WorldWideScience

Sample records for green lakes valley

  1. Limnology of the Green Lakes Valley: Phytoplankton ecology and dissolved organic matter biogeochemistry at a long-term ecological research site

    Science.gov (United States)

    Miller, Matthew P.; McKnight, Diane M.

    2015-01-01

    Background: Surface waters are the lowest points in the landscape, and therefore serve as excellent integrators and indicators of changes taking place in the surrounding terrestrial and atmospheric environment.Aims: Here we synthesise the findings of limnological studies conducted during the past 15 years in streams and lakes in the Green Lakes Valley, which is part of the Niwot Ridge Long-term Ecological Research (LTER) Site.Methods: The importance of these studies is discussed in the context of aquatic ecosystems as indicators, integrators, and regulators of environmental change. Specifically, investigations into climatic, hydrologic, and nutrient controls on present-day phytoplankton, and historical diatom, community composition in the alpine lake, Green Lake 4, are reviewed. In addition, studies of spatial and temporal patterns in dissolved organic matter (DOM) biogeochemistry and reactive transport modelling that have taken place in the Green Lakes Valley are highlighted.Results and conclusions: The findings of these studies identify specific shifts in algal community composition and DOM biogeochemistry that are indicative of changing environmental conditions and provide a framework for detecting future environmental change in the Green Lakes Valley and in other alpine watersheds. Moreover, the studies summarised here demonstrate the importance of long-term monitoring programmes such as the LTER programme.

  2. The lakes of the Jordan Rift Valley

    International Nuclear Information System (INIS)

    Gat, J.R.

    2001-01-01

    This paper presents a summary of the proceedings of a workshop on the Lakes of the Jordan Rift Valley that was held in conjunction with the CRP on The Use of Isotope Techniques in Lake Dynamics Investigations. The paper presents a review of the geological, hydrogeological and physical limnological setting of the lakes in the Jordan Rift Valley, Lake Hula, Lake Kinneret and the Dead Sea. This is complemented by a description of the isotope hydrology of the system that includes the use of a wide range of isotopes: oxygen-18, deuterium, tritium, carbon-14, carbon-13, chlorine isotopes, boron-11 and helium-3/4. Environmental isotope aspects of the salt balances of the lakes, their palaeolimnology and biogeochemical tracers are also presented. The scope of application of isotopic tracers is very broad and provides a clear insight into many aspects of the physical, chemical and biological limnology of the Rift Valley Lakes. (author)

  3. 75 FR 22620 - Upper Klamath, Lower Klamath, Tule Lake, Bear Valley, and Clear Lake National Wildlife Refuges...

    Science.gov (United States)

    2010-04-29

    ...] Upper Klamath, Lower Klamath, Tule Lake, Bear Valley, and Clear Lake National Wildlife Refuges, Klamath..., Bear Valley, and Clear Lake National Wildlife Refuges (Refuges) located in Klamath County, Oregon, and..., Tule Lake, Bear Valley, and Clear Lake Refuges located in Klamath County, Oregon, and Siskiyou and...

  4. Hydrology of modern and late Holocene lakes, Death Valley, California

    International Nuclear Information System (INIS)

    Grasso, D.N.

    1996-01-01

    Above-normal precipitation and surface-water runoff, which have been generally related to the cyclic recurrence of the El Nino-Southern Oscillation, have produced modern ephemeral lakes in the closed-basin Death Valley watershed. This study evaluates the regional hydroclimatic relations between precipitation, runoff, and lake transgressions in the Death Valley watershed. Recorded precipitation, runoff, and spring discharge data for the region are used in conjunction with a closed-basin, lake-water-budget equation to assess the relative contributions of water from these sources to modern lakes in Death Valley and to identify the requisite hydroclimatic changes for a late Holocene perennial lake in the valley. As part of the Yucca Mountain Site Characterization Program, an evaluation of the Quaternary regional paleoflood hydrology of the potential nuclear-waste repository site at Yucca Mountain, Nevada, was planned. The objectives of the evaluation were (1) to identify the locations and investigate the hydraulic characteristics of paleofloods and compare these with the locations and characteristics of modern floods, and (2) to evaluate the character and severity of past floods and debris flows to ascertain the potential future hazards to the potential repository during the pre-closure period (US Department of Energy, 1988). This study addresses the first of these objectives, and the second in part, by assessing and comparing the sizes, locations, and recurrence rates of modern, recorded (1962--83) floods and late Holocene paleofloods for the 8,533-mi 2 , closed-basin, Death Valley watershed with its contributing drainage basins in the Yucca Mountain site area

  5. Hydrology of modern and late Holocene lakes, Death Valley, California

    Energy Technology Data Exchange (ETDEWEB)

    Grasso, D.N.

    1996-07-01

    Above-normal precipitation and surface-water runoff, which have been generally related to the cyclic recurrence of the El Nino-Southern Oscillation, have produced modern ephemeral lakes in the closed-basin Death Valley watershed. This study evaluates the regional hydroclimatic relations between precipitation, runoff, and lake transgressions in the Death Valley watershed. Recorded precipitation, runoff, and spring discharge data for the region are used in conjunction with a closed-basin, lake-water-budget equation to assess the relative contributions of water from these sources to modern lakes in Death Valley and to identify the requisite hydroclimatic changes for a late Holocene perennial lake in the valley. As part of the Yucca Mountain Site Characterization Program, an evaluation of the Quaternary regional paleoflood hydrology of the potential nuclear-waste repository site at Yucca Mountain, Nevada, was planned. The objectives of the evaluation were (1) to identify the locations and investigate the hydraulic characteristics of paleofloods and compare these with the locations and characteristics of modern floods, and (2) to evaluate the character and severity of past floods and debris flows to ascertain the potential future hazards to the potential repository during the pre-closure period (US Department of Energy, 1988). This study addresses the first of these objectives, and the second in part, by assessing and comparing the sizes, locations, and recurrence rates of modern, recorded (1962--83) floods and late Holocene paleofloods for the 8,533-mi{sup 2}, closed-basin, Death Valley watershed with its contributing drainage basins in the Yucca Mountain site area.

  6. Oncorhynchus nerka population monitoring in the Sawtooth Valley Lakes

    International Nuclear Information System (INIS)

    Teuscher, D.M.; Taki, D.; Ariwite, K.

    1996-01-01

    Critical habitat for endangered Snake River sockeye salmon includes five rearing lakes located in the Sawtooth Valley of central Idaho. Most of the lakes contain either introduced or endemic kokanee populations. Snake River sockeye occur naturally in Redfish Lake, and are being stocked in Redfish and Pettit Lakes. Because kokanee compete with sockeye for limited food resources, understanding population characteristics of both species such as spawn timing, egg-to-fry survival, distribution and abundance are important components of sockeye recovery. This chapter describes some of those characteristics. In 1995, hydroacoustic estimates of O. nerka densities in the Sawtooth Valley Lakes ranged from 57 to 465 fish/ha. Densities were greatest in Pettit followed by Redfish (167), Alturas (95), and Stanley Lakes. O. nerka numbers increased from 1994 values in Pettit and Alturas Lakes, but declined in Redfish and Stanley. Despite a decline in total lake abundance, O. nerka biomass estimates in Redfish Lake increased. Approximately 144,000 kokanee fry recruited to Redfish Lake from Fishhook Creek. O. nerka fry recruitment to Stanley and Alturas lake was 5,000 and 30,000 fry, respectively. Egg-to-fry survival was 14% in Fishhook and 7% in Stanley Lake Creek. In Fishhook Creek, kokanee spawning escapement was estimated using stream surveys and a weir. Escapement estimates were 4,860 from weir counts, and 7,000 from stream surveys. As part of the kokanee reduction program, 385 of the spawning female kokanee were culled. Escapement for Stanley Lake Creek was only 60 fish, a ten fold decrease from 1994. In Alturas Lake, kokanee spawners dropped by 50% to 1,600

  7. Oncorhynchus nerka population monitoring in the Sawtooth Valley Lakes

    Energy Technology Data Exchange (ETDEWEB)

    Teuscher, D.M.; Taki, D.; Ariwite, K.

    1996-05-01

    Critical habitat for endangered Snake River sockeye salmon includes five rearing lakes located in the Sawtooth Valley of central Idaho. Most of the lakes contain either introduced or endemic kokanee populations. Snake River sockeye occur naturally in Redfish Lake, and are being stocked in Redfish and Pettit Lakes. Because kokanee compete with sockeye for limited food resources, understanding population characteristics of both species such as spawn timing, egg-to-fry survival, distribution and abundance are important components of sockeye recovery. This chapter describes some of those characteristics. In 1995, hydroacoustic estimates of O. nerka densities in the Sawtooth Valley Lakes ranged from 57 to 465 fish/ha. Densities were greatest in Pettit followed by Redfish (167), Alturas (95), and Stanley Lakes. O. nerka numbers increased from 1994 values in Pettit and Alturas Lakes, but declined in Redfish and Stanley. Despite a decline in total lake abundance, O. nerka biomass estimates in Redfish Lake increased. Approximately 144,000 kokanee fry recruited to Redfish Lake from Fishhook Creek. O. nerka fry recruitment to Stanley and Alturas lake was 5,000 and 30,000 fry, respectively. Egg-to-fry survival was 14% in Fishhook and 7% in Stanley Lake Creek. In Fishhook Creek, kokanee spawning escapement was estimated using stream surveys and a weir. Escapement estimates were 4,860 from weir counts, and 7,000 from stream surveys. As part of the kokanee reduction program, 385 of the spawning female kokanee were culled. Escapement for Stanley Lake Creek was only 60 fish, a ten fold decrease from 1994. In Alturas Lake, kokanee spawners dropped by 50% to 1,600.

  8. Holocene evolution of the Tonle Sap Lake: valley network infill and rates of sedimentation in Cambodia's Great Lake

    Science.gov (United States)

    Best, J.; Darby, S. E.; Langdon, P. G.; Hackney, C. R.; Leyland, J.; Parsons, D. R.; Aalto, R. E.; Marti, M.

    2017-12-01

    Tonle Sap Lake, the largest freshwater lake in SE Asia (c. 120km long and 35 km wide), is a vital ecosystem that provides 40-60% of the protein for the population of Cambodia. The lake is fed by flow from the Mekong River that causes the lake rise in level by c. 8m during monsoonal and cyclone-related floods, with drainage of the lake following the monsoon. Hydropower dam construction on the Mekong River has raised concerns as to the fragility of the Tonle Sap habitat due to any changing water levels and sedimentation rates within the lake. This paper details results of sub-bottom profiling surveys of Tonle Sap Lake in October 2014 that detailed the stratigraphy of the lake and assessed rates of infill. An Innomar Parametric Echo Sounder (PES) was used to obtain c. 250 km of sub-bottom profiles, with penetration up to 15m below the lake bed at a vertical resolution of c. 0.20m. These PES profiles were linked to cores from the north of the lake and previous literature. The PES profiles reveal a network of valleys, likely LGM, with relief up to c. 15-20m, that have been infilled by a suite of Holocene sediments. The valley surface is picked out as a strong reflector throughout the lake, and displays a series of valleys that are up to c. 15m deep and commonly 50-200m wide, although some of the largest valleys are 1.2km in width. Modelling of channel network incision during LGM conditions generates landscapes consistent with our field observations. The Tonle Sap valley network is infilled by sediments that show firstly fluvial and/or subaerial slope sedimentation, and then by extensive, parallel-bedded, lacustrine sedimentation. Lastly, the top c. 1m of sedimentation is marked by a distinct basal erosional surface that can be traced over much of the Tonle Sap Lake, and that is overlain by a series of parallel PES reflections. This upper sediment layer is interpreted to represent sedimentation in the Tonle Sap lake due to sediment suspension settling but after a period

  9. Thin, Conductive Permafrost Surrounding Lake Fryxell Indicates Salts From Past Lakes, McMurdo Dry Valleys, Antarctica

    Science.gov (United States)

    Foley, N.; Tulaczyk, S. M.; Gooseff, M. N.; Myers, K. F.; Doran, P. T.; Auken, E.; Dugan, H. A.; Mikucki, J.; Virginia, R. A.

    2017-12-01

    In the McMurdo Dry Valleys (MDV), permafrost should be thick and liquid water rare. However, despite the well below zero mean annual temperature in this cryospheric desert, liquid water can be found in lakes, summer melt streams, subglacial outflow, and - recent work has shown - underneath anomalously thin permafrost. In part, this niche hydrosphere is maintained by the presence of salts, which depress the freezing point of water to perhaps as cold as -10° Celsius. We detected widespread salty water across the MDV in lakes and at depth using a helicopter-borne Time Domain Electromagnetic (TDEM) sensor. By using the presence of brines to mark the transition from frozen permafrost (near the surface) to unfrozen ground (at depth), we have created a map of permafrost thickness in Lower Taylor Valley (LTV), a large MDV with a complex history of glaciation and occupation by lakes. Our results show that permafrost is thinner ( 200m) than would be expected based on geothermal gradient measurements (up to 1000m), a result of the freezing point depression caused by salt and potentially enhanced by an unfinished transient freezing process. Near Lake Fryxell, a large, brackish lake in the center of LTV, permafrost is very thin (about 30-40m) and notably more electrically conductive than more distal permafrost. This thin ring of conductive permafrost surrounding the lake basin most likely reflects the high presence of salts in the subsurface, preventing complete freezing. These salts may be a remnant of the salty bottom waters of a historic larger lake (LGM glacially dammed Lake Washburn) or the remnant of salty basal water from a past advance of Taylor Glacier, which now sits many km up-valley but is known to contain brines which currently flow onto the surface and directly into the subsurface aquifer.

  10. Geology and geomorphology of Bear Lake Valley and upper Bear River, Utah and Idaho

    Science.gov (United States)

    Reheis, M.C.; Laabs, B.J.C.; Kaufman, D.S.

    2009-01-01

    Bear Lake, on the Idaho-Utah border, lies in a fault-bounded valley through which the Bear River flows en route to the Great Salt Lake. Surficial deposits in the Bear Lake drainage basin provide a geologic context for interpretation of cores from Bear Lake deposits. In addition to groundwater discharge, Bear Lake received water and sediment from its own small drainage basin and sometimes from the Bear River and its glaciated headwaters. The lake basin interacts with the river in complex ways that are modulated by climatically induced lake-level changes, by the distribution of active Quaternary faults, and by the migration of the river across its fluvial fan north of the present lake. The upper Bear River flows northward for ???150 km from its headwaters in the northwestern Uinta Mountains, generally following the strike of regional Laramide and late Cenozoic structures. These structures likely also control the flow paths of groundwater that feeds Bear Lake, and groundwater-fed streams are the largest source of water when the lake is isolated from the Bear River. The present configuration of the Bear River with respect to Bear Lake Valley may not have been established until the late Pliocene. The absence of Uinta Range-derived quartzites in fluvial gravel on the crest of the Bear Lake Plateau east of Bear Lake suggests that the present headwaters were not part of the drainage basin in the late Tertiary. Newly mapped glacial deposits in the Bear River Range west of Bear Lake indicate several advances of valley glaciers that were probably coeval with glaciations in the Uinta Mountains. Much of the meltwater from these glaciers may have reached Bear Lake via groundwater pathways through infiltration in the karst terrain of the Bear River Range. At times during the Pleistocene, the Bear River flowed into Bear Lake and water level rose to the valley threshold at Nounan narrows. This threshold has been modified by aggradation, downcutting, and tectonics. Maximum lake

  11. Late Pleistocene Hansel Valley basaltic ash, northern Lake Bonneville, Utah, USA

    Science.gov (United States)

    Miller, D.M.; Oviatt, Charles G.; Nash, B.P.

    2008-01-01

    The Hansel Valley ash bed lies within 5 cm of the base of deposits of Lake Bonneville (???28 ka) in the vicinity of Great Salt Lake and provides a useful stratigraphic marker for this area of the lake basin. However, it has not been matched to an eruptive edifice, presumably because such an edifice was eroded by waves of Lake Bonneville. We present data for the chemical composition of the tephra and for possible matching lavas and tephras of the region, as well as grain size data for the tephra in an attempt to identify the location of the eruption. Matches with other tephras are negative, but lavas near the coarsest ash deposits match well with the distinctive high values of TiO2 and P2O5 of the ash. Neither chemistry nor grain size data points uniquely to a source area, but an area near the northwest shore of Great Salt Lake and within Curlew Valley is most likely. The Hansel Valley ash is an example of an ash that has no direct numerical date from proximal deposits, despite considerable study, yet nonetheless is useful for stratigraphic studies by virtue of its known stratigraphic position and approximate age. Basaltic tephras commonly are not as widespread as their rhyolitic counterparts, and in some cases apparently are produced by eruptive sources that are short lived and whose edifices are not persistent. ?? 2007 Elsevier Ltd and INQUA.

  12. Galaxy and Mass Assembly (GAMA): Morphological transformation of galaxies across the green valley

    Science.gov (United States)

    Bremer, M. N.; Phillipps, S.; Kelvin, L. S.; De Propris, R.; Kennedy, Rebecca; Moffett, Amanda J.; Bamford, S.; Davies, L. J. M.; Driver, S. P.; Häußler, B.; Holwerda, B.; Hopkins, A.; James, P. A.; Liske, J.; Percival, S.; Taylor, E. N.

    2018-05-01

    We explore constraints on the joint photometric and morphological evolution of typical low redshift galaxies as they move from the blue cloud through the green valley and on to the red sequence. We select Galaxy And Mass Assembly (GAMA) survey galaxies with 10.25 sensitive K-band profiles of red and green galaxy populations are very similar while g-band profiles indicate more disc-like morphologies for the green galaxies: apparent (optical) morphological differences arise primarily from radial mass-to-light ratio variations. Two-component fits show that most green galaxies have significant bulge and disc components and that the blue to red evolution is driven by colour change in the disc. Together, these strongly suggest that galaxies evolve from blue to red through secular disc fading and that a strong bulge is present prior to any decline in star formation. The relative abundance of the green population implies a typical time-scale for traversing the green valley ˜1-2 Gyr and is independent of environment, unlike that of the red and blue populations. While environment likely plays a rôle in triggering the passage across the green valley, it appears to have little effect on time taken. These results are consistent with a green valley population dominated by (early type) disc galaxies that are insufficiently supplied with gas to maintain previous levels of disc star formation, eventually attaining passive colours. No single event is needed to quench their star formation.

  13. Balancing lake ecological condition and agriculture irrigation needs in the Mississippi Alluvial Valley

    Science.gov (United States)

    Miranda, Leandro E.; Omer, A.R.; Killgore, K.J.

    2017-01-01

    The Mississippi Alluvial Valley includes hundreds of floodplain lakes that support unique fish assemblages and high biodiversity. Irrigation practices in the valley have lowered the water table, increasing the cost of pumping water, and necessitating the use of floodplain lakes as a source of water for irrigation. This development has prompted the need to regulate water withdrawals to protect aquatic resources, but it is unknown how much water can be withdrawn from lakes before ecological integrity is compromised. To estimate withdrawal limits, we examined descriptors of lake water quality (i.e., total nitrogen, total phosphorus, turbidity, Secchi visibility, chlorophyll-a) and fish assemblages (species richness, diversity, composition) relative to maximum depth in 59 floodplain lakes. Change-point regression analysis was applied to identify critical depths at which the relationships between depth and lake descriptors exhibited a rapid shift in slope, suggesting possible thresholds. All our water quality and fish assemblage descriptors showed rapid changes relative to depth near 1.2–2.0 m maximum depth. This threshold span may help inform regulatory decisions about water withdrawal limits. Alternatives to explain the triggers of the observed threshold span are considered.

  14. Preliminary Study of the Effect of the Proposed Long Lake Valley Project Operation on the Transport of Larval Suckers in Upper Klamath Lake, Oregon

    Science.gov (United States)

    Wood, Tamara M.

    2009-01-01

    A hydrodynamic model of Upper Klamath and Agency Lakes, Oregon, was used to explore the effects of the operation of proposed offstream storage at Long Lake Valley on transport of larval suckers through the Upper Klamath and Agency Lakes system during May and June, when larval fish leave spawning sites in the Williamson River and springs along the eastern shoreline and become entrained in lake currents. A range in hydrologic conditions was considered, including historically high and low outflows and inflows, lake elevations, and the operation of pumps between Upper Klamath Lake and storage in Long Lake Valley. Two wind-forcing scenarios were considered: one dominated by moderate prevailing winds and another dominated by a strong reversal of winds from the prevailing direction. On the basis of 24 model simulations that used all combinations of hydrology and wind forcing, as well as With Project and No Action scenarios, it was determined that the biggest effect of project operations on larval transport was the result of alterations in project management of the elevation in Upper Klamath Lake and the outflow at the Link River and A Canal, rather than the result of pumping operations. This was because, during the spring time period of interest, the amount of water pumped between Upper Klamath Lake and Long Lake Valley was generally small. The dominant effect was that an increase in lake elevation would result in more larvae in the Williamson River delta and in Agency Lake, an effect that was enhanced under conditions of wind reversal. A decrease in lake elevation accompanied by an increase in the outflow at the Link River had the opposite effect on larval concentration and residence time.

  15. Life history of lake herring of Green Bay, Lake Michigan

    Science.gov (United States)

    Smith, Stanford H.

    1956-01-01

    Although the lake herring has been an important contributor to the commercial fish production of Green Bay, little has been known about it. This study is based on field observations and data from about 6,500 lake herring collected over the period 1948 to 1952. Relatively nonselective commercial pound nets were a primary source of material for the study of age and growth. Commercial and experimental gill nets were used to obtain data on gear selectivity and vertical distribution. Scales were employed to investigate age and growth. Age group IV normally dominated commercial catches during the first half of the calendar year and age group III the last half. At these ages the fish averaged about 10.5 inches in length. The season's growth started in May, was most rapid in July, and terminated near the end of October. The sexes grew at the same rate. Selectivity of fishing gear was found to influence the estimation of growth. Geographical and annual differences in growth are shown. Factors that might contribute to discrepancies in calculated growth are evaluated. Possible real and apparent causes of growth compensation are given. The relation between length and weight is shown to vary with sex, season, year, and method of capture. Females were relatively more plentiful in commercial catches in February than in May through December. The percentage of females decreased with increase in age in pound-net catches but increased with age in gill-net samples. Within a year class the percentage of females decreased with increase in age. Most Green Bay lake herring mature during their second or third year of life. They are pelagic spawners with most intensive spawning over shallow areas. Spawning takes place between mid-November and mid-December, and eggs hatch in April and May. Lake herring ovaries contained from 3,500 to 11,200 eggs (averaged 6,375). Progress of spawning by age, sex, and length is given. Lake herring were distributed at all depths in Green Bay in early May, were

  16. Middle Pleistocene infill of Hinkley Valley by Mojave River sediment and associated lake sediment: Depositional architecture and deformation by strike-slip faults

    Science.gov (United States)

    Miller, David; Haddon, Elizabeth; Langenheim, Victoria; Cyr, Andrew J.; Wan, Elmira; Walkup, Laura; Starratt, Scott W.

    2018-01-01

    Hinkley Valley in the Mojave Desert, near Barstow about 140 km northeast of Los Angeles and midway between Victorville Valley and the Lake Manix basin, contains a thick sedimentary sequence delivered by the Mojave River. Our study of sediment cores drilled in the valley indicates that Hinkley Valley was probably a closed playa basin with stream inflow from four directions prior to Mojave River inflow. The Mojave River deposited thick and laterally extensive clastic wedges originating from the southern valley that rapidly filled much of Hinkley Valley. Sedimentary facies representing braided stream, wetland, delta, and lacustrine depositional environments all are found in the basin fill; in some places, the sequence is greater than 74 m (245 ft) thick. The sediment is dated in part by the presence of the ~631 ka Lava Creek B ash bed low in the section, and thus represents sediment deposition after Victorville basin was overtopped by sediment and before the Manix basin began to be filled. Evidently, upstream Victorville basin filled with sediment by about 650 ka, causing the ancestral Mojave River to spill to the Harper and Hinkley basins, and later to Manix basin.Initial river sediment overran wetland deposits in many places in southern Hinkley Valley, indicating a rapidly encroaching river system. These sediments were succeeded by a widespread lake (“blue” clay) that includes the Lava Creek B ash bed. Above the lake sediment lies a thick section of interlayered stream sediment, delta and nearshore lake sediment, mudflat and/or playa sediment, and minor lake sediment. This stratigraphic architecture is found throughout the valley, and positions of lake sediment layers indicate a successive northward progression in the closed basin. A thin overlapping sequence at the north end of the valley contains evidence for a younger late Pleistocene lake episode. This late lake episode, and bracketing braided stream deposits of the Mojave River, indicate that the river

  17. Lake Chad, Chad, Africa

    Science.gov (United States)

    1992-01-01

    Hydrologic and ecologic changes in the Lake Chad Basin are shown in this Oct 1992 photograph. In space photo documentation, Lake Chad was at its greatest area extent (25,000 sq. km.) during Gemini 9 in June 1966 (see S66-38444). Its reduction during the severe droughts from 1968 to 1974 was first noted during Skylab (1973-1974). After the drought began again in 1982, the lake reached its minimum extent (1,450 sq. km.) in Space Shuttle photographs taken in 1984 and 1985. In this STS-52 photograph, Lake Chad has begun to recover. The area of the open water and interdunal impoundments in the southern basin (the Chari River Basin) is estimated to be 1,900 to 2100 sq. km. Note the green vegetation in the valley of the K'Yobe flow has wetted the northern lake basin for the first time in several years. There is evidence of biomass burning south of the K'Yobe Delta and in the vegetated interdunal areas near the dike in the center of the lake. Also note the dark 'Green Line' of the Sahel (the g

  18. Determinism in fish assemblages of floodplain lakes of the vastly disturbed Mississippi Alluvial Valley

    Science.gov (United States)

    Miranda, L.E.; Lucas, G.M.

    2004-01-01

    The Mississippi Alluvial Valley between southern Illinois and southern Louisiana contains hundreds of floodplain lakes, most of which have been adversely affected by landscape modifications used to control flooding and support agriculture. We examined fish assemblages in lakes of this region to determine whether deterministic patterns developed in relation to prominent abiotic lake characteristics and to explore whether relevant abiotic factors could be linked to specific assemblage structuring mechanisms. The distributions of 14 taxa in 29 lakes were governed primarily by two gradients that contrasted assemblages in terms of lake area, lake elongation, and water clarity. The knowledge of whether a lake was clear or turbid, large or small, and long or short helped determine fish assemblage characteristics. Abiotic factors influenced fish assemblage structures, plausibly through limitations on foraging and physiological tolerances. Determinism in assemblage organization of floodplain lakes relative to recurrence in physicochemical features has been documented for unaltered rivers. Whereas the Mississippi Alluvial Valley has been subjected to vast anthropogenic disturbances and is not a fully functional floodplain river, fish assemblages in its floodplain lakes remain deterministic and organized by the underlying factors that also dictate assemblages in unaltered rivers. In advanced stages of lake aging, fish assemblages in these lakes are expected to largely include species that thrive in turbid, shallow systems with few predators and low oxygen concentrations. The observed patterns related to physical characteristics of these lakes suggest three general conservation foci, including (1) watershed management to control erosion, (2) removal of sediments or increases in water level to alleviate depth reductions and derived detriments to water physicochemistry, and (3) management of fish populations through stockings, removals, and harvest regulations.

  19. Micro-hole and multigrain quartz luminescence dating of Paleodeltas at Lake Fryxell, McMurdo Dry Valleys (Antarctica), and relevance for lake history

    DEFF Research Database (Denmark)

    Berger, G.W.; Doran, P.T.; Thomsen, Kristina Jørkov

    2013-01-01

    Relict (perched) lacustrine deltas around the perennially ice-covered lakes in the Taylor Valley, Antarctica, imply that these lakes were up to 40 times larger in area than at present since the last glacial maximum (LGM). These deltas have been used to constrain ice-margin positions in Taylor Val...

  20. Valley formation by groundwater seepage, pressurized groundwater outbursts and crater-lake overflow in flume experiments with implications for Mars

    Science.gov (United States)

    Marra, Wouter A.; Braat, Lisanne; Baar, Anne W.; Kleinhans, Maarten G.

    2014-04-01

    Remains of fluvial valleys on Mars reveal the former presence of water on the surface. However, the source of water and the hydrological setting is not always clear, especially in types of valleys that are rare on Earth and where we have limited knowledge of the processes involved. We investigated three hydrological scenarios for valley formation on Mars: hydrostatic groundwater seepage, release of pressurized groundwater and crater-lake overflow. Using physical modeling in laboratory experiments and numerical hydrological modeling we quantitatively studied the morphological development and processes involved in channel formation that result from these different sources of water in unconsolidated sediment. Our results show that valleys emerging from seeping groundwater by headward erosion form relatively slowly as fluvial transport takes place in a channel much smaller than the valley. Pressurized groundwater release forms a characteristic source area at the channel head by fluidization processes. This head consist of a pit in case of superlithostatic pressure and may feature small radial channels and collapse features. Valleys emerging from a crater-lake overflow event develop quickly in a run-away process of rim erosion and discharge increase. The valley head at the crater outflow point has a converging fan shape, and the rapid incision of the rim leaves terraces and collapse features. Morphological elements observed in the experiments can help in identifying the formative processes on Mars, when considerations of experimental scaling and lithological characteristics of the martian surface are taken into account. These morphological features might reveal the associated hydrological settings and formative timescales of a valley. An estimate of formative timescale from sediment transport is best based on the final channel dimensions for groundwater seepage valleys and on the valley dimensions for pressurized groundwater release and crater-lake overflow valleys. Our

  1. Greening Turner Valley

    International Nuclear Information System (INIS)

    Byfield, M.

    2010-01-01

    This article discussed remedial activities undertaken in the Turner Valley. Remedial action in the valley must satisfy the financial concerns of engineers and investors as well as the environmental concerns of residents and regulators. Natural gas production in the Turner Valley began in 1914. The production practices were harmful and wasteful. Soil and water pollution was not considered a problem until recently. The impacts of cumulative effects and other pollution hazards are now being considered as part of many oil and gas environmental management programs. Companies know it is cheaper and safer to prevent pollutants from being released, and more efficient to clean them up quickly. Oil and gas companies are also committed to remediating historical problems. Several factors have simplified remediation plans in the Turner Valley. Area real estate values are now among the highest in Alberta. While the valley residents are generally friendly to the petroleum industry, strong communication with all stakeholders in the region is needed. 1 fig.

  2. Education Outreach Associated with Technology Transfer in a Colonia of South Texas: Green Valley Farms Science and Space Club for Middle School Aged Children in Green Valley Farms, San Benito, Texas

    Science.gov (United States)

    Potess, Marla D.; Rainwater, Ken; Muirhead, Dean

    2004-01-01

    Texas colonias are unincorporated subdivisions characterized by inadequate water and wastewater infrastructure, inadequate drainage and road infrastructure, substandard housing, and poverty. Since 1989 the Texas Legislature has implemented policies to halt further development of colonias and to address water and wastewater infrastructure needs in existing and new colonias along the border with Mexico. Government programs and non-government and private organization projects aim to address these infrastructure needs. Texas Tech University's Water Resources Center demonstrated the use of alternative on-site wastewater treatment in the Green Valley Farms colonia, San Benito, Texas. The work in Green Valley Farms was a component of a NASA-funded project entitled Evaluation of NASA's Advanced Life Support Integrated Water Recovery System for Non-Optimal Conditions and Terrestrial Applications. Two households within the colonia are demonstration sites for constructed wetlands. A colonia resident and activist identified educational opportunities for colonia children as a primary goal for many colonia residents. Colonia parents view education as the door to opportunity and escape from poverty for their children. The educational outreach component of the project in Green Valley Farms was a Science and Space Club for middle-school age students. Involved parents, schoolteachers, and school administrators enthusiastically supported the monthly club meetings and activities. Each month, students participated in interactive learning experiences about water use and reuse in space and on earth. Activities increased knowledge and interest in water resource issues and in science and engineering fields. The Institute for the Development and Enrichment of Advanced Learners (IDEAL) at Texas Tech University provided full scholarships for five students from Green Valley Farms to attend the Shake Hands With Your Future camp at Texas Tech University in June 2003. The educational outreach

  3. Cooperation control strategies for China's cross-region pollution in a lake basin based on green reduction cost.

    Science.gov (United States)

    Li, Changmin; Sun, Dong; Xie, Xiaoqiang; Xue, Jian

    2016-05-01

    The cross-region water pollution issue has always been the widespread concern around the world. It becomes especially critical for China due to the imbalance relates to environmental costs that have accompanied rapid growth of economy. Though the government makes great efforts to improve it, the potential for water pollution conflict is still great. We consider the problem of determining combined control strategies for China's cross-region lake pollution based on the environmental green costs. The problem is first formulated as a generalized bilevel mathematical program where the upper level consists in each region that reduces environmental green costs including three parts: the reduction cost, pollution permit trade cost and cost of environment damage, while the lower level is represented by pollution permit equilibrium market. Finally, we take an empirical analysis in Taihu lake. The numerical study shows that the minimum costs of both total and regional are obviously superior to the current processing costs, which provides theoretical basis for the price of emission permits. Today, China's rapid gross domestic product (GDP) growth has come at a very high cost, as real estate prices have skyrocketed, the wealth gap has widened, and environmental pollution has worsened. China's central government is urged to correct the GDP-oriented performance evaluation system that is used to judge administrative region leaders. The cross-region water pollution issue has become a troubling issue that urgently needs to be resolved in China. This paper will not only actively aid efforts to govern Lake Taihu and other cross-region valleys, but it will also provide a supplement for theoretical research on cross-region pollution issues.

  4. Factors affecting fish biodiversity in floodplain lakes of the Mississippi Alluvial Valley

    Science.gov (United States)

    Miranda, Leandro E.; Dembkowski, Daniel J.

    2012-01-01

    River-floodplain ecosystems offer some of the most diverse and dynamic environments in the world. Accordingly, floodplain habitats harbor diverse fish assemblages. Fish biodiversity in floodplain lakes may be influenced by multiple variables operating on disparate scales, and these variables may exhibit a hierarchical organization depending on whether one variable governs another. In this study, we examined the interaction between primary variables descriptive of floodplain lake large-scale features, suites of secondary variables descriptive of water quality and primary productivity, and a set of tertiary variables descriptive of fish biodiversity across a range of floodplain lakes in the Mississippi Alluvial Valley of Mississippi and Arkansas (USA). Lakes varied considerably in their representation of primary, secondary, and tertiary variables. Multivariate direct gradient analyses indicated that lake maximum depth and the percentage of agricultural land surrounding a lake were the most important factors controlling variation in suites of secondary and tertiary variables, followed to a lesser extent by lake surface area. Fish biodiversity was generally greatest in large, deep lakes with lower proportions of watershed agricultural land. Our results may help foster a holistic approach to floodplain lake management and suggest the framework for a feedback model wherein primary variables can be manipulated for conservation and restoration purposes and secondary and tertiary variables can be used to monitor the success of such efforts.

  5. Morphometric Change Detection of Lake Hawassa in the Ethiopian Rift Valley

    Directory of Open Access Journals (Sweden)

    Yonas Abebe

    2018-05-01

    Full Text Available The Ethiopian Rift Valley lakes have been subjected to environmental and ecological changes due to recent development endeavors and natural phenomena, which are visible in the alterations to the quality and quantity of the water resources. Monitoring lakes for temporal and spatial alterations has become a valuable indicator of environmental change. In this regard, hydrographic information has a paramount importance. The first extensive hydrographic survey of Lake Hawassa was conducted in 1999. In this study, a bathymetric map was prepared using advances in global positioning systems, portable sonar sounder technology, geostatistics, remote sensing and geographic information system (GIS software analysis tools with the aim of detecting morphometric changes. Results showed that the surface area of Lake Hawassa increased by 7.5% in 1999 and 3.2% in 2011 from that of 1985. Water volume decreased by 17% between 1999 and 2011. Silt accumulated over more than 50% of the bed surface has caused a 4% loss of the lake’s storage capacity. The sedimentation patterns identified may have been strongly impacted by anthropogenic activities including urbanization and farming practices located on the northern, eastern and western sides of the lake watershed. The study demonstrated this geostatistical modeling approach to be a rapid and cost-effective method for bathymetric mapping.

  6. Groundwater quality in the Bear Valley and Lake Arrowhead Watershed, California

    Science.gov (United States)

    Mathany, Timothy; Burton, Carmen; Fram, Miranda S.

    2017-06-20

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. The Bear Valley and Lake Arrowhead Watershed study areas in southern California compose one of the study units being evaluated.

  7. 77 FR 27001 - Proposed Establishment of the Ancient Lakes of Columbia Valley Viticultural Area

    Science.gov (United States)

    2012-05-08

    ... comments that TTB receives about this proposal by appointment at the TTB Information Resource Center, 1310... and avoid any potential confusion with any other locations referred to as ``Ancient Lakes... such usage. The newspaper article concerned a geological tour of the Quincy Valley and listed one of...

  8. Galaxy and Mass Assembly (GAMA): Variation in Galaxy Structure Across the Green Valley

    Science.gov (United States)

    Kelvin, Lee S.; Bremer, Malcolm N.; Phillipps, Steven; James, Philip A.; Davies, Luke J. M.; De Propris, Roberto; Moffett, Amanda J.; Percival, Susan M.; Baldry, Ivan K.; Collins, Chris A.; Alpaslan, Mehmet; Bland-Hawthorn, Joss; Brough, Sarah; Cluver, Michelle; Driver, Simon P.; Hashemizadeh, Abdolhosein; Holwerda, Benne W.; Laine, Jarkko; Lara-Lopez, Maritza A.; Liske, Jochen; Maciejewski, Witold; Napolitano, Nicola R.; Penny, Samantha J.; Popescu, Cristina C.; Sansom, Anne E.; Sutherland, Will; Taylor, Edward N.; van Kampen, Eelco; Wang, Lingyu

    2018-04-01

    Using a sample of 472 local Universe (z rules out violent transformative events as the primary end-of-life evolutionary mechanism, with a more passive scenario the favoured candidate for the majority of galaxies rapidly transitioning across the green valley.

  9. Effect of lighting conditions of coastal zone of Knyaginya lake on composition of macrophyte biohydrocenoses

    Directory of Open Access Journals (Sweden)

    B. O. Baranovsky

    2005-10-01

    Full Text Available In articlе the stuffs of researches of influence of a mode of illuminating intensity of coastal zone of a different exposition flood-land of lake Knyaginya (valley Samara on composition of highest aqueous green and macrozoobentos macrophytes biogeocenose are submitted.

  10. Evaporation estimation of rift valley lakes: comparison of models.

    Science.gov (United States)

    Melesse, Assefa M; Abtew, Wossenu; Dessalegne, Tibebe

    2009-01-01

    Evapotranspiration (ET) accounts for a substantial amount of the water flux in the arid and semi-arid regions of the World. Accurate estimation of ET has been a challenge for hydrologists, mainly because of the spatiotemporal variability of the environmental and physical parameters governing the latent heat flux. In addition, most available ET models depend on intensive meteorological information for ET estimation. Such data are not available at the desired spatial and temporal scales in less developed and remote parts of the world. This limitation has necessitated the development of simple models that are less data intensive and provide ET estimates with acceptable level of accuracy. Remote sensing approach can also be applied to large areas where meteorological data are not available and field scale data collection is costly, time consuming and difficult. In areas like the Rift Valley regions of Ethiopia, the applicability of the Simple Method (Abtew Method) of lake evaporation estimation and surface energy balance approach using remote sensing was studied. The Simple Method and a remote sensing-based lake evaporation estimates were compared to the Penman, Energy balance, Pan, Radiation and Complementary Relationship Lake Evaporation (CRLE) methods applied in the region. Results indicate a good correspondence of the models outputs to that of the above methods. Comparison of the 1986 and 2000 monthly lake ET from the Landsat images to the Simple and Penman Methods show that the remote sensing and surface energy balance approach is promising for large scale applications to understand the spatial variation of the latent heat flux.

  11. Evaporation Estimation of Rift Valley Lakes: Comparison of Models

    Directory of Open Access Journals (Sweden)

    Tibebe Dessalegne

    2009-12-01

    Full Text Available Evapotranspiration (ET accounts for a substantial amount of the water flux in the arid and semi-arid regions of the World. Accurate estimation of ET has been a challenge for hydrologists, mainly because of the spatiotemporal variability of the environmental and physical parameters governing the latent heat flux. In addition, most available ET models depend on intensive meteorological information for ET estimation. Such data are not available at the desired spatial and temporal scales in less developed and remote parts of the world. This limitation has necessitated the development of simple models that are less data intensive and provide ET estimates with acceptable level of accuracy. Remote sensing approach can also be applied to large areas where meteorological data are not available and field scale data collection is costly, time consuming and difficult. In areas like the Rift Valley regions of Ethiopia, the applicability of the Simple Method (Abtew Method of lake evaporation estimation and surface energy balance approach using remote sensing was studied. The Simple Method and a remote sensing-based lake evaporation estimates were compared to the Penman, Energy balance, Pan, Radiation and Complementary Relationship Lake Evaporation (CRLE methods applied in the region. Results indicate a good correspondence of the models outputs to that of the above methods. Comparison of the 1986 and 2000 monthly lake ET from the Landsat images to the Simple and Penman Methods show that the remote sensing and surface energy balance approach is promising for large scale applications to understand the spatial variation of the latent heat flux.

  12. Hierarchy in factors affecting fish biodiversity in floodplain lakes of the Mississippi Alluvial Valley

    Science.gov (United States)

    Dembkowski, D.J.; Miranda, L.E.

    2012-01-01

    River-floodplain ecosystems offer some of the most diverse and dynamic environments in the world. Accordingly, floodplain habitats harbor diverse fish assemblages. Fish biodiversity in floodplain lakes may be influenced by multiple variables operating on disparate scales, and these variables may exhibit a hierarchical organization depending on whether one variable governs another. In this study, we examined the interaction between primary variables descriptive of floodplain lake large-scale features, suites of secondary variables descriptive of water quality and primary productivity, and a set of tertiary variables descriptive of fish biodiversity across a range of floodplain lakes in the Mississippi Alluvial Valley of Mississippi and Arkansas (USA). Lakes varied considerably in their representation of primary, secondary, and tertiary variables. Multivariate direct gradient analyses indicated that lake maximum depth and the percentage of agricultural land surrounding a lake were the most important factors controlling variation in suites of secondary and tertiary variables, followed to a lesser extent by lake surface area. Fish biodiversity was generally greatest in large, deep lakes with lower proportions of watershed agricultural land. Our results may help foster a holistic approach to floodplain lake management and suggest the framework for a feedback model wherein primary variables can be manipulated for conservation and restoration purposes and secondary and tertiary variables can be used to monitor the success of such efforts. ?? 2011 Springer Science+Business Media B.V.

  13. Integrated hazard assessment of Cirenmaco glacial lake in Zhangzangbo valley, Central Himalayas

    Science.gov (United States)

    Wang, Weicai; Gao, Yang; Iribarren Anacona, Pablo; Lei, Yanbin; Xiang, Yang; Zhang, Guoqing; Li, Shenghai; Lu, Anxin

    2018-04-01

    Glacial lake outburst floods (GLOFs) have recently become one of the primary natural hazards in the Himalayas. There is therefore an urgent need to assess GLOF hazards in the region. Cirenmaco, a moraine-dammed lake located in the upstream portion of Zhangzangbo valley, Central Himalayas, has received public attention after its damaging 1981 outburst flood. Here, by combining remote sensing methods, bathymetric survey and 2D hydraulic modeling, we assessed the hazard posed by Cirenmaco in its current status. Inter-annual variation of Cirenmaco lake area indicates a rapid lake expansion from 0.10 ± 0.08 km2 in 1988 to 0.39 ± 0.04 km2 in 2013. Bathymetric survey shows the maximum water depth of the lake in 2012 was 115 ± 2 m and the lake volume was calculated to be 1.8 × 107 m3. Field geomorphic analysis shows that Cirenmaco glacial lake is prone to GLOFs as mass movements and ice and snow avalanches can impact the lake and the melting of the dead ice in the moraine can lower the dam level. HEC-RAS 2D model was then used to simulate moraine dam failure of the Cirenmaco and assess GLOF impacts downstream. Reconstruction of Cirenmaco 1981 GLOF shows that HEC-RAS can produce reasonable flood extent and water depth, thus demonstrate its ability to effectively model complex GLOFs. GLOF modeling results presented can be used as a basis for the implementation of disaster prevention and mitigation measures. As a case study, this work shows how we can integrate different methods to GLOF hazard assessment.

  14. Spatial relationships of the Preajba Valley Lakes evolution reflected on cartographic documents

    Directory of Open Access Journals (Sweden)

    Marga AVRAM

    2015-12-01

    Full Text Available The Preajba-Facai lacustrine system is located in the southern part of Craiova municipality and it is distinguished by a high level of originality conferred by both its hydro-geomorphological and biological features. The construction of this series of lakes along the Preajba river began during the Communist times (in the 1970s with the declared aim of serving as a recreational space for the inhabitants of this municipality. The river springs near Cârcea locality at an altitude of 192 metres and it flows into Craiova channel after 9.6 km, with a source-mouth level difference of 121.1 metres. Chronologically, the number of lakes situated along the Preajba river may vary, according to the analysed cartographic document, from 3 lakes (Military Topographic Maps to 11 lakes (Topographic Map, 1:25,000. With the development of the area covered by water, the human pressure has increased as a consequence of the intensive development of the surrounding area. This phenomenon gradually led to an involution of the lake surface (25.34 ha in 2014, Google Earth PRO. The aim of this research is to highlight the relational dynamic appearance-evolution-involution suffered by the lakes situated along the Preajba Valley, in correlation with the processes that occurred at the level of the constructed surface and in terms of respecting the status of this protected area of aqua-faunistic interest (The Lacustrine System of Preajba-Facai.

  15. The water balance of the urban Salt Lake Valley: a multiple-box model validated by observations

    Science.gov (United States)

    Stwertka, C.; Strong, C.

    2012-12-01

    A main focus of the recently awarded National Science Foundation (NSF) EPSCoR Track-1 research project "innovative Urban Transitions and Arid-region Hydro-sustainability (iUTAH)" is to quantify the primary components of the water balance for the Wasatch region, and to evaluate their sensitivity to climate change and projected urban development. Building on the multiple-box model that we developed and validated for carbon dioxide (Strong et al 2011), mass balance equations for water in the atmosphere and surface are incorporated into the modeling framework. The model is used to determine how surface fluxes, ground-water transport, biological fluxes, and meteorological processes regulate water cycling within and around the urban Salt Lake Valley. The model is used to evaluate the hypotheses that increased water demand associated with urban growth in Salt Lake Valley will (1) elevate sensitivity to projected climate variability and (2) motivate more attentive management of urban water use and evaporative fluxes.

  16. When Green Goes Bad: An interdisciplinary approach to better understand cyanobacteria, nutrients, and lakes

    Science.gov (United States)

    The current connotation within the environmental protection arena is that "Green is Good." While that is very often true, in the case of lakes and ponds when they suddenly go green, it is most likely the result of an algae bloom. These blooms increasingly contain many harmful s...

  17. Green valley galaxies as a transition population in different environments

    Science.gov (United States)

    Coenda, Valeria; Martínez, Héctor J.; Muriel, Hernán

    2018-02-01

    We present a comparative analysis of the properties of passive, star-forming and transition (green valley) galaxies in four discrete environments: field, groups, the outskirts and the core of X-ray clusters. We construct samples of galaxies from the Sloan Digital Sky Survey in these environments so that they are bound to have similar redshift distributions. The classification of galaxies into the three sequences is based on the UV-optical colour NUV - r. We study a number of galaxy properties: stellar mass, morphology, specific star formation rate and the history of star formation. The analysis of green valley (GV) galaxies reveals that the physical mechanisms responsible for external quenching become more efficient moving from the field to denser environments. We confirm previous findings that GV galaxies have intermediate morphologies; moreover, we find that this appears to be independent of the environment. Regarding the stellar mass of GV galaxies, we find that they tend to be more massive in the field than in denser environments. On average, GV galaxies account for ∼ 20 per cent of all galaxies in groups and X-ray clusters. We find evidence that the field environment is inefficient in transforming low-mass galaxies. GV galaxies have average star formation histories intermediate between passive and star-forming galaxies, and have a clear and consistent dependence on the environment: both, the quenching time and the amplitude of the star formation rate, decrease towards higher density environments.

  18. Understanding the behavior of carbon dioxide and surface energy fluxes in semiarid Salt Lake Valley, Utah, USA

    Science.gov (United States)

    Ramamurthy, Prathap

    This dissertation reports the findings from the Salt Lake Valley flux study. The Salt Lake Valley flux study was designed to improve our understanding of the complex land-atmosphere interactions in urban areas. The flux study used the eddy covariance technique to quantify carbon dioxide and surface energy budget in the semiarid Salt Lake Valley. Apart from quantifying fluxes, the study has also added new insight into the nature of turbulent scalar transport in urban areas and has addressed some of the complications in using Eddy Covariance technique in urban areas. As part of this experiment, eddy fluxes of CO2 and surface energy fluxes were measured at two sites, with distinct urban landforms; One site was located in a suburban neighborhood with substantial vegetative cover, prototypical of many residential neighborhoods in the valley. The other CO2 site was in a preurban surrounding that resembled the Salt Lake Valley before it was urbanized. The two sites were intentionally chosen to illustrate the impact of urbanization on CO 2 and surface energy flux cycles. Results indicate that the suburban site acted as a sink of CO2 during the midday period due to photosynthesis and acted as a source of CO2 during the evening and nighttime periods. The vegetative cover around the suburban site also had a significant impact on the surface energy fluxes. Contribution from latent heat flux was substantially high at the suburban site during the summer months compared to sensible heat. The turbulence investigation found that the general behavior of turbulence was very much influenced by local factors and the statistics did not always obey Monin-Obukhov Similarity parameters. This investigation also found that the scalar (co)spectra observed at the suburban site were characterized by multiple peaks and were different compared to (co)spectra reported over forest and crop canopies. The study also observed multiscale CO2 transport at the suburban site during the convective period

  19. THE SLOW DEATH (OR REBIRTH?) OF EXTENDED STAR FORMATION IN z ∼ 0.1 GREEN VALLEY EARLY-TYPE GALAXIES

    International Nuclear Information System (INIS)

    Fang, Jerome J.; Faber, S. M.; Salim, Samir; Graves, Genevieve J.; Rich, R. Michael

    2012-01-01

    UV observations in the local universe have uncovered a population of early-type galaxies with UV flux consistent with low-level recent or ongoing star formation. Understanding the origin of such star formation remains an open issue. We present resolved UV-optical photometry of a sample of 19 Sloan Digital Sky Survey (SDSS) early-type galaxies at z ∼ 0.1 drawn from the sample originally selected by Salim and Rich to lie in the bluer part of the green valley in the UV-optical color-magnitude diagram as measured by the Galaxy Evolution Explorer (GALEX). Utilizing high-resolution Hubble Space Telescope (HST) far-UV imaging provides unique insight into the distribution of UV light in these galaxies, which we call ''extended star-forming early-type galaxies'' (ESF-ETGs) because of extended UV emission that is indicative of recent star formation. The UV-optical color profiles of all ESF-ETGs show red centers and blue outer parts. Their outer colors require the existence of a significant underlying population of older stars in the UV-bright regions. An analysis of stacked SDSS spectra reveals weak LINER-like emission in their centers. Using a cross-matched SDSS DR7/GALEX GR6 catalog, we search for other green valley galaxies with similar properties to these ESF-ETGs and estimate that ≈13% of dust-corrected green valley galaxies of similar stellar mass and UV-optical color are likely ESF-candidates, i.e., ESF-ETGs are not rare. Our results are consistent with star formation that is gradually declining in existing disks, i.e., the ESF-ETGs are evolving onto the red sequence for the first time, or with rejuvenated star formation due to accreted gas in older disks provided that the gas does not disrupt the structure of the galaxy and the resulting star formation is not too recent and bursty. ESF-ETGs may typify an important subpopulation of galaxies that can linger in the green valley for up to several Gyrs, based on their resemblance to nearby gas-rich green valley

  20. Modeling the Thickness of Perennial Ice Covers on Stratified Lakes of the Taylor Valley, Antarctica

    Science.gov (United States)

    Obryk, M. K.; Doran, P. T.; Hicks, J. A.; McKay, C. P.; Priscu, J. C.

    2016-01-01

    A one-dimensional ice cover model was developed to predict and constrain drivers of long term ice thickness trends in chemically stratified lakes of Taylor Valley, Antarctica. The model is driven by surface radiative heat fluxes and heat fluxes from the underlying water column. The model successfully reproduced 16 years (between 1996 and 2012) of ice thickness changes for west lobe of Lake Bonney (average ice thickness = 3.53 m; RMSE = 0.09 m, n = 118) and Lake Fryxell (average ice thickness = 4.22 m; RMSE = 0.21 m, n = 128). Long-term ice thickness trends require coupling with the thermal structure of the water column. The heat stored within the temperature maximum of lakes exceeding a liquid water column depth of 20 m can either impede or facilitate ice thickness change depending on the predominant climatic trend (temperature cooling or warming). As such, shallow (< 20 m deep water columns) perennially ice-covered lakes without deep temperature maxima are more sensitive indicators of climate change. The long-term ice thickness trends are a result of surface energy flux and heat flux from the deep temperature maximum in the water column, the latter of which results from absorbed solar radiation.

  1. Towards a Detailed Seismic Structure of the Valley of Mexico's Xochimilco Lake Zone.

    Science.gov (United States)

    Rabade, S.; Sanchez-Sanchez, J.; Ayala Hernandez, M.; Macias, M. A.; Aguilar Calderon, L. A.; Alcántara, L.; Almora Mata, D.; Castro Parra, G.; Delgado, R.; Leonardo Suárez, M.; Molina Avila, I.; Mora, A.; Perez-Yanez, C.; Ruiz, A. L.; Sandoval, H.; Torres Noguez, M.; Vazquez Larquet, R.; Velasco Miranda, J. M.; Aguirre, J.; Ramirez-Guzmán, L.

    2017-12-01

    Six centuries of gradual, intentional sediment filling in the Xochimilco Lake Zone have drastically reduced the size of the lake. The basin structure and the lake's clay limits and thickness are poorly constrained, and yet, essential to explain the city's anomalous ground motion. Therefore, we conducted an experiment to define the 3D velocity model of Mexico's capital; the CDMX-E3D. The initial phase involved the deployment of a moving set of 18-broadband stations with an interstation distance of 500m over a period of 19 weeks. We collected the data and analyzed the results for the Xochimilco Lake Zone using H/V Spectral Ratios (Nakamura, 1989), which provided an improved fundamental period map of the region. Results show that periods in the former lake zone have larger variability than values previously estimated. In order to obtain group velocity maps at different periods, we estimated Green's functions from ambient noise cross-correlations following standard methodologies to invert Rayleigh wave travel times (Bensen et al., 2007). Preliminary result show very low-velocity zones (100 m/s) and thick sediment layers in most of the former Xochimilco Lake area. This Project was funded by the Secretaria de Ciencia, Tecnología e Innovación (SECITI) of Mexico City. Project SECITI/073/2016.

  2. A 28,000 year history of vegetation and climate from Lower Red Rock Lake, Centennial Valley, Southwestern Montana, USA

    Science.gov (United States)

    Mumma, Stephanie Ann; Whitlock, Cathy; Pierce, Kenneth

    2012-01-01

    A sediment core extending to 28,000 cal yr BP from Lower Red Rock Lake in the Centennial Valley of southwestern Montana provides new information on the nature of full-glacial vegetation as well as a history of late-glacial and Holocene vegetation and climate in a poorly studied region. Prior to 17,000 cal yr BP, the eastern Centennial Valley was occupied by a large lake (Pleistocene Lake Centennial), and valley glaciers were present in adjacent mountain ranges. The lake lowered upon erosion of a newly formed western outlet in late-glacial time. High pollen percentages of Juniperus, Poaceae, Asteraceae, and other herbs as well as low pollen accumulation rates suggest sparse vegetation cover. Inferred cold dry conditions are consistent with a strengthened glacial anticyclone at this time. Between 17,000 and 10,500 cal yr BP, high Picea and Abies pollen percentages suggest a shift to subalpine parkland and warmer conditions than before. This is attributed to the northward shift of the jet stream and increasing summer insolation. From 10,500 to 7100 cal yr BP, pollen evidence of open dry forests suggests warm conditions, which were likely a response to increased summer insolation and a strengthened Pacific subtropical high-pressure system. From 7100 to 2400 cal yr BP, cooler moister conditions promoted closed forest and wetlands. Increases in Picea and Abies pollen percentages after 2400 cal yr BP suggest increasing effective moisture. The postglacial pattern of Pseudotsuga expansion indicates that it arrived later on the Atlantic side of the Continental Divide than on the Pacific side. The Divide may have been a physical barrier for refugial populations or it delimited different climate regions that influenced the timing of Pseudotsuga expansion.

  3. Mercury in fish from three rift valley lakes (Turkana, Naivasha and Baringo), Kenya, East Africa

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, L.M.; Osano, O.; Hecky, R.E.; Dixon, D.G

    2003-09-01

    Mercury concentrations in Kenyan fish vary with tropic position but, in general, do not pose an unacceptable risk to human consumers of wildlife. -Total mercury (THg) concentrations were measured for various fish species from Lakes Turkana, Naivasha and Baringo in the rift valley of Kenya. The highest THg concentration (636 ng g{sup -1} wet weight) was measured for a piscivorous tigerfish Hydrocynus forskahlii from Lake Turkana. THg concentrations for the Perciformes species, the Nile perch Lates niloticus from Lake Turkana and the largemouth bass Micropterus salmoides from Lake Naivasha ranged between 4 and 95 ng g{sup -1}. The tilapiine species in all lakes, including the Nile tilapia Oreochromis niloticus, had consistently low THg concentrations ranging between 2 and 25 ng g{sup -1}. In Lake Naivasha, the crayfish species, Procambrus clarkii, had THg concentrations similar to those for the tilapiine species from the same lake, which is consistent with their shared detritivore diet. THg concentrations in all fish species were usually consistent with their known trophic position, with highest concentrations in piscivores and declining in omnivores, insectivores and detritivores. One exception is the detritivore Labeo cylindricus from Lake Baringo, which had surprisingly elevated THg concentrations (mean=75 ng g{sup -1}), which was similar to those for the top trophic species (Clarias and Protopterus) in the same lake. Except for two Hydrocynus forskahlii individuals from Lake Turkana, which had THg concentrations near or above the international marketing limit of 500 ng g{sup -1}, THg concentrations in the fish were generally below those of World Health Organization's recommended limit of 200 ng g{sup -1} for at-risk groups.

  4. SDSS IV MaNGA - sSFR profiles and the slow quenching of discs in green valley galaxies

    Science.gov (United States)

    Belfiore, Francesco; Maiolino, Roberto; Bundy, Kevin; Masters, Karen; Bershady, Matthew; Oyarzún, Grecco; Lin, Lihwai; Cano-Diaz, Mariana; Wake, David; Spindler, Ashley; Thomas, Daniel; Brownstein, Joel R.; Drory, Niv; Yan, Renbin

    2018-03-01

    We study radial profiles in Hα equivalent width and specific star formation rate (sSFR) derived from spatially-resolved SDSS-IV MaNGA spectroscopy to gain insight on the physical mechanisms that suppress star formation and determine a galaxy's location in the SFR-M_\\star diagram. Even within the star-forming `main sequence', the measured sSFR decreases with stellar mass, both in an integrated and spatially-resolved sense. Flat sSFR radial profiles are observed for log(M_\\star / M_⊙ ) history. Our primary focus is the green valley, constituted by galaxies lying below the star formation main sequence, but not fully passive. In the green valley we find sSFR profiles that are suppressed with respect to star-forming galaxies of the same mass at all galactocentric distances out to 2 effective radii. The responsible quenching mechanism therefore appears to affect the entire galaxy, not simply an expanding central region. The majority of green valley galaxies of log(M_\\star / M_⊙ ) > 10.0 are classified spectroscopically as central low-ionisation emission-line regions (cLIERs). Despite displaying a higher central stellar mass concentration, the sSFR suppression observed in cLIER galaxies is not simply due to the larger mass of the bulge. Drawing a comparison sample of star forming galaxies with the same M_\\star and Σ _{1 kpc} (the mass surface density within 1 kpc), we show that a high Σ _{1 kpc} is not a sufficient condition for determining central quiescence.

  5. Global Lakes Sentinel Services: Evaluation of Chl-a Trends in Deep Clear Lakes

    Science.gov (United States)

    Cazzaniga, Ilaria; Giardino, Claudia; Bresciani, Mariano; Poser, Kathrin; Peters, Steef; Hommersom, Annelies; Schenk, Karin; Heege, Thomas; Philipson, Petra; Ruescas, Ana; Bottcher, Martin; Stelzer, Kerstin

    2016-08-01

    The aim of this study is the analysis of trend in the trophic level evolution in clear deep lakes which, being characterised by good quality state, are important socio- economic resources for their regions. The selected lakes are situated in Europe (Garda, Maggiore, Constance and Vättern), North America (Michigan) and Africa (Malawi and Tanganyika) and cover a range of eco- regions (continental, perialpine, boreal, rift valley) distributed globally.To evaluate trophic level tendency we mainly focused on chlorophyll-a concentrations (chl-a) which is a direct proxy of trophic status. The chl-a concentrations were obtained from 5216 cloud-free MERIS imagery from 2002 to 2012.The 'GLaSS RoIStats tool' available within the GLaSS project was used to extract chl-a in a number of region of interests (ROI) located in pelagic waters as well as some few other stations depending on lakes morphology. For producing the time-series trend, these extracted data were analysed with the Seasonal Kendall test.The results overall show almost stable conditions with a slight increase in concentration for lakes Maggiore, Constance, and the Green Bay of Lake Michigan; a slight decrease for lakes Garda and Tanganyika and absolutely stable conditions for lakes Vättern and Malawi.The results presented in this work show the great capability of MERIS to perform trend tests analysis on trophic status with focus on chl-a concentration. Being chl-a also a key parameter in water quality monitoring plans, this study also supports the managing practices implemented worldwide for using the water of the lakes.

  6. The carbon stable isotope biogeochemistry of streams, Taylor Valley, Antarctica

    International Nuclear Information System (INIS)

    Lyons, W.B.; Leslie, D.L.; Harmon, R.S.; Neumann, K.; Welch, K.A.; Bisson, K.M.; McKnight, D.M.

    2013-01-01

    Highlights: ► δ 13 C-DIC reported from McMurdo Dry Valleys, Antarctica, streams. ► Stream water δ 13 C PDB values range −9.4‰ to +5.1‰, largely inorganic in character. ► Atmospheric exchange is the dominant control on δ 13 C-DIC. - Abstract: The McMurdo Dry Valleys region of Antarctica is the largest ice-free region on the continent. This study reports the first C stable isotope measurements for dissolved inorganic C present in ephemeral streams in four dry valleys that flow for four to twelve weeks during the austral summer. One of these valleys, Taylor Valley, has been the focus of the McMurdo Dry Valleys Long-Term Ecological Research (MCM-LTER) program since 1993. Within Taylor Valley, numerous ephemeral streams deliver water to three perennially ice-covered, closed-basin lakes: Lake Fryxell, Lake Hoare, and Lake Bonney. The Onyx River in the Wright Valley, the longest river in Antarctica, flows for 40 km from the Wright Lower Glacier and Lake Brownworth at the foot of the glacier to Lake Vanda. Streamflow in the McMurdo Dry Valley streams is produced primarily from glacial melt, as there is no overland flow. However, hyporheic zone exchange can be a major hydrogeochemical process in these streams. Depending on landscape position, these streams vary in gradient, channel substrate, biomass abundance, and hyporheic zone extent. This study sampled streams from Taylor, Wright, Garwood, and Miers Valleys and conducted diurnal sampling of two streams of different character in Taylor Valley. In addition, transect sampling was undertaken of the Onyx River in Wright Valley. The δ 13 C PDB values from these streams span a range of greater than 14‰, from −9.4‰ to +5.1‰, with the majority of samples falling between −3‰ and +2‰, suggesting that the C stable isotope composition of dissolved C in McMurdo Dry Valley streams is largely inorganic in character. Because there are no vascular plants on this landscape and no groundwater input to these

  7. Chemodenitrification in the cryoecosystem of Lake Vida, Victoria Valley, Antarctica.

    Science.gov (United States)

    Ostrom, N E; Gandhi, H; Trubl, G; Murray, A E

    2016-11-01

    Lake Vida, in the Victoria Valley of East Antarctica, is frozen, yet harbors liquid brine (~20% salt, >6 times seawater) intercalated in the ice below 16 m. The brine has been isolated from the surface for several thousand years. The brine conditions (permanently dark, -13.4 °C, lack of O 2 , and pH of 6.2) and geochemistry are highly unusual. For example, nitrous oxide (N 2 O) is present at a concentration among the highest reported for an aquatic environment. Only a minor 17 O anomaly was observed in N 2 O, indicating that this gas was predominantly formed in the lake. In contrast, the 17 O anomaly in nitrate (NO3-) in Lake Vida brine indicates that approximately half or more of the NO3- present is derived from atmospheric deposition. Lake Vida brine was incubated in the presence of 15 N-enriched substrates for 40 days. We did not detect microbial nitrification, dissimilatory reduction of NO3- to ammonium (NH4+), anaerobic ammonium oxidation, or denitrification of N 2 O under the conditions tested. In the presence of 15 N-enriched nitrite (NO2-), both N 2 and N 2 O exhibited substantial 15 N enrichments; however, isotopic enrichment declined with time, which is unexpected. Additions of 15 N-NO2- alone and in the presence of HgCl 2 and ZnCl 2 to aged brine at -13 °C resulted in linear increases in the δ 15 N of N 2 O with time. As HgCl 2 and ZnCl 2 are effective biocides, we interpret N 2 O production in the aged brine to be the result of chemodenitrification. With this understanding, we interpret our results from the field incubations as the result of chemodenitrification stimulated by the addition of 15 N-enriched NO2- and ZnCl 2 and determined rates of N 2 O and N 2 production of 4.11-41.18 and 0.55-1.75 nmol L -1  day -1 , respectively. If these rates are representative of natural production, the current concentration of N 2 O in Lake Vida could have been reached between 6 and 465 years. Thus, chemodenitrification alone is sufficient to explain the

  8. Design and results of the Mariano Lake-Lake Valley drilling project, Northwestern New Mexico

    International Nuclear Information System (INIS)

    Kirk, A.R.; Huffman, A.C. Jr.; Zech, R.S.

    1986-01-01

    This drilling project included 12 holes along a north-south-trending line from Mariano Lake to Lake Valley, New Mexico, near the southern margin of the San Juan basin. Of a total 33,075 ft (10,088m) drilled, 4,550 ft (1,388m) were cored in the stratigraphic interval that included the basal part of the Dakota Sandstone, the Brushy Basin and Westwater Canyon Members of the Morrison Formation, and the upper part of the Recapture Member of the Morrison Formation. The project objectives were (1) to provide cores and geophysical logs for study of the sedimentology, petrography, geochemistry, and mineralization in the uranium-bearing Westwater Canyon Member; (2) to provide control for a detailed seismic study of Morrison stratigraphy and basement structures; (3) to define and correlate the stratigraphy of Cretaceous coal-bearing units; (4) to supply background data for studies of ground-water flow pattern and ground-water quality; and (5) to provide data to aid resource assessment or uranium and coal. The project design included selection of (1) drill-hole locations to cross known ore and depositional trends in the Morrison Formation; (2) a coring interval to include the uranium-bearing unit and adjacent units; geophysical logs for lithologic correlations, quantitative evaluation of uranium mineralization, qualitative detection of coal beds, preparation of synthetic seismograms, and magnetic susceptibility studies of alteration in the Morrison; and (3) a high-salinity mud program to enhance core recovery

  9. Hydrological Controls on Ecosystem Dynamics in Lake Fryxell, Antarctica.

    Directory of Open Access Journals (Sweden)

    Radu Herbei

    Full Text Available The McMurdo Dry Valleys constitute the largest ice free area of Antarctica. The area is a polar desert with an annual precipitation of ∼ 3 cm water equivalent, but contains several lakes fed by glacial melt water streams that flow from four to twelve weeks of the year. Over the past ∼20 years, data have been collected on the lakes located in Taylor Valley, Antarctica as part of the McMurdo Dry Valley Long-Term Ecological Research program (MCM-LTER. This work aims to understand the impact of climate variations on the biological processes in all the ecosystem types within Taylor Valley, including the lakes. These lakes are stratified, closed-basin systems and are perennially covered with ice. Each lake contains a variety of planktonic and benthic algae that require nutrients for photosynthesis and growth. The work presented here focuses on Lake Fryxell, one of the three main lakes of Taylor Valley; it is fed by thirteen melt-water streams. We use a functional regression approach to link the physical, chemical, and biological processes within the stream-lake system to evaluate the input of water and nutrients on the biological processes in the lakes. The technique has been shown previously to provide important insights into these Antarctic lacustrine systems where data acquisition is not temporally coherent. We use data on primary production (PPR and chlorophyll-A (CHLfrom Lake Fryxell as well as discharge observations from two streams flowing into the lake. Our findings show an association between both PPR, CHL and stream input.

  10. Is Lake Chabot Eutrophic?

    Science.gov (United States)

    Pellegrini, K.; Logan, J.; Esterlis, P.; Lew, A.; Nguyen, M.

    2013-12-01

    Introduction/Abstract: Lake Chabot is an integral part of the East Bay watershed that provides habitats for animals and recreation for humans year-round. Lake Chabot has been in danger of eutrophication due to excessive dumping of phosphorous and nitrogen into the water from the fertilizers of nearby golf courses and neighboring houses. If the lake turned out to be eutrophified, it could seriously impact what is currently the standby emergency water supply for many Castro Valley residents. Eutrophication is the excessive richness of nutrients such as nitrogen and phosphorus in a lake, usually as a result of runoff. This buildup of nutrients causes algal blooms. The algae uses up most of the oxygen in the water, and when it dies, it causes the lake to hypoxify. The fish in the lake can't breathe, and consequently suffocate. Other oxygen-dependant aquatic creatures die off as well. Needless to say, the eutrophication of a lake is bad news for the wildlife that lives in or around it. The level of eutrophication in our area in Northern California tends to increase during the late spring/early summer months, so our crew went out and took samples of Lake Chabot on June 2. We focused on the area of the lake where the water enters, known on the map as Honker Bay. We also took readings a ways down in deeper water for comparison's sake. Visually, the lake looked in bad shape. The water was a murky green that glimmered with particulate matter that swirled around the boat as we went by. In the Honker Bay region where we focused our testing, there were reeds bathed in algae that coated the surface of the lake in thick, swirling patterns. Surprisingly enough, however, our test results didn't reveal any extreme levels of phosphorous or nitrogen. They were slightly higher than usual, but not by any significant amount. The levels we found were high enough to stimulate plant and algae growth and promote eutrophication, but not enough to do any severe damage. After a briefing with a

  11. Hydrogeology and simulation of groundwater flow at the Green Valley reclaimed coal refuse site near Terre Haute, Indiana

    Science.gov (United States)

    Bayless, E. Randall; Arihood, Leslie D.; Fowler, Kathleen K.

    2011-01-01

    The Green Valley reclaimed coal refuse site, near Terre Haute, Ind., was mined for coal from 1948 to 1963. Subsurface coal was cleaned and sorted at land surface, and waste material was deposited over the native glacial till. Approximately 2.7 million cubic yards of waste was deposited over 159 acres (92.3 hectares) in tailings ponds and gob piles. During 1993, the Indiana Department of Natural Resources, Division of Reclamation, improved the site by grading gob piles, filling tailings ponds, and covering the refuse with a layer of glacial drift. During 2008, the Division of Reclamation and U.S. Geological Survey initiated a cooperative investigation to characterize the hydrogeology of the site and construct a calibrated groundwater flow model that could be used to simulate the results of future remedial actions. In support of the modeling, a data-collection network was installed at the Green Valley site to measure weather components, geophysical properties, groundwater levels, and stream and seep flow. Results of the investigation indicate that (1) there is negligible overland flow from the site, (2) the prevailing groundwater-flow direction is from northeast to southwest, with a much smaller drainage to the northeast, (3) there is not a direct hydraulic connection between the refuse and West Little Sugar Creek, (4) about 24 percent of the groundwater recharge emerges through seeps, and water from the seeps evaporates or eventually flows to West Little Sugar Creek and the Green Valley Mine Pond, and (5) about 72 percent of groundwater recharge moves vertically downward from the coal refuse into the till and follows long, slow flow paths to eventual dischage points.

  12. Late Pleistocene to Holocene lake levels of Lake Warner, Oregon (USA) and their effect on archaeological site distribution patterns

    Science.gov (United States)

    Wriston, T.; Smith, G. M.

    2017-12-01

    Few chronological controls are available for the rise and fall of small pluvial lake systems in the Northwestern Great Basin. Within Warner Basin this control was necessary for interpretation of known archaeological sites and for predicting where evidence of its earliest inhabitants might be expected. We trenched along relic beach ridges of Lake Warner, surveyed a stratified sample of the area for archaeological sites, and excavated some sites and a nearby rockshelter. These efforts produced new ages that we used to construct a lake level curve for Lake Warner. We found that the lake filled the valley floor between ca. 30,000 cal yr BP and ca. 10,300 cal yr BP. In nearby basins, several oscillations are evident before ca. 21,100 cal yr BP, but a steep rise to the LGM maximum occurred between 21,000 and 20,000 cal yr BP. Lake Warner likely mirrored these changes, dropped to the valley floor ca. 18,340 cal yr BP, and then rose to its maximum highstand when its waters briefly reached 1454 m asl. After this highstand the lake receded to moderately high levels. Following ca. 14,385 cal yr BP, the lake oscillated between moderate to moderately-high levels through the Bolling-Allerod interstadials and into the Younger Dryas stadial. The basin's first occupants arrived along its shore around this time, while the lake still filled the valley floor. These earliest people carried either Western Stemmed or Clovis projectile points, both of which are found along the lake margin. The lake receded into the valley floor ca. 10,300 cal yr BP and dune development began, ringing wetlands and small lakes that persisted in the footprint of the once large lake. By the time Mazama tephra fell 7,600 cal yr BP it blanketed pre-existing dunes and marsh peats. Our Lake Warner lake level curve facilitates interdisciplinary testing and refinement of it and similar curves throughout the region while helping us understand the history of lake and the people who lived along its shores.

  13. Surficial geologic map of the Red Rock Lakes area, southwest Montana

    Science.gov (United States)

    Pierce, Kenneth L.; Chesley-Preston, Tara L.; Sojda, Richard L.

    2014-01-01

    The Centennial Valley and Centennial Range continue to be formed by ongoing displacement on the Centennial fault. The dominant fault movement is downward, creating space in the valley for lakes and the deposition of sediment. The Centennial Valley originally drained to the northeast through a canyon now represented by a chain of lakes starting with Elk Lake. Subsequently, large landslides blocked and dammed the drainage, which created Lake Centennial, in the Centennial Valley. Sediments deposited in this late Pleistocene lake underlie much of the valley floor and rest on permeable sand and gravel deposited when the valley drained to the northeast. Cold Pleistocene climates enhanced colluvial supply of gravelly sediment to mountain streams and high peak flows carried gravelly sediment into the valley. There, the lower gradient of the streams resulted in deposition of alluvial fans peripheral to Lake Centennial as the lake lowered through time to the level of the two present lakes. Pleistocene glaciers formed in the high Centennial Range, built glacial moraines, and also supplied glacial outwash to the alluvial fans. Winds from the west and south blew sand to the northeast side of the valley building up high dunes. The central part of the map area is flat, sloping to the west by only 0.6 meters in 13 kilometers (2 feet in 8 miles) to form a watery lowland. This lowland contains Upper and Lower Red Rock Lakes, many ponds, and peat lands inside the “water plane,” above which are somewhat steeper slopes. The permeable sands and gravels beneath Lake Centennial sediments provide a path for groundwater recharged from the adjacent uplands. This groundwater leaks upward through Lake Centennial sediments and sustains wetland vegetation into late summer. Upper and Lower Red Rock Lakes are formed by alluvial-fan dams. Alluvial fans converge from both the south and the north to form outlet thresholds that dam the two shallow lakes upstream. The surficial geology aids in

  14. Delineating the Drainage Structure and Sources of Groundwater Flux for Lake Basaka, Central Rift Valley Region of Ethiopia

    Directory of Open Access Journals (Sweden)

    Megersa Olumana Dinka

    2017-11-01

    Full Text Available As opposed to most of the other closed basin type rift valley lakes in Ethiopia, Lake Basaka is found to be expanding at an alarming rate. Different studies indicated that the expansion of the lake is challenging the socio-economics and environment of the region significantly. This study result and previous reports indicated that the lake’s expansion is mostly due to the increased groundwater (GW flux to the lake. GW flux accounts for about 56% of the total inflow in recent periods (post 2000 and is found to be the dominant factor for the hydrodynamics and existence of the lake. The analysis of the drainage network for the area indicates the existence of a huge recharge area on the western and upstream side of the catchment. This catchment has no surface outlet; hence most of the incoming surface runoff recharges the GW system. The recharge area is the main source of GW flux to the lake. In addition to this, the likely sources/causes of GW flux to the lake could be: (i an increase of GW recharge following the establishment of irrigation schemes in the region; (ii subsurface inflow from far away due to rift system influence, and (iii lake neotectonism. Overall, the lake’s expansion has damaging effect to the region, owing to its poor water quality; hence the identification of the real causes of GW flux and mitigation measures are very important for sustainable lake management. Therefore a comprehensive and detailed investigation of the parameters related to GW flux and the interaction of the lake with the GW system of the area is highly recommended.

  15. Ice-dammed lateral lake and epishelf lake insights into Holocene dynamics of Marguerite Trough Ice Stream and George VI Ice Shelf, Alexander Island, Antarctic Peninsula

    Science.gov (United States)

    Davies, Bethan J.; Hambrey, Michael J.; Glasser, Neil F.; Holt, Tom; Rodés, Angél; Smellie, John L.; Carrivick, Jonathan L.; Blockley, Simon P. E.

    2017-12-01

    We present new data regarding the past dynamics of Marguerite Trough Ice Stream, George VI Ice Shelf and valley glaciers from Ablation Point Massif on Alexander Island, Antarctic Peninsula. This ice-free oasis preserves a geological record of ice stream lateral moraines, ice-dammed lakes, ice-shelf moraines and valley glacier moraines, which we dated using cosmogenic nuclide ages. We provide one of the first detailed sediment-landform assemblage descriptions of epishelf lake shorelines. Marguerite Trough Ice Stream imprinted lateral moraines against eastern Alexander Island at 120 m at Ablation Point Massif. During deglaciation, lateral lakes formed in the Ablation and Moutonnée valleys, dammed against the ice stream in George VI Sound. Exposure ages from boulders on these shorelines yielded ages of 13.9 to 9.7 ka. Following recession of the ice stream, George VI Ice Shelf formed in George VI Sound. An epishelf lake formed at 15-20 m asl in Ablation and Moutonnée valleys, dated from 9.4 to 4.6 ka, suggesting that the lake was stable and persistent for some 5000 years. Lake-level lowering occurred after this, with the lake level at 12 m at 3.1 ± 0.4 ka and at 5 m asl today. A readvance of the valley glaciers on Alexander Island at 4.4 ± 0.7 ka is recorded by valley glacier moraines overlying epishelf lake sediments. We speculate that the glacier readvance, which occurred during a period of warmth, may have been caused by a dynamic response of the glaciers to a lowering in surface elevation of George VI Ice Shelf.

  16. A synthesis of the Green Bay (Lake Michigan) mass balance project: Implications for environmental science

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, W.; Endicott, D.; Kreis, R. [Environmental Protection Agency, Grosse Ile, MI (United States). Large Lakes Research Station

    1995-12-31

    The questions confronting environmental managers responsible for the Great Lakes are complex and regulatory action (or inaction) have major social, environmental and economical consequences. It has become evident that rational approaches must be found to address the issues, more clearly identify and quantitate problems, locate and quantitate sources of important chemicals, and arrive at optimal remedial programs. A scientifically based management framework has been implemented and prototyped within the Great Lakes community of mangers and scientists referred to as the Mass Balance Approach. The US Environmental Protection Agency, led by the Great Lakes National Program Office (GLNPO) in cooperation with Office of Research and Development (ORD) and other state and academic organizations, has completed an intensive study of Green Bay (Lake Michigan) to test the feasibility of using the mass balance approach for managing toxic substances in the Great Lakes. This presentation will provide an overview of the project and the results. Conclusions and recommendations will be reviewed and implications for future policy based, scientific studies will be explored.

  17. Analysis of geophysical well logs from the Mariano Lake-Lake Valley drilling project, San Juan Basin, Northwestern New Mexico

    International Nuclear Information System (INIS)

    Scott, J.H.

    1986-01-01

    Geophysical well logs were obtained in eight deep holes drilled and cored by the U.S. Geological Survey to examine the geology of the Mariano Lake-Lake Valley area in the southern part of the San Juan basin, New Mexico. The logs were made to determine the petrophysical properties of the rocks penetrated by the holes, to aid in making stratigraphic correlations between the holes, and to estimate the grade of uranium enrichment in mineralized zones. The logs can be divided into six categories-nuclear, electric, sonic, magnetic, dipmeter, and borehole conditions. Examples of these logs are presented and related to lithological and petrophysical properties of the cores recovered. Gamma-ray and prompt fission neutron logs were used to estimate uranium grade in mineralized zones. Resistivity and spontaneous potential logs were used to make stratigraphic correlations between drill holes and to determine the variability of the sandstone:mudstone ratios of the major sedimentary units. In one drill hole a dipmeter log was used to estimate the direction of sediment transport of the fluvial host rock. Magnetic susceptibility logs provided supportive information for a laboratory study of magnetic mineral alteration in drill cores. This study was used to infer the geochemical and hydrologic environment associated with uranium deposition in the project area

  18. An 11 000-year-long record of fire and vegetation history at Beaver Lake, Oregon, central Willamette Valley

    Science.gov (United States)

    Walsh, Megan K.; Pearl, Christopher A.; Whitlock, Cathy; Bartlein, Patrick J.; Worona, Marc A.

    2010-01-01

    High-resolution macroscopic charcoal and pollen analysis were used to reconstruct an 11??000-year-long record of fire and vegetation history from Beaver Lake, Oregon, the first complete Holocene paleoecological record from the floor of the Willamette Valley. In the early Holocene (ca 11??000-7500 calendar years before present [cal??yr??BP]), warmer, drier summers than at present led to the establishment of xeric woodland of Quercus, Corylus, and Pseudotsuga near the site. Disturbances (i.e., floods, fires) were common at this time and as a result Alnus rubra grew nearby. High fire frequency occurred in the early Holocene from ca 11??200-9300??cal??yr??BP. Riparian forest and wet prairie developed in the middle Holocene (ca 7500??cal??yr??BP), likely the result of a decrease in the frequency of flooding and a shift to effectively cooler, wetter conditions than before. The vegetation at Beaver Lake remained generally unchanged into the late Holocene (from 4000??cal??yr??BP to present), with the exception of land clearance associated with Euro-American settlement of the valley (ca 160??cal??yr BP). Middle-to-late Holocene increases in fire frequency, coupled with abrupt shifts in fire-episode magnitude and charcoal composition, likely indicate the influence anthropogenic burning near the site. The paleoecological record from Beaver Lake, and in particular the general increase in fire frequency over the last 8500??years, differs significantly from other low-elevation sites in the Pacific Northwest, which suggests that local controls (e.g., shifts in vegetation structure, intensification of human land-use), rather than regional climatic controls, more strongly influenced its environmental history. ?? 2010 Elsevier Ltd.

  19. New structural/tectonical model and its implication on hydrological thinking and groundwater management - the Lake Tiberias, Jordan Rift Valley

    Science.gov (United States)

    Inbar, Nimrod; Magri, Fabien; Yellin-Dror, Annat; Rosenthal, Eliahu; Möller, Peter; Siebert, Christian; Guttman, Josef

    2014-05-01

    Lake Tiberias is a fresh water lake located at the Kinneret basin which is approximately 30 km long and 10 km wide. It comprises a link in the chain of pull-apart basins that characterizes the structure of the conspicuous Jordan Rift Valley (JRV). The basin surface is about 200 m below mean sea level (msl) and basin-fill attains a thickness of up to 8 km. Until recently, studies focused mainly on the upper strata of basin fill. Consequently, a complete three dimensional geological model, including clear view of the tectonic framework at the Kinneret Basin was incomplete. This situation imposes great difficulty in understanding the local hydrological system and as consequence enforce constrains on groundwater management of the regional aquifers that flows towards the lake. A recently proposed structural/tectonical model (Inbar, 2012) enables revaluation of several geohydrological aspects at Sea of Galilee and its surroundings and a new hydrological model based on those findings aims to clarify those aspects with relation to groundwater management. The deep-seated stratigraphical units were seismically studied at the Kinnarot Valley (southern part of Kinneret basin) where sufficient information is available (Inbar, 2012). This study shows the subsidence and northwestward tilting of the basin floor (pre-rift formations) and the flow of thick Late Miocene salt accumulation accordingly. Furthermore, shallower seismic data, collected at the lake itself, shows a suspected salt dome close to the western boundary fault of the basin (Resnikov et al., 2004). Salt flow is now suggested to be a substantial factor in the tectonic play. At the lake surroundings there are several springs and boreholes where brine immerges from an estimated depth of about 2-3 kilometers. Significant differences in brine characteristics raised questions regarding the location of brine traps, flow mechanism and the mixture process between the fresh water and the brine. However, the effect of the

  20. Pesticide residue levels in green beans cultivated in Souss Masa valley (Morocco) after multiple applications of bifenthrin and λ-cyhalothrin.

    Science.gov (United States)

    Bouri, M; Salghi, R; Bazzi, Lh; Zarrouk, A; Rios, A; Zougagh, M

    2012-09-01

    Dissipation of bifenthrin and λ-cyhalothrin pyrethroid insecticides, under environmental conditions, was evaluated on green beans grown in experimental greenhouses (Souss Massa valley, Morocco). Pesticide residues were determined by gas chromatography with micro electron-capture detector (GC-μECD) after dichloromethane extraction and cleanup on florisil phase cartridges. In the case of field experiments, a random block scheme was employed. Each block contained 25 plants in a single row and tests were carried out in triplicates applying pesticides at the recommended doses by the manufacturers. Fruit samples were periodically taken until the end of the preharvest interval (p.i.). The results obtained showed that the p.i of bifenthrin in green bean were 4 days in the winter and 3.5 days in the spring, whereas that for λ-cyhalothrin 8 days was found in the winter and 7.5 days in the spring. Consequently, it is possible to consider the European Union maximum residue limit (EU MRL) values compatible with the proper agricultural practices used for growing green bean in the plastic greenhouse of Souss Massa valley in South Morocco. Bifenthrin had a degradation of first-order kinetics, whereas that of levels for λ-cyhalothrin residue can not be interpreted by the use of a first order model.

  1. Characterize the hydrogeological properties and probe the stress field in Salt Lake Valley, Utah using SAR imagery

    Science.gov (United States)

    Hu, X.; Lu, Z.; Barbot, S.; Wang, T.

    2017-12-01

    Aquifer skeletons deform actively in response to the groundwater redistribution and hydraulic head changes with varied time scales of delay and sensitivity, that can also, in some instances, trigger earthquakes. However, determining the key hydrogeological properties and understanding the interactions between aquifer and seismicity generally requires the analysis of dense water level data combined with expensive drilling data (borehole breakouts). Here we investigate the spatiotemporal correlation among ground motions, hydrological changes, earthquakes, and faults in Salt Lake Valley, Utah, based on InSAR observations from ENVISAT ASAR (2004-2010) and Sentinel-1A (2015-2016). InSAR results show a clear seasonal and long-term correlation between surface uplift/subsidence and groundwater recharge/discharge, with evidence for an average net uplift of 15 mm/yr for a period of 7 years. The long-term uplift, remarkably bounded by faults, reflects a net increase in pore pressure associated with prolonged water recharge probably decades ago. InSAR-derived ground deformation and its correlation with head variations allow us to quantify hydrogeological properties - decay coefficient, storage coefficient, and bulk compressibility. We also model the long-term deformation using a shallow vertical shearing reservoir to constrain its thickness and strain rate. InSAR-derived deformation help reveal the coupled hydrological and tectonic processes in Salt Lake Valley: the embedded faults disrupt the groundwater flow and partition the hydrological units, and the pore pressure changes rearrange the aquifer skeleton and modulate the stress field, which may affect the basin-wide seismicity.

  2. Geohydrology, water quality, and simulation of groundwater flow in the stratified-drift aquifer system in Virgil Creek and Dryden Lake Valleys, Town of Dryden, Tompkins County, New York

    Science.gov (United States)

    Miller, Todd S.; Bugliosi, Edward F.

    2013-01-01

    In 2002, the U.S. Geological Survey, in cooperation with the Tompkins County Planning Department and the Town of Dryden, New York, began a study of the stratified-drift aquifer system in the Virgil Creek and Dryden Lake Valleys in the Town of Dryden, Tompkins County. The study provided geohydrologic data needed by the town and county to develop a strategy to manage and protect their water resources. In this study area, three extensive confined sand and gravel aquifers (the upper, middle, and lower confined aquifers) compose the stratified-drift aquifer system. The Dryden Lake Valley is a glaciated valley oriented parallel to the direction of ice movement. Erosion by ice extensively widened and deepened the valley, truncated bedrock hillsides, and formed a nearly straight, U-shaped bedrock trough. The maximum thickness of the valley fill in the central part of the valley is about 400 feet (ft). The Virgil Creek Valley in the east part of the study area underwent less severe erosion by ice than the Dryden Lake Valley, and hence, it has a bedrock floor that is several hundred feet higher in altitude than that in the Dryden Lake Valley. The sources and amounts of recharge were difficult to identify in most areas because the confined aquifers are overlain by confining units. However, in the vicinity of the Virgil Creek Dam, the upper confined aquifer crops out at land surface in the floodplain of a gorge eroded by Virgil Creek, and this is where the aquifer receives large amounts of recharge from precipitation that directly falls over the aquifer and from seepage losses from Virgil Creek. The results of streamflow measurements made in Virgil Creek where it flows through the gorge indicated that the stream lost 1.2 cubic feet per second (ft3/s) or 0.78 million gallons per day (Mgal/d) of water in the reach extending from 220 ft downstream from the dam to 1,200 ft upstream from the dam. In the southern part of the study area, large amounts of recharge also replenish the

  3. Ciliate diversity, community structure, and novel taxa in lakes of the McMurdo Dry Valleys, Antarctica.

    Science.gov (United States)

    Xu, Yuan; Vick-Majors, Trista; Morgan-Kiss, Rachael; Priscu, John C; Amaral-Zettler, Linda

    2014-10-01

    We report an in-depth survey of next-generation DNA sequencing of ciliate diversity and community structure in two permanently ice-covered McMurdo Dry Valley lakes during the austral summer and autumn (November 2007 and March 2008). We tested hypotheses on the relationship between species richness and environmental conditions including environmental extremes, nutrient status, and day length. On the basis of the unique environment that exists in these high-latitude lakes, we expected that novel taxa would be present. Alpha diversity analyses showed that extreme conditions-that is, high salinity, low oxygen, and extreme changes in day length-did not impact ciliate richness; however, ciliate richness was 30% higher in samples with higher dissolved organic matter. Beta diversity analyses revealed that ciliate communities clustered by dissolved oxygen, depth, and salinity, but not by season (i.e., day length). The permutational analysis of variance test indicated that depth, dissolved oxygen, and salinity had significant influences on the ciliate community for the abundance matrices of resampled data, while lake and season were not significant. This result suggests that the vertical trends in dissolved oxygen concentration and salinity may play a critical role in structuring ciliate communities. A PCR-based strategy capitalizing on divergent eukaryotic V9 hypervariable region ribosomal RNA gene targets unveiled two new genera in these lakes. A novel taxon belonging to an unknown class most closely related to Cryptocaryon irritans was also inferred from separate gene phylogenies. © 2014 Marine Biological Laboratory.

  4. The Importance of Lake Overflow Floods for Early Martian Landscape Evolution: Insights From Licus Vallis

    Science.gov (United States)

    Goudge, T. A.; Fassett, C. I.

    2017-01-01

    Open-basin lake outlet valleys are incised when water breaches the basin-confining topography and overflows. Outlet valleys record this flooding event and provide insight into how the lake and surrounding terrain evolved over time. Here we present a study of the paleolake outlet Licus Vallis, a >350 km long, >2 km wide, >100 m deep valley that heads at the outlet breach of an approx.30 km diameter impact crater. Multiple geomorphic features of this valley system suggest it records a more complex evolution than formation from a single lake overflow flood. This provides unique insight into the paleohydrology of lakes on early Mars, as we can make inferences beyond the most recent phase of activity..

  5. Cold-Active, Heterotrophic Bacteria from the Highly Oligotrophic Waters of Lake Vanda, Antarctica

    Directory of Open Access Journals (Sweden)

    Nicole A. Vander Schaaf

    2015-07-01

    Full Text Available The permanently ice-covered lakes of the McMurdo Dry Valleys, Antarctica are distinctive ecosystems that consist strictly of microbial communities. In this study, water samples were collected from Lake Vanda, a stratified Dry Valley lake whose upper waters (from just below the ice cover to nearly 60 m are highly oligotrophic, and used to establish enrichment cultures. Six strains of psychrotolerant, heterotrophic bacteria were isolated from lake water samples from a depth of 50 or 55 m. Phylogenetic analyses showed the Lake Vanda strains to be species of Nocardiaceae, Caulobacteraceae, Sphingomonadaceae, and Bradyrhizobiaceae. All Lake Vanda strains grew at temperatures near or below 0 °C, but optimal growth occurred from 18 to 24 °C. Some strains showed significant halotolerance, but no strains required NaCl for growth. The isolates described herein include cold-active species not previously reported from Dry Valley lakes, and their physiological and phylogenetic characterization broadens our understanding of these limnologically unique lakes.

  6. Response of the St. Joseph River to lake level changes during the last 12,000 years in the Lake Michigan basin

    Science.gov (United States)

    Kincare, K.A.

    2007-01-01

    The water level of the Lake Michigan basin is currently 177 m above sea level. Around 9,800 14C years B.P., the lake level in the Lake Michigan basin had dropped to its lowest level in prehistory, about 70 m above sea level. This low level (Lake Chippewa) had profound effects on the rivers flowing directly into the basin. Recent studies of the St. Joseph River indicate that the extreme low lake level rejuvenated the river, causing massive incision of up to 43 m in a valley no more than 1.6 km wide. The incision is seen 25 km upstream of the present shoreline. As lake level rose from the Chippewa low, the St. Joseph River lost competence and its estuary migrated back upstream. Floodplain and channel sediments partially refilled the recently excavated valley leaving a distinctly non-classical morphology of steep sides with a broad, flat bottom. The valley walls of the lower St. Joseph River are 12-18 m tall and borings reveal up to 30 m of infill sediment below the modern floodplain. About 3 ?? 108 m3 of sediment was removed from the St. Joseph River valley during the Chippewa phase lowstand, a massive volume, some of which likely resides in a lowstand delta approximately 30 km off-shore in Lake Michigan. The active floodplain below Niles, Michigan, is inset into an upper terrace and delta graded to the Calumet level (189 m) of Lake Chicago. In the lower portion of the terrace stratigraphy a 1.5-2.0 m thick section of clast-supported gravel marks the entry of the main St. Joseph River drainage above South Bend, Indiana, into the Lake Michigan basin. This gravel layer represents the consolidation of drainage that probably occurred during final melting out of ice-marginal kettle chains allowing stream piracy to proceed between Niles and South Bend. It is unlikely that the St. Joseph River is palimpsest upon a bedrock valley. The landform it cuts across is a glaciofluvial-deltaic feature rather than a classic unsorted moraine that would drape over pre-glacial topography

  7. Long Valley Caldera Lake and reincision of Owens River Gorge

    Science.gov (United States)

    Hildreth, Wes; Fierstein, Judy

    2016-12-16

    Owens River Gorge, today rimmed exclusively in 767-ka Bishop Tuff, was first cut during the Neogene through a ridge of Triassic granodiorite to a depth as great as its present-day floor and was then filled to its rim by a small basaltic shield at 3.3 Ma. The gorge-filling basalt, 200 m thick, blocked a 5-km-long reach of the upper gorge, diverting the Owens River southward around the shield into Rock Creek where another 200-m-deep gorge was cut through the same basement ridge. Much later, during Marine Isotope Stage (MIS) 22 (~900–866 ka), a piedmont glacier buried the diversion and deposited a thick sheet of Sherwin Till atop the basalt on both sides of the original gorge, showing that the basalt-filled reach had not, by then, been reexcavated. At 767 ka, eruption of the Bishop Tuff blanketed the landscape with welded ignimbrite, deeply covering the till, basalt, and granodiorite and completely filling all additional reaches of both Rock Creek canyon and Owens River Gorge. The ignimbrite rests directly on the basalt and till along the walls of Owens Gorge, but nowhere was it inset against either, showing that the basalt-blocked reach had still not been reexcavated. Subsidence of Long Valley Caldera at 767 ka produced a steep-walled depression at least 700 m deeper than the precaldera floor of Owens Gorge, which was beheaded at the caldera’s southeast rim. Caldera collapse reoriented proximal drainages that had formerly joined east-flowing Owens River, abruptly reversing flow westward into the caldera. It took 600,000 years of sedimentation in the 26-km-long, usually shallow, caldera lake to fill the deep basin and raise lake level to its threshold for overflow. Not until then did reestablishment of Owens River Gorge begin, by incision of the gorge-filling ignimbrite.

  8. Groundwater quality in the Owens Valley, California

    Science.gov (United States)

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Owens Valley is one of the study areas being evaluated. The Owens study area is approximately 1,030 square miles (2,668 square kilometers) and includes the Owens Valley groundwater basin (California Department of Water Resources, 2003). Owens Valley has a semiarid to arid climate, with average annual rainfall of about 6 inches (15 centimeters). The study area has internal drainage, with runoff primarily from the Sierra Nevada draining east to the Owens River, which flows south to Owens Lake dry lakebed at the southern end of the valley. Beginning in the early 1900s, the City of Los Angeles began diverting the flow of the Owens River to the Los Angeles Aqueduct, resulting in the evaporation of Owens Lake and the formation of the current Owens Lake dry lakebed. Land use in the study area is approximately 94 percent (%) natural, 5% agricultural, and 1% urban. The primary natural land cover is shrubland. The largest urban area is the city of Bishop (2010 population of 4,000). Groundwater in this basin is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay derived from surrounding mountains. Recharge to the groundwater system is primarily runoff from the Sierra Nevada, and by direct infiltration of irrigation. The primary sources of discharge are pumping wells, evapotranspiration, and underflow to the Owens Lake dry lakebed. The primary aquifers in Owens Valley are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database

  9. Manganese and iron geochemistry in sediments underlying the redox-stratified Fayetteville Green Lake

    Science.gov (United States)

    Herndon, Elizabeth M.; Havig, Jeff R.; Singer, David M.; McCormick, Michael L.; Kump, Lee R.

    2018-06-01

    Manganese and iron are redox-sensitive elements that yield clues about biogeochemistry and redox conditions both in modern environments and in the geologic past. Here, we investigated Mn and Fe-bearing minerals preserved in basin sediments underlying Fayetteville Green Lake, a redox-stratified lake that serves as a geochemical analogue for Paleoproterozoic oceans. Synchrotron-source microprobe techniques (μXRF, μXANES, and μXRD) and bulk geochemical analyses were used to examine the microscale distribution and speciation of Mn, Fe, and S as a function of depth in the top 48 cm of anoxic lake sediments. Manganese was primarily associated with calcite grains as a manganese-rich carbonate that precipitated in the chemocline of the water column and settled through the euxinic basin to collect in lake sediments. Iron was preserved in framboidal iron sulfides that precipitated in euxinic bottom waters and underwent transformation to pyrite and marcasite in the sediments. Previous studies attribute the formation of manganese-rich carbonates to the diagenetic alteration of manganese oxides deposited in basins underlying oxygenated water. Our study challenges this paradigm by providing evidence that Mn-bearing carbonates form in the water column and accumulate in sediments below anoxic waters. Consequently, manganoan carbonates preserved in the rock record do not necessarily denote the presence of oxygenated bottom waters in ocean basins.

  10. Primary studies of trace quantities of green vegetation in Mono Lake area using 1990 AVIRIS data

    Science.gov (United States)

    Chen, Zhi-Kang; Elvidge, Chris D.; Groeneveld, David P.

    1992-01-01

    Our primary results in Jasper Ridge Biological Preserve indicate that high spectral resolution Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data may provide a substantial advantage in vegetation, based on the chlorophyll red edge feature from 700-780 nm. The chlorophyll red edge was detected for green vegetation cover as low as 4.8 percent. The objective of our studies in Mono Lake area is to continue the experiments performed in Jasper Ridge and to examine the persistence of red edge feature of trace quantities of green vegetation for different plant communities with non-uniform soil backgrounds.

  11. Phytoplankton Communities in Green Bay, Lake Michigan after Invasion by Dreissenid Mussels: Increased Dominance by Cyanobacteria

    Directory of Open Access Journals (Sweden)

    Bart T. De Stasio

    2014-11-01

    Full Text Available Biological invasions of aquatic systems disrupt ecological communities, and cause major changes in diversity and ecosystem function. The Laurentian Great Lakes of North America have been dramatically altered by such invasions, especially zebra (Dreissena polymorpha and quagga (D. rostriformis bugensis mussels. Responses to mussel invasions have included increased water clarity, and decreased chlorophyll and phytoplankton abundance. Although not all systems have responded similarly, in general, mussels have changed nutrient dynamics and physical habitat conditions. Therefore examination of different impacts can help us further understand mechanisms that underlie ecosystem responses to biological invasions. To aid our understanding of ecosystem impacts, we sampled established locations along a well-studied trophic gradient in Green Bay, Lake Michigan, after the 1993 zebra mussel invasion. A strong trophic gradient remained during the period sampled after the mussel invasion (2000–2012. However, mean summer chlorophyll increased and other measures of phytoplankton biomass (microscope and electronic cell counting did not change significantly. Multivariate analyses of phytoplankton community structure demonstrate a significant community shift after the invasion. Cyanobacteria increased in dominance, with Microcystis becoming the major summer taxon in lower Green Bay. Diatom diversity and abundance also increased and Chlorophyta became rare. Phytoplankton responses along the trophic gradient of Green Bay to zebra mussel invasion highlight the importance of mussel effects on nutrient dynamics and phytoplankton diversity and function.

  12. Speciation of selected trace elements in three Ethiopian Rift Valley Lakes (Koka, Ziway, and Awassa) and their major inflows

    International Nuclear Information System (INIS)

    Masresha, Alemayehu E.; Skipperud, Lindis; Rosseland, Bjorn Olav; Zinabu, G.M.; Meland, Sondre; Teien, Hans-Christian; Salbu, Brit

    2011-01-01

    The Ethiopian Rift Valley Lakes (ERVLs) are water resources which have considerable environmental, economic and cultural importance. However, there is an increasing concern that increasing human activities around these lakes and their main inflows can result in increased contamination of these water bodies. Information on total concentrations of some trace elements is available for these lakes and their inflows; however, data on the trace element speciation is lacking. Therefore, the objective of this study was to determine the low molecular mass (LMM) trace element species and also, evaluate the influence of flooding episodes on the LMM trace element fractions. At-site size and charge fractionation system was used for sampling of water from the lakes Koka, Ziway and Awassa and their main inflows during the dry and wet seasons. The results showed that chromium (Cr), manganese (Mn), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), and lead (Pb) in Lake Koka and its inflows as well as in Lake Ziway were predominantly present as HMM (high molecular mass, i.e., > 10 kDa) forms, while arsenic (As), selenium (Se), cadmium (Cd) were more mobile during the dry season. In Lake Awassa, all except Cr and Mn were predominantly found as LMM species (low molecular mass, i.e. < 10 kDa) which can be attributed to the high concentrations of LMM DOC (dissolved organic carbon). During the wet season, results from the Lake Koka and its inflows showed that all trace elements were predominantly associated with HMM forms such as colloids and particles, demonstrating that the mobility of elements was reduced during the wet season. The colloidal fraction of elements such as Cr, Ni, and Cd was also correlated with dissolved Fe. As the concentration of LMM trace element species are very low, the mobility, biological uptake and the potential environmental impact should be low.

  13. Sulphate balance of lakes and shallow groundwater in the Vasavere buried valley, Northeast Estonia

    International Nuclear Information System (INIS)

    Erg, K.

    2003-01-01

    Groundwater is an important component of many water resource systems supplying water for domestic use, industry, and agriculture. In recent years the attention has been focused on groundwater contamination by mine water. Decline in mining activities and introduction of new technologies together with economic measures has improved the situation but much should be done during coming years. Oil shale mining brings about changes in the groundwater regime and chemical composition. The correlation between the natural (meteorological and hydrological) and technogenic (mining-technological, hydrogeological, hydrochemical) factors caused by the oil shale mining in the Vasavere valley during 1970-2000 has been studied. As a result of extensive drainage of mining shafts and water consumption, the groundwater table has noticeably lowered in the area and sulphate content in lakes and groundwater is especially high

  14. Tilted lake shorelines record the onset of motion along the Hilton Creek fault adjacent to Long Valley caldera, CA, USA

    Science.gov (United States)

    Perkins, J. P.; Finnegan, N. J.; Cervelli, P. F.; Langbein, J. O.

    2010-12-01

    Prominent normal faults occur within and around Long Valley caldera, in the eastern Sierra Nevada of California. However, their relationship to both the magmatic and tectonic evolution of the caldera since the 760 ka eruption of the Bishop Tuff remains poorly understood. In particular, in the Mono-Inyo Craters north of Long Valley, extensional faulting appears to be replaced by dike intrusion where magma is available in the crust. However, it is unclear whether extensional faults in Long Valley caldera have been active since the eruption of the Bishop Tuff (when the current topography was established) or are a relatively young phenomenon owing to the cooling and crystallization of the Long Valley magma reservoir. Here we use GPS geodesy and geomorphology to investigate the evolution of the Hilton Creek fault, the primary range-front fault bounding Long Valley caldera to the southwest. Our primary goals are to determine how long the Hilton Creek fault has been active and whether slip rates have been constant over that time interval. To characterize the modern deformation field, we capitalize on recently (July, 2010) reoccupied GPS benchmarks first established in 1999-2000. These fixed-array GPS data show no discernible evidence for recent slip on the Hilton Creek fault, which further highlights the need for longer-term constraints on fault motion. To establish a fault slip history, we rely on a suite of five prominent shorelines from Pleistocene Long Valley Lake whose ages are well constrained based on field relationships to dated lavas, and that are tilted southward toward the Hilton Creek fault. A preliminary analysis of shoreline orientations using GPS surveys and a 5-m-resolution Topographic Synthetic Aperture Radar (TOPSAR) digital elevation model shows that lake shorelines tilt towards the Hilton Creek fault at roughly parallel gradients (~ 0.6%). The measured shorelines range in inferred age from 100 ka to 500 ka, which constrain recent slip on the Hilton

  15. Terrestrial Cosmogenic-Nuclide Dating of Alluvial Fans in Death Valley, California

    Science.gov (United States)

    Machette, Michael N.; Slate, Janet L.; Phillips, Fred M.

    2008-01-01

    We have used terrestrial cosmogenic nuclides (TCN) to establish the age of some of the most extensive Quaternary alluvial fans in Death Valley, California. These intermediate-age alluvial fans are most extensive on the western side of the valley, where tectonic deformation is considerably less pronounced than on the eastern side of the valley. These fans are characterized by a relatively smooth, densely packed desert pavement formed by well-varnished (blackened) clasts. These surfaces have been mapped as the Q2 gravel by previous workers and as unit Qai (intermediate age) by us. However, the intermediate-age gravels probably contain multiple subunits, as evidenced by slight differences in morphologic expression, soil formation, and inset geomorphic relations. The TCN technique used herein sums the cosmogenic 36Cl in approximately 2.5-meter-deep profiles through soil and host alluvium, thus avoiding some of the problems associated with the more typical surface-exposure dating of boulders or smaller clasts. Our TCN 36Cl dating of 12 depth profiles indicates that these intermediate-age (Qai) alluvial fans range from about 100 to 40 kilo-annum (ka), with a mean age of about 70 ka. An alternative interpretation is that alluvial unit Qai was deposited in two discrete episodes from 90 to 80 ka and from 60 to 50 ka, before and after MIS (marine oxygen-isotope stage) 4 (respectively). Without an intermediate-age unit, such as MIS 4 lake deposits, we can neither disprove nor prove that Qai was deposited in two discrete intervals or over a longer range of time. Thus, in Death Valley, alluvial unit Qai largely brackets MIS 4, which is not associated with a deep phase of Lake Manly. These Qai fans extend to elevations of about -46 meters (150 feet below sea level) and have not been transgressed by Lake Manly, suggesting that MIS 4 or MIS 2 lakes were rather shallow in Death Valley, perhaps because they lacked inflow from surface runoff of the Sierra Nevada drainages through

  16. Submerged Grove in Lake Onogawa

    OpenAIRE

    Sato, Yasuhiro; Nakamura, Soken; Ochiai, Masahiro

    1996-01-01

    Abstract : The first record by ultrasonic echo sounding on the distribution of the submerged standing trees on the bottom of Lake Onogawa is presented. Lake Onogawa is a dammed lake formed at the time of the eruption of the volcano Mt.Bandai in 1888. Since then the original vegetation of the dammed valley has remained submerged. Many submerged standing trees are distributed on the bottom within about 600m from the northeast end of the lake. The density of the trees in this area is sufficient ...

  17. Tracing the sources of PCDD/Fs and PCBs in Lake Baikal

    Energy Technology Data Exchange (ETDEWEB)

    Mamontov, A.A.; Mamontova, E.A.; Tarasova, E.N.; McLachlan, M.S.

    2000-03-01

    Lake Baikal is a unique freshwater ecosystem that has been declared a UNESCO World Heritage Site. It contains high levels of PCBs, and Baikal seal were recently found to have PCDD/F concentrations comparable to those in the Baltic Sea. In this work fish and soil were analyzed to trace the sources of these compounds to the lake. The fish samples indicated that the PCDD/F and PCB contamination of Lake Baikal does not originate from background inputs and that the contamination increases from north to south. The soil inventory was determined at 34 sites around Lake Baikal and in the Angara River valley. For the PCDD/Fs and most PCBs, the soil inventory is a good approximation of the cumulative atmospheric deposition. It varied over a factor of 1,000, with the highest levels in Usol'ye Sibirskoe, a city 110 km north of the southwestern tip of the lake in the highly industrialized Angara River valley, and the lowest values in the pristine areas to the northeast of the lake. A continuous decrease in the soil inventory was observed moving from Usol'ye S. up the Angara River valley to Lake Baikal and from there northeastward along the lake.

  18. Hydrology, water quality, and nutrient loads to the Bauman Park Lake, Cherry Valley, Winnebago County, Illinois, May 1996-April 1997

    Science.gov (United States)

    Kay, Robert T.; Trugestaad, Aaron

    1998-01-01

    The Bauman Park Lake occupies a former sand and gravel quarry in the Village of Cherry Valley, Illinois. The lake is eutrophic, and nuisance growths of algae and aquatic macrophytes are supported by nutrients (nitrogen and phosphorus) that are derived primarily from ground-water inflow, the main source of water for the lake. The lake has an average depth of about 18 feet, a maximum depth of about 28 feet, and a volume of 466 acre-feet at a stage of about 717 feet above sea level. The lake also is subject to thermal stratification, and although most of the lake is well oxidized, nearly anoxic conditions were present at the lake bottom during part of the summer of 1996. 4,648 pounds of nitrogen compounds were added to the Bauman Park Lake from May 1996 through April 1997. Phosphorus compounds were derived primarily from inflow from ground water (68.7 percent), sediments derived from shoreline erosion (15.6 percent), internal regeneration (11.7 percent), waterfowl excrement (1.6 percent), direct precipitation and overland runoff (1.2 percent), and particulate matter deposited from the atmosphere (1.2 percent). Nitrogen compounds were derived from inflow from ground water (62.1 percent), internal regeneration (19.6 percent), direct precipitation and overland runoff (10.1 percent), particulate matter deposited from the atmosphere (3.5 percent), sediments derived from shoreline erosion (4.4 percent), and waterfowl excrement (0.3 percent). About 13 pounds of phosphorus and 318 pounds of nitrogen compounds flow out of the lake to ground water. About 28 pounds of nitrogen is removed by denitrification. Algae and aquatic macrophytes utilize nitrate, nitrite, ammonia, and dissolved phosphorus. The availability of dissolved phosphorus in the lake water controls algal growth. Uptake of the nutrients, by aquatic macrophytes and algae, temporarily removes nutrients from the water column but not from the lake basin. Because the amount of nutrients entering the lake greatly exceeds

  19. SDSS-IV MaNGA-resolved Star Formation and Molecular Gas Properties of Green Valley Galaxies: A First Look with ALMA and MaNGA

    Science.gov (United States)

    Lin, Lihwai; Belfiore, Francesco; Pan, Hsi-An; Bothwell, M. S.; Hsieh, Pei-Ying; Huang, Shan; Xiao, Ting; Sánchez, Sebastián F.; Hsieh, Bau-Ching; Masters, Karen; Ramya, S.; Lin, Jing-Hua; Hsu, Chin-Hao; Li, Cheng; Maiolino, Roberto; Bundy, Kevin; Bizyaev, Dmitry; Drory, Niv; Ibarra-Medel, Héctor; Lacerna, Ivan; Haines, Tim; Smethurst, Rebecca; Stark, David V.; Thomas, Daniel

    2017-12-01

    We study the role of cold gas in quenching star formation in the green valley by analyzing ALMA 12CO (1-0) observations of three galaxies with resolved optical spectroscopy from the MaNGA survey. We present resolution-matched maps of the star formation rate and molecular gas mass. These data are used to calculate the star formation efficiency (SFE) and gas fraction ({f}{gas}) for these galaxies separately in the central “bulge” regions and outer disks. We find that, for the two galaxies whose global specific star formation rate (sSFR) deviates most from the star formation main sequence, the gas fraction in the bulges is significantly lower than that in their disks, supporting an “inside-out” model of galaxy quenching. For the two galaxies where SFE can be reliably determined in the central regions, the bulges and disks share similar SFEs. This suggests that a decline in {f}{gas} is the main driver of lowered sSFR in bulges compared to disks in green valley galaxies. Within the disks, there exist common correlations between the sSFR and SFE and between sSFR and {f}{gas} on kiloparsec scales—the local SFE or {f}{gas} in the disks declines with local sSFR. Our results support a picture in which the sSFR in bulges is primarily controlled by {f}{gas}, whereas both SFE and {f}{gas} play a role in lowering the sSFR in disks. A larger sample is required to confirm if the trend established in this work is representative of the green valley as a whole.

  20. Snake River Sockeye Salmon Sawtooth Valley Project Conservation and Rebuilding Program : Supplemental Fnal Environmental Assessment.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1995-03-01

    This document announces Bonneville Power Administration`s (BPA) proposal to fund three separate but interrelated actions which are integral components of the overall Sawtooth Valley Project to conserve and rebuild the Snake River Sockeye salmon run in the Sawtooth Valley of south-central Idaho. The three actions are as follows: (1) removing a rough fish barrier dam on Pettit Lake Creek and constructing a weir and trapping facilities to monitor future sockeye salmon adult and smolt migration into and out of Pettit Lake; (2) artificially fertilizing Readfish Lake to enhance the food supply for Snake River sockeye salmon juveniles released into the lake; and (3) trapping kokanee fry and adults to monitor the fry population and to reduce the population of kokanee in Redfish Lake. BPA has prepared a supplemental EA (included) which builds on an EA compled in 1994 on the Sawtooth Valley Project. Based on the analysis in this Supplemental EA, BPA has determined that the proposed actions are not major Federal actions significantly affecting the quality of the human environment. Therefore an Environmental Impact Statement is not required.

  1. The food of the lake trout (Cristivomer namaycush namaycush) and of the lawyer (Lota maculosa) of Lake Michigan

    Science.gov (United States)

    Van Oosten, John; Deason, Hilary J.

    1938-01-01

    This paper reports on a qualitative and quantitative analysis of the contents of 4,979 lake trout stomachs (593 examined in 1930 and 1,253 collected in 1931 from southern Lake Michigan, 1,446 from northern Lake Michigan and 1,687 from Green Bay in 1932), and of a total of 1,528 lawyer stomachs (172 examined in 1930 and 734 collected in 1931 from southern Lake Michigan, 612 from northern Lake Michigan and 10 from Green Bay in 1932). The food of the trout consisted of 98 per cent by volume of fish of which Cottidae and Coregonidae were the principal constituents. Cottidae were dominant in southern Lake Michigan (72 per cent by volume), Coregonidae in northern Lake Michigan (51 per cent) but the lake shiner, Notropis atherinides, was most important in Green Bay in the spring of the year (64 per cent). The lawyer food consisted of 74 per cent by volume of fish and 26 per cent invertebrates. Dominant items were Cottidae (76 per cent by volume) in southern Lake Michigan, Coregonidae (51 per cent) and Pontoporeia (37 per cent) in northern Lake Michigan, and Percopsis (34 per cent) and Mysis (26 per cent) in Green Bay. Data are also presented on the frequency of occurrence (number of stomachs) of the food items and its variation with the sizes of the trout and lawyers, depths of water, seasons, and localities; on the number of individual fish of each species destroyed by the trout and lawyers; and on the calculated volume of the food fishes preceding digestion. The lake trout and lawyer are competitors for the same food, are both predators of the commercially important Coregonidae, and the lawyer through its consumption of invertebrates is a food competitor of the Coregonidae.

  2. Robinson Rancheria Strategic Energy Plan; Middletown Rancheria Strategic Energy Plan, Scotts Valley Rancheria Strategic Energy Plan, Elem Indian Colony Strategic Energy Plan, Upperlake Rancheria Strategic Energy Plan, Big Valley Rancheria Strategic Energy Plan

    Energy Technology Data Exchange (ETDEWEB)

    McGinnis and Associates LLC

    2008-08-01

    The Scotts Valley Band of Pomo Indians is located in Lake County in Northern California. Similar to the other five federally recognized Indian Tribes in Lake County participating in this project, Scotts Valley Band of Pomo Indians members are challenged by generally increasing energy costs and undeveloped local energy resources. Currently, Tribal decision makers lack sufficient information to make informed decisions about potential renewable energy resources. To meet this challenge efficiently, the Tribes have committed to the Lake County Tribal Energy Program, a multi Tribal program to be based at the Robinson Rancheria and including The Elem Indian Colony, Big Valley Rancheria, Middletown Rancheria, Habematolel Pomo of Upper Lake and the Scotts Valley Pomo Tribe. The mission of this program is to promote Tribal energy efficiency and create employment opportunities and economic opportunities on Tribal Lands through energy resource and energy efficiency development. This program will establish a comprehensive energy strategic plan for the Tribes based on Tribal specific plans that capture economic and environmental benefits while continuing to respect Tribal cultural practices and traditions. The goal is to understand current and future energy consumption and develop both regional and Tribe specific strategic energy plans, including action plans, to clearly identify the energy options for each Tribe.

  3. Special Forest Products on the Green Mountain and Finger Lakes National Forests: a research-based approach to management

    Science.gov (United States)

    Marla R. Emery; Clare. Ginger

    2014-01-01

    Special forest products (SFPs) are gathered from more than 200 vascular and fungal species on the Green Mountain National Forest (GMNF) and Finger Lakes National Forest (FLNF). This report documents those SFPs and proposes an approach to managing them in the context of legislation directing the U.S. Forest Service to institute a program of active SFP management. Based...

  4. Limnological study of Lake Shastina, Siskiyou County, California

    Science.gov (United States)

    Dong, Alex E.; Beatty, Kenneth W.; Averett, Robert C.

    1974-01-01

    Lake Shastina provides water for irrigation in Shasta Valley, as well as recreation. Presently, its shoreline is being developed for summer homes. Surface water constituted more than 90 percent of the approximately 50,000 acre-foot (62-cubic hectometre) inflow to Lake Shastina in the 1972 water year. Controlled outflow is via the Montague Main Canal; however, leakage from the lake through volcanic rocks to the northwest was estimated to be greater than the measured outflow. Appreciable annual changes in the quantity of water in storage in the lake are related mainly to variations in annual inflow.From June through August the lake was thermally stratified. In the spring and summer the epilimnion was often supersaturated with oxygen, while at the same time the hypolimnion was undersaturated and 'often devoid of dissolved oxygen. Vertical stratification of carbon dioxide, carbonate, bicarbonate, hydrogen ion, nitrogen, and phosphorus was also recorded during the spring and summer. Orthophosphate, total phosphorus, and total nitrogen concentrations (organic, ammonium, and nitrate) were highest in the hypolimnion during the period of thermal stratification.Ten-inch (25-centimetre) core samples from the reservoir bottom were chemically analyzed at 0.8-inch (2-centimetre) intervals. The concentrations ranged from 6.3 to 28.9 milligrams per gram of iron, 0.07 to 0.43 milligrams per gram of manganese, 0.4 to 2.7 milligrams per gram of organic nitrogen plus ammonium, and 0.06 to 1.3 milligrams per gram of total phosphorus. Organic matter in the cores ranged from 4 to 14 percent.Green algae and diatoms were the dominant algal types, reaching maximum concentrations of about 7 and 30 million cells per litre, respectively. These phytoplankton occurred near the surface during thermally stratified periods, but were distributed at greater depths during nonthermally stratified periods. Blue-green algae were present only in the spring samples, and reached a maximum concentration of

  5. Coring of Karakel’ Lake sediments (Teberda River valley and prospects for reconstruction of glaciation and Holocene climate history in the Caucasus

    Directory of Open Access Journals (Sweden)

    O. N. Solomina

    2013-01-01

    Full Text Available Lacustrine sediments represent an important data source for glacial and palaeoclimatic reconstructions. Having a number of certain advantages, they can be successfully used as a means of specification of glacier situation and age of moraine deposits, as well as a basis for detailed climatic models of the Holocene. The article focuses on the coring of sediments of Lake Kakakel (Western Caucasus that has its goal to clarify the Holocene climatic history for the region, providing the sampling methods, lithologic description of the sediment core, obtained radiocarbon dating and the element composition of the sediments. The primary outlook over the results of coring of the sediments of the Lake Karakyol helped to reconsider the conventional opinion on the glacial fluctuations in the valley of Teberda and to assume the future possibility for high-definition palaeoclimatic reconstruction for Western Caucasus.

  6. Speculations on the spatial setting and temporal evolution of a fjord-style lake

    Science.gov (United States)

    Sarnthein, M.; Spötl, C.

    2012-04-01

    The Inn Valley, a classical region of Quaternary research in the Alps, is bordered by terraces that extend over almost 70 km and record an ancient lake with a lake level near 750-830 m above sea level (a.s.l.), about 250-300 m above the modern valley floor. Over large distances, the terrace sediments consist mainly of laminated "Banded Clays", above ~750 m a.s.l. overlain by glaciofluvial gravel and finally, by tills that record the Upper Würmian ice advance of Marine Isotope Stage (MIS) 2. In the (former) clay pit of Baumkirchen this boundary forms the Alpine type locality for the onset of the Upper Würmian, well supported by 14C-based age control first established by Fliri (1971). On the basis of a recently cored sediment section at Baumkirchen, the >200 m thick "Banded Clays" store a continuous, largely undisturbed, highly resolved, and widely varved climatic archive of MIS 3. Major unknowns concern the location and origin of dams that may have barred the vast and deep Inn Valley lake. We discuss potential linkages to the pattern of moraines and ice advance of MIS 4 glaciers, which was less prominent than during MIS 2, thus leading to a distinct east-west segment¬ation of the run-off systems in Tyrol. East of Imst, for example, the lake was possibly barred by both a rock sill reaching up to 830 m a.s.l. and a lateral moraine deposited by an Ötz Valley glacier. 80 km further east, a lateral moraine of a glacier advancing from the Ziller Valley may have barred the ancient Inn Valley lake to the east. The final rapid coarsening of clastic lake sediments at the end of MIS 3 is widely ascribed to major climatic deter¬ioration. However, the MIS 3-2 boundary was linked to an only modest change of global climates and accordingly, different forcings may be considered. In turn, the rapid coarsening may document a date, when the Central Alpine glaciers had already filled the basin of Imst to the west of the Inn Valley lake. This ice mass may have forced the melt

  7. The Health Valley: Global Entrepreneurial Dynamics.

    Science.gov (United States)

    Dubuis, Benoit

    2014-12-01

    In the space of a decade, the Lake Geneva region has become the Health Valley, a world-class laboratory for discovering and developing healthcare of the future. Through visionary individuals and thanks to exceptional infrastructure this region has become one of the most dynamic in the field of innovation, including leading scientific research and exceptional actors for the commercialization of academic innovation to industrial applications that will improve the lives of patients and their families. Here follows the chronicle of a spectacular expansion into the Health Valley.

  8. Limnology of Sawtooth Valley Lakes in 1995

    Energy Technology Data Exchange (ETDEWEB)

    Luecke, C.; Slater, M.; Budy, P.

    1996-05-01

    Included in this section of the report on limnology of Lakes in the Snake River Plain are descriptions of the limnological characteristics of the four lakes in reference to their potential effect of growth and survival of juvenile sockeye salmon. Physical parameters included light penetration, Secchi transparency, and water temperature; chemical parameters included oxygen, and both dissolved and particulate forms of nitrogen and phosphorus. Phytoplankton parameters included chlorophyll concentration, biovolume of dominant taxa, and rates of primary production; zooplankton parameters included density and biomass estimate, length frequencies, and the number of eggs carried by female cladocerans. 11 figs., 5 tabs.

  9. Limnology of Sawtooth Valley Lakes in 1995

    International Nuclear Information System (INIS)

    Luecke, C.; Slater, M.; Budy, P.

    1996-01-01

    Included in this section of the report on limnology of Lakes in the Snake River Plain are descriptions of the limnological characteristics of the four lakes in reference to their potential effect of growth and survival of juvenile sockeye salmon. Physical parameters included light penetration, Secchi transparency, and water temperature; chemical parameters included oxygen, and both dissolved and particulate forms of nitrogen and phosphorus. Phytoplankton parameters included chlorophyll concentration, biovolume of dominant taxa, and rates of primary production; zooplankton parameters included density and biomass estimate, length frequencies, and the number of eggs carried by female cladocerans. 11 figs., 5 tabs

  10. Microbiology of Lonar Lake and other soda lakes

    Science.gov (United States)

    Paul Antony, Chakkiath; Kumaresan, Deepak; Hunger, Sindy; Drake, Harold L; Murrell, J Colin; Shouche, Yogesh S

    2013-01-01

    Soda lakes are saline and alkaline ecosystems that are believed to have existed throughout the geological record of Earth. They are widely distributed across the globe, but are highly abundant in terrestrial biomes such as deserts and steppes and in geologically interesting regions such as the East African Rift valley. The unusual geochemistry of these lakes supports the growth of an impressive array of microorganisms that are of ecological and economic importance. Haloalkaliphilic Bacteria and Archaea belonging to all major trophic groups have been described from many soda lakes, including lakes with exceptionally high levels of heavy metals. Lonar Lake is a soda lake that is centered at an unusual meteorite impact structure in the Deccan basalts in India and its key physicochemical and microbiological characteristics are highlighted in this article. The occurrence of diverse functional groups of microbes, such as methanogens, methanotrophs, phototrophs, denitrifiers, sulfur oxidizers, sulfate reducers and syntrophs in soda lakes, suggests that these habitats harbor complex microbial food webs that (a) interconnect various biological cycles via redox coupling and (b) impact on the production and consumption of greenhouse gases. Soda lake microorganisms harbor several biotechnologically relevant enzymes and biomolecules (for example, cellulases, amylases, ectoine) and there is the need to augment bioprospecting efforts in soda lake environments with new integrated approaches. Importantly, some saline and alkaline lake ecosystems around the world need to be protected from anthropogenic pressures that threaten their long-term existence. PMID:23178675

  11. NGC 404: A REJUVENATED LENTICULAR GALAXY ON A MERGER-INDUCED, BLUEWARD EXCURSION INTO THE GREEN VALLEY

    International Nuclear Information System (INIS)

    Thilker, David A.; Bianchi, Luciana; Schiminovich, David; Gil de Paz, Armando; Seibert, Mark; Madore, Barry F.; Wyder, Ted; Barlow, Tom; Conrow, Tim; Forster, Karl; Friedman, Peter; Martin, Chris; Morrissey, Patrick; Small, Todd; Rich, R. Michael; Yi, Sukyoung; Neff, Susan

    2010-01-01

    We have discovered recent star formation in the outermost portion ((1-4) x R 25 ) of the nearby lenticular (S0) galaxy NGC 404 using Galaxy Evolution Explorer UV imaging. FUV-bright sources are strongly concentrated within the galaxy's H I ring (formed by a merger event according to del RIo et al.), even though the average gas density is dynamically subcritical. Archival Hubble Space Telescope imaging reveals resolved upper main-sequence stars and conclusively demonstrates that the UV light originates from recent star formation activity. We present FUV, NUV radial surface brightness profiles, and integrated magnitudes for NGC 404. Within the ring, the average star formation rate (SFR) surface density (Σ SFR ) is ∼2.2 x 10 -5 M sun yr -1 kpc -2 . Of the total FUV flux, 70% comes from the H I ring which is forming stars at a rate of 2.5 x 10 -3 M sun yr -1 . The gas consumption timescale, assuming a constant SFR and no gas recycling, is several times the age of the universe. In the context of the UV-optical galaxy color-magnitude diagram, the presence of the star-forming H I ring places NGC 404 in the green valley separating the red and blue sequences. The rejuvenated lenticular galaxy has experienced a merger-induced, disk-building excursion away from the red sequence toward bluer colors, where it may evolve quiescently or (if appropriately triggered) experience a burst capable of placing it on the blue/star-forming sequence for up to ∼1 Gyr. The green valley galaxy population is heterogeneous, with most systems transitioning from blue to red but others evolving in the opposite sense due to acquisition of fresh gas through various channels.

  12. 75 FR 22775 - Copper Valley Electric Association; Notice of Scoping Meeting and Soliciting Scoping Comments for...

    Science.gov (United States)

    2010-04-30

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 13124-000] Copper Valley....: 13124-000. c. Applicant: Copper Valley Electric Association. d. Name of Project: Allison Lake Project. e.... 791(a)-825(r). g. Applicant Contact: Robert A. Wilkinson, CEO, Copper Valley Electric Association, P.O...

  13. Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285/SA-124 (Echo Lake-Maple Valley #1 [Mile 9-16], Adno 8258)

    Energy Technology Data Exchange (ETDEWEB)

    Shurtliff, Aaron [Bonneville Power Administration (BPA), Portland, OR (United States)

    2003-02-18

    Vegetation Management for portion of the Echo Lake – Maple Valley #1 500 kV transmission line located from tower structure 9/2 to 16/5. BPA proposes to clear targeted vegetation within the Right-of-Ways along access roads and around towers that may impede the operation and maintenance of the subject transmission lines. See Section 1.4 of the attached checklists for a complete description of the proposed action.

  14. Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285/SA-125 (Echo Lake-Maple Valley #1 [Mile 1-9], Adno 8258)

    Energy Technology Data Exchange (ETDEWEB)

    Shurtliff, Aaron [Bonneville Power Administration (BPA), Portland, OR (United States)

    2003-02-18

    Vegetation Management for portion of the Echo Lake – Maple Valley #1 500 kV transmission line located from tower structure 1/1 to 9/2. BPA proposes to clear targeted vegetation within the Right-of-Ways along access roads and around towers that may impede the operation and maintenance of the subject transmission lines. See Section 1.4 of the attached checklists for a complete description of the proposed action.

  15. Sutter Buttes-the lone volcano in California's Great Valley

    Science.gov (United States)

    Hausback, Brain P.; Muffler, L.J. Patrick; Clynne, Michael A.

    2011-01-01

    The volcanic spires of the Sutter Buttes tower 2,000 feet above the farms and fields of California's Great Valley, just 50 miles north-northwest of Sacramento and 11 miles northwest of Yuba City. The only volcano within the valley, the Buttes consist of a central core of volcanic domes surrounded by a large apron of fragmental volcanic debris. Eruptions at the Sutter Buttes occurred in early Pleistocene time, 1.6 to 1.4 million years ago. The Sutter Buttes are not part of the Cascade Range of volcanoes to the north, but instead are related to the volcanoes in the Coast Ranges to the west in the vicinity of Clear Lake, Napa Valley, and Sonoma Valley.

  16. Mass-movement deposits in the lacustrine Eocene Green River Formation, Piceance Basin, western Colorado

    Science.gov (United States)

    Johnson, Ronald C.; Birdwell, Justin E.; Brownfield, Michael E.; Mercier, Tracey J.

    2015-01-01

    The Eocene Green River Formation was deposited in two large Eocene saline lakes, Lake Uinta in the Uinta and Piceance Basins and Lake Gosiute in the Greater Green River Basin. Here we will discuss mass-movement deposits in just the Piceance Basin part of Lake Uinta.

  17. Subsurface imaging reveals a confined aquifer beneath an ice-sealed Antarctic lake

    DEFF Research Database (Denmark)

    Dugan, H. A.; Doran, P. T.; Tulaczyk, S.

    2015-01-01

    Liquid water oases are rare under extreme cold desert conditions found in the Antarctic McMurdo Dry Valleys. Here we report geophysical results that indicate that Lake Vida, one of the largest lakes in the region, is nearly frozen and underlain by widespread cryoconcentrated brine. A ground...... this zone to be a confined aquifer situated in sediments with a porosity of 23-42%. Discovery of this aquifer suggests that subsurface liquid water may be more pervasive in regions of continuous permafrost than previously thought and may represent an extensive habitat for microbial populations. Key Points...... Geophysical survey finds low resistivities beneath a lake in Antarctic Dry Valleys Liquid brine abundant beneath Antarctic lake Aquifer provides microbial refugium in cold desert environment...

  18. Characterizing Microbial Mat Morphology with Structure from Motion Techniques in Ice-Covered Lake Joyce, McMurdo Dry Valleys, Antarctica

    Science.gov (United States)

    Mackey, T. J.; Leidman, S. Z.; Allen, B.; Hawes, I.; Lawrence, J.; Jungblut, A. D.; Krusor, M.; Coleman, L.; Sumner, D. Y.

    2015-12-01

    Structure from Motion (SFM) techniques can provide quantitative morphological documentation of otherwise inaccessible benthic ecosystems such as microbial mats in Lake Joyce, a perennially ice-covered lake of the Antarctic McMurdo Dry Valleys (MDV). Microbial mats are a key ecosystem of MDV lakes, and diverse mat morphologies like pinnacles emerge from interactions among microbial behavior, mineralization, and environmental conditions. Environmental gradients can be isolated to test mat growth models, but assessment of mat morphology along these gradients is complicated by their inaccessibility: the Lake Joyce ice cover is 4-5 m thick, water depths containing diverse pinnacle morphologies are 9-14 m, and relevant mat features are cm-scale. In order to map mat pinnacle morphology in different sedimentary settings, we deployed drop cameras (SeaViewer and GoPro) through 29 GPS referenced drill holes clustered into six stations along a transect spanning 880 m. Once under the ice cover, a boom containing a second GoPro camera was unfurled and rotated to collect oblique images of the benthic mats within dm of the mat-water interface. This setup allowed imaging from all sides over a ~1.5 m diameter area of the lake bottom. Underwater lens parameters were determined for each camera in Agisoft Lens; images were reconstructed and oriented in space with the SFM software Agisoft Photoscan, using the drop camera axis of rotation as up. The reconstructions were compared to downward facing images to assess accuracy, and similar images of an object with known geometry provided a test for expected error in reconstructions. Downward facing images identify decreasing pinnacle abundance in higher sedimentation settings, and quantitative measurements of 3D reconstructions in KeckCAVES LidarViewer supplement these mat morphological facies with measurements of pinnacle height and orientation. Reconstructions also help isolate confounding variables for mat facies trends with measurements

  19. Angora Fire, Lake Tahoe

    Science.gov (United States)

    2007-01-01

    On the weekend of June 23, 2007, a wildfire broke out south of Lake Tahoe, which stretches across the California-Nevada border. By June 28, the Angora Fire had burned more than 200 homes and forced some 2,000 residents to evacuate, according to The Seattle Times and the Central Valley Business Times. On June 27, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite captured this image of the burn scar left by the Angora fire. The burn scar is dark gray, or charcoal. Water bodies, including the southern tip of Lake Tahoe and Fallen Leaf Lake, are pale silvery blue, the silver color a result of sunlight reflecting off the surface of the water. Vegetation ranges in color from dark to bright green. Streets are light gray, and the customary pattern of meandering residential streets and cul-de-sacs appears throughout the image, including the area that burned. The burn scar shows where the fire obliterated some of the residential areas just east of Fallen Leaf Lake. According to news reports, the U.S. Forest Service had expressed optimism about containing the fire within a week of the outbreak, but a few days after the fire started, it jumped a defense, forcing the evacuation of hundreds more residents. Strong winds that had been forecast for June 27, however, did not materialize, allowing firefighters to regain ground in controlling the blaze. On June 27, authorities hoped that the fire would be completely contained by July 3. According to estimates provided in the daily report from the National Interagency Fire Center, the fire had burned 3,100 acres (about 12.5 square kilometers) and was about 55 percent contained as of June 28. Some mandatory evacuations remained in effect. NASA image by Jesse Allen, using data provided courtesy of the NASA/GSFC/MITI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team.

  20. A preliminary research of characteristic of selected frequency luminescence for debris flow in Jiangjiagou valley

    International Nuclear Information System (INIS)

    Liu Zhaowen; Wei Mingjian; Li Dongxu; Pan Baolin; Ge Yonggang

    2009-01-01

    Four debris flow samples were separated from Nidepin, Duozhao and Dawazigou valleys in Jiangjiagou valley area, Yunnan province. They were measured with BG2003 luminescence spectrograph. The characteristic spectra of the selected frequency luminescence of samples from the different locations were obtained. The wave length of emission photons from samples of Dawazigou valley and Jiangjia valley are 300, 310, 320, 400 and 460 nm when it was using blue light (488)nm excited. When the green light (532 nm) has been used to excited, the wave length of emission photons from samples of Dawazigou valley and Duozhao valley are similar high at 310 and 320 nm. Furthermore, using the green light excited the samples from desert sand at the same lab condition; the number of absorbed photons of samples from desert sand is much higher than from debris flow. (authors)

  1. Profundal sideritic mudstone from an Eocene lake in Alaska

    International Nuclear Information System (INIS)

    Dickinson, K.A.

    1987-01-01

    Sideritic lacustrine mudstone was found in drill core from a uranium deposit in the Death Valley area in the eastern part of the Seward Peninsula, Alaska. The precursor sediments for this rock were deposited in an unusual iron-meromictic Eocene lake, herein named Lake Tubutulik, which occupied part of the Boulder Creek basin, a graben that is probably a southern extension of the larger Death Valley basin. The Boulder Creek basin is bounded on the west by granite of the Upper Cretaceous Darby pluton and on the east by Precambrian to Paleozoic metasedimentary rocks. The lake basin was formed by basaltic flows that dammed the valley of the ancestral Tubutulik River in early Eocene time. The lake sediments included a nearshore facies of fine-grained organic mud and an offshore facies of laminated sideritic mud. The offshore (profundal) laminated mudstone consists of alternating layers of authigenic siderite and detrital grains, mostly quartz and clay minerals. Both lacustrine facies contain turbidites. The lacustrine rocks graded laterally into an onshore facies of colluvial and fluvial sandstone, paludal mudstone, and coal. The ancient lake occupied a small, deep basin in a tectonically active area of high relief. Meromixis was apparently stabilized by reduced iron and bicarbonate dissolved in the monimolimnion. The intensity of meromixis decreased as the lake became shallower from sediment filling. The source of the dissolved iron in the monoimolimnion was probably the Eocene basalt. Carbon isotope analysis of the siderite suggests that the dissolved bicarbonate in the profundal facies was largely inorganic. Sideritic carbon in one sample from the onshore paludal facies has an isotopic signature (δ 13 C = +16.9) consistent with residual carbonate formed during methanogenic fermentation

  2. Lake Turkana National Parks Kenya.

    OpenAIRE

    2005-01-01

    Lake Turkana is the largest, most northerly and most saline of Africa's Rift Valley lakes and an outstanding laboratory for the study of plant and animal communities. The three National Parks are a stopover for migrant waterfowl and are major breeding grounds for the Nile crocodile and hippopotamus. The Koobi Fora deposits are rich in pre-human, mammalian, molluscan and other fossil remains and have contributed more to the understanding of Quaternary palaeoenvironments than any other site on ...

  3. Geologic summary of the Owens Valley drilling project, Owens and Rose Valleys, Inyo County, California

    International Nuclear Information System (INIS)

    Schaer, D.W.

    1981-07-01

    The Owens Valley Drilling Project consists of eight drill holes located in southwest Inyo County, California, having an aggregate depth of 19,205 feet (5853 m). Project holes penetrated the Coso Formation of upper Pliocene or early Pleistocene age and the Owens Lake sand and lakebed units of the same age. The project objective was to improve the reliability of uranium-potential-resource estimates assigned to the Coso Formation in the Owens Valley region. Uranium-potential-resource estimates for this area in $100 per pound U 3 O 8 forward-cost-category material have been estimatd to be 16,954 tons (15,384 metric tons). This estimate is based partly on project drilling results. Within the Owens Valley project area, the Coso Formation was encountered only in the Rose Valley region, and for this reason Rose Valley is considered to be the only portion of the project area favorable for economically sized uranium deposits. The sequence of sediments contained in the Owens Valley basin is considered to be largely equivalent but lithologically dissimilar to the Coso Formation of Haiwee Ridge and Rose Valley. The most important factor in the concentration of significant amounts of uranium in the rock units investigated appears to be the availability of reducing agents. Significant amounts of reductants (pyrite) were found in the Coso Formation. No organic debris was noted. Many small, disconnected uranium occurrences, 100 to 500 ppM U 3 O 8 , were encountered in several of the holes

  4. Hydrogeologic implications of increased septic-tank-soil-absorption system density, Ogden Valley, Weber County, Utah

    Science.gov (United States)

    Lowe, Mike; Miner, Michael L.; ,

    1990-01-01

    Ground water in Ogden Valley occurs in perched, confined, and unconfined aquifers in the valley fill to depths of 600 feet and more. The confined aquifer, which underlies only the western portion of the valley, is overlain by cleyey silt lacustrine sediments probably deposited during the Bonneville Basin's Little Valley lake cycle sometime between 90,000 and 150,000 years ago. The top of this cleyey silt confining layer is generally 25 to 60 feet below the ground surface. Unconfined conditions occur above and beyond the outer margin of the confining layer. The sediments overlying the confining layer are primarily Lake Bonneville deposits. Water samples from springs, streams, and wells around Pineview Reservoir, and from the reservoir itself, were collected and analyzed. These samples indicate that water quality in Ogden Valley is presently good. Average nitrate concentrations in the shallow unconfined aquifer increase toward the center of Ogden Valley. This trend was not observed in the confined aquifer. There is no evidence, however, of significant water-quality deterioration, even in the vicinity of Huntsville, a town that has been densely developed using septic-tank-soil-absorption systems for much of the time since it was founded in 1860.

  5. Post-glacial rock avalanches in the Obersee Valley, Glarner Alps, Switzerland

    Science.gov (United States)

    Nagelisen, Jan; Moore, Jeffrey R.; Vockenhuber, Christoph; Ivy-Ochs, Susan

    2015-06-01

    The geological record of prehistoric rock avalanches provides invaluable data for assessing the hazard posed by these rare but destructive mass movements. Here we investigate two large rock avalanches in the Obersee valley of the Glarner Alps, Switzerland, providing detailed mapping of landslide and related Quaternary phenomena, revised volume estimates for each event, and surface exposure dating of rock avalanche deposits. The Rautispitz rock avalanche originated from the southern flank of the Obersee valley, releasing approximately 91 million m3 of limestone on steeply-dipping bedding planes. Debris had maximum horizontal travel distance of ~ 5000 m, a fahrboeschung angle (relating fall height to length) of 18°, and was responsible for the creation of Lake Obersee; deposits are more than 130 m thick in places. The Platten rock avalanche encompassed a source volume of 11 million m3 sliding from the northern flank of the Obersee valley on similar steeply-dipping limestone beds (bedrock forms a syncline under the valley). Debris had a maximum horizontal travel distance of 1600 m with a fahrboeschung angle of 21°, and is more than 80 m thick in places. Deposits of the Platten rock avalanche are superposed atop those from the Rautispitz event at the end of the Obersee valley where they dam Lake Haslensee. Runout for both events was simulated using the dynamic analysis code DAN3D; results showed excellent match to mapped deposit extents and thickness and helped confirm the hypothesized single-event failure scenarios. 36Cl cosmogenic nuclide surface exposure dating of 13 deposited boulders revealed a Younger Dryas age of 12.6 ± 1.0 ka for the Rautispitz rock avalanche and a mid-Holocene age of 6.1 ± 0.8 ka for the Platten rock avalanche. A seismological trigger is proposed for the former event due to potentially correlated turbidite deposits in nearby Lake Zurich.

  6. Eocene extension in Idaho generated massive sediment floods into Franciscan trench and into Tyee, Great Valley, and Green River basins

    Science.gov (United States)

    Dumitru, Trevor A.; Ernst, W.G.; Wright, James E.; Wooden, Joseph L.; Wells, Ray E.; Farmer, Lucia P.; Kent, Adam J.R.; Graham, Stephan A.

    2013-01-01

    The Franciscan Complex accretionary prism was assembled during an ∼165-m.y.-long period of subduction of Pacific Ocean plates beneath the western margin of the North American plate. In such fossil subduction complexes, it is generally difficult to reconstruct details of the accretion of continent-derived sediments and to evaluate the factors that controlled accretion. New detrital zircon U-Pb ages indicate that much of the major Coastal belt subunit of the Franciscan Complex represents a massive, relatively brief, surge of near-trench deposition and accretion during Eocene time (ca. 53–49 Ma). Sediments were sourced mainly from the distant Idaho Batholith region rather than the nearby Sierra Nevada. Idaho detritus also fed the Great Valley forearc basin of California (ca. 53–37 Ma), the Tyee forearc basin of coastal Oregon (49 to ca. 36 Ma), and the greater Green River lake basin of Wyoming (50–47 Ma). Plutonism in the Idaho Batholith spanned 98–53 Ma in a contractional setting; it was abruptly superseded by major extension in the Bitterroot, Anaconda, Clearwater, and Priest River metamorphic core complexes (53–40 Ma) and by major volcanism in the Challis volcanic field (51–43 Ma). This extensional tectonism apparently deformed and uplifted a broad region, shedding voluminous sediments toward depocenters to the west and southeast. In the Franciscan Coastal belt, the major increase in sediment input apparently triggered a pulse of massive accretion, a pulse ultimately controlled by continental tectonism far within the interior of the North American plate, rather than by some tectonic event along the plate boundary itself.

  7. Coho Salmon Habitat in a Changing Environment-Green Valley Creek, Graton, California

    Science.gov (United States)

    O'Connor, M. D.; Kobor, J. S.; Sherwood, M. N.

    2013-12-01

    Green Valley Creek (GVC) is a small (101 sq km) aquatic habitat refugium in the Russian River watershed (3,840 sq km) in coastal northern California. Coho salmon (Onchorhynchus kisutch) is endangered per the Federal Endangered Species Act, and GVC is one stream where coho have persisted. Fish surveys in GVC have found high species diversity, growth rates, and over-summer survival. The upper portion of GVC comprises a principal tributary (20 sq km) that provides spawning and rearing habitat for coho. The second principal tributary, Atascadero Creek, is comparable in size, but has few fish. Atascadero Creek and lower GVC have broad, densely vegetated floodplains. A Recovery Plan for the Central Coastal California coho Evolutionarily Significant Unit has been developed by the National Marine Fisheries Service (NMFS), which applies to the Russian River and its tributaries. Cooperative research regarding fish populations and habitat, a captive breeding and release program for native coho salmon, and efforts to plan for and restore habitat are ongoing. These regional efforts are particularly active in GVC, and participants include NMFS, the California Department of Fish and Wildlife, the Gold Ridge Resource Conservation District, the California Coastal Conservancy, the University of California Cooperative Extension, and the National Fish and Wildlife Foundation, among others. Our research focuses on hydrologic, geomorphic and hydrogeologic characteristics of the watershed in relation to aquatic habitat. Natural watershed factors contributing to habitat for coho include proximity to the coastal summer fog belt with cool temperatures, the Wilson Grove Formation aquifer that maintains dry season stream flow, and structural geology favorable for active floodplain morphology. Human impacts include water use and agriculture and rural residential development. Historic human impacts include stream clearing and draining of wetlands and floodplain for agriculture, which likely

  8. Upper Neogene stratigraphy and tectonics of Death Valley — a review

    Science.gov (United States)

    Knott, J. R.; Sarna-Wojcicki, A. M.; Machette, M. N.; Klinger, R. E.

    2005-12-01

    New tephrochronologic, soil-stratigraphic and radiometric-dating studies over the last 10 years have generated a robust numerical stratigraphy for Upper Neogene sedimentary deposits throughout Death Valley. Critical to this improved stratigraphy are correlated or radiometrically-dated tephra beds and tuffs that range in age from > 3.58 Ma to Mormon Point. This new geochronology also establishes maximum and minimum ages for Quaternary alluvial fans and Lake Manly deposits. Facies associated with the tephra beds show that ˜3.3 Ma the Furnace Creek basin was a northwest-southeast-trending lake flanked by alluvial fans. This paleolake extended from the Furnace Creek to Ubehebe. Based on the new stratigraphy, the Death Valley fault system can be divided into four main fault zones: the dextral, Quaternary-age Northern Death Valley fault zone; the dextral, pre-Quaternary Furnace Creek fault zone; the oblique-normal Black Mountains fault zone; and the dextral Southern Death Valley fault zone. Post - 3.3 Ma geometric, structural, and kinematic changes in the Black Mountains and Towne Pass fault zones led to the break up of Furnace Creek basin and uplift of the Copper Canyon and Nova basins. Internal kinematics of northern Death Valley are interpreted as either rotation of blocks or normal slip along the northeast-southwest-trending Towne Pass and Tin Mountain fault zones within the Eastern California shear zone.

  9. Trace element mobility and transfer to vegetation within the Ethiopian Rift Valley lake areas.

    Science.gov (United States)

    Kassaye, Yetneberk A; Skipperud, Lindis; Meland, Sondre; Dadebo, Elias; Einset, John; Salbu, Brit

    2012-10-26

    To evaluate critical trace element loads in native vegetation and calculate soil-to-plant transfer factors (TFs), 11 trace elements (Cr, Co, Ni, Cu, Zn, As, Se, Mo, Cd, Pb and Mn) have been determined in leaves of 9 taxonomically verified naturally growing terrestrial plant species as well as in soil samples collected around 3 Ethiopian Rift Valley lakes (Koka, Ziway and Awassa). The Cr concentration in leaves of all the plant species was higher than the "normal" range, with the highest level (8.4 mg per kg dw) being observed in Acacia tortilis from the Lake Koka area. Caper species (Capparis fascicularis) and Ethiopian dogstooth grass (Cynodon aethiopicus) from Koka also contained exceptionally high levels of Cd (1 mg per kg dw) and Mo (32.8 mg per kg dw), respectively. Pb, As and Cu concentrations were low in the plant leaves from all sites. The low Cu level in important fodder plant species (Cynodon aethiopicus, Acacia tortilis and Opuntia ficus-indicus) implies potential deficiency in grazing and browsing animals. Compared to the Canadian environmental quality guideline and maximum allowable concentration in agricultural soils, the total soil trace element concentrations at the studied sites are safe for agricultural crop production. Enrichment factor was high for Zn in soils around Lakes Ziway and Awassa, resulting in moderate to high transfer of Zn to the studied plants. A six step sequential extraction procedure on the soils revealed a relatively high mobility of Cd, Se and Mn. Strong association of most trace elements with the redox sensitive fraction and mineral lattice was also confirmed by partial redundancy analysis. TF (mg per kg dw plants/mg per kg dw soil) values based on the total (TF(total)) and mobile fractions (TF(mobile)) of soil trace element concentrations varied widely among elements and plant species, with the averaged TF(total) and TF(mobile) values ranging from 0.01-2 and 1-60, respectively. Considering the mobile fraction in soils should

  10. 75 FR 61174 - Warner Valley Comprehensive Site Plan, Final Environmental Impact Statement, Lassen Volcanic...

    Science.gov (United States)

    2010-10-04

    ... Warner Valley fen and wetland areas; (3) Removal or repair of Dream Lake Dam and restoration of associated riparian/wetland complex; (4) Protect and enhance the Drakesbad Historic District through removal... project planning area. This area includes Dream Lake Dam, built in 1932 by Alex Sifford, which impounds an...

  11. Spawning habitat unsuitability: an impediment to cisco rehabilitation in Lake Michigan?

    Science.gov (United States)

    Madenjian, Charles P.; Rutherford, Edward S.; Blouin, Marc A.; Sederberg, Bryan J.; Elliott, Jeff R.

    2011-01-01

    The cisco Coregonus artedi was one of the most important native prey fishes in Lake Michigan and in the other four Laurentian Great Lakes. Most of the cisco spawning in Lake Michigan was believed to have occurred in Green Bay. The cisco population in Lake Michigan collapsed during the 1950s, and the collapse was attributed in part to habitat degradation within Green Bay. Winter water quality surveys of lower Green Bay during the 1950s and 1960s indicated that the bottom dissolved oxygen (DO) concentration was less than 2 mg/L throughout much of the lower bay, and most cisco eggs would not successfully hatch at such low DO concentrations. To determine present-day spawning habitat suitability in lower Green Bay, we compared cisco egg survival in lower Green Bay with survival at a reference site (St. Marys River, Michigan–Ontario) during 2009. We also conducted winter water quality surveys in lower Green Bay and the St. Marys River during 2009 and 2010. Cisco egg survival in lower Green Bay averaged 65.3%, which was remarkably similar to and not significantly different from the mean at the St. Marys River site (64.0%). Moreover, the lowest bottom DO concentrations recorded during the winter surveys were 11.2 mg/L in lower Green Bay and 12.7 mg/L in the St. Marys River. These relatively high DO concentrations would not be expected to have any negative effect on cisco egg survival. We conclude that winter water quality conditions in lower Green Bay were suitable for successful hatching of cisco eggs and that water quality during the egg incubation period did not represent an impediment to cisco rehabilitation in Lake Michigan. Our approach to determining spawning habitat suitability for coregonids would be applicable to other aquatic systems.

  12. Electrical valley filtering in transition metal dichalcogenides

    Science.gov (United States)

    Hsieh, Tzu-Chi; Chou, Mei-Yin; Wu, Yu-Shu

    2018-03-01

    This work investigates the feasibility of electrical valley filtering for holes in transition metal dichalcogenides. We look specifically into the scheme that utilizes a potential barrier to produce valley-dependent tunneling rates, and perform the study with both a k .p -based analytic method and a recursive Green's function-based numerical method. The study yields the transmission coefficient as a function of incident energy and transverse wave vector, for holes going through lateral quantum barriers oriented in either armchair or zigzag directions, in both homogeneous and heterogeneous systems. The main findings are the following: (1) The tunneling current valley polarization increases with increasing barrier width or height; (2) both the valley-orbit interaction and band structure warping contribute to valley-dependent tunneling, with the former contribution being manifest in structures with asymmetric potential barriers, and the latter being orientation dependent and reaching maximum for transmission in the armchair direction; and (3) for transmission ˜0.1 , a tunneling current valley polarization of the order of 10 % can be achieved.

  13. Spatial patterns of lacustrine fish assemblages in a catchment of the Mississippi Alluvial Valley

    Science.gov (United States)

    Andrews, Caroline S.; Miranda, Leandro E.; Goetz, Daniel B.; Kroger, Robert

    2014-01-01

    In the alluvial valley of the lower Mississippi River, floodplain lakes form isolated aquatic fragments that retain differing degrees of connectivity to neighbouring rivers. Within these floodplain lakes it was hypothesized that fish species composition, relative abundance, and biodiversity metrics would be shaped largely by aquatic connectivity within a catchment.

  14. Daytime wind valleys adjacent to the Great Salt Lake

    Energy Technology Data Exchange (ETDEWEB)

    Stone, G.L. (Los Alamos National Lab., NM (USA)); Hoard, D.E. (Amparo Corp., Santa Fe, NM (USA))

    1990-01-01

    In 1986 Los Alamos National Laboratory was engaged by the US Army to study the meteorological aspects of emergency preparedness at several sites where toxic materials are stored and handled. The project included a series of tracer and meteorological field experiments in the vicinity of the Tooele Army Depot. These experiments generated a large data set for validating numerical simulations and for empirical analyses of the local meteorology. This paper discusses the main characteristics of the daytime, up-valley flow at the Utah site, including frequency of occurrence, horizontal and vertical structure, and temporal evolution. Some parameters controlling the variability in onset time for up-valley flow are identified, and an empirical forecasting scheme is discussed. 16 refs., 7 figs.

  15. Scenario earthquake hazards for the Long Valley Caldera-Mono Lake area, east-central California (ver. 2.0, January 2018)

    Science.gov (United States)

    Chen, Rui; Branum, David M.; Wills, Chris J.; Hill, David P.

    2014-06-30

    As part of the U.S. Geological Survey’s (USGS) multi-hazards project in the Long Valley Caldera-Mono Lake area, the California Geological Survey (CGS) developed several earthquake scenarios and evaluated potential seismic hazards, including ground shaking, surface fault rupture, liquefaction, and landslide hazards associated with these earthquake scenarios. The results of these analyses can be useful in estimating the extent of potential damage and economic losses because of potential earthquakes and also for preparing emergency response plans.The Long Valley Caldera-Mono Lake area has numerous active faults. Five of these faults or fault zones are considered capable of producing magnitude ≥6.7 earthquakes according to the Uniform California Earthquake Rupture Forecast, Version 2 (UCERF 2) developed by the 2007 Working Group on California Earthquake Probabilities (WGCEP) and the USGS National Seismic Hazard Mapping Program. These five faults are the Fish Slough, Hartley Springs, Hilton Creek, Mono Lake, and Round Valley Faults. CGS developed earthquake scenarios for these five faults in the study area and for the White Mountains Fault Zone to the east of the study area.In this report, an earthquake scenario is intended to depict the potential consequences of significant earthquakes. A scenario earthquake is not necessarily the largest or most damaging earthquake possible on a recognized fault. Rather it is both large enough and likely enough that emergency planners should consider it in regional emergency response plans. In particular, the ground motion predicted for a given scenario earthquake does not represent a full probabilistic hazard assessment, and thus it does not provide the basis for hazard zoning and earthquake-resistant building design.Earthquake scenarios presented here are based on fault geometry and activity data developed by the WGCEP, and are consistent with the 2008 Update of the United States National Seismic Hazard Maps (NSHM). Alternatives

  16. Terrestrial CDOM in Lakes of Yamal Peninsula: Connection to Lake and Lake Catchment Properties

    Directory of Open Access Journals (Sweden)

    Yury Dvornikov

    2018-01-01

    Full Text Available In this study, we analyze interactions in lake and lake catchment systems of a continuous permafrost area. We assessed colored dissolved organic matter (CDOM absorption at 440 nm (a(440CDOM and absorption slope (S300–500 in lakes using field sampling and optical remote sensing data for an area of 350 km2 in Central Yamal, Siberia. Applying a CDOM algorithm (ratio of green and red band reflectance for two high spatial resolution multispectral GeoEye-1 and Worldview-2 satellite images, we were able to extrapolate the a(λCDOM data from 18 lakes sampled in the field to 356 lakes in the study area (model R2 = 0.79. Values of a(440CDOM in 356 lakes varied from 0.48 to 8.35 m−1 with a median of 1.43 m−1. This a(λCDOM dataset was used to relate lake CDOM to 17 lake and lake catchment parameters derived from optical and radar remote sensing data and from digital elevation model analysis in order to establish the parameters controlling CDOM in lakes on the Yamal Peninsula. Regression tree model and boosted regression tree analysis showed that the activity of cryogenic processes (thermocirques in the lake shores and lake water level were the two most important controls, explaining 48.4% and 28.4% of lake CDOM, respectively (R2 = 0.61. Activation of thermocirques led to a large input of terrestrial organic matter and sediments from catchments and thawed permafrost to lakes (n = 15, mean a(440CDOM = 5.3 m−1. Large lakes on the floodplain with a connection to Mordy-Yakha River received more CDOM (n = 7, mean a(440CDOM = 3.8 m−1 compared to lakes located on higher terraces.

  17. Pleistocene glaciers, lakes, and floods in north-central Washington State

    Science.gov (United States)

    Waitt, Richard B.; Haugerud, Ralph A.; Kelsey, Harvey M.

    2017-01-01

    The Methow, Chelan, Wenatchee, and other terrane blocks accreted in late Mesozoic to Eocene times. Methow valley is excavated in an exotic terrane of folded Mesozoic sedimentary and volcanic rocks faulted between crystalline blocks. Repeated floods of Columbia River Basalt about 16 Ma drowned a backarc basin to the southeast. Cirques, aretes, and U-shaped hanging troughs brand the Methow, Skagit, and Chelan headwaters. The Late Wisconsin Cordilleran icesheet beveled the alpine topography and deposited drift. Cordilleran ice flowed into the heads of Methow tributaries and overflowed from Skagit tributaries to greatly augment Chelan trough's glacier. Joined Okanogan and Methow ice flowed down Columbia valley and up lower Chelan trough. This tongue met the icesheet tongue flowing southeast down Chelan valley. Successively lower ice-marginal channels and kame terraces show that the icesheet withered away largely by downwasting. Immense late Wisconsin floods from glacial Lake Missoula occasionally swept the Chelan-Vantage reach of Columbia valley by different routes. The earliest debacles, nearly 19,000 cal yr BP (by radiocarbon methods), raged 335 m deep down the Columbia and built high Pangborn bar at Wenatchee. As Cordilleran ice blocked the northwest of Columbia valley, several giant floods descended Moses Coulee and backflooded up the Columbia. As advancing ice then blocked Moses Coulee, Grand Coulee to Quincy basin became the westmost floodway. From Quincy basin many Missoula floods backflowed 50 km upvalley past Wenatchee 18,000 to 15,500 years ago. Receding ice dammed glacial Lake Columbia centuries more--till it burst about 15,000 years ago. After Glacier Peak ashfall about 13,600 years ago, smaller great flood(s) swept down the Columbia from glacial Lake Kootenay in British Columbia. A cache of huge fluted Clovis points had been laid atop Pangborn bar (East Wenatchee) after the Glacier Peak ashfall. Clovis people came two and a half millennia after the last

  18. Luminescence dating of paleolake deltas and glacial deposits in Garwood Valley, Antarctica: Implications for climate, Ross ice sheet dynamics, and paleolake duration

    Science.gov (United States)

    Levy, Joseph S.; Rittenour, Tammy M.; Fountain, Andrew G.; O'Connor, Jim E.

    2017-01-01

    The formation of perched deltas and other lacustrine deposits in the McMurdo Dry Valleys of Antarctica is widely considered to be evidence of valley-filling lakes dammed by the grounded Ross Sea ice sheet during the local Last Glacial Maximum, with lake drainage interpreted as a record of grounding line retreat. We used luminescence dating to determine the age of paleolake deltas and glacial tills in Garwood Valley, a coastal dry valley that opens to the Ross Sea. Luminescence ages are stratigraphically consistent with radiocarbon results from algal mats within the same delta deposits but suggest radiocarbon dates from lacustrine carbonates may overestimate deposit ages by thousands of years. Results suggest that late Holocene delta deposition into paleolake Howard in Garwood Valley persisted until ca. 3.5 ka. This is significantly younger than the date when grounded ice is thought to have retreated from the Ross Sea. Our evidence suggests that the local, stranded ice-cored till topography in Garwood Valley, rather than regional ice-sheet dynamics, may have controlled lake levels for some McMurdo Dry Valleys paleolakes. Age control from the supraglacial Ross Sea drift suggests grounding and up-valley advance of the Ross Sea ice sheet into Garwood valley during marine oxygen isotope stage (MIS) 4 (71–78 ka) and the local Last Glacial Maximum (9–10 ka). This work demonstrates the power of combining luminescence dating with existing radiocarbon data sets to improve understanding of the relationships among paleolake formation, glacial position, and stream discharge in response to climate change.

  19. Detection of Adult Green Sturgeon Using Environmental DNA Analysis.

    Directory of Open Access Journals (Sweden)

    Paul S Bergman

    Full Text Available Environmental DNA (eDNA is an emerging sampling method that has been used successfully for detection of rare aquatic species. The Identification of sampling tools that are less stressful for target organisms has become increasingly important for rare and endangered species. A decline in abundance of the Southern Distinct Population Segment (DPS of North American Green Sturgeon located in California's Central Valley has led to its listing as Threatened under the Federal Endangered Species Act in 2006. While visual surveys of spawning Green Sturgeon in the Central Valley are effective at monitoring fish densities in concentrated pool habitats, results do not scale well to the watershed level, providing limited spatial and temporal context. Unlike most traditional survey methods, environmental DNA analysis provides a relatively quick, inexpensive tool that could efficiently monitor the presence and distribution of aquatic species. We positively identified Green Sturgeon DNA at two locations of known presence in the Sacramento River, proving that eDNA can be effective for monitoring the presence of adult sturgeon. While further study is needed to understand uncertainties of the sampling method, our study represents the first documented detection of Green Sturgeon eDNA, indicating that eDNA analysis could provide a new tool for monitoring Green Sturgeon distribution in the Central Valley, complimenting traditional on-going survey methods.

  20. Microscopic Identification of Prokaryotes in Modern and Ancient Halite, Saline Valley and Death Valley, California

    Science.gov (United States)

    Schubert, Brian A.; Lowenstein, Tim K.; Timofeeff, Michael N.

    2009-06-01

    Primary fluid inclusions in halite crystallized in Saline Valley, California, in 1980, 2004-2005, and 2007, contain rod- and coccoid-shaped microparticles the same size and morphology as archaea and bacteria living in modern brines. Primary fluid inclusions from a well-dated (0-100,000 years), 90 m long salt core from Badwater Basin, Death Valley, California, also contain microparticles, here interpreted as halophilic and halotolerant prokaryotes. Prokaryotes are distinguished from crystals on the basis of morphology, optical properties (birefringence), and uniformity of size. Electron micrographs of microparticles from filtered modern brine (Saline Valley), dissolved modern halite crystals (Saline Valley), and dissolved ancient halite crystals (Death Valley) support in situ microscopic observations that prokaryotes are present in fluid inclusions in ancient halite. In the Death Valley salt core, prokaryotes in fluid inclusions occur almost exclusively in halite precipitated in perennial saline lakes 10,000 to 35,000 years ago. This suggests that trapping and preservation of prokaryotes in fluid inclusions is influenced by the surface environment in which the halite originally precipitated. In all cases, prokaryotes in fluid inclusions in halite from the Death Valley salt core are miniaturized (<1 μm diameter cocci, <2.5 μm long, very rare rod shapes), which supports interpretations that the prokaryotes are indigenous to the halite and starvation survival may be the normal response of some prokaryotes to entrapment in fluid inclusions for millennia. These results reinforce the view that fluid inclusions in halite and possibly other evaporites are important repositories of microbial life and should be carefully examined in the search for ancient microorganisms on Earth, Mars, and elsewhere in the Solar System.

  1. Ciliated protozoa of two antarctic lakes: analysis by quantitative protargol staining and examination of artificial substrates

    Science.gov (United States)

    Kepner, R. L. Jr; Wharton, R. A. Jr; Coats, D. W.; Wharton RA, J. r. (Principal Investigator)

    1999-01-01

    Planktonic and artificial substrate-associated ciliates have been identified in two perennially ice-covered antarctic lakes of the McMurdo Dry Valleys. Abundances estimated by quantitative protargol staining ranged from < 5 to 31690 cells l-1, levels that are comparable to those previously obtained using other methods. Nineteen ciliate taxa were identified from these lakes, with the most frequently encountered genera being Plagiocampa, Askenasia, Monodinium, Sphaerophrya and Vorticella. The taxonomic findings compare favorably with those of previous investigators; however four previously unreported genera were observed in both Lakes Fryxell and Hoare. The variability in the depth distributions of ciliates in Lake Fryxell is explained in terms of lake physicochemical properties and ciliate prey distributions, while factors related to temporal succession in the Lake Hoare assemblage remain unexplained. Local marine or temperate zone freshwater habitats are a more likely source than the surrounding dry valleys soils for present ciliate colonists in these lakes. Although the taxonomic uncertainties require further examination, our results suggest that ciliate populations in these antarctic lakes undergo significant fluctuations and are more diverse than was previously recognized.

  2. Floodplain lakes and alluviation cycles of the lower Colorado River

    Science.gov (United States)

    Malmon, D.; Felger, T. J.; Howard, K. A.

    2007-05-01

    The broad valleys along the lower Colorado River contain numerous bodies of still water that provide critical habitat for bird, fish, and other species. This chain of floodplain lakes is an important part of the Pacific Flyway - the major north-south route of travel for migratory birds in the western Hemisphere - and is also used by many resident bird species. In addition, isolated floodplain lakes may provide the only viable habitat for endangered native fish such as the razorback sucker, vulnerable to predation by introduced species in the main stem of the Colorado River. Floodplain lakes typically occupy former channel courses of the river and formed as a result of river meandering or avulsion. Persistent fluvial sediment deposition (aggradation) creates conditions that favor rapid formation and destruction of floodplain lakes, while long term river downcutting (degradation) inhibits their formation and evolution. New radiocarbon dates from wood recovered from drill cores near Topock, AZ indicate that the river aggraded an average of 3 mm/yr in the middle and late Holocene. Aggradational conditions before Hoover Dam was built were associated with rapid channel shifting and frequent lake formation. Lakes had short life spans due to rapid infilling with fine-grained sediment during turbid floods on the unregulated Colorado River. The building of dams and of armored banks had a major impact on floodplain lakes, not only by drowning large portions of the valley beneath reservoirs, but by preventing new lake formation in some areas and accelerating it in others. GIS analyses of three sets of historical maps show that both the number and total area of isolated (i.e., not linked to the main channel by a surface water connection) lakes in the lower Colorado River valley increased between 1902 and the 1950s, and then decreased though the 1970s. River bed degradation below dams inhibits channel shifting and floodplain lake formation, and the capture of fines behind the

  3. GREEN GALAXIES IN THE COSMOS FIELD

    International Nuclear Information System (INIS)

    Pan, Zhizheng; Kong, Xu; Fan, Lulu

    2013-01-01

    We present research on the morphologies, spectra, and environments of ≈2350 'green valley' galaxies at 0.2 + color is used to define 'green valley'; it removes dusty star-forming galaxies from galaxies that are truly transitioning between the blue cloud and the red sequence. Morphological parameters of green galaxies are intermediate between those of blue and red galaxy populations, both on the Gini-asymmetry and the Gini-M 20 planes. Approximately 60%-70% of green disk galaxies have intermediate or big bulges, and only 5%-10% are pure disk systems, based on morphological classification using the Zurich Estimator of Structural Types. The obtained average spectra of green galaxies are intermediate between blue and red ones in terms of [O II], Hα, and Hβ emission lines. Stellar population synthesis on the average spectra shows that green galaxies are on average older than blue galaxies but younger than red galaxies. Green galaxies and blue galaxies have similar projected galaxy density (Σ 10 ) distributions at z > 0.7. At z * 10.0 M ☉ green galaxies located in a dense environment are found to be significantly larger than those of blue galaxies. The morphological and spectral properties of green galaxies are consistent with the transitioning population between the blue cloud and the red sequence. The possible mechanisms for quenching star formation activities in green galaxies are discussed. The importance of active galactic nucleus feedback cannot be well constrained in our study. Finally, our findings suggest that environmental conditions, most likely starvation and harassment, significantly affect the transformation of M * 10.0 M ☉ blue galaxies into red galaxies, especially at z < 0.5

  4. High pollution events in the Great Salt Lake Basin and its adjacent valleys. Insights on mechanisms and spatial distribution of the formation of secondary aerosol.

    Science.gov (United States)

    Franchin, A.; Middlebrook, A. M.; Baasandorj, M.; Brown, S. S.; Fibiger, D. L.; Goldberger, L.; McDuffie, E. E.; Moravek, A.; Murphy, J. G.; Thornton, J. A.; Womack, C.

    2017-12-01

    High pollution events are common in many locations in the U.S.A. and around the world. They can last several days or up to weeks and they negatively affect human health, deteriorate visibility, and increase premature mortality. The main causes for high pollution events are related to meteorology and sources. They often happen in the winter, when high emissions, stagnation and reduced mixing, due to a shallow boundary layer, cause high concentrations of pollutants to accumulate. In the last decades, the air quality in the U.S. has seen an overall improvement, due to the reductions in particulate and gaseous pollutants. However, some areas remain critical. The Great Salt Lake Basin and its adjacent valleys are currently areas where high pollution events are a serious environmental problem involving more than 2.4 million people. We will present the results of the Utah Wintertime Fine Particulate Study (UWFPS) that took place in winter 2017. During UWFPS, we carried out airborne measurements of aerosol chemical composition and precursor vapor concentrations over the Great Salt Lake Basin and its adjacent valleys. We will give insights into how and under which conditions conversion of precursor vapors into aerosol particles takes place in the area. We will also present a comparison of our measurements with models that will provide an insight of the mechanisms that lead to the formation of secondary aerosol particles. With the results of our work, we aim to inform strategies for pollution control in the future.

  5. Spatiotemporal variations in the abundance and composition of bulk and chromophoric dissolved organic matter in seasonally hypoxia-influenced Green Bay, Lake Michigan, USA.

    Science.gov (United States)

    DeVilbiss, Stephen E; Zhou, Zhengzhen; Klump, J Val; Guo, Laodong

    2016-09-15

    Green Bay, Lake Michigan, USA, is the largest freshwater estuary in the Laurentian Great Lakes and receives disproportional terrestrial inputs as a result of a high watershed to bay surface area ratio. While seasonal hypoxia and the formation of "dead zones" in Green Bay have received increasing attention, there are no systematic studies on the dynamics of dissolved organic matter (DOM) and its linkage to the development of hypoxia. During summer 2014, bulk dissolved organic carbon (DOC) analysis, UV-vis spectroscopy, and fluorescence excitation-emission matrices (EEMs) coupled with PARAFAC analysis were used to quantify the abundance, composition and source of DOM and their spatiotemporal variations in Green Bay, Lake Michigan. Concentrations of DOC ranged from 202 to 571μM-C (average=361±73μM-C) in June and from 279 to 610μM-C (average=349±64μM-C) in August. In both months, absorption coefficient at 254nm (a254) was strongly correlated to bulk DOC and was most abundant in the Fox River, attesting a dominant terrestrial input. Non-chromophoric DOC comprised, on average, ~32% of bulk DOC in June with higher terrestrial DOM and ~47% in August with higher aquagenic DOM, indicating that autochthonous and more degraded DOM is of lower optical activity. PARAFAC modeling on EEM data resulted in four major fluorescent DOM components, including two terrestrial humic-like, one aquagenic humic-like, and one protein-like component. Variations in the abundance of DOM components further supported changes in DOM sources. Mixing behavior of DOM components also indicated that while bulk DOM behaved quasi-conservatively, significant compositional changes occurred during transport from the Fox River to the open bay. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Dragon Lake, Siberia

    Science.gov (United States)

    2002-01-01

    Nicknamed 'Dragon Lake,' this body of water is formed by the Bratskove Reservoir, built along the Angara river in southern Siberia, near the city of Bratsk. This image was acquired in winter, when the lake is frozen. This image was acquired by Landsat 7's Enhanced Thematic Mapper plus (ETM+) sensor on December 19, 1999. This is a natural color composite image made using blue, green, and red wavelengths. Image provided by the USGS EROS Data Center Satellite Systems Branch

  7. GREEN GALAXIES IN THE COSMOS FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Zhizheng; Kong, Xu; Fan, Lulu, E-mail: panzz@mail.ustc.edu.cn, E-mail: xkong@ustc.edu.cn [Center of Astrophysics, University of Science and Technology of China, Hefei 230026 (China)

    2013-10-10

    We present research on the morphologies, spectra, and environments of ≈2350 'green valley' galaxies at 0.2 < z < 1.0 in the COSMOS field. The bimodality of dust-corrected NUV–r {sup +} color is used to define 'green valley'; it removes dusty star-forming galaxies from galaxies that are truly transitioning between the blue cloud and the red sequence. Morphological parameters of green galaxies are intermediate between those of blue and red galaxy populations, both on the Gini-asymmetry and the Gini-M{sub 20} planes. Approximately 60%-70% of green disk galaxies have intermediate or big bulges, and only 5%-10% are pure disk systems, based on morphological classification using the Zurich Estimator of Structural Types. The obtained average spectra of green galaxies are intermediate between blue and red ones in terms of [O II], Hα, and Hβ emission lines. Stellar population synthesis on the average spectra shows that green galaxies are on average older than blue galaxies but younger than red galaxies. Green galaxies and blue galaxies have similar projected galaxy density (Σ{sub 10}) distributions at z > 0.7. At z < 0.7, the fractions of M{sub *} < 10{sup 10.0} M{sub ☉} green galaxies located in a dense environment are found to be significantly larger than those of blue galaxies. The morphological and spectral properties of green galaxies are consistent with the transitioning population between the blue cloud and the red sequence. The possible mechanisms for quenching star formation activities in green galaxies are discussed. The importance of active galactic nucleus feedback cannot be well constrained in our study. Finally, our findings suggest that environmental conditions, most likely starvation and harassment, significantly affect the transformation of M{sub *} < 10{sup 10.0} M{sub ☉} blue galaxies into red galaxies, especially at z < 0.5.

  8. Gravity anomaly at a Pleistocene lake bed in NW Alaska interpreted by analogy with Greenland's Lake Taserssauq and its floating ice tongue

    Science.gov (United States)

    Barnes, D.F.

    1987-01-01

    A possible example of a very deep glacial excavation is provided by a distinctive gravity low located at the front of a valley glacier that once flowed into glacial Lake Aniuk (formerly Lake Noatak) in the western Brooks Range. Geologic and geophysical data suggest that sediments or ice filling a glacially excavated valley are the most probable cause of the 30-50 mGal anomaly. Reasonable choices of geometric models and density contrasts indicate that the former excavation is now filled with a buried-ice thickness of 700 m or sediment thicknesses greater than 1 km. No direct evidence of efficient excavation was observed in Greenland, but efficient glacial erosion behind a floating polar ice tongue could explain the excavation that caused the Alaskan gravity anomaly. -from Author

  9. From Greenland to green lakes: Cultural eutrophication and the loss of benthic pathways in lakes

    DEFF Research Database (Denmark)

    Vadeboncoeur, Y.; Jeppesen, E.; Zanden, M. J. V.

    2003-01-01

    Benthic community responses to lake eutrophication are poorly understood relative to pelagic responses. We compared phytoplankton and periphyton productivity along a eutrophication gradient in Greenland, U.S., and Danish lakes. Phytoplankton productivity increased along the phosphorus gradient (t...

  10. Timescales of Growth Response of Microbial Mats to Environmental Change in an Ice-Covered Antarctic Lake

    Directory of Open Access Journals (Sweden)

    Anne D. Jungblut

    2013-01-01

    Full Text Available Lake Vanda is a perennially ice-covered, closed-basin lake in the McMurdo Dry Valleys, Antarctica. Laminated photosynthetic microbial mats cover the floor of the lake from below the ice cover to >40 m depth. In recent decades, the water level of Lake Vanda has been rising, creating a “natural experiment” on development of mat communities on newly flooded substrates and the response of deeper mats to declining irradiance. Mats in recently flooded depths accumulate one lamina (~0.3 mm per year and accrue ~0.18 µg chlorophyll-a cm−2 y−1. As they increase in thickness, vertical zonation becomes evident, with the upper 2-4 laminae forming an orange-brown zone, rich in myxoxanthophyll and dominated by intertwined Leptolyngbya trichomes. Below this, up to six phycobilin-rich green/pink-pigmented laminae form a subsurface zone, inhabited by Leptolyngbya, Oscillatoria and Phormidium morphotypes. Laminae continued to increase in thickness for several years after burial, and PAM fluorometry indicated photosynthetic potential in all pigmented laminae. At depths that have been submerged for >40 years, mats showed similar internal zonation and formed complex pinnacle structures that were only beginning to appear in shallower mats. Chlorophyll-a did not change over time and these mats appear to represent resource-limited “climax” communities. Acclimation of microbial mats to changing environmental conditions is a slow process, and our data show how legacy effects of past change persist into the modern community structure.

  11. Malachite green and chloramphenicol in aquatic products from regions around Dongting Lake in Hunan, China.

    Science.gov (United States)

    He, Jiang; Cui, Jingzhen

    2016-01-01

    Aquatic products are important sources of animal proteins in human diet, especially in developing countries. As such, the safety of aquatic products is of primary concern. In this study, a standard method is used to detect malachite green (MG) and chloramphenicol (CAP) and to analyse the contents of these banned chemicals in turtle, mandarin fish and grass carp sampled from the region surrounding Dongting Lake area in Hunan, China. Results showed that 10.6% of the samples were MG-positive, most of them turtles. CAP was found in 8.3% of the samples, mostly in mandarin fish. These data indicated that these banned substances are still used in the surveyed area. Hence, adequate strategies must be implemented by the local government to control these banned substances.

  12. Monitoring of Bashkara glacial lakes (the Central Caucasus) and modelling of their potential outburst.

    Science.gov (United States)

    Krylenko, I.; Norin, S.; Petrakov, D.; Tutubalina, O.; Chernomorets, S.

    2009-04-01

    In recent decades due to glacier retreat the glacial lakes in the Central Caucasus, as well as in other high-mountainous areas of the world, have expanded intensively. As result the risk of lake outbursts and destructive floods is raising. In this paper we present one of the most potentially hazardous lakes of this region - a group of glacial lakes near the Bashkara glacier in the upper Adylsu river valley, to the southeast of Mt. Elbrus. Total area of these lakes is about 100,000m2, and a total volume exceeds 1,000,000 m3. The biggest of them - the Bashkara lake has formed in late 1930s - early 1940s and the small Lapa lake has appeared in the end of 1980s. The Bashkara lake outburst occurred twice in the end of 1950s and produced devastating debris flows of ca. 2 million m3. We have monitored these lakes since 1999. Our work includes detailed field research: constant measurements of water level during warm period, annually repeated bathymetric surveys, geodetic surveys, observations on dam condition and some special measurements (i.e. water temperature distribution, current velocity). Also we use aerial and satellite images to obtain data about dynamic of areas for the lakes. From 2001 to 2006 years volume of the Lapa lake has increased 5 times (from 30,000 m3 to 140,000 m3), the Bashkara lake in this period was quasi-stable. In 2006-2008 volume of the Lapa lake has decreased due to sedimentation, however, rapid growth of water level in Bashkara lake (more than 20 sm. per day) has suddenly begun. As a result, volume of the Bashkara lake exceeded 1,000000 m3 in July 2008 whereas in 2001 -2007 year it was about 800,000 m3. Previous maximum of water level was exceeded on 3,5 m, moraine dam with ice core was overtopped and overflow has started. Thus, Bashkara glacier lakes are unstable and risk of outburst is increasing. To assess parameters and zones of potential outburst flood in the Adylsu River valley we have carried out hydrodynamic simulation. Two computer

  13. Hydrologic data and description of a hydrologic monitoring plan for the Borax Lake area, Oregon

    Science.gov (United States)

    Schneider, Tiffany Rae; McFarland, William D.

    1995-01-01

    Borax Lake is located in southeastern Oregon, within the Alvord Valley Known Geothermal Resource Area. Borax Lake is a large hot spring; there are more than 50 smaller hot springs within about one-half mile to the north of the lake. Several geothermal exploration wells have been drilled near Borax Lake, and there is concern that development of the geothermal resources could affect the lake and nearby hot springs. A factor to consider in developing the resource is that the Borax Lake chub is an endangered species of fish that is found exclusively in Borax Lake.

  14. Characteristic of selected frequency luminescence for paleo-debris flow deposits in Jiangjia valley

    International Nuclear Information System (INIS)

    Liu Zhaowen; Wei Mingjian; Pan Baolin; Liu Chao; Li Dongxu

    2008-01-01

    Eight paleo-debris flow samples from Nideping, Duozhao, Dawazi valley, and Jiangjia valley in Yunnan Province were tested with BG2003 luminescence spectrograph. The characteristic spectra of the selected frequency luminescence of paleo-debris flow deposits from the different locations were obtained. Excited at 488 nm, the wavelengths of emission photons from all samples are 300, 310, 320, 400 and 460 nm. With green excitation (532 nm), the wavelengths of emission photons from all samples are 300, 310, 320 and 460 nm. Then it is determined that the luminescence spectrographs of Nideping are almost same in different time, however, they are different in Dawazi valley and Duozhao. Taking Nideping for example, excited at green, the debris flow substances from the upper, middle, or lower zone of this platform. Response to increasing irradiation dose at 310, 320, and 460 nm, we can define the wavelengths used for dating. (authors)

  15. Lake Austin uranium deposit, Western Australia

    International Nuclear Information System (INIS)

    Heath, A.G.; Deutscher, R.L.; Butt, C.R.M.

    1984-01-01

    The Lake Austin uranium deposit is a calcrete type deposit in the Yilgarn Block, near Cue, in a catchment area of granitoids and greenstones. The uranium is in valley fill and the sediments of the Lake Austin playa. The mineralization occurs over 1 to 6 meter thickness close to the water table in calcrete overlying clays and/or weathered bedrock. The principal uranium mineral is carnotite. Waters in nearby channels have an uranium content of over 30 ppb. The chloride content of the water increases downstream in the nearby drainages, as does the uranium and vanadium content. (author)

  16. The effect of bloom of filamentous green algae on the reproduction of yellowfin sculpin Cottocomephorus grewingkii (Dybowski, 1874) (Cottoidae) during ecological crisis in Lake Baikal.

    Science.gov (United States)

    Khanaev, I V; Dzyuba, E V; Kravtsova, L S; Grachev, M A

    2016-03-01

    In shallow water areas of open Lake Baikal, filamentous green alga of the genus Spirogyra grows abundantly. Together with alga of the genus Ulothrix, it forms algal mats. According to our observations from 2010 to 2013, the spawning habitat conditions for the yellowfin sculpin Cottocomephorus grewingkii (Dybowski, 1874) (Cottidae) proved to be significantly disturbed in the littoral zone of Listvennichnyi Bay (southern Baikal), which, in turn, reduced the number of egg layings. With a 100% projective cover of the floor and a high density of green filamentous algae, the shallow-water stony substrate becomes completely inaccessible for spawning of the August population.

  17. Looking Back to Move Forward: Collaborative Planning to Revise the Green Mountain and Finger Lakes National Forests Land and Resource Management Plans

    Directory of Open Access Journals (Sweden)

    Michael J Dockry

    2015-07-01

    Full Text Available The United States Department of Agriculture Forest Service (Forest Service manages 154 national forests and 20 grasslands in 44 states and Puerto Rico. National Forest Land and Resource Management Plans (forest plans form the basis for land and resource management of national forests in the United States. For more than a decade the Forest Service has been attempting to incorporate innovative, collaborative public involvement strategies into the process for revising forest plans. In 2012 and 2015 the Forest Service codified new regulations for developing, revising, and amending forest plans. Collaboration and public involvement are explicit goals of the new regulations. This paper briefly reviews the literature on collaborative planning on national forests and explores a successful collaborative planning process used by the Green Mountain and Finger Lakes National Forests, located in Vermont and New York respectively, to develop their 2006 forest plans. This paper shows how the Green Mountain and Finger Lakes National Forests developed parallel public and internal collaborative processes to build trust, relationships, and partnership, and discusses the implications for process design, capacity building, and facilitating agreements. By looking back at this successful case of collaborative forest planning, key lessons can provide ideas for developing collaborative processes for future planning efforts.

  18. The Role of Source Material in Basin Sedimentation, as Illustrated within Eureka Valley, Death Valley National Park, CA.

    Science.gov (United States)

    Lawson, M. J.; Yin, A.; Rhodes, E. J.

    2015-12-01

    Steep landscapes are known to provide sediment to sink regions, but often petrological factors can dominate basin sedimentation. Within Eureka Valley, in northwestern Death Valley National Park, normal faulting has exposed a steep cliff face on the western margin of the Last Chance range with four kilometers of vertical relief from the valley floor and an angle of repose of nearly 38 degrees. The cliff face is composed of Cambrian limestone and dolomite, including the Bonanza King, Carrara and Wood Canyon formations. Interacting with local normal faulting, these units preferentially break off the cliff face in coherent blocks, which result in landslide deposits rather than as finer grained material found within the basin. The valley is well known for a large sand dune, which derives its sediment from distal sources to the north, instead of from the adjacent Last Chance Range cliff face. During the Holocene, sediment is sourced primary from the northerly Willow Wash and Cucomungo canyon, a relatively small drainage (less than 80 km2) within the Sylvan Mountains. Within this drainage, the Jurassic quartz monzonite of Beer Creek is heavily fractured due to motion of the Fish Valley Lake - Death Valley fault zone. Thus, the quartz monzonite is more easily eroded than the well-consolidated limestone and dolomite that forms the Last Change Range cliff face. As well, the resultant eroded material is smaller grained, and thus more easily transported than the limestone. Consequently, this work highlights an excellent example of the strong influence that source material can have on basin sedimentation.

  19. Plankton community and the relationship with the environment in saline lakes of Onon-Torey plain, Northeastern Mongolia.

    Science.gov (United States)

    Afonina, Ekaterina Yu; Tashlykova, Natalya A

    2018-02-01

    The plankton community of sixteen saline lakes located on Onon-Torey plain (Northeastern Mongolia) during the filling phase and the raising of the water level was investigated in July 2011. Thirty-five taxa of phytoplankton and thirty-one species of zooplankton were found. For phytoplankton, blue-green algae ( Merismopedia elegans , Anabaenopsis elenkinii , Arthrospora fusiformis , Spirulina major , Lyngbya sp., Oscillatoria sp.) and green algae ( Monoraphidium minutum , Tetrastrum komarekii , Ankyra ocellata , Oocystis sp.) were dominant. For zooplankton, Filinia longiseta, Brachionus plicatilis , B. variabilis , Hexarthra mira (Rotifera), Daphnia magna , Moina brachiata , M. mongolica (Cladocera), Arctodiaptomus bacillifer , Mixodiaptomus incrassatus , Metadiaptomus asiaticus (Copepoda) dominated. Mineralization, active hydrogen ratio, dissolved oxygen and water temperature were the main factors influencing the diversity, structure and distribution of plankton organisms in the steppe lakes during low water level. The RDA analysis for phytoplankton and zooplankton from different lakes was carried out for selected two groups which included lakes and a subset related species. The first group is of oligohaline and mesohaline lakes in which mostly green algae, rotifers and copepods inhabit. The second group is of mesohaline and polyhaline lakes with mainly blue-green algae , some crustaceans and rotifers inhabiting. High abundance and biomass of Spirulina major , Oscillatoria sp. and Brachionus variabilis were observed in lakes with high mineralization, pH and temperature.

  20. Water Budgets of the Walker River Basin and Walker Lake, California and Nevada

    Science.gov (United States)

    Lopes, Thomas J.; Allander, Kip K.

    2009-01-01

    The Walker River is the main source of inflow to Walker Lake, a closed-basin lake in west-central Nevada. The only outflow from Walker Lake is evaporation from the lake surface. Between 1882 and 2008, upstream agricultural diversions resulted in a lake-level decline of more than 150 feet and storage loss of 7,400,000 acre-feet. Evaporative concentration increased dissolved solids from 2,500 to 17,000 milligrams per liter. The increase in salinity threatens the survival of the Lahontan cutthroat trout, a native species listed as threatened under the Endangered Species Act. This report describes streamflow in the Walker River basin and an updated water budget of Walker Lake with emphasis on the lower Walker River basin downstream from Wabuska, Nevada. Water budgets are based on average annual flows for a 30-year period (1971-2000). Total surface-water inflow to the upper Walker River basin upstream from Wabuska was estimated to be 387,000 acre-feet per year (acre-ft/yr). About 223,000 acre-ft/yr (58 percent) is from the West Fork of the Walker River; 145,000 acre-ft/yr (37 percent) is from the East Fork of the Walker River; 17,000 acre-ft/yr (4 percent) is from the Sweetwater Range; and 2,000 acre-ft/yr (less than 1 percent) is from the Bodie Mountains, Pine Grove Hills, and western Wassuk Range. Outflow from the upper Walker River basin is 138,000 acre-ft/yr at Wabuska. About 249,000 acre-ft/yr (64 percent) of inflow is diverted for irrigation, transpired by riparian vegetation, evaporates from lakes and reservoirs, and recharges alluvial aquifers. Stream losses in Antelope, Smith, and Bridgeport Valleys are due to evaporation from reservoirs and agricultural diversions with negligible stream infiltration or riparian evapotranspiration. Diversion rates in Antelope and Smith Valleys were estimated to be 3.0 feet per year (ft/yr) in each valley. Irrigated fields receive an additional 0.8 ft of precipitation, groundwater pumpage, or both for a total applied-water rate

  1. Environmental status of the Lake Michigan region. Volume 3. Chemistry of Lake Michigan

    Energy Technology Data Exchange (ETDEWEB)

    Torrey, M S

    1976-05-01

    The report is a synoptic review of data collected over the past twenty years on the chemistry of Lake Michigan. Changes in water quality and sediment chemistry, attributable to cultural and natural influences, are considered in relation to interacting processes and factors controlling the distribution and concentration of chemical substances within the Lake. Temperature, light, and mixing processes are among the important natural influences that affect nutrient cycling, dispersal of pollutants, and fate of materials entering the Lake. Characterization of inshore-offshore and longitudinal differences in chemical concentrations and sediment chemistry for the main body of the Lake is supplemented by discussion of specific areas such as Green Bay and Grand Traverse Bay. Residues, specific conductance, dissolved oxygen, major and trace nutrients, and contaminants are described in the following context: biological essentiality and/or toxicity, sources to the Lake, concentrations in the water column and sediments, chemical forms, seasonal variations and variation with depth. A summary of existing water quality standards, statutes, and criteria applicable to Lake Michigan is appended.

  2. Timing of lake-level changes for a deep last-glacial Lake Missoula: optical dating of the Garden Gulch area, Montana, USA

    DEFF Research Database (Denmark)

    Smith, Larry N.; Sohbati, Reza; Buylaert, Jan-Pieter

    2018-01-01

    Glaciolacustrine sediments in the Clark Fork River valley at Garden Gulch, near Drummond, Montana, USA record highstand positions of the ice-dammed glacial Lake Missoula and repeated subaerial exposure. During these highstands the lake was at greater than 65% of its recognized maximum capacity......-level fluctuation, occurred over time scales of decades to ∼2 ka. Bioturbated sandy slopewash dated at 10.6 ± 0.9 ka and 11.9 ± 1.2 ka unconformably overlies the upper glaciolacustrine deposits. The uppermost sediments, above the glaciolacustrine section, are younger than the Glacier Peak tephra (13.7-13.4 cal ka B...... the lake's highstand position due to ice-dam failure likely led to scour in the downstream portions of the glacial Lake Missoula basin and megafloods in the Channeled Scabland....

  3. Geohydrology of Big Bear Valley, California: phase 1--geologic framework, recharge, and preliminary assessment of the source and age of groundwater

    Science.gov (United States)

    Flint, Lorraine E.; Brandt, Justin; Christensen, Allen H.; Flint, Alan L.; Hevesi, Joseph A.; Jachens, Robert; Kulongoski, Justin T.; Martin, Peter; Sneed, Michelle

    2012-01-01

    The Big Bear Valley, located in the San Bernardino Mountains of southern California, has increased in population in recent years. Most of the water supply for the area is pumped from the alluvial deposits that form the Big Bear Valley groundwater basin. This study was conducted to better understand the thickness and structure of the groundwater basin in order to estimate the quantity and distribution of natural recharge to Big Bear Valley. A gravity survey was used to estimate the thickness of the alluvial deposits that form the Big Bear Valley groundwater basin. This determined that the alluvial deposits reach a maximum thickness of 1,500 to 2,000 feet beneath the center of Big Bear Lake and the area between Big Bear and Baldwin Lakes, and decrease to less than 500 feet thick beneath the eastern end of Big Bear Lake. Interferometric Synthetic Aperture Radar (InSAR) was used to measure pumping-induced land subsidence and to locate structures, such as faults, that could affect groundwater movement. The measurements indicated small amounts of land deformation (uplift and subsidence) in the area between Big Bear Lake and Baldwin Lake, the area near the city of Big Bear Lake, and the area near Sugarloaf, California. Both the gravity and InSAR measurements indicated the possible presence of subsurface faults in subbasins between Big Bear and Baldwin Lakes, but additional data are required for confirmation. The distribution and quantity of groundwater recharge in the area were evaluated by using a regional water-balance model (Basin Characterization Model, or BCM) and a daily rainfall-runoff model (INFILv3). The BCM calculated spatially distributed potential recharge in the study area of approximately 12,700 acre-feet per year (acre-ft/yr) of potential in-place recharge and 30,800 acre-ft/yr of potential runoff. Using the assumption that only 10 percent of the runoff becomes recharge, this approach indicated there is approximately 15,800 acre-ft/yr of total recharge in

  4. Increased body mass of ducks wintering in California's Central Valley

    Science.gov (United States)

    Fleskes, Joseph P.; Yee, Julie L.; Yarris, Gregory S.; Loughman, Daniel L.

    2016-01-01

    Waterfowl managers lack the information needed to fully evaluate the biological effects of their habitat conservation programs. We studied body condition of dabbling ducks shot by hunters at public hunting areas throughout the Central Valley of California during 2006–2008 compared with condition of ducks from 1979 to 1993. These time periods coincide with habitat increases due to Central Valley Joint Venture conservation programs and changing agricultural practices; we modeled to ascertain whether body condition differed among waterfowl during these periods. Three dataset comparisons indicate that dabbling duck body mass was greater in 2006–2008 than earlier years and the increase was greater in the Sacramento Valley and Suisun Marsh than in the San Joaquin Valley, differed among species (mallard [Anas platyrhynchos], northern pintail [Anas acuta], America wigeon [Anas americana], green-winged teal [Anas crecca], and northern shoveler [Anas clypeata]), and was greater in ducks harvested late in the season. Change in body mass also varied by age–sex cohort and month for all 5 species and by September–January rainfall for all except green-winged teal. The random effect of year nested in period, and sometimes interacting with other factors, improved models in many cases. Results indicate that improved habitat conditions in the Central Valley have resulted in increased winter body mass of dabbling ducks, especially those that feed primarily on seeds, and this increase was greater in regions where area of post-harvest flooding of rice and other crops, and wetland area, has increased. Conservation programs that continue to promote post-harvest flooding and other agricultural practices that benefit wintering waterfowl and continue to restore and conserve wetlands would likely help maintain body condition of wintering dabbling ducks in the Central Valley of California.

  5. AEGIS: THE MORPHOLOGIES OF GREEN GALAXIES AT 0.4 < z < 1.2

    International Nuclear Information System (INIS)

    Mendez, Alexander J.; Coil, Alison L.; Moustakas, John; Lotz, Jennifer; Salim, Samir; Simard, Luc

    2011-01-01

    We present quantitative morphologies of ∼300 galaxies in the optically defined green valley at 0.4 20 . We find that the green galaxy population is intermediate between the red and blue galaxy populations in terms of concentration, asymmetry, and morphological type and merger fraction estimated using Gini/M 20 . We find that most green galaxies are not classified as mergers; in fact, the merger fraction in the green valley is lower than in the blue cloud. We show that at a given stellar mass, green galaxies have higher concentration values than blue galaxies and lower concentration values than red galaxies. Additionally, we find that 12% of green galaxies have B/T = 0 and 21% have B/T ≤ 0.05. Our results show that green galaxies are generally massive (M * ∼ 10 10.5 M sun ) disk galaxies with high concentrations. We conclude that major mergers are likely not the sole mechanism responsible for quenching star formation in this population and that either other external processes or internal secular processes play an important role both in driving gas toward the center of these galaxies and in quenching star formation.

  6. Mid-latitude Ozone Depletion Events Caused by Halogens from the Great Salt Lake in Utah

    Science.gov (United States)

    Fibiger, D. L.; Goldberger, L.; Womack, C.; McDuffie, E. E.; Dube, W. P.; Franchin, A.; Middlebrook, A. M.; Thornton, J. A.; Brown, S. S.

    2017-12-01

    Halogens are highly reactive chemicals and play an important role in atmospheric chemistry. They can be involved in many cycles which influence the oxidizing capacity of the atmosphere, including through destruction of ozone (O3). While the influence of halogens on O3 is well documented in the arctic, there are very few observations of O3 depletion driven by halogens in the mid-latitudes. To date, the most comprehensive study observed co-occurring plumes of BrO and depleted O3 near the Dead Sea in 1997. During the Utah Wintertime Fine Particulate Study (UWFPS) in winter 2017, simultaneous measurements of a comprehensive suite of halogen measurements by I- chemical ionization mass spectrometry and O3 from cavity ring-down spectroscopy, both at 1-second time resolution, were taken on a NOAA Twin Otter Aircraft over the Great Salt Lake and in the surrounding valleys. Many O3 depletion events were observed over the lake with O3 values sometimes below the instrument detection limit of 0.5 ppbv. Corresponding increases in BrO and/or ClO were observed. Many of these events were caused by extremely high levels of halogens (up to 1 ppmv Cl2) emitted from the U.S. Magnesium plant on the edge of the lake. The O3 depletion caused by U.S. Magnesium was usually isolated to a distinct vertical layer, but in other cases O3 depletion was vertically mixed and the origin of halogen activation was not immediately clear. The most complete O3 depletion was observed over the lake, but there were smaller events of a few ppbv observed in the adjacent valleys, including the highly populated Salt Lake Valley, with corresponding plumes of BrO and ClO, due to transport from the lake. Additionally, meteorology played a role in the observed O3 depletion. The strongest O3 depletion was observed during inversion events, when there is a low boundary layer and little mixing out of the air above the lake. During non-inversion conditions, only small depletions were observed, covering a much smaller

  7. Groundwater and Thaw Legacy of a Large Paleolake in Taylor Valley, East Antarctica as Evidenced by Airborne Electromagnetic and Sedimentological Techniques

    Science.gov (United States)

    Doran, P. T.; Myers, K. F.; Foley, N.; Tulaczyk, S. M.; Dugan, H. A.; Auken, E.; Mikucki, J.; Virginia, R. A.

    2017-12-01

    The McMurdo Dry Valleys (MDVs) in east Antarctica contain a number of perennial ice-covered lakes fed by ephemeral meltwater streams. Lake Fryxell in Taylor Valley, is roughly 5.5 km long and approximately 22 m deep. Paleodeltas and paleoshorelines throughout Fryxell Basin provide evidence of significant lake level change occurring since the Last Glacial Maximum (LGM). During the LGM, grounded ice in the Ross Sea extended into the eastern portion of Taylor Valley, creating a large ice dammed paleolake. Glacial Lake Washburn (GLW) was roughly 300 m higher than modern day Lake Fryxell and its formation and existence has been debated. In this study, we use Geographical Information System and remote sensing techniques paired with regional resistivity data to provide new insight into the paleohydrology of the region. The existence of GLW is supported by new findings of a deep groundwater system beneath Lake Fryxell, which is interpreted as the degrading thaw bulb of GLW. Airborne resistivity data collected by SkyTEM, a time-domain airborne electromagnetic sensor system was used to map groundwater systems in the lake basin. Subsurface characteristics can be inferred from the relationship of resistivity to temperature, salinity, porosity, and degree of saturation. A large low resistivity region indicative of liquid water extends hundreds of meters away from the modern lake extent which is consistent with the presence of a degrading thaw bulb from GLW. As lake level in Fryxell Basin fell to modern levels, the saturated sediment beneath the lake began to freeze as it became exposed to low atmospheric temperatures. We hypothesize that this process is ongoing and will continue until equilibrium is reached between the geothermal gradient and atmospheric temperatures. Though liquid groundwater systems were previously thought to be minimal or nonexistent in the MDVs, regional resistivity data now show that extensive groundwater reservoirs exist beneath these lakes. In addition

  8. Plankton community and the relationship with the environment in saline lakes of Onon-Torey plain, Northeastern Mongolia

    Directory of Open Access Journals (Sweden)

    Ekaterina Yu. Afonina

    2018-02-01

    Full Text Available The plankton community of sixteen saline lakes located on Onon-Torey plain (Northeastern Mongolia during the filling phase and the raising of the water level was investigated in July 2011. Thirty-five taxa of phytoplankton and thirty-one species of zooplankton were found. For phytoplankton, blue-green algae (Merismopedia elegans, Anabaenopsis elenkinii, Arthrospora fusiformis, Spirulina major, Lyngbya sp., Oscillatoria sp. and green algae (Monoraphidium minutum, Tetrastrum komarekii, Ankyra ocellata, Oocystis sp. were dominant. For zooplankton, Filinia longiseta, Brachionus plicatilis, B. variabilis, Hexarthra mira (Rotifera, Daphnia magna, Moina brachiata, M. mongolica (Cladocera, Arctodiaptomus bacillifer, Mixodiaptomus incrassatus, Metadiaptomus asiaticus (Copepoda dominated. Mineralization, active hydrogen ratio, dissolved oxygen and water temperature were the main factors influencing the diversity, structure and distribution of plankton organisms in the steppe lakes during low water level. The RDA analysis for phytoplankton and zooplankton from different lakes was carried out for selected two groups which included lakes and a subset related species. The first group is of oligohaline and mesohaline lakes in which mostly green algae, rotifers and copepods inhabit. The second group is of mesohaline and polyhaline lakes with mainly blue-green algae, some crustaceans and rotifers inhabiting. High abundance and biomass of Spirulina major, Oscillatoria sp. and Brachionus variabilis were observed in lakes with high mineralization, pH and temperature.

  9. New records of Pteridophytes for Kashmir Valley, India

    Directory of Open Access Journals (Sweden)

    SHAKOOR A. MIR

    2014-10-01

    Full Text Available Mir SA, Mishra AK, Reshi ZA, Sharma MP. 2014. New Records of Pteridophytes for Kashmir Valley, India. Biodiversitas 15: 131-136. During the recent field survey of district Shopian four species of Pteridophytes are reported for the first time that constitutes new records for Kashmir valley. These species are Hypolepis polypodioides (Blume Hook, Pteris stenophylla Wall. ex Hook. & Grev., Dryopteris subimpressa Loyal and Dryopteris wallichiana (Spreng. Hylander. The diagnostic features of H. polypodioides are presence of long-creeping slender rhizome and eglandular, colorless or brown tinged hairs throughout the frond. P. stenophylla is characterized by having dimorphic fronds and 3 to 5 pinnae clustered at stipe apex. D. subimpressa is marked by pale-green lamina and the largest basiscopic basal pinnule in the lowest pair of pinnae. Similarly, the characteristic features of D. wallichiana are presence of huge frond size, glossier and dark-green lamina and dense browner scales in stipe and rachis. In present communication taxonomic description, synonyms, ecology and photographs are provided for each of these newly recorded species.

  10. Numerical Simulations of an Inversion Fog Event in the Salt Lake Valley during the MATERHORN-Fog Field Campaign

    Science.gov (United States)

    Chachere, Catherine N.; Pu, Zhaoxia

    2018-01-01

    An advanced research version of the Weather Research and Forecasting (WRF) Model is employed to simulate a wintertime inversion fog event in the Salt Lake Valley during the Mountain Terrain Atmospheric Modeling and Observations Program (MATERHORN) field campaign during January 2015. Simulation results are compared to observations obtained from the field program. The sensitivity of numerical simulations to available cloud microphysical (CM), planetary boundary layer (PBL), radiation, and land surface models (LSMs) is evaluated. The influence of differing visibility algorithms and initialization times on simulation results is also examined. Results indicate that the numerical simulations of the fog event are sensitive to the choice of CM, PBL, radiation, and LSM as well as the visibility algorithm and initialization time. Although the majority of experiments accurately captured the synoptic setup environment, errors were found in most experiments within the boundary layer, specifically a 3° warm bias in simulated surface temperatures compared to observations. Accurate representation of surface and boundary layer variables are vital in correctly predicting fog in the numerical model.

  11. Pathogens and Heavy Metals Concentration in Green Leafy Vegetables

    Directory of Open Access Journals (Sweden)

    Abida Begum

    2010-01-01

    Full Text Available Presence of heavy metal and bacterial pathogen in randomly collected samples of green leafy from various stations of Bengaluru city was detected. Heavy metals (cadmium, zinc, copper, iron, chromium, nickel and lead were analyzed by tri-acid digestion method. The presence of heavy metals in general was in the order of Cd>Zn>Cu>Fe>Cr>Pb. Trace metal concentration in all green leafy vegetables of stations 1-5 were within permissible limit and it has been exceeded in station 6-10. This indicated high levels of soil contamination pose potential danger for the vegetables grown in the vicinity of Arakere lake, Bannerghatta road, Gottigere lake, Naganaikanakere, Bommasandra lake, Hulimavu lake, Kelaginakere and Amblipura lake. The total bacteria and coliforms were enumerated on TSA (Tryptone Soya Agar and VRBA (Violet Red Bile Agar media respectively. The total bacterial count in randomly collected samples of coriander ranged from 296 cfu/g to 8 cfu/g, in palak from 16 cfu/g to 0.9 cfu/g, whereas in case of cabbage was 104 cfu/g to 0.9 cfu/g which is an indication of improper pre-harvest and post harvest handling.

  12. THE SOMEŞAN PLATEAU LAKES: GENESIS, EVOLUTION AND TERRITORIAL REPARTITION

    Directory of Open Access Journals (Sweden)

    Victor SOROCOVSCHI

    2010-06-01

    Full Text Available The present paper analyzes the genesis of the lake depressions in the Someşan Plateau and the way they evolved in time and space, as well as the morphometric elements characteristic of the different genetic types of lakes. The natural lakes in this region are few and their dimensions are small; they generally appear solitarily and only rarely as lake complexes. In this category have been included the valley lakes, the lakes formed in abandoned meanders and the lakes formed in areas with landslides. The artificial lakes are more numerous and include several genetic types. The most representative are the remnant lakes formed in the depressions resulted from the exploitation of different construction materials (kaolin sands, lime stones and the anthropic salty lakes lakes formed in abandoned salt mines from the diapir area of the Hills of Dej. The rapid evolution of these types of lakes has been highlighted through the comparative analysis of the morphometric elements obtained on the basis of topometric and bathymetric measurements. The lakes arranged for pisciculture include several subtypes (ponds, fish ponds that have been identified and characterized for the fist time, their morphometric elements being determined using digital data bases, satellite images and detailed topometric maps.

  13. Fluctuations of Lake Eyre, South Australia

    Science.gov (United States)

    2002-01-01

    Lake Eyre is a large salt lake situated between two deserts in one of Australia's driest regions. However, this low-lying lake attracts run-off from one of the largest inland drainage systems in the world. The drainage basin is very responsive to rainfall variations, and changes dramatically with Australia's inter-annual weather fluctuations. When Lake Eyre fills,as it did in 1989, it is temporarily Australia's largest lake, and becomes dense with birds, frogs and colorful plant life. The Lake responds to extended dry periods (often associated with El Nino events) by drying completely.These four images from the Multi-angle Imaging SpectroRadiometer contrast the lake area at the start of the austral summers of 2000 and 2002. The top two panels portray the region as it appeared on December 9, 2000. Heavy rains in the first part of 2000 caused both the north and south sections of the lake to fill partially and the northern part of the lake still contained significant standing water by the time these data were acquired. The bottom panels were captured on November 29, 2002. Rainfall during 2002 was significantly below average ( http://www.bom.gov.au/ ), although showers occurring in the week before the image was acquired helped alleviate this condition slightly.The left-hand panels portray the area as it appeared to MISR's vertical-viewing (nadir) camera, and are false-color views comprised of data from the near-infrared, green and blue channels. Here, wet and/or moist surfaces appear blue-green, since water selectively absorbs longer wavelengths such as near-infrared. The right-hand panels are multi-angle composites created with red band data from MISR's 60-degree forward, nadir and 60-degree backward-viewing cameras, displayed as red, green and blue, respectively. In these multi-angle composites, color variations serve as a proxy for changes in angular reflectance, and indicate textural properties of the surface related to roughness and/or moisture content.Data from

  14. The hydrogeology of the Tully Valley, Onondaga County, New York: an overview of research, 1992-2012

    Science.gov (United States)

    Kappel, William M.

    2014-01-01

    Onondaga Creek begins approximately 15 miles south of Syracuse, New York, and flows north through the Onondaga Indian Nation, then through Syracuse, and finally into Onondaga Lake in central New York. Tully Valley is in the upper part of the Onondaga Creek watershed between U.S. Route 20 and the Valley Heads end moraine near Tully, N.Y. Tully Valley has a history of several unusual hydrogeologic phenomena that affected past land use and the water quality of Onondaga Creek; the phenomena are still present and continue to affect the area today (2014). These phenomena include mud volcanoes or mudboils, landslides, and land-surface subsidence; all are considered to be naturally occurring but may also have been influenced by human activity. The U.S. Geological Survey (USGS), in cooperation with the U.S. Environmental Protection Agency and the Onondaga Lake Partnership, began a study of the Tully Valley mudboils beginning in October 1991 in hopes of understanding (1) what drives mudboil activity in order to remediate mudboil influence on the water quality of Onondaga Creek, and (2) land-surface subsidence issues that have caused a road bridge to collapse, a major pipeline to be rerouted, and threatened nearby homes. Two years into this study, the 1993 Tully Valley landslide occurred just over 1 mile northwest of the mudboils. This earth slump-mud flow was the largest landslide in New York in more than 70 years (Fickies, 1993); this event provided additional insight into the geology and hydrology of the valley. As the study of the Tully Valley mudboils progressed, other unusual hydrogeologic phenomena were found within the Tully Valley and provided the opportunity to perform short-term, small-scale studies, some of which became graduate student theses—Burgmeier (1998), Curran (1999), Morales-Muniz (2000), Baldauf (2003), Epp (2005), Hackett, (2007), Tamulonis (2010), and Sinclair (2013). The unusual geology and hydrology of the Tully Valley, having been investigated for

  15. Brief description as of April, 1968, of the geology and hydrology of the Lake Minnequa area, Pueblo, Colorado, and suggested solutions for trouble caused by a high water table

    Science.gov (United States)

    Scott, Glenn R.

    1972-01-01

    Lake Minnequa lies in a poorly drained broad upland buried valley west of the valley of Salt Creek. Immediately north of Lake Minnequa the buried valley is sharply constricted in sees. 11 and 12, T. 21 S., R. 65 W., where it is entrenched in a buried ridge of bedrock (see geologic map).  The bedrock throughout the buried valley is composed of calcareous shale, limestone, and chalk of the Smoky Hill Shale Member of the Niobrara Formation.  These beds are relatively impermeable to the flow of ground water, but contribute large quantities of sodium sulfate to both the surface and ground water.

  16. Virgin Valley opal district, Humboldt County, Nevada

    Science.gov (United States)

    Staatz, Mortimer Hay; Bauer, Herman L.

    1951-01-01

    The Virgin Valley opal district, Humboldt County, Nevada, is near the Oregon-Nevada border in the Sheldon Game Refuge. Nineteen claims owned by Jack and Toni Crane were examined, sampled, and tested radiometrically for uranium. Numerous discontinuous layers of opal are interbedded with a gently-dipping series of vitric tuff and ash which is at least 300 ft thick. The tuff and ash are capped by a dark, vesicular basalt in the eastern part of the area and by a thin layer of terrace qravels in the area along the west side of Virgin Valley. Silicification of the ash and tuff has produced a rock that ranges from partly opalized rock that resembles silicified shale to completely altered rock that is entirely translucent, and consists of massive, brown and pale-green opal. Carnotite, the only identified uranium mineral, occurs as fracture coatings or fine layers in the opal; in places, no uranium minerals are visible in the radioactive opal. The opal layers are irregular in extent and thickness. The exposed length of the layers ranges from 8 to 1, 200 ft or more, and the thickness of the layers ranges from 0. 1 to 3. 9 ft. The uranium content of each opal layer, and of different parts of the same layer, differs widely. On the east side of Virgin Valley four of the seven observed opal layers, nos. 3, 4, 5, and 7, are more radioactive than the average; and the uranium content ranges from 0. 002 to 0. 12 percent. Two samples, taken 5 ft apart across opal layer no. 7, contained 0. 003 and 0. -049 percent uranium. On the west side of the valley only four of the fifteen observed opal layers, nos; 9, , 10, 14, and 15, are more radioactive than the average; and the uranium content ranges from 0. 004 to 0. 047 percent. Material of the highest grade was found in a small discontinuous layer of pale-green opal (no. 4) on the east side of Virgin Valley. The grade of this layer ranged from 0. 027 to 0. 12 percent uranium.

  17. High-resolution aeromagnetic survey of the Mono Basin-Long Valley Caldera region, California

    Science.gov (United States)

    Ponce, D. A.; Mangan, M.; McPhee, D.

    2013-12-01

    A new high-resolution aeromagnetic survey of the Mono Basin-Long Valley Caldera region greatly enhances previous magnetic interpretations that were based on older, low-resolution, and regional aeromagnetic data sets and provides new insights into volcano-tectonic processes. The surveyed area covers a 8,750 km2 NNW-trending swath situated between the Sierra Nevada to the west and the Basin and Range Province to the east. The surveyed area includes the volcanic centers of Mono Lake, Mono-Inyo Craters, Mammoth Mountain, Devils Postpile, and Long Valley Caldera. The NW-trending eastern Sierra frontal fault zone crosses through the study area, including the active Mono Lake, Silver Lake, Hartley Springs, Laurel Creek, and Hilton Creek faults. Over 6,000 line-kilometers of aeromagnetic data were collected at a constant terrain clearance of 150 m, a flight-line spacing of 400 m, and a tie-line spacing of 4 km. Data were collected via helicopter with an attached stinger housing a magnetic sensor using a Scintrex CS-3 cesium magnetometer. In the northern part of the survey area, data improve the magnetic resolution of the individual domes and coulees along Mono Craters and a circular shaped magnetic anomaly that coincides with a poorly defined ring fracture mapped by Kistler (1966). Here, aeromagnetic data combined with other geophysical data suggests that Mono Craters may have preferentially followed a pre-existing plutonic basement feature that may have controlled the sickle shape of the volcanic chain. In the northeastern part of the survey, aeromagnetic data reveal a linear magnetic anomaly that correlates with and extends a mapped fault. In the southern part of the survey, in the Sierra Nevada block just south of Long Valley Caldera, aeromagnetic anomalies correlate with NNW-trending Sierran frontal faults rather than to linear NNE-trends observed in recent seismicity over the last 30 years. These data provide an important framework for the further analysis of the

  18. Ground water in Dale Valley, New York

    Science.gov (United States)

    Randall, Allan D.

    1979-01-01

    Dale Valley is a broad valley segment, enlarged by glacial erosion, at the headwaters of Little Tonawanda Creek near Warsaw , New York. A thin, shallow alluvial aquifer immediately underlies the valley floor but is little used. A deeper gravel aquifer, buried beneath many feet of lake deposits, is tapped by several industrial wells. A finite-difference digital model treated the deep aquifer as two-dimensional with recharge and discharge through a confining layer. It was calibrated by simulating (1) natural conditions, (2) an 18-day aquifer test, and (3) 91 days of well-field operation. Streamflow records and model simulations suggest that in moderately wet years such as 1974, a demand of 750 gallons per minute could be met by withdrawal from the creek and from the aquifer without excessive drawdown at production wells or existing domestic wells. With reasonable but unverified model adjustments to simulate an unusually dry year, the model predicts that a demand of 600 gallons per minute could be met from the same sources. Water high in chloride has migrated from bedrock into parts of the deep aquifer. Industrial pumpage, faults in the bedrock, and the natural flow system may be responsible. (Woodard-USGS)

  19. Glacial geology of the upper Wairau Valley, Marlborough, New Zealand

    International Nuclear Information System (INIS)

    McCalpin, J.P.

    1992-01-01

    Late Pleistocene glaciers in the upper Wairau Valley deposited four groups of moraines inferred to represent one Waimean ice advance, two Otiran ice advances, and an advance of early Aranuian age. The Waimean and early Otiran glaciers advanced into Tarndale Valley, deposited terminal moraines, and shed outwash down both the Alma River and Travellers Valley. The middle Otiran glacier terminated in northern Tarndale Valley and shed outwash from the southern part of its terminus down the Alma River. The north side of the terminus abutted a large ice-dammed lake in the Wairau Gorge, and fan-deltas graded to an old shore level at an elevation of 1040 m. Well-preserved moraines at the mouths of four glaciated tributaries may be middle Otiran recessional, or late Otiran terminal moraines. The latest ice advance extended 11 km down the upper Wairau Valley and deposited a subdued moraine at Island Gully. The composite chronology of the latest glacial advance based on 10 radiocarbon ages suggests it occurred between about 9.5 and 10.2 ka. This age span is similar to that of early Aranuian glacial advances dated by other workers in the Southern Alps, and may reflect Younger Dryas cooling. (author). 22 refs., 10 figs., 3 tabs

  20. Site records of softshell turtles (Chelonia: Trionychidae from Barak Valley, Assam, northeastern India

    Directory of Open Access Journals (Sweden)

    K.C. Das

    2011-04-01

    Full Text Available We report for the first time the occurrence of four species of Trionychid turtles Nilssonia gangetica, N. hurum, Chitra indica and Lissemys punctata andersonii from 57 sites in the Barak Valley region of Assam, northeastern India. Sites of occurrence include rivers, small streams, floodplain lakes and ox-bows.

  1. Simulation of hydrodynamics, water quality, and lake sturgeon habitat volumes in Lake St. Croix, Wisconsin and Minnesota, 2013

    Science.gov (United States)

    Smith, Erik A.; Kiesling, Richard L.; Ziegeweid, Jeffrey R.; Elliott, Sarah M.; Magdalene, Suzanne

    2018-01-05

    underlying mechanisms of critical Lake St. Croix metabolic processes. The CE–QUAL–W2 model tracked nitrate plus nitrite, total nitrogen, and total phosphorus throughout the year. Inflow nutrient contributions (loads), largely dominated by upstream St. Croix River loads, were the most important controls on Lake St. Croix water quality. Close to 60 percent of total phosphorus to the lake was from phosphorus derived from organic matter, and about 89 percent of phosphorus to Lake St. Croix was delivered by St. Croix River inflows. The Lake St. Croix CE–QUAL–W2 model offered potential mechanisms for the effect of external and internal loadings on the biotic response regarding the modeled algal community types of diatoms, green algae, and blue-green algae. The model also suggested the seasonal dominance of blue-green algae in all four pools of the lake.A sensitivity analysis was completed to test the total maximum daily load phosphorus-reduction scenario responses of total phosphorus and chlorophyll a. The modeling indicates that phosphorus reductions would result in similar Lake St. Croix reduced concentrations, although chlorophyll a concentrations did not decrease in the same proportional amounts as the total phosphorus concentrations had decreased. The smaller than expected reduction in algal growth rates highlighted that although inflow phosphorus loads are important, other constituents also can affect the algal response of the lake, such as changes in light penetration and the breakdown of organic matter releasing nutrients.The available habitat suitable for lake sturgeon was evaluated using the modeling results to determine the total volume of good-growth habitat, optimal growth habitat, and lethal temperature habitat. Overall, with the calibrated model, the fish habitat volume in general contained a large proportion of good-growth habitat and a sustained period of optimal growth habitat in the summer. Only brief periods of lethal oxy-thermal habitat were present in

  2. Carbon isotope fractionation by anoxygenic phototrophic bacteria in euxinic Lake Cadagno

    DEFF Research Database (Denmark)

    Posth, Nicole Rita Elisabeth; Bristow, L. A.; Cox, R. P.

    2017-01-01

    carbon (POC) in the Lake Cadagno chemocline. This large fractionation between the DIC and POC was also found in culture experiments carried out with anoxygenic phototrophic bacteria isolated from the lake. In the Lake Cadagno chemocline, anoxygenic phototrophic bacteria controlled the bulk C......Anoxygenic phototrophic bacteria utilize ancient metabolic pathways to link sulfur and iron metabolism to the reduction of CO2. In meromictic Lake Cadagno, Switzerland, both purple sulfur (PSB) and green sulfur anoxygenic phototrophic bacteria (GSB) dominate the chemocline community and drive...

  3. Ground-water flow and quality, and geochemical processes, in Indian Wells Valley, Kern, Inyo, and San Bernardino counties, California, 1987-88

    Science.gov (United States)

    Berenbrock, Charles; Schroeder, R.A.

    1994-01-01

    An existing water-quality data base for the 300- square-mile Indian Wells Valley was updated by means of chemical and isotopic analysis of ground water. The wide range in measured concentrations of major ions and of minor constituents such as fluoride, borate, nitrate, manganese, and iron is attributed to geochemical reactions within lacustrine deposits of the valley floor. These reactions include sulfate reduction accompanied by generation of alkalinity, precipitation of carbonates, exchange of aqueous alkaline-earth ions for sodium on clays, and dissolution of evaporite minerals. Differences in timing and location of recharge, which originates primarily in the Sierra Nevada to the west, and evapotranspiration from a shallow water table on the valley floor result in a wide range in ratios of stable hydrogen and oxygen isotopes. As ground water moves from alluvium into lustrine deposits of the ancestral China Lake, dissolved-solids concen- trations increase from about 200 to more than 1,000 milligrams per liter; further large increases to several thousand milligrams per liter occur beneath the China Lake playa. Historical data show an increase during the past 20 years in dissolved- solids concentration in several wells in the principal pumping areas at Ridgecrest and between Ridgecrest and Inyokern. The increase apparently is caused by induced flow of saline ground water from nearby China, Mirror, and Satellite Lakes. A simplified advective-transport model calculates ground-water travel times between parts of the valley of at least several thousand years, indi- cating the presence of old ground water. A local ground-water line and an evaporation line estimated using isotopic data from the China Lake area inter- sect at a delta-deuterium value of about -125 permil. This indicates that late Pleistocene recharge was 15 to 35 permil more negative than current recharge.

  4. Modeling potential scenarios of the Tangjiashan Lake outburst and risk assessment in the downstream valley

    Science.gov (United States)

    Kidyaeva, Vera; Chernomorets, Sergey; Krylenko, Inna; Wei, Fangqiang; Petrakov, Dmitry; Su, Pengcheng; Yang, Hongjuan; Xiong, Junnan

    2017-09-01

    This research is devoted to Tangjiashan Lake, a quake landslide-dammed lake, situated in Sichuan Province, China, which was formed by a landslide triggered by the Wenchuan Earthquake on 12 May 2008. A STREAM_2D two-dimensional hydrodynamic model of Russia was applied to simulate the process of two flood scenarios: 1, lake dam outbreak, and 2, dam overtopping. An artificial dam outbreak was made after the earthquake to lower the water level of the lake in 2008, which led to a great flood with a maximum water discharge of more than 6400 m3/s. The negative impact of the flood was reduced by a timely evacuation of the population. Flood hazards still remain in the event of new landslides into the lake and lake dam overtopping (Scenario 2), in which case a maximum water discharge at the dam crest would reach 5000 m3/s, placing the population of Shabacun and Shilingzi villages in the zone of flood impact.

  5. A conceptual geochemical model of the geothermal system at Surprise Valley, CA

    Science.gov (United States)

    Fowler, Andrew P. G.; Ferguson, Colin; Cantwell, Carolyn A.; Zierenberg, Robert A.; McClain, James; Spycher, Nicolas; Dobson, Patrick

    2018-03-01

    Characterizing the geothermal system at Surprise Valley (SV), northeastern California, is important for determining the sustainability of the energy resource, and mitigating hazards associated with hydrothermal eruptions that last occurred in 1951. Previous geochemical studies of the area attempted to reconcile different hot spring compositions on the western and eastern sides of the valley using scenarios of dilution, equilibration at low temperatures, surface evaporation, and differences in rock type along flow paths. These models were primarily supported using classical geothermometry methods, and generally assumed that fluids in the Lake City mud volcano area on the western side of the valley best reflect the composition of a deep geothermal fluid. In this contribution, we address controls on hot spring compositions using a different suite of geochemical tools, including optimized multicomponent geochemistry (GeoT) models, hot spring fluid major and trace element measurements, mineralogical observations, and stable isotope measurements of hot spring fluids and precipitated carbonates. We synthesize the results into a conceptual geochemical model of the Surprise Valley geothermal system, and show that high-temperature (quartz, Na/K, Na/K/Ca) classical geothermometers fail to predict maximum subsurface temperatures because fluids re-equilibrated at progressively lower temperatures during outflow, including in the Lake City area. We propose a model where hot spring fluids originate as a mixture between a deep thermal brine and modern meteoric fluids, with a seasonally variable mixing ratio. The deep brine has deuterium values at least 3 to 4‰ lighter than any known groundwater or high-elevation snow previously measured in and adjacent to SV, suggesting it was recharged during the Pleistocene when meteoric fluids had lower deuterium values. The deuterium values and compositional characteristics of the deep brine have only been identified in thermal springs and

  6. Aerosol Emissions from Great Lakes Harmful Algal Blooms

    Energy Technology Data Exchange (ETDEWEB)

    May, Nathaniel W. [Department; Olson, Nicole E. [Department; Panas, Mark [Department; Axson, Jessica L. [Department; Tirella, Peter S. [Department; Kirpes, Rachel M. [Department; Craig, Rebecca L. [Department; Gunsch, Matthew J. [Department; China, Swarup [William; Laskin, Alexander [William; Ault, Andrew P. [Department; Department; Pratt, Kerri A. [Department; Department

    2017-12-20

    In freshwater lakes, harmful algal blooms (HABs) of Cyanobacteria (blue-green algae) produce toxins that impact human health. However, little is known about the chemical species present in lake spray aerosol (LSA) produced from wave-breaking in freshwater HABs. In this study, a laboratory LSA generator produced aerosols from freshwater samples collected from Lake Michigan and Lake Erie during HAB and non-bloom conditions. Particles were analyzed for size and chemical composition by single particle mass spectrometry, electron microscopy, and fluorescence microscopy, with three distinct types of LSA identified with varying levels of organic carbon and biological material associated with calcium salts. LSA autofluorescence increases with blue-green algae concentration, showing that organic molecules of biological origin are incorporated in LSA from HABs. The number fraction of LSA with biological mass spectral markers also increases with particle diameter (greater than 0.5 μm), showing that HABs have size-dependent impacts on aerosol composition. The highest number fraction of LSA enriched in organic carbon were observed in particles less than 0.5 μm in diameter. Understanding the transfer of organic and biogenic material from freshwater to the atmosphere via LSA particles is crucial for determining health and climate effects due to HABs.

  7. Transient electromagnetic mapping of clay units in the San Luis Valley, Colorado

    Science.gov (United States)

    Fitterman, David V.; Grauch, V.J.S.

    2010-01-01

    Transient electromagnetic soundings were used to obtain information needed to refine hydrologic models of the San Luis Valley, Colorado. The soundings were able to map an aquitard called the blue clay that separates an unconfined surface aquifer from a deeper confined aquifer. The blue clay forms a conductor with an average resistivity of 6.9 ohm‐m. Above the conductor are found a mixture of gray clay and sand. The gray clay has an average resistivity of 21 ohm‐m, while the sand has a resistivity of greater than 100 ohm‐m. The large difference in resistivity of these units makes mapping them with a surface geophysical method relatively easy. The blue clay was deposited at the bottom of Lake Alamosa which filled most of the San Luis Valley during the Pleistocene. The geometry of the blue clay is influenced by a graben on the eastern side of the valley. The depth to the blue clay is greater over the graben. Along the eastern edge of valley the blue clay appears to be truncated by faults.

  8. Preliminary appraisal of ground water in and near the ancestral Missouri River Valley, northeastern Montana

    Science.gov (United States)

    Levings, G.W.

    1986-01-01

    A preliminary appraisal was conducted in and near the ancestral Missouri River valley in northeastern Montana to describe the groundwater resources and to establish a data base for the area. The data base then could be used for future evaluation of possible changes in water levels or water quality. In this area, consolidated aquifers are the Upper Cretaceous Fox Hills-lower Hell Creek aquifer and the overlying Paleocene Fort Union Formation. Unconsolidated aquifers are Pleistocene terrace gravel and glacial deposits and Holocene alluvial deposits. Aquifers are recharged by precipitation, infiltration of streamflow, and possibly leakage from lakes and potholes. Groundwater moves from topographically higher areas to the ancestral valley, then along the ancestral valley to the southwest. Water is discharged from aquifers by evapotranspiration, springs and seeps, movement directly into streams and lakes, and from pumping wells. Average well yields are greatest for irrigation wells completed in outwash gravel (886 gallons/min). Eighteen wells were completed in various aquifers to monitor potential long-term changes in water levels and water quality. Measured water levels declined about 2 ft. or less during the study (1982-85). Chemical analysis of groundwater samples indicated that concentrations of some dissolved constituents exceeded U.S. Environmental Protection Agency standards for drinking water. (USGS)

  9. Influence of the Sostanj coal-fired thermal power plant on mercury and methyl mercury concentrations in Lake Velenje, Slovenia

    Energy Technology Data Exchange (ETDEWEB)

    Kotnik, J.; Horvat, M.; Mandic, V.; Logar, M. [Department of Environmental Sciences, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia)

    2000-10-02

    Lake Velenje is located in one of the most polluted regions in Slovenia, the Salek Valley. The major source of pollution in the valley is the coal-fired thermal power plant in Sostanj (STPP, capacity 775 MW). It has five separate units. All units have electrostatic precipitators for fly ash removal. Unit 4 also has installed a wet flue gas desulfurisation system (FGD system). Total mercury (THg) concentrations were measured in lignite, slag and ash samples from the STPP. In flue gas, different mercury species (THg, MeHg, Hg{sup 2+}, Hg{sup 0}) were determined separately for unit 4 and unit 5 which use different flue gas cleaning technology. Mercury and methyl mercury (MeHg) concentrations were also measured in lake water at different depths, in inflow water, outflow water, rain, snow and lake sediments in order to establish the influence of the power plant on the lake. Most mercury emitted from the power plant is in the elemental form. The ratio between oxidised and elemental Hg depends on the flue gas cleaning technology. Mass balance calculations have been performed for the STPP. The results show that the major sources of mercury in Lake Velenje are wet deposition and lake inflows. Total and MeHg concentrations in the water column are very low and can be compared to other non-contaminated freshwater lakes in the world.

  10. Influence of the Sostanj coal-fired thermal power plant on mercury and methyl mercury concentrations in Lake Velenje, Slovenia

    Science.gov (United States)

    Kotnik; Horvat; Mandic; Logar

    2000-10-02

    Lake Velenje is located in one of the most polluted regions in Slovenia, the Salek Valley. The major source of pollution in the valley is the coal-fired thermal power plant in Sostanj (STPP, capacity 775 MW). It has five separate units. All units have electrostatic precipitators for fly ash removal. Unit 4 also has installed a wet flue gas desulfurisation system (FGD system). Total mercury (THg) concentrations were measured in lignite, slag and ash samples from the STPP. In flue gas, different mercury species (THg, MeHg, Hg2+, Hg0) were determined separately for unit 4 and unit 5 which use different flue gas cleaning technology. Mercury and methyl mercury (MeHg) concentrations were also measured in lake water at different depths, in inflow water, outflow water, rain, snow and lake sediments in order to establish the influence of the power plant on the lake. Most mercury emitted from the power plant is in the elemental form. The ratio between oxidised and elemental Hg depends on the flue gas cleaning technology. Mass balance calculations have been performed for the STPP. The results show that the major sources of mercury in Lake Velenje are wet deposition and lake inflows. Total and MeHg concentrations in the water column are very low and can be compared to other non-contaminated freshwater lakes in the world.

  11. Investigating Groundwater Depletion and Aquifer Degradation in Central Valley California from Space

    Science.gov (United States)

    Ojha, C.; Shirzaei, M.; Werth, S.; Argus, D. F.

    2017-12-01

    The Central Valley in California includes one of the world's largest and yet most stressed aquifer systems. The large demand for groundwater, accelerated by population growth and extreme droughts, has been depleting the region's groundwater resources for decades. However, the lack of dense monitoring networks and inaccurate information on geophysical aquifer response pose serious challenges to water management efforts in the area and put the groundwater at high risk. Here, we performed a joint analysis of large SAR interferometric data sets acquired by ALOS L-band satellite in conjunction with the groundwater level observations across the Central Valley. We used 420 L-band SAR images acquired on the ascending orbit track during period Dec 24, 2006 - Jan 1, 2010, and generated more than 1600 interferograms with a pixel size of 100 m × 100 m. We also use data from 1600 observational wells providing continuous measurements of groundwater level within the study period for our analysis. We find that in the south and near Tulare Lake, north of Tule and south of Kaweah basin in San Joaquin valley, the subsidence rate is greatest at up to 20-25 cm/yr, while in Sacramento Valley the subsidence rate is lower at 1-3 cm/yr. From the characterization of the elastic and inelastic storage coefficients, we find that Kern, Tule, Tulare, Kaweah and Merced basins in the San Joaquin Valley are more susceptible to permanent compaction and aquifer storage loss. Kern County shows 0.23%-1.8% of aquifer storage loss during the study period, and has higher percentage loss than adjacent basins such as Tule and Tulare Lake with 0.15%-1.2% and 0.2 %-1.5% loss, respectively. Overall, we estimate that the aquifers across the valley lost a total of 28 km3 of groundwater and 2% of their storage capacity during the study period. Our unique observational evidence including valley-wide estimate of mechanical properties of aquifers and model results will not only facilitate monitoring water deficits

  12. Evidence for slow late-glacial ice retreat in the upper Rangitata Valley, South Island, New Zealand

    Science.gov (United States)

    Shulmeister, J.; Fink, D.; Winkler, S.; Thackray, G. D.; Borsellino, R.; Hemmingsen, M.; Rittenour, T. M.

    2018-04-01

    A suite of cosmogenic radionuclide ages taken from boulders on lateral and latero-terminal moraines in the Rangitata Valley, eastern South Island, New Zealand demonstrates that relatively thick ice occupied valley reaches inland of the Rangitata Gorge until c. 21 ka. Thereafter ice began to thin, and by c. 17 ka it had retreated 33 km up-valley of the Rangitata Gorge to the Butler-Brabazon Downs, a structurally created basin in the upper Rangitata Valley. Despite its magnitude, this retreat represents a minor ice volume reduction from 21 ka to 17 ka, and numerous lateral moraines preserved suggest a relatively gradual retreat over that 4 ka period. In contrast to records from adjacent valleys, there is no evidence for an ice-collapse at c. 18 ka. We argue that the Rangitata record constitutes a more direct record of glacial response to deglacial climate than other records where glacial dynamics were influenced by proglacial lake development, such as the Rakaia Valley to the North and the major valleys in the Mackenzie Basin to the south-west. Our data supports the concept of a gradual warming during the early deglaciation in the South Island New Zealand.

  13. Bioremediation of Acidic and Metalliferous Drainage (AMD) through organic carbon amendment by municipal sewage and green waste.

    Science.gov (United States)

    McCullough, Clint D; Lund, Mark A

    2011-10-01

    Pit lakes (abandoned flooded mine pits) represent a potentially valuable water resource in hot arid regions. However, pit lake water is often characterised by low pH with high dissolved metal concentrations resulting from Acidic and Metalliferous Drainage (AMD). Addition of organic matter to pit lakes to enhance microbial sulphate reduction is a potential cost effective remediation strategy. However, cost and availability of suitable organic substrates are often limiting. Nevertheless, large quantities of sewage and green waste (organic garden waste) are often available at mine sites from nearby service towns. We treated AMD pit lake water (pH 2.4) from tropical, North Queensland, Australia, with primary-treated sewage sludge, green waste, and a mixture of sewage and green waste (1:1) in a controlled microcosm experiment (4.5 L). Treatments were assessed at two different rates of organic loading of 16:1 and 32:1 pit water:organic matter by mass. Combined green waste and sewage treatment was the optimal treatment with water pH increased to 5.5 in only 145 days with decreases of dissolved metal concentrations. Results indicated that green waste was a key component in the pH increase and concomitant heavy metal removal. Water quality remediation was primarily due to microbially-mediated sulphate reduction. The net result of this process was removal of sulphate and metal solutes to sediment mainly as monosulfides. During the treatment process NH(3) and H(2)S gases were produced, albeit at below concentrations of concern. Total coliforms were abundant in all green waste-treatments, however, faecal coliforms were absent from all treatments. This study demonstrates addition of low-grade organic materials has promise for bioremediation of acidic waters and warrants further experimental investigation into feasibility at higher scales of application such as pit lakes. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  14. [Similarities and differences in absorption characteristics and composition of CDOM between Taihu Lake and Chaohu Lake].

    Science.gov (United States)

    Shi, Kun; Li, Yun-mei; Wang, Qiao; Yang, Yu; Jin, Xin; Wang, Yan-fei; Zhang, Hong; Yin, Bin

    2010-05-01

    Field experiments are conducted separately in Taihu Lake and Chaohu Lake on Apr. and Jun. 2009. The changes in absorption spectra of chromophoric dissolved organic matter (CDOM) characteristics are analyzed using spectral differential analysis technology. According the spectral differential characteristic of absorption coefficient; absorption coefficient from 240 to 450 nm is divided into different stages, and the value of spectral slope S is calculated in each stage. In Stage A, S value of CDOM in Taihu Lake and Chaohu Lake are 0.0166-0.0102 nm(-1) [average (0.0132 +/- 0.0017) nm(-1)], 0.029-0.017 nm(-1) [average (0.0214 +/- 0.0024) nm(-1)]. In Stage B, S values are 0.0187-0.0148 nm(-1) [average (0.0169 +/- 0.001) nm(-1)], 0.0179-0.0055 nm(-1) [average (0.0148 +/- 0.002) nm(-1)]. In Stage C, S values are 0.0208-0.0164 nm(-1) [average (0.0186 +/- 0.0009) nm(-1)], 0.0253-0.0161 nm(-1) [average (0.0197 +/- 0.002) nm(-1)]. The results can be concluded as: (1) Absorption coefficient of water in Taihu Lake, and its contribution to absorption of each component is less than that of water in Chaohu Lake, however the standardized absorption coefficient is larger than that in Chaohu Lake. (2) Both in Taihu Lake and Chaohu Lake, derivative spectra of CDOM absorption coefficient reached valley at 260nm, then rise to top at 290 nm, CDOM absorption coefficient can be delivered into three stages. (3) Generally speaking, content of CDOM in Taihu Lake is less than in Chaohu Lake. (4) pectrum slope (S value) of CDOM is related to composition of CDOM, when content of humic acid in CDOM gets higher, S value of Stage B is the most sensitive value, then is the S value of Stage C. Oppositely, S value of Stage B gets the most sensitive value, then is the S value of Stage A; the least sensitive value is in Stage B.

  15. Evaluation of Green-LiDAR Data for Mapping Extent, Density and Height of Aquatic Reed Beds at Lake Chiemsee, Bavaria—Germany

    Directory of Open Access Journals (Sweden)

    Nicolás Corti Meneses

    2017-12-01

    Full Text Available Aquatic reed is an important indicator for the ecological assessment of freshwater lakes. Monitoring is essential to document its expansion or deterioration and decline. The applicability of Green-LiDAR data for the status assessment of aquatic reed beds of Bavarian freshwater lakes was investigated. The study focused on mapping diagnostic structural parameters of aquatic reed beds by exploring 3D data provided by the Green-LiDAR system. Field observations were conducted over 14 different areas of interest along 152 cross-sections. The data indicated the morphologic and phenologic traits of aquatic reed, which were used for validation purposes. For the automatic classification of aquatic reed bed spatial extent, density and height, a rule-based algorithm was developed. LiDAR data allowed for the delimitating of the aquatic reed frontline, as well as shoreline, and therefore an accurate quantification of extents (Hausdorff distance = 5.74 m and RMSE of cross-sections length 0.69 m. The overall accuracy measured for aquatic reed bed density compared to the simultaneously recorded aerial imagery was 96% with a Kappa coefficient of 0.91 and 72% (Kappa = 0.5 compared to field measurements. Digital Surface Models (DSM, calculated from point clouds, similarly showed a high level of agreement in derived heights of flat surfaces (RMSE = 0.1 m and showed an adequate agreement of aquatic reed heights with evenly distributed errors (RMSE = 0.8 m. Compared to field measurements, aerial laser scanning delivered valuable information with no disturbance of the habitat. Analysing data with our classification procedure improved the efficiency, reproducibility, and accuracy of the quantification and monitoring of aquatic reed beds.

  16. 77 FR 8895 - Jimbilnan, Pinto Valley, Black Canyon, Eldorado, Ireteba Peaks, Nellis Wash, Spirit Mountain, and...

    Science.gov (United States)

    2012-02-15

    ..., Pinto Valley, Black Canyon, Eldorado, Ireteba Peaks, Nellis Wash, Spirit Mountain, and Bridge Canyon..., Eldorado, Ireteba Peaks, Nellis Wash, Spirit Mountain, and Bridge Canyon Wilderness Areas, Lake Mead... wilderness character; providing for reasonable use of Spirit Mountain and adjacent areas in a manner meeting...

  17. Sediment deposition and sources into a Mississippi River floodplain lake; Catahoula Lake, Louisiana

    Science.gov (United States)

    Latuso, Karen D.; Keim, Richard F.; King, Sammy L.; Weindorf, David C.; DeLaune, Ronald D.

    2017-01-01

    Floodplain lakes are important wetlands on many lowland floodplains of the world but depressional floodplain lakes are rare in the Mississippi River Alluvial Valley. One of the largest is Catahoula Lake, which has existed with seasonally fluctuating water levels for several thousand years but is now in an increasingly hydrologically altered floodplain. Woody vegetation has been encroaching into the lake bed and the rate of this expansion has increased since major human hydrologic modifications, such as channelization, levee construction, and dredging for improvement of navigation, but it remains unknown what role those modifications may have played in altering lake sedimentation processes. Profiles of thirteen 137Cs sediment cores indicate sedimentation has been about 0.26 cm y− 1 over the past 60 years and has been near this rate since land use changes began about 200 years ago (210Pb, and 14C in Tedford, 2009). Carbon sequestration was low (10.4 g m− 2 y− 1), likely because annual drying promotes mineralization and export. Elemental composition (high Zr and Ti and low Ca and K) and low pH of recent (sediments suggest Gulf Coastal Plain origin, but below the recent sediment deposits, 51% of sediment profiles showed influence of Mississippi River alluvium, rich in base cations such as K+, Ca2 +, and Mg2 +. The recent shift to dominance of Coastal Plain sediments on the lake-bed surface suggests hydrologic modification has disconnected the lake from sediment-bearing flows from the Mississippi River. Compared to its condition prior to hydrologic alterations that intensified in the 1930s, Catahoula Lake is about 15 cm shallower and surficial sediments are more acidic. Although these results are not sufficient to attribute ecological changes directly to sedimentological changes, it is likely the altered sedimentary and hydrologic environment is contributing to the increased dominance of woody vegetation.

  18. Geochemistry of waters in the Valley of Ten Thousand Smokes region, Alaska

    Science.gov (United States)

    Keith, T.E.C.; Thompson, J.M.; Hutchinson, R.A.; White, L.D.

    1992-01-01

    Meteoric waters from cold springs and streams outside of the 1912 eruptive deposits filling the Valley of Ten Thousand Smokes (VTTS) and in the upper parts of the two major rivers draining the 1912 deposits have similar chemical trends. Thermal springs issue in the mid-valley area along a 300-m lateral section of ash-flow tuff, and range in temperature from 21 to 29.8??C in early summer and from 15 to 17??C in mid-summer. Concentrations of major and minor chemical constituents in the thermal waters are nearly identical regardless of temperature. Waters in the downvalley parts of the rivers draining the 1912 deposits are mainly mixtures of cold meteoric waters and thermal waters of which the mid-valley thermal spring waters are representative. The weathering reactions of cold waters with the 1912 deposits appear to have stabilized and add only subordinate amounts of chemical constituents to the rivers relative to those contributed by the thermal waters. Isotopic data indicate that the mid-valley thermal spring waters are meteoric, but data is inconclusive regarding the heat source. The thermal waters could be either from a shallow part of a hydrothermal system beneath the 1912 vent region or from an incompletely cooled, welded tuff lens deep in the 1912 ash-flow sheet of the upper River Lethe area. Bicarbonate-sulfate waters resulting from interaction of near-surface waters and the cooling 1953-1968 southwest Trident plug issue from thermal springs south of Katmai Pass and near Mageik Creek, although the Mageik Creek spring waters are from a well-established, more deeply circulating hydrothermal system. Katmai caldera lake waters are a result of acid gases from vigorous drowned fumaroles dissolving in lake waters composed of snowmelt and precipitation. ?? 1992.

  19. Preliminary Water-Table Map and Water-Quality Data for Part of the Matanuska-Susitna Valley, Alaska, 2005

    Science.gov (United States)

    Moran, Edward H.; Solin, Gary L.

    2006-01-01

    The Matanuska-Susitna Valley is in the northeastern part of the Cook Inlet Basin, Alaska, an area experiencing rapid population growth and development proximal to many lakes. Here water commonly flows between lakes and ground water, indicating interrelation between water quantity and quality. Thus concerns exist that poorer quality ground water may degrade local lake ecosystems. This concern has led to water-quality sampling in cooperation with the Alaska Department of Environmental Conservation and the Matanuska-Susitna Borough. A map showing the estimated altitude of the water table illustrates potential ground-water flow directions and areas where ground- and surface-water exchanges and interactions might occur. Water quality measured in selected wells and lakes indicates some differences between ground water and surface water. 'The temporal and spatial scarcity of ground-water-level and water-quality data limits the analysis of flow direction and water quality. Regionally, the water-table map indicates that ground water in the eastern and southern parts of the study area flows southerly. In the northcentral area, ground water flows predominately westerly then southerly. Although ground and surface water in most areas of the Matanuska-Susitna Valley are interconnected, they are chemically different. Analyses of the few water-quality samples collected in the area indicate that dissolved nitrite plus nitrate and orthophosphorus concentrations are higher in ground water than in surface water.'

  20. Regional distribution and relevance in paleonvironmental studies of lakes in the Tatra Mts. (Western Carpathians

    Directory of Open Access Journals (Sweden)

    Joanna POCIASK-KARTECZKA

    2014-11-01

    Full Text Available Scientific limnological research in the Tatra Mountains were initiated by Stanislaw Staszic in the early XIX century.  After the World War II, the evolution of Tatra lakes was investigated by Kondracki, Klimaszewski, Baumgart-Kotarba and. Extensive paleolimnological investigations in the Tatra Mountains were started by the group of scientists led by K. Starmach in the beginning of the second half of the 20th century. There has been not much research concerned to the regional distribution of lakes and their properties in the Tatra Mountains (Pociask-Karteczka 2013. Very early division of lakes presented A. Gadomski (1922, which distinguished four types of lakes: a tarns (cirque lake or corrie loch, b bedrock-dammed lakes, c moraine lakes. This division was concerned in subsequent publications (Choiński 2007. M. Lukniš (1973, 1985 recognized additional types: kettles and landslide-dammed lakes and M. Klimaszewski (1988 – inter-sheepback lakes. J. Pacl and K. Wit-Jóźwik in Klima Tatier (Pacl, Wit-Jóźwik 1974 were focused on the temperature of water in lakes in Polish and Slovak parts and M. Borowiak (2000a,b provided a comprehensive analysis of types, dimensions, temperature and chemical composition of water in lakes in the Tatra Mountains.According to present day state of knowledge, one may distinguish following genetic types of lakes: I glacial, II not-glacial. There are four types of the glacial origin lakes in the Tatra Mountains (Fig. 1: a tarns (cirque lakes or corrie loch, b bedrock-moraine dammed lakes, c inter-sheepback lakes, d moraine lakes, e kettles.Most of lakes in the Tatra Mountains are tarns and bedrock-moraine dammed lakes, and they are located at the elevation over 1400 m a.s.l. in the Western Tatra Mountains, and over 1600 m a.s.l. in the High Tatra Mountains. Some of them are paternoster lakes – a series of stair-stepped lakes formed in individual rock basins aligned down the course of a glaciated valley. Lakes in

  1. Post-Younger Dryas climate interval linked to circumpolar vortex variability: isotopic evidence from Fayetteville Green Lake, New York

    Science.gov (United States)

    Kirby, M. E.; Patterson, W. P.; Mullins, H. T.; Burnett, A. W.

    2002-04-01

    The late-Glacial/Holocene transition in the North Atlantic-European sectors has long been known to be a period of rapid climate change. There is, however, a continued need for acquiring and developing paleoclimate archives spanning this interval from continental settings. Here we report on a lacustrine (Fayetteville Green Lake) isotope record sampled at a 10-year resolution from the NE USA over the late-Glacial/Holocene interval (14,600-8000 cal year BP). Based on prior isotopic and hydrologic research from Green Lake, the δ18O(calcite) values predominantly reflect winter moisture source and thus winter atmospheric patterns. Furthermore, we use historic (AD 1948-1980) winter circulation data and δ18O(calcite) values from varved sediments to examine the relationship between the circumpolar vortex latitude and isotopes which results in a strong (r = -0.79 r2 = 0.63) negative relationship. Using the linear regression from the isotope-vortex relationship, we model the winter vortex latitude for the late-Glacial/Holocene transition over the NE USA. In addition, we identify an interval from 11,600 to 10,300 cal year BP (the post-Younger Dryas climate interval) wherein the mean winter vortex over the NE USA was expanded by 6° latitude ( 36.1°N i.e., 630 km) from its mean historic position between AD 1948-1998 ( 41.8°N). Renewal of more vigorous thermohaline circulation following the Younger Dryas cold event may have forced the post-Younger Dryas climate interval. Increased poleward heat transport due to an active oceanic conveyor would have strengthened the thermal contrast between the NE USA and the North Atlantic thereby enhancing atmospheric pressure gradients and firmly establishing the semi-permanent winter trough over the NE USA. Consequently, storms tracked more frequently up the east coast of the United States from the Gulf of Mexico and Atlantic regions delivering precipitation with relatively high δ18O values to the NE USA. Alternatively, the relative

  2. Lakes, Lagerstaetten, and Evolution

    Science.gov (United States)

    Kordesch, E. G.; Park, L. E.

    2001-12-01

    The diversity of terrestrial systems is estimated to be greater than in the marine realm. However no hard data yet exists to substantiate this claim. Ancient lacustrine deposits may preserve an exceptionally diverse fossil fauna and aid in determining continental faunal diversities. Fossils preserved in lake deposits, especially those with exceptional preservation (i.e. Konservat Lagerstaetten), may represent a dependable method for determining species diversity changes in the terrestrial environment because of their faunal completeness. Important Konservat Lagerstaetten, such as the Green River Formation (US) and Messel (Germany), both Eocene in age, are found in lake sediments and show a remarkable faunal diversity for both vertebrates and invertebrates. To date information from nearly 25 lake lagerstaetten derived from different types of lake basins from the Carboniferous to the Miocene have been collected and described. Carboniferous sites derive from the cyclothems of Midcontinent of the US while many Cenozoic sites have been described from North and South America as well as Europe and Australia. Asian sites contain fossils from the Mesozoic and Cenozoic. With this data, insight into the evolutionary processes associated with lake systems can be examined. Do lakes act as unique evolutionary crucibles in contrast to marine systems? The speciation of cichlid fishes in present-day African lakes appears to be very high and is attributed to the diversity of environments found in large rift lakes. Is this true of all ancient lakes or just large rift lakes? The longevity of a lake system may be an important factor in allowing speciation and evolutionary processes to occur; marine systems are limited only in the existence of environments as controlled by tectonics and sea level changes, on the order of tens of millions of years. Rift lakes are normally the longest lived in the millions of years. Perhaps there are only certain types of lakes in which speciation of

  3. Iron-titanium oxide minerals and magnetic susceptibility anomalies in the Mariano Lake-Lake Valley cores - Constraints on conditions of uranium mineralization in the Morrison Formation, San Juan Basin, New Mexico

    International Nuclear Information System (INIS)

    Reynolds, R.L.; Fishman, N.S.; Scott, J.H.; Hudson, M.R.

    1986-01-01

    Petrographic study of the Mariano Lake-Lake Valley cores reveals three distinct zones of postdepositional alteration of detrital Fe-Ti (iron-titanium) oxide minerals in the Westwater Canyon Member of the Upper Jurassic Morrisson Formation. In the uranium-bearing and adjacent portions of the Westwater Canyon, these detrital Fe-Ti oxide minerals have been thoroughly altered by leaching of iron. Stratigraphically lower parts of the Westwater Canyon and the underlying Recapture Member are characterized by preservation of Fe-Ti oxide grains, primarily magnetite and ilmenite, and of hematite, and by an absence or uranium concentrations. Partly destroyed Fe-Ti oxide minerals occupy an interval between the zones of destruction and preservation. Alteration patterns of the Fe-Ti oxide minerals are reflected in bore-hole magnetic susceptibility logs. Magnetic susceptibility response in the upper parts of the Westwater Canyon Member is flat and uniformly <500 μSI units, but at greater depths it fluctuates sharply, from <1,000 to nearly 8,000 μSI units. The boundary between uniformly low and high magnetic susceptibility response corresponds closely to the interval that divides the zone of completely altered from the zone of preserved detrital Fe-Ti oxide minerals. The alteration pattern suggests that solutions responsible for destruction of the Fe-ti oxide minerals originated in the overlying Brushy Basin Member of the Morrison Formation. Previous studies indicate that these solutions were rich in soluble organic matter and perhaps in uranium. Uranium precipitation may have been controlled by a vertically fluctuation interface between organic-rich solutions and geochemically different fluids in which the detrital Fe-Ti oxide minerals were preserved

  4. ACCRETION-INHIBITED STAR FORMATION IN THE WARM MOLECULAR DISK OF THE GREEN-VALLEY ELLIPTICAL GALAXY NGC 3226?

    International Nuclear Information System (INIS)

    Appleton, P. N.; Bitsakis, T.; Alatalo, K.; Mundell, C.; Lacy, M.; Armus, L.; Charmandaris, V.; Duc, P.-A.; Lisenfeld, U.; Ogle, P.

    2014-01-01

    We present archival Spitzer photometry and spectroscopy and Herschel photometry of the peculiar ''Green Valley'' elliptical galaxy NGC 3226. The galaxy, which contains a low-luminosity active galactic nucleus (AGN), forms a pair with NGC 3227 and is shown to lie in a complex web of stellar and H I filaments. Imaging at 8 and 16 μm reveals a curved plume structure 3 kpc in extent, embedded within the core of the galaxy and coincident with the termination of a 30 kpc long H I tail. In situ star formation associated with the infrared (IR) plume is identified from narrowband Hubble Space Telescope (HST) imaging. The end of the IR plume coincides with a warm molecular hydrogen disk and dusty ring containing 0.7-1.1 × 10 7 M ☉ detected within the central kiloparsec. Sensitive upper limits to the detection of cold molecular gas may indicate that a large fraction of the H 2 is in a warm state. Photometry derived from the ultraviolet (UV) to the far-IR shows evidence for a low star-formation rate of ∼0.04 M ☉ yr –1 averaged over the last 100 Myr. A mid-IR component to the spectral energy distribution (SED) contributes ∼20% of the IR luminosity of the galaxy, and is consistent with emission associated with the AGN. The current measured star formation rate is insufficient to explain NGC 3226's global UV-optical ''green'' colors via the resurgence of star formation in a ''red and dead'' galaxy. This form of ''cold accretion'' from a tidal stream would appear to be an inefficient way to rejuvenate early-type galaxies and may actually inhibit star formation

  5. Mono Lake sediments preserve a record of recent environmental change

    Science.gov (United States)

    Meixnerova, J.; Betts, M.; Westacott, S.; Ingalls, M.; Miller, L. G.; Sessions, A. L.; Trower, L.; Geobiology Course, A.

    2017-12-01

    Modern Mono Lake is a geochemically unique closed-basin, hypersaline soda lake. Since 1941, anthropogenic water diversions have decreased the lake's volume and water level, driving changes in water chemistry and ecology. Mono Lake sediments offer an opportunity to investigate the nature and extent of these changes. We analyzed a 70 cm sediment core from the center of Mono Lake recording the past 116 years of deposition. At the time of recovery, the entire core was dark green. 16S rRNA gene analysis indicated a sedimentary bacterial community dominated by Cyanobacteria. SEM imaging revealed abundant, well-preserved diatom frustules below 10 cm core depth, in contrast they are nearly absent above 10 cm depth. Fatty acid (FAME) biomarkers for diatoms and algal sterols were present throughout the core in varying concentrations. Phytol was exceptionally abundant in the core; ratios of phytol/C-18 FAME were commonly >200. The δ13Corg ranged between -17.5 and -20‰ in the lower 52 cm of the core while the upper part shows significant decrease of δ13Corg to -28‰. We interpret the shift in δ13Corg as an ecological transition from mainly diatoms in the lower core towards the green alga Picocystis, which is the main primary producer today and has a δ13Corg value of -32.5‰. The onset of this change dates back 23 years, which roughly coincides with the highest reported salinity, 88 g/L in 1995. We hypothesize that diatoms gradually became marginalized as a result of hypersaline conditions. We also observed a variety of trends that may be characterized as unique fingerprints of Mono Lake. The unusually high abundance of phytol was consistent with the core's pervasive green coloring and could potentially indicate a higher preservation potential of phytol under alkaline conditions. Throughout the core, δ15Norg fluctuated between +10 and +13‰. Such atypical enrichment in δ15Norg could be explained by NH4 dissociation and subsequent NH3 volatilization under high p

  6. In the San Joaquin Valley, hardly a sprinkle

    International Nuclear Information System (INIS)

    Holson, L.M.

    1993-01-01

    California has declared its six-year drought over, but in the San Joaquin Valley, center of the state's $18.5 billion agriculture industry, it lives on. The two weeks of strong rain this winter that swelled reservoirs and piled snow on the mountains is only trickling toward the region's nearly 20,000 farms. Federal water officials are under heavy pressure from the Environmental Protection Agency, which wants to improve water quality, and are worried about the plight of endangered fish in the Sacramento River. So, on March 12 they announced they will send farmers only 40% of the water allotments they got before the drought. The rest is being held against possible shortages. For the once-green valley, another year without water has brought many farmers perilously close to extinction

  7. Ecology of playa lakes

    Science.gov (United States)

    Haukos, David A.; Smith, Loren M.

    1992-01-01

    Between 25,000 and 30,000 playa lakes are in the playa lakes region of the southern high plains (Fig. 1). Most playas are in west Texas (about 20,000), and fewer, in New Mexico, Oklahoma, Kansas, and Colorado. The playa lakes region is one of the most intensively cultivated areas of North America. Dominant crops range from cotton in southern areas to cereal grains in the north. Therefore, most of the native short-grass prairie is gone, replaced by crops and, recently, grasses of the Conservation Reserve Program. Playas are the predominant wetlands and major wildlife habitat of the region.More than 115 bird species, including 20 species of waterfowl, and 10 mammal species have been documented in playas. Waterfowl nest in the area, producing up to 250,000 ducklings in wetter years. Dominant breeding and nesting species are mallards and blue-winged teals. During the very protracted breeding season, birds hatch from April through August. Several million shorebirds and waterfowl migrate through the area each spring and fall. More than 400,000 sandhill cranes migrate through and winter in the region, concentrating primarily on the larger saline lakes in the southern portion of the playa lakes region.The primary importance of the playa lakes region to waterfowl is as a wintering area. Wintering waterfowl populations in the playa lakes region range from 1 to 3 million birds, depending on fall precipitation patterns that determine the number of flooded playas. The most common wintering ducks are mallards, northern pintails, green-winged teals, and American wigeons. About 500,000 Canada geese and 100,000 lesser snow geese winter in the playa lakes region, and numbers of geese have increased annually since the early 1980’s. This chapter describes the physiography and ecology of playa lakes and their attributes that benefit waterfowl.

  8. Field evaluation of two systemic neonicotinoid insecticides against pink hibiscus mealybug (Maconellicoccus hirsutus (Green))on mulberry trees

    Science.gov (United States)

    Infestations of the pink hibiscus mealybug, Maconellicoccus hirsutus (Green), in ornamental trees were already in an advanced state at the time of its discovery in the Imperial Valley of California (USA) in August 1999. Concern about the spread of M. hirsutus beyond the Imperial Valley led to the p...

  9. ENHANCED WARM H2 EMISSION IN THE COMPACT GROUP MID-INFRARED ''GREEN VALLEY''

    International Nuclear Information System (INIS)

    Cluver, M. E.; Ogle, P.; Guillard, P.; Appleton, P. N.; Jarrett, T. H.; Rasmussen, J.; Lisenfeld, U.; Verdes-Montenegro, L.; Antonucci, R.; Bitsakis, T.; Charmandaris, V.; Boulanger, F.; Egami, E.; Xu, C. K.; Yun, M. S.

    2013-01-01

    We present results from a Spitzer mid-infrared spectroscopy study of a sample of 74 galaxies located in 23 Hickson Compact Groups (HCGs), chosen to be at a dynamically active stage of H I depletion. We find evidence for enhanced warm H 2 emission (i.e., above that associated with UV excitation in star-forming regions) in 14 galaxies (∼20%), with 8 galaxies having extreme values of L(H 2 S(0)-S(3))/L(7.7 μm polycyclic aromatic hydrocarbon), in excess of 0.07. Such emission has been seen previously in the compact group HCG 92 (Stephan's Quintet), and was shown to be associated with the dissipation of mechanical energy associated with a large-scale shock caused when one group member collided, at high velocity, with tidal debris in the intragroup medium. Similarly, shock excitation or turbulent heating is likely responsible for the enhanced H 2 emission in the compact group galaxies, since other sources of heating (UV or X-ray excitation from star formation or active galactic nuclei) are insufficient to account for the observed emission. The group galaxies fall predominantly in a region of mid-infrared color-color space identified by previous studies as being connected to rapid transformations in HCG galaxy evolution. Furthermore, the majority of H 2 -enhanced galaxies lie in the optical ''green valley'' between the blue cloud and red sequence, and are primarily early-type disk systems. We suggest that H 2 -enhanced systems may represent a specific phase in the evolution of galaxies in dense environments and provide new insight into mechanisms which transform galaxies onto the optical red sequence.

  10. Fishes in paleochannels of the Lower Mississippi River alluvial valley: A national treasure

    Science.gov (United States)

    Miranda, Leandro E.

    2016-01-01

    Fluvial geomorphology of the alluvial valley of the Lower Mississippi River reveals a fascinating history. A prominent occupant of the valley was the Ohio River, estimated to have flowed 25,000 years ago over western Tennessee and Mississippi to join the Mississippi River north of Baton Rouge, Louisiana, 750–800 km south of the present confluence. Over time, shifts in the Mississippi and Ohio rivers toward their contemporary positions have left a legacy of abandoned paleochannels supportive of unique fish assemblages. Relative to channels abandoned in the last 500 years, paleochannels exhibit harsher environmental conditions characteristic of hypereutrophic lakes and support tolerant fish assemblages. Considering their ecological, geological, and historical importance, coupled with their primordial scenery, the hundreds of paleochannels in the valley represent a national treasure. Altogether, these waterscapes are endangered by human activities and would benefit from the conservation attention afforded to our national parks and wildlife refuges.

  11. A mass balance mercury budget for a mine-dominated lake: Clear Lake, California

    Science.gov (United States)

    Suchanek, T.H.; Cooke, J.; Keller, K.; Jorgensen, S.; Richerson, P.J.; Eagles-Smith, Collin A.; Harner, E.J.; Adam, D.P.

    2009-01-01

    The Sulphur Bank Mercury Mine (SBMM), active intermittently from 1873–1957 and now a USEPA Superfund site, was previously estimated to have contributed at least 100 metric tons (105 kg) of mercury (Hg) into the Clear Lake aquatic ecosystem. We have confirmed this minimum estimate. To better quantify the contribution of the mine in relation to other sources of Hg loading into Clear Lake and provide data that might help reduce that loading, we analyzed Inputs and Outputs of Hg to Clear Lake and Storage of Hg in lakebed sediments using a mass balance approach. We evaluated Inputs from (1) wet and dry atmospheric deposition from both global/regional and local sources, (2) watershed tributaries, (3) groundwater inflows, (4) lakebed springs and (5) the mine. Outputs were quantified from (1) efflux (volatilization) of Hg from the lake surface to the atmosphere, (2) municipal and agricultural water diversions, (3) losses from out-flowing drainage of Cache Creek that feeds into the California Central Valley and (4) biotic Hg removal by humans and wildlife. Storage estimates include (1) sediment burial from historic and prehistoric periods (over the past 150–3,000 years) from sediment cores to ca. 2.5m depth dated using dichloro diphenyl dichloroethane (DDD), 210Pb and 14C and (2) recent Hg deposition in surficial sediments. Surficial sediments collected in October 2003 (11 years after mine site remediation) indicate no reduction (but a possible increase) in sediment Hg concentrations over that time and suggest that remediation has not significantly reduced overall Hg loading to the lake. Currently, the mine is believed to contribute ca. 322–331 kg of Hg annually to Clear Lake, which represents ca. 86–99% of the total Hg loading to the lake. We estimate that natural sedimentation would cover the existing contaminated sediments within ca. 150–300 years.

  12. Energy Balance, Evapo-transpiration and Dew deposition in the Dead Sea Valley

    Science.gov (United States)

    Metzger, Jutta; Corsmeier, Ulrich

    2016-04-01

    The Dead Sea is a unique place on earth. It is a terminal hypersaline lake, located at the lowest point on earth with a lake level of currently -429 m above mean sea level (amsl). It is located in a transition zone of semiarid to arid climate conditions, which makes it highly sensible to climate change (Alpert1997, Smiatek2011). The Virtual Institute DEad SEa Research Venue (DESERVE) is an international project funded by the German Helmholtz Association and was established to study coupled atmospheric hydrological, and lithospheric processes in the changing environment of the Dead Sea. At the moment the most prominent environmental change is the lake level decline of approximately 1 m / year due to anthropogenic interferences (Gertman, 2002). This leads to noticeable changes in the fractions of the existing terrestrial surfaces - water, bare soil and vegetated areas - in the valley. Thus, the partitioning of the net radiation in the valley changes as well. To thoroughly study the atmospheric and hydrological processes in the Dead Sea valley, which are driven by the energy balance components, sound data of the energy fluxes of the different surfaces are necessary. Before DESERVE no long-term monitoring network simultaneously measuring the energy balance components of the different surfaces in the Dead Sea valley was available. Therefore, three energy balance stations were installed at three characteristic sites at the coast-line, over bare soil, and within vegetation, measuring all energy balance components by using the eddy covariance method. The results show, that the partitioning of the energy into sensible and latent heat flux on a diurnal scale is totally different at the three sites. This results in gradients between the sites, which are e.g. responsible for the typical diurnal wind systems at the Dead Sea. Furthermore, driving forces of evapo-transpiration at the sites were identified and a detailed analysis of the daily evaporation and dew deposition rates

  13. Measurements and Modeling of Turbulent Fluxes during Persistent Cold Air Pool Events in Salt Lake Valley, Utah

    Science.gov (United States)

    Ivey, C. E.; Sun, X.; Holmes, H.

    2017-12-01

    Land surface processes are important in meteorology and climate research since they control the partitioning of surface energy and water exchange at the earth's surface. The surface layer is coupled to the planetary boundary layer (PBL) by surface fluxes, which serve as sinks or sources of energy, moisture, momentum, and atmospheric pollutants. Quantifying the surface heat and momentum fluxes at the land-atmosphere interface, especially for different surface land cover types, is important because they can further influence the atmospheric dynamics, vertical mixing, and transport processes that impact local, regional, and global climate. A cold air pool (CAP) forms when a topographic depression (i.e., valley) fills with cold air, where the air in the stagnant layer is colder than the air aloft. Insufficient surface heating, which is not able to sufficiently erode the temperature inversion that forms during the nighttime stable boundary layer, can lead to the formation of persistent CAPs during wintertime. These persistent CAPs can last for days, or even weeks, and are associated with increased air pollution concentrations. Thus, realistic simulations of the land-atmosphere exchange are meaningful to achieve improved predictions of the accumulation, transport, and dispersion of air pollution concentrations. The focus of this presentation is on observations and modeling results using turbulence data collected in Salt Lake Valley, Utah during the 2010-2011 wintertime Persistent Cold Air Pool Study (PCAPS). Turbulent fluxes and the surface energy balance over seven land use types are quantified. The urban site has an energy balance ratio (EBR) larger than one (1.276). Negative Bowen ratio (-0.070) is found at the cropland site. In addition to turbulence observations, half-hourly WRF simulated net radiation, latent heat, sensible heat, ground heat fluxes during one persistent CAP event are evaluated using the PCAPS observations. The results show that sensible and latent

  14. Water resources of Parowan Valley, Iron County, Utah

    Science.gov (United States)

    Marston, Thomas M.

    2017-08-29

    . Groundwater flows from the high-altitude recharge areas downward toward the basin-fill aquifer in Parowan Valley. Almost all groundwater discharge occurs as withdrawals from irrigation wells in the valley with a small amount of discharge from phreatophytic evapotranspiration. Subsurface groundwater discharge to Cedar Valley is likely minimal. Withdrawals from wells during 2013 were about 32,000 acre-ft. The estimated withdrawals from wells from 1994 to 2013 have ranged from 22,000 to 39,000 acre-ft per year. Declining water levels are an indication of the estimated average annual decrease in groundwater storage of 15,000 acre-ft from 1994 to 2013.Groundwater and surface-water samples were collected from 46 sites in Parowan Valley and Cedar Valley near the town of Enoch during June 2013. Groundwater samples from 34 wells were submitted for geochemical analysis. The total dissolved-solids concentration in water from these wells ranged from 142 to 886 milligrams per liter. Results of stable isotope analysis of oxygen and deuterium from groundwater and surface-water samples indicate that most of the groundwater in Parowan Valley and in Cedar Valley near Enoch is similar in isotopic composition to water from mountain streams, which reflects meteoric water recharged in high-altitude areas east of the valley. In addition, results of stable isotope analysis of a subset of samples from wells located near Little Salt Lake may indicate recharge of precipitation that occurred during cooler climatic conditions of the Pleistocene Epoch.

  15. [Algo-bacterial communities of the Kulunda steppe (Altai region, Russia) soda lakes].

    Science.gov (United States)

    Samylina, O S; Sapozhnikov, F V; Gaĭnanova, O Iu; Riabova, A V; Nikitin, M A; Sorokin, D Iu

    2015-01-01

    The composition and macroscopic structure of the floating oxygenic phototrophic communities from Kulunda steppe soda lakes (Petukhovskoe sodovoe, Tanatara VI, and Gorchiny 3) was described based on the data of the 2011 and 2012 expeditions (Winogradsky Institute of Microbiology). The algo-bacterial community with a green alga Ctenocladus circinnatus as an edificator was the typical one. Filamentous Geitlerinema sp. and Nodosilinea sp. were the dominant cyanobacteria. Apart from C. circinnatus, the algological component of the community contained unicellular green algae Dunaliella viridis and cf. Chlorella minutissima, as well as diatoms (Anomeoneis sphaerophora, Brchysira brebissonii, Brachysira zellensis, Mastogloia pusilla var. subcapitata, Nitzschia amphibia, Nitzschia communis, and Nitzschia sp.1). The latter have not been previously identified in the lakes under study. In all lakes, a considerable increase in salinity was found to result in changes in the composition and macroscopic structure of algo-bacterial communities.

  16. Integrating Interdisciplinary Studies Across a Range of Spatiotemporal Scales for the Design of Effective Flood Mitigation and Habitat Restoration Strategies, Green Valley Creek, California

    Science.gov (United States)

    Kobor, J. S.; O'Connor, M. D.; Sherwood, M. N.

    2014-12-01

    Green Valley Creek provides some of the most critical habitat for endangered coho salmon in the Russian River Watershed. Extensive changes in land-use over the past century have resulted in a dynamic system characterized by ongoing incision in the upper watershed and deposition and increased flood risk in the lower watershed. Effective management requires a watershed-scale understanding of the underlying controls on sediment erosion and transport as well as site-specific studies to understand local habitat conditions and flood dynamics. Here we combine an evaluation of historical changes in watershed conditions with a regional sediment source assessment and detailed numerical hydraulic and sediment transport models to find a sustainable solution to a chronic flooding problem at the Green Valley Road bridge crossing. Ongoing bank erosion in the upper watershed has been identified as the primary source of coarse sediment being deposited in the rapidly aggrading flood-prone reach upstream of the bridge. Efforts at bank stabilization are part of the overall strategy, however elevated sediment loads can be expected to continue in the near-term. The cessation of historical vegetation removal and maintenance dredging has resulted in a substantial increase in channel roughness as riparian cover has expanded. A positive feedback loop has been developed whereby increased vegetation roughness reduces sediment transport capacity, inducing additional deposition, and providing fresh sediment for continued vegetation recruitment. Our analysis revealed that traditional engineering approaches are ineffective. Dredging is not viable owning to the habitat impacts and short timeframes over which the dredged channel would be maintained. Roadway elevation results in a strong backwater effect increasing flood risk upstream. Initial efforts at designing a bypass channel also proved ineffective due to backwater effects below the bridge. The only viable solution involved reducing the

  17. Mixed stock analysis of Lake Michigan's Lake Whitefish Coregonus clupeaformis commercial fishery

    Science.gov (United States)

    Andvik, Ryan; Sloss, Brian L.; VanDeHey, Justin A.; Claramunt, Randall M.; Hansen, Scott P.; Isermann, Daniel A.

    2016-01-01

    Lake whitefish (Coregonus clupeaformis) support the primary commercial fishery in Lake Michigan. Discrete genetic stocks of lake whitefish have been identified and tagging data suggest stocks are mixed throughout much of the year. Our objectives were to determine if (1) differential stock harvest occurs in the commercial catch, (2) spatial differences in genetic composition of harvested fish were present, and (3) seasonal differences were present in the harvest by commercial fisheries that operate in management zones WI-2 and WFM-01 (Green Bay, Lake Michigan). Mixed stock analysis was conducted on 17 commercial harvest samples (n = 78–145/sample) collected from various ports lake-wide during 2009–2010. Results showed significant mixing with variability in stock composition across most samples. Samples consisted of two to four genetic stocks each accounting for ≥ 10% the catch. In 10 of 17 samples, the stock contributing the largest proportion made up differences existed in the proportional stock contribution at a single capture location. Samples from Wisconsin's primary commercial fishing management zone (WI-2) were composed predominately of fish from the Big Bay de Noc (Michigan) stock as opposed to the geographically proximate, North–Moonlight Bay (Wisconsin) stock. These findings have implications for management and allocation of fish to various quotas. Specifically, geographic location of harvest, the current means of allocating harvest quotas, is not the best predictor of genetic stock harvest.

  18. 78 FR 20544 - Proposed Establishment of the Big Valley District-Lake County and Kelsey Bench-Lake County...

    Science.gov (United States)

    2013-04-05

    ... Lake warms more slowly than the adjacent land during the day and also holds its heat longer at night... formations are comprised of chert, greywacke, shale, metasedimentary rocks, and metavolcanic rocks thrown... included information on the wind, growing degree days, frost-free days, and precipitation within the...

  19. Landform Evolution of the Zanskar Valley, Ladakh Himalaya.

    Science.gov (United States)

    Chahal, P.; Kumar, A.; Sharma, P.; Sundriyal, Y.; Srivastava, P.

    2017-12-01

    Zanskar River flow from south-west to north-east, perpendicularly through Higher Himalayan crystalline sequences, Tethyan sedimentary sequences, and Indus Molasses; and finally merge with the Indus River at Nimu. Geologically, the Indus valley is bounded by Ladakh Batholith in the north and highly folded and thrusted Zanskar mountain ranges in the south. Sedimentary sequences of Zanskar ranges are largely of continental origin, which were uplifted and deformed via several north verging thrusts, where Zanskar counter thrust, Choksti and Indus-Bazgo thrusts are important thrust zone, and there is atleast 36 km of crustal shortening in the Zanskar section which continued from middle Miocene to the late Pleistocene. This shortening is accommodated mainly by north or north-east directed Zanskar backthrusts. Two major tributaries of Zanskar: Tsrapchu and Doda, flow in the headwaters, along the strike of South Tibetan Detachment System (STDs), an east-west trending regional fault. The present study incorporate field sedimentology, geomorphology and chronology of landform associated with Zanskar valley. In the upper Zanskar, alluvial fan, valley fill and strath terraces configured the major landforms with paleo-lake deposits­­­ in the area between the fans. The lower catchment, at the confluence of Zanskar and Indus rivers, exhibit mainly valley fill terraces and strath terraces. Chronology suggests diachronous aggradation in the upper and lower Zanskar catchments. In the upper Zanskar large scale valley aggradation took place with simultaneously fan progradation and flooding events from 45-15 ka. Luminescence chronology of the lower Zanskar indicates aggradation from 145-55 ka and 18-12 ka. The two aggradation basins are separated by a deep V-shaped gorge which is approximately 60 km long. The longitudinal profile of the Zanskar River shows several local convexities marking knick point zone, which suggests tectonically controlled topography.

  20. Land, lake, and fish: Investigation of fish remains from Gesher Benot Ya'aqov (paleo-Lake Hula).

    Science.gov (United States)

    Zohar, Irit; Biton, Rebecca

    2011-04-01

    The question of whether or not pre-modern hominins were responsible for the accumulation of fish remains is discussed through analyses of remains recovered from two lacustrine facies (I-4 and I-5) from Area A of the Acheulian site of Gesher Benot Ya'aqov (GBY) in the Jordan Rift Valley, Israel. The fish remains provide the first glimpse into the naturally accumulated fish assemblage from the fluctuating shores of a lake that had been continually exploited by early hominins some 780,000 years ago. Preliminary analysis of the remains show that thirteen of the seventeen species native to Lake Hula were identified at GBY. These represent three of the five freshwater fish families native to the lake: Cyprinidae (carps), Cichlidae (tilapini, St. Peter's fish), and Clariidae (catfish). From a taphonomical perspective, a significant difference is found between the two lithofacies (Layers I-4 and I-5) in terms of species composition, richness, diversity, and skeleton completeness. It appears that the fish remains recovered from Layer I-4 (clay) are better preserved than those from Layer I-5 (coquina). In both lithofacies, Cyprinidae are highly abundant while Cichlidae and Clariidae are rare and under-represented, especially when compared to the Lake Hula fishery report from the 1950s. All of these identified species may have contributed significantly to the diet of GBY hominins. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Changes in lake levels, salinity and the biological community of Great Salt Lake (Utah, USA), 1847-1987

    Science.gov (United States)

    Stephens, D.W.

    1990-01-01

    Great Salt Lake is the fourth largest terminal lake in the world, with an area of about 6000 square kilometers at its historic high elevation. Since its historic low elevation of 1277.52 meters in 1963, the lake has risen to a new historic high elevation of 1283.77 meters in 1986-1987, a net increase of about 6.25 meters. About 60 percent of this increase, 3.72 meters, has occurred since 1982 in response to greater than average precipitation and less than average evaporation. Variations in salinity have resulted in changes in the composition of the aquatic biological community which consists of bacteria, protozoa, brine shrimp and brine flies. These changes were particularly evident following the completion of a causeway in 1959 which divided the lake. Subsequent salinities in the north part of the lake have ranged from 16 to 29 percent and in the south part from 6 to 28 percent. Accompanying the rise in lake elevation from 1982 to 1987 have been large decreases in salinity of both parts of the lake. This has resulted in changes in the biota from obligate halophiles, such as Dunaliella salina and D. viridis, to opportunistic forms such as a blue-green alga (Nodularia spumigena). The distribution and abundance of brine shrimp (Artemia salina) in the lake also have followed closely the salinity. In 1986, when the salinity of the south part of the lake was about 6 percent, a population of brackish-water killifish (Lucania parva) was observed along the shore near inflow from a spring. ?? 1990 Kluwer Academic Publishers.

  2. Green River air quality model development: meteorological and tracer data, July/August 1982 field study in Brush Valley, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Whiteman, C.D.; Lee, R.N.; Orgill, M.M.; Zak, B.D.

    1984-06-01

    Meteorological and atmospheric tracer studies were conducted during a 3-week period in July and August of 1982 in the Brush Creek Valley of northwestern Colorado. The objective of the field experiments was to obtain data to evaluate a model, called VALMET, developed at PNL to predict dispersion of air pollutants released from an elevated stack located within a deep mountain valley in the post-sunrise temperature inversion breakup period. Three tracer experiments were conducted in the valley during the 2-week period. In these experiments, sulfur hexafluoride (SF/sub 6/) was released from a height of approximately 100 m, beginning before sunrise and continuing until the nocturnal down-valley winds reversed several hours after sunrise. Dispersion of the sulfur hexafluoride after release was evaluated by measuring SF/sub 6/ concentrations in ambient air samples taken from sampling devices operated within the valley up to about 8 km down valley from the source. An instrumented research aircraft was also used to measure concentrations in and above the valley. Tracer samples were collected using a network of radio-controlled bag sampling stations, two manually operated gas chromatographs, a continuous SF/sub 6/ monitor, and a vertical SF/sub 6/ profiler. In addition, basic meteorological data were collected during the tracer experiments. Frequent profiles of vertical wind and temperature structure were obtained with tethered balloons operated at the release site and at a site 7.7 km down the valley from the release site. 10 references, 63 figures, 50 tables.

  3. Status and understanding of groundwater quality in the Bear Valley and Lake Arrowhead Watershed Study Unit, 2010: California GAMA Priority Basin Project

    Science.gov (United States)

    Mathany, Timothy; Burton, Carmen

    2017-06-20

    Groundwater quality in the 112-square-mile Bear Valley and Lake Arrowhead Watershed (BEAR) study unit was investigated as part of the Priority Basin Project (PBP) of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study unit comprises two study areas (Bear Valley and Lake Arrowhead Watershed) in southern California in San Bernardino County. The GAMA-PBP is conducted by the California State Water Resources Control Board (SWRCB) in cooperation with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory.The GAMA BEAR study was designed to provide a spatially balanced, robust assessment of the quality of untreated (raw) groundwater from the primary aquifer systems in the two study areas of the BEAR study unit. The assessment is based on water-quality collected by the USGS from 38 sites (27 grid and 11 understanding) during 2010 and on water-quality data from the SWRCB-Division of Drinking Water (DDW) database. The primary aquifer system is defined by springs and the perforation intervals of wells listed in the SWRCB-DDW water-quality database for the BEAR study unit.This study included two types of assessments: (1) a status assessment, which characterized the status of the quality of the groundwater resource as of 2010 by using data from samples analyzed for volatile organic compounds, pesticides, and naturally present inorganic constituents, such as major ions and trace elements, and (2) an understanding assessment, which evaluated the natural and human factors potentially affecting the groundwater quality. The assessments were intended to characterize the quality of groundwater resources in the primary aquifer system of the BEAR study unit, not the treated drinking water delivered to consumers. Bear Valley study area and the Lake Arrowhead Watershed study area were also compared statistically on the basis of water-quality results and factors potentially affecting the groundwater quality.Relative concentrations (RCs

  4. Landscape history and man-induced landscape changes in the young morainic area of the North European Plain — a case study from the Bäke Valley, Berlin

    Science.gov (United States)

    Böse, Margot; Brande, Arthur

    2010-10-01

    The Bäke creek valley is part of the young morainic area in Berlin. Its origin is related to meltwater flow and dead-ice persistence resulting in a valley with a lake-creek system. During the Late Glacial, the slopes of the valley were affected by solifluction. A Holocene brown soil developed in this material, whereas parts of the lakes were filled with limnic-telmatic sediments. The excavation site at Goerzallee revealed Bronze Age and Iron Age burial places at the upper part of the slope, as well as a fireplace further downslope, but the slope itself remained stable. Only German settlements in the 12th and 13th centuries changed the processes in the creek-lake system: the construction of water mills created a retention system with higher ground water levels in the surrounding areas. On the other hand, deforestation on the till plain and on the slope triggered erosion. Therefore, in medieval time interfingering organic sediments and sand layers were deposited in the lower part of the slope on top of the Holocene soil. The new soil which formed on top of these sediments was transformed by ploughing until the 19th century. In 1905/06 the lower part of the slope was reshaped by the construction of the Teltow Canal, following the valley of the former Bäke creek. Finally, the whole area was levelled by infill after World War II.

  5. Potentially dangerous glacial lakes in Kyrgyzstan - Research overview of 2004-2015

    Science.gov (United States)

    Jansky, Bohumir; Yerokhin, Sergey; Sobr, Miroslav; Engel, Zbynek; Cerny, Michal; Falatkova, Kristyna; Kocum, Jan; Benes, Vojtech

    2016-04-01

    Global warming causes intensive melting and retreat of glaciers in most of high mountains all over the world. This process is also evident in the mountain regions of central Tien Shan. Glacier melt water affects changes in hydrological regime of water streams and causes overfilling of high mountain lake basins. The dams of many lakes are very unstable and can burst open. To determine the degree of such risk, it is necessary to analyse the genesis of lakes, to characterize the morphology of the lake basins and to know the particularities of their hydrological regime. According to the latest inventory within territory of Kyrgyzstan, a total of 1328 lakes have been identified as potentially dangerous, 12 lakes are considered as currently dangerous, other 25 feature high potential hazard. Since 1952 more than 70 disastrous cases of lake outburst have been registered. The hazardous alpine lakes are studied in Kyrgyzstan systematically since 1966. Since 2004, Czech-Kyrgyz research team has been operating in Kyrgyzstan in the field of dangerous glacial lakes. Projects were focused primarily on high-mountain glacial lakes risk assessment, propositions of risk mitigation measures, establishment of permanent research station near one of the studied glacier complexes, preparation of risk analysis for selected endangered valleys, evaluation of climatic and hydrological data and glacier development within observed regions. The most significant portion of data and information has been gathered during field work, complemented by satellite image analysis and surveillance flights over the monitored sites.

  6. Optical ages indicate the southwestern margin of the Green Bay Lobe in Wisconsin, USA, was at its maximum extent until about 18,500 years ago

    Science.gov (United States)

    Attig, J.W.; Hanson, P.R.; Rawling, J.E.; Young, A.R.; Carson, E.C.

    2011-01-01

    Samples for optical dating were collected to estimate the time of sediment deposition in small ice-marginal lakes in the Baraboo Hills of Wisconsin. These lakes formed high in the Baraboo Hills when drainage was blocked by the Green Bay Lobe when it was at or very near its maximum extent. Therefore, these optical ages provide control for the timing of the thinning and recession of the Green Bay Lobe from its maximum position. Sediment that accumulated in four small ice-marginal lakes was sampled and dated. Difficulties with field sampling and estimating dose rates made the interpretation of optical ages derived from samples from two of the lake basins problematic. Samples from the other two lake basins-South Bluff and Feltz basins-responded well during laboratory analysis and showed reasonably good agreement between the multiple ages produced at each site. These ages averaged 18.2. ka (n= 6) and 18.6. ka (n= 6), respectively. The optical ages from these two lake basins where we could carefully select sediment samples provide firm evidence that the Green Bay Lobe stood at or very near its maximum extent until about 18.5. ka.The persistence of ice-marginal lakes in these basins high in the Baraboo Hills indicates that the ice of the Green Bay Lobe had not experienced significant thinning near its margin prior to about 18.5. ka. These ages are the first to directly constrain the timing of the maximum extent of the Green Bay Lobe and the onset of deglaciation in the area for which the Wisconsin Glaciation was named. ?? 2011 Elsevier B.V.

  7. Crop intensification options and trade-offs with the water balance in the Central Rift Valley of Ethiopia

    NARCIS (Netherlands)

    Debas, Mezegebu

    2016-01-01

    The Central Rift Valley (CRV) of Ethiopia is a closed basin for which claims on land and water have strongly increased over the past decade resulting in over-exploitation of the resources. A clear symptom is the declining trend in the water level of the terminal Lake Abyata. The actual

  8. Assessment and recommendations for two sites with active and potential aquaculture production in Rift Valley and Coast Provinces, Kenya

    Science.gov (United States)

    Kenya has a long history of local fish consumption. The population in the Lake Victoria area (Rift Valley Province) Northwest of Nairobi and coastal communities (Coast Province) have historically included fish in their diet. Migration from villages to urban areas and increasing commerce has created ...

  9. Hydrochemistry of the Lake Magadi basin, Kenya

    Science.gov (United States)

    Jones, B.F.; Eugster, H.P.; Rettig, S.L.

    1977-01-01

    New and more complete compositional data are presented for a large number of water samples from the Lake Magadi area, Kenya. These water samples range from dilute inflow (300 g/kg dissolved solids). Five distinct hydrologic stages can be recognized in the evolution of the water compositions: dilute streamflow, dilute ground water, saline ground water (or hot spring reservoir), saturated brines, and residual brines. Based on the assumption that chloride is conserved in the waters during evaporative concentration, these stages are related to each other by the concentration factors of about 1:28:870:7600:16,800. Dilute streamflow is represented by perennial streams entering the Rift Valley from the west. All but one (Ewaso Ngiro) of these streams disappear in the alluvium and do not reach the valley floor. Dilute ground water was collected from shallow pits and wells dug into lake sediments and alluvial channels. Saline ground water is roughly equivalent to the hot springs reservoir postulated by Eugster (1970) and is represented by the hottest of the major springs. Saturated brines represent surficial lake brines just at the point of saturation with respect to trona (Na2CO3.NaHCO3.2H2O), while residual brines are essentially interstitial to the evaporite deposit and have been subjected to a complex history of precipitation and re-solution. The new data confirm the basic hydrologic model presented by Eugster (1970) which has now been refined, particularly with respect to the early stages of evaporative concentration. Budget calculations show that only bromide is conserved as completely as chloride. Sodium follows chloride closely until trona precipitation, whereas silica and sulfate are largely lost during the very first concentration' step (dilute streamflow-dilute ground water). A large fraction of potassium and all calcium plus magnesium are removed during the first two concentration steps (dilute streamflow-dilute ground water-saline ground water). Carbonate and

  10. Thermal impact of a small alas-valley river in a continuous permafrost area - insights and issues raised from a field monitoring Site in Syrdakh (Central Yakutia)

    Science.gov (United States)

    Grenier, Christophe; Nicolas, Roux; Fedorov, Alexander; Konstantinov, Pavel; Séjourné, Antoine; Costard, François; Marlin, Christelle; Khristoforov, Ivan; Saintenoy, Albane

    2017-04-01

    Lakes are probably the most prominent surface water bodies in continuous permafrost areas. As a consequence, they are also the most studied features in these regions (e.g. Fedorov et al. 2014). They are indeed of great interest, not only for local populations that use the water resource they represent both in winter and summer, but also from a climatic point of view as they can be a specific source of green-house gases due to the relatively warmer environment they create, especially associated with their taliks (thawed zone surrounded by permafrost located beneath large enough lakes). From a hydrogeological perspective, such taliks can form complex groundwater networks, thus possibly connecting sub-permafrost groundwater with surface water in the present context of climate change. On the other hand, rivers, another important feature of permafrost landscapes providing similar challenges, have drawn less attention so that only a few studies focus on river interactions with permafrost (e.g. Costard et al. 2014, Grenier et al. 2013). However, the processes of heat transfer at stake between river and permafrost strongly differ from lake systems for several reasons. The geometries differ, the river water flow and thermal regimes and interactions with the lateral slopes (valley) are specific. Of particular importance is the fact that the water, in the case of rivers, is in motion leading to specific heat exchange phenomena between water and soil. (Roux et al., accepted) addressed this issue recently by means of an experimental study in a cold room and associated numerical simulations. The present study focuses on a real river-permafrost system with its full natural complexity. A small alas-valley in the vicinity of Yakutsk (Central Yakutia, Siberia) was chosen. Monitoring was started in October 2012 to study the thermal and hydrological interactions between a river and its underground in this continuous permafrost environment. Thermal sensors were installed inside the

  11. Evaluating Water Supply and Water Quality Management Options for Las Vegas Valley

    Science.gov (United States)

    Ahmad, S.

    2007-05-01

    The ever increasing population in Las Vegas is generating huge demand for water supply on one hand and need for infrastructure to collect and treat the wastewater on the other hand. Current plans to address water demand include importing water from Muddy and Virgin Rivers and northern counties, desalination of seawater with trade- payoff in California, water banking in Arizona and California, and more intense water conservation efforts in the Las Vegas Valley (LVV). Water and wastewater in the LVV are intrinsically related because treated wastewater effluent is returned back to Lake Mead, the drinking water source for the Valley, to get a return credit thereby augmenting Nevada's water allocation from the Colorado River. The return of treated wastewater however, is a major contributor of nutrients and other yet unregulated pollutants to Lake Mead. Parameters that influence the quantity of water include growth of permanent and transient population (i.e., tourists), indoor and outdoor water use, wastewater generation, wastewater reuse, water conservation, and return flow credits. The water quality of Lake Mead and the Colorado River is affected by the level of treatment of wastewater, urban runoff, groundwater seepage, and a few industrial inputs. We developed an integrated simulation model, using system dynamics modeling approach, to account for both water quantity and quality in the LVV. The model captures the interrelationships among many variables that influence both, water quantity and water quality. The model provides a valuable tool for understanding past, present and future pathways of water and its constituents in the LVV. The model is calibrated and validated using the available data on water quantity (flows at water and wastewater treatment facilities and return water credit flow rates) and water quality parameters (TDS and phosphorus concentrations). We used the model to explore important questions: a)What would be the effect of the water transported from

  12. Geologic investigation of the Virgin River Valley salt deposits, Clark County, southeastern Nevada, to investigate their suitability for possible storage of radioactive waste material as of September 1977

    International Nuclear Information System (INIS)

    1977-01-01

    The results from a geologic investigation of the Virgin River Valley salt deposits, Clark County, southeastern Nevada, to examine their suitability for further study and consideration in connection with the possible storage of radioactive waste material are given. The results indicate that (1) approximately one-half of the salt body underlies the Overton Arm of Lake Mead and that the dry land portion of the salt body that has a thickness of 1,000 feet or more covers an area of about four and one-half square miles; (2) current tectonic activity in the area of the salt deposits is believed to be confined to seismic events associated with crustal adjustments following the filling of Lake Mead; (3) detailed information on the hydrology of the salt deposit area is not available at present but it is reported that a groundwater study by the U.S. Geological Survey is now in progress; (4) there is no evidence of exploitable minerals in the salt deposit area other than evaporites such as salt, gypsum, and possibly sand and gravel; (5) the salt deposit area is located inside the Lake Mead Recreation Area, outlined on the accompanying Location Plat, and several Federal, State, and Local agencies share regulatory responsibilities for the activities in the area; (6) other salt deposit areas of Arizona and Nevada, such as the Detrital Valley, Red Lake Dome, Luke Dome, and Mormon Mesa area, and several playa lake areas of central Nevada may merit further study; and (7) additional information, as outlined, is needed to more thoroughly evaluate the salt deposits of the Virgin River Valley and other areas referred to above

  13. Environmental variables measured at multiple spatial scales exert uneven influence on fish assemblages of floodplain lakes

    Science.gov (United States)

    Dembkowski, Daniel J.; Miranda, Leandro E.

    2014-01-01

    We examined the interaction between environmental variables measured at three different scales (i.e., landscape, lake, and in-lake) and fish assemblage descriptors across a range of over 50 floodplain lakes in the Mississippi Alluvial Valley of Mississippi and Arkansas. Our goal was to identify important local- and landscape-level determinants of fish assemblage structure. Relationships between fish assemblage structure and variables measured at broader scales (i.e., landscape-level and lake-level) were hypothesized to be stronger than relationships with variables measured at finer scales (i.e., in-lake variables). Results suggest that fish assemblage structure in floodplain lakes was influenced by variables operating on three different scales. However, and contrary to expectations, canonical correlations between in-lake environmental characteristics and fish assemblage structure were generally stronger than correlations between landscape-level and lake-level variables and fish assemblage structure, suggesting a hierarchy of influence. From a resource management perspective, our study suggests that landscape-level and lake-level variables may be manipulated for conservation or restoration purposes, and in-lake variables and fish assemblage structure may be used to monitor the success of such efforts.

  14. Water quality assessment in a shallow lake used for tourism

    Directory of Open Access Journals (Sweden)

    Dembowska Ewa A.

    2015-12-01

    Full Text Available The routine evaluation of water quality is limited to lakes with the largest area. In Poland, only lakes with an area exceeding 50 hectares are monitored by the State Environmental Monitoring System. For many local communities, however, small lakes are more important. This applies mainly to areas with a small number of lakes, where even the smallest lakes are used for various purposes. This paper presents the results of phytoplankton analysis in a small and shallow lake used for recreation. The study was conducted at three sites located in different parts of the lake. A total of 122 algae taxa were identified in the phytoplankton, mainly diatoms and green algae. The most constant taxa in the lake were: Stephanodiscus hantzschii, Desmodesmus communis, Pediastrum tetras and Crucigenia tetrapedia. The average phytoplankton biomass was 37 mg l−1. The maximum biomass, almost 140 mg dm−3, was recorded in late July at the site located near the beach. At that time, there was a massive cyanobacterial bloom composed of Microcystis wesenbergii and Aphanizomenon issatschenkoi. Based on these studies, the lake should be classified as hypertrophic with bad ecological status. This lake should not be used for recreational purposes in the current state.

  15. Impacts of flamingos on saline lake margin and shallow lacustrine sediments in the Kenya Rift Valley

    Science.gov (United States)

    Scott, Jennifer J.; Renaut, Robin W.; Owen, R. Bernhart

    2012-11-01

    Studies of modern, Holocene, and Pleistocene sediments around saline to hypersaline, alkaline Lake Bogoria and Lake Magadi show that evidence of flamingo activity in marginal areas of these lakes is nearly ubiquitous. Flamingos produce discrete structures such as webbed footprints (~ 9 cm long, ~ 11 cm wide) and nest mounds (~ 30 cm wide, ~ 20 cm high), and they also extensively rework sediments in delta front, delta plain, and shoreline areas. Large (~ 0.5-2 cm in diameter), pinched, 'bubble pores' and ped-like mud clumps are formed by the trampling and churning of wet clay-rich sediments in these settings. Flamingo nest mounds, although superficially similar to some thrombolite mounds, are typically internally structureless, unless formed on pre-existing sediments that preserve internal structures. The flamingo mounds consist of a dense, packed oval-shaped core, a surrounding 'body' of packed sediment, and an external layer with a ped-like texture of clumped mud. The nests may contain open holes from roots or feather shafts incorporated into the nest, and (or) burrows produced once the nests are abandoned. In areas with high densities of flamingos, lake margin sediments may be preferentially compacted, particularly at breeding sites, and become resistant to subaerial erosion and the effects of transgressive ravinement on time scales ranging from seasons to tens of thousands of years. The relatively well-compacted nest mounds and associated sediments also contribute to the stability of delta distributary channels during regressive-transgressive cycles, and can lead to the minor channelization of unconfined flows where currents are diverted around nest mounds. Pleistocene exhumed surfaces of relatively well-indurated lake margin sediments at Lake Bogoria and Lake Magadi that are interpreted as combined regressive and transgressive surfaces (flooding surface/sequence boundary) preserve evidence of flamingo activities, and are overlain by younger, porous lacustrine

  16. Catastrophic flooding origin of shelf valley systems in the English Channel.

    Science.gov (United States)

    Gupta, Sanjeev; Collier, Jenny S; Palmer-Felgate, Andy; Potter, Graeme

    2007-07-19

    Megaflood events involving sudden discharges of exceptionally large volumes of water are rare, but can significantly affect landscape evolution, continental-scale drainage patterns and climate change. It has been proposed that a significant flood event eroded a network of large ancient valleys on the floor of the English Channel-the narrow seaway between England and France. This hypothesis has remained untested through lack of direct evidence, and alternative non-catastrophist ideas have been entertained for valley formation. Here we analyse a new regional bathymetric map of part of the English Channel derived from high-resolution sonar data, which shows the morphology of the valley in unprecedented detail. We observe a large bedrock-floored valley that contains a distinct assemblage of landforms, including streamlined islands and longitudinal erosional grooves, which are indicative of large-scale subaerial erosion by high-magnitude water discharges. Our observations support the megaflood model, in which breaching of a rock dam at the Dover Strait instigated catastrophic drainage of a large pro-glacial lake in the southern North Sea basin. We suggest that megaflooding provides an explanation for the permanent isolation of Britain from mainland Europe during interglacial high-sea-level stands, and consequently for patterns of early human colonisation of Britain together with the large-scale reorganization of palaeodrainage in northwest Europe.

  17. Highlighting High Performance: Blackstone Valley Regional Vocational Technical High School; Upton, Massachusetts

    Energy Technology Data Exchange (ETDEWEB)

    2006-10-01

    This brochure describes the key high-performance building features of the Blackstone Valley High School. The brochure was paid for by the Massachusetts Technology Collaborative as part of their Green Schools Initiative. High-performance features described are daylighting and energy-efficient lighting, indoor air quality, solar energy, building envelope, heating and cooling systems, and water conservation. Energy cost savings are also discussed.

  18. 78 FR 60686 - Establishment of the Big Valley District-Lake County and Kelsey Bench-Lake County Viticultural...

    Science.gov (United States)

    2013-10-02

    ... viticultural areas. Definition Section 4.25(e)(1)(i) of the TTB regulations (27 CFR 4.25(e)(1)(i)) defines a... to the road's intersection with Manning Creek, northern boundary of section 6, T13N/R9W; then (23) Proceed northwesterly (downstream) along Manning Creek to the shore of Clear Lake, section 30, T14N/R9W...

  19. Preliminary results of hydrogeologic investigations Humboldt River Valley, Winnemucca, Nevada

    Science.gov (United States)

    Cohen, Philip M.

    1964-01-01

    Most of the ground water of economic importance and nearly all the ground water closely associated with the flow o# the Humboldt River in the. 40-mile reach near Winnemucca, Nev., are in unconsolidated sedimentary deposits. These deposits range in age from Pliocene to Recent and range in character from coarse poorly sorted fanglomerate to lacustrine strata of clay, silt, sand, and gravel. The most permeable deposit consists of sand and gravel of Lake Lahontan age--the so-called medial gravel unit--which is underlain and overlain by fairly impermeable silt and clay also of Lake Lahontan age. The ultimate source of nearly all the water in the study area is precpitation within the drainage basin of the Humboldt River. Much of this water reaches the study, area as flow or underflow of the Humboldt River and as underflow from other valleys tributary to the study area. Little if any flow from the tributary streams in the study area usually reaches the Humboldt River. Most of the tributary streamflow within the study area evaporates or is transpired by vegetation, but a part percolates downward through unconsolidated deposits of the alluvial fans flanking the mountains and move downgradient as ground-water underflow toward the Humboldt River. Areas that contribute significant amounts of ground-water underflow to. the valley of the Humboldt River within the study area are (1) the valley of the Humboldt River upstream from the study area, (2) the Pole Creek-Rock Creek area, (3) Paradise Valley, and (4) Grass Valley and the northwestern slope of the Sonoma Range. The total average underflow from these areas in the period 1949-61 was about 14,000-19,000 acre-feet per year. Much of this underflow discharged into the Humboldt River within the study area and constituted a large part of the base flow of the river. Streamflow in the Humboldt River increases substantially in the early spring, principally because of runoff to the river in the reaches upstream from the study area

  20. Mudança na dieta da traíra Hoplias malabaricus (Bloch (Erythrinidae, Characiformes em lagoas da bacia do rio Doce devido à introdução de peixes piscívoros Diet changes of the trahira Hoplias malabaricus (Bloch (Erythrinidae, Characiformes due to piscivorous introductions in Rio Doce valley lakes

    Directory of Open Access Journals (Sweden)

    Paulo dos Santos Pompeu

    2001-12-01

    Full Text Available Two piscivorous fishes, peacock bass (Cichla monoculus Spix & Agassiz, 1831 (Perciformes and piranha (Pygocentrus nattereri Kner, 1860 (Characiformes, were introduced in some Rio Doce valley lakes (19º50'S, 42º40'W for sport fisheries enhancement. As a consequence, small individuals and species were practically vanished in the host lakes. In this study, the effects of peacock bass and piranha introductions on the diet of a native piscivorous fish, the trahira - Hoplias malabaricus (Bloch, 1794 are presented. Trahira's diet from three lakes were was compared with the stomach contentsdiet of trahira's living in another between three lakes with and three withoutstocked with the piscivorous species peacock bass and piranha. In the lakes with introduced fishes species, the consumption of fish was significantly smaller and this food item have been this item partly replaced by aquatic invertebrates. This shift on of trahira's diet to the low abundance of its original prey, is attributed to the small fishes. This diet plasticity adaptative capacity he diet plasticity detected for trahira might be allowing its maintenance in the lakes with peacock bass and piranha.

  1. Stochastic and cyclic deposition of multiple subannual laminae in an urban lake (Twin Lake, Golden Valley, Minnesota, USA)

    Science.gov (United States)

    Myrbo, A.; Ustipak, K.; Demet, B.

    2013-12-01

    Twin Lake, a small, deep, meromictic urban lake in Minneapolis, Minnesota, annually deposits two to 10 laminae that are distinguished from one another by composition and resulting color. Sediment sources are both autochthonous and allochthonous, including pure and mixed laminae of authigenic calcite, algal organic matter, and diatoms, as well as at least three distinct types of sediment gravity flow deposits. Diagenetic iron sulfide and iron phosphate phases are minor components, but can affect color out of proportion to their abundance. We used L*a*b* color from digital images of a freeze core slab, and petrographic smear slides of individual laminae, to categorize 1080 laminae deposited between 1963 and 2010 CE (based on lead-210 dating). Some causal relationships exist between the ten categories identified: diatom blooms often occur directly above the debris of gravity flows that probably disrupt the phosphate-rich monimolomnion and fertilize the surface waters; calcite whitings only occur after diatom blooms that increase calcite saturation. Stochastic events, as represented by laminae rich in siliciclastics and other terrigenous material, or shallow-water microfossils and carbonate morphologies, are the dominant sediment source. The patterns of cyclic deposition (e.g., summer and winter sedimentation) that produce 'normal' varve couplets in some lakes are continually interrupted by these stochastic events, to such an extent that spectral analysis finds only a weak one-year cycle. Sediments deposited before about 1900, and extending through the entire Holocene sequence (~10m) are varve couplets interrupted by thick (20-90 cm) debris layers, indicating that gravity flows were lower in frequency but greater in magnitude before the historical period, probably due to an increased frequency of disturbance under urban land-use.

  2. Environmental conditions synchronize waterbird mortality events in the Great Lakes

    Science.gov (United States)

    Prince, Karine; Chipault, Jennifer G.; White, C. LeAnn; Zuckerberg, Benjamin

    2018-01-01

    Since the 1960s, periodic outbreaks of avian botulism type E have contributed to large-scale die-offs of thousands of waterbirds throughout the Great Lakes of the United States. In recent years, these events have become more common and widespread. Occurring during the summer and autumn months, the prevalence of these die-offs varies across years and is often associated with years of warmer lake temperatures and lower water levels. Little information exists on how environmental conditions mediate the spatial and temporal characteristics of mortality events.In 2010, a citizen science programme, Avian Monitoring for Botulism Lakeshore Events (AMBLE), was launched to enhance surveillance efforts and detect the appearance of beached waterbird carcasses associated with avian botulism type E outbreaks in northern Lake Michigan. Using these data, our goal was to quantify the within-year characteristics of mortality events for multiple species, and to test whether the synchrony of these events corresponded to fluctuations in two environmental factors suspected to be important in the spread of avian botulism: water temperature and the prevalence of green macroalgae.During two separate events of mass waterbird mortality, we found that the detection of bird carcasses was spatially synchronized at scales of c. 40 km. Notably, the extent of this spatial synchrony in avian mortality matched that of fluctuations in lake surface water temperatures and the prevalence of green macroalgae.Synthesis and applications. Our findings are suggestive of a synchronizing effect where warmer lake temperatures and the appearance of macroalgae mediate the characteristics of avian mortality. In future years, rising lake temperatures and a higher propensity of algal masses could lead to increases in the magnitude and synchronization of avian mortality due to botulism. We advocate that citizen-based monitoring efforts are critical for identifying the potential environmental conditions associated

  3. Changes in surface area of the Böön Tsagaan and Orog lakes (Mongolia, Valley of the Lakes, 1974-2013) compared to climate and permafrost changes

    Science.gov (United States)

    Szumińska, Danuta

    2016-07-01

    The main aim of the study is the analysis of changes in surface area of lake Böön Tsagaan (45°35‧N, 99°8‧E) and lake Orog (45°3‧N, 100°44‧E) taking place in the last 40 years in the context of climate conditions and permafrost degradation. The lakes, located in Central Mongolia, at the borderline of permafrost range are fed predominantly by river waters and groundwater from the surrounding mountain areas, characterized by continuous and discontinuous permafrost occurrence - mostly the Khangai. The analysis of the Böön Tsagaan and Orog lake surface area in 1974-2013 was conducted based on satellite images, whereas climate conditions were analysed using the NOAA climate data and CRU dataset. Principal Component Analysis (PCA) was used to study the relationship patterns between the climatic factors and changes in the surface area of the lakes. A tendency for a decrease in surface area, intermittent with short episodes of resupply, was observed in both studied lakes. Climate changes recorded in the analysed period had both direct and indirect impacts on water supply to lakes. Taking into account the results of PCA analysis, the most significant factors include: fluctuation of annual precipitation, increase in air temperature and thickness of snow cover. The extended duration of snow cover in the last decades of the 20th century may constitute a key factor in relation to permafrost degradation.

  4. Glacial lakes in Austria - Distribution and formation since the Little Ice Age

    Science.gov (United States)

    Buckel, J.; Otto, J. C.; Prasicek, G.; Keuschnig, M.

    2018-05-01

    Glacial lakes constitute a substantial part of the legacy of vanishing mountain glaciation and act as water storage, sediment traps and sources of both natural hazards and leisure activities. For these reasons, they receive growing attention by scientists and society. However, while the evolution of glacial lakes has been studied intensively over timescales tied to remote sensing-based approaches, the longer-term perspective has been omitted due a lack of suitable data sources. We mapped and analyzed the spatial distribution of glacial lakes in the Austrian Alps. We trace the development of number and area of glacial lakes in the Austrian Alps since the Little Ice Age (LIA) based on a unique combination of a lake inventory and an extensive record of glacier retreat. We find that bedrock-dammed lakes are the dominant lake type in the inventory. Bedrock- and moraine-dammed lakes populate the highest landscape domains located in cirques and hanging valleys. We observe lakes embedded in glacial deposits at lower locations on average below 2000 m a.s.l. In general, the distribution of glacial lakes over elevation reflects glacier erosional and depositional dynamics rather than the distribution of total area. The rate of formation of new glacial lakes (number, area) has continuously accelerated over time with present rates showing an eight-fold increase since LIA. At the same time the total glacier area decreased by two-thirds. This development coincides with a long-term trend of rising temperatures and a significant stepping up of this trend within the last 20 years in the Austrian Alps.

  5. Geology and hydrology between Lake McMillan and Carlsbad Springs, Eddy County, New Mexico

    Science.gov (United States)

    Cox, Edward Riley

    1967-01-01

    The hydrology of the Pecos River valley between Lake McMillan and Carlsbad Springs, Eddy County, N. Mex., is influenced by facies changes in rocks of Permian age. Water stored for irrigation leaks from Lake McMillan into evaporite rocks, principally gypsum, of the Seven Rivers Formation and from Lake Avalon into carbonate rocks of the Tansill Formation. This leakage returns to the Pecos River at Major Johnson Springs and Carlsbad Springs. The river has perennial flow between Major Johnson Springs and Lake Avalon, but it loses water into evaporite rocks of the Yates Formation in this reach. Ground-water movement is generally toward the Pecos River in aquifers in the Pecos River valley except in the Rustler Formation east of the river where it moves southeastward toward playas east of Lake Avalon. The chloride content of ground and surface waters indicates that surface water moves from some reaches of the Pecos River and from surface-storage reservoirs to aquifers and also indicates the degree of mixing of ground and surface waters. About 45,000 acre-feet of ground water is stored in highly permeable rocks in a 3-mile wide part of the Seven Rivers Formation between Lake McMillan and Major Johnson Springs. This water in storage comes from leakage from Lake McMillan and from alluvium north of the springs. The flow of Major Johnson Springs is derived from this aquifer. That part of the flow derived from the alluvium north of the springs averaged 13 cfs (cubic feet per second) from 1953 through 1959 ; about 8 cfs of this flow had not been previously measured at gaging stations on the Pecos River and its tributaries. The most favorable plans for increasing terminal storage of the Carlsbad Irrigation District are to construct a dam at the Brantley site (at the downstream end of Major Johnson Springs), or to use underground storage in the permeable Seven Rivers Formation between Lake McMillan and Major Johnson brings in conjunction with surface storage. To avoid excessive

  6. Glacial and postglacial geology near Lake Tennyson, Clarence River, New Zealand

    International Nuclear Information System (INIS)

    McCalpin, J.P.

    1992-01-01

    Otiran valley glaciers extended 15 km down the upper Clarence Valley in central Marlborough, South Island, New Zealand. A massive Otiran terminal moraine complex, composed of moraines of three glacial advances, impounds Lake Tennyson. The moraines are early and middle Otiran, and possibly late Otiran-early Aranuian in age, based on relative position and differences in moraine morphology, weathering rinds, and soils. Radiocarbon ages from a tributary (Serpentine Creek) suggest the latest major episode of aggradation in the Clarence Valley was in progress by 11.3 ka, and had ended by 9.2 ka. Postglacial history was dominated by incision of glacial outwash, deposition of small alluvial fans, and landsliding near the trace of the Awatere Fault. Fault scarps of the Awatere Fault and of unnamed parallel splays displace early Otiran moraines up to 19 m and early Holocene terraces up to 2.6 m. (author). 25 refs., 10 figs., 3 tabs

  7. Connectedness of land use, nutrients, primary production, and fish assemblages in oxbow lakes

    Science.gov (United States)

    Miranda, Leandro E.; Andrews, Caroline S.; Kroger, Robert

    2013-01-01

    We explored the strength of connectedness among hierarchical system components associated with oxbow lakes in the alluvial valley of the Lower Mississippi River. Specifically, we examined the degree of canonical correlation between land use (agriculture and forests), lake morphometry (depth and size), nutrients (total nitrogen and total phosphorus), primary production (chlorophyll-a), and various fish assemblage descriptors. Watershed (p < 0.01) and riparian (p = 0.02) land use, and lake depth (p = 0.05) but not size (p = 0.28), were associated with nutrient concentrations. In turn, nutrients were associated with primary production (p < 0.01), and primary production was associated with sunfish (Centrarchidae) assemblages (p < 0.01) and fish biodiversity (p = 0.08), but not with those of other taxa and functional guilds. Multiple chemical and biological components of oxbow lake ecosystems are connected to landscape characteristics such as land use and lake depth. Therefore, a top-down hierarchical approach can be useful in developing management and conservation plans for oxbow lakes in a region impacted by widespread landscape changes due to agriculture.

  8. Hydraulic, geomorphic, and trout habitat conditions of the Lake Fork of the Gunnison River in Hinsdale County, Lake City, Colorado, Water Years 2010-2011

    Science.gov (United States)

    Williams, Cory A.; Richards, Rodney J.; Schaffrath, Keelin R.

    2015-01-01

    Channel rehabilitation, or reconfiguration, to mitigate a variety of riverine problems has become a common practice in the western United States. However, additional work to monitor and assess the channel response to, and the effectiveness of, these modifications over longer periods of time (decadal or longer) is still needed. The Lake Fork of the Gunnison River has been an area of active channel modification to accommodate the needs of the Lake City community since the 1950s. The Lake Fork Valley Conservancy District began a planning process to assess restoration options for a reach of the Lake Fork in Lake City to enhance hydraulic and ecologic characteristics of the reach. Geomorphic channel form is affected by land-use changes within the basin and geologic controls within the reach. The historic channel was defined as a dynamic, braided channel with an active flood plain. This can result in a natural tendency for the channel to braid. A braided channel can affect channel stability of reconfigured reaches when a single-thread meandering channel is imposed on the stream. The U.S. Geological Survey, in cooperation with the Colorado Water Conservation Board and Colorado River Water Conservation District, began a study in 2010 to quantify existing hydraulic and habitat conditions for a reach of the Lake Fork of the Gunnison River in Lake City, Colorado. The purpose of this report is to quantify existing Lake Fork hydraulic and habitat conditions and establish a baseline against which post-reconfiguration conditions can be compared. This report (1) quantifies the existing hydraulic and geomorphic conditions in a 1.1-kilometer section of the Lake Fork at Lake City that has been proposed as a location for future channel-rehabilitation efforts, (2) characterizes the habitat suitability of the reach for two trout species based on physical conditions within the stream, and (3) characterizes the current riparian canopy density.

  9. Timing of lake-level changes for a deep last-glacial Lake Missoula: optical dating of the Garden Gulch area, Montana, USA

    Science.gov (United States)

    Smith, Larry N.; Sohbati, Reza; Buylaert, Jan-Pieter; Lian, Olav B.; Murray, Andrew; Jain, Mayank

    2018-03-01

    Glaciolacustrine sediments in the Clark Fork River valley at Garden Gulch, near Drummond, Montana, USA record highstand positions of the ice-dammed glacial Lake Missoula and repeated subaerial exposure. During these highstands the lake was at greater than 65% of its recognized maximum capacity. The initial lake transgression deposited a basal sand unit. Subsequent cycles of lake-level fluctuations are recorded by sequences of laminated and cross laminated silt, sand, and clay deformed by periglacial processes during intervening periods of lower lake levels. Optically stimulated luminescence (OSL) dating of quartz sand grains, using single-aliquot regenerative-dose procedures, was carried out on 17 samples. Comparison of infrared stimulated luminescence (IRSL) from K-rich feldspar to OSL from quartz for all the samples suggests that they were well bleached prior to deposition and burial. Ages for the basal sand and overlying glaciolacustrine exposure surfaces are indistinguishable within one standard deviation, and give a weighted mean age of 20.9 ± 1.3 ka (n = 11). Based on sedimentological and stratigraphic analysis we infer that the initial transgression, and at least six cycles of lake-level fluctuation, occurred over time scales of decades to ∼2 ka. Bioturbated sandy slopewash dated at 10.6 ± 0.9 ka and 11.9 ± 1.2 ka unconformably overlies the upper glaciolacustrine deposits. The uppermost sediments, above the glaciolacustrine section, are younger than the Glacier Peak tephra (13.7-13.4 cal ka B.P.), which was deposited across parts of the drained lake basin, but has not been found at Garden Gulch. Our study indicates that glacial Lake Missoula reached >65 percent of maximum capacity by about 20.9 ± 1.3 ka and either partially or completely drained twelve times from this position. Rapid lowering from the lake's highstand position due to ice-dam failure likely led to scour in the downstream portions of the glacial Lake Missoula basin and megafloods in the

  10. Cyanobacterial bloom in the world largest freshwater lake Baikal

    Science.gov (United States)

    Namsaraev, Zorigto; Melnikova, Anna; Ivanov, Vasiliy; Komova, Anastasia; Teslyuk, Anton

    2018-02-01

    Lake Baikal is a UNESCO World Heritage Site and holds 20% of the world’s freshwater reserves. On July 26, 2016, a cyanobacterial bloom of a green colour a few kilometers in size with a bad odor was discovered by local people in the Barguzinsky Bay on the eastern shore of Lake Baikal. Our study showed very high concentration of chlorophyll a (41.7 g/m3) in the sample of bloom. We found that the bloom was dominated by a nitrogen-fixing heterocystous cyanobacteria of the genus Dolichospermum. The mass accumulation of cyanobacteria in the lake water with an extremely high chlorophyll a concentration can be explained by a combination of several factors: the discharge of biologicaly-available nutrients, including phosphorus, into the water of Lake Baikal; low wind speed and weak water mixing; buoyant cyanobacterial cells on the lake surface, which drifted towards the eastern coast, where the maximum concentration of chlorophyll a was recorded. In the center of the Barguzinsky Bay and in the open part of Lake Baikal, according to satellite data, the chlorophyll a concentration is several orders of magnitude lower than at the shoreline.

  11. Analysis of overdeepened valleys using the digital elevation model of the bedrock surface of Northern Switzerland

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, P.

    2010-11-15

    Based on surface and borehole information, together with pre-existing regional and local interpretations, a 7,150 square kilometre Raster Digital Elevation Model (DEM) of the bedrock surface of northern Switzerland was constructed using a 25 m cell size. This model represents a further important step in the understanding of Quaternary sediment distribution and is open to a broad field of application and analysis, including hydrogeological, geotechnical and geophysical studies as well as research in the field of Pleistocene landscape evolution. An analysis of the overdeepened valleys in the whole model area and, more specifically in the Reuss area, shows that, in most cases, overdeepening is restricted to the areas covered by the Last Glaciation Maximum (LGM). However, at various locations relatively narrow overdeepened valleys outreach the tongue basins and the LGM ice shield limits. Therefore, an earlier and further-reaching glacial event has probably contributed significantly to the overdeepening of these valleys. No significant overdeepening has been identified downstream of Boettstein (Aare) and Kaiserstuhl (Rhine), although the ice extended considerably further downstream, at least during the most extensive glaciation. Except for the bedrock between Brugg and Boettstein, no overdeepened valleys are found significantly north of the outcrop of Mesozoic limestone of the Folded and Tabular Jura. A detailed analysis of the Reuss area shows that the Lake and Suhre valleys are separated from the Emmen-Gisikon Reuss valley basin by a significant bedrock barrier. The individual bedrock valleys are divided into several sub-basins, indicating a multiphase evolution of the valleys. Some of the swells or barriers separating the sub-basins coincide with known late LGM retreat stages. In the Suhre valley, an old fluvial valley floor with restricted overdeepened sections is documented. (author)

  12. Hydro biological investigations of lake Drukshiai

    International Nuclear Information System (INIS)

    Mazheikaite, S.; Sinkevichiene, Z.; Marchiulioniene, D.; Astrauskas, A.; Barshiene, J.

    1998-01-01

    Purposes of this research were to investigate changes in the physical, chemical and tropic conditions of Lake Drukshiai caused by the combined effect of Ignalina NPP and how it effects on structures and function of biocenoses; to estimate the influence of phytocenoses, zoocenoses and bacteriocenoses on the quality of water in Lake Drukshiai; to estimate the eco toxicological state of Lake Drukshiai. According to the complex hydro biological investigations on Lake Drukshiai - Ignalina NPP cooler great changes in planktonic organism community, tendencies of those changes in different ecological zones were evaluated in 1993 - 1997. The amount of species of most dominant planktonic organisms in 1993 - 1997 decreased 2-3 times in comparison with that before Ignalina NPP operation: phytoplankton from 116 to 40 - 50, zooplankton - from 233 to 139. The organic matter increasing tendency was determined in bottom sediments of the lake. The highest amount of it was evaluated in the south - eastern part of the lake. 69 water macrophyte species were found in bottom sediments during the investigation period. 16 species were not found in this lake earlier. Abundance of filamentous green algae was registered.The rates of fish communities successional transformation were ten times in excess of those of the given processes in natural lakes. Moreover the comparison of results on Lake Drukshiai bioindication analysis with changes of comparable bio markers which were obtained from other water systems of Lithuania, Switzerland, Sweden and Poland, including those with active nuclear power plants in their environment was carried out. It was determined that the functional and structural changes in Lake Drukshiai biota are mostly caused by chemical pollution. It was found out that the frequency of cytogenetic damage emerged as a specific radionuclide - caused effect in aquatic organisms inhabiting Lake Drukshiai, is slightly above the background level and is 5 times lower than the same

  13. Ecosystem Alterations and Species Range Shifts: An Atlantic-Mediterranean Cephalaspidean Gastropod in an Inland Egyptian Lake

    Science.gov (United States)

    Malaquias, Manuel António E.

    2016-01-01

    The eastern Atlantic and Mediterranean marine Cephalaspidea gastropod Haminoea orbignyana was collected from Lake Qarun (Fayoum, Egypt), a landlocked lake that has undergone a shift from freshwater to estuarine conditions in the past 100 years. Species identity was confirmed by both morphological (anatomical dissection and scanning electron microscopy) and molecular methods (COI gene phylogeny). Observations suggested a robust population of H. orbignyana in the lake with a density of ca. 64 individuals/m2 and ca. 105 egg masses/m2 during surveys conducted in the summer of 2013. The vast majority of snails and egg masses were found under rocks. Observations of egg masses in the lab showed a gradual change from whitish to yellow-green as the eggs matured and the release of veliger larvae alone after about a week. Although adult cephalaspideans readily consumed filamentous red and green algae, and cyanobacteria, laboratory trials showed that they consumed significantly more of the red alga Ceramium sp., than of the green alga Cladophora glomerata, with consumption of Oscillatoria margaritifera being similar to those on the two algae. When grown on these resources for 16 days, H. orbignyana maintained their mass on the rhodophyte and cyanobacterium, but not in starvation controls. No cephalaspideans grew over the course of this experiment. Lake Qarun has been periodically restocked with Mediterranean fishes and prawns since the 1920s to maintain local fisheries, which represents a possible route of colonization for H. orbignyana. Yet, based on literature records, it seems more likely that invasion of the lake by this gastropod species has occurred only within the last 20 years. As human activities redistribute species through direct and indirect means, the structure of the community of this inland lake has become unpredictable and the long-term effects of these recent introductions are unknown. PMID:27248835

  14. Ecosystem Alterations and Species Range Shifts: An Atlantic-Mediterranean Cephalaspidean Gastropod in an Inland Egyptian Lake.

    Directory of Open Access Journals (Sweden)

    Edwin Cruz-Rivera

    Full Text Available The eastern Atlantic and Mediterranean marine Cephalaspidea gastropod Haminoea orbignyana was collected from Lake Qarun (Fayoum, Egypt, a landlocked lake that has undergone a shift from freshwater to estuarine conditions in the past 100 years. Species identity was confirmed by both morphological (anatomical dissection and scanning electron microscopy and molecular methods (COI gene phylogeny. Observations suggested a robust population of H. orbignyana in the lake with a density of ca. 64 individuals/m2 and ca. 105 egg masses/m2 during surveys conducted in the summer of 2013. The vast majority of snails and egg masses were found under rocks. Observations of egg masses in the lab showed a gradual change from whitish to yellow-green as the eggs matured and the release of veliger larvae alone after about a week. Although adult cephalaspideans readily consumed filamentous red and green algae, and cyanobacteria, laboratory trials showed that they consumed significantly more of the red alga Ceramium sp., than of the green alga Cladophora glomerata, with consumption of Oscillatoria margaritifera being similar to those on the two algae. When grown on these resources for 16 days, H. orbignyana maintained their mass on the rhodophyte and cyanobacterium, but not in starvation controls. No cephalaspideans grew over the course of this experiment. Lake Qarun has been periodically restocked with Mediterranean fishes and prawns since the 1920s to maintain local fisheries, which represents a possible route of colonization for H. orbignyana. Yet, based on literature records, it seems more likely that invasion of the lake by this gastropod species has occurred only within the last 20 years. As human activities redistribute species through direct and indirect means, the structure of the community of this inland lake has become unpredictable and the long-term effects of these recent introductions are unknown.

  15. Over-winter ecology of Oncorhynchus nerka in the Sawtooth Valley Lakes

    Energy Technology Data Exchange (ETDEWEB)

    Steinhart, G.B.; Wurtsbaugh, W.A.

    1996-05-01

    Included in this section of the report on limnology of Lakes in the Snake River Plain are descriptions of winter limnological conditions and kokanee growth characteristics from 1993 to 1995. The winter is usually a very harsh period for animals, and little is know about the over-winter ecology os sockeye salmon. They are active a temperatures below 4 F. The chapter discusses methods and results. 14 figs, 4 tabs.

  16. Over-winter ecology of Oncorhynchus nerka in the Sawtooth Valley Lakes

    International Nuclear Information System (INIS)

    Steinhart, G.B.; Wurtsbaugh, W.A.

    1996-01-01

    Included in this section of the report on limnology of Lakes in the Snake River Plain are descriptions of winter limnological conditions and kokanee growth characteristics from 1993 to 1995. The winter is usually a very harsh period for animals, and little is know about the over-winter ecology os sockeye salmon. They are active a temperatures below 4 F. The chapter discusses methods and results. 14 figs, 4 tabs

  17. The chemistry which created Green River Formation oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.W.

    1983-02-01

    The genesis pattern presented for Green River Formation oil shale explains the major observation. Deposition of relatively large quantities of hydrogen-rich organic matter in the oil shales is a natural consequence of the chemical conditions (basic water and reducing atmosphere) and the physical limitation of clastic materials developed in the stratified ancient Lake Uinta. Stability of the stratification produced the continuous deposition of the organic matter and its uniformity over the deposit. Authigenic formation of the oil-shale minerals proceeds naturally from the lake stratification, and the varve production stems from the seasonable development of organic matter. The lake's stratification produced uniform deposition over the entire area it covered, making the correlatable lateral persistence of the thin laminations a natural consequence. As the lake developed, the attack on aluminosilicates by sodium carbonate in the lake's lower layer produced a silicate skeleton protected by aluminum trihydroxide. On deposition, this aluminum-rich skeleton formed illite in quantity. As the lake became more basic, the protecting aluminum hydroxide coating dissolved amphoterically and illite production dropped at a specific point. Continual build-up of sodium carbonate and aluminate ion in the water of the lake's lower layer reached conditions which

  18. QUENCHING DEPENDS ON MORPHOLOGIES: IMPLICATIONS FROM THE ULTRAVIOLET-OPTICAL RADIAL COLOR DISTRIBUTIONS IN GREEN VALLEY GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Zhizheng; Lin, Weipeng [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Science, 80 Nandan Road, Shanghai 200030 (China); Li, Jinrong; Kong, Xu [Center of Astrophysics, University of Science and Technology of China, Jinzhai Road 96, Hefei 230026 (China); Wang, Jing, E-mail: panzz@shao.ac.cn, E-mail: linwp@shao.ac.cn [CSIRO Astronomy and Space Science, Australia Telescope National Facility, PO Box 76, Epping, NSW 1710 (Australia)

    2014-09-01

    In this Letter, we analyze the radial ultraviolet-optical color distributions in a sample of low redshift green valley galaxies, with the Galaxy Evolution Explorer (GALEX)+Sloan Digital Sky Survey (SDSS) images, to investigate how the residual recent star formation is distributed in these galaxies. We find that the dust-corrected u – r colors of early-type galaxies (ETGs) are flat out to R {sub 90}, while the colors monotonously turn blue when r > 0.5 R {sub 50} for late-type galaxies (LTGs). More than half of the ETGs are blue-cored and have remarkable positive NUV – r color gradients, suggesting that their star formations are centrally concentrated. The rest have flat color distributions out to R {sub 90}. The centrally concentrated star formation activity in a large portion of ETGs is confirmed by the SDSS spectroscopy, showing that ∼50% of the ETGs have EW(Hα) >6.0 Å. Of the LTGs, 95% show uniform radial color profiles, which can be interpreted as a red bulge plus an extended blue disk. The links between the two kinds of ETGs, e.g., those objects having remarkable ''blue-cores'' and those having flat color gradients, are less known and require future investigations. It is suggested that the LTGs follow a general model by which quenching first occurs in the core regions, and then finally extend to the rest of the galaxy. Our results can be re-examined and have important implications for the IFU surveys, such as MaNGA and SAMI.

  19. QUENCHING DEPENDS ON MORPHOLOGIES: IMPLICATIONS FROM THE ULTRAVIOLET-OPTICAL RADIAL COLOR DISTRIBUTIONS IN GREEN VALLEY GALAXIES

    International Nuclear Information System (INIS)

    Pan, Zhizheng; Lin, Weipeng; Li, Jinrong; Kong, Xu; Wang, Jing

    2014-01-01

    In this Letter, we analyze the radial ultraviolet-optical color distributions in a sample of low redshift green valley galaxies, with the Galaxy Evolution Explorer (GALEX)+Sloan Digital Sky Survey (SDSS) images, to investigate how the residual recent star formation is distributed in these galaxies. We find that the dust-corrected u – r colors of early-type galaxies (ETGs) are flat out to R 90 , while the colors monotonously turn blue when r > 0.5 R 50 for late-type galaxies (LTGs). More than half of the ETGs are blue-cored and have remarkable positive NUV – r color gradients, suggesting that their star formations are centrally concentrated. The rest have flat color distributions out to R 90 . The centrally concentrated star formation activity in a large portion of ETGs is confirmed by the SDSS spectroscopy, showing that ∼50% of the ETGs have EW(Hα) >6.0 Å. Of the LTGs, 95% show uniform radial color profiles, which can be interpreted as a red bulge plus an extended blue disk. The links between the two kinds of ETGs, e.g., those objects having remarkable ''blue-cores'' and those having flat color gradients, are less known and require future investigations. It is suggested that the LTGs follow a general model by which quenching first occurs in the core regions, and then finally extend to the rest of the galaxy. Our results can be re-examined and have important implications for the IFU surveys, such as MaNGA and SAMI

  20. Quantitative Detection of Trace Malachite Green in Aquiculture Water Samples by Extractive Electrospray Ionization Mass Spectrometry.

    Science.gov (United States)

    Fang, Xiaowei; Yang, Shuiping; Chingin, Konstantin; Zhu, Liang; Zhang, Xinglei; Zhou, Zhiquan; Zhao, Zhanfeng

    2016-08-11

    Exposure to malachite green (MG) may pose great health risks to humans; thus, it is of prime importance to develop fast and robust methods to quantitatively screen the presence of malachite green in water. Herein the application of extractive electrospray ionization mass spectrometry (EESI-MS) has been extended to the trace detection of MG within lake water and aquiculture water, due to the intensive use of MG as a biocide in fisheries. This method has the advantage of obviating offline liquid-liquid extraction or tedious matrix separation prior to the measurement of malachite green in native aqueous medium. The experimental results indicate that the extrapolated detection limit for MG was ~3.8 μg·L(-1) (S/N = 3) in lake water samples and ~0.5 μg·L(-1) in ultrapure water under optimized experimental conditions. The signal intensity of MG showed good linearity over the concentration range of 10-1000 μg·L(-1). Measurement of practical water samples fortified with MG at 0.01, 0.1 and 1.0 mg·L(-1) gave a good validation of the established calibration curve. The average recoveries and relative standard deviation (RSD) of malachite green in lake water and Carassius carassius fish farm effluent water were 115% (6.64% RSD), 85.4% (9.17% RSD) and 96.0% (7.44% RSD), respectively. Overall, the established EESI-MS/MS method has been demonstrated suitable for sensitive and rapid (malachite green in various aqueous media, indicating its potential for online real-time monitoring of real life samples.

  1. Stimulatory activity of four green freshwater sponges on aquatic ...

    African Journals Online (AJOL)

    SMG

    The effect of green sponges on the abundance of aquatic mycotal ... The distribution of plant and animal hydrobionts in water ecosystems of a lake ... inhabitants of the town as a beach. ... phytoplankton in accordance with the general principles of the techniques. ..... Influence on mycotal species diversity by different stem ...

  2. A fugacity model for source determination of the Lake Baikal region pollution with polychlorinated Biphenyls

    Energy Technology Data Exchange (ETDEWEB)

    Sofiev, M. [Finnish Meteorological Inst., Helsinki (Finland); Galperin, M.; Maslyaev, A. [Inst. of Program Systems, Pereslavl-Zalesskiy (Russian Federation); McLachlan, M. [Stockholm Univ. (Sweden); Wania, F. [Toronto Univ. (Canada)

    2004-09-15

    PCBs were discovered in the Lake Baikal ecosystem by Malakhov et al. and Bobovnikova et al. A follow up to the initial study showed no decrease over 1981-1989 4, in contrast to what has been observed in other water bodies in the industrialised world. Further studies also showed the contamination in pinnipeds to be among the highest measured anywhere. Above studies and other data suggested a presence of a strong local PCB source (or several ones), which has had a widespread adverse effect for the whole region. To locate the source, Mamontov et al. collected samples from 34 sites over the region, the analysis of which showed a gradient of a factor of 1000, with the lowest concentrations at the north-east of Lake Baikal and the highest concentrations close to the city of Usolye Sibirskoye, a centre of the chemical industry in the Angara River valley. A continuous decrease in the soil contamination was observed along the path from Usolye Sibirskoye up the Angara River valley to Lake Baikal and from there north-eastward along the lake. These results indicate that there was (and perhaps still is) a major source of PCBs in the Usolye area, from where the PCBs are dispersed over the region. However, various obstacles prevent direct observations of potential sources. Therefore, a mathematical modelling approach was adopted in a currently ongoing INTAS project aiming to shed some more light on this problem. The model principles, setup and the results of the first experiments are presented in the current paper.

  3. Using satellite images to monitor glacial-lake outburst floods: Lago Cachet Dos drainage, Chile

    Science.gov (United States)

    Friesen, Beverly A.; Cole, Christopher J.; Nimick, David A.; Wilson, Earl M.; Fahey, Mark J.; McGrath, Daniel J.; Leidich, Jonathan

    2015-01-01

    The U.S. Geological Survey (USGS) is monitoring and analyzing glacial-lake outburst floods (GLOFs) in the Colonia valley in the Patagonia region of southern Chile. A GLOF is a type of flood that occurs when water impounded by a glacier or a glacial moraine is released catastrophically. In the Colonia valley, GLOFs originating from Lago Cachet Dos, which is dammed by the Colonia Glacier, have recurred periodically since 2008. The water discharged during these GLOFs flows under or through the Colonia Glacier, into Lago Colonia and then the Río Colonia, and finally into the Río Baker—Chile's largest river in terms of volume of water.

  4. Phallodrilus hallae, a new tubificid oligochaete from the St. Lawrence Great Lakes

    Science.gov (United States)

    Cook, David G.; Hiltunen, Jarl K.

    1975-01-01

    The predominantly marine tubificid genus Phallodrilus is defined, a key to its nine species constructed, and an illustrated description of Phallodrilus hallae n. sp. from the St. Lawrence Great Lakes presented. The species is distinguished from other members of the genus by its well-developed atrial musculature, extensions of which ensheath the posterior prostatic ducts.Phallodrilus hallae n. sp. is a small worm which is widely distributed in the sublittoral and profundal benthos of Lake Superior; lakewide it occurred in mean densities of 50 individuals per square metre. Available records indicate a more restricted distribution in Lake Huron and Georgian Bay. We suggest that P. hallae n. sp. is either a glaciomarine relict species, or that it entered the Great Lakes system at the time of the marine transgression of the St. Lawrence valley. The apparent restriction of P. hallae n. sp. to waters of high quality suggests that it may be a sensitive oligotrophic indicator species.

  5. Rapid changes in the level of Kluane Lake in Yukon Territory over the last millennium

    Science.gov (United States)

    Clague, John J.; Luckman, Brian H.; Van Dorp, Richard D.; Gilbert, Robert; Froese, Duane; Jensen, Britta J. L.; Reyes, Alberto V.

    2006-09-01

    The level of Kluane Lake, the largest lake in Yukon Territory, was lower than at present during most of the Holocene. The lake rose rapidly in the late seventeenth century to a level 12 m above present, drowning forest and stranding driftwood on a conspicuous high-stand beach, remnants of which are preserved at the south end of the lake. Kluane Lake fell back to near its present level by the end of the eighteenth century and has fluctuated within a range of about 3 m over the last 50 yr. The primary control on historic fluctuations in lake level is the discharge of Slims River, the largest source of water to the lake. We use tree ring and radiocarbon ages, stratigraphy and sub-bottom acoustic data to evaluate two explanations for the dramatic changes in the level of Kluane Lake. Our data support the hypothesis of Hugh Bostock, who suggested in 1969 that the maximum Little Ice Age advance of Kaskawulsh Glacier deposited large amounts of sediment in the Slims River valley and established the present course of Slims River into Kluane Lake. Bostock argued that these events caused the lake to rise and eventually overflow to the north. The overflowing waters incised the Duke River fan at the north end of Kluane Lake and lowered the lake to its present level. This study highlights the potentially dramatic impacts of climate change on regional hydrology during the Little Ice Age in glacierised mountains.

  6. Transient Tsunamis in Lakes

    Science.gov (United States)

    Couston, L.; Mei, C.; Alam, M.

    2013-12-01

    A large number of lakes are surrounded by steep and unstable mountains with slopes prone to failure. As a result, landslides are likely to occur and impact water sitting in closed reservoirs. These rare geological phenomena pose serious threats to dam reservoirs and nearshore facilities because they can generate unexpectedly large tsunami waves. In fact, the tallest wave experienced by contemporary humans occurred because of a landslide in the narrow bay of Lituya in 1958, and five years later, a deadly landslide tsunami overtopped Lake Vajont's dam, flooding and damaging villages along the lakefront and in the Piave valley. If unstable slopes and potential slides are detected ahead of time, inundation maps can be drawn to help people know the risks, and mitigate the destructive power of the ensuing waves. These maps give the maximum wave runup height along the lake's vertical and sloping boundaries, and can be obtained by numerical simulations. Keeping track of the moving shorelines along beaches is challenging in classical Eulerian formulations because the horizontal extent of the fluid domain can change over time. As a result, assuming a solid slide and nonbreaking waves, here we develop a nonlinear shallow-water model equation in the Lagrangian framework to address the problem of transient landslide-tsunamis. In this manner, the shorelines' three-dimensional motion is part of the solution. The model equation is hyperbolic and can be solved numerically by finite differences. Here, a 4th order Runge-Kutta method and a compact finite-difference scheme are implemented to integrate in time and spatially discretize the forced shallow-water equation in Lagrangian coordinates. The formulation is applied to different lake and slide geometries to better understand the effects of the lake's finite lengths and slide's forcing mechanism on the generated wavefield. Specifically, for a slide moving down a plane beach, we show that edge-waves trapped by the shoreline and free

  7. Application of environmental isotopes to determine the cause of rising water levels in Lake Beseka, Ethiopia

    International Nuclear Information System (INIS)

    Zemedagegnehu, E.; Travi, Y.; Aggarwal, P.

    1999-01-01

    Water level in Lake Beskea, located in the Ethiopian Rift Valley, has been rising continuously for the last about 30 years. The surface area of the lake has increased from about 6 Km 2 to the present 40 Km 2 and has posed serious problems for environmental management, including inundation of grazing and cultivated lands and, potentially, railway tracks. Historically, the lake received recharge from precipitation, surface runoff in the catchment, groundwater discharge, surface runoff from nearby thermal springs. As the lake levels have risen, the thermal springs are now submerged. An increase in the discharge form these thermal springs may be the original cause of lake water rise, or they may have been submerged as a result of the rising water level. An initial study conducted in the 1970s attributed the rising lake levels to increased runoff from adjoining irrigated areas. However, stricter controls on irrigation runoff failed to check the rising lake levels. A multi-disciplinary study, including geophysical, hydrological, geochemical, isotopic, and modeling techniques was then initiated to determine the cause(s) of lake level rise. Results of piezometric and geophysical surveys indicate that the principal cause of rising water levels may be the increased inflow from submerged springs in the southwestern portion of the lake

  8. Investigating palaeo-subglacial lakes in the central Barents Sea

    Science.gov (United States)

    Esteves, M.; Shackleton, C.; Winsborrow, M.; Andreassen, K.; Bjarnadóttir, L. R.

    2017-12-01

    In the past decade hundreds of subglacial lakes have been detected beneath the Antarctic Ice Sheet, and several more beneath the Greenland Ice Sheet. These are important components of the subglacial hydrological system and can influence basal shear stress, with implications for ice sheet dynamics and mass balance, potentially on rapid timescales. Improvements in our understanding of subglacial hydrological systems are therefore important, but challenging due to the inaccessibility of contemporary subglacial environments. Whilst the beds of palaeo-ice sheets are easier to access, few palaeo-subglacial lakes have been identified due to uncertainties in the sedimentological and geomorphological diagnostic criteria. In this study we address these uncertainties, using a suite of sedimentological, geomorphological and modelling approaches to investigate sites of potential palaeo-subglacial lakes in the central Barents Sea. Geomorphological signatures of hydraulic activity in the area include large meltwater channels, tunnel valleys, and several interlinked basins. Modelling efforts indicate the potential for subglacial hydraulic sinks within the area during the early stages of ice retreat since the Last Glacial Maximum. In support of this, sedimentological observations indicate the presence of a dynamic glaciolacustrine depositional environment. Using the combined results of the modelling, geomorphology, and sedimentological analyses, we conclude that palaeo-subglacial lakes are likely to have formed on the northwestern banks of Thor Iversenbanken, central Barents Sea, and suggest that numerous other subglacial lakes may have been present beneath the Barents Sea Ice Sheet. Furthermore, we investigate and refine the existing diagnostic criteria for the identification of palaeo-subglacial lakes.

  9. Valley formation by groundwater seepage, pressurized groundwater outbursts and crater-lake overflow in flume experiments with implications for Mars

    NARCIS (Netherlands)

    Marra, Wouter A.; Braat, Lisanne; Baar, Anne W.; Kleinhans, Maarten G.

    2014-01-01

    Remains of fluvial valleys on Mars reveal the former presence of water on the surface. However, the source of water and the hydrological setting is not always clear, especially in types of valleys that are rare on Earth and where we have limited knowledge of the processes involved. We investigated

  10. 78 FR 33049 - Intent to Prepare an Environmental Impact Statement for the Green River/Tusher Diversion Dam...

    Science.gov (United States)

    2013-06-03

    ..., Salt Lake City, Utah 84138-1100, or via email at bronson.smart@ut.usda.gov . Information may also be... publicly available at any time during the EIS process. FOR FURTHER INFORMATION CONTACT: Mr. Bronson Smart... held on November 15, 2012 at Green River City Hall in Green River, Utah. Through additional...

  11. Compilation of geologic, hydrologic, and ground-water flow modeling information for the Spokane Valley-Rathdrum Prairie aquifer, Spokane County, Washington, and Bonner and Kootenai Counties, Idaho

    Science.gov (United States)

    Kahle, Sue C.; Caldwell, Rodney R.; Bartolino, James R.

    2005-01-01

    Rathdrum Prairie (about 500 feet) and least near the city of Spokane along the Spokane River (less than about 50 feet). Ground-water flow is south from near the southern end of Lake Pend Oreille and Hoodoo Valley, through the Rathdrum Prairie, then west toward Spokane. In Spokane, the aquifer splits and water moves north through the Hillyard Trough as well as west through the Trinity Trough. From the Trinity Trough water flows north along the western arm of the aquifer. The aquifer's discharge area is along the Little Spokane River and near Long Lake, Washington. A compilation of estimates of water-budget components, including recharge (precipitation, irrigation, canal leakage, septic tank effluent, inflow from tributary basins, and flow from the Spokane River) and discharge (withdrawals from wells, flow to the Spokane and Little Spokane Rivers, evapotranspiration, and underflow to Long Lake) illustrates that these estimated values should be compared with caution due to several variables including the area and time period of interest as well as methods employed in making the estimates. Numerous studies have documented the dynamic ground-water and surface-water interaction between the SVRP aquifer and the Spokane and Little Spokane Rivers. Gains and losses vary throughout the year, as well as the locations of gains and losses. September 2004 streamflow measurements indicated that the upper reach of the Spokane River between Post Falls and downstream at Flora Road lost 321 cubic feet per second. A gain of 736 cubic feet per second was measured between the Flora Road site and downstream at Green Street Bridge. A loss of 124 cubic feet per second was measured for the reach between the Green Street Bridge and the Spokane River at Spokane gaging station. The river gained about 87 cubic feet per second between the Spokane River at Spokane gaging station and the TJ Meenach Bridge. Overall, the Spokane River gained about 284 cubic feet per second between the Post Falls,

  12. Characterization of the abundant ≤0.2 μm cell-like particles inhabiting Lake Vida brine, McMurdo Dry Valleys, Antarctica

    Science.gov (United States)

    Kuhn, E.; Ichimura, A.; Peng, V.; Fritsen, C. H.; Murray, A. E.

    2011-12-01

    Most lakes in the McMurdo Dry Valleys are perennially covered with 3 to 6 m of ice, but Lake Vida is frozen from the surface through the lake bed, with ice permeated by brine channels. Brine collected from within the ice of Lake Vida is six times saltier than seawater, anoxic, with temperature of -13.4 C, pH of 6.2, high concentrations of ferrous iron (>300 μM), NH4+ (3.6 mM), and N2O (>58 μM), making it a unique environment. The first analysis of Vida brine microbial community (sampled in 2005) detected a cell rich environment (107 cells/mL), with cells falling into two size classes: ≥0.5 μm (105 cells/mL) and ~0.2 μm (107 cells/mL). Microorganisms in the domain Bacteria were detected, but Eukarya and Archaea were not. The clone library from 2005 identified Bacteria related to the phyla Proteobacteria (γ, δ, and ɛ), Lentisphaera, Firmicutes, Spirochaeta, Bacterioidetes, Actinobacteria, Verrucomicrobia, and candidate Division TM7. Brine samples were collected again in the austral summer of 2010 in which one of the focus areas is interrogating the ~0.2 μm cell size class. Molecular, imaging, and elemental analyses were employed to characterize the population of nano-sized particles (NP) that pass through 0.2 μm filters. The aim of testing was to determine whether or not these particles are cells with a morphology resulting from environmental stresses. These results are being compared to the same analyses applied in the whole brine microbial community. A 0.2 μm filtrate of brine incubated for 25 days at -13 C was collected on a 0.1 μm filter. Analysis of the 16S rRNA gene DGGE profile showed differences in the banding pattern and relative intensity when comparing the 0.2 μm filtrate to the whole brine community. A 16S rRNA clone library from the 0.2 μm filtrate indicated the presence of genera previously described in the 2005 whole brine community clone library like Pscychrobacter, Marinobacter, and members related to candidate Division TM7. Also, the

  13. On applied state estimation and observation theory to simulation modelling of Prespa-Ohrid Lakes system

    International Nuclear Information System (INIS)

    Kolemishevska-Gugulovska, Tanja; Dimirovski, Georgi; Gough, N.E.

    1997-01-01

    In the south-west of the Republic of Macedonia, on the cross boundary area with Republic of Albania and Republic of Greece, Prespa-Ohrid hydrologic region is located. To this region belong Prespa and Ohrid valleys, on the bottom of which the lakes of Prespa and Ohrid reside. Due to the fact that there is no surface hydrologic link and that they are separated by high mountain Galichica, both valleys and lakes constitute almost mutually autonomous hydrologic entities. This paper presents a study on the hydrologic cycle of Prespa Lake basin for the purpose of developing and identifying a simulation model for the long term dynamics of the water level. The actual simulation modelling technique makes use of available apriori knowledge and available recorder or observed data on phenomena involving the whole cycle from precipitation to evaporation and evapotranspiration in Prespa basin. Also, a modelling account for the functional impact due to strong interaction with Ohrid basin, is included. The resulting simulation model is a set of discrete-time state equation, derived on the grounds of the conceptual model of interconnected multiple tanks and of discrete-time observation (output) equation. The dynamic structure of Kalman filter for both linear and non-linear modelling case is derived and a discussion on applicability and further research is given. (author)

  14. Valley-dependent band structure and valley polarization in periodically modulated graphene

    Science.gov (United States)

    Lu, Wei-Tao

    2016-08-01

    The valley-dependent energy band and transport property of graphene under a periodic magnetic-strained field are studied, where the time-reversal symmetry is broken and the valley degeneracy is lifted. The considered superlattice is composed of two different barriers, providing more degrees of freedom for engineering the electronic structure. The electrons near the K and K' valleys are dominated by different effective superlattices. It is found that the energy bands for both valleys are symmetric with respect to ky=-(AM+ξ AS) /4 under the symmetric superlattices. More finite-energy Dirac points, more prominent collimation behavior, and new crossing points are found for K' valley. The degenerate miniband near the K valley splits into two subminibands and produces a new band gap under the asymmetric superlattices. The velocity for the K' valley is greatly renormalized compared with the K valley, and so we can achieve a finite velocity for the K valley while the velocity for the K' valley is zero. Especially, the miniband and band gap could be manipulated independently, leading to an increase of the conductance. The characteristics of the band structure are reflected in the transmission spectra. The Dirac points and the crossing points appear as pronounced peaks in transmission. A remarkable valley polarization is obtained which is robust to the disorder and can be controlled by the strain, the period, and the voltage.

  15. Geomorphic controls on Pleistocene knickpoint migration in Alpine valleys

    Science.gov (United States)

    Leith, Kerry; Fox, Matt; Moore, Jeffrey R.; Brosda, Julian; Krautblatter, Michael; Loew, Simon

    2014-05-01

    Recent insights into sub-glacial bedrock stress conditions suggest that the erosional efficiency of glaciers may reduce markedly following a major erosional cycle [Leith et al., 2013]. This implies that the formation of large glacial valleys within the Alps is likely to have occurred shortly after the onset of 100 ky glacial-interglacial cycles (at the mid-Pleistocene Revolution (MPR)). The majority of landscape change since this time may have therefore been driven by sub-aerial processes. This hypothesis is supported by observations of hillslope and channel morphology within Canton Valais (Switzerland), where major tributary valleys display a common morphology along their length, hinting at a shared geomorphic history. Glaciers currently occupy the headwaters of many catchments, while the upper reaches of rivers flow across extensive alluvial planes before abruptly transitioning to steep channels consisting of mixed bedrock and talus fan deposits. The rivers then converge to flow out over the alluvial plane of the Rhone Valley. Characteristically rough topographies within the region are suggested to mark the progressive transition from a glacial to fluvially-dominated landscape, and correlate well with steepened river channel sections determined from a 2.5 m resolution LiDAR DEM. We envisage a landscape in which ongoing tectonic uplift drives the emergence of Alpine bedrock through massive sedimentary valley infills (currently concentrated in the Rhone Valley), whose elevation is fixed by the consistent fluvial baselevel at Lake Geneva. As fluvial incision ceases at the onset of glaciation, continued uplift causes the formation of knickpoints at the former transition from bedrock to sedimentary infill. These knickpoints will then propagate upstream during subsequent interglacial periods. By investigating channel morphologies using an approach based on the steady-state form of the stream power equation, we can correlate steepened channel reaches (degraded

  16. Snake River sockeye salmon Sawtooth Valley project: 1992 Juvenile and Adult Trapping Program

    International Nuclear Information System (INIS)

    1992-04-01

    Sockeye salmon (Oncorhynchus nerka) runs in the Snake River Basin have severely declined. Redfish Lake near Stanley, Idaho is the only lake in the drainage known to still support a run. In 1989, two adults were observed returning to this lake and in 1990, none returned. In the summer of 1991, only four adults returned. If no action is taken, the Snake River sockeye salmon will probably cease to exist. On November 20, 1991, the National Marine Fisheries Service (NMFS) declared the Snake River sockeye salmon ''endangered'' (effective December 20, 1991), pursuant to the Endangered Species Act (ESA) of 1973. In 1991, in response to a request from the Idaho Department of Fish and Game and the Shoshone-Bannock Tribes, the Bonneville Power Administration (BPA) funded efforts to conserve and begin rebuilding the Snake River sockeye salmon run. The initial efforts were focused on Redfish Lake in the Sawtooth Valley of southcentral Idaho. The 1991 measures involved: trapping some of the juvenile outmigrants (O. nerka) from Redfish Lake and rearing them in the Eagle Fish Health Facility (Idaho Department of Fish and Game) near Boise, Idaho; Upgrading of the Eagle Facility where the outmigrants are being reared; and trapping adult Snake River sockeye salmon returning to Redfish Lake and holding and spawning them at the Sawtooth Hatchery near Stanley, Idaho. This Environmental Assessment (EA) evaluates the potential environmental effects of the proposed actions for 1992. It has been prepared to meet the requirements of the National Environmental Policy Act (NEPA) of 1969 and section 7 of the ESA of 1973

  17. Geologic history of the Neogene “Qena Lake” developed during the evolution of the Nile Valley: A sedimentological, mineralogical and geochemical approach

    Science.gov (United States)

    Philobbos, Emad R.; Essa, Mahmoud A.; Ismail, Mustafa M.

    2015-01-01

    Siliciclastic and carbonate sediments were laid down in southern Wadi Qena and around the Qena Nile bend (Middle Egypt) in a lacustrine-alluvial environment which dominated a relatively wide lake, the "Qena Lake" that interrupted the Nile course during the Neogene time. These sediments are represented mainly by the oldest dominantly lacustrine chocolate brown mudstones of the Khuzam Formation that accumulated nearer to the center of that lake (now forming a 185 m terrace above sea level), overlain by the dominantly lacustrine carbonates and marls of the Durri Formation which accumulated during semi-arid conditions, mainly nearer to the periphery of the lake (now forming 170, 180 and 185 m terraces a.s.l. in the studied sections). The water level of the "Qena Lake" reached 240 m. above sea level, as indicated by the maximum carbonate elevation reached in the region. Finally fanglomerates of the Higaza Formation with its chert and limestone conglomerates accumulated during torrential periods at higher elevations (forming 240, 300 and 400 m terraces a.s.l.). These three formations accumulated in this particular area before and during the unroofing of the basement rocks of the Eastern Desert, west of the watershed. According to the known Early Miocene initial development of the Nile Valley, beside the occurrence of similar deposits of Oligocene age along the eastern side of the basement range, the earlier known Pliocene age given for these sediments in the Qena area is here questioned. It might belong to earlier Miocene?-Pliocene times. As the basement rocks of the Eastern Desert were still covered by Cretaceous-Paleogene sedimentary rocks while the Khuzam, Durri and Higaza Formations were accumulating in the Qena Lake region, it is believed, contrary to the belief of some authors, that the basement rocks of the Eastern Desert were not the source of these sediments. The carbonate petrographic study, beside the X-ray, and the11 major oxides and 22 trace elements

  18. Glacial lakes in South Tyrol: distribution, evolution and potential for GLOFs

    Science.gov (United States)

    Schug, Marie-Claire; Mergili, Martin

    2017-04-01

    All over the world glaciers are currently retreating, leading to the formation or growth of glacial lakes. Some of these lakes are susceptible to sudden drainage. In order to assess the danger of glacial lake outburst floods (GLOFs) in South Tyrol in the Italian Alps, we present (i) an inventory of lakes, (ii) an analysis of the development of selected glacial lakes since 1945, and (iii) the susceptibility to and the possible impact areas of GLOFs. The inventory includes 1010 lakes that are larger than 250 m2 at an elevation above 2000 m asl, most of them of glacial origin. These lakes are mapped manually from orthophotos. Apart from collecting information on the spatial distribution of these lakes, the inventory lists dam material, glacier contact, and further parameters. 89% of the lakes in the investigation area are impounded by bedrock, whereas 93% of the lakes are detached from the associated glacier. The majority of lakes is small to medium sized (selected lakes are analyzed in detail in the field and from multi-temporal orthophotos, including the development of lake size and surroundings in the period since 1945. The majority of the selected lakes, however, was first recorded on orthophotos from the early 1980s. Eight of ten lakes grew significantly in that period. But when the lakes detached from the glacier until the early 2000s, the growth slowed down or ceased. Based on the current development of the selected lakes we conclude that the close surroundings of these lakes have stabilised and the lakes' susceptibility to an outburst has thus decreased. We further conduct broad-scale analyses of the susceptibility of the mapped lakes to GLOFs, and of the potential reach of possible GLOFs. The tool r.glachaz is used to determine the potentially dangerous lakes. Even though some few lakes require closer attention, the overall susceptibility to GLOFs in South Tyrol is relatively low, as most lakes are impounded by bedrock. In some cases, GLOFs caused by impact

  19. Identification and Characterization of Quantitative Trait Loci for Shattering in Japonica Rice Landrace Jiucaiqing from Taihu Lake Valley, China

    Directory of Open Access Journals (Sweden)

    Jinping Cheng

    2016-11-01

    Full Text Available Easy shattering reduces yield from grain loss during rice ( L. harvest. We characterized a nonshattering rice landrace Jiucaiqing from Taihu Lake valley in China. The breaking tensile strength (BTS; grams force, gf of the grain pedicel was measured using a digital force gauge to evaluate the degree of shattering at 0, 7, 14, 21, 28, and 35 d after heading (DAH. The BTS of Jiucaiqing did not significantly decrease with increasing DAH, maintaining a level of 152.2 to 195.9 gf, while that of IR26 decreased greatly during 0 to 14 DAH and finally stabilized at ∼100 gf. Then the chromosome segment substitution lines (CSSLs and near isogenic lines (NILs of Jiucaiqing in IR26 background were developed for quantitative trait loci (QTL mapping. Four putative QTL (, , , and for shattering were detected, and the was confirmed on chromosome 1. We further mapped to a 98.4-kb region, which contains 14 genes. Os01g62920 was considered to be a strong candidate for , which colocated with . Further quantitative real-time polymerase chain reaction (PCR analyses confirmed that the QTL can significantly decrease the expression of shattering related genes (, , , , and especially at the middle development stage at 10 and 15 cm panicle length, which causes rice shattering decrease. The elite allele and the NIL with desirable agronomic traits identified in this study could be useful for rice breeding.

  20. Microbial ecology of acid strip mine lakes in southern Indiana

    International Nuclear Information System (INIS)

    Gyure, R.A.

    1986-01-01

    In this study, the author examined the limnology and microbial ecology of two acid strip mine lakes in the Greene-Sullivan State Forest near Dugger, Indiana. Reservoir 29 is a larger lake (225 ha) with water column pH of 2.7 and sediment pH of 3.8. Lake B, a smaller (20 ha) lake to the south of Reservoir 29, also has an acidic water column (pH 3.4) but more neutral sediments (pH 6.2). Both have very high sulfate concentrations: 20-30 mM in the water column and as high as 100 mM in the hypolimnion of Lake B. Low allochthonous carbon and nutrient input characterize these lakes as oligotrophic, although algal biomass is higher than would be expected for this trophic status. In both lakes, algal populations are not diverse, with a few species of single-celled Chlorophyta and euglenoids dominating. Algal biomass is concentrated in a thin 10 cm layer at the hypolimnion/metalimnion interface, although light intensity at this depth is low and severely limits productivity. Bacterial activity based on 14 C-glucose incorporation is highest in the hypolimnion of both lakes, and sulfate-reduction is a dominant process in the sediments. Rates of sulfate-reduction compare with those in other freshwater environments, but are not as high as rates measured in high sulfate systems like saltmarsh and marine sediments

  1. Chemistry which created Green River Formation oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.W.

    1983-01-01

    The genesis pattern presented for Green River Formation oil shale explains the major observation. Deposition of relatively large quantities of hydrogen-rich organic matter in the oil shales is a natural consequence of the chemical conditions (basic water and reducing atmosphere) and the physical limitation of clastic materials developed in the stratified ancient Lake Uinta. Stability of the stratification produced the continuous deposition of the organic matter and its uniformity over the deposit. Authigenic formation of the oil-shale minerals proceeds naturally from the lake stratification, and the varve production stems from the seasonable development of organic matter. The lake's stratification produced uniform deposition over the entire area it covered, making the correlatable lateral persistence of the thin laminations a natural consequence. As the lake developed, the attack on aluminosilicates by sodium carbonate in the lower layer produced a silicate skeleton protected by aluminum trihydroxide. On deposition, this aluminum-rich skeleton formed illite in quantity. As the lake became more basic, the protecting aluminum hydroxide coating dissolved amphoterically and illite production dropped at a specific point. Continual build-up of sodium carbonate and aluminate ion in the water of the lake's lower layer reached conditions which precipitated dawsonite and crystallized nahcolite in the sediment as a result of CO/sub 2/ production from organic matter. (JMT)

  2. Understanding the groundwater dynamics in the Southern Rift Valley Lakes Basin (Ethiopia). Multivariate statistical analysis method, oxygen (δ 18O) and deuterium (δ 2H)

    International Nuclear Information System (INIS)

    Girum Admasu Nadew; Zebene Lakew Tefera

    2013-01-01

    Multivariate statistical analysis is very important to classify waters of different hydrochemical groups. Statistical techniques, such as cluster analysis, can provide a powerful tool for analyzing water chemistry data. This method is used to test water quality data and determine if samples can be grouped into distinct populations that may be significant in the geologic context, as well as from a statistical point of view. Multivariate statistical analysis method is applied to the geochemical data in combination with δ 18 O and δ 2 H isotopes with the objective to understand the dynamics of groundwater using hierarchical clustering and isotope analyses. The geochemical and isotope data of the central and southern rift valley lakes have been collected and analyzed from different works. Isotope analysis shows that most springs and boreholes are recharged by July and August rainfalls. The different hydrochemical groups that resulted from the multivariate analysis are described and correlated with the geology of the area and whether it has any interaction with a system or not. (author)

  3. Hydro-meteorological trends in the Gidabo catchment of the Rift Valley Lakes Basin of Ethiopia

    Science.gov (United States)

    Belihu, Mamuye; Abate, Brook; Tekleab, Sirak; Bewket, Woldeamlak

    2018-04-01

    The global and regional variability and changes of climate and stream flows are likely to have significant influence on water resource availability. The magnitude and impacts of climate variability and change differs spatially and temporally. This study examines the long term hydroclimatic changes, analyses of the hydro-climate variability and detect whether there exist significant trend or not in the Gidabo catchment, rift valley lakes basin of Ethiopia. Precipitation, temperature and stream flow time series data were used in monthly, seasonal and annual time scales. The precipitation and temperature data span is between 1982 and 2014 and that of stream flow is between 1976 and 2006. To detect trends the analysis were done by using Mann Kendal (MK), Sen's graphical method and to detect change point using the Pettit test. The comparison of trend analysis between MK trend test and Sen graphical method results depict mostly similar pattern. The annual rainfall trends exhibited a significant decrease by about 12 mm per year in the upstream, which is largely driven by the significant decrease in the peak season rainfall. The Pettit test revealed that the years 1997 and 2007 were the change points. It is noted that the rise of temperature over a catchment might have decreased the availability of soil moisture which resulted in less runoff. The temperature analyses also revealed that the catchment was getting warmer; particularly in the upstream. The minimum temperature trend showed a significant increase about 0.08°c per annum. There is generally a decreasing trend in stream flow. The monthly stream flow also exhibited a decreasing trend in February, March and September. The decline in annual and seasonal rainfall and the increase in temperature lead to more evaporation and directly affecting the stream flow negatively. This trend compounded with the growth of population and increasing demand for irrigation water exacerbates the competing demand for water resources. It

  4. Monitoring of Calcite Precipitation in Hardwater Lakes with Multi-Spectral Remote Sensing Archives

    Directory of Open Access Journals (Sweden)

    Iris Heine

    2017-01-01

    Full Text Available Calcite precipitation is a common phenomenon in calcium-rich hardwater lakes during spring and summer, but the number and spatial distribution of lakes with calcite precipitation is unknown. This paper presents a remote sensing based method to observe calcite precipitation over large areas, which are an important prerequisite for a systematic monitoring and evaluation of restoration measurements. We use globally archived satellite remote sensing data for a retrospective systematic assessment of past multi-temporal calcite precipitation events. The database of this study consists of 205 data sets that comprise freely available Landsat and Sentinel 2 data acquired between 1998 and 2015 covering the Northeast German Plain. Calcite precipitation is automatically identified using the green spectra and the metric BGR area, the triangular area between the blue, green and red reflectance value. The validation is based on field measurements of CaCO3 concentrations at three selected lakes, Feldberger Haussee, Breiter Luzin and Schmaler Luzin. The classification accuracy (0.88 is highest for calcite concentrations ≥0.7 mg/L. False negative results are caused by the choice of a conservative classification threshold. False positive results can be explained by already increased calcite concentrations. We successfully transferred the developed method to 21 other hardwater lakes in Northeast Germany. The average duration of lakes with regular calcite precipitation is 37 days. The frequency of calcite precipitation reaches from single time detections up to detections nearly every year. False negative classification results and gaps in Landsat time series reduce the accuracy of frequency and duration monitoring, but in future the image density will increase by acquisitions of Sentinel-2a (and 2b. Our study tested successfully the transfer of the classification approach to Sentinel-2 images. Our study shows that 15 of the 24 lakes have at least one phase of

  5. Groundwater quality in the Indian Wells Valley, California

    Science.gov (United States)

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Indian Wells Valley is one of the study areas being evaluated. The Indian Wells study area is approximately 600 square miles (1,554 square kilometers) and includes the Indian Wells Valley groundwater basin (California Department of Water Resources, 2003). Indian Wells Valley has an arid climate and is part of the Mojave Desert. Average annual rainfall is about 6 inches (15 centimeters). The study area has internal drainage, with runoff from the surrounding mountains draining towards dry lake beds in the lower parts of the valley. Land use in the study area is approximately 97.0 percent (%) natural, 0.4% agricultural, and 2.6% urban. The primary natural land cover is shrubland. The largest urban area is the city of Ridgecrest (2010 population of 28,000). Groundwater in this basin is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay derived from the Sierra Nevada to the west and from the other surrounding mountains. Recharge to the groundwater system is primarily runoff from the Sierra Nevada and to the west and from the other surrounding mountains. Recharge to the groundwater system is primarily runoff from the Sierra Nevada and direct infiltration from irrigation and septic systems. The primary sources of discharge are pumping wells and evapotranspiration near the dry lakebeds. The primary aquifers in the Indian Wells study area are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells in

  6. Holocene environmental change and archaeology, Yangtze River Valley, China: Review and prospects

    Directory of Open Access Journals (Sweden)

    Li Wu

    2012-11-01

    Full Text Available Holocene environmental change and environmental archaeology are important components of an international project studying the human-earth interaction system. This paper reviews the progress of Holocene environmental change and environmental archaeology research in the Yangtze River Valley over the last three decades, that includes the evolution of large freshwater lakes, Holocene transgression and sea-level changes, Holocene climate change and East Asian monsoon variation, relationship between the rise and fall of primitive civilizations and environmental changes, cultural interruptions and palaeoflood events, as well as relationship between the origin of agriculture and climate change. These research components are underpinned by the dating of lacustrine sediments, stalagmites and peat to establish a chronology of regional environmental and cultural evolution. Interdisciplinary and other environment proxy indicators need to be used in comparative studies of archaeological site formation and natural sedimentary environment in the upper, middle and lower reaches of the Yangtze River Valley. Modern technology such as remote sensing, molecular bioarchaeology, and virtual reality, should be integrated with currently used dating, geochemical, sedimentological, and palaeobotanical methods of analysis in environmental archaeology macro- and micro-studies, so as to provide a greater comprehensive insight into Holocene environmental and cultural interaction and change in the Yangtze River Valley area.

  7. Identification of glacier motion and potentially dangerous glacial lakes in the Mt. Everest region/Nepal using spaceborne imagery

    Directory of Open Access Journals (Sweden)

    T. Bolch

    2008-12-01

    Full Text Available Failures of glacial lake dams can cause outburst floods and represents a serious hazard. The potential danger of outburst floods depends on various factors like the lake's area and volume, glacier change, morphometry of the glacier and its surrounding moraines and valley, and glacier velocity. Remote sensing offers an efficient tool for displacement calculations and risk assessment of the identification of potentially dangerous glacial lakes (PDGLs and is especially helpful for remote mountainous areas. Not all important parameters can, however, be obtained using spaceborne imagery. Additional interpretation by an expert is required. ASTER data has a suitable accuracy to calculate surface velocity. Ikonos data offers more detail but requires more effort for rectification. All investigated debris-covered glacier tongues show areas with no or very slow movement rates. From 1962 to 2003 the number and area of glacial lakes increased, dominated by the occurrence and almost linear areal expansion of the moraine-dammed lakes, like the Imja Lake. Although the Imja Lake will probably still grow in the near future, the risk of an outburst flood (GLOF is considered not higher than for other glacial lakes in the area. Potentially dangerous lakes and areas of lake development are identified. There is a high probability of further lake development at Khumbu Glacier, but a low one at Lhotse Glacier.

  8. Climate Change Impacts on Nutrient Losses of Two Watersheds in the Great Lakes Region

    Directory of Open Access Journals (Sweden)

    Lili Wang

    2018-04-01

    Full Text Available Non-point sources (NPS of agricultural chemical pollution are one major reason for the water quality degradation of the Great Lakes, which impacts millions of residents in the states and provinces that are bordering them. Future climate change will further impact water quality in both direct and indirect ways by influencing the hydrological cycle and processes of nutrient transportation and transformation, but studies are still rare. This study focuses on quantifying the impacts of climate change on nutrient (Nitrogen and Phosphorus losses from the two small watersheds (Walworth watershed and Green Lake watershed within the Great Lakes region. Analysis focused on changes through this century (comparing the nutrient loss prediction of three future periods from 2015 to 2099 with 30 years for each period against the historical nutrient estimation data from 1985 to 2008. The effects on total phosphorus and nitrate-nitrogen losses due to changes in precipitation quantity, intensity, and frequency, as well as air temperature, are evaluated for the two small watersheds, under three special report emission scenarios (SRES A2, A1B, B1. The newly developed Water Erosion Prediction Project-Water Quality (WEPP-WQ model is utilized to simulate nutrient losses with downscaled and bias corrected future climate forcing from two General Circulation Models (GFDL, HadCM3. For each watershed, the observed runoff and nutrient loads are used to calibrate and validate the model before the application of the WEPP-WQ model to examine potential impacts from future climate change. Total phosphorus loss is projected to increase by 28% to 89% for the Green Lake watershed and 25% to 108% for the Walworth watershed mainly due to the combined effects of increase of precipitation quantity, extreme storm events in intensity and frequency, and air temperature. Nitrate-nitrogen losses are projected to increase by 1.1% to 38% for the Green Lake watershed and 8% to 95% for the

  9. The California Valley grassland

    Science.gov (United States)

    Keeley, J.E.; Schoenherr, Allan A.

    1990-01-01

    Grasslands are distributed throughout California from Oregon to Baja California Norte and from the coast to the desert (Brown 1982) (Figure 1). This review will focus on the dominant formation in cismontane California, a community referred to as Valley Grassland (Munz 1959). Today, Valley Grassland is dominated by non-native annual grasses in genera such as Avena (wild oat), Bromus (brome grass), and Hordeum (barley), and is often referred to as the California annual grassland. On localized sites, native perennial bunchgrasses such as Stipa pultra (purple needle grass) may dominate and such sites are interpreted to be remnants of the pristine valley grassland. In northwestern California a floristically distinct formation of the Valley Grassland, known as Coast Prairie (Munz 1959) or Northern Coastal Grassland (Holland and Keil 1989) is recognized. The dominant grasses include many native perennial bunchgrasses in genera such as Agrostis, Calamagrostis, Danthonia, Deschampsia, Festuca, Koeleria and Poa (Heady et al. 1977). Non-native annuals do not dominate, but on some sites non-native perennials like Anthoxanthum odoratum may colonize the native grassland (Foin and Hektner 1986). Elevationally, California's grasslands extend from sea level to at leas 1500 m. The upper boundary is vague because montane grassland formations are commonly referred to as meadows; a community which Munz (1959) does not recognize. Holland and Keil (1989) describe the montane meadow as an azonal community; that is, a community restricted not so much to a particular climatic zone but rather controlled by substrate characteristics. They consider poor soil-drainage an over-riding factor in the development of montane meadows and, in contrast to grasslands, meadows often remain green through the summer drought. Floristically, meadows are composed of graminoids; Cyperaceae, Juncaceae, and rhizomatous grasses such as Agropyron (wheat grass). Some bunchgrasses, such as Muhlenbergia rigens, are

  10. Whole-lake algal responses to a century of acidic industrial deposition on the Canadian Shield

    International Nuclear Information System (INIS)

    Vinebrooke, R.D.; Dixit, S.S.; Graham, M.D.; Gunn, J.M.; Chen, Y.-W.; Belzile, N.

    2002-01-01

    A century of cultural acidification is hypothesized to have altered algal community structure in boreal lakes. To date, this hypothesis has remained untested because of both the lack of data predating the onset of industrial pollution and incomplete estimates of whole-lake algal community structure. High-pressure liquid chromatography (HPLC) of sedimentary pigments was used to quantify whole-lake algal responses to acid deposition in six boreal lakes located in Killarney Park, Ontario, Canada. Concomitant significant increases in chlorophyll and carotenoid concentrations, diatom-inferred lake acidity, and metal levels since 1900 suggested that algal abundances in four acidified lakes and one small, circumneutral lake were enhanced by aerial pollution. An alternate explanation is that increased acidity and underwater light availability in the acidified lakes shifted algal abundance towards phytobenthos and deepwater phytoplankton, whose pigment signatures were better preserved in the sediments. Taxonomically diagnostic pigment stratigraphies were consistent with shifts in algal community structure towards filamentous green phytobenthos and deepwater phytoflagellates in the acidified lakes. Our findings suggest that decades of aerial pollution have altered the base of foodwebs in boreal lakes, potentially rendering them less resilient to other environmental stressors. (author)

  11. Feeding spectra of Arctodiaptomus salinus (Calanoida, Copepoda) using fatty acid trophic markers in seston food in two salt lakes in South Siberia (Khakasia, Russia)

    OpenAIRE

    Tolomeev, A.; Sushchik, N.N.; Gulati, R.D.; Makhutova, O.N.; Kalacheva, G.S.; Zotina, T.A.

    2010-01-01

    During two vegetation seasons (2004–2005), we compared feeding spectra of Arctodiaptomus salinus (Calanoida, Copepoda) populations inhabiting two neighboring salt lakes, Shira and Shunet, Khakasia, Russia, using fatty acid (FA) trophic markers. Sestonic FA composition in two lakes moderately differed, whereas levels of diatom FA markers were higher in Lake Shunet and of Cyanobacteria and green algae markers in Lake Shira. In general, markers in storage lipids—triacylglycerols (TAG) of A. sali...

  12. Decomposition of lake phytoplankton. 2

    International Nuclear Information System (INIS)

    Hansen, L.; Krog, G.F.; Soendergaard, M.

    1986-01-01

    The lysis process of phytoplankton was followed in 24 h incubations in three Danish lakes. By means of gel-chromatography it was shown that the dissolved carbon leaching from different algal groups differed in molecular weight composition. Three distinct molecular weight classes (>10,000; 700 to 10,000 and < 700 Daltons) leached from blue-green algae in almost equal proportion. The lysis products of spring-bloom diatoms included only the two smaller size classes, and the molecules between 700 and 10,000 Daltons dominated. Measurements of cell content during decomposition of the diatoms revealed polysaccharides and low molecular weight compounds to dominate the lysis products. No proteins were leached during the first 24 h after cell death. By incubating the dead algae in natural lake water, it was possible to detect a high bacterial affinity towards molecules between 700 and 10,000 Daltons, although the other size classes were also utilized. Bacterial transformation of small molecules to larger molecules could be demonstrated. (author)

  13. Irrigation drainwater effects on the endangered larval razorback sucker and bonytail in the middle Green River

    International Nuclear Information System (INIS)

    Hamilton, S.J.; Buhl, K.J.

    1994-01-01

    The Department of the Interior (DOI) irrigation drainwater investigation of the middle Green River of Utah reported that concentrations of boron, selenium, and zinc in water, bottom sediment, and biological tissues were sufficiently elevated to be potentially harmful to fish and wildlife. The major focus of the DOI study was in the Ashley Creek-Stewart Lake area near Jensen, utah. The middle Green River provides sensitive habitat for the endangered Colorado squawfish, razorback sucker, and bonytail. The authors conducted two 90-day chronic toxicity studies, one with razorback sucker, and the other with bonytail. Swimup larvae were exposed in a reconstituted water simulating the middle Green River. The toxicant mixture simulated the environmental ratio and concentrations of inorganics reported in the DOI study for the mouth of Ashley Creek-Stewart Lake outflow on the Green River, and was composed of arsenic, boron, copper, molybdenum, uranium, vanadium, selenate, selenite, and zinc. The mixture was tested at 1X, 2X, 4X, 8X, and 16X where X was the average expected environmental concentration. Razorback suckers had reduced survival after 40 days exposure to the inorganic mixture at 16X and after 60 days at 8X; whereas growth was reduced after 30 days at 8X and after 60 days at 4X. Bonytail had reduced survival after 20 days exposure at 16X, whereas growth was reduced after 60 days at 8X. These studies show that at environmentally realistic concentrations, the inorganic mixture simulating Ashley Creek-Stewart Lake outfall adversely affects larval endangered fish

  14. Patterns of volcanism, weathering, and climate history from high-resolution geochemistry of the BINGO core, Mono Lake, California, USA

    Science.gov (United States)

    Zimmerman, S. R.; Starratt, S.; Hemming, S. R.

    2012-12-01

    Mono Lake, California is a closed-basin lake on the east side of the Sierra Nevada, and inflow from snowmelt dominates the modern hydrology. Changes in wetness during the last glacial period (>12,000 years ago) and over the last 2,000 years have been extensively described, but are poorly known for the intervening period. We have recovered a 6.25 m-long core from ~3 m of water in the western embayment of Mono Lake, which is shown by initial radiocarbon dates to cover at least the last 10,000 years. The sediments of the core are variable, ranging from black to gray silts near the base, laminated olive-green silt through the center, to layers of peach-colored carbonate nodules interbedded with gray and olive silts and pea-green organic ooze. Volcanic tephras from Bodie and Adobe Hills to the north, east, and south. The rhyolitic tephras of the Mono-Inyo Craters are much lower in TiO2 than the bedrock (10,000 calibrated years before present (cal yr BP) higher in the core, and significant disruption of the fine layers, this interval likely indicates a relatively deep lake persisting into the early Holocene, after the initial dramatic regression from late Pleistocene levels. The finely laminated olive-green silt of the period ~10,700 to ~7500 cal yr BP is very homogenous chemically, probably indicating a stable, stratified lake and a relatively wet climate. This section merits mm-scale scanning and petrographic examination in the future. The upper boundary of the laminated section shows rising Ca/K and decreasing Ti and Si/K, marking the appearance of authigenic carbonate layers. After ~7500 cal yr BP, the sediment in BINGO becomes highly variable, with increased occurrence of tephra layers and carbonate, indicating a lower and more variable lake level. A short interval of olive-green, laminated fine sand/silt just above a radiocarbon date of 3870 ± 360 cal yr BP may record the Dechambeau Ranch highstand of Stine (1990; PPP v. 78 pp 333-381), and is marked by a distinct

  15. The microbial mats of Pavilion Lake microbialites: examining the relationship between photosynthesis and carbonate precipitation

    Science.gov (United States)

    Lim, D. S. S.; Hawes, I.; Mackey, T. J.; Brady, A. L.; Biddle, J.; Andersen, D. T.; Belan, M.; Slater, G.; Abercromby, A.; Squyres, S. W.; Delaney, M.; Haberle, C. W.; Cardman, Z.

    2014-12-01

    Pavilion Lake in British Columbia, Canada is an ultra-oligotrophic lake that has abundant microbialite growth. Recent research has shown that photoautotrophic microbial communities are important to modern microbialite development in Pavilion Lake. However, questions remain as to the relationship between changing light levels within the lake, variation in microbialite macro-structure, microbial consortia, and the preservation of associated biosignatures within the microbialite fabrics. The 2014 Pavilion Lake Research Project (PLRP) field program was focused on data gathering to understand these complex relationships by determining if a) light is the immediate limit to photosynthetic activity and, if so, if light is distributed around microbialites in ways that are consistent with emergent microbialite structure; and b) if at more local scales, the filamentous pink and green cyanobacterial nodular colonies identified in previous PLRP studies are centers of photosynthetic activity that create pH conditions suitable for carbonate precipitation. A diver-deployed pulse-amplitude modulated (PAM) fluorometer was used to collect synoptic in situ measurements of fluorescence yield and irradiance and across microbialites, focusing on comparing flat and vertical structural elements at a range of sites and depths. As well, we collected time series measurements of photosynthetic activity and irradiance at a set depth of 18 m across three different regions in Pavilion Lake. Our initial findings suggest that all microbialite surfaces are primarily light-limited regardless of depth or location within the lake. Shore based PAM fluorometry and microelectrode profiling of diver-collected samples suggest that pink and green nodules have different photosynthetic properties and pH profiles, and that nodular growth is likely to be the primary route of calcification due to the gelatinous covering the nodule creates. On-going tests for molecular signatures and isotopic shifts will allow for

  16. 137Cs as a tracer of recent sedimentary processes in Lake Michigan

    Science.gov (United States)

    Cahill, R.A.; Steele, J.D.

    1986-01-01

    To determine recent sediment movement, we measured the levels of 137Cs (an artificial radionuclide produced during nuclear weapons testing) of 118 southern Lake Michigan samples and 27 in Green Bay. These samples, taken from 286 grab samples of the upper 3 cm of sediment, were collected in 1975 as part of a systematic study of Lake Michigan sediment. 137Cs levels correlated well with concentrations of organic carbon, lead, and other anthropogenic trace metals in the sediment. 137Cs had a higher correlation with silt-sized than with clay-sized sediment (0.55 and 0.46, respectively). Atmospherically derived 137Cs and trace metals are being redistributed by sedimentary processes in Lake Michigan after being incorporated in suspended sediment. We determined a distribution pattern of 137Cs that represents areas of southern Lake Michigan where sediment deposition is occurring. ?? 1986 Dr W. Junk Publishers.

  17. 77 FR 33237 - Saline Valley Warm Springs Management Plan/Environmental Impact Statement, Death Valley National...

    Science.gov (United States)

    2012-06-05

    ... Valley Warm Springs Management Plan/Environmental Impact Statement, Death Valley National Park, Inyo... an Environmental Impact Statement for the Saline Valley Warm Springs Management Plan, Death Valley... analysis process for the Saline Valley Warm Springs Management Plan for Death Valley [[Page 33238...

  18. The crazy hollow formation (Eocene) of central Utah

    Science.gov (United States)

    Weiss, M.P.; Warner, K.N.

    2001-01-01

    The Late Eocene Crazy Hollow Formation is a fluviatile and lacustrine unit that was deposited locally in the southwest arm of Lake Uinta during and after the last stages of the lake the deposited the Green River Formation. Most exposures of the Crazy Hollow are located in Sanpete and Sevier Counties. The unit is characterized by a large variety of rock types, rapid facies changes within fairly short distances, and different lithofacies in the several areas where outcrops of the remnants of the formation are concentrated. Mudstone is dominant, volumetrically, but siltstone, shale, sandstone, conglomerate and several varieties of limestone are also present. The fine-grained rocks are mostly highly colored, especially in shades of yellow, orange and red. Sand grains, pebbles and small cobbles of well-rounded black chert are widespread, and "salt-and-pepper sandstone" is the conspicuous characteristic of the Crazy Hollow. The salt-and-pepper sandstone consists of grains of black chert, white chert, quartz and minor feldspar. The limestone beds and lenses are paludal and lacustrine in origin; some are fossiliferous, and contain the same fauna found in the Green River Formation. With trivial exceptions, the Crazy Hollow Formation lies on the upper, limestone member of the Green River Formation, and the beds of the two units are always accordant in attitude. The nature of the contact differs locally: at some sites there is gradation from the Green River to the Crazy Hollow; at others, rocks typical of the two units intertongue; elsewhere there is a disconformity between the two. A variety of bedrock units overlie the Crazy Hollow at different sites. In the southeasternmost districts it is overlain by the late Eocene formation of Aurora; in western Sevier County it is overlain by the Miocene-Pliocene Sevier River Formation; in northernmost Sanpete County it is overlain by the Oligocene volcanics of the Moroni Formation. At many sites bordering Sanpete and Sevier Valleys

  19. Hydrologic connectivity in the McMurdo Dry Valleys of Antarctica: System function and changes over two decades

    Science.gov (United States)

    Wlostowski, A. N.; Gooseff, M. N.; Bernzott, E. D.; McKnight, D. M.; Jaros, C.; Lyons, W.

    2013-12-01

    The McMurdo Dry Valleys of Antarctica is one of the coldest (average annual air temperature of -18°C) and driest (ecological connections in the McMurdo Dry Valleys. Intermittent glacial meltwater streams connect glaciers to closed basin lakes and compose the most prominent hydrologic nexus in the valleys. This study uses of 20+ years of stream temperature, electrical conductivity (EC), and discharge data to enhance our quantitative understanding of the temporal dynamics of hydrologic connections along the glacier-stream-lake continuum. Annually, streamflow occurs for a relatively brief 10-12 week period of the austral summer. Longer streams are more prone to intermittent dry periods during the flow season, making for a harsher ecological environment than shorter streams. Diurnal streamflow variation occurs primarily as a result of changing solar postion relative to the source-glacier surfaces. Therfore, different streams predictably experience high flows and low flows at different times of the day. Electrical conductivity also exhibits diel variations, but the nature of EC-discharge relationships differs among streams throughout the valley. Longer streams have higher EC values and lower discharges than shorter streams, suggesting that hyporheic zones act as a significant solute source and hydrologic reservoir along longer streams. Water temperatures are consistently warmer in longer streams, relative to shorter streams, likely due to prolonged exposure to incident radiation with longer surface water residence times. Inter-annually, several shorter streams in the region show significant increases in Q10, Q30, Q50, Q70, Q90, and/or Q100 flows across the 20+ year record, indicating a long-term non-stationarity in hydrologic system dynamics. The tight coupling between surface waters and the glacier surface energy balance bring forth remarkably consistent hydrologic patterns on the daily and annual timescales, providing a model system for understanding fundamental

  20. Green urbanity

    Directory of Open Access Journals (Sweden)

    Alenka Fikfak

    2012-01-01

    Full Text Available Tourism and other culture-based types of small business, which are the leitmotif in the planning of the Europark Ruardi, are becoming the guiding motif in the spatial development of urban centres that are influenced by dynamic transformation processes. The system should build upon the exploitation of both local and regional environmental features. This would encourage the quest for special environmental features, with an emphasis on their conservation, i.e. sustainable development, and connections in a wider context.The Europark is seen as a new strategic point of the Zasavje Region (the region of the central Sava Valley, which is linked to other important points in a region relevant for tourism. Due to the "smallness" of the region and/or the proximity of such points, development can be fast and effective. The interaction of different activities in space yields endless opportunities for users, who choose their own goals and priorities in the use of space. Four theme areas of the Europark area planning are envisaged. The organisation of activities is based on the composition of the mosaic field patterns, where green fields intertwine with areas of different, existing and new, urban functions. The fields of urban and recreation programmes are connected with a network of green areas and walking trails, along which theme park settings are arranged.

  1. Agricultural development and the use of agrochemicals in the Mexicali Valley

    Directory of Open Access Journals (Sweden)

    José A. Moreno Mena

    2005-07-01

    Full Text Available This article presents a proposal of historical periodization regarding the use of pesticides and other agrochemicals products in the Valley of Mexicali, taking into account the evolution of regional agricultural development and its context. The use of diverse chemical products in agriculture was the result of industrial an technological models which were adopted at the beginning of the twentieth century and, in particular, as a resul of suggestions arising out of the "green revolution". We highligt the importance of vegetables as a primary consumer of pesticides. We also note that, in spite of the use of agrochemical products in the Valley of Mexicali for various decades, little research has been done regarding the effects on public health and the environment. What little information has been gathered from studies carried out in agricultural zones utilizing these products is alarming. Therefore, we underline the need to carry out research that delves more deeply into long-term effects of the use of such products.

  2. Christmas Valley Renewable Energy Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Del Mar, Robert [Oregon Department of Energy, Salem, OR (United States)

    2017-05-22

    In partnership with the Oregon Military Department, the Department of Energy used the award to assess and evaluate renewable resources in a 2,622-acre location in Lake County, central Oregon, leading to future development of up to 200 MW of solar electricity. In partnership with the Oregon Military Department, the Department of Energy used the award to assess and evaluate renewable resources in a 2,622-acre location in Lake County, central Oregon, leading to future development of up to 200 MW of solar electricity. The Oregon Military Department (Military) acquired a large parcel of land located in south central Oregon. The land was previously owned by the US Air Force and developed for an Over-the-Horizon Backscatter Radar Transmitter Facility, located about 10 miles east of the town of Christmas Valley. The Military is investigating a number of uses for the site, including Research and Development (R&D) laboratory, emergency response, military operations, developing renewable energy and related educational programs. One of the key potential uses would be for a large scale solar photovoltaic power plant. This is an attractive use because the site has excellent solar exposure; an existing strong electrical interconnection to the power grid; and a secure location at a moderate cost per acre. The project objectives include: 1. Site evaluation 2. Research and Development (R&D) facility analysis 3. Utility interconnection studies and agreements 4. Additional on-site renewable energy resources analysis 5. Community education, outreach and mitigation 6. Renewable energy and emergency readiness training program for veterans

  3. Water quality and fish dynamics in forested wetlands associated with an oxbow lake

    Science.gov (United States)

    Andrews, Caroline S.; Miranda, Leandro E.; Kroger, Robert

    2015-01-01

    Forested wetlands represent some of the most distinct environments in the Lower Mississippi Alluvial Valley. Depending on season, water in forested wetlands can be warm, stagnant, and oxygen-depleted, yet may support high fish diversity. Fish assemblages in forested wetlands are not well studied because of difficulties in sampling heavily structured environments. During the April–July period, we surveyed and compared the water quality and assemblages of small fish in a margin wetland (forested fringe along a lake shore), contiguous wetland (forested wetland adjacent to a lake), and the open water of an oxbow lake. Dissolved-oxygen levels measured hourly 0.5 m below the surface were higher in the open water than in either of the forested wetlands. Despite reduced water quality, fish-species richness and catch rates estimated with light traps were greater in the forested wetlands than in the open water. The forested wetlands supported large numbers of fish and unique fish assemblages that included some rare species, likely because of their structural complexity. Programs developed to refine agricultural practices, preserve riparian zones, and restore lakes should include guidance to protect and reestablish forested wetlands.

  4. Lake-level variation in the Lahontan basin for the past 50,000 years

    Science.gov (United States)

    Benson, L.V.; Thompson, R.S.

    1987-01-01

    Selected radiocarbon data on surficial materials from the Lahontan basin, Nevada and California, provide a chronology of lake-level variation for the past 50,000 yr. A moderate-sized lake connected three western Lahontan subbasins (the Smoke Creek-Black Rock Desert subbasin, the Pyramid Lake subbasin, and the Winnemucca Dry Lake subbasin) from about 45,000 to 16,500 yr B.P. Between 50,000 and 45,000 yr B.P., Walker Lake rose to its sill level in Adrian Valley and spilled to the Carson Desert subbasin. By 20,000 yr B.P., lake level in the western Lahontan subbasins had risen to about 1265 m above sea level, where it remained for 3500 yr. By 16,000 yr B.P., lake level in the western Lahontan subbasins had fallen to 1240 m. This recession appears synchronous with a desiccation of Walker Lake; however, whether the Walker Lake desiccation resulted from climate change or from diversion of the Walker River is not known. From about 15,000 to 13,500 yr B.P., lake level rapidly rose, so that Lake Lahontan was a single body of water by 14,000 yr B.P. The lake appears to have reached a maximum highstand altitude of 1330 m by 13,500 yr B.P., a condition that persisted until about 12,500 yr B.P., at which time lake level fell ???100 m. No data exist that indicate the level of lakes in the various subbasins between 12,000 and 10,000 yr B.P. During the Holocene, the Lahontan basin was the site of shallow lakes, with many subbasins being the site of one or more periods of desiccation. The shape of the lake-level curve for the three western subbasins indicates that past changes in the hydrologic balance (and hence climate) of the Lahontan basin were large in magnitude and took place in a rapid step-like manner. The rapid changes in lake level are hypothesized to have resulted from changes in the mean position of the jet stream, as it was forced north or south by the changing size and shape of the continental ice sheet. ?? 1987.

  5. A record of large earthquakes during the past two millennia on the southern Green Valley Fault, California

    Science.gov (United States)

    Lienkaemper, James J.; Baldwin, John N.; Turner, Robert; Sickler, Robert R.; Brown, Johnathan

    2013-01-01

    We document evidence for surface-rupturing earthquakes (events) at two trench sites on the southern Green Valley fault, California (SGVF). The 75-80-km long dextral SGVF creeps ~1-4 mm/yr. We identify stratigraphic horizons disrupted by upward-flowering shears and in-filled fissures unlikely to have formed from creep alone. The Mason Rd site exhibits four events from ~1013 CE to the Present. The Lopes Ranch site (LR, 12 km to the south) exhibits three events from 18 BCE to Present including the most recent event (MRE), 1610 ±52 yr CE (1σ) and a two-event interval (18 BCE-238 CE) isolated by a millennium of low deposition. Using Oxcal to model the timing of the 4-event earthquake sequence from radiocarbon data and the LR MRE yields a mean recurrence interval (RI or μ) of 199 ±82 yr (1σ) and ±35 yr (standard error of the mean), the first based on geologic data. The time since the most recent earthquake (open window since MRE) is 402 yr ±52 yr, well past μ~200 yr. The shape of the probability density function (pdf) of the average RI from Oxcal resembles a Brownian Passage Time (BPT) pdf (i.e., rather than normal) that permits rarer longer ruptures potentially involving the Berryessa and Hunting Creek sections of the northernmost GVF. The model coefficient of variation (cv, σ/μ) is 0.41, but a larger value (cv ~0.6) fits better when using BPT. A BPT pdf with μ of 250 yr and cv of 0.6 yields 30-yr rupture probabilities of 20-25% versus a Poisson probability of 11-17%.

  6. Remote sensing techniques for monitoring the Rio Grande Valley cotton stalk destruction program

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, A.J.; Gerbermann, A.H.; Summy, K.R.; Anderson, G.L. (Department of Agriculture, Weslaco, TX (United States))

    1993-09-01

    Post harvest cotton (Gossypium hirsutum L.) stalk destruction is a cultural practice used in the Rio Grande Valley to suppress over wintering populations of boll weevils (Anthonomus grandis Boheman) without using chemicals. Consistent application of this practice could substantially reduce insecticide usage, thereby minimizing environmental hazards and increasing cotton production profits. Satellite imagery registered within a geographic information system was used to monitor the cotton stalk destruction program in the Rio Grande Valley. We found that cotton stalk screening procedures based on standard multispectral classification techniques could not reliably distinguish cotton from sorghum. Greenness screening for cotton plant stalks after the stalk destruction deadline was possible only where ground observations locating cotton fields were available. These findings indicate that a successful cotton stalk destruction monitoring program will require satellite images and earth referenced data bases showing cotton field locations.

  7. Towards green loyalty: the influences of green perceived risk, green image, green trust and green satisfaction

    Science.gov (United States)

    Chrisjatmiko, K.

    2018-01-01

    The paper aims to present a comprehensive framework for the influences of green perceived risk, green image, green trust and green satisfaction to green loyalty. The paper also seeks to account explicitly for the differences in green perceived risk, green image, green trust, green satisfaction and green loyalty found among green products customers. Data were obtained from 155 green products customers. Structural equation modeling was used in order to test the proposed hypotheses. The findings show that green image, green trust and green satisfaction has positive effects to green loyalty. But green perceived risk has negative effects to green image, green trust and green satisfaction. However, green perceived risk, green image, green trust and green satisfaction also seems to be a good device to gain green products customers from competitors. The contributions of the paper are, firstly, a more complete framework of the influences of green perceived risk, green image, green trust and green satisfaction to green loyalty analyses simultaneously. Secondly, the study allows a direct comparison of the difference in green perceived risk, green image, green trust, green satisfaction and green loyalty between green products customers.

  8. Glaciation style and the geomorphological record: evidence for Younger Dryas glaciers in the eastern Lake District, northwest England

    Science.gov (United States)

    McDougall, Derek

    2013-08-01

    The Younger Dryas (c. 12,900-11,700 years ago) in Britain witnessed renewed glaciation, with the readvance of ice masses that had survived the preceding Lateglacial Interstadial as well as the formation of new glaciers. The extents of these former glaciers have been mapped by many workers over the past fifty years, usually as a basis for palaeoclimatic investigations. It has frequently been asserted that the landform record is sufficiently clear to allow accurate ice mass reconstructions at or near maximum extents. Detailed geomorphological mapping in the eastern Lake District in NW England, however, demonstrates that this confidence may not always be warranted. Whereas previous workers have interpreted the well-developed moraines that exist in some locations as evidence for an alpine-style of glaciation, with ice restricted to a small number of valleys, this study shows that the most recent glaciation to affect the area was characterised by: (i) extensive summit icefields, which supplied ice to the surrounding valleys; and (ii) a much greater volume of ice in the valleys than previously thought. The discovery that summit icefields were relatively common at this time is consistent with recent studies elsewhere in the Lake District and beyond. More significant, however, is the recognition that changing glacier-topographic interactions over both space and time appears to have had a profound impact on valley-floor glacial landform development, with the absence of clear moraines not necessarily indicating ice-free conditions at this time. This complicates glacier reconstructions based solely on the geomorphological record. Similar geomorphological complexity may be present in other areas that previously supported summit icefields, and this needs to be taken into account in glacier reconstructions.

  9. Late-Quaternary glacial to postglacial sedimentation in three adjacent fjord-lakes of the Québec North Shore (eastern Canadian Shield)

    Science.gov (United States)

    Poiré, Antoine G.; Lajeunesse, Patrick; Normandeau, Alexandre; Francus, Pierre; St-Onge, Guillaume; Nzekwe, Obinna P.

    2018-04-01

    High-resolution swath bathymetry imagery allowed mapping in great detail the sublacustrine geomorphology of lakes Pentecôte, Walker and Pasteur, three deep adjacent fjord-lakes of the Québec North Shore (eastern Canada). These sedimentary basins have been glacio-isostatically uplifted to form deep steep-sided elongated lakes. Their key geographical position and limnogeological characteristics typical of fjords suggest exceptional potential for long-term high-resolution paleoenvironmental reconstitutions. Acoustic subbottom profiles acquired using a bi-frequency Chirp echosounder (3.5 & 12 kHz), together with cm- and m-long sediment core data, reveal the presence of four acoustic stratigraphic units. The acoustic basement (Unit 1) represents the structural bedrock and/or the ice-contact sediments of the Laurentide Ice Sheet and reveals V-shaped bedrock valleys at the bottom of the lakes occupied by ice-loaded sediments in a basin-fill geometry (Unit 2). Moraines observed at the bottom of lakes and in their structural valleys indicate a deglaciation punctuated by short-term ice margin stabilizations. Following ice retreat and their isolation, the fjord-lakes were filled by a thick draping sequence of rhythmically laminated silts and clays (Unit 3) deposited during glaciomarine and/or glaciolacustrine settings. These sediments were episodically disturbed by mass-movements during deglaciation due to glacial-isostatic rebound. AMS 14C dating reveal that the transition between deglaciation of the lakes Pentecôte and Walker watersheds and the development of para- and post-glacial conditions occurred around 8000 cal BP. The development of the lake-head river delta plain during the Holocene provided a constant source of fluvial sediment supply to the lakes and the formation of turbidity current bedforms on the sublacustrine delta slopes. The upper sediment succession (i.e., ∼4-∼6.5 m) consists of a continuous para-to post-glacial sediment drape (Unit 4) that contains

  10. Water pollution and cyanobacteria's variation of rivers surrounding southern Taihu Lake, China.

    Science.gov (United States)

    Sun, Mingyang; Huang, Linglin; Tan, Lisha; Yang, Zhe; Baig, Shams Ali; Sheng, Tiantian; Zhu, Hong; Xu, Xinhua

    2013-05-01

    The water quality and cyanobacterial variation of rivers surrounding southern Taihu Lake, China were purposively monitored from 2008 to 2010. Trophic level index (TLI) was used to evaluate the trophic levels of southern Taihu Lake. Results showed a considerable decline in the monitored data compared with 2007, and the data showed downward trends year after year. The TLI decreased from 55.6 to 51.3, which implied that southern Taihu Lake was mildly eutrophic. The water quality and cyanobacterial variation indicated a positive response to the adopted control measures in the southern Taihu Lake basin, but the intra- and inter-annual variability was still quite varied. High concentrations of nitrogen and phosphorus typically lead to algae outbreaks, however, the cyanobacteria growth may result in a decline of the concentration of nitrogen and phosphorus. Temperature and other weather conditions are also important factors for algae outbreaks; the risk of blue-green algal blooms still persists.

  11. 3D View of Death Valley, California

    Science.gov (United States)

    2000-01-01

    This 3-D perspective view looking north over Death Valley, California, was produced by draping ASTER nighttime thermal infrared data over topographic data from the US Geological Survey. The ASTER data were acquired April 7, 2000 with the multi-spectral thermal infrared channels, and cover an area of 60 by 80 km (37 by 50 miles). Bands 13, 12, and 10 are displayed in red, green and blue respectively. The data have been computer enhanced to exaggerate the color variations that highlight differences in types of surface materials. Salt deposits on the floor of Death Valley appear in shades of yellow, green, purple, and pink, indicating presence of carbonate, sulfate, and chloride minerals. The Panamint Mtns. to the west, and the Black Mtns. to the east, are made up of sedimentary limestones, sandstones, shales, and metamorphic rocks. The bright red areas are dominated by the mineral quartz, such as is found in sandstones; green areas are limestones. In the lower center part of the image is Badwater, the lowest point in North America.Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, Calif., is the U.S. Science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface.The broad spectral coverage and high spectral resolution of ASTER will provide

  12. Rift Valley fever virus seroprevalence in human rural populations of Gabon.

    Directory of Open Access Journals (Sweden)

    Xavier Pourrut

    Full Text Available BACKGROUND: Rift Valley fever (RVF is a mosquito-borne viral zoonosis caused by a phlebovirus and transmitted by Aedes mosquitoes. Humans can also be infected through direct contact with blood (aerosols or tissues (placenta, stillborn of infected animals. Although severe clinical cases can be observed, infection with RVF virus (RVFV in humans is, in most cases, asymptomatic or causes a febrile illness without serious symptoms. In small ruminants RVFV mainly causes abortion and neonatal death. The distribution of RVFV has been well documented in many African countries, particularly in the north (Egypt, Sudan, east (Kenya, Tanzania, Somalia, west (Senegal, Mauritania and south (South Africa, but also in the Indian Ocean (Madagascar, Mayotte and the Arabian Peninsula. In contrast, the prevalence of RVFV has rarely been investigated in central African countries. METHODOLOGY/PRINCIPAL FINDINGS: We therefore conducted a large serological survey of rural populations in Gabon, involving 4,323 individuals from 212 randomly selected villages (10.3% of all Gabonese villages. RVFV-specific IgG was found in a total of 145 individuals (3.3% suggesting the wide circulation of Rift Valley fever virus in Gabon. The seroprevalence was significantly higher in the lakes region than in forest and savannas zones, with respective rates of 8.3%, 2.9% and 2.2%. In the lakes region, RVFV-specific IgG was significantly more prevalent in males than in females (respectively 12.8% and 3.8% and the seroprevalence increased gradually with age in males but not in females. CONCLUSIONS/SIGNIFICANCE: Although RVFV was suggested to circulate at a relatively high level in Gabon, no outbreaks or even isolated cases have been documented in the country. The higher prevalence in the lakes region is likely to be driven by specific ecologic conditions favorable to certain mosquito vector species. Males may be more at risk of infection than females because they spend more time farming and

  13. Dynamics of biogeochemical sulfur cycling in Mono Lake

    Science.gov (United States)

    Phillips, A. A.; Fairbanks, D.; Wells, M.; Fullerton, K. M.; Bao, R.; Johnson, H.; Speth, D. R.; Stamps, B. W.; Miller, L.; Sessions, A. L.

    2017-12-01

    Mono Lake, California is a closed-basin soda lake (pH 9.8) with high sulfate (120mM), and is an ideal natural laboratory for studying microbial sulfur cycling. Mono Lake is typically thermally stratified in summer while mixing completely in winter. However, large snowmelt inputs may induce salinity stratification that persists for up to five years, causing meromixis. During the California drought of 2014-16, the lake has mixed thoroughly each winter, but the abundant 2017 snowmelt may usher in a multi-year stratification. This natural experiment provides an opportunity to investigate the temporal relationship between microbial sulfur cycling and lake biogeochemistry. We analyzed water samples from five depths at two stations in May of 2017, before the onset of meromixis. Water column sulfate isotope values were generally constant with depth, centering at a δ34SVCDT of 17.39 ± 0.06‰. Organic sulfur isotopes were consistently lighter than lake sulfate, with a δ34SVCDT of 15.59 ± 0.56‰. This significant offset between organic and inorganic sulfur contradicts the minimal isotope effect associated with sulfate assimilation. Sediment push core organic values were further depleted, ranging between δ34SVCDT of -8.94‰ and +0.23‰, implying rapid turnover of Mono Lake sulfur pools. Both lipid biomarkers and 16S rRNA gene amplicons identify Picocystis salinarum, a unicellular green alga, as the dominant member of the microbial community. However, bacterial biomarkers and 16S rRNA genes point to microbes capable of sulfur cycling. We found that dsrA increased with depth (R2 = 0.9008, p reducers and sulfide oxidizers after >1 year of stratification. We saw no evidence in May of 2017 of sulfate reducing bacteria across the oxycline. Additionally, no sulfide was detectable in lake bottom waters despite oxygen below 6.25 µM. Preliminary results suggest a dynamic interplay between sulfide oxidation, sulfate reduction, and the onset of lake stratification. Additional

  14. The Wintertime Covariation of CO2 and Criteria Pollutants in an Urban Valley of the Western United States

    Science.gov (United States)

    Bares, Ryan; Lin, John C.; Hoch, Sebastian W.; Baasandorj, Munkhbayar; Mendoza, Daniel L.; Fasoli, Ben; Mitchell, Logan; Catharine, Douglas; Stephens, Britton B.

    2018-03-01

    Numerous mountain valleys experience wintertime particulate pollution events, when persistent cold air pools (PCAPs) develop and inhibit atmospheric mixing, leading to the accumulation of pollutants. Here we examine the relationships between trace gases and criteria pollutants during winter in Utah's Salt Lake Valley, in an effort to better understand the roles of transport versus chemical processes during differing meteorological conditions as well as insights into how targeted reductions in greenhouse gases will impact local air quality in varying meteorological conditions. CO2 is a chemically inert gas that is coemitted during fossil fuel combustion with pollutants. Many of these coemitted pollutants are precursors that react chemically to form secondary particulate matter. Thus, CO2 can serve as a stable tracer and potentially help distinguish transport versus chemical influences on pollutants. During the winter of 2015-2016, we isolated enhancements in CO2 over baseline levels due to urban emissions ("CO2ex"). CO2ex was paired with similar excesses in other pollutant concentrations. These relationships were examined during different wintertime conditions and stages of pollution episodes: (a) Non-PCAP, (b) beginning, and (c) latter stages of an episode. We found that CO2ex is a good indicator of the presence of gaseous criteria pollutants and a reasonable indicator of PM2.5. Additionally, the relationships between CO2ex and criteria pollutants differ during different phases of PCAP events which provide insight into meteorological and transport processes. Lastly, we found a slight overestimation of CO:CO2 emission ratios and a considerable overestimation of NOx:CO2 by existing inventories for the Salt Lake Valley.

  15. LIMNOLOGY, LAKE BASINS, LAKE WATERS

    Directory of Open Access Journals (Sweden)

    Petre GÂŞTESCU

    2009-06-01

    Full Text Available Limnology is a border discipline between geography, hydrology and biology, and is also closely connected with other sciences, from it borrows research methods. Physical limnology (the geography of lakes, studies lake biotopes, and biological limnology (the biology of lakes, studies lake biocoenoses. The father of limnology is the Swiss scientist F.A. Forel, the author of a three-volume entitled Le Leman: monographie limnologique (1892-1904, which focuses on the geology physics, chemistry and biology of lakes. He was also author of the first textbook of limnology, Handbuch der Seenkunde: allgemeine Limnologie,(1901. Since both the lake biotope and its biohydrocoenosis make up a single whole, the lake and lakes, respectively, represent the most typical systems in nature. They could be called limnosystems (lacustrine ecosystems, a microcosm in itself, as the American biologist St.A. Forbes put it (1887.

  16. Wild food plants used by the Tibetans of Gongba Valley (Zhouqu county, Gansu, China)

    Science.gov (United States)

    2014-01-01

    Background The ethnobotany of Tibetans is a seriously under-studied topic. The aim of the study was to investigate knowledge and use of wild food plants in a valley inhabited by Tibetans in the Gannan Tibetan Autonomous Region. Methods The field research was carried out in a wooded mountain valley in 9 neighbouring villages the Zhouqu (Brugchu) county, and comprised 17 interviews with single informants and 14 group interviews, involving 122 people altogether. Results We recorded the use of 81 species of vascular plants from 41 families. Fruits formed the largest category, with 42 species, larger than the wild greens category, with 36 species. We also recorded the culinary use of 5 species of edible flowers, 7 species with underground edible organs and 5 taxa of fungi. On average, 16.2 edible taxa were listed per interview (median – 16). Green vegetables formed the largest category of wild foods (mean – 8.7 species, median – 9 species), but fruits were listed nearly as frequently (mean – 6.9, median – 6). Other categories were rarely mentioned: flowers (mean – 0.2, median – 0), underground edible parts (mean – 0.3, median – 0) and mushrooms (mean – 1.5, – median 1). Wild vegetables are usually boiled and/or fried and served as side-dishes (cai). They are often lacto-fermented. Wild fruits are mainly collected by children and eaten raw, they are not stored for further use. The most widely used wild vegetables are: Eleuterococcus spp., Pteridium aquilinum, Helwingia japonica, Aralia chinensis, Allium victorialis, Pteridium aquilinum, Ixeris chinensis, Thlaspi arvense and Chenopodium album. The culinary use of Caltha palustris as a green vegetable is very interesting. In its raw state, marsh marigold is a toxic plant, due to the presence of protoanemonin. In this area it is dried or lactofermented before use. The most commonly eaten fruits are: Pyrus xerophila, Prunus salicina, Berchemia sinica, Rubus spp. and Eleagnus umbellata. Conclusions The

  17. Perspective View with Landsat Overlay, Lakes Managua and Nicaragua

    Science.gov (United States)

    2002-01-01

    This perspective view shows Lakes Managua and Nicaragua near the Pacific coast of Nicaragua. Lake Managua is the 65-kilometer (40-mile)-long fresh water lake in the foreground of this south-looking view, emptying via the Tipitapa River into the much larger Lake Nicaragua in the distance. The capital city of Managua, with a population of more than 500,000, is located along the southern shore of Lake Managua, the area with the highest population density in Nicaragua.The physical setting of Lake Managua is dominated by the numerous volcanic features aligned in a northwest-southeast axis. The cone-like feature in the foreground is Momotombo, a 1,280-meter (4,199-foot)-high stratovolcano located on the northwest end of the lake. Two water-filled volcanic craters (Apoyegue and Jiloa volcanoes) reside on the Chiltepe Peninsula protruding into the lake from the west. Two volcanoes can also be seen on the island of Ometepe in Lake Nicaragua: El Maderas rising to 1,394 meters (4,573 feet) and the active El Conception at 1,610 meters (5,282 feet).This three-dimensional perspective view was generated using topographic data from the Shuttle Radar Topography Mission (SRTM) and an enhanced false-color Landsat 7 satellite image. Colors are from Landsat bands 5, 4, and 2 as red, green and blue, respectively. Topographic expression is exaggerated two times.Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter resolution of most Landsat images and will substantially help in analyses of the large and growing Landsat image archive. The Landsat 7 Thematic Mapper image used here was provided to the SRTM by the United States Geological Survey, Earth Resources Observation Systems (EROS) Data Center, Sioux Falls, S.D.Elevation data used in this image was acquired by the SRTM aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar

  18. The Location of Lake Titicaca's Coastal Area During the Tiwanaku and Inca Periods: Methodology and Strategies of Underwater Archaeology

    Science.gov (United States)

    Delaere, Christophe

    2017-12-01

    For more than 30 years, numerous research projects have revealed the dense and complex human settlement of the lacustrine basin of Lake Titicaca in Bolivia and Peru. Physical evidence of such establishments has been discovered in plains, valleys, and highlands connected to the lake. These remains confirm human occupation and development in this environment, particularly during the Tiwanaku (AD 500-1150) and Inca (AD 1400-1532) Periods. The research project discussed in this paper includes consideration of submerged areas through underwater archaeology. This investigation involves analysis of two areas that have evidence of ancient human occupation but are poorly documented: the coastal and lacustrine regions. Due to its dominance in the landscape, Lake Titicaca has always been a major feature in the life and identity of populations of this vicinity. These inhabitants have developed socio-economic and ritual behaviours directly associated with the lake that have left cultural and material prints that are the foci of the present study.

  19. Evaluation of Agricultural Crops Water Footprint with Application of Climate Change in Urmia Lake basin

    Directory of Open Access Journals (Sweden)

    majid montaseri

    2017-02-01

    Full Text Available Introduction: The water footprint index as a complete indicator represents the actual used water in agriculture based on the climate condition, the amount of crop production, the people consumption pattern, the agriculture practices and water efficiency in any region. The water footprint in agricultural products is divided to three components, including green, blue and gray water footprint. Green water footprint is rainwater stored in soil profile and on vegetation. Blue water refers to water in rivers, lakes and aquifers which is used for irrigation purposes. Gray water footprint refers to define as the volume of contaminated water. The water footprint in arid and semiarid regions with high water requirement for plants and limited fresh water resources has considerable importance and key role in the planning and utilization of limited water resources in these regions. On the other hand, increasing the temperature and decreasing the rainfall due to climate change, are two agents which affect arid and semiarid regions. Therefore, in this research the water footprint of agriculturalcrop production in Urmia Lake basin, with application of climate change for planning, stable operating and crop pattern optimizing, was evaluated to reduce agricultural water consumption and help supplying water rights of Urmia Lake. Materials and Methods:Urmia Lake basin, as one of the main sextet basins in Iran, is located in the North West of Iran and includes large sections of West Azerbaijan, East Azerbaijan and Kurdistan areas. Thirteen major rivers are responsible to drain surface streams in Urmia Lake basin and these rivers after supplying agriculture and drinking water and residential areas in the flow path, are evacuated to the Lake. Today because of non-observance of sustainable development concept, increasing water use in different parts and climate change phenomena in Urmia Lake basin the hydrologic balance was perturbed, and Urmia Lake has been lost 90% of

  20. Valley polarization in bismuth

    Science.gov (United States)

    Fauque, Benoit

    2013-03-01

    The electronic structure of certain crystal lattices can contain multiple degenerate valleys for their charge carriers to occupy. The principal challenge in the development of valleytronics is to lift the valley degeneracy of charge carriers in a controlled way. In bulk semi-metallic bismuth, the Fermi surface includes three cigar-shaped electron valleys lying almost perpendicular to the high symmetry axis known as the trigonal axis. The in-plane mass anisotropy of each valley exceeds 200 as a consequence of Dirac dispersion, which drastically reduces the effective mass along two out of the three orientations. According to our recent study of angle-dependent magnetoresistance in bismuth, a flow of Dirac electrons along the trigonal axis is extremely sensitive to the orientation of in-plane magnetic field. Thus, a rotatable magnetic field can be used as a valley valve to tune the contribution of each valley to the total conductivity. As a consequence of a unique combination of high mobility and extreme mass anisotropy in bismuth, the effect is visible even at room temperature in a magnetic field of 1 T. Thus, a modest magnetic field can be used as a valley valve in bismuth. The results of our recent investigation of angle-dependent magnetoresistance in other semi-metals and doped semiconductors suggest that a rotating magnetic field can behave as a valley valve in a multi-valley system with sizeable mass anisotropy.

  1. SHINING LIGHT ON MERGING GALAXIES. I. THE ONGOING MERGER OF A QUASAR WITH A 'GREEN VALLEY' GALAXY

    International Nuclear Information System (INIS)

    Da Silva, Robert L.; Xavier Prochaska, J.; Rosario, David; Tumlinson, Jason; Tripp, Todd M.

    2011-01-01

    Serendipitous observations of a pair z = 0.37 interacting galaxies (one hosting a quasar) show a massive gaseous bridge of material connecting the two objects. This bridge is photoionized by the quasar (QSO), revealing gas along the entire projected 38 h -1 70 kpc sightline connecting the two galaxies. The emission lines that result give an unprecedented opportunity to study the merger process at this redshift. We determine the kinematics, ionization parameter (log U ∼ -2.5 ± 0.03), column density (N H,perpendicular ∼ 10 21 cm -2 ), metallicity ([M/H] ∼ - 0.20 ± 0.15), and mass (∼10 8 M sun ) of the gaseous bridge. We simultaneously constrain properties of the QSO host (M DM > 8.8 x 10 11 M sun ) and its companion galaxy (M DM > 2.1 x 10 11 M sun ; M * ∼ 2 x 10 10 M sun ; stellar burst age = 300-800 Myr; SFR ∼6 M sun yr -1 ; and metallicity 12 + log (O/H) = 8.64 ± 0.2). The general properties of this system match the standard paradigm of a galaxy-galaxy merger caught between first and second passages while one of the galaxies hosts an active quasar. The companion galaxy lies in the so-called green valley, with a stellar population consistent with a recent starburst triggered during the first passage of the merger and has no discernible active galactic nucleus activity. In addition to providing case studies of quasars associated with galaxy mergers, quasar/galaxy pairs with QSO-photoionized tidal bridges such as this one offer unique insights into the galaxy properties while also distinguishing an important and inadequately understood phase of galaxy evolution.

  2. Carbon dioxide dynamics in a lake and a reservoir on a tropical island (Bali, Indonesia).

    Science.gov (United States)

    Macklin, Paul A; Suryaputra, I Gusti Ngurah Agung; Maher, Damien T; Santos, Isaac R

    2018-01-01

    Water-to-air carbon dioxide fluxes from tropical lakes and reservoirs (artificial lakes) may be an important but understudied component of global carbon fluxes. Here, we investigate the seasonal dissolved carbon dioxide (CO2) dynamics in a lake and a reservoir on a tropical volcanic island (Bali, Indonesia). Observations were performed over four seasonal surveys in Bali's largest natural lake (Lake Batur) and largest reservoir (Palasari Reservoir). Average CO2 partial pressures in the natural lake and reservoir were 263.7±12.2 μatm and 785.0±283.6 μatm respectively, with the highest area-weighted partial pressures in the wet season for both systems. The strong correlations between seasonal mean values of dissolved oxygen (DO) and pCO2 in the natural lake (r2 = 0.92) suggest that surface water metabolism was an important driver of CO2 dynamics in this deep system. Radon (222Rn, a natural groundwater discharge tracer) explained up to 77% of the variability in pCO2 in the shallow reservoir, suggesting that groundwater seepage was the major CO2 driver in the reservoir. Overall, the natural lake was a sink of atmospheric CO2 (average fluxes of -2.8 mmol m-2 d-1) while the reservoir was a source of CO2 to the atmosphere (average fluxes of 7.3 mmol m-2 d-1). Reservoirs are replacing river valleys and terrestrial ecosystems, particularly throughout developing tropical regions. While the net effect of this conversion on atmospheric CO2 fluxes remains to be resolved, we speculate that reservoir construction will partially offset the CO2 sink provided by deep, volcanic, natural lakes and terrestrial environments.

  3. Anaerobic Psychrophiles from Lake Zub and Lake Untersee, Antarctica

    Science.gov (United States)

    Townsend, Alisa; Pikuta, Elena V.; Guisler, Melissa; Stahl, Sarah; Hoover, Richard B.

    2009-01-01

    The study of samples from Antarctica 2008 and 2009 expeditions organized and successfully conducted by Richard Hoover led to the isolation of diverse anaerobic strains with psychrotolerant and psychrophilic physiology. Due to the fact that Lake Untersee has never been subject to microbiological study, this work with the samples has significant and pioneering impact to the knowledge about the biology of this unique ecosystem. Also, the astrobiological significance for the study of these ecosystems is based on new findings of ice covered water systems on other bodies of our solar system. Anaerobic psychrotolerant strain LZ-22 was isolated from a frozen sample of green moss with soils around the rhizosphere collected near Lake Zub in Antarctica. Morphology of strain LZ-22 was observed to be motile, rod shaped and spore-forming cells with sizes 1 x 5-10 micron. This new isolate is a mesophile with the maximum temperature of growth at 40C. Strain LZ-22 is able to live on media without NaCl and in media with up to 7% (w/v) NaCl. It is catalase negative and grows only on sugars with the best growth rate being on lactose. The strain is a neutrophile and grows between pH 5 and 9.0 with the optimum at 7.8. Another two strains UL7-96mG and LU-96m7P were isolated from deep water samples of Lake Untersee. Proteolytic strain LU-96m7P had a truly psychrophilic nature and refused to grow at room temperature. Sugarlytic strain UL7-96mG was found to be psychrotolerant, but its rate of growth at 3C was very high compared with other mesophiles. Two homoacetogenic psychrophilic strains A7AC-96m and AC-DS7 were isolated and purified from samples of Lake Untersee; both of them are able to grow chemolithotrophically on H2+CO2. In the presence of lactate, these strains are able to grow only at 0-18C, and growth at 22C was observed only with yeast extract stimulation. In this paper, physiological and morphological characteristics of novel psychrophilic and psychrotolerant isolates from

  4. Exploring the role of green and blue infrastructure in reducing temperature in Iskandar Malaysia using remote sensing approach

    International Nuclear Information System (INIS)

    Kanniah, K D; Sheikhi, A; Kang, C S

    2014-01-01

    Development of cities has led to various environmental problems as a consequence of non sustaibale town planning. One of the strategies to make cities a livable place and to achieve low levels of CO 2 emissions (low carbon cities or LCC) is the integration of the blue and green infrastructure into the development and planning of new urban areas. Iskandar Malaysia (IM) located in the southern part of Malaysia is a special economic zone that has major urban centres. The planning of these urban centres will incorporate LCC strategies to achieve a sustainable development. The role of green (plants) and blue bodies (lakes and rivers) in moderating temperature in IM have been investigated in the current study. A remotely sensed satellite imagery was used to calculate the vegetation density and land surface temperature (LST). The effect of lakes in cooling the surrounding temperature was also investigated. Results show that increasing vegetation density by 1% can decrease the LST by 0.09°C. As for the water bodies we found as the distance increased from the lake side the temperature also increased about 1.7°C and the reduction in air humidity is 9% as the distance increased to 100 meter away from the lake

  5. Geology, selected geophysics, and hydrogeology of the White River and parts of the Great Salt Lake Desert regional groundwater flow systems, Utah and Nevada

    Science.gov (United States)

    Rowley, Peter D.; Dixon, Gary L.; Watrus , James M.; Burns, Andrews G.; Mankinen, Edward A.; McKee, Edwin H.; Pari, Keith T.; Ekren, E. Bartlett; Patrick , William G.; Comer, John B.; Inkenbrandt, Paul C.; Krahulec, K.A.; Pinnell, Michael L.

    2016-01-01

    The east-central Great Basin near the Utah-Nevada border contains two great groundwater flow systems. The first, the White River regional groundwater flow system, consists of a string of hydraulically connected hydrographic basins in Nevada spanning about 270 miles from north to south. The northernmost basin is Long Valley and the southernmost basin is the Black Mountain area, a valley bordering the Colorado River. The general regional groundwater flow direction is north to south. The second flow system, the Great Salt Lake Desert regional groundwater flow system, consists of hydrographic basins that straddle

  6. Uranium favorability of tertiary sedimentary rocks of the western Okanogan highlands and of the upper Columbia River valley, Washington

    International Nuclear Information System (INIS)

    Marjaniemi, D.K.; Robins, J.W.

    1975-08-01

    Tertiary sedimentary rocks in the northern portions of the western Okanogan highlands and in the upper Columbia River valley were investigated during a regional study to determine the favorability for potential uranium resources of the Tertiary sedimentary rocks of northeastern Washington. This project involved measurement and sampling of surface sections, collection of samples from isolated outcrops, and chemical and mineralogical analyses of samples. No portion of the project area of this report is rated of high or of medium favorability for potential uranium resources. Low favorability ratings are given to Oroville, Tonasket, and Pine Creek areas of the Okanogan River valley; to the Republic graben; and to the William Lakes, Colville, and Sheep Creek areas of the upper Columbia River valley. All these areas contain some fluvial, poorly sorted feldspathic or arkosic sandstones and conglomerates. These rocks are characterized by very low permeability and a consistently high siliceous matrix suggesting very low initial permeability. There are no known uranium deposits in any of these areas, and low level uranium anomalies are rare

  7. Late Quaternary loess-like paleosols and pedocomplexes, geochemistry, provenance and source area weathering, Manasbal, Kashmir Valley, India

    Science.gov (United States)

    Babeesh, C.; Achyuthan, Hema; Jaiswal, Manoj Kumar; Lone, Aasif

    2017-05-01

    The late Quaternary loess and loess-like deposits in Kashmir Valley are natural archives that have preserved paleoclimate and paleoenvironmental records of the region. We present a loess-like paleosol located along the margin of the Manasbal Lake, Ganderbal, which was studied in detail for understanding the pedological processes and reconstructing the late Quaternary soil formation. In this paper we present loess-like paleosol formation of a nearly 10.6 m thick sequence exposed along the margin of Manasbal Lake, Ganderbal District, Srinagar, Kashmir. Geochemical and textural data of this loess-like sedimentary sequence fluctuate reflecting the varied depositional processes operating in the valley, differential intensity of weathering, and processes of pedogenesis. Weathering indices such as chemical index of alteration, chemical index of weathering, and plagioclase index of alteration reveal weak to moderate weathering of the parent material. Provenance discrimination diagrams of the present study disclose that the Manasbal loess-like paleosol sediments are derived from the mixed source rocks suggesting a variety of provenance with variable geological settings, which apparently have undergone weak to moderate recycling processes. The Manasbal paleosol horizons have been dated by the optically stimulated luminescence (OSL) method to the marine isotope stages mid-MIS-3 (41.7 ± 8.0 ka) and late-MIS-2 (14.6 ± 3.8 ka). During the MIS-3 period, the climate was wetter, forming a strong AhBtk paleosol as inferred from the geochemical data. A steady increase in the CaCO3 content and C/N ratio in the paleosols from 6.50 m (MIS-3) indicates arid and drier climatic conditions. The area around Manasbal Lake incised because of climate change and neotectonic activity since post-14 ka.

  8. Decadal-scale changes in dissolved-solids concentrations in groundwater used for public supply, Salt Lake Valley, Utah

    Science.gov (United States)

    Thiros, Susan A.; Spangler, Larry

    2010-01-01

    Basin-fill aquifers are a major source of good-quality water for public supply in many areas of the southwestern United States and have undergone increasing development as populations have grown over time. During 2005, the basin-fill aquifer in Salt Lake Valley, Utah, provided approximately 75,000 acre-feet, or about 29 percent of the total amount of water used by a population of 967,000. Groundwater in the unconsolidated basin-fill deposits that make up the aquifer occurs under unconfined and confined conditions. Water in the shallow unconfined part of the groundwater system is susceptible to near-surface contamination and generally is not used as a source of drinking water. Groundwater for public supply is withdrawn from the deeper unconfined and confined parts of the system, termed the principal aquifer, because yields generally are greater and water quality is better (including lower dissolved-solids concentrations) than in the shallower parts of the system. Much of the water in the principal aquifer is derived from recharge in the adjacent Wasatch Range (mountain-block recharge). In many areas, the principal aquifer is separated from the overlying shallow aquifer by confining layers of less permeable, fine-grained sediment that inhibit the downward movement of water and any potential contaminants from the surface. Nonetheless, under certain hydrologic conditions, human-related activities can increase dissolved-solids concentrations in the principal aquifer and result in groundwater becoming unsuitable for consumption without treatment or mixing with water having lower dissolved-solids concentrations. Dissolved-solids concentrations in areas of the principal aquifer used for public supply typically are less than 500 milligrams per liter (mg/L), the U.S. Environmental Protection Agency (EPA) secondary (nonenforceable) drinking-water standard. However, substantial increases in dissolved-solids concentrations in the principal aquifer have been documented in some

  9. Reconstruction of a glacial lake outburst flood (GLOF) in the Engaño Valley, Chilean Patagonia: Lessons for GLOF risk management.

    Science.gov (United States)

    Anacona, Pablo Iribarren; Mackintosh, Andrew; Norton, Kevin

    2015-09-15

    Floods from moraine-dammed lake failures can have long standing effects not only on riverine landscapes but also on mountain communities due to the high intensity (i.e. great depth and high velocities) and damaging capacity of glacial lake outburst floods (GLOFs). GLOFs may increase in frequency as glaciers retreat and new lakes develop and there is an urgent need to better understand GLOF dynamics and the measures required to reduce their negative outcomes. In Patagonia at least 16 moraine-dammed lakes have failed in historic time, however, data about GLOF dynamics and impacts in this region are limited. We reconstruct a GLOF that affected a small village in Chilean Patagonia in March 1977, by semi structured interviews, interpretation of satellite images and 2D hydraulic modelling. This provides insight into the GLOF dynamics and the planning issues that led to socioeconomic consequences, which included village relocation. Modelling shows that the water released by the GLOF was in the order of 12-13 × 10(6)m(3) and the flood lasted for about 10h, reaching a maximum depth of ~1.5m in Bahía Murta Viejo, ~ 26 km from the failed lake. The lake had characteristics in common with failed lakes worldwide (e.g. the lake was in contact with a retreating glacier and was dammed by a narrow-steep moraine). The absence of land-use planning and the unawareness of the GLOF hazard contributed to the village flooding. The Río Engaño GLOF illustrates how small-scale and short-distance migration is a reasonable coping strategy in response to a natural hazard that may increase in frequency as atmospheric temperature rises and glaciers retreat. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Reconstructing the evolution of Lake Bonney, Antarctica using dissolved noble gases

    International Nuclear Information System (INIS)

    Warrier, Rohit B.; Clara Castro, M.; Hall, Chris M.; Kenig, Fabien; Doran, Peter T.

    2015-01-01

    Highlights: • Estimated water ages using dissolved crustal 4 He and 40 Ar excesses in Lake Bonney (LB). • 4 He and 40 Ar excesses identify addition of subglacial discharge from Taylor Glacier. • Numerous factors capable of affecting water residence times are evaluated. • Maximum 4 He, 40 Ar ages in West LB of 250 kyrs; maximum 4 He age in East LB 27 kyrs. • Established chronology appears to correspond to regional and global climatic events. - Abstract: Lake Bonney (LB), located in Taylor valley, Antarctica, is a perennially ice-covered lake with two lobes, West Lake Bonney (WLB) and East Lake Bonney (ELB), which are separated by a narrow ridge. Numerous studies have attempted to reconstruct the evolution of LB because of its sensitivity to climatic variations and the lack of reliable millennial-scale continental records of climate in this region of Antarctica. However, these studies are limited by the availability of accurate lacustrine chronologies. Here, we attempt to better constrain the chronology of LB and thus, the evolution of past regional climate by estimating water residence times based on He, Ne and Ar concentrations and isotopic ratios in both WLB and ELB. 3 He and 4 He excesses up to two and three orders of magnitude and 35–150 times the atmospheric values are observed for WLB and ELB samples, respectively. In comparison, while measured 40 Ar/ 36 Ar ratios are atmospheric (∼295.5) in ELB, WLB samples display 40 Ar/ 36 Ar ratios of up to ∼315 reflecting addition of radiogenic 40 Ar. Both 4 He and 40 Ar excesses clearly identify the addition of subglacial discharge (SGD) from underneath Taylor Glacier into WLB at depths of 25 m and 35 m. He isotopic ratios suggest that He excesses are predominantly crustal (>93%) in origin with small mantle contributions (<7%). These crustal 4 He and 40 Ar excesses are used together with basement rock production rates of these isotopes to derive first-order approximations of water residence times for both

  11. The influence of south Foehn on the ozone distribution in the Alpine Rhine valley - results from the MAP field phase

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, K.; Maurer, H.; Rau, G. [Central Institute for Meteorology and Geodynamics, Vienna (AT)] (and others)

    2001-07-01

    During the Mesoscale Alpine Programme (MAP) special observation period (SOP) between 7 September and 15 November 1999, ground-based and airborne measurements have been conducted in the Rhine valley south of the Lake of Constance to investigate the unstationary aspects of Foehn and related phenomena, like the impact of Foehn on the ozone concentrations in the valley. Foehn events occurred with above-average frequency and high diversity. Foehn induced ozone peaks in October and November are found to be much lower than the September Foehn case of the period. An inversion layer in the lake area with ozone concentrations below 10ppb often shields the monitoring stations from the Foehn air aloft. Trajectory calculations for the Foehn period between 19 and 24 October 1999 reveal that the Foehn air originated from below 1 to 1.5km above the Po Basin and the Mediterranean Sea. Tethered balloon soundings in the source area south of the Alps, ozone measurements at the mountain station Jungfraujoch (3580m a.s.l.) and airborne measurements across the Alpine crests reveal that the ozone levels found in the Foehn air correspond to the concentrations just above the mixing height in the Po Basin and are transported across the Alpine crest within the lowest flow layer. (author)

  12. An intimate understanding of place: Charles Sauriol and Toronto’s Don River Valley, 1927-1989.

    Science.gov (United States)

    Bonnell, Jennifer

    2011-01-01

    Every summer from 1927 to 1968, Toronto conservationist Charles Sauriol and his family moved from their city home to a rustic cottage just a few kilometres away, within the urban wilderness of Toronto’s Don River Valley. In his years as a cottager, Sauriol saw the valley change from a picturesque setting of rural farms and woodlands to an increasingly threatened corridor of urban green space. His intimate familiarity with the valley led to a lifelong quest to protect it. This paper explores the history of conservation in the Don River Valley through Sauriol’s experiences. Changes in the approaches to protecting urban nature, I argue, are reflected in Sauriol’s personal experience – the strategies he employed, the language he used, and the losses he suffered as a result of urban planning policies. Over the course of Sauriol’s career as a conservationist, from the 1940s to the 1990s, the river increasingly became a symbol of urban health – specifically, the health of the relationship between urban residents and the natural environment upon which they depend. Drawing from a rich range of sources, including diary entries, published memoirs, and unpublished manuscripts and correspondence, this paper reflects upon the ways that biography can inform histories of place and better our understanding of individual responses to changing landscapes.

  13. Pliocene and pleistocene hominid-bearing sites from west of lake turkana, kenya.

    Science.gov (United States)

    Harris, J M; Brown, F H; Leakey, M G; Walker, A C; Leakey, R E

    1988-01-01

    Pliocene and Pleistocene fossil localities near the western shoreline of Lake Turkana, ranging in age between 1 million and 3.5 million years in age, have produced important new hominid specimens including most of a Homo erectus skeleton and a relatively complete early robust australopithecine cranium. The lacustrine, fluviatile, and terrestrial strata are designated the Nachukui Formation, which is subdivided into eight members. The distribution of sedimentary facies within the Nachukui Formation suggests that, as today, the Labur and Murua Rith ranges formed the western margin of the basin and were drained by eastward-flowing rivers that fed into the forerunner of the present lake or a major river system. There is also stratigraphic evidence for tectonic movement during the deposition of these sediments. Twenty-three of the tuffs observed in the succession occur also in the Koobi Fora Formation east of the lake and in the Shungura Formation of the lower Omo Valley and permit precise correlation among these three localities. Fortyseven fossiliferous sites from West Turkana have yielded more than 1000 specimens of 93 mammalian species. The mammalian fossils represent nine sequential assemblages that augment information about faunal and environmental change from elsewhere in the basin.

  14. Glacial lake monitoring in the Karakoram Range using historical Landsat Thematic Mapper archive (1982 - 2014)

    Science.gov (United States)

    Chan, J. Y. H.; Kelly, R. E. J.; Evans, S. G.

    2014-12-01

    Glacierized regions are one of the most dynamic land surface environments on the planet (Evans and Delaney, In Press). They are susceptible to various types of natural hazards such as landslides, glacier avalanches, and glacial lake outburst floods (GLOF). GLOF events are increasingly common and present catastrophic flood hazards, the causes of which are sensitive to climate change in complex high mountain topography (IPCC, 2013). Inundation and debris flows from GLOF events have repeatedly caused significant infrastructure damages and loss of human lives in the high mountain regions of the world (Huggel et al, 2002). The research is designed to develop methods for the consistent detection of glacier lakes formation during the Landsat Thematic Mapper (TM) era (1982 - present), to quantify the frequency of glacier lake development and estimate lake volume using Landsat imagery and digital elevation model (DEM) data. Landsat TM scenes are used to identify glacier lakes in the Shimshal and Shaksgam valley, particularly the development of Lake Virjeab in year 2000 and Kyagar Lake in 1998. A simple thresholding technique using Landsat TM infrared bands, along with object-based segmentation approaches are used to isolate lake extent. Lake volume is extracted by intersecting the lake extent with the DEM surface. Based on previous studies and DEM characterization in the region, Shuttle Radar Topography Mission (SRTM) DEM is preferred over Advanced Spaceborne Thermal Emission and Reflection (ASTER) GDEM due to higher accuracy. Calculated errors in SRTM height estimates are 5.81 m compared with 8.34 m for ASTER. SRTM data are preferred because the DEM measurements were made over short duration making the DEM internally consistent. Lake volume derived from the Landsat TM imagery and DEM are incorporated into a simple GLOF model identified by Clague and Matthews (1973) to estimate the potential peak discharge (Qmax) of a GLOF event. We compare the simple Qmax estimates with

  15. Catastrophic valley fills record large Himalayan earthquakes, Pokhara, Nepal

    Science.gov (United States)

    Stolle, Amelie; Bernhardt, Anne; Schwanghart, Wolfgang; Hoelzmann, Philipp; Adhikari, Basanta R.; Fort, Monique; Korup, Oliver

    2017-12-01

    Uncertain timing and magnitudes of past mega-earthquakes continue to confound seismic risk appraisals in the Himalayas. Telltale traces of surface ruptures are rare, while fault trenches document several events at best, so that additional proxies of strong ground motion are needed to complement the paleoseismological record. We study Nepal's Pokhara basin, which has the largest and most extensively dated archive of earthquake-triggered valley fills in the Himalayas. These sediments form a 148-km2 fan that issues from the steep Seti Khola gorge in the Annapurna Massif, invading and plugging 15 tributary valleys with tens of meters of debris, and impounding several lakes. Nearly a dozen new radiocarbon ages corroborate at least three episodes of catastrophic sedimentation on the fan between ∼700 and ∼1700 AD, coinciding with great earthquakes in ∼1100, 1255, and 1344 AD, and emplacing roughly >5 km3 of debris that forms the Pokhara Formation. We offer a first systematic sedimentological study of this formation, revealing four lithofacies characterized by thick sequences of mid-fan fluvial conglomerates, debris-flow beds, and fan-marginal slackwater deposits. New geochemical provenance analyses reveal that these upstream dipping deposits of Higher Himalayan origin contain lenses of locally derived river clasts that mark time gaps between at least three major sediment pulses that buried different parts of the fan. The spatial pattern of 14C dates across the fan and the provenance data are key to distinguishing these individual sediment pulses, as these are not evident from their sedimentology alone. Our study demonstrates how geomorphic and sedimentary evidence of catastrophic valley infill can help to independently verify and augment paleoseismological fault-trench records of great Himalayan earthquakes, while offering unparalleled insights into their long-term geomorphic impacts on major drainage basins.

  16. Holocene evolution of lakes in the forest-tundra biome of northern Manitoba, Canada

    Science.gov (United States)

    Hobbs, William O.; Edlund, Mark B.; Umbanhowar, Charles E.; Camill, Philip; Lynch, Jason A.; Geiss, Christoph; Stefanova, Vania

    2017-03-01

    The late-Quaternary paleoenvironmental history of the western Hudson Bay region of Subarctic Canada is poorly constrained. Here, we present a regional overview of the post-glacial history of eight lakes which span the forest-tundra biome in northern Manitoba. We show that during the penultimate drainage phase of Lake Agassiz the lake water had an estimated pH of ∼6.0, with abundant quillwort (Isöetes spp.) along the lakeshore and littoral zone and some floating green algae (Botryococcus spp. and Pediastrum sp.). Based on multiple sediment proxies, modern lake ontogeny in the region commenced at ∼7500 cal yrs BP. Pioneering diatom communities were shaped by the turbid, higher alkalinity lake waters which were influenced by base cation weathering of the surrounding till following Lake Agassiz drainage. By ∼7000 cal yrs BP, soil development and Picea spp. establish and the lakes began a slow trajectory of acidification over the remaining Holocene epoch. The natural acidification of the lakes in this region is slow, on the order of several millennia for one pH unit. Each of the study lakes exhibit relatively stable aquatic communities during the Holocene Thermal Maximum, suggesting this period is a poor analogue for modern climatic changes. During the Neoglacial, the beginning of the post-Little Ice Age period represents the most significant climatic event to impact the lakes of N. Manitoba. In the context of regional lake histories, the rate of diatom floristic change in the last 200-300 years is unprecedented, with the exception of post-glacial lake ontogeny in some of the lakes. For nearly the entire history of the lakes in this region, there is a strong linkage between landscape development and the aquatic ecosystems; however this relationship appears to become decoupled or less strong in the post-LIA period. Significant 20th century changes in the aquatic ecosystem cannot be explained wholly by changes in the terrestrial ecosystem, suggesting that future

  17. Food Web Responses to Artificial Mixing in a Small Boreal Lake

    Directory of Open Access Journals (Sweden)

    Lauri Arvola

    2017-07-01

    Full Text Available In order to simulate food web responses of small boreal lakes to changes in thermal stratification due to global warming, a 4 year whole-lake manipulation experiment was performed. Within that time, period lake mixing was intensified artificially during two successive summers. Complementary data from a nearby lake of similar size and basic water chemistry were used as a reference. Phytoplankton biomass and chlorophyll a did not respond to the greater mixing depth but an increase was observed in the proportional abundance of diatoms, and the proportional abundance of cryptophytes also increased immediately after the onset of mixing. Obligate anoxic green sulphur bacteria vanished at the onset of mixing but gradually recovered after re-establishment of hypolimnetic anoxic conditions. No major effect on crustacean zooplankton was found, but their diversity increased in the metalimnion. During the mixing, the density of rotifers declined but protozoan density increased in the hypolimnion. Littoral benthic invertebrate density increased during the mixing due to Ephemeroptera, Asellus aquaticus and Chironomidae, whereas the density of Chaoborus larvae declined during mixing and lower densities were still recorded one year after the treatment. No structural changes in fish community were found although gillnet catches increased after the onset of the study. The early growth of perch (Perca fluviatilis increased compared to the years before the mixing and in comparison to the reference lake, suggesting improved food availability in the experimental lake. Although several food web responses to the greater mixing depth were found, their persistence and ecological significance were strongly dependent on the extent of the disturbance. To better understand the impacts of wind stress on small lakes, long term whole-lake experiments are needed.

  18. Microplastic pollution in lakes and lake shoreline sediments - A case study on Lake Bolsena and Lake Chiusi (central Italy).

    Science.gov (United States)

    Fischer, Elke Kerstin; Paglialonga, Lisa; Czech, Elisa; Tamminga, Matthias

    2016-06-01

    Rivers and effluents have been identified as major pathways for microplastics of terrestrial sources. Moreover, lakes of different dimensions and even in remote locations contain microplastics in striking abundances. This study investigates concentrations of microplastic particles at two lakes in central Italy (Lake Bolsena, Lake Chiusi). A total number of six Manta Trawls have been carried out, two of them one day after heavy winds occurred on Lake Bolsena showing effects on particle distribution of fragments and fibers of varying size categories. Additionally, 36 sediment samples from lakeshores were analyzed for microplastic content. In the surface waters 2.68 to 3.36 particles/m(3) (Lake Chiusi) and 0.82 to 4.42 particles/m(3) (Lake Bolsena) were detected, respectively. Main differences between the lakes are attributed to lake characteristics such as surface and catchment area, depth and the presence of local wind patterns and tide range at Lake Bolsena. An event of heavy winds and moderate rainfall prior to one sampling led to an increase of concentrations at Lake Bolsena which is most probable related to lateral land-based and sewage effluent inputs. The abundances of microplastic particles in sediments vary from mean values of 112 (Lake Bolsena) to 234 particles/kg dry weight (Lake Chiusi). Lake Chiusi results reveal elevated fiber concentrations compared to those of Lake Bolsena what might be a result of higher organic content and a shift in grain size distribution towards the silt and clay fraction at the shallow and highly eutrophic Lake Chiusi. The distribution of particles along different beach levels revealed no significant differences. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Role of Facilities Available and Un-Available in Attracting of Tourist in Swat Valley Pakistan

    Directory of Open Access Journals (Sweden)

    Akbar Jalaluddin

    2017-01-01

    Full Text Available Natural landscape is an important resource for mountainous regions and play crucial role in tourism development. Tourism play a key role in economic development of a country. Developing tourist areas is the key to meet the expectations of mountain inhabitants, tourists, and the general public outside of mountainous areas. In order to know tourist perception, problems, and role of landscape & horticulture plants in the field of tourism. A research study entitled “Role of facilities available and un-available in attracting of tourist in swat valley Pakistan “The data was collected from the respondents through a questionnaire survey and analyzed using percentages, frequencies and Chi-square test (where applicable. The analyzed data revealed that most of the respondent (55 % considered natural green environment as a reason for their visit and 67 % respondents wanted to visit with their friends and were satisfied with the tourist area, respectively. Most of the respondent (39 % observed throwing of surplus food as major waste materials which turned the beautiful green environment into unattractive environment. Most of the visitors (52 % dislike un-cleanliness of the locality, 74% respondents felt ill effect due to deforestation.53 % tourist disagree with the current maintenance of the locality by tourism department. The most missed facilities were non availability of dustbins and children playing areas. 75 % respondents agreed with the fact that most of the people (local inhabitants as well as tourist were unaware with regard to maintenance activities of the area 15.7 % respondent agreed that road system should be improved to access most of the greenery in the locality, respectively to aware local people and tourist regarding maintenance of the locality will improve tourism in Swat valley. The studies need to be develop for the improvement of existing as well as artificial landscape of the tourist area (Kalam and Malamjabba of Swat valley.

  20. ZEBRA MUSSEL COLONIZATION OF RUSTY CRAYFISH IN GREEN BAY, LAKE MICHIGAN

    Science.gov (United States)

    In August, 1995 six rusty crayfish colonized with zebra mussels were captured in small-meshed fyke-nets sets set apart as of a fish sampling effort at Peter's Marsh and Long-Tail Point Wetland in lower Green Bay. Mussels colonized virtually all areas of the crayfish bodies, but ...

  1. Computational fluid dynamics simulations of the Late Pleistocene Lake Bonneville flood

    Science.gov (United States)

    Abril-Hernández, José M.; Periáñez, Raúl; O'Connor, Jim E.; Garcia-Castellanos, Daniel

    2018-01-01

    At approximately 18.0 ka, pluvial Lake Bonneville reached its maximum level. At its northeastern extent it was impounded by alluvium of the Marsh Creek Fan, which breached at some point north of Red Rock Pass (Idaho), leading to one of the largest floods on Earth. About 5320 km3 of water was discharged into the Snake River drainage and ultimately into the Columbia River. We use a 0D model and a 2D non-linear depth-averaged hydrodynamic model to aid understanding of outflow dynamics, specifically evaluating controls on the amount of water exiting the Lake Bonneville basin exerted by the Red Rock Pass outlet lithology and geometry as well as those imposed by the internal lake geometry of the Bonneville basin. These models are based on field evidence of prominent lake levels, hypsometry and terrain elevations corrected for post-flood isostatic deformation of the lake basin, as well as reconstructions of the topography at the outlet for both the initial and final stages of the flood. Internal flow dynamics in the northern Lake Bonneville basin during the flood were affected by the narrow passages separating the Cache Valley from the main body of Lake Bonneville. This constriction imposed a water-level drop of up to 2.7 m at the time of peak-flow conditions and likely reduced the peak discharge at the lake outlet by about 6%. The modeled peak outlet flow is 0.85·106 m3 s−1. Energy balance calculations give an estimate for the erodibility coefficient for the alluvial Marsh Creek divide of ∼0.005 m y−1 Pa−1.5, at least two orders of magnitude greater than for the underlying bedrock at the outlet. Computing quasi steady-state water flows, water elevations, water currents and shear stresses as a function of the water-level drop in the lake and for the sequential stages of erosion in the outlet gives estimates of the incision rates and an estimate of the outflow hydrograph during the Bonneville Flood: About 18 days would have been required for the

  2. Computational Fluid Dynamics simulations of the Late Pleistocene Lake Bonneville Flood

    Science.gov (United States)

    Abril-Hernández, José M.; Periáñez, Raúl; O'Connor, Jim E.; Garcia-Castellanos, Daniel

    2018-06-01

    At approximately 18.0 ka, pluvial Lake Bonneville reached its maximum level. At its northeastern extent it was impounded by alluvium of the Marsh Creek Fan, which breached at some point north of Red Rock Pass (Idaho), leading to one of the largest floods on Earth. About 5320 km3 of water was discharged into the Snake River drainage and ultimately into the Columbia River. We use a 0D model and a 2D non-linear depth-averaged hydrodynamic model to aid understanding of outflow dynamics, specifically evaluating controls on the amount of water exiting the Lake Bonneville basin exerted by the Red Rock Pass outlet lithology and geometry as well as those imposed by the internal lake geometry of the Bonneville basin. These models are based on field evidence of prominent lake levels, hypsometry and terrain elevations corrected for post-flood isostatic deformation of the lake basin, as well as reconstructions of the topography at the outlet for both the initial and final stages of the flood. Internal flow dynamics in the northern Lake Bonneville basin during the flood were affected by the narrow passages separating the Cache Valley from the main body of Lake Bonneville. This constriction imposed a water-level drop of up to 2.7 m at the time of peak-flow conditions and likely reduced the peak discharge at the lake outlet by about 6%. The modeled peak outlet flow is 0.85·106 m3 s-1. Energy balance calculations give an estimate for the erodibility coefficient for the alluvial Marsh Creek divide of ∼0.005 m y-1 Pa-1.5, at least two orders of magnitude greater than for the underlying bedrock at the outlet. Computing quasi steady-state water flows, water elevations, water currents and shear stresses as a function of the water-level drop in the lake and for the sequential stages of erosion in the outlet gives estimates of the incision rates and an estimate of the outflow hydrograph during the Bonneville Flood: About 18 days would have been required for the outflow to grow from 10

  3. Patterns in the Physical, Chemical, and Biological Composition of Icelandic Lakes and the Dominant Factors Controlling Variability Across Watersheds

    Science.gov (United States)

    Greco, A.; Strock, K.; Edwards, B. R.

    2017-12-01

    Fourteen lakes were sampled in the southern and western area of Iceland in June of 2017. The southern systems, within the Eastern Volcanic Zone, have minimal soil development and active volcanoes that produce ash input to lakes. Lakes in the Western Volcanic Zone were more diverse and located in older bedrock with more extensively weathered soil. Physical variables (temperature, oxygen concentration, and water clarity), chemical variables (pH, conductivity, dissolved and total nitrogen and phosphorus concentrations, and dissolved organic carbon concentration), and biological variables (algal biomass) were compared across the lakes sampled in these geographic regions. There was a large range in lake characteristics, including five to eighteen times higher algal biomass in the southern systems that experience active ash input to lakes. The lakes located in the Eastern Volcanic Zone also had higher conductivity and lower pH, especially in systems receiving substantial geothermal input. These results were analyzed in the context of more extensive lake sampling efforts across Iceland (46 lakes) to determine defining characteristics of lakes in each region and to identify variables that drive heterogeneous patterns in physical, chemical, and biological lake features within each region. Coastal systems, characterized by high conductivity, and glacially-fed systems, characterized by high iron concentrations, were unique from lakes in all other regions. Clustering and principal component analyses revealed that lake type (plateau, valley, spring-fed, and direct-runoff) was not the primary factor explaining variability in lake chemistry outside of the coastal and glacial lake types. Instead, lakes differentiated along a gradient of iron concentration and total nitrogen concentration. The physical and chemical properties of subarctic lakes are especially susceptible to both natural and human-induced environmental impacts. However, relatively little is known about the

  4. Valley-filtered edge states and quantum valley Hall effect in gated bilayer graphene.

    Science.gov (United States)

    Zhang, Xu-Long; Xu, Lei; Zhang, Jun

    2017-05-10

    Electron edge states in gated bilayer graphene in the quantum valley Hall (QVH) effect regime can carry both charge and valley currents. We show that an interlayer potential splits the zero-energy level and opens a bulk gap, yielding counter-propagating edge modes with different valleys. A rich variety of valley current states can be obtained by tuning the applied boundary potential and lead to the QVH effect, as well as to the unbalanced QVH effect. A method to individually manipulate the edge states by the boundary potentials is proposed.

  5. Lightweight Aggregate Made from Dredged Material in Green Roof Construction for Stormwater Management

    Directory of Open Access Journals (Sweden)

    Rui Liu

    2016-07-01

    Full Text Available More than 1.15 million cubic meters (1.5 million cubic yards of sediment require annual removal from harbors and ports along Ohio’s Lake Erie coast. Disposing of these materials into landfills depletes land resources, while open water placement of these materials deteriorates water quality. There are more than 14,000 acres of revitalizing brownfields in Cleveland, U.S., many containing up to 90% impervious surface, which does not allow “infiltration” based stormwater practices required by contemporary site-based stormwater regulation. This study investigates the potential of sintering the dredged material from the Harbor of Cleveland in Lake Erie to produce lightweight aggregate (LWA, and apply the LWA to green roof construction. Chemical and thermal analyses revealed the sintered material can serve for LWA production when preheated at 550 °C and sintered at a higher temperature. Through dewatering, drying, sieving, pellet making, preheating, and sintering with varying temperatures (900–1100 °C, LWAs with porous microstructures are produced with specific gravities ranging from 1.46 to 1.74, and water absorption capacities ranging from 11% to 23%. The water absorption capacity of the aggregate decreases as sintering temperature increases. The LWA was incorporated into the growing media of a green roof plot, which has higher water retention capacity than the conventional green roof system.

  6. Spatio-temporal segregation and size distribution of fish assemblages as related to non-native species occurrence in the middle rio Doce Valley, MG, Brazil

    Directory of Open Access Journals (Sweden)

    Henrique Corrêa Giacomini

    Full Text Available The lakes in the middle rio Doce Valley (MG are suffering impacts due to the introduction of invasive fish species, mainly piscivorous species like red piranha Pygocentrus nattereri and peacock bass Cichla kelberi. Fishes were collected in bimonthly samples conducted at ten lakes along a year. The present study showed that the composition of native fish assemblages is significantly related to the presence and type of non-native species. Fish species distribution among lakes can be explained by differences in species body size: smaller native species are less concentrated in lakes with invasive piscivores, which is in accordance with the hypothesis that they have greater susceptibility to predation by invaders. Another probable cause for this correlation is the proximity of lakes to the drainage system, which could explain both the non-native incidence and the turnover of native species composition. Furthermore, temporal variability in species composition was significantly higher in invaded lakes. This last factor may be linked to seasonal flood pulses, which carry immigrant fishes from streams in the vicinity. The metacommunity framework can bring insights for future studies in such spatially structured systems, and the approach should improve our understanding of processes underlying species composition as well as help direct conservation-focused management plans.

  7. Numerical simulation of ground-water flow through glacial deposits and crystalline bedrock in the Mirror Lake area, Grafton County, New Hampshire

    Science.gov (United States)

    Tiedeman, Claire; Goode, Daniel J.; Hsieh, Paul A.

    1997-01-01

    This report documents the development of a computer model to simulate steady-state (long-term average) flow of ground water in the vicinity of Mirror Lake, which lies at the eastern end of the Hubbard Brook valley in central New Hampshire. The 10-km2 study area includes Mirror Lake, the three streams that flow into Mirror Lake, Leeman's Brook, Paradise Brook, and parts of Hubbard Brook and the Pemigewasset River. The topography of the area is characterized by steep hillsides and relatively flat valleys. Major hydrogeologic units include glacial deposits, composed of till containing pockets of sand and gravel, and fractured crystalline bedrock, composed of schist intruded by granite, pegmatite, and lamprophyre. Ground water occurs in both the glacial deposits and bedrock. Precipitation and snowmelt infiltrate to the water table on the hillsides, flow downslope through the saturated glacial deposits and fractured bedrock, and discharge to streams and to Mirror Lake. The model domain includes the glacial deposits, the uppermost 150m of bedrock, Mirror Lake, the layer of organic sediments on the lake bottom, and streams and rivers within the study area. A streamflow routing package was included in the model to simulate baseflow in streams and interaction between streams and ground water. Recharge from precipitation is assumed to be areally uniform, and riparian evapotranspiration along stream banks is assumed negligible. The spatial distribution of hydraulic conductivity is represented by dividing the model domain into several zones, each having uniform hydraulic properties. Local variations in recharge and hydraulic conductivities are ignored; therefore, the simulation results characterize the general ground-water system, not local details of ground-water movement. The model was calibrated using a nonlinear regression method to match hydraulic heads measured in piezometers and wells, and baseflow in three inlet streams to Mirror Lake. Model calibration indicates that

  8. Groundwater discharge by evapotranspiration, Dixie Valley, west-central Nevada, March 2009-September 2011

    Science.gov (United States)

    Garcia, C. Amanda; Huntington, Jena M; Buto, Susan G.; Moreo, Michael T.; Smith, J. LaRue; Andraski, Brian J.

    2014-01-01

    With increasing population growth and land-use change, urban communities in the desert Southwest are progressively looking toward remote basins to supplement existing water supplies. Pending applications by Churchill County for groundwater appropriations from Dixie Valley, Nevada, a primarily undeveloped basin east of the Carson Desert, have prompted a reevaluation of the quantity of naturally discharging groundwater. The objective of this study was to develop a revised, independent estimate of groundwater discharge by evapotranspiration (ETg) from Dixie Valley using a combination of eddy-covariance evapotranspiration (ET) measurements and multispectral satellite imagery. Mean annual ETg was estimated during water years 2010 and 2011 at four eddy-covariance sites. Two sites were in phreatophytic shrubland dominated by greasewood, and two sites were on a playa. Estimates of total ET and ETg were supported with vegetation cover mapping, soil physics considerations, water‑level measurements from wells, and isotopic water sourcing analyses to allow partitioning of ETg into evaporation and transpiration components. Site-based ETg estimates were scaled to the basin level by combining remotely sensed imagery with field reconnaissance. Enhanced vegetation index and brightness temperature data were compared with mapped vegetation cover to partition Dixie Valley into five discharging ET units and compute basin-scale ETg. Evapotranspiration units were defined within a delineated groundwater discharge area and were partitioned as (1) playa lake, (2) playa, (3) sparse shrubland, (4) moderate-to-dense shrubland, and (5) grassland.

  9. Characterization of dissolved organic material in the interstitial brine of Lake Vida, Antarctica

    Science.gov (United States)

    Cawley, Kaelin M.; Murray, Alison E.; Doran, Peter T.; Kenig, Fabien; Stubbins, Aron; Chen, Hongmei; Hatcher, Patrick G.; McKnight, Diane M.

    2016-06-01

    Lake Vida (LV) is located in the McMurdo Dry Valleys (Victoria Valley, East Antarctica) and has no inflows, outflows, or connectivity to the atmosphere due to a thick (16 m), turbid ice surface and cold (organic carbon concentration (DOC; 580 mg-C L-1 or greater); the study of which provides a unique opportunity to better understand biological and/or abiotic processes taking place in an isolated saline ecosystem with no external inputs. We isolated two sub-fractions of LV dissolved organic matter (DOM) by chemical separation using XAD-8 and XAD-4 resins in series. This separation was followed by physical separation using ultrafiltration to isolate a higher molecular weight (HMW) fraction that was retained by the membrane and a salty, dilute low molecular weight fraction. This analytical path resulted in three, low salt sub-fractions and allowed comparison to other Antarctic lake DOM samples isolated using similar procedures. Compared to other Antarctic lakes, a lower portion of the DOC was retained by XAD-8 (∼10% vs. 16-24%) resin, while the portions retained by XAD-4 (∼8%) resin and the 1 kDa ultrafiltration membrane (∼50%) were similar. The 14C radiocarbon ages of the XAD-8 (mean 3940 ybp), XAD-4 (mean 4048 ybp) and HMW (mean 3270 ybp) fractions are all older than the apparent age of ice-cover formation (2800 ybp). Ultrahigh resolution mass spectrometry showed that compounds with two and three nitrogen atoms in the molecular formulas were common in both the LV-XAD8 and LV-XAD4 fractions, consistent with microbial production and processing. The long-term oxidation of LVBr DOM by abiotic oxidants including perchlorate and chlorate may explain the low portion in the XAD8 fraction and the lack of aromatic carbon, as measured by 13C NMR spectroscopy, found for all but the most hydrophobic fraction, LV-XAD8. Overall, the chemical characteristics of Lake Vida brine DOM suggest that legacy DOM sealed and concentrated within the brine has been altered due to a

  10. Origin, Extent, and Thickness of Quaternary Geologic Units in the Willamette Valley, Oregon

    Science.gov (United States)

    O'Connor, Jim E.; Sarna-Wojcicki, Andrei M.; Wozniak, Karl C.; Polette, Danial J.; Fleck, Robert J.

    2001-01-01

    major tributaries. 3) Between 15,000 and 12,700 years ago, dozens of floods from Glacial Lake Missoula flowed up the Willamette Valley from the Columbia River, depositing up to 35 m of gravel, sand, silt, and clay. 4) Subsequent to 12,000 years ago, Willamette River sediment and flow regimes changed significantly: the Pleistocene braided river systems that had formed vast plains of sand and gravel evolved to incised and meandering rivers that are constructing today's fine-grained floodplains and gravelly channel deposits. Sub-surface channel facies of this unit are loose and unconsolidated and are highly permeable zones of substantial groundwater flow that is likely to be well connected to surface flow in the Willamette River and major tributaries. Stratigraphic exposures and drillers' logs indicate that this unit is mostly between 5 and 15 m thick.

  11. Nitrogen and amino acids content in lake Drukshyaj plancton organisms biocenoses grown in model experiments

    International Nuclear Information System (INIS)

    Krevsh, A.V.; Budrene, S.F.; Yankyavichyus, K.K.

    1989-01-01

    Biocenoses growth in lake Drukshyaj (from 1984 water reservoir of the Ignalina NPP) collected in July 1985 and grown in 2 various in composition culture media: in medium close in composition of main minerals to water of high capacity reservoir (medium 1) and in medium Fitzjarld (medium 2), has shown that the medium affects the component composition of plancton, as well as dominating types of algae. Phytoplancton was dominating component in biomass in both media. In medium 1 dominate green and diatoms, in medium 2 - blue-green algae. Content of proteins and amino acids in biomass changed depending on duration of biocenoses growth when dominating green and diatoms in biocenoses mass grown in medium 1, it reached maximum on the 15th day, and when dominating blue-green algae in biocenoses biomass grown in medium 2 - on the 30th day

  12. Astronomically-Forced Lake Expansion and Contraction Cycles: Sr Isotopic Evidence from the Eocene Green River Formation, Western USA

    Science.gov (United States)

    Baddouh, M.; Meyers, S. R.; Carroll, A.; Beard, B. L.; Johnson, C.

    2014-12-01

    87Sr/86Sr ratio from ancient lake deposits offer a unique insight into the astronomical forcing of lake expansion and contraction, by recording changes in runoff/groundwater provenance. We present new high-resolution 87Sr/86Sr data from the upper Wilkins Peak Member, to investigate linkages between astronomical forcing, water sources, and lake level in a classic rhythmic succession. Fifty-one 87Sr/86Sr ratios from White Mountain core #1 were acquired with a sampling interval of ~30 cm starting from the top of alluvial "I" bed to the lower Laney Member. The 87Sr/86Sr data show a strong and significant negative correlation with oil-yield, a traditional proxy for paleolake level and organic productivity. Application of a radioisotopic time scale, using previously dated ash beds, reveals that both 87Sr/86Sr and oil yield have a strong 20 kyr rhythm. The 87Sr/86Sr data more clearly express a longer period 100 kyr signal, similar to the Laskar 10D eccentricity solution. Using our nominal radioisotopic time scale, the Laskar 10D solution and 87Sr/86Sr data suggest that highest lake levels and greatest organic enrichment are attained during greatest precession and eccentricity. Regional geologic studies and modern river water analyses have shown that less radiogenic waters mostly originate west of the basin, where drainage is strongly influenced by thick Paleozoic and Mesozoic marine carbonate units. Decreased in 87Sr/86Sr therefore imply greater relative water contributions from the Sevier orogenic highlands, relative to lower relief, more radiogenic ranges lying to the east. We therefore propose that highstands of Lake Gosiute record increased penetration of Pacific moisture, related either to increased El Niño frequency or southward displacement of major storm tracks. We hypothesize that the occurrence of wetter winters caused expansion of Lake Gosiute, deposition of organic carbon rich facies, and decreased lake water 87Sr/86Sr.

  13. Small changes in climate can profoundly alter the dynamics and ecosystem services of tropical crater lakes.

    Science.gov (United States)

    Saulnier-Talbot, Émilie; Gregory-Eaves, Irene; Simpson, Kyle G; Efitre, Jackson; Nowlan, Tobias E; Taranu, Zofia E; Chapman, Lauren J

    2014-01-01

    African tropical lakes provide vital ecosystem services including food and water to some of the fastest growing human populations, yet they are among the most understudied ecosystems in the world. The consequences of climate change and other stressors on the tropical lakes of Africa have been informed by long-term analyses, but these studies have largely focused on the massive Great Rift Valley lakes. Our objective was to evaluate how recent climate change has altered the functioning and services of smaller tropical lakes, which are far more abundant on the landscape. Based on a paired analysis of 20 years of high-resolution water column data and a paleolimnological record from a small crater lake in western Uganda, we present evidence that even a modest warming of the air (∼0.9°C increase over 20 years) and changes in the timing and intensity of rainfall can have significant consequences on the dynamics of this common tropical lake type. For example, we observed a significant nonlinear increase (R(2) adj  = 0.23, e.d.f. = 7, pdeterioration of fish habitat and appears to have abated primary production; processes that may impair ecosystem services for a vulnerable human population. This study on a system representative of small tropical crater lakes highlights the far-reaching effects of global climatic change on tropical waters. Increased research efforts into tropical aquatic ecosystem health and the development of sound management practices are necessary in order to strengthen adaptive capabilities in tropical regions.

  14. Transient Electromagnetic Soundings Near Great Sand Dunes National Park and Preserve, San Luis Valley, Colorado (2006 Field Season)

    Science.gov (United States)

    Fitterman, David V.; de Sozua Filho, Oderson A.

    2009-01-01

    Time-domain electromagnetic (TEM) soundings were made near Great Sand Dunes National Park and Preserve in the San Luis Valley of southern Colorado to obtain subsurface information of use to hydrologic modeling. Seventeen soundings were made to the east and north of the sand dunes. Using a small loop TEM system, maximum exploration depths of about 75 to 150 m were obtained. In general, layered earth interpretations of the data found that resistivity decreases with depth. Comparison of soundings with geologic logs from nearby wells found that zones logged as having increased clay content usually corresponded with a significant resistivity decrease in the TEM determined model. This result supports the use of TEM soundings to map the location of the top of the clay unit deposited at the bottom of the ancient Lake Alamosa that filled the San Luis Valley from Pliocene to middle Pleistocene time.

  15. Valley development on Hawaiian volcanoes

    International Nuclear Information System (INIS)

    Baker, V.R.; Gulick, V.C.

    1987-01-01

    Work in progress on Hawaiian drainage evolution indicates an important potential for understanding drainage development on Mars. Similar to Mars, the Hawaiian valleys were initiated by surface runoff, subsequently enlarged by groundwater sapping, and eventually stabilized as aquifers were depleted. Quantitative geomorphic measurements were used to evaluate the following factors in Hawaiian drainage evolution: climate, stream processes, and time. In comparing regions of similar climate, drainage density shows a general increase with the age of the volcani island. With age and climate held constant, sapping dominated valleys, in contrast to runoff-dominated valleys, display the following: lower drainage densities, higher ratios of valley floor width to valley height, and more positive profile concavities. Studies of stream junction angles indicate increasing junction angles with time on the drier leeward sides of the major islands. The quantitative geomorphic studies and earlier field work yielded important insights for Martian geomorphology. The importance of ash mantling in controlling infiltration on Hawaii also seems to apply to Mars. The Hawaiian valley also have implications for the valley networks of Martian heavily cratered terrains

  16. Physico-chemical, morphological and pasting properties of starches extracted from water Chestnuts (Trapa natans from three Lakes of Kashmir, India

    Directory of Open Access Journals (Sweden)

    Adil Gani

    2010-06-01

    Full Text Available Studies on physicochemical, morphology and pasting properties of starches extracted from water chestnuts of three Lakes of Kashmir valley (Wular, Anchar and Dal Lakes were conducted to determine their application in different food products. The water chestnut starch from Dal Lake had more oval shaped granules than water chestnut starches from the Wular and the Anchar Lakes.The unique feature of the water chestnut starches were shape of starch granules which looked like horn(s protruding from the surface which did not appear in other starches already studied. Proximate analysis of water chestnut starches showed that average protein content were 0.4%, amylose 29.5 % and ash 0.007 on dry weight basis. Increase in water binding capacity, swelling power and solubility was found over a temperature range of 50-90ºC. Water chestnut starches showed an increase in syneresis during freeze thaw cycles and decline in paste clarity upon storage. Starch extracted from the water chestnuts of the Dal Lake showed higher water binding capacity, swelling, solubility, past clarity, freeze thaw stability, peak viscosity, final viscosity and lower protein content, amylose content, pasting temperature and gel firmness than starches extracted from water chestnuts of the Wular and the Anchar Lakes.

  17. Multi-proxy paleoenvironmental reconstruction of saline lake carbonates: Paleoclimatic and paleogeographic implications (Priabonian-Rupelian, Issirac Basin, SE France)

    Science.gov (United States)

    Lettéron, Alexandre; Fournier, François; Hamon, Youri; Villier, Loïc; Margerel, Jean-Pierre; Bouche, Alexandre; Feist, Monique; Joseph, Philippe

    2017-08-01

    A 200-m thick carbonate succession has been deposited in shallow-water, saline lake environments during the Priabonian-Rupelian in the Issirac Basin (South-East France). The palaeoenvironmental and palaeogeographic significance of such saline lake carbonates has been characterized on the basis of a multi-proxy analysis including 1) depositional and diagenetic features, 2) biological components (molluscs, ostracods, benthic foraminifers, characean) and 3) carbon, oxygen and strontium stable isotopes. Biological associations are indicative of dominantly shallow (climate (dry versus humid) are the three key factors controlling the water composition, carbonate production and depositional environments in the Issirac lake. Although the ASCI (Alès-Issirac-Saint-Chaptes) lacustrine system likely represents an athalassic (inland) lake system evolving through times, the stable isotope composition (C, O and Sr) of carbonates strongly suggests the occurrence of transient connections of the ASCI lake water with water bodies influenced by seawater and/or fed with sulfates deriving from Triassic evaporites. The Issirac Basin may be therefore interpreted as a sill area connecting the ASCI lacustrine system with the Rhône valley (Mormoiron and Valence) saline lake systems during maximum flooding periods. Finally, changes in depositional features, biota and stable isotope composition of carbonates in unit U3 suggest a transition from relatively dry to more humid climate during the uppermost Priabonian or earliest Rupelian.

  18. Baseline Channel Geometry and Aquatic Habitat Data for Selected Streams in the Matanuska-Susitna Valley, Alaska

    Science.gov (United States)

    Curran, Janet H.; Rice, William J.

    2009-01-01

    Small streams in the rapidly developing Matanuska-Susitna Valley in south-central Alaska are known to support anadromous and resident fish but little is known about their hydrologic and riparian conditions, or their sensitivity to the rapid development of the area or climate variability. To help address this need, channel geometry and aquatic habitat data were collected in 2005 as a baseline of stream conditions for selected streams. Three streams were selected as representative of various stream types, and one drainage network, the Big Lake drainage basin, was selected for a systematic assessment. Streams in the Big Lake basin were drawn in a Geographic Information System (GIS), and 55 reaches along 16 miles of Meadow Creek and its primary tributary Little Meadow Creek were identified from orthoimagery and field observations on the basis of distinctive physical and habitat parameters, most commonly gradient, substrate, and vegetation. Data-collection methods for sites at the three representative reaches and the 55 systematically studied reaches consisted of a field survey of channel and flood-plain geometry and collection of 14 habitat attributes using published protocols or slight modifications. Width/depth and entrenchment ratios along the Meadow-Little Meadow Creek corridor were large and highly variable upstream of Parks Highway and lower and more consistent downstream of Parks Highway. Channel width was strongly correlated with distance, increasing downstream in a log-linear relation. Runs formed the most common habitat type, and instream vegetation dominated the habitat cover types, which collectively covered 53 percent of the channel. Gravel suitable for spawning covered isolated areas along Meadow Creek and about 29 percent of Little Meadow Creek. Broad wetlands were common along both streams. For a comprehensive assessment of small streams in the Mat-Su Valley, critical additional data needs include hydrologic, geologic and geomorphic, and biologic data

  19. Climate change impacts on lake thermal dynamics and ecosystem vulnerabilities

    Science.gov (United States)

    Sahoo, G. B; Forrest, A. L; Schladow, S. G ;; Reuter, J. E; Coats, R.; Dettinger, Michael

    2016-01-01

    Using water column temperature records collected since 1968, we analyzed the impacts of climate change on thermal properties, stability intensity, length of stratification, and deep mixing dynamics of Lake Tahoe using a modified stability index (SI). This new SI is easier to produce and is a more informative measure of deep lake stability than commonly used stability indices. The annual average SI increased at 16.62 kg/m2/decade although the summer (May–October) average SI increased at a higher rate (25.42 kg/m2/decade) during the period 1968–2014. This resulted in the lengthening of the stratification season by approximately 24 d. We simulated the lake thermal structure over a future 100 yr period using a lake hydrodynamic model driven by statistically downscaled outputs of the Geophysical Fluid Dynamics Laboratory Model (GFDL) for two different green house gas emission scenarios (the A2 in which greenhouse-gas emissions increase rapidly throughout the 21st Century, and the B1 in which emissions slow and then level off by the late 21st Century). The results suggest a continuation and intensification of the already observed trends. The length of stratification duration and the annual average lake stability are projected to increase by 38 d and 12 d and 30.25 kg/m2/decade and 8.66 kg/m2/decade, respectively for GFDLA2 and GFDLB1, respectively during 2014–2098. The consequences of this change bear the hallmarks of climate change induced lake warming and possible exacerbation of existing water quality, quantity and ecosystem changes. The developed methodology could be extended and applied to other lakes as a tool to predict changes in stratification and mixing dynamics.

  20. Green Transformational Leadership and Green Performance: The Mediation Effects of Green Mindfulness and Green Self-Efficacy

    Directory of Open Access Journals (Sweden)

    Yu-Shan Chen

    2014-09-01

    Full Text Available No prior literature explores the influence of green transformational leadership on green performance, thus, this study develops a novel research framework to fill the research gap. This study investigates the influence of green transformational leadership on green performance and discusses the mediation effects of green mindfulness and green self-efficacy by means of structural equation modeling (SEM. The results indicate that green transformational leadership positively influences green mindfulness, green self-efficacy, and green performance. Moreover, this study demonstrates that the positive relationship between green transformational leadership and green performance is partially mediated by the two mediators: green mindfulness and green self-efficacy. It means that green transformational leadership can not only directly affect green performance positively but also indirectly affect it positively through green mindfulness and green self-efficacy. Therefore, firms need to raise their green transformational leadership, green mindfulness, and green self-efficacy to increase their green performance.

  1. Phytoplankton variability in Lake Fraijanes, Costa Rica, in response to local weather variation

    Directory of Open Access Journals (Sweden)

    Gerardo Umaña-Villalobos

    2014-08-01

    Full Text Available Phytoplankton species show a variety in morphology which is the result of adaptations to pelagic life including responses to fluctuations in water column dynamics driven by weather conditions. This has been reported in the oceans and in Northern temperate lakes. In order to observe whether tropical freshwater phytoplankton responds to seasonal variation in weather, the weekly variation in temperature of the water column and phytoplankton composition was studied in Lake Fraijanes, Costa Rica, a shallow (6.2m lake at 1 640m above sea level. A chain of data loggers for temperature was placed in the deepest point in the lake to register temperature every hour at four different depths, and phytoplankton samples were retrieved every week for a year. Additional monthly samples for nutrients were taken at two depths. Notwithstanding its shallowness, the lake developed a thermal gradient which kept the water column stratified for several months during dry season. Whole lake overturns occurred during cold spells with intense precipitation. Phytoplankton changed throughout the year mainly through a shift in dominant taxa. From September to February the lake was frequently mixed by rain storms and windy weather. At this time, phytoplankton was dominated by Chlorococcal green algae. From March to June, the lake was stratified and warmer. Phytoplankton became dominated by Cyanobateria, mainly colonial Chroococcales. The rainy season started again in May 2009. During June and July the lake started to mix intermittently during rain events and phytoplankton showed a brief increase in the contribution of Chlorococcales. These changes fitted well to a general model of phytoplankton succession based on functional groups identified according to their morphology and adaptations.

  2. Lake-level increasing under the climate cryoaridization conditions during the Last Glacial Maximum

    Science.gov (United States)

    Amosov, Mikhail; Strelkov, Ivan

    2017-04-01

    precipitations. For example, the paleo-lakes of Bonneville and Lahontan located in the Great Basin, US vividly present the pluvial hypothesis. However, the lake-level of Central Asia and Altiplano altered because of a simultaneous climate cooling and moisture decrease. This phenomenon is called a climate cryoaridization. The moisture reduction in two studied regions is proved by the palinologic data. Beside the fact above, the climate cryoaridization of Altiplano lakes is also confirmed by the data taken from the flatland water bodies of South America that are located to the north of the described region. Even though they had an influence from Amazon convective center with its humid air masses moved towards Altiplano, these flatland lakes used to have lower level at the LGM stage. According to the explained hypothesis, there is one more assumption supporting an increasing effect of cryoaridic lakes. These water bodies occurred on the endorheic basins due to the snow accumulation in the surrounding mountain ranges, hence the snow line moved down closer to the Altiplano valleys.

  3. Remote sensing appraisal of Lake Chad shrinkage connotes severe impacts on green economics and socio-economics of the catchment area.

    Science.gov (United States)

    Onamuti, Olapeju Y; Okogbue, Emmanuel C; Orimoloye, Israel R

    2017-11-01

    Lake Chad commonly serves as a major hub of fertile economic activities for the border communities and contributes immensely to the national growth of all the countries that form its boundaries. However, incessant and multi-decadal drying via climate change pose greater threats to this transnational water resource, and adverse effects on ecological sustainability and socio-economic status of the catchment area. Therefore, this study assessed the extent of shrinkage of Lake Chad using remote sensing. Landsat imageries of the lake and its surroundings between 1987 and 2005 were retrieved from Global Land Cover Facility website and analysed using Integrated Land and Water Information System version 3.3 (ILWIS 3.3). Supervised classification of area around the lake was performed into various land use/land cover classes, and the shrunk part of its environs was assessed based on the land cover changes. The shrinkage trend within the study period was also analysed. The lake water size reduced from 1339.018 to 130.686 km 2 (4.08-3.39%) in 1987-2005. The supervised classification of the Landsat imageries revealed an increase in portion of the lake covered by bare ground and sandy soil within the reference years (13 490.8-17 503.10 km 2 ) with 4.98% total range of increase. The lake portion intersected with vegetated ground and soil also reduced within the period (11 046.44-10 078.82 km 2 ) with 5.40% (967.62 km 2 ) total decrease. The shrunk part of the lake covered singly with vegetation increased by 2.74% from 1987 to 2005. The shrunk part of the lake reduced to sand and turbid water showed 5.62% total decrease from 1987 to 2005 and a total decrease of 1805.942 km 2 in area. The study disclosed an appalling rate of shrinkage and damaging influences on the hydrologic potential, eco-sustainability and socio-economics of the drainage area as revealed using ILWIS 3.3.

  4. Higher water plants in a lake contaminated with radionuclides: composition, distribution, reserves and accumulation of Cs-137

    International Nuclear Information System (INIS)

    Pavlyutin, A.P.; Babitskij, V.A.

    1996-01-01

    Species composition, specials distribution, seasonal pattern and accumulation of cesium-137 by aquatic plants had been investigated in the small not flowing meso trophic lake (Belarus) during vegetative season of 1993. Macrophyte phytomass storage is equal 10,56 t, and mass of its roots is 4.28 t of dry weight. Cesium-137 stock's in green mass and macrophytes roots are equal to 108.6 and 96.4 MBK respectively. Total accumulation of cesium-137 by macrophyte constituted 5% from its stock in the whole lake water mass

  5. Rare Pediastrum species (Chlorophyceae from Polish coastal lakes

    Directory of Open Access Journals (Sweden)

    Joanna Kowalska

    2011-01-01

    Full Text Available An account is given of the occurrence of Pediastrum (Chlorophyceae, Sphaeropleales in five eutrophic coastal lakes (Jamno, Bukowo, Gardno, Łebsko and Sarbsko in northern Poland, together with morphological data of the species and more detailed taxonomic and ecological information for three taxa which appear to be rare world wide. These are P. musterii, P. orientale and P. alternans; the first is recorded for the first time from central Europe. P. orientale and P. alternans show considerable morphological variability under different environmental conditions, indicating the need for further studies. The studied lakes seem to be especially favourable for Pediastrum, with a total of eight species (15 taxa in the phytoplankton noted during the summer. However, the relative frequency of the genus in the overall algal communities was low. The most frequent species were P. boryanum, P. kawraiskyi and P. duplex and these were accompanied by cyanobacteria, coccal green algae (Chlorophyceae, Chlorococcales and diatoms (Bacillariophyceae. All the Pediastrum taxa were documented using LM and SEM.

  6. Observing Seasonal and Diurnal Hydrometeorological Variability Within a Tropical Alpine Valley: Implications for Evapotranspiration

    Science.gov (United States)

    Hellstrom, R. A.; Mark, B. G.

    2007-12-01

    up through the valley. Humidity and temperature measurements were analyzed to show significant effects of elevation and proximity to melt-water lakes on vapor pressure deficit.

  7. Chemical quality of surface waters in Devils Lake basin, North Dakota

    Science.gov (United States)

    Swenson, Herbert; Colby, Bruce R.

    1955-01-01

    Devils Lake basin, a closed basin in northeastern North Dakota, covers about 3,900 square miles of land, the topography of which is morainal and of glacial origin. In this basin lies a chain of waterways, which begins with the Sweetwater group and extends successively through Mauvais Coulee, Devils Lake, East Bay Devils Lake, and East Devils Lake, to Stump Lake. In former years when lake levels were high, Mauvais Coulee drained the Sweetwater group and discharged considerable water into Devils Lake. Converging coulees also transported excess water to Stump Lake. For at least 70 years prior to 1941, Mauvais Coulee flowed only intermittently, and the levels of major lakes in this region gradually declined. Devils Lake, for example, covered an area of about 90,000 acres in 1867 but had shrunk to approximately 6,500 acres by 1941. Plans to restore the recreational appeal of Devils Lake propose the dilution and eventual displacement of the brackish lake water by fresh water that would be diverted from the Missouri River. Freshening of the lake water would permit restocking Devils Lake with fish. Devils and Stump Lake have irregular outlines and numerous windings and have been described as lying in the valley of a preglacial river, the main stem and tributaries of which are partly filled with drift. Prominent morainal hills along the south shore of Devils Lake contrast sharply with level farmland to the north. The mean annual temperature of Devils Lake basin ranges between 36 ? and 42 ? F. Summer temperatures above 100 ? F and winter temperatures below -30 ? Fare not uncommon. The annual precipitation for 77 years at the city of Devils Lake averaged 17.5 inches. Usually, from 75 to 80 percent of the precipitation in the basin falls during the growing season, April to September. From 1867 to 1941 the net fall of the water surface of Devils Lake was about 38 feet. By 1951 the surface had risen fully 14 feet from its lowest altitude, 1,400.9 feet. Since 1951, the level has

  8. Reactivation of a cryptobiotic stream ecosystem in the McMurdo Dry Valleys, Antarctica: A long-term geomorphological experiment

    Science.gov (United States)

    McKnight, Diane M.; Tate, C.M.; Andrews, E.D.; Niyogi, D.K.; Cozzetto, K.; Welch, K.; Lyons, W.B.; Capone, D.G.

    2007-01-01

    The McMurdo Dry Valleys of Antarctica contain many glacial meltwater streams that flow for 6 to 12??weeks during the austral summer and link the glaciers to the lakes on the valley floors. Dry valley streams gain solutes longitudinally through weathering reactions and microbial processes occurring in the hyporheic zone. Some streams have thriving cyanobacterial mats. In streams with regular summer flow, the mats are freeze-dried through the winter and begin photosynthesizing with the onset of flow. To evaluate the longer term persistence of cyanobacterial mats, we diverted flow to an abandoned channel, which had not received substantial flow for approximately two decades. Monitoring of specific conductance showed that for the first 3??years after the diversion, the solute concentrations were greater in the reactivated channel than in most other dry valley streams. We observed that cyanobacterial mats became abundant in the reactivated channel within a week, indicating that the mats had been preserved in a cryptobiotic state in the channel. Over the next several years, these mats had high rates of productivity and nitrogen fixation compared to mats from other streams. Experiments in which mats from the reactivated channel and another stream were incubated in water from both of the streams indicated that the greater solute concentrations in the reactivated channel stimulated net primary productivity of mats from both streams. These stream-scale experimental results indicate that the cryptobiotic preservation of cyanobacterial mats in abandoned channels in the dry valleys allows for rapid response of these stream ecosystems to climatic and geomorphological change, similar to other arid zone stream ecosystems. ?? 2006 Elsevier B.V. All rights reserved.

  9. Influence of water chemistry on the distribution of an acidophilic protozoan in an acid mine drainage system at the abandoned Green Valley coal mine, Indiana, USA

    Energy Technology Data Exchange (ETDEWEB)

    Brake, S.S.; Dannelly, H.K.; Connors, K.A.; Hasiotis, S.T. [Indiana State University, Terre Haute, IN (United States). Dept. of Geography Geology & Anthropology

    2001-07-01

    Euglena mutabilis, a benthic photosynthetic protozoan that intracellularly sequesters Fe, is variably abundant in the main effluent channel that contains acid mine drainage (AMD) discharging from the Green Valley coal mine site in western Indiana. Samples of effluent (pH 3.0-4.6) taken from the main channel and samples of contaminated stream water (pH 3.3 to 8.0) collected from an adjacent stream were analyzed to evaluate the influence of water chemistry on E. mutabilis distribution. E. mutabilis communities were restricted to areas containing unmixed effluent with the thickest (up to 3 mm) benthic communities residing in effluent containing high concentrations of total Fe (up to 12110 mg/l), SO{sub 4}(up to 2940 mg/l), Al (up to 1846 mg/l), and Cl (up to 629 mg/l). Communities were also present, but much less abundant, in areas with effluent containing lower concentrations of these same constituents. In effluent where SO{sub 4} was most highly concentrated, E. mutabilis was largely absent, suggesting that extremely high concentrations of SO{sub 4} may have an adverse effect on this potentially beneficial Fe-mediating, acidophilic protozoan.

  10. Analysis of Mining-induced Valley Closure Movements

    Science.gov (United States)

    Zhang, C.; Mitra, R.; Oh, J.; Hebblewhite, B.

    2016-05-01

    Valley closure movements have been observed for decades in Australia and overseas when underground mining occurred beneath or in close proximity to valleys and other forms of irregular topographies. Valley closure is defined as the inward movements of the valley sides towards the valley centreline. Due to the complexity of the local geology and the interplay between several geological, topographical and mining factors, the underlying mechanisms that actually cause this behaviour are not completely understood. A comprehensive programme of numerical modelling investigations has been carried out to further evaluate and quantify the influence of a number of these mining and geological factors and their inter-relationships. The factors investigated in this paper include longwall positional factors, horizontal stress, panel width, depth of cover and geological structures around the valley. It is found that mining in a series passing beneath the valley dramatically increases valley closure, and mining parallel to valley induces much more closure than other mining orientations. The redistribution of horizontal stress and influence of mining activity have also been recognised as important factors promoting valley closure, and the effect of geological structure around the valley is found to be relatively small. This paper provides further insight into both the valley closure mechanisms and how these mechanisms should be considered in valley closure prediction models.

  11. Sanctuaries for lake trout in the Great Lakes

    Science.gov (United States)

    Stanley, Jon G.; Eshenroder, Randy L.; Hartman, Wilbur L.

    1987-01-01

    Populations of lake trout, severely depleted in Lake Superior and virtually extirpated from the other Great Lakes because of sea lamprey predation and intense fishing, are now maintained by annual plantings of hatchery-reared fish in Lakes Michigan, Huron, and Ontario and parts of Lake Superior. The extensive coastal areas of the Great Lakes and proximity to large populations resulted in fishing pressure on planted lake trout heavy enough to push annual mortality associated with sport and commercial fisheries well above the critical level needed to reestablish self-sustaining stocks. The interagency, international program for rehabilitating lake trout includes controlling sea lamprey abundance, stocking hatchery-reared lake trout, managing the catch, and establishing sanctuaries where harvest is prohibited. Three lake trout sanctuaries have been established in Lake Michigan: the Fox Island Sanctuary of 121, 500 ha, in the Chippewa-Ottawa Treaty fishing zone in the northern region of the lake; the Milwaukee Reef Sanctuary of 160, 000 ha in midlake, in boundary waters of Michigan and Wisconsin; and Julian's Reef Sanctuary of 6, 500 ha, in Illinois waters. In northern Lake Huron, Drummond Island Sanctuary of 55, 000 ha is two thirds in Indian treaty-ceded waters in Michigan and one third in Ontario waters of Canada. A second sanctuary, Six Fathom Bank-Yankee Reef Sanctuary, in central Lake Huron contains 168, 000 ha. Sanctuary status for the Canadian areas remains to be approved by the Provincial government. In Lake Superior, sanctuaries protect the spawning grounds of Gull Island Shoal (70, 000 ha) and Devils Island Shoal (44, 000 ha) in Wisconsin's Apostle Island area. These seven sanctuaries, established by the several States and agreed upon by the States, Indian tribes, the U.S. Department of the Interior, and the Province of Ontario, contribute toward solving an interjurisdictional fishery problem.

  12. Psychrophilic Biomass Producers in the Trophic Chain of the Microbial Community of Lake Untersee, Antarctica

    Science.gov (United States)

    Pikuta, Elena V.; Hoover, Richard B.

    2010-01-01

    The study of photosynthetic microorganisms from the Lake Untersee samples showed dispersed distribution of phototrophs within 80 m water column. Lake Untersee represents a unique ecosystem that experienced complete isolation: sealed by the Anuchin Glacier for many millennia. Consequently, its biocenosis has evolved over a significant period of time without exchange or external interaction with species from other environments. The major producers of organic matter in Lake Untersee are represented by phototrophic and chemolithotrophic microorganisms. This is the traditional trophic scheme for lacustrine ecosystems on Earth. Among the phototrophs, diatoms were not found, which differentiates this lake from other known ecosystems. The dominant species among phototrophs was Chlamydomonas sp. with typical morphostructure: green chloroplasts, bright red round spot, and two polar flagella near the opening. As expected, the physiology of studied phototrophs was limited by low temperature, which defined them as obligate psychrophilic microorganisms. By the quantity estimation of methanogenesis in this lake, the litho-autotrophic production of organic matter is competitive with phototrophic production. However, pure cultures of methanogens have not yet been obtained. We discuss the primary producers of organic matter and the participation of our novel psychrophilic homoacetogen into the litho-autotrophic link of biomass production in Lake Untersee.

  13. Late quaternary environmental changes in the upper Las Vegas valley, Nevada

    Science.gov (United States)

    Quade, Jay

    1986-11-01

    Five stratigraphic units and five soils of late Pleistocene to Holocene age crop out in dissected badlands on Corn Creek Flat, 30 km northwest of Las Vegas, Nevada, and at Tule Springs, nearer to Las Vegas. The record is dominantly fluvial but contains evidence of several moister, marsh-forming periods: the oldest (Unit B) dates perhaps to the middle Wisconsin, and the more widespread Unit D falls between 30,000 and 15,000 yr B.P. Unit D therefore correlates with pluvial maximum lacustrine deposits elsewhere in the Great Basin. Standing water was not of sufficient depth or extent during either period to form lake strandlines. Between 14,000 and 7200 yr B.P. (Unit E), standing surface water gradually decreased, a trend also apparent in Great Basin pluvial lake chronologies during the same period. Groundwater carbonate cementation and burrowing by cicadas (Cicadae) accompany the moist-phase units. After 7200 yr B.P., increased wind action, decreased biotic activity, and at least 25 m of water-table lowering accompanied widespread erosion of older fine-grained deposits. Based on pack-rat midden and pollen evidence, this coincides with major vegetation changes in the valley, from sagebrush-dominated steppe to lower Mohave desertscrub.

  14. Novel archaeal tetraether lipids with a cyclohexyl ring identified in Fayetteville Green Lake, NY, and other sulfidic lacustrine settings.

    Science.gov (United States)

    Liu, Xiao-Lei; De Santiago Torio, Ana; Bosak, Tanja; Summons, Roger Everett

    2016-05-30

    The meromictic Fayetteville Green Lake (FGL) is of significant geobiological interest because of microbial cycling of sulfur within and below the permanent chemocline and in the euxinic deep waters. Studies of glycerol dibiphytanyl glycerol tetraethers (GDGTs) may help shed light on understanding the activity of archaeal communities in these habitats. Normal-phase and reversed-phase liquid chromatography/mass spectrometry (LC/MS) analysis on total lipid extracts of environmental samples revealed series of GDGTs with different biphytane structures. Comparison of the mass spectrum of biphytane obtained from separated novel GDGTs with that of a synthetic C 40 biphytane confirms our structural assignments. A unique cyclohexyl ring configured in the middle of a C 40 biphytane chain was identified in these novel GDGTs. We suggest the trivial name S-GDGTs for these compounds, where 'S' stands for 'sulfidic' and 'six-membered ring'. S-GDGT derivatives composed of biphytanes modified with double bonds and cyclopentane rings were also detected in the samples we analyzed. Intact polar lipid precursors of S-GDGT include compounds with mono- and diglycosyl head groups. The carbon isotopic composition of S-GDGTs and their occurrence in FGL, Messel Shale as well as Salt Pond and salt marshes on Cape Cod suggest that S-GDGTs may be produced by chemoautotrophic archaea that prefer sulfidic conditions. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  15. Mud Lake, a modern analog of oil shale deposition in Florida

    Energy Technology Data Exchange (ETDEWEB)

    Burgess, J.D.

    1987-01-01

    Mud Lake in north-central Florida was identified by Bradley as an analog of oil shale-type kerogen deposition. This lake supports an abundant diatom and algal flora which is unique in that the accumulating algal ooze does not decay as long as it stays oxygenated. This same material does not nutritionally support many invertebrates, owing to its flocculent consistency and apparent indigestibility, although fish are abundant and an occasional crocodile is found in the lake. Accumulation of the algal ooze is very slow at roughly 1 foot per 52,000 years based on radiocarbon dates. An understanding of oil shale depositional conditions could be translated into a predictive model for location and recognition of hydrocarbon generating source rocks. When oil shales are mentioned the first association is likely to be that with the Eocene Green River Formation of the Western US. Conditions leading to deposition and preservation of this massive quantity of organic debris is difficult to comprehend, but recognition of modern analogs provide an available area for study and comparison.

  16. CORE-BASED INTEGRATED SEDIMENTOLOGIC, STRATIGRAPHIC, AND GEOCHEMICAL ANALYSIS OF THE OIL SHALE BEARING GREEN RIVER FORMATION, UINTA BASIN, UTAH

    Energy Technology Data Exchange (ETDEWEB)

    Lauren P. Birgenheier; Michael D. Vanden Berg,

    2011-04-11

    An integrated detailed sedimentologic, stratigraphic, and geochemical study of Utah's Green River Formation has found that Lake Uinta evolved in three phases (1) a freshwater rising lake phase below the Mahogany zone, (2) an anoxic deep lake phase above the base of the Mahogany zone and (3) a hypersaline lake phase within the middle and upper R-8. This long term lake evolution was driven by tectonic basin development and the balance of sediment and water fill with the neighboring basins, as postulated by models developed from the Greater Green River Basin by Carroll and Bohacs (1999). Early Eocene abrupt global-warming events may have had significant control on deposition through the amount of sediment production and deposition rates, such that lean zones below the Mahogany zone record hyperthermal events and rich zones record periods between hyperthermals. This type of climatic control on short-term and long-term lake evolution and deposition has been previously overlooked. This geologic history contains key points relevant to oil shale development and engineering design including: (1) Stratigraphic changes in oil shale quality and composition are systematic and can be related to spatial and temporal changes in the depositional environment and basin dynamics. (2) The inorganic mineral matrix of oil shale units changes significantly from clay mineral/dolomite dominated to calcite above the base of the Mahogany zone. This variation may result in significant differences in pyrolysis products and geomechanical properties relevant to development and should be incorporated into engineering experiments. (3) This study includes a region in the Uinta Basin that would be highly prospective for application of in-situ production techniques. Stratigraphic targets for in-situ recovery techniques should extend above and below the Mahogany zone and include the upper R-6 and lower R-8.

  17. Evolution of alkaline lakes - Lake Van case study

    Science.gov (United States)

    Tillman Meyer, Felix; Viehberg, Finn; Bahroun, Sonya; Wolf, Annabel; Immenhauser, Adrian; Kwiecien, Ola

    2017-04-01

    Lake Van in Eastern Anatolia (Turkey) is the largest terminal soda lake on Earth. The lake sedimentary profile covers ca. 600 ka (Stockhecke et al. 2014) Based on lithological changes, the presence of freshwater microfossils and close-to-freshwater pH value in the pore water, members of ICDP PALEOVAN concluded that Lake Van might have started as an open lake. Here we show paleontological and geochemical evidence in favour of this idea and constrain the time, when Lake Van likely transformed into a closed lake. Additionally we provide the first conceptual model of how this closure may have happened. Our archives of choice are inorganic and biogenic carbonates, separated by wet sieving. We identified microfossil assemblages (fraction > 125 µm) and performed high-resolution oxygen isotope (delta18O) and elemental (Mg/Ca, Sr/Ca) analyses of the fraction plants growing in the photic zone as food supply. These two aspects point to an increasing salinity in a shallowing lake. The delta18O values of inorganic carbonates are relatively low during the initial phase of Lake Van and increase abruptly (ca. 7‰) after 530 ka BP. At approximately the same time combination of Sr/Ca and Mg/Ca data suggest first occurrence of aragonite. Again, these findings suggest geochemical changes of the lake water concurrent with transition documented by microfossils. Comparison between Lake Van and Lake Ohrid (Lacey et al. 2016) delta18O data, precludes regional climate change (e.g.: increased evaporation) as the main driver of observed changes. With no evidence for increased volcanic or tectonic activity (e.g.: tephra layers, deformation structures, slumping) in the Lake Van sedimentary profile around 530 ka, it seems unlikely that a pyroclastic flow blocked the outflow of the lake. Alternatively, a portion of inflow has been diverged which might have caused a change in the hydrological balance and lake level falling below its outlet. However, as no geomorphological data confirming this

  18. Phytophthora species recovered from the Connecticut River Valley in Massachusetts, USA.

    Science.gov (United States)

    Brazee, Nicholas J; Wick, Robert L; Hulvey, Jonathan P

    2016-01-01

    Little is currently known about the assemblage of Phytophthora species in northeastern North America, representing a gap in our understanding of species incidence. Therefore, Phytophthora species were surveyed at 20 sites in Massachusetts, with 16 occurring in the Connecticut River Valley. Many of the sampled waterways were adjacent to active agricultural lands, yet were buffered by mature floodplain forests composed of Acer, Platanus, Populus and Ulmus. Isolates were recovered with three types of baits (rhododendron leaves, pear, green pepper) in 2013 and water filtration in 2014. Overall, 457 isolates of Phytophthora were recovered and based on morphological characters and rDNA internal transcribed spacer (ITS), β-tubulin (β-tub) and cytochrome oxidase c subunit I (cox1) sequences, 18 taxa were identified, including three new species: P. taxon intercalaris, P. taxon caryae and P. taxon pocumtuck. In addition, 49 isolates representing five species of Phytopythium also were identified. Water filtration captured a greater number of taxa (18) compared to leaf and fruit baits (12). Of the three bait types rhododendron leaves yielded the greatest number of isolates and taxa, followed by pear and green pepper, respectively. Despite the proximity to agricultural lands, none of the Phytophthora species baited are considered serious pathogens of vegetable crops in the region. However, many of the recovered species are known woody plant pathogens, including four species in the P. citricola s.l. complex that were identified: P. plurivora, P. citricola III, P. pini and a putative novel species, referred to here as P. taxon caryae. An additional novel species, P. taxon pocumtuck, is a close relative of P. borealis based on cox1 sequences. The results illustrate a high level of Phytophthora species richness in the Connecticut River Valley and that major rivers can serve as a source of inoculum for pathogenic Phytophthora species in the northeast. © 2016 by The Mycological

  19. Small changes in climate can profoundly alter the dynamics and ecosystem services of tropical crater lakes.

    Directory of Open Access Journals (Sweden)

    Émilie Saulnier-Talbot

    Full Text Available African tropical lakes provide vital ecosystem services including food and water to some of the fastest growing human populations, yet they are among the most understudied ecosystems in the world. The consequences of climate change and other stressors on the tropical lakes of Africa have been informed by long-term analyses, but these studies have largely focused on the massive Great Rift Valley lakes. Our objective was to evaluate how recent climate change has altered the functioning and services of smaller tropical lakes, which are far more abundant on the landscape. Based on a paired analysis of 20 years of high-resolution water column data and a paleolimnological record from a small crater lake in western Uganda, we present evidence that even a modest warming of the air (∼0.9°C increase over 20 years and changes in the timing and intensity of rainfall can have significant consequences on the dynamics of this common tropical lake type. For example, we observed a significant nonlinear increase (R(2 adj  = 0.23, e.d.f. = 7, p<0.0001 in thermal stability over the past 20 years. This resulted in the expansion of anoxic waters and consequent deterioration of fish habitat and appears to have abated primary production; processes that may impair ecosystem services for a vulnerable human population. This study on a system representative of small tropical crater lakes highlights the far-reaching effects of global climatic change on tropical waters. Increased research efforts into tropical aquatic ecosystem health and the development of sound management practices are necessary in order to strengthen adaptive capabilities in tropical regions.

  20. Bathymetry of Lake Erie and Lake Saint Clair

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathymetry of Lake Erie and Lake Saint Clair has been compiled as a component of a NOAA project to rescue Great Lakes lake floor geological and geophysical data and...

  1. Death Valley Lower Carbonate Aquifer Monitoring Program Wells Down gradient of the Proposed Yucca Mountain Nuclear Waste Repository

    International Nuclear Information System (INIS)

    Inyo County

    2006-01-01

    Inyo County has participated in oversight activities associated with the Yucca Mountain Nuclear Waste Repository since 1987. The overall goal of these studies are the evaluation of far-field issues related to potential transport, by ground water, or radionuclides into Inyo County, including Death Valley, and the evaluation of a connection between the Lower Carbonate Aquifer (LCA) and the biosphere. Our oversight and completed Cooperative Agreement research, and a number of other investigators research indicate that there is groundwater flow between the alluvial and carbonate aquifers both at Yucca Mountain and in Inyo County. In addition to the potential of radionuclide transport through the LCA, Czarnecki (1997), with the US Geological Survey, research indicate potential radionuclide transport through the shallower Tertiary-age aquifer materials with ultimate discharge into the Franklin Lake Playa in Inyo County. The specific purpose of this Cooperative Agreement drilling program was to acquire geological, subsurface geology, and hydrologic data to: (1) establish the existence of inter-basin flow between the Amargosa Basin and Death Valley Basin; (2) characterize groundwater flow paths in the LCA through Southern Funeral Mountain Range, and (3) Evaluation the hydraulic connection between the Yucca Mountain repository and the major springs in Death Valley through the LCA

  2. Seeing Water in Early Twentieth-Century Mexico City: Henry Wellge's Perspective Plan of the City and Valley of Mexico, D.F. 1906

    OpenAIRE

    Widdifield, Stacie G.; Banister, Jeffrey M.

    2015-01-01

    We examine Henry Wellge's 1906 chromolithograph, Perspective Plan of the City and Valley of Mexico, D.F., a panoramic view that organizes the capital and its lacustrine environs through close up and distant perspectives. The Plan depicts a landscape integrated by canals, rivers, and lakes, recording a pivotal moment before modern hydraulic infrastructure would remove surface water from view. We thus interrogate this image as a visual register of hydraulic-control ideals in vogue around 1900, ...

  3. A multiple-tracer approach to understanding regional groundwater flow in the Snake Valley area of the eastern Great Basin, USA

    International Nuclear Information System (INIS)

    Gardner, Philip M.; Heilweil, Victor M.

    2014-01-01

    Highlights: • Age tracers and noble gases constrain intra- and inter-basin groundwater flow. • Tritium indicates modern (<60 yr) recharge occurring in all mountain areas. • Noble-gas data identify an important interbasin hydraulic discontinuity. • Further groundwater development may significantly impact Snake Valley springs. - Abstract: Groundwater in Snake Valley and surrounding basins in the eastern Great Basin province of the western United States is being targeted for large-scale groundwater extraction and export. Concern about declining groundwater levels and spring flows in western Utah as a result of the proposed groundwater withdrawals has led to efforts that have improved the understanding of this regional groundwater flow system. In this study, environmental tracers (δ 2 H, δ 18 O, 3 H, 14 C, 3 He, 4 He, 20 Ne, 40 Ar, 84 Kr, and 129 Xe) and major ions from 142 sites were evaluated to investigate groundwater recharge and flow-path characteristics. With few exceptions, δ 2 H and δ 18 O show that most valley groundwater has similar ratios to mountain springs, indicating recharge is dominated by relatively high-altitude precipitation. The spatial distribution of 3 H, terrigenic helium ( 4 He terr ), and 3 H/ 3 He ages shows that modern groundwater (<60 yr) in valley aquifers is found only in the western third of the study area. Pleistocene and late-Holocene groundwater is found in the eastern parts of the study area. The age of Pleistocene groundwater is supported by minimum adjusted radiocarbon ages of up to 32 ka. Noble gas recharge temperatures (NGTs) are generally 1–11 °C in Snake and southern Spring Valleys and >11 °C to the east of Snake Valley and indicate a hydraulic discontinuity between Snake and Tule Valleys across the northern Confusion Range. The combination of NGTs and 4 He terr shows that the majority of Snake Valley groundwater discharges as springs, evapotranspiration, and well withdrawals within Snake Valley rather than

  4. Coelastrum pascheri sp. n., a new green alga from lakes of the Bohemian Forest

    Czech Academy of Sciences Publication Activity Database

    Lukavský, Jaromír

    2006-01-01

    Roč. 61, Suppl20 (2006), S485-S490 ISSN 0006-3088 R&D Projects: GA MŠk 1M0571 Institutional research plan: CEZ:AV0Z60050516 Keywords : Coelastrum pascheri, sp. n * algae * lakes Subject RIV: EF - Botanics Impact factor: 0.213, year: 2006

  5. Feeding ecology of northern pintails and green-winged teal wintering in California

    Science.gov (United States)

    Euliss, Ned H.; Harris, Stanley W.

    1987-01-01

    The feeding ecology of northern pintails (Anas acuta) and green-winged teal (A. crecca) was examined from October through February 1979-81 in 4 major seasonal marsh types in the Central Valley, California. The esophagi of 262 pintails contained 72.3% plant seeds and 27.7% animal matter. The esophagi of 173 green-winged teal contained 62.3% plant seeds and 37.6% animal matter. Swamp timothy (Heleochloa schoenoides) caryopses, chironomid midge larvae, and common barnyardgrass (Echinochloa crusgalli) caryopses formed >50% of the diet of both species. Both species were highly opportunistic and generally shifted their food habits seasonally to the most available foods. Animal matter increased seasonally in the diets of both and formed about 60% of the foods eaten during January and February compared to only about 8% in October and 17% in December. Both species used open water marsh habitats almost exclusively in daytime but they used densely vegetated marshes almost exclusively at night. Management recommendations based on the food habits and habitat use patterns of pintails and green-winged teal are offered.

  6. Lake whitefish diet, condition, and energy density in Lake Champlain and the lower four Great Lakes following dreissenid invasions

    Science.gov (United States)

    Herbst, Seth J.; Marsden, J. Ellen; Lantry, Brian F.

    2013-01-01

    Lake Whitefish Coregonus clupeaformis support some of the most valuable commercial freshwater fisheries in North America. Recent growth and condition decreases in Lake Whitefish populations in the Great Lakes have been attributed to the invasion of the dreissenid mussels, zebra mussels Dreissena polymorpha and quagga mussels D. bugensis, and the subsequent collapse of the amphipod, Diporeia, a once-abundant high energy prey source. Since 1993, Lake Champlain has also experienced the invasion and proliferation of zebra mussels, but in contrast to the Great Lakes, Diporeia were not historically abundant. We compared the diet, condition, and energy density of Lake Whitefish from Lake Champlain after the dreissenid mussel invasion to values for those of Lake Whitefish from Lakes Michigan, Huron, Erie, and Ontario. Lake Whitefish were collected using gill nets and bottom trawls, and their diets were quantified seasonally. Condition was estimated using Fulton's condition factor (K) and by determining energy density. In contrast to Lake Whitefish from some of the Great Lakes, those from Lake Champlain Lake Whitefish did not show a dietary shift towards dreissenid mussels, but instead fed primarily on fish eggs in spring, Mysis diluviana in summer, and gastropods and sphaeriids in fall and winter. Along with these dietary differences, the condition and energy density of Lake Whitefish from Lake Champlain were high compared with those of Lake Whitefish from Lakes Michigan, Huron, and Ontario after the dreissenid invasion, and were similar to Lake Whitefish from Lake Erie; fish from Lakes Michigan, Huron, and Ontario consumed dreissenids, whereas fish from Lake Erie did not. Our comparisons of Lake Whitefish populations in Lake Champlain to those in the Great Lakes indicate that diet and condition of Lake Champlain Lake Whitefish were not negatively affected by the dreissenid mussel invasion.

  7. Geologic map of the Harvard Lakes 7.5' quadrangle, Park and Chaffee Counties, Colorado

    Science.gov (United States)

    Kellogg, Karl S.; Lee, Keenan; Premo, Wayne R.; Cosca, Michael A.

    2013-01-01

    The Harvard Lakes 1:24,000-scale quadrangle spans the Arkansas River Valley in central Colorado, and includes the foothills of the Sawatch Range on the west and Mosquito Range on the east. The Arkansas River valley lies in the northern end of the Rio Grande rift and is structurally controlled by Oligocene and younger normal faults mostly along the west side of the valley. Five separate pediment surfaces were mapped, and distinctions were made between terraces formed by the Arkansas River and surfaces that formed from erosion and alluviation that emanated from the Sawatch Range. Three flood deposits containing boulders as long as 15 m were deposited from glacial breakouts just north of the quadrangle. Miocene and Pliocene basin-fill deposits of the Dry Union Formation are exposed beneath terrace or pediment deposits in several places. The southwestern part of the late Eocene Buffalo Peaks volcanic center, mostly andesitic breccias and flows and ash-flow tuffs, occupy the northeastern corner of the map. Dated Tertiary intrusive rocks include Late Cretaceous or early Paleocene hornblende gabbro and hornblende monzonite. Numerous rhyolite and dacite dikes of inferred early Tertiary or Late Cretaceous age also intrude the basement rocks. Basement rocks are predominantly Mesoproterozoic granites, and subordinately Paleoproterozoic biotite gneiss and granitic gneiss.

  8. Potential impacts of damming the Juba Valley, western Somalia: Insights from geomorphology and alluvial history

    Science.gov (United States)

    Williams, Martin

    2014-05-01

    In 1988 plans were well advanced to dam the Juba River in western Somalia. The aims of the Baardheere Dam Project were to generate hydroelectric power for the capital Mogadishu, and to provide water for irrigation in the Juba Valley. A reconnaissance survey on foot along 500 km of the river upstream of the proposed dam site at Baardheere and detailed geomorphic mapping from air photos provided a basis for reconstructing the late Quaternary alluvial history of the river and for assessing the potential impact of the proposed dam. The Juba River rises in the Ethiopian Highlands and is the only river in Somalia that flows to the sea. Its history reflects climatic events in Ethiopia, where the Rift Valley lakes were very low during the LGM (21±2 ka), and high for about 5, 000 years before and after then. Cave deposits in Somalia indicate wetter conditions at 13, 10, 7.5 and 1.5 ka. Alluvial terraces in the Juba Valley range in age from late Pleistocene to late Holocene but only attain a few metres above the present floodplain. This is because the dry tributary valleys contain limestone caves and fissures that divert any high flows from the parent river underground, a process not known when the project was first approved. The oldest preserved terrace was cemented by calcrete by 40 ka. Alluvial gravels were deposited at the outlet of dry tributary valleys during times of episodic high-energy flow between 26 ka and 28 ka. Finely laminated shelly sands accumulated at 10 ka to form the 5 m terrace. The 2 m terrace was laid down 3.2 ka ago as a slackwater deposit. The lack of high-level alluvial terraces raises doubts over plans to dam the river, since rapid leakage would occur from side valleys and the reservoir would not attain the height needed to generate hydroelectric power. It would submerge all existing arable land along the river. Finally, the presence in the late Holocene alluvium of the sub-fossil gastropods Bulinus truncatus and Biomphalaria pfeifferi, which are

  9. Simultaneous elimination of cyanotoxins and PCBs via mechanical collection of cyanobacterial blooms: An application of "green-bioadsorption concept".

    Science.gov (United States)

    Chen, Wei; Jia, Yunlu; Liu, Anyue; Zhou, Qichao; Song, Lirong

    2017-07-01

    In this study, the distribution, transfer and fate of both polychlorinated biphenyls (PCBs) and cyanotoxins via phytoplankton routes were systematically investigated in two Chinese lakes. Results indicated that PCB adsorption/bioaccumulation dynamics has significantly positive correlations with the biomass of green alga and diatoms. Total lipid content of phytoplankton is the major factor that influences PCB adsorption/bioaccumulation. Cyanobacterial blooms with relatively lower lipid content could also absorb high amount of PCBs due to their high cell density in the water columns, and this process was proposed as major route for the transfer of PCBs in Chinese eutrophic freshwater. According to these findings, a novel route on fates of PCBs via phytoplankton and a green bioadsorption concept were proposed and confirmed. In the practice of mechanical collections of bloom biomass from Lake Taihu, cyanotoxin/cyanobacteria and PCBs were found to be removed simultaneously very efficiently followed this theory. Copyright © 2016. Published by Elsevier B.V.

  10. Glacial lake inventory and lake outburst potential in Uzbekistan.

    Science.gov (United States)

    Petrov, Maxim A; Sabitov, Timur Y; Tomashevskaya, Irina G; Glazirin, Gleb E; Chernomorets, Sergey S; Savernyuk, Elena A; Tutubalina, Olga V; Petrakov, Dmitriy A; Sokolov, Leonid S; Dokukin, Mikhail D; Mountrakis, Giorgos; Ruiz-Villanueva, Virginia; Stoffel, Markus

    2017-08-15

    Climate change has been shown to increase the number of mountain lakes across various mountain ranges in the World. In Central Asia, and in particular on the territory of Uzbekistan, a detailed assessment of glacier lakes and their evolution over time is, however lacking. For this reason we created the first detailed inventory of mountain lakes of Uzbekistan based on recent (2002-2014) satellite observations using WorldView-2, SPOT5, and IKONOS imagery with a spatial resolution from 2 to 10m. This record was complemented with data from field studies of the last 50years. The previous data were mostly in the form of inventories of lakes, available in Soviet archives, and primarily included localized in-situ data. The inventory of mountain lakes presented here, by contrast, includes an overview of all lakes of the territory of Uzbekistan. Lakes were considered if they were located at altitudes above 1500m and if lakes had an area exceeding 100m 2 . As in other mountain regions of the World, the ongoing increase of air temperatures has led to an increase in lake number and area. Moreover, the frequency and overall number of lake outburst events have been on the rise as well. Therefore, we also present the first outburst assessment with an updated version of well-known approaches considering local climate features and event histories. As a result, out of the 242 lakes identified on the territory of Uzbekistan, 15% are considered prone to outburst, 10% of these lakes have been assigned low outburst potential and the remainder of the lakes have an average level of outburst potential. We conclude that the distribution of lakes by elevation shows a significant influence on lake area and hazard potential. No significant differences, by contrast, exist between the distribution of lake area, outburst potential, and lake location with respect to glaciers by regions. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Green Transformational Leadership and Green Performance: The Mediation Effects of Green Mindfulness and Green Self-Efficacy

    OpenAIRE

    Yu-Shan Chen; Ching-Hsun Chang; Yu-Hsien Lin

    2014-01-01

    No prior literature explores the influence of green transformational leadership on green performance, thus, this study develops a novel research framework to fill the research gap. This study investigates the influence of green transformational leadership on green performance and discusses the mediation effects of green mindfulness and green self-efficacy by means of structural equation modeling (SEM). The results indicate that green transformational leadership positively influences green min...

  12. Simulating Glacial Outburst Lake Releases for Suicide Basin, Mendenhall Glacier, Juneau, Alaska

    Science.gov (United States)

    Jacobs, A. B.; Moran, T.; Hood, E. W.

    2017-12-01

    Glacial Lake outbursts from Suicide Basin are recent phenomenon first characterized in 2011. The 2014 event resulted in record river stage and moderate flooding on the Mendenhall River in Juneau. Recognizing that these events can adversely impact residential areas of Juneau's Mendenhall Valley, the Alaska-Pacific River Forecast Center developed a real-time modeling technique capable of forecasting the timing and magnitude of the flood-wave crest due to releases from Suicide Basin. The 2014 event was estimated at about 37,000 acre feet with water levels cresting within 36 hours from the time the flood wave hit Mendenhall Lake. Given the magnitude of possible impacts to the public, accurate hydrological forecasting is essential for public safety and Emergency Managers. However, the data needed to effectively forecast magnitudes of specific jökulhlaup events are limited. Estimating this event as related to river stage depended upon three variables: 1) the timing of the lag between Suicide Basin water level declines and the related rise of Mendenhall Lake, 2) continuous monitoring of Mendenhall Lake water levels, and 3) estimating the total water volume stored in Suicide Basin. Real-time modeling of the event utilized a Time of Concentration hydrograph with independent power equations representing the rising and falling limbs of the hydrograph. The initial accuracy of the model — as forecasted about 24 hours prior to crest — resulted in an estimated crest within 0.5 feet of the actual with a timing error of about six hours later than the actual crest.

  13. GREEN PACKAGING, GREEN PRODUCT, GREEN ADVERTISING, PERSEPSI, DAN MINAT BELI KONSUMEN

    Directory of Open Access Journals (Sweden)

    Imam Santoso

    2016-12-01

    Full Text Available Environmental problems become one of the strategic issues in achieving global competitiveness. One of the issues is products that are made from environmental friendly materials or known as green product. Furthermore, in green products marketing, the company also uses green packaging and green advertising concept. This study aimed to analyze the effect of green packaging, green products, and green advertising on consumer perception and purchasing intention. The study was conducted in Ketawanggede Village, Lowokwaru Sub-district, Malang City. The sampling method used nonprobability accidential sampling techniques. The numbers of respondents were 113 consumers in study site. Data were collected by interview using questionnaires. The method of analysis used Generalized Structured Component Analysis (GSCA. The analysis showed that the green packaging, green products, and green advertising had positive significant influence on consumer perceptions. Meanwhile, green product and consumer perception had positive significant influence on purchasing interest, but the green packaging and green advertising has not found sufficient evidence in influencing purchasing intention.

  14. Lake-level frequency analysis for Devils Lake, North Dakota

    Science.gov (United States)

    Wiche, Gregg J.; Vecchia, Aldo V.

    1996-01-01

    Two approaches were used to estimate future lake-level probabilities for Devils Lake. The first approach is based on an annual lake-volume model, and the second approach is based on a statistical water mass-balance model that generates seasonal lake volumes on the basis of seasonal precipitation, evaporation, and inflow. Autoregressive moving average models were used to model the annual mean lake volume and the difference between the annual maximum lake volume and the annual mean lake volume. Residuals from both models were determined to be uncorrelated with zero mean and constant variance. However, a nonlinear relation between the residuals of the two models was included in the final annual lakevolume model.Because of high autocorrelation in the annual lake levels of Devils Lake, the annual lake-volume model was verified using annual lake-level changes. The annual lake-volume model closely reproduced the statistics of the recorded lake-level changes for 1901-93 except for the skewness coefficient. However, the model output is less skewed than the data indicate because of some unrealistically large lake-level declines. The statistical water mass-balance model requires as inputs seasonal precipitation, evaporation, and inflow data for Devils Lake. Analysis of annual precipitation, evaporation, and inflow data for 1950-93 revealed no significant trends or long-range dependence so the input time series were assumed to be stationary and short-range dependent.Normality transformations were used to approximately maintain the marginal probability distributions; and a multivariate, periodic autoregressive model was used to reproduce the correlation structure. Each of the coefficients in the model is significantly different from zero at the 5-percent significance level. Coefficients relating spring inflow from one year to spring and fall inflows from the previous year had the largest effect on the lake-level frequency analysis.Inclusion of parameter uncertainty in the model

  15. Lake trout in northern Lake Huron spawn on submerged drumlins

    Science.gov (United States)

    Riley, Stephen C.; Binder, Thomas; Wattrus, Nigel J.; Faust, Matthew D.; Janssen, John; Menzies, John; Marsden, J. Ellen; Ebener, Mark P.; Bronte, Charles R.; He, Ji X.; Tucker, Taaja R.; Hansen, Michael J.; Thompson, Henry T.; Muir, Andrew M.; Krueger, Charles C.

    2014-01-01

    Recent observations of spawning lake trout Salvelinus namaycush near Drummond Island in northern Lake Huron indicate that lake trout use drumlins, landforms created in subglacial environments by the action of ice sheets, as a primary spawning habitat. From these observations, we generated a hypothesis that may in part explain locations chosen by lake trout for spawning. Most salmonines spawn in streams where they rely on streamflows to sort and clean sediments to create good spawning habitat. Flows sufficient to sort larger sediment sizes are generally lacking in lakes, but some glacial bedforms contain large pockets of sorted sediments that can provide the interstitial spaces necessary for lake trout egg incubation, particularly if these bedforms are situated such that lake currents can penetrate these sediments. We hypothesize that sediment inclusions from glacial scavenging and sediment sorting that occurred during the creation of bedforms such as drumlins, end moraines, and eskers create suitable conditions for lake trout egg incubation, particularly where these bedforms interact with lake currents to remove fine sediments. Further, these bedforms may provide high-quality lake trout spawning habitat at many locations in the Great Lakes and may be especially important along the southern edge of the range of the species. A better understanding of the role of glacially-derived bedforms in the creation of lake trout spawning habitat may help develop powerful predictors of lake trout spawning locations, provide insight into the evolution of unique spawning behaviors by lake trout, and aid in lake trout restoration in the Great Lakes.

  16. Modification of the land topography during glacial maximums due to the lithospheric flexure, temptative reconstructions of the southern North Sea landscapes during the Elsterian

    DEFF Research Database (Denmark)

    Moreau, Julien; Le Pourhiet, Laetitia; Grappe, Benjamin

    developed, stating that the incision and the filling of the valleys are separate in times and from distinct processes. The erosion surface and consequently the tunnel valleys peculiar incision geometry are preserved after ice recession, forming sediment traps. The infill is interpreted as proglacial...... overdeeps (the underfilled tunnel valleys). The presence of clinoforms 50-80 m above the valley shoulders indicates the potential depth of the lake. However, remains of the regionally extensive lake are elusive and seldom preserved onshore. We have hypothesised that the depression hosting the lake...

  17. Landslide activity as a threat to infrastructure in river valleys - An example from outer Western Carpathians (Poland)

    Science.gov (United States)

    Łuszczyńska, Katarzyna; Wistuba, Małgorzata; Malik, Ireneusz

    2017-11-01

    Intensive development of the area of Polish Carpathians increases the scale of landslide risk. Thus detecting landslide hazards and risks became important issue for spatial planning in the area. We applied dendrochronological methods and GIS analysis for better understanding of landslide activity and related hazards in the test area (3,75 km2): Salomonka valley and nearby slopes in the Beskid Żywiecki Mts., Outer Western Carpathians, southern Poland. We applied eccentricity index of radial growth of trees to date past landslide events. Dendrochronological results allowed us to determine the mean frequency of landsliding at each sampling point which were next interpolated into a map of landslide hazard. In total we took samples at 46 points. In each point we sampled 3 coniferous trees. Landslide hazard map shows a medium (23 sampling points) and low (20 sampling points) level of landslide activity for most of the area. The highest level of activity was recorded for the largest landslide. Results of the dendrochronological study suggest that all landslides reaching downslope to Salomonka valley floor are active. LiDAR-based analysis of relief shows that there is an active coupling between those landslides and river channel. Thus channel damming and formation of an episodic lake are probable. The hazard of flooding valley floor upstream of active landslides should be included in the local spatial planning system and crisis management system.

  18. Lake sturgeon population characteristics in Rainy Lake, Minnesota and Ontario

    Science.gov (United States)

    Adams, W.E.; Kallemeyn, L.W.; Willis, D.W.

    2006-01-01

    Rainy Lake contains a native population of lake sturgeon Acipenser fulvescens that has been largely unstudied. The aims of this study were to document the population characteristics of lake sturgeon in Rainy Lake and to relate environmental factors to year-class strength for this population. Gill-netting efforts throughout the study resulted in the capture of 322 lake sturgeon, including 50 recaptures. Lake sturgeon in Rainy Lake was relatively plump and fast growing compared with a 32-population summary. Population samples were dominated by lake sturgeon between 110 and 150 cm total length. Age–structure analysis of the samples indicated few younger (<10 years) lake sturgeon, but the smallest gill net mesh size used for sampling was 102 mm (bar measure) and would not retain small sturgeon. Few lake sturgeon older than age 50 years were captured, and maximum age of sampled fish was 59 years. Few correlations existed between lake sturgeon year-class indices and both annual and monthly climate variables, except that mean June air temperature was positively correlated with year-class strength. Analysis of Rainy Lake water elevation and resulting lake sturgeon year-class strength indices across years yielded consistent but weak negative correlations between late April and early June, when spawning of lake sturgeon occurs. The baseline data collected in this study should allow Rainy Lake biologists to establish more specific research questions in the future.

  19. A landscape scale valley confinement algorithm: Delineating unconfined valley bottoms for geomorphic, aquatic, and riparian applications

    Science.gov (United States)

    David E. Nagel; John M. Buffington; Sharon L. Parkes; Seth Wenger; Jaime R. Goode

    2014-01-01

    Valley confinement is an important landscape characteristic linked to aquatic habitat, riparian diversity, and geomorphic processes. This report describes a GIS program called the Valley Confinement Algorithm (VCA), which identifies unconfined valleys in montane landscapes. The algorithm uses nationally available digital elevation models (DEMs) at 10-30 m resolution to...

  20. Lake Area Changes and Their Influence on Factors in Arid and Semi-Arid Regions along the Silk Road

    Directory of Open Access Journals (Sweden)

    Chao Tan

    2018-04-01

    Full Text Available In the context of global warming, the changes in major lakes and their responses to the influence factors in arid and semi-arid regions along the Silk Road are especially important for the sustainable development of local water resources. In this study, the areas of 24 lakes were extracted using MODIS NDVI data, and their spatial-temporal characteristics were analyzed. In addition, the relationship between lake areas and the influence factors, including air temperature, precipitation, evapotranspiration, land use and land cover change (LULCC and population density in the watersheds, were investigated. The results indicated that the areas of most lakes shrank, and the total area decreased by 22,189.7 km2 from 2001 to 2016, except for those of the lakes located on the Qinghai-Tibetan Plateau. The air temperature was the most important factor for all the lakes and increased at a rate of 0.113 °C/a during the past 16 years. LULCC and the increasing population density markedly influenced the lakes located in the middle to western parts of this study area. Therefore, our results connecting lake area changes in the study region highlight the great challenge of water resources and the urgency of implementation of the green policy in the One Belt and One Road Initiative through international collaboration.

  1. Zooplankton communities in a large prealpine lake, Lake Constance: comparison between the Upper and the Lower Lake

    Directory of Open Access Journals (Sweden)

    Gerhard MAIER

    2005-08-01

    Full Text Available The zooplankton communities of two basins of a large lake, Lake Constance, were compared during the years 2002 and 2003. The two basins differ in morphology, physical and chemical conditions. The Upper Lake basin has a surface area of 470 km2, a mean depth of 100 and a maximum depth of 250 m; the Lower Lake basin has a surface area of 62 km2, a mean depth of only 13 and a maximum depth of 40 m. Nutrient, chlorophyll-a concentrations and mean temperatures are somewhat higher in the Lower than in the Upper Lake. Total abundance of rotifers (number per m2 lake surface was higher and rotifer development started earlier in the year in the Lower than in the Upper Lake. Total abundance of crustaceans was higher in the Upper Lake in the year 2002; in the year 2003 no difference in abundance could be detected between the lake basins, although in summer crustacean abundance was higher in the Lower than in the Upper Lake. Crustacean communities differed significantly between lake basins while there was no apparent difference in rotifer communities. In the Lower Lake small crustaceans, like Bosmina spp., Ceriodaphnia pulchella and Thermocyclops oithonoides prevailed. Abundance (number per m2 lake surface of predatory cladocerans, large daphnids and large copepods was much lower in the Lower than in the Upper Lake, in particular during the summer months. Ordination with nonmetric multidimensional scaling (NMS separated communities of both lakes along gradients that correlated with temperature and chlorophyll a concentration. Clutches of copepods were larger in the Lower than in the Upper Lake. No difference could be detected in clutch size of large daphnids between lake basins. Our results show that zooplankton communities in different basins of Lake Constance can be very different. They further suggest that the lack of large crustaceans in particular the lack of large predatory cladocerans in the Lower Lake can have negative effects on growth and

  2. Small martian valleys: Pristine and degraded morphology

    International Nuclear Information System (INIS)

    Baker, V.R.; Partridge, J.B.

    1986-01-01

    The equatorial heavily cratered uplands of Mars are dissected by two classes of small valleys that are intimately associated in compound networks. Pristine valleys with steep valley walls preferentially occupy downstream portions of compound basins. Degraded valleys with eroded walls are laterally more extensive and have higher drainage densities than pristine valleys. Morphometric and crater-counting studies indicate that relatively dense drainage networks were emplaced on Mars during the heavy bombardment about 4.0 b.y. ago. Over a period of approximately 10 8 years, these networks were degraded and subsequently invaded by headwardly extending pristine valleys. The pristine valleys locally reactivated the compound networks, probably through sapping processes dependent upon high water tables. Fluvial activity in the heavily cratered uplands generally ceased approximately 3.8--3.9 b.y. ago, coincident with the rapid decline in cratering rates. The relict compound valleys on Mars are morphometrically distinct from most terrestrial drainage systems. The differences might be caused by a Martian valley formation episode characterized by hyperaridity, by inadequate time for network growth, by very permeable rock types, or by a combination of factors

  3. Lake trout rehabilitation in Lake Erie: a case history

    Science.gov (United States)

    Cornelius, Floyd C.; Muth, Kenneth M.; Kenyon, Roger

    1995-01-01

    Native lake trout (Salvelinus namaycush) once thrived in the deep waters of eastern Lake Erie. The impact of nearly 70 years of unregulated exploitation and over 100 years of progressively severe cultural eutrophication resulted in the elimination of lake trout stocks by 1950. Early attempts to restore lake trout by stocking were unsuccessful in establishing a self-sustaining population. In the early 1980s, New York's Department of Environmental Conservation, Pennsylvania's Fish and Boat Commission, and the U.S. Fish and Wildlife Service entered into a cooperative program to rehabilitate lake trout in the eastern basin of Lake Erie. After 11 years of stocking selected strains of lake trout in U.S. waters, followed by effective sea lamprey control, lake trout appear to be successfully recolonizing their native habitat. Adult stocks have built up significantly and are expanding their range in the lake. Preliminary investigations suggest that lake trout reproductive habitat is still adequate for natural reproduction, but natural recruitment has not been documented. Future assessments will be directed toward evaluation of spawning success and tracking age-class cohorts as they move through the fishery.

  4. Detailed cross sections of the Eocene Green River Formation along the north and east margins of the Piceance Basin, western Colorado, using measured sections and drill hole information

    Science.gov (United States)

    Johnson, Ronald C.

    2014-01-01

    This report presents two detailed cross sections of the Eocene Green River Formation in the Piceance Basin, northwestern Colorado, constructed from eight detailed measured sections, fourteen core holes, and two rotary holes. The Eocene Green River Formation in the Piceance Basin contains the world’s largest known oil shale deposit with more than 1.5 billion barrels of oil in place. It was deposited in Lake Uinta, a long-lived saline lake that once covered much of the Piceance Basin and the Uinta Basin to the west. The cross sections extend across the northern and eastern margins of the Piceance Basin and are intended to aid in correlating between surface sections and the subsurface in the basin.

  5. Research objectives to support the South Florida Ecosystem Restoration initiative-Water Conservation Areas, Lake Okeechobee, and the East/West waterways

    OpenAIRE

    Kitchens, Wiley M.

    1994-01-01

    The South Florida Ecosystem encompasses an area of approximately 28,000 km2 comprising at least 11 major physiographic provinces, including the Kissimmee River Valley, Lake Okeechobee, the Immokalee Rise, the Big Cypress, the Everglades, Florida Bay, the Atlantic Coastal Ridge, Biscayne Bay, the Florida Keys, the Florida Reef Tract, and nearshore coastal waters. South Florida is a heterogeneous system of wetlands, uplands, coastal areas, and marine areas, dominated by the watershe...

  6. Use of ground-water reservoirs for storage of surface water in the San Joaquin Valley, California

    Science.gov (United States)

    Davis, G.H.; Lofgren, B.E.; Mack, Seymour

    1964-01-01

    The San Joaquin Valley includes roughly the southern two-thirds of the Central Valley of California, extending 250 miles from Stockton on the north to Grapevine at the foot of the Tehachapi Mountains. The valley floor ranges in width from 25 miles near Bakersfield to about 55 miles near Visalia; it has a surface area of about 10,000 square miles. More than one-quarter of all the ground water pumped for irrigation in the United States is used in this highly productive valley. Withdrawal of ground water from storage by heavy pumping not only provides a needed irrigation water supply, but it also lowers the ground-water level and makes storage space available in which to conserve excess water during periods of heavy runoff. A storage capacity estimated to be 93 million acre-feet to a depth of 200 feet is available in this ground-water reservoir. This is about nine times the combined capacity of the existing and proposed surface-water reservoirs in the San Joaquin Valley under the California Water Plan. The landforms of the San Joaquin Valley include dissected uplands, low plains and fans, river flood plains and channels, and overflow lands and lake bottoms. Below the land surface, unconsolidated sediments derived from the surrounding mountain highlands extend downward for hundreds of feet. These unconsolidated deposits, consisting chiefly of alluvial deposits, but including some widespread lacustrine sediments, are the principal source of ground water in the valley. Ground water occurs under confined and unconfined conditions in the San Joaquin Valley. In much of the western, central, and southeastern parts of the valley, three distinct ground-water reservoirs are present. In downward succession these are 1) a body of unconfined and semiconfined fresh water in alluvial deposits of Recent, Pleistocene, and possibly later Pliocene age, overlying the Corcoran clay member of the Tulare formation; 2) a body of fresh water confined beneath the Corcoran clay member, which

  7. Title: Water Quality Monitoring to Restore and Enhance Lake Herrick

    Science.gov (United States)

    Kannan, A.; Saintil, T.; Radcliffe, D. E.; Rasmussen, T. C.

    2017-12-01

    Lake Allyn M. Herrick is about 1.5 km2 and covers portions of the University of Georgia's East campus, the Oconee forest, residential and commercial land use. Lake Herrick, a 15-acre water body established in 1982 at the University of Georgia's campus was closed in 2002 for recreation due to fecal contamination, color change, and heavy sedimentation. Subsequent monitoring confirmed cyanobacterium blooms on the surface of lake and nutrient concentration especially phosphorus was one of the primary reasons. However, no studies have been done on lake inflows and outflows after 2005 in terms of nutrients and fecal Indicator bacteria. Two inflow tributaries and the outlet stream were monitored for discharge, E. coli, total coliform, forms of nitrogen and phosphorus and other water quality parameters during base flow and storm conditions. External environmental factors like precipitation, land-use/location, discharge, and internal factors within the water like temperature, DO, pH, conductivity, and turbidity influencing fecal indicator bacteria and nutrients will be discussed with data collected from the inflows/outflow between February 2016 to October 2017. Following this, microbial source tracking methods were also used to detect the bacterial source in the samples specific to a ruminant or human host. The source tracking data will be presented during the timeframe of January 2017 to September 2017, to draw a conclusion on the potential source of fecal contamination. The future aim of the project will include modeling flow and bacteria at the watershed scale in order to make management decisions to restore the lake for recreational uses where green infrastructure could play a key role.

  8. Valley dependent transport in graphene L junction

    Science.gov (United States)

    Chan, K. S.

    2018-05-01

    We studied the valley dependent transport in graphene L junctions connecting an armchair lead and a zigzag lead. The junction can be used in valleytronic devices and circuits. Electrons injected from the armchair lead into the junction is not valley polarized, but they can become valley polarized in the zigzag lead. There are Fermi energies, where the current in the zigzag lead is highly valley polarized and the junction is an efficient generator of valley polarized current. The features of the valley polarized current depend sensitively on the widths of the two leads, as well as the number of dimers in the armchair lead, because this number has a sensitive effect on the band structure of the armchair lead. When an external potential is applied to the junction, the energy range with high valley polarization is enlarged enhancing its function as a generator of highly valley polarized current. The scaling behavior found in other graphene devices is also found in L junctions, which means that the results presented here can be extended to junctions with larger dimensions after appropriate scaling of the energy.

  9. GREEN PACKAGING, GREEN PRODUCT, GREEN ADVERTISING, PERSEPSI, DAN MINAT BELI KONSUMEN

    OpenAIRE

    Imam Santoso; Rengganis Fitriani

    2016-01-01

    Environmental problems become one of the strategic issues in achieving global competitiveness. One of the issues is products that are made from environmental friendly materials or known as green product. Furthermore, in green products marketing, the company also uses green packaging and green advertising concept. This study aimed to analyze the effect of green packaging, green products, and green advertising on consumer perception and purchasing intention. The study was conducted in Ketawangg...

  10. The impact of the lithospheric flexure during the Elsterian glacial maximum on post-/proglacial systems in the southern North Sea area

    DEFF Research Database (Denmark)

    Moreau, Julien; Le Pourhiet, Laetitia; Huuse, Mads

    tunnel valleys). The presence of clinoforms 5080 m above the valley shoulders indicates the potential depth of the lake. The lake geometry was certainly controlled by the lithospheric flexure depression and forebulge due to ice sheet loading, during or after ice sheet recession. The lake levels might...

  11. Can a change in cropping patterns produce water savings and social gains: A case study from the Fergana Valley, Central Asia

    Directory of Open Access Journals (Sweden)

    Karimov Akmal Kh.

    2018-06-01

    Full Text Available The study examines possible water savings by replacing alfalfa with winter wheat in the Fergana Valley, located upstream of the Syrdarya River in Central Asia. Agricultural reforms since the 1990s have promoted this change in cropping patterns in the Central Asian states to enhance food security and social benefits. The water use of alfalfa, winter wheat/fallow, and winter wheat/green gram (double cropping systems is compared for high-deficit, low-deficit, and full irrigation scenarios using hydrological modeling with the HYDRUS-1D software package. Modeling results indicate that replacing alfalfa with winter wheat in the Fergana Valley released significant water resources, mainly by reducing productive crop transpiration when abandoning alfalfa in favor of alternative cropping systems. However, the winter wheat/fallow cropping system caused high evaporation losses from fallow land after harvesting of winter wheat. Double cropping (i.e., the cultivation of green gram as a short duration summer crop after winter wheat harvesting reduced evaporation losses, enhanced crop output and hence food security, while generating water savings that make more water available for other productive uses. Beyond water savings, this paper also discusses the economic and social gains that double cropping produces for the public within a broader developmental context.

  12. Holocene Lake-Level Fluctuations of Lake Aricota, Southern Peru

    Science.gov (United States)

    Placzek, Christa; Quade, Jay; Betancourt, Julio L.

    2001-09-01

    Lacustrine deposits exposed around Lake Aricota, Peru (17° 22‧S), a 7.5-km2 lake dammed by debris flows, provide a middle to late Holocene record of lake-level fluctuations. Chronological context for shoreline deposits was obtained from radiocarbon dating of vascular plant remains and other datable material with minimal 14C reservoir effects (<350 yr). Diatomites associated with highstands several meters above the modern lake level indicate wet episodes. Maximum Holocene lake level was attained before 6100 14C yr B.P. and ended ∼2700 14C yr B.P. Moderately high lake levels occurred at 1700 and 1300 14C yr B.P. The highstand at Lake Aricota during the middle Holocene is coeval with a major lowstand at Lake Titicaca (16°S), which is only 130 km to the northeast and shares a similar climatology. Comparisons with other marine and terrestrial records highlight emerging contradictions over the nature of mid-Holocene climate in the central Andes.

  13. Selection of important ecological source patches base on Green Infrastructure theory: A case study of Wuhan city

    Science.gov (United States)

    Ke, Yuanyuan; Yu, Yan; Tong, Yan

    2018-01-01

    Selecting urban ecological patches is of great significance for constructing urban green infrastructure network, protecting urban biodiversity and ecological environment. With the support of GIS technology, a criterion for selecting sources of patches was developed according to existing planning. Then ecological source patches of terrestrial organism, aquatic and amphibious organism were selected in Wuhan city. To increase the connectivity of the ecological patches and achieve greater ecological protection benefits, the green infrastructure networks in Wuhan city were constructed with the minimum path analysis method. Finally, the characteristics of ecological source patches were analyzed with landscape metrics, and ecological protection importance degree of ecological source patches were evaluated comprehensively. The results showed that there were 23 important ecological source patches in Wuhan city, among which Sushan Temple Forest Patch, Lu Lake and Shangshe Lake Wetland Patch were the most important in all kinds of patches for ecological protection. This study can provide a scientific basis for the preservation of urban ecological space, the delineation of natural conservation areas and the protection of biological diversity.

  14. The diversity of benthic mollusks of Lake Victoria and Lake Burigi ...

    African Journals Online (AJOL)

    Molluscan diversity, abundance and distribution in sediments of Lake Victoria and its satellite lake, Lake Burigi, were investigated. The survey was carried out in January and February 2002 for Lake Victoria and in March and April 2002 for Lake Burigi. Ten genera were recorded from four zones of Lake Victoria while only ...

  15. Lake Morphometry for NHD Lakes in Great Lakes Region 4 HUC

    Data.gov (United States)

    U.S. Environmental Protection Agency — Lake morphometry metrics are known to influence productivity in lakes and are important for building various types of ecological and environmental models of lentic...

  16. Cladophora (Chlorophyta) spp. Harbor Human Bacterial Pathogens in Nearshore Water of Lake Michigan†

    OpenAIRE

    Ishii, Satoshi; Yan, Tao; Shively, Dawn A.; Byappanahalli, Muruleedhara N.; Whitman, Richard L.; Sadowsky, Michael J.

    2006-01-01

    Cladophora glomerata, a macrophytic green alga, is commonly found in the Great Lakes, and significant accumulations occur along shorelines during the summer months. Recently, Cladophora has been shown to harbor high densities of the fecal indicator bacteria Escherichia coli and enterococci. Cladophora may also harbor human pathogens; however, until now, no studies to address this question have been performed. In the present study, we determined whether attached Cladophora, obtained from the L...

  17. Greens of the European Green Capitals

    Science.gov (United States)

    Cömertler, Seval

    2017-10-01

    Well established and maintained green areas have a key role on reaching the high quality of life and sustainability in urban environments. Therefore, green areas must be carefully accounted and evaluated in the urban planning affairs. In this context, the European Green Capitals, which attach a great importance to the green areas, have a great potential to act as a role model for both small and big cities in all around the world. These leading cities (chronologically, Stockholm, Hamburg, Vitoria-Gasteiz, Nantes, Copenhagen, Bristol, Ljubljana, Essen and Nijmegen) are inspiring for the other cities which seek to achieve more sustainable and environmentally friendly places through green areas. From this point of view, the aim of this paper was to investigate the green areas of the European Green Capitals. The paper covered whole European Green Capitals, and the application form of each Green Capital was used as a primary data source. Consequently, the paper put forwarded that the European Green Capitals have considerably large amount and high proportion of green areas. Further, these cities provide an excellent access to the public green areas. As a result of abundant provision and proper distribution, the almost all citizens in most of the Green Capitals live within a distance of 300 meters to a green area. For further researches, the paper suggested that these green capitals should be investigated in terms of their efforts, measures, goals and plans, policies and implications to administer, to protect, to enhance and to expand the green areas.

  18. Numerical modeling of the Snowmass Creek paleoglacier, Colorado, and climate in the Rocky Mountains during the Bull Lake glaciation (MIS 6)

    Energy Technology Data Exchange (ETDEWEB)

    Eric M. Leonard; Mitchell A. Plummer; Paul E. Carrara

    2014-04-01

    Well-preserved moraines from the penultimate, or Bull Lake, glaciation of Snowmass Creek Valley in the Elk Range of Colorado present an opportunity to examine the character of the high-altitude climate in the Rocky Mountains during Marine Oxygen Isotope Stage 6. This study employs a 2-D coupled mass/energy balance and flow model to assess the magnitudes of temperature and precipitation change that could have sustained the glacier in mass-balance equilibrium at its maximum extent during the Bull Lake glaciation. Variable substrate effects on glacier flow and ice thickness make the modeling somewhat more complex than in geologically simpler settings. Model results indicate that a temperature depression of about 6.7°C compared with the present (1971–2000 AD) would have been necessary to sustain the Snowmass Creek glacier in mass-balance equilibrium during the Bull Lake glaciation, assuming no change in precipitation amount or seasonality. A 50% increase or decrease from modern precipitation would have been coupled with 5.2°C and 9.1°C Bull Lake temperature depressions respectively. Uncertainty in these modeled temperature depressions is about 1°C.

  19. The Lake Charles CCS Project

    Energy Technology Data Exchange (ETDEWEB)

    Doug Cathro

    2010-06-30

    The Lake Charles CCS Project is a large-scale industrial carbon capture and sequestration (CCS) project which will demonstrate advanced technologies that capture and sequester carbon dioxide (CO{sub 2}) emissions from industrial sources into underground formations. Specifically the Lake Charles CCS Project will accelerate commercialization of large-scale CO{sub 2} storage from industrial sources by leveraging synergy between a proposed petroleum coke to chemicals plant (the LCC Gasification Project) and the largest integrated anthropogenic CO{sub 2} capture, transport, and monitored sequestration program in the U.S. Gulf Coast Region. The Lake Charles CCS Project will promote the expansion of EOR in Texas and Louisiana and supply greater energy security by expanding domestic energy supplies. The capture, compression, pipeline, injection, and monitoring infrastructure will continue to sequester CO{sub 2} for many years after the completion of the term of the DOE agreement. The objectives of this project are expected to be fulfilled by working through two distinct phases. The overall objective of Phase 1 was to develop a fully definitive project basis for a competitive Renewal Application process to proceed into Phase 2 - Design, Construction and Operations. Phase 1 includes the studies attached hereto that will establish: the engineering design basis for the capture, compression and transportation of CO{sub 2} from the LCC Gasification Project, and the criteria and specifications for a monitoring, verification and accounting (MVA) plan at the Hastings oil field in Texas. The overall objective of Phase 2, provided a successful competitive down-selection, is to execute design, construction and operations of three capital projects: (1) the CO{sub 2} capture and compression equipment, (2) a Connector Pipeline from the LLC Gasification Project to the Green Pipeline owned by Denbury and an affiliate of Denbury, and (3) a comprehensive MVA system at the Hastings oil field.

  20. SURFACE WATER AND GROUND WATER QUALITY MONITORING FOR RESTORATION OF URBAN LAKES IN GREATER HYDERABAD, INDIA

    Science.gov (United States)

    Mohanty, A. K.

    2009-12-01

    SURFACE WATER AND GROUND WATER QUALITY MONITORING FOR RESTORATION OF URBAN LAKES IN GREATER HYDERABAD, INDIA A.K. Mohanty, K. Mahesh Kumar, B. A. Prakash and V.V.S. Gurunadha Rao Ecology and Environment Group National Geophysical Research Institute, (CSIR) Hyderabad - 500 606, India E-mail:atulyakumarmohanty@yahoo.com Abstract: Hyderabad Metropolitan Development Authority has taken up restoration of urban lakes around Hyderabad city under Green Hyderabad Environment Program. Restoration of Mir Alam Tank, Durgamcheruvu, Patel cheruvu, Pedda Cheruvu and Nallacheruvu lakes have been taken up under the second phase. There are of six lakes viz., RKPuramcheruvu, Nadimicheruvu (Safilguda), Bandacheruvu Patelcheruvu, Peddacheruvu, Nallacheruvu, in North East Musi Basin covering 38 sq km. Bimonthly monitoring of lake water quality for BOD, COD, Total Nitrogen, Total phosphorous has been carried out for two hydrological cycles during October 2002- October 2004 in all the five lakes at inlet channels and outlets. The sediments in the lake have been also assessed for nutrient status. The nutrient parameters have been used to assess eutrophic condition through computation of Trophic Status Index, which has indicated that all the above lakes under study are under hyper-eutrophic condition. The hydrogeological, geophysical, water quality and groundwater data base collected in two watersheds covering 4 lakes has been used to construct groundwater flow and mass transport models. The interaction of lake-water with groundwater has been computed for assessing the lake water budget combining with inflow and outflow measurements on streams entering and leaving the lakes. Individual lake water budget has been used for design of appropriate capacity of Sewage Treatment Plants (STPs) on the inlet channels of the lakes for maintaining Full Tank Level (FTL) in each lake. STPs are designed for tertiary treatment i.e. removal of nutrient load viz., Phosphates and Nitrates. Phosphates are

  1. Water-quality models to assess algal community dynamics, water quality, and fish habitat suitability for two agricultural land-use dominated lakes in Minnesota, 2014

    Science.gov (United States)

    Smith, Erik A.; Kiesling, Richard L.; Ziegeweid, Jeffrey R.

    2017-07-20

    Fish habitat can degrade in many lakes due to summer blue-green algal blooms. Predictive models are needed to better manage and mitigate loss of fish habitat due to these changes. The U.S. Geological Survey (USGS), in cooperation with the Minnesota Department of Natural Resources, developed predictive water-quality models for two agricultural land-use dominated lakes in Minnesota—Madison Lake and Pearl Lake, which are part of Minnesota’s sentinel lakes monitoring program—to assess algal community dynamics, water quality, and fish habitat suitability of these two lakes under recent (2014) meteorological conditions. The interaction of basin processes to these two lakes, through the delivery of nutrient loads, were simulated using CE-QUAL-W2, a carbon-based, laterally averaged, two-dimensional water-quality model that predicts distribution of temperature and oxygen from interactions between nutrient cycling, primary production, and trophic dynamics.The CE-QUAL-W2 models successfully predicted water temperature and dissolved oxygen on the basis of the two metrics of mean absolute error and root mean square error. For Madison Lake, the mean absolute error and root mean square error were 0.53 and 0.68 degree Celsius, respectively, for the vertical temperature profile comparisons; for Pearl Lake, the mean absolute error and root mean square error were 0.71 and 0.95 degree Celsius, respectively, for the vertical temperature profile comparisons. Temperature and dissolved oxygen were key metrics for calibration targets. These calibrated lake models also simulated algal community dynamics and water quality. The model simulations presented potential explanations for persistently large total phosphorus concentrations in Madison Lake, key differences in nutrient concentrations between these lakes, and summer blue-green algal bloom persistence.Fish habitat suitability simulations for cool-water and warm-water fish indicated that, in general, both lakes contained a large

  2. Himalayan Lake- and River-Impacting Landslides and Ice Avalanches: Some So Deadly, Some No Problem

    Science.gov (United States)

    Kargel, J. S.; Karki, A.; Haritashya, U. K.; Shugar, D. H.; Harrison, S.

    2017-12-01

    Scientific attention to landslides and ice avalanches in Nepal was heightened by the 2015 Gorkha earthquake. However, landslides and ice avalanches— some deadly— are frequent in this mountainous, glacierized country and across High Mountain Asia. River blocking landslides (RBLs) often create dangerous situations due to upstream impoundments and downstream landslide dammed outburst floods (LDOFs). Factors affecting RBL hazards include: Volumes and masses of ice, rock, and water; shape factors of the valley and landslide; grain size-frequency distribution; river hydrograph; and seasonal and weather factors. These factors affect processes such as slumping and erosion of the RBL by overflow or piping, buoyant lifting of dam material, melting of a landslide ice core, liquefaction, overfill overtopping or tsunami overtopping by subsequent landslides into the impoundment, and the volume and peak discharge of an LDOF. Not all processes aggravate hazards; a high ice:rock ratio, for example, can result in immediate tunneling by the river with no subsequent impoundment. A dam composed of mainly boulders with few fines likewise can prevent effective damming; however, a wide spectrum of the particle-size-distribution can make a long-lasting, benign dam. The most hazardous RBLs include those creating large dams and rapidly-filled impoundments, but which can rapidly and catastrophically break up, especially at sites of repeated terrain collapses. The particle size-frequency of a landslide dam depends substantially on bedrock lithology and structure. Vulnerabilities and warning times also affect whether an upstream impoundment flood or LDOF will exert a large toll. For landslide susceptibility assessments, usual treatments involving mountain slopes, valley shape, and seismic activity should be complemented by quantitative measures of bedrock lithology and weathering state, the potential energy and distribution of unstable masses, and recorded historic or prehistoric RBLs in

  3. Limnology and plankton diversity of salt lakes from Transylvanian Basin (Romania: A review

    Directory of Open Access Journals (Sweden)

    Mircea Alexe

    2017-09-01

    Full Text Available In the present work, we review the current knowledge on genesis, limnology and biodiversity of salt lakes distributed around the inner contour of Eastern Carpathian arc (Transylvanian Basin, Central Romania. Transylvanian salt lakes formed on ancient halite (NaCl deposits following natural processes or quarrying activities.  Most of these lakes are located in eastern (Sovata area, southern (Ocna Sibiului, and western (Turda-Cojocna parts of the Transylvanian Basin, have small surfaces (0.1-4 ha, variable depths (2-100 m, are hypersaline (>10%, w/v, total salts, mainly NaCl and permanently stratified. As consequence of steady salinity/density gradient, heat entrapment below surface layer (i.e., heliothermy develops in several Transylvanian lakes. The physical and chemical water stratification is mirrored in the partition of plankton diversity. Lakes with less saline (2-10% salinity water layers appear to harbor halotolerant representatives of phyto- (e.g., marine native Picochlorum spp. and Synechococcus spp., zoo- (e.g., Moina salina, and bacterioplankton (e.g., Actinobacteria, Verrucomicobia, whereas halophilic plankton communities (e.g., green algae Dunaliella sp., brine shrimp Artemia sp., and members of Halobacteria class dominate in the oxic surface of hypersaline (>10% salinity lakes. Molecular approaches (e.g., PCR-DGGE, 16S rRNA gene-based clone libraries, and DNA metabarcoding showed that the O2-depleted bottom brines of deep meromictic Transylvanian lakes are inhabited by known extremely halophilic anaerobes (e.g. sulfate-reducing Delta-Proteobacteria, fermenting Clostridia, methanogenic and polymer-degrading archaea in addition to representatives of uncultured/unclassified prokaryotic lineages. Overall, the plankton communities thriving in saline Transylvanian lakes seem to drive full biogeochemical cycling of main elements. However, the trophic interactions (i.e., food web structure and energy flow as well as impact of human

  4. Spatial and temporal genetic diversity of lake whitefish (Coregonus clupeaformis (Mitchill)) from Lake Huron and Lake Erie

    Science.gov (United States)

    Stott, Wendylee; Ebener, Mark P.; Mohr, Lloyd; Hartman, Travis; Johnson, Jim; Roseman, Edward F.

    2013-01-01

    Lake whitefish (Coregonus clupeaformis (Mitchill)) are important commercially, culturally, and ecologically in the Laurentian Great Lakes. Stocks of lake whitefish in the Great Lakes have recovered from low levels of abundance in the 1960s. Reductions in abundance, loss of habitat and environmental degradation can be accompanied by losses of genetic diversity and overall fitness that may persist even as populations recover demographically. Therefore, it is important to be able to identify stocks that have reduced levels of genetic diversity. In this study, we investigated patterns of genetic diversity at microsatellite DNA loci in lake whitefish collected between 1927 and 1929 (historical period) and between 1997 and 2005 (contemporary period) from Lake Huron and Lake Erie. Genetic analysis of lake whitefish from Lakes Huron and Erie shows that the amount of population structuring varies from lake to lake. Greater genetic divergences among collections from Lake Huron may be the result of sampling scale, migration patterns and demographic processes. Fluctuations in abundance of lake whitefish populations may have resulted in periods of increased genetic drift that have resulted in changes in allele frequencies over time, but periodic genetic drift was not severe enough to result in a significant loss of genetic diversity. Migration among stocks may have decreased levels of genetic differentiation while not completely obscuring stock boundaries. Recent changes in spatial boundaries to stocks, the number of stocks and life history characteristics of stocks further demonstrate the potential of coregonids for a swift and varied response to environmental change and emphasise the importance of incorporating both spatial and temporal considerations into management plans to ensure that diversity is preserved.

  5. A terrestrial Eocene stack: tying terrestrial lake ecology to marine carbon cycling through the Early Eocene Climatic Optimum

    Science.gov (United States)

    Grogan, D. S.; Whiteside, J. H.; Musher, D.; Rosengard, S. Z.; Vankeuren, M. A.; Pancost, R. D.

    2010-12-01

    The lacustrine Green River Formation is known to span ≥15 million years through the early-middle Eocene, and recent work on radioisotopic dating has provided a framework on which to build ties to the orbitally-tuned marine Eocene record. Here we present a spliced stack of Fischer assay data from drilled cores of the Green River Formation that span both an East-West and a North-South transect of the Uinta Basin of Utah. Detailed work on two cores demonstrate that Fischer assay measurements covary with total organic carbon and bulk carbon isotopes, allowing us to use Fisher assay results as a representative carbon cycling proxy throughout the stack. We provide an age model for this core record by combining radioisotopic dates of tuff layers with frequency analysis of Fischer assay measurements. Identification of orbital frequencies tied directly to magnetochrons through radioisotopic dates allows for a direct comparison of the terrestrial to the marine Eocene record. Our analysis indicates that the marker beds used to correlate the stack cores represent periods of enhanced lake productivity and extreme carbon burial; however, unlike the hyperthermal events that are clearly marked in the marine Eocene record, the hydrocarbon-rich "Mahogany Bed" period of burial does not correspond to a clear carbon isotope excursion. This suggests that the terrestrial realm may have experienced extreme ecological responses to relatively small perturbations in the carbon cycle during the Early Eocene Climatic Optimum. To investigate the ecological responses to carbon cycle perturbations through the hydrocarbon rich beds, we analyzed a suite of microbial biomarkers, finding evidence for cyanobacteria, dinoflagellates, and potentially green sulfur bacteria. These taxa indicate fluctuating oxic/anoxic conditions in the lake during abrupt intervals of carbon burial, suggesting a lake biogeochemical regime with no modern analogues.

  6. From green architecture to architectural green

    DEFF Research Database (Denmark)

    Earon, Ofri

    2011-01-01

    that describes the architectural exclusivity of this particular architecture genre. The adjective green expresses architectural qualities differentiating green architecture from none-green architecture. Currently, adding trees and vegetation to the building’s facade is the main architectural characteristics...... they have overshadowed the architectural potential of green architecture. The paper questions how a green space should perform, look like and function. Two examples are chosen to demonstrate thorough integrations between green and space. The examples are public buildings categorized as pavilions. One......The paper investigates the topic of green architecture from an architectural point of view and not an energy point of view. The purpose of the paper is to establish a debate about the architectural language and spatial characteristics of green architecture. In this light, green becomes an adjective...

  7. Polymethylene-interrupted fatty acids: Biomarkers for native and exotic mussels in the Laurentian Great Lakes

    Science.gov (United States)

    Mezek, Tadej; Sverko, Ed; Ruddy, Martina D.; Zaruk, Donna; Capretta, Alfredo; Hebert, Craig E.; Fisk, Aaron T.; McGoldrick, Daryl J.; Newton, Teresa J.; Sutton, Trent M.; Koops, Marten A.; Muir, Andrew M.; Johnson, Timothy B.; Ebener, Mark P.; Arts, Michael T.

    2011-01-01

    Freshwater organisms synthesize a wide variety of fatty acids (FAs); however, the ability to synthesize and/or subsequently modify a particular FA is not universal, making it possible to use certain FAs as biomarkers. Herein we document the occurrence of unusual FAs (polymethylene-interrupted fatty acids; PMI-FAs) in select freshwater organisms in the Laurentian Great Lakes. We did not detect PMI-FAs in: (a) natural seston from Lake Erie and Hamilton Harbor (Lake Ontario), (b) various species of laboratory-cultured algae including a green alga (Scenedesmus obliquus), two cyanobacteria (Aphanizomenon flos-aquae and Synechococystis sp.), two diatoms (Asterionella formosa, Diatoma elongatum) and a chrysophyte (Dinobryon cylindricum) or, (c) zooplankton (Daphnia spp., calanoid or cyclopoid copepods) from Lake Ontario, suggesting that PMI-FAs are not substantively incorporated into consumers at the phytoplankton–zooplankton interface. However, these unusual FAs comprised 4-6% of total fatty acids (on a dry tissue weight basis) of native fat mucket (Lampsilis siliquoidea) and plain pocketbook (L. cardium) mussels and in invasive zebra (Dreissena polymorpha) and quagga (D. bugensis) mussels. We were able to clearly partition Great Lakes' mussels into three separate groups (zebra, quagga, and native mussels) based solely on their PMI-FA profiles. We also provide evidence for the trophic transfer of PMI-FAs from mussels to various fishes in Lakes Ontario and Michigan, further underlining the potential usefulness of PMI-FAs for tracking the dietary contribution of mollusks in food web and contaminant-fate studies.

  8. Water Quality Conditions in Upper Klamath and Agency Lakes, Oregon, 2006

    Science.gov (United States)

    Lindenberg, Mary K.; Hoilman, Gene; Wood, Tamara M.

    2008-01-01

    The U.S. Geological Survey Upper Klamath Lake water quality monitoring program gathered information from multiparameter continuous water quality monitors, physical water samples, dissolved oxygen production and consumption experiments, and meteorological stations during the June-October 2006 field season. The 2006 study area included Agency Lake and all of Upper Klamath Lake. Seasonal patterns in water quality were similar to those observed in 2005, the first year of the monitoring program, and were closely related to bloom dynamics of the cyanobacterium (blue-green alga) Aphanizomenon flos-aquae (AFA) in the two lakes. High dissolved oxygen and pH conditions in both lakes before the bloom declined in July, which coincided with seasonal high temperatures and resulted in seasonal lows in dissolved oxygen and decreased pH. Dissolved oxygen and pH in Upper Klamath and Agency Lakes increased again after the bloom recovered. Seasonal low dissolved oxygen and decreased pH coincided with seasonal highs in ammonia and orthophosphate concentrations. Seasonal maximum daily average temperatures were higher and minimum dissolved oxygen concentrations were lower in 2006 than in 2005. Conditions potentially harmful to fish were influenced by seasonal patterns in bloom dynamics and bathymetry. Potentially harmful low dissolved oxygen and high un-ionized ammonia concentrations occurred mostly at the deepest sites in the Upper Klamath Lake during late July, coincident with a bloom decline. Potentially harmful pH conditions occurred mostly at sites outside the deepest parts of the lake in July and September, coincident with a heavy bloom. Instances of possible gas bubble formation, inferred from dissolved oxygen data, were estimated to occur frequently in shallow areas of Upper Klamath and Agency Lakes simultaneously with potentially harmful pH conditions. Comparison of the data from monitors in nearshore areas and monitors near the surface of the water column in the open waters of

  9. Topological Valley Transport in Two-dimensional Honeycomb Photonic Crystals.

    Science.gov (United States)

    Yang, Yuting; Jiang, Hua; Hang, Zhi Hong

    2018-01-25

    Two-dimensional photonic crystals, in analogy to AB/BA stacking bilayer graphene in electronic system, are studied. Inequivalent valleys in the momentum space for photons can be manipulated by simply engineering diameters of cylinders in a honeycomb lattice. The inequivalent valleys in photonic crystal are selectively excited by a designed optical chiral source and bulk valley polarizations are visualized. Unidirectional valley interface states are proved to exist on a domain wall connecting two photonic crystals with different valley Chern numbers. With the similar optical vortex index, interface states can couple with bulk valley polarizations and thus valley filter and valley coupler can be designed. Our simple dielectric PC scheme can help to exploit the valley degree of freedom for future optical devices.

  10. An Evaluation of Mesoscale Model Predictions of Down-Valley and Canyon Flows and Their Consequences Using Doppler Lidar Measurements During VTMX 2000

    International Nuclear Information System (INIS)

    Fast, Jerome D.; Darby, Lisa S.

    2004-01-01

    A mesoscale model, a Lagrangian particle dispersion model, and extensive Doppler lidar wind measurements during the VTMX 2000 field campaign were used to examine converging flows over the Salt Lake Valley and their effect on vertical mixing of tracers at night and during the morning transition period. The simulated wind components were transformed into radial velocities to make a direct comparison with about 1.3 million Doppler lidar data points and critically evaluate, using correlation coefficients, the spatial variations in the simulated wind fields aloft. The mesoscale model captured reasonably well the general features of the observed circulations including the daytime up-valley flow, the nighttime slope, canyon, and down-valley flows, and the convergence of the flows over the valley. When there were errors in the simulated wind fields, they were usually associated with the timing, structure, or strength of specific flows. Simulated outflows from canyons along the Wasatch Mountains propagated over the valley and converged with the down-valley flow, but the advance and retreat of these simulated flows was often out of phase with the lidar measurements. While the flow reversal during the evening transition period produced rising motions over much of the valley atmosphere in the absence of significant ambient winds, average vertical velocities became close to zero as the down-valley flow developed. Still, vertical velocities between 5 and 15 cm s-1 occurred where down-slope, canyon and down-valley flows converged and vertical velocities greater than 50 cm s-1 were produced by hydraulic jumps at the base of the canyons. The presence of strong ambient winds resulted in smaller average rising motions during the evening transition period and larger average vertical velocities after that. A fraction of the tracer released at the surface was transported up to the height of the surrounding mountains; however, higher concentrations were produced aloft for evening s

  11. Feasibility study of a Great Lakes bioenergy system.

    Science.gov (United States)

    Hacatoglu, Kevork; McLellan, P James; Layzell, David B

    2011-01-01

    A bioenergy production and delivery system built around the Great Lakes St. Lawrence Seaway (GLSLS) transportation corridor was assessed for its ability to mitigate energy security and climate change risks. The land area within 100 km of the GLSLS and associated railway lines was estimated to be capable of producing at least 30 Mt(dry) yr(-1) of lignocellulosic biomass with minimal adverse impacts on food and fibre production. This was estimated to be sufficient to displace all of the coal-fired electricity in Ontario plus more than 620 million L of green diesel (equivalent to 5.3% of diesel consumption in GLSLS provinces). Lifecycle greenhouse gas emissions were 88% and 76% lower than coal-fired power and conventional diesel, respectively. Production costs of $120 MWh(-1) for power and up to $30 GJ(-1) ($1.1 L(-1)) for green diesel were higher than current market prices, but a value for low-carbon energy would narrow the price differential. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. Energy density of lake whitefish Coregonus clupeaformis in Lakes Huron and Michigan

    Science.gov (United States)

    Pothoven, S.A.; Nalepa, T.F.; Madenjian, C.P.; Rediske, R.R.; Schneeberger, P.J.; He, J.X.

    2006-01-01

    We collected lake whitefish Coregonus clupeaformis off Alpena and Tawas City, Michigan, USA in Lake Huron and off Muskegon, Michigan USA in Lake Michigan during 2002–2004. We determined energy density and percent dry weight for lake whitefish from both lakes and lipid content for Lake Michigan fish. Energy density increased with increasing fish weight up to 800 g, and then remained relatively constant with further increases in fish weight. Energy density, adjusted for weight, was lower in Lake Huron than in Lake Michigan for both small (≤800 g) and large fish (>800 g). Energy density did not differ seasonally for small or large lake whitefish or between adult male and female fish. Energy density was strongly correlated with percent dry weight and percent lipid content. Based on data from commercially caught lake whitefish, body condition was lower in Lake Huron than Lake Michigan during 1981–2003, indicating that the dissimilarity in body condition between the lakes could be long standing. Energy density and lipid content in 2002–2004 in Lake Michigan were lower than data for comparable sized fish collected in 1969–1971. Differences in energy density between lakes were attributed to variation in diet and prey energy content as well as factors that affect feeding rates such as lake whitefish density and prey abundance.

  13. Effects of lake trout refuges on lake whitefish and cisco in the Apostle Islands Region of Lake Superior

    Science.gov (United States)

    Zuccarino-Crowe , Chiara M.; Taylor, William W.; Hansen, Michael J.; Seider, Michael J.; Krueger, Charles C.

    2016-01-01

    Lake trout refuges in the Apostle Islands region of Lake Superior are analogous to the concept of marine protected areas. These refuges, established specifically for lake trout (Salvelinus namaycush) and closed to most forms of recreational and commercial fishing, were implicated as one of several management actions leading to successful rehabilitation of Lake Superior lake trout. To investigate the potential significance of Gull Island Shoal and Devils Island Shoal refuges for populations of not only lake trout but also other fish species, relative abundances of lake trout, lake whitefish (Coregonus clupeaformis), and cisco (Coregonus artedi) were compared between areas sampled inside versus outside of refuge boundaries. During 1982–2010, lake trout relative abundance was higher and increased faster inside the refuges, where lake trout fishing was prohibited, than outside the refuges. Over the same period, lake whitefish relative abundance increased faster inside than outside the refuges. Both evaluations provided clear evidence that refuges protected these species. In contrast, trends in relative abundance of cisco, a prey item of lake trout, did not differ significantly between areas inside and outside the refuges. This result did not suggest indirect or cascading refuge effects due to changes in predator levels. Overall, this study highlights the potential of species-specific refuges to benefit other fish species beyond those that were the refuges' original target. Improved understanding of refuge effects on multiple species of Great Lakes fishes can be valuable for developing rationales for refuge establishment and predicting associated fish community-level effects.

  14. The Influence of Proactive Green Innovation and Reactive Green Innovation on Green Product Development Performance: The Mediation Role of Green Creativity

    Directory of Open Access Journals (Sweden)

    Yu-Shan Chen

    2016-09-01

    Full Text Available This study fills the research gap in the exploration of the relationships between both proactive and reactive green innovations and green product development performance, and examines the mediating effect of green creativity. Structural equation modeling (SEM is utilized to test the hypotheses. From the sample of 146 valid respondents, the results show that proactive green innovation positively affects green creativity and green product development performance, and green creativity positively affects green product development performance. In addition, our findings also indicate that the relationship between proactive green innovation and green product development performance is partially mediated by green creativity. Accordingly, green creativity plays a critical role for companies to achieve a great green product development performance. However, reactive green innovation does not significantly influence green creativity and green product development performance. Companies should develop proactive green innovation rather than reactive green innovation in order to enhance their green creativity and increase their product development performance.

  15. Green building challenge 2002 in Canada : an overview

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-02-01

    The Green Building Challenge (GBC) in Canada was launched to help the building community meet environmental challenges and improve the environmental performance of buildings. Tools have been made available to the building industry to make informed environmental choices during the conception design stage of a project. The tools help architects, researchers and policy analysts in choosing material mixes and other design options that will minimize a building's potential life cycle environmental impacts and promote sustainable development. Green buildings involve the complete structure and envelope, including cladding, insulation, gypsum wall board, roofing and windows. The type of building and its location is also considered. Long term sustainability also considers energy use and emissions related to a building's energy system. This presentation described the following 3 projects which were selected for assessment in the GBC-2002: (1) the Mayo School in Mayo, Yukon Territory, (2) the Jackson-Triggs Winery in Niagara-on-the-Lake, Ontario, and (3) the Red River College in Winnipeg, Manitoba. The GBC-2002 Canadian Team nominated them as the best buildings being designed in Canada.10 figs.

  16. Challenges in the Implementation of Green Home Development in Malaysia: Perspective of Developers

    Science.gov (United States)

    Nordin, Rumaizah Mohd; Halim, Ahmad Hafizi Abd; Yunus, Julitta

    2017-12-01

    The construction industry is the main contributor to Malaysian economic growth. One of the main sectors to be highlighted by the Government is housing sector. The population in Malaysia is increasing year by year, thus the demand for houses also rises significantly. However, the fulfilment of basic needs for people normally gives the adverse impacts to the environment. Green home concept is introduced with a purpose to create an acceptable standard of living as well as to preserve nature from destruction, whilst to promote efficiency of energy, water and other natural resources. The study aims to identify current level of awareness and understanding regarding the Green Home concept, together with identifying the challenges that contribute to lack of initiatives in implementation of green home development. This study utilizes the qualitative methodology utilising interviews with housing developers operating in Klang Valley. 20 respondents were interviewed with a semi-structured interview. This study found that level of awareness and understanding on green home concept among construction players and public is low to moderate level. However, it shows improvement in terms of its implementation with all respondents agreed that cost factor is greatest challenge to its implementation. Other challenges identified from the study are low awareness and understanding among construction players and public, low demand for green home, and lack of Government enforcement and initiatives. The study is eventually intended to enhance and improve the sustainable practice in Malaysian’s construction industry.

  17. Mechanical control over valley magnetotransport in strained graphene

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Ning, E-mail: maning@stu.xjtu.edu.cn [Department of Physics, MOE Key Laboratory of Advanced Transducers and Intelligent Control System, Taiyuan University of Technology, Taiyuan 030024 (China); Department of Applied Physics, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi' an Jiaotong University, Xi' an 710049 (China); Zhang, Shengli, E-mail: zhangsl@mail.xjtu.edu.cn [Department of Applied Physics, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi' an Jiaotong University, Xi' an 710049 (China); Liu, Daqing, E-mail: liudq@cczu.edu.cn [School of Mathematics and Physics, Changzhou University, Changzhou 213164 (China)

    2016-05-06

    Recent experiments report that the graphene exhibits Landau levels (LLs) that form in the presence of a uniform strain pseudomagnetic field with magnitudes up to hundreds of tesla. We further reveal that the strain removes the valley degeneracy in LLs, and leads to a significant valley polarization with inversion symmetry broken. This accordingly gives rise to the well separated valley Hall plateaus and Shubnikov–de Haas oscillations. These effects are absent in strainless graphene, and can be used to generate and detect valley polarization by mechanical means, forming the basis for the new paradigm “valleytronics” applications. - Highlights: • We explore the mechanical strain effects on the valley magnetotransport in graphene. • We analytically derive the dc collisional and Hall conductivities under strain. • The strain removes the valley degeneracy in Landau levels. • The strain causes a significant valley polarization with inversion symmetry broken. • The strain leads to the well separated valley Hall and Shubnikov–de Haas effects.

  18. Postglacial evolution and recent siltation of the protected lake "Taferlklaussee" (Austria)

    Science.gov (United States)

    Bernsteiner, Heidi; Götz, Joachim; Salcher, Bernhard; Lang, Andreas

    2017-04-01

    Nature conservation and human interaction with the environment often provide a multifaceted area of conflict, exemplified here by an intensively used but also protected small alpine lake. The study area is located in the Salzkammergut region (Upper Austria), which is known for its major salt deposits and especially popular for its numerous lakes. The focus is on the "Taferlklaussee" (TKS), a small freshwater body filling a basin originating from glacial erosion during the last glacial maximum (LGM) and early late glacial stadials (between 16 and 20 ka). The responsible valley glacier (Aurach) was isolated from the major alpine ice flow network during the LGM and not connected to the large adjacent Salzach and Traun outlet glaciers. In historical times the area was deforested and the lake level artificially raised in AD 1716, to allow log rafting on the river Aurach that originates from the TKS. Today, the TKS is under nature conservation but highly frequented as recreational area for summer and winter sports (e.g. hiking, biking, ice-skating and curling - the regional curling club is situated directly at the lakeside). As a consequence of the multiple uses, views on future management of the study area are diverging: On the one hand, nature is meant to be left alone and any negative impacts on the environment should be avoided and on the other hand, natural siltation should be stopped as it reduces the lake area, and provokes lots of controversy. Our research is intended to create information to support the current debate about the future of the TKS by providing first-hand data on short and long-term lake evolution. We focus on two timescales of lake development: The postglacial evolution and infill history of the lake basin (origin, structure, volume and chronology of stored sediment) as well as decadal-scale and recent trends of lake siltation. We are using a bundle of direct and indirect field surveys to generate complementary data. To investigate thickness and

  19. Glacialmorphological reconstruction of glacier advances and glacial lake outburst floods at the Cachapoal glacier in the Dry Central Andes of Chile (34°S)

    Science.gov (United States)

    Iturrizaga, Lasafam; Charrier, Reynaldo

    2013-04-01

    Throughout the Andes Mountain range of South America a general trend of glacier shrinkage has taken place in the last century. Only a few glaciers have shown a rather non-continuous trend of glacier retreat and temporally advanced or even surged during the mid-19th to 20th century. One of the earliest assumed glacier surges has occurred in the upper Cachapoal catchment area at the homonymous glacier. In climatic respect the Cachapoal glacier is located in the transition zone from the most southern part of the Dry Central Andes of Chile to the more humid zone of the Wet Andes. The region is affected mainly by winter precipitation deriving from the Westerlies. The debris-covered, 12 km-long Cachapoal glacier represents one of the largest valley glaciers in the Central Andes. It is an avalanche-fed glacier with an almost 1500 m-high head wall in its upper catchment area flowing down from Picos del Barroso (5180 m) and terminates at an elevation of 2630 m a.s.l. with a bifurcated glacier tongue. A large moraine complex, almost 2 km in length and 500 m in width, separates the two glacier lobes. During times of advanced glacier tongue positions the Ríos Molina and Cachapoal may be have blocked independently at two distinct localities which are situated about 2300 m apart from each other. A blockage with temporal lake formation has occurred at least in the years 1848, 1955 and 1981 (cf. Plagemann 1887, Peña 1981), from which the rupture of the earliest glacier barrier has been the most devastating. This event is locally reminded as "la gran avenida en seco" in the historical record. Geomorphological evidence of the past historical and modern glacier expansions is given in the proglacial area by a fresh dead-ice hummocky topography and glacial trimlines at the valley flanks. More down valley broad outwash plains and boulder clusters indicate past high energy floods produced by glacier lake outbursts. Regarding the small size of the catchment area of the Río Molina

  20. Assessment of multiple sources of anthropogenic and natural chemical inputs to a morphologically complex basin, Lake Mead, USA

    Science.gov (United States)

    Rosen, Michael R.; Van Metre, P.C.

    2010-01-01

    Lakes with complex morphologies and with different geologic and land-use characteristics in their sub-watersheds could have large differences in natural and anthropogenic chemical inputs to sub-basins in the lake. Lake Mead in southern Nevada and northern Arizona, USA, is one such lake. To assess variations in chemical histories from 1935 to 1998 for major sub-basins of Lake Mead, four sediment cores were taken from three different parts of the reservoir (two from Las Vegas Bay and one from the Overton Arm and Virgin Basin) and analyzed for major and trace elements, radionuclides, and organic compounds. As expected, anthropogenic contaminant inputs are greatest to Las Vegas Bay reflecting inputs from the Las Vegas urban area, although concentrations are low compared to sediment quality guidelines and to other USA lakes. One exception to this pattern was higher Hg in the Virgin Basin core. The Virgin Basin core is located in the main body of the lake (Colorado River channel) and is influenced by the hydrology of the Colorado River, which changed greatly with completion of Glen Canyon Dam upstream in 1963. Major and trace elements in the core show pronounced shifts in the early 1960s and, in many cases, gradually return to concentrations more typical of pre-1960s by the 1980s and 1990s, after the filling of Lake Powell. The Overton Arm is the sub-basin least effected by anthropogenic contaminant inputs but has a complex 137Cs profile with a series of large peaks and valleys over the middle of the core, possibly reflecting fallout from nuclear tests in the 1950s at the Nevada Test Site. The 137Cs profile suggests a much greater sedimentation rate during testing which we hypothesize results from greatly increased dust fall on the lake and Virgin and Muddy River watersheds. The severe drought in the southwestern USA during the 1950s might also have played a role in variations in sedimentation rate in all of the cores. ?? 2009.

  1. Pengaruh Green Marketing Hotel Terhadap Green Consumer Behavior

    OpenAIRE

    Yo Fernandez, Eunike Christe; Tjoanda, Evelyn

    2017-01-01

    Penelitian ini dilakukan untuk mengetahui pengaruh dari green marketing hotel terhadap green consumer behavior. Green marketing memiliki 3 dimensi, yaitu green product, green price, dan green promotion. Penelitian ini melibatkan 272 responden masyarakat Surabaya dan menggunakan metode regresi linear berganda. Hasil penelitian menunjukkan bahwa green product dan green price berpengaruh secara positif dan signifikan sedangkan green promotion berpengaruh namun tidak signifikan terhadap green con...

  2. Hazards of volcanic lakes: analysis of Lakes Quilotoa and Cuicocha, Ecuador

    Directory of Open Access Journals (Sweden)

    G. Gunkel

    2008-01-01

    Full Text Available Volcanic lakes within calderas should be viewed as high-risk systems, and an intensive lake monitoring must be carried out to evaluate the hazard of potential limnic or phreatic-magmatic eruptions. In Ecuador, two caldera lakesLakes Quilotoa and Cuicocha, located in the high Andean region >3000 a.s.l. – have been the focus of these investigations. Both volcanoes are geologically young or historically active, and have formed large and deep calderas with lakes of 2 to 3 km in diameter, and 248 and 148 m in depth, respectively. In both lakes, visible gas emissions of CO2 occur, and an accumulation of CO2 in the deep water body must be taken into account.

    Investigations were carried out to evaluate the hazards of these volcanic lakes, and in Lake Cuicocha intensive monitoring was carried out for the evaluation of possible renewed volcanic activities. At Lake Quilotoa, a limnic eruption and diffuse CO2 degassing at the lake surface are to be expected, while at Lake Cuicocha, an increased risk of a phreatic-magmatic eruption exists.

  3. Religiosity As An Antecedent Of Attitude Towards Green Products: An Exploratory Research On Young Malaysian Consumers

    Directory of Open Access Journals (Sweden)

    Lau Teck Chai

    2009-06-01

    Full Text Available Religion has long been acknowledged as an important social force that influences human behavior but yet in the secular society its influence on consumer behavior appears to be underestimated. Of the sporadic research conducted, findings indicated that religion can be a significant factor in relation to consumption patterns, innovativeness, media usage, family decision-making, purchase risk aversion and selected store patronage behavior. The current research is exploratory in nature and attempts to investigate the influence of religiosity on attitudes towards green products especially among young Malaysian consumers. Religiosity, the independent variable, was measured by the intrinsic/ extrinsic religious orientation scale adopted from Allport and Ross (1967. The dependent variable was derived from a study on attitudes towards green product (Mostafa, 2007. The questionnaires were distributed to students in a large private university located in Klang Valley, Malaysia. Reliability analysis and multiple linear regressions were conducted. The results from the multiple linear regression analysis indicate that intrinsic religiosity has a significant relationship on consumer’s attitude towards green product. However, in the case of extrinsic religiosity, there is no significant relationship on consumer’s attitude towards green product.

  4. Continuous Lake-Sediment Records of Glaciation in the Sierra Nevada between 52,600 and 12,500 14C yr B.P

    Science.gov (United States)

    Benson, Larry V.; May, Howard M.; Antweiler, Ronald C.; Brinton, Terry I.; Kashgarian, Michaele; Smoot, Joseph P.; Lund, Steve P.

    1998-09-01

    The chemistry of the carbonate-free clay-size fraction of Owens Lake sediments supports the use of total organic carbon and magnetic susceptibility as indicators of stadial-interstadial oscillations. Owens Lake records of total organic carbon, magnetic susceptibility, and chemical composition of the carbonate-free, clay-size fraction indicate that Tioga glaciation began ˜24,500 and ended by ˜13,600 14C yr B.P. Many of the components of glacial rock flour (e.g., TiO 2, MnO, BaO) found in Owens Lake sediments achieved maximum values during the Tioga glaciation when valley glaciers reached their greatest extent. Total organic carbon and SiO 2(amorphous) concentrations reached minimum values during Tioga glaciation, resulting from decreases in productivity that accompanied the introduction of rock flour into the surface waters of Owens Lake. At least 20 stadial-interstadial oscillations occurred in the Sierra Nevada between 52,600 and 14,000 14C yr B.P. Total organic carbon data from a Pyramid Lake sediment core also indicate oscillations in glacier activity between >39,500 and ˜13,600 14C yr B.P. Alpine glacier oscillations occurred on a frequency of ≤1900 yr in both basins, suggesting that millennial-scale oscillations occurred in California and Nevada during most of the past 52,600 yr.

  5. Lake Charles CCS Project

    Energy Technology Data Exchange (ETDEWEB)

    Leib, Thomas [Leucadia Energy, LLC, Salt Lake City, UT (United States); Cole, Dan [Denbury Onshore, LLC, Plano, TX (United States)

    2015-06-30

    , construction labor, engineering, and other costs. The CCS Project Final Technical Report is based on a Front End Engineering and Design (FEED) study prepared by SK E&C, completed in [June] 2014. Subsequently, Fluor Enterprises completed a FEED validation study in mid-September 2014. The design analyses indicated that the FEED package was sufficient and as expected. However, Fluor considered the construction risk based on a stick-build approach to be unacceptable, but construction risk would be substantially mitigated through utilization of modular construction where site labor and schedule uncertainty is minimized. Fluor’s estimate of the overall EPC project cost utilizing the revised construction plan was comparable to SKE&C’s value after reflecting Fluor’s assessment of project scope and risk characteristic. Development was halted upon conclusion of Phase 2A FEED and the project was not constructed.Transport and Sequestration – The overall objective of the pipeline project was to construct a pipeline to transport captured CO2 from the Lake Charles Clean Energy project to the existing Denbury Green Line and then to the Hastings Field in Southeast Texas to demonstrate effective geologic sequestration of captured CO2 through commercial EOR operations. The overall objective of the MVA portion of the project was to demonstrate effective geologic sequestration of captured CO2 through commercial Enhanced Oil Recovery (EOR) operations in order to evaluate costs, operational processes and technical performance. The DOE target for the project was to capture and implement a research MVA program to demonstrate the sequestration through EOR of approximately one million tons of CO2 per year as an integral component of commercial operations.

  6. Evolution of the knowledge system for agricultural development in the Yaqui Valley, Sonora, Mexico.

    Science.gov (United States)

    McCullough, Ellen B; Matson, Pamela A

    2016-04-26

    Knowledge systems-networks of linked actors, organizations, and objects that perform a number of knowledge-related functions that link knowledge and know how with action-have played a key role in fostering agricultural development over the last 50 years. We examine the evolution of the knowledge system of the Yaqui Valley, Mexico, a region often described as the home of the green revolution for wheat, tracing changes in the functions of critical knowledge system participants, information flows, and research priorities. Most of the knowledge system's key players have been in place for many decades, although their roles have changed in response to exogenous and endogenous shocks and trends (e.g., drought, policy shifts, and price trends). The system has been agile and able to respond to challenges, in part because of the diversity of players (evolving roles of actors spanning research-decision maker boundaries) and also because of the strong and consistent role of innovative farmers. Although the agricultural research agenda in the Valley is primarily controlled from within the agricultural sector, outside voices have become an important influence in broadening development- and production-oriented perspectives to sustainability perspectives.

  7. Can greening of aquaculture sequester blue carbon?

    Science.gov (United States)

    Ahmed, Nesar; Bunting, Stuart W; Glaser, Marion; Flaherty, Mark S; Diana, James S

    2017-05-01

    Globally, blue carbon (i.e., carbon in coastal and marine ecosystems) emissions have been seriously augmented due to the devastating effects of anthropogenic pressures on coastal ecosystems including mangrove swamps, salt marshes, and seagrass meadows. The greening of aquaculture, however, including an ecosystem approach to Integrated Aquaculture-Agriculture (IAA) and Integrated Multi-Trophic Aquaculture (IMTA) could play a significant role in reversing this trend, enhancing coastal ecosystems, and sequestering blue carbon. Ponds within IAA farming systems sequester more carbon per unit area than conventional fish ponds, natural lakes, and inland seas. The translocation of shrimp culture from mangrove swamps to offshore IMTA could reduce mangrove loss, reverse blue carbon emissions, and in turn increase storage of blue carbon through restoration of mangroves. Moreover, offshore IMTA may create a barrier to trawl fishing which in turn could help restore seagrasses and further enhance blue carbon sequestration. Seaweed and shellfish culture within IMTA could also help to sequester more blue carbon. The greening of aquaculture could face several challenges that need to be addressed in order to realize substantial benefits from enhanced blue carbon sequestration and eventually contribute to global climate change mitigation.

  8. Principles of lake sedimentology

    International Nuclear Information System (INIS)

    Janasson, L.

    1983-01-01

    This book presents a comprehensive outline on the basic sedimentological principles for lakes, and focuses on environmental aspects and matters related to lake management and control-on lake ecology rather than lake geology. This is a guide for those who plan, perform and evaluate lake sedimentological investigations. Contents abridged: Lake types and sediment types. Sedimentation in lakes and water dynamics. Lake bottom dynamics. Sediment dynamics and sediment age. Sediments in aquatic pollution control programmes. Subject index

  9. Modeling the Role of Zebra Mussels in the Proliferation of Blue-green Algae in Saginaw Bay, Lake Huron

    Science.gov (United States)

    Under model assumptions from Saginaw Bay 1991, selective rejection of blue-green algae by zebra mussels appears to be a necessary factor in the enhancement of blue-green algae production in the presence of zebra mussels. Enhancement also appears to depend on the increased sedime...

  10. Mobile measurements of particle composition in the Rhine Valley and Zurich. Winter 2007/2008; Mobile Messungen der Partikelzusammensetzung im Rheintal und in der Stadt Zuerich. Winter 2007/2008

    Energy Technology Data Exchange (ETDEWEB)

    Mohr, C.; Weimer, S.; Good, C.; Richter, R.; Prevot, A.; Baltensperger, U.

    2009-07-15

    This report issued by the General Energy Research Department and its Laboratory of Atmospheric Chemistry at the Paul Scherrer Institute (PSI) reports on the results obtained from the measurement of fine-dust quantities and composition in the cantons of eastern Switzerland and the upper Rhine valley during the winter. The PSI analysed the samples on behalf of the Swiss cantons, Vorarlberg (Austria) and the Principality of Liechtenstein. The mobile equipment used and the measurements made in the Rhine Valley between Lake Constance and Chur as well as in the City of Zurich are presented and discussed. The results of the measurements are presented in graphical form and the chemical composition of the pollutants at the different locations are discussed. Details of the instruments used and the routes taken are noted in an appendix.

  11. Bibliography of literature pertaining to Long Valley Caldera and associated volcanic fields

    Science.gov (United States)

    Ewert, John W.; Harpel, Christopher J.; Brooks, Suzanna K.; Marcaida, Mae

    2011-01-01

    On May 25-27, 1980, Long Valley caldera was rocked by four M=6 earthquakes that heralded the onset of a wave of seismic activity within the caldera which has continued through the present. Unrest has taken the form of seismic swarms, uplift of the resurgent dome, and areas of vegetation killed by increased CO2 emissions, all interpreted as resulting from magma injection into different levels beneath the caldera, as well as beneath Mammoth Mountain along the southwest rim of the caldera. Continuing economic development in the Mammoth Lakes area has swelled the local population, increasing the risk to people and property if an eruption were to occur. The U.S. Geological Survey (USGS) has been monitoring geophysical activity in the Long Valley area since the mid-1970s and continues to track the unrest in real time with a sophisticated network of geophysical sensors. Hazards information obtained by this monitoring is provided to local, State, and Federal officials and to the public through the Long Valley Observatory. The Long Valley area also was scientifically important before the onset of current unrest. Lying at the eastern foot of the Sierra Nevada, the deposits from this active volcanic system have provided fertile ground for research into Neogene tectonics, Quaternary geology and geomorphology, regional stratigraphy, and volcano