allowed the identification of 12 potential volatile markers, which were considered to make the most important contribution to the discrimination of the samples. The results suggest that IRAE-HS-SPME/GC-MS technique combined with multivariate analysis offers a valuable tool to assess geographical traceability of different tea varieties.

  19. Characterization of the volatile components in green tea by IRAE-HS-SPME/GC-MS combined with multivariate analysis.

    Directory of Open Access Journals (Sweden)

    Yan-Qin Yang

    Full Text Available In the present work, a novel infrared-assisted extraction coupled to headspace solid-phase microextraction (IRAE-HS-SPME followed by gas chromatography-mass spectrometry (GC-MS was developed for rapid determination of the volatile components in green tea. The extraction parameters such as fiber type, sample amount, infrared power, extraction time, and infrared lamp distance were optimized by orthogonal experimental design. Under optimum conditions, a total of 82 volatile compounds in 21 green tea samples from different geographical origins were identified. Compared with classical water-bath heating, the proposed technique has remarkable advantages of considerably reducing the analytical time and high efficiency. In addition, an effective classification of green teas based on their volatile profiles was achieved by partial least square-discriminant analysis (PLS-DA and hierarchical clustering analysis (HCA. Furthermore, the application of a dual criterion based on the variable importance in the projection (VIP values of the PLS-DA models and on the category from one-way univariate analysis (ANOVA allowed the identification of 12 potential volatile markers, which were considered to make the most important contribution to the discrimination of the samples. The results suggest that IRAE-HS-SPME/GC-MS technique combined with multivariate analysis offers a valuable tool to assess geographical traceability of different tea varieties.

  20. Comparison of male and female emerald ash borer (Coleoptera: Buprestidae) responses to phoebe oil and (Z)-3-hexanol lures in light green prism traps

    Science.gov (United States)

    Gary G. Grant; Therese M. Poland; Tina Ciaramitaro; D. Barry Lyons; Gene C. Jones

    2011-01-01

    We conducted trapping experiments for the emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae) in Michigan, USA, and Ontario, Canada, to compare unbaited light green sticky prism traps with traps baited with phoebe oil, (Z)-3-hexenol (Z3-6:OH), or blends of other green leaf volatiles (GLVs) with Z3-6:OH. Traps were placed in the...

  1. Determination of Volatile Compounds in Four Commercial Samples of Japanese Green Algae Using Solid Phase Microextraction Gas Chromatography Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Masayoshi Yamamoto

    2014-01-01

    Full Text Available Green algae are of great economic importance. Seaweed is consumed fresh or as seasoning in Japan. The commercial value is determined by quality, color, and flavor and is also strongly influenced by the production area. Our research, based on solid phase microextraction gas chromatography mass spectrometry (SPME-GC-MS, has revealed that volatile compounds differ intensely in the four varieties of commercial green algae. Accordingly, 41 major volatile compounds were identified. Heptadecene was the most abundant compound from Okayama (Ulva prolifera, Tokushima (Ulva prolifera, and Ehime prefecture (Ulva linza. Apocarotenoids, such as ionones, and their derivatives were prominent volatiles in algae from Okayama (Ulva prolifera and Tokushima prefecture (Ulva prolifera. Volatile, short chained apocarotenoids are among the most potent flavor components and contribute to the flavor of fresh, processed algae, and algae-based products. Benzaldehyde was predominant in seaweed from Shizuoka prefecture (Monostroma nitidum. Multivariant statistical analysis (PCA enabled simple discrimination of the samples based on their volatile profiles. This work shows the potential of SPME-GC-MS coupled with multivariant analysis to discriminate between samples of different geographical and botanical origins and form the basis for development of authentication methods of green algae products, including seasonings.

  2. Green Synthesis of Silver Nanoparticles by using Eucalyptus Globulus Leaf Extract

    Science.gov (United States)

    Balamurugan, Madheswaran; Saravanan, Shanmugam

    2017-12-01

    A single step eco-friendly, energy efficient and economically scalable green method was employed to synthesize silver nanoparticles. In this work, the synthesis of silver nanoparticles using Eucalyptus globulus leaf extract as reducing and capping agent along with water as solvent at normal room temperature is described. Silver nanoparticles were prepared from aqueous silver nitrate solution by adding the leaf extract. The prepared nanoparticles were characterized by using UV-visible Spectrophotometer, X-ray diffractometer, High Resolution Transmission Electron Microscope (HR-TEM) and Fourier Transform Infrared Spectroscope (FTIS). X-ray diffraction studies brought to light the crystalline nature and the face centered cubic structure of the silver nanoparticles. Using HR-TEM. the nano sizes and morphology of the particles were studied. The mean sizes of the prepared silver nanoparticles ranged from 30 to 36 nm. The density of the particles was tuned by varying the molar ratio of silver nitrate. FTIS studies showed the functional group of organic molecules which were located on the surface of the silver nanoparticles. Originating from the leaf extracts, these organic molecules reduced and capped the particles.

  3. Nocturnal herbivore-induced plant volatiles attract the generalist predatory earwig Doru luteipes Scudder

    Science.gov (United States)

    Naranjo-Guevara, Natalia; Peñaflor, Maria Fernanda G. V.; Cabezas-Guerrero, Milton F.; Bento, José Maurício S.

    2017-10-01

    Numerous studies have demonstrated that entomophagous arthropods use herbivore-induced plant volatile (HIPV) blends to search for their prey or host. However, no study has yet focused on the response of nocturnal predators to volatile blends emitted by prey damaged plants. We investigated the olfactory behavioral responses of the night-active generalist predatory earwig Doru luteipes Scudder (Dermaptera: Forficulidae) to diurnal and nocturnal volatile blends emitted by maize plants ( Zea mays) attacked by either a stem borer ( Diatraea saccharalis) or a leaf-chewing caterpillar ( Spodoptera frugiperda), both suitable lepidopteran prey. Additionally, we examined whether the earwig preferred odors emitted from short- or long-term damaged maize. We first determined the earwig diel foraging rhythm and confirmed that D. luteipes is a nocturnal predator. Olfactometer assays showed that during the day, although the earwigs were walking actively, they did not discriminate the volatiles of undamaged maize plants from those of herbivore damaged maize plants. In contrast, at night, earwigs preferred volatiles emitted by maize plants attacked by D. saccharalis or S. frugiperda over undamaged plants and short- over long-term damaged maize. Our GC-MS analysis revealed that short-term damaged nocturnal plant volatile blends were comprised mainly of fatty acid derivatives (i.e., green leaf volatiles), while the long-term damaged plant volatile blend contained mostly terpenoids. We also observed distinct volatile blend composition emitted by maize damaged by the different caterpillars. Our results showed that D. luteipes innately uses nocturnal herbivore-induced plant volatiles to search for prey. Moreover, the attraction of the earwig to short-term damaged plants is likely mediated by fatty acid derivatives.

  4. Weeding volatiles reduce leaf and seed damage to field-grown soybeans and increase seed isoflavones.

    Science.gov (United States)

    Shiojiri, Kaori; Ozawa, Rika; Yamashita, Ken-Ichi; Uefune, Masayoshi; Matsui, Kenji; Tsukamoto, Chigen; Tokumaru, Susumu; Takabayashi, Junji

    2017-01-30

    Field experiments were conducted over 3 years (2012, 2013, and 2015), in which half of the young stage soybean plants were exposed to volatiles from cut goldenrods three times over 2-3 weeks, while the other half remained unexposed. There was a significant reduction in the level of the total leaf damage on exposed soybean plants compared with unexposed ones. In 2015, the proportion of damage to plants by Spodoptera litura larvae, a dominant herbivore, was significantly less in the exposed field plots than in the unexposed plots. Under laboratory conditions, cut goldenrod volatiles induced the direct defenses of soybean plants against S. litura larvae and at least three major compounds, α-pinene, β-myrcene, and limonene, of cut goldenrod volatiles were involved in the induction. The number of undamaged seeds from the exposed plants was significantly higher than that from unexposed ones. Concentrations of isoflavones in the seeds were significantly higher in seeds from the exposed plants than in those from the unexposed plants. Future research evaluating the utility of weeding volatiles, as a form of plant-plant communications, in pest management programs is necessary.

  5. GCMS investigation of volatile compounds in green coffee affected by potato taste defect and the Antestia bug.

    Science.gov (United States)

    Jackels, Susan C; Marshall, Eric E; Omaiye, Angelica G; Gianan, Robert L; Lee, Fabrice T; Jackels, Charles F

    2014-10-22

    Potato taste defect (PTD) is a flavor defect in East African coffee associated with Antestiopsis orbitalis feeding and 3-isopropyl-2-methoxypyrazine (IPMP) in the coffee. To elucidate the manifestation of PTD, surface and interior volatile compounds of PTD and non-PTD green coffees were sampled by headspace solid phase microextraction and analyzed by gas chromatography mass spectrometry. Principal component analysis of the chromatographic data revealed a profile of surface volatiles distinguishing PTD from non-PTD coffees dominated by tridecane, dodecane, and tetradecane. While not detected in surface volatiles, IPMP was found in interior volatiles of PTD coffee. Desiccated antestia bugs were analyzed by GCMS, revealing that the three most prevalent volatiles were tridecane, dodecane, and tetradecane, as was found in the surface profile PTD coffee. Coffee having visible insect damage exhibited both a PTD surface volatile profile and IPMP in interior volatiles, supporting the hypothesis linking antestia bug feeding activity with PTD profile compounds on the surface and IPMP in the interior of the beans.

  6. Leaf green-up in a semi-arid African savanna - separating tree and grass responses to environmental cues

    CSIR Research Space (South Africa)

    Archibald, S

    2007-01-01

    Full Text Available -arid African savanna - 583 Journal of Vegetation Science 18: 583-594, 2007 © IAVS; Opulus Press Uppsala. Leaf green-up in a semi-arid African savanna – separating tree and grass responses to environmental cues Archibald, S.1* & Scholes, R.J.1,2 1Natural... to identify tree and grass green-up dates in a semi-arid savanna system, and are there predictable environmental cues for green-up for each life form? Location: Acacia nigrescens/Combretum apiculatum savanna, Kruger National Park, South Africa (25° S, 31...

  7. Green synthesis and characterization of silver nanoparticles using Lantana camara leaf extract

    Energy Technology Data Exchange (ETDEWEB)

    Ajitha, B., E-mail: ajithabondu@gmail.com [Department of Physics, Sri Venkateswara University, Tirupati 517502 (India); Ashok Kumar Reddy, Y. [Department of Electrical Engineering, Korea Advanced Institute of Science and Technology, 335 Gwahangno, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Sreedhara Reddy, P. [Department of Physics, Sri Venkateswara University, Tirupati 517502 (India)

    2015-04-01

    In this work, we have investigated on Lantana camara mediated silver nanoparticles (AgNPs) with different leaf extract (LE) quantity for the evaluation of efficient bactericidal activity. The AgNPs were prepared by simple, capable, eco-friendly and biosynthesis method using L. camara LE. This method allowed the synthesis of crystalline nanoparticles, which was confirmed by X-ray diffraction (XRD) and selected area electron diffraction (SAED) patterns. The X-ray photoelectron spectroscopy (XPS) analysis confirmed the formation of metallic silver and elucidates the surface state composition of AgNPs. UV–vis spectra of AgNPs and visual perception of brownish yellow color from colorless reaction mixture confirmed the AgNP formation. Involvement of functional groups of L. camara leaf extract in the reduction and capping process of nanoparticles was well displayed in Fourier transform infrared spectroscopy (FTIR). Decrement of particle size with an increment of leaf extract volume was evident in AFM, TEM images and also through a blue shift in the UV–vis spectra. The rate of formation and size of AgNPs were dependent on LE quantity. Meanwhile, these AgNPs exhibited effective antibacterial activity with the decrement of particle size against all tested bacterial cultures. - Highlights: • Monodispersed AgNPs are synthesized using L. camara leaf extract. • The higher the L. camara content, the smaller the particle size. • Green synthesized AgNPs are found to be photoluminescent. • Size dependence of antibacterial activity is reported. • The nanoparticle stability is improved by leaf extract quantity.

  8. Green synthesis and characterization of silver nanoparticles using Lantana camara leaf extract

    International Nuclear Information System (INIS)

    Ajitha, B.; Ashok Kumar Reddy, Y.; Sreedhara Reddy, P.

    2015-01-01

    In this work, we have investigated on Lantana camara mediated silver nanoparticles (AgNPs) with different leaf extract (LE) quantity for the evaluation of efficient bactericidal activity. The AgNPs were prepared by simple, capable, eco-friendly and biosynthesis method using L. camara LE. This method allowed the synthesis of crystalline nanoparticles, which was confirmed by X-ray diffraction (XRD) and selected area electron diffraction (SAED) patterns. The X-ray photoelectron spectroscopy (XPS) analysis confirmed the formation of metallic silver and elucidates the surface state composition of AgNPs. UV–vis spectra of AgNPs and visual perception of brownish yellow color from colorless reaction mixture confirmed the AgNP formation. Involvement of functional groups of L. camara leaf extract in the reduction and capping process of nanoparticles was well displayed in Fourier transform infrared spectroscopy (FTIR). Decrement of particle size with an increment of leaf extract volume was evident in AFM, TEM images and also through a blue shift in the UV–vis spectra. The rate of formation and size of AgNPs were dependent on LE quantity. Meanwhile, these AgNPs exhibited effective antibacterial activity with the decrement of particle size against all tested bacterial cultures. - Highlights: • Monodispersed AgNPs are synthesized using L. camara leaf extract. • The higher the L. camara content, the smaller the particle size. • Green synthesized AgNPs are found to be photoluminescent. • Size dependence of antibacterial activity is reported. • The nanoparticle stability is improved by leaf extract quantity

  9. De novo biosynthesis of volatiles induced by insect herbivory in cotton plants

    International Nuclear Information System (INIS)

    Pare, P.W.; Tumlinson, J.H.

    1997-01-01

    In response to insect feeding on the leaves, cotton (Gossypium hirsutum L.) plants release elevated levels of volatiles, which can serve as a chemical signal that attracts natural enemies of the herbivore to the damaged plant. Pulse-labeling experiments with [13C]CO2 demonstrated that many of the volatiles released, including the acyclic terpenes (E,E)-alpha-farnesene, (E)-beta-farnesene, (E)-beta-ocimene, linalool,(E)-4,8-dimethyl-1,3,7-nonatriene, and (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetrane, as well as the shikimate pathway product indole, are biosynthesized de novo following insect damage. However, other volatile constituents, including several cyclic terpenes, butyrates, and green leaf volatiles of the lipoxygenase pathway are released from storage or synthesized from stored intermediates. Analysis of volatiles from artificially damaged plants, with and without beet armyworm (Spodoptera exigua Hubner) oral secretions exogenously applied to the leaves, as well as volatiles from beet armyworm-damaged and -undamaged control plants, demonstrated that the application of caterpillar oral secretions increased both the production and release of several volatiles that are synthesized de novo in response to insect feeding. These results establish that the plant plays an active and dynamic role in mediating the interaction between herbivores and natural enemies of herbivores

  10. Phytoseiulus persimilis response to herbivore-induced plant volatiles as a function of mite-days.

    Science.gov (United States)

    Nachappa, Punya; Margolies, David C; Nechols, James R; Loughin, Thomas

    2006-01-01

    The predatory mite, Phytoseiulus persimilis (Acari: Phytoseiidae), uses plant volatiles (i.e., airborne chemicals) triggered by feeding of their herbivorous prey, Tetranychus urticae (Acari: Tetranychidae), to help locate prey patches. The olfactory response of P. persimilis to prey-infested plants varies in direct relation to the population growth pattern of T. urticae on the plant; P. persimilis responds to plants until the spider mite population feeding on a plant collapses, after which infested plants do not attract predators. It has been suggested that this represents an early enemy-free period for T. urticae before the next generation of females is produced. We hypothesize that the mechanism behind the diminished response of predators is due to extensive leaf damage caused by T. urticae feeding, which reduces the production of volatiles irrespective of the collapse of T. urticae population on the plant. To test this hypothesis we investigated how the response of P. persimilis to prey-infested plants is affected by: 1) initial density of T. urticae, 2) duration of infestation, and 3) corresponding leaf damage due to T. urticae feeding. Specifically, we assessed the response of P. persimilis to plants infested with two T. urticae densities (20 or 40 per plant) after 2, 4, 6, 8, 10, 12 or 14 days. We also measured leaf damage on these plants. We found that predator response to T. urticae-infested plants can be quantified as a function of mite-days, which is a cumulative measure of the standing adult female mite population sampled and summed over time. That is, response to volatiles increased with increasing numbers of T. urticae per plant or with the length of time plant was infested by T. urticae, at least as long at the leaves were green. Predatory mites were significantly attracted to plants that were infested for 2 days with only 20 spider mites. This suggests that the enemy-free period might only provide a limited window of opportunity for T. urticae

  11. Substrates with green manure compost and leaf application of biofertilizer on seedlings of yellow passion fruit plants

    Directory of Open Access Journals (Sweden)

    Cristiane Muniz Barbosa Barros

    2013-12-01

    Full Text Available Substrates and fertilization are fundamental for seedling production, which well nourished can produce earlier and are more resistant to stresses. Animal manures are often used in non-industrialized substrates with good results, but their costs are increasing. Other residues may be used for plant nutrition, in substrates or in leaf fertilization. The aim of this work was to evaluate substrates prepared with green manure composts and the leaf application of biofertilizer on the formation of yellow passion fruit seedlings. A greenhouse experiment was conducted between December 2009 and February 2010, with a split-plot random block design. Plots received or not leaf application of supermagro biofertilizer. Subplots consisted of different substrates: soil; soil + cattle manure; soil + cattle manure composted with black oats straw; soil + cattle manure composted with ryegrass straw; soil + cattle manure composted with turnip straw; and soil + cattle manure composted with vetch straw. There were three dates of leaf fertilization: 10, 25 and 40 days after emergence (DAE. At 50 DAE plants were collected for evaluation of growth and accumulation of biomass and nutrients: N, P, K, Ca, Mg, Cu, Mn and Zn. Data were submitted to analysis of variance and means compared by Tukey test. The substrate soil + cattle manure promoted higher stem diameter, plant height, leaf area, root length and volume and nutrient accumulation. Among substrates with green manure composts, those prepared with black oats and turnip straw outranked the others. The use of leaf biofertilizer showed diverse results on seedling formation, being beneficial when combined to substrates with black oats composted straw, and prejudicial when combined to soil + cattle manure and soil + turnip composted straw substrates. The accumulation of nutrients by the seedlings occurred in the following order: K>Ca>N>Mg>P>Zn>Cu=Mn.

  12. Antimicrobial potential of green synthesized CeO2 nanoparticles from Olea europaea leaf extract.

    Science.gov (United States)

    Maqbool, Qaisar; Nazar, Mudassar; Naz, Sania; Hussain, Talib; Jabeen, Nyla; Kausar, Rizwan; Anwaar, Sadaf; Abbas, Fazal; Jan, Tariq

    This article reports the green fabrication of cerium oxide nanoparticles (CeO 2 NPs) using Olea europaea leaf extract and their applications as effective antimicrobial agents. O. europaea leaf extract functions as a chelating agent for reduction of cerium nitrate. The resulting CeO 2 NPs exhibit pure single-face cubic structure, which is examined by X-ray diffraction, with a uniform spherical shape and a mean size 24 nm observed through scanning electron microscopy and transmission electron microscopy. Ultraviolet-visible spectroscopy confirms the characteristic absorption peak of CeO 2 NPs at 315 nm. Fourier transform infrared spectroscopy reflects stretching frequencies at 459 cm -1 , showing utilization of natural components for the production of NPs. Thermal gravimetric analysis predicts the successful capping of CeO 2 NPs by bioactive molecules present in the plant extract. The antimicrobial studies show significant zone of inhibition against bacterial and fungal strains. The higher activities shown by the green synthesized NPs than the plant extract lead to the conclusion that they can be effectively used in biomedical application. Furthermore, reduction of cerium salt by plant extract will reduce environmental impact over chemical synthesis.

  13. Vegetation growth parameters and leaf temperature: Experimental results from a six plots green roofs' system

    International Nuclear Information System (INIS)

    Ferrante, Patrizia; La Gennusa, Maria; Peri, Giorgia; Rizzo, Gianfranco; Scaccianoce, Gianluca

    2016-01-01

    The paper provides a contribution for populating database of three physical parameters needed to model energy performance of buildings with green roofs: “coverage ratio” (σ_f), leaf area index (LAI) and leaf temperature (T_f). On purpose, six plant species were investigated experimentally: Phyla nordiflora, Aptenia lancifolia, Mesembryanthenum barbatus, Gazania nivea, Gazania uniflora, and Sedum. Proper ranges of the cited parameters have been found for each species. The here indicated ranges of σ_f values refer to different growth levels of the species in the same lapse of time, that is four months. Single measured LAI values are also reported for the same plants. As for the T_f (upper and lower layer), ranges of revealed temperatures refer to those detected from 10:30 a.m. to 16:30 p.m. of a selected day. Additionally, the dependence of T_f on climatic parameters was investigated. A linear equation resulted the best fitting curve for all experimental T_f data and the corresponding solar radiation data (with autocorrelation coefficients between 0.80 and 0.98). Furthermore, the effect potentially produced on building energy consumption by these species was analyzed using a simulation tool. Estimated cooling energy savings range approximately between 8% and 20% depending on adopted plants. - Highlights: • Green roof modeling requires the knowledge of various physical parameters. • Coverage ratio, leaf area index and leaves temperatures were measured for six species. • A tentative correlation between leaf temperature and climatic parameters was shown. • A correlation between LAI and coverage ratio was checked and discussed. • Potential effects of studied species on building energy consumption were investigated.

  14. Light Quality Dependent Changes in Morphology, Antioxidant Capacity, and Volatile Production in Sweet Basil (Ocimum basilicum).

    Science.gov (United States)

    Carvalho, Sofia D; Schwieterman, Michael L; Abrahan, Carolina E; Colquhoun, Thomas A; Folta, Kevin M

    2016-01-01

    Narrow-bandwidth light treatments may be used to manipulate plant growth, development and metabolism. In this report LED-based light treatments were used to affect yield and metabolic content of sweet basil (Ocimum basilicum L. cv "Ceasar") grown in controlled environments. This culinary herb produces an aroma highly appreciated by consumers, primarily composed of terpenes/terpenoids, phenylpropanoids, and fatty-acid- derived volatile molecules. Basil plants were grown under narrow-bandwidth light conditions, and leaf area, height, mass, antioxidant capacity and volatile emissions were measured at various time points. The results indicate reproducible significant differences in specific volatiles, and in biochemical classes of volatiles, compared to greenhouse grown plants. For example, basil plants grown under blue/red/yellow or blue/red/green wavelengths emit higher levels of a subset of monoterpenoid volatiles, while a blue/red/far-red treatment leads to higher levels of most sesquiterpenoid volatile molecules. Specific light treatments increase volatile content, mass, and antioxidant capacity. The results show that narrow-bandwidth illumination can induce discrete suites of volatile classes that affect sensory quality in commercial herbs, and may be a useful tool in improving commercial production.

  15. Two Volatile Organic Compounds Trigger Plant Self-Defense against a Bacterial Pathogen and a Sucking Insect in Cucumber under Open Field Conditions

    Directory of Open Access Journals (Sweden)

    Choong-Min Ryu

    2013-05-01

    Full Text Available Systemic acquired resistance (SAR is a plant self-defense mechanism against a broad-range of pathogens and insect pests. Among chemical SAR triggers, plant and bacterial volatiles are promising candidates for use in pest management, as these volatiles are highly effective, inexpensive, and can be employed at relatively low concentrations compared with agrochemicals. However, such volatiles have some drawbacks, including the high evaporation rate of these compounds after application in the open field, their negative effects on plant growth, and their inconsistent levels of effectiveness. Here, we demonstrate the effectiveness of volatile organic compound (VOC-mediated induced resistance against both the bacterial angular leaf spot pathogen, Pseudononas syringae pv. lachrymans, and the sucking insect aphid, Myzus persicae, in the open field. Using the VOCs 3-pentanol and 2-butanone where fruit yields increased gave unexpectedly, a significant increase in the number of ladybird beetles, Coccinella septempunctata, a natural enemy of aphids. The defense-related gene CsLOX was induced by VOC treatment, indicating that triggering the oxylipin pathway in response to the emission of green leaf volatiles can recruit the natural enemy of aphids. These results demonstrate that VOCs may help prevent plant disease and insect damage by eliciting induced resistance, even in open fields.

  16. Green synthesis and antimicrobial activity of monodisperse silver nanoparticles synthesized using Ginkgo Biloba leaf extract

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Yan-yu [School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi' an 710021 (China); Yang, Hui, E-mail: 549456369@qq.com [School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi' an 710021 (China); Wang, Tao [School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi' an 710021 (China); Wang, Chuang [Department of Highway & Bridge, Shaanxi Railway Institute, Weinan 714000 (China)

    2016-11-25

    Various parts of plants can be used as a raw material for the synthesis of nanoparticles, which is eco-friendly way and does not involve any harmful chemicals. In this project, Ginkgo biloba leaf, an abundantly available medicinal plant in China, was for the first time adopted as a reducing and stabilizing agent to synthesize smaller sized and stable silver nanoparticles (AgNPs). To improve the quality of AgNPs, the reduction was accelerated by changing the concentrations of initial Ag{sup +} (0.02, 0.04, 0.06 and 0.08 mol/L) of the reaction mixture consisting of silver nitrate solution (AgNO{sub 3}) and Ginkgo biloba leaf extract. At pH = 8 and lower AgNO{sub 3} concentration (0.02 mol/L), a colloid consisting of well-dispersed spherical nanoparticles was obtained. The synthesized nanocrystals were successfully characterized by UV–vis and XRD. TEM images revealed the size of the spherical AgNPs ranged between 10–16 nm. FTIR analysis revealed that biological macromolecules with groups of −NH{sub 2}, −OH, and others were distributed on the surface of the nanoparticles. The biosynthesized AgNPs exhibited good antibacterial activities against gram-negative bacteria and gram-positive bacteria. Compared to traditional chemical methods, Ginkgo biloba leaf extract provides an easy green synthetical way. It is anticipated that the biosynthesized AgNPs can be used in areas such as cosmetics, foods and medical applications. - Highlights: • Monodisperse silver nanoparticles were first prepared by a green synthetical way through Ginkgo Biloba leaf extract. • The synthesized AgNPs is of high crystallinity, stable and good dispersion with smaller sizes between 10–16 nm. • The achieved AgNPs exhibits good antibacterial activities. • The biosynthesis method is advantageous for its cost effectiveness, availability, portability, nontoxic and environmentally benign.

  17. Green synthesis and antimicrobial activity of monodisperse silver nanoparticles synthesized using Ginkgo Biloba leaf extract

    International Nuclear Information System (INIS)

    Ren, Yan-yu; Yang, Hui; Wang, Tao; Wang, Chuang

    2016-01-01

    Various parts of plants can be used as a raw material for the synthesis of nanoparticles, which is eco-friendly way and does not involve any harmful chemicals. In this project, Ginkgo biloba leaf, an abundantly available medicinal plant in China, was for the first time adopted as a reducing and stabilizing agent to synthesize smaller sized and stable silver nanoparticles (AgNPs). To improve the quality of AgNPs, the reduction was accelerated by changing the concentrations of initial Ag + (0.02, 0.04, 0.06 and 0.08 mol/L) of the reaction mixture consisting of silver nitrate solution (AgNO 3 ) and Ginkgo biloba leaf extract. At pH = 8 and lower AgNO 3 concentration (0.02 mol/L), a colloid consisting of well-dispersed spherical nanoparticles was obtained. The synthesized nanocrystals were successfully characterized by UV–vis and XRD. TEM images revealed the size of the spherical AgNPs ranged between 10–16 nm. FTIR analysis revealed that biological macromolecules with groups of −NH 2 , −OH, and others were distributed on the surface of the nanoparticles. The biosynthesized AgNPs exhibited good antibacterial activities against gram-negative bacteria and gram-positive bacteria. Compared to traditional chemical methods, Ginkgo biloba leaf extract provides an easy green synthetical way. It is anticipated that the biosynthesized AgNPs can be used in areas such as cosmetics, foods and medical applications. - Highlights: • Monodisperse silver nanoparticles were first prepared by a green synthetical way through Ginkgo Biloba leaf extract. • The synthesized AgNPs is of high crystallinity, stable and good dispersion with smaller sizes between 10–16 nm. • The achieved AgNPs exhibits good antibacterial activities. • The biosynthesis method is advantageous for its cost effectiveness, availability, portability, nontoxic and environmentally benign.

  18. Green leaf phenology at Landsat resolution: scaling from the plot to satellite

    Science.gov (United States)

    Fisher, J. I.; Mustard, J. F.; Vadeboncour, M.

    2005-12-01

    Despite the large number of in situ, plot-level phenological measurements and satellite-derived phenological studies, there has been little success to date in merging these records temporally or spatially. In particular, while most phenological patterns and trends derived from satellites appear realistic and coherent, they may not reflect spatial and temporal patterns at the plot level. An obvious explanation is the drastic scale difference from plot-level to most satellite observations. In this research, we bridge this scale gap through higher resolution satellite records (Landsat) and quantify the accuracy of satellite-derived metrics with direct field measurements. We compiled fifty-seven Landsat scenes from southern New England (P12 R51) from 1984 to 2002. Green vegetation areal abundance for each scene was derived from spectral mixture analysis and a single set of endmembers. The leaf area signal was fit with a logistic-growth simulating sigmoid curve to derive phenological markers (half-maximum leaf-onset and offset). Spring leaf-onset dates in homogenous stands of deciduous forests displayed significant and persistent local variability. The local variability was validated with multiple springtime ground observations (r2 = 0.91). The highest degree of verified small-scale variation occurred where contiguous forests displayed leaf-onset gradients of 10-14 days over short distances (example, our results indicate that deciduous forests in the Providence, RI metropolitan area leaf out 5-7 days earlier than comparable rural areas. In preliminary work, we validated the Landsat-derived metrics with similar analyses of MODIS and AVHRR, and demonstrate that aggregating diverse local phenologies into coarse grids may convolute interpretations. Despite these complications, the platform-independent curve-fit methodology may be extended across platforms and field data. The methodologically consistent approach, in tandem with Landsat data, allows us to effectively scale

  19. Green leaf allowance and dairy ewe performance grazing on tropical pasture.

    Science.gov (United States)

    De Souza, J; Batistel, F; Ticiani, E; Sandri, E C; Pedreira, C G S; Oliveira, D E

    2014-06-01

    The objective of this study was to explain the influence of green leaf allowance levels on the performance of dairy ewes grazing a tropical grass. Seventy-two lactating ewes grazed Aruana guineagrass (Panicum maximum Jacq. cv. Aruana) for 80 d. The treatments were 4 daily levels of green leaf allowance (GLA) on a DM basis corresponding to 4, 7, 10, and 13 kg DM/100 kg BW, which were named low, medium-low, medium-high, and high level, respectively. The experimental design was completely randomized with 3 replications. During the experimental period, 4 grazing cycles were evaluated in a rotational stocking grazing method (4 d of grazing and 16 d of rest). There was a linear effect of GLA on forage mass, and increasing GLA resulted in increased total leaf mass, reaching an asymptotic plateau around the medium-high GLA level. The stem mass increased with increased GLA, and a pronounced increase was observed between medium-high and high GLAs. Increasing GLA increased both forage disappearance rate and postgrazing forage mass. Leaf proportion increased with GLA, peaking at the medium-high level, and the opposite occurred for stem proportions, which reduced until medium-high GLA level, followed by an increase on high GLA. Forage CP decreased linearly with GLA, and increasing GLA from low to high reduced CP content by 31%. On the other hand, NDF increased 14% and ADF increased 26%, both linearly in response to greater GLA levels. Total digestible nutrients decreased linearly by 8% when GLA increased from low to high level. Milk yield increased, peaking at medium-high GLA (1.75 kg ewe(-1) d(-1)) and decreased at high GLA level (1.40 kg ewe(-1) d(-1)). Milk composition was not affected by the GLA levels. There was a reduction in stocking rate from 72 to 43 ewes/ha when GLA increased from low to high level. Productivity (milk yield kg ha(-1) d(-1)) increased as GLA increased, peaking at medium-low level (115 kg ha(-1) d(-1)). Although this tropical grass showed the same

  20. The leaf-level emission factor of volatile isoprenoids: caveats, model algorithms, response shapes and scaling

    Directory of Open Access Journals (Sweden)

    Ü. Niinemets

    2010-06-01

    Full Text Available In models of plant volatile isoprenoid emissions, the instantaneous compound emission rate typically scales with the plant's emission potential under specified environmental conditions, also called as the emission factor, ES. In the most widely employed plant isoprenoid emission models, the algorithms developed by Guenther and colleagues (1991, 1993, instantaneous variation of the steady-state emission rate is described as the product of ES and light and temperature response functions. When these models are employed in the atmospheric chemistry modeling community, species-specific ES values and parameter values defining the instantaneous response curves are often taken as initially defined. In the current review, we argue that ES as a characteristic used in the models importantly depends on our understanding of which environmental factors affect isoprenoid emissions, and consequently need standardization during experimental ES determinations. In particular, there is now increasing consensus that in addition to variations in light and temperature, alterations in atmospheric and/or within-leaf CO2 concentrations may need to be included in the emission models. Furthermore, we demonstrate that for less volatile isoprenoids, mono- and sesquiterpenes, the emissions are often jointly controlled by the compound synthesis and volatility. Because of these combined biochemical and physico-chemical drivers, specification of ES as a constant value is incapable of describing instantaneous emissions within the sole assumptions of fluctuating light and temperature as used in the standard algorithms. The definition of ES also varies depending on the degree of aggregation of ES values in different parameterization schemes (leaf- vs. canopy- or region-scale, species vs. plant functional type levels and various

  1. Metabolic responses and β-carotene production by the unicellular green alga Dunaliella salina exposed to leaf extracts

    Directory of Open Access Journals (Sweden)

    Alireza Einali

    Full Text Available ABSTRACT The present work investigated the effects of aqueous extracts of eucalyptus ( Eucalyptus globulus and elderberry ( Sambucus ebulus leaves on β-carotene productivity in Dunaliella salina, a green microalga. Leaf extracts from eucalyptus have greater amounts of phenolics and flavonoids, as well as greater ferric reducing antioxidant potential than elderberry. The extracts of both species greatly inhibited growth of algal suspensions. However, chlorophyll and β-carotene concentration increased in cells treated with leaf extracts, and the highest values were detected in 1 % eucalyptus and 2 % elderberry extracts. Fresh weight, total sugar, and protein content significantly increased following exposure of cells to different doses of leaf extracts. However, in doses containing more than 2 % eucalyptus, the upward trend for total sugar and protein ceased and remained statistically unchanged. These results suggest that metabolic modifications enable D. salina cells to tolerate the stress induced by the leaf extracts through allocating carbon flux to the synthesis of osmolytes and putative antioxidant molecules (e.g. sugars and β-carotene. Therefore, the use of leaf extracts holds potential to be a promising and effective way to improve D. salina cultivation for β-carotene production and other biotechnological and industrial applications.

  2. How Does Alkali Aid Protein Extraction in Green Tea Leaf Residue: A Basis for Integrated Biorefinery of Leaves

    Science.gov (United States)

    Zhang, Chen; Sanders, Johan P. M.; Xiao, Ting T.; Bruins, Marieke E.

    2015-01-01

    Leaf protein can be obtained cost-efficiently by alkaline extraction, but overuse of chemicals and low quality of (denatured) protein limits its application. The research objective was to investigate how alkali aids protein extraction of green tea leaf residue, and use these results for further improvements in alkaline protein biorefinery. Protein extraction yield was studied for correlation to morphology of leaf tissue structure, protein solubility and hydrolysis degree, and yields of non-protein components obtained at various conditions. Alkaline protein extraction was not facilitated by increased solubility or hydrolysis of protein, but positively correlated to leaf tissue disruption. HG pectin, RGII pectin, and organic acids were extracted before protein extraction, which was followed by the extraction of cellulose and hemi-cellulose. RGI pectin and lignin were both linear to protein yield. The yields of these two components were 80% and 25% respectively when 95% protein was extracted, which indicated that RGI pectin is more likely to be the key limitation to leaf protein extraction. An integrated biorefinery was designed based on these results. PMID:26200774

  3. How Does Alkali Aid Protein Extraction in Green Tea Leaf Residue: A Basis for Integrated Biorefinery of Leaves.

    Directory of Open Access Journals (Sweden)

    Chen Zhang

    Full Text Available Leaf protein can be obtained cost-efficiently by alkaline extraction, but overuse of chemicals and low quality of (denatured protein limits its application. The research objective was to investigate how alkali aids protein extraction of green tea leaf residue, and use these results for further improvements in alkaline protein biorefinery. Protein extraction yield was studied for correlation to morphology of leaf tissue structure, protein solubility and hydrolysis degree, and yields of non-protein components obtained at various conditions. Alkaline protein extraction was not facilitated by increased solubility or hydrolysis of protein, but positively correlated to leaf tissue disruption. HG pectin, RGII pectin, and organic acids were extracted before protein extraction, which was followed by the extraction of cellulose and hemi-cellulose. RGI pectin and lignin were both linear to protein yield. The yields of these two components were 80% and 25% respectively when 95% protein was extracted, which indicated that RGI pectin is more likely to be the key limitation to leaf protein extraction. An integrated biorefinery was designed based on these results.

  4. Eco-friendly and green synthesis of silver nanoparticles using leaf extract of Strychnos potatorum Linn.F. and their bactericidal activities

    OpenAIRE

    Kagithoju, Srikanth; Godishala, Vikram; Nanna, Rama Swamy

    2014-01-01

    Inspired green synthesis of metallic nanoparticles is evolving as an important branch of nanotechnology. Traditionally these are manufactured by wet chemical methods which require toxic and flammable chemicals. We report for the first time an economic and eco-friendly green synthesis of silver nanoparticles using Strychnos potatorum aqueous leaf extract from 3 mM silver nitrate solution. Nanoparticles thus formed are confirmed and characterized by using UV–Vis absorption spectroscopy, SEM and...

  5. Antimicrobial potential of green synthesized CeO2 nanoparticles from Olea europaea leaf extract

    Directory of Open Access Journals (Sweden)

    Maqbool Q

    2016-10-01

    Full Text Available Qaisar Maqbool,1 Mudassar Nazar,1 Sania Naz,2 Talib Hussain,3 Nyla Jabeen,4 Rizwan Kausar,5 Sadaf Anwaar,4 Fazal Abbas,6,7 Tariq Jan6 1Department of Biotechnology, Virtual University of Pakistan, Lahore, Pakistan; 2Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan; 3National Institute of Vacuum Science and Technology (NINVAST, Islamabad, Pakistan; 4Department of Biotechnology and Bioinformatics Lab., International Islamic University, Islamabad, Pakistan; 5Department of Chemistry, University of Sargodha, Sargodha, Pakistan; 6Department of Physics, International Islamic University, Islamabad, Pakistan; 7Interdisciplinary Research Organization, University of Chakwal (UOC, Chakwal, Pakistan Abstract: This article reports the green fabrication of cerium oxide nanoparticles (CeO2 NPs using Olea europaea leaf extract and their applications as effective antimicrobial agents. O. europaea leaf extract functions as a chelating agent for reduction of cerium nitrate. The resulting CeO2 NPs exhibit pure single-face cubic structure, which is examined by X-ray diffraction, with a uniform spherical shape and a mean size 24 nm observed through scanning electron microscopy and transmission electron microscopy. Ultraviolet-visible spectroscopy confirms the characteristic absorption peak of CeO2 NPs at 315 nm. Fourier transform infrared spectroscopy reflects stretching frequencies at 459 cm-1, showing utilization of natural components for the production of NPs. Thermal gravimetric analysis predicts the successful capping of CeO2 NPs by bioactive molecules present in the plant extract. The antimicrobial studies show significant zone of inhibition against bacterial and fungal strains. The higher activities shown by the green synthesized NPs than the plant extract lead to the conclusion that they can be effectively used in biomedical application. Furthermore, reduction of cerium salt by plant extract will reduce environmental impact over

  6. Leaf level emissions of volatile organic compounds (VOC) from some Amazonian and Mediterranean plants

    Science.gov (United States)

    Bracho-Nunez, A.; Knothe, , N. M.; Welter, S.; Staudt, M.; Costa, W. R.; Liberato, M. A. R.; Piedade, M. T. F.; Kesselmeier, J.

    2013-09-01

    Emission inventories defining regional and global biogenic volatile organic compounds (VOC) emission strengths are needed to determine the impact of VOC on atmospheric chemistry (oxidative capacity) and physics (secondary organic aerosol formation and effects). The aim of this work was to contribute with measurements of tree species from the poorly described tropical vegetation in direct comparison with the quite well-investigated, highly heterogeneous emissions from Mediterranean vegetation. VOC emission from sixteen plant species from the Mediterranean area were compared with twelve plant species from different environments of the Amazon basin by an emission screening at leaf level using branch enclosures. Analysis of the volatile organics was performed online by a proton-transfer-reaction mass spectrometer (PTR-MS) and offline by collection on adsorbent tubes and subsequent gas chromatographic analysis. Isoprene was the most dominant compound emitted followed by monoterpenes, methanol and acetone. The average loss rates of VOC carbon in relation to the net CO2 assimilation were found below 4% and indicating normal unstressed plant behavior. Most of the Mediterranean species emitted a large variety of monoterpenes, whereas only five tropical species were identified as monoterpene emitters exhibiting a quite conservative emission pattern (α-pinene plants showed additional emissions of sesquiterpenes. In the case of Amazonian plants no sesquiterpenes were detected. However, missing of sesquiterpenes may also be due to a lack of sensitivity of the measuring systems. Furthermore, our screening activities cover only 1% of tree species of such tropical areas as estimated based on recent biodiversity reports. Methanol emissions, an indicator of growth, were found to be common in most of the tropical and Mediterranean species. A few species from both ecosystems showed acetone emissions. The observed heterogeneous emissions, including reactive VOC species which are not

  7. Leaf level emissions of volatile organic compounds (VOC from some Amazonian and Mediterranean plants

    Directory of Open Access Journals (Sweden)

    A. Bracho-Nunez

    2013-09-01

    Full Text Available Emission inventories defining regional and global biogenic volatile organic compounds (VOC emission strengths are needed to determine the impact of VOC on atmospheric chemistry (oxidative capacity and physics (secondary organic aerosol formation and effects. The aim of this work was to contribute with measurements of tree species from the poorly described tropical vegetation in direct comparison with the quite well-investigated, highly heterogeneous emissions from Mediterranean vegetation. VOC emission from sixteen plant species from the Mediterranean area were compared with twelve plant species from different environments of the Amazon basin by an emission screening at leaf level using branch enclosures. Analysis of the volatile organics was performed online by a proton-transfer-reaction mass spectrometer (PTR-MS and offline by collection on adsorbent tubes and subsequent gas chromatographic analysis. Isoprene was the most dominant compound emitted followed by monoterpenes, methanol and acetone. The average loss rates of VOC carbon in relation to the net CO2 assimilation were found below 4% and indicating normal unstressed plant behavior. Most of the Mediterranean species emitted a large variety of monoterpenes, whereas only five tropical species were identified as monoterpene emitters exhibiting a quite conservative emission pattern (α-pinene < limonene < sabinene < ß-pinene. Mediterranean plants showed additional emissions of sesquiterpenes. In the case of Amazonian plants no sesquiterpenes were detected. However, missing of sesquiterpenes may also be due to a lack of sensitivity of the measuring systems. Furthermore, our screening activities cover only 1% of tree species of such tropical areas as estimated based on recent biodiversity reports. Methanol emissions, an indicator of growth, were found to be common in most of the tropical and Mediterranean species. A few species from both ecosystems showed acetone emissions. The observed

  8. Air quality and health effects of biogenic volatile organic compounds emissions from urban green spaces and the mitigation strategies

    International Nuclear Information System (INIS)

    Ren, Yuan; Qu, Zelong; Du, Yuanyuan; Xu, Ronghua; Ma, Danping; Yang, Guofu; Shi, Yan; Fan, Xing; Tani, Akira; Guo, Peipei; Ge, Ying; Chang, Jie

    2017-01-01

    Biogenic volatile organic compounds (BVOCs) emissions lead to fine particulate matter (PM 2.5 ) and ground-level ozone pollution, and are harmful to human health, especially in urban areas. However, most BVOCs estimations ignored the emissions from urban green spaces, causing inaccuracies in the understanding of regional BVOCs emissions and their environmental and health effects. In this study, we used the latest local vegetation datasets from our field survey and applied an estimation model to analyze the spatial-temporal patterns, air quality impacts, health damage and mitigating strategies of BVOCs emissions in the Greater Beijing Area. Results showed that: (1) the urban core was the hotspot of regional BVOCs emissions for the highest region-based emission intensity (3.0 g C m −2 yr −1 ) among the 11 sub-regions; (2) urban green spaces played much more important roles (account for 62% of total health damage) than rural forests in threating human health; (3) BVOCs emissions from green spaces will more than triple by 2050 due to urban area expansion, tree growth and environmental changes; and (4) adopting proactive management (e.g. adjusting tree species composition) can reduce 61% of the BVOCs emissions and 50% of the health damage related to BVOCs emissions by 2050. - Highlights: • Urban core is the hotspot of biogenic volatile organic compounds (BVOCs) emissions in the Greater Beijing Area. • Neglecting BVOCs emissions from urban green spaces leads to a 62% underestimation of the related health damage. • BVOCs contribute significantly to ozone pollution while make limited contribution to PM 2.5 pollution. • BVOCs emissions from urban green spaces will triple by 2050, and 61% of these emissions can be reduced through management. - Although BVOCs emissions from urban green spaces make limited contribution to regional emissions, their health impacts could be significant in urban areas.

  9. Green synthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from the leaf extract of Azadirachta indica (L.)

    Energy Technology Data Exchange (ETDEWEB)

    Elumalai, K. [Department of Physics, Annamalai University, Annamalai Nagar 608002 (India); Velmurugan, S., E-mail: drvelmurganphy@gmail.com [Department of Engineering Physics (FEAT), Annamalai University, Annamalai Nagar 608 002 (India)

    2015-08-01

    Graphical abstract: - Highlights: • Phenolic acid and flavonoid compounds play a major role in bioreduction reaction confirmed by FT-IR. • PL spectrum identified peaks were located in the range of the blue-violet spectrum. • XRD pattern confirmed ZnO hexagonal phase (wurtzite structure). • The result of (AFM) images depicted polycrystalline with porous nature of ZnO NPs. • Antimicrobial activities of green synthesized ZnO NPs were more potent than Bare ZnO and leaf of A. indica. - Abstract: The synthesis of metal and semiconductor nanoparticles is an expanding research area due to the potential applications in the development of novel technologies. Especially, biologically synthesized nanomaterial has become an important branch of nanotechnology. The present work, described the synthesis of zinc oxide nanoparticles (ZnO NPs) using leaf aqueous extract of Azadirachta indica (L.) and its antimicrobial activities. The nanoparticles was obtain characterized by UV–Vis spectroscopy, Photoluminescence (PL), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Scanning electron microscope (SEM) analysis, Energy dispersive X-ray analysis (EDAX), Field emission scanning electron microscopy (FESEM) and Atomic force microscope (AFM) analysis. In this study we also investigated antimicrobial activity of green synthesized ZnO NPs. The results depicted concentration of ZnO NPs was increased (50, 100, 200 μg/mL) and also increase in antimicrobial activities was due to the increase of H{sub 2}O{sub 2} concentration from the surface of ZnO. However, green synthesized ZnO NPs was more potent than Bare ZnO and leaf of A. indica. Finally concluded the zinc oxide nanoparticles exhibited an interesting antimicrobial activity with both Gram positive and Gram negative bacterial and yeast at micromolar concentration.

  10. Bidirectional exchange of biogenic volatiles with vegetation: emission sources, reactions, breakdown and deposition

    Science.gov (United States)

    Niinemets, Ülo; Fares, Silvano; Harley, Peter; Jardine, Kolby J.

    2014-01-01

    Biogenic volatile organic compound (BVOC) emissions are widely modeled as inputs to atmospheric chemistry simulations. However, BVOC may interact with cellular structures and neighboring leaves in a complex manner during volatile diffusion from the sites of release to leaf boundary layer and during turbulent transport to the atmospheric boundary layer. Furthermore, recent observations demonstrate that the BVOC emissions are bidirectional, and uptake and deposition of BVOC and their oxidation products are the rule rather than the exception. This review summarizes current knowledge of within-leaf reactions of synthesized volatiles with reactive oxygen species (ROS), uptake, deposition and storage of volatiles and their oxidation products as driven by adsorption on leaf surface and solubilization and enzymatic detoxification inside leaves. The available evidence indicates that due to reactions with ROS and enzymatic metabolism, the BVOC gross production rates are much larger than previously thought. The degree to which volatiles react within leaves and can be potentially taken up by vegetation depends on compound reactivity, physicochemical characteristics, as well as their participation in leaf metabolism. We argue that future models should be based on the concept of bidirectional BVOC exchange and consider modification of BVOC sink/source strengths by within-leaf metabolism and storage. PMID:24635661

  11. Mechanism of monoterpene volatilization in Salvia mellifera

    Energy Technology Data Exchange (ETDEWEB)

    Dement, W A; Tyson, B J; Mooney, H A

    1975-01-01

    Monoterpene volatilization in Salvia mellifera is primarily dependent on the vapor pressures of the terpenes as they are influenced by temperature, the humidity of the air surrounding the leaf and the surface area of oil present on the leaf. 12 references, 1 figure, 2 tables.

  12. The Effects of a Plant Growth Regulator, Leaf Removal, Bagging, and Harvest Time on the Lipoxygenase Activity and Fatty Acid Composition of Pinot Noir Grapevines

    International Nuclear Information System (INIS)

    Ju, Y.; Zeng, J.; Zhu, M.; Lv, X.; Wang, T.; Zhang, Z.; Li, H.; Fang, Y.

    2016-01-01

    Green leaf volatiles (GLVs) are an important source of grape aromas, and lipoxygenase is a key enzyme involved in the formation of green leaf volatile substances. In addition, fatty acids are the main substrates that compose GLVs and are the main precursor compound utilized in the formation of grape aromas, which are an important index of grape quality. We examined the effects of a plant growth regulator, leaf removal, bagging, and harvest time on the lipoxygenase (LOX) activity, and the fatty acid composition of grapevines were studied. The following four experimental treatments were conducted using Pinot Noir (Vitis vinifera L.) grapevines to study the following variables: treatment with a plant growth regulator, leaf removal, fruit bagging, and harvest time. We obtained the following results. (1) 16 types of fatty acids were detected in the grape skins. The unsaturated fatty acid content consisted mainly of linoleic acid, oleic acid and palmitoleic acid; however, no linolenic acid was detected. In addition, the saturated fatty acid content consisted primarily of palmitic acid, stearic acid, behenic acid and arachidic acid. (2) Abscisic acid (ABA), methyl jasmonate (MeJA), light intensity, and harvest time appeared to effect LOX activity. (3) According to a principal component analysis (PCA) of the four treatments and the fatty acid content of the skins, ABA (concentration of 1000 mg/L), MeJA (concentrations of 100 meu mol/L, 400 meu mol/L and 800 meu mol/L) and early harvest treatment were responsible for the changes in fatty acid content. These results could be helpful in vineyard management and in improving the quality of grapes. (author)

  13. Evaluation of Methane from Sisal Leaf Residue and Palash Leaf Litter

    Science.gov (United States)

    Arisutha, S.; Baredar, P.; Deshpande, D. M.; Suresh, S.

    2014-12-01

    The aim of this study is to evaluate methane production from sisal leaf residue and palash leaf litter mixed with different bulky materials such as vegetable market waste, hostel kitchen waste and digested biogas slurry in a laboratory scale anaerobic reactor. The mixture was prepared with 1:1 proportion. Maximum methane content of 320 ml/day was observed in the case of sisal leaf residue mixed with vegetable market waste as the feed. Methane content was minimum (47 ml/day), when palash leaf litter was used as feed. This was due to the increased content of lignin and polyphenol in the feedstock which were of complex structure and did not get degraded directly by microorganisms. Sisal leaf residue mixtures also showed highest content of volatile fatty acids (VFAs) as compared to palash leaf litter mixtures. It was observed that VFA concentration in the digester first increased, reached maximum (when pH was minimum) and then decreased.

  14. An investigation of the leaf retention capacity, efficiency and mechanism for atmospheric particulate matter of five greening tree species in Beijing, China.

    Science.gov (United States)

    Liu, Jinqiang; Cao, Zhiguo; Zou, Songyan; Liu, Huanhuan; Hai, Xiao; Wang, Shihua; Duan, Jie; Xi, Benye; Yan, Guangxuan; Zhang, Shaowei; Jia, Zhongkui

    2018-03-01

    Urban trees have the potential to reduce air pollution, but the retention capacity and efficiency of different tree species for atmospheric particulate matter (PM) accumulation and the underlying mechanism hasn't been well understood. To select tree species with high air purification abilities, the supplementing ultrasonic cleaning (UC) procedure was first introduced into the conventional leaf cleaning methods [single water cleaning (WC) or plus brush cleaning (BC)] for eluting the leaf-retained PM. Further updates to the methodology were applied to investigate the retention capacity, efficiency, and mechanism for PM of five typical greening tree species in Beijing, China. Meanwhile, the particle size distribution of PM on the leaves, the PM retention efficiencies of easily removable (ERP), difficult-to-remove (DRP) and totally removable (TRP) particles on the leaf (AE leaf ), and the individual tree scales were estimated. The experimental leaf samples were collected from trees with similar sizes 4 (SDR) and 14days (LDR) after rainfall. When the leaves were cleaned by WC+BC, there was, on average, 29%-46% of the PM remaining on the leaves of different species, which could be removed almost completely if UC was supplemented. From SDR to LDR, the mass of the leaf-retained PM increased greatly, and the particle size distribution changed markedly for all species except for Sophorajaponica. Pinus tabuliformis retains particles with the largest average diameter (34.2μm), followed by Ginkgo biloba (20.5μm), Sabina chinensis (16.4μm), Salix babylonica (16.0μm), and S. japonica (13.1μm). S. japonica and S. chinensis had the highest AE leaf to retain the TRP and ERP of both PM 1 and PM 1-2.5 , respectively. Conversely, S. babylonica and P. tabuliformis could retain both TRP and ERP of PM 2.5-5 and PM 5-10 , and PM >10 and TSP with the highest AE leaf , respectively. In conclusion, our results could be useful in selecting greening tree species with high air purification

  15. Interactive influence of leaf age, light intensity, and girdling on green ash foliar chemistry and emerald ash borer development.

    Science.gov (United States)

    Chen, Yigen; Poland, Therese M

    2009-07-01

    Biotic and abiotic environmental factors affect plant nutritional quality and defensive compounds that confer plant resistance to herbivory. Influence of leaf age, light availability, and girdling on foliar nutrition and defense of green ash (Fraxinus pennsylvanica Marsh) was examined in this study. Longevity of the emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), adults reared on green ash foliage subjected to these factors was assayed. Mature leaves generally were more nutritious with greater amino acids and a greater ratio of protein to non-structural carbohydrate (P:C) than young leaves, in particular when trees were grown in shade. On the other hand, mature leaves had lower amounts of trypsin and chymotrypsin inhibitors, and total phenolics compared to young leaves. Lower defense of mature leaves alone, or along with higher nutritional quality may lead to increased survival and longevity of emerald ash borer feeding on mature leaves. Sunlight reduced amino acids and P:C ratio, irrespective of leaf age and girdling, and elevated total protein of young foliage, but not protein of mature leaves. Sunlight also dramatically increased all investigated defensive compounds of young, but not mature leaves. Girdling reduced green ash foliar nutrition, especially, of young leaves grown in shade and of mature leaves grown in sun. However emerald ash borer performance did not differ when fed leaves from trees grown in sun or shade, or from girdled or control trees. One explanation is that emerald ash borer reared on lower nutritional quality food may compensate for nutrient deficiency by increasing its consumption rate. The strong interactions among leaf age, light intensity, and girdling on nutrition and defense highlight the need for caution when interpreting data without considering possible interactions.

  16. Eco-friendly and green synthesis of silver nanoparticles using leaf extract of Strychnos potatorum Linn.F. and their bactericidal activities.

    Science.gov (United States)

    Kagithoju, Srikanth; Godishala, Vikram; Nanna, Rama Swamy

    2015-10-01

    Inspired green synthesis of metallic nanoparticles is evolving as an important branch of nanotechnology. Traditionally these are manufactured by wet chemical methods which require toxic and flammable chemicals. We report for the first time an economic and eco-friendly green synthesis of silver nanoparticles using Strychnos potatorum aqueous leaf extract from 3 mM silver nitrate solution. Nanoparticles thus formed are confirmed and characterized by using UV-Vis absorption spectroscopy, SEM and XRD measurements. The XRD and SEM analysis showed the average particle size of nanoparticles as 28 nm as well as revealed their (mixed, i.e., cubic and hexagonal) structure. Further, these green synthesized nanoparticles showed bactericidal activity against multidrug-resistant human pathogenic bacteria.

  17. Volatiles released from Vaccinium corymbosum were attractive to Aegorhinus superciliosus (Coleoptera: Curculionidae) in an olfactometric bioassay.

    Science.gov (United States)

    Parra, Leonardo; Mutis, Ana; Ceballos, Ricardo; Lizama, Marcelo; Pardo, Fernando; Perich, Fernando; Quiroz, Andrés

    2009-06-01

    The objective of this study was to evaluate the role of host volatiles in the relationship between a blueberry plant Vaccinium corymbosum L. and the raspberry weevil Aegorhinus superciliosus (Guérin) (Coleoptera: Curculionidae), the principal pest of blueberry in the south of Chile. Volatiles from the aerial part of different phenological stages of the host were collected on Porapak Q and analyzed by coupled gas chromatography-mass spectrometry (GC-MS). Several chemical groups were identified including green leaf volatiles, aromatic compounds, and terpenes. The olfactometric responses of A. superciliosus toward different odor sources were studied in a four-arm olfactometer. Blueberry shoots at the phenological stages of fruit set, and blue-pink fruit color elicited the greatest behavioral responses from weevils. Five compounds (2-nonanone, eucalyptol, R- and S-limonene, and 4-ethyl benzaldehyde) elicited an attractant behavioral response from A. superciliosus. The results suggest the host location behavior of A. superciliosus could be mediated by volatiles derived from V. corymbosum. This work has identified a number of compounds with which it is possible to develop a lure for the principal pest of blueberry in southern Chile.

  18. Comparison of growth, yield and fiber quality of the obsolete SA30 yellow leaf with four sets of modern yellow and green leaf near isogenic cotton (Gossypium hirsutum L.) lines

    Science.gov (United States)

    The Virescent Yellow leaf cotton line Seed Accession 30 (SA30) was crossed with four modern parental lines (DP5690, DES119, SG747 and MD51ne) to develop four sets of near isogenic lines (NILs) segregating for green and yellow leaves. Comparisons of these lines were made in the field in a two year re...

  19. Green fabricated CuO nanobullets via Olea europaea leaf extract shows auspicious antimicrobial potential.

    Science.gov (United States)

    Maqbool, Qaisar; Iftikhar, Sidra; Nazar, Mudassar; Abbas, Fazal; Saleem, Asif; Hussain, Talib; Kausar, Rizwan; Anwaar, Sadaf; Jabeen, Nyla

    2017-06-01

    In present investigation, copper oxide (CuO) nanostructures have been prepared via green chemistry. Olea europaea leaf extract act as strong chelating agent for tailoring physical as well as bio-medical characteristics of CuO at the nano-size. Physical characterisation such as scanning electron microscope analysis depicts the formation of homogenised spherical shape nanoparticles (NPs) with average size of 42 nm. X-ray diffraction and Fourier transform infrared spectroscopy further confirmed the crystalline pure phase and monoclinic structure. High performance liquid chromatography (HPLC) testing is performed to evaluate the relative concentration of bioactive molecules in the O. europaea leaf extract. From HPLC results capping action of organic molecules around CuO-NPs is hypothesised. The antimicrobial potency of biosynthesised CuO-NPs have been evaluated using colony forming unit (CFU) counting assay and disc diffusion method which shows a significant zone of inhibition against bacterial and fungal strains may be highly potential for future antimicrobial pharmaceutics. Furthermore, reduction of various precursors by plant extract will reduce environmental impact over chemical synthesis.

  20. Study of nutritional value of dried tea leaves and infusions of black, green and white teas from Chinese plantations

    Science.gov (United States)

    Czernicka, Maria; Zaguła, Grzegorz; Bajcar, Marcin; Saletnik, Bogdan; Puchalski, Czesław

    The processing of tea leaves determines the contents of bioactive ingredients, hence it should be expected that each variety of tea, black, red or green, will represent a different package of compounds of physiological importance. Taste and aroma, as well as price and brand are the main factors impacting consumers’ preferences with regard to tea of their choice; on the other hand consumers less frequently pay attention to the chemical composition and nutritional value of tea. The purpose of the study was assessment of the nutritional value of black, green and white high-quality tea leaf from Chinese plantations based on the chemical composition of the dried leaves as well as minerals and caffeine content in tea infusions. The research material included 18 high-quality loose-leaf teas produced at Chinese plantations, imported to Poland, and purchased in an online store. The analyses included examination of the dried tea leaves for their chemical composition (contents of water, protein, volatile substances and ash) and assessment of selected minerals and caffeine contents in the tea infusions. High-quality Chinese green teas were found with the most valuable composition of minerals, i.e. the highest contents of Zn, Mn, Mg, K, Ca and Al and the highest contents of protein in comparison to the other products. Chinese black teas had the highest contents of total ash and caffeine and white teas were characterized with high content of volatile substances, similar to the black teas, and the highest content of water and the lowest content of total ash. The three types of tea brews examined in the present study, in particular green tea beverages, significantly enhance the organism’s mineral balance by providing valuable elements

  1. Effect of post-fermentation and packing stages on the volatile composition of Spanish-style green table olives.

    Science.gov (United States)

    Sánchez, Antonio Higinio; López-López, Antonio; Cortés-Delgado, Amparo; Beato, Víctor Manuel; Medina, Eduardo; de Castro, Antonio; Montaño, Alfredo

    2018-01-15

    The volatile profile of Spanish-style green table olives after fermentation and the changes in volatile compounds that occurred as a result of the post-fermentation and subsequent packing stage were explored by solid phase micro-extraction (SPME) and gas chromatography coupled to mass spectrometry (GC-MS). Three olive cultivars (Manzanilla, Gordal, and Hojiblanca) were processed and olive samples were taken at three different times throughout the elaboration: after fermentation, after post-fermentation, and after packing. A total of 132 volatile compounds were identified, including 10 phenols, 25 alcohols, 11 acids, 39 esters, 8 hydrocarbons, 14 carbonyl compounds, 17 terpenes, and 6 other compounds. A varying number of compounds from each chemical family underwent significant changes because of the post-fermentation and packing stages. Among them, some typical reaction products of lipid oxidation (e.g. (E)-2-decenal and (E,E)-2,4-decadienal) increased with the post-fermentation in Manzanilla cultivar, and also as a result of packing in all three cultivars. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Allelopathic effects of eucalyptus camaldulensis leaf leachate on the growth of wheat and green gram and its control by farm yard manure

    International Nuclear Information System (INIS)

    Ibrahim, S.; Bibi, S.

    2012-01-01

    Farm Yard Manure (FYM) significantly reduced the allelopathic effects of Eucalyptus camaldulensis leachate. This influence was studied on morphological and physiological aspect of two taxonomically different plants (wheat and green gram). E. camaldulensis aqueous leachate applied (4), 1% and 5% alone and together with FYM and the results showed that E. camaldulensis leaf leachate had inhibitory effects on wheat growth, while promoted shoot and root growth in green gram when supplied in low concentration. The combined effects of litter and FYM reduced the inhibitory effects of leachate and supported the growth of both plants. These results suggested that, if both studied crops have to be cultivated in an agricultural land surrounded by E. camaldulensis tree, the possible growth rate could be supported by the application of FYM. But in the absence of this support, the plant growth was significantly arrested due to allelopathic effect of E. ctunaldulensis leaf leachate. (author)

  3. Reactive trace gas emissions from stressed plants: a poorly characterized major source of atmospheric volatiles

    Science.gov (United States)

    Niinemets, Ülo

    2017-04-01

    Vegetation constitutes the greatest source of reactive volatile organic compounds in the atmosphere. The current emission estimates primarily rely on constitutive emissions that are present only in some plant species. However, all plant species can be induced to emit reactive volatiles by different abiotic and biotic stresses, but the stress-dependent emissions have been largely neglected in emission measurements and models. This presentation provides an overview of systematic screening of stress-dependent volatile emissions from a broad range of structurally and physiologically divergent plant species from temperate to tropical ecosystems. Ozone, heat, drought and wounding stress were the abiotic stresses considered in the screening, while biotic stress included herbivory, chemical elicitors simulating herbivory and fungal infections. The data suggest that any moderate to severe stress leads to significant emissions of a rich blend of volatiles, including methanol, green leaf volatiles (the lipoxygenase pathway volatiles, dominated by C6 aldehydes, alcohols and derivatives), different mono- and sesquiterpenes and benzenoids. The release of volatiles occurs in stress severity-dependent manner, although the emission responses are often non-linear with more severe stresses resulting in disproportionately greater emissions. Stress volatile release is induced in both non-constitutive and constitutive volatile emitters, whereas the rate of constitutive volatile emissions in constitutive emitters is often reduced under environmental and biotic stresses. Given that plants in natural conditions often experience stress, this analysis suggests that global volatile emissions have been significantly underestimated. Furthermore, in globally changing hotter climates, the frequency and severity of both abiotic and biotic stresses is expected to increase. Thus, the stress-induced volatile emissions are predicted to play a dominant role in plant-atmosphere interactions in near

  4. A facile and rapid method for the black pepper leaf mediated green synthesis of silver nanoparticles and the antimicrobial study

    Science.gov (United States)

    Augustine, Robin; Kalarikkal, Nandakumar; Thomas, Sabu

    2014-10-01

    Green synthesis of nanoparticles is widely accepted due to the less toxicity in comparison with chemical methods. But there are certain drawbacks like slow formation of nanoparticles, difficulty to control particle size and shape make them less convenient. Here we report a novel cost-effective and eco-friendly method for the rapid green synthesis of silver nanoparticles using leaf extracts of Piper nigrum. Our results suggest that this method can be used for obtaining silver nanoparticles with controllable size within a few minutes. The fabricated nanoparticles possessed excellent antibacterial property against both Gram-positive and Gram-negative bacteria.

  5. Lantana camara Linn leaf extract mediated green synthesis of gold nanoparticles and study of its catalytic activity

    Science.gov (United States)

    Dash, Shib Shankar; Bag, Braja Gopal; Hota, Poulami

    2015-03-01

    A facile one-step green synthesis of stable gold nanoparticles (AuNPs) has been described using chloroauric acid (HAuCl4) and the leaf extract of Lantana camara Linn (Verbenaceae family) at room temperature. The leaf extract enriched in various types of plant secondary metabolites is highly efficient for the reduction of chloroaurate ions into metallic gold and stabilizes the synthesized AuNPs without any additional stabilizing or capping agents. Detailed characterizations of the synthesized gold nanoparticles were carried out by surface plasmon resonance spectroscopy, transmission electron microscopy, dynamic light scattering, Zeta potential, X-ray diffraction and Fourier transform-infrared spectroscopy studies. The synthesized AuNPs have been utilized as a catalyst for the sodium borohydride reduction of 4-nitrophenol to 4-aminophenol in water at room temperature under mild reaction condition. The kinetics of the reduction reaction has been studied spectrophotometrically.

  6. [Elimination of volatile compounds of leaf tobacco from air emissions using biofiltration].

    Science.gov (United States)

    Zagustina, N A; Misharina, T A; Vepritskiĭ, A A; Zhukov, V G; Ruzhitskiĭ, A O; Terenina, M B; Krikunova, N I; Kulikova, A K; Popov, V O

    2012-01-01

    The composition of the volatile organic compounds (VOCs) of various leaf tobacco brands and their blends has been studied. The differences in the content of nicotine, solanone, tetramethyl hexadecenol, megastigmatrienones, and other compounds, determining the specific tobacco smell, have been revealed. A microbial consortium, which is able to deodorize simulated tobacco emissions and decompose nicotine, has been formed by long-term adaptation to the VOCs of tobacco leaves in a laboratory reactor, functioning as a trickle-bed biofilter. Such a biofilter eliminates 90% of the basic toxic compound (nicotine) and odor-active compounds; the filtration efficiency does not change for tobacco brands with different VOC concentrations or in the presence of foreign substances. The main strains, isolated from the formed consortium and participating in the nicotine decomposition process, belong to the genera Pseudomonas, Bacillus, and Rhodococcus. An examination of the biofilter trickling fluid has shown full decomposition of nicotine and odor-active VOCs. The compounds, revealed in the trickling fluid, did not have any odor and were nontoxic. The obtained results make it possible to conduct scaling of the biofiltration process to eliminate odor from air emissions in the tobacco industry.

  7. Green synthesis, characterization and antibacterial efficacy of palladium nanoparticles synthesized using Filicium decipiens leaf extract

    Science.gov (United States)

    Sharmila, G.; Farzana Fathima, M.; Haries, S.; Geetha, S.; Manoj Kumar, N.; Muthukumaran, C.

    2017-06-01

    Synthesis of metal nanoparticles through green chemistry route is an emerging eco-friendly approach in the present days. An eco-friendly, biogenic synthesis of palladium nanoparticles (PdNPs) using Filicium decipiens leaf extract was reported in the present study. The synthesized PdNPs were characterized by UV-visible spectroscopy, Transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The PdNPs formation was confirmed by UV-visible spectrophotometer and spherical shaped PdNPs with size range of 2-22 nm was observed in TEM analysis. Energy dispersive X-ray spectroscopy (EDS) analysis confirmed the presence of palladium in the synthesized nanoparticles. The crystalline nature of PdNPs was confirmed by XRD pattern and compared with the standard. The phytochemicals and proteins were identified by their functional groups in FT-IR spectrum and revealed the amide, amine groups present in F. decipiens may have involved in the bio-reduction reaction for PdNPs synthesis. Prepared PdNPs showed potential antibacterial activity against both Gram-positive and Gram-negative bacteria. F. decipiens leaf extract based PdNPs showed high bactericidal activity against Escherichia coli, Pseudomonas aeruginosa as compared to Staphylococcus aureus and Bacillus subtilis Results showed that phytochemicals rich F. decipiens leaf extract may be utilized as an effective non-toxic reducing agent for PdNPs synthesis and prepared PdNPs may useful in biomedical applications.

  8. Allelopathic effects of eucalyptus camaldulensis leaf leachate on the growth of wheat and green gram and its control by farm yard manure

    International Nuclear Information System (INIS)

    Ibrahim, S.; Bibi, S.

    2012-01-01

    Farm Yard Manure (FYM) significantly reduced the allelopathic effects of Eucalyptus camaldulensis leachate. This influence was studied on morphological and physiological aspect of two taxonomically different plants (wheat and green gram). E. camaldtllensis aqueous leachate applied at the rate of 1% and 5% alone and together with FYM and the results showed that E. camaldulensis leaf leachate had inhibitory effects on wheat growth, while promoted shoot and root growth in green gram when supplied in low concentration. The combined effects of litter and FYM reduced the inhibitory effects of leachate and supported the growth of both plants. These results suggested that, if both studied crops have to be cultivated in an agricultural land surrounded by E. camaldulensis tree, the possible growth rate could be supported by the application Of FYM. But in the absence of this support, the plant growth was significantly arrested due to allelopathic effect of E. camaldulensis leaf leachate. (author)

  9. Does oolong tea (Camellia sinensis) made from a combination of leaf and stem smell more aromatic than leaf-only tea? Contribution of the stem to oolong tea aroma.

    Science.gov (United States)

    Zeng, Lanting; Zhou, Ying; Fu, Xiumin; Mei, Xin; Cheng, Sihua; Gui, Jiadong; Dong, Fang; Tang, Jinchi; Ma, Shengzhou; Yang, Ziyin

    2017-12-15

    The raw materials used to make oolong tea (Camellia sinensis) are a combination of leaf and stem. Oolong tea made from leaf and stem is thought to have a more aromatic smell than leaf-only tea. However, there is no available evidence to support the viewpoint. In this study, sensory evaluation and detailed characterization of emitted and internal volatiles (not readily emitted, but stored in samples) of dry oolong teas and infusions indicated that the presence of stem did not significantly improve the total aroma characteristics. During the enzyme-active processes, volatile monoterpenes and theanine were accumulated more abundantly in stem than in leaf, while jasmine lactone, indole, and trans-nerolidol were lower in stem than in leaf. Tissue-specific aroma-related gene expression and availability of precursors of aroma compounds resulted in different aroma distributions in leaf and stem. This study presents the first determination of the contribution of stem to oolong tea aroma. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Volatile components of vine leaves from two Portuguese grape varieties (Vitis vinifera L.), Touriga Nacional and Tinta Roriz, analysed by solid-phase microextraction.

    Science.gov (United States)

    Fernandes, Bruno; Correia, Ana C; Cosme, Fernanda; Nunes, Fernando M; Jordão, António M

    2015-01-01

    The purpose of this work was to study the volatile composition of vine leaves and vine leaf infusion prepared from vine leaves collected at 30 and 60 days after grape harvest of two Vitis vinifera L. species. Eighteen volatile compounds were identified by gas chromatography-mass spectrometry in vine leaves and in vine leaf infusions. It was observed that the volatile compounds present in vine leaves are dependent on the time of harvest, with benzaldehyde being the major volatile present in vine leaves collected at 30 days after harvesting. There are significant differences in the volatile composition of the leaves from the two grape cultivars, especially in the sample collected at 60 days after grape harvest. This is not reflected in the volatile composition of the vine leaf infusion made from this two cultivars, the more important being the harvesting date for the volatile profile of vine leaf infusion than the vine leaves grape cultivar.

  11. Few long-term effects of simulated climate change on volatile organic compound emissions and leaf chemistry of three subarctic dwarf shrubs

    DEFF Research Database (Denmark)

    Rinnan, Riikka; Rinnan, Åsmund; Faubert, Patrick

    2011-01-01

    Climate change is exposing arctic ecosystems to higher temperature, increased nutrient availability and shading due to the increasing cloud cover and the expanding forests. In this work, we assessed how these factors affect the emissions of biogenic volatile organic compounds (BVOCs) from three......-selinene from S. phylicifolia. The shading treatment obtained by dome-shaped hessian tents did not cause clear long-term changes in leaf chemistry or BVOC emissions. The only observed change was a marginally significant increase in sesquiterpene emissions from B. nana. When the treatment effects on long...

  12. Metabolic dependence of green tea on plucking positions revisited: a metabolomic study.

    Science.gov (United States)

    Lee, Jang-Eun; Lee, Bum-Jin; Hwang, Jeong-Ah; Ko, Kwang-Sup; Chung, Jin-Oh; Kim, Eun-Hee; Lee, Sang-Jun; Hong, Young-Shick

    2011-10-12

    The dependence of global green tea metabolome on plucking positions was investigated through (1)H nuclear magnetic resonance (NMR) analysis coupled with multivariate statistical data set. Pattern recognition methods, such as principal component analysis (PCA) and orthogonal projection on latent structure-discriminant analysis (OPLS-DA), were employed for a finding metabolic discrimination among fresh green tea leaves plucked at different positions from young to old leaves. In addition to clear metabolic discrimination among green tea leaves, elevations in theanine, caffeine, and gallic acid levels but reductions in catechins, such as epicatechin (EC), epigallocatechin (EGC), epicatechin-3-gallate (ECG), and epigallocatechin-3-gallate (EGCG), glucose, and sucrose levels were observed, as the green tea plant grows up. On the other hand, the younger the green tea leaf is, the more theanine, caffeine, and gallic acid but the lesser catechins accumlated in the green tea leaf, revealing a reverse assocation between theanine and catechins levels due to incorporaton of theanine into catechins with growing up green tea plant. Moreover, as compared to the tea leaf, the observation of marked high levels of theanine and low levels of catechins in green tea stems exhibited a distinct tea plant metabolism between the tea leaf and the stem. This metabolomic approach highlights taking insight to global metabolic dependence of green tea leaf on plucking position, thereby providing distinct information on green tea production with specific tea quality.

  13. Green synthesis and antimicrobial activity of monodisperse silver nanoparticles synthesized using Ginkgo Biloba leaf extract

    Science.gov (United States)

    Ren, Yan-yu; Yang, Hui; Wang, Tao; Wang, Chuang

    2016-11-01

    Various parts of plants can be used as a raw material for the synthesis of nanoparticles, which is eco-friendly way and does not involve any harmful chemicals. In this project, Ginkgo biloba leaf, an abundantly available medicinal plant in China, was for the first time adopted as a reducing and stabilizing agent to synthesize smaller sized and stable silver nanoparticles (AgNPs). To improve the quality of AgNPs, the reduction was accelerated by changing the concentrations of initial Ag+ (0.02, 0.04, 0.06 and 0.08 mol/L) of the reaction mixture consisting of silver nitrate solution (AgNO3) and Ginkgo biloba leaf extract. At pH = 8 and lower AgNO3 concentration (0.02 mol/L), a colloid consisting of well-dispersed spherical nanoparticles was obtained. The synthesized nanocrystals were successfully characterized by UV-vis and XRD. TEM images revealed the size of the spherical AgNPs ranged between 10-16 nm. FTIR analysis revealed that biological macromolecules with groups of sbnd NH2, sbnd OH, and others were distributed on the surface of the nanoparticles. The biosynthesized AgNPs exhibited good antibacterial activities against gram-negative bacteria and gram-positive bacteria. Compared to traditional chemical methods, Ginkgo biloba leaf extract provides an easy green synthetical way. It is anticipated that the biosynthesized AgNPs can be used in areas such as cosmetics, foods and medical applications.

  14. Ammonia volatilization from crop residues and frozen green manure crops

    Science.gov (United States)

    de Ruijter, F. J.; Huijsmans, J. F. M.; Rutgers, B.

    2010-09-01

    Agricultural systems can lose substantial amounts of nitrogen (N). To protect the environment, the European Union (EU) has adopted several directives that set goals to limit N losses. National Emission Ceilings (NEC) are prescribed in the NEC directive for nitrogen oxides and ammonia. Crop residues may contribute to ammonia volatilization, but sufficient information on their contribution to the national ammonia volatilization is lacking. Experiments were carried out with the aim to assess the ammonia volatilization of crop residues left on the soil surface or incorporated into the soil under the conditions met in practice in the Netherlands during late autumn and winter. Ammonia emission from residues of broccoli, leek, sugar beet, cut grass, fodder radish (fresh and frozen) and yellow mustard (frozen) was studied during two winter seasons using volatilization chambers. Residues were either placed on top of soil or mixed with soil. Mixing residues with soil gave insignificant ammonia volatilization, whereas volatilization was 5-16 percent of the N content of residues when placed on top of soil. Ammonia volatilization started after at least 4 days. Total ammonia volatilization was related to C/N-ratio and N concentration of the plant material. After 37 days, cumulative ammonia volatilization was negligible from plant material with N concentration below 2 percent, and was 10 percent of the N content of plant material with 4 percent N. These observations can be explained by decomposition of plant material by micro-organisms. After an initial built up of the microbial population, NH 4+ that is not needed for their own growth is released and can easily emit as NH 3 at the soil surface. The results of the experiments were used to estimate the contribution of crop residues to ammonia volatilization in the Netherlands. Crop residues of arable crops and residues of pasture topping may contribute more than 3 million kg NH 3-N to the national ammonia volatilization of the

  15. Antimicrobial activity of medicinal plant leaf extracts against pathogenic bacteria

    Directory of Open Access Journals (Sweden)

    Atikya Farjana

    2014-09-01

    Full Text Available Objective: To determine antibacterial activity of water, oil and methanol extracts of guava (Psidium guajava, green tea (Camellia sinensis, neem (Azadirachta indica and marigold (Calendula officinalis against different species of bacteria, Pseudomonas spp., Vibrio cholerae, Vibrio parahaemolyticus (V. parahaemolyticus, Klebsiella spp., Escherichia coli, Salmonella spp. and Staphylococcus aureus (S. aureus. Methods: Antibacterial activity of plant extracts was measured by agar well diffusion method. Results: Boiled water extracts of guava leaf showed the largest zone of inhibition (22 mm against V. parahaemolyticus. Water extracts of green tea leaf at boiling and room temperature showed 17.5 mm and 19 mm zone of inhibitions against V. parahaemolyticus and S. aureus, respectively. Boiled water extract of neem leaf showed moderate zone of inhibition against Escherichia coli (10 mm and Klebsiella spp. (11 mm. Water and oil extracts of marigold leaf at both boiling and room temperature did not show any zone of inhibition against any of the tested microorganisms. Methanol extracts of both guava and green tea leaves showed same zone of inhibition against Pseudomonus spp. (18 mm. Methanol extract of neem leaf showed antibacterial acitivity against Klebsiella spp. (16 mm and Vibrio cholerae (14 mm and that of marigold leaf showed antimicrobial activity against S. aureus (18 mm and Klebsiella spp. (12 mm. Conclusions: The results from the study suggest that the leaves of guava, green tea, neem and marigold show anibacterial activity against different bacterial species. They could be used as alternatives to common antimicrobial agents for treatment of bacterial infections.

  16. Temperature-sensitive leaf color mutation in rice

    International Nuclear Information System (INIS)

    Shu Qingyao; Liu Guifu; Xia Yingwu

    1996-01-01

    Studies on the leaf color appearance of 4 chlorophyll-deficient mutation lines both in field and in phytotron were carried out. The mutation lines were induced by 60 Co gamma rays, and showed that white or yellow leaves at seedling stage were quite different from their-parent 2177 S, a thermal sensitive genie male sterile line and any other rice materials. The temperature had great influence on the expression of leaf color at seedling stage in the mutation lines. the leaf color was white at 30∼35 degree C for the lines W 4 and W 11 . The chlorophyll content of 1.5-leaf-age seedlings was 0.0219 and 0.0536 mg/g FW respectively for W 4 and W 11 at 35 degree C. When the temperature dropped to 20∼25 degree C, the seedlings showed yellow or yellowish and the chlorophyll content reached to 0.2410 and 0.3431 mg/g FW at 25 degree C, respectively. However, the responses to temperature for W 17 and W 25 were just the opposite. They were white at 20∼25 degree C, but appeared greenish at 30∼35 degree C. The chlorophyll content increased from 0.0813 and 0.0172 mg/g FW at 25 degree C to 1.0570 and 1.1367 mg/g FW at 35 degree C for the lines W 1 -7 and W 25 , respectively. The parent line 2177 S showed normal green and the chlorophyll content was between 2.108 and 2.118 mg/g FW. The W 11 is exception, which showed yellow to light green in lifetime, and all the mutation lines could convert to normal green after the extension of the fourth leaf. The chlorophyll content of 3.5-leaf-age W 4 and W 17 seedlings grown under 25 degree C reached to 2.2190 and 1.993 mg/g FW, which was about 86. 6% and 81.1% of that of 2177 S at the same stage. When grown at the temperature bellow 20 degree C, W 25 maintained white and could not changed into green after the 4th leaf extension, and showed a conditional lethal status

  17. Leaf enclosure measurement for determining marijuana volatile organic compound emission factors

    Science.gov (United States)

    Wang, C. T.; Vizuete, W.; Wiedinmyer, C.; Ashworth, K.; Harley, P. C.; Ortega, J. V.

    2017-12-01

    In 2014, Colorado became the first US state to legalize the industrial-scale cultivation of marijuana plants. There are now more than 700 marijuana cultivation facilities (MCFs) in operation in the greater Denver area. High concentrations of biogenic volatile organic compounds (VOCs), predominantly monoterpenes (C10H16) such as alpha-pinene, myrcene, and limonene have been observed in the grow rooms of MCFs, suggesting MCFs have the potential to release a significant amount of reactive VOCs into the atmosphere. Further, many MCFs are located in the urban core, where other urban emission sources are concentrated, resulting in interactions which can lead to the formation of ozone, impacting air quality. The little research done on marijuana has focused on indoor air quality and occupational exposure, or identification of the compounds associated with the characteristic smells of marijuana plants. We know of no previous studies that have identified or quantified the monoterpene emission rates from marijuana. Here, we collected air samples from leaf enclosures from different marijuana clones at different growth stages onto sorbent cartridges. These samples were analyzed using GC-MS/-FID to identify and quantify the VOCs emitted by growing marijuana plants. These results were then used to estimate basal emission rates at standard conditions (T=30 C, PPFD = 1000 umol/m2/s) using standard algorithms. We discuss the potential impact on air quality from these VOCs emitted into the atmosphere using air quality models.

  18. Plant functional traits predict green roof ecosystem services.

    Science.gov (United States)

    Lundholm, Jeremy; Tran, Stephanie; Gebert, Luke

    2015-02-17

    Plants make important contributions to the services provided by engineered ecosystems such as green roofs. Ecologists use plant species traits as generic predictors of geographical distribution, interactions with other species, and ecosystem functioning, but this approach has been little used to optimize engineered ecosystems. Four plant species traits (height, individual leaf area, specific leaf area, and leaf dry matter content) were evaluated as predictors of ecosystem properties and services in a modular green roof system planted with 21 species. Six indicators of ecosystem services, incorporating thermal, hydrological, water quality, and carbon sequestration functions, were predicted by the four plant traits directly or indirectly via their effects on aggregate ecosystem properties, including canopy density and albedo. Species average height and specific leaf area were the most useful traits, predicting several services via effects on canopy density or growth rate. This study demonstrates that easily measured plant traits can be used to select species to optimize green roof performance across multiple key services.

  19. VOLATILE LEAF OIL CONSTITUENTS OF OCIMUM AMERICANUM ...

    African Journals Online (AJOL)

    Steam distilled volatile oils from the leaves of Ocimum americanum L. growing in Western Kenya were analysed by GC and GC-MS. A total of 36 compounds, representing a total of 88.51% of the total oil, were identified. The oil was classified as terpinen-4-ol-type according to the terpinen-4-ol content (43.21%). To the best ...

  20. Green Jobs in Tennessee: Economic Impact of Green Investments

    OpenAIRE

    Murat Arik

    2011-01-01

    The term green jobs has been widely used to describe jobs in businesses that are particularly related to renewable energy, energy efficiency, or environmental sustainability. The Business and Economic Research Center has partnered with the Tennessee Department of Labor and Workforce Development to estimate the economic impact of six ground-breaking green investments in Tennessee: Hemlock Semiconductor, Wacker Chemie AG, Volkswagen, Nissan Leaf and Storage Battery Manufacturing, Tennessee Sola...

  1. Nitrogen Limited Red and Green Leaf Lettuce Accumulate Flavonoid Glycosides, Caffeic Acid Derivatives, and Sucrose while Losing Chlorophylls, ?-Carotene and Xanthophylls

    OpenAIRE

    Becker, Christine; Urli?, Branimir; Juki? ?pika, Maja; Kl?ring, Hans-Peter; Krumbein, Angelika; Baldermann, Susanne; Goreta Ban, Smiljana; Perica, Slavko; Schwarz, Dietmar

    2015-01-01

    Reduction of nitrogen application in crop production is desirable for ecological and health-related reasons. Interestingly, nitrogen deficiency can lead to enhanced concentrations of polyphenols in plants. The reason for this is still under discussion. The plants' response to low nitrogen concentration can interact with other factors, for example radiation intensity. We cultivated red and green leaf lettuce hydroponically in a Mediterranean greenhouse, supplying three different levels of nitr...

  2. Quantitative patterns between plant volatile emissions induced by biotic stresses and the degree of damage

    Directory of Open Access Journals (Sweden)

    Ülo eNiinemets

    2013-07-01

    Full Text Available Plants have to cope with a plethora of biotic stresses such as herbivory and pathogen attacks throughout their life cycle. The biotic stresses typically trigger rapid emissions of volatile products of lipoxygenase pathway (LOX products, various C6 aldehydes, alcohols and derivatives, also called green leaf volatiles associated with oxidative burst. Further a variety of defense pathways is activated, leading to induction of synthesis and emission of a complex blend of volatiles, often including methyl salicylate, indole, mono-, homo- and sesquiterpenes. The airborne volatiles are involved in systemic responses leading to elicitation of emissions from non-damaged plant parts. For several abiotic stresses, it has been demonstrated that volatile emissions are quantitatively related to the stress dose. The biotic impacts under natural conditions vary in severity from mild to severe, but it is unclear whether volatile emissions also scale with the severity of biotic stresses in a dose-dependent manner. Furthermore, biotic impacts are typically recurrent, but it is poorly understood how direct stress-triggered and systemic emission responses are silenced during periods intervening sequential stress events. Here we review the information on induced emissions elicited in response to biotic attacks, and argue that biotic stress severity vs. emission rate relationships should follow principally the same dose-response relationships as previously demonstrated for several abiotic stresses. Analysis of several case studies investigating the elicitation of emissions in response to chewing herbivores, aphids, rust fungi, powdery mildew and Botrytis, suggests that induced emissions do respond to stress severity in dose-dependent manner. Bi-phasic emission kinetics of several induced volatiles have been demonstrated in these experiments, suggesting that next to immediate stress-triggered emissions, biotic stress elicited emissions typically have a secondary

  3. Chemical Compositions of Achillea sivasica: Different Plant Part Volatiles, Enantiomers and Fatty Acids

    Directory of Open Access Journals (Sweden)

    Gülmira Özek

    2018-03-01

    Full Text Available In the present work, Microsteam distillation - Solid phase microextraction (MSD-SPME and hydrodistillation (HD techniques were applied to obtain volatiles from Achillea sivasica, an endemic species from Turkey. GC-FID and GC/MS analysis revealed that 1,8-cineole (22.1% and a -pinene (9.3% were the main constituents of the hydrodistilled flower volatiles. (Z- b -Farnesene (23.9%, decanoic acid (10.1%, b- eudesmol (8.0%, tricosane (7.3% and hexadecanoic acid (7.2% were the main volatiles obtained from flowers by MSD-SPME. The leaf volatiles obtained by HD contained camphor (9.0%, b -pinene (6.9%, 1,8-cineole (6.7%, a -pinene (6.7% and a -bisabolol (6.6% as the main constituents while the leaf volatiles obtained by MSD-SPME technique were rich in (E-geranyl acetone (10.5%, (E- b -ionone (10.3%, camphor (10.2%, 1,8-cineole (9.6%, longiverbenone (7.9%, b -eudesmol (7.5%, isopropyl myristate (6.7% and epi- a -bisabolol (6.4%. The root volatiles were rich in longiverbenone (14.1%, (E-geranyl acetone (9.3%, nonanol (12.1% and decanol (12.5%. The enantiomeric distribution of the major volatile constituents was analyzed by using different b -cyclodextrin chiral columns. (1R-(+- a -Pinene, (1S-(-- b -pinene, (4R-(+-limonene, (1R,3S,5R-(--trans-pinocarveol, (1S,2R,4S-(--borneol, (2S-(-- a -bisabolol were detected as dominant enantiomers. The lipids extracted from the flower and leaf with Folch method and methylated with BF 3 reagent contained common acids: linolenic, linoleic, hexadecanoic acids. Oleic and stearic acids were detected particularly in high amount in the flower lipids

  4. Are bursts of green leaf volatile emissions from plants following light to dark transitions associated with de-novo biosynthesis of free fatty acids and not stress-induced membrane degradation? J. Norman- University of North Carolina K. Jardine- University of Arizona G. Barron-Gafford- University of Arizona

    Science.gov (United States)

    Norman, J. P.; Jardine, K. J.; Barron-Gafford, G. A.

    2011-12-01

    Green Leaf Volatiles (GLVs) are a diverse group of fatty acid-derived Volatile Organic Compounds (VOCs) emitted by all plants. These GLVs are involved in a wide variety of stress-related biological functions, as well as the formation of secondary organic aerosols and ozone in the troposphere. To date, GLV emissions have primarily been associated with acute stress responses wherein fatty acids are released from plant membranes and enzymatically oxidized to GLVs via the lipoxygenase pathway. However the biochemical role of these gases within unwounded plants has remained unknown so far. Recently, GLV emissions were reported following light-dark transitions and were hypothesized to also be related to a mechanical stress response (i.e. leaf cutting). However in this study we show that GLV emissions from mesquite trees have a separate biochemical pathway for their production that is unrelated to stress. GLV emission rates following light-dark transitions were quantified from young and mature Mesquite branches. It was found that young branches had very high photosynthetic rates and displayed strong bursts of a wide array of GLVs following darkening, while mature branches had much lower photosynthetic rates showed much weaker or no bursts. This is interesting because neither the mature nor the juvenile plants were subjected to any type of stress during measurement. Moreover, the older plant samples (which had the lower emissions) were collected by clipping branches from a tree and re-clipping their stems under water. Given what has previously been established concerning the relationship of GLV emissions to mechanical stress, one would expect these older branches to have higher emissions than their juvenile counterparts rather than lower emissions. We speculate that the emission of GLVs during light-dark transitions is not the result of a stress response, but rather the result of rapid de-novo fatty acid biosynthesis occurring in chloroplasts of young branches fed by a

  5. Biofumigation for control of pale potato cyst nematodes: activity of brassica leaf extracts and green manures on Globodera pallida in vitro and in soil.

    Science.gov (United States)

    Lord, James S; Lazzeri, Luca; Atkinson, Howard J; Urwin, Peter E

    2011-07-27

    The effects of brassica green manures on Globodera pallida were assessed in vitro and in soil microcosms. Twelve of 22 brassica accessions significantly inhibited the motility of G. pallida infective juveniles in vitro. Green manures of selected brassicas were then incorporated into soil containing encysted eggs of G. pallida. Their effect on egg viability was estimated by quantifying nematode actin 1 mRNA by RT-qPCR. The leaf glucosinolate profiles of the plants were determined by high-performance liquid chromatography. Three Brassica juncea lines (Nemfix, Fumus, and ISCI99) containing high concentrations of 2-propenyl glucosinolate were the most effective, causing over 95% mortality of encysted eggs of G. pallida in polyethylene-covered soil. The toxic effects of green manures were greater in polyethylene-covered than in open soil. Toxicity in soil correlated with the concentration of isothiocyanate-producing glucosinolate but not total glucosinolate in green manures.

  6. Green synthesis of silver nanoparticles using Azadirachta indica leaf extract and its antimicrobial study

    Science.gov (United States)

    Roy, Pragyan; Das, Bhagyalaxmi; Mohanty, Abhipsa; Mohapatra, Sujata

    2017-11-01

    In this study, green synthesis of silver nanoparticles was done using leaf extracts of Azadirachta indica. The flavonoids and terpenoids present in the extract act as both reducing and capping agent. Microbes ( Escherichia coli and Gram-positive bacteria) were isolated from borewell water using selective media. The silver nanoparticles showed antimicrobial activities against Gram-positive bacteria and E. coli. However the silver nanoparticles were more effective against E. coli as compared to Gram-positive bacteria. Various techniques were used to characterize synthesized silver nanoparticles such as DLS and UV-visible spectrophotometer. The absorbance peak was in the range of 420-450 nm, that varied depending upon the variation in the concentration of neem extract. This is a very rapid and cost-effective method for generation of silver nanoparticle at room temperature, however, its exact dose in water purification has to be determined.

  7. Study on creation of an indocalamus leaf flavor

    Directory of Open Access Journals (Sweden)

    Guangyong ZHU

    2015-01-01

    Full Text Available AbstractFlavors represent a small but significant segment of food industry. Sensory characteristics play an important role in the process of consumer acceptance and preference. Indocalamus leaf takes on a pleasant odor and indocalamus leaf flavor can be used in many products. However, indocalamus leaf flavor formula has not been reported. Therefore, developing an indocalamus leaf flavor is of significant interests. Note is a distinct flavor or odor characteristic. This paper concentrates on preparation and creation of indocalamus leaf flavor according to the notes of indocalamus leaf. The notes were obtained by smelling indocalamus leaf, and the results showed that the notes of indocalamus leaf flavor can be classified as: green-leafy note, sweet note, beany note, aldehydic note, waxy note, woody note, roast note, creamy note, and nutty note. According to the notes of indocalamus leaf odor, a typical indocalamus leaf flavor formula was obtained. The indocalamus leaf flavor blended is pleasant, harmonious, and has characteristics of indocalamus leaf odor.

  8. Volatile components from Anthriscus sylvestris (L.) Hoffm

    NARCIS (Netherlands)

    Bos, R.; Koulman, A; Woerdenbag, H.J.; Quax, Wim; Pras, N.

    2002-01-01

    The volatile components of fresh leaves and roots from Anthriscus sylvestris (L.) Hoffm., obtained through hydrodistillation, were analysed by GC and GC-MS. This was compared to dichloromethane extracts of both fresh and dried leaf and root material. The monoterpene fraction (69-70%) dominated,

  9. Effects of Water Solutions on Extracting Green Tea Leaves

    Directory of Open Access Journals (Sweden)

    Wen-Ying Huang

    2013-01-01

    Full Text Available This study investigates the effects of water solutions on the antioxidant content of green tea leaf extracts. Green teas prepared with tap water and distilled water were compared with respect to four antioxidant assays: total phenol content, reducing power, DMPD assay, and trolox equivalent antioxidant capacity assay. The results indicate that green tea prepared with distilled water exhibits higher antioxidant activity than that made with tap water. The high performance liquid chromatography showed that major constituents of green tea were found in higher concentrations in tea made with distilled water than in that made with tap water. This could be due to less calcium fixation in leaves and small water clusters. Water solutions composed of less mineralisation are more effective in promoting the quality of green tea leaf extracts.

  10. Effect of temperature on accumulation of chlorophylls and leaf ...

    African Journals Online (AJOL)

    White young shoots from albino tea cultivars have high level of amino acids and are rare and valuable materials for processing green tea. The effects of temperature on leaf colour, accumulation of chlorophylls and leaf ultrastructures of an albino tea cultivar 'Xiaxueya' were investigated. The study showed that the shoot ...

  11. Investigating the Alometric Relationships between Leaf Area and Some of Vegetative Characteristics in SC704 Corn Hybrid

    Directory of Open Access Journals (Sweden)

    E Zeinali

    2016-10-01

    Full Text Available Introduction Since the leaves are the main source of production of photosynthetic substances in plants, dry matter production and crop yield potential is largely dependent on the leaf surface, and many environmental changes affect growth and yield through changes in leaf area. Hence, green leaf area per plant and leaf area index is measured in almost all studies of crop physiology to understand the mechanism of yield alteration. However, measurement of leaf area compared with the other traits such as plant height and total plant dry weight is very difficult, need to precision instruments and spend more time and cost. Therefore, according to the allometric relationships in plants, extensive studies were done to find the relationship between leaf area and the other plant traits that their measurement is easier, faster and cheaper, and does not require expensive equipment. Using these relationships will be used to estimate plant leaf area with acceptable accuracy without measuring. Plant traits that have high correlation with leaf area and usually use to estimate the plant leaf area are the number of leaves or nodes per main stem, plant height, leaf dry weight and dry weight of vegetative parts of the plant. Allometric equations was used successfully to calculate leaf area for various crops such as cotton, wheat, chickpea, faba bean, peanuts, soybean and sweet sorghum. This study was conducted to obtain the allometric relationships between green leaf area (cm2 per plant with number of leaves or nodes per main stem, plant height, green leaf dry weight and dry weight of vegetative parts of the plant (gram per plant, and investigating the effect of plant density and planting date on these relationships in SC704 corn (Zea mays L. hybrid. Materials and Methods This study was conducted at Gorgan University of Agricultural Sciences and Natural Resources farm located at latitude 36 o 51’ N, longitude 54 o27’ E and altitude of 13 meters above sea level

  12. The Powdering Process with a Set of Ceramic Mills for Green Tea Promoted Catechin Extraction and the ROS Inhibition Effect

    Directory of Open Access Journals (Sweden)

    Kouki Fujioka

    2016-04-01

    Full Text Available For serving green tea, there are two prominent methods: steeping the leaf or the powdered leaf (matcha style in hot water. The purpose of the present study was to reveal chemical and functional differences before and after the powdering process of green tea leaf, since powdered green tea may contribute to expanding the functionality because of the different ingesting style. In this study, we revealed that the powdering process with a ceramic mill and stirring in hot water increased the average extracted concentration of epigallocatechin gallate (EGCG by more than three times compared with that in leaf tea using high-performance liquid chromatography (HPLC and liquid chromatography–tandem mass Spectrometry (LC-MS/MS analyses. Moreover, powdered green tea has a higher inhibition effect of reactive oxygen species (ROS production in vitro compared with the same amount of leaf tea. Our data suggest that powdered green tea might have a different function from leaf tea due to the higher catechin contents and particles.

  13. Secretory cavities and volatiles of Myrrhinium atropurpureum Schott var. atropurpureum (Myrtaceae): an endemic species collected in the restingas of Rio de Janeiro, Brazil.

    Science.gov (United States)

    Victório, Cristiane Pimentel; Moreira, Claudio B; Souza, Marcelo da Costa; Sato, Alice; Arruda, Rosani do Carmo de Oliveira

    2011-07-01

    In this study, we investigated the leaf anatomy and the composition of volatiles in Myrrhinium atropurpureum var. atropurpureum endemic to Rio de Janeiro restingas. Particularly, leaf secretory structures were described using light microscopy, and histochemical tests were performed from fresh leaves to localize the secondary metabolites. To observe secretory cavities, fixed leaf samples were free-hand sectioned. To evaluate lipophilic compounds and terpenoids the following reagents were employed: Sudans III and IV, Red oil O and Nile blue. Leaf volatiles were characterized by gas chromatography after hydrodistillation (HD) or simultaneous distillation-extraction (SDE). Leaf analysis showed several cavities in mesophyll that are the main sites of lipophilic and terpenoid production. Monoterpenes, which represented more than 80% of the major volatiles, were characterized mainly by alpha- and beta-pinene and 1,8-cineole. In order to provide tools for M. atropurpureum identification, the following distinguishing characteristics were revealed by the following data: 1) adaxial face clear and densely punctuated by the presence of round or ellipsoidal secretory cavities randomly distributed in the mesophyll; 2) the presence of cells overlying the upper neck cells of secretory cavities; 3) the presence of numerous paracytic stomata distributed on the abaxial leaf surface, but absent in vein regions and leaf margin; and 4) non-glandular trichomes on both leaf surfaces. Our study of the compounds produced by the secretory cavities of M. atropurpureum led us to conclude that volatile terpenoid class are the main secretory compounds and that they consist of a high concentration of monoterpenes, which may indicate the phytotherapeutic importance of this plant.

  14. (TECTONA GRANDIS LEAF POWDER

    Directory of Open Access Journals (Sweden)

    Yash Mishra

    2015-01-01

    Full Text Available In this study, the adsorption potential of Teak (Tectona grandis leaf powder (TLP toremove Methylene blue (MB and Malachite Green (MG dye molecules from aqueoussolution was investigated. Batch experiments were conducted to evaluate the influenceof operational parameters such as, pH (2−9, adsorbent dosage (1−7 g/L, contact time(15−150 minutes and initial dye concentration (20−120 mg/L at stirring speed of 150rpm for the adsorption of MB and MG on TLP. Maximum removal efficiency of 98.4%and 95.1% was achieved for MB and MG dye, respectively. The experimentalequilibrium data were analysed using Langmuir, Freundlich and Temkin isothermmodels and it was found that, it fitted well to the Freundlich isotherm model. Thesurface structure and morphology of the adsorbent was characterized using scanningelectron microscopy (SEM and the presence of functional groups and its interactionwith the dye molecules were analysed using Fourier transform infrared spectroscopy(FTIR. Based on the investigation, it has been demonstrated that the teak leaf powderhas good potential for effective adsorption of methylene blue and malachite green dye.

  15. Biosorption of Basic Green 4 from aqueous solution by Ananas comosus (pineapple) leaf powder.

    Science.gov (United States)

    Chowdhury, Shamik; Chakraborty, Sagnik; Saha, Papita

    2011-06-01

    Biosorption characteristics of Ananas comosus (pineapple) leaf powder was investigated for decolorization of Basic Green 4 (BG 4), a cationic dye from its aqueous solutions employing a batch experimental set-up. Parameters that influence the sorption process such as pH, biosorbent dosage, contact time, initial dye concentration and temperature were systematically studied. The optimum conditions for removal of BG 4 were found to be pH 9.0, contact time=150 min, biosorbent dosage=5.0 g L(-1), initial dye concentration=50 mg L(-1). The temperature had a strong influence on the biosorption process. Further, the biosorbent was characterized by Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and Brunauer, Emmett, Teller (BET) surface area and pore size analysis. Experimental biosorption data were modeled by Langmuir, Freundlich and Dubinin-Radushkevich (D-R) isotherms. The biosorption process followed the Langmuir isotherm model with high coefficients of correlation (R(2)>0.99) at different temperatures. The pseudo second order kinetic model fitted well in correlation to the experimental results. Activation energy of the biosorption process (E(a)) was found to be 45.79 kJ mol(-1) by using the Arrhenius equation, indicating chemisorption nature of BG 4 sorption onto pineapple leaf powder. Thermodynamic parameters suggest that the biosorption process is spontaneous and exothermic in nature. Overall, the present findings suggest that this environmentally friendly, efficient and low-cost biosorbent may be useful for the removal of BG 4 from aqueous media. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Air quality and health effects of biogenic volatile organic compounds emissions from urban green spaces and the mitigation strategies.

    Science.gov (United States)

    Ren, Yuan; Qu, Zelong; Du, Yuanyuan; Xu, Ronghua; Ma, Danping; Yang, Guofu; Shi, Yan; Fan, Xing; Tani, Akira; Guo, Peipei; Ge, Ying; Chang, Jie

    2017-11-01

    Biogenic volatile organic compounds (BVOCs) emissions lead to fine particulate matter (PM 2.5 ) and ground-level ozone pollution, and are harmful to human health, especially in urban areas. However, most BVOCs estimations ignored the emissions from urban green spaces, causing inaccuracies in the understanding of regional BVOCs emissions and their environmental and health effects. In this study, we used the latest local vegetation datasets from our field survey and applied an estimation model to analyze the spatial-temporal patterns, air quality impacts, health damage and mitigating strategies of BVOCs emissions in the Greater Beijing Area. Results showed that: (1) the urban core was the hotspot of regional BVOCs emissions for the highest region-based emission intensity (3.0 g C m -2 yr -1 ) among the 11 sub-regions; (2) urban green spaces played much more important roles (account for 62% of total health damage) than rural forests in threating human health; (3) BVOCs emissions from green spaces will more than triple by 2050 due to urban area expansion, tree growth and environmental changes; and (4) adopting proactive management (e.g. adjusting tree species composition) can reduce 61% of the BVOCs emissions and 50% of the health damage related to BVOCs emissions by 2050. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Leaf Dynamics of Panicum maximum under Future Climatic Changes.

    Science.gov (United States)

    Britto de Assis Prado, Carlos Henrique; Haik Guedes de Camargo-Bortolin, Lívia; Castro, Érique; Martinez, Carlos Alberto

    2016-01-01

    Panicum maximum Jacq. 'Mombaça' (C4) was grown in field conditions with sufficient water and nutrients to examine the effects of warming and elevated CO2 concentrations during the winter. Plants were exposed to either the ambient temperature and regular atmospheric CO2 (Control); elevated CO2 (600 ppm, eC); canopy warming (+2°C above regular canopy temperature, eT); or elevated CO2 and canopy warming (eC+eT). The temperatures and CO2 in the field were controlled by temperature free-air controlled enhancement (T-FACE) and mini free-air CO2 enrichment (miniFACE) facilities. The most green, expanding, and expanded leaves and the highest leaf appearance rate (LAR, leaves day(-1)) and leaf elongation rate (LER, cm day(-1)) were observed under eT. Leaf area and leaf biomass were higher in the eT and eC+eT treatments. The higher LER and LAR without significant differences in the number of senescent leaves could explain why tillers had higher foliage area and leaf biomass in the eT treatment. The eC treatment had the lowest LER and the fewest expanded and green leaves, similar to Control. The inhibitory effect of eC on foliage development in winter was indicated by the fewer green, expanded, and expanding leaves under eC+eT than eT. The stimulatory and inhibitory effects of the eT and eC treatments, respectively, on foliage raised and lowered, respectively, the foliar nitrogen concentration. The inhibition of foliage by eC was confirmed by the eC treatment having the lowest leaf/stem biomass ratio and by the change in leaf biomass-area relationships from linear or exponential growth to rectangular hyperbolic growth under eC. Besides, eC+eT had a synergist effect, speeding up leaf maturation. Therefore, with sufficient water and nutrients in winter, the inhibitory effect of elevated CO2 on foliage could be partially offset by elevated temperatures and relatively high P. maximum foliage production could be achieved under future climatic change.

  18. How does Germany's green energy policy affect electricity market volatility? An application of conditional autoregressive range models

    International Nuclear Information System (INIS)

    Auer, Benjamin R.

    2016-01-01

    Based on a dynamic model for the high/low range of electricity prices, this article analyses the effects of Germany's green energy policy on the volatility of the electricity market. Using European Energy Exchange data from 2000 to 2015, we find rather high volatility in the years 2000–2009 but also that the weekly price range has significantly declined in the period following the year 2009. This period is characterised by active regulation under the Energy Industry Law (EnWG), the EU Emissions Trading Directive (ETD) and the Renewable Energy Law (EEG). In contrast to the preceding period, price jumps are smaller and less frequent (especially for day-time hours), implying that current policy measures are effective in promoting renewable energies while simultaneously upholding electricity market stability. This is because the regulations strive towards a more and more flexible and market-oriented structure which allows better integration of renewable energies and supports an efficient alignment of renewable electricity supply with demand. - Highlights: • We estimate a CARR model for German electricity price data. • We augment the model by dummies capturing important regulations. • We find a significant decline in the price range after the year 2009. • This implies effective price stabilisation by German energy policy.

  19. Long-distance signaling within Coleus x hybridus leaves; mediated by changes in intra-leaf CO2?

    Science.gov (United States)

    Stahlberg, R.; Van Volkenburgh, E.; Cleland, R. E.

    2001-01-01

    Rapid long-distance signaling in plants can occur via several mechanisms, including symplastic electric coupling and pressure waves. We show here in variegated Coleus leaves a rapid propagation of electrical signals that appears to be caused by changes in intra-leaf CO2 concentrations. Green leaf cells, when illuminated, undergo a rapid depolarization of their membrane potential (Vm) and an increase in their apoplastic pH (pHa) by a process that requires photosynthesis. This is followed by a slower hyperpolarization of Vm and apoplastic acidification, which do not require photosynthesis. White (chlorophyll-lacking) leaf cells, when in isolated white leaf segments, show only the slow response, but when in mixed (i.e. green and white) segments, the rapid Vm depolarization and increase in pHa propagate over more than 10 mm from the green to the white cells. Similarly, these responses propagate 12-20 mm from illuminated to unilluminated green cells. The fact that the propagation of these responses is eliminated when the leaf air spaces are infiltrated with solution indicates that the signal moves in the apoplast rather than the symplast. A depolarization of the mesophyll cells is induced in the dark by a decrease in apoplastic CO2 but not by an increase in pHa. These results support the hypothesis that the propagating signal for the depolarization of the white mesophyll cells is a photosynthetically induced decrease in the CO2 level of the air spaces throughout the leaf.

  20. Piper nigrum Leaf and Stem Assisted Green Synthesis of Silver Nanoparticles and Evaluation of Its Antibacterial Activity Against Agricultural Plant Pathogens

    Directory of Open Access Journals (Sweden)

    Kanniah Paulkumar

    2014-01-01

    Full Text Available Utilization of biological materials in synthesis of nanoparticles is one of the hottest topics in modern nanoscience and nanotechnology. In the present investigation, the silver nanoparticles were synthesized by using the leaf and stem extract of Piper nigrum. The synthesized nanoparticle was characterized by UV-vis spectroscopy, X-ray diffraction (XRD, scanning electron microscope (SEM, transmission electron microscope (TEM, energy dispersive X-ray analysis (EDAX, and Fourier Transform Infrared Spectroscopy (FTIR. The observation of the peak at 460 nm in the UV-vis spectra for leaf- and stem-synthesized silver nanoparticles reveals the reduction of silver metal ions into silver nanoparticles. Further, XRD analysis has been carried out to confirm the crystalline nature of the synthesized silver nanoparticles. The TEM images show that the leaf- and stem-synthesized silver nanoparticles were within the size of about 7–50 nm and 9–30 nm, respectively. The FTIR analysis was performed to identify the possible functional groups involved in the synthesis of silver nanoparticles. Further, the antibacterial activity of the green-synthesized silver nanoparticles was examined against agricultural plant pathogens. The antibacterial property of silver nanoparticles is a beneficial application in the field of agricultural nanotechnology.

  1. Tuning Transpiration by Interfacial Solar Absorber-Leaf Engineering.

    Science.gov (United States)

    Zhuang, Shendong; Zhou, Lin; Xu, Weichao; Xu, Ning; Hu, Xiaozhen; Li, Xiuqiang; Lv, Guangxin; Zheng, Qinghui; Zhu, Shining; Wang, Zhenlin; Zhu, Jia

    2018-02-01

    Plant transpiration, a process of water movement through a plant and its evaporation from aerial parts especially leaves, consumes a large component of the total continental precipitation (≈48%) and significantly influences global water distribution and climate. To date, various chemical and/or biological explorations have been made to tune the transpiration but with uncertain environmental risks. In recent years, interfacial solar steam/vapor generation is attracting a lot of attention for achieving high energy transfer efficiency. Various optical and thermal designs at the solar absorber-water interface for potential applications in water purification, seawater desalination, and power generation appear. In this work, the concept of interfacial solar vapor generation is extended to tunable plant transpiration by showing for the first time that the transpiration efficiency can also be enhanced or suppressed through engineering the solar absorber-leaf interface. By tuning the solar absorption of membrane in direct touch with green leaf, surface temperature of green leaf will change accordingly because of photothermal effect, thus the transpiration efficiency as well as temperature and relative humidity in the surrounding environment will be tuned. This tunable transpiration by interfacial absorber-leaf engineering can open an alternative avenue to regulate local atmospheric temperature, humidity, and eventually hydrologic cycle.

  2. Tuning Transpiration by Interfacial Solar Absorber‐Leaf Engineering

    Science.gov (United States)

    Zhuang, Shendong; Zhou, Lin; Xu, Weichao; Xu, Ning; Hu, Xiaozhen; Li, Xiuqiang; Lv, Guangxin; Zheng, Qinghui; Zhu, Shining

    2017-01-01

    Abstract Plant transpiration, a process of water movement through a plant and its evaporation from aerial parts especially leaves, consumes a large component of the total continental precipitation (≈48%) and significantly influences global water distribution and climate. To date, various chemical and/or biological explorations have been made to tune the transpiration but with uncertain environmental risks. In recent years, interfacial solar steam/vapor generation is attracting a lot of attention for achieving high energy transfer efficiency. Various optical and thermal designs at the solar absorber–water interface for potential applications in water purification, seawater desalination, and power generation appear. In this work, the concept of interfacial solar vapor generation is extended to tunable plant transpiration by showing for the first time that the transpiration efficiency can also be enhanced or suppressed through engineering the solar absorber–leaf interface. By tuning the solar absorption of membrane in direct touch with green leaf, surface temperature of green leaf will change accordingly because of photothermal effect, thus the transpiration efficiency as well as temperature and relative humidity in the surrounding environment will be tuned. This tunable transpiration by interfacial absorber‐leaf engineering can open an alternative avenue to regulate local atmospheric temperature, humidity, and eventually hydrologic cycle. PMID:29619300

  3. The influence of low dose irradiation on volatile constituents of Imperial and Ellendale mandarins

    International Nuclear Information System (INIS)

    Wood, A.F.; Mitchell, G.E.; McLauchlan, R.L.; Hammerton, K.

    1992-01-01

    Volatile compounds were collected from Imperial (Citrus reticulata) and Ellendale (Citrus reticulata/Citrus sinensis hybrid) mandarins, green and degreened, irradiated at 0, 75, and 300 Gy. Thirty-three individual volatile components were isolated, limonene being the major volatile. Irradiation caused only minor changes in the concentrations of some volatiles and the changes were of no value as indicators of irradiation treatment. 18 refs., 3 tabs. 2 figs

  4. Beyond leaf color: Comparing camera-based phenological metrics with leaf biochemical, biophysical, and spectral properties throughout the growing season of a temperate deciduous forest

    Science.gov (United States)

    Yang, Xi; Tang, Jianwu; Mustard, John F.

    2014-03-01

    Plant phenology, a sensitive indicator of climate change, influences vegetation-atmosphere interactions by changing the carbon and water cycles from local to global scales. Camera-based phenological observations of the color changes of the vegetation canopy throughout the growing season have become popular in recent years. However, the linkages between camera phenological metrics and leaf biochemical, biophysical, and spectral properties are elusive. We measured key leaf properties including chlorophyll concentration and leaf reflectance on a weekly basis from June to November 2011 in a white oak forest on the island of Martha's Vineyard, Massachusetts, USA. Concurrently, we used a digital camera to automatically acquire daily pictures of the tree canopies. We found that there was a mismatch between the camera-based phenological metric for the canopy greenness (green chromatic coordinate, gcc) and the total chlorophyll and carotenoids concentration and leaf mass per area during late spring/early summer. The seasonal peak of gcc is approximately 20 days earlier than the peak of the total chlorophyll concentration. During the fall, both canopy and leaf redness were significantly correlated with the vegetation index for anthocyanin concentration, opening a new window to quantify vegetation senescence remotely. Satellite- and camera-based vegetation indices agreed well, suggesting that camera-based observations can be used as the ground validation for satellites. Using the high-temporal resolution dataset of leaf biochemical, biophysical, and spectral properties, our results show the strengths and potential uncertainties to use canopy color as the proxy of ecosystem functioning.

  5. Volatile Constituents of Three Piper Species from Vietnam.

    Science.gov (United States)

    Hieua, Le D; Hoic, Tran M; Thangda, Tran D; Ogunwande, Isiaka A

    2015-11-01

    The chemical compositions of the essential oils obtained by hydrodistillation of three Piper plants grown in Vietnam are reported. The analysis was achieved by means of gas chromatography with flame ionization detection (GC-FID) and gas chromatography coupled with mass spectrometry (GC-MS). The main constituents of the leaf oil of Piper majusculum Blume were β-caryophyllene (20.7%), germacrene D (18.6%) and β-elemene (11.3%). The quantitatively significant compounds of the volatile oils of P. harmandii C. DC were sabinene (leaves, 14.5%; stems, 16.2%), benzyl benzoate (leaves, 20.0%; stems, 29.40%) and benzyl salicylate (leaves, 14.1%; stems, 24.3%). Also, α-cadinol (17.0%) was identified in large proportion in the leaf oil. However, sabinene (leaves, 17.9%; stems, 13.5%), benzyl benzoate (leaves, 20.5%; stems, 32.5%) and β-eudesmol (leaves, 13.8%; stems, 8.4%) were the main constituents of P. brevicaule C. DC. This is the first report on the volatile constituents of both P. harmandii and P. brevicaule.

  6. Developing markers for Sigatoka leaf spot disease (Mycosphaerella ...

    African Journals Online (AJOL)

    Jane

    2011-07-06

    Jul 6, 2011 ... Developing markers for Sigatoka leaf spot disease ... OPERON primer pairs were used to screen genomic DNA from two resistant cultivars: Calcutta 4 ( ..... Blomme G, Eden-Green S, Mustaffa M, Nwauzoma B, Thangavelu R.

  7. Phytochemical screening and chemical variability in volatile oils of aerial parts of Morinda morindoides.

    Science.gov (United States)

    Kiazolu, J Boima; Intisar, Azeem; Zhang, Lingyi; Wang, Yun; Zhang, Runsheng; Wu, Zhongping; Zhang, Weibing

    2016-10-01

    Morinda morindoides is an important Liberian traditional medicine for the treatment of malaria, fever, worms etc. The plant was subjected to integrated approaches including phytochemical screening and gas chromatography mass spectrometry (GC-MS) analyses. Phytochemical investigation of the powdered plant revealed the presence of phenolics, tannins, flavonoids, saponins, terpenes, steroidal compounds and volatile oil. Steam distillation followed by GC-MS resulted in the identification of 47 volatiles in its aerial parts: 28 were in common including various bioactive volatiles. Major constituents of leaves were phytol (43.63%), palmitic acid (8.55%) and geranyl linalool (6.95%) and stem were palmitic acid (14.95%), eicosane (9.67%) and phytol (9.31%), and hence, a significant difference in the percentage composition of aerial parts was observed. To study seasonal changes, similarity analysis was carried out by calculating correlation coefficient (r) and vector angle cosine (z) that were more than 0.91 for stem-to-stem and leaf-to-leaf batches indicating considerable consistency.

  8. Nanoparticle-Incorporated PDMS Film as an Improved Performance SPME Fiber for Analysis of Volatile Components of Eucalyptus Leaf

    Directory of Open Access Journals (Sweden)

    Parviz Aberoomand Azar

    2013-01-01

    Full Text Available A new fabrication strategy was proposed to prepare polydimethylsiloxane (PDMS- coated solid-phase microextraction (SPME on inexpensive and unbreakable Cu fiber. PDMS was covalently bonded to the Cu substrate using self-assembled monolayer (SAM of (3-mercaptopropyltrimethoxysilane (3MPTS as binder. To increase the performance of the fiber, the incorporation effect of some nanomaterials including silica nanoparticles (NPs, carbon nanotubes (CNTs, and carboxylated carbon nanotubes (CNT-COOH to PDMS coating was compared. The surface morphology of the prepared fibers was characterized by scanning electron microscopy (SEM, and their applicability was evaluated through the extraction of some volatile organic compounds (VOCs of Eucalyptus leaf in headspace mode, and parameters affecting the extraction efficiency including extraction temperature and extraction time were optimized. Extracted compounds were analyzed by GC-MS instrument. The results obtained indicated that prepared fibers have some advantages relative to previously prepared SPME fibers, such as higher thermal stability and improved performance of the fiber. Also, results showed that SPME is a fast, simple, quick, and sensitive technique for sampling and sample introduction of Eucalyptus VOCs.

  9. Ionizing radiation effects on volatiles formation in Camellia sinensis (L) teas

    International Nuclear Information System (INIS)

    Fanaro, Gustavo Bernardes

    2009-01-01

    The aim of this study was to evaluate the effects of radiation on volatile formation in white, green, oolong and black teas. Samples were irradiated in room temperature at 60 Co source Gammacell 220 (A.E.C. Ltda) at doses of 0, 5, 10, 15 and 20 kGy. The volatiles organic compound was extracted by hydro distillation and the extract was separated and identified by gas chromatography mass spectrometry (GCMS) analysis. The results show that the volatiles formations are directly proportional to the increase of radiation dose. The white tea showed less influence of ionizing radiation, as 37.86% of the compounds were stable at all doses of radiation and formed 47.53% of new compounds after irradiation. The green tea was the tea that has the greatest influence of radiation effects, increasing 66.12% of volatiles identified in relation to the control sample and only 21.77% of volatiles found naturally were resistant to all doses of radiation. The oolong tea, despite suffering a partial enzymatic treatment, was the second tea that has least interference of radiation in increasing the formation of new volatile. >From this tea, was able to detect 49.59% of new compounds after irradiation and 30.08% of the compounds found naturally were also found after irradiation. The black tea has the second greatest influence of radiation on formation of new volatile (60.94%) and only 17.97% of all identified compounds were not degraded after radiation. (author)

  10. [Study on spectral detection of green plant target].

    Science.gov (United States)

    Deng, Wei; Zhao, Chun-jiang; He, Xiong-kui; Chen, Li-ping; Zhang, Lu-da; Wu, Guang-wei; Mueller, J; Zhai, Chang-yuan

    2010-08-01

    Weeds grow scatteredly in fields, where many insentient objects exist, for example, withered grasses, dry twig and barriers. In order to improve the precision level of spraying, it is important to study green plant detecting technology. The present paper discussed detecting method of green plant by using spectral recognizing technology, because of the real-time feature of spectral recognition. By analyzing the reflectivity difference between each of the two sides of the "red edge" of the spectrum from plants and surrounding environment, green plant discriminat index (GPDI) is defined as the value which equals the reflectivity ratio at the wavelength of 850 nm divided by the reflectivity ratio at the wavelength of 650 nm. The original spectral data of green plants and the background were measured by using the handhold FieldSpec 3 Spectroradiometer manufactured by ASD Inc. in USA. The spectral data were processed to get the reflectivity of each measured objects and to work out the GPDI thereof as well. The classification model of green plant and its background was built up using decision tree method in order to obtain the threshold of GPDI to distinguish green plants and the background. The threshold of GPDI was chosen as 5.54. The detected object was recognized as green plant when it is GPDI>GPDITH, and vice versa. Through another test, the accuracy rate was verified which was 100% by using the threshold. The authors designed and developed the green plant detector based on single chip microcomputer (SCM) "AT89S51" and photodiode "OPT101" to realize detecting green plants from the background. After passing through two optical filters, the center wavelengths of which are 650 and 850 nm respectively, the reflected light from measured targets was detected by two photodiodes and converted into electrical signals. These analog signals were then converted to digital signals via an analog-to-digital converter (ADS7813) after being amplified by a signal amplifier (OP400

  11. Green synthesis of silver nanoparticles using Alternanthera dentata leaf extract at room temperature and their antimicrobial activity.

    Science.gov (United States)

    Kumar, Deenadayalan Ashok; Palanichamy, V; Roopan, Selvaraj Mohana

    2014-06-05

    A green rapid biogenic synthesis of silver nanoparticles AgNPs using Alternanthera dentata (A. dentata) aqueous extract was demonstrated in this present study. The formation of silver nanoparticles was confirmed by Surface Plasmon Resonance (SPR) at 430nm using UV-visible spectrophotometer. The reduction of silver ions to silver nanoparticles by A. dentata extract was completed within 10min. Synthesized nanoparticles were characterized using UV-visible spectroscopy; Fourier transformed infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy and transmission electron microscopy (TEM). The extracellular silver nanoparticles synthesis by aqueous leaf extract demonstrates rapid, simple and inexpensive method comparable to chemical and microbial methods. The colloidal solution of silver nanoparticles were found to exhibit antibacterial activity against Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumonia and, Enterococcus faecalis. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Three odorant binding proteins may regulate the behavioural response of Chrysopa pallens to plant volatiles and the aphid alarm pheromone (E)-β-farnesene.

    Science.gov (United States)

    Li, Z-Q; Zhang, S; Cai, X-M; Luo, J-Y; Dong, S-L; Cui, J-J; Chen, Z-M

    2017-06-01

    Artificial Chrysopa pallens release is a well-known method for suppressing aphids, but it is difficult to establish lacewing populations in the field. Understanding the functions of C. pallens odorant-binding proteins (CpalOBPs) and behavioural responses of C. pallens to plant volatiles and aphid alarm pheromone (E)-ß-farnesene has important implications for population establishment after lacewing release. Based on our previous study, five antennae-enriched CpalOBPs were selected. Sequence alignment and phylogenetic analysis revealed that these five CpalOBPs were Classic OBPs and separated into different clades. Of them, CpalOBP10 clustered in the same clade with aphid OBP7, which mediates the perception of green leaf volatiles and (E)-ß-farnesene. Ligand-binding assays showed 31 compounds, including plant-derived compounds, pest-induced volatiles and (E)-ß-farnesene, had high binding affinities for at least one of these five CpalOBPs. Of the 31 compounds, the pest-induced volatiles (Z)-3-hexenyl hexanoate and 2-hexyl-1-decanol, used in host location by the black bean aphid, elicited significant attractive behavioural responses from C. pallens. Conversely, (E)-ß-farnesene elicited strongly repellent behavioural responses. It is conceivable that C. pallens utilizes plant-derived compounds, pest-induced volatiles and (E)-ß-farnesene as foraging cues. Our studies provide new insights into the interrelationships amongst C. pallens, its prey and the host plants. Compounds that elicited significant behavioural responses from C. pallens were also identified. © 2017 The Royal Entomological Society.

  13. Drought and leaf herbivory influence floral volatiles and pollinator attraction

    Science.gov (United States)

    Laura A. Burkle; Justin B. Runyon

    2016-01-01

    The effects of climate change on species interactions are poorly understood. Investigating the mechanisms by which species interactions may shift under altered environmental conditions will help form a more predictive understanding of such shifts. In particular, components of climate change have the potential to strongly influence floral volatile organic...

  14. Leaf Volatile Compounds and Associated Gene Expression during Short-Term Nitrogen Deficient Treatments in Cucumis Seedlings

    Directory of Open Access Journals (Sweden)

    Jie Deng

    2016-11-01

    Full Text Available Nitrogen (N is an important macronutrient for plant growth and development, but the regulatory mechanism of volatile compounds in response to N deficiency is not well understood, especially in cucumber, which consumes excessive N during growth. In this study, the major volatile compounds from cucumber leaves subjected to N deficiency were analyzed by GC-MS. A total of 24 volatile components were identified including 15 aldehydes, two ketones, two alkenes, and five other volatile compounds in 9930 leaves. Principal component analysis using volatile compounds from cucumber leaves provided good separation between N-sufficient and N-deficient treatments. The main volatiles in cucumber leaves were found to be C6 and C9 aldehydes, especially (E-2-hexanal and (E,Z-2,6-nonadienal. (E-2-hexanal belonged to the C6 aldehyde and was the most abundant compound, whereas (E,Z-2,6-nonadienal was the chief component of C9 aldehydes. During N-deficient treatment, short-chain volatile content was significantly improved at 5 day, other volatiles displayed significant reduction or no significantly changes in all sampling points. Improvement of short-chain volatiles was confirmed in the six other inbred lines at 5 day after N-deficient treatments. The expression analysis of 12 cucumber LOX genes and two HPL genes revealed that CsLOX19, CsLOX20, and CsLOX22 had common up-regulated expression patterns in response to N-deficient stress in most inbred lines; meanwhile, most sample points of CsHPL1 also had significant up-regulated expression patterns. This research focused on the relationship between volatiles in cucumber and different nitrogen environments to provide valuable insight into the effect of cultivation and management of the quality of cucumber and contributes to further research on volatile metabolism in cucumber.

  15. Influence of spectral properties on cassava leaf development and ...

    African Journals Online (AJOL)

    sunny t

    2014-02-12

    Feb 12, 2014 ... changes in leaf spectral characteristics were studied using Digimizer ... main wavelengths used by plants (blue, green and red) with the blue being the most preferred. Total ...... differences observed allude to plant behavior.

  16. Calcium oxalate druses affect leaf optical properties in selenium-treated Fagopyrum tataricum.

    Science.gov (United States)

    Golob, Aleksandra; Stibilj, Vekoslava; Nečemer, Marijan; Kump, Peter; Kreft, Ivan; Hočevar, Anja; Gaberščik, Alenka; Germ, Mateja

    2018-03-01

    Plants of the genus Fagopyrum contain high levels of crystalline calcium oxalate (CaOx) deposits, or druses, that can affect the leaf optical properties. As selenium has been shown to modify the uptake and accumulation of metabolically important elements such as calcium, we hypothesised that the numbers of druses can be altered by selenium treatment, and this would affect the leaf optical properties. Tartary buckwheat (Fagopyrum tataricum Gaertn.) was grown outdoors in an experimental field. At the beginning of flowering, plants were foliarly sprayed with sodium selenate solution at 10 mg selenium L -1 or only with water. Plant morphological, biochemical, physiological and optical properties were examined, along with leaf elemental composition and content. Se spraying did not affect leaf biochemical and functional properties. However, it increased leaf thickness and the contents of Se in the leaves, and decreased the density of calcium oxalate druses in the leaves. Except Se content, Se spraying did not affect contents of other elements in leaves, including total calcium per dry mass of leaf tissue. Redundancy analysis showed that of all parameters tested, only the calcium oxalate druses parameters were significant in explaining the variability of the leaf reflectance and transmittance spectra. The density of CaOx druses positively correlated with the reflectance in the blue, green, yellow and UV-B regions of the spectrum, while the area of CaOx druses per mm 2 of leaf transection area positively correlated with the transmittance in the green and yellow regions of the spectrum. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Comparison of leaf color chart observations with digital photographs and spectral measurements for estimating maize leaf chlorophyll content

    Science.gov (United States)

    Crop nitrogen management is important world-wide, as much for small fields as it is for large operations. Developed as a non-destructive aid for estimating nitrogen content in rice crops, leaf color charts (LCC) are a numbered series of plastic panels that range from yellowgreen to dark green. By vi...

  18. Characterization, antibacterial, total antioxidant, scavenging, reducing power and ion chelating activities of green synthesized silver, copper and titanium dioxide nanoparticles using Artemisia haussknechtii leaf extract.

    Science.gov (United States)

    Alavi, Mehran; Karimi, Naser

    2017-12-12

    Recently, major problem related to pathogenic bacteria is augmentation of antibiotic resistance which has been changed treatment and recovery of millions of infectious patients. The present study reports an eco-friendly, rapid and easy method for synthesis of silver (Ag), copper (Cu) and titanium dioxide (TiO 2 ) nanoparticles (NPs) using Artemisia haussknechtii leaf aqueous extract with antibacterial activities against multi-drug resistance (MDR) bacteria species. Three different concentrations (0.001, 0.01 and 0.1 M) of AgNO 3 , CuSO 4 and TiO (OH) 2 were investigated for obtaining optimum NPs green synthesis. Total phenolic content, total flavonoid content of leaf extract and total antioxidant activity (DPPH) assay were determined as radical scavenging methods. UV-Visible spectroscopy, Fourier transform infrared spectroscopy analysis, X-ray diffraction, energy dispersive X-ray spectroscopy, field emission scanning electron microscope and atomic force microscopy (AFM) were used due to NPs characterization. The size average of the Ag, Cu and TiO 2 NPs obtained were respectively 10.69 ± 5.55, 35.36 ± 44.4 and 92.58 ± 56.98 nm. In the case of antibacterial assay, disc diffusion assay, minimum inhibitory concentration, minimum bactericidal concentration, bacterial growth and morphology of four MDR species Staphylococcus aureus ATCC 43300, Staphylococcus epidermidis ATCC 12258, Serratia marcescens ATTC13880 and Escherichia coli ATCC 25922 were evaluated. Results of this study demonstrated that A. haussknechtii leaf extract with various groups of phytochemicals such as phenols and flavonoids had suitable ability in green synthesis of Ag, Cu and TiO 2 NPs. Also, Ag and Cu NPs had more antibacterial activities compared to TiO 2 NPs.

  19. Leaf phenology and wood formation of white cedar trees (Melia azedarach L. and their responses to climate variability

    Directory of Open Access Journals (Sweden)

    Kritsadapan Palakit

    2018-02-01

    Full Text Available This research aimed to investigate the response of leaf phenologies and wood increments of Melia azedarach L. on climate variability. The visual estimation indicated the leaf flushing in January-July, the leaf maturation in January-November, and the leaf abscission in May-June and October-December. Monthly wood investigations of the inside bark diameters (IBD indicated an annual-ring formation with the wood increment in February-November and the dormancy in December-January. The outside bark diameter (OBD exhibited growth variations with phases of slow increment in September-October, shrinkage in December-February, and fast increment in March-August. The relationship among monthly climates, leaf phenologies and wood increments, indicated the significant correlations of the soil moisture and the abundances of mature dark green leaves on the IBD, while the OBD was fluctuated due to the direct effect of the IBD and the indirect effect of the soil moisture and mature dark green leaf abundances.

  20. Sulfur volatiles from Allium spp. affect Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Psyllidae), response to citrus volatiles.

    Science.gov (United States)

    Mann, R S; Rouseff, R L; Smoot, J M; Castle, W S; Stelinski, L L

    2011-02-01

    The Asian citrus psyllid, Diaphorina citri Kuwayama, vectors Candidatus Liberibacter asiaticus (Las) and Candidatus Liberibacter americanus (Lam), the presumed causal agents of huanglongbing. D. citri generally rely on olfaction and vision for detection of host cues. Plant volatiles from Allium spp. (Alliaceae) are known to repel several arthropod species. We examined the effect of garlic chive (A. tuberosum Rottl.) and wild onion (A. canadense L.) volatiles on D. citri behaviour in a two-port divided T-olfactometer. Citrus leaf volatiles attracted significantly more D. citri adults than clean air. Volatiles from crushed garlic chive leaves, garlic chive essential oil, garlic chive plants, wild onion plants and crushed wild onion leaves all repelled D. citri adults when compared with clean air, with the first two being significantly more repellent than the others. However, when tested with citrus volatiles, only crushed garlic chive leaves and garlic chive essential oil were repellent, and crushed wild onions leaves were not. Analysis of the headspace components of crushed garlic chive leaves and garlic chive essential oil by gas chromatography-mass spectrometry revealed that monosulfides, disulfides and trisulfides were the primary sulfur volatiles present. In general, trisulfides (dimethyl trisulfide) inhibited the response of D. citri to citrus volatiles more than disulfides (dimethyl disulfide, allyl methyl disulfide, allyl disulfide). Monosulfides did not affect the behaviour of D. citri adults. A blend of dimethyl trisulfide and dimethyl disulfide in 1:1 ratio showed an additive effect on inhibition of D. citri response to citrus volatiles. The plant volatiles from Allium spp. did not affect the behaviour of the D. citri ecto-parasitoid Tamarixia radiata (Waterston). Thus, Allium spp. or the tri- and di-sulphides could be integrated into management programmes for D. citri without affecting natural enemies.

  1. Nitrogen Limited Red and Green Leaf Lettuce Accumulate Flavonoid Glycosides, Caffeic Acid Derivatives, and Sucrose while Losing Chlorophylls, Β-Carotene and Xanthophylls.

    Science.gov (United States)

    Becker, Christine; Urlić, Branimir; Jukić Špika, Maja; Kläring, Hans-Peter; Krumbein, Angelika; Baldermann, Susanne; Goreta Ban, Smiljana; Perica, Slavko; Schwarz, Dietmar

    2015-01-01

    Reduction of nitrogen application in crop production is desirable for ecological and health-related reasons. Interestingly, nitrogen deficiency can lead to enhanced concentrations of polyphenols in plants. The reason for this is still under discussion. The plants' response to low nitrogen concentration can interact with other factors, for example radiation intensity. We cultivated red and green leaf lettuce hydroponically in a Mediterranean greenhouse, supplying three different levels of nitrogen (12 mM, 3 mM, 0.75 mM), either in full or reduced (-50%) radiation intensity. In both red and green lettuce, we found clear effects of the nitrogen treatments on growth characteristics, phenolic and photosynthetic compounds, nitrogen, nitrate and carbon concentration of the plants. Interestingly, the concentrations of all main flavonoid glycosides, caffeic acid derivatives, and sucrose increased with decreasing nitrogen concentration, whereas those of chlorophylls, β-carotene, neoxanthin, lactucaxanthin, all trans- and cis-violaxanthin decreased. The constitutive concentrations of polyphenols were lower in the green cultivar, but their relative increase was more pronounced than in the red cultivar. The constitutive concentrations of chlorophylls, β-carotene, neoxanthin, all trans- and cis-violaxanthin were similar in red and green lettuce and with decreasing nitrogen concentration they declined to a similar extent in both cultivars. We only detected little influence of the radiation treatments, e.g. on anthocyanin concentration, and hardly any interaction between radiation and nitrogen concentration. Our results imply a greater physiological plasticity of green compared to the red lettuce regarding its phenolic compounds. They support the photoprotection theory regarding anthocyanins as well as the theory that the deamination activity of phenylalanine ammonia-lyase drives phenylpropanoid synthesis.

  2. Nitrogen Limited Red and Green Leaf Lettuce Accumulate Flavonoid Glycosides, Caffeic Acid Derivatives, and Sucrose while Losing Chlorophylls, Β-Carotene and Xanthophylls

    Science.gov (United States)

    Becker, Christine; Urlić, Branimir; Jukić Špika, Maja; Kläring, Hans-Peter; Krumbein, Angelika; Baldermann, Susanne; Goreta Ban, Smiljana; Perica, Slavko; Schwarz, Dietmar

    2015-01-01

    Reduction of nitrogen application in crop production is desirable for ecological and health-related reasons. Interestingly, nitrogen deficiency can lead to enhanced concentrations of polyphenols in plants. The reason for this is still under discussion. The plants’ response to low nitrogen concentration can interact with other factors, for example radiation intensity. We cultivated red and green leaf lettuce hydroponically in a Mediterranean greenhouse, supplying three different levels of nitrogen (12 mM, 3 mM, 0.75 mM), either in full or reduced (-50%) radiation intensity. In both red and green lettuce, we found clear effects of the nitrogen treatments on growth characteristics, phenolic and photosynthetic compounds, nitrogen, nitrate and carbon concentration of the plants. Interestingly, the concentrations of all main flavonoid glycosides, caffeic acid derivatives, and sucrose increased with decreasing nitrogen concentration, whereas those of chlorophylls, β-carotene, neoxanthin, lactucaxanthin, all trans- and cis-violaxanthin decreased. The constitutive concentrations of polyphenols were lower in the green cultivar, but their relative increase was more pronounced than in the red cultivar. The constitutive concentrations of chlorophylls, β-carotene, neoxanthin, all trans- and cis-violaxanthin were similar in red and green lettuce and with decreasing nitrogen concentration they declined to a similar extent in both cultivars. We only detected little influence of the radiation treatments, e.g. on anthocyanin concentration, and hardly any interaction between radiation and nitrogen concentration. Our results imply a greater physiological plasticity of green compared to the red lettuce regarding its phenolic compounds. They support the photoprotection theory regarding anthocyanins as well as the theory that the deamination activity of phenylalanine ammonia-lyase drives phenylpropanoid synthesis. PMID:26569488

  3. Nitrogen Limited Red and Green Leaf Lettuce Accumulate Flavonoid Glycosides, Caffeic Acid Derivatives, and Sucrose while Losing Chlorophylls, Β-Carotene and Xanthophylls.

    Directory of Open Access Journals (Sweden)

    Christine Becker

    Full Text Available Reduction of nitrogen application in crop production is desirable for ecological and health-related reasons. Interestingly, nitrogen deficiency can lead to enhanced concentrations of polyphenols in plants. The reason for this is still under discussion. The plants' response to low nitrogen concentration can interact with other factors, for example radiation intensity. We cultivated red and green leaf lettuce hydroponically in a Mediterranean greenhouse, supplying three different levels of nitrogen (12 mM, 3 mM, 0.75 mM, either in full or reduced (-50% radiation intensity. In both red and green lettuce, we found clear effects of the nitrogen treatments on growth characteristics, phenolic and photosynthetic compounds, nitrogen, nitrate and carbon concentration of the plants. Interestingly, the concentrations of all main flavonoid glycosides, caffeic acid derivatives, and sucrose increased with decreasing nitrogen concentration, whereas those of chlorophylls, β-carotene, neoxanthin, lactucaxanthin, all trans- and cis-violaxanthin decreased. The constitutive concentrations of polyphenols were lower in the green cultivar, but their relative increase was more pronounced than in the red cultivar. The constitutive concentrations of chlorophylls, β-carotene, neoxanthin, all trans- and cis-violaxanthin were similar in red and green lettuce and with decreasing nitrogen concentration they declined to a similar extent in both cultivars. We only detected little influence of the radiation treatments, e.g. on anthocyanin concentration, and hardly any interaction between radiation and nitrogen concentration. Our results imply a greater physiological plasticity of green compared to the red lettuce regarding its phenolic compounds. They support the photoprotection theory regarding anthocyanins as well as the theory that the deamination activity of phenylalanine ammonia-lyase drives phenylpropanoid synthesis.

  4. Discussion Tourism Industry on Energy of Green Tourism and Green Hotel

    Directory of Open Access Journals (Sweden)

    Wang Zeyung

    2016-01-01

    Full Text Available Tourism industry is closely linked with the natural environment but with a highly indivisibility of symbiotic relationship. Green tourism and green tourism hotel are not only the spindle stage of development industry. The environmental protection is also an environmental conservation and sustainable development of substantive liability demonstration. The study is also belong to the substance RDF itself, so we can call “clean energy”. The raw materials came from agricultural waste through proper blending ratio and control technology, after PP14 adhesive extruded through the fluidized bed pyrolysis cracking process to burn stability. The recovery can also be used as fuel volatile process of drying and gasification. However, in the actual economic cost of the test running the hotel industry can reduce the cost per MJ USD $ 0.0082, more economical than coal expenses 23.17% of the fuel. Therefore, green hotel through biomass fuels RDF as clean fuels can further reduce carbon emissions to reach the green hotel of expectations.

  5. Ozone Differentially Affects Perception of Plant Volatiles in Western Honey Bees.

    Science.gov (United States)

    Dötterl, Stefan; Vater, Marina; Rupp, Thomas; Held, Andreas

    2016-06-01

    Floral scents play a key role in mediating plant-pollinator interactions. Volatile organic compounds (VOCs) emitted by flowers are used by flower visitors as olfactory cues to locate flowers, both from a distance and at close range. More recently it has been demonstrated that reactive molecules such as ozone can modify or degrade VOCs, and this may impair the communication between plants and their pollinators. However, it is not known whether such reactive molecules also may affect the olfactory system of pollinators, and thus not only influence signal transmission but perception of the signal. In this study, we used electroantennographic measurements to determine the effect of increased levels of ozone on antennal responses in western honey bees (Apis mellifera L.). Linalool and 2-phenylethanol, both known to be involved in location of flowers by the bees, and (Z)-3-hexenyl acetate, a widespread green leaf volatile also detected by bees, were used. The results showed that ozone affected antennal responses to the different substances differently. Ozone decreased antennal responses to (Z)-3-hexenyl acetate, whereas responses to linalool and 2-phenylethanol were not influenced by ozone. Overall, the study does not provide evidence that pollination by honey bees is impaired by damage in the olfactory system of the bees caused by increased levels of ozone, at least when linalool and 2-phenylethanol are the attractive signals. However, the results also suggest that ozone can change the overall perception of an odor blend. This might have negative effects in pollination systems and other organismic interactions mediated by specific ratios of compounds.

  6. Comparison of volatile components of flower, leaf, peel and juice of ...

    African Journals Online (AJOL)

    Flower components were extracted by using ultrasound (US) water bath apparatus and then eluted by n-pentane : diethylether (1:2) solvent. ... 37 flower components, 53 leaf components, 54 peel components and 47 juice components including: aldehydes, alcohols, esters, ketones, monoterpenes, sesquiterpenes and other ...

  7. Molecular Basis Underlying Leaf Variegation of a Moth Orchid Mutant (Phalaenopsis aphrodite subsp. formosana

    Directory of Open Access Journals (Sweden)

    Chi-Chu Tsai

    2017-07-01

    Full Text Available Leaf variegation is often the focus of plant breeding. Here, we studied a variegated mutant of Phalaenopsis aphrodite subsp. formosana, which is usually used as a parent of horticultural breeding, to understand its anatomic and genetic regulatory mechanisms in variegation. Chloroplasts with well-organized thylakoids and starch grains were found only in the mesophyll cells of green sectors but not of yellow sectors, confirming that the variegation belongs to the chlorophyll type. The two-dimensional electrophoresis and LC/MS/MS also reveal differential expressions of PsbP and PsbO between the green and yellow leaf sectors. Full-length cDNA sequencing revealed that mutant transcripts were caused by intron retention. When conditioning on the total RNA expression, we found that the functional transcript of PsbO and mutant transcript of PsbP are higher expressed in the yellow sector than in the green sector, suggesting that the post-transcriptional regulation of PsbO and PsbP differentiates the performance between green and yellow sectors. Because PsbP plays an important role in the stability of thylakoid folding, we suggest that the negative regulation of PsbP may inhibit thylakoid development in the yellow sectors. This causes chlorophyll deficiency in the yellow sectors and results in leaf variegation. We also provide evidence of the link of virus CymMV and the formation of variegation according to the differential expression of CymMV between green and yellow sectors.

  8. Mapped clone and functional analysis of leaf-color gene Ygl7 in a rice hybrid (Oryza sativa L. ssp. indica).

    Science.gov (United States)

    Deng, Xiao-juan; Zhang, Hai-qing; Wang, Yue; He, Feng; Liu, Jin-ling; Xiao, Xiao; Shu, Zhi-feng; Li, Wei; Wang, Guo-huai; Wang, Guo-liang

    2014-01-01

    Leaf-color is an effective marker to identify the hybridization of rice. Leaf-color related genes function in chloroplast development and the photosynthetic pigment biosynthesis of higher plants. The ygl7 (yellow-green leaf 7) is a mutant with spontaneous yellow-green leaf phenotype across the whole lifespan but with no change to its yield traits. We cloned gene Ygl7 (Os03g59640) which encodes a magnesium-chelatase ChlD protein. Expression of ygl7 turns green-leaves to yellow, whereas RNAi-mediated silence of Ygl7 causes a lethal phenotype of the transgenic plants. This indicates the importance of the gene for rice plant. On the other hand, it corroborates that ygl7 is a non-null mutants. The content of photosynthetic pigment is lower in Ygl7 than the wild type, but its light efficiency was comparatively high. All these results indicated that the mutational YGL7 protein does not cause a complete loss of original function but instead acts as a new protein performing a new function. This new function partially includes its preceding function and possesses an additional feature to promote photosynthesis. Chl1, Ygl98, and Ygl3 are three alleles of the OsChlD gene that have been documented previously. However, mutational sites of OsChlD mutant gene and their encoded protein products were different in the three mutants. The three mutants have suppressed grain output. In our experiment, plant materials of three mutants (ygl7, chl1, and ygl98) all exhibited mutational leaf-color during the whole growth period. This result was somewhat different from previous studies. We used ygl7 as female crossed with chl1 and ygl98, respectively. Both the F1 and F2 generation display yellow-green leaf phenotype with their chlorophyll and carotenoid content falling between the values of their parents. Moreover, we noted an important phenomenon: ygl7-NIL's leaf-color is yellow, not yellowy-green, and this is also true of all back-crossed offspring with ygl7.

  9. Mapped clone and functional analysis of leaf-color gene Ygl7 in a rice hybrid (Oryza sativa L. ssp. indica.

    Directory of Open Access Journals (Sweden)

    Xiao-juan Deng

    Full Text Available Leaf-color is an effective marker to identify the hybridization of rice. Leaf-color related genes function in chloroplast development and the photosynthetic pigment biosynthesis of higher plants. The ygl7 (yellow-green leaf 7 is a mutant with spontaneous yellow-green leaf phenotype across the whole lifespan but with no change to its yield traits. We cloned gene Ygl7 (Os03g59640 which encodes a magnesium-chelatase ChlD protein. Expression of ygl7 turns green-leaves to yellow, whereas RNAi-mediated silence of Ygl7 causes a lethal phenotype of the transgenic plants. This indicates the importance of the gene for rice plant. On the other hand, it corroborates that ygl7 is a non-null mutants. The content of photosynthetic pigment is lower in Ygl7 than the wild type, but its light efficiency was comparatively high. All these results indicated that the mutational YGL7 protein does not cause a complete loss of original function but instead acts as a new protein performing a new function. This new function partially includes its preceding function and possesses an additional feature to promote photosynthesis. Chl1, Ygl98, and Ygl3 are three alleles of the OsChlD gene that have been documented previously. However, mutational sites of OsChlD mutant gene and their encoded protein products were different in the three mutants. The three mutants have suppressed grain output. In our experiment, plant materials of three mutants (ygl7, chl1, and ygl98 all exhibited mutational leaf-color during the whole growth period. This result was somewhat different from previous studies. We used ygl7 as female crossed with chl1 and ygl98, respectively. Both the F1 and F2 generation display yellow-green leaf phenotype with their chlorophyll and carotenoid content falling between the values of their parents. Moreover, we noted an important phenomenon: ygl7-NIL's leaf-color is yellow, not yellowy-green, and this is also true of all back-crossed offspring with ygl7.

  10. Evaluation of the effects of Olea europaea L. subsp. africana (Mill.) P.S. Green (Oleaceae) leaf methanol extract against castor oil-induced diarrhoea in mice.

    Science.gov (United States)

    Amabeoku, George J; Bamuamba, Kapinga

    2010-03-01

    Olea europaea L. subsp. africana (Mill.) P.S. Green is widely used in South Africa by traditional medicine practitioners to treat diarrhoea. However, little is known scientifically about this South African species in the treatment of diarrhoea. The main aim of the study therefore was to investigate the antidiarrhoeal effect of the leaf methanol extract of the plant species in mice. The antidiarrhoeal activity of the leaf methanol extract of O. europaea subsp. africana was studied using a castor oil-induced diarrhoeal test. The antipropulsive activity of the plant extract was also investigated using the charcoal meal transit test. Standard methods were used to investigate the acute toxicity and effect of O. europaea subsp. africana on castor oil-induced intraluminal fluid accumulation. Leaf methanol extract of O. europaea subsp. africana and loperamide, a standard antidiarrhoeal drug, significantly reduced the number of diarrhoeal episodes induced by castor oil, significantly decreased the stool mass, significantly delayed the onset of the diarrhoea and protected the animals against castor oil-induced diarrhoea. Both O. europaea subsp. africana and loperamide significantly decreased the gastrointestinal transit of charcoal meal and castor oil-induced intraluminal fluid accumulation in mice. The LD50 value was found to be 3475 mg/kg (p.o.). The results obtained suggest that the leaf methanol extract of O. europaea subsp. africana has an antidiarrhoeal property and that, given orally, it may be non-toxic and/or safe in mice.

  11. The effect of ultraviolet-B radiation on gene expression and pigment composition in etiolated and green pea leaf tissue: UV-B-induced changes are gene-specific and dependent upon the developmental stage

    International Nuclear Information System (INIS)

    Jordan, B.R.; James, P.E.; Strid, A.; Anthony, R.G.

    1994-01-01

    The effect of ultraviolet-B radiation (UV-B: 280–320nm) on gene expression and pigment composition has been investigated in pea tissue at different stages of development. Pea (Pisum sativum L., cv. Feltham First) seedlings were grown for 17d and then exposed to supplementary UV-B radiation. Chlorophyll a per unit fresh weight decreased by more than 20% compared with control levels after exposure to UV-B radiation for 7d. In contrast, chlorophyll b content remained the same or increased slightly. Leaf protein biosynthesis, as determined by 35 S-methionine incorporation, was rapidly inhibited by UV-B radiation, although the steady-state levels of proteins were either unchanged or only slightly altered. RNA transcripts for the chlorophyll a/b binding protein (cab) were also rapidly reduced to low or even undetectable levels in the expanded third leaf or younger leaf bud tissue after exposure to UV-B radiation. In contrast, cab RNA transcripts were either low or undetectable in etiolated pea tissue, but increased substantially in light and during exposure to UV-B radiation. The cab RNA transcripts were still present at control levels in pea plants after 7d of greening under supplementary UV-B radiation or UV-B alone. The protein composition changed significantly over the 7d of greening, but no differences could be detected between the light treatments. The increase in chlorophyll content was slightly greater during de-etiolation under supplementary UV-B radiation than under control irradiance. Under UV-B radiation alone, chlorophyll was synthesized at a greatly reduced rate. Changes in protective pigments were also determined. Anthocyanins did not change in either etiolated or green tissue exposed to UV-B radiation. However, other flavonoids increased substantially in either tissue during exposure to light and UV-B radiation. The RNA levels for chalcone synthase were measured in green and etiolated tissue exposed to UV-B radiation. The chs RNA transcripts were

  12. Modelling Volatility Spillovers for Bio-ethanol, Sugarcane and Corn

    NARCIS (Netherlands)

    C-L. Chang (Chia-Lin); M.J. McAleer (Michael); Y-A. Wang (Yu-Ann)

    2016-01-01

    textabstractThe recent and rapidly growing interest in biofuel as a green energy source has raised concerns about its impact on the prices, returns and volatility of related agricultural commodities. Analyzing the spillover effects on agricultural commodities and biofuel helps commodity suppliers

  13. Isoprene emission by poplar is not important for the feeding behaviour of poplar leaf beetles

    OpenAIRE

    M?ller, Anna; Kaling, Moritz; Faubert, Patrick; Gort, Gerrit; Smid, Hans M; Van Loon, Joop JA; Dicke, Marcel; Kanawati, Basem; Schmitt-Kopplin, Philippe; Polle, Andrea; Schnitzler, J?rg-Peter; Rosenkranz, Maaria

    2015-01-01

    Background Chrysomela populi (poplar leaf beetle) is a common herbivore in poplar plantations whose infestation causes major economic losses. Because plant volatiles act as infochemicals, we tested whether isoprene, the main volatile organic compound (VOC) produced by poplars (Populus x canescens), affects the performance of C. populi employing isoprene emitting (IE) and transgenic isoprene non-emitting (NE) plants. Our hypothesis was that isoprene is sensed and affects beetle orientation or ...

  14. The influence of soil salinity on volatile organic compounds emission and photosynthetic parameters of Solanum lycopersicum L. varieties

    Directory of Open Access Journals (Sweden)

    Tomescu Daniel

    2017-05-01

    Full Text Available Soil salinity is one of the best known stress factors of plants that can lead to crop yield reduction. Therefore, it is important to identify new tolerance varieties of plants that can grow on saline soils. We have studied the influence of salt on five different tomato varieties from the Western region of Romania and compared them with a commercial hybrid and found that one of them (Rudna is a very salt-tolerant variety (up to 200 mM NaCl. The assimilation rates and stomata conductance of water vapour are affected by salinity but some of the local varieties of tomato exhibit quite good tolerance. We found that all plants under salinity stress emit (Z-3-hexenol (a C6, green leaf volatile and the emission of all terpenes increased in proportion to the salt concentration. The emission of three terpenes, (Z-beta-ocimene. 2-carene and beta-phellandrene, have been quantitatively correlated with salt concentration.

  15. Presidential Green Chemistry Challenge: 2005 Designing Greener Chemicals Award

    Science.gov (United States)

    Presidential Green Chemistry Challenge 2005 award winner, Archer Daniels Midland, developed Archer RC, a nonvolatile, biobased, reactive coalescent that replaces volatile organic coalescents in architectural latex paints.

  16. Modulation of δ-Aminolevulinic Acid Dehydratase Activity by the Sorbitol-Induced Osmotic Stress in Maize Leaf Segments.

    Science.gov (United States)

    Jain, M; Tiwary, S; Gadre, R

    2018-01-01

    Osmotic stress induced with 1 M sorbitol inhibited δ-aminolevulinic acid dehydratase (ALAD) and aminolevulinic acid (ALA) synthesizing activities in etiolated maize leaf segments during greening; the ALAD activity was inhibited to a greater extent than the ALA synthesis. When the leaves were exposed to light, the ALAD activity increased for the first 8 h, followed by a decrease observed at 16 and 24 h in both sorbitol-treated and untreated leaf tissues. The maximum inhibition of the enzyme activity was observed in the leaf segments incubated with sorbitol for 4 to 8 h. Glutamate increased the ALAD activity in the in vitro enzymatic preparations obtained from the sorbitol-treated leaf segments; sorbitol inhibited the ALAD activity in the preparations from both sorbitol-treated and untreated leaves. It was suggested that sorbitol-induced osmotic stress inhibits the enzyme activity by affecting the ALAD induction during greening and regulating the ALAD steady-state level of ALAD in leaf cells. The protective effect of glutamate on ALAD in the preparations from the sorbitol-treated leaves might be due to its stimulatory effect on the enzyme.

  17. (Chlorophyta) biomass production using Moringa oleifera Lam. leaf ...

    African Journals Online (AJOL)

    Chlorella sorokiniana Shih. et Krauss, a unicellular green alga was assayed to assess its to promotion potentials response of aqueous and ethanolic leaf extracts of Moringa oleifera Lam. C. sorokiniana grown in 200 ml aliquots of modified basal medium for two weeks: was treated with the aqueous and ethanolic extracts at ...

  18. Biological, medicinal and toxicological significance of Eucalyptus leaf essential oil: a review.

    Science.gov (United States)

    Dhakad, Ashok K; Pandey, Vijay V; Beg, Sobia; Rawat, Janhvi M; Singh, Avtar

    2018-02-01

    The genus Eucalyptus L'Heritier comprises about 900 species, of which more than 300 species contain volatile essential oil in their leaves. About 20 species, within these, have a high content of 1,8-cineole (more than 70%), commercially used for the production of essential oils in the pharmaceutical and cosmetic industries. However, Eucalyptus is extensively planted for pulp, plywood and solid wood production, but its leaf aromatic oil has astounding widespread biological activities, including antimicrobial, antiseptic, antioxidant, chemotherapeutic, respiratory and gastrointestinal disorder treatment, wound healing, and insecticidal/insect repellent, herbicidal, acaricidal, nematicidal, and perfumes, soap making and grease remover. In the present review, we have made an attempt to congregate the biological ingredients of leaf essential oil, leaf oil as a natural medicine, and pharmacological and toxicological values of the leaf oil of different Eucalyptus species worldwide. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  19. Differences between winter oilseed rape (Brassica napus L.) cultivars in nitrogen starvation-induced leaf senescence are governed by leaf-inherent rather than root-derived signals

    Czech Academy of Sciences Publication Activity Database

    Koeslin-Findeklee, F.; Becker, M. A.; van der Graaff, E.; Roitsch, Thomas; Horst, W. J.

    2015-01-01

    Roč. 66, č. 13 (2015), s. 3669-3681 ISSN 0022-0957 Institutional support: RVO:67179843 Keywords : Brassica napus * cytokinins * genotypic differences * leaf senescence * nitrogen efficiency * nitrogen starvation * reciprocal grafting * stay-green Subject RIV: EH - Ecology, Behaviour Impact factor: 5.677, year: 2015

  20. Do Aphids Alter Leaf Surface Temperature Patterns During Early Infestation?

    Directory of Open Access Journals (Sweden)

    Thomas Cahon

    2018-03-01

    Full Text Available Arthropods at the surface of plants live in particular microclimatic conditions that can differ from atmospheric conditions. The temperature of plant leaves can deviate from air temperature, and leaf temperature influences the eco-physiology of small insects. The activity of insects feeding on leaf tissues, may, however, induce changes in leaf surface temperatures, but this effect was only rarely demonstrated. Using thermography analysis of leaf surfaces under controlled environmental conditions, we quantified the impact of presence of apple green aphids on the temperature distribution of apple leaves during early infestation. Aphids induced a slight change in leaf surface temperature patterns after only three days of infestation, mostly due to the effect of aphids on the maximal temperature that can be found at the leaf surface. Aphids may induce stomatal closure, leading to a lower transpiration rate. This effect was local since aphids modified the configuration of the temperature distribution over leaf surfaces. Aphids were positioned at temperatures near the maximal leaf surface temperatures, thus potentially experiencing the thermal changes. The feedback effect of feeding activity by insects on their host plant can be important and should be quantified to better predict the response of phytophagous insects to environmental changes.

  1. Extension of a dynamic headspace multi-volatile method to milliliter injection volumes with full sample evaporation: Application to green tea.

    Science.gov (United States)

    Ochiai, Nobuo; Sasamoto, Kikuo; Tsunokawa, Jun; Hoffmann, Andreas; Okanoya, Kazunori; MacNamara, Kevin

    2015-11-20

    An extension of multi-volatile method (MVM) technology using the combination of a standard dynamic headspace (DHS) configuration, and a modified DHS configuration incorporating an additional vacuum module, was developed for milliliter injection volume of aqueous sample with full sample evaporation. A prior step involved investigation of water management by weighing of the water residue in the adsorbent trap. The extended MVM for 1 mL aqueous sample consists of five different DHS method parameter sets including choice of the replaceable adsorbent trap. An initial two DHS sampling sets at 25°C with the standard DHS configuration using a carbon-based adsorbent trap target very volatile solutes with high vapor pressure (>10 kPa) and volatile solutes with moderate vapor pressure (1-10 kPa). Subsequent three DHS sampling sets at 80°C with the modified DHS configuration using a Tenax TA trap target solutes with low vapor pressure (88%) for 17 test aroma compounds and moderate recoveries (44-71%) for 4 test compounds. The method showed good linearity (r(2)>0.9913) and high sensitivity (limit of detection: 0.1-0.5 ng mL(-1)) even with MS scan mode. The improved sensitivity of the method was demonstrated with analysis of a wide variety of aroma compounds in brewed green tea. Compared to the original 100 μL MVM procedure, this extension to 1 mL MVM allowed detection of nearly twice the number of aroma compounds, including 18 potent aroma compounds from top-note to base-note (e.g. 2,3-butanedione, coumarin, furaneol, guaiacol, cis-3-hexenol, linalool, maltol, methional, 3-methyl butanal, 2,3,5-trimethyl pyrazine, and vanillin). Sensitivity for 23 compounds improved by a factor of 3.4-15 under 1 mL MVM conditions. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. One-step green synthesis and characterization of leaf extract-mediated biocompatible silver and gold nanoparticles from Memecylon umbellatum

    Science.gov (United States)

    Arunachalam, Kantha D; Annamalai, Sathesh Kumar; Hari, Shanmugasundaram

    2013-01-01

    In this experiment, green-synthesized silver and gold nanoparticles were produced rapidly by treating silver and gold ions with an extract of Memecylon umbellatum leaf. The reaction process was simple and easy to handle, and was monitored using ultraviolet-visible spectroscopy. The effect of the phytochemicals present in M. umbellatum, including saponins, phenolic compounds, phytosterols, and quinones, on formation of stable silver and gold nanoparticles was investigated by Fourier-transform infrared spectroscopy. The morphology and crystalline phase of the nanoparticles were determined by transmission electron microscopy and energy-dispersive x-ray spectroscopy. The results indicate that the saponins, phytosterols, and phenolic compounds present in the plant extract play a major role in formation of silver and gold nanoparticles in their respective ions in solution. The characteristics of the nanoparticles formed suggest application of silver and gold nanoparticles as chemical sensors in the future. Given the simple and eco-friendly approach for synthesis, these nanoparticles could easily be commercialized for large-scale production. PMID:23569372

  3. Assessing urban habitat quality based on specific leaf area and stomatal characteristics of Plantago lanceolata L

    International Nuclear Information System (INIS)

    Kardel, F.; Wuyts, K.; Babanezhad, M.; Vitharana, U.W.A.; Wuytack, T.; Potters, G.; Samson, R.

    2010-01-01

    This study has evaluated urban habitat quality by studying specific leaf area (SLA) and stomatal characteristics of the common herb Plantago lanceolata L. SLA and stomatal density, pore surface and resistance were measured at 169 locations in the city of Gent (Belgium), distributed over four land use classes, i.e., sub-urban green, urban green, urban and industry. SLA and stomatal density significantly increased from sub-urban green towards more urbanised land use classes, while the reverse was observed for stomatal pore surface. Stomatal resistance increased in the urban and industrial land use class in comparison with the (sub-) urban green, but differences between land use classes were less pronounced. Spatial distribution maps for these leaf characteristics showed a high spatial variation, related to differences in habitat quality within the city. Hence, stomatal density and stomatal pore surface are assumed to be potentially good bio-indicators for urban habitat quality. - Stomatal characteristics of Plantago lanceolata can be used for biomonitoring of urban habitat quality.

  4. Emission of hydrogen sulfide by leaf tissue in response to L-cysteine

    International Nuclear Information System (INIS)

    Sekiya, J.; Schmidt, A.; Wilson, L.G.; Filner, P.

    1982-01-01

    Leaf discs and detached leaves exposed to L-cysteine emitted a volatile sulfur compound which was proven by gas chromatography to be H 2 S. This phenomenon was demonstrated in all nine species tested (Cucumis sativus, Cucurbita pepo, Nicotiana tabacum, Coleus blumei, Beta vulgaris, Phaseolus vulgaris, Medicago sativa, Hordeum vulgare, and Gossypium hirsutum). The emission of volatile sulfur by cucumber leaves occurred in the dark at a similar rate to that in the light. The emission of leaf discs reached the maximal rate, more than 40 picomoles per minute per square centimeter, 2 to 4 hours after starting exposure to L-cysteine; then it decreased. In the case of detached leaves, the maximum occurred 5 to 10 h after starting exposure. The average emission rate of H 2 S during the first 4 hours from leaf discs of cucurbits in response to 10 millimolar L-cysteine, was usually more than 40 picomoles per minute per square centimeter, i.e. 0.24 micromoles per hour per square decimeter. Leaf discs exposed to 1 millimolar L-cysteine emitted only 2% as much as did the discs exposed to 10 millimolar L-cysteine. The emission from leaf discs and from detached leaves lasted for at least 5 and 15 hours, respectively. However, several hours after the maximal emission, injury of the leaves, manifested as chlorosis, was evident. H 2 S emission was a specific consequence of exposure to L-cysteine; neither D-cysteine nor L-cysteine elicited H 2 S emission. Aminooxyacetic acid, an inhibitor of pyridoxal phosphate dependent enzymes, inhibited the emission. In a cell free system from cucumber leaves, H 2 S formation and its release occurred in response to L-cysteine. Feeding experiments with [ 35 S]t-cysteine showed that most of the sulfur in H 2 S was derived from sulfur in the L-cysteine supplied

  5. Spectroscopic Study of Green Tea (Camellia sinensis) Leaves Extraction

    Science.gov (United States)

    Marzuki, A.; Suryanti, V.; Virgynia, A.

    2017-04-01

    This paper reports the analysis of UV-VIS-NIR absorption spectra of different concentrations of green tea (Camellia sinensis) leaf extract in two different solvent systems (chloroform and ethyl acetate). In those solvents, two different peaks characterizing green tea are observed at different wavelengths, namely 296 nm and 329 nm (extracted in chloroform) and 391 nm and 534 nm (extracted in ethyl acetate). We then investigated the absorption spectra change as function of green tea concentration in both solvents. We found that light absorption increases linearly with the increase of green tea concentration. Different wavelengths, however, respond this change differently. However, the way it changes is wavelength dependence.

  6. Remote estimation of nitrogen and chlorophyll contents in maize at leaf and canopy levels

    Science.gov (United States)

    Schlemmer, M.; Gitelson, A.; Schepers, J.; Ferguson, R.; Peng, Y.; Shanahan, J.; Rundquist, D.

    2013-12-01

    Leaf and canopy nitrogen (N) status relates strongly to leaf and canopy chlorophyll (Chl) content. Remote sensing is a tool that has the potential to assess N content at leaf, plant, field, regional and global scales. In this study, remote sensing techniques were applied to estimate N and Chl contents of irrigated maize (Zea mays L.) fertilized at five N rates. Leaf N and Chl contents were determined using the red-edge chlorophyll index with R2 of 0.74 and 0.94, respectively. Results showed that at the canopy level, Chl and N contents can be accurately retrieved using green and red-edge Chl indices using near infrared (780-800 nm) and either green (540-560 nm) or red-edge (730-750 nm) spectral bands. Spectral bands that were found optimal for Chl and N estimations coincide well with the red-edge band of the MSI sensor onboard the near future Sentinel-2 satellite. The coefficient of determination for the relationships between the red-edge chlorophyll index, simulated in Sentinel-2 bands, and Chl and N content was 0.90 and 0.87, respectively.

  7. Effect of foliar fertilizer and fungicidal protection against leaf spot diseases on winter wheat

    Directory of Open Access Journals (Sweden)

    Agnieszka Mączyńska

    2012-12-01

    Full Text Available Field experiments were carried out in the seasons 2000/2001 and 2001/2002 in Plant Protection Institute, Sooenicowice Branch to assess the influence of foliar fertilizers such as Ekolist PK 1, Ekolist Mg, Mikrosol Z and Urea on healthiness of winter wheat. Foliar fertilizers were mixed with fungicides. The fungicides were applied at full or half recommended doses. The effect of the disease on wheat leaves was evaluated three times in each vegetation season. Remaining green leaf area (GLA of leaves was also determined. GLA of the leaves F-1 was not significantly different for each combination with different fertilization and different levels of chemical treatment. The application of foliar fertilizer only had no effect on green leaf area (GLA. The results indicate that foliar fertilization of all experimental plots improved leaf condition and therefore halted the development of wheat leaf diseases. The increases of 1000 grain mass and yield was high for each plot where a fertilizer and a full or half dose of a fungicide was applied. Foliar fertilizing with no chemical control had no proven effect on studied parameters.

  8. Tea green leafhopper, Empoasca vitis, chooses suitable host plants by detecting the emission level of (3Z)-hexenyl acetate.

    Science.gov (United States)

    Xin, Z-J; Li, X-W; Bian, L; Sun, X-L

    2017-02-01

    Green leaf volatiles (GLVs) have been reported to play an important role in the host-locating behavior of several folivores that feed on angiosperms. However, next to nothing is known about how the green leafhopper, Empoasca vitis, chooses suitable host plants and whether it detects differing emission levels of GLV components among genetically different tea varieties. Here we found that the constitutive transcript level of the tea hydroperoxide lyase (HPL) gene CsiHPL1, and the amounts of (Z)-3-hexenyl acetate and of total GLV components are significantly higher in tea varieties that are susceptible to E. vitis (Enbiao (EB) and Banzhuyuan (BZY)) than in varieties that are resistant to E. vitis (Changxingzisun (CX) and Juyan (JY)). Moreover, the results of a Y-tube olfactometer bioassay and an oviposition preference assay suggest that (Z)-3-hexenyl acetate and (Z)-3-hexenol offer host and oviposition cues for E. vitis female adults. Taken together, the two GLV components, (Z)-3-hexenol and especially (Z)-3-hexenyl acetate, provide a plausible mechanism by which tea green leafhoppers distinguish among resistant and susceptible varieties. Future research should be carried out to obtain the threshold of the above indices and then assess their reasonableness. The development of practical detection indices would greatly improve our ability to screen and develop tea varieties that are resistant to E. vitis.

  9. Microwave assisted facile green synthesis of silver and gold nanocatalysts using the leaf extract of Aerva lanata

    Science.gov (United States)

    Joseph, Siby; Mathew, Beena

    2015-02-01

    Herein, we report a simple microwave assisted method for the green synthesis of silver and gold nanoparticles by the reduction of aqueous metal salt solutions using leaf extract of the medicinal plant Aerva lanata. UV-vis., FTIR, XRD, and HR-TEM studies were conducted to assure the formation of nanoparticles. XRD studies clearly confirmed the crystalline nature of the synthesized nanoparticles. From the HR-TEM images, the silver nanoparticles (AgNPs) were found to be more or less spherical and gold nanoparticles (AuNPs) were observed to be of different morphology with an average diameter of 18.62 nm for silver and 17.97 nm for gold nanoparticles. In order to evaluate the effect of microwave heating upon rate of formation, the synthesis was also conducted under ambient condition without the assistance of microwave radiation and the former method was found to be much faster than the later. The synthesized nanoparticles were used as nanocatalysts in the reduction of 4-nitrophenol to 4-aminophenol by NaBH4.

  10. Relationship between leaf optical properties, chlorophyll fluorescence and pigment changes in senescing Acer saccharum leaves.

    Science.gov (United States)

    Junker, Laura Verena; Ensminger, Ingo

    2016-06-01

    The ability of plants to sequester carbon is highly variable over the course of the year and reflects seasonal variation in photosynthetic efficiency. This seasonal variation is most prominent during autumn, when leaves of deciduous tree species such as sugar maple (Acer saccharum Marsh.) undergo senescence, which is associated with downregulation of photosynthesis and a change of leaf color. The remote sensing of leaf color by spectral reflectance measurements and digital repeat images is increasingly used to improve models of growing season length and seasonal variation in carbon sequestration. Vegetation indices derived from spectral reflectance measurements and digital repeat images might not adequately reflect photosynthetic efficiency of red-senescing tree species during autumn due to the changes in foliar pigment content associated with autumn phenology. In this study, we aimed to assess how effectively several widely used vegetation indices capture autumn phenology and reflect the changes in physiology and photosynthetic pigments during autumn. Chlorophyll fluorescence and pigment content of green, yellow, orange and red leaves were measured to represent leaf senescence during autumn and used as a reference to validate and compare vegetation indices derived from leaf-level spectral reflectance measurements and color analysis of digital images. Vegetation indices varied in their suitability to track the decrease of photosynthetic efficiency and chlorophyll content despite increasing anthocyanin content. Commonly used spectral reflectance indices such as the normalized difference vegetation index and photochemical reflectance index showed major constraints arising from a limited representation of gradual decreases in chlorophyll content and an influence of high foliar anthocyanin levels. The excess green index and green-red vegetation index were more suitable to assess the process of senescence. Similarly, digital image analysis revealed that vegetation

  11. Relationships between volatile compounds and sensory characteristics in virgin olive oil by analytical and chemometric approaches.

    Science.gov (United States)

    Procida, Giuseppe; Cichelli, Angelo; Lagazio, Corrado; Conte, Lanfranco S

    2016-01-15

    The volatile fraction of virgin olive oil is characterised by low molecular weight compounds that vaporise at room temperature. In order to obtain an aroma profile similar to natural olfactory perception, the composition of the volatile compounds was determined by applying dynamic headspace gas chromatography, performed at room temperature, with a cryogenic trap directly connected to a gas chromatograph-mass spectrometer system. Samples were also evaluated according to European Union and International Olive Council official methods for sensory evaluation. In this paper, the composition of the volatile fraction of 25 extra virgin olive oils from different regions of Italy was analysed and some preliminary considerations on relationships between chemical composition of volatile fraction and sensory characteristics are reported. Forty-two compounds were identified by means of the particular analytical technique used. All the analysed samples, classified as extra virgin by the panel test, never present peaks whose magnitude is important enough in defected oils. The study was focused on the evaluation of volatile compounds responsible for the positive impact on olive odour properties ('green-fruity' and 'sweet') and olfactory perception. Chemometric evaluation of data, obtained through headspace analysis and the panel test evaluation, showed a correlation between chemical compounds and sensory properties. On the basis of the results, the positive attributes of virgin olive oil are divided into two separated groups: sweet types or green types. Sixteen volatile compounds with known positive impact on odour properties were extracted and identified. In particular, eight compounds seem correlated with sweet properties whereas the green sensation appears to be correlated with eight other different substances. The content of the compounds at six carbon atoms proves to be very important in defining positive attributes of extra virgin olive oils and sensory evaluation. © 2015

  12. Determination of Volatiles by Odor Activity Value and Phenolics of cv. Ayvalik Early-Harvest Olive Oil

    Directory of Open Access Journals (Sweden)

    Gamze Guclu

    2016-06-01

    Full Text Available Ayvalik is an important olive cultivar producing high quality oils in Turkey. In the present study, volatile and phenolic compositions of early-harvest extra virgin olive oil (cv. Ayvalik were determined. The solvent-assisted flavor evaporation (SAFE technique was used for the extraction of volatile components. The aromatic extract obtained by SAFE was representative of the olive oil odor. A total of 32 aroma compounds, including alcohols, aldehydes, terpenes, esters, and an acid, were identified in the olive oil. Aldehydes and alcohols were qualitatively and quantitatively the most dominant volatiles in the oil sample. Of these, six volatile components presented odor activity values (OAVs greater than one, with (Z-3-hexenal (green, hexanal (green-sweet and nonanal (fatty-pungent being those with the highest OAVs in olive oil. A total of 14 phenolic compounds were identified and quantified by liquid chromatography combined with a diode array detector and ion spray mass spectrometry. The major phenolic compounds were found as 3,4-DHPEA-EDA, 3,4-DHPEA-EA and p-HPEA-EDA.

  13. Determination of Volatiles by Odor Activity Value and Phenolics of cv. Ayvalik Early-Harvest Olive Oil

    Science.gov (United States)

    Guclu, Gamze; Sevindik, Onur; Kelebek, Hasim; Selli, Serkan

    2016-01-01

    Ayvalik is an important olive cultivar producing high quality oils in Turkey. In the present study, volatile and phenolic compositions of early-harvest extra virgin olive oil (cv. Ayvalik) were determined. The solvent-assisted flavor evaporation (SAFE) technique was used for the extraction of volatile components. The aromatic extract obtained by SAFE was representative of the olive oil odor. A total of 32 aroma compounds, including alcohols, aldehydes, terpenes, esters, and an acid, were identified in the olive oil. Aldehydes and alcohols were qualitatively and quantitatively the most dominant volatiles in the oil sample. Of these, six volatile components presented odor activity values (OAVs) greater than one, with (Z)-3-hexenal (green), hexanal (green-sweet) and nonanal (fatty-pungent) being those with the highest OAVs in olive oil. A total of 14 phenolic compounds were identified and quantified by liquid chromatography combined with a diode array detector and ion spray mass spectrometry. The major phenolic compounds were found as 3,4-DHPEA-EDA, 3,4-DHPEA-EA and p-HPEA-EDA. PMID:28231141

  14. Timing and duration of autumn leaf development in Sweden

    Science.gov (United States)

    Bolmgren, Kjell

    2014-05-01

    The growing season is changing in both ends and autumn phases seem to be responding in more diverse ways than spring events. Indeed, we know little about autumn leaf phenological strategies and how they are correlated with fitness components or ecosystem properties, and how they vary between species and over bioclimatic gradients. In this study more than 10 000 students were involved in observing autumn leaf development at 378 sites all over Sweden (55-68°N). They followed an image based observation protocol classifying autumn leaf development into five levels, from summer green (level 0) to 100% autumn leaf colored (level 4) canopy. In total, they submitted almost 12 000 observations between August 9 and November 15. 75% of the observations were made on the common species of Populus tremula, Betula pendula/pubescens and Sorbus aucuparia. The expected (negative) correlation between latitude and start of leaf senescence (level 2) was found in Populus and Betula, but not in Sorbus. The duration of the leaf senescence period, defined as the period between 1/3 (level 2) and 100% (level 4) of the canopy autumn leaf colored, was negatively correlated with latitude in Populus and Betula, but not in Sorbus. There was also a strong (negative) correlation of the start (level 2) and the duration of the leaf senescence in the early senescing Sorbus and Betula, while this effect was weaker in the late senescing Populus.

  15. Measurement of Leaf Mass and Leaf Area of Oaks In A Mediterranean-climate Region For Biogenic Emission Estimation

    Science.gov (United States)

    Karlik, J.

    Given the key role played by biogenic volatile organic compounds (BVOC) in tro- pospheric chemistry and regional air quality, it is critical to generate accurate BVOC emission inventories. Because several oak species have high BVOC emission rates, and oak trees are often of large stature with corresponding large leaf masses, oaks may be the most important genus of woody plants for BVOC emissions modeling in the natural landscapes of Mediterranean-climate regions. In California, BVOC emis- sions from oaks may mix with anthropogenic emissions from urban areas, leading to elevated levels of ozone. Data for leaf mass and leaf area for a stand of native blue oaks (Quercus douglasii) were obtained through harvest and leaf removal from 14 trees lo- cated in the Sierra Nevada foothills of central California. Trees ranged in height from 4.2 to 9.9 m, with trunk diameters at breast height of 14 to 85 cm. Mean leaf mass density was 730 g m-2 for the trees and had an overall value of 310 g m-2 for the site. Consideration of the surrounding grassland devoid of trees resulted in a value of about 150 g m-2, less than half of reported values for eastern U.S. oak woodlands, but close to a reported value for oaks found in St. Quercio, Italy. The mean value for leaf area index (LAI) for the trees at this site was 4.4 m2 m-2. LAI for the site was 1.8 m2 m-2, but this value was appropriate for the oak grove only; including the surrounding open grassland resulted in an overall LAI value of 0.9 m2 m-2 or less. A volumetric method worked well for estimating the leaf mass of the oak trees. Among allometric relationships investigated, trunk circumference, mean crown radius, and crown projec- tion were well correlated with leaf mass. Estimated emission of isoprene (mg C m-2 h-1) for the site based these leaf mass data and experimentally determined emission rate was similar to that reported for a Mediterranean oak woodland in France.

  16. Volatile-Mediated within-Plant Signaling in Hybrid Aspen: Required for Systemic Responses.

    Science.gov (United States)

    Li, Tao; Blande, James D

    2017-04-01

    Plant volatiles play crucial roles in signaling between plants and their associated community members, but their role in within-plant signaling remains largely unexplored, particularly under field conditions. Using a system comprising the hybrid aspen (Populus tremula x tremuloides) and the specialized herbivorous leaf beetle (Phratora laticollis) and, combining field, greenhouse and laboratory experiments, we examined whether local damage triggered systemic responses in undamaged branches that lack vascular connection to the damaged branches, and to what extent this was caused by airborne volatile signals versus internal signals. An experiment tracing dye through the vasculature of saplings revealed no downward movement of the dye from upper to lower branches, suggesting a lack of vascular connectivity among branches. However, we found under both field and laboratory conditions that herbivore feeding on upper branches elicited volatile emissions by undamaged lower branches. Greenhouse experiments manipulating air contact between damaged and undamaged branches showed that systemic induction of volatiles was almost eliminated when air contact was interrupted. Our findings clearly demonstrate that herbivore-induced volatiles overcome vascular constraints and mediate within-plant signaling. Further, we found that volatile signaling led to induction of different classes of volatiles under field and environment controlled conditions, with a weaker response observed in the field. This difference not only reflects the dose- and time-dependent nature of volatile signaling, but also points out that future studies should focus more on field observations to better understand the ecological role of volatile-mediated within-plant signaling.

  17. Both phenolic and non-phenolic green tea fractions inhibit migration of cancer cells

    Science.gov (United States)

    Green tea consumption is associated with chemoprevention of many cancer types. Fresh tea leaves are rich in polyphenolic catechins, which can constitute up to 30% of the dry leaf weight. While the polyphenols of green tea have been well investigated, it is still largely unknown, whether or not non-p...

  18. Distribution Characterization of Leaf and Hull Pubescences and Genetic Analysis of Their Numbers in japonica Rice (Oryza sativa

    Directory of Open Access Journals (Sweden)

    Xiao-biao ZHU

    2008-12-01

    Full Text Available Distributions of pubescences on leaf blade and hull in japonica rice were observed under an optical microscope. Numbers of leaf and hull pubescences in P1, P2, F1, B1, B2 and F2 generations were investigated in three combinations of japonica rice (Sidao 10A/Wuyujing 3R, Wuyujing 3A/Sidao 10R and Liuyan 189A/HR-122, and genetic analysis for these two traits were conducted by using the joint analysis method of P1, P2, F1, B1, B2 and F2 generations with the mixed major gene plus polygene inheritance models. Leaf pubescences characterized by swollen base and fine tip distributed regularly on the boundary between dark green stripe and light green stripe of leaf blade. Hull pubescences with various lengths distributed irregularly on the whole hull. Numbers of leaf pubescences in the reciprocal combinations of Sidao 10A/Wuyujing 3R and Wuyujing 3A/Sidao 10R and numbers of hull pubescences in all the three combinations were controlled by one pair of additive major genes plus additive-dominant polygenes. In the combination of Liuyan 189A/HR-122, number of leaf pubescences was controlled by one pair of additive-dominant major genes plus additive-dominant polygenes. Both numbers of leaf and hull pubescences were mainly governed by major genes.

  19. Development of a HS-SPME-GC/MS protocol assisted by chemometric tools to study herbivore-induced volatiles in Myrcia splendens.

    Science.gov (United States)

    Souza Silva, Érica A; Saboia, Giovanni; Jorge, Nina C; Hoffmann, Camila; Dos Santos Isaias, Rosy Mary; Soares, Geraldo L G; Zini, Claudia A

    2017-12-01

    A headspace solid phase microextraction (HS-SPME) method combined with gas chromatography-mass spectrometry (GC/MS) was developed and optimized for extraction and analysis of volatile organic compounds (VOC) of leaves and galls of Myrcia splendens. Through a process of optimization of main factors affecting HS-SPME efficiency, the coating divivnilbenzene-carboxen-polydimethylsiloxane (DVB/Car/PDMS) was chosen as the optimum extraction phase, not only in terms of extraction efficiency, but also for its broader analyte coverage. Optimum extraction temperature was 30°C, while an extraction time of 15min provided the best compromise between extraction efficiencies of lower and higher molecular weight compounds. The optimized protocol was demonstrated to be capable of sampling plant material with high reproducibility, considering that most classes of analytes met the 20% RSD FDA criterion. The optimized method was employed for the analysis of three classes of M. splendens samples, generating a final list of 65 tentatively identified VOC, including alcohols, aldehydes, esters, ketones, phenol derivatives, as well as mono and sesquiterpenes. Significant differences were evident amongst the volatile profiles obtained from non-galled leaves (NGL) and leaf-folding galls (LFG) of M. splendens. Several differences pertaining to amounts of alcohols and aldehydes were detected between samples, particularly regarding quantities of green leaf volatiles (GLV). Alcohols represented about 14% of compounds detected in gall samples, whereas in non-galled samples, alcohol content was below 5%. Phenolic derived compounds were virtually absent in reference samples, while in non-galled leaves and galls their content ranged around 0.2% and 0.4%, respectively. Likewise, methyl salicylate, a well-known signal of plant distress, amounted for 1.2% of the sample content of galls, whereas it was only present in trace levels in reference samples. Chemometric analysis based on Heatmap associated

  20. Photo-induced green synthesis and antimicrobial efficacy of poly (ɛ-caprolactone)/curcumin/grape leaf extract-silver hybrid nanoparticles.

    Science.gov (United States)

    El-Sherbiny, Ibrahim M; El-Shibiny, Ayman; Salih, Ehab

    2016-07-01

    This study reports the photo-induced green synthesis and antimicrobial assessment of poly(ɛ-caprolactone)/curcumin/grape leaf extract-Ag hybrid nanoparticles (PCL/Cur/GLE-Ag NPs). PCL/Cur/GLE NPs were synthesized via emulsion-solvent evaporation in the presence of PVA as a capping agent, then used as active nano-supports for the green synthesis and stabilization of AgNPs on their surfaces. Both Cur and GLE were selected and incorporated into the PCL nano-supports due to their reported promising antimicrobial activity that would further enhance that of the synthesized AgNPs. The developed PCL/Cur/GLE NPs and PCL/Cur/GLE-Ag hybrid NPs were characterized using UV-visible spectrophotometry, high resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD). HRTEM images showed that the PCL/Cur/GLE NPs are monodispersed and spherical with size of about 270nm, and the AgNPs were formed mainly on their surfaces with average size in the range 10-30nm. The synthesized AgNPs were found to be crystalline as shown by XRD patterns with fcc phase oriented along the (111), (200), (220) and (311) planes. The antimicrobial characteristics of the newly developed NPs were investigated against gram-positive and gram-negative bacteria in addition to two fungal strains. The results demonstrated that the PCL/Cur/GLE-Ag hybrid NPs have a potential antimicrobial activity against pathogenic bacterial species and could be considered as an alternative antibacterial agent. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. GC-MS Analysis of the Volatile Constituents in the Leaves of 14 Compositae Plants

    Directory of Open Access Journals (Sweden)

    Yiguang Wang

    2018-01-01

    Full Text Available The green organs, especially the leaves, of many Compositae plants possess characteristic aromas. To exploit the utility value of these germplasm resources, the constituents, mainly volatile compounds, in the leaves of 14 scented plant materials were qualitatively and quantitatively compared via gas chromatography-mass spectrometry (GC-MS. A total of 213 constituents were detected and tentatively identified in the leaf extracts, and terpenoids (especially monoterpene and sesquiterpene derivatives, accounting for 40.45–90.38% of the total compounds, were the main components. The quantitative results revealed diverse concentrations and compositions of the chemical constituents between species. Principal component analysis (PCA showed that different groups of these Compositae plants were characterized by main components of α-thujone, germacrene D, eucalyptol, β-caryophyllene, and camphor, for example. On the other hand, cluster memberships corresponding to the molecular phylogenetic framework, were found by hierarchical cluster analysis (HCA based on the terpenoid composition of the tested species. These results provide a phytochemical foundation for the use of these scented Compositae plants, and for the further study of the chemotaxonomy and differential metabolism of Compositae species.

  2. Terpenes of Salvia species leaf oils: chemosystematic implications

    OpenAIRE

    Coassini Lokar, Laura; Moneghini, Mariarosa

    2017-01-01

    Wild specimens of Salvia L. were collected in three different moments of anthesis and their volatile leaf oils were analyzed by GC/GCMS. The quantitative terpene composition is very variable with the anthesis. S. bertolonii is the richest species in a-thujone. S. officinalis is characterized by high percentages of 1,8 cineole, 4-terpineol, isorboneol and a -bisabolol. In S. verticillata high percentages of borneol and {3-cariophyllene are present. In the three species a-thujone was always mor...

  3. Fresh, dried or smoked? repellent properties of volatiles emitted from ethnomedicinal plant leaves against malaria and yellow fever vectors in Ethiopia

    Directory of Open Access Journals (Sweden)

    Dube Fitsum

    2011-12-01

    Full Text Available Abstract Background In the search for plant-based mosquito repellents, volatile emanations were investigated from five plant species, Corymbia citriodora, Ocimum suave, Ocimum lamiifolium, Olea europaea and Ostostegia integrifolia, traditionally used in Ethiopia as protection against mosquitoes. Methods The behaviour of two mosquitoes, the malaria vector Anopheles arabiensis and the arbovirus vector Aedes aegypti, was assessed towards volatiles collected from the headspace of fresh and dried leaves, and the smoke from burning the dried leaves in a two-choice landing bioassay and in the background of human odour. Results Volatile extracts from the smoke of burning dried leaves were found to be more repellent than those from fresh leaves, which in turn were more repellent to mosquitoes than volatiles from dried leaves. Of all smoke and fresh volatile extracts, those from Co. citriodora (52-76% and Oc. suave (58-68% were found to be the most repellent, Os. integrifolia (29-56% to be intermediate while Ol. europaea (23-40% and Os. integrifolia (19-37% were the least repellent. One volatile present in each of the fresh leaf extracts of Co. citriodora, Oc. suave and Os. integrifolia was ß-ocimene. The levels of ß-ocimene reflected the mosquito repellent activity of these three fresh leaf extracts. Female host-seeking mosquitoes responded dose-dependently to ß-ocimene, both physiologically and behaviourally, with a maximal behavioural repulsion at 14% ß-ocimene. ß-ocimene (14% repels mosquitoes in our 6-minute landing assays comparable to the synthetic insect repellent N,N-diethyl-m-toluamide (10% DEET. Conclusions Volatiles in the smoke of burning as well as fresh leaves of Co. citriodora and Oc. suave have significant repellent properties against host seeking An. arabiensis and Ae. aegypti mosquitoes. ß-ocimene, present in the fresh leaf headspace of Co. citriodora, Oc. suave and Os. integrifolia, is a significantly effective volatile mosquito

  4. STAY-GREEN and Chlorophyll Catabolic Enzymes Interact at Light-Harvesting Complex II for Chlorophyll Detoxification during Leaf Senescence in Arabidopsis[C][W

    Science.gov (United States)

    Sakuraba, Yasuhito; Schelbert, Silvia; Park, So-Yon; Han, Su-Hyun; Lee, Byoung-Doo; Andrès, Céline Besagni; Kessler, Felix; Hörtensteiner, Stefan; Paek, Nam-Chon

    2012-01-01

    During leaf senescence, plants degrade chlorophyll to colorless linear tetrapyrroles that are stored in the vacuole of senescing cells. The early steps of chlorophyll breakdown occur in plastids. To date, five chlorophyll catabolic enzymes (CCEs), NONYELLOW COLORING1 (NYC1), NYC1-LIKE, pheophytinase, pheophorbide a oxygenase (PAO), and red chlorophyll catabolite reductase, have been identified; these enzymes catalyze the stepwise degradation of chlorophyll to a fluorescent intermediate, pFCC, which is then exported from the plastid. In addition, STAY-GREEN (SGR), Mendel’s green cotyledon gene encoding a chloroplast protein, is required for the initiation of chlorophyll breakdown in plastids. Senescence-induced SGR binds to light-harvesting complex II (LHCII), but its exact role remains elusive. Here, we show that all five CCEs also specifically interact with LHCII. In addition, SGR and CCEs interact directly or indirectly with each other at LHCII, and SGR is essential for recruiting CCEs in senescing chloroplasts. PAO, which had been attributed to the inner envelope, is found to localize in the thylakoid membrane. These data indicate a predominant role for the SGR-CCE-LHCII protein interaction in the breakdown of LHCII-located chlorophyll, likely to allow metabolic channeling of phototoxic chlorophyll breakdown intermediates upstream of nontoxic pFCC. PMID:22366162

  5. Effects of {gamma}-radiation on white tea volatiles

    Energy Technology Data Exchange (ETDEWEB)

    Fanaro, Gustavo B.; Silveira, Ana Paula M.; Nunes, Thaise C.F.; Costa, Helbert S.F.; Villavicencio, Anna L.C.H. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)], e-mail: gbfanaro@ipen.br; Purgatto, Eduardo [Universidade de Sao Paulo (USP), SP (Brazil). Faculdade de Ciencias Farmaceuticas. Dept. de Alimentos e Nutricao Experimental

    2009-07-01

    Tea is the second most widely consumed beverages in the world and is processed from two and a bud of Camellia sinensis (L.). Depending on the processing may give rise to four mainly teas (green, black, oolong and white tea). The white tea is the one that has recently awakened interest in scientific community due the fact that this tea has more antioxidant property and activity than green tea. A further industrialization and commercialization of these plants become a problem of public health. The presence of potentially toxigenic fungi can be found in these products, indicating a great potential for the presence of mycotoxins that can cause acute and chronic effects in different organs and systems of the human body. Ionizing radiation is one of the most effective means disinfecting dry food ingredients. This treatment can inhibit cellular life division, like microorganisms, promoting a molecular structural modification. The aim of this study was evaluate the effects of radiation on volatile formation in white tea. Samples were irradiated in room temperature at {sup 60}Co source Gammacell 220 (A.E.C. Ltda) at doses of 0, 5, 10, 15 and 20-kGy. The volatiles organic compound was extracted by hydrodistillation and the extract was separated and identified by gas chromatography-mass spectrometry (GC-MS) analysis. The results show that the quantities of volatiles formations are directly proportional to the increase of radiation dose. About 37.86% of the compounds were stable at all radiation doses and 47.53% of new compounds were identified after irradiation. (author)

  6. Effects of γ-radiation on white tea volatiles

    International Nuclear Information System (INIS)

    Fanaro, Gustavo B.; Silveira, Ana Paula M.; Nunes, Thaise C.F.; Costa, Helbert S.F.; Villavicencio, Anna L.C.H.; Purgatto, Eduardo

    2009-01-01

    Tea is the second most widely consumed beverages in the world and is processed from two and a bud of Camellia sinensis (L.). Depending on the processing may give rise to four mainly teas (green, black, oolong and white tea). The white tea is the one that has recently awakened interest in scientific community due the fact that this tea has more antioxidant property and activity than green tea. A further industrialization and commercialization of these plants become a problem of public health. The presence of potentially toxigenic fungi can be found in these products, indicating a great potential for the presence of mycotoxins that can cause acute and chronic effects in different organs and systems of the human body. Ionizing radiation is one of the most effective means disinfecting dry food ingredients. This treatment can inhibit cellular life division, like microorganisms, promoting a molecular structural modification. The aim of this study was evaluate the effects of radiation on volatile formation in white tea. Samples were irradiated in room temperature at 60 Co source Gammacell 220 (A.E.C. Ltda) at doses of 0, 5, 10, 15 and 20-kGy. The volatiles organic compound was extracted by hydrodistillation and the extract was separated and identified by gas chromatography-mass spectrometry (GC-MS) analysis. The results show that the quantities of volatiles formations are directly proportional to the increase of radiation dose. About 37.86% of the compounds were stable at all radiation doses and 47.53% of new compounds were identified after irradiation. (author)

  7. Comparative study of the volatile oil content and antimicrobial activity of Psidium guajava L. and Psidium cattleianum Sabine leaves

    Directory of Open Access Journals (Sweden)

    Fathy M. Soliman

    2016-12-01

    Full Text Available The chemical composition of the hydrodistilled oils of the leaves of Psidium guajava L. (guava leaf and Psidium cattleianum Sabine (strawberry guava was determined by GC/MS analysis to identify their chemotypes. Moreover, in vitro antimicrobial activity of these volatile oils against selected bacteria, yeast, and mycelia fungi was studied. The yield of the volatile oil hydrodistilled from the leaves of P. guajava L. and P. cattleianum Sabine was 1.6 and 2.69 g/kg on fresh weight basis, respectively. Limonene was the major identified hydrocarbon in P. guava leaves’ oil (54.70%, whereas, 1, 8-cineole was the major identified oxygenated monoterpenoid (32.14% in common guava leaves. The foliar oil of P. cattleianum was predominated by the sesquiterpene hydrocarbon; β-caryophyllene representing 28.83% of the total oil make-up. The antibacterial activity of guava leaf oil was more pronounced against Bacillus subtilis, Staphylococcus aureus, Streptococcus faecalis, Escherichia coli, and Pseudomonas aeruginosa than that of strawberry guava leaves, while P. cattleianum showed a higher activity against ess. The MIC of the volatile oil of the leaves of P. guajava against S. aureus was 6.75 μg/ml, while that of P. cattleianum exhibited MIC value of 13.01 μg/ml against Neisseria gonorrhoeae. Results demonstrated that the volatile oil of both Psidium species showed different chemotypes. Moreover, the volatile oils of guava and strawberry guava leaves might be good candidates as antimicrobial agents.

  8. Low-temperature process steps for realization of non-volatile memory devices

    NARCIS (Netherlands)

    Brunets, I.; Boogaard, A.; Aarnink, Antonius A.I.; Kovalgin, Alexeij Y.; Wolters, Robertus A.M.; Holleman, J.; Schmitz, Jurriaan

    2007-01-01

    In this work, the low-temperature process steps required for the realization of nano-crystal non-volatile memory cells are discussed. An amorphous silicon film, crystallized using a diode pumped solid state green laser irradiating at 532 nm, is proposed as an active layer. The deposition of the

  9. Microwave Pretreatments of Switchgrass Leaf and Stem Fractions to Increase Methane Production

    Directory of Open Access Journals (Sweden)

    Chunhui Wu

    2015-05-01

    Full Text Available The objective of this study was to determine the effectiveness of microwave pretreatments on methane production from two switchgrass tissues (leaf vs. stem. The methane production from the leaf fraction was significantly affected by the microwave final temperature, while production from the stem fraction was affected by the combination of the microwave final temperature and heating rate. Thus, the highest methane yield from the leaf (134.81 mL CH4/g of volatile solids (VS was obtained at 100 °C, while the highest yield from the stem (99.35 mL CH4/g VS was obtained at 150 °C, with a heating rate of 10 °C/min. Although methane production from the leaf fraction was merely enhanced by 9.1% after microwave pretreatments, the time required to reach 80% of ultimate methane production was reduced by 12 days. For the stem fraction, methane production was improved by 5.2% after microwave pretreatment, and the time to obtain 80% of ultimate methane production increased.

  10. Mangifera Indica leaf-assisted biosynthesis of well-dispersed silver nanoparticles

    Science.gov (United States)

    Philip, Daizy

    2011-01-01

    The use of various parts of plants for the synthesis of nanoparticles is considered as a green technology as it does not involve any harmful chemicals. The present study reports a facile and rapid biosynthesis of well-dispersed silver nanoparticles. The method developed is environmentally friendly and allows the reduction to be accelerated by changing the temperature and pH of the reaction mixture consisting of aqueous AgNO 3 and Mangifera Indica leaf extract. At a pH of 8, the colloid consists of well-dispersed triangular, hexagonal and nearly spherical nanoparticles having size ˜20 nm. The UV-vis spectrum of silver nanoparticles gave surface plasmon resonance (SPR) at 439 nm. The synthesized nanocrystals were characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. Water soluble organics present in the leaf are responsible for the reduction of silver ions. This green method provides faster synthesis comparable to chemical methods and can be used in areas such as cosmetics, foods and medical applications.

  11. A Green Protocol for Microwave-Assisted Extraction of Volatile Oil Terpenes from Pterodon emarginatus Vogel. (Fabaceae

    Directory of Open Access Journals (Sweden)

    Giuliana M. Vila Verde

    2018-03-01

    Full Text Available Microwave-assisted extraction of volatile oils (MAE potentially offers a more efficient and bio-sustainable method than conventional extraction by Clevenger apparatus (CE. This study aimed to optimise the MAE of the volatile oil from Pterodon emarginatus fruits and characterise the volatile compounds. A 23 full-factorial central composite design and response surface methodology were used to evaluate the effects of time (min, moisture (% and microwave power (W on the extraction yield. The process optimisation was based on the desirability function approach. The reaction time and moisture conditions were standardised in these analyses. The volatile oil composition was analysed by Gas Chromatography/Mass Spectrometry (GC/MS in order to compare techniques extractions influences. Microwave irradiation showed excellent performance for extraction of the volatile oil from Pterodon emarginatus and there were some advantages in compare to conventional method with respect to the time (14 times, energy (6 times, reagents amounts and waste formation. About chemical composition presents significant differences with the type of extraction. Caryophyllene (25.65% and trans-α-bisabolol (6.24% were identified as major components in MAE sample while caryophyllene (6.75% and γ-elemene (7.02% are the components with higher relative percentage in CE samples. The microwaves assisted process shown an increase of economic interested compounds present in volatile oil.

  12. Green leafy porridges: how good are they in controlling glycaemic response?

    Science.gov (United States)

    Anuruddhika Subhashinie Senadheera, Senadheera Pathirannehelage; Ekanayake, Sagarika

    2013-03-01

    Green leafy porridges made with leaf water extracts, rice and coconut milk are common Sri Lankan dietary remedies for diabetes. Though water and ethanolic extracts of most leaves elicit hypoglycaemic effects, data are not available on the efficacy when leaf extracts are incorporated into porridges. Thus, an effort was made to evaluate the proximate compositions and glycaemic index (GI) of some commonly consumed green leafy porridges. The GI of rice porridge and coconut milk porridge were measured to evaluate the effect of other ingredients other than the leaf extracts. Rice was the main contributor to carbohydrate (56-68% on dry weight) and water was the main component in porridges (89-93%). Fat and total dietary fibre contents ranged between 2.5-27% and 5-10%, respectively. The GI of all porridges was low (GI ≤ 55), except Cassia auriculata which had a high GI of 77 ± 12. The GIs of coconut milk, Aerva lanata, Hemidesmus indicus, Scoparia dulcis, Asparagus racemosus, Cephalandra indica, Cardiospermum halicacabum, Murraya koenigii and Aegle marmelos were 31 ± 5, 32 ± 5, 40 ± 8, 39 ± 8, 37 ± 4, 49 ± 8, 46 ± 8, 44 ± 8 and 50 ± 8, respectively. All porridges had a low or medium glycaemic loads ( ≤ 19). However, peak blood glucose reductions of ≥ 25% were observed in all leafy and coconut milk porridges, except in C. auriculata and Atlantia zeylanica, when compared with the glucose control. Therefore, green leafy porridges, except Cassia, can be recommended as breakfast meals for diabetics due to their low GI, peak blood glucose reduction and presence of other nutrients in green leaves.

  13. Stochastic volatility of volatility in continuous time

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole; Veraart, Almut

    This paper introduces the concept of stochastic volatility of volatility in continuous time and, hence, extends standard stochastic volatility (SV) models to allow for an additional source of randomness associated with greater variability in the data. We discuss how stochastic volatility...... of volatility can be defined both non-parametrically, where we link it to the quadratic variation of the stochastic variance process, and parametrically, where we propose two new SV models which allow for stochastic volatility of volatility. In addition, we show that volatility of volatility can be estimated...

  14. Serrated leaf mutant in mungbean (Vigna radiata (L) Wilczek)

    International Nuclear Information System (INIS)

    Malik, I.A.; Ghulam, Sarwar; Yousaf, Ali; Saleem, M.

    1988-01-01

    Dry dormant seeds of mungbean (Vigna radiata (L) Wilczek) were treated with gamma rays (15, 30 and 60 kR). The serrated leaf mutation was noticed in M 2 of cultivar Pak 32 treated with 60 kR. Cf 14 plants, 3 showed the altered leaf structure and the others were normal. The feature of this mutant was the deep serration of leaflet margins. The mutant had large thick leaflets with prominent venation. The mutant bred true in the M 3 and successive generation. Details of the morphological characteristics of the mutant are presented. The mutant exhibited slower growth particularly during the early stages of development, flowered later and attained shorter height. There was an increase in the number of pods, in seed weight and in seed protein content, but number of seed per pod was considerably reduced. The seed coat colour showed a change from green to yellowish green. In the mutant's flowers the stamina were placed much below the stigma level and the stigma sometimes protruded the corolla. Outcrossing of 4% recorded in some of the mutant lines revealed a reduced cleistogamy. The low number of seeds per pod in the mutant could be due to reduced pollen fertility. The mutant behaved as monogenic recessive. The symbols SL/sl are proposed for this allelic pair. The mutant may have use as a green manure crop because of its large foliage and for the breeders as a genetic marker

  15. Developing agricultural opportunities on mine tailings : the Green Mines green energy initiative

    Energy Technology Data Exchange (ETDEWEB)

    Tisch, B.; Spiers, G.; Beckett, P.; Lock, A. [Natural Resources Canada, Ottawa, ON (Canada). CANMET Mining and Mineral Sciences Laboratories

    2009-02-15

    The goal of the Green Mines green energy initiative is to advance mine reclamation through the beneficial use of organic residuals for the sustainable establishment of bioenergy crops and other productive land uses. Target organic residuals include: source separated organic compost; papermill biosolids; leaf and yard waste compost; and municipal wastewater biosolids. This presentation discussed the Green Mines green energy initiative with particular reference to potential uses; current participants; scope of the initiative; and progress to date. The presentation also discussed a column study that involved adding filter, filter fabric, silica sand and polyethylene beads to the base of columns. Unoxidized tailings were slurried and pumped into columns and then the oxidized tailings were dried and homogenized. The results of acidic copper/nickel tailings with lime and no lime were also discussed. A summary of findings from the column study was offered. It was found that nutrient management must be considered and organic covers appear to increase metal and arsenic leaching from unlimed tailings. The presentation also made reference to demonstration field plots; biosolids delivery; tilling; monitoring; biomass sampling; and harvesting. The presentation concluded with a discussion of next steps which involve completing construction of the current suite of field plots and implementing full monitoring. figs.

  16. Phytofabrication and characterization of monodisperse copper oxide nanoparticles using Albizia lebbeck leaf extract

    Science.gov (United States)

    Jayakumarai, G.; Gokulpriya, C.; Sudhapriya, R.; Sharmila, G.; Muthukumaran, C.

    2015-12-01

    Simple effective and rapid approach for the green synthesis of copper oxide nanoparticles (CONPs) using of Albizia lebbeck leaf extract was investigated in this study. Various instrumental techniques were adopted to characterize the synthesized CONPs, viz. UV-Vis spectroscopy, SEM, TEM, EDS and XRD. The synthesized CONPs were found to be spherical in shape and size less than 100 nm. It could be concluded that A. lebbeck leaf extract can be used as a cheap and effective reducing agent for CONPs production in large scale.

  17. Study on flavour volatiles of γ-aminobutyric acid (GABA) green tea ...

    African Journals Online (AJOL)

    The volatile components of γ-aminobutyric acid (GABA) tea produced by two different kinds of technological process separately namely: vacuum and water immersion were studied. It was shown by the sensory evaluation that the color of the soup and the extracted leaves of GABA tea were similar to that of the oolong tea, ...

  18. Antibacterial, Antibiofilm Effect of Burdock (Arctium lappa L.) Leaf Fraction and Its Efficiency in Meat Preservation.

    Science.gov (United States)

    Lou, Zaixiang; Li, Cheng; Kou, Xingran; Yu, Fuhao; Wang, Hongxin; Smith, Gary M; Zhu, Song

    2016-08-01

    First, the antibacterial, antibiofilm effect and chemical composition of burdock (Arctium lappa L.) leaf fractions were studied. Then, the efficiency of burdock leaf fractions in pork preservation was evaluated. The results showed that burdock leaf fraction significantly inhibited the growth and biofilm development of Escherichia coli and Salmonella Typhimurium. MICs of burdock leaf fractions on E. coli and Salmonella Typhimurium were both 2 mg/ml. At a concentration of 2.0 mg/ml, the inhibition rates of the fraction on growth and development of E. coli and Salmonella Typhimurium biofilms were 78.7 and 69.9%, respectively. During storage, the log CFU per gram of meat samples treated with burdock leaf fractions decreased 2.15, compared with the samples without treatment. The shelf life of pork treated with burdock leaf fractions was extended 6 days compared with the pork without treatment, and the sensory property was obviously improved. Compared with the control group, burdock leaf fraction treatment significantly decreased the total volatile basic nitrogen value and pH of the meat samples. Chemical composition analysis showed that the burdock leaf fraction consisted of chlorogenic acid, caffeic acid, p-coumaric acid, rutin, cynarin, crocin, luteolin, arctiin, and quercetin. As a vegetable with an abundant source, burdock leaf is safe, affordable, and efficient in meat preservation, indicating that burdock leaf fraction is a promising natural preservative for pork.

  19. Green synthesis of silver nanoparticles from Moringa oleifera leaf extracts and its antimicrobial potential

    Science.gov (United States)

    Moodley, Jerushka S.; Babu Naidu Krishna, Suresh; Pillay, Karen; Sershen; Govender, Patrick

    2018-03-01

    In this study we report on the synthesis of silver nanoparticles (AgNPs) from the leaf extracts of Moringa oleifera using sunlight irradiation as primary source of energy, and its antimicrobial potential. Silver nanoparticle formation was confirmed by surface plasmon resonance at 450 nm and 440 nm, respectively for both fresh and freeze-dried leaf samples. Crystanality of AgNPs was confirmed by transmission electron microscopy, scanning electron microscopy with energy dispersive x-ray spectroscopy and Fourier transform infrared (FTIR) spectroscopy analysis. FTIR spectroscopic analysis suggested that flavones, terpenoids and polysaccharides predominate and are primarily responsible for the reduction and subsequent capping of AgNPs. X-ray diffraction analysis also demonstrated that the size range of AgNPs from both samples exhibited average diameters of 9 and 11 nm, respectively. Silver nanoparticles showed antimicrobial activity on both bacterial and fungal strains. The biosynthesised nanoparticle preparations from M. oleifera leaf extracts exhibit potential for application as broad-spectrum antimicrobial agents.

  20. Leaf absorbance and photosynthesis

    Science.gov (United States)

    Schurer, Kees

    1994-01-01

    The absorption spectrum of a leaf is often thought to contain some clues to the photosynthetic action spectrum of chlorophyll. Of course, absorption of photons is needed for photosynthesis, but the reverse, photosynthesis when there is absorption, is not necessarily true. As a check on the existence of absorption limits we measured spectra for a few different leaves. Two techniques for measuring absorption have been used, viz. the separate determination of the diffuse reflectance and the diffuse transmittance with the leaf at a port of an integrating sphere and the direct determination of the non-absorbed fraction with the leaf in the sphere. In a cross-check both methods yielded the same results for the absorption spectrum. The spectrum of a Fuchsia leaf, covering the short-wave region from 350 to 2500 nm, shows a high absorption in UV, blue and red, the well known dip in the green and a steep fall-off at 700 nm. Absorption drops to virtually zero in the near infrared, with subsequent absorptions, corresponding to the water absorption bands. In more detailed spectra, taken at 5 nm intervals with a 5 nm bandwidth, differences in chlorophyll content show in the different depths of the dip around 550 nm and in a small shift of the absorption edge at 700 nm. Spectra for Geranium (Pelargonium zonale) and Hibiscus (with a higher chlorophyll content) show that the upper limit for photosynthesis can not be much above 700 nm. No evidence, however, is to be seen of a lower limit for photosynthesis and, in fact, some experiments down to 300 nm still did not show a decrease of the absorption although it is well recognized that no photosynthesis results with 300 nm wavelengths.

  1. Green technology meets ecotoxicology

    Directory of Open Access Journals (Sweden)

    Kristina Radošević

    2016-01-01

    Full Text Available By applying concept and principles of green chemistry into different technological processes, green technologies are developed. The environmental and economic benefits of “green” approach is achieved through several directions, such as the use of renewable raw materials, creation of economic efficiency, the use of alternative reaction conditions, as well as the application of non-conventional solvents. From the point view of green chemistry, alternative solvents, in order to be a “green“ substitution to hazardous organic solvents, should be: non-volatile, non-flammable, stabile, synthesized by an environmentally friendly procedure, nontoxic and biodegradable. The toxic impact of all newly synthesized chemicals, such as alternative solvents, could be determined by methods and techniques of ecotoxicology. Ecotoxicology, an interdisciplinary scientific field, can serve as a way of monitoring the greenness of the processes. In vivo and in vitro experiments are used to study the effects of chemicals on different levels of organizations, from molecules to communities and ecosystem. The usage of in vitro methods is encouraged by a scientific community and regulatory agencies as an alternative to in vivo studies in order to reduce the number of laboratory animals used in the toxicological studies. Therefore, in this paper we gave a brief overview on the usage of animal cell cultures within the field of green chemistry and technology.

  2. Physiological Characterization and Comparative Transcriptome Analysis of White and Green Leaves of Ananas comosus var. bracteatus

    OpenAIRE

    Li, Xia; Kanakala, Surapathrudu; He, Yehua; Zhong, Xiaolan; Yu, Sanmiao; Li, Ruixue; Sun, Lingxia; Ma, Jun

    2017-01-01

    Leaf coloration is one of the most important and attractive characteristics of Ananas comosus var. bracteatus. The chimeric character is not stable during the in vitro tissue culturing. Many regenerated plants lost economic values for the loss of the chimeric character of leaves. In order to reveal the molecular mechanisms involved in the albino phenotype of the leaf cells, the physiological and transcriptional differences between complete white (CWh) and green (CGr) leaf cells of A. comosus ...

  3. Responses of rubber leaf phenology to climatic variations in Southwest China

    Science.gov (United States)

    Zhai, De-Li; Yu, Haiying; Chen, Si-Chong; Ranjitkar, Sailesh; Xu, Jianchu

    2017-11-01

    The phenology of rubber trees (Hevea brasiliensis) could be influenced by meteorological factors and exhibits significant changes under different geoclimates. In the sub-optimal environment in Xishuangbanna, rubber trees undergo lengthy periods of defoliation and refoliation. The timing of refoliation from budburst to leaf aging could be affected by powdery mildew disease (Oidium heveae), which negatively impacts seed and latex production. Rubber trees are most susceptible to powdery mildew disease at the copper and leaf changing stages. Understanding and predicting leaf phenology of rubber trees are helpful to develop effective means of controlling the disease. This research investigated the effect of several meteorological factors on different leaf phenological stages in a sub-optimal environment for rubber cultivation in Jinghong, Yunnan in Southwest China. Partial least square regression was used to quantify the relationship between meteorological factors and recorded rubber phenologies from 2003 to 2011. Minimum temperature in December was found to be the critical factor for the leaf phenology development of rubber trees. Comparing the delayed effects of minimum temperature, the maximum temperature, diurnal temperature range, and sunshine hours were found to advancing leaf phenologies. A comparatively lower minimum temperature in December would facilitate the advancing of leaf phenologies of rubber trees. Higher levels of precipitation in February delayed the light green and the entire process of leaf aging. Delayed leaf phenology was found to be related to severe rubber powdery mildew disease. These results were used to build predictive models that could be applied to early warning systems of rubber powdery mildew disease.

  4. Effects of near ultraviolet and green radiations on plant growth

    Energy Technology Data Exchange (ETDEWEB)

    Klein, R.M.; Edsall, P.C.; Gentile, A.C.

    1965-01-01

    Selective removal of near ultraviolet and green wavelengths from white light permitted enhanced growth of marigold, tomato, corn, and Impatiens plants, Chlamydomonas cells and the mycelium of Sordaria. Additions of near ultraviolet and green radiations caused repressions in the growth of marigold and Sordaria. These wavelengths do not alter the oxidative mechanisms of mitochondria, intact algal cells or marigold leaf tissues. The capacity for chlorophyll and carotenoid synthesis by Euglena cells was unaffected by these wavelengths. 23 references, 2 figures, 4 tables.

  5. European spruce bark beetle (Ips typographus, L.) green attack affects foliar reflectance and biochemical properties

    Science.gov (United States)

    Abdullah, Haidi; Darvishzadeh, Roshanak; Skidmore, Andrew K.; Groen, Thomas A.; Heurich, Marco

    2018-02-01

    The European spruce bark beetle Ips typographus, L. (hereafter bark beetle), causes major economic loss to the forest industry in Europe, especially in Norway Spruce (Picea abies). To minimise economic loss and preclude a mass outbreak, early detection of bark beetle infestation (so-called ;green attack; stage - a period at which trees are yet to show visual signs of infestation stress) is, therefore, a crucial step in the management of Norway spruce stands. It is expected that a bark beetle infestation at the green attack stage affects a tree's physiological and chemical status. However, the concurrent effect on key foliar biochemical such as foliar nitrogen and chlorophyll as well as spectral responses are not well documented in the literature. Therefore, in this study, the early detection of bark beetle green attacks is investigated by examining foliar biochemical and spectral properties (400-2000 nm). We also assessed whether bark beetle infestation affects the estimation accuracy of foliar biochemicals. An extensive field survey was conducted in the Bavarian Forest National Park (BFNP), Germany, in the early summer of 2015 to collect leaf samples from 120 healthy and green attacked trees. The spectra of the leaf samples were measured using an ASD FieldSpec3 equipped with an integrating sphere. Significant differences (p < 0.05) between healthy and infested needle samples were found in the mean reflectance spectra, with the most pronounced differences being observed in the NIR and SWIR regions between 730 and 1370 nm. Furthermore, significant differences (p < 0.05) were found in the biochemical compositions (chlorophyll and nitrogen concentration) of healthy versus green attacked samples. Our results further demonstrate that the estimation accuracy of foliar chlorophyll and nitrogen concentrations, utilising partial least square regression model, was lower for the infested compared to the healthy trees. We show that early stage of infestation reduces not only

  6. Formation and emission of linalool in tea (Camellia sinensis) leaves infested by tea green leafhopper (Empoasca (Matsumurasca) onukii Matsuda).

    Science.gov (United States)

    Mei, Xin; Liu, Xiaoyu; Zhou, Ying; Wang, Xiaoqin; Zeng, Lanting; Fu, Xiumin; Li, Jianlong; Tang, Jinchi; Dong, Fang; Yang, Ziyin

    2017-12-15

    Famous oolong tea (Oriental Beauty), which is manufactured by tea leaves (Camellia sinensis) infected with tea green leafhoppers, contains characteristic volatile monoterpenes derived from linalool. This study aimed to determine the formation mechanism of linalool in tea exposed to tea green leafhopper attack. The tea green leafhopper responsible for inducing the production of characteristic volatiles was identified as Empoasca (Matsumurasca) onukii Matsuda. E. (M.) onukii attack significantly induced the emission of linalool from tea leaves (ptea leaves exposed to E. (M.) onukii attack. This information should prove helpful for the future use of stress responses of plant secondary metabolism to improve quality components of agricultural products. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Patterns of late spring frost leaf damage and recovery in a European beech (Fagus sylvatica L.) stand in south-eastern Germany based on repeated digital photographs.

    Science.gov (United States)

    Menzel, Annette; Helm, Raimund; Zang, Christian

    2015-01-01

    Damage by late spring frost is a risk deciduous trees have to cope with in order to optimize the length of their growing season. The timing of spring phenological development plays a crucial role, not only at the species level, but also at the population and individual level, since fresh new leaves are especially vulnerable. For the pronounced late spring frost in May 2011 in Germany, we studied the individual leaf development of 35 deciduous trees (mainly European beech Fagus sylvatica L.) at a mountainous forest site in the Bayerischer Wald National Park using repeated digital photographs. Analyses of the time series of greenness by a novel Bayesian multiple change point approach mostly revealed five change points which almost perfectly matched the expected break points in leaf development: (i) start of the first greening between day of the year (DOY) 108-119 (mean 113), (ii) end of greening, and (iii) visible frost damage after the frost on the night of May 3rd/4th (DOY 123/124), (iv) re-sprouting 19-38 days after the frost, and (v) full maturity around DOY 178 (166-184) when all beech crowns had fully recovered. Since frost damage was nearly 100%, individual susceptibility did not depend on the timing of first spring leaf unfolding. However, we could identify significant patterns in fitness linked to an earlier start of leaf unfolding. Those individuals that had an earlier start of greening during the first flushing period had a shorter period of recovery and started the second greening earlier. Thus, phenological timing triggered the speed of recovery from such an extreme event. The maximum greenness achieved, however, did not vary with leaf unfolding dates. Two mountain ashes (Sorbus aucuparia L.) were not affected by the low temperatures of -5°C. Time series analysis of webcam pictures can thus improve process-based knowledge and provide valuable insights into the link between phenological variation, late spring frost damage, and recovery within one stand.

  8. Enhancement of Biogas Yield of Poplar Leaf by High-Solid Codigestion with Swine Manure.

    Science.gov (United States)

    Wangliang, Li; Zhikai, Zhang; Guangwen, Xu

    2016-05-01

    The aim of this work was to examine the improvement of anaerobic biodegradability of organic fractions of poplar leaf from codigestion with swine manure (SM), thus biogas yield and energy recovery. When poplar leaf was used as a sole substrate, the cumulative biogas yield was low, about 163 mL (g volatile solid (VS))(-1) after 45 days of digestion with a substrate/inoculum ratio of 2.5 and a total solid (TS) of 22 %. Under the same condition, the cumulative biogas yield of poplar leaf reached 321 mL (g VS)(-1) when SM/poplar leaf ratio was 2:5 (based on VS). The SM/poplar leaf ratio can determine C/N ratio of the cosubstrate and thus has significant influence on biogas yield. When the SM/poplar leaf ratio was 2:5, C/N ratio was calculated to be 27.02, and the biogas yield in 45 days of digestion was the highest. The semi-continuous digestion of poplar leaf was carried out with the organic loading rate of 1.25 and 1.88 g VS day(-1). The average daily biogas yield was 230.2 mL (g VS)(-1) and 208.4 mL (g VS)(-1). The composition analysis revealed that cellulose and hemicellulose contributed to the biogas production.

  9. New volatile constituents from leaves of Stemodia trifoliata (Link.) Reichb. (Schrophulariaceae)

    International Nuclear Information System (INIS)

    Silva, Wildson Max B. da; Assuncao, Joao Carlos da C.; Araujo, Renata M.; Silveira, Edilberto R.; Pessoa, Otilia D.L.

    2009-01-01

    The leaf essential oils of Stemodia trifoliata (Scrophulariaceae), collected at the same month of two different years (August 2005 and 2006), were analyzed by GC-MS and GC-FID. A total of 22 volatile components represented by sesquiterpenes and diterpenes was identified. β-Caryophyllene (9.4-15.4%) and caryophyllene oxide (6.2-9.0%) were the major compounds identified in the sesquiterpene fraction, while the diterpenoids 6α-acetoxymanoyl oxide (13.9-23.2%) and 6α-hydroxymanoyl oxide (25.1-29.7%) were the main constituents of the diterpene fraction. The two novel manoyl oxide derivatives had their structures established by means of spectroscopic methods, particularly 1D and 2D NMR. This work describes for the first time the chemical investigation on the volatile composition of S. trifoliata. (author)

  10. New volatile constituents from leaves of Stemodia trifoliata (Link.) Reichb. (Schrophulariaceae)

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Wildson Max B. da; Assuncao, Joao Carlos da C.; Araujo, Renata M.; Silveira, Edilberto R.; Pessoa, Otilia D.L. [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Quimica Organica e Inorganica]. E-mail: opessoa@ufc.br

    2009-07-01

    The leaf essential oils of Stemodia trifoliata (Scrophulariaceae), collected at the same month of two different years (August 2005 and 2006), were analyzed by GC-MS and GC-FID. A total of 22 volatile components represented by sesquiterpenes and diterpenes was identified. {beta}-Caryophyllene (9.4-15.4%) and caryophyllene oxide (6.2-9.0%) were the major compounds identified in the sesquiterpene fraction, while the diterpenoids 6{alpha}-acetoxymanoyl oxide (13.9-23.2%) and 6{alpha}-hydroxymanoyl oxide (25.1-29.7%) were the main constituents of the diterpene fraction. The two novel manoyl oxide derivatives had their structures established by means of spectroscopic methods, particularly 1D and 2D NMR. This work describes for the first time the chemical investigation on the volatile composition of S. trifoliata. (author)

  11. Vesicles in Apollo 15 Green Glasses: The Nature of Ancient Lunar Gases

    Science.gov (United States)

    Thomas-Keprta, K. L.; Clemett, S. J.; Berger, E. L.; Rahman, Z.; McKay, D. S.; Gibson, E. K.; Wentworth, S. J.

    2014-01-01

    Detailed studies of Apollo 15 green glass and related beads have shown they were formed in gas-rich fire fountains.. As the magmatic fluid became super-saturated in volatile gas, bubbles or vesicles formed within the magma. These exsolved gases became trapped within vesicles as the glasses were ejected from the fire-fountain and subsequently quenched. One of the keys to understanding formation processes on the ancient moon includes determining the composition of volatile species and elements, including metals, dissolved in magmatic gases. Here we report the nature of mineral phases spatially associated with vesicles in a green glass bead from Apollo sample 15411,42. The phases reflect the composition of the cooling/degassing magmatic vapors and fluids present at the time of bead formation approx, 3 Ga ago

  12. Influence given to psychological stress of marketing and green tea beverage

    OpenAIRE

    桑原,早希; 古川,真一

    2011-01-01

    As for the polyphenol of a noteworthy tea leaf, the expectation for the effect of the stress relaxation is great, and the research is actively done recently. In the present study, the effect of the stress relaxation of marketing and green the tea beverage was pursued by using the saliva amylase enzyme weighing device and the peripheral-blood tube monitor device paying attention to the catechin kind of one of the tea leaf polyphenol. When a total anti oxidative potency of marketing and gre...

  13. Ammonia volatilization and yield components after application of polymer-coated urea to maize

    Directory of Open Access Journals (Sweden)

    Eduardo Zavaschi

    2014-08-01

    Full Text Available A form of increasing the efficiency of N fertilizer is by coating urea with polymers to reduce ammonia volatilization. The aim of this study was to evaluate the effect of polymer-coated urea on the control of ammonia volatilization, yield and nutritional characteristics of maize. The experiment was carried out during one maize growing cycle in 2009/10 on a Geric Ferralsol, inUberlândia, MG, Brazil. Nitrogen fertilizers were applied as topdressing on the soil surface in the following urea treatments: polymer-coated urea at rates of 45, 67.5 and 90 kg ha-1 N and one control treatment (no N, in randomized blocks with four replications. Nitrogen application had a favorable effect on N concentrations in leaves and grains, Soil Plant Analysis Development (SPAD chlorophyll meter readings and on grain yield, where as coated urea had no effect on the volatilization rates, SPAD readings and N leaf and grain concentration, nor on grain yield in comparison to conventional fertilization.

  14. Fine Mapping and Candidate Gene Analysis of the Leaf-Color Gene ygl-1 in Maize.

    Directory of Open Access Journals (Sweden)

    Haiying Guan

    Full Text Available A novel yellow-green leaf mutant yellow-green leaf-1 (ygl-1 was isolated in self-pollinated progenies from the cross of maize inbred lines Ye478 and Yuanwu02. The mutant spontaneously showed yellow-green character throughout the lifespan. Meanwhile, the mutant reduced contents of chlorophyll and Car, arrested chloroplast development and lowered the capacity of photosynthesis compared with the wild-type Lx7226. Genetic analysis revealed that the mutant phenotype was controlled by a recessive nuclear gene. The ygl-1 locus was initially mapped to an interval of about 0.86 Mb in bin 1.01 on the short arm of chromosome 1 using 231 yellow-green leaf individuals of an F2 segregating population from ygl-1/Lx7226. Utilizing four new polymorphic SSR markers, the ygl-1 locus was narrowed down to a region of about 48 kb using 2930 and 2247 individuals of F2 and F3 mapping populations, respectively. Among the three predicted genes annotated within this 48 kb region, GRMZM2G007441, which was predicted to encode a cpSRP43 protein, had a 1-bp nucleotide deletion in the coding region of ygl-1 resulting in a frame shift mutation. Semi-quantitative RT-PCR analysis revealed that YGL-1 was constitutively expressed in all tested tissues and its expression level was not significantly affected in the ygl-1 mutant from early to mature stages, while light intensity regulated its expression both in the ygl-1 mutant and wild type seedlings. Furthermore, the mRNA levels of some genes involved in chloroplast development were affected in the six-week old ygl-1 plants. These findings suggested that YGL-1 plays an important role in chloroplast development of maize.

  15. Evaluation of biological value and appraisal of polyphenols and glucosinolates from organic baby-leaf salads as antioxidants and antimicrobials against important human pathogenic bacteria.

    Science.gov (United States)

    Aires, Alfredo; Marques, Esperança; Carvalho, Rosa; Rosa, Eduardo A S; Saavedra, Maria J

    2013-04-19

    The present investigation has been carried out to investigate the biological role of four different types of baby-leaf salads and to study their potential as natural sources of antioxidants and antimicrobials against several isolates from important human pathogenic bacteria. Four single types of salads (green lettuce, red lettuce, rucola and watercress) and two mixtures [(1) red lettuce+green lettuce; (2) green lettuce + red lettuce + watercress + rucola] were assayed. The HPLC analysis revealed interesting levels of polyphenols and glucosinolates. The results showed a significant variation (p flavonoids); and cyanidin-3-glucoside (anthocyanins). Only three different glucosinolates were found: glucoraphanin; gluconasturtiin and 4-methoxy-glucobrassicin. A positive correlation was detected between polyphenol contents and antioxidant activity. Red lettuce and mixture 1 were the baby-leaf salads with the highest antioxidant potential. As for the antimicrobial activity, the results showed a selective effect of chemicals against Gram-positive and Gram-negative bacteria and Enterococcus faecalis and Staphylococcus aureus were the bacteria most affected by the phytochemicals. Based on the results achieved baby-leaf salads represent an important source of natural antioxidants and antimicrobial substances.

  16. Sensitivity of Seven Diverse Species to Blue and Green Light: Interactions with Photon Flux.

    Directory of Open Access Journals (Sweden)

    M Chase Snowden

    Full Text Available Despite decades of research, the effects of spectral quality on plant growth, and development are not well understood. Much of our current understanding comes from studies with daily integrated light levels that are less than 10% of summer sunlight thus making it difficult to characterize interactions between light quality and quantity. Several studies have reported that growth is increased under fluorescent lamps compared to mixtures of wavelengths from LEDs. Conclusions regarding the effect of green light fraction range from detrimental to beneficial. Here we report the effects of eight blue and green light fractions at two photosynthetic photon fluxes (PPF; 200 and 500 μmol m-2 s-1; with a daily light integral of 11.5 and 29 mol m-2 d-1 on growth (dry mass, leaf expansion, stem and petiole elongation, and whole-plant net assimilation of seven diverse plant species. The treatments included cool, neutral, and warm white LEDs, and combinations of blue, green and/or red LEDs. At the higher PPF (500, increasing blue light in increments from 11 to 28% reduced growth in tomato, cucumber, and pepper by 22, 26, and 14% respectively, but there was no statistically significant effect on radish, soybean, lettuce or wheat. At the lower PPF (200, increasing blue light reduced growth only in tomato (41%. The effects of blue light on growth were mediated by changes in leaf area and radiation capture, with minimal effects on whole-plant net-assimilation. In contrast to the significant effects of blue light, increasing green light in increments from 0 to 30% had a relatively small effect on growth, leaf area and net assimilation at either low or high PPF. Surprisingly, growth of three of the seven species was not reduced by a treatment with 93% green light compared to the broad spectrum treatments. Collectively, these results are consistent with a shade avoidance response associated with either low blue or high green light fractions.

  17. Rapid green synthesis of spherical gold nanoparticles using Mangifera indica leaf

    Science.gov (United States)

    Philip, Daizy

    2010-11-01

    This paper reports the rapid biological synthesis of spherical gold nanoparticles at room temperature using fresh/dry leaf extract of Mangifera indica. This is a simple, cost-effective, stable for long time and reproducible aqueous synthesis method to obtain a self-assembly of nearly monodispersed Au nanoparticles of size ˜20 nm and 17 nm. The nanoparticles were obtained within 2 min of addition of the extract to the solution of HAuCl 4·3H 2O and the colloid is found to be stable for more than 5 months. Smaller and more uniformly distributed particles could be obtained with dried leaf extract. The nanoparticles obtained are characterized by UV-vis, transmission electron microscopy (TEM) and X-ray diffraction (XRD). Crystalline nature of the nanoparticles in the fcc structure is confirmed by the peaks in the XRD pattern corresponding to (1 1 1), (2 0 0), (2 2 0), (3 1 1) and (2 2 2) planes, bright circular spots in the selected area electron diffraction (SAED) and clear lattice fringes in the high-resolution TEM image. The possible biomolecules responsible for efficient stabilization are suggested by studying the FTIR spectrum of the sample. This environmentally benign method provides much faster synthesis and colloidal stability comparable to those of chemical reduction.

  18. Characteristic, inheritance and breeding application of rice mutants with greenable albino leaf

    International Nuclear Information System (INIS)

    Fang Xiantao; Ma Hongli; Zhao Fuyuan; Zhang Qingqi; Zhang Shubiao

    2009-01-01

    Inheritance and main agronomic traits of photo-thermo-sensitive genic male sterile line with green-revertible albino leaf were investigated. The results indicated that the mutants might be divided into three types: albino regreening type (W2, W3, W4 and W10), albino to kelly type (W9) and abino-regreening-albino-regreening type (W1 and W7). Genetic study indicated that green-revertible albino leaf color trait of the mutants as controlled by a single recessive gene. These mutants had similar agronomic traits and fertility characteristics to the corresponding male sterile line 'Peiai 64S'. The hybrids of these mutants had similar characteristics with original-hybrids in plant type, developing of tillers and plant height. The yield components of the mutant hybrids were different depending on different mutants. The yield potential of hybrids of W1, W2 and W3 were similar to the original-hybrid. The results also indicated that W1, W2 and W3 had breeding application value. (authors)

  19. Volatile profile and sensory quality of new varieties of Capsicum chinense pepper

    Directory of Open Access Journals (Sweden)

    Deborah dos Santos Garruti

    2013-02-01

    Full Text Available The objective of this study was to compare the sensory quality and the volatile compound profile of new varieties of Capsicum chinense pepper (CNPH 4080 a strain of'Cumari-do-Pará' and BRS Seriema with a known commercial variety (Biquinho. Volatiles were isolated from the headspace of fresh fruit by SPME and identified by GC-MS. Pickled peppers were produced for sensory evaluation. Aroma descriptors were evaluated by Check-All-That-Apply (CATA method, and the frequency data were submitted to Correspondence Analysis. Flavor acceptance was assessed by hedonic scale and analyzed by ANOVA. BRS Seriema showed the richest volatile profile, with 55 identified compounds, and up to 40% were compounds with sweet aroma notes. CNPH 4080 showed similar volatile profile to that of Biquinho pepper, but it had higher amounts of pepper-like and green-note compounds. The samples did not differ in terms of flavor acceptance, but they showed differences in aroma quality confirming the differences found in the volatile profiles. The C. chinense varieties developed by Embrapa proved to be more aromatic than Biquinho variety, and were well accepted by the judges.

  20. Green Antibiotic Daun Sirih (Piper betle l.) Sebagai Pengganti Antibiotik Komersial untuk Penanganan Mastitis

    OpenAIRE

    Gabby Lutviandhitarani; Dian Wahyu Harjanti; Fajar Wahyono

    2015-01-01

    (Green antibiotic betel leaf (Piper betle l.) as a substitute  for commercial antibiotic in mastitis treatment)  ABSTRACT. The present study was carried out to investigate the possible antibacterial activity of betel leaf on the amount and microscopic appearance of mastitis-causing bacteria. The randomized block design with 5 treatment groups were : K group (mastitis milk only as negative control), Ab group (mastitis milk + antibiotic penicillin-dihydrostreptomycin as positive control),  ...

  1. Large Drought-induced Variations in Oak Leaf Volatile Organic Compound Emissions during PINOT NOIR 2012

    Data.gov (United States)

    U.S. Environmental Protection Agency — Leaf level oak isoprene emissions and co2/H2O exchange in the Ozarks, USA BAGeron.csv is the speciated biomass displayed in Figure 1. Biomass Dry Weights.xlsx is...

  2. Structural characterization of mesoporous magnetite nanoparticles synthesized using the leaf extract of Calliandra haematocephala and their photocatalytic degradation of malachite green dye

    Science.gov (United States)

    Sirdeshpande, Karthikey Devadatta; Sridhar, Anushka; Cholkar, Kedar Mohan; Selvaraj, Raja

    2018-03-01

    A simple method for the synthesis of magnetite nanoparticles using the leaf extract of Calliandra haematocephala has been developed. UV-Vis spectrum showed a characteristic strong absorption band. SEM image revealed the bead-like spherical nanoparticles. EDS showed the prominent peaks for elemental iron and oxygen. PXRD patterns confirmed the crystalline nature and the average crystallite size of 7.45 nm. In addition, the lattice parameter value was calculated to be 8.413 Å, close to Fe3O4 nanoparticles. BET analysis disclosed the total specific surface area of the nanoparticles as 63.89 m2/g and the mesoporous structure of the nanoparticles with a pore radius of 34.18 Å. FTIR studies showed the specific bands at 599.82 and 472.53 cm-1, typical for Fe3O4 nanoparticles. The photocatalytic efficacy of the nanoparticles was demonstrated against the degradation of malachite green dye under sunlight irradiation and the photocatalytic degradation constant was calculated as 0.0621 min-1.

  3. Early detection of fungal contamination on green coffee by a MOX sensors based Electronic Nose

    International Nuclear Information System (INIS)

    Sberveglieri, V.; Pulvirenti, A.; Fava, P.; Concina, I.; Falasconi, M.; Gobbi, E.

    2011-01-01

    Fungal growth can occur on green coffee beans along all the distribution chain, eventually bringing on health hazards to consumers, because of the production of toxic metabolites (mycotoxins). Besides, the sensorial contamination due to volatiles by-products of fungal metabolism could cause defects on coffee also after roasting. Therefore, it is necessary to devise strategies to detect and quantify fungal infection and toxin production at early stages of the food chain. One of the most promising techniques is the analysis of volatile compounds in the headspace gas surrounding the samples. The aim of this work was to verify the ability of the Electronic Nose (EN EOS 835 ) to early detect the microbial contamination of Arabica green coffee. This EN is equipped with Metal Oxide Semiconductor sensor array. Gas chromatography coupled to mass spectrometry (GC-MS) analysis of the static headspace of non-contaminated Arabica green coffee samples was carried out to confirm the EN ability to provide satisfactory indications about the presence of contamination.

  4. Leaf chemical composition of twenty-one Populus hybrid clones grown under intensive culture

    Science.gov (United States)

    Richard E. Dickson; Philip R. Larson

    1976-01-01

    Leaf material from 21 nursery-grown Populus hybrid clones was analyzed for three nitrogen fractions (total N, soluble protein, and soluble amino acids) and three carbhydrate fractions (reducing sugars, total soluble sugars, and total nonstructural carbohydrates-TNC). In addition, nursery-grown green ash and silver maple, field-grown bigtooth and trembling aspen, and...

  5. Amazon Forests Maintain Consistent Canopy Structure and Greenness During the Dry Season

    Science.gov (United States)

    Morton, Douglas C.; Nagol, Jyoteshwar; Carabajal, Claudia C.; Rosette, Jacqueline; Palace, Michael; Cook, Bruce D.; Vermote, Eric F.; Harding, David J.; North, Peter R. J.

    2014-01-01

    The seasonality of sunlight and rainfall regulates net primary production in tropical forests. Previous studies have suggested that light is more limiting than water for tropical forest productivity, consistent with greening of Amazon forests during the dry season in satellite data.We evaluated four potential mechanisms for the seasonal green-up phenomenon, including increases in leaf area or leaf reflectance, using a sophisticated radiative transfer model and independent satellite observations from lidar and optical sensors. Here we show that the apparent green up of Amazon forests in optical remote sensing data resulted from seasonal changes in near-infrared reflectance, an artefact of variations in sun-sensor geometry. Correcting this bidirectional reflectance effect eliminated seasonal changes in surface reflectance, consistent with independent lidar observations and model simulations with unchanging canopy properties. The stability of Amazon forest structure and reflectance over seasonal timescales challenges the paradigm of light-limited net primary production in Amazon forests and enhanced forest growth during drought conditions. Correcting optical remote sensing data for artefacts of sun-sensor geometry is essential to isolate the response of global vegetation to seasonal and interannual climate variability.

  6. Evaluation of volatiles from Ampelopsis brevipedunculata var. heterophylla using GC-olfactometry, GC-MS and GC-pulsed flame photometric detector.

    Science.gov (United States)

    Nakamura, Atsuhiko; Miyazawa, Mitsuo

    2013-01-01

    Ampelopsis brevipedunculata var. heterophylla is extensively cultivated in Asia, and the dried leaves and branches have a characteristic odor and have been used as a tea. To investigate the odorants contributing to the characteristic odor of A. brevipedunculata var. heterophylla, the aroma extraction dilution analysis method was performed through gas chromatography olfactometry. In addition, volatile sulfur compounds were evaluated using pulsed flame photometric detector. As a result, 86 compounds were identified in the oils of leaves and 78 in branches, accounting for 80.0% and 68.3%, respectively, of the compounds identified. The main compounds in the essential oil of leaves were palmitic acid (12.5%), phenylacetaldehyde (4.1%) and hexahydrofarnesyl acetone (3.9%). On the other hand, the essential oil of branches contained palmitic acid (12.7%), terpinen-4-ol (4.4%) and α-cadinol (3.7%). The total number of odor-active compounds identified in the leaf and branch oils was 39. The most odorous compounds of leaves and branches of A. brevipedunculata var. heterophylla were (E, Z)-2,6-nonadienal (melon, green odor), (E)-2-nonenal (grassy odor), phenylacetaldehyde (honey-like) and (E)-linalool oxide (woody odor).

  7. Volatile compounds in medlar fruit (Mespilus germanica L. at two ripening stages

    Directory of Open Access Journals (Sweden)

    Veličković Milovan M.

    2013-01-01

    Full Text Available Medlar is the fruit of Mespilus germanica L. in the family of Rosaceae. The fruit can be eaten only if ‘bletted’ (softened by frost or longer storage. The effect of the maturation stages on the volatile compounds of the medlar fruit was investigated during two different stages. Volatile flavour substances were isolated from the minced pulp of unripe and full ripe medlar fruits by simultaneous steam distillation extraction (SDE with methilen chloride as the extracting solvent. The concentrate was analysed by GC-FID-MS. Hexanoic and hexadecanoic acids were the predominant acids, hexanal and (E-2-hexenal were the predominant aldehydes, (Z-3-hexenol and hexanol were the predominant alcohols, with p-cymene, terpinen-4-ol, and γ-terpiene (the terpenes responsible for the characteristic medlar flavour being also present. The C6 aliphatic compounds, such as hexanal and (E-2-hexenal, were observed as the major volatile constituents in the green stage. In contrast, hexanol and (Z-3-hexenol were the main volatiles in ripe fruits.

  8. Biogenic volatile organic compound analyses by PTR-TOF-MS: Calibration, humidity effect and reduced electric field dependency.

    Science.gov (United States)

    Pang, Xiaobing

    2015-06-01

    Green leaf volatiles (GLVs) emitted by plants after stress or damage induction are a major part of biogenic volatile organic compounds (BVOCs). Proton transfer reaction time-of-flight mass spectrometry (PTR-TOF-MS) is a high-resolution and sensitive technique for in situ GLV analyses, while its performance is dramatically influenced by humidity, electric field, etc. In this study the influence of gas humidity and the effect of reduced field (E/N) were examined in addition to measuring calibration curves for the GLVs. Calibration curves measured for seven of the GLVs in dry air were linear, with sensitivities ranging from 5 to 10 ncps/ppbv (normalized counts per second/parts per billion by volume). The sensitivities for most GLV analyses were found to increase by between 20% and 35% when the humidity of the sample gas was raised from 0% to 70% relative humidity (RH) at 21°C, with the exception of (E)-2-hexenol. Product ion branching ratios were also affected by humidity, with the relative abundance of the protonated molecular ions and higher mass fragment ions increasing with humidity. The effect of reduced field (E/N) on the fragmentation of GLVs was examined in the drift tube of the PTR-TOF-MS. The structurally similar GLVs are acutely susceptible to fragmentation following ionization and the fragmentation patterns are highly dependent on E/N. Overall the measured fragmentation patterns contain sufficient information to permit at least partial separation and identification of the isomeric GLVs by looking at differences in their fragmentation patterns at high and low E/N. Copyright © 2015. Published by Elsevier B.V.

  9. Comparison of volatile and polyphenolic compounds in Brazilian green propolis and its botanical origin Baccharis dracunculifolia Comparação de volatilidade e compostos polifenólicos na própolis verde brasileira e sua origem botânica Baccharis dracunculifolia

    Directory of Open Access Journals (Sweden)

    Mário Roberto Maróstica Junior

    2008-03-01

    Full Text Available Ethanolic extracts and essential oils from Green Propolis from southeastern Brazil and leaf buds from its botanical origin Baccharis dracunculifolia were analyzed by Reversed Phase High Performance Liquid Chromatography (RP-HPLC, Reversed Phase High Performance Thin Layer Chromatography (RP-HPTLC and Gas Chromatography - Mass Spectrometry (GC-MS. The essential oils were obtained by hydro-distillation. Both ethanolic extracts and essential oils showed similar chromatographic profiles. Thirteen flavonoids were identified by RP-HPLC and RP-HPTLC analyses in both samples. Twenty-three volatile compounds were identified by GC-MS analyses. Seventeen were present in both essential oils. The major flavonoid compound in both extracts was artepillin C. The major volatile compound in both essential oils was nerolidol. The major compounds identified in this work could be used as chemical markers in order to classify and identify botanical origins of propolis.Extratos etanólicos e óleos essenciais de própolis verde do sudeste brasileiro e gemas de sua origem botânica (Baccharis dracunculifolia foram analisados por CLAE-FR (Cromatografia Líquida de Alta Eficiência em Fase Reversa, CCDAE (Cromatografia em Camada Delgada de Alta Eficiência e CG-EM (Cromatografia Gasosa acoplada a Espectrometria de Massas. Os óleos essenciais foram obtidos por hidro destilação. Extratos etanólicos e óleos essenciais de Baccharis dracunculifolia e de própolis mostraram perfis cromatográficos similares entre si. Treze flavonóides foram identificados por CLAE-FR e CCDAE em ambas as amostras. Vinte e três compostos voláteis foram identificados por CG EM, sendo dezessete deles presentes em ambos os óleos essenciais. Artepillin C foi o flavonóide encontrado em maiores concentrações em ambas as amostras, enquanto nerolidol foi o volátil majoritário em ambos os óleos essenciais. Os compostos majoritários identificados neste trabalho podem ser utilizados como

  10. Ripening-dependent metabolic changes in the volatiles of pineapple (Ananas comosus (L.) Merr.) fruit: I. Characterization of pineapple aroma compounds by comprehensive two-dimensional gas chromatography-mass spectrometry.

    Science.gov (United States)

    Steingass, Christof Björn; Carle, Reinhold; Schmarr, Hans-Georg

    2015-03-01

    Qualitative ripening-dependent changes of pineapple volatiles were studied via headspace solid-phase microextraction and analyzed by comprehensive two-dimensional gas chromatography quadrupole mass spectrometry (HS-SPME-GC×GC-qMS). Early green-ripe stage, post-harvest ripened, and green-ripe fruits at the end of their commercial shelf-life were compared to air-freighted pineapples harvested at full maturity. In total, more than 290 volatiles could be identified by mass spectrometry and their linear retention indices. The majority of compounds comprise esters (methyl and ethyl esters of saturated and unsaturated fatty acids, acetates), terpenes, alcohols, aldehydes, 2-ketones, free fatty acids, and miscellaneous γ- and δ-lactones. The structured separation space obtained by GC×GC allowed revealing various homologous series of compound classes as well as clustering of sesquiterpenes. Post-harvest ripening increased the diversity of the volatile profile compared to both early green-ripe maturity stages and on-plant ripened fruits.

  11. The Volatile Composition of Portuguese Propolis Towards its Origin Discrimination

    Directory of Open Access Journals (Sweden)

    Soraia I. Falcão

    2016-03-01

    Full Text Available The volatiles from thirty six propolis samples collected from six different geographical locations in Portugal (mainland, Azores archipelago and Madeira Island were evaluated. Populus x canadensis Moenchen leaf-buds and Cistus ladanifer L. branches essential oils were comparatively analysed. The essential oils were isolated by hydrodistillation and analysed by Gas Chromatography (GC and Gas Chromatography-Mass Spectrometry (GC-MS. Cluster analysis based on propolis samples volatiles chemical composition defined three main clusters, not related to sample site collection. Cluster I grouped 28 samples with high relative amounts of oxygen-containing sesquiterpenes (20-77%, while cluster II grouped 7 samples rich in oxygen-containing monoterpenes (9-65% and the only sample from cluster III was monoterpene hydrocarbons rich (26%. Although Populus x canadensis and Cistus ladanifer were associated as resin sources of Portuguese propolis, other Populus species as well as plants like Juniperus genus may contribute to the resin in specific geographical locations.

  12. Effects of deoxynivalenol on content of chloroplast pigments in barley leaf tissues.

    Science.gov (United States)

    Bushnell, W R; Perkins-Veazie, P; Russo, V M; Collins, J; Seeland, T M

    2010-01-01

    To understand further the role of deoxynivalenol (DON) in development of Fusarium head blight (FHB), we investigated effects of the toxin on uninfected barley tissues. Leaf segments, 1 to 1.2 cm long, partially stripped of epidermis were floated with exposed mesophyll in contact with DON solutions. In initial experiments with the leaf segments incubated in light, DON at 30 to 90 ppm turned portions of stripped tissues white after 48 to 96 h. The bleaching effect was greatly enhanced by addition of 1 to 10 mM Ca(2+), so that DON at 10 to 30 ppm turned virtually all stripped tissues white within 48 h. Content of chlorophylls a and b and of total carotenoid pigment was reduced. Loss of electrolytes and uptake of Evans blue indicated that DON had a toxic effect, damaging plasmalemmas in treated tissues before chloroplasts began to lose pigment. When incubated in the dark, leaf segments also lost electrolytes, indicating DON was toxic although the tissues remained green. Thus, loss of chlorophyll in light was due to photobleaching and was a secondary effect of DON, not required for toxicity. In contrast to bleaching effects, some DON treatments that were not toxic kept tissues green without bleaching or other signs of injury, indicating senescence was delayed compared with slow yellowing of untreated leaf segments. Cycloheximide, which like DON, inhibits protein synthesis, also bleached some tissues and delayed senescence of others. Thus, the effects of DON probably relate to its ability to inhibit protein synthesis. With respect to FHB, the results suggest DON may have multiple roles in host cells of infected head tissues, including delayed senescence in early stages of infection and contributing to bleaching and death of cells in later stages.

  13. GREEN MARKETING AND REPRESENTATION OF THE OTHER (An Analysis of Green Image Ad Represented by Teh Kotak Ad, ‘Persembahan dari Alam’ Version

    Directory of Open Access Journals (Sweden)

    Tangguh Okta Wibowo

    2017-12-01

    Full Text Available This paper presents a theoretical link among green marketing of Teh Kotak ad, “Persembahan dari Alam” version. This is an ad telling as if the product of Teh Kotak is truly from nature. In addition, this research explored the portrayal of how this ad contains metaphorical element to juxtapose nature and technology as the same level. In the analysis, this study attempts to use Green marketing theory as a tool for analysis to explore what is the message behind the ad. Moreover, exploring the representation of the portion of the position of gender where the ad uses a woman as the main actor picking tea leaf, as if this ad looks natural. The result of the study revealed that Green marketing showed it competences to cover with political agenda. It is reflected in green image which told that The Kotak is a gift from nature. Overall, this study concludes that green image of this ad relays the hidden meaning, where the main aim is inviting people to buy its product as political agendas. Keywords: Green marketing; gift; Nature; Teh Kotak

  14. Quantitative Analysis of Major Constituents in Green Tea with Different Plucking Periods and Their Antioxidant Activity

    Directory of Open Access Journals (Sweden)

    Lan-Sook Lee

    2014-07-01

    Full Text Available The objective of this study was to determine the relationship between the plucking periods and the major constituents and the antioxidant activity in green tea. Green tea was prepared from leaves plucked from the end of April 2013 to the end of May 2013 at intervals of one week or longer. The contents of theanine, theobromine, caffeine, catechin (C, and gallocatechin gallate (GCg were significantly decreased, whereas those of epicatechin (EC, epigallocatechin gallate (EGCg and epigallocatechin (EGC were significantly increased along with the period of tea leaf plucking. In addition, antioxidant activity of green tea and standard catechins was investigated using ABTS, FRAP and DPPH assays. The highest antioxidant activity was observed in relatively the oldest leaf, regardless of the assay methods used. Additionally, the order of antioxidant activity of standard catechins was as follows: EGCg ³ GCg ³ ECg > EGC ³ GC ³ EC ³ C. Moreover, the cis-catechins contents were the key factor affecting the antioxidant activity of green tea in all assays employed (ABTS, r = 0.731, p < 0.01; FRAP, r = 0.886, p < 0.01; DPPH, r = 0.778, p < 0.01.

  15. Relationships of leaf dark respiration to leaf nitrogen, specific leaf area and leaf life-span: a test across biomes and functional groups.

    Science.gov (United States)

    Reich, Peter B; Walters, Michael B; Ellsworth, David S; Vose, James M; Volin, John C; Gresham, Charles; Bowman, William D

    1998-05-01

    Based on prior evidence of coordinated multiple leaf trait scaling, we hypothesized that variation among species in leaf dark respiration rate (R d ) should scale with variation in traits such as leaf nitrogen (N), leaf life-span, specific leaf area (SLA), and net photosynthetic capacity (A max ). However, it is not known whether such scaling, if it exists, is similar among disparate biomes and plant functional types. We tested this idea by examining the interspecific relationships between R d measured at a standard temperature and leaf life-span, N, SLA and A max for 69 species from four functional groups (forbs, broad-leafed trees and shrubs, and needle-leafed conifers) in six biomes traversing the Americas: alpine tundra/subalpine forest, Colorado; cold temperate forest/grassland, Wisconsin; cool temperate forest, North Carolina; desert/shrubland, New Mexico; subtropical forest, South Carolina; and tropical rain forest, Amazonas, Venezuela. Area-based R d was positively related to area-based leaf N within functional groups and for all species pooled, but not when comparing among species within any site. At all sites, mass-based R d (R d-mass ) decreased sharply with increasing leaf life-span and was positively related to SLA and mass-based A max and leaf N (leaf N mass ). These intra-biome relationships were similar in shape and slope among sites, where in each case we compared species belonging to different plant functional groups. Significant R d-mass -N mass relationships were observed in all functional groups (pooled across sites), but the relationships differed, with higher R d at any given leaf N in functional groups (such as forbs) with higher SLA and shorter leaf life-span. Regardless of biome or functional group, R d-mass was well predicted by all combinations of leaf life-span, N mass and/or SLA (r 2 ≥ 0.79, P morphological, chemical and metabolic traits.

  16. Green hypergolic combination: Diethylenetriamine-based fuel and hydrogen peroxide

    Science.gov (United States)

    Kang, Hongjae; Kwon, Sejin

    2017-08-01

    The present research dealt with the concept of green hypergolic combination to replace the toxic hypergolic combinations. Hydrogen peroxide was selected as a green oxidizer. A novel recipe for the non-toxic hypergolic fuel (Stock 3) was suggested. Sodium borohydride was blended into the mixture of energetic hydrocarbon solvents as an ignition source for hypergolic ignition. The main ingredient of the mixture was diethylenetriamine. By mixing some amount of tetrahydrofuran with diethylenetriamine, the mixture became more flammable and volatile. The mixture of Stock 3 fuel remained stable for four months in the lab scale storability test. Through a simple drop test, the hypergolicity of the green hypergolic combination was verified. Comparing to the toxic hypergolic combination MMH/NTO as the reference, the theoretical performance of the green hypergolic combination would be achieved about 96.7% of the equilibrium specific impulse and about 105.7% of the density specific impulse. The applicability of the green hypergolic combination was successfully confirmed through the static hot-fire tests using 500 N scale hypergolic thruster.

  17. Build green and conventional materials off-gassing tests: A final report

    Energy Technology Data Exchange (ETDEWEB)

    Piersol, P.

    1995-12-31

    Build Green is a certification program that will identify and label building products with a known recycled content. The introduction of these recycled materials has raised the concern that they may emit more indoor pollutants than conventional materials. This study addresses that concern by analyzing Build Green and conventional materials to assess their potential for off-gassing. The study involved emission tests of 37 materials including carpets, carpet undercushions, structural lumber, foundation material, insulation, drywall, fiberboard, counter tops, and cabinetry. The results presented in this report include comparisons of Build Green and conventional materials in terms of emissions of volatile organic compounds and formaldehyde, the material loading ratio, and discussion of the specific sources of the emissions.

  18. Leaf-IT: An Android application for measuring leaf area.

    Science.gov (United States)

    Schrader, Julian; Pillar, Giso; Kreft, Holger

    2017-11-01

    The use of plant functional traits has become increasingly popular in ecological studies because plant functional traits help to understand key ecological processes in plant species and communities. This also includes changes in diversity, inter- and intraspecific interactions, and relationships of species at different spatiotemporal scales. Leaf traits are among the most important traits as they describe key dimensions of a plant's life history strategy. Further, leaf area is a key parameter with relevance for other traits such as specific leaf area, which in turn correlates with leaf chemical composition, photosynthetic rate, leaf longevity, and carbon investment. Measuring leaf area usually involves the use of scanners and commercial software and can be difficult under field conditions. We present Leaf-IT, a new smartphone application for measuring leaf area and other trait-related areas. Leaf-IT is free, designed for scientific purposes, and runs on Android 4 or higher. We tested the precision and accuracy using objects with standardized area and compared the area measurements of real leaves with the well-established, commercial software WinFOLIA using the Altman-Bland method. Area measurements of standardized objects show that Leaf-IT measures area with high accuracy and precision. Area measurements with Leaf-IT of real leaves are comparable to those of WinFOLIA. Leaf-IT is an easy-to-use application running on a wide range of smartphones. That increases the portability and use of Leaf-IT and makes it possible to measure leaf area under field conditions typical for remote locations. Its high accuracy and precision are similar to WinFOLIA. Currently, its main limitation is margin detection of damaged leaves or complex leaf morphologies.

  19. Sensory characteristics and volatile profiles of parsley ( Petroselinum crispum [Mill.] Nym.) in correlation to resistance properties against Septoria Blight ( Septoria petroselini ).

    Science.gov (United States)

    Ulrich, Detlef; Bruchmüller, Tobias; Krüger, Hans; Marthe, Frank

    2011-10-12

    Sixteen different genotypes of parsley, including two cultivars, six populations, and eight inbred lines, were investigated regarding their sensory characteristics in relation to the volatile patterns and resistance to Septoria petroselini . The sensory quality was determined by a combination of profile analysis and preference test, whereas the volatile patterns were analyzed by headspace-SPME-GC of leaf homogenates with subsequent nontargeted data processing to prevent a possible overlooking of volatile compounds. The more resistant genotypes are characterized by several negative sensory characteristics such as bitter, grassy, herbaceous, pungent, chemical, and harsh. In contrast, the contents of some volatile compounds correlate highly and significantly either with resistance (e.g., hexanal and α-copaene) or with susceptibility (e.g., p-menthenol). Some of these compounds with very strong correlation to resistance are still unidentified and are presumed to act as resistance markers.

  20. Development of synthetic volatile attractant for maleEctropis obliqua moths

    Institute of Scientific and Technical Information of China (English)

    SUN Xiao-ling; LI Xi-wang; XIN Zhao-jun; HAN Juan-juan; RAN Wei; LEI Shu

    2016-01-01

    The tea geometridEctropis obliquais one of the most serious leaf-feeding insect pests in tea (Camelia sinensis) in East Asia. Although several volatile chemicals emitted from tea plants have been reported to be attractive toE. obliqua moths, no synthetic attractants for E. obliqua moths have been developed. By measuring the behavioral responses of the moth to a series of chemicals in the lab, we found that a blend containing a ternary mixture containing (Z)-3-hexenal, (Z)-3-hexenyl hexanoate and benzyl alcohol clearly attracted toE. obliqua moths of both sex and that (Z)-3-hexenyl acetate could enhance the attractiveness of the ternary blend. Moreover, we found that the volatiles emitted from the plant-E. obliqua larva com-plex have the same attractiveness as: 1) the blend of volatiles containing the ternary mixture and 2) the blend containing (Z)-3-hexenyl acetate plus the ternary mixture to both male and female moths. In a ifeld bioassay, more male moths were observed on traps that were baited with the blend containing (Z)-3-hexenyl acetate plus the ternary mixture than on control traps. Our study raises the tantalizing possibility that synthetic blends could be deployed as attractants for pests in the ifeld.

  1. Green Ocean Amazon 2014/15 Terrestrial Ecosystem Project (Geco) Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Jardine, Kolby [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-06-01

    In conjunction with the U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility GoAmazon campaign, the Terrestrial Ecosystem Science (TES)-funded Green Ocean Amazon (GoAmazon 2014/15) terrestrial ecosystem project (Geco) was designed to: • evaluate the strengths and weaknesses of leaf-level algorithms for biogenic volatile organic compounds (BVOCs) emissions in Amazon forests near Manaus, Brazil, and • conduct mechanistic field studies to characterize biochemical and physiological processes governing leaf- and landscape-scale tropical forest BVOC emissions, and the influence of environmental drivers that are expected to change with a warming climate. Through a close interaction between modeling and observational activities, including the training of MS and PhD graduate students, post-doctoral students, and technicians at the National Institute for Amazon Research (INPA), the study aimed at improving the representation of BVOC-mediated biosphere-atmosphere interactions and feedbacks under a warming climate. BVOCs can form cloud condensation nuclei (CCN) that influence precipitation dynamics and modify the quality of down welling radiation for photosynthesis. However, our ability to represent these coupled biosphere-atmosphere processes in Earth system models suffers from poor understanding of the functions, identities, quantities, and seasonal patterns of BVOC emissions from tropical forests as well as their biological and environmental controls. The Model of Emissions of Gases and Aerosols from Nature (MEGAN), the current BVOC sub-model of the Community Earth System Model (CESM), was evaluated to explore mechanistic controls over BVOC emissions. Based on that analysis, a combination of observations and experiments were studied in forests near Manaus, Brazil, to test existing parameterizations and algorithm structures in MEGAN. The model was actively modified as needed to improve tropical BVOC emission simulations on

  2. Green synthesis of silver nanoparticles from aqueous leaf extract of Pomegranate (Punica granatum) and their anticancer activity on human cervical cancer cells

    Science.gov (United States)

    Sarkar, Sonia; Kotteeswaran, Venkatesan

    2018-06-01

    Plants contain different important phytochemicals that can be used as a potential treatment for various ailments including cancer. The green synthesis of silver nanoparticles from the extract of different plant parts has gained a wide range of engrossment among the researchers due to its unique optical and structural property. The aim of this study is green synthesis of silver nanoparticles from the aqueous leaf extract of pomegranate (Punica granatum) and to investigate its anticancer activity on human cervical cancer cells (HeLa). The synthesis of silver nanoparticle was depicted by the colour change from golden yellowish to dark brownish, UV-visible spectral analysis gave a characteristic surface plasmon absorption peak at . Further morphological characterization was done by Zeta potential where the size analysis was depicted to be 46.1 nm and zeta potential as . Fourier transform infrared spectroscopy (FTIR) inferred 3 intense sharp peaks at , , , confirmed the presence of flavonoids and polyphenols. The scanning electron microscopy (SEM) analysis with energy diffraction spectroscopy (EDS) confirmed the presence of silver nanoparticles with size ranged from to . X-ray diffraction (XRD) confirmed the crystallographic nature of silver. The cell proliferation activity of nanoparticles was tested by 3, ‑4, 5 dimethylthiazol-2,5 diphenyl tetrazolium bromide (MTT) assay where the inhibitory concentration () was found at inhibiting of HeLa cell line. The anticancer activity of nanoparticles was determined by lactate dehydrogenase (LDH) assay where showed of cytotoxicity. Furthermore, the anticancer property of nanoparticles was confirmed by the DNA fragmentation assay.

  3. An overview of plant volatile metabolomics, sample treatment and reporting considerations with emphasis on mechanical damage and biological control of weeds.

    Science.gov (United States)

    Beck, John J; Smith, Lincoln; Baig, Nausheena

    2014-01-01

    The technology for the collection and analysis of plant-emitted volatiles for understanding chemical cues of plant-plant, plant-insect or plant-microbe interactions has increased over the years. Consequently, the in situ collection, analysis and identification of volatiles are considered integral to elucidation of complex plant communications. Due to the complexity and range of emissions the conditions for consistent emission of volatiles are difficult to standardise. To discuss: evaluation of emitted volatile metabolites as a means of screening potential target- and non-target weeds/plants for insect biological control agents; plant volatile metabolomics to analyse resultant data; importance of considering volatiles from damaged plants; and use of a database for reporting experimental conditions and results. Recent literature relating to plant volatiles and plant volatile metabolomics are summarised to provide a basic understanding of how metabolomics can be applied to the study of plant volatiles. An overview of plant secondary metabolites, plant volatile metabolomics, analysis of plant volatile metabolomics data and the subsequent input into a database, the roles of plant volatiles, volatile emission as a function of treatment, and the application of plant volatile metabolomics to biological control of invasive weeds. It is recommended that in addition to a non-damaged treatment, plants be damaged prior to collecting volatiles to provide the greatest diversity of odours. For the model system provided, optimal volatile emission occurred when the leaf was punctured with a needle. Results stored in a database should include basic environmental conditions or treatments. Copyright © 2013 John Wiley & Sons, Ltd.

  4. Characterisation of the volatile profile of coconut water from five varieties using an optimised HS-SPME-GC analysis.

    Science.gov (United States)

    Prades, Alexia; Assa, Rebecca Rachel Ablan; Dornier, Manuel; Pain, Jean-Pierre; Boulanger, Renaud

    2012-09-01

    Coconut (Cocos nucifera L.) water is a refreshing tropical drink whose international market has recently been growing. However, little is yet known about its physicochemical composition, particularly its aroma. This study set out to characterise the volatile profile of water from five coconut varieties. Aroma compounds were characterised by headspace solid phase microextraction gas chromatography (HS-SPME-GC) analysis. An experimental design was established to optimise SPME conditions, leading to an equilibration time of 10 min followed by an extraction time of 60 min at 50 °C. Accordingly, immature coconut water from WAT (West African Tall), PB121 (MYD × WAT Hybrid), MYD (Malayan Yellow Dwarf), EGD (Equatorial Guinea Green Dwarf) and THD (Thailand Aromatic Green Dwarf) palms was analysed and described. Ketones were mainly present in the Tall and Hybrid varieties, whereas aldehydes were most abundant in the Dwarf palms. Tall coconut water was characterised by a high lactone content. THD exhibited a high ethyl octanoate level. The cluster analysis of the volatile fraction from the five coconut cultivars was found to be related to their genetic classification. The volatile compounds of immature coconut water from five varieties were characterised for the first time. Volatile profile analysis could be a useful tool for the selection of Dwarf coconut varieties, which are mainly consumed as a beverage. Copyright © 2012 Society of Chemical Industry.

  5. Nonvolatile, semivolatile, or volatile: redefining volatile for volatile organic compounds.

    Science.gov (United States)

    Võ, Uyên-Uyén T; Morris, Michael P

    2014-06-01

    Although widely used in air quality regulatory frameworks, the term "volatile organic compound" (VOC) is poorly defined. Numerous standardized tests are currently used in regulations to determine VOC content (and thus volatility), but in many cases the tests do not agree with each other, nor do they always accurately represent actual evaporation rates under ambient conditions. The parameters (time, temperature, reference material, column polarity, etc.) used in the definitions and the associated test methods were created without a significant evaluation of volatilization characteristics in real world settings. Not only do these differences lead to varying VOC content results, but occasionally they conflict with one another. An ambient evaporation study of selected compounds and a few formulated products was conducted and the results were compared to several current VOC test methodologies: SCAQMD Method 313 (M313), ASTM Standard Test Method E 1868-10 (E1868), and US. EPA Reference Method 24 (M24). The ambient evaporation study showed a definite distinction between nonvolatile, semivolatile, and volatile compounds. Some low vapor pressure (LVP) solvents, currently considered exempt as VOCs by some methods, volatilize at ambient conditions nearly as rapidly as the traditional high-volatility solvents they are meant to replace. Conversely, bio-based and heavy hydrocarbons did not readily volatilize, though they often are calculated as VOCs in some traditional test methods. The study suggests that regulatory standards should be reevaluated to more accurately reflect real-world emission from the use of VOC containing products. The definition of VOC in current test methods may lead to regulations that exclude otherwise viable alternatives or allow substitutions of chemicals that may limit the environmental benefits sought in the regulation. A study was conducted to examine volatility of several compounds and a few formulated products under several current VOC test

  6. Chemical and mechanical changes during leaf expansion of four woody species of dry Restinga woodland.

    Science.gov (United States)

    Schlindwein, C C D; Fett-Neto, A G; Dillenburg, L R

    2006-07-01

    Young leaves are preferential targets for herbivores, and plants have developed different strategies to protect them. This study aimed to evaluate different leaf attributes of presumed relevance in protection against herbivory in four woody species (Erythroxylum argentinum, Lithrea brasiliensis, Myrciaria cuspidata, and Myrsine umbellata), growing in a dry restinga woodland in southern Brazil. Evaluation of leaf parameters was made through single-point sampling of leaves (leaf mass per area and leaf contents of nitrogen, carbon, and pigments) at three developmental stages and through time-course sampling of expanding leaves (area and strength). Leaves of M. umbellata showed the highest leaf mass per area (LMA), the largest area, and the longest expansion period. On the other extreme, Myrc. cuspidata had the smallest LMA and leaf size, and the shortest expansion period. Similarly to L. brasiliensis, it displayed red young leaves. None of the species showed delayed-greening, which might be related to the high-irradiance growth conditions. Nitrogen contents reduced with leaf maturity and reached the highest values in the young leaves of E. argentinum and Myrc. cuspidata and the lowest in M. umbellata. Each species seems to present a different set of protective attributes during leaf expansion. Myrciaria cuspidata appears to rely mostly on chemical defences to protect its soft leaves, and anthocyanins might play this role at leaf youth, while M. umbellata seems to invest more on mechanical defences, even at early stages of leaf growth, as well as on a low allocation of nitrogen to the leaves. The other species display intermediate characteristics.

  7. Biological relevance of volatile organic compounds emitted during the pathogenic interactions between apple plants and Erwinia amylovora.

    Science.gov (United States)

    Cellini, Antonio; Buriani, Giampaolo; Rocchi, Lorenzo; Rondelli, Elena; Savioli, Stefano; Rodriguez Estrada, Maria T; Cristescu, Simona M; Costa, Guglielmo; Spinelli, Francesco

    2018-01-01

    Volatile organic compounds emitted during the infection of apple (Malus pumila var. domestica) plants by Erwinia amylovora or Pseudomonas syringae pv. syringae were studied by gas chromatography-mass spectrometry and proton transfer reaction-mass spectrometry, and used to treat uninfected plants. Infected plants showed a disease-specific emission of volatile organic compounds, including several bio-active compounds, such as hexenal isomers and 2,3-butanediol. Leaf growth promotion and a higher resistance to the pathogen, expressed as a lower bacterial growth and migration in plant tissues, were detected in plants exposed to volatile compounds from E. amylovora-infected plants. Transcriptional analysis revealed the activation of salicylic acid synthesis and signal transduction in healthy plants exposed to volatiles produced by E. amylovora-infected neighbour plants. In contrast, in the same plants, salicylic acid-dependent responses were repressed after infection, whereas oxylipin metabolism was activated. These results clarify some metabolic and ecological aspects of the pathogenic adaptation of E. amylovora to its host. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  8. Evidence of isolate-specificity in non-hypersensitive resistance in spring wheat (Triticum aestivum) to wheat leaf rust

    NARCIS (Netherlands)

    Qamar, Maqsood; Niks, R.E.

    2007-01-01

    Isolate-specific aspect of non-hypersensitive resistance in wheat to wheat leaf rust was studied at seedling stage in the green house. Isolate-specific response of non-hypersensitive resistance was assessed from latency period (LP) and infection frequency (IF) of two single-pustule isolates of

  9. Sap flow measurements to determine the transpiration of facade greenings

    Science.gov (United States)

    Hölscher, Marie-Therese; Nehls, Thomas; Wessolek, Gerd

    2014-05-01

    Facade greening is expected to make a major contribution to the mitigation of the urban heat-island effect through transpiration cooling, thermal insulation and shading of vertical built structures. However, no studies are available on water demand and the transpiration of urban vertical green. Such knowledge is needed as the plants must be sufficiently watered, otherwise the posited positive effects of vertical green can turn into disadvantages when compared to a white wall. Within the framework of the German Research Group DFG FOR 1736 "Urban Climate and Heat Stress" this study aims to test the practicability of the sap flow technique for transpiration measurements of climbing plants and to obtain potential transpiration rates for the most commonly used species. Using sap flow measurements we determined the transpiration of Fallopia baldschuanica, Parthenocissus tricuspidata and Hedera helix in pot experiments (about 1 m high) during the hot summer period from August 17th to August 30th 2012 under indoor conditions. Sap flow measurements corresponded well to simultaneous weight measurement on a daily base (factor 1.19). Fallopia baldschuanica has the highest daily transpiration rate based on leaf area (1.6 mm d-1) and per base area (5.0 mm d-1). Parthenocissus tricuspidata and Hedera helix show transpiration rates of 3.5 and 0.4 mm d-1 (per base area). Through water shortage, transpiration strongly decreased and leaf temperature measured by infrared thermography increased by 1 K compared to a well watered plant. We transferred the technique to outdoor conditions and will present first results for facade greenings in the inner-city of Berlin for the hottest period in summer 2013.

  10. Final report on the safety assessment of AloeAndongensis Extract, Aloe Andongensis Leaf Juice,aloe Arborescens Leaf Extract, Aloe Arborescens Leaf Juice, Aloe Arborescens Leaf Protoplasts, Aloe Barbadensis Flower Extract, Aloe Barbadensis Leaf, Aloe Barbadensis Leaf Extract, Aloe Barbadensis Leaf Juice,aloe Barbadensis Leaf Polysaccharides, Aloe Barbadensis Leaf Water, Aloe Ferox Leaf Extract, Aloe Ferox Leaf Juice, and Aloe Ferox Leaf Juice Extract.

    Science.gov (United States)

    2007-01-01

    Plant materials derived from the Aloe plant are used as cosmetic ingredients, including Aloe Andongensis Extract, Aloe Andongensis Leaf Juice, Aloe Arborescens Leaf Extract, Aloe Arborescens Leaf Juice, Aloe Arborescens Leaf Protoplasts, Aloe Barbadensis Flower Extract, Aloe Barbadensis Leaf, Aloe Barbadensis Leaf Extract, Aloe Barbadensis Leaf Juice, Aloe Barbadensis Leaf Polysaccharides, Aloe Barbadensis Leaf Water, Aloe Ferox Leaf Extract, Aloe Ferox Leaf Juice, and Aloe Ferox Leaf Juice Extract. These ingredients function primarily as skin-conditioning agents and are included in cosmetics only at low concentrations. The Aloe leaf consists of the pericyclic cells, found just below the plant's skin, and the inner central area of the leaf, i.e., the gel, which is used for cosmetic products. The pericyclic cells produce a bitter, yellow latex containing a number of anthraquinones, phototoxic compounds that are also gastrointestinal irritants responsible for cathartic effects. The gel contains polysaccharides, which can be acetylated, partially acetylated, or not acetylated. An industry established limit for anthraquinones in aloe-derived material for nonmedicinal use is 50 ppm or lower. Aloe-derived ingredients are used in a wide variety of cosmetic product types at concentrations of raw material that are 0.1% or less, although can be as high as 20%. The concentration of Aloe in the raw material also may vary from 100% to a low of 0.0005%. Oral administration of various anthraquinone components results in a rise in their blood concentrations, wide systemic distribution, accumulation in the liver and kidneys, and excretion in urine and feces; polysaccharide components are distributed systemically and metabolized into smaller molecules. aloe-derived material has fungicidal, antimicrobial, and antiviral activities, and has been effective in wound healing and infection treatment in animals. Aloe barbadensis (also known as Aloe vera)-derived ingredients were not toxic

  11. Using soil microbial inoculations to enhance substrate performance on extensive green roofs.

    Science.gov (United States)

    Molineux, Chloe J; Gange, Alan C; Newport, Darryl J

    2017-02-15

    Green roofs are increasing in popularity in the urban environment for their contribution to green infrastructure; but their role for biodiversity is not often a design priority. Maximising biodiversity will impact positively on ecosystem services and is therefore fundamental for achieving the greatest benefits from green roofs. Extensive green roofs are lightweight systems generally constructed with a specialised growing medium that tends to be biologically limited and as such can be a harsh habitat for plants to thrive in. Thus, this investigation aimed to enhance the soil functioning with inoculations of soil microbes to increase plant diversity, improve vegetation health/performance and maximise access to soil nutrients. Manipulations included the addition of mycorrhizal fungi and a microbial mixture ('compost tea') to green roof rootzones, composed mainly of crushed brick or crushed concrete. The study revealed that growing media type and depth play a vital role in the microbial ecology of green roofs, with complex relationships between depth and type of substrate and the type of microbial inoculant applied, with no clear pattern being observed. For bait plant measurements (heights, leaf numbers, root/shoot biomass, leaf nutrients), a compost tea may have positive effects on plant performance when grown in substrates of shallower depths (5.5cm), even one year after inoculums are applied. Results from the species richness surveys show that diversity was significantly increased with the application of an AM fungal treatment and that overall, results suggest that brick-based substrate blends are most effective for vegetation performance as are deeper depths (although this varied with time). Microbial inoculations of green roof habitats appeared to be sustainable; they need only be done once for benefits to still been seen in subsequent years where treatments are added independently (not in combination). They seem to be a novel and viable method of enhancing

  12. Effective leaf area index retrieving from terrestrial point cloud data: coupling computational geometry application and Gaussian mixture model clustering

    Science.gov (United States)

    Jin, S.; Tamura, M.; Susaki, J.

    2014-09-01

    Leaf area index (LAI) is one of the most important structural parameters of forestry studies which manifests the ability of the green vegetation interacted with the solar illumination. Classic understanding about LAI is to consider the green canopy as integration of horizontal leaf layers. Since multi-angle remote sensing technique developed, LAI obliged to be deliberated according to the observation geometry. Effective LAI could formulate the leaf-light interaction virtually and precisely. To retrieve the LAI/effective LAI from remotely sensed data therefore becomes a challenge during the past decades. Laser scanning technique can provide accurate surface echoed coordinates with densely scanned intervals. To utilize the density based statistical algorithm for analyzing the voluminous amount of the 3-D points data is one of the subjects of the laser scanning applications. Computational geometry also provides some mature applications for point cloud data (PCD) processing and analysing. In this paper, authors investigated the feasibility of a new application for retrieving the effective LAI of an isolated broad leaf tree. Simplified curvature was calculated for each point in order to remove those non-photosynthetic tissues. Then PCD were discretized into voxel, and clustered by using Gaussian mixture model. Subsequently the area of each cluster was calculated by employing the computational geometry applications. In order to validate our application, we chose an indoor plant to estimate the leaf area, the correlation coefficient between calculation and measurement was 98.28 %. We finally calculated the effective LAI of the tree with 6 × 6 assumed observation directions.

  13. Locomotion and attachment of leaf beetle larvae Gastrophysa viridula (Coleoptera, Chrysomelidae)

    OpenAIRE

    Zurek, Daniel B.; Gorb, Stanislav N.; Voigt, Dagmar

    2015-01-01

    While adult green dock leaf beetles Gastrophysa viridula use tarsal adhesive setae to attach to and walk on smooth vertical surfaces and ceilings, larvae apply different devices for similar purposes: pretarsal adhesive pads on thoracic legs and a retractable pygopod at the 10th abdominal segment. Both are soft smooth structures and capable of wet adhesion. We studied attachment ability of different larval instars, considering the relationship between body weight and real contact area between ...

  14. Pricing Volatility of Stock Returns with Volatile and Persistent Components

    DEFF Research Database (Denmark)

    Zhu, Jie

    In this paper a two-component volatility model based on the component's first moment is introduced to describe the dynamic of speculative return volatility. The two components capture the volatile and persistent part of volatility respectively. Then the model is applied to 10 Asia-Pacific stock m......, a positive or risk-premium effect exists between return and the volatile component, yet the persistent component is not significantly priced for return dynamic process....... markets. Their in-mean effects on return are also tested. The empirical results show that the persistent component accounts much more for volatility dynamic process than the volatile component. However the volatile component is found to be a significant pricing factor of asset returns for most markets...

  15. Inhibitory effect of betel quid on the volatility of methyl mercaptan.

    Science.gov (United States)

    Wang, C K; Chen, S L; Wu, M G

    2001-04-01

    Betel quid, a popular natural masticatory in Taiwan, is mainly composed of fresh areca fruit, Piper betle (leaf or inflorescence), and slaked lime paste. People say that halitosis disappears during betel quid chewing. In this study, the removal of mouth odor during betel quid chewing was discussed by using a model system which measured its inhibition on the volatility of methyl mercaptan. Results showed that crude extracts of betel quid (the mixture of areca fruit, Piper betle, and slaked lime paste) and extracts of the mixture of areca fruit and slaked lime paste exhibited marked effects on the volatility of methyl mercaptan, and the inhibition function increased when increasing amounts of slaked lime paste were added. The same condition (increased inhibition) was also found by replacing the slaked lime paste with alkaline salts (calcium hydroxide, potassium hydroxide, or sodium hydroxide). Areca fruit, the major ingredient of betel quid, contained abundant phenolics. However, the crude phenolic extract of areca fruit did not show any inhibitory activity on the volatility of methyl mercaptan. Great inhibitory activity occurred only when the crude phenolic extract of areca fruit was treated with alkali. Further studies by using gel filtration determined that the effect probably came from the oxidative polymerization of phenolics of areca fruit after alkaline treatment.

  16. Testing for Volatility Co-movement in Bivariate Stochastic Volatility Models

    OpenAIRE

    Chen, Jinghui; Kobayashi, Masahito; McAleer, Michael

    2017-01-01

    markdownabstractThe paper considers the problem of volatility co-movement, namely as to whether two financial returns have perfectly correlated common volatility process, in the framework of multivariate stochastic volatility models and proposes a test which checks the volatility co-movement. The proposed test is a stochastic volatility version of the co-movement test proposed by Engle and Susmel (1993), who investigated whether international equity markets have volatility co-movement using t...

  17. Influence of microwave frequency electromagnetic radiation on terpene emission and content in aromatic plants.

    Science.gov (United States)

    Soran, Maria-Loredana; Stan, Manuela; Niinemets, Ülo; Copolovici, Lucian

    2014-09-15

    Influence of environmental stress factors on both crop and wild plants of nutritional value is an important research topic. The past research has focused on rising temperatures, drought, soil salinity and toxicity, but the potential effects of increased environmental contamination by human-generated electromagnetic radiation on plants have little been studied. Here we studied the influence of microwave irradiation at bands corresponding to wireless router (WLAN) and mobile devices (GSM) on leaf anatomy, essential oil content and volatile emissions in Petroselinum crispum, Apium graveolens and Anethum graveolens. Microwave irradiation resulted in thinner cell walls, smaller chloroplasts and mitochondria, and enhanced emissions of volatile compounds, in particular, monoterpenes and green leaf volatiles (GLV). These effects were stronger for WLAN-frequency microwaves. Essential oil content was enhanced by GSM-frequency microwaves, but the effect of WLAN-frequency microwaves was inhibitory. There was a direct relationship between microwave-induced structural and chemical modifications of the three plant species studied. These data collectively demonstrate that human-generated microwave pollution can potentially constitute a stress to the plants. Copyright © 2014 Elsevier GmbH. All rights reserved.

  18. Influence of microwave frequency electromagnetic radiation on terpene emission and content in aromatic plants

    Science.gov (United States)

    Soran, Maria-Loredana; Stan, Manuela; Niinemets, Ülo; Copolovici, Lucian

    2015-01-01

    Influence of environmental stress factors on both crop and wild plants of nutritional value is an important research topic. The past research has focused on rising temperatures, drought, soil salinity and toxicity, but the potential effects of increased environmental contamination by human-generated electromagnetic radiation on plants have little been studied. Here we studied the influence of microwave irradiation at bands corresponding to wireless router (WLAN) and mobile devices (GSM) on leaf anatomy, essential oil content and volatile emissions in Petroselinum crispum, Apium graveolens and Anethum graveolens. Microwave irradiation resulted in thinner cell walls, smaller chloroplasts and mitochondria, and enhanced emissions of volatile compounds, in particular, monoterpenes and green leaf volatiles. These effects were stronger for WLAN-frequency microwaves. Essential oil content was enhanced by GSM-frequency microwaves, but the effect of WLAN-frequency microwaves was inhibitory. There was a direct relationship between microwave-induced structural and chemical modifications of the three plant species studied. These data collectively demonstrate that human-generated microwave pollution can potentially constitute a stress to the plants. PMID:25050479

  19. Endogenous Lunar Volatiles

    Science.gov (United States)

    McCubbin, F. M.; Liu, Y.; Barnes, J. J.; Boyce, J. W.; Day, J. M. D.; Elardo, S. M.; Hui, H.; Magna, T.; Ni, P.; Tartese, R.; hide

    2017-01-01

    The chapter will begin with an introduction that defines magmatic volatiles (e.g., H, F, Cl, S) versus geochemical volatiles (e.g., K, Rb, Zn). We will discuss our approach of understanding both types of volatiles in lunar samples and lay the ground work for how we will determine the overall volatile budget of the Moon. We will then discuss the importance of endogenous volatiles in shaping the "Newer Views of the Moon", specifically how endogenous volatiles feed forward into processes such as the origin of the Moon, magmatic differentiation, volcanism, and secondary processes during surface and crustal interactions. After the introduction, we will include a re-view/synthesis on the current state of 1) apatite compositions (volatile abundances and isotopic compositions); 2) nominally anhydrous mineral phases (moderately to highly volatile); 3) volatile (moderately to highly volatile) abundances in and isotopic compositions of lunar pyroclastic glass beads; 4) volatile (moderately to highly volatile) abundances in and isotopic compositions of lunar basalts; 5) volatile (moderately to highly volatile) abundances in and isotopic compositions of melt inclusions; and finally 6) experimental constraints on mineral-melt partitioning of moderately to highly volatile elements under lunar conditions. We anticipate that each section will summarize results since 2007 and focus on new results published since the 2015 Am Min review paper on lunar volatiles [9]. The next section will discuss how to use sample abundances of volatiles to understand the source region and potential caveats in estimating source abundances of volatiles. The following section will include our best estimates of volatile abundances and isotopic compositions (where permitted by available data) for each volatile element of interest in a number of important lunar reservoirs, including the crust, mantle, KREEP, and bulk Moon. The final section of the chapter will focus upon future work, outstanding questions

  20. Oil and stock market volatility: A multivariate stochastic volatility perspective

    International Nuclear Information System (INIS)

    Vo, Minh

    2011-01-01

    This paper models the volatility of stock and oil futures markets using the multivariate stochastic volatility structure in an attempt to extract information intertwined in both markets for risk prediction. It offers four major findings. First, the stock and oil futures prices are inter-related. Their correlation follows a time-varying dynamic process and tends to increase when the markets are more volatile. Second, conditioned on the past information, the volatility in each market is very persistent, i.e., it varies in a predictable manner. Third, there is inter-market dependence in volatility. Innovations that hit either market can affect the volatility in the other market. In other words, conditioned on the persistence and the past volatility in their respective markets, the past volatility of the stock (oil futures) market also has predictive power over the future volatility of the oil futures (stock) market. Finally, the model produces more accurate Value-at-Risk estimates than other benchmarks commonly used in the financial industry. - Research Highlights: → This paper models the volatility of stock and oil futures markets using the multivariate stochastic volatility model. → The correlation between the two markets follows a time-varying dynamic process which tends to increase when the markets are more volatile. → The volatility in each market is very persistent. → Innovations that hit either market can affect the volatility in the other market. → The model produces more accurate Value-at-Risk estimates than other benchmarks commonly used in the financial industry.

  1. Proteomic Analysis Reveals the Leaf Color Regulation Mechanism in Chimera Hosta "Gold Standard" Leaves.

    Science.gov (United States)

    Yu, Juanjuan; Zhang, Jinzheng; Zhao, Qi; Liu, Yuelu; Chen, Sixue; Guo, Hongliang; Shi, Lei; Dai, Shaojun

    2016-03-08

    Leaf color change of variegated leaves from chimera species is regulated by fine-tuned molecular mechanisms. Hosta "Gold Standard" is a typical chimera Hosta species with golden-green variegated leaves, which is an ideal material to investigate the molecular mechanisms of leaf variegation. In this study, the margin and center regions of young and mature leaves from Hosta "Gold Standard", as well as the leaves from plants after excess nitrogen fertilization were studied using physiological and comparative proteomic approaches. We identified 31 differentially expressed proteins in various regions and development stages of variegated leaves. Some of them may be related to the leaf color regulation in Hosta "Gold Standard". For example, cytosolic glutamine synthetase (GS1), heat shock protein 70 (Hsp70), and chloroplastic elongation factor G (cpEF-G) were involved in pigment-related nitrogen synthesis as well as protein synthesis and processing. By integrating the proteomics data with physiological results, we revealed the metabolic patterns of nitrogen metabolism, photosynthesis, energy supply, as well as chloroplast protein synthesis, import and processing in various leaf regions at different development stages. Additionally, chloroplast-localized proteoforms involved in nitrogen metabolism, photosynthesis and protein processing implied that post-translational modifications were crucial for leaf color regulation. These results provide new clues toward understanding the mechanisms of leaf color regulation in variegated leaves.

  2. Pricing Volatility of Stock Returns with Volatile and Persistent Components

    DEFF Research Database (Denmark)

    Zhu, Jie

    2009-01-01

    This paper introduces a two-component volatility model based on first moments of both components to describe the dynamics of speculative return volatility. The two components capture the volatile and the persistent part of volatility, respectively. The model is applied to 10 Asia-Pacific stock ma...... markets. A positive or risk-premium effect exists between the return and the volatile component, yet the persistent component is not significantly priced for the return dynamic process....... markets. Their in-mean effects on returns are tested. The empirical results show that the persistent component is much more important for the volatility dynamic process than is the volatile component. However, the volatile component is found to be a significant pricing factor of asset returns for most...

  3. The growth and survival of plants in urban green roofs in a dry climate.

    Science.gov (United States)

    Razzaghmanesh, M; Beecham, S; Kazemi, F

    2014-04-01

    Green roofs as one of the components of water-sensitive urban design have become widely used in recent years. This paper describes performance monitoring of four prototype-scale experimental green roofs in a northern suburb of Adelaide, South Australia, undertaken over a 1-year period. Four species of indigenous Australian ground cover and grass species comprising Carpobrotus rossii, Lomandra longifolia 'Tanika,' Dianella caerula 'Breeze' and Myoporum parvifolium were planted in extensive and intensive green roof configurations using two different growing media. The first medium consisted of crushed brick, scoria, coir fibre and composted organics while the second comprised scoria, composted pine bark and hydro-cell flakes. Plant growth indices including vertical and horizontal growth rate, leaf succulence, shoot and root biomasses, water use efficiency and irrigation regimes were studied during a 12-month period. The results showed that the succulent species, C. rossii, can best tolerate the hot, dry summer conditions of South Australia, and this species showed a 100% survival rate and had the maximum horizontal growth rate, leaf succulence, shoot biomass and water use efficiency. All of the plants in the intensive green roofs with the crushed brick mix media survived during the term of this study. It was shown that stormwater can be used as a source of irrigation water for green roofs during 8 months of the year in Adelaide. However, supplementary irrigation is required for some of the plants over a full annual cycle. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Volatility in energy prices

    International Nuclear Information System (INIS)

    Duffie, D.

    1999-01-01

    This chapter with 58 references reviews the modelling and empirical behaviour of volatility in energy prices. Constant volatility and stochastic volatility are discussed. Markovian models of stochastic volatility are described and the different classes of Markovian stochastic volatility model are examined including auto-regressive volatility, option implied and forecasted volatility, Garch volatility, Egarch volatility, multivariate Garch volatility, and stochastic volatility and dynamic hedging policies. Other volatility models and option hedging are considered. The performance of several stochastic volatility models as applied to heating oil, light oil, natural gas, electricity and light crude oil are compared

  5. Green synthesis and characterization of gold and silver nanoparticles using Mussaenda glabrata leaf extract and their environmental applications to dye degradation.

    Science.gov (United States)

    Francis, Sijo; Joseph, Siby; Koshy, Ebey P; Mathew, Beena

    2017-07-01

    Plant-derived nanomaterials opened a green approach in solving the current environment issues. Present study focused on rapid microwave-assisted synthesis and applications of gold and silver nanoparticles mediated by aqueous leaf extract of Mussaenda glabrata. The synthesized nanoparticles were characterized by UV-vis, FT-IR, powder XRD, energy-dispersive X-ray spectroscopy (EDX), transmission electron (TEM), and atomic force microscopic techniques (AFM). FCC crystal structure of both nanoparticles was confirmed by peaks corresponding to (111), (200), (220), and (311) planes in XRD spectra and bright circular spots in SAED pattern. IC 50 values shown by gold and silver nanoparticles (44.1 ± 0.82 and 57.92 ± 1.33 μg/mL) reflected their high free radical scavenging potential. The synthesized gold and silver nanoparticles revealed their potency to inhibit pathogenic microorganisms Bacillus pumilus, Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Aspergillus niger, and Penicillium chrysogenum. Anthropogenic pollutants rhodamine B and methyl orange were effectively degraded from aquatic environment and waste water sewages of dye industries using the prepared nanocatalysts. The catalytic capacities of the synthesized nanoparticles were also exploited in the reduction of 4-nitrophenol. Graphical abstract.

  6. Ionizing radiation effects on volatiles formation in Camellia sinensis (L) teas; Efeito da radiacao ionizante na formacao de volateis em chas da planta Camellia sinensis (L)

    Energy Technology Data Exchange (ETDEWEB)

    Fanaro, Gustavo Bernardes

    2009-07-01

    The aim of this study was to evaluate the effects of radiation on volatile formation in white, green, oolong and black teas. Samples were irradiated in room temperature at {sup 60}Co source Gammacell 220 (A.E.C. Ltda) at doses of 0, 5, 10, 15 and 20 kGy. The volatiles organic compound was extracted by hydro distillation and the extract was separated and identified by gas chromatography mass spectrometry (GCMS) analysis. The results show that the volatiles formations are directly proportional to the increase of radiation dose. The white tea showed less influence of ionizing radiation, as 37.86% of the compounds were stable at all doses of radiation and formed 47.53% of new compounds after irradiation. The green tea was the tea that has the greatest influence of radiation effects, increasing 66.12% of volatiles identified in relation to the control sample and only 21.77% of volatiles found naturally were resistant to all doses of radiation. The oolong tea, despite suffering a partial enzymatic treatment, was the second tea that has least interference of radiation in increasing the formation of new volatile. >From this tea, was able to detect 49.59% of new compounds after irradiation and 30.08% of the compounds found naturally were also found after irradiation. The black tea has the second greatest influence of radiation on formation of new volatile (60.94%) and only 17.97% of all identified compounds were not degraded after radiation. (author)

  7. Towards green loyalty: the influences of green perceived risk, green image, green trust and green satisfaction

    Science.gov (United States)

    Chrisjatmiko, K.

    2018-01-01

    The paper aims to present a comprehensive framework for the influences of green perceived risk, green image, green trust and green satisfaction to green loyalty. The paper also seeks to account explicitly for the differences in green perceived risk, green image, green trust, green satisfaction and green loyalty found among green products customers. Data were obtained from 155 green products customers. Structural equation modeling was used in order to test the proposed hypotheses. The findings show that green image, green trust and green satisfaction has positive effects to green loyalty. But green perceived risk has negative effects to green image, green trust and green satisfaction. However, green perceived risk, green image, green trust and green satisfaction also seems to be a good device to gain green products customers from competitors. The contributions of the paper are, firstly, a more complete framework of the influences of green perceived risk, green image, green trust and green satisfaction to green loyalty analyses simultaneously. Secondly, the study allows a direct comparison of the difference in green perceived risk, green image, green trust, green satisfaction and green loyalty between green products customers.

  8. Influence of growth regulators on distribution of trichomes and the production of volatiles in micropropagated plants of Plectranthus ornatus

    Directory of Open Access Journals (Sweden)

    Helna C. Passinho-Soares

    Full Text Available ABSTRACT The profile of volatile organic compounds, the glandular and non-glandular trichomes of Plectranthus ornatus, obtained by in vitro cultivation, was evaluated in plants grown in Murashide and Skoog medium supplemented with benylaminopurine at 4.5, 9.0, and 18.0 µM + naphthaleneacetic acid at 5.37 µM, kinetin at 4.7, 9.3 and 18.5 µM + naphthaleneacetic acid (5.37 µM or Murashide and Skoog 0 medium (as a control. Scanning Electron Microscopy was performed on samples of the third leaf node of the 90 days old plants obtained from treatment with 4.5 or 9.0 µM benylaminopurine, and 4.7 or 9.3 µM kinetin. Headspace Solid Phase Micro-Extraction of the 30, 60 and 90 days old in vitro plants permitted to determinate by GC/MS the composition comprised of 62 compounds. The data were analyzed using Principal Component Analysis and Hierarchical Clustering Analysis and, the major constituents of these oils after treatment and aging were monoterpenes and sesquiterpenes. Morphoanatomical analysis of trichomes, by Scanning Electron Microscopy, enabled the identification of non-glandular trichomes and four types of glandular trichomes, which comprised capitate and peltate glandular trichomes that were distributed on both sides of the leaf. We observed that the regulators influenced qualitative and quantitative profiles of the volatile organic compounds and the number and distribution of hairs on the leaf surface.

  9. Maize YABBY genes drooping leaf1 and drooping leaf2 affect agronomic traits by regulating leaf architecture

    Science.gov (United States)

    Leaf architectural traits, such as length, width and angle, directly influence canopy structure and light penetration, photosynthate production and overall yield. We discovered and characterized a maize (Zea mays) mutant with aberrant leaf architecture we named drooping leaf1 (drl1), as leaf blades ...

  10. Green synthesis of Fe nanoparticles using eucalyptus leaf extracts for treatment of eutrophic wastewater

    International Nuclear Information System (INIS)

    Wang, Ting; Jin, Xiaoying; Chen, Zuliang; Megharaj, Mallavarapu; Naidu, Ravendra

    2014-01-01

    Iron nanoparticles were firstly synthesized through a one-step room-temperature biosynthetic route using eucalyptus leaf extracts (EL-Fe NPs). Scanning electron microscopy (SEM) and X-ray energy-dispersive spectrometer (EDS) confirmed the successful synthesis of the spheroidal iron nanoparticles. Furthermore, X-ray diffraction (XRD) and Fourier Transform Infrared spectrometer (FTIR) indicated that some polyphenols are bound to the surfaces of EL-Fe NPs as a capping/stabilizing agent. Reactivity of EL-Fe NPs was evaluated for the treatment of swine wastewater and results indicated that 71.7% of total N and 84.5% of COD were removed, respectively. This demonstrated the tremendous potential of EL-Fe NPs for in situ remediation of eutrophic wastewater. - Highlights: •Fe NPs were firstly synthesized through a one-step using eucalyptus leaf extracts. •Fe NPs was evaluated by remediating swine wastewater. •71.7% of total N and 84.5% of COD was removed. •Fe NPs for in situ remediation of eutrophic wastewater

  11. Green synthesis of Fe nanoparticles using eucalyptus leaf extracts for treatment of eutrophic wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ting; Jin, Xiaoying [School of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, Fujian (China); Chen, Zuliang, E-mail: Zuliang.chen@unisa.edu.au [School of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, Fujian (China); Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, SA 5095 (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of Environments, Mawson Lakes, SA 5095 (Australia); Megharaj, Mallavarapu; Naidu, Ravendra [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, SA 5095 (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of Environments, Mawson Lakes, SA 5095 (Australia)

    2014-01-01

    Iron nanoparticles were firstly synthesized through a one-step room-temperature biosynthetic route using eucalyptus leaf extracts (EL-Fe NPs). Scanning electron microscopy (SEM) and X-ray energy-dispersive spectrometer (EDS) confirmed the successful synthesis of the spheroidal iron nanoparticles. Furthermore, X-ray diffraction (XRD) and Fourier Transform Infrared spectrometer (FTIR) indicated that some polyphenols are bound to the surfaces of EL-Fe NPs as a capping/stabilizing agent. Reactivity of EL-Fe NPs was evaluated for the treatment of swine wastewater and results indicated that 71.7% of total N and 84.5% of COD were removed, respectively. This demonstrated the tremendous potential of EL-Fe NPs for in situ remediation of eutrophic wastewater. - Highlights: •Fe NPs were firstly synthesized through a one-step using eucalyptus leaf extracts. •Fe NPs was evaluated by remediating swine wastewater. •71.7% of total N and 84.5% of COD was removed. •Fe NPs for in situ remediation of eutrophic wastewater.

  12. Characterization of Volatiles in Rambutan Fruit (Nephelium lappaceum L.).

    Science.gov (United States)

    Ong; Acree; Lavin

    1998-02-16

    The volatile compounds from the red-skinned cultivar of rambutan, Jitlee (Nephelium lappaceumL.), a tropical fruit native to Southeast Asia, were extracted using both Freon 113 and ethyl acetate solvents. Isolation and characterization of odor-active compounds present in the fruit were mediated by gas chromatography/olfactory (GC/O), chromatography, and spectrometry. Authentic standards were used to determine mass spectral, retention index, and odor match. Of over 100 volatiles detected by GC/MS, twice as many polar volatiles were detected in the ethyl acetate extract as in the nonpolar Freon extract. GC/O analysis also detected more odor-active compounds in the polar extracts. Over 60 compounds in the extracts had some odor activity. The 20 most potent odorants included beta-damascenone, (E)-4,5-epoxy-(E)-2-decenal, vanillin, (E)-2-nonenal, phenylacetic acid, cinnamic acid, unknown 1 (sweaty), ethyl 2-methylbutyrate, and delta-decalactone. On the basis of calculated odor activity values, beta-damascenone, ethyl 2-methylbutyrate, 2,6-nonadienal, (E)-2-nonenal, and nonanal were determined to be the main contributors to the fruit aroma. Taken together, these results indicate that the exotic aroma character of rambutan is the interaction of fruity-sweet and fatty-green odors, with the possible contribution of "civet-like"-sweaty, spicy, and woody notes.

  13. Isoprene biosynthesis in hybrid poplar impacts ozone tolerance

    Science.gov (United States)

    Behnke, K.; Kleist, E.; Uerlings, R.; Wildt, J.; Rennenberg, H.; Schnitzler, J. P.

    2009-04-01

    Isoprene is the most abundant volatile compound emitted by vegetation. It influences air chemistry and is thought to take part in plant defense reactions against abiotic stress such as high temperature or ozone. However, whether or not isoprene emission interacts with ozone tolerance of plants is still in discussion. We exploited transgenic non-isoprene emitting Grey poplar (Populus x canescens) in a biochemical and physiological model study to investigate the effect of acute ozone stress on the elicitation of defense-related emissions of plant volatiles, photosynthesis and the antioxidative system. We recorded that non-isoprene emitting poplars are more resistant to ozone as indicated by less damaged leaf area and higher assimilation rates compared to ozone-exposed wild type plants. The integral of green leaf volatile (GLV) emissions was different between the two poplar phenotypes and a reliable early marker for subsequent leaf damage. For other stress-induced volatiles like mono-, homo-, and sesquiterpenes, and methyl salicylate similar time profiles, pattern and emission intensities were observed in both transgenic and wild type plants. However, un-stressed non-isoprene emitting poplars are characterized by elevated levels of ascorbate and α-tocopherol as well as a more effective de-epoxidation ratio of xanthophylls than in wild type plants. Since ozone quenching properties of ascorbate are much higher than those of isoprene and furthermore α-tocopherol also is an essential antioxidant, non-isoprene emitting poplars might benefit from changes within the antioxidative system by providing them with enhanced ozone tolerance.

  14. Volatility Discovery

    DEFF Research Database (Denmark)

    Dias, Gustavo Fruet; Scherrer, Cristina; Papailias, Fotis

    The price discovery literature investigates how homogenous securities traded on different markets incorporate information into prices. We take this literature one step further and investigate how these markets contribute to stochastic volatility (volatility discovery). We formally show...... that the realized measures from homogenous securities share a fractional stochastic trend, which is a combination of the price and volatility discovery measures. Furthermore, we show that volatility discovery is associated with the way that market participants process information arrival (market sensitivity......). Finally, we compute volatility discovery for 30 actively traded stocks in the U.S. and report that Nyse and Arca dominate Nasdaq....

  15. The Salicylic Acid-Mediated Release of Plant Volatiles Affects the Host Choice of Bemisia tabaci

    Directory of Open Access Journals (Sweden)

    Xiaobin Shi

    2016-06-01

    Full Text Available The whitefly Bemisia tabaci (Gennadius (Hemiptera: Aleyrodidae causes serious crop losses worldwide by transmitting viruses. We have previously shown that salicylic acid (SA-related plant defenses directly affect whiteflies. In this study, we applied exogenous SA to tomato plants in order to investigate the interaction between SA-induced plant volatiles and nonviruliferous B. tabaci B and Q or B- and Q-carrying tomato yellow leaf curl virus (TYLCV. The results showed that exogenous SA caused plants to repel nonviruliferous whiteflies, but the effect was reduced when the SA concentration was low and when the whiteflies were viruliferous. Exogenous SA increased the number and quantity of plant volatiles—especially the quantity of methyl salicylate and δ-limonene. In Y-tube olfactometer assays, methyl salicylate and δ-limonene repelled the whiteflies, but the repellency was reduced for viruliferous Q. We suggest that the release of plant volatiles as mediated by SA affects the interaction between whiteflies, plants, and viruses. Further studies are needed to determine why viruliferous Q is less sensitive than nonviruliferous Q to repellent plant volatiles.

  16. Potential Application of Shallow Bed Wetland Roof systems for green urban cities

    Science.gov (United States)

    Bui, X. T.

    2016-12-01

    This study aims to investigate the growth, nutrient uptake, domestic wastewater treatment, green (leaf) area and heat reduction of four shallow subsurface flow wetland roof (WR) systems with four different new local plants. Selected species included Cyperus Javanicus Hot (WR1), Eleusine Indica (L.) Gaertn (WR2), Struchium Sparganophorum (L.) Kuntze (WR3) and Kyllinga Brevifolia Rottb (WR4). These systems were operated during 61 days at hydraulic loading rates of 353 - 403 m3/ha.day. The biomass growth of 4.9-73.7g fresh weight/day, and 0.8-11.4 g dry weight/day were observed. The nutrient accumulation according to dry biomass achieved 0.25-2.14% of total nitrogen (TN) and 0.13-1.07% of total phosphorus (TP). The average COD, TN and TP removal was 61-79%; 54-81% and 62-83%, which corresponding to 27-33 kg COD/ha.day, 10-14 kg TN/ha.day and 0.4-0.5 kg TP/ha.day, respectively. The WR4 system achieved the highest COD and TN removal among the WRs. The TP removal efficiency showed an insignificant difference for the systems. Consequently, the treated water quality complied with the Vietnam standard limits (QCVN 14:2008, level B). The green area of the four plants varied between 63-92 m2 green leaf/m2 WR. The WR4 was the highest green area. Moreover, the results also showed the temperature under the flat roof was 1-3°C lower than that of the ambient air. In summary, wetland roof is a promising technology, which not only owns the effective domestic wastewater treatment capacity, but also contributes to green urban with several above benefits.

  17. Level Shifts in Volatility and the Implied-Realized Volatility Relation

    DEFF Research Database (Denmark)

    Christensen, Bent Jesper; de Magistris, Paolo Santucci

    We propose a simple model in which realized stock market return volatility and implied volatility backed out of option prices are subject to common level shifts corresponding to movements between bull and bear markets. The model is estimated using the Kalman filter in a generalization to the mult......We propose a simple model in which realized stock market return volatility and implied volatility backed out of option prices are subject to common level shifts corresponding to movements between bull and bear markets. The model is estimated using the Kalman filter in a generalization...... to the multivariate case of the univariate level shift technique by Lu and Perron (2008). An application to the S&P500 index and a simulation experiment show that the recently documented empirical properties of strong persistence in volatility and forecastability of future realized volatility from current implied...... volatility, which have been interpreted as long memory (or fractional integration) in volatility and fractional cointegration between implied and realized volatility, are accounted for by occasional common level shifts....

  18. Testing for Volatility Co-movement in Bivariate Stochastic Volatility Models

    NARCIS (Netherlands)

    J. Chen (Jinghui); M. Kobayashi (Masahito); M.J. McAleer (Michael)

    2017-01-01

    markdownabstractThe paper considers the problem of volatility co-movement, namely as to whether two financial returns have perfectly correlated common volatility process, in the framework of multivariate stochastic volatility models and proposes a test which checks the volatility co-movement. The

  19. Analysis, improvement and application of the MODIS leaf area index products

    Science.gov (United States)

    Yang, Wenze

    Green leaf area governs the exchanges of energy, mass and momentum between the Earth's surface and the atmosphere. Therefore, leaf area index (LAI) and fraction of incident photosynthetically active radiation (0.4-0.7 mum) absorbed by the vegetation canopy (FPAR) are widely used in vegetation monitoring and modeling. The launch of Terra and Aqua satellites with the moderate resolution imaging spectroradiometer (MODIS) instrument onboard provided the first global products of LAI and FPAR, derived mainly from an algorithm based on radiative transfer. The objective of this research is to comprehensively evaluate the Terra and Aqua MODIS LAI/FPAR products. Large volumes of these products have been analyzed with the goal of understanding product quality with respect to version (Collection 3 versus 4), algorithm (main versus back-up), snow (snow-free versus snow on the ground) and cloud (cloud-free versus cloudy) conditions. Field validation efforts identified several key factors that influence the accuracy of algorithm retrievals. The strategy of validation efforts guiding algorithm refinements has led to progressively more accurate LAI/FPAR products. The combination of products derived from the Terra and Aqua MODIS sensors increases the success rate of the main radiative transfer algorithm by 10-20 percent over woody vegetation. The Terra Collection 4 LAI data reveal seasonal swings in green leaf area of about 25 percent in a majority of the Amazon rainforests caused by variability in cloud cover and light. The timing and the influence of this seasonal cycle are critical to understanding tropical plant adaptation patterns and ecological processes. The results presented in this dissertation suggest how the product quality has gradually improved largely through the efforts of validation activities. The Amazon case study highlights the utility of these data sets for monitoring global vegetation dynamics. Thus, these results can be seen as a benchmark for evaluation of

  20. Volatiles and Nonvolatiles in Flourensia campestris Griseb. (Asteraceae), How Much Do Capitate Glandular Trichomes Matter?

    Science.gov (United States)

    Piazza, Leonardo A; López, Daniela; Silva, Mariana P; López Rivilli, Marisa J; Tourn, Mónica G; Cantero, Juan J; Scopel, Ana L

    2018-03-01

    The distribution and ultrastructure of capitate glandular trichomes (GTs) in Flourensia species (Asteraceae) have been recently elucidated, but their metabolic activity and potential biological function remain unexplored. Selective nonvolatile metabolites from isolated GTs were strikingly similar to those found on leaf surfaces. The phytotoxic allelochemical sesquiterpene (-)-hamanasic acid A ((-)-HAA) was the major constituent (ca. 40%) in GTs. Although GTs are quaternary ammonium compounds (QACs)-accumulating species, glycine betaine was not found in GTs; it was only present in the leaf mesophyll. Two (-)-HAA accompanying surface secreted products: compounds 4-hydroxyacetophenone (piceol; 1) and 2-hydroxy-5-methoxyacetophenone (2), which were isolated and fully characterized (GC/MS, NMR), were present in the volatiles found in GTs. The essential oils of fresh leaves revealed ca. 33% monoterpenes, 26% hydrocarbon- and 30% oxygenated sesquiterpenes, most of them related to cadinene and bisabolene derivatives. Present results suggest a main role of GTs in determining the volatile and nonvolatile composition of F. campestris leaves. Based on the known activities of the compounds identified, it can be suggested that GTs in F. campestris would play key ecological functions in plant-pathogen and plant-plant interactions. In addition, the strikingly high contribution of compounds derived from cadinene and bisabolene pathways, highlights the potential of this species as a source of high-valued bioproducts. © 2018 Wiley-VHCA AG, Zurich, Switzerland.

  1. Green Antibiotic Daun Sirih (Piper betle l. Sebagai Pengganti Antibiotik Komersial untuk Penanganan Mastitis

    Directory of Open Access Journals (Sweden)

    Gabby Lutviandhitarani

    2015-04-01

    Full Text Available (Green antibiotic betel leaf (Piper betle l. as a substitute  for commercial antibiotic in mastitis treatment  ABSTRACT. The present study was carried out to investigate the possible antibacterial activity of betel leaf on the amount and microscopic appearance of mastitis-causing bacteria. The randomized block design with 5 treatment groups were : K group (mastitis milk only as negative control, Ab group (mastitis milk + antibiotic penicillin-dihydrostreptomycin as positive control,  S1 group (mastitis milk + 1,25 ml betel leaf water extract, S2 group (mastitis milk+ 2,5 ml betel leaf water extract, and S3 group (mastitis milk + 5 ml betel leaf water extract. The result showed that the amount of bacteria in the betel leaves groups (S1, S2, and S3 groups were lower (P 0,05. Moreover, this research showed that betel leaf water extract had the same effectiveness with commercial antibiotic penicillin-dihydrostreptomycin to inhibit the growth of bacteria as indicated by the same amount of bacteria (P>0,05 among the betel leaf groups (S1, S2, and S3 groups and the Ab group. Gram-positive and negative bacteria were seen in the K group. However, only Gram-negative bacteria were visible in the betel leaf groups (S1, S2, and S3 groups and in the Ab groups, indicating that betel leaf had the same effectiveness as penicillin-dihydrostreptomycin to inhibit the growth of Gram-positive bacteria.

  2. Colour cues for leaf food selection by long-tailed macaques (Macaca fascicularis) with a new suggestion for the evolution of trichromatic colour vision.

    Science.gov (United States)

    Lucas, P W; Darvell, B W; Lee, P K; Yuen, T D; Choong, M F

    1998-01-01

    Leaf colour, size and toughness were investigated in five plant species important in the diet of Macaca fascicularis in Singapore. Leaf colour and size were examined as potential visual cues for food selection, whereas toughness mirrored fibre content, the inverse of food quality. As leaves matured, they changed colour and toughened. Leaf lightness and yellowness were strongly negatively correlated with toughness, but variation in both the red-green axis of the CIE Lab colour space and leaf size were not. Leaves selected as food by the macaques were distinguished by being very light, yellow to slightly green. Some leaves were dappled with red. The literature suggests that these leaves are relatively rich in protein without being tough and therefore would be sought after by primates. We argue that leaf colour is an important indicator of the nutritive value of leaves. Trichromatic vision is an important advantage in finding those palatable leaves that are dappled red. These would appear dark to dichromatic primates and be deceptive by making leaves look older (lower in quality) than they actually are. This would decrease the perceived window of feeding opportunity for such primates who would be at a disadvantage in trying to find these leaves. It is possible that trichromatic vision in catarrhine primates may have originally evolved for the detection of red coloration in the leaves of shade-tolerant tropical plants, enabling the better exploitation of a food resource.

  3. Ozone Flux Measurement and Modelling on Leaf/Shoot and Canopy Scale

    Directory of Open Access Journals (Sweden)

    Ludger Grünhage

    Full Text Available The quantitative study of the ozone effects on agricultural and forest vegetation requires the knowledge of the pollutant dose absorbed by plants via leaf stomata, i.e. the stomatal flux. Nevertheless, the toxicologically effective dose can differ from the stomatal flux because a pool of scavenging and detoxification processes reduce the amount of pollutant responsible of the expression of the harmful effects. The measurement of the stomatal flux is not immediate and the quantification of the effective dose is still troublesome. The paper examines the conceptual aspects of ozone flux measurement and modelling in agricultural and ecological research. The ozone flux paradigm is conceptualized into a toxicological frame and faced at two different scales: leaf/shoot and canopy scales. Leaf and shoot scale flux measurements require gas-exchange enclosure techniques, while canopy scale flux measurements need a micrometeorological approach including techniques such as eddy covariance and the aerodynamical gradient. At both scales, not all the measured ozone flux is stomatal flux. In fact, a not negligible amount of ozone is destroyed on external plant surfaces, like leaf cuticles, or by gas phase reaction with biogenic volatile compounds. The stomatal portion of flux can be calculated from concurrent measurements of water vapour fluxes at both scales. Canopy level flux measurements require very fast sensors and the fulfilment of many conditions to ensure that the measurements made above the canopy really reflect the canopy fluxes (constant flux hypothesis. Again, adjustments are necessary in order to correct for air density fluctuations and sensor-surface alignment break. As far as regards flux modelling, at leaf level the stomatal flux is simply obtained by multiplying the ozone concentration on the leaf with the stomatal conductance predicted by means of physiological models fed by meteorological parameter. At canopy level the stomatal flux is

  4. Volatile constituents of the peel and leaf oils of Citrus limon L. Burm. f. from Benin

    NARCIS (Netherlands)

    Ayedoun, M.A.; Sossou, P.V.; Mardarowicz, M.; Leclercq, P.A.

    1996-01-01

    The peel and leaf oils ofCitrus limon L. from Benin were analyzed by capillary GC on two columns of different polarity, and by GCIMS. In these oils 42 and 27 components were identified, representing over 99.7% ofthe oils. The main constituents of the lemon peel oil were limonene (70.4%), y-terpinene

  5. Degradation of pheromone and plant volatile components by a same odorant-degrading enzyme in the cotton leafworm, Spodoptera littoralis.

    Directory of Open Access Journals (Sweden)

    Nicolas Durand

    Full Text Available Odorant-Degrading Enzymes (ODEs are supposed to be involved in the signal inactivation step within the olfactory sensilla of insects by quickly removing odorant molecules from the vicinity of the olfactory receptors. Only three ODEs have been both identified at the molecular level and functionally characterized: two were specialized in the degradation of pheromone compounds and the last one was shown to degrade a plant odorant.Previous work has shown that the antennae of the cotton leafworm Spodoptera littoralis, a worldwide pest of agricultural crops, express numerous candidate ODEs. We focused on an esterase overexpressed in males antennae, namely SlCXE7. We studied its expression patterns and tested its catalytic properties towards three odorants, i.e. the two female sex pheromone components and a green leaf volatile emitted by host plants.SlCXE7 expression was concomitant during development with male responsiveness to odorants and during adult scotophase with the period of male most active sexual behaviour. Furthermore, SlCXE7 transcription could be induced by male exposure to the main pheromone component, suggesting a role of Pheromone-Degrading Enzyme. Interestingly, recombinant SlCXE7 was able to efficiently hydrolyze the pheromone compounds but also the plant volatile, with a higher affinity for the pheromone than for the plant compound. In male antennae, SlCXE7 expression was associated with both long and short sensilla, tuned to sex pheromones or plant odours, respectively. Our results thus suggested that a same ODE could have a dual function depending of it sensillar localisation. Within the pheromone-sensitive sensilla, SlCXE7 may play a role in pheromone signal termination and in reduction of odorant background noise, whereas it could be involved in plant odorant inactivation within the short sensilla.

  6. Effects of Organic Matter on Soil Erosion and Runoff Peanuts and Green Pea in Cultivation

    OpenAIRE

    Sukataatmaja, Sukandi; Sato, Yohei; Yamaji, Eiji; Ishikawa, Masaya

    2002-01-01

    Organic matter from manure are used not only for fertilizer but also can be used for preventing soil erosion and runoff. How to manage manure to soil for peanut and green pea CUltivation is especially important, because most farmers plant these crops. The objective of this research is to identify effect of: 1) organicmatter from chicken manure, cow manure and sheep manure on soil erosion and runoff in peanuts and green pea cultivations, 2) mulch from paddy, corn and leaf of banana on soil ero...

  7. Green synthesis of silver nanoparticles using a Melissa officinalis leaf extract with antibacterial properties

    Directory of Open Access Journals (Sweden)

    Álvaro de Jesús Ruíz-Baltazar

    Full Text Available The exceptional properties of the silver nanoparticles offer several applications in the biomedicine field. The development of antibiotics which are clinically useful against bacteria and drug resistant microorganisms, it is one of the main approaches of silver nanoparticles. However, it is necessary to develop environmentally friendly methods for their synthesis. In this sense, the main objective of this work is focused on to propose a simplified and efficient green synthesis of silver nanoparticles with proven antibacterial properties. The green synthesis route is based on the use of the Melissa officinalis as reducing agent of the silver ions in aqueous solution at room temperature. Complementary, the antibacterial activity of the silver nanoparticles against Staphylococcus aureus and Escherichia coli was confirmed. The silver nanoparticles obtained were characterized by transmission electron microscopy, X-ray diffraction, UV–vis, Raman and FT-IR spectroscopy. The observed results suggested that using Melissa officinalis, it is possible to performed silver nanoparticles with controlled characteristics and with significant inhibitory activity against the Staphylococcus aureus and Escherichia coli. Keywords: Green synthesis, Nanoparticles, Antibacterial effect

  8. Influence of harvest maturity and fruit logistics on pineapple (Ananas comosus [L.] Merr.) volatiles assessed by headspace solid phase microextraction and gas chromatography-mass spectrometry (HS-SPME-GC/MS).

    Science.gov (United States)

    Steingass, Christof B; Grauwet, Tara; Carle, Reinhold

    2014-05-01

    Profiling of volatiles from pineapple fruits was performed at four ripening stages using headspace solid-phase microextraction and gas chromatography-mass spectrometry (HS-SPME-GC/MS). In total, 142 volatiles were detected, of which 132 were identified. Multivariate data analysis was carried out to assess the effect of post-harvest storage on volatiles composition of green-ripe sea-freighted pineapple in comparison to air-freighted fruits harvested at full maturity. The latter fruits were characterised by volatiles described as potent odorants in pineapples, such as δ-octalactone, γ-lactones, 1-(E,Z)-3,5-undecatriene and 1,3,5,8-undecatetraene, as well as various methyl esters. In contrast, post-harvest storage of green-ripe sea-freighted fruits resulted in an increased formation of ethyl esters, acetates, acetoxy esters and alcohols, thus allowing the authentication of sea- and air-freighted pineapples, respectively. Particularly, compounds presumably derived from methyl-branched amino acid catabolism were identified in the fruits at later post-harvest stages. In addition, physicochemical traits were determined to characterise the fruit maturity stages. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Evaluation of Biological Value and Appraisal of Polyphenols and Glucosinolates from Organic Baby-Leaf Salads as Antioxidants and Antimicrobials against Important Human Pathogenic Bacteria

    Directory of Open Access Journals (Sweden)

    Maria J. Saavedra

    2013-04-01

    Full Text Available The present investigation has been carried out to investigate the biological role of four different types of baby-leaf salads and to study their potential as natural sources of antioxidants and antimicrobials against several isolates from important human pathogenic bacteria. Four single types of salads (green lettuce, red lettuce, rucola and watercress and two mixtures [(1 red lettuce+green lettuce; (2 green lettuce + red lettuce + watercress + rucola] were assayed. The HPLC analysis revealed interesting levels of polyphenols and glucosinolates. The results showed a significant variation (p < 0.05 of polyphenols and glucosinolates with plant material. Nine different types of polyphenols grouped in three major classes were found: gallic acid, chlorogenic acid, caffeic acid and dicaffeoyltartaric acid (phenolic acids; quercitin-3-O-rutinoside, quercitin-3-O-rhamnoside, luteolin-7-O-glucoside and isorhamnetin (flavonoids; and cyanidin-3-glucoside (anthocyanins. Only three different glucosinolates were found: glucoraphanin; gluconasturtiin and 4-methoxy-glucobrassicin. A positive correlation was detected between polyphenol contents and antioxidant activity. Red lettuce and mixture 1 were the baby-leaf salads with the highest antioxidant potential. As for the antimicrobial activity, the results showed a selective effect of chemicals against Gram-positive and Gram-negative bacteria and Enterococcus faecalis and Staphylococcus aureus were the bacteria most affected by the phytochemicals. Based on the results achieved baby-leaf salads represent an important source of natural antioxidants and antimicrobial substances.

  10. Black leaf streak disease affects starch metabolism in banana fruit.

    Science.gov (United States)

    Saraiva, Lorenzo de Amorim; Castelan, Florence Polegato; Shitakubo, Renata; Hassimotto, Neuza Mariko Aymoto; Purgatto, Eduardo; Chillet, Marc; Cordenunsi, Beatriz Rosana

    2013-06-12

    Black leaf streak disease (BLSD), also known as black sigatoka, represents the main foliar disease in Brazilian banana plantations. In addition to photosynthetic leaf area losses and yield losses, this disease causes an alteration in the pre- and postharvest behavior of the fruit. The aim of this work was to investigate the starch metabolism of fruits during fruit ripening from plants infected with BLSD by evaluating carbohydrate content (i.e., starch, soluble sugars, oligosaccharides, amylose), phenolic compound content, phytohormones, enzymatic activities (i.e., starch phosphorylases, α- and β-amylase), and starch granules. The results indicated that the starch metabolism in banana fruit ripening is affected by BLSD infection. Fruit from infested plots contained unusual amounts of soluble sugars in the green stage and smaller starch granules and showed a different pattern of superficial degradation. Enzymatic activities linked to starch degradation were also altered by the disease. Moreover, the levels of indole-acetic acid and phenolic compounds indicated an advanced fruit physiological age for fruits from infested plots.

  11. Response of vegetation indices to changes in three measures of leaf water stress

    Science.gov (United States)

    Cohen, Warren B.

    1991-01-01

    The responses of vegetation indices to changes in water stress were evaluated in two separate laboratory experiments. In one experiment the normalized difference vegetation index (NDVI), the near-IR to red ratio (near-IR/red), the Infrared Index (II), and the Moisture Stress Index (MSI) were more highly correlated to leaf water potential in lodgepole pine branches than were the Leaf Water Content Index (LWCI), the mid-IR ratio (Mid-IR), or any of the single Thematic Mapper (TM) bands. In the other experiment, these six indices and the TM Tasseled Cap brightness, greenness, and wetness indices responded to changes in leaf relative water content (RWC) differently than they responded to changes in leaf water content (WC) of three plant species, and the responses were dependent on how experimental replicates were pooled. With no pooling, the LWCI was the most highly correlated index to both RWC and WC among replications, followed by the II, MSI, and wetness. Only the LWCI was highly correlated to RWC and WC when replications were pooled within species. With among species pooling the LWCI was the only index highly correlated with RWC, while the II, MSI, Mid-IR, and wetness were most highly correlated with WC.

  12. Quantification of leaf greenness and leaf spectral profile in plant diagnosis using an optical scanner Quantificação do nível de verde e padrão espectral foliar no diagnóstico de plantas através de um scanner ótico

    Directory of Open Access Journals (Sweden)

    Ryoichi Doi

    2012-06-01

    Full Text Available Observation of leaf spectral profile (color enables suitable management measures to be taken for crop production. An optical scanner was used: 1 to obtain an equation to determine the greenness of plant leaves and 2 to examine the power to discriminate among plants grown under different nutritional conditions. Sweet basil seedlings grown on vermiculite were supplemented with one-fifth-strength Hoagland solutions containing 0, 0.2, 1, 5, 20, and 50 mM NH4+. The 5 mM treatment resulted in the greatest leaf and shoot weights, indicating a quadratic growth response pattern to the NH4+ gradient. An equation involving b*, black and green to describe the greenness of leaves was provided by the spectral profiling of a color scale for rice leaves as the standard. The color scale values for the basil leaves subjected to 0.2 and 1 mM NH4+ treatments were 1.00 and 1.12, respectively. The other treatments resulted in significantly greater values of 2.25 to 2.42, again indicating a quadratic response pattern. Based on the spectral data set consisting of variables of red-green-blue and other color models and color scale values, in discriminant analysis, 81% of the plants were correctly classified into the six NH4+ treatment groups. Combining the spectral data set with the growth data set consisting of leaf and shoot weights, 92% of the plant samples were correctly classified whereas, using the growth data set, only 53% of plants were correctly classified. Therefore, the optical scanning of leaves and the use of spectral profiles helped plant diagnosis when biomass measurements were not effective.A observação do perfil espectral da folha (cor permite medidas de gestão adequadas a serem consideradas na produção. Um scanner óptico foi usado para: 1 obter uma equação para determinar o verde das folhas e 2 examinar o poder de discriminar entre as plantas cultivadas sob diferentes condições nutricionais. Mudas de manjericão cultivadas em vermiculita foram

  13. Methane production from marine, green macro-algae

    Energy Technology Data Exchange (ETDEWEB)

    Hansson, G.

    1983-01-01

    Fermentation studies have been carried out to produce methane from green algae native to Scandinavian water and suitable for large scale cultivation. Long term semi-continuous fermentations during mesophilic and thermophilic conditions were performed as well as batch fermentations in flasks and syringes. A mixed inoculum was prepared from sediments, rotting seaweed, sewage sludge and rumen contents. Methane production from the seaweed substrate, consisting of ground green algae without any nutrient additions, started immediately in this culture, mesophilicly as well as thermophilicly. Fermentations were carried out with retention times from 27 to 11 days and loading rates from 1.1 to 2.6 g volatile solids (VS added) per litre per day. In the mesophilic fermentation, gas yields were 250-350 ml CH/sub 4//g VS added and the VS-reduction was around 50-55% at all tested retention times and loading rates. The level of volatile fatty acids was very low in this system. In the thermophilic digestor, gas yields were somewhat lower although the VS-reduction was around 50% also in this systems. The VFA-levels were higher and the culture more sensitive to disturbances. Thus no advantages were found with the thermophilic fermentation. In mesophilic batch fermentations the gas production was rather rapid and almost completed after 12-15 days, in agreement with the continuous fermentations. The gas yields in batch experiments were high, 350-480 ml CH/sub 4//g VS added. (Refs. 20).

  14. Time-Related Changes in Volatile Compounds during Fermentation of Bulk and Fine-Flavor Cocoa (Theobroma cacao Beans

    Directory of Open Access Journals (Sweden)

    Juan Manuel Cevallos-Cevallos

    2018-01-01

    Full Text Available Chocolate is one of the most consumed foods worldwide and cacao fermentation contributes to the unique sensory characteristics of chocolate products. However, comparative changes in volatiles occurring during fermentation of Criollo, Forastero, and Nacional cacao—three of the most representative cultivars worldwide—have not been reported. Beans of each cultivar were fermented for five days and samples were taken every 24 hours. Volatiles from each sample were adsorbed into a solid phase microextraction fiber and analyzed by gas chromatography-mass spectrometry. Aroma potential of each compound was determined using available databases. Multivariate data analyses showed partial clustering of samples according to cultivars at the start of the fermentation but complete clustering was observed at the end of the fermentation. The Criollo cacao produced floral, fruity, and woody aroma volatiles including linalool, epoxylinalool, benzeneethanol, pentanol acetate, germacrene, α-copaene, aromadendrene, 3,6-heptanedione, butanal, 1-phenyl ethenone, 2-nonanone, and 2-pentanone. Nacional cacao produced fruity, green, and woody aroma volatiles including 2-nonanone, 3-octen-1-ol, 2-octanol acetate, 2-undecanone, valencene, and aromadendrene. The Forastero cacao yielded floral and sweet aroma volatiles such as epoxylinalool, pentanoic acid, benzeneacetaldehyde, and benzaldehyde. This is the first report of volatiles produced during fermentation of Criollo, Forastero, and Nacional cacao from the same origin.

  15. Range-based volatility, expected stock returns, and the low volatility anomaly

    Science.gov (United States)

    2017-01-01

    One of the foundations of financial economics is the idea that rational investors will discount stocks with more risk (volatility), which will result in a positive relation between risk and future returns. However, the empirical evidence is mixed when determining how volatility is related to future returns. In this paper, we examine this relation using a range-based measure of volatility, which is shown to be theoretically, numerically, and empirically superior to other measures of volatility. In a variety of tests, we find that range-based volatility is negatively associated with expected stock returns. These results are robust to time-series multifactor models as well as cross-sectional tests. Our findings contribute to the debate about the direction of the relationship between risk and return and confirm the presence of the low volatility anomaly, or the anomalous finding that low volatility stocks outperform high volatility stocks. In other tests, we find that the lower returns associated with range-based volatility are driven by stocks with lottery-like characteristics. PMID:29190652

  16. Range-based volatility, expected stock returns, and the low volatility anomaly.

    Science.gov (United States)

    Blau, Benjamin M; Whitby, Ryan J

    2017-01-01

    One of the foundations of financial economics is the idea that rational investors will discount stocks with more risk (volatility), which will result in a positive relation between risk and future returns. However, the empirical evidence is mixed when determining how volatility is related to future returns. In this paper, we examine this relation using a range-based measure of volatility, which is shown to be theoretically, numerically, and empirically superior to other measures of volatility. In a variety of tests, we find that range-based volatility is negatively associated with expected stock returns. These results are robust to time-series multifactor models as well as cross-sectional tests. Our findings contribute to the debate about the direction of the relationship between risk and return and confirm the presence of the low volatility anomaly, or the anomalous finding that low volatility stocks outperform high volatility stocks. In other tests, we find that the lower returns associated with range-based volatility are driven by stocks with lottery-like characteristics.

  17. Range-based volatility, expected stock returns, and the low volatility anomaly.

    Directory of Open Access Journals (Sweden)

    Benjamin M Blau

    Full Text Available One of the foundations of financial economics is the idea that rational investors will discount stocks with more risk (volatility, which will result in a positive relation between risk and future returns. However, the empirical evidence is mixed when determining how volatility is related to future returns. In this paper, we examine this relation using a range-based measure of volatility, which is shown to be theoretically, numerically, and empirically superior to other measures of volatility. In a variety of tests, we find that range-based volatility is negatively associated with expected stock returns. These results are robust to time-series multifactor models as well as cross-sectional tests. Our findings contribute to the debate about the direction of the relationship between risk and return and confirm the presence of the low volatility anomaly, or the anomalous finding that low volatility stocks outperform high volatility stocks. In other tests, we find that the lower returns associated with range-based volatility are driven by stocks with lottery-like characteristics.

  18. GC-MS analysis of volatile compounds of Perilla frutescens Britton var. Japonica accessions: Morphological and seasonal variability.

    Science.gov (United States)

    Ghimire, Bimal Kumar; Yoo, Ji Hye; Yu, Chang Yeon; Chung, Ill-Min

    2017-07-01

    To investigate the composition of volatile compounds in the different accessions of Perilla frutescens (P. frutescens) collected from various habitats of China and Japan. In the present study, the essential oil from the leaves of P. frutescens cultivars from China and Japan was extracted by hydro-distillation and the chemical composition and concentration of the volatile components present in the oils were determined by gas chromatography-mass spectrometry (GC-MS) analysis. Among the volatile components, the major proportion was of perilla ketone, which was followed by elemicin and beta-caryophyllene in the Chinese Perilla cultivars. The main component in the oil extracted from the Japanese accessions was myristicin, which was followed by perilla ketone and beta-caryophyllene. We could distinguish seven chemotypes, namely the perilla ketone (PK) type, perilla ketone, myristicin (PM) type, perilla ketone, unknown (PU) type, perilla ketone, beta-caryophyllene, myristicine (PB) type, perilla ketone, myristicin, unknown (PMU) type, perilla ketone, elemicine, myristicin, beta-caryophyllene (PEMB) type, and the perilla ketone, limonene, beta-cryophyllene, myristicin (L) type. Most of the accessions possessed higher essential oil content before the flowering time than at the flowering stage. The average plant height, leaf length, leaf width of the Chinese accessions was higher than those of the Japanese accessions. The results revealed that the harvest time and geographical origin caused polymorphisms in the essential oil composition and morphological traits in the Perilla accessions originating from China and Japan. Therefore, these chemotypes with desirable characters might be useful for industrial exploitation and for determining the harvest time. Copyright © 2017 Hainan Medical University. Production and hosting by Elsevier B.V. All rights reserved.

  19. Pricing Volatility Referenced Assets

    Directory of Open Access Journals (Sweden)

    Alan De Genaro Dario

    2006-12-01

    Full Text Available Volatility swaps are contingent claims on future realized volatility. Variance swaps are similar instruments on future realized variance, the square of future realized volatility. Unlike a plain vanilla option, whose volatility exposure is contaminated by its asset price dependence, volatility and variance swaps provide a pure exposure to volatility alone. This article discusses the risk-neutral valuation of volatility and variance swaps based on the framework outlined in the Heston (1993 stochastic volatility model. Additionally, the Heston (1993 model is calibrated for foreign currency options traded at BMF and its parameters are used to price swaps on volatility and variance of the BRL / USD exchange rate.

  20. Characterization, antibacterial, and neurotoxic effect of Green synthesized nanosilver using Ziziphus spina Christi aqueous leaf extract collected from Riyadh, Saudi Arabia

    Science.gov (United States)

    El-Ansary, Afaf; Warsy, Arjumand; Daghestani, Maha; Merghani, Nada M.; Al-Dbass, Abeer; Bukhari, Wadha; Al-Ojayan, Badryah; Ibrahim, Eiman M.; Al-Qahtani, Asma M.; Shafi Bhat, Ramesa

    2018-02-01

    The current study aims to synthesize silver nanoparticles using Ziziphus spina Christi (ZSC) or (Sidr) aqueous leaf extract collected from Riyadh, Saudi Arabia. The green synthesis of silver nanoparticles using sidr leaves extract was successful. Production of silver nanoparticles was confirmed through UV-vis Spectrophotometer, particles size and zeta potential analysis, Infra-red spectroscopy, Scanning, and Transmission Electron Microscope (SEM and TEM). The UV-visible spectra showed that the absorption peak existed at 400 nm. SEM analysis showed that the synthesized AgNPs were spherical but in slightly aggregated form. TEM demonstrated different size range of 4-33 nm with an average size of 13. The element analysis profile showed silver signal together with oxygen, calcium, and potassium peaks which might be related to the plant structure. Biological effects of the synthesized AgNPs exhibit satisfactory inhibitory effect against ten tested microorganisms. It inhibited the growth of 5 gram-positive and five gram-negative bacteria. Moreover, AgNPs demonstrated a synergistic effect on the neurotoxicity induced in rat pups with orally administered methyl mercury (MeHg). The present study showed that AgNPs prepared from ZSC might be a promising antimicrobial agent for successful treatment of bacterial infection in intensive care units (ICU) especially in case of antibiotic resistance.

  1. Phenolic profile evolution of different ready-to-eat baby-leaf vegetables during storage.

    Science.gov (United States)

    Santos, J; Oliveira, M B P P; Ibáñez, E; Herrero, M

    2014-01-31

    Ready-to-eat baby-leaf vegetables market has been growing and offering to consumers convenient, healthy and appealing products, which may contain interesting bioactive compounds. In this work, the composition and the evolution of the phenolic compounds from different baby-leaf vegetables during refrigerated storage was studied. The phenolic compounds were extracted using pressurized liquid extraction (PLE) and the phenolic profile of each sample was analyzed and quantified by using LC-MS and LC-DAD methods, respectively, at the beginning and at the end of a 10-day storage period. The baby-leaf vegetables studied included green lettuce, ruby red lettuce, swiss chard, spinach, pea shoots, watercress, garden cress, mizuna, red mustard, wild rocket and spearmint samples and a total of 203 phenolic compounds were tentatively identified and quantified. The main naturally phenolic compounds identified correspond to glycosylated flavonoids, with exception of green lettuce and spearmint leaves which had a higher content of hydroxycinnamic acids. Quantification of the main compounds showed a 10-fold higher content of total phenolic content of ruby red lettuce (483mgg(-1)) in relation to the other samples, being the lowest values found in the garden cress (12.8mgg(-1)) and wild rocket leaves (8.1mgg(-1)). The total phenolic content only showed a significant change (plettuce (+17.5%), mizuna (+7.8%), red mustard (-23.7%) and spearmint (-13.8%) leaves. Within the different classes of phenolic compounds monitored, the flavonols showed more stable contents than the hydroxycinnamic and hydroxybenzoic acids, although the behavior of each compound varied strongly among samples. Copyright © 2014. Published by Elsevier B.V.

  2. Changes in chlorophyll and polyphenols content in Camellia sinensis var. sinensis at different stage of leaf maturity

    Science.gov (United States)

    Prawira-Atmaja, M. I.; Shabri; Khomaini, H. S.; Maulana, H.; Harianto, S.; Rohdiana, D.

    2018-03-01

    Chlorophyll and polyphenols are chemical compound related to parameter quality of green tea. We studied the variation of chlorophyll and polyphenol in the development stage of tea leaves (bud, 1st, 2nd, 3rd, and 4th). Five clones of tea (Camelia sinensis var. sinensis) from Indonesia and a clone from Japan were used in this study. The results showed that total chlorophyll and total polyphenol content in bud between 1.59-2.15 mg/g (db) and 12.24-14.59% respectively. The concentration of chlorophyll increased significantly with developments stage of leaf while total polyphenol tended to decrease with leaf maturity. Pearson Correlation analysis showed that chlorophyll content was negatively correlated (r = -0.83; p = 0.05) with total polyphenol during developmental stage of tea leaves. Results suggests that five clones of tea from Indonesia have similar quality with tea clone from Japan in chlorophyll and polyphenol content. The present study also provides guidelines on application plucking standard to produce high quality of green tea.

  3. The leaf angle distribution of natural plant populations: assessing the canopy with a novel software tool.

    Science.gov (United States)

    Müller-Linow, Mark; Pinto-Espinosa, Francisco; Scharr, Hanno; Rascher, Uwe

    2015-01-01

    Three-dimensional canopies form complex architectures with temporally and spatially changing leaf orientations. Variations in canopy structure are linked to canopy function and they occur within the scope of genetic variability as well as a reaction to environmental factors like light, water and nutrient supply, and stress. An important key measure to characterize these structural properties is the leaf angle distribution, which in turn requires knowledge on the 3-dimensional single leaf surface. Despite a large number of 3-d sensors and methods only a few systems are applicable for fast and routine measurements in plants and natural canopies. A suitable approach is stereo imaging, which combines depth and color information that allows for easy segmentation of green leaf material and the extraction of plant traits, such as leaf angle distribution. We developed a software package, which provides tools for the quantification of leaf surface properties within natural canopies via 3-d reconstruction from stereo images. Our approach includes a semi-automatic selection process of single leaves and different modes of surface characterization via polygon smoothing or surface model fitting. Based on the resulting surface meshes leaf angle statistics are computed on the whole-leaf level or from local derivations. We include a case study to demonstrate the functionality of our software. 48 images of small sugar beet populations (4 varieties) have been analyzed on the base of their leaf angle distribution in order to investigate seasonal, genotypic and fertilization effects on leaf angle distributions. We could show that leaf angle distributions change during the course of the season with all varieties having a comparable development. Additionally, different varieties had different leaf angle orientation that could be separated in principle component analysis. In contrast nitrogen treatment had no effect on leaf angles. We show that a stereo imaging setup together with the

  4. "Breath figures" on leaf surfaces-formation and effects of microscopic leaf wetness.

    Science.gov (United States)

    Burkhardt, Juergen; Hunsche, Mauricio

    2013-01-01

    "Microscopic leaf wetness" means minute amounts of persistent liquid water on leaf surfaces which are invisible to the naked eye. The water is mainly maintained by transpired water vapor condensing onto the leaf surface and to attached leaf surface particles. With an estimated average thickness of less than 1 μm, microscopic leaf wetness is about two orders of magnitude thinner than morning dewfall. The most important physical processes which reduce the saturation vapor pressure and promote condensation are cuticular absorption and the deliquescence of hygroscopic leaf surface particles. Deliquescent salts form highly concentrated solutions. Depending on the type and concentration of the dissolved ions, the physicochemical properties of microscopic leaf wetness can be considerably different from those of pure water. Microscopic leaf wetness can form continuous thin layers on hydrophobic leaf surfaces and in specific cases can act similar to surfactants, enabling a strong potential influence on the foliar exchange of ions. Microscopic leaf wetness can also enhance the dissolution, the emission, and the reaction of specific atmospheric trace gases e.g., ammonia, SO2, or ozone, leading to a strong potential role for microscopic leaf wetness in plant/atmosphere interaction. Due to its difficult detection, there is little knowledge about the occurrence and the properties of microscopic leaf wetness. However, based on the existing evidence and on physicochemical reasoning it can be hypothesized that microscopic leaf wetness occurs on almost any plant worldwide and often permanently, and that it significantly influences the exchange processes of the leaf surface with its neighboring compartments, i.e., the plant interior and the atmosphere. The omission of microscopic water in general leaf wetness concepts has caused far-reaching, misleading conclusions in the past.

  5. Changes in sugars, acids, and volatiles during ripening of koubo [Cereus peruvianus (L.) Miller] fruits.

    Science.gov (United States)

    Ninio, Racheli; Lewinsohn, Efraim; Mizrahi, Yosef; Sitrit, Yaron

    2003-01-29

    The columnar cactus Cereus peruvianus (L.) Miller, Cactaceae (koubo), is grown commercially in Israel. The unripe fruits are green, and the color changes to violet and then to red when the fruit is fully ripe. The content of soluble sugars was found to increase 5-fold during ripening. Glucose and fructose were the main sugars accumulated in the fruit pulp, and each increased from 0.5 to 5.5 g/100 g fresh weight during ripening. The polysaccharides content decreased during ripening from 1.4 to 0.4 g/100 g fresh weight. The titratable acidity decreased and the pH increased during ripening. The major organic acid found in the fruit was malic acid, which decreased from 0.75 g/100 g fresh weight at the mature green stage to 0.355 g/100 g fresh weight in ripe fruits. Citric, succinic, and oxalic acids were found in concentrations lower than 0.07 g/100 g fresh weight. Prominent accumulation of aroma volatiles occurred toward the end of the ripening process. The main volatile found in the ripe fruit was linalool, reaching concentrations of 1.5-3.5 microg/g fresh weight.

  6. Volatile and non-volatile/semi-volatile compounds and in vitro bioactive properties of Chilean Ulmo (Eucryphia cordifolia Cav.) honey.

    Science.gov (United States)

    Acevedo, Francisca; Torres, Paulina; Oomah, B Dave; de Alencar, Severino Matias; Massarioli, Adna Prado; Martín-Venegas, Raquel; Albarral-Ávila, Vicenta; Burgos-Díaz, César; Ferrer, Ruth; Rubilar, Mónica

    2017-04-01

    Ulmo honey originating from Eucryphia cordifolia tree, known locally in the Araucania region as the Ulmo tree is a natural product with valuable nutritional and medicinal qualities. It has been used in the Mapuche culture to treat infections. This study aimed to identify the volatile and non-volatile/semi-volatile compounds of Ulmo honey and elucidate its in vitro biological properties by evaluating its antioxidant, antibacterial, antiproliferative and hemolytic properties and cytotoxicity in Caco-2 cells. Headspace volatiles of Ulmo honey were isolated by solid-phase microextraction (SPME); non-volatiles/semi-volatiles were obtained by removing all saccharides with acidified water and the compounds were identified by GC/MS analysis. Ulmo honey volatiles consisted of 50 compounds predominated by 20 flavor components. Two of the volatile compounds, lyrame and anethol have never been reported before as honey compounds. The non-volatile/semi-volatile components of Ulmo honey comprised 27 compounds including 13 benzene derivatives accounting 75% of the total peak area. Ulmo honey exhibited weak antioxidant activity but strong antibacterial activity particularly against gram-negative bacteria and methicillin-resistant Staphylococcus aureus (MRSA), the main strain involved in wounds and skin infections. At concentrations >0.5%, Ulmo honey reduced Caco-2 cell viability, released lactate dehydrogenase (LDH) and increased reactive oxygen species (ROS) production in a dose dependent manner in the presence of foetal bovine serum (FBS). The wide array of volatile and non-volatile/semi-volatile constituents of Ulmo honey rich in benzene derivatives may partly account for its strong antibacterial and antiproliferative properties important for its therapeutic use. Our results indicate that Ulmo honey can potentially inhibit cancer growth at least partly by modulating oxidative stress. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Evaluation of authenticity and green tea antimicrobial activity of different commercial brands that are sold in San Jose, Costa Rica

    International Nuclear Information System (INIS)

    Alvarez Campos, Jeyson

    2014-01-01

    Various brands of green tea are compared with the leaves of camellia sinensis to verify the antimicrobial effect, authenticity and quality. The main components with antibacterial effect commercially presented are compared to the components present in green tea leaf to determine the quality and authenticity, by thin layer chromatography. The brands marketed studied green tea in the metropolitan area of San Jose, Costa Rica has been really green tea good quality, this can be ensured by the findings in the analysis and comparison of the different profiles of flavonoids, polyphenols, alkaloids and amino acids. The antimicrobial activity has been without to confirmed in the bands of catechins analyzed [es

  8. Volatile aldehydes are promising broad-spectrum postharvest insecticides.

    Science.gov (United States)

    Hammond, D G; Rangel, S; Kubo, I

    2000-09-01

    A variety of naturally occurring aldehydes common in plants have been evaluated for their insecticidal activity and for phytotoxicity to postharvest fruits, vegetables, and grains. Twenty-nine compounds were initially screened for their activity against aphids on fava bean leaf disks. Application under reduced pressure (partial vacuum) for the first quarter of fumigation increased insecticidal activity severalfold. The 11 best aldehydes were assayed against aphids placed under the third leaf of whole heads of iceberg lettuce using the same two-tier reduced-pressure regime, which caused no additional detriment to the commodity over fumigation at atmospheric pressure. Phytotoxicity to naked and wrapped iceburg lettuce, green and red table grapes, lemon, grapefruit, orange, broccoli, avocado, cabbage, pinto bean, and rice at doses that killed 100% of aphids was recorded for three promising fumigants: propanal, (E)-2-pentenal, and 2-methyl-(E)-2-butenal. These three compounds have excellent potential as affordable postharvest insect control agents, killing 100% of the aphids with little or no detectable harm to a majority of the commodities tested. Preliminary assays indicate that similar doses are also effective against mealybugs, thrips, and whitefly.

  9. Estimating water stressed dwarf green bean pigment concentration through hyperspectral indices

    International Nuclear Information System (INIS)

    Koksal, E.S.; Ustrun, H.; Ozcan, H.; Gunturk, A.

    2010-01-01

    In this study, the relationship between leaf pigment concentration (analyzed in the laboratory) and four spectral indexes (measured in the field) was investigated. For this purpose, field experiments consisting of six different irrigation treatments were conducted with dwarf green beans during 2005 growing season. Based on spectral data, spectral indexes were plotted against pigment concentration. Results showed that under water stress, the chlorophyll and carotene contents of green bean leaves rose. According to linear regression analysis between spectral indexes and pigment contents, the Normalized Difference Pigment Chlorophyll Index (NPCI) and Normalized Difference Vegetation Index (NDVI) had the highest correlations with the chlorophyll (a, b and total), and carotene content of leaves. (author)

  10. Effect of Plant Growth Regulators on Leaf Number, Leaf Area and Leaf Dry Matter in Grape

    Directory of Open Access Journals (Sweden)

    Zahoor Ahmad BHAT

    2011-03-01

    Full Text Available Influence of phenylureas (CPPU and brassinosteriod (BR along with GA (gibberellic acid were studied on seedless grape vegetative characteristics like leaf number, leaf area and leaf dry matter. Growth regulators were sprayed on the vines either once (7 days after fruit set or 15 days after fruit set or twice (7+15 days after fruit set. CPPU 2 ppm+BR 0.4 ppm+GA 25 ppm produced maximum number of leaves (18.78 while as untreated vines produced least leaf number (16.22 per shoot. Maximum leaf area (129.70 cm2 and dry matter content (26.51% was obtained with higher CPPU (3 ppm and BR (0.4 ppm combination along with GA 25 ppm. Plant growth regulators whether naturally derived or synthetic are used to improve the productivity and quality of grapes. The relatively high value of grapes justifies more expensive inputs. A relatively small improvement in yield or fruit quality can justify the field application of a very costly product. Application of new generation growth regulators like brassinosteroids and phenylureas like CPPU have been reported to increase the leaf number as well as leaf area and dry matter thereby indirectly influencing the fruit yield and quality in grapes.

  11. Iodine volatility

    International Nuclear Information System (INIS)

    Beahm, E.C.; Shockley, W.E.

    1984-01-01

    The ultimate aim of this program is to couple experimental aqueous iodine volatilities to a fission product release model. Iodine partition coefficients, for inorganic iodine, have been measured during hydrolysis and radiolysis. The hydrolysis experiments have illustrated the importance of reaction time on iodine volatility. However, radiolysis effects can override hydrolysis in determining iodine volatility. In addition, silver metal in radiolysis samples can react to form silver iodide accompanied by a decrease in iodine volatility. Experimental data are now being coupled to an iodine transport and release model that was developed in the Federal Republic of Germany

  12. Identification of Leaf Promoters for Use in Transgenic Wheat

    Directory of Open Access Journals (Sweden)

    Saqer S. Alotaibi

    2018-03-01

    Full Text Available Wheat yields have plateaued in recent years and given the growing global population there is a pressing need to develop higher yielding varieties to meet future demand. Genetic manipulation of photosynthesis in elite wheat varieties offers the opportunity to significantly increase yields. However, the absence of a well-defined molecular tool-box of promoters to manipulate leaf processes in wheat hinders advancements in this area. Two promoters, one driving the expression of sedoheptulose-1,7-bisphosphatase (SBPase and the other fructose-1,6-bisphosphate aldolase (FBPA from Brachypodium distachyon were identified and cloned into a vector in front of the GUS reporter gene. Both promoters were shown to be functionally active in wheat in both transient assays and in stably transformed wheat plants. Analysis of the stable transformants of wheat (cv. Cadenza showed that both promoters controlled gus expression throughout leaf development as well as in other green tissues. The availability of these promoters provides new tools for the expression of genes in transgenic wheat leaves and also paves the way for multigene manipulation of photosynthesis to improve yields.

  13. Environmental Perceptions and Health before and after Relocation to a Green Building.

    Science.gov (United States)

    MacNaughton, Piers; Spengler, John; Vallarino, Jose; Santanam, Suresh; Satish, Usha; Allen, Joseph

    2016-08-01

    Green buildings are designed to have low environmental impacts and improved occupant health and well-being. Improvements to the built environment including ventilation, lighting, and materials have resulted in improved indoor environmental quality (IEQ) in green buildings, but the evidence around occupant health is currently centered around environmental perceptions and self-reported health. To investigate the objective impact of green buildings on health, we tracked IEQ, self-reported health, and heart rate in 30 participants from green and conventional buildings for two weeks. 24 participants were then selected to be relocated to the Syracuse Center of Excellence, a LEED platinum building, for six workdays. While they were there, ventilation, CO 2 , and volatile organic compound (VOC) levels were changed on different days to match the IEQ of conventional, green, and green+ (green with increased ventilation) buildings. Participants reported improved air quality, odors, thermal comfort, ergonomics, noise and lighting and fewer health symptoms in green buildings prior to relocation. After relocation, participants consistently reported fewer symptoms during the green building conditions compared to the conventional one, yet symptom counts were more closely associated with environmental perceptions than with measured IEQ. On average, participants had 4.7 times the odds of reporting a lack of air movement, 1.4 more symptoms (p-value = 0.019) and a 2 bpm higher heart rate (p-value green and conventional buildings is driven by both environmental perceptions and physiological pathways.

  14. Evaluation of antibacterial activities of silver nanoparticles green-synthesized using pineapple leaf (Ananas comosus).

    Science.gov (United States)

    Emeka, Elemike Elias; Ojiefoh, Oseghale Charles; Aleruchi, Chuku; Hassan, Labulo Ayomide; Christiana, Owoseni Mojisola; Rebecca, Mfon; Dare, Enock Olugbenga; Temitope, Adesuji Elijah

    2014-02-01

    Pineapple leaf was used in this study for the synthesis of silver nanoparticles based on the search for sustainable synthetic means. Indeed, this offered an economical and sustainable synthetic route relative to expensive and toxic chemical methods. The leaf extract was used and the corresponding nanoparticles obtained were subjected to UV-vis analysis at different times. The UV-vis was used to monitor the silver nanoparticle formation through sampling at time intervals. The formation of silver nanoparticles was apparently displayed within 2 min with evidence of surface plasmon bands (SPB) between 440 and 460 nm. The crystals was equally characterized using FTIR, X-ray diffraction methods and TEM. The different results obtained suggested the appearance of silver nanoparticles (SNPs) as determined by the process parameters with a particle size of 12.4 nm. The sample was further screened against Staphylococcus aureus, Streptococcus pneumoniae, Proteus mirabilis and Escherichia coli using Gentamicin as control. From the results, there is evidence of inhibition towards bacteria growth. It can now be inferred from the studies that biosynthesis of nanoparticles could be a gateway to our numerous health issues. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Spectral effects of light-emitting diodes on plant growth and development: The importance of green and blue light

    Science.gov (United States)

    Cope, K. R.; Bugbee, B.

    2011-12-01

    Light-emitting diodes (LEDs) are an emerging technology for plant growth lighting. Due to their narrow spectral output, colored LEDs provide many options for studying the spectral effects of light on plants. Early on, efficient red LEDs were the primary focus of photobiological research; however, subsequent studies have shown that normal plant growth and development cannot be achieved under red light without blue light supplementation. More recent studies have shown that red and blue (RB) LEDs supplemented with green light increase plant dry mass. This is because green light transmits more effectively through the leaf canopy than red and blue light, thus illuminating lower plant leaves and increasing whole-plant photosynthesis. Red, green and blue (RGB) light can be provided by either a conventional white light source (such as fluorescent lights), a combination of RGB LEDs, or from recently developed white LEDs. White LEDs exceed the efficiency of fluorescent lights and have a comparable broad spectrum. As such, they have the potential to replace fluorescent lighting for growth-chamber-based crop production both on Earth and in space. Here we report the results of studies on the effects of three white LED types (warm, neutral and cool) on plant growth and development compared to combinations of RB and RGB LEDs. Plants were grown under two constant light intensities (200 and 500 μmol m-2 s-1). Temperature, environmental conditions and root-zone environment were uniformly maintained across treatments. Phytochrome photoequilbria and red/far-red ratios were similar among treatments and were comparable to conventional fluorescent lights. Blue light had a significant effect on both plant growth (dry mass gain) and development (dry mass partitioning). An increase in the absolute amount (μmol m-2 s-1) of blue light from 0-80 μmol m-2 s-1 resulted in a decrease in stem elongation, independent of the light intensity. However, an increase in the relative amount (%) of blue

  16. Non-pathogenic rhizobacteria interfere with the attraction of parasitoids to aphid-induced plant volatiles via jasmonic acid signalling.

    Science.gov (United States)

    Pineda, Ana; Soler, Roxina; Weldegergis, Berhane T; Shimwela, Mpoki M; VAN Loon, Joop J A; Dicke, Marcel

    2013-02-01

    Beneficial soil-borne microbes, such as mycorrhizal fungi or rhizobacteria, can affect the interactions of plants with aboveground insects at several trophic levels. While the mechanisms of interactions with herbivorous insects, that is, the second trophic level, are starting to be understood, it remains unknown how plants mediate the interactions between soil microbes and carnivorous insects, that is, the third trophic level. Using Arabidopsis thaliana Col-0 and the aphid Myzus persicae, we evaluate here the underlying mechanisms involved in the plant-mediated interaction between the non-pathogenic rhizobacterium Pseudomonas fluorescens and the parasitoid Diaeretiella rapae, by combining ecological, chemical and molecular approaches. Rhizobacterial colonization modifies the composition of the blend of herbivore-induced plant volatiles. The volatile blend from rhizobacteria-treated aphid-infested plants is less attractive to an aphid parasitoid, in terms of both olfactory preference behaviour and oviposition, than the volatile blend from aphid-infested plants without rhizobacteria. Importantly, the effect of rhizobacteria on both the emission of herbivore-induced volatiles and parasitoid response to aphid-infested plants is lost in an Arabidopsis mutant (aos/dde2-2) that is impaired in jasmonic acid production. By modifying the blend of herbivore-induced plant volatiles that depend on the jasmonic acid-signalling pathway, root-colonizing microbes interfere with the attraction of parasitoids of leaf herbivores. © 2012 Blackwell Publishing Ltd.

  17. The Role of Leaf Volatiles of Ludwigia octovalvis (Jacq.) Raven in the Attraction of Altica cyanea (Weber) (Coleoptera: Chrysomelidae).

    Science.gov (United States)

    Mitra, Saubhik; Karmakar, Amarnath; Mukherjee, Abhishek; Barik, Anandamay

    2017-07-01

    Larvae and adults of Altica cyanea (Weber) (Coleoptera: Chrysomelidae) feed on the rice-field weed Ludwigia octovalvis (Jacq.) Raven (Onagraceae), commonly known as willow primrose, which is considered a biocontrol agent of the weed. Volatile organic compounds from undamaged plants, plants after 4, 12, and 36 h of continuous feeding by A. cyanea larvae or adult females and after mechanical damaging were identified by GC-MS and GC-FID analyses. Twenty nine compounds were identified from undamaged plants. 2Z-Penten-1-ol, geraniol, and 1-tridecanol were present in all plants damaged by larvae. In contrast, feeding by adults caused the release of 2Z-penten-1-ol only after 12 and 36 h; whereas geraniol and 1-tridecanol appeared only after 36 h. Farnesyl acetone was detected after 12 and 36 h of feeding by larvae and after 36 h of feeding by adults. Farnesene was detected after 36 h of feeding by larvae and adults. Linalool was unique after 36 h of feeding by larvae. In Y-shaped glass tube olfactometer bioassays, A. cyanea females were attracted to volatiles after 36 h of feeding by larvae or adults compared to volatiles released by undamaged plants. The insects were attracted to five synthetic compounds: 3-hexanol, α-pinene, linalool oxide, geraniol, and phytol. Synthetic blends were more attractive than individual compounds. Compared to undamaged plants, volatiles released by plants, damaged by conspecific individuals, were more attractive to A. cyanea females, due to elevated emissions of 3-hexanol, α-pinene, linalool oxide, geraniol, and phytol.

  18. Ground- and satellite-based evidence of the biophysical mechanisms behind the greening Sahel.

    Science.gov (United States)

    Brandt, Martin; Mbow, Cheikh; Diouf, Abdoul A; Verger, Aleixandre; Samimi, Cyrus; Fensholt, Rasmus

    2015-04-01

    After a dry period with prolonged droughts in the 1970s and 1980s, recent scientific outcome suggests that the decades of abnormally dry conditions in the Sahel have been reversed by positive anomalies in rainfall. Various remote sensing studies observed a positive trend in vegetation greenness over the last decades which is known as the re-greening of the Sahel. However, little investment has been made in including long-term ground-based data collections to evaluate and better understand the biophysical mechanisms behind these findings. Thus, deductions on a possible increment in biomass remain speculative. Our aim is to bridge these gaps and give specifics on the biophysical background factors of the re-greening Sahel. Therefore, a trend analysis was applied on long time series (1987-2013) of satellite-based vegetation and rainfall data, as well as on ground-observations of leaf biomass of woody species, herb biomass, and woody species abundance in different ecosystems located in the Sahel zone of Senegal. We found that the positive trend observed in satellite vegetation time series (+36%) is caused by an increment of in situ measured biomass (+34%), which is highly controlled by precipitation (+40%). Whereas herb biomass shows large inter-annual fluctuations rather than a clear trend, leaf biomass of woody species has doubled within 27 years (+103%). This increase in woody biomass did not reflect on biodiversity with 11 of 16 woody species declining in abundance over the period. We conclude that the observed greening in the Senegalese Sahel is primarily related to an increasing tree cover that caused satellite-driven vegetation indices to increase with rainfall reversal. © 2014 John Wiley & Sons Ltd.

  19. Asymmetric Realized Volatility Risk

    Directory of Open Access Journals (Sweden)

    David E. Allen

    2014-06-01

    Full Text Available In this paper, we document that realized variation measures constructed from high-frequency returns reveal a large degree of volatility risk in stock and index returns, where we characterize volatility risk by the extent to which forecasting errors in realized volatility are substantive. Even though returns standardized by ex post quadratic variation measures are nearly Gaussian, this unpredictability brings considerably more uncertainty to the empirically relevant ex ante distribution of returns. Explicitly modeling this volatility risk is fundamental. We propose a dually asymmetric realized volatility model, which incorporates the fact that realized volatility series are systematically more volatile in high volatility periods. Returns in this framework display time varying volatility, skewness and kurtosis. We provide a detailed account of the empirical advantages of the model using data on the S&P 500 index and eight other indexes and stocks.

  20. A Simple Paper-Based Microfluidic Device for the Determination of the Total Amino Acid Content in a Tea Leaf Extract

    Science.gov (United States)

    Cai, Longfei; Wu, Yunying; Xu, Chunxiu; Chen, Zefeng

    2013-01-01

    An experiment was developed to demonstrate a microfluidic device in the analytical chemistry (instrumental analysis) laboratory. Students made the paper-based microfluidic device with a wax pen and a piece of filter paper and used it to determine the total quantity of amino acids in a green tea leaf

  1. Why do leaf-tying caterpillars abandon their leaf ties?

    Directory of Open Access Journals (Sweden)

    Michelle Sliwinski

    2013-09-01

    Full Text Available Leaf-tying caterpillars act as ecosystem engineers by building shelters between overlapping leaves, which are inhabited by other arthropods. Leaf-tiers have been observed to leave their ties and create new shelters (and thus additional microhabitats, but the ecological factors affecting shelter fidelity are poorly known. For this study, we explored the effects of resource limitation and occupant density on shelter fidelity and assessed the consequences of shelter abandonment. We first quantified the area of leaf material required for a caterpillar to fully develop for two of the most common leaf-tiers that feed on white oak, Quercus alba. On average, Psilocorsis spp. caterpillars consumed 21.65 ± 0.67 cm2 leaf material to complete development. We also measured the area of natural leaf ties found in a Maryland forest, to determine the distribution of resources available to caterpillars in situ. Of 158 natural leaf ties examined, 47% were too small to sustain an average Psilocorsis spp. caterpillar for the entirety of its development. We also manipulated caterpillar densities within experimental ties on potted trees to determine the effects of cohabitants on the likelihood of a caterpillar to leave its tie. We placed 1, 2, or 4 caterpillars in ties of a standard size and monitored the caterpillars twice daily to track their movement. In ties with more than one occupant, caterpillars showed a significantly greater propensity to leave their tie, and left sooner and at a faster rate than those in ties as single occupants. To understand the consequences of leaf tie abandonment, we observed caterpillars searching a tree for a site to build a shelter in the field. This is a risky behavior, as 17% of the caterpillars observed died while searching for a shelter site. Caterpillars that successfully built a shelter traveled 110 ± 20 cm and took 28 ± 7 min to find a suitable site to build a shelter. In conclusion, leaf-tying caterpillars must frequently

  2. It’s all about volatility of volatility

    DEFF Research Database (Denmark)

    Grassi, Stefano; Santucci de Magistris, Paolo

    2015-01-01

    The persistent nature of equity volatility is investigated by means of a multi-factor stochastic volatility model with time varying parameters. The parameters are estimated by means of a sequential matching procedure which adopts as auxiliary model a time-varying generalization of the HAR model f...

  3. Chemical Composition and Water Permeability of Fruit and Leaf Cuticles of Olea europaea L.

    Science.gov (United States)

    Huang, Hua; Burghardt, Markus; Schuster, Ann-Christin; Leide, Jana; Lara, Isabel; Riederer, Markus

    2017-10-11

    The plant cuticle, protecting against uncontrolled water loss, covers olive (Olea europaea) fruits and leaves. The present study describes the organ-specific chemical composition of the cuticular waxes and the cutin and compares three developmental stages of fruits (green, turning, and black) with the leaf surface. Numerous organ-specific differences, such as the total coverage of cutin monomeric components (1034.4 μg cm -2 and 630.5 μg cm -2 ) and the cuticular waxes (201.6 μg cm -2 and 320.4 μg cm -2 ) among all three fruit stages and leaves, respectively, were detected. Water permeability as the main cuticular function was 5-fold lower in adaxial leaf cuticles (2.1 × 10 -5 m s -1 ) in comparison to all three fruit stages (9.5 × 10 -5 m s -1 ). The three fruit developmental stages have the same cuticular water permeability. It is hypothesized that a higher weighted average chain length of the acyclic cuticular components leads to a considerably lower permeability of the leaf as compared to the fruit cuticle.

  4. Children on the autism spectrum update their behaviour in response to a volatile environment.

    Science.gov (United States)

    Manning, Catherine; Kilner, James; Neil, Louise; Karaminis, Themelis; Pellicano, Elizabeth

    2017-09-01

    Typical adults can track reward probabilities across trials to estimate the volatility of the environment and use this information to modify their learning rate (Behrens et al., 2007). In a stable environment, it is advantageous to take account of outcomes over many trials, whereas in a volatile environment, recent experience should be more strongly weighted than distant experience. Recent predictive coding accounts of autism propose that autistic individuals will demonstrate atypical updating of their behaviour in response to the statistics of the reward environment. To rigorously test this hypothesis, we administered a developmentally appropriate version of Behrens et al.'s (2007) task to 34 cognitively able children on the autism spectrum aged between 6 and 14 years, 32 age- and ability-matched typically developing children and 19 typical adults. Participants were required to choose between a green and a blue pirate chest, each associated with a randomly determined reward value between 0 and 100 points, with a combined total of 100 points. On each trial, the reward was given for one stimulus only. In the stable condition, the ratio of the blue or green response being rewarded was fixed at 75:25. In the volatile condition, the ratio alternated between 80:20 and 20:80 every 20 trials. We estimated the learning rate for each participant by fitting a delta rule model and compared this rate across conditions and groups. All groups increased their learning rate in the volatile condition compared to the stable condition. Unexpectedly, there was no effect of group and no interaction between group and condition. Thus, autistic children used information about the statistics of the reward environment to guide their decisions to a similar extent as typically developing children and adults. These results help constrain predictive coding accounts of autism by demonstrating that autism is not characterized by uniform differences in the weighting of prediction error. © 2016

  5. Latent Integrated Stochastic Volatility, Realized Volatility, and Implied Volatility: A State Space Approach

    DEFF Research Database (Denmark)

    Bach, Christian; Christensen, Bent Jesper

    process is downward biased. Implied volatility performs better than any of the alternative realized measures when forecasting future integrated volatility. The results are largely similar across the stock market (S&P 500), bond market (30-year U.S. T-bond), and foreign currency exchange market ($/£ )....

  6. The study of size and stability of n-butylcyanoacrylate nanocapsule suspensions encapsulating green grass fragrance

    Science.gov (United States)

    Zhu, G. Y.; Lin, C. T.; Chen, J. M.; Lei, D. M.; Zhu, G. X.

    2018-01-01

    Green grass fragrance has been widely used in many fields. However, fragrances are volatile compounds that do not last long. In order to prolong its odor, nanocapsules encapsulated green grass fragrance were prepared. The paper deals with the preparation of green grass fragrance nanocapsules by emulsion polymerization. N-butylcyanoacrylate (BCA) with excellent biocompatibility and biodegradability was used as encapsulant. The nanocapsule suspension systems were characterized and its stability was investigated. The physicochemical properties of polymeric nanocapsules (average diameter and polydispersity) were evaluated as a function of time to assess the system stability. The result showed that the system (containing 0.8% of green grass fragrance, with a polydispersity index (PDI) near 0.1 and an average diameter in the range of 20-30 nm) was an ideal state and relatively stable. Besides, the distinction of stability of three nanocapsule suspensions with different green grass fragrance content was also obvious from scanning electron microscopy (SEM).

  7. Maple leaf (Acer sp.) extract mediated green process for the functionalization of ZnO powders with silver nanoparticles.

    Science.gov (United States)

    Vivekanandhan, Singaravelu; Schreiber, Makoto; Mason, Cynthia; Mohanty, Amar Kumar; Misra, Manjusri

    2014-01-01

    The functionalization of ZnO powders with silver nanoparticles (AgNPs) through a novel maple leaf extract mediated biological process was demonstrated. Maple leaf extract was found to be a very effective bioreduction agent for the reduction of silver ions. The reduction rate of Ag(+) into Ag(0) was found to be much faster than other previously reported bioreduction rates and was comparable to the reduction rates obtained through chemical means. The functionalization of ZnO particles with silver nanoparticles through maple leaf extract mediated bioreduction of silver was investigated through UV-visible spectrophotometry, transmission electron microscopy (TEM), and X-ray diffraction analysis. It was found that the ZnO particles were coated with silver nanoparticles 5-20 nm in diameter. The photocatalytic ability of the ZnO particles functionalized with silver nanoparticles was found to be significantly improved compared to the photocatalytic ability of the neat ZnO particles. The silver functionalized ZnO particles reached 90% degradation of the dye an hour before the neat ZnO particles. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Extraction and Antibacterial Properties of Thyme Leaf Extracts: Authentic Practice of Green Chemistry

    Science.gov (United States)

    Purcell, Sean C.; Pande, Prithvi; Lin, Yingxin; Rivera, Ernesto J.; Paw U, Latisha; Smallwood, Luisa M.; Kerstiens, Geri A.; Armstrong, Laura B.; Robak, MaryAnn T.; Baranger, Anne M.; Douskey, Michelle C.

    2016-01-01

    In this undergraduate analytical chemistry experiment, students quantitatively assess the antibacterial activity of essential oils found in thyme leaves ("Thymus vulgaris") in an authentic, research-like environment. This multi-week experiment aims to instill green chemistry principles as intrinsic to chemical problem solving. Students…

  9. DOES ENERGY CONSUMPTION VOLATILITY AFFECT REAL GDP VOLATILITY? AN EMPIRICAL ANALYSIS FOR THE UK

    Directory of Open Access Journals (Sweden)

    Abdul Rashid

    2013-10-01

    Full Text Available This paper empirically examines the relation between energy consumption volatility and unpredictable variations in real gross domestic product (GDP in the UK. Estimating the Markov switching ARCH model we find a significant regime switching in the behavior of both energy consumption and GDP volatility. The results from the Markov regime-switching model show that the variability of energy consumption has a significant role to play in determining the behavior of GDP volatilities. Moreover, the results suggest that the impacts of unpredictable variations in energy consumption on GDP volatility are asymmetric, depending on the intensity of volatility. In particular, we find that while there is no significant contemporaneous relationship between energy consumption volatility and GDP volatility in the first (low-volatility regime, GDP volatility is significantly positively related to the volatility of energy utilization in the second (high-volatility regime.

  10. Viewpoint – Water Variability, Soil Nutrient Heterogeneity and Market Volatility – Why Sub-Saharan Africa’s Green Revolution Will Be Location-Specific and Knowledge-Intensive

    Directory of Open Access Journals (Sweden)

    Pieter van der Zaag

    2010-02-01

    Full Text Available In his interesting Viewpoint article in Water Alternatives, Bruce Lankford suggests that an African Green Revolution cannot come about without irrigation. But he does not convincingly explain why irrigated areas expand only very slowly. This viewpoint article argues that grain yields have remained stagnant in Africa because of high temporal rainfall variability, significant spatial soil nutrient heterogeneity, and weak and volatile markets. This combination calls for location-specific interventions that are aimed at enhancing farmers’ capacity to buffer water variations and address nutrient deficits. This finding is consistent with what Lankford dismisses as an "atomised" approach, but which would preferably be called a farmer-centred approach. Thus a massive investment in African agriculture is indeed required, primarily focused on the creation of knowledge that does justice to the local variation in water and nutrient availability. It should aim to empower farmers to experiment and be innovative, and remake agricultural extension and agricultural engineering exciting with cutting-edge disciplines. Irrigation may then emerge as the right thing to do.

  11. Stress optimization of leaf-spring crossed flexure pivots for an active Gurney flap mechanism

    Science.gov (United States)

    Freire Gómez, Jon; Booker, Julian D.; Mellor, Phil H.

    2015-04-01

    The EU's Green Rotorcraft programme is pursuing the development of a functional and airworthy Active Gurney Flap (AGF) for a full-scale helicopter rotor blade. Interest in the development of this `smart adaptive rotor blade' technology lies in its potential to provide a number of aerodynamic benefits, which would in turn translate into a reduction in fuel consumption and noise levels. The AGF mechanism selected employs leaf-spring crossed flexure pivots. These provide important advantages over bearings as they are not susceptible to seizing and do not require maintenance (i.e. lubrication or cleaning). A baseline design of this mechanism was successfully tested both in a fatigue rig and in a 2D wind tunnel environment at flight-representative deployment schedules. For full validation, a flight test would also be required. However, the severity of the in-flight loading conditions would likely compromise the mechanical integrity of the pivots' leaf-springs in their current form. This paper investigates the scope for stress reduction through three-dimensional shape optimization of the leaf-springs of a generic crossed flexure pivot. To this end, a procedure combining a linear strain energy formulation, a parametric leaf-spring profile definition and a series of optimization algorithms is employed. The resulting optimized leaf-springs are proven to be not only independent of the angular rotation at which the pivot operates, but also linearly scalable to leaf-springs of any length, minimum thickness and width. Validated using non-linear finite element analysis, the results show very significant stress reductions relative to pivots with constant cross section leaf-springs, of up to as much as 30% for the specific pivot configuration employed in the AGF mechanism. It is concluded that shape optimization offers great potential for reducing stress in crossed flexure pivots and, consequently, for extending their fatigue life and/or rotational range.

  12. Extracellular synthesis of silver nanoparticles using the leaf extract of Coleus amboinicus Lour

    Energy Technology Data Exchange (ETDEWEB)

    Narayanan, Kannan Badri [Department of Biotechnology, School of Life Sciences, Pondicherry University, Kalapet, Puducherry 605014 (India); Sakthivel, Natarajan, E-mail: puns2005@gmail.com [Department of Biotechnology, School of Life Sciences, Pondicherry University, Kalapet, Puducherry 605014 (India)

    2011-10-15

    Highlights: {yields} Synthesis of AgNPs using the leaf extract of Coleus amboinicus L. was described. {yields} UV-vis absorption spectra showed the formation of isotrophic AgNPs at 437 nm in 6 h. {yields} XRD analysis showed intense peaks corresponding to fcc structure of AgNPs. {yields} HR-TEM analysis revealed the formation of stable anisotrophic and isotrophic AgNPs. -- Abstract: In the present investigation, Coleus amboinicus Lour. leaf extract-mediated green chemistry approach for the synthesis of silver nanoparticles was described. The nanoparticles were characterized by ultraviolet-visible (UV-Vis) spectroscopy, X-ray diffraction (XRD), energy dispersive X-ray analysis (EDAX), Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). The influence of leaf extract on the control of size and shape of silver nanoparticles is reported. Upon an increase in the concentration of leaf extract, there was a shift in the shape of nanoparticles from anisotrophic nanostructures like triangle, decahedral and hexagonal to isotrophic spherical nanoparticles. Crystalline nature of fcc structured nanoparticles was confirmed by XRD spectrum with peaks corresponding to (1 1 1), (2 0 0), (2 2 0) and (3 1 1) planes and bright circular spots in the selected-area electron diffraction (SAED). Such environment friendly and sustainable methods are non-toxic, cheap and alternative to hazardous chemical procedures.

  13. Inhibition of mild steel corrosion using Jatropha Curcas leaf extract

    Directory of Open Access Journals (Sweden)

    OLORUNFEMI MICHAEL AJAYI

    2014-05-01

    Full Text Available Jatropha Curcas leaf was investigated as a green inhibitor on the degradation of mild steel in 4 M HCl and 4 M H2SO4 aqueous solutions using gasometric technique. Mild steel coupons of dimension 2 × 1.5 cm were immersed in test solutions of uninhibited acid and also those with extract concentrations of 4 ml, 6 ml, 8 ml and 10 ml at 30 oC, for up to 30 minutes. The results showed that as the concentration of the extract increases, there was reduction in the corrosion rate. As the extract concentration increased from 4 ml to 10 ml at 30 minutes exposure, the volume of hydrogen gas evolved decreased from 19.1 cm3 to 11.2 cm3 in H2SO4 medium, while it reduced to 5 cm3 from 9 cm3 in HCl medium. Also, the metal surface-phytoconstituent interaction mechanism showed that 6 minutes is the best exposure time for the adsorption of the extract in both acidic media. The Jatropha Curcas leaf extract was adsorbed on the mild steel surface to inhibit corrosion, while the experimental data obtained at 30 minutes exposure in both acidic media were well fitted with the Langmuir adsorption isotherm. Hence, Jatropha Curcas leaf extract is a good and safe inhibitor in both acidic solutions.

  14. Characterization, antioxidant and antimicrobial activities of green synthesized silver nanoparticles from Psidium guajava L. leaf aqueous extracts.

    Science.gov (United States)

    Wang, Lu; Wu, Yanan; Xie, Jia; Wu, Sheng; Wu, Zhenqiang

    2018-05-01

    The green synthesis of nanoparticles has become increasingly promising due to their potential applications in nanomedicine and materials science. In this study, silver nanoparticles (P-AgNPs) were synthesized from aqueous extracts of P. guajava L. leaf. The synthesized silver nanoparticles were confirmed by UV-vis spectrophotometry at 438 nm. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and zetasizer analyses showed that the average sizes of the P-AgNPs were 20-35 nm, 25 nm, and 25-35 nm, respectively. Element mapping analyses of the P-AgNPs were confirmed by X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDX) analyses. Moreover, FTIR spectra of the synthesized P-AgNPs showed the presence of phyto constituents as capping agents. Zeta potential measurements (-20.17 mV) showed that the synthesized P-AgNPs had reasonably good stability. The in vitro antioxidant properties of the P-AgNPs were evaluated using two different methods. A highly efficient radical scavenging activity of P-AgNPs possessing IC 50 values of 52.53 ± 0.31 μg/mL (DPPH) and 55.10 ± 0.29 μg/mL (ABTS + ) were confirmed. At a concentration of 100 μg/mL, antimicrobial activity assays of the P-AgNPs showed significant inhibition against selected bacteria, S. cerevisiae, A. niger and R. oryzae, especially against Alcaligenes faecalis and Escherichia coli. The present study revealed that the low-cost and environmentally friendly synthesis of P-AgNPs can be widely used in biomedicine, water treatment or purification, and nanobiotechnology. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Realized Volatility Risk

    NARCIS (Netherlands)

    D.E. Allen (David); M.J. McAleer (Michael); M. Scharth (Marcel)

    2013-01-01

    textabstractIn this paper we document that realized variation measures constructed from highfrequency returns reveal a large degree of volatility risk in stock and index returns, where we characterize volatility risk by the extent to which forecasting errors in realized volatility are substantive.

  16. Upscaling from leaf to canopy chlorophyll/carotenoid pigment based vegetation indices reveal phenology of photosynthesis in temperate evergreen and deciduous trees

    Science.gov (United States)

    Wong, C. Y.; Bhathena, Y.; Arain, M. A.; Ensminger, I.

    2017-12-01

    Optically derived vegetation indices have been developed to provide information about plant status including photosynthetic activity. They reflect changes in leaf pigments, which vary seasonally in pigment composition, enabling them to be used as a proxy of photosynthetic phenology. Important pigments in photosynthetic activity are carotenoids and chlorophylls, which are associated with light harvesting and energy dissipation. In temperate forests, which consist of deciduous and evergreen trees, there are difficulties resolving evergreen phenology using the most widely used index, the normalized difference vegetation index (NDVI). NDVI works well in deciduous trees, which exhibit a "visible" phenological process of leaf growth in the spring, and leaf senescence and abscission in the autumn. Evergreen conifers stay green year-round and utilize "invisible" changes of overwintering pigment composition that NDVI cannot resolve, so carotenoid pigment sensitive vegetation indices have been suggested for evergreens. The aim of this study was to evaluate carotenoid based vegetation indices over the chlorophyll sensitive NDVI. For this purpose, we evaluated the greenness index, NDVI, and carotenoid pigment sensitive indices: photochemical reflectance index (PRI) and chlorophyll/carotenoid index (CCI) in red maple, white oak and eastern white pine for two years. We also measured leaf gas exchange and pigment concentrations. We observed that NDVI correlated with photosynthetic activity in deciduous trees, whereas PRI and CCI correlated with photosynthesis across both evergreen and deciduous trees. This pattern was consistent, upscaling from leaf- to canopy-scales indicating that the mechanisms involved in winter acclimation can be resolved at larger spatial scales. PRI and CCI detected seasonal changes in carotenoids and chlorophylls linked to photoprotection and are suitable as a proxy of photosynthetic activity. These findings have implications to improve our use and

  17. The Use of RNA Sequencing and Correlation Network Analysis to Study Potential Regulators of Crabapple Leaf Color Transformation.

    Science.gov (United States)

    Yang, Tuo; Li, Keting; Hao, Suxiao; Zhang, Jie; Song, Tingting; Tian, Ji; Yao, Yuncong

    2018-05-01

    Anthocyanins are plant pigments that contribute to the color of leaves, flowers and fruits, and that are beneficial to human health in the form of dietary antioxidants. The study of a transformable crabapple cultivar, 'India magic', which has red buds and green mature leaves, using mRNA profiling of four leaf developmental stages, allowed us to characterize molecular mechanisms regulating red color formation in early leaf development and the subsequent rapid down-regulation of anthocyanin biosynthesis. This analysis of differential gene expression during leaf development revealed that ethylene signaling-responsive genes are up-regulated during leaf pigmentation. Genes in the ethylene response factor (ERF), SPL, NAC, WRKY and MADS-box transcription factor (TF) families were identified in two weighted gene co-expression network analysis (WGCNA) modules as having a close relationship to anthocyanin accumulation. Analyses of network hub genes indicated that SPL TFs are located in central positions within anthocyanin-related modules. Furthermore, cis-motif and yeast one-hybrid assays suggested that several anthocyanin biosynthetic or regulatory genes are potential targets of SPL8 and SPL13B. Transient silencing of these two genes confirmed that they play a role in co-ordinating anthocyanin biosynthesis and crabapple leaf development. We present a high-resolution method for identifying regulatory modules associated with leaf pigmentation, which provides a platform for functional genomic studies of anthocyanin biosynthesis.

  18. Identification of Cherry green ring mottle virus on Sweet Cherry Trees in Korea

    Directory of Open Access Journals (Sweden)

    In-Sook Cho

    2013-12-01

    Full Text Available During the 2012 growing season, 154 leaf samples were collected from sweet cherry trees in Hwaseong, Pyeongtaek, Gyeongju, Kimcheon, Daegu, Yeongju and Eumseong and tested for the presence of Cherry green ring mottle virus (CGRMV. PCR products of the expected size (807 bp were obtained from 6 samples. The PCR products were cloned and sequenced. The nucleotide sequences of the clones showed over 88% identities to published coat protein sequences of CGRMV isolates in the GenBank database. The sequences of CGRMV isolates, CGR-KO 1−6 shared 98.8 to 99.8% nucleotide and 99.6 to 100% amino acid similarities. Phylogenetic analysis indicated that the Korean CGRMV isolates belong to the group II of CGRMV coat protein genes. The CGRMV infected sweet cherry trees were also tested for Apple chlorotic leaf spot virus (ACLSV, Apple mosaic virus (ApMV, Cherry necrotic rusty mottle virus (CNRMV, Cherry mottle leaf virus (CMLV, Cherry rasp leaf virus (CRLV, Cherry leafroll virus (CLRV, Cherry virus A (CVA, Little cherry virus 1 (LChV1, Prune dwarf virus (PDV and Prunus necrotic ringspot virus (PNRSV by RT-PCR. All of the tested trees were also infected with ACLSV.

  19. Leaf and canopy photosynthesis of a chlorophyll deficient soybean mutant.

    Science.gov (United States)

    Sakowska, Karolina; Alberti, Giorgio; Genesio, Lorenzo; Peressotti, Alessandro; Delle Vedove, Gemini; Gianelle, Damiano; Colombo, Roberto; Rodeghiero, Mirco; Panigada, Cinzia; Juszczak, Radosław; Celesti, Marco; Rossini, Micol; Haworth, Matthew; Campbell, Benjamin W; Mevy, Jean-Philippe; Vescovo, Loris; Cendrero-Mateo, M Pilar; Rascher, Uwe; Miglietta, Franco

    2018-03-02

    The photosynthetic, optical, and morphological characteristics of a chlorophyll-deficient (Chl-deficient) "yellow" soybean mutant (MinnGold) were examined in comparison with 2 green varieties (MN0095 and Eiko). Despite the large difference in Chl content, similar leaf photosynthesis rates were maintained in the Chl-deficient mutant by offsetting the reduced absorption of red photons by a small increase in photochemical efficiency and lower non-photochemical quenching. When grown in the field, at full canopy cover, the mutants reflected a significantly larger proportion of incoming shortwave radiation, but the total canopy light absorption was only slightly reduced, most likely due to a deeper penetration of light into the canopy space. As a consequence, canopy-scale gross primary production and ecosystem respiration were comparable between the Chl-deficient mutant and the green variety. However, total biomass production was lower in the mutant, which indicates that processes other than steady state photosynthesis caused a reduction in biomass accumulation over time. Analysis of non-photochemical quenching relaxation and gas exchange in Chl-deficient and green leaves after transitions from high to low light conditions suggested that dynamic photosynthesis might be responsible for the reduced biomass production in the Chl-deficient mutant under field conditions. © 2018 John Wiley & Sons Ltd.

  20. Can Leaf Spectroscopy Predict Leaf and Forest Traits Along a Peruvian Tropical Forest Elevation Gradient?

    Science.gov (United States)

    Doughty, Christopher E.; Santos-Andrade, P. E.; Goldsmith, G. R.; Blonder, B.; Shenkin, A.; Bentley, L. P.; Chavana-Bryant, C.; Huaraca-Huasco, W.; Díaz, S.; Salinas, N.; Enquist, B. J.; Martin, R.; Asner, G. P.; Malhi, Y.

    2017-11-01

    High-resolution spectroscopy can be used to measure leaf chemical and structural traits. Such leaf traits are often highly correlated to other traits, such as photosynthesis, through the leaf economics spectrum. We measured VNIR (visible-near infrared) leaf reflectance (400-1,075 nm) of sunlit and shaded leaves in 150 dominant species across ten, 1 ha plots along a 3,300 m elevation gradient in Peru (on 4,284 individual leaves). We used partial least squares (PLS) regression to compare leaf reflectance to chemical traits, such as nitrogen and phosphorus, structural traits, including leaf mass per area (LMA), branch wood density and leaf venation, and "higher-level" traits such as leaf photosynthetic capacity, leaf water repellency, and woody growth rates. Empirical models using leaf reflectance predicted leaf N and LMA (r2 > 30% and %RMSE < 30%), weakly predicted leaf venation, photosynthesis, and branch density (r2 between 10 and 35% and %RMSE between 10% and 65%), and did not predict leaf water repellency or woody growth rates (r2<5%). Prediction of higher-level traits such as photosynthesis and branch density is likely due to these traits correlations with LMA, a trait readily predicted with leaf spectroscopy.

  1. Green Transformational Leadership and Green Performance: The Mediation Effects of Green Mindfulness and Green Self-Efficacy

    Directory of Open Access Journals (Sweden)

    Yu-Shan Chen

    2014-09-01

    Full Text Available No prior literature explores the influence of green transformational leadership on green performance, thus, this study develops a novel research framework to fill the research gap. This study investigates the influence of green transformational leadership on green performance and discusses the mediation effects of green mindfulness and green self-efficacy by means of structural equation modeling (SEM. The results indicate that green transformational leadership positively influences green mindfulness, green self-efficacy, and green performance. Moreover, this study demonstrates that the positive relationship between green transformational leadership and green performance is partially mediated by the two mediators: green mindfulness and green self-efficacy. It means that green transformational leadership can not only directly affect green performance positively but also indirectly affect it positively through green mindfulness and green self-efficacy. Therefore, firms need to raise their green transformational leadership, green mindfulness, and green self-efficacy to increase their green performance.

  2. Importance of the green color, absorption gradient, and spectral absorption of chloroplasts for the radiative energy balance of leaves.

    Science.gov (United States)

    Kume, Atsushi

    2017-05-01

    Terrestrial green plants absorb photosynthetically active radiation (PAR; 400-700 nm) but do not absorb photons evenly across the PAR waveband. The spectral absorbance of photosystems and chloroplasts is lowest for green light, which occurs within the highest irradiance waveband of direct solar radiation. We demonstrate a close relationship between this phenomenon and the safe and efficient utilization of direct solar radiation in simple biophysiological models. The effects of spectral absorptance on the photon and irradiance absorption processes are evaluated using the spectra of direct and diffuse solar radiation. The radiation absorption of a leaf arises as a consequence of the absorption of chloroplasts. The photon absorption of chloroplasts is strongly dependent on the distribution of pigment concentrations and their absorbance spectra. While chloroplast movements in response to light are important mechanisms controlling PAR absorption, they are not effective for green light because chloroplasts have the lowest spectral absorptance in the waveband. With the development of palisade tissue, the incident photons per total palisade cell surface area and the absorbed photons per chloroplast decrease. The spectral absorbance of carotenoids is effective in eliminating shortwave PAR (solar radiation. However, most of the near infrared radiation is unabsorbed and heat stress is greatly reduced. The incident solar radiation is too strong to be utilized for photosynthesis under the current CO 2 concentration in the terrestrial environment. Therefore, the photon absorption of a whole leaf is efficiently regulated by photosynthetic pigments with low spectral absorptance in the highest irradiance waveband and through a combination of pigment density distribution and leaf anatomical structures.

  3. Phytohormones and microRNAs as sensors and regulators of leaf senescence: assigning macro roles to small molecules.

    Science.gov (United States)

    Sarwat, Maryam; Naqvi, Afsar Raza; Ahmad, Parvaiz; Ashraf, Muhammad; Akram, Nudrat Aisha

    2013-12-01

    Ageing or senescence is an intricate and highly synchronized developmental phase in the life of plant parts including leaf. Senescence not only means death of a plant part, but during this process, different macromolecules undergo degradation and the resulting components are transported to other parts of the plant. During the period from when a leaf is young and green to the stage when it senesces, a multitude of factors such as hormones, environmental factors and senescence associated genes (SAGs) are involved. Plant hormones including salicylic acid, abscisic acid, jasmonic acid and ethylene advance leaf senescence, whereas others like cytokinins, gibberellins, and auxins delay this process. The environmental factors which generally affect plant development and growth, can hasten senescence, the examples being nutrient dearth, water stress, pathogen attack, radiations, high temperature and light intensity, waterlogging, and air, water or soil contamination. Other important influences include carbohydrate accumulation and high carbon/nitrogen level. To date, although several genes involved in this complex process have been identified, still not much information exists in the literature on the signalling mechanism of leaf senescence. Now, the Arabidopsis mutants have paved our way and opened new vistas to elucidate the signalling mechanism of leaf senescence for which various mutants are being utilized. Recent studies demonstrating the role of microRNAs in leaf senescence have reinforced our knowledge of this intricate process. This review provides a comprehensive and critical analysis of the information gained particularly on the roles of several plant growth regulators and microRNAs in regulation of leaf senescence. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Leaf size and leaf display of thirty-eight tropical tree species

    NARCIS (Netherlands)

    Poorter, L.; Rozendaal, D.M.A.

    2008-01-01

    Trees forage for light through optimal leaf display. Effective leaf display is determined by metamer traits (i.e., the internode, petiole, and corresponding leaf), and thus these traits strongly co-determine carbon gain and as a result competitive advantage in a light-limited environment. We

  5. Virtual volatility

    Science.gov (United States)

    Silva, A. Christian; Prange, Richard E.

    2007-03-01

    We introduce the concept of virtual volatility. This simple but new measure shows how to quantify the uncertainty in the forecast of the drift component of a random walk. The virtual volatility also is a useful tool in understanding the stochastic process for a given portfolio. In particular, and as an example, we were able to identify mean reversion effect in our portfolio. Finally, we briefly discuss the potential practical effect of the virtual volatility on an investor asset allocation strategy.

  6. Volatility Spillovers between Energy and Agricultural Markets: A Critical Appraisal of Theory and Practice

    Directory of Open Access Journals (Sweden)

    Chia-Lin Chang

    2018-06-01

    Full Text Available Energy and agricultural commodities and markets have been examined extensively, albeit separately, for a number of years. In the energy literature, the returns, volatility and volatility spillovers (namely, the delayed effect of a returns shock in one asset on the subsequent volatility or covolatility in another asset, among alternative energy commodities, such as oil, gasoline and ethanol across different markets, have been analysed using a variety of univariate and multivariate models, estimation techniques, data sets, and time frequencies. A similar comment applies to the separate theoretical and empirical analysis of a wide range of agricultural commodities and markets. Given the recent interest and emphasis in bio-fuels and green energy, especially bio-ethanol, which is derived from a range of agricultural products, it is not surprising that there is a topical and developing literature on the spillovers between energy and agricultural markets. Modelling and testing spillovers between the energy and agricultural markets has typically been based on estimating multivariate conditional volatility models, specifically the Baba, Engle, Kraft, and Kroner (BEKK and dynamic conditional correlation (DCC models. A serious technical deficiency is that the Quasi-Maximum Likelihood Estimates (QMLE of a Full BEKK matrix, which is typically estimated in examining volatility spillover effects, has no asymptotic properties, except by assumption, so that no valid statistical test of volatility spillovers is possible. Some papers in the literature have used the DCC model to test for volatility spillovers. However, it is well known in the financial econometrics literature that the DCC model has no regularity conditions, and that the QMLE of the parameters of DCC has no asymptotic properties, so that there is no valid statistical testing of volatility spillovers. The purpose of the paper is to evaluate the theory and practice in testing for volatility spillovers

  7. Ripening-dependent metabolic changes in the volatiles of pineapple (Ananas comosus (L.) Merr.) fruit: II. Multivariate statistical profiling of pineapple aroma compounds based on comprehensive two-dimensional gas chromatography-mass spectrometry.

    Science.gov (United States)

    Steingass, Christof Björn; Jutzi, Manfred; Müller, Jenny; Carle, Reinhold; Schmarr, Hans-Georg

    2015-03-01

    Ripening-dependent changes of pineapple volatiles were studied in a nontargeted profiling analysis. Volatiles were isolated via headspace solid phase microextraction and analyzed by comprehensive 2D gas chromatography and mass spectrometry (HS-SPME-GC×GC-qMS). Profile patterns presented in the contour plots were evaluated applying image processing techniques and subsequent multivariate statistical data analysis. Statistical methods comprised unsupervised hierarchical cluster analysis (HCA) and principal component analysis (PCA) to classify the samples. Supervised partial least squares discriminant analysis (PLS-DA) and partial least squares (PLS) regression were applied to discriminate different ripening stages and describe the development of volatiles during postharvest storage, respectively. Hereby, substantial chemical markers allowing for class separation were revealed. The workflow permitted the rapid distinction between premature green-ripe pineapples and postharvest-ripened sea-freighted fruits. Volatile profiles of fully ripe air-freighted pineapples were similar to those of green-ripe fruits postharvest ripened for 6 days after simulated sea freight export, after PCA with only two principal components. However, PCA considering also the third principal component allowed differentiation between air-freighted fruits and the four progressing postharvest maturity stages of sea-freighted pineapples.

  8. ‘Breath figures’ on leaf surfaces – formation and effects of microscopic leaf wetness

    Directory of Open Access Journals (Sweden)

    Jürgen eBurkhardt

    2013-10-01

    Full Text Available ‘Microscopic leaf wetness’ means minute amounts of persistent liquid water on leaf surfaces which are invisible to the naked eye. The water is mainly maintained by transpired water vapor condensing onto the leaf surface and to attached leaf surface particles. With an estimated average thickness of less than 1 µm, microscopic leaf wetness it is about 2 orders of magnitude thinner than morning dewfall. The most important physical processes which reduce the saturation vapor pressure and promote condensation are cuticular absorption and the deliquescence of hygroscopic leaf surface particles. Deliquescent salts form highly concentrated solutions. Depending on the amount and concentration of the dissolved ions, the physicochemical properties of microscopic leaf wetness can be considerably different from those of pure water. Microscopic leaf wetness can form continuous thin layers on hydrophobic leaf surfaces and in specific cases can act similar to surfactants, enabling a strong potential influence on the foliar exchange of ions. Microscopic leaf wetness can also enhance the dissolution, the emission, and the reaction of specific atmospheric trace gases e.g. ammonia, SO2, or ozone, leading to a strong potential role for microscopic leaf wetness in plant/atmosphere interaction. Due to its difficult detection, there is little knowledge about the occurrence and the properties of microscopic leaf wetness. However, based on the existing evidence and on physicochemical reasoning it can be hypothesized that microscopic leaf wetness occurs on almost any plant worldwide and often permanently, and that it significantly influences the exchange processes of the leaf surface with its neighboring compartments, i.e., the plant interior and the atmosphere. The omission of microscopic water in general leaf wetness concepts has caused far-reaching, misleading conclusions in the past.

  9. Realized volatility and absolute return volatility: a comparison indicating market risk.

    Science.gov (United States)

    Zheng, Zeyu; Qiao, Zhi; Takaishi, Tetsuya; Stanley, H Eugene; Li, Baowen

    2014-01-01

    Measuring volatility in financial markets is a primary challenge in the theory and practice of risk management and is essential when developing investment strategies. Although the vast literature on the topic describes many different models, two nonparametric measurements have emerged and received wide use over the past decade: realized volatility and absolute return volatility. The former is strongly favored in the financial sector and the latter by econophysicists. We examine the memory and clustering features of these two methods and find that both enable strong predictions. We compare the two in detail and find that although realized volatility has a better short-term effect that allows predictions of near-future market behavior, absolute return volatility is easier to calculate and, as a risk indicator, has approximately the same sensitivity as realized volatility. Our detailed empirical analysis yields valuable guidelines for both researchers and market participants because it provides a significantly clearer comparison of the strengths and weaknesses of the two methods.

  10. Realized volatility and absolute return volatility: a comparison indicating market risk.

    Directory of Open Access Journals (Sweden)

    Zeyu Zheng

    Full Text Available Measuring volatility in financial markets is a primary challenge in the theory and practice of risk management and is essential when developing investment strategies. Although the vast literature on the topic describes many different models, two nonparametric measurements have emerged and received wide use over the past decade: realized volatility and absolute return volatility. The former is strongly favored in the financial sector and the latter by econophysicists. We examine the memory and clustering features of these two methods and find that both enable strong predictions. We compare the two in detail and find that although realized volatility has a better short-term effect that allows predictions of near-future market behavior, absolute return volatility is easier to calculate and, as a risk indicator, has approximately the same sensitivity as realized volatility. Our detailed empirical analysis yields valuable guidelines for both researchers and market participants because it provides a significantly clearer comparison of the strengths and weaknesses of the two methods.

  11. Assessing leaf spectral properties of Phragmites australis impacted by acid mine drainage

    CSIR Research Space (South Africa)

    Van Deventer, Heidi

    2014-07-01

    Full Text Available decrease in the NIR24, and similarly the radionuclides Cs and Sr at Chernobyl were highly negatively correlated to the REP, green and NIR regions26. An opposite trend was observed in plants exposed to Cd24, Pb27, a combination of heavy metals (As, Cd, Cr.... Davids C, Tyler AN. Detecting contamination-induced tree stress within the Chernobyl exclusion zone. Remote Sens Environ. 2003;85(1):30–38. http:// dx.doi.org/10.1016/S0034-4257(02)00184-0 Research Article Assessing leaf spectral properties of Phragmites...

  12. Unstable volatility

    DEFF Research Database (Denmark)

    Casas, Isabel; Gijbels, Irène

    2012-01-01

    The objective of this paper is to introduce the break-preserving local linear (BPLL) estimator for the estimation of unstable volatility functions for independent and asymptotically independent processes. Breaks in the structure of the conditional mean and/or the volatility functions are common...... in Finance. Nonparametric estimators are well suited for these events due to the flexibility of their functional form and their good asymptotic properties. However, the local polynomial kernel estimators are not consistent at points where the volatility function has a break. The estimator presented...

  13. Flavor characteristics of the juices from fresh market tomatoes differentiated from those from processing tomatoes by combined analysis of volatile profiles with sensory evaluation.

    Science.gov (United States)

    Iijima, Yoko; Iwasaki, Yumi; Otagiri, Yuji; Tsugawa, Hiroshi; Sato, Tsuneo; Otomo, Hiroe; Sekine, Yukio; Obata, Akio

    2016-12-01

    Various commercial tomato juices with different flavors are available at markets worldwide. To clarify the marker compounds related to the flavor characteristics of tomato juice, we analyzed 15 pure commercial tomato juices by a combination of volatile profiling and sensory evaluation. The correlations among volatiles and the relationship between volatiles and sensory descriptors were elucidated by multivariate analyses. Consequently, the tomato juices made from fresh market tomatoes (including the popular Japanese tomato variety "Momotaro") were clearly separated from other juices made from processing tomatoes, by both the volatile composition and sensory profiles. cis-3-Hexenol, hexanal, and apocarotenoids negatively contributed to the juices from fresh market tomatoes, whereas Strecker aldehydes and furfural showed positive contributions to the juices. Accordingly, the sensory characteristics of juices from fresh market tomatoes were related to cooked and fruity flavors but not to green or fresh notes.

  14. Ground-and satellite-based evidence of the biophysical mechanisms behind the greening Sahel

    DEFF Research Database (Denmark)

    Brandt, Martin Stefan; Mbow, Cheikh; Diouf, Abdoul A.

    2015-01-01

    After a dry period with prolonged droughts in the 1970s and 1980s, recent scientific outcome suggests that the decades of abnormally dry conditions in the Sahel have been reversed by positive anomalies in rainfall. Various remote sensing studies observed a positive trend in vegetation greenness...... over the last decades which is known as the re-greening of the Sahel. However, little investment has been made in including long-term ground-based data collections to evaluate and better understand the biophysical mechanisms behind these findings. Thus, deductions on a possible increment in biomass...... remain speculative. Our aim is to bridge these gaps and give specifics on the biophysical background factors of the re-greening Sahel. Therefore, a trend analysis was applied on long time series (1987-2013) of satellite-based vegetation and rainfall data, as well as on ground-observations of leaf biomass...

  15. Pluto's Volatile Transport

    Science.gov (United States)

    Young, Leslie

    2012-10-01

    Pluto's varying subsolar latitude and heliocentric distance leads to large variations in the surface volatile distribution and surface pressure. I present results of new volatile transport models (Young 2012a, b). The models include insolation, thermal emission, subsurface conduction, heating of a volatile slab, internal heat flux, latent heat of sublimation, and strict global mass balance. Numeric advances include initial conditions that allow for rapid convergence, efficient computation with matrix arithmetic, and stable Crank-Nicholson timesteps for both bare and volatile-covered areas. Runs of the model show six distinct seasons on Pluto. (1) As Pluto approaches perihelion, the volatiles on the old winter pole (the Rotational North Pole, RNP) becomes more directly illuminated , and the pressure and albedo rise rapidly. (2) When a new ice cap forms on the Rotational South Pole, RSP, volatiles are exchanged between poles. The pressure and albedo change more slowly. (3) When all volatiles have sublimed from the RNP, the albedo and pressure drop rapidly. (4-6) A similar pattern is repeated near aphelion with a reversal of the roles and the poles. I will compare results with earlier Pluto models of Hansen and Paige (1996), show the dependence on parameters such as substrate inertia, and make predictions for the New Horizons flyby of Pluto in 2015. This work was supported, in part, by funding from NASA Planetary Atmospheres Grant NNG06GF32G and the Spitzer project (JPL research support Agreement 1368573). Hansen, C. J. and D. A. Paige 1996. Seasonal Nitrogen Cycles on Pluto. Icarus 120, 247-265. Young, L. A. 2012a. Volatile transport on inhomogeneous surfaces: I - Analytic expressions, with application to Pluto’s day. Icarus, in press Young, L. A. 2012b. Volatile transport on inhomogeneous surfaces: II. Numerical calculations, with application to Pluto's season. In preparation.

  16. Leaf habit and woodiness regulate different leaf economy traits at a given nutrient supply.

    Science.gov (United States)

    Ordoñez, Jenny C; van Bodegom, Peter M; Witte, Jan-Philip M; Bartholomeus, Ruud P; van Dobben, Han F; Aerts, Rien

    2010-11-01

    The large variation in the relationships between environmental factors and plant traits observed in natural communities exemplifies the alternative solutions that plants have developed in response to the same environmental limitations. Qualitative attributes, such as growth form, woodiness, and leaf habit can be used to approximate these alternative solutions. Here, we quantified the extent to which these attributes affect leaf trait values at a given resource supply level, using measured plant traits from 105 different species (254 observations) distributed across 50 sites in mesic to wet plant communities in The Netherlands. For each site, soil total N, soil total P, and water supply estimates were obtained by field measurements and modeling. Effects of growth forms, woodiness, and leaf habit on relations between leaf traits (SLA, specific leaf area; LNC, leaf nitrogen concentration; and LPC, leaf phosphorus concentration) vs. nutrient and water supply were quantified using maximum-likelihood methods and Bonferroni post hoc tests. The qualitative attributes explained 8-23% of the variance within sites in leaf traits vs. soil fertility relationships, and therefore they can potentially be used to make better predictions of global patterns of leaf traits in relation to nutrient supply. However, at a given soil fertility, the strength of the effect of each qualitative attribute was not the same for all leaf traits. These differences may imply a differential regulation of the leaf economy traits at a given nutrient supply, in which SLA and LPC seem to be regulated in accordance to changes in plant size and architecture while LNC seems to be primarily regulated at the leaf level by factors related to leaf longevity.

  17. STRAWBERRY (FRAGARIA X ANANASSA DUCH LEAF ANTIOXIDATIVE RESPONSE TO BIOSTIMULATORS AND REDUCED FERTILIZATION WITH N AND K

    Directory of Open Access Journals (Sweden)

    Marija Špoljarević

    2010-06-01

    Full Text Available Strawberry cultivar Elsanta was grown in peat based substrate in a green house. Full dose and 50% reduced nitrogen and potassium fertilization were applied during fruit bearing period in spring, along with biostimulators Viva®, Megafol® and their combination. The specific activities of guaiacol peroxidase (GPXs; EC 1.11.1.7, catalase (CATs; EC 1.11.1.6, ascorbate peroxidase (APXs; EC 1.11.1.11 and glutathione reductase (GRs; EC 1.6.4.2 in strawberry leaf were stimulated by biostimulators and reduced fertilization. The strongest link seen here was between the enzymes of ascorbate-glutathione cycle (APXs and GRs, which were positively related to trifoliate leaf fresh mass (TLFM. The highest TLFM was observed in Megafol® treated plants.

  18. “Synthesis, characterization and studies on antioxidant activity of silver nanoparticles using Elephantopus scaber leaf extract”

    Energy Technology Data Exchange (ETDEWEB)

    Kharat, Sopan N., E-mail: sopankharat@gmail.com; Mendhulkar, Vijay D., E-mail: drmendhulkar@gmail.com

    2016-05-01

    The simple, eco-friendly and cost effective method of green synthesis of silver nanoparticle in the leaf extract of medicinal plant Elephantopus scaber L. is illustrated in the present work. The synthesized silver nanoparticles (AgNPs) were characterized with UV–Vis-spectroscopy, nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier transform infrared (FTIR) analysis. The UV-spectra show maximum absorbance at 435 nm, NTA analysis shows 78 nm average sizes of nanoparticles, TEM analysis indicates spherical shape of the nanoparticles with the average diameter of 50 nm. The XRD peaks at 2θ range of 30–80° correspond to (111), (200), (220), (311) reflection planes that indicate the structure of metallic silver. FTIR analysis reveals surface capping of phenolic groups. Existence of peaks in the range of 1611 to 1400 cm{sup −1} indicates the presence of aromatic rings in the leaf extract. The peak at 1109 cm{sup −1} is due to the presence of OH groups. The antioxidant activity of synthesized nanoparticles was evaluated performing DPPH assay and it is observed that the photosynthesized nanoparticle also possesses antioxidant potentials. Thus, it can be used as potential free radical scavenger. Silver particles have tremendous applications in the field of diagnostics and therapeutics. To this context, the surface coating of plant metabolite constituents has great potentials. Therefore, the present work has been undertaken to synthesize the AgNPs using leaf extract of medicinal plant, E. scaber, to characterize and access their antioxidant properties. - Highlights: • Green synthesis of silver nanoparticle using leaf extract of medicinal plant Elephantopus scaber L. • Synthesized nanoparticles (SNP's) were characterized by UV-Spectroscopy, NTA, TEM, XRD and FTIR analysis. • Silver nanoparticles (AgNPs) showed average size of 78 nm in NTA analysis and spherical shape in TEM analysis.

  19. Effect of Addition of Moringa Leaf By-Product (Leaf-Waste) on ...

    African Journals Online (AJOL)

    The effects of incorporation of Moringa leaf fibre (a by-product of leaf processing which contains 24% Crude Fibre by dry weight at 0, 5 and 10 % substitution of wheat flour in cookies was investigated. Three products containing wheat flour: Moringa leaf fibre ratios of 100:0, 95:5, and 90:10 respectively were prepared, and a ...

  20. Herbivore-induced volatiles in the perennial shrub, Vaccinium corymbosum, and their role in inter-branch signaling.

    Science.gov (United States)

    Rodriguez-Saona, Cesar R; Rodriguez-Saona, Luis E; Frost, Christopher J

    2009-02-01

    Herbivore feeding activates plant defenses at the site of damage as well as systemically. Systemic defenses can be induced internally by signals transported via phloem or xylem, or externally transmitted by volatiles emitted from the damaged tissues. We investigated the role of herbivore-induced plant volatiles (HIPVs) in activating a defense response between branches in blueberry plants. Blueberries are perennial shrubs that grow by initiating adventitious shoots from a basal crown, which produce new lateral branches. This type of growth constrains vascular connections between shoots and branches within plants. While we found that leaves within a branch were highly connected, vascular connectivity was limited between branches within shoots and absent between branches from different shoots. Larval feeding by gypsy moth, exogenous methyl jasmonate, and mechanical damage differentially induced volatile emissions in blueberry plants, and there was a positive correlation between amount of insect damage and volatile emission rates. Herbivore damage did not affect systemic defense induction when we isolated systemic branches from external exposure to HIPVs. Thus, internal signals were not capable of triggering systemic defenses among branches. However, exposure of branches to HIPVs from an adjacent branch decreased larval consumption by 70% compared to those exposed to volatiles from undamaged branches. This reduction in leaf consumption did not result in decreased volatile emissions, indicating that leaves became more responsive to herbivory (or "primed") after being exposed to HIPVs. Chemical profiles of leaves damaged by gypsy moth caterpillars, exposed to HIPVs, or non-damaged controls revealed that HIPV-exposed leaves had greater chemical similarities to damaged leaves than to control leaves. Insect-damaged leaves and young HIPV-exposed leaves had higher amounts of endogenous cis-jasmonic acid compared to undamaged and non-exposed leaves, respectively. Our results

  1. Use of olive leaf extract to reduce lipid oxidation of baked snacks.

    Science.gov (United States)

    Difonzo, Graziana; Pasqualone, Antonella; Silletti, Roccangelo; Cosmai, Lucrezia; Summo, Carmine; Paradiso, Vito M; Caponio, Francesco

    2018-06-01

    Olive leaves are a waste of the olive oil processing industry and represent a good source of phenolic compounds. The aim of this work was to assess the influence of olive leaf extract (OLE) on lipid oxidation of baked snacks, like breadsticks, made with wheat flour, extra virgin olive oil (EVO), white wine, and salt. Two EVOs having different peroxide value and antioxidant profile (total phenol content, tocopherols, carotenoids, and antioxidant activity) were considered. The snacks were subjected to oven test or stored in the usual conditions of retailer shelves. The obtained data highlighted that EVO plays a key role both for the quality and for the shelf-life of baked snacks and the use of OLE is recommended especially when baked snacks are produced with low quality EVO which therefore does not have a good content of natural antioxidants. The OLE addition significantly reduced the forced oxidative degradation during oven test, as evidenced by a decrease of 27% in oxidation-related volatile compounds and of 42% in triacylglycerol oligopolymers compared to control snacks (CTR) without OLE. Moreover, OLE effectively acted also in normal storage conditions, improving sensory data, induction times, antioxidant activity, and volatile compounds compared to CTR (i.e. hexanal 165.49 vs 38.31 μg g -1 in OLE-added). The amount of oxidation-related volatile compounds showed an opposite trend with the quality level of oil used. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. VOC emission into the atmosphere by trees and leaf litter in Polish forests

    Science.gov (United States)

    Isidorov, V.; Smolewska, M.; Tyszkiewicz, Z.

    2009-04-01

    It is generally recognized at present that the vegetation of continents is the principal source of reactive volatile organic compounds (VOC) of the atmosphere. The upper limit of the evaluation of global phytogenic VOC is 1100-1500 Tg/yr (Isidorov, 1990; Guenther et al., 1995). Although these global evaluations showing the place of phytogenic emission among of other VOC sources are important, evaluations for individual countries are also very important. This poster represents the results of the estimation of VOC emission from Polish forests. Calculations took into account the composition and age of forests. According to our estimation, the total VOC emission by the arboreal vegetation differs from 190 to 750 kt/yr, depending of weather conditions in different years. There are only few studies conducted on decaying plant material as a source of atmospheric VOCs, but still they are able to give evidence of the importance of this source. For Polish forests, the litter mass is estimated to be (16-19)106 t/yr. These organic materials undergo decomposition by mesofauna and microorganisms. In these processes volatile organic compounds (VOC) stored in the litter and secondary metabolites of litter-destroying fungi are emitted into the atmosphere. The scale of the phenomenon makes leaf litter an important VOC source in the atmosphere. The filling of numerous gaps in researches of VOC emissions from decomposing leaf litter demands carrying out of long term field experiments in various climatic conditions. In this communication we report also the results of 3.5-year experiment on qualitative and quantitative GC-MS investigations of VOC emitted into the gas phase from leaves litter of some species of deciduous and coniferous trees of Polish forests. Apart from terpenes and their oxygenated derivatives, which are usual in plant tissues, leaf litter intensively emits vast amounts of lower alcohols and carbonyl compounds. We suppose that these volatile substances are products

  3. Brewing and volatiles analysis of three tea beers indicate a potential interaction between tea components and lager yeast.

    Science.gov (United States)

    Rong, Lei; Peng, Li-Juan; Ho, Chi-Tang; Yan, Shou-He; Meurens, Marc; Zhang, Zheng-Zhu; Li, Da-Xiang; Wan, Xiao-Chun; Bao, Guan-Hu; Gao, Xue-Ling; Ling, Tie-Jun

    2016-04-15

    Green tea, oolong tea and black tea were separately introduced to brew three kinds of tea beers. A model was designed to investigate the tea beer flavour character. Comparison of the volatiles between the sample of tea beer plus water mixture (TBW) and the sample of combination of tea infusion and normal beer (CTB) was accomplished by triangular sensory test and HS-SPME GC-MS analysis. The PCA of GC-MS data not only showed a significant difference between volatile features of each TBW and CTB group, but also suggested some key compounds to distinguish TBW from CTB. The results of GC-MS showed that the relative concentrations of many typical tea volatiles were significantly changed after the brewing process. More interestingly, the behaviour of yeast fermentation was influenced by tea components. A potential interaction between tea components and lager yeast could be suggested. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Global variability in leaf respiration in relation to climate and leaf traits

    Science.gov (United States)

    Atkin, Owen K.

    2015-04-01

    Leaf respiration plays a vital role in regulating ecosystem functioning and the Earth's climate. Because of this, it is imperative that that Earth-system, climate and ecosystem-level models be able to accurately predict variations in rates of leaf respiration. In the field of photosynthesis research, the F/vC/B model has enabled modellers to accurately predict variations in photosynthesis through time and space. By contrast, we lack an equivalent biochemical model to predict variations in leaf respiration. Consequently, we need to rely on phenomenological approaches to model variations in respiration across the Earth's surface. Such approaches require that we develop a thorough understanding of how rates of respiration vary among species and whether global environmental gradients play a role in determining variations in leaf respiration. Dealing with these issues requires that data sets be assembled on rates of leaf respiration in biomes across the Earth's surface. In this talk, I will use a newly-assembled global database on leaf respiration and associated traits (including photosynthesis) to highlight variation in leaf respiration (and the balance between respiration and photosynthesis) across global gradients in growth temperature and aridity.

  5. Normalization for Implied Volatility

    OpenAIRE

    Fukasawa, Masaaki

    2010-01-01

    We study specific nonlinear transformations of the Black-Scholes implied volatility to show remarkable properties of the volatility surface. Model-free bounds on the implied volatility skew are given. Pricing formulas for the European options which are written in terms of the implied volatility are given. In particular, we prove elegant formulas for the fair strikes of the variance swap and the gamma swap.

  6. Money growth volatility and the demand for money in Germany: Friedman's volatility hypothesis revisited

    OpenAIRE

    Brüggemann, Imke; Nautz, Dieter

    1997-01-01

    Recently, the Bundesbank claimed that monetary targeting has become considerably more diffcult by the increased volatility of short-term money growth. The present paper investigates the impact of German money growth volatility on income velocity and money demand in view of Friedman's money growth volatility hypothesis. Granger-causality tests provide some evidence for a velocity-volatility linkage. However the estimation of volatility-augmented money demand functions reveals that - in contras...

  7. Effects of ascorbic acid and antioxidants on color, lipid oxidation and volatiles of irradiated ground beef

    International Nuclear Information System (INIS)

    Ahn, D.U.; Nam, K.C.

    2004-01-01

    Beef loins with 3 different aging times after slaughter were ground, added with none, 0.1% ascorbic acid, 0.01% sesamol+0.01% α-tocopherol, or 0.1% ascorbic acid+0.01% sesamol+0.01% tocopherol. The meats were packaged in oxygen-permeable bags, irradiated at 2.5 kGy, and color, oxidation-reduction potential (ORP), lipid oxidation and volatile profiles were determined. Irradiation decreased the redness of ground beef, and visible color of beef changed from a bright red to a green/brown depending on the age of meat. Addition of ascorbic acid prevented color changes in irradiated beef, and the effect of ascorbic acid became greater as the age of meat or storage time after irradiation increased. The ground beef added with ascorbic acid had lower ORP than control, and the low ORP of meat helped maintaining the heme pigments in reduced form. During aerobic storage, S-volatiles disappeared while volatile aldehydes significantly increased in irradiated beef. Addition of ascorbic acid at 0.1% or sesamol+α-tocopherol at each 0.01% level to ground beef prior to irradiation were effective in reducing lipid oxidation and S-volatiles. As storage time increased, however, the antioxidant effect of sesamol+tocopherol in irradiated ground beef was superior to that of ascorbic acid

  8. Effects of ascorbic acid and antioxidants on color, lipid oxidation and volatiles of irradiated ground beef

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, D.U. E-mail: duahn@iastate.edu; Nam, K.C

    2004-10-01

    Beef loins with 3 different aging times after slaughter were ground, added with none, 0.1% ascorbic acid, 0.01% sesamol+0.01% {alpha}-tocopherol, or 0.1% ascorbic acid+0.01% sesamol+0.01% tocopherol. The meats were packaged in oxygen-permeable bags, irradiated at 2.5 kGy, and color, oxidation-reduction potential (ORP), lipid oxidation and volatile profiles were determined. Irradiation decreased the redness of ground beef, and visible color of beef changed from a bright red to a green/brown depending on the age of meat. Addition of ascorbic acid prevented color changes in irradiated beef, and the effect of ascorbic acid became greater as the age of meat or storage time after irradiation increased. The ground beef added with ascorbic acid had lower ORP than control, and the low ORP of meat helped maintaining the heme pigments in reduced form. During aerobic storage, S-volatiles disappeared while volatile aldehydes significantly increased in irradiated beef. Addition of ascorbic acid at 0.1% or sesamol+{alpha}-tocopherol at each 0.01% level to ground beef prior to irradiation were effective in reducing lipid oxidation and S-volatiles. As storage time increased, however, the antioxidant effect of sesamol+tocopherol in irradiated ground beef was superior to that of ascorbic acid.

  9. Arctic Vegetation under Climate Change – Biogenic Volatile Organic Compound Emissions and Leaf Anatomy

    DEFF Research Database (Denmark)

    Schollert, Michelle

    common arctic plant species, illustrating the great importance of vegetation composition for determining ecosystem BVOC emissions. Additionally, this thesis assesses the BVOC emission responses in common arctic plant species to effects of climate change: warming, shading and snow addition. Against...... treatment effects on BVOC emissions. Furthermore, the anatomy of arctic plants seems to respond differently to warming than species at lower latitudes. The results in this thesis demonstrate the complexity of the effects of climate change on BVOC emissions and leaf anatomy of arctic plant species...... emissions from the arctic region are assumed to be low, but data from the region is lacking. BVOC emissions are furthermore expected to change drastically due to the rapidly proceeding climate change in the Arctic, which can provide a feedback to climate warming of unknown direction and magnitude. BVOC...

  10. Multi-Spectral Imaging from an Unmanned Aerial Vehicle Enables the Assessment of Seasonal Leaf Area Dynamics of Sorghum Breeding Lines

    Directory of Open Access Journals (Sweden)

    Andries B. Potgieter

    2017-09-01

    Full Text Available Genetic improvement in sorghum breeding programs requires the assessment of adaptation traits in small-plot breeding trials across multiple environments. Many of these phenotypic assessments are made by manual measurement or visual scoring, both of which are time consuming and expensive. This limits trial size and the potential for genetic gain. In addition, these methods are typically restricted to point estimates of particular traits, such as leaf senescence or flowering and do not capture the dynamic nature of crop growth. In water-limited environments in particular, information on leaf area development over time would provide valuable insight into water use and adaptation to water scarcity during specific phenological stages of crop development. Current methods to estimate plant leaf area index (LAI involve destructive sampling and are not practical in breeding. Unmanned aerial vehicles (UAV and proximal-sensing technologies open new opportunities to assess these traits multiple times in large small-plot trials. We analyzed vegetation-specific crop indices obtained from a narrowband multi-spectral camera on board a UAV platform flown over a small pilot trial with 30 plots (10 genotypes randomized within 3 blocks. Due to variable emergence we were able to assess the utility of these vegetation indices to estimate canopy cover and LAI over a large range of plant densities. We found good correlations between the Normalized Difference Vegetation Index (NDVI and the Enhanced Vegetation Index (EVI with plant number per plot, canopy cover and LAI both during the vegetative growth phase (pre-anthesis and at maximum canopy cover shortly after anthesis. We also analyzed the utility of time-sequence data to assess the senescence pattern of sorghum genotypes known as fast (senescent or slow senescing (stay-green types. The Normalized Difference Red Edge (NDRE index which estimates leaf chlorophyll content was most useful in characterizing the leaf area

  11. Effect of nitrogen supply on leaf appearance, leaf growth, leaf nitrogen economy and photosynthetic capacity in maize (Zea mays L.)

    NARCIS (Netherlands)

    Vos, J.; Putten, van der P.E.L.; Birch, C.J.

    2005-01-01

    Leaf area growth and nitrogen concentration per unit leaf area, Na (g m-2 N) are two options plants can use to adapt to nitrogen limitation. Previous work indicated that potato (Solanum tuberosum L.) adapts the size of leaves to maintain Na and photosynthetic capacity per unit leaf area. This paper

  12. The Chloroplast-Localized Phospholipases D α4 and α5 Regulate Herbivore-Induced Direct and Indirect Defenses in Rice1[C][W

    Science.gov (United States)

    Qi, Jinfeng; Zhou, Guoxin; Yang, Lijuan; Erb, Matthias; Lu, Yanhua; Sun, Xiaoling; Cheng, Jiaan; Lou, Yonggen

    2011-01-01

    The oxylipin pathway is of central importance for plant defensive responses. Yet, the first step of the pathway, the liberation of linolenic acid following induction, is poorly understood. Phospholipases D (PLDs) have been hypothesized to mediate this process, but data from Arabidopsis (Arabidopsis thaliana) regarding the role of PLDs in plant resistance have remained controversial. Here, we cloned two chloroplast-localized PLD genes from rice (Oryza sativa), OsPLDα4 and OsPLDα5, both of which were up-regulated in response to feeding by the rice striped stem borer (SSB) Chilo suppressalis, mechanical wounding, and treatment with jasmonic acid (JA). Antisense expression of OsPLDα4 and -α5 (as-pld), which resulted in a 50% reduction of the expression of the two genes, reduced elicited levels of linolenic acid, JA, green leaf volatiles, and ethylene and attenuated the SSB-induced expression of a mitogen-activated protein kinase (OsMPK3), a lipoxygenase (OsHI-LOX), a hydroperoxide lyase (OsHPL3), as well as a 1-aminocyclopropane-1-carboxylic acid synthase (OsACS2). The impaired oxylipin and ethylene signaling in as-pld plants decreased the levels of herbivore-induced trypsin protease inhibitors and volatiles, improved the performance of SSB and the rice brown planthopper Nilaparvata lugens, and reduced the attractiveness of plants to a larval parasitoid of SSB, Apanteles chilonis. The production of trypsin protease inhibitors in as-pld plants could be partially restored by JA, while the resistance to rice brown planthopper and SSB was restored by green leaf volatile application. Our results show that phospholipases function as important components of herbivore-induced direct and indirect defenses in rice. PMID:21984727

  13. The chloroplast-localized phospholipases D α4 and α5 regulate herbivore-induced direct and indirect defenses in rice.

    Science.gov (United States)

    Qi, Jinfeng; Zhou, Guoxin; Yang, Lijuan; Erb, Matthias; Lu, Yanhua; Sun, Xiaoling; Cheng, Jiaan; Lou, Yonggen

    2011-12-01

    The oxylipin pathway is of central importance for plant defensive responses. Yet, the first step of the pathway, the liberation of linolenic acid following induction, is poorly understood. Phospholipases D (PLDs) have been hypothesized to mediate this process, but data from Arabidopsis (Arabidopsis thaliana) regarding the role of PLDs in plant resistance have remained controversial. Here, we cloned two chloroplast-localized PLD genes from rice (Oryza sativa), OsPLDα4 and OsPLDα5, both of which were up-regulated in response to feeding by the rice striped stem borer (SSB) Chilo suppressalis, mechanical wounding, and treatment with jasmonic acid (JA). Antisense expression of OsPLDα4 and -α5 (as-pld), which resulted in a 50% reduction of the expression of the two genes, reduced elicited levels of linolenic acid, JA, green leaf volatiles, and ethylene and attenuated the SSB-induced expression of a mitogen-activated protein kinase (OsMPK3), a lipoxygenase (OsHI-LOX), a hydroperoxide lyase (OsHPL3), as well as a 1-aminocyclopropane-1-carboxylic acid synthase (OsACS2). The impaired oxylipin and ethylene signaling in as-pld plants decreased the levels of herbivore-induced trypsin protease inhibitors and volatiles, improved the performance of SSB and the rice brown planthopper Nilaparvata lugens, and reduced the attractiveness of plants to a larval parasitoid of SSB, Apanteles chilonis. The production of trypsin protease inhibitors in as-pld plants could be partially restored by JA, while the resistance to rice brown planthopper and SSB was restored by green leaf volatile application. Our results show that phospholipases function as important components of herbivore-induced direct and indirect defenses in rice.

  14. Biological application of green silver nanoparticle synthesized from leaf extract of Rauvolfi serpentina Benth

    Directory of Open Access Journals (Sweden)

    Sudipta Panja

    2016-07-01

    Full Text Available Objective: To synthesize silver nanoparticles (AgNPs from the leaf extract of Rauvolfia serpentina Benth and examination of their various biological activities. Methods: An ecofriendly, easy, one step, non-toxic and inexpensive approach is used, where aqueous plant extract acts as a reducing as well as stabilizing agent of AgNPs. The nanoparticles were characterized by UV-vis spectroscopy, Fourier transform infrared spectroscopy, transmission electron microscopy, X-ray diffraction, and energy-dispersive X-ray spectroscopy analysis. Results: Surface plasmon resonance of the nanoparticles was observed at 427 nm in UV-vis spectroscopy. Fourier transform infrared spectroscopy result confirms that the plant extract acts as the reducing as well as the capping agent of the AgNPs. Transmission electron microscopy indicated that the synthesized nanoparticles are spherical in shape and approximately 7–10 nm in size, whereas the crystalline nature with face-centered cubic structure of the AgNPs was detected by X-ray diffraction analysis. Presence of silver in the AgNPs is 31.43% by weight, as confirmed by energy-dispersive X-ray spectroscopy. The synthesized AgNPs have antimicrobial activities against human pathogenic microorganisms. It also shows larvicidal activity and cytotoxicity against HeLa, MCF-7 cell lines. Conclusions: Synthesized spherical shaped AgNPs from the leaf extract of Rauvolfia serpentina Benth have antimicrobial and larvicidal activities as well as cytotoxicity against HeLa and MCF-7 cell lines.

  15. Chasing volatility

    DEFF Research Database (Denmark)

    Caporin, Massimiliano; Rossi, Eduardo; Santucci de Magistris, Paolo

    The realized volatility of financial returns is characterized by persistence and occurrence of unpreditable large increments. To capture those features, we introduce the Multiplicative Error Model with jumps (MEM-J). When a jump component is included in the multiplicative specification, the condi......The realized volatility of financial returns is characterized by persistence and occurrence of unpreditable large increments. To capture those features, we introduce the Multiplicative Error Model with jumps (MEM-J). When a jump component is included in the multiplicative specification...... estimate alternative specifications of the model using a set of daily bipower measures for 7 stock indexes and 16 individual NYSE stocks. The estimates of the jump component confirm that the probability of jumps dramatically increases during the financial crisis. Compared to other realized volatility...... models, the introduction of the jump component provides a sensible improvement in the fit, as well as for in-sample and out-of-sample volatility tail forecasts....

  16. Biosynthesis of silver nanoparticles using Ocimum sanctum (Tulsi) leaf extract and screening its antimicrobial activity

    Science.gov (United States)

    Singhal, Garima; Bhavesh, Riju; Kasariya, Kunal; Sharma, Ashish Ranjan; Singh, Rajendra Pal

    2011-07-01

    Development of green nanotechnology is generating interest of researchers toward ecofriendly biosynthesis of nanoparticles. In this study, biosynthesis of stable silver nanoparticles was done using Tulsi ( Ocimum sanctum) leaf extract. These biosynthesized nanoparticles were characterized with the help of UV-vis spectrophotometer, Atomic Absorption Spectroscopy (AAS), Dynamic light scattering (DLS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and Transmission electron microscopy (TEM). Stability of bioreduced silver nanoparticles was analyzed using UV-vis absorption spectra, and their antimicrobial activity was screened against both gram-negative and gram-positive microorganisms. It was observed that O. sanctum leaf extract can reduce silver ions into silver nanoparticles within 8 min of reaction time. Thus, this method can be used for rapid and ecofriendly biosynthesis of stable silver nanoparticles of size range 4-30 nm possessing antimicrobial activity suggesting their possible application in medical industry.

  17. Biosynthesis of silver nanoparticles using Ocimum sanctum (Tulsi) leaf extract and screening its antimicrobial activity

    International Nuclear Information System (INIS)

    Singhal, Garima; Bhavesh, Riju; Kasariya, Kunal; Sharma, Ashish Ranjan; Singh, Rajendra Pal

    2011-01-01

    Development of green nanotechnology is generating interest of researchers toward ecofriendly biosynthesis of nanoparticles. In this study, biosynthesis of stable silver nanoparticles was done using Tulsi (Ocimum sanctum) leaf extract. These biosynthesized nanoparticles were characterized with the help of UV–vis spectrophotometer, Atomic Absorption Spectroscopy (AAS), Dynamic light scattering (DLS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and Transmission electron microscopy (TEM). Stability of bioreduced silver nanoparticles was analyzed using UV–vis absorption spectra, and their antimicrobial activity was screened against both gram-negative and gram-positive microorganisms. It was observed that O. sanctum leaf extract can reduce silver ions into silver nanoparticles within 8 min of reaction time. Thus, this method can be used for rapid and ecofriendly biosynthesis of stable silver nanoparticles of size range 4–30 nm possessing antimicrobial activity suggesting their possible application in medical industry.

  18. Study of mechanism of enhanced antibacterial activity by green synthesis of silver nanoparticles

    Science.gov (United States)

    Parashar, Upendra Kumar; Kumar, Vinod; Bera, Tanmay; Saxena, Preeti S.; Nath, Gopal; Srivastava, Sunil K.; Giri, Rajiv; Srivastava, Anchal

    2011-10-01

    The extensive use of silver nanoparticles needs a synthesis process that is greener without compromising their properties. The present study describes a novel green synthesis of silver nanoparticles using Guava (Psidium guajava) leaf extract. In order to compare with the conventionally synthesized ones, we also prepared Ag-NPs by chemical reduction. Their optical and morphological characteristics were thoroughly investigated and tested for their antibacterial properties on Escherichia coli. The green synthesized silver nanoparticles showed better antibacterial properties than their chemical counterparts even though there was not much difference between their morphologies. Fourier transform infrared (FTIR) spectroscopic analysis of the used extract and as-synthesized silver nanoparticles suggests the possible reduction of Ag + by the water-soluble ingredients of the guava leaf like tannins, eugenol and flavonoids. The possible reaction mechanism for the reduction of Ag + has been proposed and discussed. The time-dependent electron micrographs and the simulation studies indicated that a physical interaction between the silver nanoparticles and the bacterial cell membrane may be responsible for this effect. Based on the findings, it seems very reasonable to believe that this greener way of synthesizing silver nanoparticles is not just an environmentally viable technique but it also opens up scope to improve their antibacterial properties.

  19. Study of mechanism of enhanced antibacterial activity by green synthesis of silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Parashar, Upendra Kumar; Srivastava, Sunil K; Srivastava, Anchal [Department of Physics, Banaras Hindu University, Varanasi 221005 (India); Kumar, Vinod; Saxena, Preeti S [Department of Zoology, Banaras Hindu University, Varanasi 22005 (India); Bera, Tanmay [Department of Mechanical, Materials and Aerospace Engineering, University of Central Florida, Orlando, FL 32816 (United States); Nath, Gopal [Department of Microbiology, Institute of Medical Science, Banaras Hindu University, Varanasi 22005 (India); Giri, Rajiv, E-mail: anchalbhu@gmail.com [Department of Materials Science and Engineering, Norwegian University of Science and Technology, NO-7491 Trondheim (Norway)

    2011-10-14

    The extensive use of silver nanoparticles needs a synthesis process that is greener without compromising their properties. The present study describes a novel green synthesis of silver nanoparticles using Guava (Psidium guajava) leaf extract. In order to compare with the conventionally synthesized ones, we also prepared Ag-NPs by chemical reduction. Their optical and morphological characteristics were thoroughly investigated and tested for their antibacterial properties on Escherichia coli. The green synthesized silver nanoparticles showed better antibacterial properties than their chemical counterparts even though there was not much difference between their morphologies. Fourier transform infrared (FTIR) spectroscopic analysis of the used extract and as-synthesized silver nanoparticles suggests the possible reduction of Ag{sup +} by the water-soluble ingredients of the guava leaf like tannins, eugenol and flavonoids. The possible reaction mechanism for the reduction of Ag{sup +} has been proposed and discussed. The time-dependent electron micrographs and the simulation studies indicated that a physical interaction between the silver nanoparticles and the bacterial cell membrane may be responsible for this effect. Based on the findings, it seems very reasonable to believe that this greener way of synthesizing silver nanoparticles is not just an environmentally viable technique but it also opens up scope to improve their antibacterial properties.

  20. Developing resilient green roofs in a dry climate.

    Science.gov (United States)

    Razzaghmanesh, M; Beecham, S; Brien, C J

    2014-08-15

    Living roofs are an emerging green infrastructure technology that can potentially be used to ameliorate both climate change and urban heat island effects. There is not much information regarding the design of green roofs for dry climates and so the aim of this study was to develop low maintenance and unfertilized green roofs for a dry climate. This paper describes the effects of four important elements of green roofs namely slope, depth, growing media and plant species and their possible interactions in terms of plant growth responses in a dry climate. Sixteen medium-scale green roofs were set up and monitored during a one year period. This experiment consisted of twelve vegetated platforms and four non-vegetated platforms as controls. The design for the experiment was a split-split-plot design in which the factors Slope (1° and 25°) and Depth (100mm, 300 mm) were randomized to the platforms (main plots). Root depth and volume, average height of plants, final dry biomass and ground cover, relative growth rate, final dry shoot-root ratio, water use efficiency and leaf succulence were studied during a twelve month period. The results showed little growth of the plants in media type A, whilst the growth was significant in both media types B and C. On average, a 90% survival rate of plants was observed. Also the growth indices indicated that some plants can grow efficiently in the harsh environment created by green roofs in a dry climate. The root growth pattern showed that retained water in the drainage layer is an alternative source of water for plants. It was also shown that stormwater can be used as a source of irrigation water for green roofs during six months of the year at the study site. In summary, mild sloping intensive systems containing media type C and planted with either Chrysocephalum apiculatum or Disphyma crassifolium showed the best performance. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Indoor air quality in green-renovated vs. non-green low-income homes of children living in a temperate region of US (Ohio).

    Science.gov (United States)

    Coombs, Kanistha C; Chew, Ginger L; Schaffer, Christopher; Ryan, Patrick H; Brokamp, Cole; Grinshpun, Sergey A; Adamkiewicz, Gary; Chillrud, Steve; Hedman, Curtis; Colton, Meryl; Ross, Jamie; Reponen, Tiina

    2016-06-01

    Green eco-friendly housing includes approaches to reduce indoor air pollutant sources and to increase energy efficiency. Although sealing/tightening buildings can save energy and reduce the penetration of outdoor pollutants, an adverse outcome can be increased buildup of pollutants with indoor sources. The objective of this study was to determine the differences in the indoor air quality (IAQ) between green and non-green homes in low-income housing complexes. In one housing complex, apartments were renovated using green principles (n=28). Home visits were conducted immediately after the renovation, and subsequently at 6 months and at 12 months following the renovation. Of these homes, eight homes had pre-renovation home visits; this allowed pre- and post-renovation comparisons within the same homes. Parallel visits were conducted in non-green (control) apartments (n=14) in a nearby low-income housing complex. The IAQ assessments included PM2.5, black carbon, ultrafine particles, sulfur, total volatile organic compounds (VOCs), formaldehyde, and air exchange rate. Data were analyzed using linear mixed-effects models. None of the indoor pollutant concentrations were significantly different between green and non-green homes. However, we found differences when comparing the concentrations before and after renovation. Measured immediately after renovation, indoor black carbon concentrations were significantly lower averaging 682 ng/m(3) in post-renovation vs. 2364 ng/m(3) in pre-renovation home visits (p=0.01). In contrast, formaldehyde concentrations were significantly higher in post-renovated (0.03 ppm) than in pre-renovated homes (0.01 ppm) (p=0.004). Questionnaire data showed that opening of windows occurred less frequently in homes immediately post-renovation compared to pre-renovation; this factor likely affected the levels of indoor black carbon (from outdoor sources) and formaldehyde (from indoor sources) more than the renovation status itself. To reduce IAQ

  2. Indoor air quality in green-renovated vs. non-green low-income homes of children living in a temperate region of US (Ohio)

    Energy Technology Data Exchange (ETDEWEB)

    Coombs, Kanistha C. [University of Cincinnati, Department of Environmental Health, P.O. Box 670056, Cincinnati, OH (United States); Chew, Ginger L. [Centers for Disease Control and Prevention (CDC), National Center for Environmental Health, Air Pollution and Respiratory Health Branch, 4770 Buford Hwy., N.E., MS-F60, Atlanta, GA (United States); Schaffer, Christopher [University of Cincinnati, Department of Environmental Health, P.O. Box 670056, Cincinnati, OH (United States); Ryan, Patrick H. [University of Cincinnati, Department of Environmental Health, P.O. Box 670056, Cincinnati, OH (United States); Department of Pediatrics, Cincinnati Children' s Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH (United States); Brokamp, Cole; Grinshpun, Sergey A. [University of Cincinnati, Department of Environmental Health, P.O. Box 670056, Cincinnati, OH (United States); Adamkiewicz, Gary [Harvard University, T.H. Chan School of Public Health, Department of Environmental Health, 401 Park Drive, Boston, MA (United States); Chillrud, Steve [Columbia University, Lamont-Doherty Earth Observatory, Geochemistry Division, P.O. Box 8000, Palisades, New York (United States); Hedman, Curtis [University of Wisconsin-Madison, Wisconsin State Laboratory of Hygiene, 465 Henry Mall, Madison, WI (United States); Colton, Meryl [Harvard University, T.H. Chan School of Public Health, Department of Environmental Health, 401 Park Drive, Boston, MA (United States); Ross, Jamie [Columbia University, Lamont-Doherty Earth Observatory, Geochemistry Division, P.O. Box 8000, Palisades, New York (United States); Reponen, Tiina [University of Cincinnati, Department of Environmental Health, P.O. Box 670056, Cincinnati, OH (United States)

    2016-06-01

    Green eco-friendly housing includes approaches to reduce indoor air pollutant sources and to increase energy efficiency. Although sealing/tightening buildings can save energy and reduce the penetration of outdoor pollutants, an adverse outcome can be increased buildup of pollutants with indoor sources. The objective of this study was to determine the differences in the indoor air quality (IAQ) between green and non-green homes in low-income housing complexes. In one housing complex, apartments were renovated using green principles (n = 28). Home visits were conducted immediately after the renovation, and subsequently at 6 months and at 12 months following the renovation. Of these homes, eight homes had pre-renovation home visits; this allowed pre- and post-renovation comparisons within the same homes. Parallel visits were conducted in non-green (control) apartments (n = 14) in a nearby low-income housing complex. The IAQ assessments included PM{sub 2.5}, black carbon, ultrafine particles, sulfur, total volatile organic compounds (VOCs), formaldehyde, and air exchange rate. Data were analyzed using linear mixed-effects models. None of the indoor pollutant concentrations were significantly different between green and non-green homes. However, we found differences when comparing the concentrations before and after renovation. Measured immediately after renovation, indoor black carbon concentrations were significantly lower averaging 682 ng/m{sup 3} in post-renovation vs. 2364 ng/m{sup 3} in pre-renovation home visits (p = 0.01). In contrast, formaldehyde concentrations were significantly higher in post-renovated (0.03 ppm) than in pre-renovated homes (0.01 ppm) (p = 0.004). Questionnaire data showed that opening of windows occurred less frequently in homes immediately post-renovation compared to pre-renovation; this factor likely affected the levels of indoor black carbon (from outdoor sources) and formaldehyde (from indoor sources) more than the renovation status

  3. Indoor air quality in green-renovated vs. non-green low-income homes of children living in a temperate region of US (Ohio)

    International Nuclear Information System (INIS)

    Coombs, Kanistha C.; Chew, Ginger L.; Schaffer, Christopher; Ryan, Patrick H.; Brokamp, Cole; Grinshpun, Sergey A.; Adamkiewicz, Gary; Chillrud, Steve; Hedman, Curtis; Colton, Meryl; Ross, Jamie; Reponen, Tiina

    2016-01-01

    Green eco-friendly housing includes approaches to reduce indoor air pollutant sources and to increase energy efficiency. Although sealing/tightening buildings can save energy and reduce the penetration of outdoor pollutants, an adverse outcome can be increased buildup of pollutants with indoor sources. The objective of this study was to determine the differences in the indoor air quality (IAQ) between green and non-green homes in low-income housing complexes. In one housing complex, apartments were renovated using green principles (n = 28). Home visits were conducted immediately after the renovation, and subsequently at 6 months and at 12 months following the renovation. Of these homes, eight homes had pre-renovation home visits; this allowed pre- and post-renovation comparisons within the same homes. Parallel visits were conducted in non-green (control) apartments (n = 14) in a nearby low-income housing complex. The IAQ assessments included PM_2_._5, black carbon, ultrafine particles, sulfur, total volatile organic compounds (VOCs), formaldehyde, and air exchange rate. Data were analyzed using linear mixed-effects models. None of the indoor pollutant concentrations were significantly different between green and non-green homes. However, we found differences when comparing the concentrations before and after renovation. Measured immediately after renovation, indoor black carbon concentrations were significantly lower averaging 682 ng/m"3 in post-renovation vs. 2364 ng/m"3 in pre-renovation home visits (p = 0.01). In contrast, formaldehyde concentrations were significantly higher in post-renovated (0.03 ppm) than in pre-renovated homes (0.01 ppm) (p = 0.004). Questionnaire data showed that opening of windows occurred less frequently in homes immediately post-renovation compared to pre-renovation; this factor likely affected the levels of indoor black carbon (from outdoor sources) and formaldehyde (from indoor sources) more than the renovation status itself. To

  4. The bouquet of grapevine (Vitis vinifera L. cv. Cabernet Sauvignon) flowers arises from the biosynthesis of sesquiterpene volatiles in pollen grains

    Science.gov (United States)

    Martin, Diane M.; Toub, Omid; Chiang, Angela; Lo, Bernard C.; Ohse, Sebastian; Lund, Steven T.; Bohlmann, Jörg

    2009-01-01

    Terpenoid volatiles are important information molecules that enable pollinators to locate flowers and may protect reproductive tissues against pathogens or herbivores. Inflorescences of grapevine (Vitis vinifera L.) are composed of tiny green flowers that produce an abundance of sesquiterpenoid volatiles. We demonstrate that male flower parts of grapevines are responsible for sesquiterpenoid floral scent formation. We describe temporal and spatial patterns of biosynthesis and release of floral volatiles throughout the blooming of V. vinifera L. cv. Cabernet Sauvignon. The biosynthesis of sesquiterpene volatiles, which are emitted with a light-dependent diurnal pattern early in the morning at prebloom and bloom, is localized to anthers and, more specifically, within the developing pollen grains. Valencene synthase (VvValCS) enzyme activity, which produces the major sesquiterpene volatiles of grapevine flowers, is present in anthers. VvValCS transcripts are most abundant in flowers at prebloom stages. Western blot analysis identified VvValCS protein in anthers, and in situ immunolabeling located VvValCS protein in pollen grains during bloom. Histochemical staining, as well as immunolabeling analysis by fluorescent microscopy and transmission electron microscopy, indicated that VvValCS localizes close to lipid bodies within the maturing microspore. PMID:19359488

  5. Green Transformational Leadership and Green Performance: The Mediation Effects of Green Mindfulness and Green Self-Efficacy

    OpenAIRE

    Yu-Shan Chen; Ching-Hsun Chang; Yu-Hsien Lin

    2014-01-01

    No prior literature explores the influence of green transformational leadership on green performance, thus, this study develops a novel research framework to fill the research gap. This study investigates the influence of green transformational leadership on green performance and discusses the mediation effects of green mindfulness and green self-efficacy by means of structural equation modeling (SEM). The results indicate that green transformational leadership positively influences green min...

  6. SU-F-T-350: Continuous Leaf Optimization (CLO) for IMRT Leaf Sequencing

    Energy Technology Data Exchange (ETDEWEB)

    Long, T; Chen, M; Jiang, S; Lu, W [UT Southwestern Medical Center, Dallas, TX (United States)

    2016-06-15

    Purpose: To study a new step-and-shoot IMRT leaf sequencing model that avoids the two main pitfalls of conventional leaf sequencing: (1) target fluence being stratified into a fixed number of discrete levels and/or (2) aperture leaf positions being restricted to a discrete set of locations. These assumptions induce error into the sequence or reduce the feasible region of potential plans, respectively. Methods: We develop a one-dimensional (single leaf pair) methodology that does not make assumptions (1) or (2) that can be easily extended to a multi-row model. The proposed continuous leaf optimization (CLO) methodology takes in an existing set of apertures and associated intensities, or solution “seed,” and improves the plan without the restrictiveness of 1or (2). It then uses a first-order descent algorithm to converge onto a locally optimal solution. A seed solution can come from models that assume (1) and (2), thus allowing the CLO model to improve upon existing leaf sequencing methodologies. Results: The CLO model was applied to 208 generated target fluence maps in one dimension. In all cases for all tested sequencing strategies, the CLO model made improvements on the starting seed objective function. The CLO model also was able to keep MUs low. Conclusion: The CLO model can improve upon existing leaf sequencing methods by avoiding the restrictions of (1) and (2). By allowing for more flexible leaf positioning, error can be reduced when matching some target fluence. This study lays the foundation for future models and solution methodologies that can incorporate continuous leaf positions explicitly into the IMRT treatment planning model. Supported by Cancer Prevention & Research Institute of Texas (CPRIT) - ID RP150485.

  7. Synthesis, characterization and catalytic activity of silver nanoparticles using Tribulus terrestris leaf extract.

    Science.gov (United States)

    Ashokkumar, S; Ravi, S; Kathiravan, V; Velmurugan, S

    2014-01-01

    Biomediated silver nanoparticles were synthesized with the aid of an eco-friendly biomaterial, namely, aqueous Tribulus terrestris extract. Silver nanoparticles were synthesized using a rapid, single step, and completely green biosynthetic method employing aqueous T. terrestris leaf extracts as both the reducing and capping agent. Silver ions were rapidly reduced by aqueous T. terrestris leaf extracts, leading to the formation of highly crystalline silver nanoparticles. An attempt has been made and formation of the silver nanoparticles was verified by surface plasmon spectra using an UV-vis (Ultra violet), spectrophotometer. Morphology and crystalline structure of the prepared silver nanoparticles were characterized by TEM (Transmission Electron Microscope) and XRD (X-ray Diffraction), techniques, respectively. FT-IR (Fourier Transform Infrared), analysis suggests that the obtained silver nanoparticles might be stabilized through the interactions of carboxylic groups, carbonyl groups and the flavonoids present in the T. terrestris extract. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Panax ginseng Leaf Extracts Exert Anti-Obesity Effects in High-Fat Diet-Induced Obese Rats.

    Science.gov (United States)

    Lee, Seul-Gi; Lee, Yoon-Jeong; Jang, Myeong-Hwan; Kwon, Tae-Ryong; Nam, Ju-Ock

    2017-09-10

    Recent studies have reported that the aerial parts of ginseng contain various saponins, which have anti-oxidative, anti-inflammatory, and anti-obesity properties similar to those of ginseng root. However, the leaf extracts of Korean ginseng have not yet been investigated. In this study, we demonstrate the anti-obesity effects of green leaf and dried leaf extracts (GL and DL, respectively) of ginseng in high-fat diet (HFD)-induced obese rats. The administration of GL and DL to HFD-induced obese rats significantly decreased body weight (by 96.5% and 96.7%, respectively), and epididymal and abdominal adipose tissue mass. Furthermore, DL inhibited the adipogenesis of 3T3-L1 adipocytes through regulation of the expression of key adipogenic regulators, such as peroxisome proliferator-activated receptor (PPAR)-γ and CCAAT/enhancer-binding protein (C/EBP)-α. In contrast, GL had little effect on the adipogenesis of 3T3-L1 adipocytes but greatly increased the protein expression of PPARγ compared with that in untreated cells. These results were not consistent with an anti-obesity effect in the animal model, which suggested that the anti-obesity effect of GL in vivo resulted from specific factors released by other organs, or from increased energy expenditure. To our knowledge, these findings are the first evidence for the anti-obesity effects of the leaf extracts of Korean ginseng in vivo.

  9. Systems scale assessment of the sustainability implications of emerging green initiatives

    International Nuclear Information System (INIS)

    Tiwary, Abhishek; Namdeo, Anil; Fuentes, Jose; Dore, Anthony; Hu, Xiao-Ming; Bell, Margaret

    2013-01-01

    This paper demonstrates a systems framework for assessment of environmental impacts from ‘green initiatives’, through a case study of meso-scale, anthropogenic–biogenic interactions. The following cross-sectoral green initiatives, combining the emerging trends in the North East region of the United Kingdom, have been considered – increasing the vegetation cover; decarbonising road transport; decentralising energy production through biomass plants. Two future scenarios are assessed – Baseline 2 020 (projected emissions from realisation of policy instruments); Aggressive 2 020 (additional emissions from realisation of green initiatives). Resulting trends from the Aggressive 2 020 scenario suggest an increase in emissions of pollutant precursors, including biogenic volatile organic compounds and nitrogen dioxide over the base case by up to 20% and 5% respectively. This has implications for enhanced daytime ozone and secondary aerosols formation by up to 15% and over 5% respectively. Associated land cover changes show marginal decrease of ambient temperature but modest reductions in ammonia and ambient particulates. -- Highlights: • A systems scale assessment framework for emerging green initiatives is proposed. • Interactions between urban greenspace, greener vehicles and bioenergy system examined. • Altering future emissions profile enhances synthesis of photochemical precursors. • Incorporating whole-system evaluation deemed vital for well-rounded sustainability. -- Systems scale implication for air pollution was assessed across three sectors of emerging green initiatives-energy, transport and ecosystem

  10. Comparison of consecutive harvests versus blending treatments to produce lower alcohol wines from Cabernet Sauvignon grapes: Impact on wine volatile composition and sensory properties.

    Science.gov (United States)

    Schelezki, Olaf J; Šuklje, Katja; Boss, Paul K; Jeffery, David W

    2018-09-01

    This study extends previous work on Cabernet Sauvignon wines of lowered alcohol concentrations produced by pre-fermentatively substituting proportions of juice from an overripe crop with "green harvest wine" or water to adjust initial sugar concentrations. Resulting wines were assessed for their volatile compositions and sensory characteristics to evaluate the suitability of this winemaking approach to managing wine alcohol concentrations in warm viticulture regions. Wines from water or green harvest wine substitution were also compared to wines of similar alcohol content produced from earlier harvested grapes. Implementation of water substitution in particular resulted in minor alterations of wine volatile composition compared to the control, and positive aroma and flavour characteristics were preserved. However, overripe sensory attributes such as 'hotness' and 'port wine' were conserved whereas they were absent in wines of similar alcohol level made from earlier harvested grapes, thereby emphasising the relevance of grape (over)maturity when producing lower alcohol wines. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Identification and field evaluation of attractants for the cranberry weevil, Anthonomus musculus Say.

    Science.gov (United States)

    Szendrei, Zsofia; Averill, Anne; Alborn, Hans; Rodriguez-Saona, Cesar

    2011-04-01

    Studies were conducted to develop an attractant for the cranberry weevil, Anthonomus musculus, a pest of blueberry and cranberry flower buds and flowers in the northeastern United States. In previous studies, we showed that cinnamyl alcohol, the most abundant blueberry floral volatile, and the green leaf volatiles (Z)-3-hexenyl acetate and hexyl acetate, emitted from both flowers and flower buds, elicit strong antennal responses from A. musculus. Here, we found that cinnamyl alcohol did not increase capture of A. musculus adults on yellow sticky traps compared with unbaited controls; however, weevils were highly attracted to traps baited with the Anthonomus eugenii Cano aggregation pheromone, indicating that these congeners share common pheromone components. To identify the A. musculus aggregation pheromone, headspace volatiles were collected from adults feeding on blueberry or cranberry flower buds and analyzed by gas chromatography-mass spectrometry. Three male-specific compounds were identified: (Z)-2-(3,3-dimethyl-cyclohexylidene) ethanol (Z grandlure II); (Z)-(3,3-dimethylcyclohexylidene) acetaldehyde (grandlure III); and (E)-(3,3- dimethylcyclohexylidene) acetaldehyde (grandlure IV). A fourth component, (E)-3,7-dimethyl-2,6-octadien-1-ol (geraniol), was emitted in similar quantities by males and females. The emission rates of these volatiles were about 2.8, 1.8, 1.3, and 0.9 ng/adult/d, respectively. Field experiments in highbush blueberry (New Jersey) and cranberry (Massachusetts) examined the attraction of A. musculus to traps baited with the male-produced compounds and geraniol presented alone and combined with (Z)-3-hexenyl acetate and hexyl acetate, and to traps baited with the pheromones of A. eugenii and A. grandis. In both states and crops, traps baited with the A. musculus male-produced compounds attracted the highest number of adults. Addition of the green leaf volatiles did not affect A. musculus attraction to its pheromone but skewed the sex ratio

  12. GREEN PACKAGING, GREEN PRODUCT, GREEN ADVERTISING, PERSEPSI, DAN MINAT BELI KONSUMEN

    Directory of Open Access Journals (Sweden)

    Imam Santoso

    2016-12-01

    Full Text Available Environmental problems become one of the strategic issues in achieving global competitiveness. One of the issues is products that are made from environmental friendly materials or known as green product. Furthermore, in green products marketing, the company also uses green packaging and green advertising concept. This study aimed to analyze the effect of green packaging, green products, and green advertising on consumer perception and purchasing intention. The study was conducted in Ketawanggede Village, Lowokwaru Sub-district, Malang City. The sampling method used nonprobability accidential sampling techniques. The numbers of respondents were 113 consumers in study site. Data were collected by interview using questionnaires. The method of analysis used Generalized Structured Component Analysis (GSCA. The analysis showed that the green packaging, green products, and green advertising had positive significant influence on consumer perceptions. Meanwhile, green product and consumer perception had positive significant influence on purchasing interest, but the green packaging and green advertising has not found sufficient evidence in influencing purchasing intention.

  13. Green synthesis and characterization of silver nanoparticle using Aloe barbadensis

    Energy Technology Data Exchange (ETDEWEB)

    Thappily, Praveen, E-mail: pravvmon@gmail.com, E-mail: shiiuvenus@gmail.com; Shiju, K., E-mail: pravvmon@gmail.com, E-mail: shiiuvenus@gmail.com [Laboratory for Molecular Photonics and Electronics (LAMP), Department of Physics, National Institute of Technology, Calicut, Kerala 673601 (India)

    2014-10-15

    Green synthesis of silver nanoparticles was achieved by simple visible light irradiation using aloe barbadensis leaf extract as reducing agent. UV-Vis spectroscopic analysis was used for confirmation of the successful formation of nanoparticles. Investigated the effect of light irradiation time on the light absorption of the nanoparticles. It is observed that upto 25 minutes of light irradiation, the absorption is linearly increasing with time and after that it becomes saturated. Finally, theoretically fitted the time-absorption graph and modeled a relation between them with the help of simulation software.

  14. Green synthesis and characterization of silver nanoparticle using Aloe barbadensis

    International Nuclear Information System (INIS)

    Thappily, Praveen; Shiju, K.

    2014-01-01

    Green synthesis of silver nanoparticles was achieved by simple visible light irradiation using aloe barbadensis leaf extract as reducing agent. UV-Vis spectroscopic analysis was used for confirmation of the successful formation of nanoparticles. Investigated the effect of light irradiation time on the light absorption of the nanoparticles. It is observed that upto 25 minutes of light irradiation, the absorption is linearly increasing with time and after that it becomes saturated. Finally, theoretically fitted the time-absorption graph and modeled a relation between them with the help of simulation software

  15. Biochar application reduce ammonia volatilization in a soil-plant system: A closed chamber experiment

    Science.gov (United States)

    Mandal, Sanchita; Donner, Erica; Smith, Euan; Lombi, Enzo

    2017-04-01

    Ammonia (NH3) volatilization is considered as one of the major mechanisms responsible for the loss of nitrogen (N) from soil-plant systems worldwide. About 10-30% of N can be lost as NH3 volatilization, which constitutes a significant economic loss. In recent years carbon-based materials such as biochar have created a great research interest because of their ability to increase soil fertility by reducing nutrient loss and pollutants bioavailability in soil. Most of the studies so far have investigated how biochar addition can reduce NH3 volatilization from soils but less information is available for soil-plant systems. In this research, wheat plants (Triticum aestivum, variety: Calingiri) were grown in a calcareous soil (pH 8, calcarosol) inside a closed chamber system to assess both ammonia volatilization and plant N uptake. In this specialized glass chamber air was passed through an inlet where the flow rate was maintained using an air pump (3.5 L min-1). The air outlet was passed through a sulphuric acid trap which was used to capture the volatilized NH3 from the chamber. Plants were watered using the inlet to maintain 50% field capacity throughout the incubation. Two different biochar samples were used in this study: a poultry manure biochar (PM-BC) and a green waste compost biochar (GW-BC) produced at 250 ˚C. Five different application rates were tested (0, 0.5, 1, 1.5, and 2%). The soil was mixed with biochar samples, water, N, P, K, Ca, Mg, and S for one week before sowing. After one week of germination, plants were transferred to the chamber for further three weeks incubation for NH3 volatilization measurement. The study identified that biochar application reduced the NH3 volatilization and increase the plant biomass. Biochar application at 0.5 and 2% decreased the NH3 volatilization by 36 and 48% respectively. The N uptake of the plants also increased from 2.9 to 28% at 0.5 and 2% application rates respectively. The dry biomass of the plant also increased

  16. On the temporal variation of leaf magnetic parameters: seasonal accumulation of leaf-deposited and leaf-encapsulated particles of a roadside tree crown.

    Science.gov (United States)

    Hofman, Jelle; Wuyts, Karen; Van Wittenberghe, Shari; Samson, Roeland

    2014-09-15

    Understanding the accumulation behaviour of atmospheric particles inside tree leaves is of great importance for the interpretation of biomagnetic monitoring results. In this study, we evaluated the temporal variation of the saturation isothermal remanent magnetisation (SIRM) of leaves of a roadside urban Platanus × acerifolia Willd. tree in Antwerp, Belgium. We hereby examined the seasonal development of the total leaf SIRM signal as well as the leaf-encapsulated fraction of the deposited dust, by washing the leaves before biomagnetic analysis. On average 38% of the leaf SIRM signal was exhibited by the leaf-encapsulated particles. Significant correlations were found between the SIRM and the cumulative daily average atmospheric PM10 and PM2.5 measurements. Moreover, a steady increase of the SIRM throughout the in-leaf season was observed endorsing the applicability of biomagnetic monitoring as a proxy for the time-integrated PM exposure of urban tree leaves. Strongest correlations were obtained for the SIRM of the leaf-encapsulated particles which confirms the dynamic nature of the leaf surface-accumulated particles. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Volatility in Equilibrium

    DEFF Research Database (Denmark)

    Bollerslev, Tim; Sizova, Natalia; Tauchen, George

    Stock market volatility clusters in time, carries a risk premium, is fractionally inte- grated, and exhibits asymmetric leverage effects relative to returns. This paper develops a first internally consistent equilibrium based explanation for these longstanding empirical facts. The model is cast i......, and the dynamic cross-correlations of the volatility measures with the returns calculated from actual high-frequency intra-day data on the S&P 500 aggregate market and VIX volatility indexes....

  18. American options under stochastic volatility

    NARCIS (Netherlands)

    Chockalingam, A.; Muthuraman, K.

    2011-01-01

    The problem of pricing an American option written on an underlying asset with constant price volatility has been studied extensively in literature. Real-world data, however, demonstrate that volatility is not constant, and stochastic volatility models are used to account for dynamic volatility

  19. Effect of Wind on the Relation of Leaf N, P Stoichiometry with Leaf Morphology in Quercus Species

    Directory of Open Access Journals (Sweden)

    Peng Zhang

    2018-02-01

    Full Text Available Leaf nitrogen (N and phosphorus (P stoichiometry correlates closely to leaf morphology, which is strongly impacted by wind at multiple scales. However, it is not clear how leaf N, P stoichiometry and its relationship to leaf morphology changes with wind load. We determined the leaf N and P concentrations and leaf morphology—including specific leaf area (SLA and leaf dissection index (LDI—for eight Quercus species under a simulated wind load for seven months. Leaf N and P concentrations increased significantly under these conditions for Quercus acutissima, Quercus rubra, Quercus texana, and Quercus palustris—which have elliptic leaves—due to their higher N, P requirements and a resultant leaf biomass decrease, which is a tolerance strategy for Quercus species under a wind load. Leaf N:P was relatively stable under wind for all species, which supports stoichiometric homeostasis. Leaf N concentrations showed a positive correlation to SLA, leaf N and P concentrations showed positive correlations to LDI under each wind treatment, and the slope of correlations was not affected by wind, which indicates synchronous variations between leaf stoichiometry and leaf morphology under wind. However, the intercept of correlations was affected by wind, and leaf N and P use efficiency decreased under the wind load, which suggests that the Quercus species changes from “fast investment-return” in the control to “slow investment-return” under windy conditions. These results will be valuable to understanding functional strategies for plants under varying wind loads, especially synchronous variations in leaf traits along a wind gradient.

  20. Are leaf physiological traits related to leaf water isotopic enrichment in restinga woody species?

    Directory of Open Access Journals (Sweden)

    BRUNO H.P. ROSADO

    2013-09-01

    Full Text Available During plant-transpiration, water molecules having the lighter stable isotopes of oxygen and hydrogen evaporate and diffuse at a faster rate through the stomata than molecules having the heavier isotopes, which cause isotopic enrichment of leaf water. Although previous models have assumed that leaf water is well-mixed and isotopically uniform, non-uniform stomatal closure, promoting different enrichments between cells, and different pools of water within leaves, due to morpho-physiological traits, might lead to inaccuracies in isotopic models predicting leaf water enrichment. We evaluate the role of leaf morpho-physiological traits on leaf water isotopic enrichment in woody species occurring in a coastal vegetation of Brazil known as restinga. Hydrogen and oxygen stable isotope values of soil, plant stem and leaf water and leaf traits were measured in six species from restinga vegetation during a drought and a wet period. Leaf water isotopic enrichment relative to stem water was more homogeneous among species during the drought in contrast to the wet period suggesting convergent responses to deal to temporal heterogeneity in water availability. Average leaf water isotopic enrichment relative to stem water during the drought period was highly correlated with relative apoplastic water content. We discuss this observation in the context of current models of leaf water isotopic enrichment as a function of the Péclet effect. We suggest that future studies should include relative apoplastic water content in isotopic models.

  1. Are leaf physiological traits related to leaf water isotopic enrichment in restinga woody species?

    Science.gov (United States)

    Rosado, Bruno H P; De Mattos, Eduardo A; Sternberg, Leonel Da S L

    2013-09-01

    During plant-transpiration, water molecules having the lighter stable isotopes of oxygen and hydrogen evaporate and diffuse at a faster rate through the stomata than molecules having the heavier isotopes, which cause isotopic enrichment of leaf water. Although previous models have assumed that leaf water is well-mixed and isotopically uniform, non-uniform stomatal closure, promoting different enrichments between cells, and different pools of water within leaves, due to morpho-physiological traits, might lead to inaccuracies in isotopic models predicting leaf water enrichment. We evaluate the role of leaf morpho-physiological traits on leaf water isotopic enrichment in woody species occurring in a coastal vegetation of Brazil known as restinga. Hydrogen and oxygen stable isotope values of soil, plant stem and leaf water and leaf traits were measured in six species from restinga vegetation during a drought and a wet period. Leaf water isotopic enrichment relative to stem water was more homogeneous among species during the drought in contrast to the wet period suggesting convergent responses to deal to temporal heterogeneity in water availability. Average leaf water isotopic enrichment relative to stem water during the drought period was highly correlated with relative apoplastic water content. We discuss this observation in the context of current models of leaf water isotopic enrichment as a function of the Péclet effect. We suggest that future studies should include relative apoplastic water content in isotopic models.

  2. How do leaf veins influence the worldwide leaf economic spectrum? Review and synthesis.

    Science.gov (United States)

    Sack, Lawren; Scoffoni, Christine; John, Grace P; Poorter, Hendrik; Mason, Chase M; Mendez-Alonzo, Rodrigo; Donovan, Lisa A

    2013-10-01

    Leaf vein traits are implicated in the determination of gas exchange rates and plant performance. These traits are increasingly considered as causal factors affecting the 'leaf economic spectrum' (LES), which includes the light-saturated rate of photosynthesis, dark respiration, foliar nitrogen concentration, leaf dry mass per area (LMA) and leaf longevity. This article reviews the support for two contrasting hypotheses regarding a key vein trait, vein length per unit leaf area (VLA). Recently, Blonder et al. (2011, 2013) proposed that vein traits, including VLA, can be described as the 'origin' of the LES by structurally determining LMA and leaf thickness, and thereby vein traits would predict LES traits according to specific equations. Careful re-examination of leaf anatomy, published datasets, and a newly compiled global database for diverse species did not support the 'vein origin' hypothesis, and moreover showed that the apparent power of those equations to predict LES traits arose from circularity. This review provides a 'flux trait network' hypothesis for the effects of vein traits on the LES and on plant performance, based on a synthesis of the previous literature. According to this hypothesis, VLA, while virtually independent of LMA, strongly influences hydraulic conductance, and thus stomatal conductance and photosynthetic rate. We also review (i) the specific physiological roles of VLA; (ii) the role of leaf major veins in influencing LES traits; and (iii) the role of VLA in determining photosynthetic rate per leaf dry mass and plant relative growth rate. A clear understanding of leaf vein traits provides a new perspective on plant function independently of the LES and can enhance the ability to explain and predict whole plant performance under dynamic conditions, with applications towards breeding improved crop varieties.

  3. Proboscis extension reflex platform for volatiles and semi-volatiles detection

    Energy Technology Data Exchange (ETDEWEB)

    Wingo, Robert M. (Los Alamos, NM); McCabe, Kirsten J. (Los Alamos, NM); Haarmann, Timothy K. (Jemez Pueblo, NM)

    2010-11-30

    The present invention provides an apparatus for the detection of volatile and semi-volatile chemicals using the olfactory abilities of honey bees that are trained to respond to the presence of a specific chemical in a sample of gas with the proboscis extension reflex (PER). In particular, the geometry and arrangement of the parts of the apparatus are such that the amount of surface area in contact with the sample of gas prior to its introduction to the bees is minimized to improve the detection of particular volatile and semi-volatile that have a tendency to "stick" to contacting surfaces, especially certain chemicals associated with explosives and narcotics. According to another aspect of the present invention, a pre-concentrating means is incorporated with the device to effectively increase the concentration of "sticky" chemicals presented to the insects.

  4. Plant Extract Synthesized PLA Nanoparticles for Controlled and Sustained Release of Quercetin: A Green Approach

    Science.gov (United States)

    Yadav, Sudesh Kumar

    2012-01-01

    Background Green synthesis of metallic nanoparticles (NPs) has been extensively carried out by using plant extracts (PEs) which have property of stabilizers/ emulsifiers. To our knowledge, there is no comprehensive study on applying a green approach using PEs for fabrication of biodegradable PLA NPs. Conventional methods rely on molecules like polyvinyl alcohol, polyethylene glycol, D-alpha-tocopheryl poly(ethylene glycol 1000) succinate as stabilizers/emulsifiers for the synthesis of such biodegradable NPs which are known to be toxic. So, there is urgent need to look for stabilizers which are biogenic and non-toxic. The present study investigated use of PEs as stabilizers/emulsifiers for the fabrication of stable PLA NPs. Synthesized PLA NPs through this green process were explored for controlled release of the well known antioxidant molecule quercetin. Methodology/Principal Findings Stable PLA NPs were synthesized using leaf extracts of medicinally important plants like Syzygium cumini (1), Bauhinia variegata (2), Cedrus deodara (3), Lonicera japonica (4) and Eleaocarpus sphaericus (5). Small and uniformly distributed NPs in the size range 70±30 nm to 143±36 nm were formed with these PEs. To explore such NPs for drugs/ small molecules delivery, we have successfully encapsulated quercetin a lipophilic molecule on a most uniformly distributed PLA-4 NPs synthesized using Lonicera japonica leaf extract. Quercetin loaded PLA-4 NPs were observed for slow and sustained release of quercetin molecule. Conclusions This green approach based on PEs mediated synthesis of stable PLA NPs pave the way for encapsulating drug/small molecules, nutraceuticals and other bioactive ingredients for safer cellular uptake, biodistribution and targeted delivery. Hence, such PEs synthesized PLA NPs would be useful to enhance the therapeutic efficacy of encapsulated small molecules/drugs. Furthermore, different types of plants can be explored for the synthesis of PLA as well as other

  5. Sapwood area as an estimator of leaf area and foliar weight in cherrybark oak and green ash

    Science.gov (United States)

    James S. Meadows; John D. Hodges

    2002-01-01

    The relationships between foliar weight/leaf area and four stem dimensions (d.b.h., total stem cross-sectional area, total sapwood area, and current sapwood area at breast height) were investigated in two important bottomland tree species of the Southern United States, cherrybark oak (Quercus falcata var. pagodifolia ...

  6. GREEN PACKAGING, GREEN PRODUCT, GREEN ADVERTISING, PERSEPSI, DAN MINAT BELI KONSUMEN

    OpenAIRE

    Imam Santoso; Rengganis Fitriani

    2016-01-01

    Environmental problems become one of the strategic issues in achieving global competitiveness. One of the issues is products that are made from environmental friendly materials or known as green product. Furthermore, in green products marketing, the company also uses green packaging and green advertising concept. This study aimed to analyze the effect of green packaging, green products, and green advertising on consumer perception and purchasing intention. The study was conducted in Ketawangg...

  7. Influence of trap color and host volatiles on capture of the emerald ash borer (Coleoptera: Buprestidae).

    Science.gov (United States)

    Crook, Damon J; Khrimian, Ashot; Cossé, Allard; Fraser, Ivich; Mastro, Victor C

    2012-04-01

    Field trapping assays were conducted in 2009 and 2010 throughout western Michigan, to evaluate lures for adult emerald ash borer, A. planipennis Fairmaire (Coleoptera: Buprestidae). Several ash tree volatiles were tested on purple prism traps in 2009, and a dark green prism trap in 2010. In 2009, six bark oil distillate lure treatments were tested against manuka oil lures (used in 2008 by USDA APHIS PPQ emerald ash borer cooperative program). Purple traps baited with 80/20 (manuka/phoebe oil) significantly increased beetle catch compared with traps baited with manuka oil alone. In 2010 we monitored emerald ash borer attraction to dark green traps baited with six lure combinations of 80/20 (manuka/phoebe), manuka oil, and (3Z)-hexenol. Traps baited with manuka oil and (3Z)-hexenol caught significantly more male and total count insects than traps baited with manuka oil alone. Traps baited with manuka oil and (3Z)-hexenol did not catch more beetles when compared with traps baited with (3Z)-hexenol alone. When compared with unbaited green traps our results show that (3Z)-hexenol improved male catch significantly in only one of three field experiments using dark green traps. Dark green traps caught a high number of A. planipennis when unbaited while (3Z)-hexenol was seen to have a minimal (nonsignificant) trap catch effect at several different release rates. We hypothesize that the previously reported kairomonal attractancy of (3Z)-hexenol (for males) on light green traps is not as obvious here because of improved male attractancy to the darker green trap.

  8. An evolutionary perspective on leaf economics : Phylogenetics of leaf mass per area in vascular plants

    NARCIS (Netherlands)

    Flores, Olivier; Garnier, Eric; Wright, Ian J.; Reich, Peter B.; Pierce, Simon; Diaz, Sandra; Pakeman, Robin J.; Rusch, Graciela M.; Bernard-Verdier, Maud; Testi, Baptiste; Bakker, Jan P.; Bekker, Renee M.; Cerabolini, Bruno E. L.; Ceriani, Roberta M.; Cornu, Guillaume; Cruz, Pablo; Delcamp, Matthieu; Dolezal, Jiri; Eriksson, Ove; Fayolle, Adeline; Freitas, Helena; Golodets, Carly; Gourlet-Fleury, Sylvie; Hodgson, John G.; Brusa, Guido; Kleyer, Michael; Kunzmann, Dieter; Lavorel, Sandra; Papanastasis, Vasilios P.; Perez-Harguindeguy, Natalia; Vendramini, Fernanda; Weiher, Evan

    In plant leaves, resource use follows a trade-off between rapid resource capture and conservative storage. This "worldwide leaf economics spectrum" consists of a suite of intercorrelated leaf traits, among which leaf mass per area, LMA, is one of the most fundamental as it indicates the cost of leaf

  9. Diffusible and Volatile Antifungal Compounds Produced by an Antagonistic Bacillus velezensis G341 against Various Phytopathogenic Fungi

    Directory of Open Access Journals (Sweden)

    Seong Mi Lim

    2017-10-01

    Full Text Available The aim of this study was to identify volatile and agar-diffusible antifungal metabolites produced by Bacillus sp. G341 with strong antifungal activity against various phytopathogenic fungi. Strain G341 isolated from four-year-old roots of Korean ginseng with rot symptoms was identified as Bacillus velezensis based on 16S rDNA and gyrA sequences. Strain G341 inhibited mycelial growth of all phytopathogenic fungi tested. In vivo experiment results revealed that n-butanol extract of fermentation broth effectively controlled the development of rice sheath blight, tomato gray mold, tomato late blight, wheat leaf rust, barley powdery mildew, and red pepper anthracnose. Two antifungal compounds were isolated from strain G341 and identified as bacillomycin L and fengycin A by MS/MS analysis. Moreover, volatile compounds emitted from strain G341 were found to be able to inhibit mycelial growth of various phytopathogenic fungi. Based on volatile compound profiles of strain G341 obtained through headspace collection and analysis on GC-MS, dimethylsulfoxide, 1-butanol, and 3-hydroxy-2-butanone (acetoin were identified. Taken together, these results suggest that B. valezensis G341 can be used as a biocontrol agent for various plant diseases caused by phytopathogenic fungi.

  10. Diffusible and Volatile Antifungal Compounds Produced by an Antagonistic Bacillus velezensis G341 against Various Phytopathogenic Fungi.

    Science.gov (United States)

    Lim, Seong Mi; Yoon, Mi-Young; Choi, Gyung Ja; Choi, Yong Ho; Jang, Kyoung Soo; Shin, Teak Soo; Park, Hae Woong; Yu, Nan Hee; Kim, Young Ho; Kim, Jin-Cheol

    2017-10-01

    The aim of this study was to identify volatile and agar-diffusible antifungal metabolites produced by Bacillus sp. G341 with strong antifungal activity against various phytopathogenic fungi. Strain G341 isolated from four-year-old roots of Korean ginseng with rot symptoms was identified as Bacillus velezensis based on 16S rDNA and gyrA sequences. Strain G341 inhibited mycelial growth of all phytopathogenic fungi tested. In vivo experiment results revealed that n -butanol extract of fermentation broth effectively controlled the development of rice sheath blight, tomato gray mold, tomato late blight, wheat leaf rust, barley powdery mildew, and red pepper anthracnose. Two antifungal compounds were isolated from strain G341 and identified as bacillomycin L and fengycin A by MS/MS analysis. Moreover, volatile compounds emitted from strain G341 were found to be able to inhibit mycelial growth of various phytopathogenic fungi. Based on volatile compound profiles of strain G341 obtained through headspace collection and analysis on GC-MS, dimethylsulfoxide, 1-butanol, and 3-hydroxy-2-butanone (acetoin) were identified. Taken together, these results suggest that B. valezensis G341 can be used as a biocontrol agent for various plant diseases caused by phytopathogenic fungi.

  11. Leaf Morphological Characters Can Be a Factor for Intra-Varietal Preference of Whitefly Bemisia tabaci (Hemiptera: Aleyrodidae among Eggplant Varieties.

    Directory of Open Access Journals (Sweden)

    Abu Tayeb Mohammad Hasanuzzaman

    Full Text Available The sweetpotato whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae MEAM1, is considered a serious pest of horticultural and many other crops. While eggplant (Solanum melongena is one of the most favored host plants, the whiteflies exhibit preferences among different varieties. We hypothesized that certain morphological leaf characteristics of different varieties, like leaf trichome density, trichome length, leaf lamina thickness and leaf color, may affect whitefly landing, feeding and oviposition. In this study, we investigated the variation in leaf morphological characters among selected eggplant varieties and evaluated the effect of these leaf characteristics in rendering eggplant varieties either susceptible or resistant to B. tabaci. We evaluated eight eggplant varieties in choice feeding tests, and we found that the varieties JinSheng Zilongchangqie (JSZ and H149 were the highly preferred varieties with the highest numbers of whitefly adults and eggs. Significantly lower numbers of whitefly adult eggs were found on the resistant variety Tuo Lu Bamu (TLB. The varieties JinGuangbo Luqie (JGL, JinGuangbo Ziquanqie (JGZ, DaYang Ziguanqie (DYZ, QinXing Ziguanqie (QXZ, and QinXing Niuxinqie (QXN were moderately favored by B. tabaci. Leaf trichome density, trichome length and leaf lamina thickness were positively correlated with numbers of whitefly adults and eggs. B. tabaci was less attracted to the leaves that reflect long and middle wavelength light (higher R and G values than to the bright green leaves (medium G value, but the short wavelength light (higher B value had no significant effect on whitefly preference. The degree of hue had a positive effect, and saturation and brightness had a negative effect on whitefly attraction.

  12. Tracking senescence-induced patterns in leaf litter leachate using parallel factor analysis (PARAFAC) modeling and self-organizing maps

    Science.gov (United States)

    Wheeler, K. I.; Levia, D. F.; Hudson, J. E.

    2017-09-01

    In autumn, the dissolved organic matter (DOM) contribution of leaf litter leachate to streams in forested watersheds changes as trees undergo resorption, senescence, and leaf abscission. Despite its biogeochemical importance, little work has investigated how leaf litter leachate DOM changes throughout autumn and how any changes might differ interspecifically and intraspecifically. Since climate change is expected to cause vegetation migration, it is necessary to learn how changes in forest composition could affect DOM inputs via leaf litter leachate. We examined changes in leaf litter leachate fluorescent DOM (FDOM) from American beech (Fagus grandifolia Ehrh.) leaves in Maryland, Rhode Island, Vermont, and North Carolina and from yellow poplar (Liriodendron tulipifera L.) leaves from Maryland. FDOM in leachate samples was characterized by excitation-emission matrices (EEMs). A six-component parallel factor analysis (PARAFAC) model was created to identify components that accounted for the majority of the variation in the data set. Self-organizing maps (SOM) compared the PARAFAC component proportions of leachate samples. Phenophase and species exerted much stronger influence on the determination of a sample's SOM placement than geographic origin. As expected, FDOM from all trees transitioned from more protein-like components to more humic-like components with senescence. Percent greenness of sampled leaves and the proportion of tyrosine-like component 1 were found to be significantly different between the two genetic beech clusters, suggesting differences in photosynthesis and resorption. Our results highlight the need to account for interspecific and intraspecific variations in leaf litter leachate FDOM throughout autumn when examining the influence of allochthonous inputs to streams.

  13. Grapevine fatty acid hydroperoxide lyase generates actin-disrupting volatiles and promotes defence-related cell death

    Science.gov (United States)

    Wang, Hao; Claudel, Patricia; Riemann, Michael; Hause, Bettina; Hugueney, Philippe; Nick, Peter

    2018-01-01

    Abstract Fatty acid hydroperoxides can generate short-chained volatile aldehydes that may participate in plant defence. A grapevine hydroperoxide lyase (VvHPL1) clustering to the CYP74B class was functionally characterized with respect to a role in defence. In grapevine leaves, transcripts of this gene accumulated rapidly to high abundance in response to wounding. Cellular functions of VvHPL1 were investigated upon heterologous expression in tobacco BY-2 cells. A C-terminal green fluorescent protein (GFP) fusion of VvHPL1 was located in plastids. The overexpression lines were found to respond to salinity stress or the bacterial elicitor harpin by increasing cell death. This signal-dependent mortality response was mitigated either by addition of exogenous jasmonic acid or by treatment with diphenyleneiodonium (DPI), an inhibitor of NADPH oxidases. By feeding different substrates to recombinantly expressed enzyme, VvHPL1 could also be functionally classified as true 13-HPL. The cognate products generated by this 13-HPL were cis-3-hexenal and trans-2-hexenal. Using a GFP-tagged actin marker line, one of these isomeric products, cis-3-hexenal, was found specifically to elicit a rapid disintegration of actin filaments. This response was not only observed in the heterologous system (tobacco BY-2), but also in a grapevine cell strain expressing this marker, as well as in leaf discs from an actin marker grape used as a homologous system. These results are discussed in the context of a role for VvHPL1 in a lipoxygenase-dependent signalling pathway triggering cell death-related defence that bifurcates from jasmonate-dependent basal immunity. PMID:29659985

  14. Dicty_cDB: Contig-U06251-1 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available ary KHOS Bras... 44 6.6 1 ( EX125160 ) BR108990 mature green leaf cDNA library KHLM... Bras... 44 6.6 1 ( EX125065 ) BR108895 mature green leaf cDNA library KHLM Bras...... 44 6.6 1 ( EX124775 ) BR108605 mature green leaf cDNA library KHLM Bras... 44 6.6 1 ( EX124282 ) BR108112 mature gre...en leaf cDNA library KHLM Bras... 44 6.6 1 ( EX124178 ) BR108008 mature green leaf cDNA library K...HLM Bras... 44 6.6 1 ( EX124044 ) BR107874 mature green leaf cDNA library KHLM Br

  15. Off-Nadir Hyperspectral Sensing for Estimation of Vertical Profile of Leaf Chlorophyll Content within Wheat Canopies.

    Science.gov (United States)

    Kong, Weiping; Huang, Wenjiang; Casa, Raffaele; Zhou, Xianfeng; Ye, Huichun; Dong, Yingying

    2017-11-23

    Monitoring the vertical profile of leaf chlorophyll (Chl) content within winter wheat canopies is of significant importance for revealing the real nutritional status of the crop. Information on the vertical profile of Chl content is not accessible to nadir-viewing remote or proximal sensing. Off-nadir or multi-angle sensing would provide effective means to detect leaf Chl content in different vertical layers. However, adequate information on the selection of sensitive spectral bands and spectral index formulas for vertical leaf Chl content estimation is not yet available. In this study, all possible two-band and three-band combinations over spectral bands in normalized difference vegetation index (NDVI)-, simple ratio (SR)- and chlorophyll index (CI)-like types of indices at different viewing angles were calculated and assessed for their capability of estimating leaf Chl for three vertical layers of wheat canopies. The vertical profiles of Chl showed top-down declining trends and the patterns of band combinations sensitive to leaf Chl content varied among different vertical layers. Results indicated that the combinations of green band (520 nm) with NIR bands were efficient in estimating upper leaf Chl content, whereas the red edge (695 nm) paired with NIR bands were dominant in quantifying leaf Chl in the lower layers. Correlations between published spectral indices and all NDVI-, SR- and CI-like types of indices and vertical distribution of Chl content showed that reflectance measured from 50°, 30° and 20° backscattering viewing angles were the most promising to obtain information on leaf Chl in the upper-, middle-, and bottom-layer, respectively. Three types of optimized spectral indices improved the accuracy for vertical leaf Chl content estimation. The optimized three-band CI-like index performed the best in the estimation of vertical distribution of leaf Chl content, with R² of 0.84-0.69, and RMSE of 5.37-5.56 µg/cm² from the top to the bottom layers

  16. Tracing the link between plant volatile organic compound emissions and CO2 fluxes and by stable isotopes

    Science.gov (United States)

    Werner, Christiane; Wegener, Frederik; Jardine, Kolby

    2015-04-01

    The vegetation exerts a large influence on the atmosphere through the emission of volatile organic compounds (VOCs) and the emission and uptake of the greenhouse gas CO2. Despite the enormous importance, processes controlling plant carbon allocation into primary and secondary metabolism, such as photosynthetic carbon uptake, respiratory CO2 emission and VOC synthesis, remains unclear. Moreover, vegetation-atmosphere CO2 exchange is associated with a large isotopic imprint due to photosynthetic carbon isotope discrimination and 13C-fractionation during respiratory CO2 release1. The latter has been proposed to be related to carbon partitioning in the metabolic branching points of the respiratory pathways and secondary metabolism, which are linked via a number of interfaces including the central metabolite pyruvate. Notably, it is a known substrate in a large array of secondary pathways leading to the biosynthesis of many volatile organic compounds (VOCs), such as volatile isoprenoids, oxygenated VOCs, aromatics, fatty acid oxidation products, which can be emitted by plants. Here we investigate the linkage between VOC emissions, CO2 fluxes and associated isotope effects based on simultaneous real-time measurements of stable carbon isotope composition of branch respired CO2 (CRDS) and VOC fluxes (PTR-MS). We utilized positionally specific 13C-labeled pyruvate branch feeding experiments in the mediterranean shrub (Halimium halimifolium) to trace the partitioning of C1, C2, and C3 carbon atoms of pyruvate into VOCs versus CO2 emissions in the light and in the dark. In the light, we found high emission rates of a large array of VOC including volatile isoprenoids, oxygenated VOCs, green leaf volatiles, aromatics, sulfides, and nitrogen containing VOCs. These observations suggest that in the light, H. halimifolium dedicates a high carbon flux through secondary biosynthetic pathways including the pyruvate dehydrogenase bypass, mevalonic acid, MEP/DOXP, shikimic acid, and

  17. Agave Americana Leaf Fibers

    Directory of Open Access Journals (Sweden)

    Ashish Hulle

    2015-02-01

    Full Text Available The growing environmental problems, the problem of waste disposal and the depletion of non-renewable resources have stimulated the use of green materials compatible with the environment to reduce environmental impacts. Therefore, there is a need to design products by using natural resources. Natural fibers seem to be a good alternative since they are abundantly available and there are a number of possibilities to use all the components of a fiber-yielding crop; one such fiber-yielding plant is Agave Americana. The leaves of this plant yield fibers and all the parts of this plant can be utilized in many applications. The “zero-waste” utilization of the plant would enable its production and processing to be translated into a viable and sustainable industry. Agave Americana fibers are characterized by low density, high tenacity and high moisture absorbency in comparison with other leaf fibers. These fibers are long and biodegradable. Therefore, we can look this fiber as a sustainable resource for manufacturing and technical applications. Detailed discussion is carried out on extraction, characterization and applications of Agave Americana fiber in this paper.

  18. Effect of concentration of imperata cylindrica L leaf extraction synthesis process of gold nanoparticles

    International Nuclear Information System (INIS)

    Iwan Syahjoko Saputra; Yoki Yulizar; Sudirman

    2018-01-01

    Gold Nanoparticles (Gold NPs) successful was performed using HAuCl 4 precursor as Au 3+ ion source with 7 x 10 -4 M concentration. There search aims to knows effect of concentration variation of Imperata cylindrica L leaf extract on synthesis process of gold nanoparticles. There search used of green synthesis method. Colloid of nanoparticles which is formed in analyzed using UV - Vis Spectrophotometer, FT-IR Spectroscopy, PSA, PZC, XRD and TEM. The results of synthesis showed the best concentration of Imperata cilyndrica L leaf extract at 3.46 %, happen a shift of wave length at UV-Vis from 216 nm to 530 nm with 1.779 absorbance value. The PSA analysis showed a particle size of 51.87 nm and a PZC value of -19.2 mV. The result of FT - IR indicated a shift of wave number in the hydroxyl group from 3354 cm -1 to 3390 cm -1 and showed a interaction of hydroxyl group at imperata cylindrica L leaf extract with Au 3+ ion. TEM analysis shows the morphology of Gold NPs that spherical shape with a particle size of 20 nm. XRD calculation results show crystallite size of gold nano particles is 15.47 nm. (author)

  19. Easy Leaf Area: Automated digital image analysis for rapid and accurate measurement of leaf area.

    Science.gov (United States)

    Easlon, Hsien Ming; Bloom, Arnold J

    2014-07-01

    Measurement of leaf areas from digital photographs has traditionally required significant user input unless backgrounds are carefully masked. Easy Leaf Area was developed to batch process hundreds of Arabidopsis rosette images in minutes, removing background artifacts and saving results to a spreadsheet-ready CSV file. • Easy Leaf Area uses the color ratios of each pixel to distinguish leaves and calibration areas from their background and compares leaf pixel counts to a red calibration area to eliminate the need for camera distance calculations or manual ruler scale measurement that other software methods typically require. Leaf areas estimated by this software from images taken with a camera phone were more accurate than ImageJ estimates from flatbed scanner images. • Easy Leaf Area provides an easy-to-use method for rapid measurement of leaf area and nondestructive estimation of canopy area from digital images.

  20. High frequency organogenesis in hypocotyl, cotyledon, leaf and petiole explants of broccoli (Brassica oleracea L. var. italica), an important vegetable crop.

    Science.gov (United States)

    Kumar, Pankaj; Srivastava, D K

    2015-04-01

    Broccoli (Brassica oleracea L. var. italica) is an important, nutritionally rich vegetable crop, but severely affected by environmental stresses, pests and diseases which cause massive yield and quality losses. Genetic manipulation is becoming an important method for broccoli improvement. In the present study, a reproducible and highly efficient protocol for obtaining organogenesis from hypocotyl, cotyledon, leaf and petiole explants of broccoli (Brassica oleracea L. var. italica cv. Solan green head) has been developed. Hypocotyl and cotyledon explants were used from 10 to 12 days old aseptically grown seedlings whereas leaf and petiole explants were excised from 18 to 20 days old green house grown seedlings and surface sterilized. These explants were cultured on shoot induction medium containing different concentration and combination of BAP and NAA. High efficiency shoot regeneration has been achieved in hypocotyl (83.33 %), cotyledon (90.11 %), leaf (62.96 %) and petiole (91.10 %) explants on MS medium supplemented with 3.5 mg/l BAP + 0.019 mg/l NAA 2.5 mg/l BAP + 0.5 mg/l NAA, 4.0 mg/l BAP + 0.5 mg/l NAA and 4.5 mg/l BAP + 0.019 mg/l NAA respectively. Petiole explants showed maximum shoot regeneration response as compared to other explants. MS medium supplemented with 0.10 mg/l NAA was found best for root regeneration (100 %) from in vitro developed shoots. The regenerated complete plantlets were transferred to the pots containing cocopeat and successfully acclimatized. This optimized regeneration protocol can be efficiently used for genetic transformation in broccoli. This is the first comparative report on multiple shoot induction using four different types of explants viz. hypocotyl, cotyledon, leaf and petiole.

  1. Volatility and variance swaps : A comparison of quantitative models to calculate the fair volatility and variance strike

    OpenAIRE

    Röring, Johan

    2017-01-01

    Volatility is a common risk measure in the field of finance that describes the magnitude of an asset’s up and down movement. From only being a risk measure, volatility has become an asset class of its own and volatility derivatives enable traders to get an isolated exposure to an asset’s volatility. Two kinds of volatility derivatives are volatility swaps and variance swaps. The problem with volatility swaps and variance swaps is that they require estimations of the future variance and volati...

  2. Antimicrobial activities of tapioca starch/decolorized hsian-tsao leaf gum coatings containing green tea extracts in fruit-based salads, romaine hearts and pork slices.

    Science.gov (United States)

    Chiu, Po-En; Lai, Lih-Shiuh

    2010-04-30

    The antimicrobial activities of edible coatings based on a tapioca starch/decolorized hsian-tsao leaf gum (dHG) matrix with various green tea extracts (GTEs) were evaluated. Its effect on the shelf-life extension of fruit-based salads, romaine hearts, and pork slices were investigated as well. Three types of GTEs from hot water (80 degrees C) (W), 40% (E4) and 80% (E8) ethanol were prepared. It was found that all GTEs showed pronounced inhibition on Gram positive bacteria in agar media, including Staphylococcus aureus BCRC 10781, Bacillus cereus BCRC 11778 and Listeria monocytogenes BCRC 14848, but not on Gram negative bacteria, such as Escherichia coli DH10beta and Salmonella enteria BCRC 10747. The antimicrobial activities increased with increasing GTEs concentration (1, 2 and 5%), but did not differentiate significantly in terms of the effect of extraction solvents. When various GTEs (1%) were added to an edible coating formulation based on 1.35% tapioca starch +0.15% dHG +0.225% glycerol, pronounced antimicrobial activity on Gram positive bacteria was also observed as evaluated by using cylinder diffusion and antimicrobial migration tests. It was believed that the active compounds in green tea extracts could leave the coating matrix and migrate to increase the non-growth area. When being sprayed on various real food models, all tapioca starch/dHG coatings containing GTEs could successfully reduce the aerobic counting and growth of yeasts/molds by 1 to 2 log cycles in fruit-based salads, as compared to the control sample. Furthermore, during refrigerated storage of romaine hearts and pork slices for 48h, tapioca starch/dHG coatings with E4 extracts demonstrated pronounced antimicrobial activity against Gram positive bacteria (4-6 log cycles reduction), followed by W extracts and E8 extracts in a decreasing order. Such results implied the high efficacy of antimicrobial migration of tapioca starch/dHG coatings containing GTEs and their application potentials on

  3. Endogenous Lunar Volatiles

    Science.gov (United States)

    McCubbin, F. M.; Liu, Y.; Barnes, J. J.; Anand, M.; Boyce, J. W.; Burney, D.; Day, J. M. D.; Elardo, S. M.; Hui, H.; Klima, R. L.; Magna, T.; Ni, P.; Steenstra, E.; Tartèse, R.; Vander Kaaden, K. E.

    2018-04-01

    This abstract discusses numerous outstanding questions on the topic of endogenous lunar volatiles that will need to be addressed in the coming years. Although substantial insights into endogenous lunar volatiles have been gained, more work remains.

  4. Leaf anatomical traits determine the 18O enrichment of leaf water in coastal halophytes

    Science.gov (United States)

    Liang, J.; Lin, G., Sr.; Sternberg, L. O.

    2017-12-01

    Foliar anatomical adaptations to high-salinity environment in mangroves may be recorded by leaf water isotopes. Recent studies observed that a few mangrove species have lower 18O enrichment of leaf water (ΔL) relative to source water than the adjacent terrestrial trees, but what factors actually control this phenomenon is still disputable at present. To resolve this issue, we collected 15 species of true mangrove plants, 14 species of adjacent freshwater trees and 4 species of semi-mangrove plants at five study sites on the southeastern coast of China. Leaf stomatal density and pore size, water content, ΔL and other related leaf physiological traits were determined for the selected leaves of these plants. Our results confirmed that ΔL values of mangroves were generally 3 4 ‰ lower than those of the adjacent freshwater or semi-mangrove species. Higher leaf water per area (LWC) and lower leaf stomatal density (LS) of mangroves played co-dominant roles in lowering ΔL through elongating effective leaf mixing length by about 20%. The Péclet model incorporated by LWC and LS performed well in predicting ΔL. The demonstrated general law between leaf anatomy and ΔL in this paper based on a large pool of species bridges the gap between leaf functional traits and metabolic proxies derived ΔL, which will have considerable potential applications in vegetation succession and reconstruction of paleoclimate research.

  5. Population dynamics and damage caused by the leaf miner Liriomyza huidobrensis Blanchard (Diptera: Agromyzidae), on seven potato processing varieties grown in temperate environment

    International Nuclear Information System (INIS)

    Lopez, R.; Carmona, D.; Vincini, A.M.; Monterubbianesi, G.; Caldiz, D.

    2010-01-01

    The leafminer Liriomyza huidobrensis Blanchard is considered a key pest for potatoes in Argentina. Population dynamics and leaf damage caused by the leafminer on seven selected potato processing varieties were assessed at Balcarce during the 2002 and 2003 growing seasons. Adult population dynamic was monitored using yellow sticky traps, while leaf damage (punctures and mines) was assessed using a damage index scale from low to severe. Liriomyza huidobrensis adults were present throughout the growing season and the population increased along crop development. The same was true for all varieties regarding larval damage, being low on early crop stages and severe late in the season. Varieties were grouped in two different categories according to damage scale index. Shepody, Kennebec, Frital and Innovator showed a higher damage index when compared with Santana, Ranger Russet and Russet Burbank, which exhibited a lower damage. Moreover, it could be assumed that damage was related to the foliage greenness, with light green colored varieties (Shepody, Kennebec, Frital and Innovator) being more attractive and affected by L. huidobrensis. (author)

  6. Physiological and metabolomic analysis of Punica granatum (L.) under drought stress.

    Science.gov (United States)

    Catola, Stefano; Marino, Giovanni; Emiliani, Giovanni; Huseynova, Taravat; Musayev, Mirza; Akparov, Zeynal; Maserti, Bianca Elena

    2016-02-01

    Punica granatum has a noticeable adaptation to drought stress. The levels of the green leaf volatile trans-2-hexenal increased in response to drought stress suggesting a possible role of this compound in drought stress response in pomegranate. Punica granatum (L.) is a highly valued fruit crop for its health-promoting effects and it is mainly cultivated in semi-arid areas. Thus, understanding the response mechanisms to drought stress is of great importance. In the present research, a metabolomics analysis was performed to evaluate the effects of drought stress on volatile organic compounds extracted from the leaves of pomegranate plants grown under water shortage conditions. The time course experiment (7 days of water deprivation and 24-h recovery) consisted of three treatments (control, drought stress, and rehydration of drought-stressed plants). Plant weights were recorded and control plants were irrigated daily at pot capacity to provide the lost water. Fraction of transpirable soil water has been evaluated as indicator of soil water availability in stressed plants. The levels of proline, hydrogen peroxide and lipid peroxidation as well as of the photosynthetic parameters such as photosynthesis rate (A), stomatal conductance (g s), photosynthetic efficiency of photosystem II, and photochemical quenching were monitored after the imposition of drought stress and recovery as markers of plant stress. Constitutive carbon volatile components were analyzed in the leaf of control and drought-stressed leaves using Head Space Solid Phase Micro Extraction sampling coupled with Gas Chromatography Mass Spectrometry. A total of 12 volatile compounds were found in pomegranate leaf profiles, mainly aldehydes, alcohols, and organic acids. Among them, the trans-2-hexenal showed a significant increase in water-stressed and recovered leaves respect to the well-watered ones. These data evidence a possible role of the oxylipin pathway in the response to water stress in pomegranate

  7. Greens of the European Green Capitals

    Science.gov (United States)

    Cömertler, Seval

    2017-10-01

    Well established and maintained green areas have a key role on reaching the high quality of life and sustainability in urban environments. Therefore, green areas must be carefully accounted and evaluated in the urban planning affairs. In this context, the European Green Capitals, which attach a great importance to the green areas, have a great potential to act as a role model for both small and big cities in all around the world. These leading cities (chronologically, Stockholm, Hamburg, Vitoria-Gasteiz, Nantes, Copenhagen, Bristol, Ljubljana, Essen and Nijmegen) are inspiring for the other cities which seek to achieve more sustainable and environmentally friendly places through green areas. From this point of view, the aim of this paper was to investigate the green areas of the European Green Capitals. The paper covered whole European Green Capitals, and the application form of each Green Capital was used as a primary data source. Consequently, the paper put forwarded that the European Green Capitals have considerably large amount and high proportion of green areas. Further, these cities provide an excellent access to the public green areas. As a result of abundant provision and proper distribution, the almost all citizens in most of the Green Capitals live within a distance of 300 meters to a green area. For further researches, the paper suggested that these green capitals should be investigated in terms of their efforts, measures, goals and plans, policies and implications to administer, to protect, to enhance and to expand the green areas.

  8. Emerging non-volatile memories

    CERN Document Server

    Hong, Seungbum; Wouters, Dirk

    2014-01-01

    This book is an introduction to the fundamentals of emerging non-volatile memories and provides an overview of future trends in the field. Readers will find coverage of seven important memory technologies, including Ferroelectric Random Access Memory (FeRAM), Ferromagnetic RAM (FMRAM), Multiferroic RAM (MFRAM), Phase-Change Memories (PCM), Oxide-based Resistive RAM (RRAM), Probe Storage, and Polymer Memories. Chapters are structured to reflect diffusions and clashes between different topics. Emerging Non-Volatile Memories is an ideal book for graduate students, faculty, and professionals working in the area of non-volatile memory. This book also: Covers key memory technologies, including Ferroelectric Random Access Memory (FeRAM), Ferromagnetic RAM (FMRAM), and Multiferroic RAM (MFRAM), among others. Provides an overview of non-volatile memory fundamentals. Broadens readers' understanding of future trends in non-volatile memories.

  9. Volatility Exposure for Strategic Asset Allocation

    OpenAIRE

    Briere, Marie; Burgues, Alexandre; Signori, Ombretta

    2008-01-01

    This paper examines the advantages of incorporating strategic exposure to equity volatility into the investment-opportunity set of a long-term equity investor. We consider two standard volatility investments: implied volatility and volatility risk premium strategies. To calibrate and assess the risk/return profile of the portfolio, we present an analytical framework offering pragmatic solutions for long-term investors seeking exposure to volatility. The benefit of volatility exposure for a co...

  10. Effects of leaf movement on leaf temperature, transpiration and radiation interception in soybean under water stress conditions

    International Nuclear Information System (INIS)

    Isoda, A.; Wang, P.

    2001-01-01

    Varietal differences in leaf movement were examined in terms of radiation interception, leaf temperature and transpiration under water stressed conditions. Five cultivars (Qindou 7232, Gaofei 16, Dongnong 87 - 138, 8285 - 8 and 8874) were grown in a concrete frame field in Xinjiang, China. Irrigation treatments (irrigation and no irrigation) were made from the flowering to the pod filling stage. A leaflet in the uppermost layer of the canopy was restrained horizontally. Leaf temperatures, transpiration rate (stem sap flow rate of the main stem per unit leaf area) and intercepted radiation of each leaflet were measured. There were greater varietal differences in leaf movement, leaf temperature and transpiration rate. Leaf temperature seemed to be adjusted by leaf movement and transpiration. The extent to which is adjusted by leaf movement and transpiration differed among the cultivars; leaf temperature was influenced mainly by leaf movement for Gaofei 16 and Dongnong 87 - 138, mainly by transpiration for Qindou 7232 and 8874, and by both for 8285 - 8. Intercepted radiation in the upper two layers of the canopy (20 cm from the uppermost) was greater in the irrigated plot, although the mean values of total leaflets of the irrigated plot were not different as compared to the non-irrigated plot. Although paraheliotropic leaf movement decreased radiation interception, it offers some possibilities for the improvement in radiation penetration within a dense canopy. Cumulated amount of transpiration during a day was compared between the restrained-leaf and the non-leaf-restrained plants in 8874. Paraheliotropic leaf movement reduced water loss by 23% in the irrigated and 71% in the non-irrigated plots

  11. Origin of Volatiles in Earth: Indigenous Versus Exogenous Sources Based on Highly Siderophile, Volatile Siderophile, and Light Volatile Elements

    Science.gov (United States)

    Righter, K.; Danielson, L.; Pando, K. M.; Marin, N.; Nickodem, K.

    2015-01-01

    Origin of Earth's volatiles has traditionally been ascribed to late accretion of material after major differentiation events - chondrites, comets, ice or other exogenous sources. A competing theory is that the Earth accreted its volatiles as it was built, thus water and other building blocks were present early and during differentiation and core formation (indigenous). Here we discuss geochemical evidence from three groups of elements that suggests Earth's volatiles were acquired during accretion and did not require additional sources after differentiation.

  12. Free and glycosidically bound volatile compounds in sun-dried raisins made from different fragrance intensities grape varieties using a validated HS-SPME with GC-MS method.

    Science.gov (United States)

    Wang, Dong; Duan, Chang-Qing; Shi, Ying; Zhu, Bao-Qing; Javed, Hafiz Umer; Wang, Jun

    2017-08-01

    The conditions of sample pretreatments and HS-SPME for extracting volatile compounds from raisins were optimized, and the method was validated in the study. Free and glycosidically bound volatile compounds in three different fragrance intensities raisins were analysed using this method. There were 91 compounds identified, and 72, 26 and 8 of these compounds came from fresh grapes, the auto-oxidation of unsaturated fatty acids (UFAO) and the Maillard reaction, respectively. The aroma profiles of Thompson Seedless raisins (TSRs) and Centennial Seedless raisins (CSRs) were similar, while the floral, fruity, green and roasted aromas of CSRs were higher than those of TSRs due to the contributions of benzeneacetaldehyde, 2-pentylfuran, (E)-2-nonenal and 3-ethyl-2,5-dimethyl pyrazine. Decanal, rose oxide, geraniol, linalool and β-damascenone made the floral and fruity aromas of Zixiang Seedless raisins (ZSRs) greater than those in TSRs and CSRs, but the green and roasted aroma intensities of ZSRs were lower. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. High Accumulation and Subcellular Distribution of Thallium in Green Cabbage (Brassica Oleracea L. Var. Capitata L.).

    Science.gov (United States)

    Ning, Zengping; He, Libin; Xiao, Tangfu; Márton, László

    2015-01-01

    The accumulation of thallium (Tl) in brassicaceous crops is widely known, but both the uptake extents of Tl by the individual cultivars of green cabbage and the distribution of Tl in the tissues of green cabbage are not well understood. Five commonly available cultivars of green cabbage grown in the Tl-spiked pot-culture trials were studied for the uptake extent and subcellular distribution of Tl. The results showed that all the trial cultivars mainly concentrated Tl in the leaves (101∼192 mg/kg, DW) rather than in the roots or stems, with no significant differences among cultivars (p = 0.455). Tl accumulation in the leaves revealed obvious subcellular fractionation: cell cytosol and vacuole > cell wall > cell organelles. The majority (∼ 88%) of leaf-Tl was found to be in the fraction of cytosol and vacuole, which also served as the major storage site for other major elements such as Ca and Mg. This specific subcellular fractionation of Tl appeared to enable green cabbage to avoid Tl damage to its vital organelles and to help green cabbage tolerate and detoxify Tl. This study demonstrated that all the five green cabbage cultivars show a good application potential in the phytoremediation of Tl-contaminated soils.

  14. Doing more with less. green paper on energy efficiency

    International Nuclear Information System (INIS)

    2005-01-01

    Even without high and volatile oil prices, which have led to a downgrading of the prospects of economic growth in Europe, there would be very good reasons for the European Union to make a strong push towards a re-invigorated programme promoting energy efficiency at all levels of European society. This green paper seeks to act as a catalyst, leading to a renewed energy efficiency initiative at all levels of European society - EU, national, regional and local. Furthermore, this Green Paper seeks to make a significant contribution, by way of example and leadership, to kick-start an international effort to contribute to addressing climatic change through energy efficiency. China presently uses more than five times as much energy as the EU to produce one unit of GDP, USA uses approximately 50% more than EU. With exploding energy demand, in particular in China and India, energy efficiency must be one of the key policies to try to reconcile, on the one hand, the increased energy needs of the developing world to power growth and improve living conditions and, on the other hand, combat global warming. This Green Paper, and the momentum created in following it up, should put the EU at the forefront of efforts to make energy efficiency a global priority. (BA)

  15. Volatility transmission and volatility impulse response functions in European electricity forward markets

    International Nuclear Information System (INIS)

    Le Pen, Yannick; Sevi, Benoit

    2008-01-01

    Using daily data from March 2001 to June 2005, we estimate a VAR-BEKK model and find evidence of return and volatility spillovers between the German, the Dutch and the British forward electricity markets. We apply Hafner and Herwartz [2006, Journal of International Money and Finance 25, 719-740] Volatility Impulse Response Function(VIRF) to quantify the impact of shock on expected conditional volatility. We observe that a shock has a high positive impact only if its size is large compared to the current level of volatility. The impact of shocks are usually not persistent, which may be an indication of market efficiency. Finally, we estimate the density of the VIRF at different forecast horizon. These fitted distributions are asymmetric and show that extreme events are possible even if their probability is low. These results have interesting implications for market participants whose risk management policy is based on option prices which themselves depend on the volatility level. (authors)

  16. The volatility of HOL

    International Nuclear Information System (INIS)

    Wren, D.J.; Sanipelli, G.

    1985-01-01

    The volatility of HOI has been measured using a mass spectrometer to analyze the gas phase above an aqueous solution. The HOI in solution was generated continuously in a flow reactor that combined I/sup -/ and OCl/sup -/ solutions. The analysis has resulted in a lower limit of 6X10/sup 3/ mol . dm/sup -3/ . atm/sup -1/ for the equilibrium constant for the reaction HOI(g)/equilibrium/HOI(aq). This value is a factor 30 greater than the best previous estimate. This new limit for HOI volatility results in higher total iodine partition coefficients, particularly for solutions with pH>8. The upper limit for the equilibrium constant is consistent with essentially zero volatility for HOI. The effect of HOI volatility on total iodine volatility is briefly discussed as a function of solution chemistry and kinetics

  17. Rapid, high-resolution measurement of leaf area and leaf orientation using terrestrial LiDAR scanning data

    International Nuclear Information System (INIS)

    Bailey, Brian N; Mahaffee, Walter F

    2017-01-01

    The rapid evolution of high performance computing technology has allowed for the development of extremely detailed models of the urban and natural environment. Although models can now represent sub-meter-scale variability in environmental geometry, model users are often unable to specify the geometry of real domains at this scale given available measurements. An emerging technology in this field has been the use of terrestrial LiDAR scanning data to rapidly measure the three-dimensional geometry of trees, such as the distribution of leaf area. However, current LiDAR methods suffer from the limitation that they require detailed knowledge of leaf orientation in order to translate projected leaf area into actual leaf area. Common methods for measuring leaf orientation are often tedious or inaccurate, which places constraints on the LiDAR measurement technique. This work presents a new method to simultaneously measure leaf orientation and leaf area within an arbitrarily defined volume using terrestrial LiDAR data. The novelty of the method lies in the direct measurement of the fraction of projected leaf area G from the LiDAR data which is required to relate projected leaf area to total leaf area, and in the new way in which radiation transfer theory is used to calculate leaf area from the LiDAR data. The method was validated by comparing LiDAR-measured leaf area to (1) ‘synthetic’ or computer-generated LiDAR data where the exact area was known, and (2) direct measurements of leaf area in the field using destructive sampling. Overall, agreement between the LiDAR and reference measurements was very good, showing a normalized root-mean-squared-error of about 15% for the synthetic tests, and 13% in the field. (paper)

  18. Characterization of bimetallic Fe/Pd nanoparticles by grape leaf aqueous extract and identification of active biomolecules involved in the synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Fang; Yang, Die; Chen, Zuliang, E-mail: Zuliang.chen@newcastle.edu.au; Megharaj, Mallavarapu; Naidu, Ravi

    2016-08-15

    This paper reports the detailed composition and morphology of one-step green synthesized bimetallic Fe/Pd nanoparticles (NPs) using grape leaf aqueous extract and identification of active biomolecules involved in the synthesis employing various techniques. Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM) revealed that Fe/Pd NPs were polydispersed and quasi-spherical with a diameter ranging from 2 to 20 nm. X-ray Photoelectron Spectroscopy (XPS) and Energy Dispersive X-ray Spectroscopy (EDS) provided evidence for the composition of Fe and Pd and for their species existing on the surface of Fe/Pd NPs. In addition, biomolecules in the grape leaf aqueous extract were identified but their functions are still unclear. Biomolecules in the aqueous extract such as methoxy-phenyl-oxime, N-benzoyl-2-cyano-histamine, 2-ethyl-phenol, 1,2-benzenediol, β-hydroxyquebracamine, hydroquinone, 2-methoxy-4-vinylphenol, 5-methyl-2-furancarboxaldehyde, 4-(3-hydroxybutyl)-3,5,5-trimethyl-2-cyclohexen and some polyphenolic compounds were identified as reducing and capping agents, which were studied by Chromatography-Mass Spectroscopy (GC–MS), XPS and Fourier Transform Infrared Spectroscopy (FTIR). Our finding suggests a new insight into cost-effective, simple, and environmentally benign production of bimetallic Fe/Pd NPs. - Graphical abstract: TEM image for the Fe/Pd NPs synthesized by grape leaf aqueous extract. - Highlights: • The one-step green synthesis of Fe/Pd nanoparticles has been systematically characterized. • TEM showed that the Fe/Pd NPs were polydispersed with a diameter ranging from 2 to 20 nm. • Active biomolecules in the grape extract were identified.

  19. Characterization of bimetallic Fe/Pd nanoparticles by grape leaf aqueous extract and identification of active biomolecules involved in the synthesis

    International Nuclear Information System (INIS)

    Luo, Fang; Yang, Die; Chen, Zuliang; Megharaj, Mallavarapu; Naidu, Ravi

    2016-01-01

    This paper reports the detailed composition and morphology of one-step green synthesized bimetallic Fe/Pd nanoparticles (NPs) using grape leaf aqueous extract and identification of active biomolecules involved in the synthesis employing various techniques. Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM) revealed that Fe/Pd NPs were polydispersed and quasi-spherical with a diameter ranging from 2 to 20 nm. X-ray Photoelectron Spectroscopy (XPS) and Energy Dispersive X-ray Spectroscopy (EDS) provided evidence for the composition of Fe and Pd and for their species existing on the surface of Fe/Pd NPs. In addition, biomolecules in the grape leaf aqueous extract were identified but their functions are still unclear. Biomolecules in the aqueous extract such as methoxy-phenyl-oxime, N-benzoyl-2-cyano-histamine, 2-ethyl-phenol, 1,2-benzenediol, β-hydroxyquebracamine, hydroquinone, 2-methoxy-4-vinylphenol, 5-methyl-2-furancarboxaldehyde, 4-(3-hydroxybutyl)-3,5,5-trimethyl-2-cyclohexen and some polyphenolic compounds were identified as reducing and capping agents, which were studied by Chromatography-Mass Spectroscopy (GC–MS), XPS and Fourier Transform Infrared Spectroscopy (FTIR). Our finding suggests a new insight into cost-effective, simple, and environmentally benign production of bimetallic Fe/Pd NPs. - Graphical abstract: TEM image for the Fe/Pd NPs synthesized by grape leaf aqueous extract. - Highlights: • The one-step green synthesis of Fe/Pd nanoparticles has been systematically characterized. • TEM showed that the Fe/Pd NPs were polydispersed with a diameter ranging from 2 to 20 nm. • Active biomolecules in the grape extract were identified.

  20. From green architecture to architectural green

    DEFF Research Database (Denmark)

    Earon, Ofri

    2011-01-01

    that describes the architectural exclusivity of this particular architecture genre. The adjective green expresses architectural qualities differentiating green architecture from none-green architecture. Currently, adding trees and vegetation to the building’s facade is the main architectural characteristics...... they have overshadowed the architectural potential of green architecture. The paper questions how a green space should perform, look like and function. Two examples are chosen to demonstrate thorough integrations between green and space. The examples are public buildings categorized as pavilions. One......The paper investigates the topic of green architecture from an architectural point of view and not an energy point of view. The purpose of the paper is to establish a debate about the architectural language and spatial characteristics of green architecture. In this light, green becomes an adjective...

  1. Leaf endophyte load influences fungal garden development in leaf-cutting ants

    Directory of Open Access Journals (Sweden)

    Van Bael Sunshine A

    2012-11-01

    Full Text Available Abstract Background Previous work has shown that leaf-cutting ants prefer to cut leaf material with relatively low fungal endophyte content. This preference suggests that fungal endophytes exact a cost on the ants or on the development of their colonies. We hypothesized that endophytes may play a role in their host plants’ defense against leaf-cutting ants. To measure the long-term cost to the ant colony of fungal endophytes in their forage material, we conducted a 20-week laboratory experiment to measure fungal garden development for colonies that foraged on leaves with low or high endophyte content. Results Colony mass and the fungal garden dry mass did not differ significantly between the low and high endophyte feeding treatments. There was, however, a marginally significant trend toward greater mass of fungal garden per ant worker in the low relative to the high endophyte treatment. This trend was driven by differences in the fungal garden mass per worker from the earliest samples, when leaf-cutting ants had been foraging on low or high endophyte leaf material for only 2 weeks. At two weeks of foraging, the mean fungal garden mass per worker was 77% greater for colonies foraging on leaves with low relative to high endophyte loads. Conclusions Our data suggest that the cost of endophyte presence in ant forage material may be greatest to fungal colony development in its earliest stages, when there are few workers available to forage and to clean leaf material. This coincides with a period of high mortality for incipient colonies in the field. We discuss how the endophyte-leaf-cutter ant interaction may parallel constitutive defenses in plants, whereby endophytes reduce the rate of colony development when its risk of mortality is greatest.

  2. Easy Leaf Area: Automated Digital Image Analysis for Rapid and Accurate Measurement of Leaf Area

    Directory of Open Access Journals (Sweden)

    Hsien Ming Easlon

    2014-07-01

    Full Text Available Premise of the study: Measurement of leaf areas from digital photographs has traditionally required significant user input unless backgrounds are carefully masked. Easy Leaf Area was developed to batch process hundreds of Arabidopsis rosette images in minutes, removing background artifacts and saving results to a spreadsheet-ready CSV file. Methods and Results: Easy Leaf Area uses the color ratios of each pixel to distinguish leaves and calibration areas from their background and compares leaf pixel counts to a red calibration area to eliminate the need for camera distance calculations or manual ruler scale measurement that other software methods typically require. Leaf areas estimated by this software from images taken with a camera phone were more accurate than ImageJ estimates from flatbed scanner images. Conclusions: Easy Leaf Area provides an easy-to-use method for rapid measurement of leaf area and nondestructive estimation of canopy area from digital images.

  3. Function of defensive volatiles in pedunculate oak (Quercus robur) is tricked by the moth Tortrix viridana.

    Science.gov (United States)

    Ghirardo, Andrea; Heller, Werner; Fladung, Matthias; Schnitzler, Jörg-Peter; Schroeder, Hilke

    2012-12-01

    The indirect defences of plants are comprised of herbivore-induced plant volatiles (HIPVs) that among other things attract the natural enemies of insects. However, the actual extent of the benefits of HIPV emissions in complex co-evolved plant-herbivore systems is only poorly understood. The observation that a few Quercus robur L. trees constantly tolerated (T-oaks) infestation by a major pest of oaks (Tortrix viridana L.), compared with heavily defoliated trees (susceptible: S-oaks), lead us to a combined biochemical and behavioural study. We used these evidently different phenotypes to analyse whether the resistance of T-oaks to the herbivore was dependent on the amount and scent of HIPVs and/or differences in non-volatile polyphenolic leaf constituents (as quercetin-, kaempferol- and flavonol glycosides). In addition to non-volatile metabolic differences, typically defensive HIPV emissions differed between S-oaks and T-oaks. Female moths were attracted by the blend of HIPVs from S-oaks, showing significantly higher amounts of (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT) and (E)-β-ocimene and avoid T-oaks with relative high fraction of the sesquiterpenes α-farnesene and germacrene D. Hence, the strategy of T-oaks exhibiting directly herbivore-repellent HIPV emissions instead of high emissions of predator-attracting HIPVs of the S-oaks appears to be the better mechanism for avoiding defoliation. © 2012 Blackwell Publishing Ltd.

  4. Volatility Mean Reversion and the Market Price of Volatility Risk

    NARCIS (Netherlands)

    Boswijk, H.P.

    2001-01-01

    This paper analyzes sources of derivative pricing errors in a stochastic volatility model estimated on stock return data. It is shown that such pricing errors may reflect the existence of a market price of volatility risk, but also may be caused by estimation errors due to a slow mean reversion in

  5. Cost Linkages Transmit Volatility Across Markets

    DEFF Research Database (Denmark)

    Nguyen, Daniel Xuyen; Schaur, Georg

    We present and test a model relating a firm's idiosyncratic cost, its exporting status, and the volatilities of its domestic and export sales. In prior models of trade, supply costs for domestic and exports were linear and thus additively separable. We introduce a nonlinear cost function in order...... to link the domestic and export supply costs. This theoretical contribution has two new implications for the exporting firm. First, the demand volatility in the foreign market now directly affects the firm's domestic sales volatility. Second, firms hedge domestic demand volatility with exports. The model...... has several testable predictions. First, larger firms have lower total and domestic sales volatilities. Second, foreign market volatility increases domestic sales volatilities for exporters. Third, exporters allocate output across both markets in order to reduce total sales volatility. We find...

  6. Time-Varying Periodicity in Intraday Volatility

    DEFF Research Database (Denmark)

    Andersen, Torben Gustav; Thyrsgaard, Martin; Todorov, Viktor

    We develop a nonparametric test for deciding whether return volatility exhibits time-varying intraday periodicity using a long time-series of high-frequency data. Our null hypothesis, commonly adopted in work on volatility modeling, is that volatility follows a stationary process combined...... with a constant time-of-day periodic component. We first construct time-of-day volatility estimates and studentize the high-frequency returns with these periodic components. If the intraday volatility periodicity is invariant over time, then the distribution of the studentized returns should be identical across...... with estimating volatility moments through their sample counterparts. Critical values are computed via easy-to-implement simulation. In an empirical application to S&P 500 index returns, we find strong evidence for variation in the intraday volatility pattern driven in part by the current level of volatility...

  7. The Influence of Proactive Green Innovation and Reactive Green Innovation on Green Product Development Performance: The Mediation Role of Green Creativity

    Directory of Open Access Journals (Sweden)

    Yu-Shan Chen

    2016-09-01

    Full Text Available This study fills the research gap in the exploration of the relationships between both proactive and reactive green innovations and green product development performance, and examines the mediating effect of green creativity. Structural equation modeling (SEM is utilized to test the hypotheses. From the sample of 146 valid respondents, the results show that proactive green innovation positively affects green creativity and green product development performance, and green creativity positively affects green product development performance. In addition, our findings also indicate that the relationship between proactive green innovation and green product development performance is partially mediated by green creativity. Accordingly, green creativity plays a critical role for companies to achieve a great green product development performance. However, reactive green innovation does not significantly influence green creativity and green product development performance. Companies should develop proactive green innovation rather than reactive green innovation in order to enhance their green creativity and increase their product development performance.

  8. Automated Leaf Tracking using Multi-view Image Sequences of Maize Plants for Leaf-growth Monitoring

    Science.gov (United States)

    Das Choudhury, S.; Awada, T.; Samal, A.; Stoerger, V.; Bashyam, S.

    2017-12-01

    Extraction of phenotypes with botanical importance by analyzing plant image sequences has the desirable advantages of non-destructive temporal phenotypic measurements of a large number of plants with little or no manual intervention in a relatively short period of time. The health of a plant is best interpreted by the emergence timing and temporal growth of individual leaves. For automated leaf growth monitoring, it is essential to track each leaf throughout the life cycle of the plant. Plants are constantly changing organisms with increasing complexity in architecture due to variations in self-occlusions and phyllotaxy, i.e., arrangements of leaves around the stem. The leaf cross-overs pose challenges to accurately track each leaf using single view image sequence. Thus, we introduce a novel automated leaf tracking algorithm using a graph theoretic approach by multi-view image sequence analysis based on the determination of leaf-tips and leaf-junctions in the 3D space. The basis of the leaf tracking algorithm is: the leaves emerge using bottom-up approach in the case of a maize plant, and the direction of leaf emergence strictly alternates in terms of direction. The algorithm involves labeling of the individual parts of a plant, i.e., leaves and stem, following graphical representation of the plant skeleton, i.e., one-pixel wide connected line obtained from the binary image. The length of the leaf is measured by the number of pixels in the leaf skeleton. To evaluate the performance of the algorithm, a benchmark dataset is indispensable. Thus, we publicly release University of Nebraska-Lincoln Component Plant Phenotyping dataset-2 (UNL-CPPD-2) consisting of images of the 20 maize plants captured by visible light camera of the Lemnatec Scanalyzer 3D high throughout plant phenotyping facility once daily for 60 days from 10 different views. The dataset is aimed to facilitate the development and evaluation of leaf tracking algorithms and their uniform comparisons.

  9. Pengaruh Green Marketing Hotel Terhadap Green Consumer Behavior

    OpenAIRE

    Yo Fernandez, Eunike Christe; Tjoanda, Evelyn

    2017-01-01

    Penelitian ini dilakukan untuk mengetahui pengaruh dari green marketing hotel terhadap green consumer behavior. Green marketing memiliki 3 dimensi, yaitu green product, green price, dan green promotion. Penelitian ini melibatkan 272 responden masyarakat Surabaya dan menggunakan metode regresi linear berganda. Hasil penelitian menunjukkan bahwa green product dan green price berpengaruh secara positif dan signifikan sedangkan green promotion berpengaruh namun tidak signifikan terhadap green con...

  10. Bias correction in the realized stochastic volatility model for daily volatility on the Tokyo Stock Exchange

    Science.gov (United States)

    Takaishi, Tetsuya

    2018-06-01

    The realized stochastic volatility model has been introduced to estimate more accurate volatility by using both daily returns and realized volatility. The main advantage of the model is that no special bias-correction factor for the realized volatility is required a priori. Instead, the model introduces a bias-correction parameter responsible for the bias hidden in realized volatility. We empirically investigate the bias-correction parameter for realized volatilities calculated at various sampling frequencies for six stocks on the Tokyo Stock Exchange, and then show that the dynamic behavior of the bias-correction parameter as a function of sampling frequency is qualitatively similar to that of the Hansen-Lunde bias-correction factor although their values are substantially different. Under the stochastic diffusion assumption of the return dynamics, we investigate the accuracy of estimated volatilities by examining the standardized returns. We find that while the moments of the standardized returns from low-frequency realized volatilities are consistent with the expectation from the Gaussian variables, the deviation from the expectation becomes considerably large at high frequencies. This indicates that the realized stochastic volatility model itself cannot completely remove bias at high frequencies.

  11. Biosynthesis of silver nanoparticles using Plectranthus amboinicus leaf extract and its antimicrobial activity.

    Science.gov (United States)

    Ajitha, B; Ashok Kumar Reddy, Y; Sreedhara Reddy, P

    2014-07-15

    This study reports the simple green synthesis method for the preparation of silver nanoparticles (Ag NPs) using Plectranthus amboinicus leaf extract. The pathway of nanoparticles formation is by means of reduction of AgNO3 by leaf extract, which acts as both reducing and capping agents. Synthesized Ag NPs were subjected to different characterizations for studying the structural, chemical, morphological, optical and antimicrobial properties. The bright circular fringes in SAED pattern and diffraction peaks in XRD profile reveals high crystalline nature of biosynthesized Ag NPs. Morphological studies shows the formation of nearly spherical nanoparticles. FTIR spectrum confirms the existence of various functional groups of biomolecules capping the nanoparticles. UV-visible spectrum displays single SPR band at 428 nm indicating the absence of anisotropic particles. The synthesized Ag NPs exhibited better antimicrobial property towards gram negative Escherichia coli and towards tested Penicillium spp. than other tested microorganisms using disc diffusion method. Finally it has proven that the synthesized bio-inspired Ag NPs have potent antimicrobial effect. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Forecasting volatility of crude oil markets

    International Nuclear Information System (INIS)

    Kang, Sang Hoon; Kang, Sang-Mok; Yoon, Seong-Min

    2009-01-01

    This article investigates the efficacy of a volatility model for three crude oil markets - Brent, Dubai, and West Texas Intermediate (WTI) - with regard to its ability to forecast and identify volatility stylized facts, in particular volatility persistence or long memory. In this context, we assess persistence in the volatility of the three crude oil prices using conditional volatility models. The CGARCH and FIGARCH models are better equipped to capture persistence than are the GARCH and IGARCH models. The CGARCH and FIGARCH models also provide superior performance in out-of-sample volatility forecasts. We conclude that the CGARCH and FIGARCH models are useful for modeling and forecasting persistence in the volatility of crude oil prices. (author)

  13. Forecasting volatility of crude oil markets

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Sang Hoon [Department of Business Administration, Gyeongsang National University, Jinju, 660-701 (Korea); Kang, Sang-Mok; Yoon, Seong-Min [Department of Economics, Pusan National University, Busan, 609-735 (Korea)

    2009-01-15

    This article investigates the efficacy of a volatility model for three crude oil markets - Brent, Dubai, and West Texas Intermediate (WTI) - with regard to its ability to forecast and identify volatility stylized facts, in particular volatility persistence or long memory. In this context, we assess persistence in the volatility of the three crude oil prices using conditional volatility models. The CGARCH and FIGARCH models are better equipped to capture persistence than are the GARCH and IGARCH models. The CGARCH and FIGARCH models also provide superior performance in out-of-sample volatility forecasts. We conclude that the CGARCH and FIGARCH models are useful for modeling and forecasting persistence in the volatility of crude oil prices. (author)

  14. Development of pressurised hot water extraction (PHWE) for essential compounds from Moringa oleifera leaf extracts.

    Science.gov (United States)

    Matshediso, Phatsimo G; Cukrowska, Ewa; Chimuka, Luke

    2015-04-01

    Pressurised hot water extraction (PHWE) is a "green" technology which can be used for the extraction of essential components in Moringa oleifera leaf extracts. The behaviour of three flavonols (myricetin, quercetin and kaempferol) and total phenolic content (TPC) in Moringa leaf powder were investigated at various temperatures using PHWE. The TPC of extracts from PHWE were investigated using two indicators. These are reducing activity and the radical scavenging activity of 2,2-diphenyl-1-picrylhydrazyl (DPPH). Flavonols content in the PHWE extracts were analysed on high performance liquid chromatography with ultra violet (HPLC-UV) detection. The concentration of kaempferol and myricetin started decreasing at 150 °C while that of quercetin remained steady with extraction temperature. Optimum extraction temperature for flavonols and DPPH radical scavenging activity was found to be 100 °C. The TPC increased with temperature until 150 °C and then decreased while the reducing activity increased. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Measurement for the MLC leaf velocity profile by considering the leaf leakage using a radiographic film

    International Nuclear Information System (INIS)

    Chow, James C L; Grigorov, Grigor N

    2006-01-01

    A method to measure the velocity profile of a multi-leaf collimator (MLC) leaf along its travel range using a radiographic film is reported by considering the intra-leaf leakage. A specific dynamic MLC field with leaves travelling from the field edge to the isocentre line was designed. The field was used to expose a radiographic film, which was then scanned, and the dose profile along the horizontal leaf axis was measured. The velocity at a sampling point on the film can be calculated by considering the horizontal distance between the sampling point and the isocentre line, dose at the sampling point, dose rate of the linear accelerator, the total leaf travel time from the field edge to isocentre line and the pre-measured dose rate of leaf leakage. With the leaf velocities and velocity profiles for all MLC leaves measured routinely, a comprehensive and simple QA for the MLC can be set up to test the consistency of the leaf velocity performance which is essential to the IMRT delivery using a sliding window technique. (note)

  16. Geometric leaf placement strategies

    International Nuclear Information System (INIS)

    Fenwick, J D; Temple, S W P; Clements, R W; Lawrence, G P; Mayles, H M O; Mayles, W P M

    2004-01-01

    Geometric leaf placement strategies for multileaf collimators (MLCs) typically involve the expansion of the beam's-eye-view contour of a target by a uniform MLC margin, followed by movement of the leaves until some point on each leaf end touches the expanded contour. Film-based dose-distribution measurements have been made to determine appropriate MLC margins-characterized through an index d 90 -for multileaves set using one particular strategy to straight lines lying at various angles to the direction of leaf travel. Simple trigonometric relationships exist between different geometric leaf placement strategies and are used to generalize the results of the film work into d 90 values for several different strategies. Measured d 90 values vary both with angle and leaf placement strategy. A model has been derived that explains and describes quite well the observed variations of d 90 with angle. The d 90 angular variations of the strategies studied differ substantially, and geometric and dosimetric reasoning suggests that the best strategy is the one with the least angular variation. Using this criterion, the best straightforwardly implementable strategy studied is a 'touch circle' approach for which semicircles are imagined to be inscribed within leaf ends, the leaves being moved until the semicircles just touch the expanded target outline

  17. PENGARUH LAMA DAN SUHU PENYIMPANAN EKSTRAK DAUN SIRIH HIJAU (Piper betle linn DENGAN AQUADES TERHADAP DAYA HAMBAT BAKTERI Streptococcus agalactiae PENYEBAB MASTITIS PADA SAPI PERAH

    Directory of Open Access Journals (Sweden)

    Muhammad Sanjaya Kusuma

    2017-11-01

    Full Text Available Green betle leaf (Piper betle L. is one of the plants used by the people of Indonesia for tradisional medicine. Green betle leaf contains antibacterial compounds consisting of phenol and its derivatives. This study aims to determine the antibacterial activity of green betle leaf (Piper betle L. againt the bacteria Streptococcus agalactiae caused mastitis in dairy cows. Bacterial inhibition test by paper disc method. Data analysis using ANOVA by Nested design with 6 treatment and 6 repetitions. The results of this study green betle leaf (Piper betle L. extract inhibiting the growth of bacteria Streptococcus agalactiae was significantly different (P<0,01. The conclusion were the extract of green betel leaf (Piper betle L. can inhibit the growth of Streptococcus agalactiae and storage temperature has no effect, but storage periode gives effect the quality of green betel leaf extract (Piper betle L., so that the leaf extract storage green betel with distilled solvent recommended on 2nd days at refrigerator.

  18. Alternative Asymmetric Stochastic Volatility Models

    NARCIS (Netherlands)

    M. Asai (Manabu); M.J. McAleer (Michael)

    2010-01-01

    textabstractThe stochastic volatility model usually incorporates asymmetric effects by introducing the negative correlation between the innovations in returns and volatility. In this paper, we propose a new asymmetric stochastic volatility model, based on the leverage and size effects. The model is

  19. Metabolomics-Driven Nutraceutical Evaluation of Diverse Green Tea Cultivars

    Science.gov (United States)

    Ida, Megumi; Kosaka, Reia; Miura, Daisuke; Wariishi, Hiroyuki; Maeda-Yamamoto, Mari; Nesumi, Atsushi; Saito, Takeshi; Kanda, Tomomasa; Yamada, Koji; Tachibana, Hirofumi

    2011-01-01

    Background Green tea has various health promotion effects. Although there are numerous tea cultivars, little is known about the differences in their nutraceutical properties. Metabolic profiling techniques can provide information on the relationship between the metabolome and factors such as phenotype or quality. Here, we performed metabolomic analyses to explore the relationship between the metabolome and health-promoting attributes (bioactivity) of diverse Japanese green tea cultivars. Methodology/Principal Findings We investigated the ability of leaf extracts from 43 Japanese green tea cultivars to inhibit thrombin-induced phosphorylation of myosin regulatory light chain (MRLC) in human umbilical vein endothelial cells (HUVECs). This thrombin-induced phosphorylation is a potential hallmark of vascular endothelial dysfunction. Among the tested cultivars, Cha Chuukanbohon Nou-6 (Nou-6) and Sunrouge (SR) strongly inhibited MRLC phosphorylation. To evaluate the bioactivity of green tea cultivars using a metabolomics approach, the metabolite profiles of all tea extracts were determined by high-performance liquid chromatography-mass spectrometry (LC-MS). Multivariate statistical analyses, principal component analysis (PCA) and orthogonal partial least-squares-discriminant analysis (OPLS-DA), revealed differences among green tea cultivars with respect to their ability to inhibit MRLC phosphorylation. In the SR cultivar, polyphenols were associated with its unique metabolic profile and its bioactivity. In addition, using partial least-squares (PLS) regression analysis, we succeeded in constructing a reliable bioactivity-prediction model to predict the inhibitory effect of tea cultivars based on their metabolome. This model was based on certain identified metabolites that were associated with bioactivity. When added to an extract from the non-bioactive cultivar Yabukita, several metabolites enriched in SR were able to transform the extract into a bioactive extract

  20. Thermal Properties of Green Fuel Briquettes from Residue Corncobs Materials Mixed Macadamia Shell Charcoal Powder

    Science.gov (United States)

    Teeta, Suminya; Nachaisin, Mali; Wanish, Suchana

    2017-09-01

    The objective of this research was to produce green fuel briquettes from corncobs by adding macadamia shell charcoal powder. The study was sectioned into 3 parts: 1) Quality improvement of green fuel briquettes by adding macadamia; 2) Fuel property analysis based on ASTM standards and thermal fuel efficiency; and 3) Economics appropriateness in producing green fuel briquettes. This research produced green fuel briquettes using the ratio of corncobs weight and macadamia shell charcoal powder in 100:0 90:10 80:20 70:30 60:40 and 50:50 and pressing in the cold briquette machine. Fuel property analysis showed that green fuel briquettes at the ratio 50:50 produced maximum heating values at 21.06 Megajoule per kilogram and briquette density of 725.18 kilograms per cubic meter, but the percent of moisture content, volatile matter, ash, and fixed carbon were 10.09, 83.02, 2.17 and 4.72 respectively. The thermal efficiency of green fuel briquettes averaged 20.22%. Economics appropriateness was most effective where the ratio of corncobs weight to macadamia shell charcoal powder was at 50:50 which accounted for the cost per kilogram at 5.75 Baht. The net present value was at 1,791.25 Baht. Internal rate of return was at 8.62 and durations for a payback period of investment was at 1.9 years which was suitable for investment.

  1. Genetic significance of the 867 cm- 1 out-of-plane Raman mode in graphite associated with V-bearing green grossular

    Science.gov (United States)

    Thomas, Rainer; Rericha, Adolf; Pohl, Walter L.; Davidson, Paul

    2018-03-01

    SE Kenya is the world's largest producer of green vanadium grossular gemstones (tsavorite). Samples from one of the mines near Mwatate, and of occurrences in Tanzania yielded remarkable new insights into the genesis of tsavorite. Graphite is intimately associated with V-grossular and is one of the keys to understanding its origin. In the course of this study we found five different types of graphite. Surprisingly, in one graphite type the "Raman-forbidden" and IR-active 867 cm- 1 band was observed. In this communication, we attempt to find an explanation for this unusual phenomenon. Additionally, our observations also address some of the issues pertaining to the origin of the green grossular-dominated rocks (grossularites), as well as the gem quality tsavorite crystals, since we propose that the anomalous spectroscopic behavior of the graphite is related to the unusual conditions during crystallization of both the grossular and graphite from a near-supercritical volatile- and sulfur-rich silicate melt. The massive green vanadium grossular contains abundant unequivocal crystallized melt inclusions, while the transparent gem quality grossular (tsavorite) displays only fluid inclusions. On the basis of inclusion studies we suggest that anatectic melts originated in the peculiar evaporitic host lithology of the tsavorite deposits. Near peak metamorphic temperatures ( 700 °C) these liquids occurred as a supercritical volatile-rich "fluid/melt phase" characterized by complete miscibility between H2O and silicate liquid. Relatively dry liquid batches precipitated non-transparent green grossular, whereas wet batches segregated fluids that formed transparent tsavorite.

  2. Remote sensing of LAI, chlorophyll and leaf nitrogen pools of crop- and grasslands in five European landscapes

    KAUST Repository

    Boegh, E.; Houborg, Rasmus; Bienkowski, J.; Braban, C.F.; Dalgaard, T.; Van, Dijk, N.; Dragosits, U.; Holmes, E.; Magliulo, V.; Schelde, K.; Di, Tommasi, P.; Vitale, L.; Theobald, M.R.; Cellier, P.; Sutton, M.A.

    2013-01-01

    Leaf nitrogen and leaf surface area influence the exchange of gases between terrestrial ecosystems and the atmosphere, and play a significant role in the global cycles of carbon, nitrogen and water. The purpose of this study is to use field-based and satellite remote-sensing-based methods to assess leaf nitrogen pools in five diverse European agricultural landscapes located in Denmark, Scotland (United Kingdom), Poland, the Netherlands and Italy. REGFLEC (REGularized canopy reFLECtance) is an advanced image-based inverse canopy radiative transfer modelling system which has shown proficiency for regional mapping of leaf area index (LAI) and leaf chlorophyll (CHLl) using remote sensing data. In this study, high spatial resolution (10-20 m) remote sensing images acquired from the multispectral sensors aboard the SPOT (Satellite For Observation of Earth) satellites were used to assess the capability of REGFLEC for mapping spatial variations in LAI, CHLland the relation to leaf nitrogen (Nl) data in five diverse European agricultural landscapes. REGFLEC is based on physical laws and includes an automatic model parameterization scheme which makes the tool independent of field data for model calibration. In this study, REGFLEC performance was evaluated using LAI measurements and non-destructive measurements (using a SPAD meter) of leaf-scale CHLl and Nl concentrations in 93 fields representing crop- and grasslands of the five landscapes. Furthermore, empirical relationships between field measurements (LAI, CHLl and Nl and five spectral vegetation indices (the Normalized Difference Vegetation Index, the Simple Ratio, the Enhanced Vegetation Index-2, the Green Normalized Difference Vegetation Index, and the green chlorophyll index) were used to assess field data coherence and to serve as a comparison basis for assessing REGFLEC model performance. The field measurements showed strong vertical CHLl gradient profiles in 26% of fields which affected REGFLEC performance as well

  3. Remote sensing of LAI, chlorophyll and leaf nitrogen pools of crop- and grasslands in five European landscapes

    KAUST Repository

    Boegh, E.

    2013-10-07

    Leaf nitrogen and leaf surface area influence the exchange of gases between terrestrial ecosystems and the atmosphere, and play a significant role in the global cycles of carbon, nitrogen and water. The purpose of this study is to use field-based and satellite remote-sensing-based methods to assess leaf nitrogen pools in five diverse European agricultural landscapes located in Denmark, Scotland (United Kingdom), Poland, the Netherlands and Italy. REGFLEC (REGularized canopy reFLECtance) is an advanced image-based inverse canopy radiative transfer modelling system which has shown proficiency for regional mapping of leaf area index (LAI) and leaf chlorophyll (CHLl) using remote sensing data. In this study, high spatial resolution (10-20 m) remote sensing images acquired from the multispectral sensors aboard the SPOT (Satellite For Observation of Earth) satellites were used to assess the capability of REGFLEC for mapping spatial variations in LAI, CHLland the relation to leaf nitrogen (Nl) data in five diverse European agricultural landscapes. REGFLEC is based on physical laws and includes an automatic model parameterization scheme which makes the tool independent of field data for model calibration. In this study, REGFLEC performance was evaluated using LAI measurements and non-destructive measurements (using a SPAD meter) of leaf-scale CHLl and Nl concentrations in 93 fields representing crop- and grasslands of the five landscapes. Furthermore, empirical relationships between field measurements (LAI, CHLl and Nl and five spectral vegetation indices (the Normalized Difference Vegetation Index, the Simple Ratio, the Enhanced Vegetation Index-2, the Green Normalized Difference Vegetation Index, and the green chlorophyll index) were used to assess field data coherence and to serve as a comparison basis for assessing REGFLEC model performance. The field measurements showed strong vertical CHLl gradient profiles in 26% of fields which affected REGFLEC performance as well

  4. One-step green synthesis of bimetallic Fe/Pd nanoparticles used to degrade Orange II

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Fang; Yang, Die; Chen, Zuliang, E-mail: zuliang.chen@newcastle.edu.au; Megharaj, Mallavarapu; Naidu, Ravendra

    2016-02-13

    Highlights: • Green synthesis of bimetallic Fe/Pd NPs was firstly reported using the one-step method. • 98.0% of Orange II was removed by Fe/Pd NPs, but only 16.0% by Fe NPs. • Fe/Pd NPs with a diameter ranging from 10 to 100 nm were observed. • Removing Orange II using Fe/Pd NPs involved both adsorption and catalytic degradation. - Abstract: To reduce cost and enhance reactivity, bimetallic Fe/Pd nanoparticles (NPs) were firstly synthesized using grape leaf aqueous extract to remove Orange II. Green synthesized bimetallic Fe/Pd NPs (98.0%) demonstrated a far higher ability to remove Orange II in 12 h compared to Fe NPs (16.0%). Meanwhile, all precursors, e.g., grape leaf extract, Fe{sup 2+} and Pd{sup 2+}, had no obvious effect on removing Orange II since less than 2.0% was removed. Kinetics study revealed that the removal rate fitted well to the pseudo-first-order reduction and pseudo-second-order adsorption model, meaning that removing Orange II via Fe/Pd NPs involved both adsorption and catalytic reduction. The remarkable stability of Fe/Pd NPs showed the potential application for removing azo dyes. Furthermore, Scanning Electron Microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FTIR) confirmed the changes in Fe/Pd NPs before and after reaction with Orange II. High Performance Liquid Chromatography–Mass Spectrum (HPLC–MS) identified the degraded products in the removal of Orange II, and finally a removal mechanism was proposed. This one-step strategy using grape leaf aqueous extract to synthesize Fe/Pd NPs is simple, cost-effective and environmentally benign, making possible the large-scale production of Fe/Pd NPs for field remediation.

  5. Apparent over-investment in leaf venation relaxes leaf morphological constraints on photosynthesis in arid habitats

    Science.gov (United States)

    de Boer, Hugo; Drake, Paul; Veneklaas, Erik

    2017-04-01

    The close relationship between leaf water status and stomatal conductance implies that the hydraulic architecture of leaves poses an important constraint on transpiration, specifically in arid environments with high evaporative demands. However, it remains uncertain how morphological, hydraulic and photosynthetic traits are coordinated to achieve optimal leaf functioning in arid environments. Critical is that leaf veins supply the mesophyll with water that evaporates when stomata are open to allow CO2 uptake for photosynthesis. Theoretical analyses suggest that water is optimally distributed in the mesophyll when the lateral distance between veins (dx) is equal to the distance from these veins to the epidermis (dy), expressed as dx:dy≈1. Although this theory is supported by observations on many derived angiosperms, we hypothesize that plants in arid environments may reduce dx:dy below unity owing to climate-specific functional adaptations of increased leaf thickness and increased vein density. To test our hypothesis we assembled leaf hydraulic, morphological and photosynthetic traits of 68 species from the Eucalyptus and Corymbia genera (termed eucalypts) along an aridity gradient in southwestern Australia. We inferred the potential gas exchange advantage of reducing dx beyond dy using a model that links leaf morphology and hydraulics to photosynthesis. Our observations reveal that eucalypts in arid environments have thick amphistomatous leaves with high vein densities, resulting in dx:dy ratios that range from 1.6 to 0.15 along the aridity gradient. Our model suggests that as leaves become thicker, the effect of reducing dx beyond dy is to offset the reduction in leaf gas exchange that would result from maintaining dx:dy at unity. This apparent over-investment in leaf venation may be explained from the selective pressure of aridity, under which traits associated with long leaf lifespan, high hydraulic and thermal capacitances, and high potential rates of leaf

  6. Green(ing) infrastructure

    CSIR Research Space (South Africa)

    Van Wyk, Llewellyn V

    2014-03-01

    Full Text Available the generation of electricity from renewable sources such as wind, water and solar. Grey infrastructure – In the context of storm water management, grey infrastructure can be thought of as the hard, engineered systems to capture and convey runoff..., pumps, and treatment plants.  Green infrastructure reduces energy demand by reducing the need to collect and transport storm water to a suitable discharge location. In addition, green infrastructure such as green roofs, street trees and increased...

  7. Chemical composition and biological activities of Tunisian Cupressus arizonica Greene essential oils.

    Science.gov (United States)

    Ismail, Amri; Mancini, Emilia; De Martino, Laura; Hamrouni, Lamia; Hanana, Mohsen; Jamoussi, Bassem; Gargouri, Samia; Scognamiglio, Mariarosa; De Feo, Vincenzo

    2014-01-01

    The chemical composition of the essential oils obtained by hydrodistillation of leaves, stems, and female cones of Cupressus arizonica Greene, grown in Tunisia, was studied by GC-FID and GC/MS analyses. Altogether, 62 compounds were identified, 62 in the leaf oil, 19 in the cone oil, and 24 in the stem oil. The cone and stem oils were mainly composed by monoterpene hydrocarbons (96.6 and 85.2%, resp.). In the leaf oil, the total sesquiterpene fraction constituted 36.1% and that of the monoterpene hydrocarbons 33.8% of the total oil composition. The three oils were evaluated for their in vitro herbicidal activity by determining their influence on the germination and the shoot and root growth of the four weed species Sinapis arvensis L., Lolium rigidum Gaudin, Trifolium campestre Schreb., and Phalaris canariensis L. At the highest doses tested (0.8 and 1.0 mg/ml), the leaf essential oil inhibited either totally or almost completely the seed germination and the shoot and root growth of S. arvensis and T. campestre. The oils were also tested for their antifungal activity; however, their effects on the fungal growth were statistically not significant. Copyright © 2014 Verlag Helvetica Chimica Acta AG, Zürich.

  8. Timing and duration of autumn leaf development in Sweden, a 4-year citizen science study

    Science.gov (United States)

    Bolmgren, Kjell; Langvall, Ola

    2017-04-01

    Phenology monitoring has traditionally focused on the start of phenological phases and the start of the growing season, especially when it comes to species-specific observations on the ground. The patterns of and the mechanisms behind the end of particular phases and the growing season itself are less studied and poorly understood. With a changing climate, the need to understand and predict effects on the length as well as on the end of phenological phases increase in importance, e.g. in relation to estimations of carbon budgets and validation of remote sensing data. Furthermore, different species may be affected in different ways by changing conditions. In this 4-year-study, tens of thousands of pupils in ages from 6 to 19 years old were involved in observing autumn leaf development of common deciduous tree species. Their observations were made near schools all over Sweden (55-68°N). Observations were made weekly between late August and early November and followed an image-based observation protocol, classifying autumn leaf development into five levels, from a summer-green (level 0) to a 100% autumn-colored (level 4) canopy. As expected, there was a general (negative) correlation between latitude and the start of leaf senescence (level 2; 1/3 autumn-colored canopy), but the correlation differed largely among years and between species. There was a week correlation between latitude and duration of the leaf senescence period, defined as the period between 1/3 (level 2) and 100% (level 4) of autumn-colored canopy. A delayed onset of the leaf senescence affected the duration of the leaf senescence period more strongly; One (1) day later start was correlated with a 5-day shorter period. Different species had different length of their senescence period, with oak (mainly Quercus robur) and birches (Betula pendula and B. pubescence) having on average a 50% longer period than trembling aspen (Populus tremula) and Norway maple (Acer platanoides).

  9. Green Chemistry: Strategy in Essential Oils Sustainability by Development of Insecticide Using Docking Method

    Science.gov (United States)

    Warsito; Utomo, EP; Ulfa, SM; Kholila, BN; Nindyasiwi, P.

    2018-01-01

    Sustainable agricultural applications in green chemistry was associated with the development of insecticide production based on secondary metabolites, such as essential oils. This research used In Silico modeling for insecticide formulation based on essential oils. The insecticidal formula was made on the basis of the Ki value of multiple docking results between the major components of essential oils as ligand with Spodotera litura receptor (2DJC) studied using Autodock Tools software. Insecticide formula activity test was done by contact method of toxic and leaf contact with essential oils concentration at level 0% - 1%. The results of the in silico study showed that the inhibition constants (Ki) of citronellal and anethol ligands combination were 1.6 mM however of citronellal and eugenol as ligands were 1.75 mM and formulated rasio (v/v), respectively 5 : 1 and 4 : 1. In addition, in vitro activity of insecticide formula with the ratio of 5: 1 possess LC50 value 0.10% (toxic contact) and 0.35% (leaf contact). While the formula with a ratio of 4: 1 possess LC50 value 0.05% (toxic contacts) and 0.31% (leaf contact).

  10. NARROW LEAF 7 controls leaf shape mediated by auxin in rice

    NARCIS (Netherlands)

    Fujino, Kenji; Matsuda, Yasuyuki; Ozawa, Kenjirou; Nishimura, Takeshi; Koshiba, Tomokazu; Fraaije, Marco W.; Sekiguchi, Hiroshi

    Elucidation of the genetic basis of the control of leaf shape could be of use in the manipulation of crop traits, leading to more stable and increased crop production. To improve our understanding of the process controlling leaf shape, we identified a mutant gene in rice that causes a significant

  11. Plant performance on Mediterranean green roofs: interaction of species-specific hydraulic strategies and substrate water relations.

    Science.gov (United States)

    Raimondo, Fabio; Trifilò, Patrizia; Lo Gullo, Maria A; Andri, Sergio; Savi, Tadeja; Nardini, Andrea

    2015-01-20

    Recent studies have highlighted the ecological, economic and social benefits assured by green roof technology to urban areas. However, green roofs are very hostile environments for plant growth because of shallow substrate depths, high temperatures and irradiance and wind exposure. This study provides experimental evidence for the importance of accurate selection of plant species and substrates for implementing green roofs in hot and arid regions, like the Mediterranean area. Experiments were performed on two shrub species (Arbutus unedo L. and Salvia officinalis L.) grown in green roof experimental modules with two substrates slightly differing in their water retention properties, as derived from moisture release curves. Physiological measurements were performed on both well-watered and drought-stressed plants. Gas exchange, leaf and xylem water potential and also plant hydraulic conductance were measured at different time intervals following the last irrigation. The substrate type significantly affected water status. Arbutus unedo and S. officinalis showed different hydraulic responses to drought stress, with the former species being substantially isohydric and the latter one anisohydric. Both A. unedo and S. officinalis were found to be suitable species for green roofs in the Mediterranean area. However, our data suggest that appropriate choice of substrate is key to the success of green roof installations in arid environments, especially if anisohydric species are employed. Published by Oxford University Press on behalf of the Annals of Botany Company.

  12. Impact of microorganism on polonium volatilization

    International Nuclear Information System (INIS)

    Momoshima, N.; Ishida, A.; Fukuda, A.; Yoshinaga, C.

    2007-01-01

    Volatilization of polonium by microorganisms, Chromobacterium violaceum, Escherichia coli and Bacillus subtilis was examined for pure cultures in LB medium at 30 deg C, showing relative Po emission intensity 100, 10 and 1, respectively. Chromobacterium violaceum pre-cultured in LB medium without Po and suspended in water with Po showed high Po volatilization in spite of poor nutriment condition. Antibiotics inhibit volatilization of Po and cultivation at low temperature greatly reduced volatilization. The results strongly support the biological effects on Po volatilization. (author)

  13. Comparative Analysis of the Volatile Components of Agrimonia eupatoria from Leaves and Roots by Gas Chromatography-Mass Spectrometry and Multivariate Curve Resolution

    Directory of Open Access Journals (Sweden)

    Xiao-Liang Feng

    2013-01-01

    Full Text Available Gas chromatography-mass spectrometry and multivariate curve resolution were applied to the differential analysis of the volatile components in Agrimonia eupatoria specimens from different plant parts. After extracted with water distillation method, the volatile components in Agrimonia eupatoria from leaves and roots were detected by GC-MS. Then the qualitative and quantitative analysis of the volatile components in the main root of Agrimonia eupatoria was completed with the help of subwindow factor analysis resolving two-dimensional original data into mass spectra and chromatograms. 68 of 87 separated constituents in the total ion chromatogram of the volatile components were identified and quantified, accounting for about 87.03% of the total content. Then, the common peaks in leaf were extracted with orthogonal projection resolution method. Among the components determined, there were 52 components coexisting in the studied samples although the relative content of each component showed difference to some extent. The results showed a fair consistency in their GC-MS fingerprint. It was the first time to apply orthogonal projection method to compare different plant parts of Agrimonia eupatoria, and it reduced the burden of qualitative analysis as well as the subjectivity. The obtained results proved the combined approach powerful for the analysis of complex Agrimonia eupatoria samples. The developed method can be used to further study and quality control of Agrimonia eupatoria.

  14. Comparative Analysis of the Volatile Components of Agrimonia eupatoria from Leaves and Roots by Gas Chromatography-Mass Spectrometry and Multivariate Curve Resolution.

    Science.gov (United States)

    Feng, Xiao-Liang; He, Yun-Biao; Liang, Yi-Zeng; Wang, Yu-Lin; Huang, Lan-Fang; Xie, Jian-Wei

    2013-01-01

    Gas chromatography-mass spectrometry and multivariate curve resolution were applied to the differential analysis of the volatile components in Agrimonia eupatoria specimens from different plant parts. After extracted with water distillation method, the volatile components in Agrimonia eupatoria from leaves and roots were detected by GC-MS. Then the qualitative and quantitative analysis of the volatile components in the main root of Agrimonia eupatoria was completed with the help of subwindow factor analysis resolving two-dimensional original data into mass spectra and chromatograms. 68 of 87 separated constituents in the total ion chromatogram of the volatile components were identified and quantified, accounting for about 87.03% of the total content. Then, the common peaks in leaf were extracted with orthogonal projection resolution method. Among the components determined, there were 52 components coexisting in the studied samples although the relative content of each component showed difference to some extent. The results showed a fair consistency in their GC-MS fingerprint. It was the first time to apply orthogonal projection method to compare different plant parts of Agrimonia eupatoria, and it reduced the burden of qualitative analysis as well as the subjectivity. The obtained results proved the combined approach powerful for the analysis of complex Agrimonia eupatoria samples. The developed method can be used to further study and quality control of Agrimonia eupatoria.

  15. The effect of growth conditions on flavonols and anthocyanins accumulation in green and red lettuce

    OpenAIRE

    Klaudia BRÜCKOVÁ; Oksana SYTAR; Marek ŢIVČÁK; Marian BRESTIC; Aleš LEBEDA

    2016-01-01

    The aim of the study was to investigate the effect of different growth conditions on anthocyanins and flavonols accumulation in leaves of green and red loose leaf lettuce (Lactuca sativa var. crispa). Lettuce plants were grown in three types of conditions, in greenhouse (I. variant), behind clear glass in field (II. variant) and in open field conditions (III. variant). Estimation of anthocyanins and flavonols content was done by non-destructive measurements with optical fluorescence sensor Mu...

  16. Characterization anatomical leaf blade five species Nepenthes from Kerinci Seblat National Park, Kerinci regency, Jambi Province

    Science.gov (United States)

    Al Farishy, D. D.; Nisyawati, Metusala, D.

    2017-07-01

    Nepenthes is one of carnivorous plant genera which have key characters on leaf and pitcher as the modification. However, wide varieties of morphological features on pitcher intraspecies and between species could be tough for identification process. The objective was to provide alternative characters for identification process by anatomical features. Kerinci Seblat National Park was chosen because lack of update data on wild type of species there. Whole five species were collected at Lingkat Lake and Gunung Tujuh Lake as representative lowland and highland species. Leaves collected fresh, flawless, and has grown pitcher. Each leaf was separated into the paradermal and transversal section, dehydrated by series alcohol, and stained by safranin and fast green. Sections observed by light microscope. Result show there were specific differences between species that could be potential to be key characters. That features are stomatal density, stomatal length, sessile glands surface shaped, sessile glands density, trichome distribution, adaxial cuticle thickness, adaxial hypodermic thickness, and the number of layers of adaxial hypodermis

  17. Assessment of released organics from leaf biomass on air quality in the state of California

    International Nuclear Information System (INIS)

    Badgett-West, C.R.; Cort, R.P.

    1991-01-01

    Air quality scientists today are concerned that significant amounts of volatile organic compounds (VOCs), specifically isoprenes and monoterpenes, are released by vegetative matter during biological processes. These emissions have not been previously accounted for and therefore the magnitude of their contribution to ozone concentrations has not been determined. A study of the emissions in the State of California was performed using 1987 as a base year. Data were collected on the acerages of natural and agricultural vegetation for each county in the state. Vegetation acreages were divided by season for direct input into air quality models. Generally, an inventory of the agricultural lands was more complicated than accounting for natural vegetation acreages. This was due to a large extent to crop rotation and production of more than one crop on the same land within the same calendar year. The amount of leaf biomass per acre was very difficult to define. Very little research has been completed in this area. In addition, several variables influence the amount of leaf biomass per acre. These include moisture, temperature, type of soil, insect/animal consumption, and agricultural practices

  18. Photoreduction of chlorothalonil fungicide on plant leaf models.

    Science.gov (United States)

    Monadjemi, S; El Roz, M; Richard, C; Ter Halle, A

    2011-11-15

    Photodegradation is seldom considered at the surface of vegetation after crop spraying. Chlorothalonil, a broad-spectrum foliar fungicide with a very widespread use worldwide, was considered. To represent the waxy upper layer of leaves, tests were performed within thin paraffin wax films or in n-heptane. Laser flash photolysis together with steady-state irradiation in n-heptane allowed the determination of the photodegradation mechanisms Chlorothalonil ability to produce singlet oxygen was measured; noteworthy its efficiency is close to 100%. Additionally, chlorothalonil photodegradation mainly proceeds through reductive dechlorination. In these hydrophobic media, a radical mechanism was evidenced. Photochemical tests on wax films under simulated solar light show that formulated chlorothalonil is more reactive than pure chlorothalonil. The field-extrapolated half-life of photolysis on vegetation was estimated to 5.3 days. This value was compared to the half-lives of penetration and volatilization available in the literature. It appears that chlorothalonil dissipation from crops is ruled by both photodegradation and penetration. The relative importance of the two paths probably depends on meteorological factors and on physicochemical characteristics of the crop leaf cuticle.

  19. Scaling up stomatal conductance from leaf to canopy using a dual-leaf model for estimating crop evapotranspiration.

    Directory of Open Access Journals (Sweden)

    Risheng Ding

    Full Text Available The dual-source Shuttleworth-Wallace model has been widely used to estimate and partition crop evapotranspiration (λET. Canopy stomatal conductance (Gsc, an essential parameter of the model, is often calculated by scaling up leaf stomatal conductance, considering the canopy as one single leaf in a so-called "big-leaf" model. However, Gsc can be overestimated or underestimated depending on leaf area index level in the big-leaf model, due to a non-linear stomatal response to light. A dual-leaf model, scaling up Gsc from leaf to canopy, was developed in this study. The non-linear stomata-light relationship was incorporated by dividing the canopy into sunlit and shaded fractions and calculating each fraction separately according to absorbed irradiances. The model includes: (1 the absorbed irradiance, determined by separately integrating the sunlit and shaded leaves with consideration of both beam and diffuse radiation; (2 leaf area for the sunlit and shaded fractions; and (3 a leaf conductance model that accounts for the response of stomata to PAR, vapor pressure deficit and available soil water. In contrast to the significant errors of Gsc in the big-leaf model, the predicted Gsc using the dual-leaf model had a high degree of data-model agreement; the slope of the linear regression between daytime predictions and measurements was 1.01 (R2 = 0.98, with RMSE of 0.6120 mm s-1 for four clear-sky days in different growth stages. The estimates of half-hourly λET using the dual-source dual-leaf model (DSDL agreed well with measurements and the error was within 5% during two growing seasons of maize with differing hydrometeorological and management strategies. Moreover, the estimates of soil evaporation using the DSDL model closely matched actual measurements. Our results indicate that the DSDL model can produce more accurate estimation of Gsc and λET, compared to the big-leaf model, and thus is an effective alternative approach for estimating and

  20. Evaluation of double-decker traps for emerald ash borer (Coleoptera: Buprestidae).

    Science.gov (United States)

    Poland, Therese M; McCullough, Deborah G; Anulewicz, Andrea C

    2011-04-01

    Improved detection tools are needed for the emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), an invasive forest insect from Asia that has killed millions of ash (Fraxinus spp.) trees in North America since its discovery in Michigan in 2002. We evaluated attraction of adult A. planipennis to artificial traps incorporating visual (e.g., height, color, silhouette) and olfactory cues (e.g., host volatiles) at field sites in Michigan. We developed a double-decker trap consisting of a 3-m-tall polyvinyl pipe with two purple prisms attached near the top. In 2006, we compared A. planipennis attraction to double-decker traps baited with various combinations of manuka oil (containing sesquiterpenes present in ash bark), a blend of four ash leaf volatiles (leaf blend), and a rough texture to simulate bark. Significantly more A. planipennis were captured per trap when traps without the rough texture were baited with the leaf blend and manuka oil lures than on traps with texture and manuka oil but no leaf blend. In 2007, we also tested single prism traps set 1.5 m above ground and tower traps, similar to double-decker traps but 6 m tall. Double-decker traps baited with the leaf blend and manuka oil, with or without the addition of ash leaf and bark extracts, captured significantly more A. planipennis than similarly baited single prism traps, tower traps, or unbaited double-decker traps. A baited double-decker trap captured A. planipennis at a field site that was not previously known to be infested, representing the first detection event using artificial traps and lures. In 2008, we compared purple or green double-decker traps, single prisms suspended 3-5 m above ground in the ash canopy (canopy traps), and large flat purple traps (billboard traps). Significantly more A. planipennis were captured in purple versus green traps, baited traps versus unbaited traps, and double-decker versus canopy traps, whereas billboard traps were intermediate. At sites